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Reaching for the quantum limits in the simultaneous estimation of phase and phase diffusion

Magdalena Szczykulska,1, ∗ Tillmann Baumgratz,2, 1 and Animesh Datta2

1Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
2Department of Physics, University of Warwick, CV4 7AL Coventry, United Kingdom

Phase diffusion invariably accompanies all phase estimation strategies – quantum or classical. A precise esti-
mation of the former can often provide valuable understanding of the physics of the phase generating phenom-
ena itself. We theoretically examine the performance of fixed-particle number probe states in the simultaneous
estimation of phase and collective phase diffusion. We derive analytical quantum limits associated with the si-
multaneous local estimation of phase and phase diffusion within the quantum Cramér-Rao bound framework in
the regimes of large and small phase diffusive noise. The former is for a general fixed-particle number state and
the latter for Holland Burnett states, for which we show quantum-enhanced estimation of phase as well as phase
diffusion. We next investigate the simultaneous attainability of these quantum limits using projective measure-
ments acting on a single copy of the state in terms of a trade-off relation. In particular, we are interested how
this trade-off varies as a function of the dimension of the state. We derive an analytical bound for this trade-off
in the large phase diffusion regime for a particular form of the measurement, and show that the maximum of
2, set by the quantum Cramér-Rao bound, is attainable. Further, we show numerical evidence that as diffusion
approaches zero, the optimal trade-off relation approaches 1 for Holland-Burnett states. These numerical results
are valid in the small particle number regime and suggest that the trade-off for estimating one parameter with
quantum-limited precision leads to a complete lack of precision for the other parameter as the diffusion strength
approaches zero. Finally, we provide numerical results showing behaviour of the trade-off for a general value
of phase diffusion when using Holland-Burnett probe states.

Keywords: quantum metrology, multi-parameter estimation, quantum Fisher information, quantum measurements

I. INTRODUCTION

The central role of unitary evolution in quantum mechanics
makes phase estimation a salient problem in precision metrol-
ogy including the sensing of magnetic and electric fields,
changes in refractive index, and measurements of time and
displacements. This includes some of the most challenging
tasks in physics such as gravitational wave detection [1–3] as
well as highly desirable applications such as biological track-
ing and imaging [4]. Therefore, the understanding of the fun-
damental limits in the precision of phase estimation set by
quantum mechanics is a worthwhile endeavour. Single phase
estimation is well understood [5–7] and if appropriate quan-
tum probe states are chosen then the associated quantum lim-
its provide a better scaling of the precision in the number of
particles or energy of the probe. Additionally, these enhanced
scalings can always be attained by a suitable measurement on
the evolved probe state.

However, in real scenarios, phase estimation schemes are
invariably affected by noise that results in the loss of quantum
enhancement. This reverts quantum-enhanced scalings back
down to that given by the standard quantum limit [7–9]. Typ-
ical noise channels include particle loss and phase diffusion.
Substantial effort has been invested in studying the effect of
noise on phase estimation, both theoretically and experimen-
tally in the case of loss [10–13] as well as phase diffusion [14–
17]. The quantum limit (although in general not tight) on the
phase estimation precision in the presence of diffusion has
also been obtained using a variational approach [18].

Phase diffusion is a dissipationless noise channel that de-

∗ Corresponding author: magdalena.szczykulska@physics.ox.ac.uk

scribes phase drifts within the measurement time due to in-
teraction with the environment. Instead of being a nui-
sance, phase diffusion can, in fact, provide useful informa-
tion about the physical system that the quantum probe in-
teracts with. This has been labelled as decoherence mi-
croscopy [19] and has found numerous applications [20] in-
cluding thermometry [21–24], optomechanical temperature
measurements within and beyond the linearised regime [25,
26], and fundamental physics [27]. Phase fluctuations be-
tween modes of an optical interferometer are inexorable, and
can be caused by mechanical strains and thermal fluctuations
inside an optical fiber [28, 29]. Phase diffusion also arises in
matter-wave optics, particularly in confined geometries where
its precise estimation can provide information on atom-atom
interaction strength [30]. The precision of cold-atom ac-
celerometers is limited by phase diffusion resulting from ro-
tational fluctuations and gravitational forces, whose precise
estimation might help alleviate their effect [31], or be used in
precise measurement of physical constants [32]. At a more
fundamental level, phase diffusion is a parameter of interest
in gravitational decoherence models [33–35] and dark mat-
ter detection [36]. Moreover, in circumstances where these
parameters vary in time, joint estimation scheme can provide
more satisfactory results.

Numerous scenarios thus exist where a precise knowledge
of phase diffusion in addition to the phase parameter can
furnish a better understanding of the system under study.
Schemes to estimate phase and phase diffusion simultane-
ously have been studied recently. Theoretical studies on the
joint quantum-limited estimation of phase and phase diffu-
sion using a quantum state comprised of a large number of
qubits [37] have been undertaken, as well as experimental
studies on single qubit systems [38, 39]. While our work
deals with collective dephasing, models considering indepen-
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dent dephasing have also been studied in [40].
The central challenge of joint quantum-limited estimation

schemes is the possible non-commutativity of measurements
in quantum mechanics. As a result, the quantum limits may
not always be attainable, even in principle. The joint estima-
tion scenarios thus inevitably lead to trade-off relations in the
attainable precision for the different parameters. Such trade-
off relations tell us how much information can be gained about
one parameter in the expense of the knowledge about the other
parameters [41]. This is unlike the case for single parameter
estimation, where the quantum-enhanced limit can always be
attained [42, 43]. Gill and Massar derived a bound on the
trade-off relation in the joint estimation of all the parameters
characterising a quantum state of which one possesses many
copies [44]. Their bound for mixed states is derived for mea-
surements acting on a single copy of the state at a time. Re-
cently, a symmetric measurement saturating the Gill-Massar
bound was found [45]. This measurement is local and equally
extracts optimal information about all the parameters, but ap-
plies to pure states only. It is important to stress that the Gill-
Massar bounding strategy is only tight when the number of
parameters is the same as the dimension of the Hilbert space
in which the quantum state resides. Since we are interested in
the joint estimation of phase and phase diffusion – only two
parameters – using a multi-dimensional quantum probe state,
the Gill-Massar strategy is excessively lax for our purposes.
We thus develop new methods to seek tighter trade-off rela-
tions.

Our main goal is to understand how this trade-off rela-
tion depends on the dimension of the state. Holland-Burnett
(HB) [46] states form an apt example of FPN states for this
purpose. Our strategy for obtaining the trade-off relations
for the simultaneous quantum-limited estimation of phase and
phase diffusion applies to fixed-particle number (FPN) states.
It relies on a Taylor expansion of the full density matrix in
the regimes of large and small diffusion. This leads to a tridi-
agonal density matrix and a low-rank density matrix in the
large and small diffusion regimes respectively which enables
their analytic diagonalisation. This allows us to overcome the
fundamental challenge for calculating the quantum Fisher in-
formation (QFI) for mixed quantum states analytically – their
explicit diagonalisation. It is also important to stress that our
method differs from strategies undertaken in other works, for
instance [47] where the diffusion parameter is a constant in-
dependent of the dimension of the state. In this work, the va-
lidities of the approximations put some dependence between
phase diffusion and the total number of particles. Our main
results are as follows:

1. In the large phase diffusion regime, for any FPN state,
we provide an analytically closed-form expression for
the QFI matrix. See Sec. (IV A).

2. In the large phase diffusion regime, for any FPN state,
we provide an analytically closed-form expression for
the trade-off quantity

Tr[FH−1] =
F11

H11
+
F22

H22
, (1)

where H and F are the quantum and classical Fisher in-
formation matrices respectively, the latter for a partic-
ular choice of separable positive operator-valued mea-
surements (POVMs). The maximum value of this quan-
tity is 2, when both parameters are estimated with
quantum-limited precision. We show that, in the large
diffusion regime, it is possible to attain the optimal
trade-off relation of Tr[FH−1] = 2 for certain FPN
states. It therefore follows that the globally optimal
trade-off relation with respect to all diffusion values
also approaches 2 for such states. HB states are an ex-
ample of such states in the large particle number regime.
See Sec. (IV B).

3. In the small phase diffusion regime, for any HB states,
we provide an analytically closed-form expression for
the QFI matrix. Most importantly, these states allow a
quantum-enhanced estimation of phase as well as phase
diffusion. See Sec. (V A).

4. In the regime of phase diffusion approaching zero, for
HB states of small particle numbers, we present numer-
ical evidence that the maximum value of Tr[FH−1] ap-
proaches 1. This implies that, in the simultaneous esti-
mation of phase and diffusion in this regime, when we
estimate one parameter at the quantum-limit we gain no
precision about the other parameter. See Sec. (V B).

In Sec. (II), we give the necessary background for the
Cramér-Rao inequality and define the setting of our estimation
scheme. Sec. (III) provides the structure of the QFI matrix for
our problem and the associated bound in the joint estimation
of phase and phase diffusion. Importantly, it shows that the
QFI matrix and the optimal bound are phase independent, and
that the QFI matrix is diagonal. Sec. (VI) outlines the nu-
merical results based on a simulated annealing algorithm [48]
for the joint information bound valid in all phase diffusion
regimes in the case of HB states (small particle numbers).
This bound is peaked at an intermediate value of diffusion
which, as shown in Sec. (IV B), will approach the upper limit
of 2 set by the quantum Cramér-Rao bound for a large number
of particles. Finally, Sec. (VII) concludes our work.

II. BACKGROUND

Throughout the paper, bold quantities will refer to vectors
of numbers or more generally to matrices, whereas the cir-
cumflex diacritic will denote operators.

A. Formalism

A general estimation process consists of three stages: probe
state preparation, interaction with the system containing the
parameters of interest and probe readout. After the probe
readout stage, the gathered statistics can be analysed by in-
voking an estimator function to yield an estimate of the pa-
rameters. In particular, we consider unbiased estimators for
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local estimation schemes. It is desirable that an estimator λ̃i
of the ith parameter λi should have low variance. In the multi-
parameter case, variance of a single estimator is replaced by
the covariance matrix Cov of the estimators with elements
Covij = 〈λ̃iλ̃j〉 − 〈λ̃i〉〈λ̃j〉. For M repeated experiments,
Cov is lower bounded by

MCov ≥ (F)−1 ≥ (H)−1, (2)

where F and H are classical and quantum Fisher information
matrices, and the first and second inequalities give the classi-
cal Cramér-Rao bound (CRB) and the quantum Cramér-Rao
bound (QCRB) respectively [49]. While the multi-parameter
CRB is guaranteed to be saturated by the maximum likeli-
hood estimator, the multi-parameter QCRB is not necessarily
so due to the possible non-commutativity of optimal measure-
ments [41]. Matrices F and H have the elements

Fij =
∑
y

∂λi(py) ∂λj (py)

py
(3)

and

Hij = Re[Tr[%̂λL̂iL̂j ]] (4)

respectively, where %̂λ is the evolved probe state which de-
pends on the vector of parameters λ and py = Tr[Π̂y%̂λ] is
the probability associated with the yth measurement outcome
given by the POVM element Π̂y . Re is the real part and L̂i de-
notes the symmetric logarithmic derivative (SLD) correspond-
ing to parameter λi obeying

2∂λi %̂λ = L̂i%̂λ + %̂λL̂i. (5)

The elements of H can be written in terms of the eigenbasis of
the density matrix %̂λ =

∑
k Ek|ek〉〈ek| with eigenvalues Ek

and eigenvectors |ek〉, leading to

Hij =Re

[∑
n

∂λi(En)∂λj(En)

En
+ 4

∑
n,m

Em×

× (En − Em)2

(En + Em)2
〈en|∂λiem〉〈∂λjem|en〉

]
.

(6)

Therefore, calculating QFI requires diagonalising the density
matrix which can be a challenging task for high rank matrices.
See Appendix (A) for a derivation of Eqn. (6).

B. Probe system

In this work, we consider joint estimation of two parame-
ters, phase φ and collective phase diffusion ∆. The investi-
gated system is shown in Fig. (1). In our studies, the probe
system is a pure FPN state with a total number of 2K parti-
cles. The mathematical representations of such a state and the
special case of HB states are

|ψFPN 〉 =

2K∑
n=0

an|n, 2K − n〉 (7)

FPN





K

n
nFPN nKna

2

0

2,





U 


(a)

K

K

HB

(b)




)(
4

�



 


cddci

HB eU









U 


Figure 1. Schematic diagram of the investigated system (a) with a
general FPN state – %̂φ∆ has the form of Eqn. (10) and (b) with
the special case of HB states – %̂φ∆ has the form of Eqn. (11) or
Eqn. (12). HB states are generated by acting with the unitary ÛHB
on two modes (associated with annihilation operators ĉ and d̂) con-
taining equal number of particlesK. In photonic systems, this corre-
sponds to interfering two equal Fock states on a 50/50 beam splitter.
It is also worth noting that Ûφ and ν̂∆ commute and therefore the
order in which phase shift and diffusion channel are applied is irrel-
evant.

and

|ψHB〉 =

2K∑
n=0

bn
2
δn,2q|n, 2K − n〉 (8)

respectively, where q ∈ Z{0 : K}. The normalised complex
amplitudes, an = |an| eiθn , satisfy

∑2K
n=0 |an|

2
= 1 and bn =√

(2n)!(2K − 2n)!/
(
2Kn!(K − n)!

)
is a special case of an

which takes non-zero values only for even terms.
The propagator of φ is a unitary transformation of the form

Ûφ = eiφn̂, where n̂ is the number operator. The collec-
tive phase diffusion channel, ν̂∆, is a random phase shift dis-
tributed according to a normal distribution of width ∆ which
acting on the probe state %̂in gives

%̂∆ = ν̂∆(%̂in) =
1√

2π∆

∫ +∞

−∞
d ε e−

ε2

2∆2 Ûε%̂inÛ
†
ε . (9)

Its effect is to exponentially erase the off-diagonal elements of
the density matrix which also means reducing the information
content about the parameters from the probe state.

The nth component of the input FPN state acquires the
phase term of einφ and after passing through the phase diffu-
sion channel, the overall state becomes mixed. The resulting
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density matrix is of the form,

%̂ = %̂FPN =

2K∑
n,n′=0

ana
∗
n′ e

iφ(n−n′)−∆2

2 (n−n′)2

×

× |n, 2K − n〉〈n′, 2K − n′|.

(10)

The particular instance of HB states can be written as

%̂HB =

2K∑
n,n′=0

δn,2qδn′,2q′bn2 bn′2
eiφ(n−n′)−∆2

2 (n−n′)2

×

× |n, 2K − n〉〈n′, 2K − n′|
(11)

or equivalently

%̂HB =

K∑
n,n′=0

bnbn′ e
2iφ(n−n′)−2∆2(n−n′)2

×

× |2n, 2K − 2n〉〈2n′, 2K − 2n′|,

(12)

where {q, q′} ∈ Z{0 : K}.

III. ATTAINING THE QUANTUM LIMIT

When solving the SLD equation, Eqn. (5), for a general
evolved FPN state, %̂, it is useful to work in the basis that
contains all the phase information, so that the resulting den-
sity matrix contains only real elements. This representa-
tion is given in Appendix (B). In this basis representation,
|Γn,K,φ,θ〉 ≡ ei(φn+θn) |n, 2K − n〉 where θn is the phase
of each component of the input FPN state, the derivatives of
%̂ with respect to φ and ∆ are imaginary and real respectively.
The SLD equation is a Lyapunov equation and since %̂ is a
positive matrix, it has a unique continuous solution[50]

L̂i = 2

∫ ∞
0

dt e−%̂t ∂λi %̂ e−%̂t, (13)

where λi labels the different parameters and in our case, i = 1
and i = 2 correspond to φ and ∆ respectively. From this form
of the solution, we can conclude that L̂1 and L̂2 are imaginary
and real respectively in the basis of |Γn,K,φ,θ〉. With this and
using Hermiticity of SLDs, L̂1 and L̂2 can be expressed as,

L̂1 = i

2K∑
n,n′=0

fn,n′,∆|Γn,K,φ,θ〉〈Γn′,K,φ,θ| (14)

and

L̂2 =

2K∑
n,n′=0

gn,n′,∆|Γn,K,φ,θ〉〈Γn′,K,φ,θ|, (15)

where {fn,n′,∆, gn,n′,∆} ∈ <, and fn,n′,∆ = −fn′,n,∆ and
gn,n′,∆ = gn′,n,∆. Since all the phases can be absorbed in the
basis and according to Eqn. (4), the QFI elements are basis

independent, the whole QFI matrix is φ independent. Addi-
tionally, the off-diagonal elements of the QFI matrix are nec-
essarily zero since trace of the product of two real matrices
and one imaginary is imaginary as a result of which the real
part is zero. Therefore, the QFI matrix for phase and phase
diffusion for any input pure FPN state is of the form

H =

(
H11 0

0 H22

)
, (16)

where subscripts 1 and 2 refer to φ and ∆, as noted earlier.
H11 and H22 correspond to the maximum information con-
tent in the individual estimation of φ and ∆ respectively. Ob-
taining a general closed-form of the quantum limits for this
system is a difficult task because the evolved density matrix
has the rank of (2K + 1) for FPN and (K + 1) for the special
case of HB states, and the diagonalisation of such matrices is
a challenging problem for arbitrary K. To obtain a better un-
derstanding, we derive analytical expressions in the regimes
of large and small phase diffusion. For intermediate values of
phase diffusion, we employ a numerical approach to solve for
the SLDs and calculate the QFI (see Appendix (C)).

The limits on the covariance matrix set by the QFI are not
necessarily attainable in multi-parameter estimation scenar-
ios due to the possible non-commutativity of optimal mea-
surements. A sufficient condition for saturating the QCRB is
[L̂1, L̂2] = 0 which does not hold for a general FPN state or
the special case of HB states. This implies that the optimal
POVMs in the individual parameter estimation constructed
from the eigenvectors of the SLDs do not commute in gen-
eral and will not saturate the two-parameter QCRB. A weaker
condition, which is sufficient and necessary, for saturating the
multi-parameter QCRB is Tr

[
%̂
[
L̂1, L̂2

]]
= 0. However,

we numerically found that this quantity is non-zero for some
fixed particle number pure states. We found numerically that
it is zero for HB states for particle numbers up to 158, but
we lack a general analytical proof. Additionally, to fullfil the
multi-parameter saturability condition given by the expecta-
tion value of the commutator of the SLDs, it is necessary
to consider multiple copies of the state and collective mea-
surements. Although such strategy can bring further enhance-
ments in the attainable joint precision [38, 40], it is harder to
treat theoretically and implement experimentally [51]. There-
fore, as a first step, we restrict ourselves to single copies of
the state only. Additionally, we choose the class of projec-
tive measurements as they optimise the FI of the associated
probability distribution [44, 52].

The figure of merit that we consider in this work is the trace
of the covariance matrix which for our two parameter case, φ
and ∆, is minimised when the off-diagonal elements of the
FI matrix are zero. We can therefore compute how close the
minimum variances of the estimators for phase and phase dif-
fusion parameters (Varmin(φ) and Varmin(∆) respectively) as-
sociated with a given measurement compare with the QCRB
by considering the ratios of the corresponding diagonal ele-
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ments of the FI and QFI matrices. This is given by

Tr[FH−1] =
F11

H11
+
F22

H22

=
H−1

11

MVarmin(φ)
+

H−1
22

MVarmin(∆)

(17)

which is the bound studied in this work. The higher the bound,
the higher precision we can attain about the two parameters
simultaneously. Its upper limit is set by the QCRB which
in the case of our two-parameter estimation problem gives
Tr[FH−1] ≤ 2. This quantity has been considered in previous
works such as [38, 44, 45].

The optimal bound Tr
[
FH-1

]
max with respect to all projec-

tive measurements, similarly to the QFI, is φ insensitive. The
reason is the following: the phase dependence of the bound
arises because the input state %̂in acquires phase in the unitary
transformation Ûφ = eiφn̂. If some optimal value of phase
which maximises the bound in Eqn. (17) is changed by an
amount ζ due to a unitary transformation Ûζ = eiζn̂ we can
always reverse the action of this unitary by applying Û−1

ζ in
our optimal measurement. As a result, the optimal bounds
depend only on the particle number and the phase diffusion
parameter.

Though highly desirable, the maximisation of Tr[FH−1]
over all projective measurements is in general exigent. This
is partially due to the lack of knowledge of the closed form
of the QFI for a general phase diffusion parameter and parti-
cle number, and partially due to the need to optimise over a
complex space containing 2d − 2 parameters, where d is the
dimension of the Hilbert space of the input probe state, factor
of two accounts for the fact that we have real and imaginary
parameters and subtraction of two accounts for normalisation
and global phase. We therefore, explore this aspect analyti-
cally in the regime of large (for a general FPN state) and small
(for the special case of HB states) ∆, and provide numerical
results for the general ∆ regime (for HB states).

IV. LARGE DIFFUSION REGIME

The off-diagonal elements of the FPN density matrix in
Eqn. (10) decay exponentially in ∆. If ∆ is sufficiently large,
we can neglect all the off-diagonals except for the one (kth off-
diagonal) that is closest to the main diagonal and contributes
non-zero elements. This approximation corresponds to Taylor
expansion of %̂ to the order of 2k2 in x = e−∆2/4 about x = 0
which results in the approximate, tridiagonal density matrix,

%̂L∆ =

2K∑
n,n′=0

ana
∗
n′ e

iφ(n−n′) x2(n−n′)2

× (δn,n′ + δn,n′±k)×
× |n, 2K − n〉〈n′, 2K − n′|,

(18)

where subscript L∆ identifies the large phase diffusion ap-
proximation. The case of k = 1 corresponds to an FPN state,
where the first off-diagonal contributes non-zero elements and

Number of particles K
1 5 10 15 20 25

H
11

0.07

0.08

0.09

0.1

0.11

0.12

0.13 Analytical large " QFI curve
Numerical QFI data points

K
1 5 10 15 20 25

H
22

0.25

0.3

0.35

0.4

0.45

0.5

0.55

"=1

Figure 2. Diagonal QFI matrix elements as a function of K for HB
states in the large phase diffusion approximation. K is the particle
number in each of the two input modes of the unitary generating the
HB state (see Fig. (1)). Both H11 and H22 are increasing functions
of K as expected from Eqn. (21) and Eqn. (22). The accuracy of the
analytical expressions gets worse as K increases which is expected
from the validity constraint in Eqn. (20). In general, the approxima-
tion for H22 is less accurate than for H11 due to the factor of ∆2

appearing in Eqn. (22) as explained in the main text.

this is the last off-diagonal of the density matrix that we keep.
The instance of k = 2 corresponds to a state, where the first
off-diagonal has all zero elements and the second off-diagonal
contributes non-zero elements, and therefore this is the last
one that we keep. HB states are a good example of the k = 2
case, where in fact only even numbered off-diagonals con-
tribute non-zero elements. Also, in the case of HB states,
an = bn

2
δn,2q as defined in Eqn. (8). The approximation in

Eqn. (18) is valid when

∆(FPN) ≥

√
2

(k + 1)
2 ln

(
2K

f

)
(19)

and

∆(HB) ≥

√
1

8
ln

(
K

f

)
(20)

for a general FPN and the special case of HB states respec-
tively, where f is the allowed relative error on the density ma-
trix (see Appendix (D) for details). This shows the

√
ln (K)

dependence on the threshold value of ∆ for the desired rela-
tive error.

A. Quantum limit

In order to get an intuition for the form of the SLDs in
the large ∆ approximation, the SLD equation described in
Eqn. (5) can be solved for small values of K. This gives us
an ansatz for the SLDs for φ and ∆, L̂1,L∆ and L̂2,L∆ respec-
tively, shown in Eqn. (E1) and Eqn. (E2) of Appendix (E). The
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Figure 3. Semi-log plot of the diagonal QFI matrix elements as a
function of ∆ for HB states in the large phase diffusion approxima-
tion. H11 andH22 show an exponential decrease with respect to ∆ as
expected due to the exponential erasing of the off-diagonal elements
of the density matrix. We present the y-axis on the logarithmic scale
to show that the QFI elements go to zero at large ∆. A complemen-
tary, linear plot of the QFI as a function of ∆ is shown in Fig. (13) of
Appendix (G) which magnifies the calculation error at smaller phase
diffusion values. The analytical approximations show a good agree-
ment with the numerical data. At K = 25 and ∆ = 1, the relative
error of the analytical values with respect to the numerical values of
H11 and H22 are 1.6% and 4.9% respectively. This behaviour im-
proves at larger ∆ values and at K = 25 and ∆ = 1.2, the relative
errors reduce to 0.3% for H11 and 0.9% for H22.

SLDs are accurate to the order of x2k2

which can be proven by
substituting them into the left and right hand sides of the SLD
equation to verify that the equality holds within the approxi-
mation. This is shown in Appendix (E). It is worth noting that
the presence of the factor of ∆ in L̂2,L∆ decreases its order of
accuracy from x2k2

to x2k2−4∆−2 ln (∆).
The resulting QFI elements, H11,L∆ and H22,L∆, are given

by

H11,L∆ = 4k2x4k2
2K∑
n=k

|an|2|an−k|2

|an|2 + |an−k|2
, (21)

H22,L∆ = 4k4∆2x4k2
2K∑
n=k

|an|2|an−k|2

|an|2 + |an−k|2
, (22)

where the sums above are upper-bounded by 1/2 (see Ap-
pendix (F)). For HB states, this can be attained in the regime
of large K. This upper bound implies the loss of quantum en-
hancement in the large phase diffusion regime as at some point
increasing the particle number in the input probe state will
have no influence on the precision of our estimation scheme.
The exponential decrease of H11,L∆ and H22,L∆ with respect
to ∆ is to be expected since the effect of phase diffusion is to
exponentially erase the off-diagonal elements of the density
matrix. Again, the accuracy ofH22,L∆ is decreased from x4k2
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Figure 4. Joint information bound in estimating φ and ∆ simultane-
ously as a function of K for HB states in the large phase diffusion
regime. The main plot compares the analytical bound in Eqn. (25)
with the optimal bound at ∆ = 1 found using the simulated an-
nealing algorithm. The two methods show a good agreement which
suggests that the POVM defined in Eqn. (24) and Eqn. (23) is indeed
optimal in the special case of HB states for the investigated small
K regime. The inlay plot displays the analytical bound for a higher
range of K values in the case of HB states. It shows that the bound
approaches the upper limit of 2 set by the QCRB for large K. At
K = 1500, the analytical bound is 1.97.

to x4k2−4∆−2 ln (∆2) due to the presence of the ∆2 factor. The
calculation of the H11,L∆ term is shown in Appendix (F).

The analytical quantum limits given in Eqn. (21) and
Eqn. (22) are compared with the values obtained using a nu-
merical routine developed in MATLAB (see Appendix (C))
for HB states. The resulting curves are shown in Fig. (2)
and Fig. (3). Further, we provide a numerical phase diffu-
sion validity plot in Fig. (11) of Appendix (D), also for HB
states. The plot shows the threshold values of ∆ for which the
approximation is valid as a function of particle number (K)
when the maximum allowed relative error (δHii/Hii) is 0.05.

B. Trade-off relation

To find the maximal joint information bound for
our problem, we are required to maximise Tr

[
FH−1

]
with respect to all projective measurements |vy〉 =∑2K
n=0 ry,n eiXy,n |n, 2K − n〉 which form a POVM set

{|vy〉〈vy|} for the considered Hilbert space. We perform such
an optimisation in Appendix (H) in the large ∆ regime. For
any FPN state with coefficients an = |an| eiθn , the phaseXy,n

of the optimal projectors must satisfy

Xy,n = Xy,n−k−1−2Xy,n−k−θn−k−1 +2θn−k−θn. (23)

Additionally, we assume that the magnitudes ry,n of the opti-
mal projectors are equally weighted which gives

ry,n =
1√

2K
k + 1

. (24)
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This last choice in Eqn. (24) is motivated by the results from
the simulated annealing algorithm which searches through the
space of projective measurements to maximise our bound for
HB states. The numerics is performed in the small particle
number regime and shows that the bound becomes ∆ inde-
pendent for large values of ∆ (see Fig. (9) of Sec. (VI)). The
associated optimal projectors have the structure as given by
Eqn. (23) and Eqn. (24).

The resulting bound, Tr[FH−1], in the simultaneous esti-
mation of φ and ∆ in the large phase diffusion regime is

Tr[FH−1] =
(
∑2K
n=k |an||an−k|)2∑2K
n=k

|an|2|an−k|2
|an|2+|an−k|2

. (25)

See Appendix (H) for derivation. This bound reaches the
QCRB for two-parameter estimation, i.e. Tr

[
FH−1

]
= 2,

when |an| = |an−k| for n ∈ Z{k : 2K}. This shows that
the globally optimal bound with respect to all diffusion values
will also approach the QCRB for such states. For HB states,
the condition |an| = |an−k| coincides with the large particle
number (K) regime. Plot of the bound in Eqn. (25) as a func-
tion of K in the case of HB states is shown in Fig. (4). The
inlay plot shows the asymptotic attainability of the QCRB at
large K, whereas the main plot shows the comparison with
the numerical optimization routine based on the simulated an-
nealing algorithm. At large values of ∆, the analytical bound
in Eqn. (25), obtained using the POVM defined in Eqn. (23)
and Eqn. (24), provides a good agreement with the numerical
data in the case of HB states. However, an analytical proof
of the optimality of this POVM for a general FPN state in the
large phase diffusion regime remains an open question.

V. SMALL DIFFUSION REGIME

Our analysis for the small phase diffusion regime is re-
stricted to the special case of HB states. In this regime, we per-
form a Taylor expansion of the HB density matrix in Eqn. (12)
to the second order in ∆ for H11 and to the fourth order in ∆
for H22 near ∆ = 0. The reason for the fourth order Taylor
expansion in ∆ in the case of H22 is to ensure that the corre-
sponding SLD equation, 2∂∆%̂ = L̂2%̂+ %̂L̂2, is accurate to at
least second order in ∆ as we lose one order in ∆ on the left
hand side due to the differentiation with respect to ∆.

The Taylor-expanded forms of the evolved HB density ma-
trix to the second and fourth order in ∆ are respectively

%̂1,S∆ =

K∑
n,n′=0

bnbn′ e
2iφ(n−n′)(1− 2∆2(n− n′)2)

× |2n, 2K − 2n〉〈2n′, 2K − 2n′|

(26)

and

%̂2,S∆ =

K∑
n,n′=0

bnbn′ e
2iφ(n−n′)×

× (1− 2∆2(n− n′)2 + 2∆4(n− n′)4)×
× |2n, 2K − 2n〉〈2n′, 2K − 2n′|,

(27)
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Figure 5. Diagonal QFI matrix elements as a function of K for HB
states in the small phase diffusion approximation. As expected, H11

and H22 are increasing functions of K showing the approximate
Heisenberg scaling of K2. The approximation gets worse at larger
K values for a given ∆ as expected from the validity constraints in
Eqn. (28). In general, H22 is more accurate than H11 because in this
case the density matrix of the probe state is Taylor expanded to the
fourth order in ∆ rather than second order in ∆.
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Figure 6. Diagonal QFI matrix elements as a function of ∆ for HB
states in the small phase diffusion approximation. Both H11 and
H22 are decreasing functions of ∆ in this regime. For a given value
of K the approximation gets worse at larger ∆ which agrees with
the validity constraints in Eqn. (28). At K = 20 and ∆ = 0.02, the
relative error of the analytical values with respect to the numerical
values of H11 and H22 are 9% and 2% respectively. The accuracy
improves at smaller ∆ values and at K = 20 and ∆ = 0.018, the
relative errors reduce to 6% for H11 and 1% for H22.

where subscript S∆ identifies the small phase diffusion ap-
proximation. The validity of the approximation is evaluated
by comparing the last kept non-zero term with the first ne-
glected non-zero term. When expressing %̂ as %̂1,S∆ this cor-
responds to ∆2 � 1/(n− n′)2. This can be further tightened
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by taking (n− n′) = K which gives

∆2 � 1

K2
. (28)

The equivalent validity constraint can be derived for %̂2,S∆

which has the same form as Eqn. (28) but with an extra factor
of 3/2 in front.

Expanding Eqn. (26) and Eqn. (27), we get a set (W1) of 3
linearly independent vectors describing %̂1,S∆ and a set (W2)
of 5 linearly independent vectors describing %̂2,S∆. The ele-
ments of setsW1 andW2 are defined as follow,

W1 = {|w1〉 , |w2〉, |w3〉} (29)

and

W2 = {|w1〉 , |w2〉, |w3〉, |w4〉 , |w5〉} (30)

where |wk〉 =
∑K
n=0 n

k−1|ϕn〉 with |ϕn〉 =
bn e2iφn |2n, 2K − 2n〉. See Appendix (I) for the proof
of linear independence of the elements of sets W1 and W2.
Since %̂1,S∆ and %̂2,S∆ are spanned by 3 and 5 linearly inde-
pendent vectors respectively, they can be expressed as 3 × 3
and 5× 5 dimensional matrices if an appropriate orthonormal
basis set is chosen. This is crucial since it overcomes the
problem of diagonalising a (K+1) dimensional matrix.
The orthonormal sets can be found by orthonormalising
the vectors {|w1〉, |w2〉, ..., |w5〉} using the Gram-Schmidt
procedure and they are denoted by V1 = {|v1〉, |v2〉, |v3〉}
and V2 = {|v1〉, |v2〉, |v3〉, |v4〉, |v5〉} for %̂1,S∆ and %̂2,S∆

respectively. The Gram-Schmidt procedure and its results
are shown in Appendix (J). Given V1 and V2, we can now
perform the basis change of %̂1,S∆ and %̂2,S∆ by applying

%̂′ =

N∑
i,j=0

Tr [|vj〉〈vi|%̂] |vi〉〈vj |, (31)

where N is the number of basis vectors forming a complete
set. The resulting 3× 3 and 5× 5 density matrices, written in
the basis V1 and V2, are

%̂′1,S∆ =

b11 0 b13

0 b22 0
b13 0 0

 (32)

and

%̂′2,S∆ =


c11 0 c13 0 c15

0 c22 0 c24 0
c13 0 c33 0 0
0 c24 0 0 0
c15 0 0 0 0

 , (33)

where bij ∈ < and cij ∈ < and these matrix elements are
functions of K and ∆ only. The exact forms of the entries in

terms of K and ∆ are given in Appendix (K). It is worth not-
ing that the reduced matrix elements have no φ dependence,
whereas the orthonormal basis vectors defining these matrices
have no ∆ dependence.

A. Quantum limit

Diagonalisation of matrices in Eqn. (32) and Eqn. (33) is
greatly simplified due to their sparse structure. In particular,
%̂′1,S∆ can be expressed as a direct sum of 2×2 and 1×1 matri-
ces, whereas %̂′2,S∆ as a direct sum of 3×3 and 2×2 matrices.
The diagonalisation of these matrices reveals that one of the
eigenvalues of %̂′1,S∆ and two eigenvalues of %̂′2,S∆ are neg-
ative up to the order of ∆4 and ∆6 respectively. Therefore,
they are zero within our small phase diffusion approximation
and they do not contribute towards reconstructing our Taylor
expanded density matrices. Consequently, %̂′1,S∆ is a rank 2
matrix and %̂′2,S∆ rank 3 matrix within the small phase diffu-
sion approximation. See Appendix (K) for details of the di-
agonalisation procedure and the results. The alternative form
of the QFI expression in terms of the eigenbasis of the density
matrix, given in Eqn. (6), can be used to find H11 and H22

within the small diffusion approximation. The resulting diag-
onal QFI matrix elements (when keeping second order in ∆
terms only) corresponding to the HB probe state are

H11,S∆ = 2K(K + 1)− (2K(K + 1))2∆2, (34)

and

H22,S∆ = 2K(K + 1)− 1

2
(2K(K + 1))2∆2. (35)

The first of these expressions shows that the presence of phase
diffusion diminishes the precision attainable in the estimation
of phase. This has been anticipated before [7, 14–16, 38], but
we now provide an exact expression for HB states. The sec-
ond expression shows that it is possible to achieve a quantum-
enhanced estimation of the phase diffusion parameter. This
is because the QFI for ∆ scales quadratically with K, while
any classical strategy with K particles will only lead to a QFI
scaling at most linearly in K. Figures (5) and (6) show the
comparison of the obtained analytical expressions in Eqn. (34)
and Eqn. (35) with the numerical data points. Additionally,
numerical phase diffusion validity plot for this approximation
is shown in Fig. (14) of Appendix (K).

B. Trade-off relation

The trade-off relation in the limit of ∆ → 0 for an
arbitrary POVM set {πy} composed of projectors |vy〉 =∑K
n=0 ry,n eiXy,n |2n, 2K − 2n〉 is
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Tr
[
FH−1

]
=

=
2

K(K + 1)

K∑
y=0

(∑K
n,n′=0Ry,n,n′ sin (Θy,n,n′) (n− n′)

)2

+ 4∆2
(∑K

n,n′=0Ry,n,n′ cos (Θy,n,n′) (n− n′)2
)2

∑K
n,n′=0Ry,n,n′ cos (Θy,n,n′)

, (36)

where Θy,n,n′ = (Xy,n′ −Xy,n + 2φ(n− n′)) and
Ry,n,n′ = ry,nry,n′bnbn′ . The term independent of ∆ corre-
sponds to F11/H11, whereas the remaining term containing
the factor of ∆2 corresponds to F22/H22. Details of the
derivation are given in Appendix (L). Equation (36) shows
that in the regime of ∆ → 0, to attain high precision about
∆, we require some ∆ dependence in the POVM to reduce
the effect of the ∆2 factor appearing in the F22 term. Without
knowing this further structure of the optimal POVM, standard
maximisation seems to be a challenging task.

To gain some intuition of what the trade-off relation might
be as ∆ → 0, we present numerical results based on a sim-
ulated annealing algorithm performed in the small particle
number regime. The results suggest that the bound in the joint
estimation of phase and phase diffusion using HB states ap-
proaches 1 as ∆ approaches 0. Figure (7) shows this tendency
with the smallest sampled ∆ of 0.01.

Although the diagonal elements of the QFI matrix (H11 and
H22) reach maximum at ∆ = 0, the above mentioned numeri-
cal results (performed for small particle numbers) suggest that
the opposite is the case for the joint information bound.

As an example, we consider the canonical phase measure-
ment POVM [53, 54], corresponding to a projection onto the
phase state |ψ〉 =

∑∞
n=0 einy |n〉, which for our two mode HB

probe state has the form,

|vy〉 =
1√
2π

K∑
n=0

einy |n, 2K − n〉. (37)

This POVM was suggested in Ref. [37] as an optimal mea-
surement for estimating both phase and diffusion in the large
particle number regime using the cosine state.

The canonical phase measurement has no ∆ dependence
and therefore for our scheme, according to Eqn. (36), the FI
of the diffusion parameter gets vanishingly small as ∆ → 0.
However, it is still possible to extract some information about
∆ using this POVM if ∆ is not too small. We numerically
simulate the performance of this measurement in our estima-
tion scheme for ∆ = 0.01 and particle number (K) regime
between 1 and 80. The results presented in Fig. (8) show that
in the high particle number regime (considered within the sim-
ulation), we can extract significant information about both φ
and ∆.

VI. TRADE-OFF FOR INTERMEDIATE DIFFUSION

The analytical understanding of the trade-off (valid for ar-
bitrary ∆ values) in the joint estimation of phase and diffusion
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Figure 7. Bound on the joint estimation of phase and diffusion for HB
states, numerically optimised with respect to orthonormal proejctive
measurements. K labels different particle numbers. The main plot
shows that the bound Tr

[
FH−1

]
as ∆ → 0 for the considered K

values. The inlay plot shows the optimal bound as a function of K
for the smallest sampled ∆ of 0.01.
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Figure 8. Numerical results with the canonical phase measurement
POVM at ∆ = 0.01. In the high particle number regime (consid-
ered within the simulation), the POVM gives significant information
about both phase and diffusion with the total trade-off Tr

[
FH−1
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of

approximately 1.06.

for a general FPN state and in the special case of HB states re-
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Figure 9. Numerical optimal join information bound for HB probe
states for different ∆ and K values obtained using the simulated an-
nealing search algorithm. The bound peaks at some intermediate dif-
fusion value (between 0.3 and 0.4) for the considered particle num-
bers.
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Figure 10. Globally maximal joint information bound with respect
to all ∆ values plotted as a function of K for HB states.

mains an open question. However, the large diffusion analysis
shows that for FPN states with equally weighted magnitudes
the joint information bound approaches 2 which is the upper
bound set by the QCRB. For HB states, this corresponds to
the large particle number regime. Since this is true in the large
diffusion regime and Tr

[
FH−1

]
≤ 2 then it has to also apply

to the globally maximal bound across all diffusion values for
such states.

We used a simulated annealing algorithm to perform a nu-
merical search on the space of projective measurements to
maximise the joint information bound at a given ∆ and K
value in the case of HB states. The results are shown in
Fig. (9) and Fig. (10). The bound peaks at intermediate values
of ∆ (between 0.3 and 0.4) for the considered K values. As
K increases, the numerics suggests that this maximal bound
also increases but at a decreasing rate for higher K values.

As explained at the beginning of this section, we expect this
maximal bound to reach the upper limit of 2 set by the QCRB.

VII. CONCLUSION

In any physical system, noise processes are always present
and to be able to include them in the estimation schemes is
an important step towards real-life, robust metrology. In fact,
in many circumstances, noise itself may be the parameter that
we require to gain the knowledge of. This brings us to the
situation, where the simultaneous estimation of unitary and
non-unitary parameters is of interest. The presence of non-
unitary parameters (noise) typically makes the analysis of the
system much harder since one has to deal with mixed states as
opposed to pure states.

In this work, we studied the problem of quantum-limited
joint estimation of phase and collective dephasing in the
framework of QCRB using FPN states. The QFI for our sys-
tem is a diagonal matrix whose elements are derived in the
regimes of large (for a general FPN state) and small (for the
special case of HB states) diffusion by performing Taylor ex-
pansion of the evolved density matrix in the appropriate limits.
The results are shown in Eqn. (21), Eqn. (22), Eqn. (34) and
Eqn. (35).

We investigated how closely the precision promised by the
QFI can be attained when one tries to estimate phase and
diffusion simultaneously by performing projective measure-
ments acting on a single copy of the state. In particular, we
were interested how this attainability is affected by the dimen-
sion of the state which in the instance of HB states is equal to
K + 1. Although the QFI is attainable in the individual esti-
mation of parameters [41], it is not necessarily so in the joint
estimation schemes due to the possible non-compatibility of
optimal measurements. This gives rise to bounds quantify-
ing how much information can be gained about one parameter
in the expense of the knowledge about the other parameters.
Such bounds are of fundamental importance in quantum me-
chanics and therefore worth pursuing. They were studied in
previous works for different schemes [38, 44, 45] and defined
by Tr

[
FH−1

]
. In general, the QFI as well as the optimal

bound are phase independent.
We analytically derived such joint information bound for

phase and collective diffusion in the large diffusion regime
(for a general FPN state) by assuming the optimal POVM
to be composed of projectors with components of equally
weighted magnitudes. The choice of this POVM was moti-
vated by the results from the simulated annealing algorithm
which searched through the space of projective measurements
to maximise the bound for the special case of HB states. The
POVM and the associated bound are shown in Eqn. (23),
Eqn. (24) and Eqn. (25).

The analytical bound in the small phase diffusion regime is
more difficult to derive due to the more complex structure of
the optimal POVM. We expect this POVM to contain some
diffusion dependence in order to obtain significant FI for the
vanishing diffusion parameter as ∆→ 0 (see Sec. (V B)). We
therefore used our numerical results for HB states (performed
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in the small particle number regime) and found that, in this
regime, the bound Tr

[
FH−1

]
gets close to 1 as ∆ → 0. We

also found that if diffusion is not too small then it is possible
to obtain significant FI for both φ and ∆ with a POVM which
is ∆ independent. This is the case for the canonical phase
measurement where our numerical results, performed at ∆ =
0.01 and for particle number (K) between 1 and 80, show
exactly this for higher K values.

Our main conclusions are:

1. The QFI matrix in the small phase diffusion regime
shows that HB probe states can achieve nearly Heisen-
berg like scaling not only for phase, but also for diffu-
sion in the instances where the second order in diffusion
terms are very small. This is promising for areas where
estimation of small diffusive noise parameters is of in-
terest such as thermometry and optomechanics.

2. In principle, quantum-limited simultaneous estimation
of phase and phase diffusion is possible in the large
phase diffusion regime for FPN states whose compo-
nents are of equal magnitude. However, the quantum
limits themselves decrease exponentially with diffusion
and therefore, this is of practical importance in the in-
stances where we are limited to such states. Never-
theless, this result advances the analytical understand-
ing of this simultaneous estimation scheme. Addition-
ally, it shows that the globally maximal bound across all
diffusion values, which may or may not coincide with
the large phase diffusion regime, will also saturate the
QCRB for such states.

3. As diffusion approaches zero, our numerical simula-
tions for HB states suggest that one cannot achieve the
quantum-limited precision for both parameters and the
associated trade-off relation, Tr

[
FH−1

]
, approaches

one. Therefore, the individual estimation of parame-
ters is always favourable in such instances. However,
the simultaneous estimation is sometimes unavoidable,
for instance in imaging, and it is important to have the
knowledge of the associated limitations. This numerical
evidence still awaits an analytical understanding.

While this work provides several results on the simultane-
ous estimation of phase and phase diffusion, and the relevant
framework for further studies of quantum-limited estimation
schemes in the presence of noise, we close with some imme-
diate open questions:

1. The QFI matrix for HB states and general FPN states
for arbitrary diffusion strength.

2. Analytical joint estimation bound in the small, and ide-
ally, in arbitrary diffusion regimes.

3. Structure of the optimal POVM in the small, and ide-
ally, in the general diffusion case.

4. Proof of optimality of the POVM in Eqn. (24) in the
large diffusion regime.

5. Translation of the optimal POVMs into feasible exper-
iments enabling optimal joint estimation of phase and
diffusion.

6. Finally, the problem of estimating phase diffusion in
the presence of loss and phase [55] is identifiable with
the estimation of T2 and T1 times in spin systems [17],
while the quantum-limited estimation of phase diffu-
sion simultaneously with multiple phases [41, 56–59]
also remains unaddressed.
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Appendix A: QFI matrix elements in terms of the eigenbasis of
the density matrix of the probe state

The following is a proof for the alternative formula of the
QFI matrix elements (Hij), given in Eqn. (6), in terms of the
eigenbasis of the density matrix of the probe state. The SLD
equation given by Eqn. (5) is the so called Lyapunov matrix
equation which has a solution

L̂i = 2

∫ ∞
0

dt e−%̂λt ∂λi %̂λ e−%̂λt . (A1)

Writing %̂λ in its eigenbasis, %̂λ =
∑
k Ek|ek〉〈ek|, and ap-

plying the definition of an exponential function, e−%̂λt =∑∞
k=0

(−%̂λt)k
k! we get

L̂i = 2
∑
n,m

〈em|∂λi %̂λ|en〉
En + Em

|em〉〈en|. (A2)

L̂iL̂j can therefore be written as

L̂iL̂j = 4
∑
n,m,n′

〈em|∂λi %̂λ|en〉
En + Em

×

×
〈en|∂λj %̂λ|en′〉
En′ + En

|em〉〈en′ |.
(A3)

Writing %̂λ in its eigenbasis form, the following expression
for %̂λLiLj can be obtained,

%̂λL̂iL̂j = 4
∑
n,m,n′

Em
〈em|∂λi %̂λ|en〉
En + Em

×

×
〈en|∂λj %̂λ|en′〉
En′ + En

|em〉〈en′ |.
(A4)
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Taking the trace of the above expression and using the eigen-
basis form for ∂λi %̂λ, i.e. ∂λi %̂λ =

∑
k ∂λiEk|ek〉〈ek| +

Ek|∂λiek〉〈ek|+ Ek|ek〉〈∂λiek|, we get

Tr[%̂λL̂iL̂j ] =

= 4
∑
n,m

Em
(En + Em)2

×

× (δn,m∂λiEn + (En − Em)〈∂λien|em〉)×
× (δn,m∂λjEm + (Em − En)〈∂λjem|en〉).

(A5)

Multiplying the brackets, using ∂λi〈en|em〉 ≡ 〈∂λien|em〉 +
〈en|∂λiem〉 = 0 and taking the real part of the resulting ex-
pression, the required formula for Hij is

Hij = Re[
∑
n

∂λi(En)∂λj (En)

En

+ 4
∑
n,m

Em ×
(En − Em)2

(En + Em)2
×

× 〈en|∂λiem〉〈∂λjem|en〉].

(A6)

Appendix B: FPN state in the phase dependent basis

Complex amplitudes, an, of %̂ can be written in the expo-
nential form as an = |an| eiθn , where θn ∈ {0, 2π}. With this,
%̂ can be expressed as,

%̂ =

2K∑
n,n′=0

|an||an′ | ei[φ(n−n′)+θn−θn′ ]×

× e−
∆2

2 (n−n′)2

×
× |n, 2K − n〉〈n′, 2K − n′|.

(B1)

All the phases can be absorbed into the basis of %̂ and the
same is true for its derivatives. Therefore, operating in this
new basis, |Γn,K,φ,θ〉 = ei(φn+θn)|n, 2K − n〉, all the matrix
elements of %̂ and ∂∆%̂ are positive, and all the elements of
∂φ%̂ are imaginary. The corresponding matrix representations
are,

%̂ =

2K∑
n,n′=0

|an||an′ | e−
∆2

2 (n−n′)2

|Γn,K,φ,θ〉〈Γn′,K,φ,θ|,

(B2)

∂φ%̂ = i

2K∑
n,n′=0

(n− n′)|an||an′ | e−
∆2

2 (n−n′)2

×

× |Γn,K,φ,θ〉〈Γn′,K,φ,θ|,

(B3)

∂∆%̂ = −∆

2K∑
n,n′=0

(n− n′)2|an||an′ | e−
∆2

2 (n−n′)2

×

× |Γn,K,φ,θ〉〈Γn′,K,φ,θ|, .

(B4)

Appendix C: Quantum Fisher information numerical routine

The numerical routine for calculating QFI relies on vec-
torising the SLD equation, given in Eqn. (5), so that it be-
comes

2|∂λi %̂〉 = [%̂⊗ Î + Î ⊗ %̂T]|Li〉, (C1)

where Î is the identity matrix. %̂ can be written in its eigen-
basis representation as %̂ = V DV †, where V is the matrix of
eigenvectors of %̂ and D is the corresponding diagonal matrix
of eigenvalues. Similarly, %̂T can be expressed as V ?DV T.
Therefore, the right hand side of Eqn. (C1) becomes

[%̂⊗ Î + Î ⊗ %̂T ]|Li〉 =

= [(V ⊗ V ?)(D ⊗ Î)(V † ⊗ V T )

+ (V ⊗ V ?)(Î ⊗D)(V † ⊗ V T )]|Li〉
= (V ⊗ V ?)(D ⊗ Î + Î ⊗D)(V ⊗ V ?)†|Li〉.

(C2)

|Li〉 can therefore be found by taking the inverse of D ⊗ Î +

Î ⊗D so that it can be written as

|Li〉 = 2(V ⊗V ?)(D⊗Î+Î⊗D)−1(V ⊗V ?)†)|∂λi %̂〉. (C3)

The numerical QFIs can then be found by putting |Li〉 back
into its matrix form and substituting it into Eqn. (4).

Appendix D: Validity of the large ∆ approximation

We evaluate the error associated with the large phase dif-
fusion approximation by considering norm one of the matrix
composed of the neglected elements of the original density
matrix %̂ (Eqn. (10)). Therefore, the error ε can be expressed
as

ε =

2K∑
n,n′=0

|%̂n,n′ − %̂L∆n,n′ |

=

2K∑
n,n′=0,
n6=n′,
n 6=n′±k

|an||an′ |x2(n−n′)2

,
(D1)

where we used the fact that the magnitude of the complex ex-
ponential is 1. We can overestimate the error by setting the
power of x to the lowest possible number, (n−n′)min = k+1,
which corresponds to the first off-diagonal that is negligible
within the approximation. For the special case of HB states,
k = 2, but also (n−n′)min = k+2 since only even numbered
off-diagonals contribute non-zero elements to the density ma-
trix. With this, the errors for a general FPN state and for the
special case of HB states (where an = bn

2
δn,2q as defined in

Eqn. (8)) are respectively

ε(FPN) ≤ x2(k+1)2

−1 +

2K∑
n,n′=0,
n6=n′±k

|an| |an′ |

 (D2)
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and

ε(HB) ≤ x2(k+2)2

−1 +

2K∑
n,n′=0,
n6=n′±k

|an| |an′ |



= x32

−1 +

K∑
n,n′=0,
n 6=n′±1

bnbn′

 .

(D3)

The summation term in Eqn. (D2) and Eqn. (D3) consists of
two sums, one positive

∑2K
n,n′=0 |an| |an′ | and one negative

2
∑2K
n=k
|an| |an−k|. To further overestimate the error, we can

set the negative part of the summation to zero. Additionally,
to get a closed form of the error in terms of K, we can over-
estimate the error even further by setting |an| = |an′ |. This
is due to the arithmetic-harmonic mean inequality for posi-
tive numbers, (|an|+ |an′ |) /2 ≥ 2 |an| |an′ |/ (|an|+ |an′ |),
which can be re-written as |an| |an′ | ≤

(
|an|2 + |an′ |2

)
/2

with equality when |an| = |an′ |. The amount by which the
errors are overestimated gets worse when k > 1 since some
of the coefficients an are zero. We can account for this in the
case of HB states by reducing the Hilbert space from 2K toK
as shown in Eqn. (D3). We therefore get the following errors

ε(FPN) ≤ x2(k+1)2

−1 +

2K∑
n,n′=0

|an|2


= 2Kx2(k+1)2

(D4)

and

ε(HB) ≤ Kx32. (D5)

We evaluate the validity of the approximation by defining the
error ε (equations (D2), (D3), (D4) and (D5)) as some frac-
tion f of the sum of the elements of the original density matrix
%̂. Therefore,

ε = f

2K∑
n,n′=0

|%n,n′ | =
2K∑

n,n′=0

|an||an′ |x2(n−n′)2

. (D6)

We can tighten our error bound by using the lowest possible
value of

∑2K
n,n′=0 |%n,n′ | which is 1. This effectively demands

our error to be smaller than that given in Eqn. (D6) and re-
defines it as,

ε = f. (D7)

This translates to the following regimes of ∆ within which our
approximation is valid,

∆(FPN) ≥

√
2

(k + 1)
2 ln

(
2K

f

)
(D8)
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Figure 11. Phase diffusion numerical validity plot within the large
phase diffusion approximation for HB states. The figure shows the
threshold values of ∆ as a function of particle number (K) when the
highest allowed relative error on the QFI is 0.05. K = 1 case is not
shown as it already gives a tridiagonal density matrix and therefore
an exact solution valid for all ∆.

or in terms of the coefficients of the state an

∆(FPN) ≥
√

2

(k + 1)
2×

×

√√√√√√√ln

 1

f

−1 +

2K∑
n,n′=0,
n6=n′±k

|an| |an′ |




(D9)

and

∆(HB) ≥

√
1

8
ln

(
K

f

)
(D10)

or in terms of the coefficients of the HB state bn

∆(HB) ≥

√√√√√√√1

8
ln

 1

f

−1 +

K∑
n,n′=0,
n 6=n′±k

bnbn′


. (D11)

Eqn. (D8) and Eqn. (D10) show the
√

ln (K) dependence on
the threshold value of ∆ for the considered relative error f .

The exact numerical validity plot for the actual QFI is
shown in Fig. (11) in the case of HB states. It shows the min-
imum values of ∆ as a function of particle number (K) when
the highest allowed relative error (δHii/Hii) is 0.05.
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Appendix E: SLD matrices in the large diffusion regime

In the large ∆ approximation, the SLDs for a general FPN
state are given by the following expressions,

L̂1,L∆ = 2ix2k2
2K∑

n,n′=0

(n− n′) ana
∗
n′

|an|2 + |an′ |2
×

× eiφ(n−n′) δn,n′±k×
× |n, 2K − n〉〈n′, 2K − n′|

(E1)

and

L̂2,L∆ =

= −2k2∆x2k2
2K∑

n,n′=0

ana
∗
n′

|an|2 + |an′ |2
×

× eiφ(n−n′) δn,n′±k×
× |n, 2K − n〉〈n′, 2K − n′|,

(E2)

where subscripts 1 and 2 refer to φ and ∆ respectively.
The above SLDs can be substituted into the SLD equation,
Eqn. (5), to check that these are the correct solutions within
the approximation. Firstly, we perform such verification for
L̂1,L∆. The left hand side of the SLD equation is,

2∂φ%̂L∆ = 2i

2K∑
n,n′=0

ana
∗
n′(n− n′) eiφ(n−n′)×

× x2(n−n′)2

(δn,n′ + δn,n′±k)×
× |n, 2K − n〉〈n′, 2K − n′|

= 2ix2k2
2K∑

n,n′=0

ana
∗
n′(n− n′)×

× eiφ(n−n′) δn,n′±k×
× |n, 2K − n〉〈n′, 2K − n′|,

(E3)

where δn,n′ does not contribute any non-zero terms due to the
factor of (n−n′) appearing in the summation. To calculate the
right hand side of the SLD equation, we require expressions
for %̂L∆L̂1,L∆ and L̂1,L∆%̂L∆,

%̂L∆L̂1,L∆ =

= 2ix2k2
2K∑

n,n′,m′=0

(n− n′) an|an
′ |2a∗m′

|an|2 + |an′ |2
eiφ(n−m′)×

× x2(n′−m′)2

(δn′,m′ + δn′,m′±k)×
× δn,n′±k|n, 2K − n〉〈m′, 2K −m′|

= 2ix2k2
2K∑

n,n′=0

(n− n′)×

× ana
∗
n′ |an′ |2

|an|2 + |an′ |2
eiφ(n−n′) δn,n′±k×

× |n, 2K − n〉〈n′, 2K − n′|
(E4)

and

L̂1,L∆%̂L∆ = (%̂L∆L̂1,L∆)† =

= 2ix2k2
2K∑

n,n′=0

(n− n′)×

× ana
∗
n′ |an|2

|an|2 + |an′ |2
eiφ(n−n′) δn,n′±k×

× |n, 2K − n〉〈n′, 2K − n′|.

(E5)

In obtaining Eqn. (E4) and Eqn. (E5), we keep terms of order
up to x2k2

only. The right hand side of the SLD equation is a
sum of Eqn. (E4) and Eqn. (E5) and hence

%̂L∆L̂1,L∆ + L̂1,L∆%̂L∆ =

= 2ix2k2
2K∑

n,n′=0

(n− n′)ana
∗
n′(|an|2 + |an′ |2)

|an|2 + |an′ |2
×

× eiφ(n−n′) δn,n′±k×
× |n, 2K − n〉〈n′, 2K − n′|

= 2ix2k2
2K∑

n,n′=0

(n− n′)ana∗n′×

× eiφ(n−n′) δn,n′±k×
× |n, 2K − n〉〈n′, 2K − n′|

(E6)

which is equal to Eqn. (E3) i.e. 2∂φ%̂L∆. Therefore, Eqn. (E1)
gives the correct expression for L̂1,L∆ up to the order of
x2k2

= e−2k2∆2/4. A similar proof can be constructed for
L̂2,L∆, however, here the order of accuracy is attenuated from
x2k2

to x2k2−4∆−2 ln (∆) due to the presence of the factor of
∆.

Appendix F: QFI elements in the large diffusion regime

The following is the calculation of H11,L∆, QFI corre-
sponding to the individual estimation of phase, in the large
diffusion regime for a general FPN state. Firstly, we calculate
L̂2

1,L∆,

(L̂1,L∆)2 =

= −4x4k2
2K∑

n,n′,m′=0

(n− n′)(n′ −m′)×

× ana
∗
m′ |an′ |2

(|an|2 + |an′ |2)(|an′ |2 + |am′ |2)
×

× eiφ(n−m′) δn,n′±kδn′,m′±k×
× |n, 2K − n〉〈m′, 2K −m′|.

(F1)
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With this,

%̂L∆(L̂1,L∆)2 =

= −4x4k2
2K∑

l,n,n′,m′=0

(n− n′)(n′ −m′)×

× al|an|2|an′ |2a∗m′
(|an|2 + |an′ |2)(|an′ |2 + |am′ |2)

×

× eiφ(l−m′) x2(l−n)2

×
× δn,n′±kδn′,m′±k(δl,n + δl,n±k)×
× |l, 2K − l〉〈m′, 2K −m′|

= −4x4k2
2K∑

n,n′,m′=0

(n− n′)(n′ −m′)×

× an|an|2|an′ |2a∗m′
(|an|2 + |an′ |2)(|an′ |2 + |am′ |2)

×

× eiφ(n−m′) δn,n′±kδn′,m′±k×
× |n, 2K − n〉〈m′, 2K −m′|,

(F2)

where in Eqn. (F2), terms of order higher than x4k2

are ne-
glected as explained in the main text. The total neglected term
is given by δqφ,

δqφ =

= −4x4k2
2K∑

l,n,n′,m=0

(n− n′)(n′ −m)×

× al|an|2|an′ |2a∗m
(|an|2 + |an′ |2)(|an′ |2 + |am|2)

×

× eiφ(l−m) x2(l−n)2

×
× δn,n′±kδn′,m±kδl,n±k×
× |l, 2K − l〉〈m, 2K −m|.

(F3)

Taking the trace of the neglected term in Eqn. (F3) gives
zero and therefore neglecting terms of order higher than x4k2

contributes no error to the actual QFI. Taking the trace of
Eqn. (F2) gives,

Tr[%̂L∆(L̂1,L∆)2] =

= 4x4k2
2K∑

n,n′=0

(n− n′)2 |an|4|an′ |2

(|an|2 + |an′ |2)2
δn,n′±k

= 4k2x4k2

(
2K∑
n=k

|an|4|an−k|2

(|an|2 + |an−k|2)2

+

2K∑
n′=k

|an′−k|4|an′ |2

(|an′−k|2 + |an′ |2)2

)

= 4k2x4k2
2K∑
n=k

|an|2|an−k|2

|an|2 + |an−k|2
.

(F4)

As all the terms in the above expression are real then this is
also equal to H11,L∆. The same procedure can be performed

200 400 600 800 1000
K

0.30

0.35

0.40

0.45

A

Figure 12. The summation term (A) in Eqn. (F4) gets close to 1/2 at
large K. For K = 1000, A = 0.49.

to calculate H22,L∆, QFI corresponding to the individual esti-
mation of ∆. In this case, the neglected term also contributes
zero to the actual QFI.

We can upper-bound the summation term, A =∑2K
n=k |an|2|an−k|2/

(
|an|2 + |an−k|2

)
, appearing in

Eqn. (F4) by noting that the terms inside the sum have the
form of the harmonic mean and therefore,

A ≤ 1

2

2K∑
n=k

|an|2 + |an−k|2

2
(F5)

with the equality when |an|2 = |an−k|2 for n ∈ Z{k : 2K}.
Further, we can expand the sum on the right hand side and
re-group its elements to give

A ≤ 1

4
(|a0|2 + ...+ |a2K |2 + |ak|2 + ...+ |a2K−k|2). (F6)

Using
∑2K
n=0 |an|2 = 1 we get

A ≤ 1

2
− 1

4

k−1∑
n=0

(|an|2 + |a2K−n|2) (F7)

which gives the upper bound of 1/2 when
∑k−1
n=0(|an|2 +

|a2K−n|2)/4 = 0.
For HB states, the upper bound of 1/2 is reached when(
|b0|2 + |bK |2

)
/4 = 0. This condition and hence the upper

bound is asymptotically reached when K gets large as shown
in Fig. (12).

Appendix G: Complementary QFI plot to Fig. (3)

Fig. (13) shows a linear plot of the QFI as a function of ∆
for large phase diffusion values.

Appendix H: Trade-off in the large diffusion regime

We consider orthonormal projective measurments act-
ing on a single copy of the evolved FPN state, given in
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Figure 13. Complementary figure to Fig. (3) showing a linear plot of
the QFI as a function of ∆ for large phase diffusion values. Addition-
ally to the curve, we plotted the sampled ∆ points for the analytical
QFI expression (crosses) to magnify the calculation error for smaller
∆ values.

Eqn. (10). Such a measurement can be realized by a POVM
set {|vy〉〈vy|}, where

|vy〉 =

2K∑
n=0

ry,n eiXy,n |n, 2K − n〉 (H1)

with ry,n ∈ <{0 : 1} and Xy,n ∈ <{0 : 2π}. The complete-
ness relation,

∑2K
y=0 |vy〉〈vy| = 1̂, and the normalisation give

the following constraints respectively,

2K∑
y=0

ry,nry,n′ e
i(Xy,n−Xy,n′ ) = δn,n′ (H2)

and

2K∑
n=0

r2
y,n = 1. (H3)

The probability associated with the yth outcome and its corre-
sponding derivatives with respect to φ and ∆ are given by,

py = 〈vy|%̂L∆|vy〉

=

2K∑
n=0

r2
y,n|an|2+

2x2k2
2K∑
n=k

ry,nry,n−k|an||an−k| cos(Θy,n,k)

(H4)

∂φpy =− 2kx2k2
2K∑
n=k

ry,nry,n−k|an||an−k|×

× sin (Θy,n,k)

(H5)

and

∂∆py =− 2k2∆x2k2
2K∑
n=k

ry,nry,n−k|an||an−k|×

× cos (Θy,n,k),

(H6)

where Θy,n,k = (Xy,n−k −Xy,n + θn − θn−k + kφ). Us-
ing Eqn. (3), the resulting elements of the Fisher information
matrix, F11 and F22, corresponding to the individual estima-
tion of φ and ∆ are given by,

F11 = 4k2x4k2
2K∑
y=0


(∑2K

n=k ry,nry,n−k|an||an−k| sin (Θy,n,k)
)2

∑2K
n=0

(
r2
y,n|an|2

)
+ 2x2k2

∑2K
n=k (ry,nry,n−k|an||an−k| cos (Θy,n,k))


= 4k2x4k2

2K∑
y=0


(∑2K

n=k ry,nry,n−k|an||an−k| sin (Θy,n,k)
)2

∑2K
n=0 r

2
y,n|an|2


(H7)

and

F22 = 4k4∆2x4k2
2K∑
y=0


(∑2K

n=k ry,nry,n−k|an||an−k| cos (Θy,n,k)
)2

∑2K
n=0

(
r2
y,n|an|2

)
+ 2x2k2

∑2K
n=k (ry,nry,n−k|an||an−k| cos (Θy,n,k))


= 4k4∆2x4k2

2K∑
y=0


(∑2K

n=k ry,nry,n−k|an||an−k| cos (Θy,n,k)
)2

∑2K
n=0 r

2
y,n|an|2

 ,

(H8)
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where we neglect orders higher than x4k2

to obtain the final expressions. The trade-off, Tr
[
FH−1

]
= F11/H11 + F22/H22, is

calculated using quantum limits found in Eqn. (21) and Eqn. (22). It is

Tr[FH−1] =
1

s

2K∑
y=0

(
1∑2K

n=0 r
2
y,n|an|2

2K∑
n,n′=k

ry,nry,n−kry,n′ry,n′−k|an||an−k||an′ ||an′−k|×

× (sin (Θy,n,k) sin (Θy,n′,k) + cos (Θy,n,k) cos (Θy,n′,k)))

=
1

s

2K∑
y=0

(∑2K
n,n′=k ry,nry,n−kry,n′ry,n′−k|an||an−k||an′ ||an′−k| cos (Θy,n,k −Θy,n′,k)∑2K

n=0 r
2
y,n|an|2

)
,

(H9)

where s =
∑2K
n=k |an|2|an−k|2/

(
|an|2 + |an−k|2

)
and to

get the final expression, we used the identity cos (a− b) =
cos (a) cos (b) + sin (a) sin (b). Since s, ry,n and |an| in
Eqn. (H9) are positive then the trade-off is maximised when
cos (Θy,n,k −Θy,n′,k) = 1. Further, assuming projectors
whose coefficients have equally weighted magnitudes i.e.

ry,n = 1/
√

2K
k + 1, we get the trade-off as given by Eqn.

(25).

Appendix I: Linear independence of the elements of sets W1

and W2

SetsW1 andW2 are described in Eqn. (29) and Eqn. (30).
Their elements consist of vectors |wk〉 =

∑K
n=0 n

k−1|ϕn〉
for k = {1, ..., N}, where N (number of vector elements)
is 3 for W1 and 5 for W2. We are interested in a situation,
where (K + 1) ≥ N since the size of the density matrix in
the number basis is (K + 1) × (K + 1). A set is linearly
dependent if one of the vectors in the set can be expressed
as a linear combination of the other vectors. If none of the
vectors is linearly dependent then the set is said to be linearly
independent. Mathematically, the linear independence can be
stated as

N∑
k=1

ck−1

K∑
n=0

nk−1|ϕn〉 = 0

iff ck−1 = 0 for k = {1, ..., N}.

(I1)

The above condition can be re-written as

K∑
n=0

(
N∑
k=1

ck−1n
k−1

)
|ϕn〉 = 0

iff ck−1 = 0 for k = {1, ..., N}

(I2)

and since vectors ϕn = bn e2iφn |2n, 2K − 2n〉, n =
{0, ...,K} are orthogonal then the condition for linear inde-
pendence can be further simplified to

N∑
k=1

ck−1n
k−1 = c0 + c1n+ c2n

2 + ...+ cNn
N = 0

forn = {0, ...,K}
iff ck−1 = 0 for k = {1, ..., N}.

(I3)

We, therefore, obtain (K + 1) distinct, simultaneous equa-
tions, corresponding to cases n = {0, ...,K}, with N un-
knowns. However, the first equation (n = 0 case) imposes
condition c0 = 0. Therefore, after solving for the first
N equations we will obtain two equations relating two un-
knowns, but there will be a contradiction because the two un-
knowns (in each of the two equations) will be related by a
different constant factor because the coefficients in front of
ck−1 take different values for each equation. Therefore, if
(K + 1) ≥ N then

∑N
k=1 ck−1n

k−1 can only be satisfied if
ck−1 = 0 for k = {1, ..., N} as required by the linear inde-
pendence condition.

To see this, we can consider an example of W1 set con-
taining N = 3 vectors and K = 2. We get the following 3
simultaneous equations,

c0 = 0

c0 + c1 + c2 = 0

c0 + 2c1 + 4c2 = 0.

(I4)

It is clear that if c0 = 0, as required by the first equation in
(I4), then the remaining two equations, will be in contradic-
tion.

Appendix J: Gram Schmidt procedure and the orthonormal sets
V1 and V2

The first vector |w1〉 of sets W1 and W2, given in equa-
tions (29) and (30), is already normalised and therefore, it can
be taken as the first element |v1〉 of the orthonormal sets V1

and V2. The remaining vectors are found using

|vk+1〉 =
|wk+1〉 −

∑K
i=1〈vi|wk+1〉|vi〉

‖|wk+1〉 −
∑K
i=1〈vi|wk+1〉|vi〉‖

. (J1)
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The Gram Schmidt procedure produces the following or-
thonormal basis set,

|v1〉 =

K∑
n=0

|ϕn〉,

|v2〉 =
2
√

2
∑K
n=0(n− K

2 )|ϕn〉√∏1
n=0(n+K)

,

|v3〉 =
8
√

2
∑K
n=0((n− K

2 )2 − K
8 (K + 1))|ϕn〉√∏3

n=0(n+K − 1)
,

|v4〉 =
−
√

2√∏5
n=0(n+K − 2)

K∑
n=0

(K − 2n)×

× (2 + (−3 +K)K + 16n(n−K))|ϕn〉,

|v5〉 =

√
2√∏7

n=0(n+K − 3)

K∑
n=0

(

3∏
n′=0

(K − n′)

− 32K(2 + (K − 1)K)n

+ 32(2 +K(5K − 1))n2

− 256Kn3 + 128n4)|ϕn〉.

(J2)

Appendix K: Small diffusion regime: reduced HB density
matrix entries and diagonalisation procedure

In the small ∆ approximation, the HB density matrix can
be Taylor expanded to the second and fourth order in ∆ about
∆ = 0, as shown in Eqn. (26) and Eqn. (27). The entries of
%̂′1,S∆ (see Eqn. (32)) in terms of K and ∆ are

b11 = 1− ∆2

2
K(K + 1),

b13 = − ∆2

4
√

2

√√√√ 3∏
n=0

(n+K − 1),

b22 =
∆2

2
K(K + 1),

(K1)

and the entries of %̂′2,S∆ (see Eqn. (33)) are

c11 = 1 +
∆2

32
K(K + 1)×

× (−16 + ∆2(−2 + 9K(K + 1))),

c13 =
1

8
√

2

√√√√ 3∏
n=0

(n+K − 1)×

× (−2∆2 + ∆4(−1 + 2K(K + 1))),

c15 =
∆4

64
√

2

√√√√ 7∏
n=0

(n+K − 3),

c22 = −∆2

8
K(K + 1)×

× (−4 + ∆2(−2 + 3K(K + 1))),

c24 = −∆4

16

√√√√K(K + 1)

5∏
n=0

(n+K − 2),

c33 =
3∆4

32

3∏
n=0

(n+K − 1).

(K2)

The eigenvalue equation corresponding to %̂′1,S∆ can be
written asb11 0 b13

0 b22 0
b13 0 0

 x1

x2

x3

 = E(1)

 x1

x2

x3

 , (K3)

where E(1) and |e(1)〉 = x1|v1〉 + x2|v2〉 + x3|v3〉 are the
eignenvalues and eigenvectors (the basis vectors are given in
Eqn. (J2)) of %̂′1,S∆. The matrix equation gives 3 simultaneous
equations of the form

b11x1 + b13x3 = E(1)x1

b22x2 = E(1)x2

b13x1 = E(1)x3.

(K4)

The second equation in (K4) gives the first eigenvalue and
eigenvector of

E
(1)
1 = b22 (K5)

and

|e(1)
1 〉 = |v2〉. (K6)

The remaining two equations form a 2× 2 matrix with eigen-
value equation(

b11 b13

b13 0

)(
x1

x3

)
= E(1)

(
x1

x3

)
(K7)

and characteristic polynomial of (E(1))2−b11E
(1)−b213. The

resulting eigenvalues and the corresponding eigenvectors are

E
(1)
2 =

b11 −
√
b211 + 4b213

2

E
(1)
3 =

b11 +
√
b211 + 4b213

2

(K8)
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and

|e(1)
2 〉 =

E
(1)
2

b13
|v1〉+ |v3〉

|e(1)
3 〉 =

E
(1)
3

b13
|v1〉+ |v3〉.

(K9)

Eigenvectors |e(1)
2 〉 and |e(1)

3 〉 need to be normalised by di-
viding them by the magnitude of the vectors. E(1)

1 and |e(1)
1 〉

contain terms of order up to ∆2, however, E(1)
2 and |e(1)

2 〉,
and E(1)

3 and |e(1)
3 〉 contain also terms of higher order. Ad-

ditionally, eigenvalue E(1)
2 appears to be negative, however,

further Taylor expanding this eigenvalue reveals that it is in
fact zero within the approximation. Taylor expansion of the
eigenvalues and eigenvectors to the second order in ∆ about
∆ = 0 results in the following eigenvalues and normalised
eigenvectors,

E
(1)
1 = b22

E
(1)
2 = 0

E
(1)
3 = b11

(K10)

and

|e(1)
1 〉 = |v2〉

|e(1)
2 〉 = −b13|v1〉+ |v3〉

|e(1)
3 〉 = −|v1〉−b13|v3〉.

(K11)

These eigenvectors and eigenvalues reconstruct the HB den-
sity matrix accurate to the second order in ∆. Therefore, Tay-
lor expanding the evolved HB density matrix to the second
order in ∆ about ∆ = 0 in fact produces a rank 2 matrix
within the approximation which can be used when calculating
H11. Note that neglecting the higher order terms fits within
the original constraint of ∆2 � 1/K2.

The same procedure is applied to %̂′2,S∆ which can be de-
scribed by the following 5 simultaneous equations,

c11y1 + c13y3 + c15y5 = E(2)y1

c22y2 + c24y4 = E(2)y2

c13y1 + c33y3 = E(2)y3

c24y2 = E(2)y4

c15y1 = E(2)y5,

(K12)

where E(2) and |e(2)〉 = y1|v1〉+ y2|v2〉+ y3|v3〉+ y4|v4〉+
y5|v5〉) are the eignenvalues and eigenvectors of %̂′2,S∆. Since
y2 and y4 occur only in the second and fourth equation of
(K12) and y1, y3 and y5 in the first, third and fifth equation of
(K12) then %̂′2,S∆ can be written as a direct sum of 2× 2 and
3× 3 matrices with the following eigenvalue equations,(

c22 c24

c24 0

)(
y2

y4

)
= E(2)

(
y2

y4

)
(K13)

and c11 c13 c15

c13 c33 0
c15 0 0

 y1

y3

y5

 = E(2)

 y1

y3

y5

 . (K14)

The 2× 2 matrix gives eigenvalues

E
(2)
1 =

c22 −
√
c222 + 4c224

2

E
(2)
2 =

c22 +
√
c222 + 4c224

2

(K15)

with the corresponding eigenvectors

|e(2)
1 〉 =

E
(2)
1

c24
|v2〉+ |v4〉,

|e(2)
2 〉 =

E
(2)
2

c24
|v2〉+ |v4〉,

(K16)

where the eigenvectors need to be normalised by dividing
them by the vector magnitude.

The 3 × 3 matrix has a characteristic polynomial α of the
form of a cubic equation

α = k(E(2))3 + l(E(2))2 +mE(2) + n, (K17)

where k = −1, l = (c33 + c11), m = (−c11c33 + c215 + c213)
and n = −c215c33. The resulting eigenvalue solutions and the
corresponding eigenvectors are

E
(2)
i = − 1

3k

(
l + uiC +

ζ0
uiC

)
(K18)

and

|e(2)
i 〉 =

E
(2)
i

c15
|v1〉

+
1

c13

(
(E

(2)
i )2

c15
− c15 −

c11E
(2)
i

c15

)
|v3〉

+ |v5〉,

(K19)

where i = {3, 4, 5}, u1 = 1, u2 =
(
−1 + i

√
3
)
/2, u3 =(

−1− i
√

3
)
/2,C =

((
ζ1 +

√
−27k2ζ

)
/2
)1/3

, ζ0 = (l2−
3km), ζ1 = (2l3 − 9klm + 27k2n) and ζ = (18klmn −
4l3n+ l2m2− 4km3− 27k2n2). This time, eigenvalues E(2)

1

and E(2)
4 appear to be negative, however, Taylor expanding

the eigenvalues to the fourth order in ∆ about ∆ = 0, we get

E
(2)
1 = 0

E
(2)
2 = c22

E
(2)
3 = c11 +

K(1 +K)(−2 +K(1 +K))∆4

32

E
(2)
4 = 0

E
(2)
5 =

2

3
c33.

(K20)

Page 19 of 22 AUTHOR SUBMITTED MANUSCRIPT - QST-100151.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



20

Number of particles K
1 5 10 15 20 25

T
hr

es
ho

ld
 "

 (
fo

r 
H

11
)

0

0.05

0.1

0.15

0.2

0.25

0.3

K
1 5 10 15 20 25

T
hr

es
ho

ld
 "

 (
fo

r 
H

22
)

0

0.1

0.2

0.3

Figure 14. Phase diffusion validity plot for the small phase diffusion
approximation for HB states. The figure shows the threshold values
of ∆ as a function of particle number (K) when the highest allowed
relative error on the QFI (δHii/Hii) is 0.05.

The corresponding normalised eigenvectors expanded to the
fourth order in ∆ are not shown since they are complicated
functions of K and ∆. The zero eigenvalues and the corre-
sponding eigenvectors do not contribute when reconstructing
the density matrix accurate to the fourth order in ∆. The re-
maining non-zero eigenvalues (E(2)

2 , E(2)
3 and E(2)

5 ) and the
corresponding eigenvectors reconstruct the density matrix ac-
curate to the fourth order in ∆ when using their full forms
given in Eqn. (K15), Eqn. (K16), Eqn. (K18) and Eqn. (K19).
The reason to use the full forms is that the eigenvectors (cor-
responding to E(2)

2 , E(2)
3 and E(2)

5 ) contain ∆−4 terms and
therefore higher order terms in the expansion are required to
ensure that we do not lose the fourth order terms in ∆ due to
cancellations.

These eigenvalues and eigenvectors can then be used to
calculate the diagonal elements of the QFI matrix by using

Eqn. (6). These elements are given in Eqn. (34) and Eqn. (35)
of the main text.

Fig. (14) represents the phase diffusion validity plot for the
small ∆ approximation. It shows the maximum allowed phase
diffusion values as a function of K when the highest allowed
relative error on the QFI (δHii/Hii) is 0.05.

Appendix L: Trade-off in the joint estimation of φ and ∆ for HB
states as ∆ → 0

Similarly to the approach taken when calculating the trade-
off in the large phase diffusion approximation (shown in
Appendix (H)), we use the HB density matrix expanded to
the second order in ∆ about ∆ = 0 (Eqn. (26)) and a
complete POVM set {πy} composed of projectors |vy〉 =∑K
n=0 ry,n eiXy,n |2n, 2K − 2n〉 to calculate the probability

associated with the yth outcome. The probability and its cor-
responding derivatives with respect to φ and ∆ are,

py = 〈vy|%̂1,S∆|vy〉

=

K∑
n,n′=0

Ry,n,n′×

× (1− 2∆2(n− n′)2) cos (Θy,n,n′),

(L1)

∂φpy =− 2

K∑
n,n′=0

Ry,n,n′(1− 2∆2(n− n′)2)×

× (n− n′) sin (Θy,n,n′)

(L2)

and

∂∆py =− 4∆

K∑
n,n′=0

Ry,n,n′(n− n′)2 cos (Θy,n,n′), (L3)

where Θy,n,n′ = (Xy,n′ −Xy,n + 2φ(n− n′)) and
Ry,n,n′ = ry,nry,n′bnbn′ . The associated diagonal elements
of the Fisher information matrix, F11 and F22, corresponding
to the individual estimation of φ and ∆ respectively are,

F11 =

K∑
y=0

4
(∑K

n,n′=0Ry,n,n′ sin (Θy,n,n′) (n− n′)
(

1− 2∆2 (n− n′)2
))2

∑K
n,n′=0Ry,n,n′ cos (Θy,n,n′)

(
1− 2∆2 (n− n′)2

)


≈
K∑
y=0

4
(∑K

n,n′=0Ry,n,n′ sin (Θy,n,n′) (n− n′)
)2

∑K
n,n′=0Ry,n,n′ cos (Θy,n,n′)


(L4)

and
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F22 =

K∑
y=0

 16∆2
(∑K

n,n′=0Ry,n,n′ cos (Θy,n,n′) (n− n′)2
)2

∑K
n,n′=0Ry,n,n′ cos (Θy,n,n′)

(
1− 2∆2 (n− n′)2

)


≈
K∑
y=0

16∆2
(∑K

n,n′=0Ry,n,n′ cos (Θy,n,n′) (n− n′)2
)2

∑K
n,n′=0Ry,n,n′ cos (Θy,n,n′)

 ,

(L5)

where the approximations are made assuming that ∆→ 0 so that terms containing 2∆2 (n− n′)2 are negligible compared to 1.
Using the QFI expressions found in Eqn. (34) and Eqn. (35) and assuming ∆ → 0 so that terms containing 2K(K + 1)∆2 are
negligible compared to 1, we can compute Tr

[
FH−1

]
Tr
[
FH−1

]
=

=
2

K(K + 1)

K∑
y=0

(∑K
n,n′=0Ry,n,n′ sin (Θy,n,n′) (n− n′)

)2

+ 4∆2
(∑K

n,n′=0Ry,n,n′ cos (Θy,n,n′) (n− n′)2
)2

∑K
n,n′=0Ry,n,n′ cos (Θy,n,n′)

. (L6)

The ∆ term appearing in the trade-off in Eqn. (L6) cannot be
simply neglected (by invoking ∆ → 0) because we require
to compare terms of the form: sin (Θy,n,n′) sin (Θy,m,m′)
and 4∆2 cos (Θy,n,n′) cos (Θy,m,m′) (n− n′) (m−m′). If
the phase of the POVM has some ∆ dependence then it is
not straightforward which term dominates. In fact, to obtain
significant Fisher information for the diffusion parameter for

decreasing values of ∆, we would expect some ∆ dependence
in the POVM to reduce the effect of the ∆2 factor. Without
knowing further structure of the optimal POVM, standard op-
timisation is a difficult task to perform. However, the numeri-
cal results based on the simulated annealing algorithm suggest
that as ∆ → 0 the trade-off approaches 1 (see Fig. (7) of the
main text).
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