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Abstract 

Endometrial glands provide histiotrophic support for the developing conceptus prior 

to the onset of the haemochorial placenta. Several lines of evidence suggest that 

glands also play an important role in endometrial receptivity, decidualization of the 

stromal compartment, and in maternal immune tolerance during pregnancy. However, 

glandular epithelial cells isolated during the luteal phase become acutely arrested in 

vitro, precluding in-depth analysis of this cellular compartment of the human 

endometrium. In this thesis, I tested various approaches to overcome the 

senescence-associated cell cycle block of primary human endometrial epithelial cells 

(HEECs). I demonstrate that conditional reprogramming of HEECs, using conditioned 

medium of irradiated fibroblast and a Rho kinase inhibitor (Y-27632), partially 

reverses the senescent phenotype and enables expansion of primary HEEC cultures. 

However, the responsiveness of reprogrammed HEECs to embryo-derived signals 

and hormonal cues remained highly variable. To overcome this hurdle, I used a novel 

3D culture system that enabled formation of glandular structures from clonal HEECs 

seeded in Matrigel and cultured in modified adult stem cell medium. Treatment of 

glandular organoids with cyclic AMP and steroid hormones induced the expression of 

PAEP, a glandular differentiation marker. Organoid-forming efficiency experiments 

revealed that missed miscarriage, characterized by early-onset foetal growth 

retardation, is associated with glandular progenitor cell deficiency. To validate this 

observation, I used laser capture microdissection coupled to RNA-sequencing to 

compare mid-luteal glandular gene expression between missed miscarriage cases 

and control subjects. Gene ontology analysis of differentially expressed genes 

revealed that miscarriage may be caused by bioenergetics defects in the glands, 

exemplified by altered expression of mitochondrial-related genes. Taken together, the 

ability to grow and differentiate endometrial glands from isolated clonal HEECs 

provides a powerful new tool to study the mechanisms underpinning reproductive 

failure.  
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1.1 The Human Endometrium 

The endometrium is the inner mucous membrane that lines the uterine cavity. This 

complex tissue provides a receptive environment for embryo implantation in the 

maternal organism. Many cell types take part in its composition. Simple columnar 

epithelial cells comprise the organ lumen coating, and the tubular glands extend from 

the surface epithelium to the endometrial-myometrial interface. Underlying the luminal 

epithelium, and surrounding the glands, the endometrial stroma consists of a 

balanced assortment of different cell types. Specialized fibroblasts that undergo 

mesenchymal-to-epithelial differentiation in every menstrual cycle are the main 

components (Brosens et al., 1999). Immune cells, such as natural killer cells, 

macrophages, T cells and granulocytes also reside in this endometrial compartment 

(Lee et al. 2011). Basal and spiral arteries with their endothelial cells and stem-like 

perivascular cells are also present in the stroma (Masuda et al., 2012). From the 

histophysiological aspect, the endometrium consists of two distinct layers. The 

superficial transient and dynamic functionalis, which is shed during menstruation, and 

the deeper persistent basalis, which contains the glandular fundi, and from which the 

post-menstrual regeneration process arises (Figure 1.1). 

The plasticity of the endometrium is extraordinary, alternating regeneration, 

proliferation, differentiation and sloughing. The whole sequence occurs in mean 28 

day intervals, and a woman is expected to have around 400 menstrual cycles during 

her reproductive life (Collins, 1985). These cyclic changes are tightly regulated by the 

secreted ovarian steroid hormones progesterone (P4) and oestradiol (E2). There is a 

gradient of responsiveness to these hormones across the endometrial layers, the 

upper portions undergoing marked progression of histological changes, while the 

basal compartment exhibits only subtle alterations. 
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Figure 1.1 Cartoon of the endometrium with the different cell types and spiral 

arteries. The endometrium comprises the epithelial and stromal compartments.  

 

The regeneration process is initiated by progenitor cells, through asymmetric division, 

producing the differentiated cells for uterine cavity reepithelization. The first evidence 

for the existence of human endometrial epithelial and stromal progenitor cells was 

described by Chan et al. (2004). The authors demonstrated the presence of 0.22 % 

clonogenic cells amongst the endometrial epithelial population and 1.25 % amongst 

stromal cells. Other properties of stem cells, such as self-renewal and pluripotency 

were also demonstrated later (Gargett et al., 2016). More recently, the identification 

of progenitor cell markers allowed the use of magnetic and fluorescent separation for 

their isolation and phenotyping (Masuda et al., 2012, Valentijn et al., 2013, Murakami 

Epithelial cell Stromal cell Immune cell 
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et al., 2014). Initially, it was believed the endometrial stem-like cells would reside 

exclusively in the basalis, but progenitor cell niches were also later detected in the 

functionalis (Schüring et al., 2011, Valentijn et al., 2013).  

1.2 The Dynamics of Endometrium, During the Menstrual Cycle  

The endometrium is one of the main target tissues of sex steroid hormones. Cycles 

of proliferation, differentiation, shedding and regeneration take place monthly, during 

the reproductive lifespan, in response to fluctuating serum levels of P4 and E2, with 

the purpose of preparing for embryo implantation. Specific changes occur in the 

epithelial and stromal compartments, and a striking cross-talk between these 

endometrial compartments is critical for the normal cycling and function. The length 

of the menstrual cycle is variable, and actually, only 10% of women have a typical 28 

day cycle. The follicular phase accounts for most of the variability, ranging from 10 to 

23 days (Mihm et al., 2011). 

1.2.1 Proliferative Phase 

The first day of menstrual bleeding is considered day 1 of the menstrual cycle. During 

the proliferative phase of the endometrium, which corresponds to the follicular phase 

of the ovaries, increasing levels of granulosa cell-synthesized E2 induce proliferation 

in glands and stroma. The thickness of the endometrium changes from less than 2 

mm to 7 mm, from the beginning to the end of the proliferative phase (Hawkins and 

Matzuk, 2008). The regeneration is triggered by E2, and starts from the basalis. The 

luminal epithelium (LE) is completely restored by day 5, and no scarring is observed. 

The stromal and epithelial progenitor cells may contribute for this phenomenon 

(Gargett and Masuda, 2010). 

In the early proliferative phase, glands are narrow, straight and tubular, and are 

comprised of low columnar epithelial cells. Later, they become tortuous and more 
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convoluted, columnar cells are higher, and sub-nuclear vacuoles are occasionally 

observed. Also in the late proliferative phase, the stroma is densely cellular, and by 

the pre-ovulatory period, oedema starts to develop in this compartment. Ciliation in 

focal areas on the luminal epithelium is also present, right before the secretory phase. 

E2-driven proliferation peaks between days 8 and 10. With the luteinisation of the 

dominant follicle, by increasing secretion of luteinizing hormone (LH), serum P4 levels 

rise, inhibiting the mitogenic effects of E2 in the pre-ovulatory period (Archer et al., 

1991).  

The actions of the sex steroids in the endometrium are carried out through binding of 

these ligands to their cognate nuclear receptors, oestrogen receptor (ER) and 

progesterone receptor (PR).  

There are two isoforms of ER: ERα and ERβ, encoded by two distinct genes. ERα is 

the predominant isoform expressed in the endometrium, and is sufficient to trigger 

endometrial proliferation (Hewitt et al., 2003). ERα is highly expressed in glands and 

stroma during the proliferative phase, with a dramatic decline in the secretory phase 

(Brenner et al., 1990). Upon ligand binding, ERα induces cell cycle progression by 

activation of the PI3K/AKT pathway and hyperphosphorylation of retinoblastoma 

protein (Rb) and p107 proteins, activating the DNA replication machinery for entry in 

the S-phase (Chen et al., 2005; Wang et al., 2007). The effects of E2 in epithelial 

proliferation is mediated by a paracrine action of stromal ERα (Cooke et al., 2007), 

while epithelial ERα is suggested to prevent apoptosis (Winuthayanon et al., 2010).  

Increasing levels of E2 in the late follicular phase trigger the mid-cycle LH surge, 

leading to ovulation, which marks the beginning of luteal phase in the ovary and the 

secretory phase in the endometrium.  
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1.2.2 Secretory Phase 

After ovulation, the dominant follicle, now known as the corpus luteum (CL), 

progressively increases P4 secretion in response to LH. The effects of P4 will prevail 

during the secretory phase, counteracting the mitogenic effects of E2. P4 also drives 

the striking changes observed in the stroma and the secretory function of the glands.  

There are two isoforms of PR: PRA and PRB, both encoded by the same gene. PRA 

is the predominant functional variant in the endometrium. The expression of PR is 

higher during proliferative phase, markedly decreasing in secretory phase. PR 

expression is induced by E2 and inhibited by P4 (Moutsatsou and Sekeris, 2006). 

Ablation of murine PR resulted in endometrial epithelial hyperplastic response to E2 

and P4 (Lyndon et al., 1995; Kurita et al. 1998). Specific knockout of PRA also 

produced epithelial proliferation upon P4 treatment, and the proliferation was 

demonstrated to be dependent on PRB (Mulac-Jericevic et al., 2000).  

The anti-proliferative actions of P4 in the epithelial compartment occur in a paracrine 

manner, through stromal PR. Heart and neural crest derivatives expressed 2 

(HAND2) is a P4 regulated gene in the stroma, and it downregulates fibroblast growth 

factor (FGF) expression. FGF binds to FGF receptor in the epithelial cells to activate 

extracellular signal-regulator kinase (ERK) 1 and 2 or the phosphoinositide 3-

kinase/protein kinase B (PI3K/AKT) pathways, both involved in epithelial proliferation 

(Li et al., 2011). Another indirect mechanism for P4 is the induction of 17β-

hydroxysteroid dehydrogenase type 2 (17β-HSD2) in the epithelium, through binding 

to stromal PR. This enzyme catalyses the conversion of E2, a potent oestrogen, into 

oestrone, a weak form, thereby reducing the proliferative effects of E2 (Yang et al., 

2001). A direct effect on epithelial PR is also described in murine endometrium. Upon 

ligand binding, epithelial PR induces the expression of Krüppel-like factor (KLF) 15, 

which, in turn, negatively regulates E2-induced epithelial cell proliferation, by 
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inhibition of mini-chromosome maintenance protein 2 (Mcm2) expression (Ray and 

Pollard, 2012). MCM2 is required for initiation of DNA synthesis. Epithelial PR also 

affects stromal functions: at least in mice, the selective knockdown of epithelial Pgr 

resulted in infertile mice and lack of decidualization (Franco et al., 2012).   

Accumulation of glycogen rich sub-nuclear vacuoles in the columnar cells of the 

glands can be detected in early secretory phase. Later, these vacuoles shift to a 

supra-nuclear position, and by the peak of secretory activity in the mid-secretory 

phase, they are lost into the glandular lumen and are absorbed by the embryo 

(McCluggage, 2011). A spherical stack of interdigitating nuclear tubules can be 

observed in 5% of the epithelial cells in the mid-secretory phase. This structure, 

named nucleolar channel system (NCS), has only been described in the 

endometrium. Its role is still elusive. It has been suggested that the blastocyst would 

select a cluster of luminal cells containing NCS for apposition (Isaac et al., 2001). An 

enlargement of mitochondria with prominent cristae (Armstrong et al., 1973) is also 

present in epithelial cells.   

In the stromal compartment, oedema is marked, and pronounced changes develop in 

the mesenchymal cells, in the mid-secretory phase. The cells around the blood 

vessels are enlarged, present an eosinophilic cytoplasm, and an extracellular matrix 

(ECM) is easily identified. These alterations progressively extend to the sub-epithelial 

cells, and later, becomes a global event in the stroma. The changes are referred to 

as decidualization, and occur in response to the rising levels of serum P4 and local 

secretion of cyclic adenosine monophosphate (cAMP; Gellersen and Brosens, 2003). 

The stromal cells shift to a secretory phenotype. An influx of specialized uterine 

natural killer (uNK) cells, also starting around the blood vessels, is observed in the 

mid-secretory phase. This phase is the endometrial receptive period, when a 

supportive environment is created to accommodate the implanting blastocyst.  
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In the late secretory phase, serum levels of P4 gradually decrease, leading to 

regression of gland secretion and inflammation process in the stroma, culminating in 

menstruation.  

1.2.3 Menstruation 

If pregnancy does not ensue, CL function declines, resulting in decreasing levels of 

P4 in the late secretory phase. That triggers the cascade of molecular and cellular 

interactions that result in epithelial and stromal breakdown, and eventually, 

menstruation. There is glandular collapse, bestowing them a serrated appearance. 

The stroma is condensed, presenting tight aggregates of stromal cells with 

hyperchromatic nuclei, the so called ‘stromal blue balls’ (McClugagge, 2011). 

Decidual cells lose their enlarged round features. An influx of neutrophils and 

monocytes can be observed in the premenstrual period, along with interstitial 

haemorrhage and fibrin deposition, and uNK cells undergo apoptosis. In the glands, 

both the NCS and the giant mitochondria disappear (McClugagge, 2011). 

Inflammation is initiated by activation of nuclear factor kappa-light-chain-enhancer of 

activated B cells (NF-ƙB) pathway, with increased secretion of several mediators:  

interleukin (IL) 8, monocyte chemotactic protein 1 (MCP1), cyclooxygenase 2 (COX2), 

IL6, IL1, IL33, granulocyte-macrophage colony-stimulating factor (GM-CSF) (Evans 

and Salamonsen, 2014). Matrix metalloproteases (MMP) are mainly secreted by the 

infiltrating neutrophils. The enzymes catabolize ECM, collaborating in stromal 

collapse. Vasoconstriction of spiral arteries is induced by prostaglandin F2α (PGF2α) 

and endothelins. Fibrinolysis is activated in the late secretory phase. Tissue 

plasminogen activator (tPA) and urokinase plasminogen activator (uPA) are up-

regulated and their inhibitor PAI1 (plasminogen activator inhibitor 1) is downregulated 

during the period. Apoptosis is observed in the functionalis, with high expression of 

caspases 3, 8 and 9, and translocation of forkhead box protein O1 (FOXO1) to the 

nucleus. Conversely, BCL-2, an anti-apoptotic molecule, is expressed in the basalis 
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(Henriet et al., 2012). Interestingly, exogenous P4 can only reverse the process within 

the first 36 hours of P4 withdrawal. This suggests that menstruation is initiated by P4 

withdrawal-induced vasoconstriction and inflammatory response. However, in a 

second phase, the released chemokines attract the leukocytes which secrete MMP, 

leading to ECM breakdown and tissue collapse (Slayden and Brenner, 2006). Another 

remarkable fact is that spontaneous decidualization always precedes the cyclic 

shedding of the endometrium in menstruating species, linking these two phenomena 

(Brosens and Blanks, 2013).   

Normal function of the coagulation system is required to cease the menstrual 

bleeding. Tissue factor-derived thrombin and von Willebrand factor interaction with 

platelet glycoproteins act together to form the fibrin plugs that prevent excessive blood 

loss (Davies and Kadir, 2012).  

The inflammation must be self-limiting to avoid excessive tissue injury. The pro-

inflammatory cytokine IL1 induces expression of 11β hydroxysteroid dehydrogenase-

1 (11βHSD1). This enzyme catalyses the conversion of cortisone into cortisol, a 

glucocorticoid that is a potent inhibitor of the inflammatory response. The 

glucocorticoid receptor is expressed in the stromal compartment, including leukocytes 

and endothelial cells. MMP activity is also limited during the menstruation to avoid 

uncontrolled local damage. Tissue inhibitors of MMP (TIMPs), protease inhibitor α2-

macroglobulin and low-density lipoprotein receptor-related protein-1 (LRP1) are 

involved in the repression of MMP activity (Maybin and Critchley, 2015).   

After the tissue detachment and sloughing of the functionalis, regeneration must be 

attained. Reepithelization of the endometrial surface and blood vessel regrowth are 

the main events involved in the endometrial repair. Stem-like cells in the gland stumps 

of the basalis are likely to be involved in the restoration of the surface epithelium 

(Gargett et al., 2016), but mesenchymal-to-epithelial transition has also been 

described (Gary et al., 2009, Patterson et al., 2013). This initial process is 
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independent of oestrogen stimulation (Bigsby, 2002, Kaitu’u-Lino et al., 2010). Blood 

vessel repair involves hypoxia-inducible angiogenic factors, such as hypoxia-

inducible factor 1 (HIF1), angiopoeitins, vascular epithelial growth factor (VEGF), 

platelet-derived growth factor (PDGF) and FGF, some of them known to have 

mitogenic effects on endometrial epithelial cells (Jabour et al., 2006, Maybin et al., 

2011).  

With the regeneration of the functionalis layer and rising levels of E2 secreted by the 

ovarian follicles, endometrial proliferation is resumed, and a new menstrual cycle 

begins.  

 1.3 Human embryo implantation 

Implantation is a complex process comprising a highly co-ordinated crosstalk 

between the embryo and the uterus, as well as communication amongst the 

endometrial compartments (epithelium, stroma and, possibly, myometrium). This 

phenomenon is believed to involve a precisely timed arrival of a competent blastocyst 

into a uterine cavity lined by a receptive endometrium. Due to ethical concerns and 

technical limitations, most of our knowledge on this issue derives from animal 

research, predominantly from mouse knock-out studies. 

1.3.1 Embryo Implantation Steps 

After oocyte fertilization, exponential cell division occurs simultaneously with 

establishment of cell polarity and compaction of blastomeres, to produce a morula. 

Between 4 and 5 days after fertilization, the development of a cavity within the cell 

bulk, and the differentiation of two cell lineages, the outer specialized trophoectoderm 

and inner cell mass (ICM), defines the blastocyst phase. The late phase blastocyst 

develops two other cell types from the ICM: the epiblast and the primitive endoderm 

(Cockburn and Rossant, 2010). Next, the blastocyst hatches from the zona pellucida, 
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before initiating the implantation process. Serine proteases seem to be crucial for 

hatching (Lin et al., 2001, O’Sullivan et al., 2001). The blastocyst enters the 

endometrial cavity, approximately 5 days after fertilization, and the phases of 

implantation unfold (Wang and Dey, 2006).  

1.3.1.1 Apposition 

Before initial adhesion to the luminal epithelium, the human blastocyst orients itself 

with the trophoectoderm overlying the ICM apposing to the endometrium. The embryo 

approaches and becomes loosely adhered to the uterine wall on the implantation site. 

At this stage in mice, intact blastocysts can be retrieved by uterine flushing (Su and 

Fazleabas, 2015). The dialogue between conceptus and endometrium drives this 

sequence. Many chemokines such as monocyte chemoattractant protein 1 (MCP1), 

IL8 and regulated on activation, normal T cell expressed and secreted (RANTES) are 

produced by the blastocyst during this phase (Caballero-Campo et al., 2002). L-

selectin mediates initial adhesion to the endometrial epithelium through MECA-79 

and HECA 452, its carbohydrate ligands (Fukuda and Sugihara, 2008). MUC1 acts 

as a scaffold for L-selectin ligands. MUC1 is an anti-adherent glycoprotein present on 

the epithelial surface of the endometrium, inhibiting cell-cell and cell-matrix adhesion. 

MUC1 is up-regulated in humans during the mid-secretory phase. However, it was 

demonstrated that it disappears at the implantation site (Meseguer et al., 2001, 

Thathian and Carson, 2004). Some proteases (MMP14 and ADAM17) are involved in 

this clearance of apical surface MUC1 (Aplin, 2006). Trophoblasts expresses heparin-

binding EGF-like growth factor (HB-EGF) and its receptor, ErbB4. In a paracrine and 

juxtacrine mode, embryo-derived HB-EGF induces its own expression in the luminal 

epithelium. Epithelial-derived HB-EGF, in turn, triggers trophoblast modifications 

required for apposition and the following steps. Another molecule crucially involved in 

the initial adhesion of the embryo is trophinin. This transmembrane protein expressed 

by trophoblasts mediates homophilic cell adhesion via trophinin-trophinin binding. 
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Human chorionic gonadotrophin (hCG) stimulates trophinin synthesis by luminal 

epithelial cells of implantation site, which bind to trophoblastic cells expressing the 

same protein (Fukuda and Sugihara, 2008).  

1.3.1.2 Attachment 

During this integrin-dependent phase, the blastocyst attaches more stably to the 

maternal surface. Many adhesion molecules expressed in the trophoblasts and the 

luminal epithelium are involved in the coupling process. Integrins are plasma 

membrane glycoproteins comprising heterodimeric α and β subunits. They bind to 

other cells and to ECM ligands, such as osteopontin, fibronectin, vitronectin, heparan 

sulphate proteoglycans and laminin (Bazer et al., 2009). Osteopontin contain the 

integrin binding RGD motif, and is up-regulated by P4 in the epithelial compartment 

and trophoblasts. The blastocyst induces integrin expression in the endometrial 

surface. These receptors also work as signal transduction factors, driving 

cytoskeleton remodelling. Some adhesion molecules, such as basigin and activated 

leukocyte cell adhesion molecule (ALCAM), activate MMPs, triggering the ECM 

remodelling necessary for blastocyst invasion (Singh and Aplin, 2009). 

1.3.1.3 Invasion 

After attachment, the blastocyst must cross the endometrial surface epithelial barrier, 

and invade the underlying stroma. Different mechanisms have been proposed for this 

breaching process. Penetration of the trophoblast through gaps between 

neighbouring luminal epithelial cells, defined as interstitial implantation, was inferred 

based on histological findings in the implantation site (Bischof and Campana, 1996). 

Epithelial cell apoptosis induced by trophoblast FAS ligand interaction with epithelial 

FAS receptor or mediated by trophinin has also been suggested (Boeddeker and 

Hess, 2015). Uchida et al. (2012) demonstrated epithelial-to-mesenchymal transition 

of Ishikawa cells, a human endometrial epithelial cancer cell line, induced by JAR 



13 
 

cells, a human choriocarcinoma cell line, postulating that this transformation would 

underpin the embryo invasion. After breaching the surface epithelium, a thin layer of 

collagen type IV, the basal lamina, is ruptured. The stromal matrix is the last obstacle 

to be transposed. During penetration, trophoblast cells proliferate, differentiate and 

fuse to form the syncytiotrophoblasts. These cells secrete MMPs that degrade the 

stromal ECM (Wang et al., 2001). By day 10 after fertilization, the blastocyst is 

completely embedded in the stroma and overlaid by a newly grown luminal 

epithelium. The decidualized stromal cells, through a constant cross-talk with the 

blastocyst, control trophoblast invasion and indeed participate actively in the process 

of surrounding the conceptus (Gellersen et al., 2010). The endometrial arteries are 

also invaded by trophoblasts to establish the haemochorial placenta. However, the 

maternal-foetal circulation is only thoroughly functional, having blood from spiral 

arteries flowing to the lacunar spaces, by the end of the first trimester of pregnancy. 

Before that, aggregates of trophoblasts plug the distal segments of the arteries. Table 

1.1 summarizes some of the embryonic signals are their roles in implantation.  
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Table 1.1 Embryo signals and roles in implantation 

Embryo signal Role  Referrence  

hCG -  Corpus luteum rescue 

-   Trophoblast differentiation 

-   Trophoblast migration 

-   Endometrial gland differentiation 

-   Induction of LIF, IL6, IL11, MMP7, 

VEGF, CXCL14, GM-CSF, PGE2 in 

endometrium 

-   Decidualization 

Järvelä et al., 20098 

Shi et al., 1993 

Zygmunt et al., 2005 

Fazleabas et al., 1999 

Banaszak et al., 2000 

Paiva et al., 2011 

Kasahara et al., 2001 

EGF -   Syncytialization Dakour et al., 1999 

Platelet 

activating 

factor (PAF) 

-   Embryo development  Stoddart et al., 1996 

Pregancy-

associated 

plasma protein 

A (PAPPA) 

- Embryo development and 

adhesion 

Wang et al., 2014 

IL1α -   Adhesion (induction of integrin β3) Simon et al., 1997 

IL1β -   Decidualization Strakova et al., 2005 

Preimplantation 

factor (PIF) 

-   Adhesion, decidualization Barnea et al., 2012 

HB-EGF -   Apposition  

-   Embryo development 

Jessmon et al., 2009 

Wang et al., 2000 
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Trophinin -   Adhesion Fukuda and Sugihara 2008 

L-selectin -   Adhesion Genbacev et al. 2003 

Integrins -   Adhesion Burrow et al. 1993 

Proteases -   Decidualization 

-   Embryo selection 

Ruan et al., 2012 

Brosens et al., 2014 

hPL -   Endometrial gland secretion Noel et al., 2003 

WNT - Trophoblast invasiveness Pollheimer et al., 2006 

 

1.3.2 Endometrial Preparation 

In order to allow the blastocyst to implant, the endometrium must shift to a receptive 

phenotype. The endometrial receptive phase is also known as the window of 

implantation (WOI), and occurs in the secretory phase of the menstrual cycle, 

spanning day 20 to day 24 of a standard 28 day menstrual cycle, or 6 to 10 days after 

the LH surge (van Mourik et al., 2009). Morphological changes in the endometrium 

are observed during this period, as described in section 1.2.2. Protrusions on the 

apical membrane of luminal epithelial cells, defined as pinopodes or uterodomes, 

have been described. These variable-sized bleb-like structures appear for around 48 

hours, in the mid-secretory phase, and were reported as a preferential site for 

blastocyst-epithelial physical interaction (Quinn and Casper, 2009).  

The acquisition of receptivity depends chiefly on coordinated and sequential exposure 

to oestrogen and P4 from the beginning of the menstrual cycle. These sex steroid 

hormones act mainly binding to their respective nuclear receptors, and recruiting co-

chaperones and co-regulators. The resulting transcription machinery mobilizes 
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several molecular modulators in a spatiotemporal mode, affecting various signal 

transduction pathways. The steroid hormones also exert their effects in non-canonical 

manners, binding to G protein-coupled receptors in the plasma membrane, through 

interaction of the nuclear receptors with other transcription factors, or affecting mRNA 

stability (Young, 2013). Oestrogen is crucial for endometrial proliferation, but its role 

in receptivity in humans is controversial. Negative effect on in vitro fertilization 

implantation rates has been indeed demonstrated (Shapiro et al., 2011). P4, in turn, 

is absolutely essential and sufficient for implantation and early pregnancy survival, as 

proved by inhibition of its biosynthesis and use of anti-progestins (Rashid et al., 2012). 

Signals from the embryo are also involved in endometrial receptivity attainment. hCG 

flushed into the uterine cavity triggers the endometrial expression of various genes 

involved in implantation (Sherwin et al., 2007, Paiva et al., 2011). Human embryo 

conditioned media have similar effects in human endometrial epithelial cells (HEEC) 

and in mouse uterus (Cuman et al., 2013, Brosens et al., 2014). A vast repertoire of 

molecules and their receptors steer the modifications taking place in the endometrium 

during the window of implantation. Cytokines (LIF, lL6, IL1, IL11, IL18, prostaglandins, 

TNFα, CSF1, osteopontin), chemokines (CX3CL1, CCL7, CCL14, CCL4), leptin, IHH, 

WNT members, growth factors (HB-EGF, IGFs, TGFβ, EGF), morphogens (HOXA10 

and 11, MSX1 and 2) and the aforementioned adhesion molecules act in synchrony 

with signals relayed from the embryo to create a supportive environment for the 

arriving blastocyst (Dimitriadis, 2005, van Mourik et al., 2009). The role of some of 

these factors are summarized in Table 1.2. 
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Table 1.2 Factors involved in endometrial receptivity and the roles in 
implantation. 

Factor Roles  References 

COX2 - Knockout mice exhibit implantation 

failure. 

Lim et al., 1997 

cPLA2α - Releases arachidonic acid for 

prostaglandin synthesis. 

- Null mice exhibit implantation defects 

that are rescued by exogenous PGE2 

and PGI2. 

Song et al., 2002 

FKBP52  - P4 co-chaperone. 

- Knockout mice exhibit implantation 

failure and excessive epithelial 

proliferation. 

Yang et al., 2006 

HB-EGF - Apposition. 

- Trophoblast differentiation (invasion). 

- Knockout mice show implantation 

failure. 

Xie et al., 2007 

  

Wang et al., 2000 

HOXA10/11 - Knockout mice show implantation 

failure, lack of decidualization and 

absence of Lif expression. 

Gendron et al., 1997 

  

Das, 2010 

IHH - Implantation and decidualization. 

- Control of epithelial proliferation by 

paracrine signalling to stroma. 

Kurihara et al., 2007 

IL1 - Regulates β3 integrin expression. 

- Induces Lif and leptin expression in 

endometrium and hCG in trophoblast. 

Dimitriadis et al., 2005 

  

Gonzalez et al., 2004 

IL6st 

(Gp130) 

- Dimerises with IL6 receptors to 

phosphorylate STAT3. 

- Secretion of soluble form is reduced in 

infertile women during WOI. 

Ernst et al., 2001 

  

Sherwin et al., 2002 

IL11 - Reduced peri-implantation epithelial 

expression in recurrent miscarriages.  

- Required for decidualization. 

Linjawi et al., 2004 

  

Robb et al., 1998 
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Leptin - Interacts with IL1R to induce Lif and β3 

integrin expression. 

Gonzalez et al., 2004 

LIF  

(lL6 family) 

- Adhesion and decidualization. 

- Growth and differentiation of trophoblast 

(invasion). 

- Regulated by P4, hCG, TGFβ, IL1, HB-

EGF, PDGF TNFα. 

- Inhibit Msx1 expression. 

- Knockout mice show implantation failure 

and lack of decidualization. 

- Patients with multiple implantation 

failures show lower levels, in secretory 

phase. 

Salleh and Giribabu, 2014 

  

van Mourik et al., 2009 

  

Stewart et al., 1992 

  

Song et al., 2000 

  

Hambartsoumian, 1998 

MSX1/2 - Paracrine signalling between epithelium 

and stroma.  

- Knockout mice exhibit implantation 

failure and impaired luminal polarity. 

Daikoku et al., 2011 

  

Nallasamy et al., 2012 

MUC1 - Anti-adhesion molecule. 

- Up-regulated during WOI, but locally 

cleared at implantation site by 

blastocyst. 

Messeger et al., 2001 

Thathiah and Carson, 

2004 

P53 - Knockout mice exhibit implantation 

failure which is rescued by exogenous 

Lif. 

Hu et al., 2007 

SRC2  - Co-activator of PR. 

- Knockout mice exhibit implantation 

failure. 

Mukherjee et al., 2002 

TGFβ - Induces VEGF expression in 

trophoblast. 

Chung et al., 2000 

WNT4 - Knockout mice exhibit implantation and 

decidualization defects. 

Franco et al., 2011 

WNT7a - Knockout mice are devoid of uterine 

glands, show reduced Lif, and fail to 

implant.  

Dunlap et al., 2011 
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There is scarce information about the factors defining the post-receptive phase, or 

the closure of the WOI. Fall in P4 levels triggers a cascade of events that culminate 

in menstruation, whereas hCG rescues CL from luteolysis, preventing decrease in P4 

secretion and excessive inflammation (Tabibzadeh, 1998, Salker et al., 2012).  

Impaired receptivity is considered an important cause of infertility and a limiting factor 

in assisted reproductive technology success (Fatemi and Popovic-Todorovic, 2013). 

Consequently, multiple approaches for assessing endometrial receptivity have been 

developed. One of the first attempts to define the histological changes in the 

endometrium occurring along the menstrual cycle was described by Noyes et al, in 

1950. However this method proved to be inadequate due to low reproducibility and to 

not correlate with infertility (Díaz-Gimeno et al., 2013). Visualization of pinopodes was 

also described as a method to determine the WOI (Nikas et al., 1995). Besides the 

unavailability of electron microscopes for wider use, these structures are not exclusive 

to the mid-secretory phase, being identified during the whole secretory phase and 

even in pregnancy (Quinn and Casper, 2009). Analysis of individual markers such as 

LIF, CSF1, IL1, MUC1, trophinin, L-selectin ligands and integrins were not validated 

to be used for this purpose (Lessey, 2011, Malhotra et al., 2012). The echographic 

appearance, thickness and blood flow of endometrium evaluated through 

transvaginal ultrasound is currently used, but also demonstrates a disappointing 

performance for clinical use (Schild et al., 2001).  

1.4 Stromal Decidualization 

In addition to all the remodelling taking place in the luminal epithelium during the mid-

secretory phase, remarkable changes occur in the underlying stroma. This 

transformation is essential to accommodate the blastocyst and ensure the 

development of a healthy pregnancy.  
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Decidualization is the mesenchymal to epithelial transition of the endometrial 

fibroblasts, arising in the mid-luteal phase, and conferring on them a specialized 

secretory phenotype. This phenomenon is observed in all the species in which the 

embryo breaches the luminal epithelium and invades the stromal compartment. 

However, in contrast with most species, decidualization in humans unfolds in the mid-

luteal phase, independently of the blastocyst presence. The earliest sign of 

decidualization is stromal oedema, starting around day 18 of the cycle. Morphological 

changes can be detected in the cells surrounding the spiral arteries around day 23. 

Next, these modifications span the cells underlying the luminal epithelium, later 

becoming a global stromal feature (Gellersen et al., 2007). The spindle-shape 

morphology is replaced by a round configuration due to cytoplasm increase (Figure 

1.2). At sub-cellular level, expansion of the endoplasmic reticulum and Golgi 

apparatus, and accumulation of glycogen and lipid droplets in the cytoplasm are 

present. Projections of cell surface extending into the ECM or indenting into 

neighbouring cells can be detected.  An influx of immune cells can be later observed 

in response to local production of chemokines. Profound changes in ECM volume 

and composition are characteristic of this process. The expanding matrix show an 

increase in collagen type IV and laminin (Gellersen and Brosens, 2014).  

 

Figure 1.2 Decidualizing human endometrial stromal cells (HESCs). A confluent 

HESC culture before decidualization (left panel), and after two days of treatment with 

0.5 mM cAMP and 1 µM medroxyprogesterone acetate (MPA) (right panel). 
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1.4.1 Decidualization Markers 

Prolactin (PRL) and insulin-like growth factor binding protein 1 (IGFBP1) are 

massively enriched in amniotic fluid and their source was discovered to be the 

decidua (Riddick et al., 1978, Rutanen et al., 1986). These factors are established as 

decidual phenotype markers, and are widely used to assess decidualization in 

endometrial stromal cell cultures (Gellersen and Brosens, 2014).  

1.4.2 Mechanisms of Decidualization 

1.4.2.1 P4 Signalling  

The postovulatory rise of P4, secreted by the CL, is the main cue for stromal 

differentiation. As aforementioned, P4 acts through binding and activation of its 

cognate nuclear receptors. PRA seems to be a truncated version of the more 

transcriptionally active PRB (Vegeto et al., 1993). The two isoforms actually present 

distinct transactivational effects, specific to the cell type. While PRB is pivotal for 

mammary gland morphogenesis, PRA is critical for endometrial function (Mulac-

Jerivic et al., 2000, Mulac-Jerivic et al., 2003). PRA knockout mice were unable to 

develop stromal decidualization. By contrast, selective ablation of PRB confirmed that 

PRA is necessary and sufficient to mediate endometrial P4 responses (Mulac-Jerivic 

et al., 2000). 

PR is part of a transcription complex assembly, being associated with several 

chaperone proteins, such as heat-shock proteins (HSP40, HSP70, HSP90 and 

immunophilins (FK506 Binding Protein [FKBP] 4 and 5). These chaperone proteins 

maintain a conformational structure that makes the ligand binding domain accessible 

(Gellersen and Brosens, 2003). Upon P4 binding, the receptor changes its 

conformation, leading to phosphorylation, dissociation from the chaperones, 

dimerization, binding to responsive elements in promoter regions of the target genes, 
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and recruitment of co-activators SRC2, cAMP response element binding protein 

binding protein [CBP], p300/CBP associated factor [pCAF] and coactivator 

associated arginine methyltransferase 1 [CARM1]) (Wardell et al., 2002, Szwarc et 

al., 2014). The transcriptional machinery is complemented by interaction with factors 

induced by cAMP (Gellersen and Brosens, 2014), and dissociation of co-repressors 

(nuclear receptor co-repressor 1 [NCOR], nuclear receptor co-repressor 2 [SMRT]) 

(Wagner et al., 1998), resulting in transcription initiation.  

The first morphological changes associated with decidual transformation can be 

detected approximately 10 days after the postovulatory rise in P4 levels (Noyes et al. 

1950), indicating that the expression of decidua-specific genes is unlikely to be under 

direct control of activated PR.  The fact that HESCs in culture require, at least, 8 days 

of treatment with P4 or a progestin to secrete detectable levels of PRL, corroborates 

the idea of an initiation factor for decidualization, other than P4 (Gellersen and 

Brosens, 2003).    

1.4.2.2 cAMP Signalling 

 Cyclic AMP is produced upon ligand biding to G protein-coupled receptors. The alpha 

s (αs) subunit is released from heterotrimeric αβγ G-protein complex, following 

binding of ligand to the receptor. Next, αs activates the enzyme adenylyl cyclase (AC), 

which, in turn, synthesizes cAMP from adenosine triphosphate (ATP). This small 

molecule acts as a second messenger, activating the cAMP-dependent protein 

kinase (PKA). PKA complex is comprised of two regulatory and two catalytic subunits. 

The catalytic subunits are dissociated from the complex, and activated upon binding 

of cAMP to the regulatory subunits. Activated PKA phosphorylates target proteins in 

the cytoplasm or diffuses into the nucleus to modulate the activity of transcription 

factors (Fimia and Sassone-Corsi, 2001). The nuclear factors cAMP response 

element binding protein (CREB) and cAMP response element modulator (CREM) are 
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targets for PKA activation through phosphorylation. Once activated, CREB and 

CREM dimerize and bind to c-AMP response element (CRE) in the promoter region 

of target genes, recruiting the co-activator CBP. An alternative CREM promoter 

encodes inducible cAMP early repressor (ICER), which functions as a potent 

repressor of cAMP-induced transcription (Sassone-Corsi, 1998). Cyclic nucleotide 

phosphodiesterases (PDEs) are enzymes that degrade cAMP. The intracellular levels 

of the cyclic nucleotide are regulated by the balance between the activities of ACs 

and PDEs.   

Huang et al. (1987) showed that PRL induction by HESCs treated with E2 and 

medroxyprogesterone acetate (MPA) was further enhanced by the addition of relaxin. 

Based on that observation, and on the fact that relaxin up-regulates cAMP in the 

endometrium, Tang et al. (1993) treated HESCs with forskolin and cAMP and 

observed PRL induction at mRNA, protein and secretion level. Ever since, a great 

amount of effort has been applied to unravel the role of this second messenger in 

endometrial decidualization. Many GPCR ligands, such as relaxin, PGE2, hCG, LH, 

follicle stimulating hormone (FSH) and corticotropin releasing hormone (CRH) are 

involved in the rise of intracellular cAMP levels in HESCs, through activation of 

adenylyl cyclase (Fei et al., 1990, Yee and Kennedy, 1991, Tang and Gurpide, 1993, 

Makrigiannakis et al., 1999). cAMP signalling is controlled by a balance between 

synthesis and mechanisms that operate to terminate its effects (Sassone-Corsi, 

2012). Decidualizing HESCs act in such a manner to ensure continuous stimulation 

of this pathway, in order to maintain the decidual phenotype. Some suggested 

mechanisms to sustain cAMP effects in HESCs, include: inactivation of PDE by 

tyrosine kinase (Bartsch and Ivell, 2004); alterations in the composition of PKA 

holoenzyme, shifting the ratio catalytic:regulatory subunits towards the catalytic 

subunits (Telgmann et al., 1997); and the recruitment of the co-activator CBP (Smith 

et al., 1996). 
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The actions of cAMP in decidualizing HESCs are mediated by some important 

downstream effectors. The CCAAT/enhancer-binding protein β (C/EBPβ) is a key 

mediator of cAMP-induced transcription of PRL (Pohnke et al., 1999).  FOXO1 

interacts with C/EBPβ to activate PRL promoter (Christian et al., 2002). cAMP induces 

phosphorylation, dimerization and nuclear translocation of signal transducer and 

activator of transcription 5 (STAT5) in a Janus kinase (JAK)-independent way. This 

transcription factor enhances activity of the PRL promoter in the same region as 

C/EBPβ and FOXO1 (Mak et al., 2002). 

1.4.2.3 Convergence of P4 and cAMP Signalling  

Accumulated evidence points to an intricate cross-talk between PR and cAMP signal 

transduction pathways during the decidualization process. HESC cultures only 

maintain high sustained levels of PRL secretion, if treated with both progestin and 

cAMP analogue (Brosens et al., 1999). P4 potentiates PGE2-promoted production of 

cAMP in HESCs (Houserman et al., 1989). Onapristone, an antiprogestin, inhibited 

cAMP-induced PRL expression in HESCs (Brosens et al., 1999). Several 

transcription factors induced by cAMP (C/EBPβ, FOXO1, STAT5 and STAT3) interact 

with PR in the PRL promoter (Christian et al., 2002, Mak et al., 2002, Takano et al., 

2007). cAMP has been demonstrated to disrupt the interaction between PR and the 

co-repressors NCOR and SMRT, enabling the recruitment of co-activators (Wagner 

et al., 1998). Sumoylation is a post-translational modification of proteins by the 

covalent attachment of a small ubiquitin-related modifier (SUMO). cAMP triggers 

global decrease in sumoylation and redistribution of SUMO-1 modified proteins in 

decidualizing HESCs. Loss of PRA sumoylation results in increased transcription 

activity (Jones et al., 2006).  

In a concerted operation with cAMP pathway, PR function as a platform for assembly 

of a transcription complex. This transcription machinery, recruiting co-activators, and 
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interacting with other transcription factors, controls the expression of a decidual 

specific genotype (Figure 1.3). 

 

 

 

Figure1.3 Convergence of P4 and cAMP signalling in HESC decidualization. 

Ligand-bound progesterone receptor (PR) form a complex with co-activators (SRC, 

CBP, CARM1) and transcription factors induced by cAMP signalling (C/EBPβ, STAT5 

and FOXO1), and is dissociated from co-repressors (NCoR and SMRT). The 

transcription machinery activates the promoter of decidua-specific genes.  
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1.4.3 Roles of Decidualization 

1.4.3.1 Haemostasis 

Human implantation requires intrusion into the endometrial stroma by the blastocyst, 

along with extensive remodelling of the uterine vasculature by the trophoblast and 

uNK cells (Chakraborty et al., 2012). This invasive process may lead to rupture of the 

endometrial vasculature. The risk of haemorrhage is counteracted by haemostatic 

mechanisms provided by the decidualized stroma.  

Tissue factor (TF) is a type 2 cytokine receptor, considered the primary initiator of the 

extrinsic pathway of coagulation. It acts as a receptor for blood coagulation factor VII.  

TF is constitutively expressed at perivascular sites, but not in endothelial cells. 

TF/VIIa activates factors X and IX, ultimately leading to activation of thrombin 

(Lockwood et al., 2009) (Figure 1.4). Thrombin cleaves protease activated receptors 

(PARs). These receptors have a tethered ligand, which is released for binding by 

protease cleavage. While trypsin activates PAR2, thrombin acts on PAR1, 2 and 3 to 

convert fibrinogen into fibrin and promote platelet aggregation (Coughlin, 2000).  

Thrombin also induces secretion of soluble fms-like tyrosine kinase 1 (sFlt1) by 

dendritic cells from first trimester decidua. This soluble receptor binds to the 

angiogenic factors VEGF and placental growth factor (PlGF), preventing them to 

interact with  the active membrane bound isoform of Flt1 (Lockwood et al., 2007).  

Being induced in HESCs by a concerted action of cAMP and P4, TF has been used 

as a decidualization marker (Lockwood et al., 1993, Christian et al., 2001). The 

stimulatory effect of P4 on TF was suggested to be modulated by interaction of PR 

and epithelial growth factor receptor (EGFR) signalling, leading to phosphorylation of 

the transcription factor SP1 (Lockwood et al., 2000). The same interaction (PR/EGFR 

signalling) is involved in up-regulation of PAI1 in HESCs. PAI1 inhibits tPA and uPA, 

impeding clot degradation (Lockwood, 2001).  
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These observations indicate that decidualization prevents bleeding at implantation by 

activating haemostatic mechanisms and by control of blood vessel remodelling and 

embryo invasion.  

 

 

 

Figure 1.4 The coagulation cascade. Upon vascular damage, tissue factor (TF) 

comes into contact with its ligand, factor VII (FVII). The complex TF/FVIIa ultimately 

activates thrombin, which triggers platelet aggregation and fibrin production to 

generate a clot. The fibrin clot is degraded by plasmin, resulting in fibrin degradation 

products (FDP). Plasminogen activator inhibitor 1 (PAI1) inhibit the conversion of 

plasminogen to plasmin.  
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1.4.3.2 Control of Trophoblast Invasion 

Human implantation is characterized by deep penetration of the embryo in the 

endometrium, and even in the stromal-myometrium border, termed junctional zone 

(Brosens et al., 2002). Trophoblast cells share some striking similarities with cancer 

cells, being highly proliferative, extremely invasive, immunologically tolerated by the 

host, and infiltrating the local vasculature (Ferretti et al. 2007). This remarkably 

invasive nature of the trophoblast must be tightly controlled in a temporal and spatial 

manner, to meet the embryo demand at the same time that the maternal integrity is 

safeguarded.  

Embryo invasion involves proteolytic degradation and remodelling of the stromal 

ECM. In order to limit this process, a fine balance between the activity of MMPs and 

the opposing effect of TIMPs, both produced by the trophoblast and the decidualized 

stroma, must be achieved. TIMP3 was induced in HESC when co-cultured with first 

trimester trophoblast implants (Popovici et al., 2006). Decidualizing cells secrete 

TGFβ, which, in turn, inhibits the synthesis of MMPs. During decidualization, HESCs 

also secrete the proteoglycan decorin into the ECM. Decorin, besides acting as a 

TGFβ repository, inhibits proliferation, migration and invasiveness of extravillous 

trophoblast (EVT) cells (Xu et al., 2002). Plasmin is a serine protease, also involved 

in ECM remodelling. It is produced from its precursor, plasminogen, by action of tPA 

and uPA. PAI1 is up-regulated upon decidualization and inhibits the activity of 

plasminogen activators, reducing the synthesis of plasmin (Lockwood, 2001).  

Decidualized stroma and ECM express adhesion molecules that contribute to limit 

trophoblast invasion (Burrows et al., 1996). CD38 is a tetraspanin expressed in the 

decidualized cells surrounding the embryo. This tumour suppressor interacts with 

other tetraspanins, integrins and E-cadherin, being engaged in cell adhesion, motility 

and invasion (Zhang et al., 2012). Elastin microfibril interface 1 (EMILIN1) is produced 
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by decidual HESCs in a gradient of increasing concentration towards the perivascular 

sites. This is consistent with the directional migration of EVT. Interaction between 

trophoblast and EMILIN1 is carried out via α4/β1 integrin (Spessotto et al., 2006).    

More recent evidence suggests that the maternal decidua, rather than acting as an 

inert tissue awaiting for invasion, plays an essential role in the encapsulation of the 

conceptus. The chemokine CXCL12, secreted by the trophoblast induces expression 

of its receptor CXCR4 and invasiveness of first trimester decidual HESCs (Ren et al., 

2012). Trophoblast-secreted PDGFAA triggers decidualizing HESC chemotaxis 

(Schwenke et al., 2012). Gellersen et al. (2010) demonstrated that secretion of MMP2 

and 9 was increased in HESCs upon decidualization. The authors also showed that 

decidualization bestows HESCs with increased migration and invasiveness, when co-

cultured with an EVT cell line. These data indicate that, upon decidualization, HESCs 

acquire the ability to respond to embryo signals by increasing motility, migration and 

invasiveness. These properties enable encapsulation of the conceptus by the decidua 

(Quenby and Brosens, 2013, Weimar et al., 2013). 

1.4.3.3 Control of Oxidative Stress Responses 

In the first trimester of pregnancy, endovascular EVT form plugs in the spiral arteries, 

creating a hypoxic environment, which is essential to avoid generation of excessive 

amount of reactive oxygen species (ROS) (Burton et al., 1999). There are key roles 

for controlled oxidative stress in the development of the placenta, such as 

syncytialization, cytotrophoblast differentiation and angiogenesis (Myatt and Cui, 

2004). Oxidative stress can lead to DNA repair (Tram et al., 2002), however it can 

also trigger cell cycle arrest (Barnouin et al, 2002), senescence (Toussaint et al., 

2001), apoptosis (Kannan and Jain, 2000) and necrosis (Fiers et al., 1999), which 

could be deleterious for the vulnerable developing embryo. Oxidative damage at the 

maternal-foetal interface has been associated with early pregnancy loss (Jauniaux et 
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al., 2000), foetal growth restriction (Myatt and Cui, 2004) and preeclampsia (Burton 

and Jauniaux, 2004, Elliot, 2016).  

There is evidence that decidualizing cells are adapted to inhibit excessive ROS 

signalling, preventing oxidative cell death, and maintaining pregnancy homeostasis 

(Gellersen et al., 2007). The expression of key antioxidants, such as glutathione 

peroxidase (GPX) 3, monoaminoxidase A and superoxide dismutase (SOD) 2 is up-

regulated during the mid-secretory phase in the endometrium (Díaz-Gimeno et al., 

2011). Uterine secretion of glutathione transferase and peroxiredoxin 4 is also 

increased in mid-secretory phase (Scotchie et al., 2009, Garrido-Gomez et al., 2010). 

Maruyama et al (1999) demonstrated increased secretion of the antioxidant 

thioredoxin by HESCs, upon treatment with E2 and P4. Xu et al. (2014) showed a 

reduction in pregnancy rate in mice, with intraperitoneal injection of a GPX inhibitor.  

Growth arrest and DNA damage 45 α (GADD45α) is a  protein involved in response 

to stressful growth arrest conditions and DNA damage, acting as a gatekeeper to 

eliminate cells with excessive DNA damage. Up-regulation is observed in mid-

secretory endometrium (Díaz-Gimeno et al., 2011) and in decidualized HESCs in vitro 

(Kajihara et al., 2006). This induction of GADD45α is mediated by the cAMP-induced 

transcription factor FOXO1 (Tran et al., 2002).  

Decidualizing HESCs are more resistant to oxidative cell death than un-differentiated 

cells. This effect is associated with the ability of differentiated HESCs to prevent up-

regulation of FOXOa3, upon oxidative stress (Kajihara er al., 2006).  

Salker et al. (2011) studied the role of serum and glucocorticoid-regulated kinase 1 

(SGK1) in implantation. SGK1 is a serine-threonine kinase induced in decidualizing 

HESCs. This enzyme plays an essential role in cellular stress response. mRNA levels 

were decreased and increased  in mid-secretory endometrium from women suffering 

of recurrent pregnancy loss (RPL) and infertile women, respectively, when compared 
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with control subjects. Sgk1 knock-out mice exhibited decreased litter size. Upon 

SGK1 knock-down, decidualizing HESCs showed a higher oxidation status in 

response to exogenous ROS (H2O2), and an impaired induction of free-radical 

scavengers (SOD2, thioredoxins, peroxiredoxin 2 and GPX1). Expression of the 

same scavengers was significantly lower in decidualizing HESCs from subjects with 

RPL compared to controls. 

Taken together, these evidence point to a critical role of decidualization in bestowing 

a defence mechanism against excessive oxidative stress in the maternal-foetal 

interface.  

1.4.3.4 Immune Tolerance to the Implanting Embryo 

Pregnancy evokes an immunological conflict: the maternal organism must 

accommodate a non-self foetal semiallograft, providing a supportive environment, 

and safeguarding its own integrity. It is logical to question how the foetus elude 

maternal immune surveillance. However, evidence suggests that the decidual 

immune system has evolved to establish a cooperative arrangement with the 

trophoblast (Mor et al., 2011).  

Decidualization bestows on the endometrial stromal compartment a specific 

immunological milieu, where specialized NK cells, dendritic cells (DCs), regulatory T 

cells (Treg cells) and macrophages interact to promote tolerance to the implanting 

blastocyst. In mice, the decidua prevents influx of cytotoxic T lymphocytes by 

silencing of chemokines through histone modification (Nancy et al., 2012).   

DCs typically migrate to the local lymph nodes for antigen presentation. It was 

believed that, during pregnancy, these cells would be depleted in the maternal-foetal 

interface in order to avoid recognition of the semiallogenic embryo. Later, it was 

demonstrated that these cells, by changes of ECM and cytokine gradient, were 

indeed entrapped in the decidua (Collins et al., 2009, Erlebacher, 2013). DCs in 
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decidua secrete sFLT1 and TGFβ1, playing an important role in local angiogenesis. 

In mice, depletion of decidual DCs led to impaired implantation and embryo resorption 

(Plaks et al., 2008). Decidua macrophages contribute to reduced cytotoxicity of NK 

cells and cooperate with uNK cells to induce immunosuppressive Treg cells (Gormley 

et al., 2013, Vacca et al., 2010). 

Galectin1 is involved in tumour immune evasion and restraint of autoimmune 

diseases, inhibiting T cell proliferation and survival (Camby et al., 2006). Galectin1-

deficient mice exhibited increased foetal loss in allogenic, but not in syngeneic mating. 

Treatment with recombinant galectin1 prevented foetal loss and restored tolerance 

through induction of tolerogenic DCs and Treg cells (Blois et al., 2007). Kopcow et al. 

(2008) have demonstrated the apoptotic effect of uNK-derived galectin1 in activated 

T cells.  

Decidua-derived Fas ligand triggers apoptosis of activated T cells in the maternal 

foetal interface and promotes trophoblast invasion (Qiu et al., 2005).  

Indoleamine 2,3-dioxygenase (IDO), an enzyme highly expressed by decidualizing 

HESCs,  degrades tryptophan, leading to growth arrest of T cells (Mellor and Munn, 

2001). Pregnant mice treated with an IDO inhibitor exhibited extensive inflammation, 

massive complement deposition and haemorrhagic necrosis at foetal-maternal 

interface in allogenic, but not syngeneic pregnancies (Mellor et al., 2002).  

uNK cells are less cytotoxic than their peripheral counterparts (Hanna et al., 2006). 

Local decidual factors contribute to the development of this special property. Co-

culturing with decidualizing HESCs, and even conditioned medium from these cells, 

converted peripheral NK cells into an uNK cell-like phenotype (Keskin et al., 2007, 

Vacca et al., 2011). Cerdeira et al. (2013), using a combination of hypoxia, DNA 

demethylation and TGFβ1, managed to attenuate the cytotoxicity of peripheral NK 

cells, increase secretion of VEGF, and induce the ability of these cells to stimulate 
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trophoblast invasiveness. Recently, it has been demonstrated that decidualizing 

HESCs can reduce NK cytotoxicity, promote dendritic cell differentiation, and induce 

Treg cells (Erkers et al., 2013, Croxatto et al., 2014).  

These data illustrate the compelling immunosuppressive potential of stromal 

decidualization, which may account for the immunological paradox of pregnancy.  

1.4.3.5 Embryo selection 

Reproduction in humans is exceptionally inefficient. The monthly fecundity rate is only 

20 % (Evers, 2012). Human embryos are highly invasive, and chromosomal errors 

can be often found in preimplantation stages (Vaneste et al., 2009, Fragouli et al., 

2013, Mertzanidou et al., 2013). Considering pre-clinical losses, 50-60 % of 

pregnancies fail to proceed to an ongoing pregnancy, and more than 50 % of 

chromosome abnormalities are encountered in spontaneous miscarriages (Macklon 

et al., 2002). This indicates that numerous developmentally impaired embryos first 

implant to be eventually rejected and discarded. These data suggest that a selective 

mechanism operates, in order to limit maternal investment in a compromised 

conceptus. First evidence to propose the endometrium as a biosensor for embryo 

quality came from a study with livestock. Mansouri-Attia et al. (2009) demonstrated a 

tailored response of bovine endometrium to transferred embryos produced either by 

in vivo fertilization (artificial insemination; AI), somatic cell nuclear transfer (SCNT) or 

in vitro fertilization. The differences in peri-implantation endometrial gene expression 

were more pronounced between AI and SCNT embryos, with biological functions 

involving metabolism and immunity being identified.  

Recent studies point to decidualization as the human process that bestow upon the 

endometrium the aptness to sense and select the embryos for support or exclusion. 

Teklenburg et al. (2010) showed that developmentally arrested embryos down-

regulated the expression of implantation factors (IL1β, IL6, lL10, IL, 17, IL18, eotaxin 
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and HB-EGF) in decidual HESCs, which was not observed with developing embryos. 

Furthermore, it was demonstrated that HESCs only engage in embryo sensoring upon 

decidualization. The same group of researchers examined this role of the 

endometrium in the context of recurrent pregnancy loss (RPL). First, they 

demonstrated that endometrium and decidualized HESCs from patients with RPL 

expressed lower levels of PRL and higher levels of prokineticin 1 (PROK1), a factor 

induced during the receptive phase. Second, decidualized HESCs were treated with 

hCG, resulting in down-regulation of PRL and PROK1 in the control group and up-

regulation in the RPL group. Based on these data, the authors proposed that defective 

decidualization in RPL patients would elicit prolonged endometrial receptivity coupled 

with impaired selectivity (Salker et al., 2010). Brosens et al. (2014) tested the same 

hypothesis in vivo. Mouse uteri were flushed with conditioned media from 

developmentally impaired embryos (DIE) and embryos that resulted in ongoing 

pregnancy (developmentally competent embryos [DCE]), and were submitted to 

genome-wide expression profiling. While DCE triggered a modest response (15 

differentially expressed genes [DEGs]), 449 DEGs were detected in DIE conditioned 

media-flushed uteri. Endoplasmic reticulum stress response was demonstrated to be 

induced by DIE. Decidualized HESCs were exposed to the same embryonic stimuli 

and displayed a similar response. It was also observed that cells treated with DCE 

conditioned media up-regulated genes involved in implantation and metabolism. 

Trypsin-like serine proteases were suggested as the putative embryo-released signal 

for the uterine luminal epithelium, relaying cues about embryo quality. A previous 

study showed that trypsin cleavage activated epithelial sodium channels in 

endometrial luminal cells from mice, triggering plasma membrane depolarization and 

Ca2+ influx. As a consequence, phosphorylation of the transcription factor CREB 

induced expression of the COX2 gene (prostaglandin-endoperoxide Synthase 2 

[PTGS2]), and eventually, PGE2 secretion. This cytokine is a major ligand for 

activation of cAMP signalling (Ruan et al., 2012). In vitro trypsin evoked intracellular 
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Ca2+ oscillations in HEECs similar to those generated by DIE conditioned medium 

(Brosens et al., 2014). The oscillations induced by spent embryo medium were 

attenuated by a trypsin inhibitor. It was postulated that embryo-released serine 

proteases would signal to the luminal epithelium not only to modulate decidualization, 

but as well to allow embryo quality sensoring.  

Taken together these observations suggests that cyclic decidualization may limit 

maternal investment in invasive but developmentally impaired embryos.  

1.5 Endometrial Glands 

Uterine glands are part of the endometrial epithelial compartment, with ultrastructure 

and gene expression profile distinct from the luminal epithelium (Demir et al., 2002, 

Niklaus and Pollard, 2006). These structures are formed by a single layer of columnar 

cells in a tube-like arrangement that undergo constant modification along the 

menstrual cycle. 

1.5.1 Development of Endometrial Glands 

Uterine epithelium originates from the central tubular epithelium of paramesonephric 

ducts. All mammals share a similar sequence of events for gland development, 

termed adenogenesis.  First, buds arise from luminal epithelium (LE), and next form 

a lumen as they progressively invaginate into the underlying stroma. In ruminants and 

primates, coiling and branching are further observed (Cooke et al., 2013). In rodents, 

pigs and sheep, gland morphogenesis is primarily a post-natal event (Cunha et al., 

1976, Wiley et al., 1987, Bartol et al., 1993), whereas prenatal development of the 

uterus is crucial for future adenogenesis. In humans, fusion of the Müllerian ducts 

occurs before 8 weeks of pregnancy. By 20-22 weeks of gestation, sparse buds can 

be detected in the adluminal stroma. At birth, histoarchitecture is similar to that of an 

adult, though complete development, with glands extending to the myometrium, will 
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only take place in puberty (Gray et al., 2001). Curiously, these events are distinct from 

development in the post-menstrual phase and puerperium, where the glands arise 

from the crypts at the basalis and possibly from the stroma (Huang et al., 2012, 

Valentijn et al., 2013).  

Adenogenesis is regulated in endocrine (steroid hormones), paracrine (factors 

expressed by stromal and LE cells), juxtacrine (cell-cell and cell-ECM matrix) and 

autocrine (factors expressed by glandular epithelium [GE]) manners (Figure 1.5). The 

cues control gland cell proliferation, differentiation, adhesion and motility, shaping the 

developing structures (Gray et al., 2001).  

 

Figure 1.5 Control of endometrial adenogenesis. Uterine gland formation is 

regulated by steroid hormones, and factors derived from stroma, LE, ECM and GE.  

 

The effect of steroid hormones in adenogenesis has been examined. P4 inhibits 

neonatal gland development, and this property has been explored to generate mice 

and female ewes devoid of uterine glands, allowing to unravel new roles for these 

secretory structures (Spencer et al., 1999, Cooke et al., 2012). The results with E2 

are rather conflicting, varying between different species and the time of administration 

of the steroid (Branham, et al., 1985, Tarleton et al., 1999, Carpenter et al., 2003).  
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Branham et al. (1985) showed that exogenous E2 could alter adenogenesis in rats, 

in an age-specific manner. When administered between days 1 - 5 after birth, and 

between days 10 – 14, the final number of glands was reduced. Conversely, the use 

of E2 between days 20 – 24 increases the number of glands compared to controls. It 

was previously postulated that, despite the initial oestrogen-independent 

adenogenesis, Erα was required in the neonatal period, and was activated in a ligand-

independent manner by growth factors such as EGF and IGF1 (Gray et al., 2001, 

Curtis et al., 1996, Klotz et al., 2002). However, this hypothesis was not supported by 

studies demonstrating that ablation of the ERα did not disturb gland formation 

(Stewart et al., 2011; Nanjappa et al., 2015).  Simitsidellis et al. (2016) showed a 

striking increase of gland numbers in ovariectomized mice using dihydrotestosterone 

(DHT), revealing a novel role for androgens in endometrial function. Glucocorticoids 

have an antiproliferative effect on uterine epithelium, but the specific results in uterine 

glands have not been reported (Bigsby and Cunha, 1985). It has been proposed that 

at birth, the increased levels of both P4 from placenta and cortisol from parturition 

drop, ceasing the inhibition of uterine epithelial proliferation in female offspring (Cooke 

et al., 2013).  

Epithelial-mesenchymal cross-talk can be mediated by modifications in the 

composition of ECM (Werb et al., 1996). Glycosaminoglycans (GAGs) can affect the 

cells directly or by enabling access of growth factors and other ligands to their 

receptors. During glandular development in other tissues (salivary glands, pancreas 

and mammary glands), sulfatated GAGs, e.g. chondroitin and heparans, are detected 

in morphogenically inactive areas, such as the neck of glands, whereas non-sulfated 

GAGs, e.g. hyaluronic acid, localizes in more active sites, such as the tips of the 

glands (Bernfield et al., 1973, Silberstein and Daniel, 1982). MMPs and their tissue 

inhibitors are also suggested to be involved in endometrial adenogenesis (Hu et al., 

2004).  
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Wnt family members are secreted ligands that bind frizzled receptors (Fzd), a family 

of GPCRs, leading to activation of dishevelled proteins (Dsh). The activation of the 

canonical pathway promotes recruitment of the co-activator β-catenin (Ctnnb1) by 

target members of T cell factor/lymphoid enhancer factor (TCP/LEF) family to the 

enhancer elements of their target genes. These transcription factors regulate cell fate 

and morphogenesis (Nusse, 2012). Several Wnt members are involved in uterine 

adenogenesis in mice. Wnt4 and Wnt5a are secreted by the stroma and act on the 

gland cells of the epithelial compartment (Mericksay et al., 2004, Franco et al., 2011). 

By contrast, Wnt7a is produced by LE and acts on gland formation by controlling the 

expression of Wnt5a, Wnt4 and the morphogens Hoxa10 and Hoxa11 in the stroma 

(Dunlap et al., 2011). Hoxa 10 mutant mice exhibits deficient endometrial gland 

patterning. Other members of the pathway, such as Wnt11, Wnt16 and Wnt7b, were 

localized in neonatal mouse uteri, although their ablation did not disturb the uterine 

phenotype. Fzd6 and Fzd10 were also found in LE, but studies about their role in 

adenogenesis are still lacking (Hayashi et al., 2011). Other evidence underpinning 

the importance of Wnt signalling is the impaired gland development upon ablation of 

Ctnnb1, Lef1 and the co-receptor Lgr4 (Jeong et al., 2009, Shelton et al., 2012, Sone 

et al., 2013).  As mentioned previously, P4 inhibits adenogenesis if administered in 

the neonatal phase. Cooke et al. (2012) demonstrated inhibition of Wnt7a, Wnt4, 

Hoxa10, Hoxa11 and Fzd6 using P4 from postnatal day 3 until 9, suggesting a 

possible mechanism for the effect of this steroid. Diethylstilbestrol (DES), a synthetic 

oestrogen, was administered from day postnatal 1 to 5 and caused impaired 

adenogenesis and down-regulation of Wnt7a and Wnt4 (Hayashi et al., 2011). The 

adhesion molecule e-cadherin (Cdh1) forms a complex with β-catenin and plays an 

important role in maintaining epithelial integrity (Tian et al., 2012). Ablation of Cdh1, 

in mice, resulted in disturbed endometrial adenogenesis and downregulation of 

Wnt7a, Fzd6, Fzd10, Hoxa10 and Hoxa11 (Benson et al., 1996).  
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The transcription factor forkhead box a 2 (Foxa2) is expressed exclusively by GE and 

its ablation disrupts uterine gland development in mouse (Jeong et al., 2010; Kelleher 

et al., 2017). Evidence indicates that Foxa2 is regulated by β-catenin in the 

endometrium (Villacorte et al., 2013). A recent study has demonstrated that ablation 

of SRY (sex determining region Y)-Box 17 (Sox17) in endometrial stroma inhibited 

gland formation. Null mice exhibited decreased uterine expression of Lef1, and 

Foxa2, and increased expression of Wnt7a, although up-regulation was not observed 

at protein level (Guimarães-Young et al., 2016). Dicer encodes a ribonuclease 

involved in microRNA biosynthesis. MicroRNAs bind to complementary nucleotide 

sequences in untranslated regions of mRNA, leading to translation repression. Dicer 

knockout mice displayed reduced number of uterine glands on postnatal day 21, and 

presented aberrant expression of Wnt members, i.e. ectopic expression of Wnt4 and 

Wnt5a in the epithelial compartment of endometrium (Gonzalez and Behringer, 

2009).  

Growth factors are also involved in endometrial gland morphogenesis. Stromal 

derived hepatocyte growth factor (HGF), and FGFs 7 and 10 are implicated in gland 

differentiation, proliferation and branching in other organs, such as lung and prostate 

(Bellusci et al., 1997, Ohmichi et al., 1998, Lu et al., 1999). HGF acts through binding 

to its receptor c-met, whereas FGF7 and FGF10 bind to a common epithelial receptor, 

defined as FGFR2IIIb (Komi-Kuramochi et al., 2005). Insulin-like growth factors 1 and 

2 (IGF1 and IGF2) are secreted by stroma and, their biological effects are mainly 

mediated by the IGF1R, which is expressed in both endometrial compartments 

(Stevenson et al., 1994,Jones and Clemmons, 1995).   Analysing neonatal ovine uteri, 

Taylor et al. (2001) have demonstrated  an expression pattern of FGF7, FGF10, HGF, 

IGF1, IGF2, and their epithelial receptors in endometrial, remarkably consistent with 

the gland development. Furthermore, in another study, neonatal inhibition of 
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adenogenesis with a progestin, altered the expression pattern of these growth factors 

and receptors in neonatal ewe uteri (Gray et al., 2000).  

Some evidence suggests a role for PRL in the development of uterine glands. PRL 

receptor (PRLR) is expressed in GE of sheep and humans (Jones et al., 1998, Taylor 

et al., 2000). Hyperprolactinemia induces endometrial gland hypertrophy (Kelly et al., 

1997). Placental lactogen, another member of the PRL/growth hormone family 

induces uterine gland proliferation in sheep (Spencer et al., 1999).  

1.5.2 Roles of Endometrial Glands 

1.5.2.1 Histiotrophic Support of the Conceptus 

The transition to viviparity requires the ability to support the conceptus whilst it 

remains within the maternal organism. Humans evolved to a haemochorial placenta, 

but during pre-implantation development, and until chorionic villi establish contact 

with maternal blood, the embryo must be nourished by decidual gland secretions 

(Burton et al., 2002). This mode of subsistence is named histiotrophic support.  

Two circumstances led to the belief that the period of histiotrophic support would be 

rather short in human pregnancy. First, the invasive embryo is completely imbedded 

in the endometrial stroma by day 10 post conception, being sealed from the uterine 

luminal secretions (Gellersen et al., 2010). Second, histological examination of 

implantation sites suggests that migrating EVT, soon after implantation, invades 

maternal vasculature of the superficial endometrium (Burton et al., 1999).  

Endometrial glands opening to the intervillous space (IVS) were documented in 

histologic sections of first trimester decidual-placental interface, and the same 

glycogen and lipid rich secretions observed in the glands were found dispersed in the 

IVS. Furthermore, glycogen staining was detected in the inner surface of villi, 

suggesting that products secreted by the decidual glands were absorbed by the 
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trophoblast. Immunostaining of utero-placental tissue for proteins specifically 

secreted by endometrial glands (glycodelin and MUC1), demonstrated staining of 

glands, IVS and villi close to the cytotrophoblasts shell. Glycodelin was further 

detected in villous macrophages, and MUC1 in small vesicles within the 

syncytiotrophoblast (Burton et al., 2002). Using co-staining with glycodelin and 

cathepsin D, a marker of lysosome activity, Hempstock et al. (2004) demonstrated 

digestion of the gland-derived protein in lysosomes within the chorionic villi of first 

trimester placentas. The authors also observed communications of gland lumens with 

IVS until at least 10 weeks. Moser et al. (2015) have even demonstrated the presence 

of endoglandular EVT as early as day 10 post-conception. These data indicate that 

the conceptus is not deprived from the uterine histiotrophe.   

In vivo studies, using Doppler ultrasound, could only observe sparse sites with non-

pulsatile flow in the intervillous spaces, before 10-12 weeks of gestation (Jaffe et al., 

1997). Further histological studies of placenta-in situ specimens, with focus on the 

maternal-placental circulation, yielded some important observations. It was 

demonstrated that the spiral arteries are not invaded until 6 weeks, since they do not 

reach the superficial portions of the endometrium where the embryo is located. After 

8 weeks, the connections between maternal arteries and placental villi were more 

frequent. However, aggregates of cytotrophoblast cells seems to plug the distal part 

of the arteries. Direct communications between endometrial arteries and IVS were 

only observed after 10 weeks of gestation (Burton et al., 1999). As result, a hypoxic 

environment is created in the first trimester of pregnancy. This hypothesis was 

confirmed by measuring oxygen tension within the placenta. A rise from < 20 mmHg 

at 8 weeks of pregnancy to > 50 mmHg at 12 weeks was concomitant with increased 

genomic expression and activity of antioxidant enzymes, such as catalases, GPXs 

and SODs (Jauniaux et al., 2000). Later, the same group analysed pH, O2 and CO2 

tension of first trimester human foetal fluid (blood, amniotic fluid and exocelomic fluid) 
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and utero-placental tissue, corroborating the previous findings (Jauniaux et al., 2001). 

The hypoxic environment coincides with the period when the organs are developing. 

The potential benefit of avoiding premature exposure to oxygen is to prevent 

excessive production of ROS, which could be deleterious for the fragile developing 

embryo. Free radicals could elicit DNA damage, disturbance of signalling pathways, 

nitrosylation of tyrosine kinases and mitochondrial stress-induced apoptosis, 

negatively affecting organogenesis (Ahmed and Rahman, 2015).  

Considering that villi are poorly vascularised in the first weeks of pregnancy, the route 

by which nutrients are transported to the foetus is not obvious. Mesenchyme of early 

villi exhibit channels that blend with the mesenchyme lining the coelomic cavity at the 

chorionic plate (Castellucci et al., 1980). It is possible that molecules engulfed from 

the IVS diffuse through these channels into the coelom, and once there, they are 

absorbed by the well vascularized secondary yolk sac (Burton et al. 2001). In many 

species, vitelline circulation is the initial system used for gas and nutrient exchange 

(Carter, 2007). At the end of first trimester of gestation, when the haemochorial 

placenta is established, coelom is obliterated and secondary yolk sac degenerates 

(Burton et al. 2001). The high concentrations of folate and vitamin B12 in the coelom 

also suggest this surface is an important site for maternal-foetal exchange of nutrients 

(Campbell et al., 1993). Glycodelin was detected in the epithelium of the secondary 

yolk sac lining the coelomic cavity, at 8 weeks of gestation. At 12 weeks the staining 

was attenuated (Burton et al., 2002). These data suggest that the pathway through 

the coelom and secondary yolk sac may play a key role in nutrient exchange, before 

adequate villous vascularization is established.  

The components of endometrial gland secretions responsible for embryo nutrition are 

not fully elucidated. The importance of these secretions for conceptus development 

inspired the term ‘uterine milk’ (Hansen et al. 1987). It is clear though, that glycogen, 

lipids, glycoproteins and micronutrients contribute to the nutrient milieu. Glycogen and 
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lipids were identified in human endometrial gland lumen by periodic acid Schiff and 

neutral red staining, respectively (Burton et al., 2002, Hempstock et al., 2004). The 

glycoproteins in the uterine milk lose the sialic acid capping during the pregnancy, 

facilitating absorption by the trophoblast and enhancing the availability of substrates 

for degradation. The latter role is desirable, for growth factors within IVS can 

occasionally enter maternal circulation via uterine veins, increasing the risk for 

cancer. This sialyation change may ensure early clearance of these factors by the the 

liver (Burton et al., 2011). These modifications during pregnancy also indicate embryo 

modulation of uterine gland function. A recent study demonstrated how glycogen 

metabolism unfolds in decidual-placental interface. In the first trimester of pregnancy, 

glycogenolysis begins within the gland cells, by effect of glycogen phosphorylase, 

soon after synthesis by glycogen synthase. Further degradation occurs in the gland 

lumen via α-amylase. Part of the glycogen substrates are absorbed by 

syncytiotrophoblast, and used for metabolic processes; and part is reassembled and 

stored by cytotrophoblasts (Jones et al., 2015).  

A high content of glycoproteins is also reported in uterine fluid (Burton et al., 2002, 

Hempstock et al., 2004; Jones et al., 2015). The most highly expressed of those is 

glycodelin, also known as placental protein 14 (PP14), pregnancy-associated 

endometrial alpha-2 globulin (α2PEG) or progesterone-associated endometrial 

protein (PAEP). There are 3 isoforms of glycodelin. Glycodelin A is the endometrial 

isoform. This protein is involved in pregnancy immune tolerance, endometrial gland 

differentiation, blastocyst adhesion, and trophoblast invasion (Seppälä et al., 2002, 

Uchida et al., 2012). Its expression is mainly regulated by P4, but gland cells are also 

responsive to hCG (Seppälä et al., 1987, Fazleabas et al., 1999). Glycodelin secretion 

increases until 10 weeks of gestation, and then declines (Seppälä et al., 1992). 

Another known glycoprotein secreted by uterine glands is MUC1. This anti-adhesion 

molecule has an important role in implantation, as previously mentioned and was 
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identified in uterine flushings (Hey et al., 1995). MUC1 expression in utero-placental 

interface can be strongly detected during first and second trimester of pregnancy, 

declining in the third trimester (Jeschke et al., 2002). Protein and lipids in uterine fluid 

have been assessed in an attempt to define a receptive profile (Beier and Beier-

Hellwig, 1998, Scotchie et al., 2009, Salamonsen et al., 2013, Vilella et al., 2013). 

These studies identified a large number of secreted proteins and lipids, demonstrating 

a temporal change in the endometrial gland secretion composition, but the specific 

roles for each of these glandular secretion components are far from being elucidated.  

1.5.2.2 Endometrial Receptivity and Embryo Implantation 

A large body of evidence indicates that, apart from conceptus nourishment, the 

endometrial glands play a crucial role in endometrial receptivity and embryo 

implantation. Analysis of uterine luminal fluid (ULF) has identified cytokines, 

chemokines, proteases, protease inhibitors, several solute carriers, and other factors 

that modulates blastocyst and LE functions (Salamonsen et al., 2016). Once more, 

the progestin-induced gland knock-out animals helped to shed light on this uterine 

gland function. These animals were exposed to a progestin in the neonatal period, 

resulting in complete inhibition of adenogenesis. Uterine gland knock-out (UGKO) 

female sheep exhibited developed functional ovaries, did not present fertilization 

defects, and when mated with fertile males, normal blastocysts could be retrieved 

from uteri at gestation day 9 (Gray et al. 2001b). At day 14, conceptus were absent 

or severely growth-restricted (Gray et al. 2002). Progestin uterine gland knock-out 

(PUGKO) mouse phenotype includes infertility due to complete implantation failure. 

Intact embryos could be retrieved by flushing of uterine cavity on gestation day 5 

(post-receptive phase), and those embryos implanted and resulted in normal 

pregnancy, when transferred to wild type recipients (Kelleher et al., 2016). PUGKO 

mice uteri displayed reduced uterine expression of key implantation genes (Lif, Ihh, 

Prss28, Prss29 and Hbegf). In mice, clearance of the anti-adhesion protein MUC1 
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from LE, along with LE microvilli flattening and disappearance, a hallmark of polarity 

loss, are important parameters indicating endometrial receptivity. MUC1 remained 

abundant in PUGKO mice LE at day 4 (receptive phase). In addition, PUGKO uteri 

failed to undergo microvilli flattening and reduction in number (Kelleher et al., 2016).  

Growth factors in ULF regulate conceptus proliferation, differentiation and adhesion. 

Hempstock et al. (2004) identified EGF, VEGF and TGFβ expression in human GE. 

Receptors for these growth factors are present in trophectoderm of pre-implanting 

blastocysts.  EGF receptors are expressed by trophoblast until 10 weeks of gestation, 

declining in later pregnancy (Ladines-Llave et al., 1991). EGF induces 

cytotrophoblast proliferation, and also stimulates hCG and human placental lactogen 

(hPL) secretion by syncytiotrophoblasts, in first trimester placental explants (Maruo 

et al., 1992). VEGF promotes trophoblast adhesion to LE and outgrowth of mouse 

embryos (Hannan et al., 2011, Binder et al., 2014). TGFβ increases trophoblast 

fibronectin secretion, inducing adhesion (Feinberg et al., 1994). At the same time, this 

growth factor inhibits invasiveness, through down-regulation of vascular endothelial-

cadherin protein (Chen et al., 2013). Furthermore, trophoblast stem cell proliferation 

is stimulated by TGFβ in mice (Erlebacher et al., 2004).  

GE also secretes other factors that promote trophectoderm adhesion to LE. Secreted 

phosphoprotein 1 (SPP1), also termed osteopontin, contains the integrin binding motif 

RGD, and mediates adhesion between embryo and LE (Singh and Aplin, 2009). This 

protein is induced in GE by P4, and promotes ovine trophectoderm cell attachment in 

vitro (Dunlap et al., 2008). LIF is an important protein secreted by GE, with multiple 

key roles in implantation, such as blastocyst/LE adhesion, embryo development, 

trophoblast differentiation and invasion, decidualization and leukocyte recruitment 

(Salleh and Geribabu, 2014). Recently, an interesting observation was the absence 

of LIF in mouse ULF (Kelleher et al., 2016). This finding suggests that this factor could 

be secreted basolaterally, rather than to the uterine lumen, acting on the LE and the 
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underlying stromal compartment. Glycodelin, a major secreted glycoprotein, as 

previously referred, is also involved in blastocyst interaction with uterine surface 

epithelium. Glycodelin induction in Ishikawa cells improves trophoblast spheroid 

attachment. This effect was completely abrogated by glycodelin gene (PAEP) 

silencing (Uchida et al., 2007). Proprotein convertase 5/6 (PC5/6) is a serine protease 

expressed by GE in mid-secretory phase. Cleavage of α-dystroglycan N-terminal in 

HEECs by PC5/6 is necessary for embryo attachment (Heng et al., 2015). Exosomes 

are 30-150 nm nanoparticles released from cells into the extracellular space, and 

used for intercellular communication. They were identified in human ULF, but some 

are retained in the glycocalyx (Ng et al., 2013). It has been suggested that the 

clearance of the glycocalyx during implantation releases exosomes, which are taken 

up by trophectoderm, switching it to a more adhesive phenotype (Salamonsen et al., 

2015). Exosomes from P4 treated HEECs increased adhesive ability of trophoblast 

cells (Salamonsen et al., 2015).  

Endometrial gland secretions in the mid-luteal phase also contain chemokines. 

CX3CL1, CCL14 AND CCL4 are amongst the most abundant attractants in human 

ULF, and their receptors are expressed by trophoblast cells.  In vivo stimulation of 

trophoblast migration was demonstrated, and neutralizing antibodies to CX3CL1 and 

CCL4 attenuated this effect (Hannan et al., 2006). Transmembrane water channel, 

aquaporin 2 (AQP2) is mostly up-regulated during the mid-secretory phase, in GE 

and LE, at gene and protein level (He et al., 2006). This protein is involved in 

regulation of water absorption. In mice, during receptive phase, the volume of ULF 

decreases drastically, leading to ‘lumen closure’. This phenomenon is essential for 

embryo apposition. In humans, a significant reduction in ULF has also been detected 

during the mid-secretory phase (Ruan et al., 2014). The control of fluid volume in the 

uterine cavity by AQP2 could contribute for the movement of the blastocyst to the 

eventual site of implantation.  
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Taken together, these data demonstrate the crucial role of endometrial glands in the 

establishment of uterine receptivity and the promotion of embryo implantation.  

1.5.2.3 Stromal Decidualization 

Histologic analysis of uteri of mouse models that are devoid of endometrial glands 

has demonstrated lack of decidualization upon pregnancy or pseudo-pregnancy 

(Jeong et al., 2010, Franco et al., 2011, Filant and Spencer, 2013a, Sone et al., 2013). 

Apart from the absence of uterine glands, these mice have a phenotype that 

resembles that of Lif null mice. LIF is solely expressed by GE in rodents, and is up-

regulated during the receptive phase, in response to the nidatory E2 surge (Salleh 

and Giribabu, 2014). Conditional Esr1 (Erα gene) ablation in GE and LE leads to 

failed decidualization which is rescued by exogenous administration of LIF (Pawar et 

al., 2015). PUGKO mice are infertile due to implantation failure, and do not exhibit 

decidualization. These animals have normal oestrous cycle and expression of steroid 

receptors in the endometrium. Artificial decidualization in PUGKO mice after 

ovariectomy, using E2, P4 and intraluminal injection of oil, was attempted without 

success. The normal increase in uterine Lif expression in the receptive phase was 

abrogated (Filant and Spencer, 2013a). Similar results were observed with 

conditional ablation of Foxa2, Wnt4 and Lgr4 in mice. The phenotypes included failed 

adenogenesis and decreased Lif expression (Jeong et al., 2010, Franco et al., 2011, 

Sone et al. 2013). The results with LIF treatment, in replacement of E2 nidatory surge, 

were conflicting. Treatment could rescue decidualization defects in Foxa2 and Lgr4 

ablation, but failed in PUGKO and Wnt4 ablation mice. This suggests that there may 

be some other uterine gland-secreted factors involved in the process. Glands in 

receptive phase of pregnant and pseudopregnant mice express several candidate 

genes encoding for enzymes, solute carriers and secreted proteins that could be 

involved in the differentiation of the stromal cells (Filant et al., 2014, Filant and 
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Spencer, 2013b). Amongst these genes, serine peptidase inhibitor, Kazal type 3 

(Spink3) is frequently present.  Spink3 mRNA is exclusively expressed in GE, 

whereas the protein is localized on both GE and LE in decidua. The enzyme is not 

regulated by the blastocyst, but is induced by P4 (Chen et al., 2010). Spink3 is not 

conserved in human species, but its homolog, SPINK1, is a potent protease inhibitor, 

acting as an inactivation factor of intra-pancreatic trypsin activity. Mutations in the 

gene are associated with hereditary or chronic pancreatitis (Witt et al., 2000). Brosens 

et al. (2014) have suggested that SPINK1 could protect decidual cells from 

proteotoxic stress triggered by excessive activation of embryo proteases. A striking 

observation is the absence of Lif and Spink3 in mouse ULF (Kelleher et al., 2016). It 

suggests that these factors are not apically released, but may be basolaterally 

secreted for signalling to the stroma.   

In humans, maximal expression of LIF is observed during the mid-secretory phase in 

GE and LE (Paiva et al., 2009). LIF enhances P4-induced decidualization in HESC 

cultures, via STAT3 phosphorylation (Shuya et al., 2011). The cytokine shows an 

increase in human ULF in receptive phase (Laird et al., 1997) LIF could not be 

detected in supernatant of HESC, and concentration in HEEC supernatant was 

maximal when the cells were obtained from secretory phase endometrium (Laird et 

al., 1997). Besides LIF, many factors secreted by endometrial glands in women, such 

as IL11, TGFβ, phospholipase A2 (PLA2), HB-EGF, KLF5 and IHH have been 

implicated in decidualization. IL11 and TGFβ enhance P4-induced decidualization in 

HESC cultures (Dimitriadis et al. 2001, Kim et al., 2005). Phospholipase A2 releases 

arachidonic acid from membrane phospholipids (Rosenson and Gelb, 2009). 

Arachidonic acid is converted to prostaglandins by COX2 (Greenhough et al. 2009). 

PGE2, as previously mentioned, is a potent ligand for cAMP synthesis (Yee and 

Kennedy, 1991). Prostacyclin activates PPARδ, leading to VEGF secretion. VEGF is 

involved in the angiogenesis process observed during decidualization (Prakasi and 



49 
 

Jain, 2008). The use of neutralizing antibodies, or an inhibitor for HB-EGF, attenuated 

cAMP-induced PRL expression in HESCs (Chobotova et al., 2005). Conditional KLF5 

ablation prevents decidualization in mice. Furthermore, these factor was 

demonstrated to regulate PTGS2 expression in HEEC (Sun et al., 2012). IHH is a 

mediator of PR signalling in the endometrium. Its effector COUP-TFII is also a 

regulator of stromal angiogenesis (Lee et al., 2006).  

Even though the mechanisms are not fully elucidated, the evidence indicates an 

essential role for endometrial glands in stromal decidualization.  

1.5.2.4 Immunomodulatory Effects of Endometrial Glands 

Protection of the embryo from the maternal immune system is crucial for a successful 

pregnancy. Besides the aforementioned role of stromal decidualization, factors 

secreted by the endometrial glands also aid in this accommodation process.  

Glycodelin A plays a key role in regulation of immune cell-rich decidual environment. 

Numerous immune suppressive effects have been described for this glycoprotein: 

 Suppression of NK cell cytotoxicity (Okamoto et al., 1991) 

 Inhibition of T cell proliferation/activity (Rachmilewitz et al., 1999) 

 Induction of T cell apoptosis (SundarRaj et al., 2008) 

 Induction of tolerogenic phenotype in dendritic cell (Scholz et al., 2008) 

 Inhibition of B cell proliferation/activity (Yaniv et al., 2003) 

 Inhibition of monocyte proliferation (Alok et al., 2009) 

 Induction of monocyte apoptosis (Alok et al., 2009) 

 Furthermore, glycodelin induces secretion of Th2 cytokines (IL6, IL13 and 

GM-CSF) from uNK cells, thereby favouring an advantageous Th2 dominant 

response in early pregnancy (Lee et al., 2011).   
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Other uterine gland products are also components of the innate immune system. 

Serpins are the most broadly distributed superfamily of protease inhibitors. All 

multicellular eukaryotes express serpins. In humans, some function as hormone 

transporters, molecular chaperones and tumour suppressors (Law et al., 2006). ULF 

of 16 day pregnant ewes contain SERPINA14, also called uterine serpin or uterine 

milk protein (UTMP; Koch et al., 2010). This serine protease inhibits lymphocyte 

proliferation, reduces humoral response against albumin, and inhibits NK activity 

(Padua and Hansen, 2010). SERPINA14 could inhibit miscarriage induced by 

polyinosinic:polycytidilic acid, a stimulator of NK activity, in mice (Liu and Hansen, 

1993). This serpin is not expressed in humans, but SERPING1 is up-regulated in mid-

secretory phase endometrium in several genome wide profiling studies (Riesewijk et 

al., 2003, Mirkin et al., 2005, Talbi et al., 2006, Díaz-Gimeno et al., 2011). SERPING1 

is a C1 esterase inhibitor, preventing spontaneous activation of the complement 

system (Law et al., 2006). Uteroglobins are cytokine-like anti-inflammatory proteins, 

produced by decidual glands. Uteroglobin is a potent inhibitor of neutrophil and 

monocyte chemotaxis in vitro (Kundu et al., 1996). Whey acidic proteins (WAP) are 

natural antimicrobials produced by mucosal surfaces (Bouchard et al., 2006). 

Secretory leukocyte protease inhibitor (SLPI) is a WAP, also known as 

antileukoproteinase 1. SLPI is also up-regulated in mid-secretory phase in 

endometrial transcriptome studies (Mirkin et al., 2005, Díaz-Gimeno et al., 2011, Hu 

et al., 2014), and the highest protein expression was found in first trimester decidua 

(King et al., 2000). Curiously, SLPI is also a member of the Kazal superfamily of serine 

protease inhibitors, just like SPINKs. Defensins (DEF) are small cationic proteins with 

antimicrobial properties. β-defensins (DEFB) are the main isoform secreted by 

epithelial glands. These proteins also function as immune cell chemoattractants (King 

et al., 2003). DEFB1 is as well often detected as a mid-secretory up-regulated gene 

(Riesewijk et al., 2003, Talbi et al., 2006, Díaz-Gimeno et al., 2011). 
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These observations are consistent with a simultaneous role for endometrial glands in 

modulation of maternal immune tolerance to the embryo and protection of the 

intrauterine environment from pathogens.  

1.5.3 Regulation of Endometrial Gland Secretion 

Secretory activity of endometrial glands is regulated by the endometrial stroma 

(decidua), the embryo and the ovaries (CL).  

Endocrine support of the decidualizing stroma is accomplished by P4 released from 

CL. This structure is, in turn, rescued from luteolysis by trophoblast derived chorionic 

gonadotropin. PRL is a major decidua-secreted protein. PRL receptor (PRLR) in 

pregnant ewe is exclusively localized in GE, and the expression of UTMP follows PRL 

production by the decidua (Stewart et al., 2000). In humans, PRLR shows maximal 

expression, at both transcript and protein level, in mid-secretory phase and first 

trimester GE (Jones et al., 1998).  Jabbour et al. (2002) suggest that PRL activates 

JAK/STAT and mitogen-activated protein kinase (MAPK) pathways, promoting 

glandular differentiation. At the same time the activation of phosphatidylinositol 3 

kinase (PI3K) pathway would prevent gland cell apoptosis. PRL also enhances P4-

induced secretion of uteroglobin in mouse rabbit (Kleis-SanFrancisco et al., 1993). 

Besides inducing decidual secretion of stimulating factors, P4 also down-regulates 

PR expression in GE (Wang et al., 1998). First, it was believed that P4 directly 

promoted UTMP secretion by uterine glands, although this effect was only detectable 

after 14 days of treatment (Ing et al., 1989). Later it was demonstrated that down-

regulation of PR was actually needed to prevent inhibitory effects of P4 on UTMP 

secretion (Spencer et al., 2004). The stimulatory action of P4 is most likely achieved, 

indirectly, by induction of decidual PRL (Burton et al., 2007).  

Gland secretion diminishes in the late secretory phase of the menstrual cycle 

(McCluggage, 2011). By contrast, glycogen secretion increases until 6 weeks of 
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pregnancy (Burton et al., 2002). Besides CL-derived P4, factors released by the 

conceptus, seems to rescue the function of the endometrial glands. Indeed, 

embryonic signals are able to enhance uterine gland development and secretion in 

domestic animals (Spencer et al., 2004), and GE proliferation in early pregnancy has 

been demonstrated (Demir et al., 2002). Placental lactogen (PL) is a 

syncytiotrophoblast-secreted somatotropin that shares 67% sequence homology with 

PRL, and is able to bind and activate PRLR in GE (Burton et al., 2007). Intrauterine 

infusion of PL in ovine uteri increased the number of glands and induced expression 

of UTMP and SPP1 mRNA in GE (Noel et al., 2003). Chorionic gonadotropin (CG) is 

another hormone secreted by syncytiotrophoblast and with a role in endometrial gland 

function. The maximal expression of the hCG receptor (LHCGR) is observed in LE 

and GE, during the secretory phase (Reshef et al., 1990). Human endometrial gland 

cells increased the expression of PTGS2, encoding COX2, and the secretion of PGE2 

upon exposure to hCG (Zhou et al., 1999). Female baboons exhibited up-regulation 

of glycodelin expression in the uterine glands, when treated with exogenous hCG 

(Hauserman et al., 1998).  

A positive feedback mechanism is suggested between the endometrial glands and 

the conceptus. EGF secreted by the glands stimulates release of hPL and hCG by 

the syncytiotrophoblast. These peptide hormones induce secretory activity by GE 

(Burton et al., 2007). 

In view of these observations, it can be conclude that endometrial gland function in 

pregnancy is regulated by coordinated roles of P4, the decidualized stroma and the 

conceptus (Figure 1.6).  
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Figure 1.6 Regulation of endometrial gland secretion during pregnancy. Gland 

secretory activity, during pregnancy is regulated by the decidualized stroma, the 

corpus luteum, the embryo and by the endometrial glands themselves.  

 

1.6 Missed Miscarriage 

1.6.1 Spontaneous Miscarriage 

According to the Royal College of Obstetricians and Gynaecologists, miscarriage is 

the spontaneous loss of pregnancy before foetal viability, meaning losses until 24 

weeks of gestation. This concept tends to change over time, as survival of earlier 

babies is reported (Lawn et al., 2014). The terminology for the various types of 

miscarriage is controversial, with discrepancy and overlapping being found between 

the different nomenclature systems (Farquharson et al., 2005, Bottomley and Bourne, 

2009, Kolte et al., 2014). 

1.6.2 Epidemiology of Miscarriage 

Approximately 15 % of all clinical pregnancies are lost, 98 – 99 % occurring within the 

first trimester (Regan and Rai, 2000). Risk increases with age. Miscarriage rate of 9% 

at 20 - 24 years old rises to 51 % in women aged 40-44 years (Andersen et al., 2000).  

β-subunit of hCG (βhCG) transcripts were identified as early as the two-cell stage of 
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human embryo development (Jurisicova et al., 1999). Extremely sensitive tests allow 

detection of βhCG in urine and serum 1 day after the implantation, engendering a 

new entity, the occult biochemical or pre-clinical pregnancy. In this scenario, an early 

positive βhCG test is not associated with clinical gestational symptoms, or even a 

positive ultrasound scan (Annan et al., 2013). Some of these women experience 

embryonic loss, before exhibiting an overt pregnancy. The real incidence of total 

miscarriages is difficult to estimate. Some women suffer the loss at home, without 

seeking for medical assistance. Others attend to different medical facilities. 

Furthermore, in many cases, the event presents too early to be distinguished from a 

normal menstrual bleeding or a slight delay in the menses. Nevertheless, when the 

pre-clinical losses are included, the incidence of total miscarriages can reach as high 

as 60% (Macklon et al., 2002).  

Recurrent miscarriage is defined as 3 or more consecutive pregnancy losses before 

foetal viability. It affects 1% of couples, although the incidence rises to 1-5% if the 

definition adopted by many clinicians of 2 or more losses is considered (Rai and 

Regan, 2006). 

1.6.3 Causes of Miscarriage 

Numerous risk factors for miscarriage have been reported. However, establishing a 

real cause and the exact mechanism leading to the foetal loss, has been proven much 

more laborious. Several confounding factors may be involved, making it difficult to 

weigh the real contribution of a specific condition for the aetiology of the miscarriage. 

For example, polycystic ovary syndrome is frequently associated with insulin 

resistance, obesity and hyperprolactinemia (Bahceci et al., 2003). Some factors may 

be associated with recurrent miscarriage, whereas others can only justify sporadic 

cases. Infectious diseases, for instance, are usually associated with occasional, 

rather than repetitive pregnancy complications (Giakoumelou et al., 2015).  

Chromosome abnormalities are described as the major cause of miscarriage, 
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accounting for almost half of the cases (Goddijn and Leschot, 2000). Interestingly, 

the incidence of aneuploidies and structural aberrations in recurrent and sporadic 

miscarriages is the same (Stephenson et al., 2002, van der Berg et al., 2012).  

Despite the plethora of putative pathologies associated with pregnancy loss, 40 - 50% 

of couples with recurrent miscarriage lack a diagnosis after the initial clinical 

investigation. In Table 1.3 some frequently described miscarriage risk factors are 

displayed with their possible causality. 

 

Table 1.3 Risk factors for miscarriage and their causalities 

Risk factor Causality  Reference 

Chromosome 

abnormalities 

~45% of all losses.  

Similar incidence in recurrent 

pregnancy losses (RPL). 

Stephenson et al., 

2002 

van der Berg et al., 

2012 

Parental balanced 

translocation 

50% risk.  

Similar prognosis as other RPL 

causes recommends against 

PGD. 

Treff et al., 2013 

  

Franssen et al., 2006 

Thrombophilias  

- Antiphospholipid 
syndrome (APS) 

- Deficiency of protein C 

- Deficiency of protein S 

- Factor V Leiden 

- Factor II mutation 

 

Increased risk in APS.  

Not clear in congenital 
thrombophilias and no clear 
benefit for heparin and 
aspirin. 

 

McNamee et al., 2012 

  

de Jong et al., 2014 

Endocrine 

- Hypothyroidism 
 
 

- PCOS 
 
 
  

- LPD 
  

  

- Higher risk even with 
elevated autoantibodies 
and normal TSH. 

- Higher risk. No clear benefit 
with metformin in normal 
glucose tolerance.  
 

- Controversial diagnosis. 
Benefits with P4 for RM. 

  

Marai et al., 2004 

  

Zolghadri et al., 2008 

  

 Haas and Ramsey, 
2014 
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- Hyperprolactinemia 
 
  

- Diabetes 

- Higher risk. No clear benefit 
with dopamine agonists. 
 

- Higher risk, only if not 
properly controlled. 

 Pluchino et al.,  2014 

Chen et al., 2016 

Gutaj et al., 2013 

  

Infection Higher risk in malaria, 

brucellosis, CMV, HIV, dengue 

fever, influenza, bacterial 

vaginosis, rubella and syphilis. 

Not clear in Chlamydia, 

toxoplasmosis, HPV, HSV, 

parvovirus B19 and Hepatitis B 

Giakoumelou et al., 

2015 

Life style 

- Alcohol 

- Coffee 

  

- Smoking 

- Obesity 

  

- Higher risk 
 

- Increased risk with high 
doses 

 
- Higher risk 
 
- Higher risk 

  

Andersen et al., 2012 

Bech et al., 2005 

Weng et al., 2008 

Pineles et al., 2014 

Talmor et al., 2015 

Uterine malformations Higher risk in septate, 

bicornuate and unicornuate 

uteri. Higher risk of second 

trimester loss with arcuate 

uterus. No clear benefit with 

metroplasty.  

Chan et al., 2011 

  

Kowalik et al., 2011 

Vitamins and 

oligoelements 

  

No association with a specific 

vitamin or oligoelement 

deficiency detected. 

Multivitamins and iron 

supplements reduce risk for 

stillbirth. 

Balogun et al., 2016 

Natural killer cells No increased risk. 

Heterogeneity in methods 

used to measure number or 

density of the cells.  

Tang et al., 2011 

Sperm DNA fragmentation Higher risk. Robinson et al., 2012 
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1.6.4 Missed Miscarriage 

Missed miscarriage, also known as delayed miscarriage or silent miscarriage, is 

defined as a non-viable < 20 weeks pregnancy, and absence of uterine activity to 

expel the products of conception (Farquharson et al., 2005). Amongst some reported 

risk factors are folic acid deficiency, lack of physical exercise, hypoventilation and 

environment factors, such as ionizing radiation, pesticides, polycyclic aromatic 

hydrocarbons and phthalates (Zhang et al., 2011). A remarkable 13 - 24 fold increase 

in the incidence has been observed in China between 2002 and 2012, concomitant 

with escalating levels of industrial pollutants in the air (Yi et al., 2016).  

The condition is found in 2.8 % of couples at 10-14 week pregnancy (Pandya et al., 

1996). Besides the unexpected ultrasound finding in asymptomatic patients, there are 

cases of women with a mild first trimester bleeding and a long closed cervix, or the 

report of bad premonition, after the ceasing of pregnancy symptoms (Jansson and 

Adolfsson, 2010). The final diagnosis is usually achieved by serial ultrasound scans 

and common echographic signs include: 

 Persistent empty gestational sac (GS) (Kolte et al., 2015).  

 Small GS for pregnancy age calculated by the last menstrual period (LMP), 

also called early oligohydramnios (Odeh et al., 2010). 

 Absence of foetal heart activity after 6 weeks of pregnancy or crown-rump 

length (CRL) ≥ 5 mm (Farquharson et al., 2005). 

 Failure of CRL to progress in one week (Bottomley and Bourne, 2009). 

 CRL small for gestational age, calculated by LMP (Farquharson et al., 2005). 

 Foetal bradycardia (Makrydimas et al., 2003). 

 Abnormalities in yolk sac: large, small, unusual shape, calcification, or early 

regression (Cho et al., 2006). 
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For the purpose of this thesis missed miscarriage was considered as first trimester 

intrauterine visualized losses and empty sacs. Ectopic pregnancies and pregnancies 

of undetermined location were also excluded.  

1.6.5 Etiopathogenesis of Missed Miscarriage 

There are no defined specific conditions associated with missed miscarriages, but 

some mechanisms have been suggested. Several studies addressing this type of 

foetal loss direct the main focus on the discovery of diagnostic markers, thereby not 

being possible to discriminate whether the finding is rather a cause than a 

consequence of the pregnancy failure.  

There is no precise estimate for the incidence of chromosome abnormalities in missed 

miscarriage cases. Nevertheless, some studies coupling embryoscopy with 

karyotyping suggest a higher frequency when compared to general miscarriages. 

Philipp and Kalousek (2001) found 9 (60 %) abnormal karyotypes in 15 embryos. In 

a larger series, the same group demonstrated 70 % of chromosome errors in 37 cases 

of missed miscarriage (Philipp et al., 2002). Ferro et al (2003), after analysing 55 

karyotypes of direct embryo biopsies, detected 37 (67.3 %) chromosome 

abnormalities. An even higher incidence of abnormal karyotypes was observed again 

by Philipp et al. (2003). These authors identified 165 (75 %) chromosome errors 

amongst 221 missed miscarriage cases. A remarkable finding in all of these studies 

was the frequency of morphologically abnormal embryos with a normal karyotype that 

varied from 18 % to 35.7 %. In another study, 177 (65 %) abnormal karyotypes were 

encountered in 272 curettages of missed miscarriages, 58 % amongst empty sacs 

and 68 % amongst retained embryos (Lathi et al., 2007). Askerov (2016), 

investigating 59 cases of anembryonic pregnancies, detected 71.4 % of chromosome 

abnormalities in spontaneous pregnancies, whereas between the pregnancies after 

assisted reproduction techniques, the incidence was 55.3 %. However, even 
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considering the high incidence of chromosome errors, 25–40 % of missed miscarriage 

cases may occur due to other aetiologies.   

Angiogenesis is crucial for the development of functional chorionic villi. The hypoxic 

environment of the maternal-placental interface in the first trimester induces the 

expression of several angiogenic factors and their inhibitors (Charnock-Jones et al., 

2004). Impaired angiogenesis has been implicated in the genesis of missed 

miscarriages. Reduced serum levels of the angiogenic placental growth factor (PlGF) 

and the VEGF inhibitor serum fms-like tyrosine kinase 1 (sFlt1) were associated with 

missed miscarriage, and were postulated to occur as a consequence of decreased 

local hypoxia (Daponte et al., 2011, Martinez-Ruiz et al., 2014). Precocious increase 

in oxygen levels in IVS, would disturb placental angiogenesis. Lower serum levels of 

angiopoietin 1 and 2 were also verified in delayed miscarriage cases (Daponte et al., 

2013a). The main issue with these investigations on angiogenesis is the focus on the 

discovery of markers to discriminate between normal pregnancy and missed 

miscarriage or even between missed miscarriage and ectopic pregnancy. Fang et al. 

(2013) demonstrated dysregulation of the hypoxia induced factor 1α 

(HIF1α)/VEGF/sFlt1/delta-like ligand 4 (Dll4)/Notch 1 pathway in placental villi of 

missed miscarriages. The authors suggested that excessive hypoxia would 

disarrange this system, resulting in reduced expression of the Notch 1 ligand, Dll4, 

an essential factor for establishment of vascular endothelial cell fate.  

Placental apoptosis has essential roles in early pregnancy, ensuring maternal 

immune tolerance to the implanting embryo, and steering trophoblast remodelling 

(Jersak and Bischof, 2002). However, excessive villous apoptosis may increase the 

risk for early pregnancy complications (Rull et al., 2013). Cells from amniotic and 

coelom fluid acquired from missed miscarriages exhibited higher expression of FAS 

and FAS ligand. These are main factors that control apoptosis. Furthermore, the 

same samples and trophoblast samples from the same patients harboured a higher 
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number of cells stained positive for terminal deoxynucleotidyl transferase (TdT) dUTP 

Nick-End Labeling (TUNEL) (Kaponis et al., 2008). TUNEL is a method for detecting 

apoptotic cells that undergo extensive DNA degradation (Kyrylkova et al., 2012). 

Gene associated with retinoid-interferon mortality 19 (GRIM19) is an anti-apoptotic 

gene essential for the assembly of mitochondrial complex 1 (Huang et al., 2004). 

Expression of GRIM19 was downregulated in trophoblast from missed miscarriage 

patients. The expression of P53 was up-regulated and the number of TUNEL+ cells 

was higher when compared with normal pregnancies. In addition, the expression of 

HIF1α was increased, and that of VEGF was reduced (Chen et al., 2015). P53 is a 

pivotal mediator of apoptosis in response to DNA damage. Human double minute 2 

(HDM2) is induced by P53 and is a key inhibitor of P53 activity. A specific combination 

of gene polymorphism for P53 and HDM2 was observed in association with recurrent 

miscarriage (Fang et al., 2011). The authors suggested that this gene-gene 

polymorphism interaction would blunt the apoptotic process in the placenta. Thereby 

the clearance of DNA damaged cells would be impaired, resulting in foetal demise. 

These data underscores the importance of a fine balanced control of apoptosis in the 

human placenta.   

Decidua- and placenta-derived cytokines are critical to ensure maternal immune 

tolerance to the foetus and a successful pregnancy (Mor et al., 2011). Imbalance in 

the secretion of the various members can lead to pregnancy disorders (Raghupathy 

and Kalinka, 2008). A shift from an anti-inflammatory Th2-type cytokine response (i.e. 

secretion of IL4 and IL10) to a pro-inflammatory Th1-type cytokine response (i.e. 

secretion of interferon γ [IFNγ], IL2, sIL2R, IL12, IL15, TNFα) has been indicated as 

a possible cause for missed miscarriage. Plevyak et al., (2002) observed decreased 

expression of IL10 and no changes in IFNγ and immune cells in decidua from missed 

miscarriage patients. Daponte et al., (2013b) detected increased serum levels of IL15 

and no changes in anti-C1q in patients with delayed early pregnant loss. Increased 
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serum levels of IL12 and sIL2R were also described in cases of missed miscarriage, 

when compared to normal pregnancy and even threatened miscarriage (Paradisi et 

al., 2003). In a more recent study, increased serum levels of IFNγ and reduced IL4 

and peripheral Treg cells were verified in missed miscarriage cases (Cao et al., 2014). 

Based on the additional observation of decreased E2 serum concentrations, the 

authors suggested a positive correlation of the low levels of T reg cells and IL4 with 

the low concentration of that sex steroid. 

Metabolomics is the study of endogenous low-molecular-weight metabolites that 

could serve as disease-specific biomarkers, or provide insights into mechanisms of a 

disorder (Zhang et al., 2012). In a recent paper, this approach was used in an attempt 

to define biomarkers for missed miscarriage (Fei et al., 2016). Thirty-seven differential 

plasma metabolites that discriminate between normal pregnancies and missed 

miscarriages were detected. Using metabolic impact analysis, two metabolic 

pathways were identified: tryptophan and sphingolipid metabolism. Lower level of 

tryptophan and their metabolites were observed (Fei et al., 2016). Tryptophan 

degradation is essential for maternal immune tolerance to the foetus via growth arrest 

of T cells (Mellor and Munn, 2001). This amino-acid is also crucial for foetal growth 

and development during the organogenesis period (Badawy, 2015). It is also a 

precursor of serotonin, and placenta-derived serotonin is involved in foetal brain 

development (St-Pierre et al., 2016). As regards the sphingolipid metabolism, higher 

plasma levels of sphingosine and reduced levels of sphingosine 1-phosphate (S1P) 

were detected in cases of missed miscarriage (Fei et al., 2016). Sphingosine inhibits 

proliferation and induces apoptosis and inflammation, whereas S1P has anti-

apoptotic, anti-inflammatory and angiogenic properties (Gomez-Muñoz et al., 2016). 

Sphingolipid metabolism pathway is also critical for prevention of foetal rejection by 

regulation of innate immunity at the feto-maternal interface (Mizugishi et al., 2015). In 
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addition, S1P was demonstrated to play a role in the maintenance of the corpus 

luteum in mice (Hernandez et al., 2009).  

 Oxidative stress has been implicated in RPL (Gupta et al., 2007). Elevated serum 

levels of lipid peroxidation and reduced levels of reduced glutathione, GPX, vitamin 

A, vitamin E and β-carotene have been observed in patients who suffered recurrent 

miscarriages (Şimşek et al., 1998). Decreased plasmatic levels of the antioxidants α-

tocopherol, vitamin C and erythrocyte glutathione and total thiols were also 

associated with repeated miscarriages (Vural et al., 2000). Sata et al. (2003) reported 

increased risk for RPL in glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) 

gene polymorphism carriers. These enzymes are important free radical scavengers 

(Hayes and Strange, 2000). Based on the findings of Nelen et al. (2000) associating 

homocysteinemia and RPL, Gupta et al. (2007) postulated that the pro-oxidant 

property of homocysteine would be the mechanism responsible for the pregnancy 

failures. Up-regulated expression of the oxidative stress markers hsp 70 and 

nitrotyrosine, alongside with increased lipid peroxidation in placental specimens were 

described in missed miscarriage (Hempstock et al., 2003). Sugino et al. (2000), 

compared oxidative stress in decidua from normal early pregnancies, missed 

miscarriages and spontaneous miscarriages with vaginal bleeding. Total SOD 

activity, Cu,Zn-SOD activity and mRNA where decreased, and lipid peroxidase and 

PGF2α were increased in spontaneous miscarriage with bleeding. By contrast, there 

were no differences between normal pregnancies and retained conceptuses. The 

authors proposed that the elevated ROS levels would induce PGF2α synthesis in 

miscarriages with spontaneous expulsion of conceptus. This phenomenon would be 

abrogated in missed miscarriages. However, in the study it was not possible to 

ascertain if the stress response was a cause or a consequence of the increased 

uterine activity. More recently, a study showed a decrease in SOD and HIF1α 

expression, and increased ROS levels in trophoblasts from missed miscarriage 
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patients, indicating a possible mechanism for foetal demise through disturbed 

angiogenesis (Zhu et al., 2014).  

Although most knowledge on this type of pregnancy loss is derived from serum, 

placenta and, in a lesser proportion, decidua analysis, no investigation on endometrial 

glands has been hitherto performed. Furthermore, as previously mentioned, all these 

studies have been performed during the miscarriage time-frame, thereby not being 

possible to determine if the conditions were cause or consequence. Considering the 

crucial role of uterine glands in providing nutrients and growth factors for the embryo 

in the early pregnancy, it is rational to presume that glandular defects could lead not 

only to inadequate foetal nutrition, but also to impaired organogenesis and eventually 

foetal death. The result would be a malformed foetus or an empty sac with a normal 

karyotype. Indeed several papers have described structurally abnormal foetuses at 

embryoscopy as well as empty sacs with normal karyotypes (Phillipp and Kalousek, 

2002, Ferro et al., 2003, Lathi et al., 2007).   

 

 

 

 

 

 

 

 

 

 



64 
 

1.7 Research justification and aims 

The role of endometrial glands in the implantation process and early pregnancy 

remains poorly understood. A major hurdle is the inability to successfully propagate 

and differentiate primary HEECs in culture, which contributes to the paucity of studies 

focusing on glands in the endometrial field. Hence, the overall aim of my project is to 

develop efficient methods for isolation, culturing and differentiation of primary HEECs 

in vitro. The specific goals are: 

 To establish 2D and 3D models to study of primary HEECS and human 

endometrial glands in culture, respectively.  

 To study the effect of ovarian steroids, embryo-derived signals and stromal 

decidua cues on HEEC cultures. 

 To investigate the role of uterine glands in the pathophysiology of recurrent 

missed miscarriages.  
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2.1 Materials and Recipes 

2.1.1 List of Materials 

Table 2.1 Materials used in the experiments, supplier and catalog numbers. 

Material Supplier Catalog number 

β-actin antibody  Mouse  Abcam AB8224 

β-estradiol  Sigma-Aldrich E2758 

 

β-mercaptoethanol    Sigma-Aldrich M3148 

 

3T3 swiss albino mouse 

embryo fibroblasts (cell line)  

Sigma-Aldrich 85022108 

 

8-Bromoadenosine 3',5'- 

cAMP 

Sigma-Aldrich B7880 

 

6x DNA gel loading dye      Thermo Scientific R0611 

 

6 well plates  Corning 3598 

 

12 well plates  Corning 3513 

 

24 well plates  Corning  3506 

 

96 well plates  Corning  3599 

 

Acrilamide, 30%  Bio-Rad Laboratories      161-0158 

 

Adenine - Sigma-Aldrich   A2786  

 

Advanced DMEM/F12      Life Technologies 12634010 

 

ALK-4, -5, -7 inhibitor, A83-

01  

Sigma-Aldrich SML0788 

 

Ammonium persulfate 

(APS)   

 

Sigma-Aldrich   A3678 
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Antibiotic/antimycotic 

(Penicilin, streptomycin, 

amphotericin B)  

Gibco 15240-062 

 

B27 supplement minus 

vitamin A      

Life Technologies 12587010 

 

Black 96-well plate for 
fluorescence     

Appleton Woods 611F96BK 

BSA  

 

–Sigma-Aldrich      A2153 

Cell Recovery Solution   Corning 354253 

 

Cell scrapers     Corning 3010 

 

Cell strainer, 40 µm  Fisher Scientific 22363547 

 

Charcoal Sigma-Aldrich  Sigma-Aldrich C9157 

 

Chloroform  VWR    100034Q 

 

Cholera toxin   Sigma-Aldrich C8052 

 

Cleaning agent for 

removing RNAse (RNAzap)  

Sigma-Aldrich R2020 

 

Collagenase  Sigma-Aldrich C9891 

 

Cytokeratin 18 antibody  

Mouse     

Abcam AB668 

 

DNAse I for tissue digestion  Roche 11284932001 

 

Dextran 70   Sigma-Aldrich 1179741 

 

DL-dithiothreitol (DTT)   Sigma-Aldrich   D9779 

DPX mounting medium   Leica 3808600E   

Dulbecco’s modified Eagle 

medium (DMEM)/F12 

Gibco 31330-638 
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nutrient (Ham) (1:1) 

medium with red-phenol  

Dulbecco’s modified Eagle 

medium (DMEM)/F12 

nutrient (Ham) (1:1) 

medium with red-phenol  

 

Gibco 11039-021 

E-cadherin antibody Rabbit  Cell Signaling    3195 

 

ECL Western-blotting 

analysis system    

GE Healthcare RPN2232 

ENaCα antibody  Sigma     Sigma-Aldrich HPA012743 

 

ENaCβ antibody  Sigma-Aldrich HPA015612 

 

ENaCγ antibody          Proteintech 13943-1-AP 

 

Eosin Y   Sigma-Aldrich          HT110132 

 

Epidermal growth factor 

(EGF)   

Peprotech    AF100-15 

 

Eppendorf tubes 1.5 ml    Starlab  E1415-1500 

 

Eppendorf tubes 0.6 ml    Starlab E1405-0600 

 

Ethanol  Fisher Chemical    E/0650DF/17 

 

Falcon tubes  14 ml   

 

Greiner Bio-one 188261 

Falcon tubes  50 ml   

 

Greiner Bio-one 227270 

 

Fetal bovine serum (FBS)  Gibco 10500-64  

 

FGF10     Peprotech 100-26 

 

Filter paper     Whatman   3001-861 

 

Formaldehyde, 4%      VWR 9713 
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Frostbite freezing spray    Leica 3803100EE 

Gel cassettes   Novex   NC2015 

 

Glass-bottom Petri-dishes   Mat tek      P35GCol-1.5-10-C 

 

Glass Pasteur pipettes  Fisher Scientific 1156-6963 

Glass slides       

 

Thermo Scientific BS7011/2 

Gloves  Kimtech Science      90626 

 

Glycogen         Invitrogen 10814-010 

 

Hanging Drop plates   Sigma Aldrich HDP1096 

 

hepatocyte growth factor 

(HGF)    

Peprotech 100-39 

 

Human chorionic 

gonadotropin (hCG)   

 

Sigma-Aldrich C0434 

Histone H3-MeK9 antibody  

Rabbit  

Abcam AB8898 

 

HMGB2 antibody  Rabbit    Abcam AB672282 

 

Hydrocortisone   

 

Sigma-Aldrich   H0888   

Hyper ladder V     

 

Bioline BIO-33031 

Insulin   Sigma-Aldrich 91077C 

 

Isopropanol (2-Propanol)   Sigma-Aldrich     24137 

Isolation caps with diffuser 

for LMD  

Molecular Machines 
Industries 

50202 

 

Lamin B1 antibody Mouse  Abcam  

 

AB8982 

LDS buffer NuPAGE     Invitrogen NP0008 

 



70 
 

L-glutamine   Gibco 25030-024 

 

Matrigel  

 

Corning 354230 

Medroxiprogesterone 17-

acetate  

Sigma-Aldrich   M1629 

 

Membrane slides  

 

Molecular Machines 
Industries    

50103 

Methanol  

 

Fisher Chemical    M/4000/17 

Microtome blade      

 

Leica R-35 

N2 supplement   Life Technologies 17502048 

 

N-acetyl-L-cysteine     

 

Sigma-Aldrich A9165 

Nicotinamide    Sigma-Aldrich N0636 

 

N, N, N’,N’-

tetramethylethylenediamine 

(TEMED)  

Sigma-Aldrich     T9281 

 

Noggin    Peprotech 120-10C 

 

Nonfat dried milk powder   Panreac AplliChem A0830 

 

Nuclease-free water       Ambion AM9932 

 

OCT cryoembedding matrix     

 

VWR 36160E 

P16 antibody Rabbit       Abcam AB108349 

 

P53 antibody  Mouse       Dako M7001 

 

Parafilm     Bemis PM-996 

 

PBS  Fisher Scientific 102092521X-PBS 

 

PCR plates  FAST      Applied Biosystems 4346906 



71 
 

PCR plates  non-FAST   

 

Applied Biosystems    N8010560 

PCR plate sealing film   Excel Scientific      TS-RT2-100 

 

Petri-dish 92 x 16 mm  Sarstedt   821473 

 

Pipette tips 10 µl Alpha Laboratories ZP1010S 

 

Pipette tips 40 µl Alpha Laboratories ZP1204S 

Pipette tips 100 µl Alpha Laboratories ZP1200S 

Pipette tips 300 µl Alpha Laboratories ZS3300S 

Polyvinylidene Fluoride 

(PVDF) blotting membranes  

GE Healthcare 10600023 

 

Prestained protein ladder   Thermo Scientific    26619 

 

Progesterone   Sigma-Aldrich P7556 

 

Prolactin  Peprotech 100-07 

 

Protease inhibitor    Roche 11836170001 

 

Protein assay dye reagent   Bio-rad    5000006 

 

RTCA plates (E-plate)   ACEA Biosciences 05469813001 

 

R-spondin 1   Peprotech 120-38 

 

RIPA buffer   Upstate Cell Signalling 
Solutions 

20-188 

 

Scalpels   Swann-Morton 0501  

 

Secondary antibodies HRP 

anti-mouse  

Dako   P0447 

 

Secondary antibodies HRP 

anti-rabbit      

Dako P0448 
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Secondary antibody, anti-

mouse alexa-fluor 488 

Molecular Probes      A11088 

 

Secondary antibody, anti-

mouse alexa-fluor  

Molecular Probes      A21424 

 

Serological pipettes 5 ml   Greiner Bio-one    606 180 

 

Serological pipettes 10 ml Greiner Bio-one    607 180 

 

Serological pipettes 25 ml Greiner Bio-one    760 180 

 

Sodium dodecyl sulphate 

(SDS)  

Sigma-Aldrich      75746    

 

Sponge pad for blotting  Novex   EI9052 

 

STAT-60   AMS Biotechnology   CS-502 

 

Sybr green      Applied Biosystems 4367659 

 

Syringes 20 ml   BD Plastipak 300613 

 

Syringes 50 ml   BD Plastipak 300865  

 

Syringe filter   Sartorius Stedim Biotech 16534-K 

 

Transwell cell culture 

inserts  

BD Falcon 353095 

 

Triton X-100  Sigma-Aldrich     T9284 

 

Trypsin Sigma-Aldrich T4799 

 

Trypsin-EDTA 0.25%  Gibco 25200-056 

 

Tween 20  Fisher Scientific    EC500-018.3 

 

Vectashield mounting 

medium with DAPI  

Vector Laboratories H-1500 

Vimentin antibody Mouse   Cell Signalling 3390 
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Y-27632   Abcam AB120129 

 

Xylene   Fisher Chemicals      X/250/17 

 

Gel extraction/purification 

of DNA  

Qiagen 28704 

Glycogen assay Kit    Abcam AB169558 

 

Immunohistochemistry  Leica   RE7150-K 

 

Laser microdissection 

staining kit     

Ambion AM1935 

On-column DNAse I 

digestion set   

Omega Bio-Tek   E1091 

PGE2 ELISA kit   Thermo Scientific EHPGE2 

 

Reverse transcription kit     Qiagen 205314 

 

RNAqueous Micro Kit Ambion AM1931 

 

Senescence-associated 

beta galactosidase 

activity kit (fluorometric 

format)    

Cell Biolabs CBA-231 

Senescence-associated 

beta galactosidase 

staining kit  

Cell Signaling     98605 
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2.1.2 Recipes 

2.1.2.1 Blocking Buffer for Blotting 

5% Skimmed milk powder (w/v) in TBS-T 

2.1.2.2 Blocking Buffer for Immunofluorescence: 

1% BSA (w/v) in PBS  

2.1.2.3 Running Buffer (10 X)   

250 mM Tris base 

192 mM Glycine 

1% (w/v) SDS 

2.1.2.4 Transfer Buffer (10 X) 

250 mM Tris base 

192 mM Glycine 

20 % (v/v) Methanol 

2.1.2.5 DNA Loading Buffer 

0.3 % (w/v) Bromophenol blue 

40% (v/v) Glycerol 

0.25 M EDTA, pH 8.0 

2.1.2.6 Tris-Borate EDTA (TBE) Buffer (10 X) 

0.9 % Tris-borate 

2 mM EDTA, pH 8.0 

2.1.2.7 Tris-Buffered Saline (TBS) (10 X) 

130 mM NaCl 

20 mM Tris 

Adjust pH to 7.8 
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2.1.2.8 TBS-T 

0.1 % Tween 20 in 1X TBS 

2.1.2.9 Tris-EDTA Elution (TE) Buffer 

10 mM Tris-HCl pH 8.0 

1 mM EDTA  

2.1.2.10 Citrate Buffer 

Sodium citrate 10 mM 

0.05 % Tween 20 

2.1.2.11 Whole Cell Extraction Buffer (WEB buffer) 

20 mM Hepes 0.5% NP-40  

0.5 % NP-40 

15 % glycerol 

0.3 M NaCl 

0.5M EDTA 

1 mM Na3VO4 

10 mM NaF 

1 mM DTT 

2 mM leupetin 

1.5 mM pepstain 

150 µM aprotinin 

0.6 mM phenylmethylsufonyl fluoride (PMSF) 
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2.1.2.12 10% dextran-coated charcoal (DCC) Medium 

500 ml DMEM/F12 with phenol red   

50 ml DCC                                                  

2 mM L-Glutamine                                    

5 ml Antibiotic-Antimycotic solution (100 X) 5 ml 

2 µg/ml Insulin  

1 nM Oestradiol                  

 

2.1.2.12 Conditioned Reprogramming of Epithelial Cell Medium 

(CRC Medium) 

500 ml DMEM/F12 with phenol red   

50 ml DCC                                                  

2 mM L-Glutamine                                    

5 µg/ml Insulin 

5 ml Antibiotic-Antimycotic solution (100 X) 5 ml 

8.4 ng/ml Cholera toxin  

10 ng/ml EGF 

0.4 µg/ml hydrocortisone 

24 µg/ml Adenine 

10 µM/l Y-27632 
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2.1.2.13 Organoid Expansion Medium  

500 ml Advanced DMEM/F12  

5 ml N2 supplement (100 X) 

10 ml B27 supplement minus vitamin A (50 X) 

5 ml Antibiotic-antimycotic solution (100 X) 5 ml 

1.25 mM N-acetyl-L-cysteine 

2 mM L-glutamine 

50 ng/ml EGF 

100 ng/ml Noggin 

500 ng/ml R spondin-1 

100 ng/ml FGF10 

50 ng/ml HGF 

500 nM ALK-4, -5, -7 inhibitor 

10 mM Nicotinamide 
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2.2 Methods 

2.2.1 Cell culture 

2.2.1.1 Procurement of Endometrial Tissue 

Endometrial tissue was acquired from women attending the Implantation Clinic at 

University Hospitals Coventry and Warwickshire National Health Service Trust, after 

obtaining written consent. The study was approved by the NHS National Research 

Ethics Committee of Hammersmith and Queen Charlotte’s Hospital NHS Trust. 

Endometrial biopsies were collected under ultrasound guidance, using a Wallach 

Endocell sampler (Wallach Surgical Devices, Trumbull, CT, USA), and were timed to 

the mid-secretory phase of the menstrual cycle. LH surge was self-assessed by the 

patients through a home urine ovulation test. None of the women were using 

hormones for at least three months prior to the tissue collection. A fragment of the 

tissue was put in 10 % DCC medium for immediate isolation of endometrial cells. 

Another fragment was immediately snap frozen in liquid nitrogen and kept at - 80 ºC 

until its use for laser microdissection. 

 

2.2.1.2 Preparation of Dextran-Coated Charcoal Treated Stripped 

Foetal Bovine Serum (DCC) 

Foetal bovine serum (FBS) was stripped of several small molecules, including 

endogenous hormones, by treatment with dextran-coated charcoal. Here, 1.25 g 

charcoal and 125 mg dextran were added to 500 ml FBS and incubated at 56 oC for 

2 hours with intermittent shaking. The mixture was centrifuged at 1100 g for 30 

minutes, before the supernatant was filtered to remove the charcoal, and aliquoted 

and stored at - 20 ºC.  
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2.2.1.3 Isolation of Endometrial Stromal Cells (HESC) 

The endometrial tissue was minced for 5 minutes with a scalpel, and digested in an 

enzymatic solution (composition: 0.1 mg/ml DNAse I and 0.5 mg/ml collagenase in 

10 ml phenol red-free DMEM/F12) for one hour at 37 ºC with intermittent shaking. 

After 1 hour, collagenase was neutralized by addition of 10 ml 10 % DCC medium 

and centrifugation at 280 g for 5 minutes. The cell pellet was re-suspended in 10 % 

DCC medium and seeded into tissue culture flasks. Blood and epithelial cells in 

suspension were removed by changing media after 3 hours and within 18 hours. 

Media were changed every other day until the cells were confluent.  

2.2.1.4 Isolation of Human Endometrial Epithelial Cells (HEEC) 

The endometrial tissue was minced using a scalpel, for 5 minutes, and digested in an 

enzymatic solution with 0.1 mg/ml DNAse I and 0.5 mg/ml collagenase in 10 ml 

phenol red-free DMEM/F12 for one hour at 37 ºC, with intermittent shaking. After one 

hour, the solution was filtered through a 40 µm cell strainer. Stromal cells passed 

through the filter and the endometrial gland clumps were retained. The strainer was 

backwashed with 20 ml DMEM/F12 and centrifuged at 280 g for 5 minutes. The cell 

pellet was re-suspended in 1 ml 0.25 % tripsin-EDTA and incubated at 37 ºC for 10 

minutes, to allow dissociation of the glandular clumps. After 10 minutes, 10 ml 10 % 

DCC medium were added to stop the enzymatic process and the solution was 

pipetted up and down several times to physically dissociate the gland clumps. Cell 

suspension was centrifuged at 280 g for 5 minutes, and the pellet re-suspended and 

seeded in tissue culture dishes. The first media change were undertaken after 60 

hours to allow the epithelial cells to attach to the dish. Subsequent media changes 

were carried out every other day until the cells were confluent.  
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2.2.1.5 Cell Passage 

Cells were washed with phosphate buffered saline (PBS) lifted with 0.25 % Trypsin-

EDTA, and incubated for 5 minutes at 37 ºC. The flask was gently agitated and cell 

detachment checked intermittently on the microscope. In order to stop trypsin 

digestion, 10% DCC medium was added and the cell suspension was centrifuged at 

280 g for 5 minutes. Cells were re-suspended, and seeded in tissue culture dishes.  

2.2.1.6 Cell Freezing 

Once the cells were separated (see ‘Isolation of endometrial stromal cells’ and 

‘Isolation of endometrial epithelial cell’), the cell pellets were re-suspended in 900 µl 

DCC. 900 µl of a 20 % (v/v) DMSO in DCC solution was added dropwise with 

continuous mixing of the solutions. The solution was mixed by pipetting up and down 

several times and transferred to a cryovial. Cells were frozen at a rate of 1 ºC/minute 

in a freezing container (Nalgene, Mr. Frosty) with isopropanol, and kept overnight, at 

- 80 ºC before transfer to liquid nitrogen the following day. 

2.2.1.7 Cell Thawing 

The cryovial was transferred from liquid nitrogen to dry ice. The cryovial was thawed 

at 37 ºC for 4 minutes, and cells were immediately added into a 50 ml Falcon tube 

with 10 ml pre-heated 10 % DCC media. The solution was centrifuged at 280 g for 5 

minutes before thel pellet was re-suspended and seeded into a tissue culture dish. 

2.2.1.8 Culture of 3T3 Swiss Albino Mouse Fibroblasts 

Cells were supplied as frozen cryovial stock. Cells were submitted to the same 

method described in ‘Cell thawing’, and were seeded into a T75 flask using 

DMEM/F12 supplemented with 10 % (v/v) FBS, 1 % (v/v) antibiotic-antimycotic and 2 

mM L-glutamine. Media were changed every other day. Cells were passaged when 
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90 % confluent, using the same method described in ‘Cell passage’, and were split in 

one T75 and four 100 mm Petri-dishes. The cells in the Petri-dishes were used for 

irradiating with UVC light.   

2.2.1.9 Irradiation of 3T3 Swiss Albino Mouse Fibroblasts 

Cells were irradiated when they reached 60 - 70 % confluency. Media were removed 

and saved. 10 ml of PBS was added to the Petri-dish and next aspirated. The Petri-

dish was irradiated with a 100 J/m2 dose of ultraviolet C light (254 nm), using a CX-

2000 UVC crosslinker (UVP, Upland, CA, USA). Saved media was added to the cells, 

and after 3 days, the supernatant was harvested and stored at - 20 ºC.  

2.2.1.10 Differential Trypsinization for Separation of Feeder Layer 

and HEEC 

Cells were washed with PBS, and incubated in 1 ml 0.25 % trypsin-EDTA for 1 -2 

minutes under phase microscopy monitoring. Once the fibroblasts started to detach 

dishes were gently tapped and the floating feeder cells were removed. Remaining 

cells were washed in PBS, and 1 ml 0.25 % trypsin-EDTA was added again for the 

dissociation of HEEC for another 5-7 minutes. Floating HEEC were transferred to 14 

ml Falcon tubes and 9 ml 10% DCC medium were added to stop trypsin digestion. 

Cells were centrifuged at 280 g for 5 minutes, re-suspended in conditioned 

reprogramming of cell (CRC) medium and seeded in fresh dishes. 

2.2.1.11 Decidualization of HESC 

Only HESCs between passages 1 and 3 were used for decidualization. The cells were 

cultured in 10 % DCC media until 90 % confluent. Cells were down-regulated 

overnight in 2 % DCC phenol red-free DMEM/F12 and the decidualization was carried 

out the following day. The cells were treated with 0.5 mM 8-bromoadenosine 3’,5’-

cyclic adenosine monophosphate (cAMP) and 1 µM medroxyprogesterone acetate 



82 
 

(MPA) in 2% DCC  phenol-free DMEM/F12. Decidualizing medium was changed 

every other day.  

2.2.1.13 Co-culture of HESC and HEEC 

HESC and HEEC were isolated as previously described. Cells were counted with a 

Luna Automated Cell Counter (Logos Biosystems – South Korea). HESC were 

seeded into the bottom of 24-well plates at a density of 0.5 x 105 cells/well. HEEC 

were plated on a 0.4 µm pore membrane of a transwell cell culture insert at a density 

of 3 x 105 cells/insert. Different cell types were cultured in separate wells until 90 % 

confluency. Transwell inserts with the HEEC were placed inside the wells with HESC 

for co-culture experiments.  

2.2.1.14 HEEC Spheroids in Hanging Drops 

HEEC were isolated as previously described. Cells were counted. A suspension with 

2 x 105 cells/ml in CRC medium supplemented with 2.5 % (v/v) Matrigel was prepared, 

and 45 µl/well were seeded in a hanging drop plate. The reservoirs in the hanging 

drop plates were filled with 1 % agarose gel. 10 µl media were added to each well 

every two days. The spheroids were transferred after 4 days, by simple pipetting, into 

96-well plates containing 50 µl ice cold Matrigel/well for treatment. The plates were 

placed in the incubator at 37 ºC for 45 minutes for the Matrigel to set and 100 µl CRC 

medium was added into the wells.  

2.2.1.15 HEEC Organoids in Matrigel and HGF Supplemented 

Medium 

Isolated cells were counted with a Luna Automated Cell Counter (Logos Biosystems 

– South Korea), and 0.1 x 105 cells in 50 µl of ice-cold Matrigel were seeded in 96-

well plates. Plates were placed in the incubator at 37 ºC for 45 minutes for the Matrigel 

to set and 100 µl CRC medium supplemented with 50 ng/ml HGF was added. 
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2.2.1.16 HEEC Organoids in Matrigel and Expansion Medium 

HEEC were isolated as previously described. The final cell pellets were suspended 

in ice cold Matrigel at a ratio of 1:20 (v:v), and 20 µl drops/well of the Matrigel-cell 

suspension were plated into 24-well plates. Matrigel was allowed to set at 37 ºC for 

45 minutes and then 350 µl organoid expansion medium was added. Media were 

changed every other day.  

2.2.1.17 HEEC Organoid Formation Efficiency  (OFE)Assay 

Frozen HEEC were thawed as previously described. Live cells were counted using 

Trypan Blue. A suspension with 1,000 live cells per 5 µl ice cold Matrigel was 

prepared, and 5 µl drops were plated into 96-well plates. The drops were allowed to 

set at 37 oC for 45 minutes and 100 µl organoid expansion medium supplemented 

with 10 µM Rock inhibitor Y-27632 was added. Media were changed every 3 days 

and the number of organoids per well was manually counted after 10 days. At least 3 

wells per sample/group were counted and averaged. Organoid forming efficiency was 

calculated using the formula  

OFE (%) = 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑔𝑎𝑛𝑜𝑖𝑑𝑠 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑒𝑑𝑒𝑑 𝑐𝑒𝑙𝑙𝑠
 𝑥 100. 

2.2.1.18 Culture of HEEC in Scaffolds 

Triacrylate scaffolds cut into 200 µm thick and 10 mm diameter discs were developed 

in Warwick Chemistry Department by Prof. Neil Cameron and Dr. Ahmed Eissa. The 

discs were placed in 24-well plates, disinfected with 100 % ethanol, rendered 

hydrophilic with 70 % ethanol, and washed twice with sterile PBS. The scaffolds were 

coated to improve cell adherence. To coat the scaffolds, a 0.33 mg/ml fibronectin in 

PBS solution was used. After the second wash, PBS was aspirated, and 300 µl 

fibronectin solution was added. The scaffolds were left in the fibronectin for at least 1 

hour before cell seeding. HEEC were isolated as previously described and counted. 
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A suspension of 2.5 x 105 cells in 50 µl CRC media was carefully added onto the 

centre of each scaffold disc and incubated for 1 hour at 37 ºC. After the incubation, 2 

ml CRC medium was added to the wells. Media were changed every other day.  

2.2.2 Cell and Tissue Staining 

2.2.2.1 Scaffold Haematoxylin-Eosin (H&E) Staining  

Media were aspirated from the wells. Discs were washed twice with 2 ml PBS and 

transferred to a flask with 4 % formaldehyde. Formaldehyde fixed discs were 

processed and embedded in paraffin and 5 µm sections were obtained with a 

microtome. Sections were mounted on a glass slide and left to dry at 60 ºC overnight. 

Slides were re-hydrated by a sequence of 3 baths of xylene for 5 minutes each, 

followed by 2 baths of 100 % isopropanol for 2 minutes each. Next, slides were dipped 

in 70 % isopropanol for 2 minutes and rinsed in distilled water for 2 minutes. Slides 

were incubated with filtered haematoxylin for 1 minute and rinsed with warm running 

tap water for 15 minutes. They were placed in distilled water for 30 seconds and in 

95% ethanol for 30 seconds. Cells were counterstained with eosin-Y for 1 minute. To 

dehydrate and clear the sections, slides were immersed in a sequence of 2 baths of 

95% ethanol, 2 bath of 100% ethanol and 2 baths of xylene (2 minutes each). 

Distyrene/plasticizer/xylene (DPX) mounting medium was employed for mounting the 

slides with coverslips.  

2.2.2.2 Scaffold Immunostaining  

Formaldehyde fixed discs were processed and embedded in paraffin and 5 µm 

sections were obtained with a microtome. Sections were mounted onto glass slides 

and left to dry at 60 ºC overnight. Slides were re-hydrated by a sequence of 3 baths 

of xylene for 5 minutes each, followed by 2 baths of 100 % isopropanol for 2 minutes 

each. Next, slides were dipped in 70 % isopropanol for 2 minutes, rinsed in distilled 
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water for 2 minutes, dipped in 10 mM citrate buffer pH 6.0, and placed in an epitope 

retriever unit for 2 hours. For immunostaining, Novolink Polymer Detection System 

(Leica) was used.  Peroxidase Block is added for 5 minutes, and 0.05 % polysorbate 

20 (Tween 20) in tris buffered saline (TBS-T) was used twice for washing. Sections 

were incubated overnight at 4 ºC in primary antibodies diluted in 0.05 % TBS-T.  The 

slides were again rinsed twice with TBS-T and incubated with Post Primary Block for 

30 minutes. Two more 0.05 % TBS-T washes were carried out and the slides were 

incubated for 30 minutes with Novolink Polymer Solution. Slides were rinsed with 0.05 

% TBS-T, incubated for 5 minutes with Diaminobenzidine Chromogen and rinsed with 

water for 5 minutes. Slides were counterstained with haematoxylin. 

2.2.2.3 Immunofluorescence 

Cell monolayers were grown in glass-bottom Petri-dishes until 90 % confluent. 

Organoids in Matrigel were cultured for 7 days. Culture media were aspirated, cells 

were washed in PBS and fixed in 4 % formaldehyde. Formaldehyde was aspirated 

and washed clear with PBS 5 minutes. Cells were permeabilized with 0.1 % Triton X-

100 for 1 hour at room temperature, washed with PBS for 5 minutes and incubated in 

1% BSA / PBS (v/v) for 1 hour to block nonspecific binding of antibodies. Cells were 

incubated overnight with primary antibodies diluted 1/100 in 1% (w/v) BSA/PBS at 4 

ºC, washed with 1% BSA/PBS and incubated with secondary antibodies diluted 1/200 

in 1 % BSA/PBS at 4 ºC for 2 hours in the dark. A new 1% BSA / PBS wash was 

carried out, and cells were coverslipped with mounting medium containing DAPI for 

nuclear counterstaining. The cells and organoids were imaged with a confocal 

microscope.  

2.2.3 xCELLigence Real-Time Cell Analysis (RTCA) 

An xCELLigence RTCA DP system (ACEA Biosciences, San Diego, CA, USA) was 

used for proliferation assays.  This system employs microelectrodes integrated into 
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the bottom of microwell plates (E-plates) to measure electric impedance. A current 

between the negative and positive electrodes pass through an electrically conductive 

solution (culture medium). Adherent cells at the electrode-solution interface hinder 

the electron flow. The impedance increases proportionally to the number of attached 

cells and is displayed as cell index values. This index provides an estimative of cell 

proliferation and attachment. The instrument is placed inside a humidified incubator 

at 37 ºC with 5% CO2. 

The instrument was set-up for data acquisition parameters: impedance recording 

intervals and duration of the experiment. Cells were isolated as previously described. 

Wells were loaded with 10,000 cells in 200 µl of the indicated culture media. E-plates 

were placed in the RTCA system and allowed to settle for 15 minutes before running 

the experiment. Treatment/cell type groups were loaded in duplicates. Cell index 

values were plotted against time (hours) for producing the graphs. 

2.2.4 Glycogen Measurement in Endometrial Gland Organoids 

A colorimetric assay (Abcam) was used for measuring the glycogen levels in 

endometrial gland organoids in 24-well plates. In this assay, glycogen is hydrolysed 

into glucose, which is oxidised. Oxidised glucose renders a colourless probe to a 

coloured compound with strong absorbance at 450 nm.  

Media from organoids in Matrigel were removed. Organoids were washed twice with 

500 µl/well of PBS and 400 ml/well of Cell Recovery Solution (Corning) was added. 

Plates were placed in the fridge for 1 hour to melt the Matrigel. Organoids in Cell 

Recovery Solution were transferred to 14 ml Falcon tubes and 10 ml of ice-cold PBS 

was added. Tubes were centrifuged at 280 g for 5 minutes and another PBS wash 

was performed to remove residual Matrigel. PBS was removed and 50 µl/well of 

Glycogen Hydrolysis Buffer was added. Cells were homogenised for 10 minutes on 

ice. Lysates were transferred to Eppendorf tubes and centrifuged at 16,000 g for 10 
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minutes. Supernatants were collected and 5 µl added to 45 µl of Glycogen Hydrolysis 

Buffer in a 96-well clear flat bottom plate (1/10 dilution samples). Glycogen standards 

containing 0, 0.4, 0.8, 1.2, 1.6, and 2 µg/50 µl were prepared in the same plate. 

Standards and samples were loaded in duplicate. Background control samples were 

set using pooled samples. 2 µl Hydrolysis Enzyme Mix were added to standards and 

samples and the plate was incubated at room temperature for 30 minutes. A master 

mix containing 44 µl of Glycogen Development Buffer, 2 µl of Development Enzyme 

Mix and 2 µl of Probe per sample was prepared, and 48 µl were added to standards 

and samples. A master mix containing 46 µl of Glycogen Development Buffer, 2 µl of 

Development Enzyme Mix and 2 µl of Probe per sample was prepared, and 50 µl was 

add to background control wells. The plate was incubated at room temperature for 30 

minutes and was read at 450 nm with a microplate reader. A standard curve was 

generated and used to calculate the amount of glycogen in the samples. The amount 

of glycogen in µg was normalized to the total protein content in the samples 

(measured by Bradford assay).  

2.2.5 mRNA Analysis 

2.2.5.1 Primer Design 

Primers were initially designed using online tools such as Roche Universal Probe 

Library and Primer-Blast or Primer3. Corrections were made to fit the primers within 

the following parameters, wherever possible: 

a) Spanning intron amplicon  

b) Amplicon length between 65 and 125 base pairs.  

c) Melting temperature between forward and reverse primer ≤ 1 degree. 

d) At least two C or G amongst the last five bases at the 3’ end.  

e) No more than 4 of the same base in a run. 

f) Primer length between 18 - 24 base pairs 
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Primer specificity was tested using the online tool Basic Local Alignment Search Tool 

(BLAST). Secondary structure were checked using the online tool OligoAnalyzer 3.1. 

Links: 

Roche Universal Probe: 

https://lifescience.roche.com/shop/CategoryDisplay?catalogId=10001&tab=Assay+

Design+Center&identifier=Universal+Probe+Library&langId=-1  

Primer-Blast: 

 http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome  

Primer3: http://biotools.umassmed.edu/bioapps/primer3_www.cgi 

Basic Local Alignment Search Tool (BLAST): 

http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearc

h&LINK_LOC=blasthome 

OligoAnalyzer 3.1: 

https://www.idtdna.com/calc/analyzer  

2.2.5.2 Primer Optimization 

Primers pairs were first tested by melt curve analysis. Pairs were used to amplify 

random cDNA by RT-qPCR at a 300 nM concentration. Melting curves were analysed 

for primer dimer and amplicon melting temperature. Amplified cDNA was saved and 

used for agarose gel analysis. Gels (3 %) were prepared dissolving 3 g agarose 

powder in 100 ml boiling TBE and 2 µl ethidium bromide. Gels were transferred to 

casting plates inserted with combs while still liquid, and allowed to set. Combs were 

removed, and plates were placed into the electrophoresis tank with TBE. 20 µl cDNA 

was mixed with 4 µl DNA loading dye (6x) and 10 µl cDNA-dye solution and 3 µl Hyper 

Ladder V (Bioline) were applied into the wells. Gels were run at 100 V untill halfway 

https://lifescience.roche.com/shop/CategoryDisplay?catalogId=10001&tab=Assay+Design+Center&identifier=Universal+Probe+Library&langId=-1
https://lifescience.roche.com/shop/CategoryDisplay?catalogId=10001&tab=Assay+Design+Center&identifier=Universal+Probe+Library&langId=-1
http://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome
http://biotools.umassmed.edu/bioapps/primer3_www.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
http://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn&PAGE_TYPE=BlastSearch&LINK_LOC=blasthome
https://www.idtdna.com/calc/analyzer
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line. Purified products were visualized in a G:Box (Syngene, Cambridge, UK) and 

amplicon sizes were confirmed. 

 

Table 2.2 Primers utilized in experiments  

Gene Forward primer Reverse primer 

ALKBH7 agacgctgagccgagaact 
 

gacttctctgtctctcggaag 
 

ESR1 ggctacatcatctcggttcc 
 

cttcagggtgctggacagaa 
 

F2RL1 atcctgctagcagcctctc gtgggatgtgccatcaacctt 
 

FAM89A cgctgctccgcaaagagat 
 

aggctgtacagttggcagag 
 

LHCGR tgcctttgacaacctcctcaat 
 

gctccgggctcaatgtatct 
 

MFAP4 ggcgtgtacctcatctacc 
 

gagccattgaatctcttctgga 
 

NID2 tggctggctctttgctttagaa 
 

atgggtaaaggcagcacctg 
 

PAEP gagcatgatgtgccagtacc 
 

tgatgaatccctgcatgatctc 
 

PGR ctggcatggtccttggag 
 

ttcatttggaacgcccactg 
 

PRL aagctgtagagattgaggagcaaac tcaggatgaacctggctgacta 

PTGS2 ccagcacttcacgcatcagt 
 

gggtggacttaaatcatatttacggt 
 

SCNN1A catccctggaggaggaca 
 

tggtggaagtgagagtaattcg 
 

SCNN1B caccaatatcaccctgagcag 
 

gagagcagccagacgatgt 
 

SCNN1G gagtgacgtgccaatcagg 
 

tgtctggaagcatgaatgaagg 
 

TERT cggtgtgcaccaacatcta 
 

gcacacatgcgtgaaacct 
 

TIMP3 gctggaggtcaacaagtacca 
 

cacagccccgtgtacatct 
 

ZNF319 acctcatgctgccacaaagtg 
 

aaggctctgcctacaggaca 
 

L19 gcggaagggtacagccaat gcagccggcgcaaa 

 

 

2.2.5.3 DNA Gel Extraction of PCR Amplified Products  

PCR products from tested primers were extracted from 1 % agarose gel to generate 

standard curves. Gels were prepared dissolving 1 g agarose powder in 100 ml boiling 

TBE and 2 µl ethidium bromide. Gels were transferred to casting plates inserted with 

combs while still liquid, and allowed to set. Combs were removed, and plates were 
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placed into electrophoresis tanks with TBE. 80 µl cDNA was mixed with 16 µl DNA 

loading dye (6 x).  3 µl Hyper Ladder V (Bioline) were applied into one of the wells 

and cDNA-dye solution was split in the remaining wells. Gels were run at 100 V till 

half line. Purified products were visualized in a UV cabinet and excised with scalpels.  

For DNA extraction, a gel extraction kit (Qiagen) was used. Gel slices were weighed, 

after the addition of 3 volumes of Buffer QG, they were incubated at 50 ºC for 10 

minutes to dissolve gels. 1 gel volume of isopropanol was added, solutions were 

mixed, and applied to Qiagen columns. Columns were centrifuge at 17,000 g for 1 

minute. Flow-through were discarded, and 500 µl Buffer QG were applied to the 

columns. Columns were centrifuged at 17,000 g for 1 minute and 750 µl Buffer PE 

added. After a further 17,000 g centrifugation for 1 minute the columns were 

transferred to fresh 1.5 ml microcentrifuge tubes. To elute DNA, 30 µl Elution Buffer 

was applied to the centre of column membranes, incubated at room temperature for 

1 minutes and centrifuged at 17,000 g for 1 minute. Final DNA concentrations were 

measured using a spectrophotometer.  

2.2.5.4 Primers Standard Curves for Calculation of Efficiency 

Gel extracted cDNA was serially diluted from 100 pg/µl to 10 ag/µl using serial 1/10 

dilutions, before amplification in triplicate by RT-qPCR with test primers. To generate 

the standard curve, the log of the concentrations of cDNA were plotted against the 

average Ct value from triplicates. The following formula was used to calculate primers 

efficiency:   

Primer efficiency = 10
−1

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒  

2.2.5.6 RNA Isolation from Cells in Culture 

Cells in culture were washed with PBS, and harvested by scraping, after the addition 

of phenol-guanidinum thiocyanate monophasic solution (Stat-60). Homogenates 
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were transferred to RNAse-free Eppendorf tubes, and 20 % volume of ice cold 

chloroform added before vigorously vortex for 15 seconds. Tubes were centrifuge at 

16,000 g at 4 ºC for 30 minutes to separate the upper aqueous phase, where the RNA 

remains, from the organic phase at the bottom, where DNA and protein stay. The 

aqueous phase was transferred to RNAse-free Eppendorf tubes containing half of the 

original STAT-60 volume of ice-cold isopropanol and 20 µg glycogen. Tubes were 

thoroughly vortexed and stored at - 80 ºC for at least 30 minutes (maximum 24 hours) 

to precipitate the RNA. Tubes were thawed on ice and centrifuged at 16,000 g at 4 

ºC for 15 minutes. RNA pellets were washed twice with 500 µl of 75 % (v/v) ethanol 

in RNAse free-water, and allowed to dry for 2 minutes, before resuspension in TE 

buffer pH 8.0. RNA concentration and purity were measured using a 

spectrophotometer. RNA purity was considered satisfactory when the absorbance 

ratio at 260/280 ≥ 1.8. 

2.2.5.7 RNA Isolation from Cells in Matrigel 

This method was used for spheroids and organoids in 3D culture. Culture media were 

removed and wells were washed twice with PBS. Ice cold Cell Recovery Solution 

(Corning) was added to wells and plates were stored at 4 ºC for one hour to melt the 

Matrigel. Suspensions containing the cells were transferred to 14 ml Falcon tubes 

containing ice-cold PBS. Wells were examined at the microscope for remaining 

spheroids or organoids and if necessary were scraped. Tubes were centrifuged at 

280 g at 4 ºC for 5 minutes. Two more washes with ice-cold PBS were carried out. 

400 µl Stat-60 were added to the pellets and tubes were placed on the shaker at room 

temperature for 10 minutes. Homogenates were transferred to RNAse-free Eppendorf 

tubes, 20 % volume of ice cold chloroform was added, and tubes were vigorously 

shaken for 15 seconds. Tubes were centrifuge at 16,000 g at 4 ºC for 30 minutes to 

separate the upper aqueous phase, where the RNA remains, from the organic phase 

at the bottom, where DNA and protein stay. The aqueous phase was transfer to 
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RNAse-free Eppendorf tubes containing half of the original STAT-60 volume of ice-

cold isopropanol and 20 µg glycogen. Tubes were thoroughly vortexed and stored at 

- 80 ºC for 30 minutes to precipitate the RNA. Tubes were thawed on ice and 

centrifuged at 16,000 g at 4 ºC for 15 minutes. RNA pellets were washed twice with 

500 µl 75 % (v/v) ethanol in RNAse free-water. Pellets were allowed to dry for 2 

minutes and were re-suspended in TE buffer pH 8.0. RNA concentration and purity 

were measured using a spectrophotometer. 

2.2.5.8 RNA Isolation from Organoids in Organoid Forming 

Efficiency Assay 

RNA was isolated using a kit (Ambion). Media from organoids were aspirated and 

100 µl Lysis Buffer were added. Plates were shaken at room temperature for 10 

minutes, and lysates were collected into RNAse-free Eppendorf tubes. Half volume 

of 100% ethanol was added to lysates, mixtures were briefly vortexed, loaded onto 

Micro Filter Cartridge Assemblies, and centrifuged for 15 seconds at 16,000 g. 

Collection Tubes were emptied, 180 µl Wash Solution 1 were added, and Micro Filter 

Cartridge Assemblies were centrifuged for 15 seconds at 16,000 g. 180 µl Wash 

Solution 2/3 were added and Micro Filter Cartridge Assemblies were centrifuged for 

15 seconds at 16,000 g. A second 180 µl aliquot of Wash Solution 2/3 was added and 

centrifuged for 15 seconds at 16,000 g. Collection Tubes were emptied, and the 

assemblies were centrifuged for 1 minute at 16,000 g to remove the residual fluid. 

Micro Filter Cartridges were transferred to Elution Tubes, 10 µl Elution Solution at 75 

ºC were applied to the centre of filters, and assemblies were stored at room 

temperature for 1 minute. Assemblies were centrifuged for 30 seconds at 16,000 g to 

elute RNA from filters. A second 10 µl aliquot of Elution solution was added, and after 

one minute at room temperature assemblies were centrifuged again for 30 seconds 
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at 16,000 g. Eluates were transferred to RNAse-free Eppendorf tubes and frozen at - 

80 ºC. 

2.2.5.9 Complementary DNA (cDNA) Synthesis from mRNA 

A reverse transcription kit (Qiagen) was used for cDNA synthesis. 1µg of template 

RNA, 2 µl of 7 x gDNA Wipeout Buffer and nuclease-free water to complete 14 µl 

were mixed in pre-chilled RNAse-free Eppendorf tubes. Tubes were vortexed, 

centrifuged briefly and incubated at 42 ºC for 2 minutes to remove the genomic DNA. 

4 µl RT Buffer (5 x), 1 µl RT Primer Mix and 1µl Quantiscript Reverse Transcriptase 

were added to each tube, vortexed, and briefly centrifuged. Control sample without 

the reverse transcriptase were prepared, using 1 µl of water instead of the enzyme. 

Tubes were incubated at 42 ºC for 30 minutes. To inactivate the reverse transcriptase 

tubes were incubated at 95 ºC for 3 minutes. Final cDNA was diluted 1/5 by adding 

80 µl nuclease free-water. Samples were assayed immediately or stored at – 20 ºC. 

2.2.5.10 Real-time Quantitative Polymerase Chain Reaction (RT-

qPCR) 

A real-time PCR instrument (7500 Real-Time PCR System, Applied Biosystems, CA, 

US) was used for amplification and quantification of genes of interest. Primers at 300 

nM concentration, 10 ng cDNA template and a  ready-made master mix (SYBR green 

I) containing deoxynucleotides, magnesium, DNA polymerase and a fluorescent dye 

was added at a volume of 20 µl / well in 96-well optical PCR plates. Plates were 

centrifuged at 1,100 g for 3 minutes. cDNA samples were tested in triplicates. Non-

template controls were used, replacing the cDNA by 1 µl nuclease free-water. A 

housekeeping (RPL19) gene was always used to normalize between the different 

samples. For amplification the instrument was set-up for the following thermocycling 

sequence: 
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a) 95 ºC for 10 minutes (pre-cycling stage) 

b) 95 ºC for 15 seconds 

c) 60 ºC for 1 minute 

A fluorescent signal is released when the SYBR green is incorporated into the DNA 

double strand and it is measured by the instrument in each cycle. As the amplified 

DNA accumulates the fluorescence increases. Therefore an amplification curve is 

generated by the instrument. A threshold is assigned within the exponential phase to 

define a cycle threshold (Ct) value. A Ct value is the number of cycles required for 

the curve to cross the given threshold.  

For the dissociation curve the sequence was: 

a) 95 ºC for 15 seconds 

b) 60 ºC for 1 minute 

c) 95 ºC for 30 seconds 

d) 60 ºC for 15 seconds 

The Pfaffl method was chosen for the analysis (Pfaffl, 2001). This method compares 

the difference between Ct values with PCR reaction efficiency correction. The formula 

used for this method is: Expression value = E-∆Ct 

2.2.6 Protein Analysis  

2.2.6.1 Protein Extraction and Quantification (Bradford assay) 

A 1x radioimmunoprecipitation assay (RIPA) lysis buffer solution with protease 

inhibitor was prepared and stored in ice. Culture medium was aspirated and cells 

were washed with ice-cold PBS, before addition of RIPA buffer. Cells were scraped 

and lysates were transferred to sterile microcentrifuge tubes. Tubes were centrifuged 

at 16,000 g for 10 minutes at 4 ºC to eliminate cell debris. Supernatants were 

transferred to sterile microcentrifuge tubes and stored at - 80 ºC. For nuclear proteins, 
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the RIPA buffer was replaced by whole cell extraction buffer also with protease 

inhibitor.  

Protein concentration was determined by the Bradford method (Bradford, 1976). A 10 

mg/ml bovine serum albumin (BSA) stock solution was prepared and was used for 

protein standard dilutions. The BSA dilutions were 0, 0.5, 1, 2, 4, 6, 8 and 10 µg/ml. 

Tested protein samples were diluted 1/400 (v/v) in distilled water. A protein dye 

reagent concentrate containing Coomassie Brilliant Blue dye was added to the 

standard dilutions and to tested samples at a ratio of 1/5. This dye binds the proteins, 

forming a complex that absorb light at 594 nm. Tubes were incubated at room 

temperature for 15 minutes, vortexed and loaded in duplicates into a 96-well assay 

plate. Plates were read at 595 nm. Standard curves were generated from the optical 

density of the BSA standards and were used to calculate the protein concentration of 

tested samples.  

2.2.6.2 Polyacrylamide Gel Electrophoresis  

The percentage of acrylamide in the resolving gels depended on the protein size. For 

proteins ranging from 14 kDa to 200 kDa, 12 % gel were chosen. Stacking gels 

contained 4 % acrylamide were prepared to pH 6.8. Resolving gels were prepared to 

pH 8.8.  Disposable cassettes were used for gel preparation. 

Tetramethylethylenediamine (TEMED) and 10 % ammonium persulfate (APS) were 

applied to induce polymerisation. Resolving gels were added into the cassettes and 

coated with isopropanol. Once gels were set, the isopropanol was removed, stacking 

gels were added, and combs inserted.    

A mixture containing 20 ug total protein, 10 % dithiothreitol and 25 % 4 x lithium 

dodecyl sulphate (LDS) buffer was prepared and heated to 95 ºC for 10 minutes to 

denature the protein of interest, giving the antibody access to its epitope.  
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Gels were placed into electrophoresis tanks and covered with running buffer. Protein 

mixtures and a pre-stained protein ladder were loaded into the wells. The current was 

set to 230 mA and run at 125 V until the ladder reached the bottom of the gels. 

Separated proteins were subjected to membrane transfer.  

2.2.6.3 Western-Blotting 

Proteins run in gels were transferred to a polyvinylidene fluoride (PVDF) membrane. 

Membranes were activated with a 30 second methanol rinse. Gels and membranes 

were sandwiched between filter papers and blotting pads on each side and stacks 

were placed between plate electrodes in electrophoresis tanks. Tanks were filled with 

transfer buffer, and were run at 230 mA and 125 V for 2 hours.  

After the transfer, membranes were dried, reactivated with methanol, rinsed with tris-

buffered saline (TBS) and blocked in 5 % milk in TBS for one hour. Next, membranes 

were incubated with primary antibodies diluted in milk at 4 ºC with constant 

movement. Incubations with β-actin antibody lasted 2 hours. Incubations with all the 

other antibodies were carried out overnight (Table 2.1) 

Membranes were rinsed with 0.2% TBS-T, followed by one 15 minute and three 5 

minute washes in 0.2% TBS-T. Membranes were then incubated with secondary 

antibodies for 1 hour at room temperature. Secondary antibodies conjugated to 

horseradish peroxidase (HRP) and matching the species of primary antibodies were 

chosen. Another round of TBS-T washes (15 minutes, 5 minutes and 5 minutes) was 

performed and TBS was used for the final wash. Chemiluminescent detection of 

antigens conjugated to HRP labelled antibodies was accomplished with an enhanced 

chemiluminescence (ECL) detection system and using a G:Box (Syngene, 

Cambridge, UK). 
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Table 2.3 Primary antibodies and dilutions utilized in experiments 

Primary antibodies  Dilutions 

Cytokeratin 18 1/1,000 

Vimentin 1/1,000 

p53 1/3,000 

p16 1/1,500 

Lamin B1 1/1,000 

HMGB2 1/500 

Hist3meK9 1/1,000 

Β-actin 1/20,000 

 

2.2.7 Senescence Measurement 

2.2.7.1 Senescence-Associated β-Galatosidase (SAβgal) staining  

A commercially available kit (Cell Signaling) was used for SA-β-gal staining. Cells 

were cultured until 90 % confluent. Media were removed and cells were washed with 

PBS. Fixative solution was added into the dishes and were incubated at room 

temperature for 10 minutes. Dishes were rinsed twice with PBS. An X-gal stock 

solution (20 x) was prepared dissolving 20 mg of X-gal in 1 ml dimethylformamide. β-

gal staining solution was prepared according to the following recipe: 

Distilled water: 837 µL 

10 x staining solution: 93 µL 

Staining supplement A: 10 µL 

Staining supplement B: 10 µL 

X-gal stock solution (20 x): 50 µL 
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Dishes were incubated overnight with β-gal solution at 37 ºC in a dry incubator (no 

CO2). Cells were imaged in the following day or were stored in 70 % glycerol at 4 ºC. 

2.2.7.2 Senescence Associated β-gal Activity Measurement 

A commercially available fluorometric format kit (Cell Biolabs) was used for SAβ-gal 

activity measurements. Lysis Buffer was prepared immediately before use and 

proteinase inhibitor added. Assay Buffer (2 x) was prepared by adding 0.704 µl β-

mercaptoethanol in 1000 µl 2 x Reaction Buffer, and then adding 50 µl 20 x SA-β-gal 

Substrate in 950 µl of this solution (2 x Reaction Buffer containing β-

mercaptoethanol).  

Cells were seeded in 24-well plates. Culture media were aspirated and cells were 

washed with cold PBS. After aspirating the PBS cells were incubated with Lysis Buffer 

at 4 ºC for 5 minutes. Lysates were transferred to microcentrifuge tubes and 

centrifuged at 4 ºC for 10 minutes to remove debris. Supernatants were collected and 

stored at - 80 º C. Total protein concentration of lysates were determined by Bradford 

assay. 50 µl of cell lysates were transferred to 96-well plates, 50 µl 2 x Assay Buffer 

were added to the wells, and plates were incubated at 37 ºC for 1 hour in the dark, 

without CO2. Negative controls were set up replacing cell lysates for 50µl Lysis Buffer. 

50 µl of the reaction mixture were removed from the wells and transferred in duplicate 

to black 96-well plates in duplicate. To stop reactions, 200 µl Stop Solution was added 

into the wells. Fluorescence was read at 360 nm excitation and 465 nm emission. 

Fluorescence intensity units (FU) of the duplicates were averaged, the value was 

divided by the negative control, and were normalized dividing the result by sample 

total protein amount (mg).  
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2.2.8 Enzyme-Linked Immunosorbent Assay (ELISA) 

2.2.8.1 Prostaglandin E2 (PGE2)  

A competitive immunoassay kit for quantitative determination of PGE2 (Thermo-

Fisher) in cell culture supernatant was utilized. PG2 amount in standard dilutions or 

samples compete with an alkaline phosphatase conjugated PGE2 (PGE2-AP) for the 

specific primary antibody. The plate is supplied covered with the secondary antibody. 

Unbound antigen is removed by washing the plate. A chromogenic substrate is added 

and PGE2-AP cleaves this substrate triggering a chromogenic signal. As the 

competitive binding is concentration dependent the signal output is inversely 

correlated with the amount of antigen in the sample.  

Cell culture supernatant was retrieved and centrifuged to remove debris and stored 

at - 80 ºC until use. Eight standard dilutions were prepared using 2% DCC medium: 

5,000; 2,500; 1,250; 625; 313; 156; 78.1 and 39.1 pg/ml. Cell culture supernatant 

samples were diluted 1/2. Standards and supernatant samples (100 µl/well each) 

were loaded into the wells in duplicate. PGE2-AP and PGE2 antibody (50 µl/well each) 

were added and plates were incubated at room temperature on a plate shaker for 2 

hours at 500 rpm. Plates were washed 3 times with 400 µl Washing Buffer and 200 

µl Substrate Solution. Plates were incubated at room temperature for 45 minutes and 

50 µl Stop Solution were applied to stop the reaction. A plate reader was used at 405 

nm with correction at 541 nm for determining the optical density. A standard curve 

based on the standard dilutions optical density was generated. The concentration of 

PGE2 in the samples were calculated using the standard curve. The concentration of 

PGE2 in pg/ml was normalized to the total protein content in the samples (measured 

by Bradford assay).  
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2.2.9 Laser Microdissection (LMD) 

2.2.9.1 LMD of Endometrial Glands  

Snap-frozen human endometrial biopsies from secretory phase were used for LMD. 

The frozen samples were embedded in optimal cutting temperature compound 

(OCT), and 10 µm sections were obtained with a cryostat. The sections were mounted 

on polyethylene naphthalate membrane slides and stained with cresyl-violet and 

eosin-Y. The slides were immersed in 95 % (v/v) ethanol in nuclease-free water for 

30 seconds. A mixture of 70 % cresyl-violet and 30 % eosin-Y (v/v) was used to stain 

for 40 seconds. The slides were sequentially immersed in 95 % ethanol for 30 

seconds, 100 % ethanol for 30 seconds and xylene for 5 minutes. A vacuum 

desiccator was employed to dry the slides.  

Capture of endometrial glands was carried out for no more than 30 minutes, to avoid 

excessive RNA degradation. Membrane slides were overlaid by a glass slide so that 

the tissue section was interposed between the glass and the membrane. Endometrial 

glands were dissected with a laser microdissection unit coupled to an inverted 

microscope and a 3-CCD camera. Glands were retrieved by isolation diffuser caps.  

2.2.9.2 RNA Isolation, DNAse I Digestion and Assessment of Laser 

Capture Samples 

An RNA isolation kit for LMD (Ambion) and an on-column DNAse I digestion (Omega 

Bio-tek) kits were used. The captured samples were stored in the provided Lysis 

Solution at - 80 ºC, until the RNA isolation. DNAse I digestion solution was prepared 

by mixing 1.5 µl DNAse I (20 Kunitz/µl) with 73.5 µl Digestion Buffer for each sample. 

Caps were thawed on ice and incubated at 42 ºC for 30 minutes. After vortexing and 

briefly centrifuging to collect the fluid at the bottom of the cap, 3 µl LCM Additive and 

129 µl 100 % ethanol were added. Lysate/ethanol mixtures were loaded onto 
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prepared Micro Filter Cartridge Assemblies (columns) and centrifuged at 10,000 g for 

1 minute. The DNAse I digestion solution (75 ul/sample) was added into the columns 

which were incubated at room temperature for 15 minutes. 180 µl Wash Solution 1 

were added and columns were centrifuged at 10,000 g for 1 minute. 180 µl Wash 

Solution 2/3 were added and columns were centrifuged at 16,000g for 30 seconds. A 

further wash with 180 µl of Wash Solution 2/3 was performed and flow through was 

discarded. Columns were replaced into the same collection tubes and centrifuged at 

16,000 g for 1 minute to remove residual fluid. Columns were transferred to Micro 

Elution Tubes, 10 µl Elution Solution at 95 ºC were applied to the centre of the filters. 

A 5 minute incubation at room temperature was followed by a centrifugation at 16,000 

g for 1 minute. Another 10 µl Elution Solution at 95 ºC was applied to the centre of 

the filters. After a 5 minute incubation at room temperature, another centrifugation at 

16,000 for 1 minute was performed. The eluted RNA was transferred to a nuclease-

free tube and stored at - 80 ºC until the RNA assessment.  

RNA integrity and concentration analysis were performed by the Warwick Genomics 

Facility at Warwick Life Sciences School using a 2100 Bioanalyzer instrument 

(Agilent, CA, USA) and an Agilent RNA 6000 Pico chip. RNA integrity number (RIN) 

and the concentration were determined by the Bioanalyzer 2100 Expert software 

(Agilent, CA, USA). RNA samples with a RIN ≥ 6 and RNA ratio [28s/18s] ≥ 1.0 were 

deemed suitable for sequencing.  

2.2.10 RNA Sequencing 

2.2.10.1 Library Preparation 

Library preparations were performed by Warwick Genomics Facility. Ovation RNA-

Seq System V2® (Nugen Technologies) was used for cDNA synthesis and 

amplification. First strand cDNA was prepared using a DNA/RNA chimeric primer mix 

and reverse transcriptase.  This resulted in cDNA/mRNA hybrid molecules containing 
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a RNA sequence at the 5’ end of the cDNA strand. Priming sites for DNA polymerase 

were created by fragmenting the mRNA within the cDNA/mRNA complex, in order to 

synthesise a second DNA strand. Next the cDNA was amplified using DNA/RNA 

chimeric SPIA primers and DNA polymerase. RNA in the 5’ end of the cDNA strand 

was removed from the hybrid molecule by RNAse H.  

Libraries were produced using Ovation Ultralow System V2 1-16 (Nugen 

Technologies) in four steps: fragmentation of cDNA double strand, end repair to 

generate blunt ends, ligation of the adapters with barcoding of libraries and 

amplification by PCR.  

2.2.10.2 RNA Sequencing 

The libraries were sent to Wellcome Trust Centre for Human Genomics – High  

Throughput Genomics (Oxford, UK) for double end next generation sequencing using 

Illumina HiSeq and with a reading length of 100 base pairs, producing 150 million pair 

reads.  

2.2.10.3 RNA Sequence Data Analysis 

Data analysis was carried out in collaboration with Dr. Pavle Vrljicak. Transcriptomic 

maps of single-end reads were generated using Bowtie-2.2.3, Samtools-0.1.19, and 

Tophat-2.0.12 against the University of California Santa Cruz (UCSC) hg19 reference 

transcriptome (2014) from the Illumina Genomes resource using the fr-firststrand 

setting. Transcript counts were assessed by HTSeq-0.6.1 using the reverse strand 

setting and intersection non-empty mode and counts were assigned to gene IDs. 

Transcripts per million were calculated using the method described by Wagner et al. 

(2012). Count data from the TopHat-HTSeq pipeline were analyzed using DESeq2.  
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2.2.11 Data Mining 

Databases from GEO Datasets were mined for expression of several genes for 

comparisons with our RNA sequencing findings. The utilized databases were: 

GSE4888 – Molecular phenotyping of human endometrium 

GSE6364 – Gene profiling of endometrium reveals progesterone resistance and 

candidate genetic loci in women with endometriosis 

2.2.12 Statistical Analysis 

GraphPad Prism 6 software (GraphPad Software, CA, USA) was used for statistical 

analysis. Two-tailed paired or two-sample t-tests were applied for comparisons 

between two groups. One-way analysis of variance (ANOVA) with Holm-Sidak test 

correction was applied for comparisons between more than two groups. Gaussian 

distribution was verified with D’Agostinho-Pearson and Shapiro-Wilk test. Kruskal-

Wallis test (non-paired groups) and Friedman test (paired groups) were chosen for 

more than two groups with non-parametric distributions. Mann-Whitney U test was 

used for comparing two unpaired groups and Wilcoxon signed-rank test test for paired 

groups. P-values < 0.05 were considered statistically significant. 
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3.1 Introduction 

The culture of HEECs allows for studying the function of this compartment in the 

implantation process, as well as the effect of the endocrine and paracrine cues, 

coming from the underlying stromal cells, the ovary and the implanting blastocyst. 

However, since the first attempts to culture isolated HEECs, researchers have 

struggled to maintain long term functional cells that mimic the in vivo responses to 

differentiation and proliferation signals (Liszczak et al., 1977, Kirk et al., 1978, Bongso 

et al., 1988). Once in culture, HEECs rapidly undergo proliferation arrest and become 

senescent (Kyo et al., 2003, Valentijn et al., 2015). Furthermore, like most epithelial 

cells, they lose their specialized properties when cultured as monolayers, due to a 

process known as dedifferentiation, and become unresponsive to ovarian steroid 

hormones (Kleinman et al., 1983, Classen-Linke et al., 1997).  

During the secretory phase of the menstrual cycle, increasing levels of P4 inhibit 

proliferation of HEECs, counteracting the mitogenic effects of E2 (Pierro et al., 2001). 

In addition to being anti-mitogenic, P4 is also responsible for inhibiting telomerase 

activity in the endometrium. Tanaka et al. (1998) demonstrated that the lowest 

endometrial telomerase activity occurs in the late secretory phase, when compared 

to proliferative phase. Using in situ RNA hybridization, these authors also identified 

the endometrial glands as the main source of telomerase. The highest expression 

was detected in GE during the proliferative phase. This may explain the lack of 

proliferation of HEECS derived from secretory phase when compared to proliferative 

phase (Fleming, 1999). Taken together, these data reflect the hurdles of culturing 

HEECS isolated from biopsies taken during the secretory phase of the menstrual 

cycle.  

An alternative approach is to adopt cell lines derived from endometrial cancers to 

study HEECs. There are relatively cheap commercially available options. These cells, 
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such as Ishikawa cells, HEC-1A, HEC-1B, HES, RL-92, ECC-1 are easy to culture, 

fast growing, provide an endless source of cells, and are ease to replace in case of 

contamination. However, this approach comes with some risks. Frequent genotypic 

and phenotypic drift during continuous culture has been described (Burdall et al., 

2003). Cell lines are susceptible to contamination by several pathogens, especially 

mycoplasma (Burdall et al., 2003). Selection of subpopulations of cells within the 

cultures have been described. Several concerns have been manifested in recent 

years, including the contamination, misidentification and redundancy in cell lines 

(Burdall et al., 2003). It has been reported that wrong cell lines have been used by 

researchers (Geraghty et al. 2014). This problem also affects endometrial cell lines 

(Korch et al.,  2012). Nichida (2002) has already raised this issue regarding Ishikawa 

cells. But the main disadvantage of these models is the lack of knowledge on the 

differences between cell lines and primary cells. Therefore I opted not to use 

endometrial epithelial cell lines.  

The inability to passage and expand adult epithelial cells that retain lineage 

commitment, and keep normal growth and differentiation capacity, led to the 

development of methods for cell immortalization. The use of oncogenes such as SV40 

large T antigen (Merviel et al., 1994) or E6/E7 proteins from oncogenic human 

papillomavirus (Kyo et al., 2003), although successfully avoiding premature 

senescence of the cultured cells, results in defects in p53 and Rb regulatory 

pathways. Somatic cells have been reprogrammed into induced pluripotent stem cells 

(iPSC), prolonging their life span (Saha et al., 2009). Unfortunately the method has 

been shown inefficient, and is dependent on the transfection of exogenous gene, 

which could induce changes in genome and antigenicity (Lister et al., 2011, Taylor et 

al., 2011). A technique using a feeder-layer of irradiated fibroblasts and a Rho-

associated kinase inhibitor (ROCK) inhibitor rapidly achieved immortalization of 

human keratinocytes, which maintain their original karyotypes (Liu et al., 2012). The 
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use of feeder layers of lethally irradiated mouse fibroblasts for epithelial cell culture 

was developed by Rheinwald and Green (1975) and has been widely used for serial 

culturing many types of epithelial cells. The cells in the feeder layer release growth 

factors, cytokines and extracellular proteins into the culture medium, promote 

attachment, and remove toxic or inhibitory factors from the culture medium (Lhames 

et al., 2015). Nevertheless, the method engenders some problems. Synchronization 

of the feeder layer with the seeding of the target cells can be laborious. Ionizing 

radiation is not widely available, brings professional risks, and demands a dedicated 

tissue culture facility. There is also the risk of infection of the target cells with mouse 

retrovirus, or the transmission of damaged genetic material (Amit et al., 2003). The 

separation of the feeder layer from the target cells can be cumbersome. A more 

recent study has indicated that media conditioned by irradiated mouse fibroblasts has 

the same effect on epithelial cells as co-culture with irradiated feeder layers 

(Palechor-Ceron et al., 2013).   

This chapter explores culturing of primary HEECs and its limitations. Here I report on 

a feeder-free method for conditionally reprogramming HEECs and investigate the 

responses of these cells to some signals from the ovaries, the endometrial stroma 

and the implanting blastocyst.  
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3.2 Results 

3.2.1 Isolation of HEECs and HESCs from Mid-Secretory 

Endometrium 

To isolate purified HEECs and HESCs, I used a method that involved mincing the 

endometrial tissue, followed by digestion in collagenase and DNAse solution, and 

filtering of the digested tissue through a mesh sieve, and backwash of the sieve. 

Stromal cells in the flow-through were pelleted, re-suspended, and seeded. Retained 

glandular clumps were retrieved by backwashing the sieve, and were seeded into the 

dishes. Unfortunately, this approach often resulted in floating glandular clumps and 

very few attached cells. To solve this problem, I added a further dissociation step with 

trypsin-EDTA for 10 minutes to dissociate the glandular clumps. Using this method, it 

was possible to produce single cell solutions and HEEC cultures that reached 

confluence, when seeded in a high density (Figure 3A). To test the purity of the 

cultures, I analysed the protein expression of an epithelial marker (cytokeratin 18; 

CK18) and a mesenchymal marker (vimentin) in the cell lysates, using Western-blot. 

The expression of CK18 was marked in HEEC cultures and undetectable in HESC 

cultures. Conversely, vimentin was highly expressed in HESC cultures and was not 

observed in HEEC cultures Figure 3B). In order to further assess purity, the cells were 

fixed and stained with CK18 and vimentin. Confluent Ishikawa cells were also fixed 

and stained for CK18 to serve as a positive control for HEECs. Using a fluorescent 

second antibody and a nuclear stain (DAPI), the cells were analysed on a confocal 

microscope (Figure 3C). Using DAPI as reference, 200 cells were counted in each 

culture. In HEEC cultures 95 % of cells showed positive staining for CK18. In HESC 

cultures 97 % of cells were stained by vimentin and less than 1% for CK18. Using 

IHC, Norwitz et al. (1991) showed co-staining of cytokeratin 18 and vimentin in 

endometrial gland cells during the whole menstrual cycle. In our HEEC samples, less 

than 1 % of cells showed vimentin expression.  
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Therefore, a simple method to achieve highly purified HEEC and HESC cultures can 

be established from mid-secretory endometrial phase. 

 

Figure 3.1 Characterization of purified cultures of primary HEECs and HESCs 

isolated from secretory endometrium. Paired HESC and HESC cultures from 3 

patients were propagated for 7 days. (A) Bright field microscopy images of confluent 

HEECs and HESCs cultures (B) Western-blot analysis of CK18 and vimentin in cell 

lysates of paired HEECs. (C) Immunofluorescence of CK18 and vimentin in cultured 

HEECs, HESCs and Ishikawa cells (epithelial cell positive control) counterstained 

with DAPI. Less than 1 % of HEEC were vimentin positive (not shown).  
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3.2.2 Responses of HEECs to Trypsin 

Trypsin-like serine proteases are released by the embryo and are known to have a 

role in blastocyst hatching (Sharma et al., 2006). It has been suggested that trypsin 

is an important molecule used by the embryo to signal to the uterine epithelium. In 

mice, this enzyme triggers decidualization through activation of epithelium sodium 

channels in luminal cells, leading to secretion of PGE2 (Ruan et al., 2012). In humans, 

it was suggested that embryo-derived trypsin could be used by the HEECs for 

maternal recognition of the embryo quality (Brosens et al., 2014). To investigate 

whether trypsin induces secretion of PGE2 in HEECs, I first treated several cultures 

with trypsin in a single pulse lasting 10 minutes, harvested total RNA 1, 3, 6 and 12 

hours later, and measured the relative expression of PTGS2. Three HEEC cultures 

were used for each time-point. No PTGS2 induction was observed at any time-point 

(Figure 3.2A). Since it was not possible to establish the time after trypsin exposure 

when PTGS2 would have its highest induction, I decided to measure PGE2 secretion 

in tissue culture supernatant, collected 24 hours after trypsin treatment. Different 

trypsin doses were applied and heterogeneous responses were obtained. One culture 

showed the highest induction of PGE2 secretion with 10 nM trypsin. Increased 

secretion was observed with 50 nM and 150 nM trypsin in a second culture. And no 

response was detected in a third culture (Figure 3.2B), suggesting that cultured HEEC 

show variable responses to trypsin exposure.  
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Figure 3.2 Variable responses of cultured HEECs treated with trypsin. (A) 

Normalized expression of PTGS2 after the treatment with 10nM trypsin. mRNA was 

harvest at indicated time-points. Three HEEC samples were used for each time-point. 

Data are presented as mean ± SD. P > 0.05. (B) PGE2 secretion in culture 

supernatant of three HEEC samples, 24 hours after treatment with different doses of 

trypsin in a single pulse lasting 10 minutes. Data are presented as secretion 

normalized to total protein ± SD. P = non-significant (ns). P values were calculated 

using a non-parametric test (Friedman test). 
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3.2.3 In vitro HEECs Do Not Respond to Differentiation Cues  

PAEP is the gene that encodes the different isoforms of glycodelin. Glycodelin-A is a 

marker of endometrial gland differentiation (Seppala et al., 2002). P4 induces 

glycodelin-A secretion by endometrial glands (Seppälä et al., 1987). hCG is also 

known to stimulate glycodelin-A (Uchida et. al., 2013). To test the effects of ovarian 

sex hormones and hCG in HEEC differentiation, I treated the cells with different 

combinations of E2, MPA and hCG, for 24 hours (Figure 3.3, top panel) and measured 

PAEP relative expression using RT-qPCR. No changes is PAEP expression were 

observed with any combination of hormones.  

I also examined the effect of the same hormones on HEEC expression of PTGS2 

(Figure 3.3, bottom panel). No significant induction or inhibition of PTGS2 expression 

was detected in HEECs treated with ovarian sex steroids or hCG, contradicting 

expected results. These findings suggest that HEECs change their behaviour in vitro, 

rendering them unresponsive to various differentiation stimuli.  
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Figure 3.3 Unresponsiveness of cultured HEECs to differentiation cues.  

Normalized expression of PAEP and PTGS2 in confluent HEECs treated with different 

combinations of 10 nM E2, 1 µM MPA and/or 1 IU/ml hCG for 24 hours. Their 

presence or absence in the medium is shown by + or – in each column (n = 3). Data 

are presented as mean ± SD. P = ns. P values were calculated using a non-

parametric test (Friedman test). 
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3.2.4 Expression of Hormone Receptors and Protease Activated 

Targets in HEECs 

Sex steroid hormones act through activation of their cognate nuclear receptors. hCG 

acts through its membrane bound G-protein coupled receptor, LHCGR. Trypsin 

cleaves epithelium sodium channels (ENaCs) on plasma membrane, increasing their 

open time probability (PO). The enzyme also activates special G-protein couple 

receptors, named protease activated receptors (PAR), through cleavage. I 

interrogated if the variable responses of HEECs to ovarian steroids and trypsin could 

be explained by heterogeneity in the expression of related receptors and ion 

channels. To test this hypothesis, I harvested mRNA from 7 primary HEEC cultures 

and measured the expression of ERα (ESR1), progesterone receptor (PGR), hCG 

receptor (LHCGR), ENaCα,(SCNN1A), ENaCβ (SCNN1B), ENaCγ (SCNN1G) and 

PAR2 (F2RL1), which is the main PAR activated by trypsin. Apart from PAR2, all the 

other receptors and the ion channels showed considerable variability in genomic 

expression between primary cultures (Figure 3.4A). To further investigate the variable 

effect of trypsin in HEECs, I performed fluorescent immunolocalization of ENaCα, β 

and γ in HEEC cultures, which revealed the staining confined to cells at the periphery 

of HEEC islands (Figure 3.4B). These data uncover a possible explanation for the 

heterogeneous response of HEEC when in monolayer culture. 
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Figure 3.4 Heterogeneous expression of steroid hormone receptors and 

protease activated ion channels in HEECs. Seven HEEC cultures were grown for 

8 days. (A) HEEC mRNA expression of selected genes. Results were normalized to 

the housekeeping gene (L19) expression. Data are presented as individual a.u. (B) 

Immunofluorescence of epithelial sodium channels HEEC cultures counterstained 

with DAPI (representative of n = 7).  
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3.2.5 Proliferation of Primary HEECs in Culture 

HEECs soon lose their proliferative capacity when in culture, whereas HESCs can be 

easily cultured for longer periods (Kyo et al., 2003). E2 stimulates epithelial 

proliferation in vivo. By contrast P4 counteract the mitogenic effects of E2. 

Proliferative effects of E2 in HEECs are mediated by stromal ERα while inhibition of 

oestrogen-driven epithelial proliferation are mediated by epithelial and stromal PR 

(Vasquez and DeMayo, 2013). In order to investigate the growth rate of HEECs and 

HESCs, proliferation in purified cultures were monitored by an xCELLigence real-time 

cell analyser. HESCs continuously grew, maintaining their proliferative capacity for 

over 72 hours. By contrast, HEECs showed a highly restricted growth, with minute 

change after 72 hours (Figure 3.5A). 

To determine the effects of E2 and P4 on proliferation of isolated in vitro HEECs, an 

xCELLigence real-time cell analyser was used for monitoring the growth of HEECs 

either untreated or treated with E2 or P4 or the combination of both. No effect on 

HEEC growth was detected over 60 hours (Figure 3.5B). This confirms that HEECs 

undergo growth arrest when cultured under standard conditions.  
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Figure 3.5 Growth arrest of HEECs in culture. Ten thousand cells were seeded into 

0,2 cm2 wells. (A) Real-time cell analysis of attachment and growth of HESCs (n = 6) 

and HEECs (n = 6) measured by electrical impedance, using an xCELLigence 

analyser for 72 hours. (B) Real-time cell analysis of attachment and growth of HEECs 

for 60 hours. The cells were either untreated, or treated with 10 nM E2 or 1µM P4 or 

the combination of both (n = 3).  
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3.2.6 Purified HEECs from Mid-Luteal Biopsies Exhibit Acute 

Senescence in Culture 

HEECs derived from the secretory phase of the menstrual cycle develop senescence 

in culture after few days (Valentijn et. al., 2015). To corroborate this previous 

observation, I compared the senescence in paired HESCs and HEECs from mid-

secretory phase. Cellular aging results in accumulation of toxic by-products and 

macromolecules in lysosomes. The activity of β-galactosidase reflects increased 

lysosomal mass (Matjusaitis et al., 2016). Using senescence associated β-

galactosidase (SA-β-gal) staining, it was possible to detect marked presence of the 

senescence dye in HEECs, whereas few spots were observed in HESCs (Figure 

3.6A). SA-β-gal activity was also compared between the two cell types, using a 

fluorometric assay. Activity in HESCs was approximately 80 % lower than in HEECs 

(Figure 3.6D). Using Western-blot analysis of senescence markers (Binet et. al., 

2009, Freund et al., 2012, Guerreiro and Gil, 2016) in HESCs and HEECs, I 

demonstrated a typical profile of senescence in HEECs, exemplified by higher 

expression of P53, P16 and histone H3, and lower expression of lamin B1 and high 

mobility group box family member 2 (HMGB2) compared to HESCs (Figure 3.6B). 

Immunohistochemistry of mid-luteal endometrial biopsy (LH+9) demonstrated 

predominance of P16-positive cells in both GE and LE compared to stroma (Figure 

3.6C). Taken together the data corroborate the observation that HEECs from mid-

secretory phase develop acute senescence when isolated and cultured. 
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Figure 3.6 Acute senescence of cultured HEECs derived from the secretory 

phase of the menstrual cycle compared to HESCs from the same period. (A) 

SA-β-gal staining of paired HESCs and HEECs cultured for 9 days (representative of 

n = 3). (B) Western-blot analysis of senescence markers in three paired HESC and 

HEEC samples in culture for 7 days (C) IHC of Mid-secretory human endometrium 

stained for P16 (representative of n = 3). (D) SA-β-gal activity in HEECs (n = 9) and 

HESCs (n = 9) cultured for 7 days, measured by fluorometric assay. Data are 

presented as percentage of reduction of SA-β-gal activity in relation to HEEC activity 

± SD. ** P = 0.007. P values were calculated using a non-parametric test (Wilcoxon 

signed-rank test). 
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3.2.7 Conditional Reprogramming of Primary HEECs Using an 

Irradiated Feeder Layer and a Rho-Associated Kinase (ROCK) 

Inhibitor 

In an attempt to reverse the senescence-associated cell cycle arrest of HEECs in 

culture, I used a combination of a feeder layer of irradiated 3T3 swiss albino mouse 

embryo fibroblasts (3T3 SAFs) and a ROCK inhibitor (Y-27632) to conditionally 

reprogramme HEECs. This method has been employed for keratinocytes and non-

keratinocyte epithelial cells (prostate cells and mammary cells) (Liu et al., 2012), but 

not for HEECs. In previous studies, the feeder layers were gamma-irradiated for 

growth arrest (Liu et al., 2012, Yuan et al., 2012).  Due to the unavailability of a 

suitable ionizing radiation source and the requirement of a dedicated tissue culture 

room to work with radioactive cells, I opted for irradiating the 3T3 SAFs with ultraviolet 

C light (UVC). This short wave ultraviolet light (254 nm), at doses above 50 J / m2, 

triggers DNA damage, cell cycle arrest and apoptosis (Gentile et. al., 2003). Some 

studies have suggested that apart from inducing growth arrest, irradiation of feeder 

layer increases the release of soluble factors that are crucial for cell reprogramming 

(Li et al. 2010, Palechor-Ceron et al., 2013). 3T3 cells were cultured until 70 % 

confluence, and were irradiated with 100 J / m2 dose of UVC. HEECs were seeded 

on top of the feeder layer, and cultured with medium supplemented with 7.5 uM / l Y-

27632 (CRC medium) (Figure 3.7A). Once confluent, cultures were differentially 

trypsinized and passaged onto fresh dishes. The technique is based on the 

differences in cell attachment. Fibroblasts from feeder layer detach first, whereas 

HEECs are more tightly adherent, thus taking longer in trypsin-EDTA solution to 

dissociate (see ‘Methods’). A frequently faced problem with these cultures is 

contamination of the passaged reprogrammed HEECs with fibroblasts from the 

feeder layer (Figure 3.7B). Despite most of the 3T3 SAFs being eliminated with the 
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differential tripsinization, the presence of few viable cells resulted in overgrowth of the 

feeder layer at the expense of the HEECs.  

 

 

Figure 3.7 Conditional reprogramming of HEECs using a feeder layer of 

irradiatied 3T3 SAFs and a ROCK inhibitor. (A) Cartoon representing the use of a 

3T3 SAF feeder layer in combination with a ROCK inhibitor (Y-27632), for conditional 

reprogramming of HEECs. (B) Culture of conditionally reprogrammed HEECs with a 

feeder layer of irradiated 3T3 SAFs and 7.5 µM / l Y-27632 at P0 (left panel), and 

conditionally reprogrammed HEECs at P1 for 7 days after the differential 

trypsinization to remove the feeder layer, exhibiting contamination with 3T3 SAFs 

(right panel).   
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3.2.8 Conditioned Medium from UVC Irradiated 3T3 SAF 

Substitutes for Feeder Layers in the Conditional Reprogramming of 

HEECs 

Due to the contamination of HEECs with cells from the feeder layer and the difficulty 

of synchronising the irradiation of 3T3 SAFs with the isolation of HEECs, I explored a 

feeder-free method for conditional reprogramming of primary cultures. It has been 

demonstrated that soluble factors in the conditioned medium from irradiated 3T3 

SAFs could substitute for feeder layers in conditional reprogramming of epithelial cells 

(Palechor-Ceron et al., 2013). The same authors showed that media from irradiated 

3T3 SAF was most effective when collected 48-72 hour after the irradiation. This 

period correlated with apoptosis of feeder layers, as demonstrated by caspase 3 and 

7 activity. Using conditioned medium from irradiated 3T3 SAF (CMi), in combination 

with a ROCK inhibitor, I developed a method for conditionally reprogram HEECs 

without the requisite of feeder layers. Seventy percent confluent 3T3 SAFs were 

irradiated with a 100 J/m2 UVC dose, and culture supernatants were harvested 3 days 

later. CMi was mixed with CRC medium in a 1/4 ratio and the resulting mixture (final 

CRC) was used as culture medium for HEECs (Figure 3.8A). The resulting cultures 

were pure and morphologically indistinguishable from un-reprogrammed HEECs 

cultures (Figure 3.8B). To test whether the reprogrammed cells retained their 

epithelial phenotype, and to demonstrate the purity, three HEEC cultures were 

immunostained for CK18 and vimentin (Figure 3.8D). More than 97% of cells were 

positive for CK18, whereas less than 3% were vimentin positive. Next, I tested the 

proliferation capacity of reprogrammed HEECs using xCELLigence real-time cell 

monitoring. The use of CMi or ROCK inhibitor moderately increased proliferation of 

HEECs, but the combination of both considerably improved growth (Figure 3.8C). 

These findings demonstrate that conditional reprogramming of HEECs can be 
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successfully achieved without ionizing radiation or the need of co-culturing with a 

feeder layer.  

 

 

 

Figure 3.8 Conditional reprogramming of HEECs using conditioned medium 

from irradiatied 3T3 SAFs and a ROCK inhibitor. (A) Cartoon showing the 

conditional reprogramming of HEECs using CMi in combination with a RI. (B) Bright 

field images of confluent cultures of paired naive HEECs and conditionally 

reprogrammed HEECs. (C) Real-time cell xCELLigence analysis of attachment and 

growth of HEECs. The cells were either untreated, or treated with CMi or 10 µM/l 

ROCK inhibitor or the combination of both, for 60 hours (n = 4) (D) 

Immunofluorescence of CK18 and vimentin in conditionally reprogrammed HEECs 

cultured for 7 days, counterstained with DAPI. 
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3.2.9 Impact of Conditional Reprogramming in Expression of 

Hormone Receptors, Protease Activated Targets and PAEP 

Cell reprogramming can affect cell phenotype of the resulting derivatives 

(Suprynowicz et al., 2012). In order to test if conditional reprogramming with CMi and 

ROCK inhibitor changes the phenotype of HEECs, and the reversibility of this effect, 

I measured mRNA expression of trypsin-activated ion channels, PAR2 (F2RL1), ERα, 

PR and PAEP in naive and reprogrammed HEECs; and upon reprogramming 

withdrawal. One group of cells was kept in standard culture conditions for 5 days. 

Another group was conditionally reprogrammed for 5 days. A third group was initially 

reprogrammed for 5 days, followed by reprogramming withdrawal for 48 hours. 

Except for LHCGR and F2RL1, all the other genes were up-regulated upon 

conditional reprogramming (Figure 3.9). This may suggest that the cells were more 

differentiated. More important was the fact that reprogramming withdrawal restored 

the basal phenotype of HEECs, proving that it is possible to transiently induce 

proliferation. Arguably, it may also be possible that the reprogramming phenotype is 

closer to the one observed in vivo. 
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Figure 3.9 Expression of protease activated targets, hormone receptors and 

PAEP in conditionally reprogramed HEECs. Paired HEECs were either kept in 

standard culture for 5 days (N), or were conditionally reprogrammed (R) for 5 days, 

or were reprogrammed for 5 days, followed by reprogramming withdrawal for 48 hours 

(RW). Data are presented as individual a.u. (n = 7). P values were calculated using a 

non-parametric test (Friedman test).  
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3.2.10 Reversal of Cellular Senescence upon Conditional 

Reprogramming of HEECs 

To determine the effect of conditional reprogramming on HEEC senescence, I 

measured cellular senescence by SA-β-gal staining and activity. Naive HEECs 

exhibited more intense SA-β-gal staining after 11 days in culture when compared to 

reprogrammed HEECs (Figure 3.10A). For the SA-β-gal activity, HEECs were 

maintained for 5 days in standard culture, then conditionally reprogrammed for 5 

days, or reprogrammed for 5 days followed by reprogramming withdrawal for 48 

hours. SA-β-gal activity was approximately 50 % lower in reprogrammed HEECs, but 

was restored upon withdrawal of CMi and ROCK inhibitor (Figure 3.10B). Loss of 

telomerase activity is the main feature of cellular replicative senescence (Campisi and 

Fagagna, 2007). To test if this enzyme is affected by conditional reprogramming, I 

measured the mRNA expression of reverse transcriptase telomerase (TERT) in cells 

maintained in standard culture for 5 days, in cells reprogrammed for 5 days, and upon 

withdrawal of the reprogramming cues for 48 hours. A 376 % increase in TERT 

expression was observed, with return to basal levels upon reprogramming withdrawal 

(Figure 3.10D). To further corroborate the findings, I analysed the expression of 

senescence markers in naive and reprogrammed HEECs using Western-blot (Binet 

et. al. 2009, Freund et al., 2012, Guerreiro and Gil, 2016). Decreased expression of 

P53, P16 and histone H3 in reprogrammed HEECs was observed along with an 

increase in lamin B1 and HMGB2 expression, which indicates reduction in 

senescence upon reprogramming (Figure 3.10C).  
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Figure 3.10 Reversal of HEEC senescence upon conditional reprogramming. 

(A) SA-β-gal staining of paired un-reprogrammed and conditionally reprogrammed 

HEECs in culture for 11 days. (B) SA-β-gal activity of paired naive HEECs, 

conditionally reprogrammed HEECs (R), and of HEECs in which conditional 

reprogramming was withdrawn (RW). Dotted line indicates SA-β-gal activity in naive 

HEECs. Data are presented as percentage of increase/decrease of SA-β-gal activity 

in relation to the activity in naive HEECs ± SD (n = 3). *P = 0.013. (C) Western-blot 

analysis of senescence markers in paired conditionally reprogrammed and naive 

HEECs from three HEEC samples. (D) Normalized HEEC expression of TERT in 

paired naive, R and RW HEECs. Dotted line indicates mRNA expression of naive 

HEECs. Data are presented as percentage of induction/inhibition in relation to the 

naive HEEC mRNA expression ± SD (n = 7) *P = 0.03. P values were calculated using 

a non-parametric test (Friedman test). 
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3.2.11 Conditionally Reprogrammed HEECs Remain 

Unresponsive to Differentiation Cues or Trypsin 

My data suggested that reprogrammed HEECs acquire a more differentiated 

phenotype, with higher expression of ovarian steroid receptors. Therefore, I decided 

to investigate the effect of E2 and P4 on reprogrammed HEEC proliferation. The 

growth and attachment of these cells were monitored through real-time cell analysis 

using an xCELLigence system (Figure 3.11A), and final CRC medium was 

supplemented with E2, P4 or the combination of both. No effect on HEEC proliferation 

was detected indicating that reprogrammed HEECs, like their naive counterparts 

(Figure 3.5B) are not responsive to either E2 or P4. Next I tested if the expression of 

two differentiation markers, PAEP and PTGS2, could be induced in reprogrammed 

cells treated with E2, MPA or hCG alone or in combination. No significant changes in 

PAEP or PTGS2 (Figure 3.11B) were observed. I have demonstrated that mRNA 

expression of the three ENaC variants were also up-regulated upon reprogramming. 

To test if this remodelling would bestow the cells the ability to respond to serine 

proteases, I treated reprogrammed HEECs with trypsin in a single pulse lasting 10 

minutes, and harvested the culture supernatant 24 hours later. No increment in PGE2 

secretion into the culture medium was observed (Figure 3.11C). These data 

demonstrated that conditional reprogramming does not modify the capacity of HEECs 

to respond to differentiation cues from the ovary or the implanting blastocyst.  
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Figure 3.11 Unresponsiveness of conditionally reprogrammed HEECs to 

differentiation cues and embryonic signals. (A) 105 cells / well were seeded. Real-

time xCELLigence monitoring of conditionally reprogrammed HEEC proliferation. The 

cells were either untreated (Control), or treated with 10 nM E2 or 1 µM P4 or the 

combination of both, for 24 hours (n = 3). (B) Normalized expression of PAEP and 

PTGS2 in reprogrammed HEECs treated with different combinations of 10 nM E2, 1 

µM MPA and 1 UI/ml hCG, for 24 hours (n = 3). Their presence or absence in the 

medium is shown by + or – in each column. Data are presented as mean ± SD. P = 

ns. P values were calculated using a non-parametric test (Friedman test). (C) 

Secretion of PGE2 in reprogrammed HEEC culture supernatant, 24 hours after a 

single 10 nM trypsin pulse lasting 10 minutes. Data are presented as mean secretion 

normalized to total protein in cell lysates ± SD (n = 3) P = ns. P values were calculated 

using a non-parametric test (Wilcoxon signed-rank test).    
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3.2.12 HEEC Differentiation in Response to Conditioned Medium 

from Decidualized HESCs 

A fine balanced cross-talk between the epithelial and the stromal compartments of 

the endometrium is crucial to create a receptive environment for the implanting 

embryo (Pawar et al., 2014). Paracrine factors regulated by oestrogen and P4 

mediate this dialogue. For example, the oestrogen-driven proliferation of the epithelial 

cells is mediated by stromal ER (Cooke et al., 1997) and anti-mitogenic effects of 

progesterone in the epithelial compartment are regulated by PR in the stromal cells 

(Hantak et al., 2014). Furthermore, factors like Wnt5a, Wnt4, HOXA10 and HOXA11, 

expressed by the endometrial stromal compartment, are critical for development of 

endometrial glands (Mericskay et al., 2004, Zhang and Yan, 2015). The highest 

expressions of gland differentiation markers such as glycodelin and dipeptidyl 

peptidase-4 (DPP4) are observed during the mid-secretory phase, concurring with 

the highest levels of P4 and the stromal decidualization (Imai et al., 1992, Seppälä et 

al., 2002). Gland differentiation could be induced directly by P4, which was not verified 

in my previous experiments (Figure 3.3A and figure 3.11C), or it could be indirectly 

triggered by soluble factors derived from the decidualized stroma. This phenomenon 

has been already demonstrated. In other species, PRL, which is an important protein 

expressed by the stroma upon decidualization, can induce uteroglobin expression in 

endometrial glands (Spencer, 2014). Uteroglobin, encoded by SCGB1A1, is mostly 

secreted in the uterine lumen during the receptive phase in human uterus (Müller-

Schöttle et al., 1999).  

To investigate the effect of decidualized HESCs in gland differentiation, I used 

conditioned media from pooled HESCs from 5 biopsies. The supernatant was 

collected from undifferentiated HESCs and from cells decidualized with cAMP and 

MPA for either 4 or 10 days. The medium was refreshed 24 hours before collection, 

to remove cAMP and MPA. Confluent cultures of reprogrammed HEECs were treated 
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with unconditioned medium and with conditioned medium from decidualized and 

undecidualized HESCs. mRNA was harvested 24 hours later (Figure 3.12A). 

Significant up-regulation of PAEP was observed with conditioned medium from 

HESCs decidualized for 4 and 10 days. (Figure 3.12B, left). PTGS2 expression in 

HEECs was also measured to investigate whether the decidualized HESCs released 

factors that further enhance epithelial differentiation in a paracrine manner. No 

response was detected when compared to HEECs cultured in standard medium 

(Figure 3.12B, right).  

Since PRL is a major secretory product of human decidua, I speculated if this protein 

was the effector of the previous results observed in the HEECs treated with the 

decidualized HESC conditioned medium. To test this hypothesis, I treated HEEC 

cultures with 20 ng / ml PRL for 24 hours and measured PAEP expression. However, 

the treatment did not induce any response (Figure 3.12C). 

These observations suggest that soluble factors released by the decidualized 

endometrial stromal compartment induce differentiation in uterine glands. The 

factor(s) responsible for this effect are undetermined.   
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Figure 3.12 HEEC differentiation by soluble cues from decidualized HESCs. (A) 

Cartoon showing HESC decidualization with 0.5 mM cAMP and 1 µM MPA, and the 

retrieval of conditioned medium after 0, 4 and 10 days of treatment. The medium was 

refreshed 24 hours before the supernatant harvesting to remove cAMP and MPA. (B) 

Normalized expression of PAEP and PTGS2 in HEECs that were either untreated 

(C), or treated for 24 hours with medium from undecidualized HESC (D0), or HESC 

decidualized for 4 (D4) or 10 (D10) days (n = 6). P values were calculated using a 

non-parametric test (Friedman test). (C) Normalized expression of PAEP in HEECs 

treated with 20 ng / ml PRL for 24 hours. Data are presented as individual a.u. (n = 

3). P values were calculated using a non-parametric test (Wilcoxon signed-rank test). 
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3.2.13 Induction of HEEC Differentiation and HESC 

Decidualization upon Co-Culture of the Two Cell Types 

To further validate the observations that the endometrial stromal compartment 

induced glandular differentiation in HEECs, I established a co-culture system of 

HESCs and HEECs, using transwell inserts with permeable porous membranes 

(Figure 3.13A, top). A pool of HESCs from 5 different patients was cultured in 24-well 

plates and decidualized with cAMP and MPA. Reprogrammed HEECs were cultured 

on the membrane of transwell inserts in separate wells until confluence was reached. 

After 4 days of HESC decidualization, cAMP and MPA were withdrawn, and the 

inserts with HEECs were placed into the wells with decidualized HESC for 24 hours. 

mRNA from HEECs was harvested, and subjected to RT-qPCR. Up-regulation of 

PAEP was observed when compared to non-cocultured HEECs (Figure 3.13C).  

The presence of the endometrial glands has been proven essential for 

decidualization. In mice lacking uterine glands, decidualization is totally abolished and 

implantation does not occur (Lejeune et al., 1981, Filant & Spencer, 2013). Some 

factors expressed by endometrial glands have been suggested as potential 

candidates for this stromal decidualization role. Lif and Spink3 are the most promising 

(Cheng et al., 2000; Cheng et al., 2010). However, the dependency of decidualization 

on uterine glands in humans has not been demonstrated yet. To investigate if HEECs 

have any impact on stromal decidualization, I applied the same co-culture system. 

The pool of HESCs was seeded in 24-well plates, and HEECs from three different 

endometrial biopsies were cultured in transwell inserts. HESCs were cultured in 2 % 

DCC medium, for 8 days, with or without HEEC inserts (Figure 3.13A, bottom). mRNA 

from HESC was harvested, and PRL was measured. A significant induction of PRL in 

HESCs co-cultured with HEECs (S/E) was detected when compared to HESCs in 

monocultures (S) (Figure 3.13D). 
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These data confirm the influence of decidualized HESCs in endometrial gland 

differentiation and suggest that, as is the case in mice, signals emanating from 

glands, such as PGE2, contribute to differentiation of HESCs into decidual cells.  

 

Figure 3.13 Induction of differentiation in HEECs and decidualization in HESCs 

when the two cell types are co-cultured. (A) Cartoon showing the system for co-

culture of HEECs with decidualized HESCs, using transwell inserts with microporous 

membrane (top) and the system for co-culturing HEECs and HESCs (bottom). (B) 

Normalized expression of PAEP and PTGS2 in HEECs co-cultured for 24 hours with 

decidualized HESCs (n = 6). Transwell inserts with confluent reprogrammed HEECs 

were placed into the wells with HESCs decidualized for 4 days, and were co-cultured 

for 24 hours in 2% DCC. (C) Normalized expression of PRL in HESCs after 8 days in 

co-culture with HEECs. Data are presented as individual a.u. (n = 6). P values were 

calculated with a non-parametric test (Wilcoxon signed rank test). 
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3.2.14 Proliferation and Partial Reversal of Senescence in HEECs 

Exposed to Conditioned Medium from Decidualized HESC 

As aforementioned, raising levels of P4 during the luteal phase inhibit the mitogenic 

effects of E2 in the epithelial compartment (Pierro et al., 2001, Chen et al., 2005). At 

the same time, senescence of HEECs peaks at mid-secretory phase, coinciding with 

the highest serum concentrations of P4 (Williams et al., 2001). Endometrial gland 

function must be safeguarded to provide histiotrophic support to the implanting 

blastocyst. I examined if decidualized HESCs, through secretion of soluble factors, 

could rescue the gland cells from growth arrest and acute senescence.    

Using xCELLigence real-time cell monitoring, I analysed the effects of conditioned 

medium from HESC decidualized for 4 days, ROCK inhibitor, and the combination of 

both in HEEC proliferation. HEEC growth was discretely enhanced with the use of 

conditioned medium from decidual HESCs. Proliferation of HEECs was even further 

increased with the addition of ROCK inhibitor (Figure 3.14A).  

As previously discussed, senescence in the endometrial epithelial compartment 

peaks at mid-secretory phase, coincident with the highest levels of P4. To test if P4 

affects the senescence in HEECs in an indirect paracrine way through inducible 

soluble factors from stromal compartment, I treated HEECs for 24 hours with 

conditioned medium from HESCs decidualized for 4 days and measured SA-β-gal 

activity. Strikingly, a mean reduction of 24% was observed (3.14B).  

This suggests that decidualized HESCs induce proliferation and partially reverse 

senescence in HEECs. 
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Figure 3.14 Proliferation and reversal of senescence in HEECs treated with 

conditioned medium from decidualized HESCs. (A) Real-time xCELLigence 

analysis of HEEC attachment and growth for 40 hours.  HEECs were either untreated 

(control), or treated with 7.5 µM Y-27632 (RI) or conditioned medium from HESCs 

decidualized for 4 days or the combination of both (n = 4). (B) SA-β-gal activity in 

HEECs either untreated (control) or treated for 24 hours with conditioned medium 

from HESCs decidualized for 4 days. Data are presented as percentage of reduction 

of SA-β-gal activity in relation to the control ± SD (n = 4). *P = 0.03. P values were 

calculated using a non-parametric test (Wilcoxon signed-rank test ). 
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3.3 Discussion 

Isolation and culture of HEECs are pivotal for understanding the implantation process 

and its disruptions. Primary HEECs are hard to culture, and the problem is further 

exacerbated when they derive from mid-secretory phase endometrium. One possible 

explanation for this refractoriness is the proportion of progenitor, transit amplifying 

and terminally differentiated cells in the tissue. Chan et al. (2004) demonstrated that 

0.22 % of HEEC population was comprised of progenitor cells in contrast with 1.25 % 

of HESC. The cells were isolated from hysterectomy specimens, which included the 

basal and the functional layers of the endometrium. It has been suggested that the 

majority of the epithelial progenitor cells reside in the gland segments of basalis 

(Nguyen et al., 2012, Valentijn et al., 2013). Therefore it is reasonable to postulate 

that the percentage of human endometrial epithelial progenitor cells would be even 

lower in Endocell Sampler biopsies.  

Conditional reprogramming rescued the cells from acute senescence and improved 

in vitro proliferation. The exact mechanism by which this was achieved is yet to be 

uncovered, although many explanations can be inferred from the current knowledge. 

The effect of irradiated feeder layers and their soluble factors on telomerase activity 

has been demonstrated (Liu et al., 2012, Palechor-Ceron et al., 2013). The up-

regulated expression of TERT upon reprogramming was observed in my study 

(Figure 3.10C). Chapman et al. (2010) observed an increased expression of avian 

myelocytomatosis viral oncogene homolog (MYC) in human foreskin keratinocytes 

treated with ROCK inhibitor. MYC induces transcription of TERT through promoter e-

boxes.  Yu et al. (2012) verified that a ROCK inhibitor increased cyclin-dependent 

kinase 4 (CDK4) and Cyclin D1 expression in astrocytes. The complex Cyclin 

D1/CDK4 induces cell cycle progression from G1 phase to S phase through 

phosphorylation of Rb. As a consequence I conjectured that inhibition of ROCK would 

induce phosphorylation of Rb, overcoming CDK4 inhibition by P16. Furthermore, in 
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my experiments, P16 expression was decreased upon reprogramming. ROCK 

regulates cytoskeleton function by inhibition of myosin phosphatase. The activity of 

the latter de-phosphorylates the myosin light chain, an important component of the 

cytoskeleton. Inhibition of ROCK promotes myosin phosphatase activity leading to 

cytoskeleton remodelling (Wettschureck and Offermanns, 2002). These cytoskeleton 

changes promotes proliferation (Provenzano and Keely, 2011). Supranowicz et al. 

(2012) showed increased protein expression of many adult stem cell markers in 

primary human ectocervical cells reprogrammed with ROCK inhibitors in combination 

with feeder layers of irradiated fibroblasts. Some of these markers were integrins α6 

and β1, p63, CD44, β-catenin, Notch-1, delta like canonical Notch ligand 1 (DLL1). 

The authors also measured the expression of markers of pluripotent stem-cells (SRY 

box 2 [SOX2], Nanog homeobox [NANOG] and octamer-binding protein 4 [OCT4]) 

and did not observed up-regulation, suggesting that the reprogrammed cells were 

committed to an epithelial lineage. Although the issue of limited in vitro proliferation 

of HEECs was circumvented, reprogramming did not render the cells responsive to 

various differentiation stimuli. 

No changes in proliferation and differentiation induction in HEECs with ovarian steroid 

hormone treatment were observed. An increased proliferation with E2, an inhibition 

of proliferation with P4 and even a further reduction in proliferation with the 

combination of both was expected, since progesterone has an anti-proliferative effect, 

and E2 induces synthesis of PR by action on an oestrogen response element in the 

promoter region (Kaster et al., 1990). Naive HEECs presented an arrested 

proliferation, therefore it would be hard to notice any inhibitory effect, considering the 

already low rate of growth of untreated cells. However, the unresponsiveness was 

also observed with reprogrammed HEECs. One possible reason for that, could be the 

observed variability in ovarian steroid receptors expression in HEECs. However, 

normal expressions of ER and PR were detected in cultured HEECs by ligand binding 
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assay (Zhang et al., 1995) and by immunocytochemistry (Hombach-Klonisch et al., 

2005). Another explanation could be the need of the stromal compartment for the 

ovarian steroid hormones to enhance or reduce proliferation in the epithelial cells.  It 

has been demonstrate in mice that oestrogens induce proliferation in the epithelial 

compartment of the endometrium through ER in the stromal cells (Cooke et al., 1997). 

In turn, P4 would inhibit epithelial growth by binding to its cognate receptor PRA in 

the endometrial stroma (Hantak et al., 2014).  

Progesterone and hCG have been shown to induce glycodelin-A secretion in 

endometrial glands (Sepälla et al., 2002). There is no evidence for glycodelin 

regulation by oestrogen (Seppälä et al., 2002). However, no up-regulation of PAEP 

with P4 or hCG was observed in my experiments. My results suggest that the 

decidualized endometrial stromal compartment also regulates epithelial 

differentiation. Which decidual soluble factors stimulate epithelial differentiation is still 

elusive. PRL was a rational candidate, but no response was detected with its use. 

Arnold et al. (2001) showed induction of glycodelin secretion by HEECs when co-

cultured with undecidualized HESC, but the effect was only attained when the cells 

were seeded in Matrigel. This may indicate that HEECs need to be allowed to 

polarize, to respond to differentiation signals.  

Conditioned medium from decidualized HESCs induced proliferation of HEECs. I 

speculate that this effect could be explained by PR isoform specific roles. While 

stromal PRA would only regulate epithelial proliferation by counteracting oestrogen-

driven mitogenic effects (Vasquez and DeMayo, 2013), PRB would stimulate 

epithelial proliferation in an oestrogen-independent manner. Indeed, Mulac-Jericevic 

et al. (2000) demonstrated that specific ablation of PRA in mice led to progesterone- 

induced epithelial proliferation through PRB. Another plausible explanation for this 

effect and the partial reversal of senescence would be that the decidualized HESCs 

provided soluble growth factors for HEECs, in a similar way that feeder layers do for 
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embryonic stem cell cultures (Llames et al., 2015). As a matter of fact, decidualization 

triggers apoptosis in the stromal compartment as irradiation does in the fibroblasts of 

the feeder layer (Akcali et al., 2003). The main focus of the studies was on the 

mechanisms of apoptosis. The extrinsic pathway is involved, through translocation of 

TNF receptors and FAS receptors from the Golgi apparatus to the plasma membrane, 

and increasing levels of FASL and TNF during the mid-secretory phase (Boeddeker 

and Hess, 2015). The intrinsic pathway is also affected by decrease of anti-apoptotic 

B-cell lymphoma 2 (BCL2), increase of pro-apoptotic BCL2 associated X, apoptosis 

regulator (BAX) and release of cytochrome C from mitochondria (Tao et al., 1997). 

Despite the several studies of the decidual transcriptome and proteome (Popovici et 

al., 2000, Brar et al., 2001, Garido-Gómez et al., 2014, Gellersen and Brosens, 2014), 

the factors released by the apoptotic decidual cells that reverse epithelial senescence 

and induce proliferation of gland cells are yet undetermined.   

Up-regulation of PTGS2 was not observed, and induction of PGE2 secretion was 

inconsistent in HEEC upon trypsin exposure. Ruan et al. (2012) showed a 3 fold 

induction in PGE2 secretion and up-regulation of PTGS2 in mouse endometrial 

epithelial cells treated with trypsin. Furthermore, the authors could inhibit these 

responses using amiloride, an ENaC inhibitor. In my study, ENaC expression was 

only observed in the borders of the HEEC monolayers, which could explain the 

blunted and inconsistent responses to the serine protease. ENaCs were identified in 

the apical membrane of HEECs (Enuka et al., 2012). Taken together these data 

suggest the need for epithelial polarity for these ion channels to function and be 

appropriately expressed in HEECs.  

Mouse decidualization depends on embryo’s presence (Lee et al. 2007), not occurring 

spontaneously. In humans, decidual differentiation occurs independently of 

pregnancy, in every ovulatory cycle, by the influence of P4 and cAMP (Gellersen et 

al., 2007). This physiologic difference may account for the unresponsiveness of 
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HEECs to trypsin. This role for serine proteases would not have been conserved, 

once the decidual control shifted from the embryo to the mother.  

The luminal epithelium is the main uterine sensor for the embryonic signals, besides 

being the site for blastocyst attachment (Zhang et al., 2013). Structural differences 

between human luminal epithelium and endometrial glands are well described (Demir 

et al., 2002), and distinct transcriptome has been detect in mice (Niklaus and Pollard, 

2006). In my study, the isolated HEECs derived from the dissociation of glandular 

clumps, conferring on them a specific phenotype. I conjecture that trypsin-triggered 

PGE2 secretion could be a property of the luminal epithelium, which forms the first 

maternal embryo interface. Glandular cells would not retain this capacity. 

Epithelial cells polarize to differentiate between the interior of the organism and the 

external environment. The apical membrane is exposed to the organ lumen and the 

basolateral membrane is in contact with the interior. A complex of adhesion molecules 

and organelles (adherent junctions, tight junctions, gap junctions and desmosomes) 

take part in this polarization process (Kaplan et al., 2009). G protein-coupled 

receptors, such as PARs and LHCGR, and ion channels, such as ENaCs, are bound 

to the apical membrane, while proteins involved in cell-to-cell communications reside 

in the basolateral membrane. The transport of molecules produced in the cells is also 

organized in a mode that some are secreted to the lumen and some are release to 

the underlying compartment, usually stroma (Nelson, 2009). This way, the epithelial 

cells can perform the roles by which they were differentiated for. Cells in monolayers 

develop a flat morphology that compromises polarity and, as a consequence, 

function. Several authors have reported dedifferentiation of endometrial cells in two 

dimensional (2D) cultures, limiting functional studies (Zhang et al., 1995, Classen-

Linke et al., 1997, Arnold et al., 2001). That could be a reason for the dampened 

responses of the epithelial cells in monolayer cultures. On that account, the next 

logical step is the development of three dimensional (3D) culture systems for HEECs. 



142 
 

 

 

 

 

Chapter 4 

 

Establishing Endometrial Gland Organoids 

____________________________________ 

 

 

 

 

 

 



143 
 

4.1 Introduction 

In vivo, epithelial cells reside in a 3D environment that enables contact with 

extracellular matrix (ECM) and neighbouring cells. They are organized in a manner 

to allow for interaction with the exterior, through the lumen, and with the interior of the 

tissue through cross-talk with the underlying cells. This system requires cellular 

polarity. This is a complex process involving several players, such as partioning 

defective proteins (Par proteins), Crumbs proteins (CRB), Scribble proteins (SCRIB), 

Rho GTPases, lipids, and signal pathways, e.g. Notch, Wnt and Hippo (Rodriguez-

Boulan & Macara, 2014, Bayraktar et al., 2006). This arrangement facilitates efficient 

secretion of target molecules, relaying signals to the external environment through 

the apical membrane and to the underlying compartments across the baso-lateral 

membrane. At the same time, cues from the organ lumen are delivered to the cells 

onto the apical domain, and messages from neighbouring cells are sensed by the 

basolateral domain (Vreede et al., 2014).  

In monolayer cultures, the cells are attached to the rigid flat surface of the dish, 

changing their shape and spreading. Interact with the ECM, and the contact with the 

adjacent cells are restricted (Pampaloni et al., 2007). These limitations are associated 

with loss of function and differentiation, altering the responses in different situations 

(Antoni et al., 2015). In fact, cells can regain their differentiated phenotype in vitro 

when embedded in a 3D environment. This has been demonstrated with 

chondrocytes and mammary cells (Petersen et al., 1992, Caron et al., 2012, Sokol et 

al., 2016). In anticancer drug discovery, 95% of the compounds, first selected based 

on the effects observed in cell line 2D cultures, fail to be licensed due to poor 

responses in animal experiments or in clinical trials (Hutchinson and Kirk, 2011). The 

same problems associated with dedifferentiation have been described in endometrial 

epithelial cell cultures (Classen-Linke et al., 1997, Chitcholtan et al., 2012). For 

example, Arnold et al. (2001) demonstrated that HEECs could only respond to 
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differentiation signals from HESCs, when both cell types were cultured in Matrigel. 

This reconstituted basement membrane preparation is extracted from the Engelbreth-

Holm-Swarm mouse sarcoma. It is compound of approximately 60% laminin, 30% 

collagen IV, and 8% entactin. It also contains heparan sulfate proteoglycan, TGFβ, 

EGF, IGF1, FGF, nerve growth factor (NGF), PDGF, and tPA, in variable 

concentrations (Kleinman et al., 1986, Vukicevic et al., 1992). 

3D endometrial gland models can help us to understand the roles of these structures 

in implantation and early pregnancy. Endocrine and paracrine interactions with other 

components of the reproductive system, namely the ovaries, the endometrial stromal 

compartment and the implanting embryo, could be assessed in vitro, in a rather more 

physiologic context than in 2D cultures.  

The establishment of gland-like organoids has been described frequently in the last 

decade due to their pivotal role in cancer research. Prostate, intestine, colon, gastric, 

and mammary cell organoids are some of the recently described gland-like structures 

(Karthaus et al., 2014, Sato et al., 2011, Bartfeld et al., 2015, Sokol et al., 2016). 

These organoids were developed in well-defined culture conditions, combining basal 

membrane extract with medium containing factors that stimulate proliferation of 

progenitor cells (R-spondin 1, Noggin), de-differentiate transit amplifying cells into 

progenitor cells (EGF), and avoid cellular senescence (nicotinamide), along with 

molecules that induce organ-specific gland differentiation. FGF10 and HGF are 

expressed by the endometrial stroma, and are key factors in endometrial gland 

morphogenesis (Gray et al., 2001). One study described the establishment of 

fallopian tube organoids by modulation of Wnt pathway, and also suggested a role for 

Notch in cell fate determination (Kessler et al., 2015).  

One of the main roles of endometrial glands is to provide histiotrophic support to the 

embryo, until the haemochorial placenta is established, around 12 weeks of 

pregnancy (Burton et al., 2002).  
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Missed miscarriage is characterized by foetal demise, without expelling of the 

products of conception. It is usually suspected when the symptoms and clinical signs 

of pregnancy are regressing, and the diagnosis is confirmed by an ultrasound scan 

(Griebel et al., 2005). The exact incidence of chromosomal abnormalities in these 

cases is undetermined. Karyotype studies of the products of conception detected 60-

75 % of chromosome errors in isolated cases of missed miscarriage (Phillipp and 

Kalousek, 2001, Ferro et al., 2003, Phillipp et al., 2003, Lathi et al., 2007). 

Considering that only 2–4% of the couples suffering recurrent miscarriage are carriers 

of balanced translocations, the real burden of the chromosomal defects might be even 

smaller in recurrent missed miscarriage. So, 25 – 40 % of the missed miscarried 

embryos present normal karyotypes, indicating that other causes may be involved in 

the aetiology. I postulate that defects in endometrial glands impair histiotrophic 

support for the genetically normal embryo, eventually leading to demise.   

This chapter explores the options for endometrial epithelium 3D culture, the 

establishment of a method for culture of endometrial gland-like organoids, and 

investigates the responses of these epithelial structures to differentiation signals. I 

also suggest that endometrial gland clonogenicity is disturbed in recurrent missed 

miscarriage cases.    
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4.2 Results 

4.2.1 HEEC Spheroids  

My first attempt to establish a 3D model for HEECs was through spheroid formation. 

Spheroids are aggregates of mutually adherent cells that do not attach to culture 

substrate, and adopt a spherical-like shape (Fennema et al., 2013). These cell 

clusters can mimic in vivo solid tumours, being a useful choice for studying anticancer 

therapy sensitivity and resistance (Adcock et al., 2015). The potential use in 

regenerative medicine has widened the interest in non-cancerous cell organoids. 

Recent studies with hepatocytes, thyrocytes and chondrocytes have been published 

(Bell et al., 2016, Wang et al., 2016, Bartz et al., 2016).  

A specific plate designed for hanging drop culture was used (Figure 4.1A) and 104 

primary isolated HEECs / well were seeded in 45 µl of final CRC medium 

supplemented with 2.5 % Matrigel. The cells started to organize in sphere-like 

structures within 48 hours (Figure 4.1 C). Spheroids were transferred to 96-well plates 

containing Matrigel, after 4 days, for treatment. To test if organoid formation would 

render the HEECs responsive to differentiation cues I treated them with different 

combinations of  E2, MPA and hCG for 24 hours. No induction of PAEP was observed 

(Figure 4.1B).  

Next I examined the effect of the decidualized stromal compartment on spheroid 

differentiation. After being transferred to Matrigel, the spheroids were cultured for 24 

hours in conditioned medium from HESC decidualized for 4 days. No significant 

induction of PAEP was detected (Figure 4.1D). The data indicate that, although 

organized in a 3D arrangement, the HEEC spheroid do not respond to various 

differentiation signals.  
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Figure 4.1 Unresponsiveness of HEEC spheroids to differentiation cues. (A) 

Cartoon showing the culture of HEEC spheroid in hanging-drop and its transfer to cell 

culture microplate containing Matrigel. (B) Bright field image of a compact HEEC 

spheroid in a hanging drop, 2 days after seeding of 104 cells / well of a hanging drop 

plates. (C) Normalized expression of PAEP in HEEC spheroid treated with different 

combinations of 10 nM E2, 1 µM MPA and/or 1 IU / ml hCG for 24 hours (n = 3). Their 

presence or absence is shown by + or – in each column. P = ns (Friedman test) (D) 

Normalized expression of PAEP in paired HEEC spheroids cultured for 24 hours with 

or without (control) conditioned medium from HESC decidualized for 4 days (n = 4). 

Data are presented as mean ± SD. P = ns (Wilcoxon signed-rank test). 
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4.2.2 Endometrial Gland Organoids Established by the Use of 

Matrigel and HGF Supplemented Medium  

A variety of methods for creating human endometrial gland organoids have been 

reported (Rinehart et al., 1988, Classen-Linke et al., 1997, Bläuer et al., 2005, 

Valentijn et al., 2015), all of them based solely on the use of Matrigel. The efficiency 

rate of organoid forming is not described and the performance on functional assays 

was diverse.  

Sugawara et al. (1997) developed human endometrial gland-like organoids using 

Matrigel and HGF from three different biopsies. Using a similar method, I attempted 

to establish gland organoids. Ten thousand primary isolated HEEC / well mixed in 50 

µl Matrigel were seeded in 96-well plates. The cells were overlaid by final CRC 

supplemented with 50 ng/ml HGF. HGF is an endometrial stroma derived factor and 

is involved in uterine gland morphogenesis in ovines (Taylor et al., 2001). The cells 

initially clustered and, gradually, some of them showed central lumen formation. The 

organoids were mostly round, with a central lumen (Figure 4.2A). However, only 

27.3% (3/11) of the cultures formed gland-like structures after 7 days.  

To examine the response of these 3D cell formations to differentiation cues, the 

organoids were treated with different combinations of E2, MPA and  hCG for 24 hours, 

and no induction of PAEP was verified (Figure 4.2B).  

To investigate the effect of cues from the decidualized stroma, the organoids were 

cultured for 24 hours in conditioned medium from HESCs decidualized for 4 days. 

Once more, despite a trend of higher expression on treated organoids, no significant 

PAEP up-regulation was observed, suggesting that, in addition to the low efficacy for 

forming the gland organoids with this method, this 3D arrangement do not confer on 

HEECs the ability to respond to differentiation signals from diverse sources (Figure 

4.2C).  
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Figure 4.2 Unresponsiveness of HEEC organoids in Matrigel and HGF 

supplemented medium to differentiation cues. (A) Bright field images of 

endometrial gland organoids in Matrigel for 5 days. Ten thousand cells / well were 

seeded into a 96-well plate with 50 µl Matrigel / well, and the culture medium was 

supplemented with 50 ng / ml HGF (representative of n = 3). (B) Normalized 

expression of PAEP in endometrial gland organoids treated with different 

combinations of 10 nM E2, 1 µM MPA and / or 1 IU / ml hCG for 24 hours (n = 3). 

Their presence or absence in the medium is shown by + or – in each column. P = ns 

(Friedman test) (C) Normalized expression of PAEP in endometrial gland organoids 

cultured for 24 hours with or without (control) conditioned medium from HESC 

decidualized for 4 days (n = 3). Data are presented as mean. ± SD.  P = ns (Wilcoxon 

signed-rank test). 
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4.2.3 Cell Scaffolds for HEEC 3D Cultures 

In vivo, the epithelial cells lie in an intricate 3D fibrous meshwork of collagen and 

elastic fibres, the ECM. The combination of chemical composition and nanostructure 

supports biochemical and biophysical roles, such as transport of soluble molecules 

and absorption of mechanical stress (Lee et al., 2007). Scaffolds have been 

developed to emulate ECM functions, and generate 3D cell cultures. Intense research 

has been undertaken to improve the bulk material, pore size, nanoscale design and 

surface properties. One study described the development of a bovine endometrial 

construct, using a polyglycolide electrospun scaffold (Mackintosh et al., 2015). The 

scaffolds were populated with stromal and epithelial cells from bovine endometrium, 

and cells expressed vimentin and cytokeratin, besides accumulating prostaglandins 

in response to arachidonic acid, oxytocin and lipopolysaccharide.  

I used scaffolds developed at the University of Warwick Engineering School, by Prof 

Neil Cameron and Dr Ahmed Eissa. Well-defined macro-porous foam scaffold discs 

were produced by emulsion templating technique, whereby a highly porous polymer 

is created from a monomer (triacrylate), using water droplets (Figure 4.3A). The 

inability to monitor the cells growing in the scaffolds is a disadvantage of the method, 

so HEECs were initially seeded onto fibronectin coated scaffolds, cultured for 15 days 

in final CRC medium, and stained for haematoxylin/eosin (H&E) and CK18. The cells 

populated the discs, exhibiting a multilayer structure (Figure 4.3B). Another reported 

issue is the chance of the cells to flatten and spread in the scaffolds, behaving as 

though in 2D monolayer cultures (Stevens et al., 2005). To address this concern, I 

cultured paired HEECs in monolayers and in scaffolds, immunostained them for 

CK18, and acquired Z-stack images of single cells by confocal microscopy. The cells 

in monolayers had an overt flat shape, in contrast with the cell in scaffolds, which 

displayed a distinct 3D configuration (Figure 4.3C).  
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Once the 3D structure of the HEECs in the scaffolds was demonstrated, functional 

assays were performed. First, I tested the differentiation of HEECs in scaffolds 

compared to 2D cultures. Paired HEECs were seeded in flat dishes and scaffolds, 

and PAEP expression was measured after 3 and 7 days in culture. A trend of higher 

expression of PAEP in scaffold-grown HEECs was observed, but the differences were 

not statistically significant (Figure 4.4A). Next, the responsiveness of HEECs in 

scaffolds to E2 and P4 was tested, and the impact of the stromal compartment on 

these responses was also adressed. Three groups of paired HEECs were seeded in 

scaffolds and grown for 22 days. One group was mono-cultured, and was not treated. 

A second mono-cultured group was treated with E2 for 15 days, followed by the 

addition of P4, for 7 days. The third group was co-cultured with HESC and was also 

treated with E2 and P4. No difference in PAEP expression was detected upon E2 and 

P4 treatment, or upon co-culture with HESC (Figure 4.4B). To further explore the 

responses of scaffold-grown HEECs to differentiation cues, cells were grown on 

scaffolds for 15 days, then treated for 24 hours with conditioned media of HESC 

decidualized for 4 days. Although a trend of higher expression of PAEP in treated 

HEECs was again observed, statistical significance was not reached (Figure 4.4D). 

Inferring that the HEECs in scaffolds were polarized, and considering that polarization 

is pivotal for expression of apical domain proteins such as ENaCs, I investigated the 

effect of trypsin in this 3D model. HEECs were grown in scaffolds for 15 days, and 

were treated with trypsin. PGE2 concentration in the culture supernatant collected 24 

hours after the treatment was measured by ELISA. No enhancement in the 

prostaglandin secretion was detected (Figure 4.4C).  

The data indicate that, although HEECs grow in a 3D conformation in scaffolds, they 

remain unresponsive to differentiation signals using this model.  
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Figure 4.3 HEEC growth and population of thiol-acrylate cell scaffolds. (A) 

Pictures showing the microporous structure of the scaffold and the scaffold discs 

ready to be used. Discs were cut to 1 cm diameter, 200 µm thick and were placed 

inside 24-well plates for cell culture. (B) HEECs cultured in a scaffold for 15 days and 

stained with H&E (left) and CK18 (right panel). (C) Immunofluorescence of CK18 in 

HEECs cultured as monolayer, showing flat architecture (left panel), and in the 

scaffold exhibiting 3D conformation (right).  
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Figure 4.4 Responses of HEECs in scaffold to differentiation cues, and 

comparison with 2D culture. (A) Normalized expression of PAEP in HEECs in 

monolayers and in scaffolds. Paired HEECs were cultured in scaffolds and 

monolayers (n = 3). mRNA was harvested after 3 and 7 days. (B) Normalized 

expression of PAEP in paired HEECs cultured in scaffolds and either untreated or 

treated with 10 nM E2 for 14 days, followed by 10 nM E2 and 1 µM P4 for 7 days. 

One of the treated groups was co-cultured with HESCs (n = 3). (C) Secretion of PGE2 

by HEECs cultured in scaffolds and either untreated (control) or treated with 10 nM 

trypsin in single pulse lasting 10 minutes (n = 3). Culture supernatant was collected 

24 hours after the treatment. Data are presented as mean secretion normalized to 

total protein in cell lysates ± SD (n = 3). (D) Normalized expression of PAEP in HEECs 

cultured in scaffolds and either untreated (control) or treated for 24 hours with 

conditioned medium from HESCs decidualized for 4 days (n = 3). Data are presented 

as mean ± SD. P = ns. 
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4.2.4 Establishment of Endometrial Gland Organoids Using 

Matrigel and Modified Adult Stem-Cell Medium 

Since Matrigel and HGF were not sufficient to derive responsive endometrial gland-

like organoids efficiently, I decided to try another method to generate these gland-like 

structures. The use of factors that stimulate cell stemness has been recently reported 

for gastric- , intestine-, colon-, mammary gland- and prostate-like organoids (Karthaus 

et al., 2014, Sato et al., 2011; Bartfeld et al., 2015, Sokol et al., 2016). Specific factors 

to induce organ-specific gland differentiation were also deployed. HGF and FGF10 

have been demonstrated to be key factors in endometrial gland morphogenesis.  

Using Matrigel and culture medium supplemented with R-spondin 1, Noggin, EGF, 

nicotinamide, a TGFβ inhibitor (A83-01), HGF and FGF10, henceforth referred as 

expansion medium, it was possible to derive endometrial gland-like organoids from 

primary HEECs, with a 97.4% (38/39) efficiency. The organoids grew in culture, 

progressively increasing their number and size. Round shape was more often 

observed, but elongated organoids were also detected, depicting a feature that 

recapitulates in vivo endometrial glands (Figure 4.5A). The organoids were 

immunostained, and showed expression of CK18 and E-cadherin, a key component 

of adherens junctions (Figure 4.5B).  

To test the responsiveness to differentiation cues, organoids in expansion medium 

were treated with E2, P4,  cAMP, PRL or hCG for 8 days. A two-fold increase in PAEP 

expression was observed with cAMP (Figure 4.6A). To further address the issue, I 

treated organoids with different combinations of E2, P4, cAMP, PRL hCG, and 

observed that E2, P4 and cAMP in combination induced a 3 fold increase in PAEP 

expression. The addition of PRL or hCG did not further enhance the PAEP induction 

(Figure 4.6B). To explore the effect of differentiation signals from the endometrial 

stroma, organoids were cultured for 24 hours in conditioned medium from HESC 
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decidualized for 4 days. A trend of higher PAEP expression in treated cells were 

observed, but the difference was not statistically significant (Figure 4.6 C).  

Glycogen is a key component of endometrial gland histiotrophe, produced in high 

quantities during the secretory phase (Burton et al., 2011). Endometrial gland-like 

organoids were grown for 7 days, treated with E2, P4, cAMP, PRL and hCG for 8 

days. The organoids were lysed and cell glycogen levels were measured by a 

colorimetric assay. No differences were observed in organoid glycogen 

concentrations upon stimulation with differentiation signals (Figure 4.6 D). 
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Figure 4.5 Establishment of endometrial gland organoids using Matrigel in 

association with a modified adult stem cell medium. (A) Bright field image of 

endometrial gland organoids cultured in Matrigel and supplemented with expansion 

medium for 7 days. (B) Immunofluorescence of CK18 and e-cadherin in endometrial 

gland organoids, counterstained with DAPI. Organoids were cultured Matrigel for 7 

days, fixed and stained as a whole mount and the images were acquired with a 

confocal microscope.  
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Figure 4.6 Responses of endometrial gland organoids in Matrigel and 

expansion medium to differentiation cues. (A) Normalized expression of PAEP in 

paired organoids either untreated (control) or treated for 8 days with 10 nM E2, 1 µM 

P4, 0.5 mM cAMP, 20 ng / ml PRL or 1 IU / ml hCG (n = 3). Data are presented as 

mean. ± SD. *P = 0.047. (B) Normalized expression of PAEP in organoids treated for 

8 days with different combinations of 10 nM E2, 1 µM P4, 0.5 mM cAMP,  20 ng / ml 

PRL and 1 IU / ml hCG (n = 3). Their presence or absence is shown by + or – in each 

column. Different letters above error bars indicate that those groups are significantly 

different from each other. P = 0.3. (C) Normalized expression of PAEP in organoids 

cultured for 7 days, followed by treatment for 24 hours with or without (Control) 

conditioned medium from HESC decidualized for 4 days (n = 3). Data are presented 

as mean ± SD. P = ns. (D) Glycogen levels in organoids either untreated (Control) or 

treated with 10 nM E2, 1 µM P4, 0.5 mM cAMP, 20 ng/ml PRL and 1 IU/ml hCG for 8 

days. Data are presented as mean glycogen concentration in organoids, normalized 

to total protein in organoid lysates ± SD (n = 5). P = ns. 
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4.2.5 Reduction of Gland Clonogenicity in Recurrent Missed 

Miscarriage (RMM) Cases 

The histiotrophic support of the embryo during the first trimester of pregnancy is 

provided by the endometrial glands (Burton et al., 2002). In missed miscarriage 

cases, embryonic or foetal demise occurs with no associated uterine bleeding 

(Griebel et. al., 2005). Around 35% of these cases are not explained by chromosomal 

anomalies (Lathi et al., 2007). Based on those observations, I hypothesized that 

endometrial gland defects could account for a proportion of recurrent missed 

miscarriage cases (RMM), defined as 3 or more episodes of missed miscarriage.  

I set up organoid forming efficiency assays (OFE) for patients with and without 

recurrent missed miscarriage (Table 4.1). One thousand cells mixed in 5 µl Matrigel 

drops were plated in 96-well plates. The drops were left to set for 1 hour, and were 

overlaid with expansion medium supplemented with ROCK inhibitor to avoid anoikis 

(Koyanagi et al., 2008). OFE was calculated based on the percentage of formed 

organoids, after 10 days, in relation to the number of seeded cells (Figure 4.7A). The 

organoid forming efficiency was significantly decreased in the missed miscarriage 

sample derived organoids (Figure 4.7B). After the counting, the organoids in the OFE 

assay were either untreated or treated with differentiation medium (10 nM E2, 1 µM 

P4, 0.5 mM cAMP, 20 ng / ml PRL and 1 UI / ml hCG) for 8 days. mRNA was 

harvested, extracted, assessed by spectrophotometry, and was deemed eligible for 

PCR if ratio 260/280 ≥ 1.8. No difference in PAEP induction was observed between 

control individuals and missed miscarriage derived organoids. However, the induction 

of PAEP upon differentiation cues was markedly higher in both groups than that 

observed in the previous similar experiment (Figure 2.6B), reaching up to 58 fold 

change (Figure 4.7C).   

This confirms that the endometrial gland-like organoids established with expansion 

media are responsive to differentiation cues. The data also suggest that the 
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population of endometrial gland cells from recurrent missed miscarriage patients may 

have progenitor cell deficiency, being incapable to meet the demand for histiotrophic 

support of the first trimester pregnancy.    

 

 

Table 4.1. Clinical characteristics of patients from OFE assay.                      . 

Groups Control (n=9) RMM (n=9) P 

Age 34.5 (32-43) 32 (28-45) P = 0.7425 
BMI 20 (18-29) 25 (17-34) P = 0.2338 
Day of cycle LH+9 (7-10) LH+9 (7-11) P = 0.9536 
Miscarriage 1 (0-1) 6 (4-8) P < 0.0001 
Live birth  0 (0-1) 0 (0-1) P > 0.9999 

Data are presented as median (range). BMI: body mass index 
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Figure 4.7 Endometrial gland cell clonogenicity in missed miscarriage and 

induction of differentiation in gland-like organoids. (A) Bright field images of 

endometrial gland organoids seeded in low density (1,000 live cells in 5 µl Matrigel 

droplets) for organoid forming efficiency (OFE) assay, after 10 days. Left panel: 

control subjects; right panel: recurrent missed miscarriage cases (B) Organoid 

forming efficiency in control subjects and RMM cases (n = 9 in each group). *P = 

0.029 (two sample t student test). (C) Fold induction of PAEP in endometrial gland 

organoids in control subjects (n = 7) and RMM cases (n = 6). The organoids were 

grown in expansion medium for 10 days, and were either untreated or treated with 

differentiation medium for 8 days. Data are presented as fold change compared to 

untreated samples (dotted line). P = ns (two sample t student test). 
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4.3 Discussion 

In this chapter, I reported the strategies to establish a 3D model that recapitulated the 

endometrial gland phenotype in vitro.  Polarity is a pivotal property for gland cells to 

perform their roles efficiently. Although 3D cultures provide a more propitious 

environment for cells to emulate in vivo organization, every function may not be 

restored. The creation of a perfect artificial cell niche in culture dishes is a particularly 

challenging goal. Some variants can be partially controlled, but indeed, it is most likely 

that several required conditions are not uncovered yet.  

HEECs formed compact spheroids in hanging-drops that could be transferred to 

Matrigel for treatments, however these aggregates did not show expected responses 

to differentiation cues. One possible reason could be the inability of the molecules to 

diffuse, and reach the cells residing in the core of the spheroids. The lack of 

vascularity makes diffusion the only available mean to support oxygen and nutrient 

delivery, and CO2 and waste removal. Cells in different depths are in dissimilar 

nutritional state and, therefore, not at same stages of cell cycle (Edmondson et al., 

2014). This is actually beneficial when testing a new anticancer drug, since it mimics 

a solid tumour environment (Mehta et al., 2012). But for testing the global effect of an 

agent on a normally polarized cell type, it may represent a confusion factor. The cells 

in the centre of the spheroid are not exposed to the treatment, and could mask the 

effect obtained on their surface counterparts.  

The initial method for organoid deriving, using HGF only, proved to be highly 

ineffective. The only three endometrial samples that formed organoids were used for 

the assays, with no compelling results, so the method was set aside.  

Most of the knowledge on matrix culture derives from studies with cancer cell lines. 

These cells show a rapid growth in culture, being the ideal choice for scaffold cultures. 

After the optimization for some culture parameters (number of seeded cells, medium 
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volume for seeding, time to add medium after the initial seeding, scaffold covering), 

fixing, and staining, it was possible to grow primary HEECs in the polymer scaffolds. 

The cells populated the scaffolds and exhibited a 3D conformation. Nevertheless, no 

response to differentiation cues was observed either. One reasonable cause for this 

refractoriness would be the inability of the tested molecules to diffuse through the 

scaffold and reach the deeper cells, as previously postulated for the spheroids. 

Microfluidic devices have been proposed as effective systems for uniform distribution 

of the cells inside the scaffold and for controlled delivery of biochemical signals 

(Tehranirokh et al., 2013). Another possible explanation would be a deficiency in cell-

to-cell communication due to sub-optimal pore size. If the pores are too large, cells, 

even though in a 3D conformation, could not adhere to each other. Furthermore, 

another possible reason for the unresponsiveness of HEECs could be the inability to 

recapitulate the in vivo gland structure inside the macro-porous matrix.  In this sense, 

the scaffolds would be more appropriate for luminal epithelium models.  

Inhibition of TGFβ signalling enhances stem cell self-renewal in humans (Sakaki-

Yumoto et al., 2013). The canonical Wnt pathway, through the interaction of β-catenin 

with the transcript complex T-cell factor/lymphoid-enhancing factor (TCP/LEF), 

induces transcription of target genes involved in cell stemness (Van Camp et al., 

2014). Noggin inactivates bone morphogen protein 4 (BMP4), whereas A83-01 is an 

inhibitor of TGFβ receptors type I. R-spondin 1 is a Wnt/β-catenin agonist, binding to 

leucine-rich repeat-containing G-protein coupled receptors (LGR). EGF was 

demonstrated to convert transit amplifying cells into multipotent stem cells (Doetsch 

et. al., 2002). Nicotinamide prevents cell senescence by repressing P53, P21 and 

P16 and accelerating proliferation of pluripotent cells (Son et al., 2013). HGF and 

FGF10 are pivotal factor in endometrial gland morphogenesis (Taylor et al., 2001). 

Using a basement membrane extract (Matrigel), modulating the paracrine TGFβ and 
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Wnt pathways involved in the stem cell niche, and providing cell fate cues, polarized 

endometrial gland-like organoids were efficiently established from primary HEECs. 

The organoids initially showed modest gland differentiation responses that seemed 

to be exclusive to cAMP. Nevertheless, when the organoids in the forming efficiency 

assay were treated with a combination of differentiation cues, the response was 

considerably increased, with PAEP expression fold change of up to 58. This might be 

explained by the pronounced heterogeneity of the responses from sample to sample. 

Even in the OFE assays, some of the organoids produced only a moderate induction 

of PAEP. Attached HEECs, forming a monolayer underneath and at the border of the 

Matrigel drops, was often observed. This phenomenon was not observed in the OFE 

assays, most likely because the number of seeded cells was smaller, and therefore 

insufficient to establish a monolayer. This difference could be therefore accounted for 

the mild effect of differentiation signals on the organoids. It is possible that the 2D 

cells harvested along with the organoids masked the real response of the gland-like 

structures.  

Glycogen is broken down within the gland cells by glycogen phosphorylase, soon 

after synthesis, and it is further degraded into diffusible sugars by α-amylase, at the 

apical surface (Jones et al., 2015). Gland activity is additionally enhanced by 

placental signals, in order to make this sugars available for the embryo (Jones et al., 

2010).  Glycogen accumulation is actually identified in the placenta as well as the 

endometrial glands during the first trimester of pregnancy (Burton et al., 2011). These 

observations could justify the fact that the glycogen levels were not higher in 

differentiated organoids.  

Very little is known about missed miscarriage etiopathogenesis, and even less about 

recurrent cases. In this study, I detected differences in the OFE between recurrent 

missed miscarriage samples and control subjects. Based on this observation I 

postulate that endometrial glands of patients suffering recurrent missed miscarriage 
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have a deficiency of progenitor cells, compromising the ability to produce new gland 

cells through asymmetric division and thereby meeting the increased demand for 

uterine secretions in early pregnancy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



165 
 

 

 

 

 

 

Chapter 5 

 

Transcriptome of Human Endometrial Glands 

in the Secretory Phase and in Recurrent 

Missed Miscarriage 
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5.1 Introduction 

Once I established a method for studying the endometrial glands in vitro, and 

demonstrated differences in gland cell clonogenicity between control subjects and 

women who suffered RMM, I decided to investigate these endometrial structures in 

vivo.   

During the implantation process the endometrium must shift to a receptive state in 

order to accommodate the blastocyst. The uterine luminal epithelium is the first cell 

layer that comes in direct contact with the blastocyst. It is considered a gatekeeper, 

only allowing the endometrium to be breached during the WOI. Modifications are 

observed in this specialized epithelium, in order to prepare for adhesion and invasion 

(Zhang et al., 2013a). At the same time, changes arise in the underlying stroma, to 

make it ready for the embryo arrival. Angiogenesis and increased vascular 

permeability, along with uNK cell influx and mesenchymal-to-epithelial transition of 

fibroblasts, comprise the main transformations identified in the decidualized stroma, 

in response to the rising levels of P4, and local production of cAMP (Aplin, 2010). 

A role for endometrial glands in the establishment of the WOI has been demonstrated 

in studies with mice and sheep. Animals were exposed to P4 or progestins in the 

neonatal period, which inhibited uterine epithelium proliferation, and as a 

consequence, adenogenesis. The animals were mated , and a common observation 

during  pregnancies was that fertilization occurred, but the conceptuses were unable 

to implant (Filant and Spencer, 2014).  P4 up-regulates expression of many genes in 

the glands, and some of the translated proteins could induce a receptive phenotype 

in the luminal epithelium. Which gland-derived factors are involved is still not fully 

elucidated, but LIF has been suggested, since Lif null mice present blastocyst 

implantation problems. In humans, uterine luminal fluid protein content changes along 

the menstrual cycle, and is altered in infertile women (Hannan et al., 2011).  
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Endometrial glands provide the histiotrophic support for the foetus during the first 

trimester of pregnancy (Burton et al., 2002). Defective endometrial gland function, 

described as luteal phase defect, is considered an underlying cause of early 

pregnancy loss (Burton et al., 2007). Incidence of chromosome abnormalities in 

sporadic miscarriages is around 50 %.  No increase is observed in cases of recurrent 

pregnancy loss (Stephenson et al., 2002). The exact incidence of these genetic errors 

in cases of recurrent missed miscarriage is undisclosed, although 60 % – 75 % of 

chromosome errors were detected in isolated cases of missed miscarriage (Phillipp 

and Kalousek, 2001, Ferro et al., 2003, Phillipp et al., 2003, Lathi et al., 2007). This 

means that a significant proportion of missed miscarriage cases (25-40 %) might 

present with another cause. Impaired secretion of angiogenic factors and shifting from 

a Th2 to a Th1 immune response during the pregnancy were suggested (Paradisi et 

al., 2003, Fang et al., 2013, Daponte et al., 2013, Zhu et al., 2014). However, all the 

studies measured plasma concentrations of the mediators after the diagnosis of 

missed miscarriage, aiming to find a biomarker for the condition. Therefore, it is not 

possible to assert if they were a cause or a consequence.  

Laser microdissection (LMD) is a technique that allows for the isolation of one cell 

type or microstructure within a complex tissue. The acquisition of pure samples is 

pivotal for characterization of expression profiles. Coupled with high throughput 

technology, LMD is a powerful tool for genomic, transcriptomic and even proteomic 

research (Curran et al., 2012). This procedure has been applied in the investigation 

of the endometrium physiology. Niklaus and Pollard (2006) used the method to 

uncover distinct molecular signatures for the luminal and glandular epithelium in mice. 

Yanaihara et al. (2004) compared the epithelial with the stromal compartment in 

human endometrium, using microarray gene analysis. Franchi et al. (2008) 

characterized the expression changes of specific genes (DAF, SPP1, IL15 and PGR) 

in endometrial glands and stroma, during the window of implantation, using RT-qPCR.  
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In this chapter, I compare the transcriptome of LMD captured human endometrial 

glands in the early, mid- and late secretory phase. A gene signature of these glands 

in the receptive phase was revealed, reinforcing the importance of this cellular 

compartment in the establishment of the WOI.  Next, I explore the differences in gene 

expression between mid-secretory endometrial glands from control subjects and 

women who suffered RMM. A strong mitochondria-related gene signature suggests 

that altered glandular bioenergetics is involved in the genesis of this form of 

miscarriage.  
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5.2 Results 

5.2.1 Temporal Changes in Endometrial Gland Transcriptome, 

During the Secretory Phase of the Menstrual Cycle 

Genomic modifications of the endometrium along the secretory phase have been 

extensively demonstrated (Riesewijk et al., 2003, Mirkin et al., 2005, Talbi et al., 2006, 

Haouzi et al., 2009, Díaz-Gimeno et al., 2011, Hu et al., 2014). It is logical to infer that 

the glandular compartment is responsible for several of these changes, since 

numerous of the DEGs are strongly expressed by endometrial glands. To confirm 

this, I used LMD coupled with RNA-sequencing to study the transcriptome of glands 

in the early, mid- and late secretory phase.   

Three LH surge-timed human endometrial biopsies were acquired from each time 

point: LH+5, LH+8 and LH+11, corresponding to early, mid- and late secretory phase 

respectively. Table 5.1 displays the clinical characteristics of the patients. The 

samples were flash-frozen in liquid nitrogen and were kept in - 80 °C until LMD. 

Frozen sections were obtained from the samples, and were mounted on membrane 

slides. Endometrial glands were captured by laser microdissection (Figure 5.1). 

mRNA was extracted, and integrity was assessed at the Genomics Research Facility, 

Warwick School of Life Sciences, using Agilent 2100 Bioanalyzer with a RNA 6000 

Nano chip. The samples were deemed suitable for sequencing if RNA integrity 

number (RIN) > 5.0 and 28S/18S rRNA ratio > 0.9 (Supplementary table 5.1). 

Complementary DNA synthesis and amplification were also performed by Genomics 

Research Facility, Warwick School of Life Sciences, using Ovation RNA-Seq System 

V2 (Nugen Technologies). Library preparation and sample barcoding were produced 

using the Ovation Ultralow System V2 1-16 (Nugen Technologies). The libraries were 

sent to the Wellcome Trust Centre for Human Genomics – High Throughput 

Genomics, Oxford, UK for 100pb paired sequencing on Illumina HiSeq 4000 system. 

Data were processed and analysed in collaboration with Dr Pavle Vrljicak.  
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Principal component analysis showed the libraries clustering separately according to 

the time-point of the secretory phase (Figure 5.2). A total of 702 DEGs in at least one 

pair-wise comparison were detected, using the online tool DESeq2 and Bonferoni 

correction. Between LH+5 and LH+8, 565 genes were differentially expressed. 

Between LH+5 and LH+11, there were 295 DEGs, and between LH+8 and LH+11, 

70 DEGs were identified.  

Using K-means cluster analysis, 5 different clusters were found representing the 

temporal expression pattern of the DEGs (Figure 5.3). The different patterns suggest 

a more pronounced change from early to mid-secretory phase than from mid- to late 

secretory phase.  

 

Table 5.1 Clinical characteristics of patients from LH-timed endometrial gland 

assay.  

Groups LH+5 (n=3) LH+8 (n=3) LH+11 (n=3) Statistical 
significance 

Age 36 (32-40) 38 (34-43) 33 (32-38) No 
BMI 26 (25-29) 24 (23-30) 23 (22-25) No 
Miscarriage 5 (1-15) 0 (0-1) 4 (2-5) No 
Live birth  0 0 0 (0-1) No 

 Data are presented as median (range) 

 

 

 

Figure 5.1 LMD of human endometrial glands. (A) Bright field image of a 10 µm 

section of human endometrium stained with cresyl violet and eosin-Y. (B) The same 

endometrial section from the previous image with a laser microdissected gland. 
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Figure 5.2 Principal component analysis of RNA-seq data from LH-timed laser 

microdissected endometrial glands in the secretory phase of the menstrual 

cycle. Principal component analysis of RNA sequencing data from human 

endometrial glands captured in the secretory phase of the menstrual cycle segregates 

the libraries according to the time-points in the secretory phase (LH+5, LH+8 or 

LH+11). (n = 9).  
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Figure 5.3 Cluster analysis of temporal expression patterns of DEGs in 

endometrial glands from different time-points in the secretory phase. DEGs in 

at least one pair-wise comparison using DESeq2 and subjected to K-means cluster 

analysis using MultiExperiment Viewer v4.9.0 (MeV) uncovered 5 temporal 

expression patterns.  
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5.2.2 Gene Ontology Analysis of Glandular Transcriptome, During 

the Secretory Phase 

DEGs in the temporal clusters were submitted to gene ontology (GO) analysis using 

DAVID Bioinformatics Resources 6.8. Only temporal clusters C and E showed 

significant GO categories (P < 0.05) after Benjamini multiple testing correction. The 

Identified GO categories in these clusters were compatible with processes arising 

during the acquisition of endometrial receptivity (Supplementary table 5.2 and 5.3). In 

cluster C, which include DEGs that peaked at the mid-secretory phase, categories 

such as adhesion, extracellular matrix, inflammation, cytokine signalling and vesicles 

emerged, and are directly connected to events taking place during embryo 

implantation (Figure 3.4, top panel). Most of the GO categories engendered from 

cluster E comprised events connected to cell division (Figure 3.4, bottom panel). The 

genes in this cluster are downregulated during the mid- and late secretory phases. 

The findings are consistent with the inhibition of endometrial epithelial proliferation in 

the period.  
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Cluster C 

 

Cluster E 

 

Figure 5.4 GO analysis of temporal clusters C and E.  GO terms were obtained by 

DAVID Bioinformatics Resources 6.8. REVIGO online tool was used to summarize 

GO categories. Clusters C and E showed significant results following multiple testing 

correction (Benjamini). Only GO terms with adjusted P < 0.05 were plotted.  Plot size 

indicates the frequency of the GO term in the underlying GOA database (Barrell et al. 

2009). 
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5.2.3 Validation of Glandular Transcriptome Profile 

To validate my data, I compared the results to two datasets available in GEO Datasets 

(https://www.ncbi.nlm.nih.gov/gds) that examined whole endometrial tissue, using 

microarray technology. The first study analysed gene expression in the proliferative, 

early secretory, mid-secretory and late secretory phases of the menstrual cycle 

(GSE4888, Talbi et al., 2006). The other compared proliferative, early secretory and 

mid-secretory phase in control women and in women with endometriosis diagnosis 

(GSE6364, Burney et al., 2007). For my comparisons, I excluded the data from 

endometriosis patients. The expression of the identified DEGs in the temporal clusters 

were assessed in both datasets and plotted as heat-maps (Figure 3.5). For each 

gene, the highest expression level was considered as 100%, and other gene 

expression levels were calculated based on this assumption. The changes from early 

to mid-secretory phase were remarkably consistent with our findings. When 

comparing GSE4888 dataset to our data, during the mid- to late secretory phase, 

similarities were more evident for clusters B and E. When I focused on specific genes, 

some of the most upregulated and highest expressed genes in the receptive phase 

in two previous studies were also significantly induced in my data (Supplementary 

table 5.4 and 5.5). These findings confirm the importance of the endometrial glands 

for promotion of a receptive endometrium.  

 

 

 

                                                      

https://www.ncbi.nlm.nih.gov/gds
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Figure 5.5 Comparison of temporal clusters with external datasets. Heat maps 

displaying transcription of DEGS from the temporal clusters in two publicly available 

microarray datasets (GEO Profiles; ID: GSE4888, GSE6364) generated from 

endometrial tissue in different phases of the menstrual cycle. Transcript levels were 

expressed in percentage according to the colour bar on top of the heat-maps. The 

highest transcript levels were rated as 100% for each individual gene. PE: proliferative 

endometrium; ESE: early secretory endometrium; MSE: mid-secretory endometrium; 

LSE: late secretory endometrium.  
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5.2.4 The Endometrial Gland transcriptome in Recurrent Missed 

Miscarriage 

The most profound genomic modifications in endometrial glands were verified during 

the mid-secretory phase. Therefore, I chose glands from this phase to study the 

differences between control subjects and women who experienced RMM (Table 3.2). 

The glands were captured by LMD. Total mRNA was extracted, assessed for integrity 

(Supplementary table 5.6), amplified, and used for library preparation as previously 

described. The libraries were sent to the Wellcome Trust Centre for Human Genomics 

– High Throughput Genomics, Oxford, UK for 100pb paired end sequencing with 

Illumina HiSeq 4000 system. Data was processed and analysed in collaboration with 

Dr Pavle Vrljicak. Principal component analysis did not segregate the two groups: 

control subjects and patients who suffered RMM. Although the wide-genome profile 

did not show clear difference between the groups, using DESeq2 analysis it was 

possible to detect 2014 DEGs: 1063 up-regulated in recurrent missed miscarriage 

cluster, and 951 down-regulated in the same cluster. Gene ontology analysis of the 

DEGs, using DAVID Bioinformatics Resources 6.8, revealed 25 GO terms out of 60 

involved in mitochondrial activity (Figure 3.7; supplementary table 5.7). All the genes 

within those categories were up-regulated in the RMM group.  
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Table 5.2 Clinical characteristics of patients from RMM vs control endometrial 

gland RNA sequencing.  

Groups Control (n=8) Recurrent missed 
miscarriage (n=8) 

P 

Age 35.5 (33-42) 38.5 (29-41) P = 0.8592 
BMI 23.5 (21-36) 24 (22-31) P = 0.7371 
Day of cycle LH+9 (8-10) LH+8 (7-9) P = 0.1251 
Miscarriage 0 (0-2) 3.5 (3-8) P = 0.0002 
Live birth  1 (0-2) 0.5 (0-2) P = 0.8858 

  Data are presented as median (range) 

 

 

 

Figure 5.6 Principal component analysis of RNA sequencing data from control 

subjects and patients who suffered from recurrent missed miscarriage. 

Principal component analysis of RNA-seq data from control subjects (C) (n = 8) and 

patients who suffered from recurrent missed miscarriage (RMM) (n = 8) does not 

segregate the two groups.  
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Figure 5.7 Gene ontology (GO) analysis of the RNA sequencing data from 

control subjects and patients who suffered from recurrent missed miscarriage.  

GO terms were obtained by DAVID Bioinformatics Resources 6.8. REVIGO online 

tool was used to summarize GO categories. Only GO terms with adjusted P < 0.05 

were plotted.  Plot size indicates the frequency of the GO term in the underlying GOA 

database (Barrell et al. 2009). 
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5.2.5 Validation of RNA Sequencing for Recurrent Missed 

Miscarriage 

Two up-regulated genes (ALKBH7 and ZNF319) and four down-regulated genes 

(FAM89A, MFAP4, TIMP3 and NID2) in the recurrent missed miscarriage group were 

selected for validation of the RNA sequencing data. Independent endometrial glands 

from 3 control subjects and 3 patients who suffered from recurrent missed miscarriage 

were captured by LMD. Total mRNA was extracted and used for cDNA synthesis. 

Expression of the mentioned genes was measured by RT-qPCR. The two up-

regulated genes in the recurrent missed miscarriage group in the RNA sequencing 

data were also significantly up-regulated in the samples used for RT-qPCR. Two out 

of four of the down-regulated genes in the recurrent missed miscarriage (FAM89A 

and TIMP3) were also significantly down-regulated in the samples used for RT-qPCR. 

Other two genes (MFAP4 and NID2) were also down-regulated, but the differences 

between the two groups were not statistically significant. Variability in the expression 

of latter genes in the control group was high, which could account for the lack of 

significance (Figure 3.8). Genes encoded by mitochondrial DNA were not analysed 

separately.  
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Figure 5.8 Validation of RNA sequencing data from control subjects and 

patients who suffered from recurrent missed miscarriage. mRNA from 

endometrial glands from control subjects and patients who suffered from recurrent 

missed miscarriage was extracted and used for cDNA synthesis. Expression of two 

up-regulated genes (ALKBH7 and ZNF319) and four down-regulated genes 

(FAM89A, MFAP4, TIMP3 and NID2) in recurrent missed miscarriage group from 

RNA sequencing data was measured. P values were calculated using a non-

parametric test (Mann-Whitney U test). 
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5.3 Discussion 

This is the first analysis of the human endometrial gland transcriptome during the 

secretory phase, enabling the recognition of a genomic signature for these structures 

during the receptive period. Our findings were strikingly similar to previous data sets 

using whole endometrial tissue, suggesting that the most drastic rearrangements 

during the window of implantation are due to changes in the endometrial glands and 

not in the luminal epithelium, as is often asserted. The fold change of genes in the 

mid-secretory phase was strikingly higher in my data, when compared to previous 

studies. The use of endometrial glands instead of whole endometrium may explain 

this contrast. In the whole tissue analysis the expression of regulated genes in the 

glands would be masked by the global expression in the endometrium and its other 

cell types. The use of microarray and different methods for analysis could also impact 

on the results. Another difference between my data and the data I used for 

comparisons was the endometrial dating. In Talbi et al. (2006) and Burney et al. 

(2007) studies, the endometrium was histologically assessed for defining the phases. 

Díaz-Gimeno et al. (2005) also used the LH surge as a reference, but they chose 

LH+2 and LH+7, labelled as early and mid-secretory endometrium, respectively. This 

may explain the less pronounced changes observed from mid- to late secretory phase 

in my data. Some authors include LH+11 day in the window of implantation (Achache 

and Revel, 2006, Fatemi and Popovic-Todorovic, 2013, Zhang et al., 2013).  

The GO terms that emerged in the mid-secretory phase are consistent with the events 

taking place during embryo implantation. The main changes observed in the plasma 

membrane of endometrial epithelial cells, during the window of implantation, are the 

expression of adhesion molecules (Singh and Aplin, 2009). A remodelling of the 

extracellular space and ECM occurs in order to accommodate the implanting 

blastocyst (Salamonsen and Nie, 2002). Recruitment of dendritic cells and 

macrophages are a common feature of response to wounding and uterine receptivity 
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(Lee et al., 2011). An acute inflammatory response takes place in the initial phase of 

implantation, involving intense cytokine signalling (Dekel et al., 2014). An increase in 

cytoplasmic vesicles in endometrial gland cells can be detected during the active 

period of gland secretion (Hempstock et al., 2004). The GO terms yielded from 

temporal cluster C match all these phenomena. DEGs in this cluster displayed a peak 

in the mid-secretory phase. By contrast, DEGs in the cluster E are down-regulated 

after the early secretory phase. The GO terms produced from this cluster are all 

related to cell division. P4 levels increase along the first half of luteal phase. 

Endometrial epithelial proliferation is inhibited by P4 (Kurita et al., 1998).  

The endometrial gland transcriptome of patients who suffered from RMM suggested 

possible affected cell functions in this condition. Out of 60 GO terms generated, 25 

were somehow involved in mitochondrial activity. All the genes in these categories 

were up-regulated in the recurrent miscarriage group. ATP synthases (ATP5I, 

ATP5G3, ATP5L, APT5E, ATP5J2, MT-ATP6) produce ATP from ADP and inorganic 

phosphate (Wittig et al., 2009, Pagadala et al., 2011). Cytochrome c oxidases (MT-

CO3, MT-CO2, COX5A, COX5B, COX6A1, COX7A2, COX7B, COX8A) and 

mitochondria encoded-NADH dehydrogenase (MT-ND2, MT-ND3, MT-ND4) are 

directly involved in oxidative phosphorylation and respiratory electron transport chain 

(Weiss et al., 1991, Abril et al., 2008, Wikström, 2010). COA3 regulates the assembly 

of cytochrome C (Ostergaard et al., 2015). Solute carriers family 25 A (SLC25A1, 

SLC25A14, SLC25A11, SLC25A22) and mitochondria outer and inner translocase 

complexes control the transport of small metabolites and proteins through the 

mitochondria membranes (Hönlinger et al., 1996, Rehling et al., 2004, Gutiérrez-

Aguilar et al., 2013, Palmieri, 2013). TXN2, PRDX5 and OSER1 have antioxidant 

roles (Nguyên-nhu and Knoops, 2003, Yuan et al. 2004, Pérez et al., 2007, Zhang et 

al., 2007, Barl et al., 2016). ALKBH7, MTCH1 and APOPT1 regulate mitochondria-

mediated apoptosis (Lamarca et al., 2007, Fu et al., 2013, Melchionda et al., 2014, 

https://en.wikipedia.org/wiki/Electron_transport_chain
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Wang et al., 2014). I postulated that an imbalance in gland-cells energy spending 

would lead to premature exhaustion of the endometrial glands, deficient histiotrophic 

support and, as a consequence, to foetal underdevelopment and demise. I have 

demonstrated reduced clonogenicity of endometrial gland cells in patients with 

recurrent missed miscarriage (Chapter 2). Mitochondria density and activity are low 

in stem-cells and increase upon differentiation (Mandal et al., 2010, Prigione et al., 

2010). Therefore higher expression of mitochondria related genes in recurrent missed 

miscarriage samples could simply reflect the lower amount of clonogenic cells in the 

glands of these patients. These possibilities need to be further explored.  
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6.1 Isolation, Culture and Reprogramming of HEEC 

The problem of cell cycle arrest, disturbing proliferation of HEECs in vitro was 

corroborated by my research. Once cells were isolated from the tissue, plated as 

monolayers, and cultured in non-specific medium, they exhibited protracted growth 

and developed acute senescence compared to HESCs. Furthermore, stimulation with 

ovarian steroids and embryonic cues (trypsin and hCG) did not evoke differentiation 

responses. Conditional reprogramming, targeting cytoskeleton remodelling (ROCK 

inhibitor) and increase of TERT activity (conditioned medium from irradiated 

fibroblasts) improved HEEC proliferation and partially rescued them from acute 

senescence. This approach enabled expansion and freezing, allowing the 

establishment of stocks of cells from patients with specific clinical characteristics or 

conditions.  

Reprogrammed HEECs remained unresponsive to sex steroids and embryo-derived 

signals, however, decidualized stromal secreted factors elicited differentiation, 

enhanced proliferation, and reduced senescence. Which soluble factors from 

differentiated stroma induced the responses in the HEECs is still a matter of 

speculation, and future investigation could unravel another crucial aspect of the 

epithelial-stromal cross-talk.  An obvious candidate would be PRL, since it is a major 

protein secreted by the decidualized endometrial fibroblasts. However, no response 

was observed when HEECs were exposed to this hormone. Transcriptome, proteome 

and secretome analysis could provide a list of decidua-secreted proteins to be further 

investigated. Some of these studies detected noteworthy functional annotations such 

as cell cycle regulation, cytoskeleton remodelling, and growth factor and cytokine 

signalling (Takano et al., 2007, Garrido-Gomez et al., 2010, Paule et al., 2010). An 

interesting observation was that conditioned medium from HESCs decidualized for 4 

and 10 days trigger a similar response. Gene expression during decidualization is 

dynamic, with pronounced time-dependant changes. Salker et al. (2012) identified a 
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dramatic shift in the expression of several inflammatory mediators between HESCs 

decidualized for 2 or 8 days. Lucas et al. (2015) also observed great variability within 

18 secreted proteins (cytokines, chemokines and growth factors) from HESCs 

decidualized for 2, 4 or 8 days. These changes could help selecting the most likely 

HEEC differentiation factors, through elimination of those that show marked variation 

between early and late decidualization period. Some factors expressed by the stroma, 

such as HGF, FGF7, FGF10, WNT4, WNT5A, are involved in endometrial 

adenogenesis and development, and may be implicated in the gland differentiation 

observed with decidualized HESC conditioned medium (Taylor et al., 2001, Cooke et 

al., 2013).  

Basal adenylyl cyclase activity in the endometrium is increased during the secretory 

phase, and this activity is more highly induced upon PGE2 treatment in the same 

phase compared to proliferative phase (Tanaka et al., 1993). P4 enhances PGE2-

promoted cAMP production in HESCs (Houserman et al., 1989). This accounts for the 

extremely high tissular content of cAMP in the luteal-phase endometrium (Bergamini 

et al., 1985). Considering these observations, it is reasonable to cogitate that stroma-

derived cAMP could be a possible factor driving epithelial differentiation, during 

decidualization. Indeed, when later, I treated endometrial gland organoids with this 

second messenger an up-regulation of glycodelin gene was observed.  

The data corroborate the importance of the epithelial-stromal cross-talk in the 

endometrial function, and indicated a novel role for the decidual cells in the regulation 

of epithelial proliferation, differentiation and senescence.  

6.2 Three Dimensional Culture of HEECs 

Cells in monolayer culture do not polarize properly, having a limited space to interact 

with neighbouring counterparts (Baker and Chen, 2012). This problem is even more 

pronounced when using epithelial glandular cells (Rodriguez-Boulan and Macara, 
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2014). Trafficking of molecules must be organized to allow secretion through the 

lumen and cross-talk with the underlying compartment, and polarity is essential for 

this coordination. Furthermore, receptors and ion channels are usually located in the 

apical domain, which is also crucial for signal transduction (Kaplan et al., 2009). 

Based on these facts I conjectured that HEEC monolayers did not respond to 

differentiation stimuli due to deficient polarization, which prompted me to develop a 

method for 3D culture.  

HEEC spheroids were relatively easy to produce, however it is not so simple to handle 

them. Due to the limited volume of media in the hanging drops, the structures must 

be soon transferred to a plates or dishes that holds larger liquid volume. Rupture of 

the structures during the transfer were frequent, and a large number of spheroids 

were required to extract a reasonable mRNA amount. Another risk was the possibility 

of deficient perfusion of cells in the core of spheroids (Edmondson et al., 2014). Two 

approaches could be used to circumvent this problem. First, there are viability assays 

for spheroids described in the literature (Bell et al., 2016, McMillan et al., 2016). 

Assessing the viability, it would be possible to optimize the number of cells used to 

produce the spheroids, although risking to further reduce the quantity of retrieved 

mRNA. Second alternative is the use of microcarrier cultures, which are based on the 

use of microbeads for the cells to attach. The core is occupied by the beads and the 

cells are spread onto the surface. Many beads can be added in the dish at the same 

time, enabling work with larger number of cells (Goh et al., 2013).  

Another modality of 3D culture attempted was the polymer scaffolds. This work is still 

in progress, in order to optimize the material, the pore size and the chemoattractant 

used for coating the scaffold. I have demonstrated that the cells grow in a 3D 

disposition, however polarity is still to be tested with the staining of some subcellular 

structures, such as microvilli and adhesion molecules from the lateral and basal 

domains (Eritja et al., 2010). There is a strong possibility that the cells are laying in a 
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configuration more akin to LE than GE, based on the staining performed so far. 

Expansion medium could be tested to induce a glandular arrangement in the scaffold. 

An interesting alternative to the synthetic scaffolds has just been explored by our 

group: the use of decellularized scaffolds. Fragments of tissue are submitted to 

physical (agitation, thermal shock, ultrasound and hydrostatic pressure), chemical 

(detergents, solvents, ionic solutions) or enzymatic process to remove the cells and 

preserve the ECM (Tapias and Ott, 2014). The ECM scaffold can be then used to 

harbour new cells. Evidence has also indicated the advantage of the utilization of 

scaffolds coupled with microfluidic devices (Tehranirokh et al., 2013). Employing a 

system of channels and chambers, it is possible to delivery substrates, nutrients and 

reagents in a controlled way, improving the cell / tissue microenvironment. 

Using a modified adult stem-cell medium it was possible to establish endometrial 

gland organoids with high efficiency. These organoids could be derived from 

individual patients, expanded and be used for functional studies, enabling 

personalized study of uterine glands in vitro. Some improvements still must be done 

to further purify and characterize these structures. For example, the presence of a 

HEEC monolayer, underlying the Matrigel drop, possibly masks organoid responses 

to the differentiation cues applied. The clear more pronounced induction of PAEP in 

the organoids in OFE assays strongly suggests that. In this assay, a lower number of 

cells is seeded in a small volume of Matrigel, and the presence of HEECs attached 

to the well bottom is scarce or inexistent. Optimization of the seeding cell number, the 

volume of basement membrane matrix, and the harvesting of cells may solve this 

problem.  

Glycogen production did not differ between control and differentiated organoids. Once 

more, the presence of the underlying HEEC monolayer may be accounted for hiding 

the differences between the two groups. Another possibility is a technical problem 

with the employed assay. It ultimately measures glucose content in the lysate, after 
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digestion of glycogen. Reducing substances and high protein content in the samples 

may interfere with the observed results. The organoids are retrieved from Matrigel 

using Cell Recovery Solution and several washes, however it is impossible to totally 

remove the matrix. The composition of this product is variable, but a high amount of 

protein is always present (Kleinman et al., 1986, Vukicevic et al., 1992). Therefore it 

is not possible to rule out the chance of the Matrigel or even the medium components 

influencing the results of the assay. An interesting alternative is the periodic-acid 

Schiff staining. This method is used for detecting glycogen in tissue and could be 

used with the organoids, provided that sections of intact organoids are obtained.  

The possibility of studying endometrial glands in vivo creates opportunities to further 

investigate their role in stromal decidualization, endometrial receptivity and immune 

regulation of maternal tolerance to the foetus, or even to unravel new functions for 

these glands. Co-culture with stromal cells or blastocysts allows exploration of the 

exchange of signals between these endometrial compartments, and between the 

implanting embryo and the endometrium. Research on several clinical conditions, 

such as endometriosis, RPL, endometrial hyperplasia and endometrial cancer, can 

also profit with the establishment of patient-specific gland organoids. The discovery 

of specific gland defects in RPL and endometriosis can aid in the development of a 

treatment. Identified prognostic factors for hyperplasia clinical evolution, i.e. the 

chance of developing an invasive cancer, and for endometrial adenocarcinoma 

progression may guide therapeutic choices and even preventive measures. 

The use of 3D culture methods for investigation of endometrium is a promising tool in 

the advance of our knowledge on this intriguing and complex tissue. Furthermore, the 

study of uterine glands in vitro enables a deeper understanding of the role of these 

structures in reproduction and in pathological conditions.   

 



191 
 

6.3 Transcriptome of Endometrial Glands in the Mid-Secretory 

Phase 

The endometrial gland transcriptomic signature during the WOI was markedly 

concordant with previous whole endometrial tissue studies. This similarity suggests 

that the transformations taking place during the receptive phase are mainly due to 

changes in the GE. Actually, it is not possible at the moment to affirm that the same 

behaviour is not present in the LE. Remarkable differences have been demonstrated 

between these two portions of the endometrial compartment (Demir et al., 2002, 

Niklaus and Pollard, 2006), besides, several of the top most up-regulated genes in 

mid-secretory phase, such as PAEP, DPP4, CXCL14, DEFB1, SLP1 are chiefly 

expressed by GE (Sepällä et al., 2002, Imai et al., 1992, Mokhtar et al., 2010, Das et 

al., 2007, King et al., 2000). The significant GO terms that emerged from two clusters 

of my data are consistent with phenomena observed during the acquisition of 

endometrial receptivity and blastocyst implantation, corroborating the role of 

endometrial glands in the preparing the endometrium to accommodate the embryo.  

6.4 Endometrial Glands in RMM 

Due to the essential role of uterine glands to provide histiotrophic support to the foetus 

during early pregnancy I postulated that defects in these epithelial compartment 

would be implicated in cases or RMM. In such cases, the underdeveloped embryo 

cannot be identified or a protracted foetal development is followed by demise (Sur 

and Raine-Fenning 2009).  

Clonogenicity of endometrial gland cells from RMM cases was significantly decreased 

compared to that of control subjects, as demonstrated by the OFE assay. The number 

of organoids formed after seeding at clonal density was lower and the diameter was 

usually smaller in the RMM group. I postulate that these progenitor cells would fail to 
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expand when demanded, reducing the decidual gland density at the maternal-foetal 

interface, leading to deficient histiotrophic support and eventually foetal death.  

When analysing the RNA sequencing data from control subjects and RMM cases, 

principal components did not split the two groups, nevertheless a high number of 

DEGs were detected by DeSeq2 analysis. GO analysis produced several categories 

involved in mitochondrial functions, such as ATP synthesis, free-radical scavenging 

and apoptosis. All the DEGs were up-regulated in the RMM group. Gland secretion 

is a bioenergetically demanding activity, involving protein translation, assembly, 

folding, packaging, trafficking and exocytosis, requiring high efficiency from the 

mitochondrial machinery. I postulate that in RMM cases, the uterine glands develop 

premature exhaustion, before the establishment of the haemochorial support by 

placenta, due to mitochondrial defect. Since these organelles are also involved in 

regulation of apoptosis and prevention of excessive oxidative stress, it might be that 

impairment in these functions could lead to uncontrolled DNA damage and cell death 

in the placenta. The finding of higher expression of mitochondria-associated genes in 

the RMM cases may be related to my previous observation of decreased gland 

clonogenicity in such condition. Stem cells exhibit lower mitochondrial density and 

activity (Mandal et al., 2010, Prigione et al., 2010). RMM samples would harbour less 

stem-like cells, thereby presenting higher mitochondrial contents. Analysis of 

mitochondrial activity in endometrial gland organoids could further explore the role of 

the organelle in RMM. The Seahorse XF Cell Mito Stress Test (Seahorse Bioscience) 

measures direct cell oxygen consumption, estimating parameters of mitochondria 

function, such as basal respiration, ATP-linked respiration, H+ (proton) leak, maximal 

respiration, spare respiration and non-mitochondrial respiration (Isono et al., 2016). 

Ultrastructural analysis of the cells in the organoids could allow direct visualization of 

mitochondria, thereby enabling to analyse mitochondria density, shape and size. 

Curiously, Armstrong et al. (1973) described a giant mitochondria found exclusively 
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in endometrial gland cells, from day 13 to day 22 of the menstrual cycle. These 

organelles were frequently connected to the endoplasmic reticulum. Dockery et al. 

(1993) observed lower density and smaller size of mitochondria in infertile patients in 

the early secretory phase (LH +4). The same group detected a decrease in 

mitochondrial size at LH+5 in patients receiving the anti-progesterone drug, 

mifepristone (Dockery et al., 2007). 

Glandular defects are most likely associated with recurrent empty sacs or malformed 

foetus with normal karyotypes. In these cases, the deficient supply of nutrients 

(amongst them retinoic acid) and growth factors, by impaired endometrial glands, 

would lead to defective organogenesis, even though no chromosomal abnormality is 

present. Despite the reasonable number of samples, my results emerge only as a 

starting point for future investigation. It also pioneers the approach of the patient 

outside the pregnancy, being possible to establish a causal association. Larger 

sample sizes and stringent selection of cases and controls will help to validate or 

reject the observations.      
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Supplementary table 5.1: RNA integrity number (RIN) and 28s/18s rRNA ratio of 
the samples used in LH-timed endometrial gland assay 

Sample ID RIN 28s/18s rRNA ratio 

ES1 6.2 1.2 

ES2 6.8 1.2 

ES3 7.2 1.3 

MS1 6.9 1.2 

MS2 7.0 1.3 

MS3 7.0 1.2 

LS1 6.8 1.3 

LS2 6.8 1.2 

LS3 6.7 1.0 
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Supplementary table 5.2: GO terms and categories for temporal cluster C. 
Categories and terms were only included if P < 0.05.  

Category Term Adjusted  
P 

GO:0044421 extracellular region part 9.72E-07 

 GO:0005576 extracellular region 3.44E-06 

 GO:0009611 response to wounding 0.001993 

 GO:0005615 extracellular space 0.001696 

 GO:0002526 acute inflammatory response 0.020448 

 GO:0007155 cell adhesion 0.028643 

 GO:0022610 biological adhesion 0.021954 

 GO:0004896 cytokine receptor activity 0.04803 

 GO:0050729 positive regulation of inflammatory response 0.039032 

 GO:0031093 platelet alpha granule lumen 0.028022 

 GO:0060205 cytoplasmic membrane-bounded vesicle lumen 0.029373 

 GO:0005604 basement membrane 0.027283 

 GO:0044420 extracellular matrix part 0.023538 

 GO:0031983 vesicle lumen 0.02183 

 GO:0005578 proteinaceous extracellular matrix 0.020632 

 GO:0031410 cytoplasmic vesicle 0.02256 

 GO:0031012 extracellular matrix 0.02948 

 GO:0005577 fibrinogen complex 0.027822 

 GO:0031982 vesicle 0.026376 

 GO:0031091 platelet alpha granule 0.026035 

 GO:0032103 positive regulation of response to external stimulus 0.031942 

 GO:0042060 wound healing 0.036671 
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Supplementary table 5.3: Some of GO categories and terms for temporal cluster 
E. Categories and terms were only included if adjusted P < 0.05.  

Category Term   Adjusted  P 

GO:0000279 M phase 1.1E-10 

 GO:0000280 nuclear division 1.28E-10 

 GO:0007067 mitosis 1.28E-10 

 GO:0000087 M phase of mitotic cell cycle 1.2E-10 

 GO:0048285 organelle fission 1.36E-10 

 GO:0007049 cell cycle 1.39E-09 

 GO:0022402 cell cycle process 1.75E-09 

 GO:0022403 cell cycle phase 2.21E-09 

 GO:0000278 mitotic cell cycle 9.3E-09 

 GO:0051301 cell division 4.91E-08 

 GO:0007059 chromosome segregation 1.15E-07 

 GO:0015630 microtubule cytoskeleton 4.81E-07 

 GO:0005819 spindle 4.88E-06 

 GO:0007346 regulation of mitotic cell cycle 9.2E-06 

 GO:0000793 condensed chromosome 7.85E-06 

 GO:0044430 cytoskeletal part 2.5E-05 

 GO:0005694 chromosome 6.29E-05 

 GO:0000777 condensed chromosome kinetochore 8.93E-05 

 GO:0044427 chromosomal part 8.78E-05 

 GO:0043228 non-membrane-bounded organelle 8.99E-05 

 GO:0043232 intracellular non-membrane-bounded organelle 8.99E-05 

 GO:0000779 condensed chromosome, centromeric region 0.000144 

 GO:0000775 chromosome, centromeric region 0.000139 

 GO:0005856 cytoskeleton 0.000213 

 GO:0051726 regulation of cell cycle 0.001306 

 GO:0000776 kinetochore 0.000303 

 GO:0010564 regulation of cell cycle process 0.002878 

 GO:0000070 mitotic sister chromatid segregation 0.003354 

 GO:0000819 sister chromatid segregation 0.003588 

 GO:0000075 cell cycle checkpoint 0.004135 

 GO:0005815 microtubule organizing center 0.001249 

 GO:0005813 centrosome 0.002022 
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Supplementary table 5.4: Up-regulated genes from early to mid-secretory phase 
in natural menstrual cycle. Comparison of the present study with two similar 
studies. 

Gene name Present study    

(Fold change) 

Talbi et al., 2006          

(Fold change) 

Díaz-Gimeno et al., 2005  

(Fold change) 

DPP4 263.47 12.34 7.72 

GPX3 217.90 32.52 35.49 

COMP 203.97 14.22 30.95 

GAST 167.2541 6.44 5.00 

AOX1 152.87 5.26 4.82 

C4BPA 151.39 6.67 13.14 

CXCL14 132.06 39.13 14.02 

PAEP 119.93 23.55 31.43 

LAMB3 96.32 6.07 11.32 

CP 77.86 4.93 6.34 

LIF 77.30 4.11 15.03 

TSPAN8 73.06 11.57 12.90 

CD55 57.23 8.62 22.47 

SLC15A1 50.61 13.29 5.59 

ABCC3 46.54 2.35 5.98 

APOD 37.75 3.55 4.32 

TCN1 31.20 9.58 14.76 

NNMT 29.74 1.49 7.74 

SERPING1 22.91 4.82 5.16 

MAOA 21.9 3.99 9.39 

DEFB1 19.9 8.62 4.17 

MT1H 17.83 1.70 3.12 

SLC1A1 17.57 21.66 17.57 

GBP2 17.46 2.94 3.14 

MUC16 15.24 7.61 8.01 

CRISP3 13.32 3.90 5.09 

C3 12.10 4.35 4.67 

VCAN 11.40 4.37 3.24 

ANXA4 10.25 4.09 4.27 

SLPI 9.90 4.01 4.39 

SYNE2 9.30 4.22 3.52 

ARID5B 8.36 4.17 4.19 
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Supplementary table 5.5: Down-regulated genes from early to mid-secretory 
phase in natural menstrual cycle. Comparison of the present study with two other 
similar studies.  

Gene name Present study   

(Fold change) 

Talbi et al., 2006 

(Fold change) 

Díaz-Gimeno et al., 2005 

(Fold change) 

ALPL -60.48 -5.75 -4.44 

PLA1A -46.93 0.98 -3.42 

LRP4 -45.92 -9.64 -5.87 

CTNNA2 -32.78 -13.35 -8.02 

OPRK1 -24.41 -19.40 -3.17 

CSRP2 -21.69 -10.65 -9.62 

HLA-DOB -21.05 -13.27 -11.06 

SLC15A2 -19.55 -8.31 -8.44 

LRRC17 -19.30 -6.39 -4.64 

ATP6V0E2 -19.30 -5.33 -9.82 

EDN3 -16.51 -4.09 -5.30 

NR4A2 -15.15 -4.53 -7.05 

SORD -14.32 -4.38 -3.21 

BUB1B -13.40 -1.52 -3.05 

CCNB2 -11.61 -1.29 -3.23 

GALNT12 -11.00 -4.33 -4.85 

PRKCQ -9.50 -2.84 -3.08 

IDH1 -9.46 -5.31 -3.68 

NDRG2 -8.92 -3.29 -3.40 

KHDRBS3 -8.46 -3.61 -3.51 

SOX17 -7.90 -4.76 -4.24 

CKB -7.79 -2.51 -3.61 

CREB3L1 -7.56 -4.29 -3.77 

BARD1 -7.55 -3.53 -3.47 

ANK3 -7.06 -5.31 -4.79 

STEAP4 -6.86 -5.47 -3.04 

DFNB31 -6.56 -4.94 -3.54 

HSD11B2 -5.63 -3.01 -4.03 

MSX1 -5.10 -3.49 -3.26 

MMP26 -4.74 -3.45 -4.66 

OFD1 -3.41 -3.92 -3.44 
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Supplementary table 5.6: RNA integrity number (RIN) and 28s/18s rRNA ratio of 
the samples used in missed miscarriage assay. 

Sample ID RIN 28s/18s rRNA ratio 

C1 6.9 1.0 

C2 6.6 1.2 

C3 6.4 1.0 

C4 7.8 1.1 

C5 6.0 1.0 

C6 6.3 1.0 

C7 6.4 1.0 

C8 7.2 1.1 

C9 6.9 1.1 

RMM1 6.4 1.1 

RMM2 6.8 1.3 

RMM3 6.6 1.0 

RMM4 6.1 1.1 

RMM5 7 1.4 

RMM6 7.3 1.3 

RMM7 7.2 1.1 

RMM8 5.7 1.1 

RMM9 7.1 1.2 
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Supplementary table 5.7: GO categories and terms of recurrent missed 
miscarriage versus control subjects RNA sequencing data. Categories and terms 
were only included if adjusted P < 0.05.   

Category Term Adjusted 
P 
  

GO:0005743 mitochondrial inner membrane 1.00882E-25 

 
GO:0006120 mitochondrial electron transport, NADH to ubiquinone 1.47052E-21 

 
GO:0005747 mitochondrial respiratory chain complex I 4.74348E-20 

 
GO:0008137 NADH dehydrogenase (ubiquinone) activity 9.02256E-18 

 
GO:0032981 mitochondrial respiratory chain complex I assembly 6.10612E-16 

 
GO:0003735 structural constituent of ribosome 1.12726E-09 

 
GO:0006123 mitochondrial electron transport, cytochrome c to 

oxygen 
1.5118E-09 

 
GO:0004129 cytochrome-c oxidase activity 1.97895E-09 

 
GO:0006412 translation 3.28961E-06 

 
GO:0070125 mitochondrial translational elongation 6.84563E-07 

 
GO:0005762 mitochondrial large ribosomal subunit 7.19562E-07 

 
GO:0070126 mitochondrial translational termination 8.07507E-07 

 
GO:1902600 hydrogen ion transmembrane transport 2.12992E-06 

 
GO:0006754 ATP biosynthetic process 2.47538E-06 

 
GO:0005753 mitochondrial proton-transporting ATP synthase 

complex 
2.17475E-05 

 
GO:0005840 ribosome 0.003633511 

 
GO:0005751 mitochondrial respiratory chain complex IV 0.000102057 

 
GO:0042776 mitochondrial ATP synthesis coupled proton transport 0.000154348 

 
GO:0019058 viral life cycle 0.000306093 
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GO:0006094 gluconeogenesis 0.000553001 

 
GO:0006614 SRP-dependent cotranslational protein targeting to 

membrane 
0.000937854 

 
GO:0000184 nuclear-transcribed mRNA catabolic process, 

nonsense-mediated decay 
0.002383755 

 
GO:0015078 hydrogen ion transmembrane transporter activity 0.000154348 

 
GO:0022625 cytosolic large ribosomal subunit 0.003589483 

 
GO:0048029 monosaccharide binding 0.005821039 

 
GO:0003899 DNA-directed RNA polymerase activity 0.005857744 

 
GO:0006364 rRNA processing 0.006877368 

 
GO:0005665 DNA-directed RNA polymerase II, core complex 0.00707246 

 
GO:0050434 positive regulation of viral transcription 0.007731698 

 
GO:0042744 hydrogen peroxide catabolic process 0.009941164 

 
GO:0036258 multivesicular body assembly 0.010299137 

 
GO:0006098 pentose-phosphate shunt 0.010477153 

 
GO:0039536 negative regulation of RIG-I signaling pathway 0.010743627 

 
GO:0019083 viral transcription 0.011011321 

 
GO:0031902 late endosome membrane 0.011362093 

 
GO:0006368 transcription elongation from RNA polymerase II 

promoter 
0.011630563 

 
GO:0006370 7-methylguanosine mRNA capping 0.013396146 

 
GO:0001054 RNA polymerase I activity 0.013814991 

 
GO:0039702 viral budding via host ESCRT complex 0.014011183 

 
GO:0000276 mitochondrial proton-transporting ATP synthase 

complex, coupling factor F(o) 
0.014052432 

 
GO:0098641 cadherin binding involved in cell-cell adhesion 0.017618238 
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GO:0005736 DNA-directed RNA polymerase I complex 0.017676902 

 
GO:0006413 translational initiation 0.018523761 

 
GO:0051537 2 iron, 2 sulfur cluster binding 0.019506866 

 
GO:0031145 anaphase-promoting complex-dependent catabolic 

process 
0.021562589 

 
GO:0016197 endosomal transport 0.02443826 

 
GO:0061621 canonical glycolysis 0.024971643 

 
GO:0000302 response to reactive oxygen species 0.026270112 

 
GO:0005868 cytoplasmic dynein complex 0.026337883 

 
GO:0098609 cell-cell adhesion 0.029300056 

 
GO:0005913 cell-cell adherens junction 0.030422093 

 
GO:0051287 NAD binding 0.032811347 

 
GO:0000398 mRNA splicing, via spliceosome 0.034105971 

 
GO:0042542 response to hydrogen peroxide 0.034439994 

 
GO:0051436 negative regulation of ubiquitin-protein ligase activity 

involved in mitotic cell cycle 
0.034715987 

 
GO:1902041 regulation of extrinsic apoptotic signaling pathway via 

death domain receptors 
0.035568928 

 
GO:0000920 cell separation after cytokinesis 0.041337226 

 
GO:0006283 transcription-coupled nucleotide-excision repair 0.042083084 

 
GO:0045454 cell redox homeostasis 0.047517331 

 
GO:0051437 

  

positive regulation of ubiquitin-protein ligase activity 
involved in regulation of mitotic cell cycle transition 

0.047517331 
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[Abstract] The isolation and primary culture of cells from human endometrial biopsies provides valuable 

experimental material for reproductive and gynaecological research. Whole endometrial biopsies are 

collected from consenting women and digested with collagenase and DNase I to dissociate cells from 

the extracellular matrix. Cell populations are then isolated through culturing, filtering and magnetic 

separation using cell-surface antigen markers. Here we provide a comprehensive protocol on how to 

isolate and culture individual cell types from whole endometrial tissues for use in in vitro experiments. 

 

[Background] The human endometrium is the inner most mucosal layer of the uterus. It consists of a 

columnar epithelium and basal stromal layer that undergoes cyclical regeneration, growth and 

transformation in response to circulating hormones. The differentiation of the endometrial lining into a 

glandular secretory phenotype provides a hospitable environment for blastocyst implantation and 

successful pregnancy. In the absence of pregnancy this layer is shed, leading to menstruation. The 

isolation and culture of cells from human endometrial biopsies allows for in vitro functional assessment 

and the study of cell characteristics in relation to patient outcomes. The isolation and culture of 

endometrial cells is an invaluable research model to investigate many aspects of gynaecological and 

obstetrical medicine including infertility, implantation failure, recurrent miscarriage and menstrual 

disorders. Whole human endometrial biopsies contain human endometrial stromal cells (HESCs), 

luminal and glandular endometrial epithelial cells (HEECs), red blood cells and a mixed population of 

immune cells. HESCs can be easily and inexpensively isolated from whole biopsies and actively 

proliferate in culture for up to 5 passages without significant change in their growth dynamics. This 

provides a large window of opportunity for experimental analysis. Furthermore, within dissociated 

HESCs there is a sub-population of perivascular progenitor mesenchymal stem-like cells that can be 

isolated using the perivascular-specific antigen SUSD2 and its cognate antibody W5C5. Here we 

provide in detail an updated and expanded protocol from those published previously (Masuda et al., 

2012; Chen and Roan, 2015) to describe steps in isolating and culturing different cell types from whole 

human endometrium. We provide further information on biopsy collection, detailed protocols for isolation 

of progenitor cells and additional procedures to increase epithelial cell yield and culturing efficiency. 

 
Materials and Reagents 
 

1. Petri-dish 92 x 16 mm (SARSTEDT, catalog number: 82.1473) 

2. Disposable scalpels (Swann Morton, catalog number: 0501) 
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3. 15 ml CELLSTAR® tubes (Greiner Bio One, catalog number: 188261) 

4. 50 ml CELLSTAR® tubes (Greiner Bio One, catalog number: 227270) 

5. 7 ml Bijoux tubes (Greiner Bio One, catalog number: 189176) 

6. FisherBrandTM Nylon mesh cell strainer, 40 µm (Thermo Fisher Scientific, Fisher Scientific, 

catalog number: 11587522) 

7. 0.2 µm Minisart® NML syringe filter (Sartorius Stedim Biotech, catalog number: 16534-K) 

8. 20 ml syringes (BD, catalog number: 300613) 

9. 60 ml syringes (BD, catalog number: 309653) 

10. Sterile pipette filter-tips 1,000 µl (Alpha Laboratories, catalog number: ZP1250S) 

11. Sterile pipette filter-tips 100 µl (Alpha Laboratories, catalog number: ZP1200S) 

12. FisherbrandTM glass Pasteur pipettes (Thermo Fisher Scientific, Fisher Scientific, catalog 

number: 1156-6963) 

13. MS columns (Miltenyi Biotec, catalog number: 130-042-201) 

14. Wallach Endocell® disposable endometrial cell sampler (Wallach Surgical Decices, catalog 

number: 908014A) 

15. Human endometrial biopsies (see step A) 

16. Cell culture media 

a. DMEM/F12 (1:1) with phenol red (Thermo Fisher Scientific, GibcoTM, catalog number: 

31330-038) 

b. L-glutamine (Thermo Fisher Scientific, GibcoTM, catalog number: 25030-081) 

c. Antibiotic/antimycotic (Thermo Fisher Scientific, GibcoTM, catalog number: 15240-062) 

d. β-estradiol (Sigma-Aldrich, catalog number: E2758) 

e. Recombinant human insulin (Sigma-Aldrich, catalog number: 91077C) 

f. Acetic acid, glacial ≥ 99.7% (Sigma-Aldrich, catalog number: 695092) 
17. Tissue digestion media  

a. DMEM/F12, phenol-free media (Thermo Fisher Scientific, GibcoTM, catalog number: 11039-

021) 

b. Collagenase from Clostridium histolyticum (Sigma-Aldrich, catalog number: C9891-500MG) 

c. DNase I from bovine pancreas (Roche Diagnostics, catalog number: 11284932001) 

18. Trypsin-EDTA, 0.25% (Thermo Fisher Scientific, GibcoTM, catalog number: 25200-056) 

19. Ficoll-paque plus medium (GE Healthcare, catalog number: 17-1440-02) 

20. Separation buffer (see Recipes) 

a. Bovine serum albumin (BSA) (Sigma-Aldrich, catalog number: A2153) 

b. Phosphate-buffered saline (PBS) (Dulbecco A) OxoidTM (Thermo Fisher Scientific, Thermo 

ScientificTM, catalog number: BR0014G) 

21. PE anti-human SUSD2, clone: W5C5 antibody (Biolegend, catalog number: 327406) 

22. Anti-PE microbeads (Miltenyi Biotec, catalog number: 130-048-801) 

23. Ethanol, absolute (Thermo Fisher Scientific, Fisher Scientific, catalog number: 10437341) 

24. Sterile distilled water 

http://www.bio-protocol.org/e2028
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25. Dextran-coated charcoal (DCC)-treated FBS (see Recipes)  

a. Charcoal (Sigma-Aldrich, catalog number: C9157) 

b. Dextran 70 (Sigma-Aldrich, catalog number: 1179741) 

c. Fetal bovine serum (FBS) (Thermo Fisher Scientific, GibcoTM, catalog number: 10500-064) 

26. Digestion media (see Recipes) 

27. Culture media (see Recipes) 

 

Equipment 
 
1. 25 cm2 CELLSTAR® culture flasks (Greiner Bio One, catalog number: 690175) 

2. 75 cm2 CELLSTAR® culture flasks (Greiner Bio One, catalog number: 658175) 

3. 5 ml serological pipettes (Greiner Bio One, catalog number: 606180) 

4. 10 ml serological pipettes (Greiner Bio One, catalog number: 607180) 

5. Pipette controller/pipette aid (e.g., STARLABS, catalog number: S7166-0010) 

6. Vacuum-driven 0.22 μm filtration system (EMD Millipore, catalog number: SCGPT05RE)  

7. LUNATM BF automated cell counter (Logos Biosystems, catalog number: L10001) 

8. LUNATM cell counting slides (Logos Biosystems, catalog number: L12001) 

9. miniMACS separator (Miltenyi Biotec, catalog number: 130-042-102) 

10. MACS multistand (Miltenyi Biotec, catalog number: 130-042-303) 

11. Walker Class II cell culture microbiological safety cabinet (Walkers Safety Cabinets, model: 

Class II MSC) 

12. FisherbrandTM FB 70155 aspirator (Thermo Fisher Scientific, Fisher Scientific, catalog number: 

11533485) 

13. Grant Instruments water bath (Grant Instruments, model: OLS200) 

14. Thermo Scientific HeracellTM 150i humidified tissue culture incubator (set at 37 °C and 5% CO2) 

(Thermo Fisher Scientific, catalog number: 51026280) 

15. Sigma 3-16KL bench-top centrifuge (Sigma Laborzentrifugen, model: 3-16KL) 

16. Bright-field Leica DMIL microscope (Leica Microsystems, model: Leica DMIL) 

 
Procedure 
 
A. Collection of human endometrial biopsies 

Endometrial biopsies are obtained from women attending the Implantation Clinic, a dedicated 

research clinic at University Hospitals Coventry and Warwickshire National Health Service Trust. All 

research was undertaken with full ethical approval and with written informed consent obtained from 

all participants in accordance with the guidelines in The Declaration of Helsinki 2000. Biopsies are 

taken during the secretory phase of the menstrual cycle using an Endocell cannula, starting from 

the uterine fundus and moving downward to the internal cervical ostium. The endometrial biopsy is 

placed in a labelled Bijoux tube containing 5 ml cell culture media, and processed immediately. 

http://www.bio-protocol.org/e2028
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Notes:  

a. Biopsy sizes vary considerably depending on the patient and clinical professional performing 

the procedure. The hormonal status of the patient and the stage of menstrual cycle in which 

biopsies are obtained will effect yielding and cell composition due to the transient phasic 

dynamics of the endometrium. Our biopsies are timed to the secretory phase of the menstrual 

cycle, but readers are encouraged to time collections around their own experimental hypothesis. 

b. Typically, biopsies have a uniform thickness (see Figure 1B) but can vary in length from < 1-6 

cm. Tissue is also fragile and may fragment on collection or in transit, or be contaminated with 

blood or mucus. Readers should follow the protocol exactly in all situations. The only exception 

is when mucus content exceeds that of endometrial tissue. In this case the biopsy is discarded.  

 

B. Tissue digestion, isolation and culture of Human Endometrial Stromal Cells (HESCs) 

Note: Ensure sterility. Work in a Class II microbiological safety cabinet and ensure full aseptic 

technique. 

1. Pre-prepare digestion media and pre-warm to 37 °C in a water bath. 

2. Decant as much media as possible from the Bijoux vial into the lid of the Petri-dish without 

discarding tissue. Transfer biopsy and any remaining media into the Petri-dish (Figure 1A). 

 

 
Figure 1. Preparation of endometrial biopsies for digestion. Collect whole biopsies in 

culture media and process immediately (A). Remove all media using a manual pipette (B) before 

dicing using a down-ward tapping motion with a sterile scalpel (C) for 5 min or until pulp-like (D). 

Tissue pieces are then digested for 1 h at 37 °C with collagenase and DNase I. 

 

http://www.bio-protocol.org/e2028


                 

5 

www.bio-protocol.org/e2028 
Vol 6, Iss 22, Nov 20, 2016 
DOI:10.21769/BioProtoc.2028

 
 

3. Manually aspirate the excess media from around the tissue using a P1000 filter tip (Figure 1B). 

Note: Do not use an aspirator or risk losing tissue. 

4. Dice the tissue with the scalpel using a downward tapping motion for at least 5 min (Figure 1C) 

or until large pieces have disappeared and the tissue appears pulp-like (Figure 1D). 

5. Add 10 ml of digestion media to the Petri-dish through a 20 ml syringe and 0.2 µm syringe filter. 

6. Transfer the media with the tissue fragments to a 50 ml conical tube using a 10 ml serological 

pipette. 

7. Shake the tube for 15 sec and incubate at 37 °C for 1 h. Shake for 15 sec at 20 min intervals to 

aid digestion.  

8. After 1 h add 10 ml of culture media to neutralize enzymatic activity and centrifuge the tube at 

280 x g for 5 min at room temperature.  

Note: It is at this stage that epithelial cells (HEECs) (see step C) or perivascular stem-cells (see 

step D) can be isolated for separate cultures. 

9. After centrifugation, aspirate the supernatant, re-suspend the cell pellet in 15 ml of culture media 

and transfer to a 75 cm2 culture flask.  

Note: Tilt the flask gently to distribute the cell suspension evenly across the culture surface. 

Avoid rotational mixing to risk concentrating cells in the center. 

10. Incubate at 37 °C in a humidified 5% CO2 environment. 

11. Change the culture media after 6-18 h to remove blood cells, tissue debris and any unattached 

human endometrial epithelial cells (HEECs). Examination under the microscope should reveal 

sub-confluent stromal cells (Figure 2A).  

Note: Confluency will vary depending on size and quality of biopsy. At this stage (see also Figure 

6), immune cells can be collected from the supernatant and separated by antigen-specific 

magnetic separation or FACS, the details of which go beyond the remit of this protocol but 

readers are directed elsewhere (e.g., Manaster et al., 2008; Basu et al., 2009). 

12. Cells will continue to proliferate (Figure 2B) until confluent (Figure 2C). Change the culture 

media every other day until passage (see step E) or assay.  

Notes:  

a. HEEC contamination (Figure 2D) should be minimal, please refer to ‘Notes’ section. 

b. Typical HESC yields vary considerably depending on digestion efficiency, mucus and blood 

content and varying cell attachment rates, but they will correlate with the size and quality of 

the tissue. As a guide we would expect to obtain 1-5 x 105 cells from a small biopsy (< 1 

cm), 0.5-1 x 106 for an average biopsy (2-3 cm) and 1-2 x 106 for larger biopsies (> 4 cm) 

(counted 24 h after seeding). Readers are encouraged to allow cells to proliferate in culture 

until desired cell numbers are obtained. 
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Figure 2. Cultured HESCs (bright-field microscope). A. HESC culture day one post-seeding. 

B. HESC culture day 3 post-seeding. C. Confluent culture of HESCs ready for passage or 

seeding. D. Culture of HESCs contaminated by HEECs, present as a whorl-like group of cells 

in the center. 

 

C. Separation of HEECs 

1. After digestion (step B8, refer also to Figure 6), filter the cell solution through a 40 µm nylon 

mesh cell-strainer. Flow-through will contain stromal, red blood and immune cells, but 

endometrial gland clumps are retained in the strainer (Figure 3A). 

2. Back-wash the filter using 20 ml of additive-free DMEM/F12 media and collect the glandular 

clumps in a 50 ml tube (Figure 3B). 

3. Centrifuge at 280 x g for 5 min, room temperature. 

4. Aspirate the supernatant and re-suspend the pellet in 1 ml 0.25% trypsin-EDTA to dissociate 

any clumps. Glandular clumps do not attach well to substrate and can be lost during media 

changes. This additional trypsin-dissociation step differs from previous protocols (Chen and 

Roan, 2015), and increases HEEC yield by dispersing clustered cells. 

5. Incubate the tube at 37 °C for 10 min. 

6. Add 9 ml of culture media and dissociate glandular clumps by vigorous pipetting up and down. 

A single cell solution of HEECs should result. 

7. Centrifuge at 280 x g for 5 min, room temperature. 

8. Aspirate the supernatant and re-suspend and seed the HEEC as required.  

Notes:  
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a. HEEC yielding will depend on biopsy size and quality. Freshly isolated HEECs counted after 

step C8 typically yield 1-3 x 105 from small biopsies (< 1 cm), 3-9 x 105 for medium (2-3 cm) 

and 1 x 106 for large biopsies (> 4 cm). However, readers are encouraged to allow 

proliferation in culture to obtain desired numbers. 

b. The culture of HEECs requires non-standard culture techniques that go beyond the remit of 

this protocol. Readers are therefore directed elsewhere (e.g., Chan et al., 2004; Defrere et 

al., 2005; MacDonald et al., 2007). 

 

 
Figure 3. Separation and isolation of HESCs and HEECs. A. Following tissue digestion, 

collect HESCs as flow-through through a 40 μm cell strainer. B. Collect glandular epithelial 

clumps by back-washing (note inverted cell strainer) and disperse into single cell HEECs 

suspensions via trypsin incubation. 

 

D. Isolation of endometrial perivascular progenitor mesenchymal stem-like cells 

1. Following step B8 (refer also to Figure 6), aspirate the supernatant and re-suspend the pellet in 

8 ml culture media. 

2. Underlay 4 ml of Ficoll-paque to the bottom of the tube (Figure 4A). Ficoll-paque is a density 

gradient media used to separate out red blood cells.  

Note: It is important to have two distinct layers before centrifugation (Figure 4B). To underlay 

Ficoll-paque, fill a 5 ml serological pipette, but dispense only 4 ml to the bottom of the tube, thus 

avoiding expulsion of bubbles and air mixing. Discard the remaining 1 ml. Dispense the 4 ml 

slowly and turn down the speed on the pipette-aid to its slowest setting. Avoid mixing at all times 

by handling carefully. Do not mix, knock or invert.  

3. Centrifuge at 770 x g for 10 min, room temperature. Red blood cells will pellet and HESCs will 

reside within the interphase between the 2 layers (Figures 4C and 4D). 
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Figure 4. Separation of red blood cells using Ficoll-paque. A. Slowly underlay 4 ml Ficoll-

paque beneath the digested tissue. B. 2 distinct layers should be visible. C-D. After 

centrifugation, red blood cells are pelleted and HESCs and HEECs as well as immune cells 

remain in the interphase from where they can be collected. 

 

4. Carefully aspirate the majority of supernatant and collect the interphase containing the stromal 

cells and transfer to a 15 ml tube.  

5. Add 8 ml of culture media and mix well with a pipette.  

6. Wash cells free of Ficoll-paque by centrifugation (280 x g for 5 min, room temperature), 

aspiration of supernatant and resuspension in 10 ml culture media. 

7. Repeat step D6 twice more. 

8. Aspirate the supernatant and re-suspend the cell pellet in 5 ml of culture media and count the 

cells using an automated cell counter or haemocytometer. 

9. Centrifuge at 280 x g for 5 min, room temperature. 

10. Aspirate the supernatant and re-suspend the cell pellet in separation buffer (see Recipes) 

containing PE-conjugated W5C5 antibody. Use 100 µl of separation buffer and 5 µl of antibody 

per 106 cells. 

11. Mix well and incubate for 20 min in the dark at 4 °C. 

12. Wash the cells to remove unbound antibodies by adding 1 ml of separation buffer per 106 cells 

and centrifuge at 280 x g for 5 min at room temperature.  

13. Aspirate the supernatant completely and re-suspend the cell pellet in separation buffer 

containing anti-PE microbeads. Use 80 µl of buffer and 20 µl of anti-PE microbeads per 107 

cells. 

14. Mix well and incubate for 20 min in the dark at 4 °C. 

15. Wash the cells by adding 1 ml of separation buffer per 106 cells and centrifuge at 280 x g for 5 

min at room temperature. 

16. Aspirate the supernatant completely and re-suspend up to 107 cells in 500 µl of separation buffer. 

17. Place the MACS separator on the multi-stand and place the MS column in the MACS separator 

(Figure 5A). 

18. Mix the cell suspension by pipette, and apply to the column. Avoid adding air bubbles to the 

column. 
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19. Collect unlabelled cells that pass through and wash MS column by addition of 500 µl separation 

buffer three times. Only add fresh 500 µl of buffer when the column reservoir is empty. Collect 

total effluent. This is the W5C5 negative fraction.  

20. Remove the MS column from the separator and place it in a sterile 15 ml tube. 

21. Immediately add 1 ml separation buffer into the column and flush out the magnetically labelled 

cells by firmly pushing the plunger into the column (Figure 5B). Flow-through will now contain 

the W5C5 positive fraction. 

22. To increase purity of the magnetically labelled cells, repeat magnetic separation on positive 

fraction (steps D18 to D21) using a new MS column. 

23. Centrifuge at 280 x g for 5 min at room temperature. 

24. Aspirate the supernatant, re-suspend the cell pellet and seed as required. 

Although a high level of patient-to-patient variability is observed, isolated W5C5+ cells typically 

constitute between 4-8% of stromal cell populations (Murakami et al., 2013). They maintain 

many mesenchymal stem cell characteristics (Masuda et al., 2012), and can be cultured and 

differentiated (Ulrich et al., 2014) and assessed for clonogenicity using CFU (Colony Forming 

Units) assay (Masuda et al., 2012; Murakami et al., 2013; 2014) as required. 

 

 
Figure 5. Magnetic separation of endometrial perivascular progenitor mesenchymal 
stem-like cells. Following antibody-labelling of W5C5+ cells (steps D9-D15), gravity-feed cell 

suspensions through columns in the magnetic stand. The flow-through will be the negatively 

labelled fraction (A). Remove the column from the magnetic stand and flush-through W5C5 

positively labelled cells by immediate addition of 1 ml separation buffer and expulsion via the 

plunger (B). These steps can be repeated with the positive fraction using a fresh MS column to 

increase purity. 
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Figure 6. Work flow to separate different cell types within human endometrial biopsies 

 

E. Passage of HESCs 

1. Passage cells at 80-90% confluency (see Figure 2C). 

2. Pre-warm culture media, sterile PBS and 0.25% trypsin-EDTA to 37 °C in the water bath. 

3. Aspirate the culture media from the flask. 

4. Add 10 ml of PBS, rinse the cell monolayer and aspirate. 

5. Add 2 ml of 0.25% trypsin-EDTA solution, tilting the flask to ensure the solution covers the entire 

surface and return to incubator for 2-3 min or until cells have dislodged.  

Note: Cells can be loosened by gentle agitation of the flask and checked under the light 

microscope. 

6. Add 8 ml of culture medium into the flask to neutralize the trypsin and pipette the media 

repeatedly over the bottom of flask to wash any remaining cells. 

7. Transfer the cell suspension to a 15 ml tube and centrifuge for 5 min at 280 x g, room 

temperature. 

8. Re-suspend pellet in 9 ml culture media and seed 3 ml into a new 75 cm2 culture flask containing 

12 ml culture media. For maintenance of culture, cells are usually split at a ratio of 1:3, but can 

at this stage be seeded into plasticware suitable for desired experiments. 
 
Notes 
 

1. When preparing DCC-FBS the vacuum filtration stops  
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a. Filtration units are easily clogged. Avoid aspirating the charcoal from the bottom of the tube. 

b. Change the filtration system. Sometimes it takes two filter changes to accomplish total 

filtration.  

2. Culture is contaminated with epithelial cells (see Figure 2D) 

a. After biopsy digestion, (step B8) filter the solution using a 40 µm cell strainer. The stromal 

cells pass through the filter and the majority of glandular clumps are retained. 

b. Perform the first media change earlier (3 to 6 h). Most stromal cells, but few epithelial cells, 

will be attached at this time. 

c. During the passage of the contaminated flask reduce the trypsin time to 2 min. Epithelial 

cells take longer to detach. 

3. Few HESCs have attached and they are slow growing 

a. If the biopsy is too small seed the cells in a 25 cm2 culture flask instead of 75 cm2. 

b. Check for infection. The presence of a bacterial or fungal infection would restrict cell growth 

by starving cells of nutrients. Infections manifest in different forms but readers should be 

concerned by cloudy media, fungal colonies, or bacterial or fungal spores viewed under a 

light microscope. If infection is suspected, discard culture and bleach cells and media to 

avoid repeat infections. 

4. The number of cells is too low even when the biopsy was large 

a. This may be due to inadequate digestion. Ensure tissue slicing/chopping removes all large 

pieces to aid digestion.  

b. Cell loss is possible during the Ficoll-paque separation. After the centrifugation with Ficoll-

paque do not aspirate the top media phase. Transfer all media along with the interphase. 

Be sure to transfer the whole interphase even if you transfer a certain amount of Ficoll-

paque along with it. The transferred Ficoll-paque will be cleared through washing. 

 
Recipes 

 

Note: Ensure sterility. Work in a Class II microbiological safety cabinet and ensure full aseptic 

technique. 

1. Digestion media 

10 ml phenol and additive-free DMEM/F12 culture media 

0.5 mg/ml collagenase (prepare 50 mg/ml 100 µl stock aliquots) 

0.1 mg/ml DNase I (prepare 10 mg/ml 100 µl stock aliquots) 

2. Dextran-coated charcoal (DCC)-treated FBS 

a. Add 1.25 g of charcoal and 125 mg of dextran 70 to 500 ml of FBS, mix thoroughly and 

incubate at 56 °C in the water bath for 2 h, shaking every 30 min 

b. Transfer the FBS to 50 ml tubes and centrifuge at 1,800 x g, for 30 min 

c. Sterile-filter the supernatant using the vacuum-driven filtration system 

d. Aliquot to 50 ml volumes, label and store at -20 °C 
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3. Culture medium 

500 ml DMEM/F-12 with phenol red 

50 ml (10% [v/v]) DCC-FBS 

5 ml (1% [v/v]) antibiotics/antimycotics 

5 ml (1% [v/v]) L-glutamine 

1 nM β-estradiol (prepare 100 µM stock in ethanol, store at -20 °C, add 5 µl) 

2 μg/ml recombinant human insulin (prepare 10 mg/ml stock solution in acidified water [1.5%, 

v/v, acetic acid in sterile water, add 100 µl]) 

4. Separation buffer (for magnetic separation of perivascular endometrial mesenchymal stem-like 

cells [0.5% BSA in PBS]) 

Dissolve 500 mg of BSA in 100 ml of sterile 1x PBS 

Sterile-filter through 0.2 µm filter 

Store for up to a month at 4 °C before use 
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