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Abstract 20 

Bacterioplankton are fundamental components of marine ecosystems and also influence the entire biosphere 21 

by contributing to the global biogeochemical cycles of key elements. Yet, there is a significant gap in 22 

knowledge about their diversity, specific activity and environmental factors that shape their community 23 

composition and function. Here, the distribution and diversity of surface bacterioplankton along the coastline 24 

of the Gulf of Naples (GON, Italy) was investigated using flow cytometry coupled with high-throughput 25 

sequencing of 16S rRNA gene (rDNA). Heterotrophic bacteria numerically dominated the bacterioplankton, 26 

and comprised mainly Alphaproteobacteria, Gammaproteobacteria and Bacteroidetes. Distinct communities 27 

occupied river-influenced, coastal and offshore sites, as indicated by Bray-Curtis dissimilarity, distance metric 28 

(UniFrac), LefSe and multivariate analyses. Heterogeneity in diversity and community composition was 29 

mainly due to salinity and changes in environmental conditions across sites as defined by nutrient and 30 

chlorophyll a concentrations. Bacterioplankton communities were composed of a few dominant taxa and a 31 

large proportion (92%) of rare taxa (here defined as OTUs accounting for <0.1% of total sequence 32 

abundances), the majority of which were unique to each site. The relationship between 16S rRNA and 16S 33 

rDNA, i.e. between potential metabolic activity and abundance, was positive for the whole community. 34 

However, analysis of individual Operational Taxonomical Units (OTU) revealed high 16S rRNA:rDNA ratios 35 

for most (71.6±16.7%) of the rare taxa, suggesting that these low abundance organisms were potentially active 36 

and hence might be playing an important role in ecosystem diversity and functioning in the GON.  37 

Importance 38 

The study of bacterioplankton in coastal zones is of critical importance considering that these areas are highly 39 

productive and also anthropogenically impacted. Their richness and evenness as well as their potential activity 40 

are very important to assess ecosystem health and functioning. Here, we investigated bacterial distribution, 41 

community composition and potential metabolic activity in the GON which is an ideal test due to its 42 

heterogeneous environment characterized by a complex hydrodynamics and terrestrial inputs of varying 43 

quantities and quality. Our study demonstrates that bacterioplankton communities in this region are highly 44 
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diverse and strongly regulated by a combination of different environmental factors leading to their 45 

heterogeneous distribution, with the rare taxa contributing to a major proportion of diversity and shifts in 46 

community composition and potentially holding a key role in ecosystem functioning. 47 

  48 
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Introduction 49 

Microbes dominate the abundance, diversity and activity of marine ecosystems, being key components 50 

of marine food webs and playing vital roles in major biogeochemical cycles, climate regulation and the 51 

remineralization of organic matter (1, 2). Bacteria (and Archaea) numerically dominate the microbial fraction, 52 

including both autotrophic primary producers that carry out photosynthesis and heterotrophic organisms that 53 

recycle the dissolved organic carbon and nutrients, processing nearly one half of global marine primary 54 

production (3). Bacterioplankton communities exhibit high phylogenetic and physiological diversity (4) with a 55 

remarkable capacity to transform and adapt to the environment around them (5). As a consequence, 56 

knowledge of microbial community composition and diversity patterns is critical to determining the health 57 

and functioning of marine ecosystems (1).  58 

High-throughput sequencing of ribosomal genes facilitated an increasing recognition of the vast 59 

diversity of marine microbes (6). Bacterioplankton diversity and distribution patterns have been extensively 60 

studied both at local (7, 8) and global scales (9, 10, 11) using this technique, yet some oceanic regions, 61 

particularly in highly populated coastal areas, still remain underexplored (12). Determining bacterioplankton 62 

metabolic activity is crucial for estimating their potential contribution to ecosystem processes. Previous 63 

studies have examined bulk activity in terms of biomass production and growth rates, for instance using 64 

bacterial production assays (13, 14), or by measuring incorporated labelled precursors (15, 16). However, 65 

much less is known of the activity of specific taxa within complex bacterioplankton communities, an aspect 66 

that can be analyzed using 16S rRNA:rDNA ratios as a proxy of potential growth rate relative to abundance 67 

(17, 18). Although this approach is not free from bias, for instance due to more than one copy of rRNA gene 68 

per cell (see 17, 19 and references therein), it can readily provide taxon-specific growth potential information, 69 

thus acting as a proxy for their contribution to ecosystem processes, as well as facilitating the identification of 70 

the key drivers of such processes (19). Previously, it was presumed that under steady-state conditions and in 71 

the absence of top-down regulation, most active bacteria are the ones that are most abundant, with higher 72 

growth rates leading to higher biomass (17). Consequently, the rare bacteria were generally considered to 73 
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represent a “seed bank” encompassing slow-growing or dormant individuals ready to respond only when 74 

environmental conditions became favorable again (20). However, a few recent studies showed that rare 75 

Operational Taxonomical Units (OTUs) can have higher levels of 16S rRNA (ribosomes) per rDNA (cell 76 

number) and that they may be disproportionately active relative to their abundances (21, 22). These findings 77 

have encouraged studies on distribution patterns and significance of the rare biosphere in ecosystem 78 

functioning and prompted further analyses at finer taxonomic resolution.  79 

The Gulf of Naples (GON) is a semi-enclosed deep embayment opening into the southern Tyrrhenian 80 

Sea, in the mid-western Mediterranean basin, with an average depth of 170 m and a surface area of 870 km2. 81 

Situated besides the urbanized and densely populated city of Naples and its surroundings, the GON is 82 

subjected to severe anthropogenic pressures such as land and industrial run-offs, improperly treated sewage 83 

discharge and maritime trafficking (23). In its southern part, it receives several inputs from the Sarno river 84 

(one of the most polluted rivers in Europe), particularly following heavy rain events or from uncontrolled 85 

urban discharges. The GON is characterized by complex hydrodynamics with a variable boundary between 86 

coastal and offshore waters, whose position depends upon the general circulation of the Tyrrhenian Sea, 87 

which intrudes eddies into the GON, mainly in the fall and winter (24). The extension of the boundary 88 

between mesotrophic coastal and oligotrophic offshore waters strongly depends on local physical geography 89 

and bottom topography (25), but also on seasonal variability (26, 27). At times when northerly currents 90 

dominate, freshwater inputs from the Volturno and Garigliano rivers can be traced into the GON from the 91 

northern Gulf of Gaeta (28). The high diversity and dynamic nature of the GON make it an ideal site to study 92 

microbial community structure and dynamics in response to environmental factors. Extensive investigations in 93 

this region have surveyed planktonic eukaryotes (23, 29), but bacterial communities have received much less 94 

attention except for cyanobacteria (30, 31) and pathogens (e.g. 32, 33). However, there has been a recent 95 

focus on using picophytoplankton to track physical processes such as eddies, vertical mixing or upwelling 96 

events (e.g. 30, 31).  97 
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The aim of this study was to characterize GON bacterioplankton communities in terms of abundance 98 

and distribution, and to relate them to the general environmental conditions present along the coastline of the 99 

GON. To facilitate this we used flow cytometry and high-throughput sequencing of 16S rDNA amplicons to 100 

obtain high resolution taxonomic identification. At three sites, the correlation between bacterioplankton 101 

abundance and activity was also investigated, the latter via comparison of 16S rRNA:rDNA ratios.  102 

 103 

Materials and Methods 104 

Sample collection, chlorophyll and nutrient analysis 105 

Sixteen surface seawater samples (Fig. 1) were collected from 10th to 29th April 2013 on board the R/V 106 

Minerva Uno and the R/V Vettoria using a rosette sampler equipped with 10 L Niskin bottles and a CTD 107 

probe (SBE 911 plus, SeaBird Electronics, USA). At all stations seawater samples for chlorophyll a,  108 

inorganic nutrient (NO2, NO3, NH4, PO4 and SiO4) analyses, flow cytometry counts,16S rDNA and 16S rRNA 109 

library preparation were collected from the same Niskin bottle. Duplicate samples for flow cytometry (1 ml 110 

each) were placed in 1.5 ml cryovials, fixed with a mix of 0.05% (v/v) glutaraldehyde and 1% (w/v) 111 

paraformaldehyde (final concentrations) for 10 minutes in the dark, frozen in liquid nitrogen and stored at -112 

80°C until analysis as in 31. For DNA collection, 2 l of each sample was pre-filtered through a 10 μm pore-113 

size mesh net to remove large eukaryotes and debris and successively filtered through 47 mm Glass Fiber/A 114 

filters (Whatman, UK), whose nominal pore size (1.67 μm) is larger than most free-living marine bacteria 115 

(34). Cells were then collected onto a 0.22 μm pore-size Sterivex filter cartridge (Millipore, USA) using a 116 

peristaltic pump at 24 rpm. Sterivex filters were then sealed, frozen in liquid nitrogen and stored at -80°C until 117 

DNA extraction. For RNA collection, the procedure was exactly the same as for the DNA extraction, except 118 

for the last filter, which was a 0.22 μm pore-size 47 mm Durapore filter (Millipore, USA), using a vacuum 119 

pump at low vacuum (2.9 psi). After filtration, each filter was stored in a cryovial, frozen in liquid nitrogen 120 

and stored at -80 °C until RNA extraction.  121 
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Samples for the measurement of total chlorophyll a were filtered onto 25 mm Whatman GFF filters, 122 

frozen and stored in liquid nitrogen until analysis. Concentrations were determined using a Shimadzu (Japan) 123 

RF-5301PC spectrofluorometer as previously described (35). Discrete samples for inorganic nutrient 124 

concentrations (NO3, NO2, NH4, PO4, SiO4) were frozen and stored at -20°C until analysis. Concentrations 125 

were determined using a FlowSys Autoanalyzer (Systea SpA, Italy) (36). Detection limits were 0.01 μM for 126 

nitrates, nitrites and phosphates, 0.05 μM for ammonia and 0.1 μM for silicates. 127 

Flow cytometry 128 

Bacterioplankton cell concentrations were estimated using a Becton Dickinson FACScalibur (Becton 129 

Dickinson, USA), following standard procedures (37). For assessment of heterotrophic bacteria frozen 130 

samples were thawed and stained with SYBR Green I (Molecular Probes Inc., USA). Cell abundances were 131 

extracted using CellQuest software (Becton Dickinson, USA). 132 

Nucleic acid extraction and sequencing 133 

DNA extraction was performed using the DNeasy Blood and Tissue Kit (Qiagen, USA) according to 134 

the manufacturer’s instructions, with the only minor modification being overnight incubation at 56°C 135 

following addition of the Qiagen lysis buffer and Proteinase K to the Sterivex filters. RNA extraction was 136 

performed using the PowerWater® RNA Isolation kit (Mo Bio laboratories, USA) according to the 137 

manufacturer’s protocol. DNA contamination was checked by PCR of 16S rRNA gene using standard primers 138 

and conditions (38). The minimum amount (20 ng) of extracted RNA was reverse transcribed with random 139 

primers using the iScriptTM cDNA Synthesis kit (Biorad, USA), following the manufacturer’s instructions. 140 

DNA and cDNA samples were shipped to the GeneCore Genomics Core Facility at the European Molecular 141 

Biology Laboratory, Heidelberg (Germany), for paired-end multiplexed sequencing using the Illumina MiSeq 142 

platform. The PCR protocol used for amplifying DNA and cDNA was standardized to use minimum amount 143 

of template. Primers used for library preparation covered V4 and V5 hypervariable regions (515F-926R) of 144 

the 16S rRNA gene, as in reference 39, with only one base difference (Table 1).  145 

Nucleotide sequence accession numbers 146 
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Sequences obtained in this study have been deposited in the European Nucleotide Archive (ENA) with 147 

accession numbers from ERS1162689 to ERS1162707 (study accession number- PRJEB14040).  148 

Sequence analyses 149 

Low quality raw reads with a contaminating adapter sequence or with a Phred value less than 25 were 150 

excluded using Trimmomatic (40) The resulting sequences were further processes and analysed  using the 151 

Mothur software package (version 1.33.1, 41), following the MiSeq standard operating procedure (SOP) 152 

(http://www.mothur.org/wiki/MiSeq_SOP, 42). Reads were joined into contigs using the sequence and quality 153 

score data from the Fastq files. Primers were trimmed and sequences were further screened according to the 154 

following parameters: minimum length=370, maximum length=376, maximum number of Ns=0, maximum 155 

homopolymers=8. Unique sequences, i.e. randomly screened sequences from groups of identical sequences 156 

present in two or more copies, were screened out in order to speed up the process and to avoid computational 157 

memory problems. The resulting sequences were aligned against the SILVA reference database (version 102) 158 

and pre-clustered allowing a maximum of three differences between sequences. Chimeric sequences were 159 

detected with the UCHIME algorithm (43) and removed. After this filtration, taxonomic assignment was 160 

realized using the SILVA taxonomy string with the k-nearest-neighbour algorithm at a bootstrap confidence 161 

score of 100 and a minimum similarity threshold of 80%. Across all 16S rDNA libraries, a total of 8,811,540 162 

raw reads were obtained, from which 1,216,213 high quality sequences with an average read length of 370 to 163 

376 were used for taxonomic assignment. Only a very small number (10 sequences) of Archaeal sequences 164 

assigned to Euryarchaeota and Crenarchaeota appeared in the whole dataset, and these were not included in 165 

further analysis. Sequences flagged as chloroplast, mitochondria or eukaryotes were also excluded. The 166 

remaining 1,210,304 sequences were clustered de novo using the average neighbor algorithm at a distance cut-167 

off of 97% similarity resulting in 2681 OTUs. OTUs identified as singletons were excluded from the dataset 168 

to limit the inflation caused by spurious OTUs (PCR artefacts) and consensus taxonomy for each of the 169 

remaining 1235 OTUs was obtained. The full lists of OTUs for the 16S rDNA and the 16S rRNA libraries are 170 

provided as supplementary files “dataset 1 and 2”. 171 
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 172 

Diversity estimates and statistical analyses  173 

The 16S rDNA libraries prepared using samples collected from all the 16 stations produced 26,177 to 151,291 174 

reads, 487 to 1362 unique sequences, and 281 to 715 OTUs after quality filtration (details for each station are 175 

in Table S1). Rarefaction curves for the observed OTUs, Chao I and Shannon Diversity Index were generated 176 

using the “rarefaction.single” command built in Mothur (Fig. S2) and compared as in 44 to evaluate the 177 

sampling effort and the alpha diversity of the different communities.  Good’s coverage was >99% for all the 178 

samples, indicating that the majority of the species present were sufficiently sampled. Good’s coverage, alpha 179 

diversity indices (Shannon-Wiener (45, 46) and invsimpson (47), richness estimators (ChaoI (48) and ACE 180 

(Abundance-based richness estimation, 49), were computed based on multiple times randomly resampled to 181 

make the sample size equal to the sample with the lowest number of sequences (26177, MC station). The 182 

Berger-Parker dominance index (50) was also calculated but on non-normalized data. Beta diversity measures 183 

were performed on normalized sample sizes in R using the Vegan package. Sample clustering using the Bray-184 

Curtis dissimilarity index was carried out using the functions “vegdist” and “hclust” in R software. Statistic 185 

comparison of Bray-Curtis dissimilarity between community clusters and sub-clusters was performed using 186 

pairwise analysis of similarity (ANOSIM) using the software Primer 6 (51). The main operationally defined 187 

taxa contributing to > 90% similarity within Bray-Curtis clusters of bacterial communities were identified 188 

using similarity percentage (SIMPER) analysis (52) in Primer 6 (51). Based on SIMPER analysis, we were 189 

able to identify what taxa are driving the differences observed in the composition between sites in the GON, 190 

and then grouped all the OTUs with the same affiliation at the Order/Family level.  191 

Relationships between bacterial communities and environmental parameters were explored using 192 

Canonical Correspondence Analysis (CCA) using the Vegan package in R software, using envfit parameter. 193 

Data were log (x+1) transformed prior to any statistical analysis. Distribution patterns of all the abundant taxa 194 

in each station were visualized by generating heatmaps in the MeV program (http://www.tm4.org/mev.html). 195 
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A Linear Discriminant Analysis (LDA) Effect Size pipeline (LEfSe, 53), available 196 

at http://huttenhower.sph.harvard.edu/galaxy/, was used to determine significant differentially distributed 197 

OTUs. A threshold of 2.0 was chosen as threshold for the logarithmic LDA scores. 198 

A sequence from each OTU was randomly selected using “get.oturep” command in Mothur and used 199 

to align in ClustalW incorporated as an accessory application in the BioEdit software package (version 7.2.5) 200 

(54). Maximum-likelihood phylogenetic distances were calculated using the aligned representative sequences 201 

in FastTree (55). The corresponding tree was visualized in MEGA (version 6) (56) and was used for UniFrac 202 

analysis (57), in order to compare the phylogenetic distance between microbial communities as a function of 203 

different sites. In order to assess which stations in the tree had similar bacterial assemblages, a hierarchical 204 

clustering with abundance weight was performed, based on the distance matrix generated by computing 205 

pairwise UniFrac distance. Robustness of the clustering was determined by weighted Jackknife analysis with 206 

random resampling of the sequences and clustering with 1000 permutations while calculating support for each 207 

node.  208 

Potential metabolic activity 209 

The ratio of 16S rRNA:rDNA was used to assess potential specific activity relative to abundance of 210 

each operationally defined taxon at the three stations marked in Fig. 1 (VE3, PO1 and TA1), from where we 211 

could obtain good quality RNA. All samples were extracted, amplified and analyzed using the same procedure 212 

to avoid any bias. Singletons were removed and data were natural log(x+1) transformed prior to statistical 213 

testing. All tests were performed on normalized datasets with equal number of sequences for both 16S rDNA 214 

and 16S rRNA libraries of each sample. Since assumptions of parametric regressions were not fulfilled even 215 

after normalization of the data, nonparametric Spearman and Kendall’s tau tests were performed in R 216 

software. Heatmaps were generated to visualize differences in 16S rDNA and 16S rRNA abundances of the 217 

same OTU between sites and of different OTUs within each site. Differences in 16S rRNA:rDNA ratios 218 

between OTUs were also assessed within and between sites. Sequences were weighted to bacterial 219 

abundances.  220 
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 221 

Results and Discussion 222 

Temperature, salinity, inorganic nutrients and chlorophyll a 223 

To gain comprehensive information about bacterial diversity and community composition in surface 224 

waters of the GON, a total of sixteen stations spanning both coastal and offshore sites were sampled (Fig. 1). 225 

The values of all measured environmental parameters are reported in Table 2. Temperature and salinity values 226 

were quite homogeneous across the sampled region, ranging from 15.75oC (SA6) to 16.56 oC (TA2) and from 227 

36.13 PSU (MC) to 37.52 PSU (PO3), respectively, indicating active mixing in the area. As a consequence, 228 

stations located in the Sarno river catchment (SA1 to SA5) did not show significantly lower salinity values, as 229 

expected from freshwater discharge, though relatively higher nutrient concentrations (especially N and P) 230 

detected at these stations (especially SA1) were interpreted as indicators of river influence (Table 2). The 231 

highest salinity (37.40 PSU and 37.52 PSU) and lowest chlorophyll a (0.93 and 0.62 μg L-1) values were 232 

recorded at stations PO3 and VE3, respectively, indicative of offshore oligotrophy.  233 

Bacterial abundance 234 

Abundances of phototrophic and heterotrophic bacteria enumerated by flow cytometry are reported in 235 

Table 2 and Fig. S1. Heterotrophs dominated numerically with average values of 1.15 ± 0.57 (SD) x 106 cells 236 

ml-1, while autotrophs were dominated by Synechococcus (average values 1.11 ± 0.45 (SD) x 104 cells ml-1), at 237 

all stations. Prochlorococcus was detected at only 5 stations with concentrations between 1.11 x 103 and 2.52 238 

x 103 cells ml-1. No clear patterns in Synechococcus abundance were observed, while heterotrophic bacteria 239 

were more abundant at the MC station and near the Sarno river and less abundant at the offshore stations VE3 240 

and PO3.  241 

Alpha and beta diversity 242 

The rarefaction curves of the observed OTUs (Fig. S2a) approached saturation only for stations SA1, TA1, 243 

TA2, SA2 and SA5, indicating insufficient sampling depth for the others. Although Chao I curves (Fig. S2b) 244 

were steeper, they did not saturate for each library. However, the Shannon rarefaction curves (Fig. S2c), 245 
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which consider both richness and evenness, showed saturation and also a stable pattern in all samples, 246 

suggesting that sampling was sufficient to accurately describe the trends in alpha-diversity. Furthermore, 247 

Good’s coverage was >99% for all the samples (Table 3), indicating that, although possibly more rare taxa 248 

could be recovered by a deeper sampling, the rarefied sequencing depth we used was satisfactorily 249 

representing alpha diversity at the sampling sites.  250 

The Chao I diversity index was higher at most stations near the mouth of the Sarno river (Table 3) and was 251 

positively correlated with ammonium (Pearson’s r=0.66, p<0.05). This pattern has been previously observed 252 

along coast to offshore transects, for instance in the Southern Adriatic Sea (58), Blanes Bay in the 253 

northwestern Mediterranean Sea (59), the South China Sea (60) and Moreton Bay in Australia (61). The 254 

higher richness in coastal areas may be due to terrestrial inputs, the availability of organic and inorganic 255 

matter at high concentration and to continuous mixing of local and external communities, resulting numerous 256 

favourable niches for bacterioplankton communities. The higher rates of primary production in coastal areas 257 

provide a larger fraction of organic matter in the form of detritus, most of which is degraded by heterotrophic 258 

bacteria prior to entering higher trophic levels, supporting bacterial communities with higher richness in these 259 

areas (62). 260 

The Bray-Curtis dissimilarity dendrogram clustered the samples into four different groups (Fig. 2a). Group I 261 

grouped the offshore PO3 and VE3 stations, confirming the similarity inferred from salinity and chlorophyll a 262 

data. Group II included stations TG1, TG2 and PO1, located in front of the heavily urbanized areas of the 263 

neapolitan province. Group III included stations TA1, TA2, SA5 and SA8, north and south of the zone of 264 

influence of the Sarno river, whilst Group IV included stations SA7, SA1, SA2, SA3, SA4 and SA6, which 265 

are closest to the Sarno river. Groups III and IV sub-clustered stations TA1 and TA2 (IIIa) and SA5 and SA8 266 

(IIIb). Group IV sub-clustered stations SA1 and SA2 (IVa) and SA4 and SA6 (IVb). The MC station was not 267 

included in any of the clusters. Bray-Curtis clustering of samples was confirmed to be significant using 268 

ANOSIM R statistic (Table S2), except for the lack of difference between group II and III (R=0.75, p >0.05), 269 

hence these two groups were considered as one cluster from now on. The OTUs responsible for Bray-Curtis 270 
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similarity within groups were identified using similarity percentage (SIMPER) analysis (Table S3). Bacterial 271 

communities in Group I, II+III and IV were 88.7%, 88.6% and 88.8% similar respectively, mainly due to 272 

similar proportions of the same OTUs (Table S2). The MC station showed relatively high proportions of some 273 

OTUs (including some rare ones) as compared to all other stations, such as those attributed to Nereida spp., 274 

Flavobacteraceae, Gammaproteobacteria, Oceanospirillaceae, the Roseobacter clade, Rickettsiales, 275 

Flavobacterium and Cryomorphaceae, which are probably responsible for its outgrouping in the Bray-Curtis 276 

dendrogram.  277 

Bacterial community composition 278 

A total of 1235 OTUs, after excluding singletons, were used to assess bacterial community 279 

composition; 99% of these could be classified at the phylum level. These were affiliated to 17 major phyla 280 

and 3 candidate divisions (Fig. 3a). Overall, the surface bacterioplankton at all stations was dominated by 281 

Proteobacteria (~69%) followed by Bacteriodetes (~ 27%), as in other studies from the Mediterranean Sea 282 

(63). Proteobacteria were also the most diverse bacterial group, comprising the highest number of retrieved 283 

OTUs (47.2% of the whole dataset). Of these, the most frequently occurring OTUs belonged to  284 

Gammaproteobacteria and Alphaproteobacteria (35% and 32% of Proteobacteria, respectively), mainly 285 

represented by Oceanospirillaes and Alteromonadales the former (18% and 14% of the 286 

Gammaproteobacteria, respectively) and Rickettsiales the latter (19% and 12% of the Alphaproteobacteria, 287 

respectively).  288 

Similar to studies conducted in surface waters at the global scale (9, 10), the dominant components of 289 

bacterial communities of the GON were present at all stations but in different proportions (Fig. 3b). Based on 290 

SIMPER analysis and following OTU grouping, Rhodobacterales resulted to be the highest contributing clade 291 

at coastal sites (Group II+III stations), while SAR11 and SAR86 were the most abundant offshore (Group I 292 

stations). This is consistent with previous observations in the Southern Adriatic Sea (58) and the north-293 

western Mediterranean Sea (64) about SAR11 distribution. Members of SAR11 and SAR86 are well known 294 

for their ability to grow at low substrate concentrations, due to their streamlined genomes (65, 66) and light-295 
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harvesting proteorhodopsins for ATP production (66, 67) likely conferring them a selective advantage in 296 

oligotrophic waters (68). In contrast, the dominance of members of the Rhodobacterales (mainly of the genus 297 

Nereida and the Roseobacter clade) at coastal stations is likely due to the higher nutrient concentrations and 298 

chlorophyll a levels at these sites, given their known ability to thrive in more eutrophic environments with 299 

high primary productivity (69) and to use phytoplankton-derived dissolved organic carbon, especially 300 

originating from diatoms (e.g. 70), which abundantly bloom in the GON (71). At river-influenced stations 301 

(Group IV) Alteromonadales (mainly Glaciecola and SAR92) dominated, as related to their preference for 302 

high nutrient concentrations, a feature in good agreement with their copiotrophic nature (72), the exception 303 

being the SAR92 clade which was more abundant at offshore stations, as already reported (73). 304 

Cyanobacteria represented ~1% of the total bacteria, with Synechococcus and Prochlorochoccus 305 

present at all stations, but increasing their contribution at both coastal and offshore (Synechococcus) or 306 

offshore stations alone (Prochlorochoccus), only partially matching flow cytometry data (Table 2, Fig. S1). 307 

This shows that sequencing was robust enough to retrieve Prochlorochoccus even in samples where it was 308 

below detection limits of flow cytometry. Contrary to other studies (e.g. 58, 74, 75), Cyanobacteria did not 309 

dominated in the GON neither showed a clear distribution pattern, which may support their high genetic 310 

diversity with physiologically diverse clades in terms of light and nutrient adaptation (76, 77, 78). Thus, a 311 

more precise mapping of the microdiversity among closely related cyanobacterial lineages is critical to 312 

understand their distribution pattern in this area. 313 

In order to identify significant differential distribution of bacterial groups at the OTU level in relation 314 

to environmental parameters, LefSe analysis was applied. For this test, we considered stations within Group I 315 

(offshore), II +III together (coastal), and IV (river-influenced), as the ones identified by the Bray-Curtis 316 

dendogram (Fig. 2a), and confirmed by ANOSIM (Table S2). A total of 87 OTUs, including both “rare” and 317 

“abundant” (<0.1% and >0.1% of total sequences, respectively), were found to be differentially abundant in 318 

the three areas, with 14 OTUs specialized for river-influenced, 18 for coastal and 55 for offshore stations (Fig. 319 

5a). However, many OTUs, expected to be specialized at offshore stations (e.g. SAR11, SAR92) were not 320 



15 
 

highlighted by this test, due to the fact that they showed similar numerical distribution at both coastal and 321 

river-influenced stations, and LefSe takes into account only the OTUs that are differentially abundant between 322 

the groups considered. Therefore, we performed a second LefSe test considering river-influenced and coastal 323 

stations together (Group II+III+IV), named “coastal+river-influenced”, and compared this merged group with 324 

the offshore group (Group I). This second LefSe test showed that a total of 113 OTUs, including both “rare” 325 

and “abundant”, were differentially abundant, with 82 specialized for offshore and 31 for coastal+river-326 

influenced (Fig. 5b). It is important to note that the offshore area consisted in a higher number of significant, 327 

differentially abundant OTUs than the coastal areas, contributed mainly by rare OTUs, suggesting a niche-328 

adaptation strategy adopted by these low-abundant and highly diverse taxa (34). The analysis at the OTU level 329 

is necessary to understand bacterial distribution patterns with the highest resolution. Our results highlight that 330 

variability of bacterial community composition across different sites in the GON is driven not only by 331 

abundant but also by rare species, whose spatial dynamics needs further thorough description and 332 

understanding.  333 

OTU frequency  334 

Forty-eight OTUs (95.8% of the total sequences) were “abundant” (here defined as OTUs accounting 335 

for >0.1% of the total sequences) at either all or ≥50% of total stations. 48 OTUs (2.6% of the total sequences) 336 

were observed to be abundant at <50% of all stations, whilst 1139 OTUs (1.6% of the total sequences) were 337 

considered “rare” (here defined as OTUs accounting for <0.1% of total sequences). These numbers suggest 338 

that a tremendous bacterial diversity in the GON is accounted for by the so-called “rare biosphere” sensu (79), 339 

which is in agreement with other studies (58, 59, 80). Among the rare OTUs, Arcobacter, Chlamydiae, 340 

Fermicutes (mainly Ruminococcaceae, Veillonellaceae, Lachnospiraceae, Staphyococcaceae), Fusobacteria, 341 

Lentisphaeraceae (Lentisphaera and Victivallis), Spirochaetes, Synergisestes and Vibrio spp. were observed 342 

(≤ 0.01% of total sequences) and were attributed to sewage-associated-bacteria or pathogens (e.g. 81, 82, 83), 343 

indicating the dispersal of faecal bacteria from the anthropogenically affected coastal area and suggesting that 344 

they can survive in marine waters and therefore represent a reservoir of pathogenicity potentially harmful for 345 
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human health.. Similarly, the presence of Rhodocyclales, which are known to degrade several pollutants (84) 346 

is suggestive of pollutant biodegradation occurring in the GON, as related to the many anthropogenic 347 

activities along the GON coastline. 348 

 349 

Bacterial communities and environmental factors 350 

In order to identify the specific environmental factors that might explain bacterial community 351 

composition in the GON, Canonical Correspondence Analysis (CCA) was performed using OTU abundances 352 

and the measured environmental parameters (Fig. 4). The first two axes explained 78% and 18% of the 353 

cumulative variance, respectively. Monte Carlo permutations (999 permutations) indicated that only salinity 354 

(P=0.004), chlorophyll a (P=0.001) and ammonium concentrations (P=0.012) were significant determinants of 355 

bacterial community structure in terms of abundance of OTUs, based on the envfit parameter. Ammonium 356 

was a determinant at the Sarno river-influenced stations (Fig. 2a Group IV), which was dominated by 357 

Alteromonadales. Likewise, bacterial community structure at the MC station, which is largely explained by 358 

chlorophyll a, is dominated by members of the Rhodobacterales. Salinity was the dominant variable at the 359 

oligotrophic sites VE3 and PO3 that were mainly dominated by SAR11. The effect of other environmental 360 

parameters such as temperature, nitrate, nitrite, silicate and phosphate were probably masked by the complex 361 

physical features of the GON at the time of sampling, including mixing.  These results indicate that, similar to 362 

other marine areas (58, 85), it is a combination of several environmental factors influencing the local 363 

distribution of bacterial populations in the GON. Indeed, the unexplained variation in the CCA is likely due to 364 

unmeasured environmental variables and processes, the latter including top-down controls like grazing and 365 

viral lysis that are also known to shape bacterial community composition. 366 

In order to further compare the phylogenetic diversity of the bacterial communities between stations, 367 

UniFrac distance metrics were calculated based on a Maximum-Likelihood tree constructed using one 368 

representative sequence from each OTU (Fig. 2b). Weighted hierarchical clustering showed that community 369 

composition was more similar at those sites located in close vicinity to each other or with similar features. 370 
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Although similar clustering was also mirrored by Bray Curtis dendogram (Fig. 2a) and CCA (Fig. 4), UniFrac 371 

analysis revealed that environmental heterogeneity not only regulates the spatial distribution of abundance of 372 

different taxonomic groups at the local scale in the GON, but may also have resulted in distinct phylogenetic 373 

diversity (see Fig. 2b).   374 

Bacterial potential metabolic activity  375 

 The potential activity of each operationally defined taxon and the correlation between potential 376 

activity (16S rRNA frequency) and abundance (16S rDNA frequency), was assessed at the three stations 377 

where good quality RNA could be obtained: VE3, PO1, and TA1. These stations are also representative of the 378 

coastal (TA1 and PO1) and offshore areas (VE3). 16S rRNA:rDNA ratios may have been affected by the 379 

extraction of DNA and RNA from different lysates, but libraries were normalized by equal number of 380 

sequences before performing calculations or statistical tests, in order to avoid any bias (as also indicated in the 381 

Material and Methods  section).  382 

 Overall, rRNA and rDNA libraries were positively correlated at all the three sites (Fig. 6) (Spearman’s 383 

and Kendall’s P < 0.0001, Kendalls’ τ: VE3=0.22, PO1=0.52, TA1= 0.53). The average 16S rRNA:rDNA 384 

ratio for rare (<0.1% of total sequence abundances) and abundant bacteria was 2.3 (0.2 - 8.47, n=209) and 385 

0.71 (0.09 - 1.51, n=79) respectively, at station VE3; 1.63 (0.27 - 6.67, n=103) and 0.95 (0.18 - 2.2, n=57) 386 

respectively, at station PO1; and 1.2 (0.22 - 4.90, n=87) and 0.8 (0.19 - 1.92, n=57) respectively, at station 387 

TA1, with the ratio for rare bacteria being significantly higher than the ratio for abundant bacteria (P< 0.05, t-388 

test). At all three stations, most (79.80% at VE3, 54.40% at PO1 and 70.20% at TA1) of the abundant taxa had 389 

a ratio <1, whereas most (84.60% at VE3; 77.66% at PO1 and 52.84% at TA1) of the rare taxa had a ratio ≥1  390 

For instance, an abundant SAR11 OTU (ID-10), showed ratios <1 at all the three sites (Fig. 7), similar to what 391 

observed in other studies for SAR11 (22). Likewise, OTUs attributed to Rhodobacteraceae and 392 

Flavobacteriaceae showed a 16S rRNA:rDNA ratio <1. However, cultivated members of these groups have 393 

been previously reported to possess more than one ribosomal operon (22), which may explain this ratio. As 394 

for the rare OTUs, Blastopirellula (Planctomycetaceae) showed a very high 16S rRNA:rDNA ratio (8.5) at 395 
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the VE3 site. The possibility of a sequencing artifact for this high ratio was excluded since the same behavior 396 

was observed for other Blastopirellula OTUs identified at the same station. These results suggest that, 397 

although potential activity and abundance showed a significant positive correlation at the whole community 398 

level, at the individual taxa level this may not hold true and therefore, abundance may not reflect the degree of 399 

their potential activity, as also observed in previous studies in other geographical areas (17, 18). Whilst the 400 

role of the abundant phylotypes in ecosystem functioning is well recognized, contribution of the rare ones 401 

remained largely underestimated until recently, due to the previous assumption of them being merely the 402 

slow-growing and dormant members of the community (20). In general, the abundant bacterial phylotypes 403 

altogether contribute a higher proportion of biomass production or activity, but not always on a per-cell basis, 404 

while rare bacteria can have 16S rRNA:rDNA ratios >1, therefore exhibiting higher potential activity than the 405 

abundant ones, as reported by us and others (17, 18, 22). Unfortunately, due to our small sample size, 406 

correlations between 16S rRNA and rDNA for individual OTUs could not be statistically tested. 407 

 OTUs were ranked on the basis of their abundance in each library. Differences in the relative rank of 408 

the same OTU among different sites, and between rDNA and rRNA libraries of the same site, were observed. 409 

For instance, the majority of the top 50 most abundant OTUs were shared by all six libraries, but the relative 410 

abundance of these OTUs varied between sites. In addition, variations in sequence abundance of the same 411 

OTU between rDNA and rRNA libraries resulted in substantial variation in the 16S rRNA:rDNA ratio among 412 

OTUs, both within and between stations (Fig. 7). These differences can be attributed to different biotic and 413 

abiotic environmental factors (as in 18, 86) or to differences in evenness of diversity between rDNA and 414 

rRNA at different stations (as also found by 17). Both hypotheses are possible in our case, since the average 415 

Shannon index of the rDNA and rRNA libraries were 3.05±0.24 and 2.44±0.80 respectively, and values of the 416 

measured environmental factors were also different. Differences in the 16S rRNA:rDNA ratio can also be due 417 

to life strategies adopted by some bacteria, for instance, the increase of ribosome concentration as they enter 418 

dormancy to achieve higher protein synthesis potential to be used after recovery to vegetative stage in 419 

response to favorable cues (87).  420 
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 421 

Conclusions 422 

The observed strong spatial structuring of bacterial communities in the GON is tightly regulated by 423 

environmental factors and local hydrological features, suggesting a niche-based community assembly, in 424 

accordance with the famous dictum ‘everything is everywhere, but the environment selects’ (88). Further 425 

evaluation of bacterial association and co-occurrence network is needed to gain additional insights on the 426 

potential relationships within these communities as well as to reveal ecological processes such as top-down 427 

and bottom-up regulation and community succession, as suggested by other researchers (eg. 89). Regular 428 

monitoring of bacterioplankton community structure and activity, both at the seasonal and annual scale will 429 

facilitate a better understanding and predictions of their responses to the changing environment. In particular, 430 

in our data salinity appears to play a relevant role, and in this context the GON may represent an interesting 431 

test site to predict the responses of the microbial components to the changing climate-induced salinity increase 432 

in the oceans (90). Our study also highlights the relevance of the “rare” phylotypes in the heterogeneous 433 

bacterial diversity and their potential role in ecosystem functioning, suggesting that they harbour a persistent 434 

functional pool of ecological potential rather than acting merely as a “seed bank”  (91). Therefore, assessment 435 

of their spatio-temporal dynamics and mechanisms controlling their population size is crucial.  436 

 437 
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Table 1. Forward and reverse primers used to amplify the V4-V5 hypervariable region of the 16S rRNA gene 689 

(from Parada et al. 2016). 690 

515F (5'-GTGCCAGCMGCCGCGGTAA-3') 
 
906R (5’-CCGYCAATTYMTTTRAGTTT-3') 

 691 

 692 

 693 

 694 

 695 
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 701 

 702 
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 704 
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 707 
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 710 
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Table 2. Bacterial abundance, geographic coordinates and environmental parameters (temperature, salinity, chlorophyll a (Chl a), nitrate (NO3), 712 

nitrite (NO2), ammonium (NH4), phosphate (PO4) and silicate (SiO4) concentration) at each sampling station in the GON (see Fig. 1). 713 

Station 
ID 

Coordinates  Temp 
(° C) 

Salinity 
(PSU) 

Chl a 
(µg l-1) 

NO3 
(µM) 

NO2 
(µM) 

NH4 
(µM) 

PO4 
(µM) 

SiO4 
(µM) 

Prochlorococcus 
(cells ml-1) 

Synechococcus 
(cells ml-1) 

Heterotrophic 
bacteria 

(cells ml-1) 
SA1 40°43'58.08"N 

14°27'48.96"E 
15.87 36.99 1.15 33.67 1.30 8.22 0.82 46.50 0 1.33 x 104 2.50 x 106 

SA2 40°43'19.92" N 
14°27'52.92"E 

16.00 37.08 3.45 2.53 0.25 4.33 0.17 5.22 0 6.16 x 103 1.14 x 106 

SA3 40°43'28.92"N 
14°27'41.04"E 

15.99 36.98 3.11 4.23 0.31 3.86 0.30 8.00 0 8.9 x 103 5.65 x 105 

SA4 40°44'8.88"N 
14°27'21.96"E 

15.95 37.36 2.64 14.51 0.59 5.14 0.24 21.90 1.21 x 103 1.22 x 104 1.33 x 106 

SA5 40°43'36.84"N 
14°27'12.96"E 

16.13 37.06 3.10 11.34 0.49 2.55 0.17 17.10 2.52 x 103 1.46 x 104 1.64 x 106 

SA6 40°42'51.12"N 
14°28'12.72"E 

15.75 37.15 2.49 4.30 0.20 1.36 0.12 5.65 0 1.56 x 104 3.74 x 104 

SA7 40°44'5.64"N 
14°26'39.48"E 

16.20 36.88 2.59 5.52 0.27 1.85 0.15 8.67 0 1.42 x 104 1.80 x 106 

SA8 40°42'33.84"N 
14°27'34.92"E 

16.36 36.92 2.15 1.23 0.12 0.67 0.07 2.11 0 1.3 x 104 1.60 x 106 

VE3 40°40'59.88" N 
14°24'28.80"E 

16.13 37.4 0.62 2.12 0.12 0.80 0.07 1.93 1.80 x 103 1.71 x 104 1.44 x 106 

TA1 40°45'5.40" N 
14°23'54.60"E 

16.35 36.55 2.12 0.05 0.06 0.45 0.05 0.34 0 1.32 x 104 9.95 x 105 

TA2 40°44'39.48"N 
14°22'33.60"E 

16.56 36.87 1.80 0.00 0.03 0.64 0.01 0.14 1.32 x 103 1.6 x 104 1.44 x 106 

PO1 40°48'18.00"N 
14°19'.12"E 

16.23 36.61 3.09 2.43 0.17 0.87 0.06 2.99 0 7.6 x 103 9.77 x 105 

TG2 40°46'28.20"N 
14°20'12.12"E 

16.29 37.08 2.82 3.99 0.22 0.95 0.08 5.07 0 8.38 x 103 8.16 x 105 

TG1 40°46'44.40"N 
14°21'4.32"E 

16.21 36.72 3.60 0.15 0.05 0.63 0.04 0.18 0 2.05 x 103 8.17 x 105 

PO3 40°47'27.60"N 
14°16'33.60"E 

15.96 37.52 0.93 0.04 0.05 0.58 0.02 0.30 0 2.31 x 103 7.65 x 105 

MC 40°48'42.84"N 
14°15'.00"E 

16.26 36.13 5.17 5.50 0.47 4.72 0.25 6.12 2.24 x 103 1.4 x 104 5.47 x 105 
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Table 3. Average (±SD) Good’s coverage and diversity indices at GON stations. ACE* is the richness 714 

estimation of the non-subsampled 16S rDNA libraries. Different number of asterisks indicates significant 715 

differences between groups of stations (as in Fig. 2a) as obtained using ANOSIM R statistic (Fig. S2). Note: 716 

Standard deviations are generated by Mothur after multiple resampling of the OTU abundance values in order 717 

to normalize the data in order to have equal number of sequences in each library. 718 

Station ID Good’s 
coverage (%) 

ACE* ACE Chao Berger-
Parker 

Shannon Invsimpson 

PO3* 99.7±0.02 399 354±42 331±27 0.24 3.25±0.008 11.98±0.11 

VE3* 99.7± 0.02 459 350±39 347±29 0.31 3.05±0.010 7.97±0.08 

TG1** 99.6±0.02 542 455±69 373±36 0.14 3.23±0.007 14.64±0.10 

PO1** 99.6±0.02 507 479±68 392±40 0.13 3.17±0.007 14.43±0.10 

TG2** 99.6±0.02 551 461±56 401±31 0.13 3.23±0.005 15.00±0.08 

TA1** 99.8±0.02 614 333±54 277±36 0.13± 2.66±0.008 9.15±0.05 

TA2** 99.8±0.02 730 340±60 279±33 0.14 2.78±0.008 10.01±0.06 

SA5** 99.5±0.03 714 594±74 482±48 0.16 3.26±0.008 15.12±0.11 

SA8** 99.6±0.03 523 520±55 428±37 0.13 3.36±0.007 16.66±0.11 

SA7*** 99.6±0.03 724 609±80 438±49 0.32 2.73±0.008 7.29±0.06 

SA1*** 99.5±0.03 753 727±108 498±62 0.25 2.85±0.009 8.93±0.07 

SA2*** 99.3±0.04 935 962±111 688±64 0.26 2.96±0.009 8.97±0.08 

SA3*** 99.4±0.02 782 788±74 561±42 0.21 3.18±0.006 11.95±0.07 

SA4*** 99.5±0.03 829 706±74 542±50 0.16 3.26±0.007 13.85±0.10 

SA6*** 99.7±0.02 378 343±42 293±25 0.19 3.00±0.005 11.18±0.06 

MC 99.6 418 418 400 0.22 3.17 11.74 
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Figure Legends 719 

Fig. 1. Map of the Gulf of Naples highlighting the location of the stations sampled. Samples for flow cytometry 720 

and 16S rDNA sequencing were collected at all stations, whereas samples for 16S rRNA sequencing were 721 

obtained only from stations PO1, TA1 and VE3 (indicated with red symbols). Red square indicates Sarno 722 

river-influenced stations. 723 

Fig. 2. Station clustering based on a) Bray Curtis dissimilarity and b) the distance matrix generated by calculating 724 

pairwise UniFrac metrics. The scale bar in b) shows the distance between clusters in UniFrac units; if two 725 

or more environments have similar lineages, they have a distance of 0. The significance of the cluster 726 

nodes was determined using the jackknife analysis. Jackknife significance values are: >99.9%=1, 90-727 

99%=2, 70-90%=3; 50-70%=4, <50%=5 and higher values indicate a higher adaptation of communities to 728 

the existing environmental conditions. 729 

Fig. 3. a) Bacterial community composition at the phylum level at each GON station sampled. The phylum 730 

Proteobacteria is split into several classes (Alpha-, Beta-, Delta-, Gamma-, and Epsilon-). Bacterial OTUs 731 

that could not be classified were labelled as “other bacteria” b) The relative abundance of the top 12 732 

abundant phylotypes in the GON at a lower taxonomic level (Order/Family level). 733 

Fig. 4. CCA ordination plot depicting the relationship between environmental parameters and bacterial 734 

community structure as represented by 16S rRNA gene sequence data. The first two axes explained 78% 735 

and 18% of the cumulative variance, respectively. 736 

Fig. 5.  LefSe analysis, indicating significantly, differential distribution of taxa in the different groups of stations 737 

a) as identified by Bray-Curtis dendrogram (Fig. 2a) followed by ANOSIM R statistic, and b) after 738 

grouping coastal+river-influenced stations. Red asterisks  indicate “abundant” OTUs that were present in 739 

all the libraries, while blue asterisks indicate OTUs that shifted between “abundant” and “rare” among 740 

stations. OTUs without asterisk are “rare” (<0.1% of total sequences of the libraries).  741 
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Fig. 6. Correlation between 16S rRNA and 16S rDNA frequencies at stations VE3, PO1 and TA1 with slopes for 742 

each station (slope for the total data is y=0.6191x + 0.7343 r2= 0.3845). Individual data points correspond 743 

to paired log(rRNA+1) and log(rDNA+1) for each individual OTU. Data were log transformed in order to 744 

eliminate bias. Therefore, correlations are limited to OTUs where both rRNA and rDNA sequences were 745 

present. 746 

Fig. 7. Comparison of the relative abundance and potential activity of different phylogenetic groups within and 747 

between different sites in the GON.  A) maximum-likelihood phylogenetic tree of the 50 most abundant 748 

OTUs present in all the equally subsampled 16S rRNA and 16S rDNA libraries; Methanococcoides 749 

burtonii, an archaeal species was included as an out-group. B) Heatmap showing the log abundance (log 750 

(observations+1)) for each 16S rRNA and 16S rDNA OTU present in the tree. C) Specific potential 751 

activity relative to abundance of each OTU present at the VE3, PO1 and TA1 stations calculated using the 752 

rRNA:rDNA ratio. 753 

 754 
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