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Abstract: This paper focuses on numerical modeling of the responses of Ballina test 

embankment by an improved EVP-SANICLAY constitutive model with a novel rotational 

hardening (RH) law. The modified RH law guarantees the uniqueness of the critical state line, 

prevents excessive rotation of yield surface and is particularly simple that makes it very useful 

for practical applications. To consider strain-rate dependency of the soil behavior, Perzyna’s 

overstress theory is employed. Using the newly released data at Ballina test embankment site, 

the values of model parameters and state variables are calibrated and evaluated for Class C 

predictions, and their differences with the previously determined parameter values for Class A 

predictions are highlighted and discussed. The elasto-viscoplastic anisotropic constitutive 

model is implemented in PLAXIS software to carry out the simulations of the case study 
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embankment. The numerical modeling results, in terms of time-dependent variations of 

deformations and pore water pressures, both during and after the embankment construction, 

are compared with the physical measurements at the test site. The results of Class C analyses 

show that the model is capable of capturing the temporal changes in surface settlement and 

lateral deformations with good accuracy, with the latter being particularly challenging when 

modeling the behavior of soft clays. Simulation of pore water pressure variations however 

proved more difficult. To highlight the advantages of the proposed EVP-SANICLAY model, 

the simulations are also compared with those using the classical Mohr-Coulomb and modified 

Cam-clay models, and the results are presented and discussed in detail.  

Keywords: Viscoplasticity; Ballina embankment; Clay anisotropy; Vertical drains. 

 

1. INTRODUCTION 

Despite significant developments in the past few decades, modeling, design and 

construction on soft soils are still challenging for geotechnical engineers, since their response 

is governed by a series of fundamental features that are not always included in conventional 

constitutive models. Any realistic constitutive model development for soft soil behavior should 

account for their inherent features such as anisotropy, destructuration (degradation of the inter-

particle bonds), and time-dependency. Soil anisotropy can be modeled by development of 

elastoplastic constitutive models involving an inclined yield surface that is either fixed (e.g., 

[1]), or can change its inclination by adopting a rotational hardening (RH) law in order to 

simulate the development or erasure of anisotropy during plastic straining (e.g., [2, 3]). Dafalias 

and Manzari[4] proposed what they called SANICLAY model, altering the original RH law 

introduced by Dafalias in [2] and adopting a nonassociated flow rule. A destructuration theory 

was later applied to the SANI-CLAY model to account for both isotropic and frictional 
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destructuration processes [5]. Capabilities of the SANICLAY model and its variants have been 

illustrated in successful simulation of drained and undrained responses of normally 

consolidated and overconsolidated sensitive clays [6,7] and applications in boundary value 

problems [8,9]. 

Time-dependency is another typical feature of soft clays behavior which has widely been 

experimentally observed [10-12] and is usually considered a function of soil viscosity. Time-

dependency can result in particular effects such as creep, stress relaxation, and strain-rate 

dependency of the soil response. For experimental investigation of time-dependency creep 

tests, stress relaxation tests, or constant rate of strain (CRS) tests can be used [13]. For common 

practical problems, such as embankments on soft soils, a sustainable design solution can only 

be achieved if time-dependent behavior of soil is taken into consideration. To do so, different 

frameworks can be applied [14], among which the overstress theory of Perzyna [15] is a 

common framework often used in geomechanics owing to its relative simplicity. Recently, 

Rezania et al. [16] developed a new Elasto-ViscoPlastic SANICLAY (EVP-SANICLAY) 

model in which they considered the rotational hardening and destructuration features of 

SANICLAY model for simulation of anisotropy and sensitivity, respectively, and also 

employed Perzyna’s overstress theory to account for soil viscosity effects. The EVP-

SANICLAY model is therefore the new member of the SANICLAY family of models. 

In this paper, the RH law in the newly developed EVP-SANICLAY model has been further 

simplified, and the modified model has been examined in predicting the responses of Ballina 

test embankment. The layout of the paper is as follows. First, the modified EVP-SANICLAY 

model and its new RH law are described in Section2.In Section3, the parameters of the model 

are evaluated and calibrated. Then, in Section4, the numerical modeling of the Ballina test 

embankment and its predicted responses are presented and analyzed. 
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2. EVP-SANICLAY MODEL 

The incremental viscoplastic strains 𝛥𝜺𝑣𝑝 in the EVP-SANICLAY [16] model can be 

calculated as: 

𝛥𝜺𝑣𝑝 = 𝜺̇𝑣𝑝. 𝛥𝑡 = 𝜇〈Φ(𝐹)〉
𝜕𝑔
𝜕𝝈

. 𝛥𝑡 
(1) 

where 𝜺̇𝑣𝑝 is the viscoplastic strain rate tensor (the overdot denotes the time derivative). 𝜇 is 

referred to as the fluidity parameter; 〈 〉 are McCauley brackets which imply that only positive 

values are taken into consideration and negative values are taken as zero; 𝑔 is the viscoplastic 

potential function, represented by the dynamic loading surface (DLS) as explained in the 

following.Φ(𝐹) is the overstress function representing the difference between the DLS and 

the current static yield surface (SYS). Figure 1(a) shows the schematic SYS of the SANICLAY 

model in the general stress space. For the scaling function an exponential form proposed by 

[17] can be adopted 

Φ(𝐹) = exp(𝐹) − 1 = exp [𝑁 (
𝑝0

𝑑

𝑝0
𝑠 − 1)] − 1 

(2) 

where 𝑝0
𝑠 and 𝑝0

𝑑 are representing the sizes of the SYS and the DLS, respectively; N is the 

strain-rate coefficient that together with 𝜇 are the two viscous parameters of this model.  

Knowing the incremental viscoplastic strains, using Perzyna’s overstress theory [15], the total 

strain increment can be defined as the summation of the elastic strain increment 𝛥𝜺𝑒 and the 

viscoplastic strain increment 

𝛥𝜺 = 𝛥𝜺𝑒 + 𝛥𝜺𝑣𝑝 (3) 

The elastic strain increment is time-independent; whereas, the viscoplastic strain increment, 

𝛥𝜺𝑣𝑝, is irreversible and time-dependent. The elastic part of the total strain, using isotropic 

hypoelastic relations, can be shown as 
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𝛥𝜺𝑒 = 𝑫−1: 𝛥𝝈 (4) 

where 𝑫 is the elastic stiffness matrix and symbol : implies the trace of the product of two 

tensors. The hypoelastic formulation, constitutes of a shear modulus 𝐺, for calculating 

increments of elastic deviatoric strains, and a bulk modulus 𝐾, for calculating increments of 

elastic volumetric strains 

𝐺 =
3𝐾(1 − 2𝜈)

2(1 + 𝜈)
;     𝐾 =

𝑝(1 + 𝑒)
𝜅

 
(5) 

where 𝜈 is the Poisson’s ratio; e is the void ratio; 𝑝 = (tr𝝈)/3 is the mean effective stress 

(where tr stands for the trace), and 𝜅 is the slope of elastic swelling lines in the e-lnp space. 

In the general stress space, the SYS function can be expressed as 

𝑓𝑠 =
3
2

(𝒔 − 𝑝𝜶): (𝒔 − 𝑝𝜶) − (𝑀2 −
3
2

𝜶: 𝜶) (𝑝0
∗𝑠 − 𝑝)𝑝 = 0 

(6) 

In the above expression, 𝒔 = 𝝈 − 𝑝𝑰 is the deviatoric component of stress tensor 𝝈 (I being 

the second-order identity tensor). 𝜶 is the deviatoric fabric tensor that accounts for anisotropy 

by coupling the deviatoric and volumetric plastic strain rates. 𝑝0
∗𝑠 = 𝑆𝑖𝑃0

𝑠 defines the size of 

the structured SYS where 𝑆𝑖 > 1 is an isotropic destructuration factor and 𝑃0
𝑠 is the size of the 

intrinsic SYS, and 𝑀 is the critical stress ratio. As shown in Figure 1(b), the DLS has the same 

shape and orientation as the smaller SYS, and following the adoption of associated flow rule it 

coincides the viscoplastic potential surface too. 

The isotropic hardening law of the model describing the evolution of the size of structured 

SYS, i.e. 𝑝0
∗𝑠, is defined as 

𝑝0
∗𝑠 = 𝑆̇𝑖𝑝0

𝑠 + 𝑆𝑖𝑝̇0
𝑠 = 0 (7) 

http://dx.doi.org/10.1016/j.compgeo.2017.05.013
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where 𝑆̇𝑖 is the evolution rate of the isotropic destructuration factor, and 𝑝̇0
𝑠 =

[(1 + 𝑒)/(𝜆 − 𝜅)]𝑝0𝜀𝑣̇
𝑣𝑝 is the evolution of the size of SYS, that is proportional to viscoplastic 

volumetric strain rate, with 𝜆 indicating the slope of normal compression line. 

To describe the evolution of fabric anisotropy with viscoplastic straining, a new rotational 

hardening law proposed by Dafalias and Taiebat [18] is employed which is expressed as 

𝜶̇ = 〈𝐿〉𝑐𝑝𝑎𝑡
𝑝
𝑝0

(𝜶𝑏 − 𝜶) + 𝜶̇𝑓;  𝜶𝑏 = ±
𝑀
𝑧

[1 − exp (𝑠
|𝜼|
𝑀

)] 
(8) 

where 𝐿 is the plastic multiplier, 𝑐 is a model parameter controlling the pace of evolution of 𝜶 

to its bounding value 𝜶𝑏, and 𝑧 and 𝑠 are the model constants controlling the equilibrium values 

of α under constant-stress-ratio 𝜼 loadings. 

The 𝜶̇𝑓 = (𝑆̇𝑓/𝑆𝑓)𝜶 controls the contribution of destructuration over the change of 

orientation of the yield surface. In order to express the isotropic and frictional destructurations, 

an axillary internal variable called the destructuration viscoplastic strain rate, 𝜀𝑑̇
𝑣𝑝 is defined by 

𝜀𝑑̇
𝑣𝑝 = √(1 − 𝐴)𝜀𝑣̇

𝑣𝑝2 + 𝐴𝜺̇𝑞
𝑣𝑝2 

(9) 

where 𝜀𝑣̇
𝑣𝑝 and 𝜺̇𝑞

𝑣𝑝 are the volumetric and deviatoric viscoplastic strain rates, respectively, and 

𝐴 is a model parameter which could be set to 0.5 as a default value [5]. The evolution equations 

for the 𝑆𝑖 and 𝑆𝑓 read 

𝑆̇𝑖 = −𝑘𝑖 (
1 + 𝑒
𝜆 − 𝜅

) (𝑆𝑖 − 1)𝜀𝑑̇
𝑣𝑝 

(10) 

𝑆̇𝑓 = −𝑘𝑓 (
1 + 𝑒
𝜆 − 𝜅

) (𝑆𝑓 − 1)𝜀𝑑̇
𝑣𝑝 

(11) 

where 𝑘𝑖 and 𝑘𝑓 are additional model parameters. 

http://dx.doi.org/10.1016/j.compgeo.2017.05.013


Computers and Geotechnics. Submitted January 2017; Published January 2018. 
http://dx.doi.org/10.1016/j.compgeo.2017.05.013  

7 
 

The numerical solution algorithm for the elasto-viscoplastic model can be developed by using 

a step-by-step time integration scheme with a Newton-Raphson iteration procedure, as 

described in [16]. 

 

3. EVALUATION OF MODEL PARAMETERS AND MODEL CALIBRATION 

The model constants of EVP-SANICLAY can be divided into 5 categories: 1) the elasticity 

constants 𝜅 and 𝜈; 2) the critical state constants 𝜆 and 𝑀 (slope of critical state line) (CSL), 

which are the same as those in the MCC model; 3) the RH constants 𝑐 and 𝑠, which are specific 

to the SANICLAY model; 4) the destructuration constants 𝑘𝑖 and 𝑘𝑓 which are also specific to 

the SANICLAY model; 5) the viscosity parameters 𝑁 and 𝜇, which constitute the two time-

effect parameters of the EVP-SANICLAY and they can be determined as discussed in [16]. 

Some of the model parameters, such as 𝜅, 𝑀 and 𝜆𝑖 (the intrinsic value of 𝜆), can be directly 

evaluated through the results of element level tests while some others, such as 𝑐 and 𝑘𝑖 can be 

evaluated through calibration using element level test data. In this section the procedures 

undertaken to evaluate the model parameters for Ballina clay at three different depths of the 

soft soil deposit (1.5-4.8, 4.8-8.7, and 8.7-10.7m) [19] are explained. It should be mentioned that 

in [20] the model parameter values were evaluated based on limited number of CRS and triaxial 

test results which were provided for each soil layer. In the present work, the supplementary 

experimental data, which were provided after the Embankment Prediction Symposium (EPS) 

2016 [21], are also used for an improved determination of the parameters. 

3.1 Determination of soil parameters  

The parameters 𝜅 and 𝜆𝑖 can be obtained from the results of isotropic or one-dimensional 

compression tests presented in e−log p space. Here, the experimental data of CRS tests 

provided for and after EPS [21] are used to obtain the elasticity parameter 𝜅, and the critical 

http://dx.doi.org/10.1016/j.compgeo.2017.05.013
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state constant 𝜆𝑖. Figures 2 (a) and (b) show the experimental results and the lines fitted to the 

data for clay samples taken from the depth of 6.63m. As it can be seen in Figure 2(a), three 

swelling lines result in three different values of 𝜅, hence an average value is selected for the 

simulation of the test embankment. The slope of the fitted line to the latter part of the 

compression curve plots is taken as 𝜆𝑖 [5], (see Figure 2(b)). The experimental results of the 

CRS tests are also used for the evaluation of the initial isotropic structuration factor 𝑆𝑖𝑜. As it 

is explained in [18] and is illustrated in Figure 2(c), 𝑆𝑖𝑜 is equal to the difference between 

effective vertical stress of the remoulded clay and that of the structured clay corresponding to 

the void ratio of the yield point in the CRS test. Using the new data, the value of 𝑆𝑖𝑜 at the 

depth of 6.63m shows 5% change compared to its previous value used in [20]. 

The slope of CSL is obtained through triaxial tests. Figure 3 illustrates how the results of 

undrained shearing of triaxial samples are used for the evaluation of 𝑀. As it is seen in this 

figure, a first order polynomial with zero y-intercept is fitted to the portion of the test in which 

shearing occurs and the slope of that line is reported as 𝑀. The initial size and inclination of 

SYS depend on the stress-strain history of the soil deposit. For Class A predictions in [20] 𝛼0 

was calibrated by passing it through the initial stress point of the triaxial test. In the present 

work, 𝛼0 is directly evaluated using the formula suggested by [22] 

𝛼0 =
𝜂𝐾0

2 + 3𝜂𝐾0 + 𝑀2

3
 

(12) 

where 𝜂𝐾0 is the stress ratio corresponding to 𝐾0. When the initial value of 𝛼 is chosen, the 

other RH parameters 𝑧 = 𝑠 can be calculated by Eq. (11) of [18]. The remaining anisotropy, 

destructuration and viscosity parameters are calibrated against experimental results, as 

explained in the sequel. 
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3.2 Calibration of additional model parameters  

To calibrate the initial rate of the isotropic destructuration 𝑘𝑖 and viscosity parameters 𝑁 

and 𝜇 the CRS element test results are used. To perform these calibrations, the model has been 

implemented into PLAXIS AE software, through its user-defined soil model facility [23], and 

used for element level tests simulations. In Figure 4(a), the numerical results are compared 

with the experimental oedometric data of the soil samples taken from depth of 6.63m of Ballina 

deposit. This figure illustrates that the choice of the initial value of 𝑘𝑖 does not drastically affect 

the results. Similarly, the calibration procedure for viscosity parameters 𝑁 and 𝜇 is illustrated 

in Figure 4(b). It should be pointed out that the Perzyna-type viscosity parameters for a 

particular clay are not necessarily a unique set [16]. As it was indicated in [20] more 

experimental results will lead to a better calibration of these parameters. Hence, with the new 

results provided for the Ballina clay deposit, new values are suggested for these parameters.  

Using the triaxial test results, the remaining parameters of 𝑐, 𝑘𝑓 and 𝑆𝑓0 are also calibrated. 

For Class A predictions, these calibrations were done by simulating stress path tests and 

comparing the numerical results with experimental data. In the present work, the calibrations 

have been done by comparing model predictions with experimental results of deviatoric 

stresses versus axial strains.  The trial simulations to calibrate these parameters, together with 

the corresponding experimental data, are shown in Figure 5. Based on the authors’ experience 

from extensive element level simulations, the effect of RH constant 𝑐 on the numerical 

predictions is minimal, 𝑘𝑓 variations only affect the numerical predictions when the sample 

state is on the CSL and almost the entire stress path is affected by 𝑆𝑓0 variations. 

3.3 Discussion on the model parameters and constants 

For EVP-SANICLAY model, the values of 10 model parameters and the initial values of 5 

state variables should be determined. These constants can be categorized into four different 

http://dx.doi.org/10.1016/j.compgeo.2017.05.013
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groups of: 

x Model constants 𝑀, 𝜆, 𝜅, 𝜈, 𝑒0 and OCR/POP which are similar to the MCC model 

parameters and are widely used in critical sate based constitutive models. The values of 

these parameters can be directly obtained from standard laboratory tests. While OCR 

and POP may not be considered as standard MCC parameters; however, as it will be 

discussed in the sequel the initial size of the yield surface, which is one of the main state 

variables of MCC model, is often calculated based on OCR or POP values. 

x Initial anisotropy and RH constants which simulate the evolution of soil anisotropy. The 

initial orientation of soil fabric can be described through a fabric tensor. For practical 

purposes, in modelling the initial orientation of soil’s fabric is often considered to be of 

cross-anisotropic nature which is a realistic assumption as natural soils have been 

generally deposited only one dimensionally in a vertical direction [24]. This assumption 

simplifies the initial calculation of fabric tensor components, which can therefore be 

determined using a scalar value 𝛼0 that represents the initial orientation of the yield 

surface. 

x Destructuration parameters which can be calibrated using 𝐾0, or isotropic consolidation 

tests results (for 𝑘𝑖 and 𝑆𝑖0) and undrained triaxial tests (for 𝑘𝑓 and 𝑆𝑓0). 

x Viscosity parameters 𝑁 and 𝜇 which can be determined using long-term oedometer test 

results, and/or CRS test data. 

 Most of these parameters represent actual physical properties of the soil. Hence, evaluation 

and calibration of these parameters can be done through a straightforward procedure. Following 

the parameter calibration procedure discussed in the previous section, the values of the model 

parameters for the soil samples taken at two other depths of 1.5-4.8m, and 8.7-10.7m and a 

sandy-clayey silt layer, have also been obtained. In this work, the parameter values are assumed 

to be constant in depth. Hence, the evaluated model parameters for three different depths are 

http://dx.doi.org/10.1016/j.compgeo.2017.05.013
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averaged and a single value for each parameter is reported in Table 1. In the following section, 

these parameters are applied for the numerical simulation of the embankment.  

For a better illustration of the changes made to parameter values for Class C predictions, 

compared to the values used for Class A predictions, for each parameter and state variable both 

values are reported in Table 1. As values in the table indicate, most of the parameters show 

only a minimal alteration of less than 10%, for the viscosity parameter 𝑁 which shows a more 

distinctive change, the values are still of the same order. Overall, these changes are the outcome 

of (i) new evaluation procedures, as it is the case for 𝛼0, and (ii) availability of the 

complimentary experimental results provided after the EPS [21], as it is the case for the 

parameters such as 𝑁 and 𝑀. In addition to these changes, the procedure through which the 

model uses the preconsolidation pressure for boundary value simulation has been changed. For 

Class A predictions, the preconsolidation pressure was directly fed into the model; hence the 

initial state of each soil layer was represented with a single preconsolidation pressure. Based 

on the authors’ experience [16], while using 𝑝0
∗𝑠, as one of the model input parameters, 

improves the performance of the model in element level simulations, for the boundary value 

problems, such as embankment simulations, 𝑝0
∗𝑠 is better to be evaluated indirectly through 

overconsolidation ratio (OCR) or pre-overburden pressure (POP) values. This is mainly due to 

the fact that the value of 𝑝0
∗𝑠 depends on the previous stress-strain states of the soil which varies 

with the variation of the soil depth. Using OCR or POP lets one to account for this variation 

while direct application of 𝑝0
∗𝑠 overlooks its variations. In the present work, POP is used for 

this purpose. 

http://dx.doi.org/10.1016/j.compgeo.2017.05.013
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4. EMBANKMENT MODELING 

In the following, the modified EVP-SANICLAY constitutive model is used to predict the 

performance of the case study embankment built on the soft Ballina clay deposit and the results 

are explained in detail.  

4.1 Model description 

Ballina test embankment is constructed in Ballina, NSW, Australia, it is 3m high and 80m 

long with a side slope of 1:2.5. The width of the embankment at the top is 16m. The 

embankment material is high plasticity clay derived from basalt cuttings. It is constructed on 

9.2m deep layer of Ballina clay, underlain by clayey sand to medium sand layers down to a 

depth of 19.3m. The soft deposit is overlain by approximately 1.5m alluvial clayey silt. To 

study the performance of new Jute prefabricated vertical drains (PVD), half of the test 

embankment was constructed on the ground improved by Jute PVDs and the other half was 

constructed on the ground improved by conventional PVDs. The latter is the focus of this paper. 

The instrumentation of Ballina test embankment included several settlement plates, 

inclinometers, magnetic extensometers, total and push in pressure cells, hydrostatic profile 

gauges and numerous pore pressure probes [21]. 

For the numerical analysis, the embankment itself is modeled with the simple linear elastic-

perfectly plastic Mohr-Coulomb (MC) model using the following values for the embankment 

material: Young’s modulus E = 25,000 kPa, Poisson’s ratio 𝜈 = 0.25, friction angle 𝜙 = 38°, 

and cohesion 𝑐 = 1 kPa. The sandy-clayey silt layer above, and the sensitive Ballina clay deposit 

below the water table are modeled in PLAXIS using the EVP-SANICLAY model implemented 

as a user-defined model. The clayey sand layer below the Ballina clay deposit is also modeled 

with the MC model using Young’s modulus E = 10,000 kPa, Poisson’s ratio 𝜈 = 0.25, friction 

angle 𝜙 = 30°, and cohesion 𝑐 = 2 kPa. Similarly, the underlying medium sand layer is also 
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simulated with the MC model using Young’s modulus E = 40,000 kPa, Poisson’s ratio 𝜈 = 

0.25, friction angle 𝜙 = 35°, and cohesion 𝑐 = 1 kPa. These parameters are also summarized in 

Table 2. 

In this work, a two-dimensional (2D) plane strain finite element model of the embankment 

is created using PLAXIS, and taking advantage of the symmetry, only half of the embankment 

is modeled. The six-noded triangular elements are employed (see Figure 6) and large strain 

analysis has been carried out for all simulations to take into account the buoyancy of the fill 

material as they become submerged during consolidation. Each element has pore water 

pressure (PWP) degrees of freedom at corner nodes. The effect of PVDs in the numerical model 

is taken into consideration. It should be mentioned that, to consider the effects of vertical drains, 

often the permeability of an entire soil layer in which PVDs are installed in only a part of it, is 

modified for plane strain simulations (e.g., [25]). However, based on the authors’ experience 

and extensive numerical simulations carried out, in the opinion of the authors it is only the 

permeability of the soil in the vicinity of the PVDs that should be modified.  

For the Class A simulations, while the subsoil deposit underneath the embankment was 

modified by adding vertical drains in the PLAXIS model, an equivalent horizontal permeability 

𝑘ℎ𝑒 for the surrounding soil was calculated using the equation proposed by [26]: 

𝑘ℎ𝑒

𝑘ℎ
=

𝐷𝑒
2

6𝑅2 [ln 𝐷𝑒
𝐷𝑠

+ 𝑘ℎ
𝑘𝑠

ln 𝐷𝑠
𝐷𝑤

− 3
4]

 
(13) 

where 𝐷𝑒 is the diameter of unit cell as 𝐷𝑒=1.13𝑆 = 1.13 × 1.2 = 1.36m in which 𝑆 is the 

space between the drains [27]. 𝐷𝑤 and 𝐷𝑠 are the equivalent diameters of the drain and the 

smear zone, respectively. Following the suggestion by [28], the equivalent diameter of the drain 

can be estimated as 0.454𝑤 in which 𝑤 is the width of the drain, hence 𝐷𝑤 = 0.454m.  𝑘ℎand 

𝑘𝑠 are the horizontal hydraulic conductivity of the undisturbed and smeared soil, respectively.  

Eq. (13) shows that to calculate the equivalent horizontal permeability for the PVD-improved 
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subsoil, the two key parameters of the smear zone (𝐷𝑠/𝐷𝑤 and 𝑘ℎ/𝑘𝑠) shall be evaluated. 

However, no data had been provided to fulfil this requirement. Though the extent of these 

parameters can be found through similar studies in the literature. For instance, [29] and [30] 

proposed that 𝐷𝑠 can be 5-8 times of the equivalent diameter of the drain. Madhav et al. [31] 

conducted different tests on the soil specimens collected from the field at different distances 

from the drains and concluded that the hydraulic conductivity of the soil surrounding the drain 

is reduced by 5 times compared to that of the undisturbed soil. Also, [32] recommended 𝑘ℎ/𝑘𝑠 

to be between 5 and 20 for Bangkok clay. Hence, for the Class A simulations, 𝐷𝑠/𝐷𝑤 was 

assumed to be equal to 8 and a value of 20 was used for 𝑘ℎ/𝑘𝑠. 

The procedure used for the Class A predictions, as it is explained by [33] increases the 

numerical cost of the analysis and is time-consuming. Hence, for the Class C predictions, rather 

than adding vertical drains in the PLAXIS model, an equivalent vertical permeability 𝑘𝑣𝑒 is 

used for the PVD-improved subsoil using the simple formula proposed by [34]. This method 

considerably reduces the simulation time (more than five times faster) as the subsoil deposit 

underneath the embankment is modeled as a normal soil with a modified permeability. The 

equivalent vertical permeability is calculated as follows: 

𝑘𝑣𝑒 = (1 +
1.5𝑙2

𝜇𝐷𝑒
2

𝑘ℎ

𝑘𝑣
 ) 𝑘𝑣 

(14) 

where 𝑙 is the drainage length, 𝑘𝑣 is the vertical hydraulic conductivity of the natural soil and 

𝜇 is determined by the following equation: 

𝜇 = ln
𝑛
𝑠

+
𝑘ℎ

𝑘𝑠
ln 𝑠 −

3
4

+ 𝜋
2𝑙2𝑘ℎ

3𝑞𝑤
 

(15) 

where 𝑛 = 𝐷𝑒/𝐷𝑤, 𝑠 = 𝐷𝑠/𝐷𝑤 and 𝑞𝑤 = 2522.8 m3/year  is the discharge capacity of PVD 

[21]. For the Class C predictions that the field measurements of the embankment responses are 

available, the 𝐷𝑠/𝐷𝑤 and 𝑘ℎ/𝑘𝑠 are determined via back calculations, and the  respective values 

of 7.5 and 18 are found suitable for them for the numerical analyses of the next section. It is 
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worth mentioning that the equivalent horizontal permeability is still obtained using the formula 

suggested by [26]. 

As stated above, for the boundary value simulations the PLAXIS calculation mode for large 

strain analyses with updated pore pressures was selected in which the soil permeability changes 

during consolidation analysis as the permeability of soil layers varies with the variation of void 

ratio. The variation of permeability with void ratio is modeled with the simple so-called 

Taylor’s equation [35],  

log
𝑘
𝑘0

=
∆𝑒
𝑐𝑘

 
(16) 

where 𝑘0 is the initial permeability of the soil, 𝑘 is the permeability of the soil in the calculation 

step, ∆𝑒 is the void ratio variation and 𝑐𝑘 is the permeability change index. The permeability 

parameters used for each soil layer in Class A and Class C simulations are summarized in Table 

3. It should be noted that in this study, for all numerical simulations (i.e. using MC, MCC and 

EVP-SANICLAY models) the same permeability values have been used. 

The far-right boundary of the model is assumed at a distance of 50m from the embankment 

centreline. The bottom boundary of the soil strata is assumed to be completely fixed in both 

horizontal and vertical directions, whereas, the left and right vertical boundaries are only 

restrained horizontally. Drainage is allowed at the ground level. Impermeable drainage 

boundaries are assigned to the lateral and bottom boundaries. Based on ground data, water table 

is assumed at the depth of 1.2m. Mesh sensitivity studies have been carried out to ensure that 

the mesh intensity will not affect the accuracy of the results. The numerical predictions of the 

embankment behavior are presented and discussed in the following section. 

4.2 Numerical predictions 

The Class C numerical analyses performed with modified EVP-SANICLAY are presented 

in this section. The results are accompanied with their corresponding Class A predictions. The 
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differences between these two classes of predictions are mainly due to the fact that, in the 

present work with the disclosure of actual field measurements, the model parameters are 

updated (using also the new supplementary experimental results data); furthermore, in the new 

implementation of the constitutive model the variation of preconsolidation pressure with depth 

is accounted for, and also the equivalent permeability of the PVD improved soil is evaluated 

with a new approach. For comparison and better highlighting the capabilities of EVP-

SANICLAY model, the test embankment has also been analyzed with commonly used MC and 

MCC models. The parameter values used for MC and MCC simulations are summarized in 

Tables 2 and 4, respectively. As it was mentioned earlier, similar sets of permeability values 

(Table 3) have been used for all three different models studied in this work. Therefore, the 

differences in the results cannot be associated with different permeability values.  

 Figures 7(a and b), (c and d) and (e and f) show the Class A and Class C settlement 

predictions versus time during embankment construction, field observation period, and after a 

long period of time, respectively. The settlement is measured at a node at the bottom of the 

embankment (point A in Figure 6) which corresponds to the location of SP2 settlement plate 

of the instrumentation setup. Along with the numerical results of EVP-SANICLAY model, the 

results of MC and MCC models are also shown. Figures 7(a) and (b) illustrate that the short-

term predictions of all three models (within 10 days of embankment construction) are 

qualitatively comparable. Quantitatively, for the Class C simulations, EVP-SANICLAY 

settlement predictions are larger than those from the MC model, but similar to MCC 

predictions. Within this timeframe all three models overestimate the settlement of the 

embankment. In the following construction phases and within the first 40 days, similar trends 

can be observed. However, as time passes and effects of soil characteristics such as anisotropy, 

sensitivity and time-dependency on the embankment response become more pronounced, 

notable differences emerge in the numerical results. For instance, the settlement doubles within 
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the next 5 days by increasing from 0.05m to 0.12m from day 40 to day 45, respectively. This 

increase results in a better match between the experimental data and the corresponding 

numerical predictions of the EVP-SANICLAY and MCC models.  

The comparison of the results shown in Figures 7(c) and (d) shows that the new set of model 

parameters used for Class C predictions have increased the magnitude of settlement predicted 

by all three models. However, while the MC and MCC models clearly fail to predict the 

settlement of the embankment within the first three years of its construction, the newly 

proposed EVP-SANICLAY model provides predictions qualitatively and quantitatively 

consistent with the field measurements. The long-term settlement predictions are shown in 

Figures 7(e) and (f). The results in these figures illustrate that the consolidation finishes after 

about 100 and 300 days for the MC and MCC models, respectively, as the settlement increase 

for both models stops at those times. However, evidently for the EVP model it takes longer for 

the excess PWP to dissipate. This results in predictions more consistent with the field 

measurements in long-term. Figure 7(f), also illustrates that this consistency is well-preserved 

for 800 days and then the numerical predictions deviate from the field measurements as the 

rate of the settlement seems to change. This can be due to the fact that the model parameters 

are considered to remain constant with time, while in reality these parameters are 

interconnected and can vary as the settlement develops. It is also worth mentioning that such a 

deviation is less pronounced in a shorter time window, Figure 7(d), which suggests that the 

perception of divergence can partly be due to the way the results are visualized. Moreover, the 

final field measurements do not guarantee that the embankment settlement will necessarily 

follow the new trend. Assuming that the settlement will continue at the new rate after 800 days, 

capturing such abrupt changes will be out of the scope of the present model. Considering the 

fact that the viscosity parameters 𝑁 and 𝜇 do not possess a unique value, adopting different 

values for these parameters, a prediction zone can be defined that encases the field 
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measurements, Figure 7(e). However, this alternative will be more sensible when Class A 

predictions are sought. 

It is worth mentioning that compared to several other soft soil test embankments reported in 

the literature, the Ballina test embankment has shown considerably more settlements. For 

instance, over the same time period, compared to Murro [36], Saint Alban [37] and Tavan road 

[38] the settlement of this test embankment is about 3, 3, and 6 times greater, respectively. It 

might be attributed to the lower OCR value of the Ballina clay which results in larger plastic 

deformations. In order to highlight the contribution of different natural characteristics of 

Ballina clay on the embankment settlement prediction, the Class C simulations have been 

repeated using the SANICLAY model without consideration of soil structure, and using the 

structured SANICLAY model (with destructuration law). These simulations, along with those 

of MCC and EVP-SANICLAY models are shown in Figure 8. From this figure, it is clear that 

the consideration of Ballina clay’s fabric anisotropy alone does not provide much improved 

predictions compared to the commonly used MCC model. However, the clay’s structure and 

its viscosity appear to have considerable influence on its response, as when the effects of these 

characteristics are taken into account within the constitutive model the predictions are notably 

improved, particularly when the time effects (i.e., viscosity effects) are considered.  

The Class A and Class C predicted vertical displacements with time, at different depths, are 

shown in Figures 9(a) and (b), respectively. These results are corresponding to the experimental 

measurements of the in-depth magnetic extensometers. These numerical predictions illustrate 

that the top soil layers of the embankment experience larger vertical displacements [36]. The 

new numerical results are qualitatively similar to their Class A counterpart and their 

quantitative differences can be attributed to their different model parameters.  

Figures 10(a), (c) and (e) show the Class A predictions of total PWP variations at the nodes 

corresponding to the VWP6a (Vibrating Wire Piezometer), VWP6b and VWP6c of the 
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instrumented embankment, respectively. The corresponding Class C predictions and field 

measurement data are shown in Figures 10(b), (d) and (f), respectively. The field data shows 

that, as the depth increases (2m for VWP6a, 6m for VWP6b and 10m for VWP6c), the total 

PWP increases as well. Such an increase is captured in Class A and Class C simulations. For 

all the three depths, the numerical simulations, using MC, MCC and EVP-SANICLAY models, 

predicted that the total PWP initially increases during embankment construction (first 65 days) 

and then it gradually dissipates with time for the next 940 days. This trend can also be seen in 

field measurements by VWP6b and c. For VWP6a, such a trend exists just for the first 200 

days and after that, the measured total PWP gradually increases. The comparison between the 

numerical results of these three models shows that in terms of PWP dissipation all predictions 

are qualitatively similar except that in general EVP predicts higher PWP values. However, 

despite qualitative agreement between numerical and experimental results, Figure 10 shows 

considerable quantitative differences between Class C predictions and their corresponding field 

data. Generally speaking, quantitatively accurate prediction of PWP variations is a challenging 

task which is usually accompanied with discrepancies between field measurements and 

numerical results. One of the most probable reasons of this can be the intrinsic limitations of 

the numerical model. The embankment is simulated adopting a 2D plane strain condition which 

requires a 2D equivalent of the 3D axisymmetric vertical drains which can result in different 

local pore pressure distributions. For example, in Figure 10(a), the dissipation of the PWP in 

the numerical results occurs at a greater rate of what is reflected by field measurements, which 

can be due to the fact that the equivalent permeability used in the models is greater than that of 

the real soil and PVD system. Identifying the actual reasons for differences between the field 

measured data and numerical results for PWP, would require more analyses and specific field 

data. It is also possible that the model used in this study to evaluate equivalent permeability 

may not represent the actual behavior of the subsoil [34].  
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The Class A and C predictions of total horizontal pressure variations with time at different 

depths are shown in Figures 11(a) and (b), respectively. The experimental and their numerical 

counterparts are corresponding to the measurements of the 1st to 4th push in pressure cells 

(PIPC1-4). As it can be seen, for the PIPC1 which is installed in 0.35m depth, the total 

horizontal pressure increases during construction and then, after a small reduction, it remains 

constant. Similar trend can be seen in the numerical results as well. While the overall total 

horizontal pressure increases with depth, comparable patterns can be observed for other PIPCs 

data except that there is less fluctuation in the numerical results for lower depths. Both Class 

A and C predictions show analogous trend of variations and the differences are mainly due to 

different model parameter values adopted. 

Figures 12(a) and (b) show Class A and C predictions of lateral deformation profiles at the 

toe of the embankment, respectively. Similarly the numerical predictions of surface settlement 

troughs are presented in Figures 12(c) and (d). The comparison of the numerical results of 

lateral deformations (which are corresponding to the measurements of the inclinometer 

INCLO2) shows that, while the MC model underestimates the embankment responses, the 

MCC and EVP-SANICLAY models overestimate short-term lateral deformations. Figure 12(b) 

also illustrates that the long-term predictions of EVP-SANICLAY model are in good 

agreement with the field measurements; whereas, the other two models fail to provide 

reasonable predictions, in particular the MC model underestimates the long-term lateral 

deformations. Compared to other test embankments over soft clayey soils that have been 

reported in the literature, the lateral deformations of the current embankment occur at a greater 

rate. For example, while the lateral deformation of the Ballina embankment doubles in extent 

within 3.5 years from its construction, such a deformation takes place within 8.5 years for the 

Murro embankment [39] and 4.5 years for the St. Alban embankment B [40]. The comparison 

between Figures 12(a) and (b) also shows that, whereas for Class A analyses MCC model 
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predictions of lateral deformations in short-term (i.e., for the first 10 weeks) surpassed those of 

the EVP model, for Class C analyses the EVP model always predicts lateral deformations 

higher than those from the MCC model.  Figure 12(c) and (d) show that, immediately after the 

construction, surface settlements are small outside of the embankment area. Figure 12(d) also 

illustrates that the maximum surface settlement after 1090 days from the embankment 

construction is almost 4 times larger than that immediately after the construction. For both 

cases, the maximum vertical deformation is predicted to be directly underneath the centerline 

of the embankment. All of these predictions are consistent with the field data which were 

measured using hydrostatic profile gauge 1 (HPG1). Qualitatively, similar patterns can be 

observed for surface settlements and lateral deformations of other embankments (e.g. [41]). 

Comparable results can also be seen in Figure 12(c) except that the numerical predictions have 

less quantitative consistency with the field data. 

 

5. CONCLUSIONS 

The Class C predictions of time-dependent responses for a test embankment equipped with 

PVDs was provided using the EVP-SANICLAY model modified with a new and improved RH 

law. The model parameters were evaluated and calibrated using detailed experimental results 

of CRS and triaxial tests. The model parameter values and their changes compared to those 

used for Class A simulations were discussed. Apart from the model parameters, for the Class 

C predictions, the effect of PVDs was modeled through evaluation of an equivalent vertical 

permeability for the PVD-improved soil and also the variations of preconsolidation ratio with 

depth was taken into account using POP. Then, the calibrated model was implemented as a 

user defined soil model in the PLAXIS software to perform the numerical simulations of the 

test embankment. To better highlight the advantages of considering natural features of soil 

behavior, such as anisotropy, structure, and time effects, on the reliability of the numerical 
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predictions, the embankment was also simulated using two commonly used models in practice, 

namely MC and MCC models. The comparison of the numerical predictions using the EVP-

SANICLAY model with those obtained using the classical models and the field measurements 

showed that while the MC and MCC models failed to capture the field observed short-term and 

long-term deformations, the EVP-SANICLAY model provided notably improved predictions 

of embankment responses which were reasonably comparable with the field measurements. 

The discrepancies with field measurements which appeared in some results highlighted the 

intrinsic limitations of routine numerical modeling approaches for simulation of complicated 

hydro-mechanical behavior of soft soil deposits overlain by a geo-structure such as 

embankment. Nevertheless, the present study showed that in order to gain better numerical 

accuracy in practical boundary value level simulations, the new elasto-viscoplastic model, that 

takes into consideration some of the fundamental features of natural soil behavior, can be used 

following a standard and straightforward calibration procedure.   
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Figure 1: Schematic depiction of the EVP-SANICLAY model in (a) the general stress space; (b) 

triaxial stress space. 
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Figure 2: Evaluation of (a) 𝜅 (b) 𝜆𝑖 and (c) 𝑆𝑖𝑜 using CRS test for a sample taken from depth of 

6.63m.  
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Figure 3: Evaluation of 𝑀 using triaxial test data for a sample taken from depth of 6.63m. 

  

M 

http://dx.doi.org/10.1016/j.compgeo.2017.05.013


Computers and Geotechnics. Submitted January 2017; Published January 2018. 
http://dx.doi.org/10.1016/j.compgeo.2017.05.013  

30 
 

 

 

 
Figure 4: Calibration of (a) 𝑘𝑖 (b) 𝑁 and 𝜇 using CRS test for a sample taken from depth of 6.63m. 
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Figure 5: Calibration of (a) 𝑐 (b) 𝑘𝑓 and (c) 𝑆𝑓0 using triaxial test data for a sample taken from 

6.63m depth. 
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Figure 6: Geometry of the model embankment and the finite element mesh adopted. 
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Figure 7: Numerical predictions of time-settlement (a) and (b) during construction, (c) and (d) after 

two years, (e) and (f) in long term. 
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Figure 8: The effect of soil characteristics on the numerical predictions of time-settlement. 
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Figure 9: Numerical predictions of time-settlement at different depths. 
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Figure 10: Numerical predictions of Excess PWP variations. 
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Figure 11: Numerical predictions of total horizontal pressure. 
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Figure 12: Numerical predictions of (a) and (b), lateral displacement under the toe and, (c) and (d) 

surface settlement of the embankment. 
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Table 1: Constants of the modified EVP-SANICLAY model adopted for Ballina test embankment.  

Model constant  Top sandy-clayey silt Ballina Clay 
  Class A Class C Class A Class C 

Elasticity 𝜅 0.007 0.007 0.069 0.099 
𝑣 0.25 0.25 0.27 0.27 

Critical state 𝑀 1.033 1.033 1.47 1.27 
𝜆𝑖 0.13 0.13 0.37 0.4 

Rotational hardening 𝑐 13 13 12 12 
𝑧 = 𝑠 2 2 2 2 

Destructuration 𝑘𝑖 1 1 1.13 1.1 
𝑘𝑓 1 1 1.17 1.2 

Viscosity 𝑁 2 2 7 14 
𝜇 (s-1) 2×10-8 2×10-8 1.03×10-7 5×10-6 

Initial state 

𝑒0 1.09 1.09 2.52 2.85 
OCR/POP(kPa) 3.09(OCR) 21.9(POP) 1.86(OCR) 11.7(POP) 

𝛼0 0.02 0.02 0.21 0.236 
𝑆𝑖0 1 1 3.1 3.3 
𝑆𝑓0 1 1 1.1 1.1 
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Table 2: MC Model parameter values adopted for Ballina test embankment. 

Model 
constant  Fill 

(MC) 
Sand 
(MC) Top sandy-clayey silt Ballina Clay 

 
Transition Sand 

(MC) 

Sand 
 

(MC) 

    Class A 
(MC) 

Class C 
(MCC) 

Class A 
(MC) 

Class C 
(MC)   

Elasticity 𝐸′ (kPa) 25000 20000 5000 𝜅=0.007 4226 4226 10000 40000 
𝑣 0.25 0.25 0.25 0.25 0.27 0.27 0.25 0.25 

Strength 𝑐’ (kPa) 1 0 15 𝑀=1.033 14 14 2 1 
 𝜑′ (deg) 38 33 �� 𝜆=0.13 36 36 30 35 

Initial 
state 

𝑒0 1 0.5 1.09 1.09 2.52 2.85 0.5 0.5 
    POP=21.6 (kpa)     
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Table 3: Coefficient of permeability values adopted for Ballina test embankment.  
 

Permeability  Fill Sand Top sandy-clayey silt Ballina Clay Transition sand Sand 
    Class A Class C Class A Class C Class A Class C  

𝑘ℎ𝑣 m/day 0.0475 193 6.4×10-3 6.4×10-3 4.84×10-4 4.84×10-4 4.75×10-2 4.75×10-2 1.93×102 

𝑘𝑒ℎ m/day N/A N/A 1.02×10-4 1.16×10-4 7.96×10-6 8.78×10-6 7.54×10-4 8.61×10-4 N/A 

𝑘𝑒𝑣 m/day N/A N/A Drain 
modelled 1.63×10-2 Drain 

modelled 3.78×10-3 Drain 
modelled 5.84×10-2 N/A 

𝑐𝑘  N/A N/A 0.166 0.166 0.766 0.766 N/A N/A N/A 
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Table 4: MCC Model parameter values adopted for Ballina test embankment. 
 

Model 
constant  Fill 

(MC) 
Sand 
(MC) 

Top sandy-clayey silt 
 

Ballina Clay 
 

Transition Sand 
(MC) 

Sand 
(MC) 

    Class A 
(MCC) 

Class C 
(MCC) 

Class A 
(MCC) 

Class C 
(MCC)   

Elasticity 𝐸′ (kPa) 25000 20000 𝜅=0.007 𝜅=0.007 𝜅=0.069 𝜅=0.099 10000 40000 
𝑣 0.25 0.25 0.25 0.25 0.27 0.27 0.25 0.25 

Strength 𝑐′ (kPa) 1 0 𝑀=1.033 𝑀=1.033 𝑀=1.47 𝑀=1.27 2 1 
𝜑′(deg) 38 33 𝜆=0.13 𝜆 =0.13 O=0.37 𝜆 =0.4 30 35 

Initial state 𝑒0 1 0.5 1.09 1.09 2.52 2.85 0.5 0.5 
OCR/POP(kPa)   OCR=3.09 POP=21.6 OCR=1.86 POP=11.7   
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