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Lithium ion battery cathode materials as a case study to 

support the teaching of ionic solids 
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United Kingdom. 5 

ABSTRACT 

A lithium ion battery cathode material is proposed as a case study to investigate 

ionic solids in an undergraduate inorganic chemistry course. The concepts of unit 

cell, ionic lattice arrangements, non-stoichiometric compounds and the 

thermodynamics of defects in crystals are introduced to students within the 10 

framework of research into materials for rechargeable batteries.  
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Crystals/Crystallography, Materials Science, Oxidation/Reduction, Solids, X-Ray 

Crystallography. 

INTRODUCTION 

Teaching science by case study and class problem solving has seen an increase 20 

in popularity over the past twenty years, as a more effective way of transferring 

knowledge over the traditional lecture.1-8   

The study of solid state is generally integrated in undergraduate inorganic 

chemistry modules at University level, often linked to topics like transition metal 

chemistry and atomic bonding. Undergraduate lab experiments in inorganic 25 

chemistry often focus on the solution chemistry of transition metal complexes and 

solids are generally overlooked, with only few practical experiments reported.9-11 

Yet, understanding the structure of inorganic solids is becoming increasingly 

relevant for a chemist, as new materials, such as hybrid perovskite have shown 

extraordinary performance in dye sensitized solar cells.12 As well as energy 30 

harvesting devices, rechargeable lithium ion batteries have revolutionized the world 

of electronics: access to light, compact and relatively large-charge storage units, 

capable of powering full color displays for several hours has provided a boost to the 

capability of portable devices such as smart phones, tablets and laptops.13-14 The 

operating principles of a lithium ion battery have entered the undergraduate 35 

chemistry curriculum and have recently even been featured at high school level in 

the United Kingdom.15 A comprehensive discussion of the electrochemistry of Li ion 

batteries for the purpose of chemical education was reported by R. S. Treptow in 

2003.16  
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Such devices rely on the migration of Li+ ions from the cathode to the anode 40 

during charge and the reverse during discharge, when in use. The anode is typically 

a layered carbon structure which can accommodate Li atoms by intercalation, 

whereas the cathode is generally an ionic solid comprising a transition metal ion for 

redox purposes and a crystal structure that allows the Li+ ions to migrate in and 

out of it. As such, the cathode is an ideal framework to introduce undergraduate 45 

students in inorganic chemistry to the concepts of unit cell and crystal lattice of 

ionic solids, as well as providing an insight in the relevance of inter-ionic 

arrangements in different classes of crystals.  In addition, the concept of defects in 

the lattice and that of non-stoichiometric compounds are in essence two ways of 

looking at the same phenomenon and the former can provide a practical insight 50 

into the thermodynamics of crystals and help understanding the decline in 

performance of batteries over time.17 

LEARNING OUTCOMES 

In this article, the aim is to provide educators with a platform to link theoretical 

concepts with practical applications which are very relevant to everyday students’ 55 

life. Using LiCoO2 as a case study material, it is possible to introduce the core 

concepts of a solid state course. Using calculations and observations on this case 

study material, students should learn to: 

 Appreciate that ions are shared among cells and calculate how many 

ions (or atoms) are contained in the unit cell and hence derive the 60 

compound formula. 

 Calculate how many ions of a given type are present in a given mass 

unit of the compound, hence reinforcing the concept of mole. 
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 Appreciate that the unit cell is a self-contained representation of the 

material and therefore calculating the density of a unit cell using the cell 65 

parameters leads to the density of the bulk material. 

 Calculate the distance between ions in a crystal, using the properties of 

triangles and the geometry of solids. 

 Appreciate the importance of defects in crystals and that of transitions 

between different crystal structures in a compound. 70 

THE UNIT CELL 

While understanding the fundamentals of a simple rocksalt unit cell appears 

trivial, students often find ternary ionic structures ABmXn significantly more 

complicated. In such structures, the bonding between anions and cations might 

have different ratios, leading to tetrahedral, octahedral or more complex 75 

coordination arrangements, but the overall stoichiometry of the unit cell always 

represents an integer multiplier of that of the bulk solid. Projection representations, 

such as the horizontal sections depicted in figure 1, are a preferable way to 

represent a unit cell, over tridimensional sketches. The latter allow to get a grasp of 

the overall shape and composition of the cell and allow to appreciate the layered 80 

structure, but for educational purpose, they lack rigor.  From a projection, students 

can independently confirm the proportions between ions and the chemical formula 

of a ternary compound, by adding the individual fractional contributions of each 

ion in the cell. Corner ions are shared among eight cells, edge ions are shared 

among four cells, face ions are shared between two cells, while internal ions are not 85 

shared and belong fully to the cell. Figure 1 shows the unit cell of a ternary ionic 

compound of lithium, cobalt and oxide ions, with its thirteen vertical sections, 
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named using fractions between 0 and 1. It is possible to count three lithium ions 

(two are inside the cell at 2/12 and 10/12 and one is made out of four edge ions at 

6/12), three cobalt ions (two are inside the cell at 4/12 and 8/12 and one is made 90 

out of eight corners at 0 and 1) and six oxide ions (four are inside the cell at 1/12, 

5/12, 7/12 and 11/12; two are made out of eight edges at 3/12 and 9/12). Overall, 

the cell contains three units of a compound with formula LiCoO2 

 

Figure 1: projections and 3D representations of the LiCoO2 rhombohedral crystal 95 

cell. The unit cell contains three units formula of the compound. 

 

From the chemical formula, it is interesting and relatively straightforward to 

calculate the theoretical charge capacity of a given material in a lithium ion battery. 

Specific charge capacity is measured by the industry in Ampere-hour per gram (Ah 100 
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g-1). Given one Ampere-hour is by definition the charge transferred by a one Ampere 

current over one hour, hence 3600 Coulomb (C), the problem to work out is the 

number of charge carriers (lithium ions) per gram of compound for the structure of 

LiCoO2 depicted in figure 1. Students should be able to perform such calculations 

independently, by dividing the Avogadro’s constant (NA = 6.022 x 1023 mol-1) by the 105 

formula weight (FW = 97.87 g mol-1). Multiplying the resulting number of Li+ ions by 

the elemental charge (C = 1.6 x 10-19 C) leads directly to the theoretical charge 

capacity as 982.8 C g-1, or, as above, 0.273 Ah g-1 (see equation 1).  

 

Equation 1.  110 

This simple problem solving exercise engages the students in a real world 

application of chemical calculations involving moles and molar mass, which for 

once go beyond the “how many grams in a mole” scenario. At the same time, the 

projection representation provides a practical way for students to understand the 

fundamentals of complex unit cells, which 3D representations fall short of 115 

describing. Students’ understanding can be probed on why low atomic weight 

lithium is the preferred charge carrier and how to produce a material with a higher 

charge capacity: reducing the formula weight, results in a higher number of Li+ ions 

per gram of cathode. 

All lithium ion batteries on the market display the charge capacity in Ah and 120 

students can calculate how many grams of the cathode material are necessary to 
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make up the battery of their smartphone or tablet device. As discussed later in this 

article, theoretical charge capacity is an over-estimation, but nonetheless these 

calculations have some value in comparing the relative performance of different 

materials.  125 

Density (ρ) calculations can be performed for any crystalline material, by 

knowing the cell parameters and the number of unit formulas (Z) contained in the 

cell, using the following equation, where Fw is the formula weight, NA is Avogadro’s 

constant and V is the volume of the unit cell, as shown in equation 2. 

 130 

Equation 2.  

 

It is worth stressing that the numerator in the fraction is the formula weight of 

the ions in the cell in g mol-1 and therefore the denominator needs to contain the 

Avogadro’s constant to convert it into the actual mass of ions in the cell. In the case 135 

of LiCoO2, as depicted in figure 1, given Z = 3 and the parameters of the 

rhombohedral unit cell, as measured by x-ray powder diffraction are a = b = 281.4 

pm (sides of the rhomboid); c = 1405.2 pm (vertical height of the cell). Given the 

angles are 60° and 120° for the rhomboid and 90° for the vertical face, the volume 

of the cell can be calculated as shown in figure 2 (V = 96.36 x 10-24 cm3) and the 140 

density can be calculated as 5.06 g cm-3.18 Such calculations rely on students 
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recalling the properties of right angle triangles and how to work out the volume of 

simple solids. 

 

Figure 2. Calculations to work out the density of LiCoO2 solid. 145 

 

LiCoO2 from crystallographic data appears as a sequence of layers that follow 

the motif Co/O/Li/O, where the first layer has a quasi-close packed configuration 

of the ions. The second layer has the same configuration but it is displaced so that 

each ion sits on top of the dips marked as b in figure 3. The third layer also has the 150 

same configuration, but the ions sit on top of the dips marked as c. The fourth layer 

sits exactly on top of the first and overall the repeating pattern is an ABC type, as 

shown in figure 3. The Co/O/Li/O motif and the repeating pattern combine to give 

twelve possible combinations, which correspond to the different layers in the unit 

cell, bearing in mind the top and the bottom layers in the cell only count as half 155 

layers, as are shared between two adjacent cells. 
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Figure 3. Layers of ions in the crystal lattice. 

The layered structure of LiCoO2 lattice can also be viewed as alternated layers of 

CoO2
-, with an octahedral arrangement of oxide ions around Co3+ and layers of Li+ 160 

ions, which can be extracted from the crystal in the presence of a suitable voltage. 

In a perfect octahedron, the distance between the six vertices is the same and in 

our case it corresponds to the lattice parameter a. The ion at the center is 

equidistant to all six vertices. Students should then be able to compute the 

distance between Co3+ and O2- in LiCoO2. 165 
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Figure 4. Octahedral arrangement of oxide ions around the Co3+ ion and section of 

the equatorial plane of the octahedron. 

Knowing the distance between two oxide ions in the octahedron equals the 

lattice parameter a = 281.4 pm, the distance between Co3+ and O2- in the layer can 170 

be calculated as  
𝑎√2

2
, which gives 198.98 pm (see figure 4). This result is in 

excellent agreement with the sum of the ionic radii of O2- (140 pm) and Co3+ (60 

pm). 

DEFECTS AND NON STOICHIOMETRIC COMPOUNDS 

During charging, in the presence of a voltage exceeding the potential of the cell, 175 

ions are depleted from the cathode crystal structure, resulting in the formation of 
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the non-stoichiometric compound LixCoO2, where 0 < x < 1. The proportion of 

cobalt +3 and +4 ions changes continuously to maintain charge neutrality. Ion 

depletion is an endothermic process, as energy is required to break the lattice and 

free the ions from the crystal. Ion depletion from the cathode also results in 180 

vacancies in the crystal structure, which are typically referred to as Schottky 

defects. A small number of defects in a crystal promote stability by increasing the 

entropy of the system, which accounts for defects existing as the norm in any 

crystal. As the number of vacancies increases, the endothermic contribution 

required to disrupt the lattice overwhelms the entropic advantages and overall the 185 

Gibbs energy of the crystal increases, rendering the structure less stable.  

When x = 0.5 in LixCoO2, the compound reaches a new stoichiometry and the 

formula can be rewritten as LiCo2O4, which belongs to the spinel class of materials 

and could rearrange in the stable cubic cell, which comprises 8 lithium ions (8 

corners counting for one ion and 6 ions on the faces counting for 3), 16 cobalt ions 190 

of mixed +3/+4 oxidation states (all internal to the cell) and 32 oxide ions (all 

internal to the cell), as depicted in figure 5.19  
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Figure 5. Crystal structure of a LiCo2O4 spinel, retaining the layered structure of 

O2- ions, which is visible along the diagonal of the cube. 195 

Bearing in mind the layered arrangement of oxide ions in the original structure 

and looking at how the oxides and the cobalt ions in the spinel are still arranged in 

diagonal layers, the phase transition mainly involves a rearrangement of the lithium 

ions, made simpler by the large number of vacant sites. If the ion depletion was to 
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continue until x = 0, the cathode would transform into the stoichiometric 200 

compound CoO2, which is known to be unstable.  

Crystal rearrangements need to be avoided during battery life and therefore the 

theoretical charge capacity calculated initially is a figure that can never be reached. 

The best LiCoO2 cathodes operate at a capacity of ca. 0.130 Ah g-1, which is less 

than 50% of the theoretical capacity calculated, or in other words less than half of 205 

the potential charge carriers can be depleted from the crystal during charge.  

Charge/discharge cycles performed at or close to the charge capacity of the unit 

result in diminished battery life, as permanent damage to the layered crystal 

structure occur more frequently the more the crystal is depleted of Li+ ions. 

Typically the charging voltage is controlled to avoid excessive depletion.  210 

Other cathode materials such as LiFePO4 and LiMn2O4 have a considerably 

more complicated unit cell (olivine and spinel respectively) and the analysis of those 

is far too advanced for an introduction to ionic solids. Perovskite type materials 

have gained considerable interest in the field of dye sensitized solar cells and the 

basic unit cell of an ABX3 structure is suitable to perform calculations to work out 215 

the number of ions in the cell and the density of the material.20 In addition, ionic 

distances can be calculated, knowing the size of the unit cell, as described in the 

supplementary material. 

METHOD, STUDENT FEEDBACK AND RESULTS 

The approach presented in this article was implemented as part of an 220 

introduction to Inorganic Chemistry module for first year students of Chemistry at 

The University of Warwick. The “case study” approach was used to teach the 

properties of the unit cell, ionic solid lattices, thermodynamics and defects in ionic 
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solids. Lectures were interactive: students were asked to join in small groups of two 

or three and try to work out the ion count in the cell, the charge capacity of the 225 

material and the density of the material, knowing only the basic definitions. 

Typically, students showed an excellent level of engagement in the class and 

managed to partially and occasionally completely solve the problems within the 

small group. Methods and calculations were then discussed together, with the help 

of the teacher. Anonymous feedback was collected at the end of the series of ten 230 

lectures from 26 students. The brief feedback form consisted of three statements 

based on a Likert-type scale: 

a) The module based on LiCoO2 makes the topics more interesting 

b) The use of LiCoO2 as a “case study” makes concepts easier to understand 

c) I would like a “case study” approach implemented in other modules 235 

The students’ answers are summarized in table 1. 
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Response Distribution by Agreement/Disagreement N = 26 

Statements for Response Strongly 

Disagree 

Disagree Neither 

Agree 

nor 

Disagree 

Agree Strongly 

Agree 

The module based 

on LiCoO2 makes 

the topics more 

interesting 

 

0 0 0 13 13 

The use of LiCoO2 

as a “case study” 

makes concepts 

easier to 

understand 

 

0 1 3 13 9 

I would like a 

“case study” 

approach 

implemented in 

other modules 

0 0 1 13 12 
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Table 1. Comparison of feedback from Students. 

 240 

All students agreed for their feedback to be used for the purpose of research in 

education. The feedback collected is overwhelmingly positive: 100% of students 

agree the case study approach used makes the topic of solid state structure 

more interesting, which was the first objective, when the module was designed. 

96% of students would like to see a similar approach implemented in other year 245 

one modules. Even more importantly, 84% of students agree the case study 

approach helps understanding concepts. Students were also given the 

opportunity to comment on the approach, some selected comments from 

students involved in the module are reported below. 

“Great, as long as there is still variety with use of other examples.” 250 

 

“It was very useful to stick to LiCoO2 as it allowed me to learn about the different 

aspects of a crystal using a familiar structure + made it more interesting.” 

 

“The use of examples/case studies etc. makes it easier for me to see what is 255 

going on and how to apply the concepts with the example.” 

 

“Great to learn about real life applications. Very interesting!” 
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“I think seeing LiCoO2 keep coming up made the idea of solid state less daunting, 260 

made it more relevant.” 

 

“Would be interesting to have an inefficient battery example to compare LiCoO2 

to.” 

 265 

The solid state component of the first year Inorganic Chemistry module at 

Warwick aims to enable students to understand the different arrangements of 

atoms and ions in a crystal, to work out the composition of the unit cell, atomic 

and ionic distances and therefore properties of the bulk material, such as density. 

In addition, it aims to enable them to understand the basic thermodynamics of 270 

perfect and non-perfect lattices. This ten lectures component of the module is 

assessed via exam only and the 45 minutes exam question is designed to probe 

students’ understanding and their ability to perform such calculations.  In 2016, 

the material was delivered following the textbook structure and LiCoO2 was only 

used as an example of a ternary ionic structure.21 In 2017, the material was 275 

delivered using the case study approach described in this article throughout the 

lectures. The exam results (see graph 1) based on similar student populations 

show a non-normal distribution of marks between 0 and 10 for the 2016 class 

(164 students), with an average mark of 5.42/10. The 2017 class (155 students) 

obtained a higher average mark of 6.04/10, an increase of 11.4%. The 280 

distribution of marks for the 2017 class was closer to a bell shaped curve. While 
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it is difficult to comment on the very different distribution of marks for the two 

classes, it appears the case study approach is an improvement over the previously 

adopted, textbook-like delivery of the material. Looking through the answers 

students gave, it was very encouraging to see how the vast majority of them 285 

understood the concept of unit cell, how to work out the number of ions and 

therefore the unit formula, whereas a significant number of students of the 

previous class (2016) struggled with these very basic concepts. 

 

Graph 1. 290 

CONCLUSIONS 

In conclusion, ternary ionic solids such as LiCoO2, widely used as cathode 

materials in rechargeable batteries, are an ideal case study for students to develop 

a cause-effect understanding of the properties of a material, as a function of its 

solid state structure. Many of the issues related to Li+ ion batteries can be traced to 295 

the solid state structure of their components. This approach is aimed at stimulating 
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students’ interest towards a topic typically seen as abstract and somewhat less 

important, as rarely solid state features in undergraduate lab experiments. 

Feedback from students, as well as exam results suggest the method delivers on 

the desired learning outcomes. 300 

AUTHOR INFORMATION 

Corresponding Author 

*E-mail: p.coppo@warwick.ac.uk 

ACKNOWLEDGMENTS 

The University of Warwick is gratefully acknowledged for funding this work. 305 

Prof. R. I. Walton and Dr. J. P. Rourke are gratefully acknowledged for insightful 

discussions. Mrs K. Yeandle-Hignell is acknowledged for helping to produce the 

figures. 

REFERENCES 

1. Herreid, C. F. Case studies in science – a novel method of science education, J. Coll. Sci. 310 

Teach., 1994, 23(4), 221-229. 

2. Lord, T. Society for college science teachers: revisiting the cone of learning. Is it a reliable 

way to link instruction method with knowledge recall? J. Coll. Sci. Teach., 2007, 37(2), 

14-17. 

3. Frerichs, V. A. ConfChem conference on case-based studies in chemical education: use of 315 

case study for the introductory chemistry laboratory environment, J. Chem. Educ., 2013, 

90, 268-270. 

4.  Colyer, C. L.,  ConfChem conference on case-based studies in chemical education: you 

(want to) call yourself a case study teacher? J. Chem. Educ., 2013, 90, 260-261. 

5. Herreid, C. F., ConfChem conference on case-based studies in chemical education: the 320 

future of case study teaching in science, J. Chem Educ., 2013, 90, 256-257. 



  

Journal of Chemical Education 7/27/17 Page 20 of 21 

6. Jones, R. F., The case study method, J. Chem. Educ. 1975, 52, 460-461. 

7. Vosburg, D. A., teaching organic chemistry: a comprehensive case study approach, J. 

Chem. Educ., 2008, 85, 1519-1523 

8. Weston, R. E., a case study in chemical kinetics: the OH+CO reaction, J. Chem. Educ., 325 

1988, 65, 1062-1066.  

9. Thananatthanachon, T, Synthesis and characterization of Perovskite barium zirconate 

(BaZrO3). An experiment for an advanced inorganic chemistry laboratory. J. Chem. Educ., 

2016, 93,1120-1123. 

10. Zümreoğlu-Karan, B.; Yilmazer, E. Preparation of spinel-type cathode materials from 330 

carbonate/oxalate powder mixtures, J. Chem. Educ., 2000, 77, 1207-1209. 

11. Agnew, N. H.. A solid state chemistry experiment. Dislocations in etched calcite by 

polaroid photomicrography. J. Chem. Educ., 1972, 49, 739-741. 

12. Collavini, S.; Völker, S. F.; Delagado, J. L. Understanding the outstanding power 

conversion efficiency of perovskite-based solar cells. Angew. Chem. Int. Ed., 2015, 54, 335 

9757-9759. 

13. Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries, Chem. Mater., 2010, 

22, 587-603. 

14. Islam, M. S.; Fisher, C. A. J. Lithium and sodium battery cathode materials: 

computational insights into voltage, diffusion and nanostructural properties, 340 

Chem. Soc. Rev., 2014, 43, 185-204. 

15. Clark, A.; Bayley, L.; Coppo, P. Chemistry AQA A-Level Year 2 student book, Harper 

Collins pubs. 2016, London; pp. 219-220. 

16. Treptow, R. S. Lithium batteries: a practical application of chemical principles, J. Chem. 

Educ., 2003, 80, 1015-1020. 345 



  

Journal of Chemical Education 7/27/17 Page 21 of 21 

17. Hausbrand, R.; Cherkashinin, G.; Ehrenberg, H.; Gröting, M.; Albe, K.; Hess, C.; 

Jaegermann, W. Fundamental degradation mechanisms of layered oxide Li-ion battery 

cathode materials: methodology, insights and novel approaches, Mat. Res. Eng. B, 2015, 

192, 3-25. 

18. Shao-Horn, Y.; Croguennec, L.; Delmas, C.; Nelson, E. C.; O’Keefe, M. A. Atomic 350 

resolution of lithium ions in LiCoO2, Nature Mat., 2003, 2, 464-467. 

19. Wolverton, C.; Zunger, A. Prediction of Li intercalation and battery voltages in layered vs. 

cubic LixCoO2, J. Electrochem. Soc., 1998, 145, 2424-2431. 

20. Manser, J. S.; Christians, J. A.; Kamat, P. V., Intriguing optoelectronic properties of metal 

halide perovskites, Chem. Rev., 2016, 116, 12956-13008. 355 

21. Weller, M.; Overton, T.; Rourke, J.; Armstrong, F. Inorganic Chemistry 6th ed. Oxford 

University press, Oxford. ISBN 978-0-19-964182-6. 

 

 

 360 


