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Abstract

‘Spiral pinballs’ are resonantly dri�ing spiral waves in excitable media that
re�ect from boundaries. Instead of re�ecting at an angle equal to the one
at which they approach the boundary—like a ray of light re�ecting from a
mirror—they re�ect in a preferred direction. �is invites comparison with
a number of other complex systems that behave as nonspecular billiards,
including bouncing droplets on a vibrated bath, swimming microorganisms
and segments of chemical waves. In the �rst part of this thesis, we study the
trajectories of spiral pinball re�ections. A catalogue of interesting behaviours
is discovered in both the small- and large-core rotation regimes and the long-
term billiard dynamics is brie�y considered. By using an asymptotic theory,
we examine the re�ection process in detail and thereby explain many of the
observed phenomena.

�e second part of this thesis concerns itself with modelling spiral wave
activity in a deforming medium. Our motivation stems from cardiac tissue,
in which spiral waves and mechanical deformation are reciprocally coupled.
We describe a simple modelling approach for this system and discuss its
implementation. Various di�erent results are presented using this model.

Finally we consider a problem from the engineering world. Dielectric
elastomers are �exible capacitors that undergo nonlinear elastic deformations
in response to forces arising from electric surface charges. We propose a
novel modelling approach that decomposes these forces into a compressive
stress and a tangential shear. �e tangential component corresponds to a
fringing e�ect that is usually considered to be negligible. Via numerical sim-
ulations and comparison with experimental data we show that it nonetheless
has an important role to play in selecting the deformed shapes that these
systems adopt. In some cases, we are able to compute multiple equilibrium
con�gurations and it is shown that doing so is necessary to obtain the most
physically relevant states.

xii



Chapter 1

Introduction

�is thesis is about three di�erent problems in nonlinear science. In each case,
a simple mathematical model is used to capture the most important features
of the problem. �e systems considered are not easily studied analytically
and we shall make extensive use of computational simulations to understand
them.

1.1 Excitable media

�e �rst two problems involve spiral waves in excitable media. A dynamical
system is said to be excitable if a small perturbation from equilibrium, above a
certain threshold, results in a comparatively large deviation before recovering
to the initial state. �is process is called excitation. Additional perturbations
during the period of recovery are unable to excite the system. �e prototypical
example of excitation occurs in the dynamics of a neuron cell. In the resting
state of a typical neuron there is a potential di�erence across its membrane
of around −60 mV to −70 mV. �is equilibrium voltage is dictated by the
concentration of various ions inside and outside the cell and is stable to
small �uctuations. However, perturbations of su�cient magnitude result in
rapid depolarisation of the neuron, followed by a slow recovery to rest. Such
events are called action potentials. �ey provide a basis for the transmission
of electrochemical signals in the brain and a variety of other contexts [GK02].

1



An excitable medium is a spatially extended dynamical system in which
every point is excitable. �ese are commonly described by particular systems
of reaction-di�usion partial di�erential equations (PDEs), which, in two
spatial dimensions, typically admit rotating spiral-shaped wave solutions. In
Chapter 3, we consider these systems in a very general form [Eq. (3.1)]. For
the time being, we give the following two-variable example:

∂tu =
1
ϵ
f (u,v) + D∇2u, (1.1a)

∂tv = д(u,v). (1.1b)

�e state variables u and v are time-dependent spatial �elds that are respon-
sible for excitation and recovery respectively.

Neglecting the di�usion term on the end of Eq. (1.1a) for the moment, the
functions f and д give the form of the local dynamics at each point. �ey are
o�en called (reaction) kinetics terms because di�erential equations of this type
may be used to model the reaction rates of chemical media. �e parameter ϵ ,
which we shall take to be small and strictly positive, is included to indicate
that the dynamics of f operate on a much faster time scale than the dynamics
of д. Figure 1.1 shows a solution of the ordinary di�erential equation (ODE)
system u̇ = f /ϵ , v̇ = д, using the kinetics terms from the excitable model
that we use in the later chapters [Eqs. (2.1a) and (2.1b)]. �e details are not
as important, at this stage, as the observed behaviour of the system. Both
state variables are quiescent (at rest) when they are zero. �is is the initial
condition for the system at t = −1. At time t = 0 we introduce a perturbation
to the u variable, shi�ing the state from 0 to 0.1, which exceeds the threshold
for excitation in this case. Immediately, the fast u-dynamics rapidly excites
the system. �e excited state u = 1 is a zero of f and as u approaches this
value, u̇ decays to zero. Meanwhile, v increases on a slower time scale. �e
speed of the v-dynamics relative to the u-dynamics sets the length of time
that the system may be excited for. Asv peaks, it begins to inhibitu, changing
the sign of f and causing u to fall rapidly back to zero. Finally, v ‘recovers’
slowly back to rest. During this period, the excitation threshold is elevated

2



0

0.2

0.4

0.6

0.8

1

1.2

-1 0 1 2 3 4 5 6
t

Fa
st

ex
ci

ta
tio

n

u̇ ≈ 0

Slow
recovery

u
v

Figure 1.1: Characteristic dynamics of an excitable system a�er a super-threshold
perturbation occurring at t = 0.

and the system may not be excited by another small perturbation.
�is picture of excitation and recovery captures the essence of a typical

excitable system. Although the details of individual models and the exact
interplay of their respective state variables may di�er, the generic behaviour
sketched above applies across a wide range of excitable systems.

Returning to the full PDE system in Eqs. (1.1a) and (1.1b), the Laplacian
operator acting on u with rate coe�cient D > 0 causes excited regions
to di�use into nearby quiescent patches, thereby pushing them above the
threshold for excitation. In most excitable systems of interest, this mechanism
is su�cient to allow the propagation of undamped travelling waves, including
the spiral waves that shall occupy our a�ention for two thirds of this thesis.

A picture of a spiral wave is shown in Figure 1.2. Regions of quiescence are
plo�ed in dark blue and excited regions are plo�ed in orange. �is particular
example is a rigidly rotating spiral—it is a periodic solution to Eqs. (1.1a)
and (1.1b) that rotates about a centre point. �e tip of the wave1 traces a small
circle as the spiral rotates. �e region inside this circle remains permanently
unexcited. It is referred to as the spiral wave core. �e time-evolution of

1�e exact de�nition of the spiral wave tip is a ma�er of convention and is not important
to our discussion here. See Section 2.2 for the de�nition used in later results.
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Figure 1.2: Example of a spiral wave. Excited regions are shown in orange and
quiescent regions are dark blue. �is wave rotates clockwise about a point close to
the centre of the square. �e tip of the wave traces a small circle around this point,
drawn in white.

individual points far from the core resemble the plot in Fig. 1.1. Instead of an
abrupt perturbation, smooth di�usion of u from an approaching wave front
brings the point above the excitation threshold. �is is followed by rapid
excitation, plateau and eventual return to quiescence.

Spiral waves were initially discovered in physical systems in an oscillating
chemical reaction �rst studied by Belousov in the 1950s [Bel59] and several
years later by Zhabotinsky [Zha64]. It was subsequently shown that a thin
layer of the reagents spread onto a Petri dish can support the formation of
various pa�erns, including spiral waves [ZZ70]. �is marked the beginning
of widespread interest in the reaction [Zha91]. �e system became known as
the Belousov-Zhabotinsky (BZ) reaction; to this day it represents one of the
most important examples of an excitable medium, due to the ease with which
experiments may be conducted and reproduced. Since the discovery of the BZ
reaction, spiral waves were observed in many di�erent contexts. Cases span
a variety of scienti�c disciplines and cover a wide range of physical scales.
We shall list but a few examples: electrical activity in chicken retinae [GB83],
equations modelling the evolution of interstellar media [NI84, NI89], chemo-

4



tactic signalling in populations of slime mould [SW89] and rusting of steel
plates [AS00]. Of particular importance is the case of cardiac tissue, in which
spiral wave propagation was �rst experimentally demonstrated by Davidenko
et al. [DPS+92]. �is system will be discussed later and in Chapter 4.

1.2 Spiral pinballs

Not all spiral waves rotate rigidly, as in the example plo�ed in Fig. 1.2. �eir
cores may move as the spiral rotates. �e rotation centres of so-called mean-

dering spirals move spontaneously due to internal instabilities in the dynamics
of rigidly rotating spirals [Bar95]. In doing so, their tips trace out a variety of
interesting pa�erns [JSW89]. Alternatively, movement of the core may be in-
duced by symmetry-breaking perturbations imposed on the medium [Bik07].
�is phenomenon is known as dri�. Such perturbations include, but are
not limited to: medium inhomogeneities [DPS+92, MNUH92, MPMPV98],
physical boundaries close to the spiral core [EP86, SB93, BH95], nearby spiral
waves [EPS89] and external stimulation of the medium [ADM87, ADK92,
SSM92].

�e system that we refer to as a spiral pinball combines two of these
kinds of perturbation. It is well known that external periodic forcing of the
excitable medium close to the spiral rotation frequency can produce dri� of
the wave rotation centre along a straight line [ADM87,NvORE93,SBE95]. On
approaching a boundary, such a resonantly dri�ing spiral changes its direction
and in doing so ‘re�ects’ [BH93,BH95]. �is leads to a billiard-like or ‘pinball’
dynamics, demonstrated in Figure 1.3, which shows the trajectory of a spiral
wave tip undergoing three subsequent re�ections. While the plo�ed motion
of the tip is cycloidal, the corresponding trajectory of the rotation centre
is a straight line, apart from at the boundaries where it abruptly changes
direction.

�e re�ections of spiral pinballs are typically nonspecular (incidence
angle rarely equals re�ection angle), inviting comparison with systems in
various contexts that behave as nonspecular billiards. Studies of chemical

5



Figure 1.3: Example trajectory of a spiral pinball in a square box. �e cycloidal path
traced by the wave tip is drawn in black, with arrows indicating the direction of
dri�. �e spiral wave �eld at the end of the trajectory is also plo�ed faintly in the
background.

wave segments [STS08], swimming microorganisms [SL12, WLST15], optical
solitons [PLTB11] and bouncing droplets on a vibrated bath [EFMC09, Shi13,
PSFB16] have all demonstrated similar re�ection properties to those of the
spiral pinball system. Furthermore, with the exception of the microorganisms,
each of these systems exhibits both wave and particle characteristics. �is is
particularly striking in the bouncing droplet experiment, which exhibits a
number of fascinating phenomena associated with quantum mechanics on a
macroscopic scale [CPFB05, CF06, EFMC09, FEB+10, Bus10, PLM+14]. A form
of wave-particle duality is an established property of spiral waves [BB03] and
the spiral pinball system in particular highlights this fact. Here, the ‘particle’
is the spiral core that ricochets around the medium, accompanied by the
rotating wave train.

Motivated by the above connections, we study the re�ections of spiral
pinballs in detail, surveying the short- and long-term dynamics via exten-
sive numerical simulations in Chapter 2 and using an asymptotic theory to
investigate the underlying re�ection mechanism in Chapter 3.
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1.3 Spiral waves in deforming media

In Chapter 4 we consider spiral waves in a nonlinear elastic domain. An
example is shown in Fig. 1.4 and should be contrasted with the simpler situa-
tion in Fig. 1.2. �e motivation comes from cardiac tissue, where excitation

Figure 1.4: Example of a spiral wave in a deforming excitable medium. Local
contraction of the geometry is activated by the regions that are excited. In this case,
excited regions are shown in red, quiescent regions are shown in pale blue and the
spiral is rotating anticlockwise. Black dashes indicate the deformation of material
lines.

waves cause local contraction of the medium. A spiral wave propagating
in a deforming medium experiences a perturbation that a�ects its dynam-
ics. In this way, mechanics and wave are coupled in both directions: the
mechanics a�ects the wave, which in turn dictates the mechanics. Although
the mutual interaction of spiral wave and mechanical deformation has been
addressed before [NP04, CFNT08, KNP09, WNP11, CPZ+14], the problem is
still not completely understood and open questions remain. We formulate an
approach, based on prior studies, for numerically simulating spiral waves in
isotropic deforming media from the ground up, starting from the theory of
nonlinear elasticity, which is covered in some detail. Modelling issues and
implementation of the elastic problem via the �nite element method are also
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discussed. A variety of example results from the implementation are given.

1.4 Shape selection of dielectric elastomers

For the �nal problem, we leave spiral waves and study pa�ern formation in
the static equilibrium shapes adopted by a di�erent nonlinear elastic medium.
Motivated by results obtained by experimental colleagues, we model a type
of capacitor made with �exible plates and an elastic material that deforms
under the electrostatic forces from its stored charges. �ese systems, called
dielectric elastomers, have received signi�cant a�ention from the engineering
community in recent years due to the large number of potential applications
highlighted by researchers in technology, robotics and other areas [OOM08,
CBDR10].

A diagram of a typical dielectric elastomer in operation is shown in
Fig. 1.5(a). �e elastic medium is a thin elastomer �lm with a circular elec-

Figure 1.5: (a) Diagram showing the basic mode of operation for a dielectric elas-
tomer actuator. (b) Example of pa�ern formation in a dielectric elastomer. �e view is
top-down and shows a black annular electrode that has buckled into a con�guration
with azimuthal waves. Photograph courtesy of Hadrien Bense.

trodes on the top and underside. When a potential di�erence is applied across
these electrodes, the material between them is compressed. �is is coupled
to a lateral stretching via incompressibility.

Under certain boundary conditions, the compressive pressure exerted by
the capacitor plates leads to a buckling instability that gives rise to interesting
out-of-plane deformations. An example exhibiting pa�ern formation on
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the deformed surface of an elastomer with annular electrodes is shown in
Fig. 1.5(b). In Chapter 5, we propose a novel modelling approach for these
systems that produces quantitative agreement with experimental data and
captures such pa�erns formed by the deformation. Furthermore, we use our
model to obtain insight into aspects of the underlying physics that are usually
neglected in modelling studies. �e computation of multiple nonequivalent
equilibrium shapes is also discussed.
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Chapter 2

Spiral pinball re�ections

Wave-particle duality is typically associated with quantum mechanical sys-
tems. However, in recent years it has been observed that some macroscopic
systems commonly studied in the context of pa�ern formation also exhibit
wave-particle duality. Two systems in particular have a�racted considerable
a�ention in this regard: drops bouncing on the surface of a vibrated liquid
layer [CFGB05, CPFB05, PBC06, CF06, EFMC09, EDFC09] and waves in chemi-
cal media [BB03, Bik07, SMCS02, STS08, BBBF10, BBB10]. �e second case is
the focus of this chapter. We explore non-specular re�ections associated with
spiral waves in excitable media—re�ections not of the waves themselves, but
of the particle-like trajectories tied to these waves.

2.1 Introduction

Rotating spirals are a pervasive feature of two-dimensional excitable me-
dia, such as the Belousov-Zhabotinsky reaction [Bel59, Zha64, ZZ70, Win84].
Figure 2.1(a) illustrates a spiral wave from a standard model of excitable
media discussed below. �e wave character of the system is evident. As the
spiral rotates, a periodic train of excitation is generated which propagates
outward from the centre, or core, of the spiral. Much of the historical study
of excitable media has focused on the wave character of the problem, as illus-
trated by e�orts to determine the selection of the spiral shape and rotation
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θr

(a) (b)
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Figure 2.1: Illustration of resonant dri� and re�ection for spiral waves in excitable
media. (a) Periodically rotating spiral wave in the unforced regime. �e wave rotates
around a �xed core and the path of the spiral tip (white) is a circle. (b) Resonant dri�.
�e medium is parametrically forced at the spiral rotation frequency. �e core moves
along a straight path and the spiral tip traces out a cycloid (white). (c) Re�ection of
dri�ing spiral from a no-�ux boundary. �e incident and re�ected angles, θi and
θr , are indicated. (d) Path of a dri�ing spiral in a square box. �e underlying spiral
wave at one instant in time is shown faintly. In all cases the plo�ed �elds are the
excitation variable, u, of the reaction di�usion model. Details are given later in the
text.

frequency [TK88, Kar91, Ber91, MB01, MB02].
However, it is now understood that these spiral waves also have particle-

like properties. �is was �rst brought to the forefront by Biktasheva and
Biktashev [BB03] and has been developed in more recent years [Bik07,BBBF10,
BBB10, BBB+09, BBS11]. One of the more striking illustrations of a particle-
like property is resonant dri� [ADM87, DZMB88, BH93, BH95, SZM93, SBE95,
MB96, ZWY+04, Bik07, BBBF10], shown in Fig. 2.1(b)-(d). Resonant dri� can
occur spontaneously through instability, or due to spatial inhomogeneity
(meander), or as here, by means of resonant parametric forcing (periodically
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varying the medium parameters in resonance with the spiral rotation fre-
quency). As is seen, the core of the spiral dri�s along a straight line. �e
speed is dictated by the forcing amplitude while the direction is set by the
phase of the forcing, or equivalently the initial spiral orientation.

�e trajectories of resonantly dri�ing spirals are una�ected by the domain
boundaries (or other spirals should they be present) except on close approach,
where o�en the result is a re�ection of the dri�ing core [BH93, BH95, OS08],
as illustrated in Fig. 2.1(c). Re�ections are not specular—the re�ected angle θr
is not in general equal to the incident angle θi . When placed in a square box,
the dri� trajectory typically will ricochet o� each boundary in such a way to
eventually be a�racted to a unique square path where θi +θr = 90◦, as shown
in �gure 2.1(d). (�is is the more common case, but others are considered
herein.)

We shall refer to this situation of a re�ecting, resonantly dri�ing spiral
wave as a spiral pinball, thereby emphasising the particle-like behaviour of
the system.

�e primary goal of this chapter is �rstly to determine accurately, through
numerical simulations, the relationship between re�ected and incident an-
gles for some representative cases of spiral pinballs in excitable media, and
secondly to explore the qualitative features of re�ections in excitable media,
particularly multiple re�ections in square domains. While the numerical and
theoretical study of re�ecting trajectories was undertaken by Biktashev and
Holden many years ago [BH93, BH95], much more extensive results are now
possible and desirable, especially since phenomena strikingly similar to that
seen in Figs. 2.1(c) and (d) have been observed in other macroscopic systems
with both wave-like and particle-like properties [PBC06, EDFC09, SMCS02,
STS08, PLTB11, Sho12].

2.2 Model and methods

Our study is based on the standard Barkley model describing a generic ex-
citable medium [Bar91]. In the simplest form the model is given by the
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reaction-di�usion equations

∂u

∂t
= ∇2u +

1
ϵ
u(1 − u)

(
u −

v + b

a

)
, (2.1a)

∂v

∂t
= u −v, (2.1b)

where u(x ,y) is the excitation �eld (plo�ed in Fig. 2.1) and v(x ,y) is the
recovery �eld; a, b, and ϵ are parameters. �e parameters a and b collectively
control the threshold for and duration of excitation while the parameter
ϵ controls the excitability of the medium by se�ing the fast timescale of
excitation relative to the timescale of recovery.

We consider two parameter regimes—known commonly as the small-core
and large-core regimes. �e small-core case is shown in Fig. 2.1. As the name
implies, the core region of the spiral, where the medium remains unexcited
over one rotation period, is small. �is is the more generic case for the Barkley
model and similar models and occupies a relatively large region of parameter
space in which waves rotate periodically. Small-core spirals are found in
the lower right part of the standard two-parameter phase diagram for the
Barkley model (see Figure 4 of Ref. [Bar08]). Large-core spirals rotate around
relatively large regions [see Fig. 2.8(a) discussed below]. Such spirals occur
in a narrow region of parameter space [Bar08, Bar94] near the boundary
for wave propagation failure. �e core size diverges to in�nity near this
boundary.

Parametric forcing is introduced through periodic variation in the ex-
citability. Speci�cally, we vary ϵ according to

ϵ(t) = ϵ0
�
1 +A sin(ω f t + ϕ)� , (2.2)

where A and ω f are the forcing amplitude and frequency. �e phase ϕ is used
to control the direction of resonant dri�. �e forcing frequency producing
resonant dri� will be close to the natural, unforced, spiral frequency. However,
one e�ect of perturbing ϵ is that it induces a shi� in the spiral rotation
frequency that depends nonlinearly on the amplitude. �erefore ω f must be
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adjusted with A to produce resonant dri� along a straight line.

We have studied re�ections in two situations. �e �rst is re�ection from
a no-�ux boundary. �is type of boundary condition corresponds to the wall
of a container containing the medium. We set the re�ection boundary to be
at x = 0 and impose a homogeneous Neumann boundary condition there:

∂u

∂x
(0,y) = 0. (2.3)

Since there is no di�usion of the slow variable, no boundary condition is
required on v . �e medium does not exist for x < 0.

�e second situation we have studied is re�ections from a step change in
excitability across a line within the medium. We locate step change on the
line x = 0. We vary the threshold for excitation across this line by having the
parameter b vary according to

b(x ,y) =



b0 if x ≥ 0,

b0 − 4b if x < 0.
(2.4)

Unlike for the no-�ux boundary, in this case waves may cross the line x = 0
and so there is no boundary to wave propagation. Nevertheless, dri�ing
spirals may re�ect from this step change in the medium and we refer to this
a step boundary.

�e numerical methods for solving the reaction-di�usion equations are
standard and are covered elsewhere [Bar91, DMB97]. Some relevant com-
putational details particular to this study of spiral re�ections are as follows.
A converged spiral for the unforced system is used as the initial condition.
Simulations are started with parametric forcing and the spiral dri�s in a
particular direction dictated by the phase ϕ in Eq. (2.2). �e position of the
spiral tip is recorded once per forcing period (which, at resonance, exactly
equals the spiral rotation period). We adopt the convention of de�ning the
tip to be the intersection point of two u and v isolines, for which we choose
u(x ,y) = 0.5 and v(x ,y) = 0.5a − b. From several successive tip samples, the
direction of dri�, i.e. the incident angle θi , is determined by a least-squares �t
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over an appropriate range of dri� (a�er the initial spiral has equilibrated to a
state of constant dri�, both in speed and direction, but before the spiral core
encounters a boundary). Likewise, from a �t to the sampled tip path a�er
the interaction with the boundary, we determine the re�ected angle θr . By
varying ϕ we are able to scan over incident angles.

�e simulations are carried out in a large rectangular domain with no-�ux
boundary conditions on all sides. For re�ections from a Neumann boundary
[Eq. (2.3)], we simply direct waves to the computational domain boundary
corresponding to x = 0. We also study re�ections more globally from all
sides of a square domain with Neumann boundary conditions, such as in
Fig. 2.1(d). In the study of re�ections from the step boundary [Eq. (2.4)],
the computational domain extends past the step change in parameter. We
have run cases with the le� computational boundary both at x = −7.5 and
x = −15 and these are su�ciently far from x = 0 that trajectory re�ection
is not a�ected by the computational domain boundary. �e dimensions of
the rectangular computational domain are varied depending on the angle
of incidence. For θi ' ±90◦ we require a long domain in the y-direction,
whereas for θi ' 0◦ a much smaller domain may be used. In all cases we
use a grid spacing of h = 1/4. �e time step is varied to evenly divide the
forcing period, but 4t ' 0.019 is typical. Except where stated otherwise,
the model parameters for the small-core case are: a = 0.8,b = 0.05, and
ϵ0 = 0.02. For the large-core case they are a = 0.6,b = 0.07, and ϵ0 = 0.02.
For the step boundary b0 = 0.05 and 4b = 0.025. Di�erent values of the
forcing amplitude and period, A and ω f , are considered. Given the desire
to measure incident and re�ected angles precisely, we have required dri�
be along straight lines to high precision and in turn this has required high
accuracy in the imposed forcing amplitude and period. In the Appendix to
this chapter we report the exact values for the forcing parameters used in the
quantitative incidence-re�ection studies.
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2.3 Results

Before presenting results from our study of re�ections, it is important to be
precise about the meaning of incident and re�ected angles. As is standard,
angles are measured with respect to the boundary normal. �is is illustrated
in Fig. 2.1(c). What needs to be stressed here is that spirals have a chirality—
right or le� handedness—and this implies that we need to work with angles
potentially in the range [−90◦,90◦], rather than simply [0◦,90◦].

Speci�cally, we consider clockwise rotating spiral waves and de�ne θi to
be positive in the clockwise direction from the normal. We de�ne θr to be
positive in the anticlockwise direction from the normal. Both θi and θr are
positive in Fig. 2.1(c) and for specular re�ections θr = θi .

2.3.1 Small-core case

We begin with the small-core case already shown in Fig. 2.1. Figures 2.2 and
2.3 illustrate the typical behaviour we �nd in re�ections from both types of
boundaries. In both �gures the upper plot shows measured re�ected angle
θr as a function of incident angle θi over the full range of incident angles.
�e lower plots show representative trajectories for speci�c incident angles
indicated. Here and throughout, the no-�ux nature of the Neumann boundary
is indicated with shading (x = 0 is the at the rightmost edge of the shading),
while the step in excitability at a step boundary is indicated with sharp lines.
All parameters are the same for the two cases; they di�er only in the type of
boundary that trajectories re�ect from.

�e re�ections are far from specular. �is is particularly striking for θi < 0
where the incoming and outgoing trajectories lie on the same side of the
normal. �e re�ected angle is nearly constant, independent of the incident
angle, except for incident angles close to θi = 90◦. �ere is a slight variation
in the re�ected angle, seen as undulation in the upper plots, but the amplitude
of the variation is small.

One can also observe in the lower plots that the point of closest approach
is also essentially independent of incident angle, except close to θi = 90◦

17



 70

 80

 90

-90 -60 -30  0  30  60  90

θr

θi

(a)

(b)

Figure 2.2: Illustrative results for re�ection from a no-�ux boundary, i.e. Neumann
boundary condition. (a) Re�ected angle θr versus incident angle θi . (b) Representative
tip trajectories showing re�ections at the incident angles marked with crosses in
(a). �e re�ected angle is nearly constant for the full range of incident angles. �e
forcing amplitude is A = 0.072.
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Figure 2.3: Illustrative results for re�ection from a step boundary, i.e. a step change
in the excitability of the medium. (a) Re�ected angle θr versus incident angle θi . (b)
Representative tip trajectories showing re�ections at the incident angles marked
with crosses in (a). �e re�ected angle is nearly constant for the full range of incident
angles. �e forcing amplitude is A = 0.072.
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where the distance grows. Spiral pinball trajectories come much closer to the
step boundary than to the Neumann boundary.

It is worth emphasising that there is no e�ect of rotation phase in the
results presented in Figs. 2.2 and 2.3. As the incident angle is scanned, the
instantaneous rotation phase of the spiral wave as it reaches a given distance
to the boundary will be di�erent for di�erent incident angles. In particular,
the phase will di�er at the point of closest approach, where the boundary
e�ect is strongest. While this could have an e�ect on the re�ected angle, we
have veri�ed that there is no such e�ect for the small-core cases we have
studied, except at large forcing amplitudes near where spirals annihilate at
the boundary (discussed later).

(a)

(b) (d) (f) (h)

(c) (e) (g)

Figure 2.4: Illustration of the insensitivity of re�ections throughout the small-core
region of parameter space. Upper plots show θi ≈ 0◦, including faint visualiza-
tion of the u-�eld at a particular time instance, while lower plots show θi ≈ −70◦.
�e re�ected angle is nearly constant independently of incident angle, parame-
ter values, and boundary type. Model parameters span a substantial range of the
non-meandering small-core region: in (a) and (b) a = 0.7,b = 0.01; in (c) and (d)
a = 0.95,b = 0.01; in (e)–(h) a = 0.95,b = 0.08. Cases (g) and (h) are inhomogeneous
boundary, the others are all Neumann boundaries. A = 0.072 throughout.
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While we have not conducted detailed studies at other parameter values,
we have explored the small-core region of parameter space. Figure 2.4 shows
representative results at distant points within the small-core region. �e
�gure indicates not only a qualitative robustness, but also a quantitative
insensitivity to model parameter values throughout the small-core region. In
each case the upper plot shows θi ≈ 0◦ while the lower plot shows θi ≈ −70◦.
�e re�ected angle varies by only a few degrees throughout all cases shown
in the �gure. Case (a)–(b) is close to the meander boundary while (c)–(d) is
far from the meander boundary and corresponds to a very small core. Cases
(e)–(h) are relatively large values of parameters a and b, both with Neumann
and step boundary conditions.

In the step boundary case, there is also the e�ect of 4b to consider. Across
a number of representative incident angles, we observed that as 4b is incre-
mented from 0.025 up to 0.05, the closest approaches of the spiral wave tips
occur further from the boundary. We also �nd a slight reduction in the angle
of re�ection. Decrementing 4b has the opposite e�ect. However, if 4b is too
small then the repulsive e�ect at the boundary will be too small and the spiral
cores will cross the boundary.

We have examined the e�ect of forcing amplitude A. Figures 2.5 and
2.6 show re�ected angle as a function of incident angle for various values
A as indicated. �ere is a decrease in the re�ected angle with increasing
forcing amplitude, or equivalently increasing dri� speed. Generally there is
also an increase in the oscillations seen in the dependence of re�ected angle
on incident angle. �e solid curves are from the Biktashev-Holden theory
discussed in Sec. 2.4.1.

For su�ciently large forcing amplitudes small-core spirals may be anni-
hilated as they dri� into Neumann boundaries. In such cases no re�ection
occurs. We have not investigated this in detail as it is outside the main focus
of our study on re�ections. Nevertheless, we have examined the e�ect of
increasing the forcing amplitude through the point of annihilation for the
case of a �xed incident angle θi = 0◦. �e results are summarised in Figure 2.7.
�e re�ected angle reaches a minimum for A ' 0.11, and therea�er increases
slightly, but does not vary by more than 4◦ up to the amplitude where annihi-
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Figure 2.5: E�ect of forcing amplitude on re�ection of small-core spirals pinballs
for the case of a Neumann boundary. Points are measured re�ected angle as function
of incident angle at forcing amplitudes A indicated. Solid curves are from Biktashev-
Holden theory discussed in Sec. 2.4.1.
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Figure 2.6: E�ect of forcing amplitude on re�ection of small-core spiral pinballs
for the case of a step boundary. Points are measured re�ected angle as function of
incident angle at forcing amplitudes A indicated. Solid curves are from Biktashev-
Holden theory discussed in Sec. 2.4.1.
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Figure 2.7: (a) Re�ected angle as a function of forcing amplitude A up to the point
of annihilation at a Neumann boundary for small-core spiral pinballs. �e incident
angle is �xed at θi = 0◦. (b) Tip trajectories a li�le below (A = 0.215) and a li�le
above (A = 0.235) the forcing amplitude resulting in annihilation of the spiral at the
boundary. (c) Tip trajectory at A = 0.5 showing annihilation at very large forcing
amplitude.

lation occurs, A ≈ 0.225, as indicated in Figure 2.7(a). �e forcing amplitude
at which annihilation �rst occurs is rather large in that it corresponds to
displacing the spiral wave considerably more than one unforced core diame-
ter per forcing period. Figure 2.7(b) shows tip trajectories on either side of
the amplitude where annihilation occurs, while Figure 2.7(c) shows annihi-
lation at much larger forcing amplitude. We note that the exact amplitude
at which annihilation �rst occurs depends slightly on the rotational phase
of the spiral as it approaches the boundary. (Annihilation �rst occurs in the
range 0.22 . A . 0.23 depending on phase.) Likewise, the spiral phase can
a�ect the re�ected angle by nearly 1◦ for A & 0.16. �e in�uence of phase
is nevertheless small for the small-core spiral pinballs. It is, however, more
pronounced in the large-core case which we shall now discuss.

2.3.2 Large-core case

We now turn to the case where unforced spiral waves rotate around a relatively
large core region of unexcited medium. �is case is illustrated in Fig. 2.8(a)
where a rotating spiral wave and corresponding tip trajectory are shown in a
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Large core

Small core

Figure 2.8: Illustration of a large-core spiral wave. (a) A portion of a rotating spiral
and corresponding tip trajectory in a square region 40 × 40 space units [same size as
Fig. 2.1(a)]. (b) Resonant forcing and re�ection for a large-core spiral pinball shown
in comparison to that of a small-core spiral pinball. �e forcing amplitude isA = 0.05
in both cases.

region of space the same size as in Fig. 2.1. �e larger tip orbit and unexcited
core, as well as the longer spiral wavelength, in comparison with those of
Fig. 2.1(a) are clearly evident. While such spirals occupy a relatively narrow
region of parameter space, they are nevertheless of some interest because
asymptotic treatments have some success in this region [MDZ94, HK99]
and because this is nearly the same region of parameter space where wave-
segments studies are performed [SMCS02, ZS05, STS08].

Figure 2.8(b) shows a typical case of non-specular re�ection for a large-
core spiral compared with a small-core spiral forced at the same amplitude.
While many features are the same for the two cases, large-core spiral pinballs
are found o�en to re�ect at smaller θr and moreover, they can exhibit di�erent
qualitative phenomena.

Figures 2.9 and 2.10 summarise our �ndings for large-core spiral pinballs.
Re�ected angle as a function of incident angle for three forcing amplitudes
is shown in Fig. 2.9. One sees the overall feature, as with the small-core
case, that re�ected angle is approximately constant over a large range of
incident angles. �is is particularly true of low-amplitude forcing, A = 0.022.
However, there are also considerable di�erences with the small-core case.

For large-core spiral pinballs the re�ected angle increases with forcing
amplitude. �is is opposite to what is found for the small-core spirals in Figs.
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Figure 2.9: Summary of results for large-core spiral pinballs. Re�ected angle is
plo�ed versus incident angle for three forcing amplitudes as labelled. Neumann
boundary conditions are used. For A = 0.05 spirals are frequently annihilated at the
boundary, [Fig. 2.10(d)], over the range of incident angles indicated. ForA = 0.05 and
θi . −52◦ trajectories glance from the boundary [Fig. 2.10(a)], leaving at θr ≈ −85◦
(not plo�ed). For A = 0.036 and θi . −52◦ trajectories become permanently bound
to the boundary. [See text and Fig. 2.10(b).] Wiggles in the higher amplitude results
are the e�ect of incident phase.
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Figure 2.10: Catalogue of interesting trajectories for large-core spiral pinballs. (a)–
(c) show impacts with θi ≈ −60◦ at di�erent forcing amplitudes. (a) WithA = 0.05 the
trajectory glances from the boundary and moves o� nearly parallel to it (θr ≈ −85◦).
(b) With lower amplitude A = 0.036, the trajectory becomes bound to the boundary.
(c) With yet lower amplitude A = 0.022, the trajectory hugs the boundary for a while
then leaves abruptly at an oblique angle (θr ≈ 23◦). In (d) the incoming spiral with
large forcing, A = 0.05, is annihilated at the boundary. In (e) the e�ect of phase is
seen with two approaching trajectories shi�ed by half a core diameter. Otherwise
the conditions are identical, A = 0.05. �e resulting re�ected angles di�er slightly.
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2.5 and 2.6. Moreover, the re�ected angles are noticeably smaller than for the
small-core case, as was already observed in Fig. 2.8(b).

We now focus in more detail on what happens in various circumstances.
�e le� portion of Fig. 2.9 indicates the di�erent dynamics we observe, de-
pending on forcing amplitude, at large negative incident angles (θi . −52◦),
and Figs. 2.10(a)-2.10(c) show representative trajectories with θi ≈ −60◦. At
A = 0.05 trajectories glance o� the boundary. �at is, they remain close for
short while before moving o� with a well de�ned large negative re�ected
angle. �e re�ected angle is nearly constant at θr ≈ −85◦ for incident an-
gles θi . −52◦. At A = 0.036, θi . −52◦, trajectories become bound to the
boundary and move parallel to it inde�nitely. In Fig. 2.10(c), with A = 0.022,
one observes the trajectory moving along the boundary for a distance before
abruptly leaving the boundary at a well-de�ned, relatively small positive
re�ected angle. �is behaviour is not restricted to θi . −52◦ and is observed
until θi ≈ +20◦. In fact, this type of re�ection is also observed for the other
two forcing amplitudes studied for θi in a range above −52◦. For A = 0.036
this occurs until θi is approximately −15◦, while for A = 0.05 this is seen only
until θi is about −45◦.

At the higher forcing amplitudes, as indicated for the case A = 0.05 in
Fig. 2.9, large-core spirals are frequently annihilated when they come into
contact with the boundary. Figure 2.10(d) shows a typical example. Whether
or not a spiral is annihilated depends very much on the spiral phase on close
approach to the boundary. �e points shown in Fig. 2.9 withA = 0.05 are those
where the trajectory re�ected; the absence of points indicates annihilation.
However, these results are for spiral pinballs all initiated a certain distance
from the boundary. Changing that distance would a�ect the spiral phase
at close approach and hence a di�erent set of points would be obtained.
Nevertheless, the marked range of frequent annihilation is indicative of what
occurs at this forcing amplitude.

Finally, we address the wiggles in the re�ected angle curves in Fig. 2.9,
most evident at large forcing amplitudes. �ese wiggles are also due to the
fact that the phase of spirals on close approach varies with incident angle.
Figure 2.10(e) illustrates how the re�ected angle depends on phase by showing
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two trajectories shi�ed by half a core diameter. �is shi�s the spiral phase
upon approach to the boundary and results in slightly di�erent re�ected
angles. Rather than eliminating these wiggles by averaging over various
initial spiral distances, we leave them in as an indication of the variability
due to this e�ect. In general, re�ections of large-core spiral pinballs are much
more sensitive to phase than re�ections of small-core spirals, and one should
understand that the data in Fig. 2.9 will vary slightly if similar cases are run
with spirals initiated at di�erent distances from the boundary.

While we have not studied the step boundary in detail for large-core spiral
pinballs, we have carried out a cursory investigation for such a boundary
with 4b = 0.035. With the exception that there is no annihilation at the step
boundary, we observe qualitatively similar behaviour to that just presented for
the Neumann case. Most notably we �nd both glancing and bound trajectories.

2.4 Discussion

2.4.1 Biktashev-Holden theory

Many years ago Biktashev and Holden [BH93, BH95] carried out a study
very similar in spirit to that presented here. Moreover, they understood that
a primary cause for the re�ection from boundaries was the small changes
in spiral rotation frequency occurring as spiral cores came into interaction
with boundaries. Based on this they proposed an appealing simple model
to describe spiral pinball re�ections. �e model is based on the assumption
that both the instantaneous dri� speed normal to the boundary and spiral
rotation frequency are a�ected by interactions with a boundary, with the
interactions decreasing exponentially with distance from the boundary. While
the actual interactions between spiral waves and boundaries are now known
to be more complex (see below), it is worth investigating what these simple
assumptions give. �e beauty of the simple model is that it can be solved to
obtain a relationship between re�ected and incident angles, depending on
only a single combination of phenomenological parameters. (�ey called this
combination θ , but we shall call it p. �ey also used di�erent de�nitions for
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incident and re�ected angles.)
�e model naturally predicts large ranges of approximately constant

re�ected angle depending on the value of p. What is nice is that while ��ing
the individual phenomenological parameters in their model would be di�cult,
it is also unnecessary. �e value of p can be selected to match the plateau
value of θr observed in numerical simulations. �en the entire relationship
between θr and θi from the theory is uniquely determined.

Curves from the Biktashev-Holden theory are included in Figs. 2.5 and
2.6. While there are obvious limitations to the theory, it is nevertheless
interesting to see that some of the features are reproduced just from simple
considerations. �e theory would be expected to work best where the dri�
speed is small: low amplitude forcing. For the large-core spiral pinballs the
theory does not apply and so the corresponding curves are not shown in
Fig. 2.9.

2.4.2 Multiple re�ections

As noted in the introduction, Fig. 2.1(d), when placed within a square domain
the trajectory of a spiral pinball will typically approach a square, re�ecting
from each domain boundary such that θi + θr = 90◦. �e reasons for this are
simple (see for example Prati, et al. [PLTB11]), but a brief analysis is useful,
particularly for understanding when square orbits become unstable.

dn 1− dn

dn+1θni θnr

θn+1
i

θnr

Figure 2.11: Sketch showing the geometry of multiple re�ections in a portion of a
square box of normalised length. dn is the location, relative to the length of a side,
of the n-th re�ection.

Figure 2.11 shows the geometry of a consecutive pair of re�ections in the
case where the re�ected angle is larger than 45◦. In this case the path will
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necessarily strike consecutive sides of the domain. Consider �rst the path
in terms of angles and let θni and θnr denote, respectively, the n-th incident
and re�ected angles, starting from the initial re�ection θ 0

i ,θ
0
r . Trivially, the

geometry of the square domain dictates that θn+1
i + θnr = 90◦. �en, if the

trajectory approaches an a�racting path with constant angles, limn→∞ θ
n
i =

θ ∗i , limn→∞ θ
n
r = θ

∗
r , it must be that this path satis�es θ ∗i + θ ∗r = 90◦. �at is, it

must be a square or a rectangle. Denoting the relationship between incident
and re�ected angle by θr = Θ(θi), then a necessary condition for the square
path to be a�racting is that |Θ′(θ ∗i )| < 1. For the cases we have studied this is
true since |Θ′(θ ∗i )| ' 0.

Turning now to the points at which the path strikes the edge of the
domain, we let dn denote the position of the n-th re�ection along a given
side, relative to the length of a side. One can easily see from the geometry
that dn+1 = (1 − dn) cotθnr . Now, since θr → θ ∗r , the �xed point d∗ is given
by d∗ = (1 − d∗) cotθ ∗r , or d∗ = 1/(1 + tanθ ∗r ). �is corresponds to a square
trajectory. For example, from Fig. 2.5 with a forcing amplitude A = 0.072 one
can see that θ ∗r will necessarily be about 74◦, giving d∗ ≈ 0.22. �ese are the
values seen in the simulation in Fig. 2.1(d). A necessary condition for this
�xed point to be stable is | cotθ ∗r | < 1. For small-core spirals θ ∗r > 45◦, so
cotθ ∗r < 1, and hence their square paths are stable.

While square trajectories occur for small-core spiral pinballs, for large-
core spirals other trajectories are possible. Examples are shown in Fig. 2.12.
�ese occur when the re�ected angle is smaller than 45◦. (It is possible that
θr < 45◦ might occur for small-core spirals in some regimes, although we
have not observed them.) When θr < 45◦ it is not necessarily the case that
trajectories will strike consecutive sides of a square box. �is is seen in
Fig. 2.12(a) where the spiral pinball re�ects between opposite sides of the
domain. �e re�ections satisfy θr = −θi .

�e more interesting case is when θr is only slightly less than 45◦ as is seen
in Fig. 2.12(b). �e square trajectory is unstable. While |Θ′(θ ∗i )| < 1 and the
angles converge quickly to θni + θnr ' 90◦, the equation dn+1 = (1 − dn) cotθnr
exhibits growing period-two oscillations for cotθnr slightly larger than 1.
Period-two oscillations in dn with θni + θnr ' 90◦ correspond to approximately
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(a) (b)

Figure 2.12: Examples of non-square paths for large-core spiral pinballs. (a) A =
0.022. �e re�ected angle is considerably smaller than 45◦ and the resulting trajectory
bounces between opposite sides of the domain. �e spiral is shown faintly at one
time instance. (b) A = 0.034. �e square trajectory is unstable. For the �rst circuit
around the nearly square path the full tip trajectory is plo�ed. Subsequently, for
clarity only, the tip path sampled once per forcing period is shown. �e trajectory
collapses towards the diagonal. �e �nal portion of the trajectory before the spiral
pinball approaches the corners is shown in bold. �e spiral undergoes a complicated
re�ection from the corner (grey, do�ed).

rectangular trajectories that approach a diagonal. �is ultimately leads the
spiral into a corner of the domain where it may re�ect in complicated manner.

�e analysis just presented should not be viewed as a model for spiral
pinball trajectories. Rather it just shows what global dynamics can be de-
duced simply from a measured relationship between incident and re�ected
angles. Essentially this same analysis appears as part of a study of cavity
solitons [PLTB11] which also undergo non-specular re�ections from walls
and hence exhibit square orbits similar to Figure 2.1(d). Our simple analy-
sis should be contrasted with the situation for drops bouncing on the sur-
face of an oscillating liquid, so called walkers. Here physical models of the
liquid surface and drop bounces account for many varied features of the
system [PBC06, CF06, PBC08, FEB+10, ESM+11, Shi13]. Likewise, a predic-
tive theory for spiral pinballs may be formulated using adjoint modes of
the reaction-di�usion system known as response functions [BBBF10, BBB10].
�is approach is presented in the following chapter. Memory e�ects are
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important for walkers because bouncing drops interact with surface waves
generated many oscillations in the past, and models necessarily take this
into account [CF06, FEB+10, ESM+11, Shi13]. However, path memory is ab-
sent from spiral waves in excitable media and this constitutes a signi�cant
di�erence between the two systems.

2.4.3 Concluding remarks

We have reported some quantitative and some qualitative features of resonant-
dri� trajectories in excitable media. �e main message is that re�ections
are far from specular—the re�ected angle generally depends only weakly
on the incident angle and typically is nearly constant over a substantial
range of incident angles (particularly negative incident angles). Biktashev-
Holden theory [BH93, BH95] accounts for some of the observed features, but
a more detailed theory based on response functions [BB03, BBBF10, BBB10]
is required. �is follows in Chapter 3. We have seen that the behaviour of
large-core spiral pinballs is more varied than that for small-core ones. Rather
than simply re�ecting from a boundary, large-core spirals may sometimes
become bound to, or glance from, or be annihilated at a boundary, even at
moderate forcing amplitudes. Finally we have considered what can occur as
spiral pinballs undergo multiple re�ections within a square domain, and in
particular have shown that while small-core spirals are observed to meet the
conditions of stable square trajectories, large-core spirals may fail to meet
these conditions and exhibit more interesting dynamics.

We motivated this study with a broader discussion of macroscopic sys-
tems with wave-particle duality. A large number of analogues to quantum
mechanical systems have been reported for walkers on the surface of a vi-
brated liquid layer [CFGB05, CPFB05, PBC06, CF06, EFMC09, EDFC09]. As
far as we are aware, this is less the case for the propagating wave segments
studied by Showalter et al. [SMCS02,ZS05,STS08] or the dri�ing spiral waves
in excitable media considered here. (We examined brie�y small-core dri� tra-
jectories through a single slit, but did not observe di�raction-like behaviour.)
Nevertheless, for the re�ection problem, spiral pinball trajectories, propa-
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gating wave segments, cavity solitons, and walkers all share the feature of
non-specular re�ections [PBC06, STS08, PLTB11, CF12] and as a result these
systems can show similar dynamics when undergoing multiple re�ections
within a bounded region [PBC06, EDFC09, STS08, PLTB11, Sho12]. It will be
of interest to make further quantitative comparisons between these di�erent
systems in the future and to explore theoretical basis of this behaviour.

2.A Appendix: Resonant forcing parameters

In this Appendix we report the exact values for the forcing parameters used
in the detailed quantitative incidence-re�ection studies, since obtaining high-
precision values for resonant dri� can be time consuming. �e values stated
in the body of the chapter are reported only to two signi�cant �gures.

Table 2.1: Parameter values used to produce resonant (straight line) dri� in the
small-core case (a = 0.8, b = 0.05).

A ω f 4t
0.044462 1.82 0.0187625
0.071868 1.792 0.0188508
0.102609 1.75 0.0188968
0.196132 1.63 0.0188957

Table 2.2: Parameter values used to produce resonant (straight line) dri� in the
large-core case (a = 0.6, b = 0.07).

A ω f 4t
0.022 1.025 0.0188035

0.035863 1.003 0.0187557
0.050144 0.989 0.0187961
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Chapter 3

Asymptotic dynamics of spiral
pinballs

3.1 Introduction

In the past decade an intrinsic wave-particle dualism in spiral waves has been
highlighted [BB03, BHB06, BBB10, BBBF10, BBS11]. �is invites comparison
with a growing number of macroscopic systems in which waves propagating
in a nonlinear medium are associated with some degree of spatial localiza-
tion [PLM+14], including liquid ‘walker’ droplets bouncing on a vibrated
bath [CFGB05, CPFB05], various optical solitons [SCS00, GA12] and chemical
wave segments [SMCS02]. Among other common properties, each of these
examples exhibits nonspecular re�ections from obstacles or medium pertur-
bations [PBC06, EFMC09, Shi13, PLTB11, STS08] and the dynamics involved
in the re�ection process can be quite complex. It is within this context that
we have undertaken the present investigation.

Our study focuses on rotating spiral waves in a system with excitable dy-
namics. First witnessed experimentally in the Belousov-Zhabotinsky chemical
oscillator [Bel59,ZZ71,Win72], they have since been discovered in diverse bio-
logical [TD81,TAMM89,GB83,DPS+92,PDS+93], chemical [JRE+90,NvORE93,
AS00] and physical [FRCG94] contexts. Within two-dimensional homoge-
neous excitable media, spiral waves typically rotate about an unexcited core
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of �xed radius and centre. �ese are so-called rigidly rotating spirals. �e
rotation frequency is determined solely by medium properties, while the
centre of rotation and phase are determined by initial conditions. However,
applying spatial or temporal perturbations to an otherwise homogeneous
medium can cause the wave pa�ern to undergo a spatial displacement or
dri� [Bik07, BBBF10]. By tracking either the local rotation centre, or the
closely related wave tip, one may observe interesting trajectories as dri�ing
spirals move through a medium.

A noteworthy case is resonant dri� [ADM87, DZMB88, SZM93, BH93,
ZSM94, MB96, ZWY+04, KJK05, NJBWHP06, XLQD12] in which spatially uni-
form periodic driving is applied in resonance with the spiral rotation fre-
quency. In this case the spiral core travels in a straight line with constant
velocity. In a typical experimental domain, such a spiral will inevitably
come close to a boundary, which may lead to a re�ection in the dri� tra-
jectory [BH93, OS08], as illustrated in Fig. 3.1. We refer to this system as a
spiral pinball. Re�ections are in general nonspecular: the incidence angle
rarely equals the re�ection angle. Furthermore, the character of individual
re�ection trajectories depends on the medium in which the wave propagates,
the properties of the boundary and the spiral’s resonant dri� velocity.

Numerical simulations of spiral pinball re�ections were undertaken some
time ago by Biktashev and Holden [BH93], who laid the foundations of the
asymptotic approach in a subsequent study [BH95]. In Chapter 2, we updated
their numerical work with more extensive simulations and the calculation
of a large catalogue of re�ection trajectories. A key feature of spiral pinball
re�ections in these two studies is that the angle of re�ection is essentially inde-
pendent of the angle of incidence for a large range of incident angles. Indeed,
the re�ection angle instead depends more strongly on the characteristics of the
medium than on incident angle. �is was predicted by Biktashev and Holden
using an ODE model based on the simplifying assumption that the component
of the spiral’s dri� velocity caused by interaction with the boundary decays
exponentially with distance from the boundary [BH93, BH95]. However, a
more detailed theoretical treatment is required to fully understand the mech-
anism behind spiral pinball re�ection. While separate theoretical accounts
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(a) (b)

Figure 3.1: Two examples of spiral pinballs re�ecting in the Barkley model of a
generic excitable medium. �e trajectories of the wave tips are drawn in black.
Arrows indicate the overall direction of dri�. �e spiral waves at the �nal point
in the plo�ed trajectory are visualized by the u-�eld of the Barkley model. Both
plots use the same length scale. �e boundaries are generated by a step change in
medium properties, indicated by grey shading at the le�-hand edges. (a) A ‘small-
core’ spiral pinball approaches a boundary and doubles back on itself; its re�ection
angle lies on the same side of the boundary normal as its incidence angle. (b) A
‘large-core’ spiral pinball speeds up close to the boundary and travels alongside it
for a short while before re�ecting sharply away. (�e plots were cropped to 25 × 40
space units from simulations performed on a 50 × 50 square domain, discretised in
space with grid spacing h = 1/12 and in time with time step 4t = 2.09 × 10−3. �e
step change was located 12 space units from the le�-hand domain wall. Parameters:
(a) a = 0.8, b = 0.05, c = 0.02, ϵs = 0.035, ϵf = 1.44 × 10−3, ωf = 1.7893; (b) a = 0.6,
b = 0.07, c = 0.02, ϵs = 0.035, ϵf = 4.4 × 10−4, ωf = 0.9504. Details concerning
these parameters and the methods used are given in Sec. 3.3.)
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of both resonant dri� [BH93, BH95, BEB99, BBBF10, XLQD12] and spatial
medium inhomogeneities [EP86, AKM95, Bik00, XQD09, BBBF10] (which may
act as boundaries to dri�) already exist, it is the combination and interaction
of these two phenomena which we must consider here.

A good candidate for an updated approach is to use the theory of response
functions [BH95, BEB99, Bik00, BB03, BHB06, BBB+09, BBBF10] which has de-
veloped and matured in the years since the Biktashev-Holden study. Response
functions are adjoint modes to the neutral symmetry modes of a spiral wave
which characterize how the position and rotation phase of a spiral react to
asymptotically small perturbations. In practical terms, response functions
allow us to reduce the PDEs governing the whole medium to the dynamics
of just three real variables—the two spatial coordinates of the wave rotation
centre and the rotational phase.

In this chapter we bring the re�ection of spiral pinballs into this asymp-
totic framework by considering the superposition of two small perturbations:
one corresponding to resonant forcing generating dri� and the other corre-
sponding to a step change in a medium parameter acting as a boundary to
dri�. Previous studies addressed both e�ects independently using response
functions [BEB99, BBBF10]. While the approach is strictly applicable only in
the limit of slow resonant dri� and weak boundary e�ects, we show that it
nevertheless can capture, and thereby explain, most of the important features
of spiral pinball re�ections outside of this asymptotic limit.

3.2 �eory

�e underlying dynamics of the excitable medium are well described by
models in the class of reaction-di�usion PDEs on the plane:

∂tu = D∇2u + f (u,p), (3.1)

whereu(x ,t) ∈ R` is a vector of ` ≥ 2 state variables for the medium, f (u,p) ∈
R` describes the excitable dynamics at each point in space dependent on a
vector ofm parameters p ∈ Rm and D ∈ R`×` is a di�usion matrix.
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We are interested in models that admit solutions rotating with angular
frequency ω about a centre point R = (X ,Y ). �at is, rigidly rotating waves
of the form

u = U (ρ,ϑ + ωt − Φ), (3.2)

where (ρ,ϑ ) are polar coordinates centred at R and Φ is the �ducial phase
of the spiral at t = 0. Note that due to symmetries of the plane, if Eq. (3.1)
admits a solution of the form in Eq. (3.2), then there are in�nitely many such
solutions related by symmetry, and this is captured by the fact that R and Φ

are arbitrary constants. We refer to ω as the natural frequency since it is an
intrinsic property of the medium, whereas R and Φ depend on initial data.

Suppose we perturb the medium slightly. In the limit of weak pertur-
bations, this induces small shi�s in the rotation centre R and the phase Φ,
leaving the shape of the spiral otherwise unchanged. �us the response of
the spiral to weak perturbations is a trajectory through the space of solutions
of the form Eq. (3.2), where R and Φ depend on time.

Mathematically, we treat such a perturbation as the addition of a vector
||ϵh(x ,t)|| � 1 to the right-hand side of Eq. (3.1). It can be shown using
perturbation methods [BH95, BEB99, BHB06] that to �rst order in ϵ , the time
derivatives of R(t) and Φ(t) are proportional to the L2 inner products 〈·, ·〉
of the spiral’s response functionsW0 andW1 with the perturbation vector,
averaged over one full rotation period T = 2π/ω:

Φ̇(t) = ϵ

T

∫ t+T /2

t−T /2
〈W0,h〉dτ +O(ϵ2), (3.3a)

Ṙ(t) = ϵ

T

∫ t+T /2

t−T /2
ei(Φ−ωτ ) 〈W1,h〉dτ +O(ϵ2), (3.3b)

where we use the identi�cation R = (X ,Y ) ≡ X + iY .

Technical details can be found in Appendix 3.A and elsewhere [BH95,
BEB99, BB03, BHB06, BBB+09, BBBF10], but the essence of these equations is
the following. �e response functions are adjoint �elds corresponding to the
symmetries of the reaction-di�usion system [Eq. (3.1)]. W0 is R`-valued and
corresponds to the presence of rotational symmetry. One can think of the
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perturbation, ϵh, as providing an in�nitesimal impulse ϵ 〈W0,h〉 along the
direction of the symmetry (phaseΦ in this case), at each time τ . Equation (3.3a)
captures the e�ect of all such impulses over one rotation period to give the
rate of change in Φ.

�e response functionW1 is C`-valued and corresponds to the two trans-
lational symmetries. Here the perturbation at each time τ provides the spiral
with an in�nitesimal impulse in the direction arg 〈W1,h〉 rotated by ei(Φ−ωτ )

due to the underlying natural rotation of the spiral. �ese contributions,
averaged over one rotation period, give the dri� velocity. Importantly, a
change in Φ typically implies a change in the direction of dri�.

Response functions have been computed numerically for a variety of
spiral waves in previous studies. For various cases, including that of the spiral
waves we study here, the support of these functions was found to be highly
localized around the spiral rotation centre [BB03, BHB06, BBBF10]. �us, a
spiral wave dri�s only in response to perturbations very close to the core.
�at is, it behaves as a particle whose position may be identi�ed with the
rotation centre R.

We are interested in the case where a resonantly forced spiral moves
towards, and re�ects from, a boundary in the medium. �is is a combination
of two perturbations to the original reaction-di�usion equations—a homoge-
neous, time-periodic one that causes resonant dri� of the spiral and a spatial
one that imposes a boundary to the dri�ing spiral. Let us suppose the res-
onant forcing can be described by some h f (t). In practice we will consider
the simple case of harmonic forcing of one of the medium parameters at the
natural frequency ω. Likewise, suppose that the e�ect of a boundary may
be formulated in hs(x). �e type of boundary we shall consider is a sharp
interface along the line x = 0 between two media with di�erent excitability
properties. Although this is not a physical barrier to wave propagation, a
dri�ing spiral core may nevertheless re�ect from the spatial inhomogeneity;
see Fig. 3.1 and Chapter 2. We refer to this as a step boundary. It may be
considered as a weak perturbation provided that the step change in medium
parameters is small. In previous studies a Neumann or ‘no-�ux’ boundary
was also considered. While this type of boundary condition cannot be treated
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as a weak perturbation, we saw in the previous chapter that re�ections from
a step inhomogeneity are qualitatively similar to the no-�ux case.

�e total perturbation to the medium can be wri�en as h(x ,t) = ϵshs(x)+
ϵ fh f (t), where 0 < ϵs ,ϵ f � 1 represent the strengths of the respective
‘step’ and ‘forcing’ perturbations. One can immediately see from Eqs. (3.3a)
and (3.3b) that the e�ects of the two perturbations on Φ̇ and Ṙ are a linear
superposition and may therefore be considered separately. It may conse-
quently be shown (see Appendix 3.A) that the equations of motion for the
spiral centre R = (X ,Y ) and phase Φ are of the form:

Ẋ = ϵsSX (X ) + ϵ f FX (Φ), (3.4a)

Ẏ = ϵsSY (X ) + ϵ f FY (Φ), (3.4b)

Φ̇ = ϵsSΦ(X ), (3.4c)

where SX , SY , SΦ are contributions due to the step boundary and FX , FY are
contributions due to the resonant forcing. �ese are given by integrals of
the form in Eqs. (3.3a) and (3.3b). While the functions depend in detail on
the speci�c model used and the particular spiral wave under consideration,
their general form, in particular their respective dependence on X and Φ as
indicated, is independent of these details.

Since the step boundary is located along the line x = 0 in the original
PDE, the dynamics of the spiral depends only on the distance X of the spiral
centre from step boundary and does not depend on Y . Likewise, since the
step perturbation is time independent, its e�ect, when averaged over a full
spiral rotation, cannot depend on the spiral’s phase Φ.

�e form of the functions FX and FY and the role of Φ are quite important.
In Appendix 3.A.1 we show that for sinusoidal resonant forcing of a medium
parameter:

F (Φ) = AeiΦ, (3.5)

where F ≡ FX+iFY andA is a real constant for each model and set of parameter
choices. Hence, for a given spiral wave and given forcing amplitude, the dri�
velocity due to resonant forcing is, in the asymptotic limit, constant with
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direction determined by the phase Φ. �is direction of dri� can change as a
result of interaction with the boundary, i.e., the function SΦ, but not due to
periodic forcing alone.

Equations (3.4a), (3.4b) and (3.4c) reduce the spiral dynamics from a set of
nonlinear PDEs to three coupled autonomous nonlinear ODEs. �e functions
SX , SY , SΦ, FX , and FY on the right-hand sides must in practice be obtained
numerically by taking appropriate inner products with numerically computed
response functions. Nevertheless, evaluating the right-hand sides and then
numerically solving the ODEs can be done quickly with minimal computa-
tional resources. It is worth noting that the essential dynamical quantities
X , Y , and Φ are the same variables that Biktashev and Holden used in their
asymptotic theory of spiral re�ections [BH93, BH95]. Moreover, we stress
that while the variable Φ was introduced as the phase of the spiral wave,
its role in the reduced system becomes the direction of dri� due to periodic
forcing.

3.3 Model and methods

�e previous discussion of response functions did not depend on any speci�c
model. As in Chapter 2, we consider spiral wave solutions in the standard
Barkley model [Bar91, Bar08], for which ` = 2:

∂u

∂t
= ∇2u +

1
c
u(1 − u)

(
u −

v + b

a

)
, (3.6a)

∂v

∂t
= u −v . (3.6b)

�e two state variables u(x ,y,t) and v(x ,y,t) capture, respectively, the exci-
tation and recovery processes of the medium. Parameters a,b > 0 control the
threshold for excitation and 0 < c � 1 sets the timescale of the fast excitation
process, relative to recovery. �e excitation parameter c is usually called
ϵ . In this chapter only, we avoid calling it ϵ , so that it is not confused with
the standard notation for perturbation strengths. For �xed parameter c and
variable a,b, the section of parameter space which admits rigidly rotating
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spiral wave solutions is divided roughly into two regimes distinguished by
the size of the rotation core. We showed in Chapter 2 that the re�ections of
so-called small- and large-core spiral pinballs markedly di�er and we therefore
divide our study along these lines.

�roughout our study we have varied the b parameter to create the step
inhomogeneity by considering b(x) = b0 + ϵs(H (x) − 1), where H is the
Heaviside step function. Resonant forcing has been applied homogeneously
by varying the excitability c as c(t) = c0 + ϵ f cos(ω f (t − t0)), where ω f is
the forcing frequency required to obtain resonant dri� and t0 is some initial
forcing time (the choice of which is discussed in Appendix 3.A.1). For our
results in Sec. 3.4, ω f = ω. In all numerical simulations, the values of ϵs
and ϵ f have been chosen small enough that the perturbed medium remains
in the same parameter regime (of small- or large-core rigid rotation) as the
unperturbed parameters.

�e response functions and natural rotation frequencies for various small-
and large-core spirals in the Barkley model were calculated on a polar grid
using the so�ware DXSpiral [BBB+08]. �e numerical methods are detailed
in Ref. [BBB+09]. A disk of radius 15 was used in the small core with 64 angular
grid points and 1875 radial grid points. In the large core the radius size was
increased to 20 and the number of radial grid points used was 2500. �e
resulting response function discretisations were used to numerically compute
the right-hand sides of Eqs. (3.4a), (3.4b), and (3.4c) (see the Appendix to
this chapter for the speci�c integrals), again using DXSpiral. Re�ection
trajectories were calculated by time-stepping the resulting three dynamical
variables from chosen initial conditions.

Direct numerical simulations of the Barkley model PDEs were also per-
formed for comparison with the response function predictions. �ese were
computed using standard �nite-di�erence techniques described in Refs. [Bar91,
DMB97]. �ese simulations use unusually high precision to ensure that they
correctly capture the spiral rotation frequency [BBBF10, Sec. IV B]. (�e
simulations involve forcing at the natural frequency, i.e. ω f = ω, obtained
very accurately from DXSpiral. Small inaccuracies in the simulations, which
would normally be irrelevant, result in arti�cial frequency mismatches which
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then lead to arti�cially curved trajectories.) In the small core (Fig. 3.12) a
20 × 20 square domain was used with grid spacing h = 0.0125 and time step
4t = 2.3 × 10−5. �e step inhomogeneity was located 5 space units from the
le�-hand domain edge. In the large core (Fig. 3.13) a larger 40 × 40 square
domain was used, with the step inhomogeneity located 10 space units from
the le�-hand edge, in order to avoid interaction of the spiral wave with the
no-�ux domain walls. �e grid spacing was h = 0.025, with corresponding
time step 4t = 9.4 × 10−5. Model parameter values are given later in the text.

3.4 Results

Before presenting our response function calculations, we make a note con-
cerning incident and re�ected angles. As is standard, we de�ne both the
angles of incidence θi and re�ection θr to be measured from the boundary
normal. In the case of light paths in classical optics, one considers incident
angles only in the range [0◦,90◦], since, due to symmetry in the y-direction,
trajectories at equal angles either side of the normal correspond to physically
identical situations. However, since spirals possess a chirality, this symmetry
is not present and we must consider both incident and re�ected angles in the
range [−90◦,90◦].

In Sec. 3.2 and the Appendix to this chapter we have implicitly set ω > 0
to correspond to clockwise rotation. We consider spirals of this chirality
only. Our convention is to de�ne θi to be positive in the clockwise direction
from the normal and θr to be positive in the anticlockwise direction from the
normal. �at is, incident and re�ected angles on opposite sides of the normal
have the same sign.

3.4.1 Small-core case

Our study begins by considering spiral waves in the small-core region of
parameter space. We set a = 0.8, b = 0.05, and c = 0.02. Figure 3.2 shows
the step boundary functions SX , SY , and SΦ for these parameters. �ese
curves represent the intrinsic character of the boundary in�uence. Let us
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Figure 3.2: SX , SY , and SΦ for a small-core spiral with a = 0.8, b = 0.05, and c = 0.02.
Also plo�ed in do�ed grey are the vertical lines x = ±2.9, which enclose the e�ective
boundary region. [For |x | > 2.9, SX (x) and SY (x) are less than 0.1% of SX (0) and
SY (0) respectively.]

�rst consider the e�ects of this boundary in the absence of resonant forcing.
�e dynamics of the spiral rotation centre in this case are governed simply
by the SX and SY curves, scaled by the size of the step:

Ṙ = ϵsS(X ), (3.7)

where S ≡ SX + iSY . We see, as expected, that SX and SY are zero outside
a relatively small neighbourhood of x = 0 and thus spirals outside this
region are una�ected by the step boundary. Since SX (X ) is positive inside the
boundary region, spirals to the right of x = 0 are repelled away from the step.
Furthermore, since SY (X ) is also positive in this region, the boundary acts
to intrinsically drive spirals in the positive y-direction. Note also the form
of SΦ: far to the le� of the boundary, SΦ(X ) tends to a non-zero (negative
in this case) constant. �is is because the spiral’s rotation frequency in the
le� half-plane, with the perturbed model parameter b0 − ϵs , di�ers from the
‘natural’ frequency ω of the unperturbed spiral in the right half-plane.
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Now let us add in the e�ect of periodic forcing. �e rotation centre in
this case moves according to

Ṙ = ϵsS(X ) + ϵ f F (Φ), (3.8)

where F (Φ) = AeiΦ, from Eq. (3.5). �us, the velocity at each instant is the
superposition of the step component and a vector of �xed magnitude due
to the resonant forcing, whose direction is set by the spiral’s phase Φ. Far
from the boundary, the velocity is constant, since S(X ) = 0 and SΦ(X ) = 0
for X � 0. Close to the boundary, if the step perturbation is large enough
relative to the resonant forcing perturbation, the boundary e�ects dominate
and spirals in the positive half-plane are repelled from the step. Furthermore,
since SΦ(X ) < 0 for X . 2.9, the forcing component rotates clockwise in time
while the spiral is in the boundary region.

�is suggests a mechanism for re�ection. Consider a resonantly forced
spiral wave travelling towards the step from the right half-plane. Far from
the boundary, the spiral dri�s with constant velocity at some incident angle
θi (set by initial conditions). On entering the boundary region, the spiral is
repelled by the inhomogeneity, causing it to slow down and preventing it
from passing through x = 0. �is e�ect itself does not cause the subsequent
re�ection from the boundary. �e motion away from the boundary is rather
due to the Φ dynamics. As the spiral approaches the boundary, Φ decreases
bringing about a rotation in the resonant forcing component F (Φ). A�er a
time, this component inevitably rotates around to the positive x-direction
and this drives the spiral away from the step. Consequently, the spiral leaves
the boundary at some re�ection angle θr , dictated by the phase on exiting
the boundary region.

We see this mechanism at work in Fig. 3.3, which displays a typical
theoretical re�ection trajectory in the small-core regime. (One should note
that the lengths of vectors in Fig. 3.3 have been scaled nonlinearly so their
directions far from the step are discernible—the magnitude of the forcing
component is comparatively much weaker than depicted.) A�er entering the
boundary region, the spiral undergoes a rapid change in direction and phase
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Figure 3.3: �eoretical trajectory of a small-core spiral pinball re�ection with θi = 0◦
and ϵf /ϵs = 1/25. Initial conditions: X0 = 6, Y0 = 0, Φ0 = π . Each horizontal row
of vectors plots the velocity �eld at the instant at which the spiral centre a�ained
the given Y . �ese vectors depend on X and the phase Φ. �e value of Φ at each
horizontal slice is indicated on the right-hand side. Vector magnitudes have been
scaled nonlinearly for visual clarity. �e ratio of the X : Y scales is 1 : 4.

and its speed in the x-direction slows considerably. As the resonant forcing
component F (Φ) (depicted in the rightmost vectors of Fig. 3.3) rotates with the
decreasing phase, its x-component diminishes and consequently the boundary
e�ects push the spiral centre further away from the step. �is process is slow
and the spiral travels far in the y-direction in this time. Eventually, the
evolving phase turns the resonant dri� direction towards the positive half-
plane, i.e., FX (Φ) changes sign and becomes positive. As a result, the spiral
centre leaves the boundary. �e re�ected angle is close to +90◦, since SΦ(X ) is
very near zero when this sign change occurs and therefore the phase changes
only by a small amount a�er this.

We observe that the situation is similar across the full range of incident an-
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Figure 3.4: Two theoretical trajectories in the small-core regime, initiated at X0 = 6,
Y0 = 0. ϵf /ϵs = 1/25. �e �lled points plo�ed along the trajectories are equally
spaced in time to indicate dri� speed. Incident angles are (a) θi ≈ −70◦ and (b)
θi ≈ +70◦. Both spiral pinballs re�ect with angle θr ≈ +88◦. �e ratio of the X : Y
scales is 1 : 1.

gles θi ∈ [−90◦,90◦]. Figure 3.4 displays two theoretical re�ection trajectories
which approach the boundary at di�erent angles, either side of the normal,
re�ecting in the same direction. Regardless of incident angle, the spiral
centre may only leave the boundary once F (Φ) points away from the step.
Each spiral pinball reaches this sign change of FX (Φ) in essentially the same
state: with Φ = π/2 and X close to the edge of the boundary region. �is is
because the Φ dynamics are su�ciently slow that the spiral centre is pushed
almost completely out of the boundary region by the time that Φ = π/2.
�erefore, each spiral pinball changes direction by only a small amount a�er
this point and re�ects with θr close to +90◦. On close inspection, another
interesting feature of the trajectory in Fig. 3.4(a) is the change of curvature
sign as the spiral enters and leaves the boundary region. (See also Fig. 3.5.)
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Figure 3.5: SX , SY , and SΦ curves, together with representative theoretical re�ection
trajectories for three di�erent small-core spiral pinballs. ϵf /ϵs = 1/50. Each pair of
re�ection trajectories is plo�ed below the corresponding boundary curves. �e le�-
and right-hand trajectories are θi ≈ 0◦ and θi ≈ −70◦, respectively, and include �lled
points, matched to the time step of the corresponding points in Fig. 3.4, indicating
dri� speed. Model parameters: in (a) and (b) a = 0.7, b = 0.01; in (c) and (d) a = 0.95,
b = 0.01; in (e) and (f) a = 0.95, b = 0.08. In all cases c = 0.02. �ese span a
substantial extent of the small-core regime.
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�is can be a�ributed to the fact that the repulsion of the spiral in the X

direction (which causes the spiral path to turn anticlockwise on entering and
leaving) is felt in a slightly wider region than the e�ect of the boundary on
the phase (which causes the spiral path to turn clockwise).

It is worth noting that in addition to the invariance of re�ection angle,
these theoretical trajectories exhibit qualitative features observed in numerical
simulations. In particular, the nontrivial shape of Fig. 3.4(a), the sharp change
of direction at the boundary in Fig. 3.3 and the decrease in the closest distance
to the boundary reached by the spiral centre as θi increases. For comparison
see Figs. 2.3(b), 2.4(g) and 2.4(h) from the previous chapter.

Across the small-core parameter regime, we see that the curves SX , SY
and SΦ vary in magnitude and shape. However, the qualitative di�erences
in the theoretical re�ection trajectories are only subtle and the re�ection
mechanism in each case is the same. Representative curves and trajectories
are plo�ed in Fig. 3.5.

3.4.2 Large-core case

We now turn to the large-core case, se�ing a = 0.6, b = 0.07, and c = 0.02.
As before, we begin by plo�ing the x-dependence of the key functions SX ,
SY , and SΦ, shown in Fig. 3.6. At �rst glance these do not appear to di�er too
much from the corresponding curves in the small core (see Figs. 3.2 and 3.5).
Nevertheless, there are di�erences, some of which are quite important. �e
region of boundary in�uence is wider than in the small-core, extending to
roughly a distance of �ve space units from the step inhomogeneity. �is
is expected: spiral waves propagate outwards from their tips, which rotate
around a circle of much larger radius in the large-core. Furthermore, SX has
roots within this boundary region, at x ≈ ±2.5. �e root at positive x is
a�racting (in the absence of resonant forcing). Also, the magnitudes of the
curves are (pointwise) greater than those in the small-core case. For the set
of parameters we consider, this is particularly true for SΦ. Finally, notice that
SY has changed sign with respect to the small-core case.

�ese di�erences have a signi�cant impact on the character of re�ections
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Figure 3.6: SX , SY and SΦ for a large-core spiral with a = 0.6, b = 0.07, c = 0.02.
Also plo�ed in do�ed grey are the vertical lines x = ±5.0, which enclose the e�ective
boundary region. [For |x | > 5.0, |SX (x)| and |SY (x)| are less than 0.1% of SX (0) and
SY (0) respectively.]

for spiral pinballs in the large-core region. Figure 3.7 demonstrates a typical
theoretical trajectory. Approaching at θi = 0◦, the spiral changes direction
as it enters the boundary region as before, but turns to move in the negative
rather than the positive y-direction, since SY is large and negative inside the
boundary region. While π/2 < Φ < π , the resonant forcing has negative
x-component and the spiral remains near the positive root of SX . Since Φ

decreases to less than π/2, the forcing acts to push the spiral away from the
boundary. As it exits, Φ continues to decrease causing the resonant forcing
direction to turn further clockwise. Finally, the spiral leaves the boundary at
the constant angle dictated byΦ = −0.17 (θr ≈ −9.5 in this case). �alitatively
similar trajectories for low amplitude resonant forcing in the large core were
observed in the previous chapter for Neumann boundary conditions: see
Fig. 2.10(c).

�e key di�erence between this large-core case and the small-core theo-
retical trajectories in Sec. 3.4.1 is the a�racting root of the SX curve, which
importantly occurs within the boundary region. While the spiral is in the

51



-12

-10

-8

-6

-4

-2

0

0 2 4 6 8 10

Y

X

Φ = 3.14

Φ = 2.44

Φ = 1.72

Φ = 0.97

Φ = 0.24

Φ = −0.17

Figure 3.7: �eoretical trajectory of a large-core spiral pinball re�ection with θi = 0◦
and ϵf /ϵs = 1/87.5. Initial conditions: X0 = 10, Y0 = 0, Φ0 = π . Each horizontal row
of vectors plots the velocity �eld at the instant at which the spiral centre a�ained
the given Y . �ese vectors depend on X and the phase Φ. �e value of Φ at each
horizontal slice is indicated on the right-hand side. Vector magnitudes have been
scaled nonlinearly for visual clarity. �e ratio of the X : Y axes is 1 : 1.

boundary region, the phase evolves, causing the resonant forcing component
to rotate, just as with small-core spirals. Once FX (Φ) changes sign, the res-
onant forcing turns to impel the spiral away from the boundary. While in
the small-core cases this occurs when the spiral centre is near to the end of
the boundary region, in the large-core case the spiral remains close to the
a�racting root of SX prior to the sign change. Since the magnitude of SΦ is
non-negligible near the a�racting root of SX , Φ continues to evolve, changing
the sign of FX and decreasing for some time therea�er as the spiral exits the
boundary. Consequently, the �nal direction of the spiral di�ers greatly from
+90◦.

In the large-core regime, we see a notable e�ect of incident angle on
re�ection angle. Using the same parameters, we demonstrate this in Fig. 3.8.
Spiral pinballs approaching the boundary at higher incidence angles have
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Figure 3.8: E�ect of incident angle θi for a large-core spiral pinball. Various theo-
retical trajectories are shown with di�erent initial Φ0 and ϵf /ϵs = 1/87.5. �e �lled
points plo�ed along the trajectories are equally spaced in time to indicate dri� speed.
Incident angles: (a) θi = 60◦, (b) θi = 67.5◦, (c) θi = 75◦.
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Figure 3.9: Phase dynamics for large-core spiral pinballs approaching the boundary
with di�erent incident angles. ϵf /ϵs = 1/87.5. �e top plot shows the curve SX , for
reference. �e bo�om plot shows the theoretical ‘trajectory’ of the spiral phase as the
spiral moves in and out of the boundary region, for various incident angles. Incoming
trajectories have Φ ∈ (π/2,3π/2) and outgoing trajectories have Φ ∈ (−π/2,π/2).
�e solid black trajectory corresponds to the re�ection in Fig. 3.7 and the do�ed and
dashed trajectories correspond to the re�ections in Fig. 3.8.
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lower initial phase and consequently reach the sign change of FX (Φ) (at
Φ = π/2) sooner. �erefore, at high incident angles the sign change occurs
much further from the step than at low incident angles, since Φ reaches π/2
before the spiral centre reaches the a�racting root of SX . �is means these
spirals necessarily leave the boundary region sooner and with a greater Φ,
i.e., greater re�ected angle. �is can be visualized more clearly by plo�ing
the trajectory of the phase with respect to the distance from the boundary, as
we have done in Fig. 3.9.

�e change in sign of the SY curve between the large- and small-core
parameter regimes has no e�ect on re�ection angle, since the dynamics of the
spiral centre far from the boundary depends only on Φ and X . However, it is
relevant to the overall qualitative shape of trajectories at the boundary. �is
di�erence in sign can be qualitatively explained by referring to arguments
originally given by Krinsky et al. [KHV96] for the case of spiral wave dri�
in electric �elds, which were later studied by Xu et al. [XQD09] for medium
inhomogeneities. Dri� of the spiral rotation centre may be caused by changes
to the radius of the rotation core and also by changes to the rotation frequency.
In the Barkley model, decreasing the b parameter, as we have done to form the
step boundary, decreases the core size and increases the rotation frequency. �e
e�ect of our step inhomogeneity on the core radius causes the spiral to dri� in
the negativey-direction. However, the e�ect on the rotation frequency causes
the spiral to dri� in the positive y-direction. For small-core parameters, the
core radius changes li�le and the e�ect of the step boundary on the rotation
frequency dominates. In the large-core parameter region, it is instead the
changes in the core radius which dominate. �erefore the vertical component
of dri� due to the boundary changes sign between the two parameter regions.

We may also consider the e�ects of altering the ratio ϵ f /ϵs . Let us �x ϵs and
vary ϵ f . Higher ϵ f corresponds to higher amplitude resonant forcing, meaning
that the dri� speed due to resonant forcing is greater. Figure 3.10 plots some
illustrative theoretical re�ection trajectories at di�erent amplitudes. We see
that as resonant forcing amplitude increases, re�ected angle increases. �is
is because higher amplitude forcing impels spirals with greater dri� speed.
Faster spirals leave the boundary more quickly a�er FX (Φ) changes sign and

54



0 5 10

(a)

0 5 10

(b)

0 5 10

(c)

Figure 3.10: E�ect of forcing amplitude on large-core spiral pinballs. �ree the-
oretical trajectories are shown in order of increasing amplitude and include �lled
points, matched to the time step of the corresponding points in Fig. 3.8, indicating
dri� speed. �e perturbation ratio ϵf /ϵs in each case equals (a) 1/75, (b) 1/50, and (c)
1/25.
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Figure 3.11: Re�ected angle θr versus incident angle θi for large-core spiral pinballs
at di�erent forcing amplitudes. �e angles were measured from the theoretical
response function trajectories at the given ϵf /ϵs ratios.

therefore leave with a greater Φ. (Note that they also approach closer to the
step, which acts to decrease re�ection angle, but this e�ect is not signi�cant
relative to the e�ect of increased dri� speed.)

�e combined e�ects of incidence angle and forcing amplitude are illus-
trated in Fig. 3.11, where we plot re�ected angle θr versus incident angle θi
for the three forcing amplitudes used in Fig. 3.10. �ese theoretical incidence-
re�ection data are qualitatively close to the large-core results from direct
numerical simulation presented in the previous chapter (albeit with Neumann
boundary conditions): see Fig. 2.9.
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3.4.3 Comparison with direct numerical simulation

Figures 3.12 and 3.13 show comparisons between the re�ection trajectory
predicted by our response function calculations and results from direct nu-
merical simulation (DNS) of the full Barkley model PDEs using the same
parameters.

A thorough study of the numerical convergence of the asymptotic theory
in the separate cases of resonant parameter forcing and step inhomogeneity
has previously been conducted [BBBF10] and consequently we do not repeat
such a study here. Instead, the cases presented have been chosen to demon-
strate various phenomena predicted theoretically in the preceding sections.
Excellent agreement is seen between theory and full DNS of spiral pinballs
over a broad range of parameters and conditions.

In the small-core cases, Fig. 3.12, the spiral pinball dri� direction, dri�
speed, and point of closest approach to the boundary are in very close cor-
respondence with theoretical predictions. Note that speed is gauged from
the distance travelled between successive points (open circle for DNS and
�lled circles for theory). Most of the (very small) di�erences between DNS
and theory arise in the vicinity of the boundary where the e�ects of both
perturbations are felt. Since points are plo�ed at �xed time intervals over the
full trajectory, small speed di�erences can nevertheless give rise to an accu-
mulated shi� between points from DNS and theory. �e most striking feature
in the small-core regime is the correct theoretical prediction at large negative
incident angles: Figs. 3.12(d) and 3.12(f). �eory correctly predicts that the
spiral centre �rst moves downward near the boundary for a large number
of rotation periods before turning, moving upward, and slowly leaving the
boundary.

In the case of large-core spiral pinballs, Fig. 3.13, the considerable variation
in the re�ected angle predicted by theory is seen to hold in the full DNS. In
particular, for �xed parameter values, as the incident angle is changed from
near zero, Fig. 3.13(a), to large positive angles, Figs. 3.13(b) and 3.13(c), the dri�
trajectory spends less time in the vicinity of the boundary and develops a loop
as the re�ected angle changes from negative (moving down and to the right in
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Figure 3.12: Comparison between theory and DNS of the Barkley model for a variety
of parameter values and incident angles in the small-core regime. In each case the
rotation centre of the spiral wave in the DNS is plo�ed (open circles) every 30th
rotation period. �e theoretical trajectories (curves with solid dots) use an initial
condition selected such that they agree with the DNS trajectory at a point close
to the boundary. Solid dots are separated by a time corresponding to 30 rotation
periods. Also shown are the rotating spiral tip trajectories, do�ed in grey, and the
step boundary at x = 0, dashed in grey. Each of the three columns corresponds to
a di�erent choice of model parameters broadly spanning the small-core parameter
regime. Within each column two incident angles are shown: one normal and one
oblique to the boundary. Parameters in (a) and (b): a = 0.8, b = 0.05, c = 0.02,
ωf = 1.850 564, ϵf /ϵs = 4 × 10−5/3.5 × 10−3 = 1/87.5; in (c) and (d): a = 0.7,
b = 0.01, c = 0.02, ωf = 2.043 489, ϵf /ϵs = 4 × 10−5/2 × 10−3 = 1/50; in (e) and (f):
a = 0.95, b = 0.08, c = 0.02, ωf = 1.768 359, ϵf /ϵs = 4 × 10−5/2 × 10−3 = 1/50.
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Figure 3.13: Comparison between theory and DNS of the Barkley model in the
large-core regime verifying the theoretical predictions for the role of incident angle
and forcing amplitude. Plot (a) shows a simulation of the case explained theoretically
in Fig. 3.7, in which θi ≈ 0◦. Between (a), (b) and (c), the incident angle was varied
from 0◦ to approximately 60◦ and 70◦, respectively, keeping all other parameters �xed.
In (d), the resonant forcing perturbation used was twice that of (a), while the incident
angle and all other parameters remained �xed. �us the e�ects of incident angle
and forcing amplitude are seen to agree with those predicted in Figs. 3.8 and 3.10
and explained theoretically in Sec. 3.4.2. In each case the rotation centre of the
spiral in the DNS is plo�ed (open circles) every 10th rotation period. �e theoretical
trajectories (curves with solid dots) use an initial condition selected such that they
agree with the DNS trajectory at a point close to the boundary and are plo�ed with
a time step (time between successive points) corresponding to 10 rotation periods
of the simulation. Also shown are the rotating spiral tip trajectories, do�ed in grey,
and the step boundary at x = 0, dashed in grey. Parameters: a = 0.6, b = 0.07,
c = 0.02, and ωf = 0.916 437 2; in (a)–(c) ϵf /ϵs = 4 × 10−5/3.5 × 10−3 = 1/87.5; in (d)
ϵf /ϵs = 8 × 10−5/3.5 × 10−3 = 1/43.75.
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the �gure) to positive (moving up and to the right). (See also for comparison
Fig. 3.8.) Furthermore, as the forcing amplitude is increased for otherwise �xed
conditions [Fig. 3.13(a) and Fig. 3.13(d)], the time at the boundary decreases
and the re�ection angle increases. (See also for comparison Fig. 3.10.)

�e agreement between asymptotics and DNS is not quite as good in
the large-core results, Fig. 3.13, as in the small-core results, Fig. 3.12. �e
main visible di�erence between theory and DNS in the large core regime
is the point at which the spiral centre leaves the boundary. Other features,
such as the re�ected angle and the point of closest approach are predicted
well. Discrepancies between theory and DNS are due to slight frequency
mismatches. Large-core spiral waves are particularly susceptible to this as
their rotation frequencies and tip orbits vary rapidly with parameters [Win91].
In the DNS there is a shi� from the unperturbed rotation frequency ω (as
calculated to high accuracy by DXSpiral) due to small but �nite spatial
discretisation errors, as well as weak nonlinear e�ects at �nite perturbation
strength. As the perturbation magnitudes and the computational grid spacing
tend to zero, the theoretical and DNS trajectories do converge [BBBF10].

3.5 Discussion

We have applied the theory of response functions to the re�ection of spiral
pinball trajectories from boundaries. Via numerical computation of response
functions, we have studied re�ections in the asymptotic limit of slow dri�
and weak boundary e�ects. In this limit the approach is quantitatively ac-
curate, as we have demonstrated for a variety of cases by comparing direct
simulations of spiral pinballs in a full reaction-di�usion model with the the-
oretical predictions from response functions. However, the main value of
the response function approach is the qualitative understanding it brings to
how interactions with a boundary lead to di�erent types of re�ections in
various situations. Several of the most signi�cant features of spiral pinball
re�ections, observed in simulations at higher dri� speeds and greater step in-
homogeneities in the previous chapter, are nevertheless captured qualitatively

59



by the asymptotic analysis. Consequently, we have been able to understand
the essential causes of many interesting aspects of spiral wave re�ections.

As stated in Section 3.1, the primary characteristic of spiral pinball re-
�ections is that across a wide range of model parameters, the re�ected angle
is approximately constant for large ranges of incident angle. �is re�ection
angle ‘plateau’ is present in the response function results in both small- and
large-core cases. In the small-core case, we demonstrated numerically in
Chapter 2 that the value of this constant angle increases toward θr = +90◦ as
the resonant dri� velocity decreases. �e asymptotic results reveal the limit-
ing case of this trend, yielding only re�ected angles very close to θr = +90◦

and we have shown exactly why the re�ected angle is essentially constant
across a wide range of parameter space.

Another signi�cant feature observed in the Chapter 2 results is that, un-
like the small-core case, for large-core spirals the re�ected angle increases

with increasing dri� velocity. �is e�ect is clearly present in the asymptotics
(Figs. 3.10 and 3.11) and in the comparison with DNS [Figs. 3.13(a) and 3.13(d)].
�e qualitative form of the re�ection angle data in Fig. 3.11—a plateau for neg-
ative θi , then monotonically increasing at high θi—is familiar to all previous
numerical results and emerges naturally from the response function model
by considering Fig. 3.9. Furthermore, general consideration of the di�erences
between small- and large-core spiral pinballs at the asymptotic level has led
to explanations of the diversity of behaviours between the two cases. Finally,
we note that the non-trivial shape, closest boundary approach distance, and
relative dri� speeds that are obtained and explained via the response function
analysis were all observed qualitatively beyond the asymptotic limit, in both
the small- and large-core cases.

�e work presented in this chapter �ts comfortably with that which is
already known about spiral pinball re�ections. Biktashev and Holden [BH93]
recognized many years ago that re�ections are caused by small deviations
from the natural rotation frequency on close approach to the boundary,
which alter the direction of dri�. �ey proposed asymptotic equations of
motion for the rotation centre and phase, positing that the boundary e�ects
(corresponding to SX , SY , and SΦ in our notation) decay exponentially with
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distance from the boundary. �ese simple assumptions ably capture the
overriding feature of spiral pinball re�ections—large ranges of approximately
constant re�ected angle—but beyond that the predictive qualities of the model
are limited. Our application of response functions to the re�ection problem
can be viewed as an extension of their e�orts, removing the phenomenology
for the case of a step boundary and allowing the boundary e�ects to be
calculated accurately for any spiral wave. �is extra information yields a much
more detailed picture of the re�ection dynamics, capturing the behaviour near
to the boundary as well as far from it and producing qualitatively meaningful
re�ection trajectories across a wide range of parameters. Furthermore, we
have calculated response functions in the large-core regime, which was not
considered by Biktashev and Holden. Here, we observe that the repulsive
e�ect on spirals’ velocity normal to boundary (SX ) decays more rapidly than
the e�ect on the phase (SΦ)—a �nding which accounts for the di�erences
between small- and large-core re�ection angle results. �is could not have
been captured by the original Biktashev-Holden theory which for simplicity
assumed that all boundary e�ects decay with respect to the same length scale.

Beyond the features of spiral pinball re�ections considered here, there are
phenomena outside the asymptotic limit of small perturbations that are not
predicted by the linear order response function approach. In the small-core
regime, a wider range of re�ection angles are observed at higher forcing
amplitudes than is captured by the asymptotic analysis. In the small-core
regime, as observed in Chapter 2, there exist so-called ‘glancing’ and ‘bind-
ing’ trajectories in which spiral waves respectively become temporarily and
permanently a�ached to the boundary. In order to predict these behaviours,
a mechanism is needed through which spirals may become a�ached. While
the function SX in the large core (see Fig. 3.6) does imply that there exists an
a�racting point near to the boundary, only very weakly forced spiral waves
can become trapped there. �is is contrary to our Chapter 2 DNS results for
�nite amplitude large-core spiral pinballs, in which the a�achment of the
spiral to the boundary ‘strengthens’ (from re�ection, to glancing, to binding)
as forcing amplitude increases (see Fig. 2.9).

It would be desirable to address these phenomena theoretically—especially
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the a�achment behaviours which are particularly at odds with what we have
seen in the asymptotics. One potential approach could be to use a kinematic
model, similar to the one introduced by Di et al. in Ref. [DQWG03]. �e
principal idea is to split the motion of the spiral tip into angular and radial
components, which depend on the tip rotation radius Rc and rotation periodT .
�e dependence of Rc and T on the medium parameters (or on some external
perturbation) may be determined empirically by direct simulation and thus
used to model dri� in a given scenario. Recent papers have employed this
method to reproduce the tip dynamics of small- and large-core spirals in
the presence of a step inhomogeneity [XQD09] and under periodic forcing
of excitability [XLQD12]. �is suggests that a similar approach could be
used to model spiral wave re�ections. It remains to be seen whether, given
suitable modelling assumptions, predictive power outside the limit of small
perturbations could be obtained.

3.A Appendix: Response function theory
derivations

In this Appendix we present the derivation of the response function inner
products that make up the di�erential equations in Eqs. (3.4a), (3.4b) and (3.4c).

�e perturbations we have considered above are small temporal and
spatial variations in the medium parameters. (While we could have perturbed
the PDE �elds directly instead, parameter variation is preferred since it is
directly analogous to the way in which experiments on excitable media are
o�en conducted [ADM87, SZM93, ZSM94, KJK05].)

Let us consider such a parameter p and take its dependence on (x ,t) to
be of the form p(x ,t) = p0 + ϵp1(x ,t) for some constants p0 and 0 < ϵ � 1.
Taylor expansion of Eq. (3.1) to �rst order in ϵ establishes that parameter
variations of this form may be considered as additive perturbations to the
reaction di�usion system:

∂tu = D∇2u + f (u,p0) + ϵh(u,x ,t), (3.9)
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where h(u,x ,t) = ∂p f (u,p0)p1(x ,t).

3.A.1 Resonant forcing

Sinusoidal variation of a parameter at the natural frequency ω induces reso-
nant dri�. Consider p varying as p(t) = p0+ϵ f cos(ω(t −t0)), where t0 is some
initial time whose role will become apparent below. �en the perturbation
h f , in the form depicted in Eq. (3.9), is h f (u,t) = ∂p f (u,p0) cos(ω(t − t0)).

To derive the dynamical equations for Φ and R, we must perform the
integrations in Eqs. (3.3a) and (3.3b). Note that since the sinusoidal term does
not depend on space:

〈Wn,h f 〉 = cos(ω(t − t0))〈Wn, ∂p f (u,p0)〉, (3.10)

for n = 0,1. Furthermore, both Wn and ∂p f depend on time only via their
dependence on the wave �eld u. Since u is stationary in a reference frame
centred at R and rotating with frequency ω, the inner products 〈Wn, ∂p f 〉 are
time independent. �erefore, we have∫ t+T /2

t−T /2
〈W0,h f 〉dτ = 0 (3.11)

and ∫ t+T /2

t−T /2
ei(Φ−ωτ )〈W1,h f 〉dτ = 1

2Te
i(Φ−ωt0)〈W1, ∂p f 〉. (3.12)

We set the initial forcing time t0 such that −ωt0 + arg〈W1, ∂p f 〉 = 0. �ere-
fore the equations of motion for a sinusoidally forced spiral are, due to
Eqs. (3.3a), (3.3b), (3.11), and (3.12):

Φ̇ = 0, Ṙ = ϵ fAe
iΦ = ϵ f F (Φ), (3.13)

where A(u,p0) B 1
2 |〈W1, ∂p f (u,p0)〉| is a real constant with respect to space

and time for a given model and set of parameters. We can thus unambiguously
identify the phase variable Φ with the direction of dri� due to resonant forcing
and it is for this reason that t0 was introduced.
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3.A.2 Step boundary

�e step boundary is a step inhomogeneity in a medium parameter that for
convenience we locate at x = 0. �erefore, the parameter p varies in space
as p(x) = p0 + ϵs(H (x) − 1), where H is the Heaviside step function. �e
perturbation hs is thus hs(u,x) = ∂p f (u,p0)(H (x) − 1).

�e integrals in Eqs. (3.3a) and (3.3b) are considered here in a co-ordinate
system that rotates with the spiral wave at its natural frequency and is centred
at R(t) [BH95, BB03, BBBF10]. Let (ρ,ϑ ) be polar co-ordinates centred at
R(t). �en de�ne the rotating angular co-ordinate θ = ϑ + ϕ(t), where
ϕ(t) B ωt − Φ(t) is the angle that the spiral turns through in time t . �e
co-ordinates (ρ,θ ,ϕ) de�ne a frame in which the spiral waveU [see Eq. (3.2)]
and its response functionsW0 andW1 are constant.

In this frame the time-averaging integration in Eqs. (3.3a) and (3.3b) be-
comes averaging over ϕ. [Note that since the perturbation hs does not depend
on time this averaging need not be centred about ϕ(t) and hence we take the
range of integration to be simply [0,2π ].] We obtain

1
T

∫ t+T /2

t−T /2
ein(Φ−ωτ )〈Wn,hs〉dτ =

1
2π

∫ 2π

0
e−inϕ

∫ 2π

0

∫ ∞

0
wn(ρ,θ )p̃1(ρ,θ ,ϕ)ρ dρ dθ dϕ, (3.14)

for n = 0,1, where p̃1 represents the spatial variation of p wri�en in the
co-rotating frame, which is

p̃1(ρ,θ ,ϕ) = H (X + ρ cos(θ − ϕ)) − 1 (3.15)

and we have made use of the shorthand wn B [Wn(ρ,θ )]∗ · ∂p f (U ,p0).

We can compute the integral over ϕ explicitly. Changing the co-ordinate
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to ϑ and rescaling the step function, we have

1
2π

∫ 2π

0
e−inϕp̃1(ρ,θ ,ϕ)dϕ =
1

2π e
−inθ

∫ 2π

0
einϑ (H (X/ρ + cos(ϑ )) − 1)dϑ . (3.16)

As discussed in the main text, we see that the integral depends on the distance
of the spiral centre to the step inhomogeneity. �ere are three cases to
consider:

1. |X | > ρ and X > 0 =⇒ H (X/ρ + cos(ϑ )) − 1 = 0

2. |X | > ρ and X < 0 =⇒ H (X/ρ + cos(ϑ )) − 1 = −1

3. |X | < ρ, in which case H (X/ρ + cos(ϑ )) − 1 = −1 if
ϑ ∈ [−π ,− arccos(−X/ρ)] ∪ [arccos(−X/ρ),π ] and is zero otherwise.

For the case n = 0, i.e., the Φ dynamics, we therefore have

1
2π

∫ 2π

0
p̃1 dϕ =




H (X ) − 1 if ρ < |X |,
1
π arccos(−X/ρ) − 1 if ρ > |X |.

(3.17)

For the case n = 1, i.e., the R dynamics, a�er some work one obtains

1
2π

∫ 2π

0
e−iϕp̃1 dϕ =




0 if ρ < |X |,
1
πρe
−iθ

√
ρ2 − X 2, if ρ > |X |.

(3.18)

Combining the results in Eqs. (3.17) and (3.18) with Eqs. (3.14) and (3.3a)
we see that the dynamics for a spiral wave interacting with a step boundary
are of the form

Φ̇ = ϵsSΦ(X ), Ṙ = ϵsS(X ), (3.19)
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where

SΦ(X ) =
∫ 2π

0

∫ |X |

0
w0(ρ,θ )(H (X ) − 1)ρ dρ dθ

+

∫ 2π

0

∫ ∞

|X |
w0(ρ,θ )

[ 1
π

arccos(−X/ρ) − 1
]
ρ dρ dθ (3.20)

and
S(X ) = 1

π

∫ 2π

0

∫ ∞

|X |
w1(ρ,θ )e−iθ

√
ρ2 − X 2 dρ dθ . (3.21)

As argued in Sec. 3.2, the asymptotics for the forcing and step perturbations
linearly superpose, providing the full picture of the dynamics of a resonantly
forced spiral waves interacting with a step boundary. �is is displayed in
Eqs. (3.4a), (3.4b), and (3.4c) with the R dynamics separated into X and Y

components: SX B Re(S), SY B Im(S), FX B Re(F ), and FY B Im(F ).
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Chapter 4

Spiral waves in an elastic
medium

4.1 Introduction

As discussed in previous chapters, spiral waves occur in nature in many
diverse contexts. Real-world excitable media do not always conform to the
ideal case of the �at homogeneous model used above. �ey may be curved,
anisotropic, heterogeneous, or may deform in a nontrivial way. In this chap-
ter, we shall be particularly interested in spiral waves in media undergoing
deformation.

�e most important example of spiral wave activity in a deforming
medium is in the heart. �ey were �rst demonstrated in this context by
Davidenko et al., who initiated spiral waves in small slices of tissue cut from
dog and sheep hearts [DPS+92, PDS+93]. At the time of these experiments,
it was already well understood that cardiac tissue functions as an excitable
medium and the existence of rotating waves in the ventricles was thought to
provide a good candidate explanation for certain kinds of irregular heartbeat
rhythms [Win89]. Such pathologies can be serious enough to deprive the
heart of its normal function, resulting in sudden cardiac death. Consequently,
e�orts to understand the behaviour of spiral waves in cardiac tissue are of
great importance. Reviews of the theory and evidence for the role of spiral
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waves in this se�ing are given in Refs. [Jal00, IR06].
In this system, the wave �eld consists of electrical potential di�erences

across the membranes of muscle cells in the heart. �ese cells, called car-

diomyocytes, contract and relax in response to changes in their potential
di�erence, thereby enabling the organ to pump blood. �is creates a coupling
between the wave and the underlying mechanics of the medium in which it
propagates. As the wave travels through the tissue, it causes local contraction
wherever it passes. �is is followed by mechanical relaxation a�er the wave
has passed. Additionally, the dynamics of the wave are contingent on the
geometry of the domain—as the medium deforms this a�ects the speed at
which excited regions di�use. �is leads to a coupling from the mechanics
back to the wave.

It is therefore interesting to study the interaction of spiral waves with
a deforming body in which they propagate. In the biophysics literature,
many models have been considered that a�empt to capture the behaviour
of cardiac tissue. �ese pair reaction-di�usion PDEs describing the dynam-
ics of the electrical potential with nonlinear solid mechanics governing the
tissue deformation. Serious e�orts to model the heart a�empt to replicate
the biophysical complexity of a living organ to some extent. A review of
current methods can be found in Ref. [Tra11]. State-of-the-art models involve
detailed descriptions of the ionic currents at the cell level and anisotropic
mechanics laws based on experimental results of tissue response. Cellular
models can involve very many variables and represent a signi�cant compu-
tational challenge [FC08]. Additionally, advances in medical imaging allow
for anatomically realistic simulation domains depicting the geometry of a
whole heart [VAP+10, GLC+11]. �ese can be integrated with �uid dynamics
solvers to couple the system to blood �ow simulations [NNN+11, NMK+11].
�e primary purpose of this research is to be�er understand cardiac function
(and dysfunction) across a range of physical scales, ultimately with a view
towards clinical implications.

�is will not be our aim. Our starting point is the contention that a spiral
wave coupled to a deforming medium is an intrinsically interesting nonlinear
system to study. Furthermore, we note that phenomenological approaches
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have been instrumental in establishing much of our current understanding
of spiral wave behaviour, for example in the study of initiation [PV91], shape
and frequency selection [Kar91] and the problem of ‘meander’ [Bar95]. In
this regard, there may be much to learn in the case of a generic spiral wave
interacting with a deforming medium. �erefore, we pare down the descrip-
tion of cardiac tissue to its most basic components. We use the same generic
excitable media PDEs as in the previous two chapters and couple these with
a simple nonlinear elasticity model. �e details will be explained later in
Sec. 4.3.

A number of previous studies have proceeded in a similar vein. Most
notable is the work of Nash and Pan�lov [NP04], who conducted numerical
simulations of the two-variable Aliev-Pan�lov reaction-di�usion system cou-
pled with isotropic nonlinear elasticity in two spatial dimensions. �ese were
used to demonstrate the e�ect of deformation on the dri� and rotation period.
In later papers, an equation accounting for currents activated by mechani-
cal stretching was added and in some cases the Aliev-Pan�lov model was
replaced with the three-variable Fenton-Karma system. �is extended model
was used to show that the existence of wave pulses with a steady ‘pacemaking’
rhythm can depend on whether or not the medium deforms [PKN05, KNP07]
and to study dri� and breakup of spiral waves [PKN07]. (�e phenomenon
of spiral wave ‘breakup’ shall be discussed later in Section 4.5.) Cherubini
et al. used a similar model to simulate spiral waves propagating in slabs of
active material undergoing large out-of-plane mechanical displacements due
to external pressure [CFNT08]. An alternative approach for the mechanics
modelling replaces the continuum description of elasticity with a discrete
one based on a mass-spring system. Weise et al. showed that a system of this
kind could reproduce many of the results of the continuum model [WNP11]
and went on to study spiral wave initiation [WP11, WP12] and dri� [WP13]
in this se�ing. Finally, we observe that a handful of papers have considered
the in�uence of prescribed deformations on spiral waves in simple excitable
models. In particular, the e�ect of sinusoidal deformation on spiral wave
breakup has received speci�c a�ention [ZRHO04, ZLS+06, CXYY09], while a
recent paper by Chen et al. addresses various dri� phenomena [CPZ+14].
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Before we begin discussion of the details of our approach, it is important
to note that we shall be considering waves in both two- and three-dimensional
media. A spiral wave in three dimensions is more accurately called a ‘scroll
wave’. Imagine extruding a two dimensional spiral in a third direction—the
thickness of the cardiac tissue wall. Such an object looks like a roll of paper
(hence ‘scroll’) or alternatively like many spiral waves stacked on top of each
other. �is system can behave di�erently to the two dimensional waves we
have studied thus far, even in the absence of medium deformation. However,
provided that the orientation of these stacked spirals remains roughly constant
with respect to one another, i.e. the scroll does not twist too much, then the
dynamics of the two- and three-dimensional cases are similar. �is will
almost always be the case if the thickness dimension of the medium is small
compared with the characteristic length scales of the spiral. We implicitly
assume this in the following and shall use the term ‘spiral wave’ for both two-
and three-dimensional cases.

4.2 Nonlinear elasticity theory

Since we are already familiar with spiral waves in excitable media, let us
discuss the part of this system that is new: elasticity. Both this chapter and
the next consider systems in which it is necessary to use the nonlinear theory
due to the presence of signi�cant deformations. �erefore, we begin by
developing nonlinear elasticity theory in a general se�ing, before adapting
it for the cardiac problem. �e theory presented here is well-established;
fuller accounts may be found in the following books, which are themselves
representative of a much larger body of literature on the subject [AF80,Gur81,
Ogd84, Ant95, GS08].

Consider a material which adopts a shape Ω0, where Ω0 is a connected
open subset of Rm andm is any natural number (always 2 or 3 herein). �is
domain is called the reference con�guration, for reasons that will become
clear shortly. We can label any point in the reference con�guration by its
position in Euclidean space, X = (X1, . . . ,Xm) ∈ Rm. Now let us suppose
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that Ω0 is subjected to a deformation over a particular time interval [0,T ].
�is can be described by a family of deformation maps, parametrised by
the time t , χt : Ω0 → Rm, which collectively form a motion of the body
χ : Ω0 × [0,T ]→ Rn, where χt = χ (·,t). A diagram of the setup is shown in
Fig. 4.1. Although it is not strictly necessary, one may assume, as suggested by

Figure 4.1: Diagram showing the deformation maps χt from the reference con-
�guration Ω0 to the deformed con�gurations Ωt . �e motion χ traces the paths
of material points in space and determines the relationship between Lagrangian
co-ordinates X and Eulerian co-ordinates x .

our notation, that χ0 is the identity map and so Ω0 denotes the con�guration
of the deforming body at t = 0. At a particular time t the image of the
corresponding deformation map is called the deformed con�guration and
is denoted Ωt . �is is the instantaneous geometry of the body undergoing
deformation. We must require that each χt is injective so that no two material
points may coalesce. �erefore every x = (x1, . . . ,xm) ∈ Ωt is the image of a
point X in the reference con�guration under its deformation map. Viewed
in this way, the maps χ (X , ·) specify Lagrangian motions of the material
points X , which is to say that they track the paths that points from Ω0 take
in space as time elapses. Any material point at time t can thus be referred
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to by its so-called Lagrangian co-ordinate X ∈ Ω0 or its Eulerian co-ordinate
x = χ (X ,t) ∈ Ωt .

4.2.1 Strain

�e motion of the body contains all the information necessary concerning its
strain. �is is a geometric property that measures the deformation of material
elements relative to the reference con�guration. �ere are many nonequiva-
lent ways to de�ne strain, which are useful in di�erent circumstances. �e
most straightforward, is to take the spatial gradient of the motion with respect
to the reference co-ordinates

F B
∂χ

∂X
. (4.1)

To simplify notation, we have omi�ed both the time and space dependence
in the above equation, which should be regarded as implicit in the following
discussion. We refer to the tensor F as the deformation gradient. It describes
the local (linear) transformation of di�erential line elements, since dx = F dX .

Likewise, the determinant of F , governs the transformation of areas and
volumes. �ese transformation formulae are of particular importance in the
theory because, as we shall see later, they describe the relationship between
quantities in the Lagrangian and Eulerian frames.

We derive the formula for volumes �rst. Note that m linearly indepen-
dent di�erential reference line elements dX 1, . . . ,dXm, de�ne a parallelipiped
whose volume dV is given by det(dX 1, . . . ,dXm). �erefore, the correspond-
ing deformed volume element dv is det(F dX 1, . . . ,F dXm) = J dV , where
we have de�ned J B det(F ). If J = 1, then there is no local volume change.
Bodies that satisfy this condition under any circumstances are referred to as
incompressible. �e physical interpretation of dv = J dV places two restric-
tions on the deformation gradient. Firstly, we must not allow any volume in
the deformed body to shrink to zero. �erefore, J , 0, i.e. F is nonsingular.
Secondly, we regard as unphysical any motion which causes volume elements
to change sign, since this would turn them inside-out. Hence we stipulate
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that the deformation must be orientation-preserving, J > 0.

To derive the area transformation formula, let dA be the reference area
element with unit outward normal vector N̂ and da the corresponding de-
formed area with unit outward normal n̂. Consider a di�erential line element
dX such that dX · N̂ , 0. �en dX · N̂ dA is the volume of a cylinder with
base dA and axis dX , which deforms to dx · n̂da under the motion. �erefore,
by the rules derived above for transformation of lines and volumes:

J dX · N̂ dA = dx · n̂da = F dX · n̂da. (4.2)

Rearranging the le�most and rightmost sides gives dX · (J N̂ dA) = dX ·

(FT n̂)da. Since this equation is true for any reference line element, we arrive
at

n̂da = JF−T N̂ dA, (4.3)

describing the transformation of areas. �is is sometimes referred to as
Nanson’s formula.

�e ultimate motive behind quantifying the strain in a body lies in the
fact that geometric deformations give rise to internal forces between material
elements and vice versa. In this sense, F is not a particularly good measure
of strain, since it contains information about rigid movements which do not
a�ect the forces inside the material. Speci�cally, consider any motion of the
form

χ (X ,t) = Q(t)X + c(t), (4.4)

where Q(t) is an orthogonal matrix and c(t) is a vector. �is is a time-
dependent rotation plus a translation and its deformation gradient is F = Q.
Ideally, we would like to think of strain as being independent of such a
transformation. For this reason, the Cauchy-Green strain tensor is de�ned as
C B FTF . It is easy to see that in the case of Eq. (4.4), C is the identity tensor.
If a more general motion is considered, the polar decomposition theorem may
be used on the deformation gradient, yielding F = RU , where R and U are
orthogonal and symmetric positive-de�nite tensors respectively. �erefore,
since C = (RU)TRU = U2 in the general case, it does not depend on any
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rigid motion of the material elements. �e symmetric part U is referred to as
the stretch tensor for the following reason. Given di�erential line elements
dx , dX , we can write dx = n̂||dx || and dX = N̂ ||dX ||, where n̂ and N̂ are unit
vectors aligned with dx and dX respectively. �erefore, the transformation
formula for di�erential line elements becomes n̂||dx || = FN̂ ||dX || and we see
that

||dx ||2 = (
FN̂ ||dX ||) · (FN̂ ||dX ||) = N̂ · CN̂ ||dX ||2, (4.5)

from which the ratio of the di�erential lengths may be computed

||dx ||
||dX || =

[(
UN̂

)
·
(
UN̂

)] 1
2 =

���
���UN̂ ���

��� . (4.6)

Hence, we see that the action of U on a given direction N̂ gives the change in
length of a line element dX aligned in that direction. Moreover, we may see
that C dictates the angles between deformed lines, since dx ·dx′ = dX ·C dX ′

for deformed elements dx ,dx′ and reference elements dX ,dX ′. �e Cauchy-
Green strain thus provides a complete description of the local shape changes
in the material.

4.2.2 Stress

We now turn our a�ention to the forces acting on the body. �is will enable
us to derive the equations of motion for an elastic medium. We shall begin
our discussion by working with the Eulerian description of the body, since
it is the more natural reference frame in which to understand the physics.
Later on, a switch will be made to the Lagrangian frame, which is typically
more convenient for numerical simulations since it is stationary. Consider
a small chunk of material in the reference con�guration, given by some
connected subset B0 of Ω0 and let Bt denote the image of B0 under χt . As Bt
deforms under the motion of the body, its connectedness is preserved under
the continuity of χ . It has a mass density �eld ρ which changes with time
as the body expands, contracts and moves. Integration of the density �eld
gives the mass of the chunk

∫
Bt
ρ(x ,t)dv . By di�erentiating this expression
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for mass, we can derive the associated conservation law. First, note that

d

dt

∫
Bt

ρ(x ,t)dv = 0, (4.7)

since Bt follows the chunk as it deforms and hence the total mass is constant.
�e time derivative can be brought inside the integration by applying the
Reynolds transport theorem [Gur81, Sec. 10]. Let ν (x ,t) denote the velocity
of the material at the point x at time t . �en

d

dt

∫
Bt

ρ dv =

∫
Bt

(ρ̇ + ρ∇ · ν ) dv =
∫
Bt

(
∂ρ

∂t
+ ∇ · (ρν )

)
dv, (4.8)

where we have omi�ed dependence of the variables on space and time. Here
and throughout we use a dot (˙) as a shorthand denoting a total time derivative:
in this case, ρ̇ := dρ/dt . At each material point x ∈ Bt this is the rate of
change of density in the reference frame of an observer that follows the point.
In the second equality this was decomposed into the rate of change at x in a
stationary reference frame plus rate of change due to transport of the point,
i.e. ρ̇ = ∂ρ/∂t + ν · ∇ρ.

In Eq. (4.8) the domain of integration Bt is arbitrary, since it corresponds
to an arbitrary choice of B0. �erefore, for any point x ∈ Ωt :

∂ρ

∂t
+ ∇ · (ρν ) = 0. (4.9)

�is is the conservation of mass equation for any continuous medium.
�e chunk’s aggregate linear momentum may be computed by integrating

ρν . �erefore, according to Newton’s second law, the total force f on the
chunk is given by

f (t) = d

dt

∫
Bt

ρν dv =

∫
Bt

(
ρν̇ + ν

[
∂ρ

∂t
+ ν · ∇ρ + ρ∇ · ν

])
dv =

∫
Bt

ρν̇ dv,

(4.10)
where the last equality follows due to conservation of mass.

�ere are two kinds of forces acting on Bt . Surface tractions arise due to
physical contact between the boundary ∂Bt and neighbouring bodies. �ese

75



may either be adjacent parts of the same medium Ωt , or (if ∂Bt ∩ ∂Ωt , ∅)
external bodies in contact with Ωt . Body forces act on material points in the
interior of Bt . A typical example is gravity, which acts on the mass inside
the body. Another is electric �eld, which acts on any charge present in the
material. For each of these types of force, we can de�ne force density vector
�elds. Let us de�ne τ to be the density �eld of surface tractions on ∂Bt and b

to be the body force density on Bt . Integrating these force densities gives an
alternative expression for the total force on the chunk:

f (t) =
∫
Bt

b(x ,t)dv +
∫
∂Bt

τ (x ,t)da. (4.11)

Let us consider the traction vector in more detail. �e chunk Bt was
chosen to be arbitrary. At any point x ∈ Ωt , there are (in�nitely) many
such volumes whose boundaries touch x . �erefore, the point x is subject
to tractions from the contact between surfaces oriented in every possible
direction. It is a fundamental assumption of continuum mechanics that the
traction vector at x associated with a surface Γ, depends only on the (unit)
normal vector n̂ to Γ at x and not on the curvature, or higher derivatives of
n̂. �is assumption is usually referred to as Cauchy’s postulate, because it
allowed Cauchy to prove that the contribution of all these tractions could be
summarised by a linear map called the stress tensor. �e relationship, in the
Eulerian frame, is

τ (x ,n̂,t) = T (x ,t)n̂(x), (4.12)

where τ now depends on the normal vector n̂ and is no longer tied to a
speci�c choice of Bt . �e tensor �eld T is called the Cauchy stress. Physically,
it corresponds to a force per unit deformed area. Equation (4.12) says that
in order to describe the tractions at x completely, it is su�cient to know the
traction vectors for m surfaces oriented in linearly independent directions
n̂1, . . . ,n̂m at x . A traction exerted on a surface with normal n̂ is simply a
linear combination of the tractions corresponding to the surface normals
n̂1, . . . ,n̂m. By way of example, let us consider the case where m = 3 and
the basis of our co-ordinate systems is {e1,e2,e3}. �e components of T are
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given by its action on the basis: Tej = (T1j T2j T3j)T . �at is, Tij is the i-th
component of stress exerted on a surface oriented in the direction ej . (Some
authors prefer a convention in which i and j in our de�nition are reversed.) A
visualisation of the stress components is shown in Fig. 4.2. �e three diagonal

Figure 4.2: One way to visualise the components of the stress tensor at a point x in
three dimensions is to use the faces of a cube (or more generally, a parallelipiped, if
the basis vectors e1,e2,e3 are not mutually orthogonal). �e cube should be thought
of as in�nitesimal, centred at the point x and oriented such that its faces lie normal
to the basis directions. �en the components of the stress tensor give the values of
the tractions on the faces, as indicated in the diagram.

components of T act out-of-plane and are called normal stresses, while the
six in-plane o�-diagonal components are called shear stresses.

4.2.3 Governing equations

�e stress tensor and the body force density together fully describe the forces
acting on any continuous medium. We are now in a position to derive the
equations of motion for the body. Returning to the volume Bt , we can equate
the di�erent expressions for the total force on it given in Eqs. (4.10) and (4.11):∫

Bt

ρ(x ,t)ν̇ (x ,t)dv =
∫
Bt

b(x ,t)dv +
∫
∂Bt

T (x ,t)n̂(x)da, (4.13)
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where we have used Eq. (4.12) to replace the traction vector with the stress
tensor. Application of the divergence theorem yields:∫

Bt

ρ(x ,t)ν̇ (x ,t)dv =
∫
Bt

[∇ · T (x ,t) + b(x ,t)] dv . (4.14)

Assuming all the physical variables in this equation are continuous through-
out Ω0, then since B0 is arbitrary, we can pass to the di�erential form

ρ(x ,t)ν̇ (x ,t) = ∇ · T (x ,t) + b(x ,t). (4.15)

�is is the elastodynamics equation for a continuous medium. An important
special case is the elastostatics equation:

∇ · T (x ,t) + b(x ,t) = 0, (4.16)

which determines the equilibria for a given body. Equations (4.15) and (4.16)
relate the change in linear momentum to the resultant force at each point in
the reference domain. In other words, they express the principal of conserva-
tion of linear momentum for the system.

Conservation of angular momentum places additional constraints on the
body. In the case where the body is in equilibrium and b = 0, the net torque
from surface tractions around each point x must be zero. By referring to
Fig. 4.2, one can see that in order for torques to balance, it must be the case
that

T = TT . (4.17)

�is relation is the angular momentum conservation law for continuous
materials. It can be proven in the general case by equating the net torque
due to surface tractions and body forces, with the rate of change of angular
momentum, just as we did in the case of linear momentum.

For our purposes, it will be convenient to formulate problems using the
Lagrangian description of the body, since it allows numerical methods to take
place on the �xed reference domain Ω0. In particular, we would like to write
the equations of motion Eqs. (4.15) to (4.17) using the material co-ordinates
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X in place of the spatial co-ordinates x . Firstly, note that the density �eld of
the reference domain, is constant in time. Let us call it ρ0. For our chunk Bt ,
the total mass is the same in the reference and deformed con�gurations:∫

B0

ρ0(X )dV =
∫
Bt

ρ(x ,t)dv =
∫
B0

ρ(χ (X ,t),t)J (X ,t)dV . (4.18)

�e second equality follows by making a co-ordinate change. �erefore, (since
Bt is arbitrary) the two density �elds are related by ρ0(X ) = ρ(χ (X ,t),t)J (X ,t).
For the same reason, the body force density �eld in the reference frame, b0,
is related to its counterpart in the deformed con�guration by b0(X ,t) =
b(χ (X ,t),t)J (X ,t). �e velocity on the other hand, does not depend explic-
itly on the deformed geometry—it is simply χ̇ (X ,t). To transform the Cauchy
stress tensor, we can use Eq. (4.3) to yield:∫

∂Bt

T (x ,t)n̂(x)da =
∫
∂B0

J (X ,t)T (X ,t)F−T (X ,t)N̂ (X )dA. (4.19)

�is motivates the de�nition of the so-called (�rst) Piola-Kirchho� stress

tensor �eld S B JTF−T , which describes surface forces on the body per unit
undeformed area.

We may now write Equation (4.13) in the Lagrangian frame, as∫
B0

ρ0(X )χ̈ (X ,t)dV =
∫
B0

b0(X ,t)dV +
∫
∂B0

S(X ,t)N̂ (X )dA. (4.20)

A�er once again applying the divergence theorem and using the arbitrariness
of B0 to remove the integrals:

ρ0(X )χ̈ (X ,t) = ∇ · S(X ,t) + b0(X ,t). (4.21)

�is is the elastodynamics equation using the Lagrangian description of the
body. �e angular momentum conservation relation in this frame is given by

SFT = FST . (4.22)
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Although we have suggestively referred to Equations (4.15) and (4.21) as
the elastodynamics equations, our modelling assumptions up to this point
have been somewhat modest. In fact, Eqs. (4.15) and (4.17) in the Eulerian
frame and Eqs. (4.21) and (4.22) in the Lagrangian frame describe the motion
of a wide range of continuous media. �ey are specialised to the problem
at hand by specifying appropriate boundary conditions and constitutive laws.
Boundary conditions place constraints on the body that are dictated by its
interaction with the outer environment; constitutive laws de�ne how the
material responds mechanically to forces. We shall cover boundary conditions
�rst.

4.2.4 Boundary conditions

�ere are two main kinds of boundary condition that are useful for elastic me-
dia. We shall describe them in the Lagrangian frame. Displacement boundary

conditions specify the deformed positions of material points. Concretely, a
functionд is prescribed such that χ = д on ∂Ω0×[0,T ]. In the broader context
of PDE theory, this is called a Dirichlet condition. Note that it also dictates
the velocity and acceleration at the boundary in the dynamic case. Traction
boundary conditions specify the stresses acting at the boundary surface. In
this case, a functionh sets the traction via SN̂ = h on ∂Ω0× [0,T ]. Physically,
this corresponds to external force (densities) impinging on the surface of the
body. A special case is the traction-free condition SN̂ = 0, where there is
no applied boundary force. �ese two types of boundary condition may be
applied to Eq. (4.21) independently of one another, on disjoint subsets of ∂Ω0.
�ey may also be applied separately to di�erent co-ordinates of the boundary
points. For example, consider an elastic cylinder surrounded by a rigid tube.
�e material points touching the edges of the tube cannot move radially—i.e.
they are constrained to have zero (radial) displacement. However, the motion
of the boundary points in the angular and azimuthal directions may not be
known. In this case, traction components corresponding to surface shears in
these directions directions must be prescribed.
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4.2.5 Constitutive laws

Now we turn to discussion of constitutive laws. In order to solve Eqs. (4.21)
and (4.22), we must �rst specify the way that the body strains under a partic-
ular stress �eld. �is turns the generic equations for continuous media into
a speci�c description of the material at hand. To solve the PDE system in
three spatial dimensions, one must �nd three components of deformation and
nine components of the Piola-Kirchho� stress tensor, given six independent
equations. Se�ing a constitutive law establishes the additional constraints
required to close the system.

A straightforward way to do this is to write the Cauchy stress tensor as a
some function g of the deformation gradient: T = g(F ,X ). �e choice of g
must lead to a symmetric T and it must determine the remaining independent
components of stress. It must also be independent of the observer reference
frame. A body that can be described in this way is called a Cauchy elastic

material. �e functional form in this case implies that the material stresses
do not depend on the history of the deformation. Furthermore, the explicit
dependence on X admits the possibility of heterogeneities, though we shall
not consider such materials herein. More generally, constitutive laws may
depend on any property of the physical system, e.g. higher derivatives of χ ,
temperature, electric �eld, time.

Our modelling work in the current and following chapters, assumes that
the materials we are interested in are hyperelastic. (Some authors prefer
to call them Green elastic.) �is condition requires that the elastic potential
energy stored in the material at each point depends on F only. �is reasonable
assumption is used widely in modelling elastic materials. Indeed, it can be
argued from a thermodynamic perspective that every elastic solid should be
considered hyperelastic (see e.g. [Gur81, Sec. 28] or [GS08, Sec. 7.2]). To see
how hyperelasticity a�ects the stress tensor, let us take the scalar product of
Eq. (4.15) with ν to get an equation in units of power (density):

ρν · ν̇ = (∇ · T ) · ν + b · ν , (4.23)
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where once again, we omit the explicit space and time dependence of each
�eld. By integrating over Bt and applying the vector identity ∇ · (Tν ) =
(∇ · T ) · ν + T : ∇ν , we obtain∫

Bt

ρν · ν̇ dv +

∫
Bt

T : ∇ν dv =
∫
Bt

∇ · (Tν )dv +
∫
Bt

b · ν dv, (4.24)

where we use a colon to denote a Frobenius inner product1 between tensors.
�is equation can be rewri�en to show the power balance for the system:

d

dt

∫
Bt

1
2ρν · ν dv +

∫
Bt

T : ∇ν dv =
∫
∂Bt

τ · ν da +

∫
Bt

b · ν dv, (4.25)

where the �rst integral on the le�-hand side was obtained using the Reynolds
transport theorem and conservation of mass, as in Eq. (4.10). Physically, it is
the rate of change of kinetic energy of the volume Bt . �e two terms on the
right-hand side give the work done per unit time by the traction and body
forces. �erefore, the remaining term is the rate at which work is done by
the stresses in the interior of Bt . �is is referred to as the stress power. An
analogous derivation may be performed in the Lagrangian frame, to obtain:

d

dt

∫
B0

1
2ρ0 χ̇ · χ̇ dV +

∫
B0

S : Ḟ dV =

∫
∂B0

τ0 · χ̇ dA +

∫
B0

b0 · χ̇ dV . (4.26)

LetW be the density �eld of the stored elastic potential energy in the material,
wri�en in the Lagrangian frame. It is commonly referred to as the strain energy
density. Since an elastic medium does not dissipate energy, Equation (4.26)
represents an energy conservation law and it must be the case that

d

dt

∫
B0

W dV =

∫
B0

S : Ḟ dV , (4.27)

for any volume B0. Hence, Ẇ = S : Ḟ . �e hyperelasticity assumption is that
W (at each point X ) is a function of F only. �erefore, the chain rule implies

1For two arbitrary second-order tensors A and B, this is de�ned to be A : B B tr
�
ABT �

.
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that
d

dt
W (F ,X ) = ∂W

∂F
: Ḟ = S : Ḟ . (4.28)

Since W depends only on the deformation gradient at each point, it is in-
dependent of Ḟ , as is the stress tensor S . One can construct a motion with
arbitrary F = F0 and Ḟ = G0 using χ (X ,t) = (F0 +G0t)X . Hence, Eq. (4.28)
must hold for any tensor Ḟ and therefore

S =
∂W

∂F
. (4.29)

�is equation gives the relationship between stress and strain in terms of the
strain energy densityW . Furthermore, it implies that stress (for a hyperelastic
body) is conservative, in the sense that the work done by stresses between
two states of deformation does not depend on the motion.

In light of Equation (4.29), hyperelastic models specify constitutive laws
by giving the form ofW (F ,X ), thereby implicitly providing the stress-strain
dependence. As we shall see shortly, even fairly simple formulas forW yield
complex nonlinearities when incorporated into the elastodynamics equation.

Material properties place constraints on the allowed forms of the strain
energy density. Henceforth, we shall assume that the materials of interest to
us are both homogeneous and isotropic. �e relevance of these assumptions
shall be discussed later. Homogeneity implies that the constitutive law does
not depend explicitly on the material co-ordinate X . Isotropy means that
the stress response of the material is independent of the direction of strain.
It can be shown, perhaps unsurprisingly, thatW is an isotropic function in
this case, i.e.W (QFQT ) =W (F ) for all orthogonal tensors Q. Moreover, this
constraint implies that W depends only on the principal invariants of the
Cauchy-Green strain C (see e.g. [GS08, Sec. 7.1.5]). �ese are scalars which
arise as the coe�cients of the characteristic polynomial of a matrix and are
consequently invariant to change of basis (i.e. change of co-ordinate frame).
In three dimensions, they are I1(C) = tr(C), I2(C) = 1

2 (tr(C)2 − tr(C2))
and I3(C) = det(C). In view of this, the simplest way to de�ne a general
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constitutive law that makes physical sense, is

W (C) = c1(I1 − 3) + c2(I2 − 3) + d(I3 − 1)2, (4.30)

for arbitrary parameters c1, c2 and d . (In two spatial dimensions, I1 and I2

are dependent and so only one of these terms is used.) �is is called the
Mooney-Rivlin law, a�er its originator Melvin Mooney [Moo40] and Ronald
Rivlin, who worked on it later [Riv48]. �e special case c2 = 0 is the Neo-

Hookean law. �e form of W in Eq. (4.30) sets the reference con�guration
to be the state of zero strain energy (since W (I) = 0), which is consistent
with the convention that Ω0 is unstrained. �e �nal term, which contains the
determinant of C , is squared because volumetric compression and dilation
both increase the stored energy in an elastic material. Equation (4.30) therefore
represents the lowest-order expansion ofW that contains all three principal
invariants. Its construction is purely phenomenological. For a given material
the model parameters c1, c2 and d may be determined experimentally by
��ing against known stress and strain data (see e.g. [Tre58]). �e Mooney-
Rivlin law may be readily generalised by including arbitrarily many higher-
order terms. �is gives the most general form of the strain energy density
function for a homogeneous and isotropic material. Nevertheless, many
alternatively constructed constitutive laws exist in this case, since they may
capture material response be�er using fewer model parameters. Examples
include the Ogden model [Ogd72] and the Gent model [Gen96].

A nice way to reformulate constitutive laws that are based on the principal
invariants is to use the so-called deviatoric invariants, which are the principal
invariants of the tensor rescaled to have unit determinant: C̃ = det(C)1/mC .
�ese are I 1 = I1I

−1/m
3 and I 2 = I2I

−2/m
3 . �ey are independent of volumetric

changes in the material. For example, consider the rescaling F 7→ αF . �en

I 1 7→ tr(α2C) det(α2C)−1/m = I 1(C). (4.31)

�erefore, we may write the strain energy density function in terms of two
parts: a deviatoric part responsible for local shape changes to material ele-
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ments and a volumetric part that controls volume change:

W (C) = c1
(
I 1 − 3

)
+ c2

(
I 2 − 3

)
+ d (J − 1)2 , (4.32)

where we recall that J = I 1/2
3 . Note that in general, the phenomenological

constants in this formulation will di�er from those in Eq. (4.30). �e �rst two
terms on the right-hand side are the deviatoric components. �ey are bounded
below by zero2 and increase as the shape of volume elements deviates from
the zero-strain state3. �e �nal term is the volumetric part.

�e above constitutive law is useful because a material’s resistance to
volume change—also called its compressibility—is a property that may be
independently studied by experimentalists. One way to characterise com-
pressibility is via Poisson’s ratio. Given a cube of material compressed on
its top and bo�om faces, the Poisson ratio is the (negative of the) ratio of
transverse to axial strain measured, in the limit of small strains. Highly
compressible materials reduce their volume signi�cantly under compressive
forces. �erefore, they experience small amounts of strain in the directions
orthogonal to the compression and have low Poisson ratios. At the other
extreme, incompressible materials preserve their volume by straining half as
much in the transverse direction and thus have Poisson ratio 0.5.

Since J = 1 everywhere in an incompressible material, we note that the
Mooney-Rivlin law in the case contains no volumetric term. Such a system
must be solved alongside the condition det(F ) = 1, leaving the problem
overdetermined. Let us write this constraint as the zero of the scalar function
ϕ(F ) B det(F ) − 1 = 0. Note that

d

dt
ϕ(F ) = ∂ϕ

∂F
: Ḟ = 0. (4.33)

�erefore, the addition of any scalar multiple of ∂ϕ/∂F to the Piola-Kirchho�
2To see this, one can write the deviatoric invariants in terms of principal stretches λ1, λ2

and λ3, which are the eigenvalues of the deformation gradient. Analysis of the resulting
functions determines a family of minima along the line λ1 = λ2 = λ3, for which I 1 = I 2 = 3.

3For example, in the case of a simple shear de�ned by χ (X ,Y ,Z ) = (X + KY ,Y ,Z ), for
some arbitrary constant K , it can be shown that I 1 = I 2 = 3 + K2 [Riv48]. �erefore, the
deviatoric components are unbounded above.
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stress leaves the stress power una�ected. Hence, we may introduce the
Lagrange multiplier p to the stress at each point, as so

S =
∂W

∂F
− p
∂ϕ

∂F
=
∂W

∂F
− pF−T , (4.34)

where we used the standard formula for the derivative of the determinant
function. In the Eulerian frame, the Lagrange multiplier term is −pI . For
p > 0 this is a compressive stress that is uniform in all directions. �at is, p is
a pressure �eld that opposes volume change at each point. It must be solved
for alongside the stress and deformation maps.

�e Mooney-Rivlin law shall be our constitutive model of choice. Later
in this chapter, we use its compressible form, while in the following chapter,
the material of interest is incompressible. We end this section by deriving the
stress-strain relation for a compressible Mooney-Rivlin solid explicitly. To
do this, we recall Eq. (4.28) and di�erentiate the strain energy density with
respect to F . We perform the following derivation by writing the relevant
tensors in component form and using the Einstein summation convention
wherever convenient.

Firstly, for a general strain energy densityW , we have

Sij =
∂W

∂Fij
=
∂W

∂Ckl

∂Ckl

∂Fij
(4.35)

and we see that

∂Ckl

∂Fij
=
∂

∂Fij
(FmkFml ) = Fmk

∂Fml

∂Fij
+ Fml

∂Fmk

∂Fij
= Fikδjl + Filδjk , (4.36)

so

Sij =
∂W

∂Ckl
Fikδl j +

∂W

∂Ckl
Filδkj =

∂W

∂Ckj
Fik +

∂W

∂Cjl
Fil = 2Fik

∂W

∂Ckj
, (4.37)

where we used the symmetry of C to collect the terms. �erefore,

S = 2F ∂W
∂C
. (4.38)
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We would like to di�erentiateW with respect to the principal invariants that
are used to specify isotropic material laws. �erefore, we shall apply the
chain rule to Eq. (4.38), for which we need the derivatives of the invariants
themselves. �ese are standard formulae. We have used the derivative of the
determinant twice already. For any tensor A (not necessarily symmetric), the
results are:

∂I1(A)
∂A

= I,
∂I2(A)
∂A

= I1(A)I − AT ,
∂I3(A)
∂A

= I3(A)A−T . (4.39)

�erefore,
S = 2F

[
∂W

∂I1
I +
∂W

∂I2
(I1I − C) + ∂W

∂I3
I3C−1

]
. (4.40)

Turning to the speci�c case of the Mooney-Rivlin model, given earlier in
terms of deviatoric and volumetric components [Eq. (4.32)], we get

∂W

∂I1
= c1I

− 1
m

3 ,
∂W

∂I2
= c2I

− 2
m

3 (4.41)

and
∂W

∂I3
= − 1

m I
− 1
m−1

3

(
c1I1 + c2I2I

− 1
m

3

)
+ d

�
1 − J−1�

. (4.42)

Equations (4.41) and (4.42) can be substituted into Equation (4.40) to give
the Piola-Kirchho� stress in terms of gradients of the deformation maps.
Despite the simple form of the strain energy density, this dependence is very
complicated. �e consequent nonlinearities in ∇ · S are responsible for the
complex behaviour of such elastic materials.

4.3 Modelling

�e starting point for our simulations of spiral waves in elastic media is the
two-variable Barkley model of a generic excitable medium. �is has already
been discussed in Secs. 2.2 and 3.3. In this chapter, the wave �eld u = (u,v)
may have two or three spatial dimensions, depending on the domain geometry.
Furthermore, we pose the reaction-di�usion model equations [Eqs. (3.6a)
and (3.6b)] in a deforming domain Ωt . In the Eulerian reference frame, spatial
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derivatives depend on the geometry, thereby providing a coupling mechanism
from mechanical deformation to the wave. �e numerical implementation of
this dependence is indicated in Section 4.4. If we were modelling a deforming
chemical reaction, such as a so-called ‘BZ gel’ [YB06, KYB08], it would be
necessary to include an advective term in the Eulerian reaction-di�usion
system, re�ecting the fact that chemical concentrations change when regions
contract or stretch. In cardiac tissue however, the wave-�eld variables are
identi�ed with potential di�erences across cells which, in principle, should be
independent of their deformation. �erefore, we do not include an advective
term. A thorough study of the in�uence of advection is beyond our scope
and so we simply note that its exclusion is an inherent assumption of our
approach.

In modelling the medium deformation, our approach follows in many
respects, the seminal Nash and Pan�lov paper [NP04] that was discussed in
Sec. 4.1. We use a compressible Mooney-Rivlin constitutive law throughout
[Eq. (4.32)], which confers a homogeneous and isotropic material response.
Rather than solve the full elastodynamics equations, we make the simplifying
assumption that the mechanics equilibrate on a faster time scale than the
speed of the spiral wave fronts. �erefore, the mechanics may be treated
quasi-statically. We solve the elastostatics equation with no body force. �e
time-dependence of the deformation is dictated through coupling to the wave
�eld. �is coupling of the mechanics to the wave is achieved by by adding a
component Tact to the stress tensor, called the active stress in the literature:

T (F ,u) = Tpass(F ) + Tact(u). (4.43)

Here, Tpass represents the usual (Cauchy) stress of a hyperelastic medium,
which depends on the strain energy density function. �is is called the
passive stress. �e active stress Tact is an additional constitutive assumption
that depends on the wave �eld u. Like body forces and boundary conditions,
this is an input to the nonlinear elastic system.

�ere are many ways that one might want to model an active stress. �e
simplest way is to make it spherical at each point. A spherical (active) stress
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�eld in the Eulerian frame is of the form Tact(u) B pact(u)I . �is has the form
of a negative pressure. When pact > 0, its corresponding internal surface
tractions pull inwards with equal magnitude in every direction. Taking
the divergence, one sees that it is equivalent to a body force equal to the
gradient of pact that pushes towards regions where pact is higher. Wri�en in
the Lagrangian frame, Eq. (4.43) gives the formula for the �rst Piola-Kirchho�
stress as:

S(F ,u) = Spass(F ) + pact(u)JF−T . (4.44)

To produce a model that compresses the medium wherever there is ex-
citation, it would be enough at this point to set pact(u) = u. However, in
our motivating example of cardiac tissue contraction there is a time delay
between the front of the wave �eld and the onset of muscle cell contraction.
�is is because contraction is associated with concentration of calcium ions,
the uptake of which happens on a slower time scale than for the ionic species
responsible for excitation. In principle, this delay may have a considerable
e�ect on the dynamics of the spiral wave. To mimic this we follow Nash and
Pan�lov [NP04] by introducing an ordinary di�erential equation for pact that
relaxes to ku > 0:

∂tpact = A(ku − pact), (4.45)

where k > 0 is a model parameter that sets the strength of the active stresses
and A > 0 controls the speed of relaxation, thereby determining the delay
between excitation and the generation of active stresses in the material. �is
ODE is solved alongside the reaction-di�usion and elastostatics systems.

�e model presented here is a caricature that includes only the most
fundamental characteristics of real cardiac tissue. Simpli�ed approaches
have value because they can reduce the complexity of systems, rendering
them accessible to our understanding. Moreover, as we have argued above,
they may themselves be independently interesting. Nevertheless, we shall
outline some of the limitations of this model with respect to the cardiac
problem. Perhaps the most important of these is the assumption of isotropy.
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�e microstructure of the heart is organised into discrete sheets of muscle
�bres whose mechanical response depends strongly on the orientation of
applied stresses [NH00, DSYL02]. A number of di�erent constitutive laws
have been proposed that take this anisotropy into account [HO09]. Fibre
orientation also leads to a directional dependence in ionic conduction, which
can be accounted for via the di�usion component of the reaction-di�usion
system [Rot92]. Moreover, this anisotropy in conductivity di�ers inside and
outside the cell. �e so-called bidomain model that addresses this is a standard
tool in the cardiac modelling community [PDR+06, CBC+11]. �is may be
paired with a wide array of di�erent kinetics models that accurately cap-
ture the excitation-recovery processes in a cell [FC08]. �e coupling of the
wave and mechanics may also be treated more realistically. For example,
Ref. [HMTK98] describes a model of active stress informed by experimental
tests on tissues at various length scales. Finally, we note that the physical
properties of real tissue are nonuniform in space to some extent. Any travel-
ling wave in this medium is consequently a less regular process, as observed
in laboratory experiments [DPS+92, PDS+93]. �is cannot be re�ected by a
simple model of the kind described here.

4.4 Methods

We solve both the elastostatics equations and the reaction-di�usion system
using the �nite element method. Computations are performed using the
DUNE so�ware libraries [BBD+16]. In particular, extensive use is made of the
DUNE-FEM module, which provides a framework for the implementation of
�nite element methods. As such, all the low-level code required of a typical
�nite element program (grid management, basis construction, quadrature,
etc.) is delegated to the DUNE libraries. �e reader may refer to the documen-
tation in Refs. [DKNO10, DUN16]. �e design philosophy of these libraries
permits very generic construction of �nite element schemes, allowing for
di�erent implementations of elements, grids, nonlinear solvers and so forth,
to be used interchangeably. �e code wri�en for this chapter inherits this
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philosophy. In particular, it works in both two and three spatial dimensions
and for elements of many polynomial orders.

In the remainder of this section, we provide an overview of how the
PDEs are solved in our context. For the mechanics, our starting point is the
elastostatics equation in Lagrangian form, with no body force

∇ · S = 0. (4.46)

We note that this is the only equation that we have to solve. �e angular
momentum condition [Eq. (4.22)] is automatically satis�ed for any isotropic
constitutive law. �is can be seen by multiplying Eq. (4.38) on the le� by FT ,
from which, the symmetry of SFT is immediately apparent.

Since we are in the static case, the solution to Eq. (4.46) is a single defor-
mation map χ , whose image is the deformed con�guration at equilibrium.4

Let w be an arbitrary deformation map. Taking the dot product of Eq. (4.46)
with w and integrating over the reference domain, we obtain∫

Ω0

(∇ · S) ·w dV =

∫
∂Ω0

Sn̂ ·w dA −

∫
Ω0

S : ∇w dV = 0 (4.47)

using integration by parts. �e integral over the boundary of Ω0 is the work
done by external tractions under the deformation w . �erefore, the solution
χ satis�es ∫

Ω0

S(χ ) : ∇w dV −

∫
∂Ω0

τ0 ·w dA = 0, (4.48)

for any deformation map w . �is is the weak form of Eq. (4.46). To solve this
equation, the reference domain is approximated by a discrete mesh Ω0,h , on
which a �nite dimensional function spaceWh can be de�ned that speci�es a
set of admissible candidate solutions. (In particular,Wh must be de�ned such
that its elements satisfy any Dirichlet conditions placed on ∂Ω0,h .) Here, h
denotes the characteristic length scale of the discretisation. �e discretised

4�is is a slight abuse of notation, since χ no longer refers to a motion, in the strict sense
de�ned above in Section 4.2.
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numerical problem is therefore to �nd χh ∈Wh , such that∫
Ω0,h

S(χh) : ∇wh dVh −

∫
∂Ω0,h

τ0 ·wh dAh = 0, (4.49)

for all wh ∈ Wh . Let N be the dimension of Wh and {ξ1, . . . ,ξN } a basis.
Equation (4.49) is linear with respect to wh . �erefore, an equivalent problem
is to �nd scalars a1, . . . ,aN such that

Li(a1, . . . ,aN ) B
∫
Ω0,h

S(ajξj) : ∇ξi dVh −
∫
∂Ω0,h

τ0 · ξi dAh = 0, (4.50)

for all i ∈ {1, . . . ,N }. �e functions Li de�ne N equations with N unknowns,
on which a suitable a suitable nonlinear solver can be used. In our case, we
use Newton’s method, for which we require the system Jacobian, which has
components

∂Li
∂aj
=

∫
Ω0,h

(
∂S
∂F

(akξk)∇ξj
)

: ∇ξi dVh . (4.51)

�e term ∂S/∂F is a rather complicated fourth-order tensor. A formula for
it can be derived by adding the active stress to Eq. (4.40) and di�erentiating
with respect to F . To avoid the need to apply the product rule directly on the
large expression in this equation, it is convenient to de�ne P B F−1S . In the
literature, this is called the second Piola-Kirchho� stress tensor. �en, writing
the relevant tensors in components and di�erentiating, gives

∂Sij

∂Fkl
=
∂

∂Fkl

�
FiqPqj

�
=
∂Fiq

∂Fkl
Pqj + Fiq

∂Pqj

∂Crs

∂Crs

∂Fkl
(4.52a)

= δikPl j + Fiq
∂Pqj

∂Crs
(Fkrδls + Fksδlr ) (4.52b)

= δikPl j + FiqFkr

(
∂Pqj

∂Crl
+
∂Pqj

∂Clr

)
, (4.52c)

where we used the result from Eq. (4.36) in the second line. Writing ∂S/∂F
in terms of derivatives with respect to the Cauchy-Green strain anticipates
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that P depends on C only. We have

P = 2
3∑

i=1

∂W

∂Ii

∂Ii
∂C
+ pactJC−1 (4.53)

and therefore, a�er some work

1
2
∂Pqj

∂Crs
=

3∑
k ,l=1

∂2W

∂Ik∂Il

∂Ik
∂Cqj

∂Il
∂Crs

+
∂W

∂I2

�
δqjδrs − δqrδjs

�

+ I3
∂W3
∂I3

(
C−1
qj C

−1
rs −C

−1
jr C

−1
qs

)
+ 1

2pactJ
(

1
2C
−1
qj C

−1
rs −C

−1
jr C

−1
qs

)
.

(4.54)

Finally, for completeness, we give the second derivatives of W . For the
(compressible) Mooney-Rivlin model, only three of these derivatives are
nonzero. �ese are

∂2W

∂I1∂I3
= − 1

mc1I
− 1
m−1

3 ,
∂2W

∂I2∂I3
= − 2

mc2I
− 2
m−1

3 (4.55)

and

∂2W

∂I 2
3
= 1

m

� 1
m + 1

� (
c1I1 + c2I2I

− 1
m

3

)
I
− 1
m−2

3 + 1
m2c2I2I

− 2
m−2

3 + 1
2d J

−3. (4.56)

Equation (4.52c), together with Eqs. (4.53) to (4.56), gives the full ex-
pression for ∂S/∂F , needed for the linearisation of the weak form. �is
information, along with the expression for the weak form itself [Eq. (4.49)]
and the formula for S in Eqs. (4.40) to (4.42), is su�cient to implement com-
pressible Mooney-Rivlin elasticity in a generic �nite element library such as
DUNE-FEM.

Both kinds of boundary condition mentioned in Section 4.2 may be used
by the mechanics solver. �ese are implemented quite generally. �e speci�c
boundary conditions used to compute the results in the next section are as
follows. �e Dirichlet boundary �xes the edges of the medium by specifying
zero displacement there. When traction boundary conditions are used, we
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apply a traction that points along the outward normal to the domain bound-
ary, with constant magnitude ptrac at every point X ∈ ∂Ω0. If no part of
the boundary is Dirichlet, then the elastostatics equations possess in�nitely
many equivalent solutions related by translational and rotational symmetries.
�erefore, for domains with two spatial dimensions, we �x three degrees
of freedom on the boundary of the domain. In three spatial dimensions, we
de�ne one zero displacement Dirichlet point and two additional points—one
with its displacement �xed in the z-direction and the other in the y and z

directions. �ese two points remove solutions corresponding to the three
rotational symmetries and are chosen such that the three points together are
not collinear.

�e Barkley model reaction-di�usion PDEs [Eqs. (3.6a) and (3.6b)] are
implemented in a similar way to the mechanics, via numerical solution of their
weak form with �nite elements. Since the equations are time dependent, it is
necessary to use a time stepping scheme. We use the explicit Euler method
with time step 4t = 0.02. Aside from time-dependence, the main di�erence
is that we solve the spiral wave equations in the Eulerian reference frame
using a grid that is a discretisation of Ωt . It is constructed by transforming
the �nite element mesh of Ω0 with the deformation map (which we obtain
from the solution to the mechanics problem) at each time step. Manipulation
of the mesh in this way is a feature available in DUNE that we make use of.
�e consequence for the �nite element scheme is that the spatial derivatives
in the reaction-di�usion PDEs take place in the deformed con�guration and
therefore they automatically observe the local geometry changes that provide
the coupling from the mechanics to the wave.

An overview of the full simulation procedure is as follows. Time is discre-
tised into N steps t1, . . . ,tN , with increment 4t . At each tn, we �rst solve the
mechanics system

∇ · S = 0 on Ω0, (4.57a)

χ (X ,tn) = X on ∂Ωdisp
0 , (4.57b)

SN̂ = ptracN̂ on ∂Ωtrac
0 , (4.57c)
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where ∂Ωdisp
0 and ∂Ωtrac

0 are disjoint subsets of ∂Ω0 on which the displace-
ment and traction boundary conditions are applied respectively. At t1, the
initial guess for the mechanics solver is the reference con�guration. For each
subsequent time step tn, the (previously computed) deformed con�guration
at tn−1 is used. Next, the Barkley model PDEs [Eqs. (3.6a) and (3.6b)] are
time-stepped on the deformed geometry Ωtn . �e initial condition used for
the reaction-di�usion system at t1 is either a converged spiral wave from a
previous simulation, or the cross-�eld stimulation

u(x ,y,0) =



1 if x < L/2,

0 otherwise,
v(x ,y,0) =




0 if y < L/2,

0.5 otherwise,
(4.58)

which initiates a spiral wave. Here, L is the length of the reference domain
in the horizontal direction. �e reaction-di�usion scheme is time-stepped
M times, with an increment of 4t/M , for some M ∈ N. A�er each reaction-
di�usion time step, the active stress ODE [Eq. (4.45)] is also time-stepped
using the explicit Euler method, with the spiral wave �eld as input. �e
resulting active stress �eld is an input to the mechanics scheme at tn+1.

We use M = 3 in simulations of two-dimensional media and M = 2 for
three-dimensional media. In all situations, the nonlinear solver is Newton’s
method, to which we apply damping in the case of three-dimensional domains.
�e linear problem is solved using the PETSc so�ware library [BAA+14]
(via DUNE) with the biconjugate gradient stabilised method and an additive
Schwarz preconditioner for the linear problem.

4.5 Results

In this section, we provide some pictures that illustrate the sort of results that
can be obtained with the implementation discussed above.

For all of the following results in two spatial dimensions, we set the
Mooney-Rivlin parameters to c1 = 1, d = 1. (In two dimensions the remaining
mechanical parameter c2 is redundant and is set to zero.) �e active stress
relaxation speed parameter A [de�ned in Eq. (4.45)] is set to 1 throughout.
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For the geometry of the reference domain we use a square with sides of
30 space units, meshed with 128 × 128 linear square �nite elements. All
other modelling parameters are given in the �gure captions. As indicated
in Section 4.4, for simulations involving traction conditions over the whole
boundary, it is necessary to restrict some degrees of freedom to select a
particular solution from the in�nitely many that are available under the
symmetries of the problem. In two spatial dimensions, we �x all co-ordinates
of the origin and the second co-ordinate of the point (1,0). When simulating
three dimensional media we �x the origin, the second and third co-ordinate
of (1,0,0) and the third co-ordinate of (0,1,0).

Figure 4.3 shows a spiral deforming in a two-dimensional medium with
a Dirichlet boundary condition. All the spiral waves in this section rotate

Figure 4.3: Snapshot of a spiral wave in a deforming domain with Dirichlet boundary
conditions. Some representative material lines (black dashes) have been overlaid.
�ese are spaced 16 elements apart. �e active stress parameter is k = 5. Barkley
model parameters a = 0.8, b = 0.05, ϵ = 0.02.

anticlockwise. �e deformation of material lines is shown on the �gure. One
clearly sees that areas near to the front of the wave are stretched. As the
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wave passes a region, active stresses are generated causing area elements
towards back of the wave to be compressed.

In Figure 4.4 we show multiple frames of a typical simulation to demon-
strate the behaviour as time elapses. �is time, traction boundary conditions

Figure 4.4: Frames of a spiral wave moving in a deforming medium with traction
boundary conditions. Some representative material lines (black dashes) have been
overlaid. �ese are spaced 32 elements apart. �e active stress parameter is k = 5
and the traction condition has magnitude ptrac = 5. �e initial condition at t = 0 is a
rigidly rotating spiral with Barkley model parameters a = 0.98, b = 0.01 and ϵ = 0.02.
From t = 0 to t = 1, the active stress increases and the spiral contracts, pulling the
edges of the domain with it. Between t = 1 and t = 8, the wave performs two full
rotations and the medium ceases to contract on a global scale. �e remaining frames
show the continued local mechanical deformation as the wave rotates.

are used. �e spiral wave starts from an initial condition with a zero active
stress �eld. As the simulation progresses, the medium contracts globally
as the rising active stresses pull against the external traction. �e sides of
the domain warp, moving inwards wherever the active stresses are higher.
Eventually, the global contraction of the medium ceases. �e total active
stress, which is proportional to the area that is excited at any given moment,
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stays roughly constant. As the spiral wave rotates, the medium continues to
deform locally.

Under certain conditions, the rigid rotation of a spiral wave may be
disturbed, breaking the spiral into turbulent pa�erns [IG91, PH93, BE93]. A
modi�cation of the Barkley model commonly used to simulate this situation
is due to Bär and Eisworth [BE93]:

∂u

∂t
= ∇2u +

1
ϵ
u(1 − u)

(
u −

v + b

a

)
, (4.59a)

∂v

∂t
= д(u) −v . (4.59b)

�e standard Barkley model uses д(u) = u, while Bär and Eisworth’s kinetics
use a continuous, piecewise smooth function of the form

д(u) =



0 if u < 1
3 ,

1 − 6.75u(u − 1)2 if 1
3 ≤ u ≤ 1,

1 if u > 1.

(4.60)

Note thatv is no longer activated below the thresholdu = 1
3 . As the excitation

parameter ϵ increases, the recovery wave (v-�eld), which inhibits u, shrinks
and the rotation period of the spiral increases. For high enough values of ϵ
(around 0.08 for typical model parameters) the system no longer supports
rigid or meandering spiral waves, which break onto themselves creating
turbulent pa�erns. �e mechanism behind the loss of stability is explained in
the original paper [BE93].

A simulation using the Bär-Eisworth kinetics is shown in Figure 4.5. �e
initial spiral wave grows rapidly before annihilating itself and breaking apart
into patches. Disordered dynamics ensue. �e proportion of active stress
changes greatly and there is signi�cant global deformation.

Finally, in Figure 4.6 we show a simulation of a Barkley model spiral in
three spatial dimensions. �e reference geometry is a cuboid with dimensions
30 × 30 × 2 space units, meshed with 60 linear cuboid elements in each
lateral direction and 2 elements in the thickness direction. �e Mooney-
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Figure 4.5: Frames of a spiral wave breaking up in a deforming medium with traction
boundary conditions. Some representative material lines (black dashes) have been
overlaid. �ese are spaced 32 elements apart. �e mechanics parameters are k = 4
and ptrac = 5. Breakup is induced by using Bär-Eisworth reaction kinetics with
model parameters a = 0.84, b = 0.07 and ϵ = 0.08. �e �rst six frames are spaced at
equal intervals of 1 time unit apart and show the spiral wave breaking apart. �e
later frames are spaced 2.9 time units apart and are representative of the resulting
disordered dynamics.
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Figure 4.6: Snapshot of a spiral wave propagating in a three-dimensional slab with
traction boundary conditions. Some representative material lines (black dashes) have
been overlaid. �ese are spaced 10 elements apart. �e mechanics parameters are
c1 = 1, c2 = 2, d = 20, A = 1, k = 25, ptrac = 4 and the Barkley model parameters are
a = 0.8, b = 0.05 and ϵ = 0.02.

Rivlin parameters used in this case are c1 = 1, c2 = 2, d = 20. All other model
parameters are given in the �gure caption. In addition to in-plane compression
and stretching of area elements, out-of-plane deformation deformation is
possible in the three dimensional case and one sees that regions towards the
back of the spiral wave are depressed.

4.6 Discussion

In this chapter, we have presented a phenomenological model of a spiral wave
coupled to a deforming elastic medium. Our model can be viewed as one of
the simplest possible nonlinear depictions of excitable wave propagation in
cardiac tissue and follows in the footsteps of Nash and Pan�lov who described
a similar approach [NP04].

Nevertheless, the underlying theory governing general mechanical defor-
mations is quite involved and may be unfamiliar to nonspecialists. To this
end, we detailed the essentials of continuum mechanics theory and explained
its application to our particular context. In particular, we showed how the
equations of motion for a continuous deforming medium are constructed and
discussed the boundary conditions and constitutive laws needed to close the
system. For the case of a Mooney-Rivlin law—one of the simplest possible
phenomenological laws—we derived the form of the stress tensor and ob-
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served that even in this case, the dependence on the deformation gradient is
nonlinear and highly complicated.

We subsequently explained how to combine a Mooney-Rivlin material
with a generic excitable medium via an intermediate coupling variable known
as the ‘active stress’ in the literature. Implementing a numerical method for
solution of the resulting system is nontrivial. Despite this, discussion of how
to do so must typically be omi�ed from research papers for the sake of brevity.
Nash and Pan�lov’s original study [NP04] contained some details on solution
of their model using �nite di�erences. In Sec. 4.4, we covered solution via
the �nite element method and gave some useful expressions that are not
normally wri�en explicitly in the literature, including a derivation of the
system Jacobian. Together with Secs. 4.2 and 4.3, this constitutes a relatively
full account of the theory and implementation of coupled reaction-di�usion-
mechanics systems and may act as useful reference for future modelling
e�orts.

Our particular implementation, which uses the DUNE so�ware libraries,
exhibits some advantages over the �nite di�erence approaches predominantly
used in the prior studies of similar models. �e �nite element scheme may
be solved on almost any sensibly constructed mesh. Consequently, di�erent
reference geometries may be considered in future work, including those that,
like cardiac tissue, possess intrinsic curvature. Furthermore, our implementa-
tion is highly generic, in the sense that we may pass easily between simulating
two and three spatial dimensions, using di�erent linear and nonlinear solvers
and elements of higher polynomial order. �ese features are in a large part
due to DUNE, which was designed with this generic philosophy in mind.

Finally, to conclude this chapter, we presented some example results using
our implementation in both two and three spatial dimensions, with di�erent
boundary conditions. An interesting example of spiral breakup with Bär-
Eisworth kinetics was also presented. �ese examples give a good �avour
of the sort of results that may be gathered using our approach. Detailed
study of the dynamics and behaviour of the system is le� as a topic for future
research.
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Chapter 5

Shape selection of dielectric
elastomers

5.1 Introduction

Dielectric elastomers (DEs) are so�, �exible materials that deform mechani-
cally when subjected to forces from electric charges. A �urry of interest in
these systems was generated when Pelrine et al. [PKPJ00] demonstrated that
very high strains could be obtained if the DE is stretched before use—a proce-
dure known in the literature as ‘prestretching’. When actuated, DE �lms may
strain to double their original area and in some cases even further [HLF+12,
KLB+12]. Moreover, they may be designed to perform useful out-of-plane de-
formations [KPB06,KWPB07,RNDS09,AGS+15]. �e impressive performance
of these devices has led to many potential applications across the �elds of
engineering [PSLK+01, OOM08, BP10], medicine [GFM04, BC08, PBC+13] and
even art [MGK12].

Typical setups in experiments and applications involve a thin elastomer
�lm coated on opposite faces with areas of conducting material onto which
charge can be deposited. We shall refer to these conducting areas as ‘active
regions’. �ey are fabricated in such a way that they are free to bend and
stretch with the elastomer and do not constrain its movement. �ese two
conductors are connected to a circuit which produces a potential di�erence
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between them, turning them into oppositely charged electrodes. �is creates
a capacitor in which the intervening dielectric (the elastomer) is apt to deform
under the in�uence of electrostatic forces between the charge distributions.
Figure 5.1 contains some diagrams of this situation. Part (a) shows an example

Figure 5.1: Diagrams of a dielectric elastomer in di�erent situations. In parts (a)–(c)
the top electrode is shaded in grey. (a) DE with no applied electric �eld (E = 0).
(b) DE with a strong applied electric �eld (large ||E||), which causes the elastomer to
deform. If the boundaries of the medium are free to move, the material compresses
in the thickness direction and extends laterally. (c) If the edges of the medium are
instead held �xed, the electrostatic forces between the electrodes force the elastomer
to buckle out-of-plane. (d) Two dimensional cross-section through the middle of the
elastomer showing the fringing of the electric �eld E. �e top and bo�om electrodes
are represented by thick grey lines. Dashed lines with arrows indicate the direction
of the electric �eld. At the centre the �eld lines are uniformly spaced and normal
to the electrodes. At the edges they warp, leaving a small nonzero component of
electric �eld tangent to the medium surface.

DE geometry in its zero strain con�guration, before any electric �eld, E, has
been applied. �e medium is a thin cuboid, on which the top electrode can
be seen, shaded in grey. Typical materials used in applications are isotropic
and incompressible. �ey produce signi�cant strains in response to high
voltages on the order of kilovolts. Part (b) shows the DE in a simple situation
in which the lateral sides of the medium are unconstrained. When the voltage
is turned on, a�ractive forces arising from the charge imbalance on the two
electrodes push the top and bo�om faces of the elastomer together. �is
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compression is coupled to lateral stretching of the �lm via incompressibility,
causing the area of the top and bo�om faces to expand. If instead, the edges of
the elastomer are held �xed in space, the active region and surrounding area
will buckle out-of-plane as shown in Fig. 5.1(c). �is is the only way that the
incompressible material can preserve its volume under the compression of the
electrodes. Such out-of-plane deformations are important for many DE appli-
cations in engineering such as pumps [PSLK+01], loudspeakers [HKEP06]
and refreshable tactile displays [CBDR10]. �e equilibrium shape adopted
by a deformed elastomer is frequently nontrivial and can contain waves or
wrinkles [PKPJ00, PD06, KKAB08, KZSK12].

�e aim of this chapter will be to numerically model buckled DE shapes
and make direct comparisons with experimental deformation pro�les and im-
ages. We propose a straightforward approach to DE modelling that highlights
some of the underlying physics at play and yields predictive results.

Before going into detail, we give a brief preview of the main result. Fig-
ure 5.1(d) shows a simpli�ed diagram of the electric �eld between the elec-
trodes, without any deformation indicated. �e picture is the same as one sees
in physics textbooks for the classical parallel plate capacitor. At the centre
of the active regions, the electric �eld lines are uniform, parallel and extend
perpendicularly from one electrode to the other. �is produces a constant
pressure, normal to the top and bo�om surfaces. It is the primary e�ect re-
sponsible for actuation of the elastomer �lm and will be discussed in greater
detail in Sec. 5.3. At the boundaries of the active regions, there is a fringing of
the electric �eld and the �eld lines are slightly curved. �is gives rise to forces
at the electrode boundaries that are tangent to the top and bo�om surfaces.
We refer to these as ‘tangential tractions’. Although this e�ect is very small
compared with the normal pressure, we �nd that it plays a signi�cant role in
shape selection. Indeed, we claim that consideration of both these normal
and tangential forces, which are displayed in Fig. 5.1(b), is necessary and
su�cient to e�ectively capture the shapes of the DEs considered herein.

Figure 5.2 shows an example of the importance of the tangential force. It
shows points of vertical de�ection from a DE experiment plo�ed alongside
corresponding pro�les from our numerical simulations. �e solid yellow line
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Figure 5.2: An example of the e�ect of tangent forces. �e vertical axis has been
scaled by a factor of 3, relative to the horizontal axis, to make the deformation pro�les
clearer. Red crosses are experimentally measured points of vertical de�ection for
an DE that has buckled out-of-plane. �e experimental geometry used was a thin
disc, with diameter 100 mm and thickness 0.15 mm. �e electrodes were circular
with diameter 40 mm and were subject to a potential di�erence of 3 kV. Lines display
pro�les from simulations that match the experimental geometry. �e solid yellow
line (κ = 0.6) is from a simulation that accounts for the tangent forces, while the
dashed green line (κ = 0) is from a simulation with only normal pressure included.
Details concerning the experimental setup, model simulations and the de�nition of
κ are given later in the text.

is from a simulation which takes into account tangential forces and the dashed
green line is from a simulation which only models the normal pressure on
the electrodes. Saving the details of the experiment and model for later in the
text, we immediately see from this �gure the dependence of the elastomer
shape on the presence of the tangent force. �e small amount of tension at
the electrode edges has the e�ect of stretching and smoothing the de�ection
pro�le slightly. In particular, it causes the active region to �a�en as we shall
see below. We �nd that this shape cannot be replicated by considering normal
pressure alone. Moreover, the indispensability of the tangent force is a feature
common to all the results presented in Sec. 5.5.

5.2 Experiment

�e experiments are conducted by our colleagues at laboratoire de Physique
et Méchanique des Milieux Hétérogènes (PMMH) ESPCI, Paris. �ey use a
circular disc of elastomer �lm which is held in a frame, keeping the edges
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�xed in place. �ere is no prestretching of the elastomer before a�aching it to
the frame. �e thickness of the �lm is typically around 100 to 200 µm and its
diameter is 10 cm. A top-down photograph of the setup is shown in Figure 5.3.
�e electrodes in this case are circular. �ey are made from a thin layer of

Buckling in the air 

0V 

4kV 

Figure 5.3: Photograph of the experiment from above, courtesy of Hadrien Bense.

material called ‘carbon black’ which is painted directly onto the elastomer
in the desired shape. Extending from the edges of the active region, one can
see thin strips connected to crocodile clips, which join the electrodes to a
voltage source. Underneath the elastomer, an optional air cushion may be
applied which is adjusted so that the DE lies �at when no voltage is present,
thereby counterbalancing the e�ect of gravity. We typically include the e�ect
of gravity in our model. In particular, all our comparisons with experimental
data use the case in which this air cushion is not present.

Figure 5.4 shows the experiment in use. In the centre, the circular elec-
trodes are just visible against the unlit background. A red laser is directed
across the surface of the �lm. Its path follows the deformation of the material
and enables the experimentalists to measure the de�ection along the diameter
of the system. Whenever we �t our model results to the experiment, we use
data points that correspond to these measurements of the laser trajectories.
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Figure 5.4: �e experiment with circular active region, before and a�er actuation.
�e applied voltages are: (a) 0 kV and (b) 4 kV and the air cushion is on. Photographs
courtesy of Hadrien Bense.

5.3 Modelling

Like any elastic object, when in equilibrium, elastomers obey the elastostatics
equation introduced in the previous chapter (see Sec. 4.2):

∇ · T (x) + b(x) = 0. (5.1)

For completeness, we recap the relevant details. �e equation is posed over
a domain Ω comprising of all the material points x in the deformed body.
Here, T is the standard Cauchy stress tensor �eld, which dictates internal
surface forces arising from material strains. Additional forces such as gravity
are speci�ed via the body force density �eld b. By de�ning an appropriate
constitutive law relating stress to strain, Eq. (5.1) can be solved for the defor-
mation of the elastic body, whose equilibrium shape depends on the boundary
conditions. For each point on the domain boundary, one may prescribe either
its position, or an external traction τ impinging on the material’s surface.
�e former case refers to a standard Dirichlet condition. In the la�er case, τ
dictates the component of the stress acting on the surface with outward unit
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normal n̂. �is is given by τ = T n̂. It is also o�en desirable to de�ne hybrid
conditions where the boundary point is �xed in some directions and free to
move (subject to prescribed stresses) in others. Finally, while material stresses
arise physically between deforming material regions, we note that in practice
the governing equations are solved in a �xed, unstrained, reference domain
Ω̂ using appropriate transformation formulae. For details, see Chapter 4,
especially Secs. 4.2 and 4.4.

In the case of DEs, the elastic stresses that we are primarily concerned
with originate due to the presence of electric charges on the top and bo�om
active regions. �e oppositely charged electrodes a�ract one another, giving
rise to a compressive pressure. Towards the edges of the electrodes, the force
on the charge distribution has a nonzero component that is tangent to the
surface of the elastomer �lm. �is arises because the repulsive forces between
like charges there are not balanced, as they are in the centre. �e e�ect
is slight, compared with the normal pressure. Nevertheless, it causes the
compliant electrodes to stretch and pull on the material to a certain extent,
giving rise to additional surface traction.

�e full picture of DE physics is complicated, since it must describe
the coupling between the electric �eld, surface charges and the mechanical
deformation in a general se�ing. Moreover, complex interactions arising
from polarisation of the dielectric and strain-dependent permi�ivity should
be accounted for in a comprehensive treatment [ZHS07, ZS08a]. Papers that
formulate general theories of deformable dielectrics cover these issues in
depth [Tou63,DO05,ML05,Suo10] and it is not our intention to consider such
details here. Rather, our approach will be to try to treat DEs as simply as
possible in order to understand some of the basic mechanisms governing the
selection of the shapes that they adopt a�er buckling.

5.3.1 E�ective pressure

A surprising fact about dielectric elastomers is that the pressure acting on each
electrode due to the electric �eld is exactly twice that of a ‘classical’ capacitor
with rigid plates and the same strength electric �eld. �is subtlety was
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understood by Pelrine et al. [PKJ98] who derived an expression for what they
termed the ‘e�ective actuation pressure’—‘e�ective’ because the additional
pressure arises indirectly due to the coupling of transverse and longitudinal
deformation in an incompressible material. �eir expression for the pressure
(which we derive below) is used throughout the literature (e.g. [SLKS+02,
WM05b, YYR+05, KKL+11, GH15]) and has been veri�ed for commonly used
DE materials, in experiments [PKK00, KSLKP03, KSL05, SSA+16] and model
simulations [WM05a].

Consider a DE of permi�ivity ϵ , whose electrodes are held at potential
di�erence V , that deforms to thickness D. �e magnitude of the electric �eld
between the electrodes is E = V /D and the formula for the e�ective pressure
pe� is

pe� = −ϵ(V /D)2 = −ϵE2, (5.2)

where the minus sign denotes that the pressure is compressive. In Ap-
pendix 5.A we provide a derivation in the case of a dielectric with general
Poisson ratioν that highlights the di�erence between Eq. (5.2) and the classical
rigid capacitor. For now, it is su�cient to note the dependence on the physical
observables, in particular the dependence on 1/D2, which is important later
on.

5.3.2 Our model

Two sensible assumptions to make in a DE model are that the electric �eld
between the electrodes is constant and that its e�ect on the elastomer can
be summarised by a normal e�ective pressure only. �e majority of early
modelling studies tended to focus on simple deformations of interest in
engineering applications (e.g. uni- or biaxial compression) and in general
these assumptions worked well in describing experiments [KPJ+99, CDR04,
YYR+05, WM05a, WM05b, KSL05, WM07a]. As a result, improvements in
this direction largely focussed on more accurate modelling of the strain
response through higher order constitutive laws and the incorporation of
viscoelasticity.

A simple way to apply this approach to the problem of buckling DEs is to
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numerically solve Eq. (5.1) with a constant compressive traction across the
top and bo�om electrodes, �xing the outer edges of the medium so that it is
forced out-of-plane as in Fig. 5.1(c). In Refs. [ZHZ+08, ZS08b, OMC+09], the
assumption of constant prescribed electric �eld was used to model nontrivial
out-of-plane DE shapes, though the electrostatic e�ects were accounted for
via the material law, rather than as a boundary condition. As discussed in
Sec. 5.5, this level of detail does not closely reproduce observed buckled
shapes.

At the other extreme, the system may be modelled by solving Maxwell’s
equations for the dielectric in concert with the elastostatics equation. In
principle, this allows the electrostatic forces to be treated realistically, though
in some cases the fringing e�ect is neglected to simplify the problem [GTC11,
HCB13, WDHC16]. While implementations di�er, several papers in recent
years have used this general approach to model interesting out-of-plane de-
formations [PSZK12,KZM13,PWZK13,KWES13,VGSK14,SP16]. In particular,
such a system was numerically solved by Vertechy et al., who also used an
analytical model to accurately capture the deformation of buckled circular
DEs [VFB+12].

In our study, we postulate that the e�ect of the electric fringing �eld can
be summarised by a small constant surface traction that acts tangent to the
electrode surface and normal to the boundary between the active and inactive
regions. �is is added to the usual e�ective pressure which acts normal to
the active regions. �e key advantage of this over alternative approaches is
that it enables us to easily judge the importance of the fringing e�ect. We
shall return to this point a�er explaining the model in detail.

Our setup is depicted in Figure 5.5. �e normal and tangential tractions,
which we call τn and τt respectively, enter as boundary conditions to Eq. (5.1).
Both are applied to the zero-strain reference domain Ω̂—i.e. they do not
depend on deformation of the medium. �e normal pressure τn is applied as
a constant traction across the top and bo�om electrodes, while τt is applied
in a small neighbourhood of the active region boundary of thickness s0. �e
magnitude of the tangential traction is constant and its direction is given by
the outward normal to the corresponding point along the electrode boundary.
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Figure 5.5: Schematic of the model reference con�guration Ω̂, showing the applica-
tion of normal pressure τn (purple arrows), tangential traction τt (orange arrows),
body force density ρд and the important length scales D0, l0 and s0.

In addition to s0, there are two important length scales present in the model:
the thickness of the unstrained domain D0 and the characteristic length of
the active region l0. �e exact de�nition of l0 depends on the shape of the
particular active region. In the case of the circle, it refers to the diameter.
Finally, we account for the e�ect of gravity with a constant body force density
that acts perpendicular to the elastomer �lm. Physically, it has magnitude ρд,
where ρ denotes the material density (which we assume to be constant) and
д is gravitational acceleration.

�e idea behind τt is to account for the shearing stresses that arise due to
repulsion of like charges. �is fringing e�ect occurs over a small neighbour-
hood of the electrode edges where the electric �eld has a nonzero tangential
component. �e application of τt over the width s0 mimics this. While the
e�ect that it models is small, compared with the normal pressure, we shall
nevertheless see that it can have a signi�cant impact on the shapes of solu-
tions.

For any particular DE, the relative magnitudes of the electrostatic forces
do not change if the potential di�erence across the plates is altered, due to
the superposition principal for electric �elds. �erefore, the ratio τt/τn seems
like a natural candidate for a dimensionless parameter that determines the
relative strength of the tangential traction applied in the model. However, a
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be�er choice is
κ B

s0
D0

τt
τn
, (5.3)

which takes into account the length scales of the problem. To see why this is
necessary, let us �rst note that unlike the other geometric parameters, the
width s0 is explicitly a modelling choice. If we change s0, without altering τt ,
then the total applied tangential force changes with it. �erefore, it makes
sense to combine the two parameters as ft B s0τt . �is is a linear force
density along each active region perimeter, which can be adjusted to give the
correct total tangential force (relative to the normal pressure), independently
of the choice of s0. �e reason why the factor of 1/D0 must be included is due
to the relative scaling of τn and ft . We know from Eq. (5.2) that the normal
pressure (and therefore τn) scales in proportion with (V /D0)2. �e tangential
traction on the other hand scales withV 2/D0. �erefore, s0τt/D0τn is constant
with respect to changes in D0. To see why ft scales the way it does, we can
use dimensional analysis. �e relevant physical parameters for the problem
are voltage V , D0 and l0. As long as D0 is much smaller than l0, a change
in l0 does not a�ect the amount of tangential traction at the electrode edge,
whereas a change in D0 does, since it a�ects the electric �eld strength (as does
V ). �e only dimensionless combination of ft ,V and D0 is ftD0/V

2. �erefore
ft scales as V 2/D0.

Hence, Eq. (5.3) de�nes a dimensionless parameter that dictates the mag-
nitude of the tangent force applied in the model in a geometry-independent
way. Note that κ = 0 means zero tangential force and that as κ increases, so
does the relative strength of τt . An implicit assumption in adopting κ is that
solutions to the model system are not signi�cantly a�ected by the width s0.
�is was veri�ed for the example result, pictured in Fig. 5.6(a). We believe
this to be true in general, provided that s0 is su�ciently small.

Assuming hyperelasticity, Equation (5.1) is closed by specifying a consti-
tutive law in terms of a strain energy density functionW . We shall use the
isotropic Mooney-Rivlin law, which in its incompressible formulation, is

W = c1(I1 − 3) + c2(I2 − 3) (5.4)
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for phenomenological model parameters c1,c2, where I1 and I2 denote the
�rst and second principal invariants of the Cauchy-Green strain tensor. A
variety of more sophisticated laws, including the Ogden, Gent, Yeoh and
Arruda-Boyce models, are o�en used in DE modelling studies, which can
capture elastomer strain responses with greater accuracy in various circum-
stances [GMF05,WM05b,WM07b,XMKG10,LKB+13]. However, since there is
no prestretch applied in the experiments in this study (see Sec. 5.2), we work
in a moderate strain regime in which we will see that the Mooney-Rivlin law
is adequate. Moreover, a key advantage to using a Mooney-Rivlin solid is
that we need only �t two model parameters, c1 and c2. It is also known that
elastomers exhibit viscoelastic properties [SLL04, PD07]. We shall work only
in the static se�ing only and do not consider viscoelasticity here.

By making the various simpli�cations detailed above, we sacri�ce a certain
degree of precision in favour of a more conceptually straightforward model.
We argue that there are only two electrostatic e�ects of principle importance:
the normal pressure and the fringing traction. �e chief advantage of our
model is that these e�ects are decoupled from one another. By varying κ, we
can alter the relative strength of the fringing e�ect and thereby judge the
degree to which it in�uences the equilibrium shapes of DEs. When applying
our model, we use a nondimensional approach, explained in Sec. 5.5. �is
means that we need not worry about matching the e�ective pressure with the
exact voltage and deformed material thickness. Instead, model parameters are
��ed such that the applied tractions scale in a manner consistent with Eq. (5.2).

5.4 Methods

We perform nonlinear elasticity simulations using the �nite element con-
tinuum mechanics solvers from the Chaste so�ware libraries [MAB+13],
which provide an incompressible nonlinear elasticity implementation1, that
was modi�ed for our purposes. �e nonlinear solver is a damped Newton’s
method and the linear solver in each case is the generalised minimal residual

1Note that incompressibility was not implemented in the DUNE code used in the previous
chapter.
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method (GMRES) with PETSc’s additive Schwarz preconditioner using LU
factorization blocks [SBG04, BAA+14]. �e deformation map is solved on
a zero-strain reference domain Ω̂, as depicted in Fig. 5.5, using tetrahedral
quadratic elements. Meshes are constructed using Gmsh [GR09], with a min-
imum of two layers of tetrahedra in the thickness direction. To reduce the
number of degrees of freedom these are re�ned more at the active region and
towards the centre where most of the strain occurs. Furthermore, we allow
elements in the reference domain to be longer in the transverse direction
than they are in their thickness. �e ratio of these respective dimensions is
approximately 1.5 : 1 near the active regions and 10 : 1 by the outer Dirichlet
boundaries where there is very li�le deformation. In spite of these optimisa-
tions, the aspect ratios of the physical system dictate that even the coarsest
possible meshes have many elements—typically our simulations use ∼105

degrees of freedom.

5.4.1 De�ation

�e elastostatics equation [Eq. (5.1)] can have multiple solutions. Conse-
quently, there may be many di�erent shapes that an elastomer can adopt in
which the material is in equilibrium with the external forces imposed on it.
�is presents us with a problem when a�empting to predict the shape of a
DE: the solution that nature selects may not be the one that we �nd using our
nonlinear solver. To address this issue, we have implemented an algorithm
called ‘de�ation’, whose use in the context of numerical PDE solving is due
to Farrell et al. [FBF15]. It has been applied previously in the context of
nonlinear hyperelasticity in [FBB16].

�e basic idea behind de�ation is as follows. Suppose we are trying to �nd
the zeros of some nonlinear system F . In our case, this means deformations
for which Eq. (5.1) is satis�ed. Every time we �nd a solution u∗ of F , we
augment F via a ‘de�ation operator’ η to obtain a new system F ′ = ηF ,
which has the same solution set as F , except with u∗ removed. We then solve
F ′ to �nd a distinct solution. �is process can be repeated to locate many
additional solutions, until the nonlinear solver can no longer �nd any more.

115



�ere is more than one way that one might want to choose a de�ation
operator. A straightforward choice is

η(u) B 1
||u − u∗|| , (5.5)

which causes F ′ to blow up if u gets close to u∗, but does not disturb any
other solutions. To �nd multiple DE shapes in this work we use a slightly
more sophisticated version. Suppose we have found solutions u1, . . . ,un to
F (u) = 0. �en we solve

F ′(u;u1, . . . ,un) = *
,
α +

n∑
i=1

1
||u − ui ||p

+
-
F (u) = 0 (5.6)

for some α ,p > 0. Clearly any solution to F ′(u) = 0 that is distinct from
u1, . . . ,un also solves F (u) = 0. �e shi� by α is vital, since otherwise the
system can be ‘solved’ numerically by pushing the intermediate guesses
further and further from u1, . . . ,un until the solver tolerance is met. �e
parameter p allows one to adjust the form of the singularity at each solution
ui .

�e procedure to solve Eq. (5.6) was implemented in PETSc. �e augmen-
tation of the nonlinear system by the de�ation operator results in a rank-one
update to Jacobian matrix, causing it to lose its sparsity. Consequently, when-
ever it is needed its application is implemented in terms of the Jacobian of
the original system via matrix-free methods. Similarly, the preconditioner
is implemented matrix-free and is computed via the original preconditioner
using the Sherman-Morrison formula as suggested in [FBF15]. Below, we give
some practical details concerning how de�ation was used to �nd multiple DE
shapes.

Controlling the order of the singularities in the de�ation operator with
p a�ects how close any additional candidate solutions can get to u1, . . . ,un,
as does varying α . Selection of these parameters can greatly alter which
solutions can be found by the nonlinear solver. Unfortunately, it is not
currently possible to know a priori what good choices of α and p will be. In
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the situations where de�ation was used we have tried to maximise the number
of solutions obtained by scanning through theα ,p-parameter space. To do this,
whenever de�ation is used in this work, we �x p = 1.5 and try many di�erent
α values in the range (0,1]. (Whilst it would be more comprehensive to scan
through a range of exponents as well, this is much more time consuming
and was found to be a comparatively less e�ective way to locate additional
solutions.) �e exact values of the shi�s used are not as important as the
need to cover a range encompassing di�erent orders of magnitude. We begin
de�ation with an initial α0, typically in the range [0.5,1] and �nd successive
solutions until the nonlinear solver fails (e.g. due to exceeding the maximum
allowed iterations). Each time a new solution is found, it is used as the new
initial condition for the solver, a�er applying a small perturbation to ensure
that the de�ation operator is �nite. A�er exhausting the solutions we can �nd
with the initial α0, we continue, scanning through a geometric progression
of shi�s αn := r̃αn−1, until αn < αmin, whereupon de�ation is halted. For the
systems considered below, r̃ = 2/3 and αmin = 5 × 10−3 were used. At higher
values of α the nonlinear solver stays near to the previously de�ated solutions
since the non-de�ated part of the system Jacobian is more signi�cant with
respect to the de�ated part. As α decreases, more remote solutions become
accessible, o�en at the expense of those with shapes that are structurally
close to the de�ated ones. For small values of α , Newton’s method may take
very large steps that decrease the residual of de�ation operator, but not the
residual of the original system. �is can cause numerical instabilities if it
produces an intermediate guess which is highly strained. To avoid this, we set
an upper limit on the original system residual which, if reached, causes the
algorithm to reset the initial condition and move on to the next αn. Finally, we
note that a�er a solution has been de�ated, this does not prevent Newton’s
method from taking steps towards it. In general, the solver is not guaranteed
to �nd a region where it will converge quadratically to a new solution and can
spend a long time approaching already-de�ated results. It is not uncommon
for the method to take more than 100 iterations to converge. To catch most
of the solutions, we allow for a maximum of 300 iterations.

In addition to �nding solutions with de�ation, we were able to �nd further
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deformations using parameter continuation. Starting from a given initial
solution with an initial κ = κ0, one can successively increment or decrement
κ until a qualitatively di�erent deformation shape is adopted by the system.
�en continuing κ gradually in the reverse direction back to κ0 may produce
a new solution. �e interpretation of this procedure is that by continuing
κ we have passed a bifurcation point and uncovered a new solution branch,
which we then trace in the opposite direction.

Given a set of distinct solutions, it is necessary to determine which will be
preferred by the physical system. �e potential energy Π of the DE is given
by integrating the strain energy density over the whole body, minus the work
done by the body forces and tractions. �is is

Π(u) =
∫
Ω̂
W (u)dV −

∫
Ω̂
b · u dV −

∫
∂Ω̂
τ · u dA, (5.7)

where u is a function that gives the displacement of a material point, relative
to its position in the undeformed con�guration Ω̂, andτ is the �eld of tractions
on the domain boundary. We perform these integrations numerically over the
discretisation mesh that we use to solve Eq. (5.1). �is allows us to calculate
the minimum energy solution from the shapes found.

5.5 Results

5.5.1 Circular active region

Before delving into the details of matching simulations with experiment, we
present a representative simulation of an elastomer with applied normal and
tangential tractions. Fig. 5.6(a) shows a solution for a circular disc-shaped
elastomer with a circular active region at the centre. �e plot is an oblique
view of the deformed con�guration, with the active region indicated. To
save computational e�ort, we solve the elastostatics equation for only a
quarter of the axisymmetric geometry. Consequently, we see a cross-section
of the elastomer in the �gure and may easily inspect the solution’s out-of-
plane de�ection. Starting from the outer extent, the pro�le slopes gently
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Figure 5.6: (a) Example of a typical deformed con�guration for a thin disc with
circular active region. �e inactive part is shaded in light grey and the active part is
shaded in cyan. Only a quarter of the geometry is simulated—the rest is accounted for
via boundary conditions which preserve fourfold rotational symmetry. �e diameter
of the full geometry is L0 = 6662/3D0 and the diameter of the full active region is
l0 = 2662/3D0. Other parameters are: κ = 0.6, τn = 0.5, τt = 0.0225 and ρд = 0. (b)
Schematic showing the boundary conditions for the circular disc.

downwards, before an abrupt transition at the edge of the active region where
the gradient becomes much steeper. In the bulk of the active region however,
the pro�le levels out and is close to �at. Figure 5.6(b) indicates the boundary
conditions used. �e outer arc of the disc is �xed in place with a Dirichlet
condition. �e other two edges are free to move both in the radial direction
and out-of-plane (z-direction), while their remaining degree of freedom is
�xed. Solutions for these boundary conditions correspond to solutions to the
full problem with at least fourfold rotational symmetry.

In each of the following cases the geometry of the simulation is set such
that the aspect ratio of the �nite element mesh exactly equals that of the
experiment. We set our model parameters using a nondimensional approach,
taking the undeformed material thickness D0 to be the natural length unit for
the system. We choose s0 such that the tangent force is applied over a width
of at least two (quadratic) �nite elements. In all results, 10 ≤ s0/D0 ≤ 20.
A�er �xing the geometry, there are �ve free parameters in the model: the
Mooney-Rivlin constants c1 and c2, density ρ and the tractions τn and τt .
We �t these parameters to match equilibrium shapes of the elastomers from
the experiment described in Sec. 5.2 and consequently are free to choose
c1 = 1. A di�erent choice for c1 leads to a corresponding rescaling of the
remaining parameters in order to match experiment with simulation, but
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does not change the resulting solution. Moreover, we found that varying
the ratio c1/c2 had no noticeable e�ect on the shape of our solutions in any
of the contexts studied herein. Hence, we set c1 = c2 = 1 throughout. �e
redundancy of the c2 parameter suggests that, at least for the range and type
of strains that we consider, a Neo-Hookean constitutive law (c2 = 0) may be
su�cient to model the elastomer well.

Figure 5.7 shows comparison between simulation and experiment for
six di�erent applied voltages. Each plot shows the midline of a numerical
solution restricted to the y = 0 plane, together with points of experimentally
measured de�ection. �e experimental data covers the full diameter of the
elastomer so the simulation midline in this case is mirrored across the axis of
symmetry in the plots. �e procedure for ��ing the model parameters is as
follows. First, the pro�le of the elastomer with no applied voltage is measured.
In this case, there is only one free model parameter—the material density—
which is incrementally adjusted in the simulations until the amplitude at the
centre matches the experiment. Next, voltage is applied in the experiment
to produce signi�cant additional strain in the elastomer and the pro�le is
measured again, in this case at 3 kV. �e nontrivial shape adopted by the data
points allows us to �t both τn and τt concurrently and thereby determine κ
[Eq. (5.3)]. �is is because the amplitude of the active region de�ection and
the shape of the pro�le at the electrode boundary are e�ectively independent
of one another. �ese roughly correspond to the total applied traction and
the ratio τt/τn of tangential to normal traction respectively. We will return
to this point shortly. A�er making an initial guess of their approximate
magnitudes and ratio, τn and τt are incrementally increased or decreased until
the solution amplitude matches the experiment. Next, to match the pro�le
shape, τt is incremented or decremented. Since this changes the de�ection
height, it is typically necessary to readjust the total applied force in turn.
Small discretionary adjustments to the tractions are then made to improve
agreement further. From this point on, both ρ and τt/τn are considered to be
�xed.

We know from Eq. (5.2) that the e�ective pressure is proportional to
(V /D)2. �e two ��ed results at 0 kV and 3 kV uniquely determine the co-
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Figure 5.7: Comparison of experimentally measured de�ections with simulation
pro�les for a succession of increasing voltages: 0 kV, 1 kV, 2 kV, 3 kV, 4 kV and
5 kV. �e aspect ratio is 1 : 1. Red crosses indicate experimental data points. �e
experimental geometry used was a thin disc, L0 = 100 mm, D0 = 0.15 mm, with
centred circular electrodes, l0 = 40 mm. Yellow lines are midlines through a model
simulation with corresponding geometric parameters and κ = 0.6 in each case. �e
gravitational body force is ρд = 3.6 × 10−4 throughout. Applied tractions across the
di�erent voltages are (to 4 signi�cant �gures): τn = τt = 0 for 0 kV; τn = 0.018 57,
τt = 8.538 × 10−4 for 1 kV; τn = 0.076 33, τt = 3.435 × 10−3 for 2 kV; τn = 0.18,
τt = 8.1 × 10−3 for 3 kV; τn = 0.347, τt = 0.015 61 for 4 kV; τn = 0.6176, τt = 0.027 79
for 5 kV.
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e�cient of proportionality. However, since pe� depends on the deformed
thickness D, the correct amount of normal pressure for a given voltage is
coupled to the solution. Furthermore, since we apply τn in the reference
domain, the e�ective pressure that this corresponds to in the deformed body
also depends on D. �erefore, for the remaining plots, we select τn iteratively,
each time using the computed thickness from the previous solution. �is
approach is also used in [WM07b]. In this way, iterations converge to produce
e�ective pressures that scale correctly with electric �eld. �e applied trac-
tions used in Fig. 5.7 all obey Eq. (5.2) to within 1% relative error. �roughout
this procedure, τt is chosen such that τt/τn (and thus κ) stays the same.

�e pro�le shapes obtained this way agree extremely well across all
the plots, even though the parameters were only ��ed using the 0 kV and
3 kV cases. For voltages greater than or equal to 4 kV there are very small
discrepancies which may, for instance, be due to the constitutive law used, or
the simpli�ed treatment of the forces acting on the elastomer in our model.
Nevertheless, even at these higher strains agreement between the model and
experiment is good.

For the tractions used in this particular case with a circular active region
centred inside a disc, τt/τn = 0.045. Taking into account the geometric
parameters, this corresponds to κ = 0.6. Let ft denote the magnitude of
applied tangent force along the edge of one active region. �is is given
by ft = πl0s0τt . Let fn = π (l0/2)2τn denote the corresponding amount of
total applied normal force. A straightforward calculation shows that ft/fn =
4s0τt/l0τn = 0.9%, so the tangential traction represents a small e�ect when
compared with the normal compression. Due to this fact, one may wonder
whether the tangential forces may simply be neglected. However, despite its
magnitude, slight changes in τt can have a marked e�ect on solutions. Indeed,
we �nd that κ = 0.6 �ts the experimental data be�er than either κ = 0.58
or κ = 0.62, though the di�erences between model pro�les are subtle at this
level. Figure 5.8 demonstrates the much more signi�cant e�ect of changing κ
by ±0.2. Here, the 3 kV experimental data from Fig. 5.7 are replo�ed alongside
three model de�ection pro�les with κ = 0.4, 0.6 and 0.8. As κ increases, the
proportion of tangential force increases. �is has two main e�ects. Increased
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Figure 5.8: E�ect of tangent force on the shape of model pro�les. �e vertical axis
has been scaled by a factor of 2 to show the variation between the pro�les more
clearly. Red crosses are data points from the 3 kV experiment used in Figs. 5.2 and 5.7.
Green, yellow and blue lines are model results with κ = 0.4, 0.6 and 0.8 respectively.
In each case, the total traction was chosen so that the model pro�le matched the
experimental de�ection in the centre, at x = 50. �e tractions were as follows:
κ = 0.4 used τn = 0.156, τt = 4.68 × 10−3, κ = 0.6 used τn = 0.18, τt = 8.1 × 10−3

and κ = 0.8 used τn = 0.22, τt = 0.0132. All other model parameters match those
from Fig. 5.7.

tension at the edges causes the active region to �a�en out and stretch. �is
in turn modi�es the shape at the electrode boundary. Both the κ = 0.4 and
κ = 0.8 pro�les feature an abrupt change of gradient near the active region
edge. Only κ = 0.6 features the smooth transition from inactive to active
region that matches the experiment. �us, in the proceeding results, we use
κ = 0.6 unless otherwise stated. In Sec. 5.5.4 we check that it is a physically
reasonable value.

5.5.2 Annular active region

Another system of experimental interest is shown in Figure 5.9. In this case,
the active region is annular. For su�ciently high applied voltage, this DE
readily buckles to produce azimuthal waves in the active region. Wavelengths
measured from the experiment are robust over a range of voltage (3 kV to
5 kV) and depend principally on the width of the annulus. �ese ripples in
the active region are distinct from the much smaller wavelength wrinkles
that result from a pull-in instability [PD06].

In this case, the active region has two edges. Consequently, there is an
additional fringe e�ect pointing toward the centre. A diagram of the simula-

123



Figure 5.9: Overhead view of an elastomer experiment with an annular active
region, whose geometry corresponds to the simulations in Figs. 5.10(b) and 5.10(c).
�e inner radius of the annulus is r0 = 17 mm, the outer radius is R0 = 25 mm and
D0 = 0.15 mm. �e applied voltage is 4 kV. Azimuthal ripples are visible on the
electrode; their undulation is highlighted by directing a laser across the surface.
Photograph courtesy of Hadrien Bense.

tion domain is show in Fig. 5.10(a). We use the same symmetry conditions
as for the circular disc [see Fig. 5.6(b)], simulating only a quarter segment
of the whole system in order to save computational cost. However, in this
case solutions do not possess continuous rotational symmetry. �erefore it
is important to note that the boundary conditions used place constraints on
the range of admissible wavelengths. Nevertheless, since the experimentally
observed wavelengths are always small enough to �t multiple waves in a
quarter of the disc, we do not believe that this alters our conclusions here
signi�cantly.

Figures 5.10(b) and 5.10(c) show overhead and oblique views of a simulated
result for an annulus of thickness 531/3D0. �e dimensions of this simulation
correspond to the experiment photograph in Fig. 5.9 From visual inspection
one sees a qualitative agreement between the experiment and simulation,
both in the overall deformation pro�le and the character of the waves.

As mentioned earlier, there can be many distinct solutions to the elasto-
statics equation [Eq. (5.1)] that are not related by symmetry. Indeed, for this
system it is possible to �nd solutions with di�erent azimuthal wavelengths.
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Figure 5.10: (a) Diagram showing the top/bo�om surface of the model setup for a
circular disc with annular active region. Compressive normal pressure τn is applied
into the page across the shaded purple area. Tangential surface tractions τt are applied
at both boundaries of the active region in the two orange areas shown. Important
length scales are labelled: the inner radius r0 and outer radius R0 of the annulus, the
width of the active region l0 and the width s0 over which the tangential traction is
applied. (b) Example result from the setup depicted in part (a). �e blue colouration
indicates deformation in the negative z-direction. Deeper blue means that a point
is displaced further below its original position in the �at reference con�guration.
�e active region is indicated as an area of darker shading. �e geometry is set to
match an experiment with r0 = 17 mm, R0 = 25 mm, D0 = 0.15 mm and diameter
L0 = 100 mm. Other model parameters are: κ = 0.6 and ρд = 3.6 × 10−4. (c) Oblique
view of the result in part (b) showing the azimuthal ripples in the active region.
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�e wavelength selected by the physical system would typically be the one
which minimises the potential energy, given in Eq. (5.7). �is is not gener-
ally the solution �rst discovered by our nonlinear solver. To overcome this
problem, we use the de�ation method, described in Sec. 5.4.1, to �nd as many
di�erent solutions as we can. �e result pictured in Figs. 5.10(b) and 5.10(c) is
the minimum energy solution of four di�erent equilibrium con�gurations
computed by this technique. Likewise, the annular active region results be-
low are minima from sets of de�ated solutions. However, de�ation does not
guarantee that every solution will be found. To increase our con�dence that
these results are close the global minima, we can compare their azimuthal
wavelengths with measurements from the experiment.

Figure 5.11 shows simulations with various annular active region widths.
One sees that as l0 increases, the wavenumber observed across the quarter

Figure 5.11: Deformed con�gurations for a circular disc with annular active regions
of di�erent widths l0. Each is the solution found with the lowest elastic potential
energy, a�er de�ation. As l0 increases, so does the wavelength of ripples in the active
region. �e extent of the active region in each case is indicated with darker shading.

segment decreases. �is is observed in experiment: in Figure 5.12 we plot
experimental and simulated ripple wavelengths against l0 and see that both
datasets follow an upward trend. �ere is a degree of uncertainty associated
with measuring these data points experimentally. Moreover, obtaining good
model results for l0 > 12 mm is not feasible when simulating only a quarter of
the full experimental domain, since the ripple wavelengths become too large.
Nevertheless, the model does a good job of matching the smaller reported
wavelengths in the physical system.

Figure 5.13 shows results that demonstrate the e�ect of tangent force for
the annular active region. As in the case of a circular active region, we �nd
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Figure 5.12: Width l0 of annular active region versus observed ripple wavelength
λ for the experiment and model simulations. �e experiment parameters were
D0 = 0.15 mm with R0 �xed at 25 mm and various r0 between 7 and 22 mm. �e
applied voltage was 3 kV.

Figure 5.13: Deformed con�gurations for a circular disc with annular active region
l0 = 40D0 using di�erent amounts of tangential force. In these simulations, τn was
�xed at 0.32 and τt was varied to give di�erent κ values as indicated. Increasing κ
means an increasing amount of tangential force. �e other model parameters match
those used in Fig. 5.10.
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that κ = 0.6 best represents the experimental results. Decreasing κ from 0.6
to 0.4 creases the edges of the electrodes and the spacing between ripples
becomes uneven. Removing the tangent force altogether exacerbates these
characteristics. Additionally, the inactive part becomes almost completely �at
in spite of the action of gravity. Increasing κ from 0.6 to 0.8 �a�ens the active
region, just as it did for the case of circular electrodes. With this amount of
tangent force, the system does not appear to support azimuthal waves.

5.5.3 Rectangular active region

An active region similar to that of the annulus is the case of a long rectangular
strip. Provided that the length of the rectangle is su�ciently greater than its
width, this system also readily buckles to produce ripples in the direction of
its length. �is was previously noted by Pelrine et al. [PKPJ00].

By imposing symmetries the simulation domain can again be reduced in
size. We mimic a long rectangle by considering the limiting case where a thin
rectilinear elastomer with rectangular electrodes is extended inde�nitely in
its lengthwise extent. To do this we consider a thin cuboid elastomer with its
two largest faces oriented parallel to the xy-plane. �ese two faces are split
along their longest direction into into active and inactive regions. �is means
that the active region touches the edges of the domain on three sides. We
align the shorter sides with the x-axis and the longer sides with the y-axis.
�e boundary conditions are as follows. �e two shorter ends that are part
active and part inactive are free to move in the x and z directions only. Fixing
them in y enforces periodic symmetry.2 No tangential force is applied in this
direction. �e two remaining longer ends enforce re�ective symmetry along
the axis following the side in contact with the active region, which is free to
move in the y and z-directions. �e other side is held �xed. A schematic of
the setup is shown in Fig. 5.14, alongside a representative result. Similar to
the case of an annular active region, we must note that the �nite extent of
the domain means that some wavelengths are inaccessible. Guided by the

2Note that since we do not require each end to deform to the same height in the z-direction,
the period is equal to twice the length of the simulation domain. Fully periodic solutions are
obtained by a re�ection at either end.
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Figure 5.14: (a) Diagram of the boundary conditions for simulation of a thin in�nite
strip. Periodic symmetry is enforced at the top and bo�om edges. �e other two
edges implement re�ective symmetry in the axis of the right-hand side. See the
text for details. Surface tractions τn and τt are applied in the purple and orange
regions respectively, as indicated. �e de�nition of the characteristic width l0 for
this active region is as labelled. It covers half the simulated domain. (b) Overhead
view of an example deformed con�guration. �e active region is indicated with an
area of darker shading. As in the annular case, waves are present. �ese follow
the direction of the strip’s longer dimension. �e model parameters are: κ = 0.6,
τn = 0.37, τt = 0.0222, ρд = 0 and the dimensions are height H0 = 250D0 and width
L0/2 = 921/2D0.
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results in the annular case and intuition from experiments with rectangular
electrodes, we believe that the domain length chosen is su�cient to capture
any important solutions.

We were able to obtain many solutions via de�ation for this geometry.
�ese are shown in Figure 5.15 with their corresponding elastic potential
energies printed underneath. In this case, a variety of interesting di�erent

Figure 5.15: De�ated solutions for an in�nite rectangular strip. κ = 0.6. �e blue
and red colouration indicate deformation in the z-plane. Darker red (blue) means that
a point is displaced further above (below) its original position in the �at reference
state. Beneath each solution the potential energy computed from Eq. (5.7) is printed.
Solutions that are equivalent under symmetry to the ones shown are omi�ed.

solutions can be found and to this end, we omi�ed the gravitational body force
from the model. �is encourages the DE to buckle up, as well as down and
enables us to �nd more solutions. In the centre of the �gure, are solutions with
regular waves, analogous to those seen in the annular active region. To the
le�, there are four solutions composed of a large wavelength mode and smaller
ripples. To the right are solutions with higher frequency ripples: one with
regular ripples, another with irregular ripples and one with a smooth, mostly
�at active region. For each shape shown, re�ections in the planes y = H0/2
and z = D0/2 give solutions that are equivalent under the symmetries of
the problem. �ese have been omi�ed from Figs. 5.15 and 5.16. �e �nal
two solutions to the right were found using the parameter continuation
method described in Sec. 5.4. �e highlighted entry is the minimum energy
solution. It is worth noting that this was not the �rst solution to be found by
the nonlinear solver. In this case it was essential to use de�ation (or some
alternative method) to �nd the multiple solutions, in order to identify the
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correct equilibrium shape of the elastomer.

�e di�erence between the solutions in Figure 5.15 and corresponding
solutions with no applied tangential force is particularly striking. Figure 5.16
shows the various solutions we were able to obtain a�er se�ing τt = 0. �e
le�most solution is highly frustrated and likely unstable. It absorbs the applied
traction force via high frequency strains that are of such low amplitude as to
be invisible to our colour scheme. �e next two along are buckled upwards.
Both have a large amplitude de�ection in the widthwise direction and the
rightmost features additional low wavelength ripples. �ese ripples give way
to larger waves and folds in the following �ve solutions, the �rst few of which
resemble the κ = 0 solution in the annular case (Fig. 5.13). �e �nal solution
admits a large downward crease that breaks translational symmetry.

Whilst we do not believe the solutions in Fig. 5.16 are a faithful description
of the physical experiment, they are undoubtedly curious from a pa�ern
forming perspective. Moreover, the stark contrast between Figs. 5.15 and 5.16
demonstrates graphically the important role played by the tangential forces
on the elastomer electrodes.

Figure 5.16: De�ated solutions for an in�nite rectangular strip with no applied
tangential force, κ = 0. �e blue and red colouration indicate deformation in the
z-plane. Darker red (blue) means that a point is displaced further above (below)
its original position in the �at reference state. Beneath each solution the potential
energy computed from Eq. (5.7) is printed; the lowest value is red. Solutions that are
equivalent under symmetry to the ones shown are omi�ed.
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5.5.4 Computing κ

By tuning the tractions τn and τt we have obtained numerical results that
closely match phenomena observed in experiments on DEs. Moreover, we
claim that κ = s0τt/D0τn is the critical dimensionless parameter that deter-
mines elastomer shape selection. If we are to believe that our simple way
of modelling the DE is faithful to the physics of the experiment, we should
independently verify the forces imposed on the elastomer by the electric �eld,
i.e. the ratio of the e�ective pressure τn to the magnitude of the fringing e�ect
τt at the boundaries of the active regions.

Both electrodes are held at �xed potential in the experiment. �e edges
are interfaces between �nite charge density inside the active region and zero
charge density outside, leaving a singularity in the electric �eld. We are
unaware of any method for calculating the forces at the electrode boundaries
analytically, although the fundamental form of the singularity for the edge of
a �at plate is a classical result [Jac75, Sec. 1.6].

One way to deal with the singularity is to compute instead the aggregate
force F on a small volume B that contains part of the electrode edge. �is can
be computed by integrating the electromagnetic body force density f that is
associated with the electric �eld. Electrostatics tells us that a simple formula
for this is f = ϱE, where ϱ is the charge density. However, a more convenient
way to write f for our purposes, is as the divergence of the classical Maxwell
stress tensor SM , the derivation of which may be found in standard textbooks
(see e.g. [Str41, Sec. 2.5] or [PP62, Sec. 6.5]). It is de�ned both in and outside
the elastomer, by:

SM B ϵ
�
E ⊗ E − 1

2 (E · E)I
�
. (5.8)

�e advantage of this is that it allows us to use the divergence theorem to
integrate around the boundary ∂B, sidestepping the electric �eld singularity
as so

F =

∫
B
f dV =

∫
B
∇ · SM dV =

∫
∂B

SMn̂dA, (5.9)

where n̂ denotes the outward unit normal of ∂B.
To compute the Maxwell stress tensor, we assume that the electric �eld
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in the deformed elastomer may be locally approximated by the �eld in an un-
deformed capacitor. �erefore the electric �eld can be numerically calculated
in the reference domain by solving Laplace’s equation for the potential ϕ and
numerically di�erentiating the result. �at is, we solve

∇ · (D∇ϕ) = 0, E = −∇ϕ, (5.10)

where D = ϵI is a matrix that accounts for the presence of a dielectric.
Figure 5.17(a) shows the solution and labels the accompanying boundary
conditions. We solve the problem in two dimensions in the unit square

Figure 5.17: Plots of the solution of electric potential ϕ for a rigid capacitor in
two dimensions. �e colour scheme indicates the strength of the potential from
ϕ = 0 (blue) to ϕ = 0.5 (white) to ϕ = 1 (red). (a) Full solution in the unit square,
representing a quarter of the elastomer, with boundary conditions labelled around
the edges. Although the capacitor is too thin to be visible at this scale, the gradual
decay of the potential outside the top plate can be seen in the bo�om le�-hand corner.
(b) Highly zoomed plots showing sections of the capacitor corresponding to: (from
le� to right) the centre of the electrode, the right-hand edge of the electrode and
the edge of the dielectric. �e ϕ = 1 boundary condition on the top plate is shown
do�ed in white. Also indicated are the regions inside and outside the elastomer and
their relative dielectric constants. (c) Close-up of the electrode centre indicating the
region of integration for numerical computation of τn in dashed pink. (d) Close-up
of the electrode edge with contour lines drawn indicating isolines of potential. �e
integration region for numerical computation of τt is drawn in dashed pink.
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and for a quarter of the elastomer only. �e boundary conditions account
for the rest of the system via symmetry. �ese are: ϕ = 0 far from the
electrode ([0,1] × {1} ∪ {1} × [0,1]) and along the horizontal symmetry axis
([0,1] × {0}), ϕ = 1 along (half) the top electrode ([0,l0/2] × {D0/2}) and
∂xϕ = 0 along the vertical symmetry axis ({0} × [0,1]). �e active region
length l0 was chosen such that the electrode surface was far from top and
right-hand sides so that the Dirichlet condition there did not a�ect the solution
signi�cantly. Speci�cally, the geometric parameters used were: l0/2 = 0.2,
L0/2 = 0.5 and D0/2 = 7.5 × 10−4, where L0 denotes the length of the
dielectric. �e aspect ratios l0/D0 and L0/D0 match the geometry used above
for the case of a circular disc with circular active region. By solving in two
dimensions however, we implicitly assume that the electric �eld is constant in
the third direction, which is equivalent to considering the system in which the
elastomer extends in�nitely in this ordinate. �erefore the two dimensional
system is strictly applicable only to the cases with rectangular active region
where the electrode boundary in the third direction is su�ciently far away.
Nevertheless, it can also be used as an approximation for elastomers with
circular and annular active regions provided the curvatures of the electrode
boundaries are not too large.

Figure 5.17(b) shows sections of the solution containing the dielectric in
close-up. �e region containing the dielectric is labelled with ϵ = 2.6. �is is
the relative permi�ivity measured for the elastomers used in the experimental
system. Also visible is the top capacitor plate which is labelled with the ϕ = 1
boundary condition. Between this and the horizontal axis the gradient of the
potential is essentially linear everywhere and is responsible for the constant
pressure between the two electrodes. �is is given classically by Eq. (5.2)
in the rigid case: τn = −pe� =

1
2ϵE

2 = 1
2ϵ

(
∂ϕ
∂y

)2
. For the geometry used this

gives τn = 1
2ϵ

(
1

D0/2

)2
= 2.31 × 106.

To numerically compute the tractions from the electric potential solution
we calculate the Maxwell stress tensor via Eq. (5.8) and integrate over a region
of our choosing. We do this �rst for the normal pressure, to check that we can
recover the classical result. Figure 5.17(c) shows a close up of the centre of the
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electrode. Dashed in pink is a closed rectangular curve bounding a portion of
the top capacitor plate. Integrating the Maxwell stress tensor along this curve
gives the total force due to the electric �eld on the enclosed region. Taking
the normal component of this integral and dividing by the width of the box
(0.02 in this case), we obtain a value for the normal pressure τn = 2.307 × 106,
which is within less than 0.2% relative error with respect to the theoretical
value.

Likewise, in Figure 5.17(d) we show a close-up of the electrode edge with
a closed rectangular integration region indicated in dashed pink. �e width of
this region (relative to D0) corresponds to the width over which the tangential
force was applied in the model simulations. Integrating the Maxwell stress
along the curve, taking the tangential component of the result and dividing
by the width gives the tangential traction τt = 8.603 × 104.

�ese numerical values for τn and τt yield κ = 0.50 to 2 signi�cant �gures.
�is di�ers from the value used in our model simulations by 17%, indicating
that perhaps there is less tangent force than our ��ed tractions suggest. A
possible reason for this discrepancy is that the experimental system stretches
slightly due to curing of the elastomer a�er it is placed on the frame, adding
some tension in the elastomer that is not a�ributable to the fringing �eld.
Another reason lies in the fact that we computed the electric �eld in the
reference con�guration, essentially assuming that the elastic and electro-
static e�ects can be decoupled from one another. Moreover, solving in two
dimensions overlooks any correction arising from the geometry.

At this point, the reader may object that in the deformed case, the e�ective
pressure is twice the classical value (as noted in Sec. 5.3.1) and therefore our
predicted value of κ ought to be halved. �e reason for this is explained
in the Appendix to this chapter—coupling of the compressive pressure to
lateral stretching via incompressibility gives rise to additional force between
the electrodes. It seems reasonable that the same principle applies to the
tangential traction, implying that the e�ective tangential traction should also
be twice the value that is has in the undeformed se�ing. However, so far a
physical derivation eludes us.

Taking these issues into account, the di�erence between the two results
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is not unreasonable. However, deeper understanding is needed in order to
establish the accuracy of this prediction. It is worth noting that while κ = 0.6
provided the best �t across all the results shown in Fig. 5.7, lower values,
down to and including κ = 0.5, produced acceptable results. Furthermore,
κ = 0.5 certainly supports our central thesis that the tangential forces are
signi�cant enough to be important for shape selection.

5.6 Discussion

We have presented a straightforward numerical model for capturing the shape
of buckled DEs. �e electrostatic forces acting on the dielectric are input as
boundary conditions to the nonlinear elastostatics equation. We proposed
that the aggregate e�ect of the electric �eld could be decomposed into an
e�ective pressure due to the constant ‘classical’ part between the electrodes
and a small tangential traction that models the e�ect of the fringing �eld.
Although these boundary conditions represent a dramatic simpli�cation of
the underlying physics, they are nonetheless able to produce close �ts to
experimental data. In principle, this approach is independent of the geometry
of both the elastomer and the active region.

�e impact that the edge e�ect has on solutions is signi�cant, despite
its small magnitude. If the e�ect is le� out of the model, we are unable to
obtain deformation pro�les that are even qualitatively correct. �is has clear
implications for future modelling work.

�e magnitude of the fringing force, relative to the e�ective pressure is
captured by our model in a dimensionless constant κ. We were able to tune
κ to a value that produced solutions matching experimental deformation
pro�les. �is value proved robust across di�erent applied voltages and active
regions. It was further validated by calculating the relative magnitudes of the
corresponding forces in a rigid capacitor from a numerical solution of the
Laplace equation.

In the case of an annular active region, we report that the elastomer
buckles to produce azimuthal waves, which are localised in the vicinity of the
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electrodes. �eir wavelength increases in proportion with the width of the
annulus. �is trend is captured well by our model which produces solutions
in qualitative agreement with the experiment.

Another key �nding is that care must be taken when solving the elasto-
statics equation in the case of buckling DEs, since solutions are nonunique.
�is has signi�cance for any study that uses numerical methods to predict
elastomer deformation in a nonlinear elasticity context. In computing a single
solution to Eq. (5.1), one cannot guarantee that it corresponds to the equi-
librium shape with the lowest possible potential energy. Consequently, it is
desirable to �nd many di�erent solutions and work out which is favoured by
the system, either by computing their potential energies via Eq. (5.7), compar-
ing with experimental data, or using some other physical argument. De�ation
is one such technique that can be used to �nd multiple solutions [FBF15]. For
the annular active region, this was used to �nd the lowest energy azimuthal
wavelength. Crucially, the most energetically favourable mode is not typically
the �rst solution that our nonlinear solver converges to. In the analogous
case of a long rectangular strip, we used de�ation to �nd many interesting
deformation pa�erns including waves of di�erent wavelength, wrinkles and
creases.

5.A Appendix: E�ective pressure derivation

Our derivation of the e�ective pressure is similar in spirit to the original by
Pelrine et al. [PKJ98], using the classical formula for the energy stored in
a capacitor. An equivalent derivation can be performed starting from the
Maxwell stress [KSL05]. We diverge from these presentations by permi�ing
the elastomer to have a general Poisson ratio ν . Although the materials used
in DE applications may be treated as incompressible materials to a very good
approximation, this approach allows us to highlight the di�erence between
our system and that of a rigid capacitor.

Consider the DE depicted in Fig. 5.1(a) and apply �xed charges +Q and
−Q on the top and bo�om electrodes respectively. For now, we make the
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classical assumption that this generates an electric �eld that is constant with
magnitude E directly between the electrodes and zero everywhere else. It
compresses this region of the dielectric uniaxially, stretching its diameter
from l0 to l and squeezing its thickness from D0 to D. Let A = π (l/2)2 be the
area of the deformed electrodes. �en the electrostatic energy of the two
charged surfaces, as commonly derived in textbooks, is

U =
Q2D

2ϵA . (5.11)

�e total force F between the electrodes is given by di�erentiating with
respect to the thickness

F = −
dU

dD
= −

Q2

2ϵ

(
1
A
−

D

A2
dA

dD

)
. (5.12)

�e key di�erence from the classical case is the appearance of the dA/dD

term, which is nonzero for a general elastic material. �is derivative can be
computed in terms of the Poisson ratio. Let εrr and εzz denote the principal
components of strain in the radial and thickness directions respectively. �en

ν B −
dεrr
dεzz

= −
dεrr
dl

dD

dεzz

dl

dD
= −

2
πl

D0
l0

dA

dD
. (5.13)

Substituting this into Eq. (5.12) and simplifying using A = π (l/2)2 gives

F = −
Q2

2ϵA

(
1 + 2ν l0

l

D

D0

)
. (5.14)

Since Poisson’s ratio is only makes sense in the small-strain limit, for this
analysis we must take l0/l ∼ 1, D/D0 ∼ 1, though the incompressible case is
independent of this assumption. Noting also that the electric �eld strength is
E = Q/(ϵA) and dividing through by the electrode area to obtain the (e�ective)
pressure pe� acting on the top and bo�om surfaces, we obtain

pe� =
F

A
= −1

2ϵ(1 + 2ν )E2. (5.15)
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For ν = 0, the material does no work extending laterally and we recover the
classical pressure between two �xed capacitor plates. For ν = 1

2 the material
is incompressible and we obtain Pelrine’s e�ective pressure between two
electrodes of a dielectric elastomer. Interestingly, in the exotic case of negative
Poisson ratios, the pressure changes sign. For materials with ν ∈ [−1,−1/2) it
is more energetically favourable for the top and bo�om surfaces to separate
(with a corresponding in-plane dilation) than for them to come together, in
spite of the direction of the electric �eld.
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Chapter 6

Conclusions

We conclude this thesis by summarising the work done and the main contri-
butions of each chapter.

In Chapter 2 we presented the results of extensive numerical simulations
of the spiral pinball system. �is is �rst and foremost a study on the dy-
namics of dri�ing spiral waves, following in the footsteps of Biktashev and
Holden [BH93, BH95]. We showed that re�ections are nonspecular and that
in most cases re�ection angle is essentially constant over wide ranges of
incident angle. �e data obtained were compared with predictions from a
phenomenological model due to Biktashev and Holden [BH93], which was
shown to capture some, but not all of the aspects of the incidence-re�ection
angle dependence. �is is particularly true of the large-core case, which was
not originally considered by Biktashev and Holden. Here, we observed a vari-
ety of di�erent behaviours at the boundary: annihilation, phase-dependence
and two circumstances where spirals are a�racted to the boundary, which
we call glancing and binding. �e dynamics in these la�er two cases are yet
to be fully understood. Long-term behaviour in both the small and large core
cases was also considered. In the small-core case, we presented a dynamical
systems argument for why the pinball trajectories are a�racted to a stable
square orbit in the small-core regime, while in the large-core case the square
is unstable and trajectories collapse towards the diagonal.

�e re�ections of spiral pinballs bear considerable resemblance to those
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of the systems that originally motivated our study. In particular, stable
square orbits are ubiquitous, since they emerge naturally from the incidence-
re�ection dependence of the given system. Moreover, the selection of a
‘preferred’ re�ection angle also appears to be emerging as a theme. A recent
paper by Pucci et al. demonstrates the re�ection behaviour of the bouncing
droplet system [PSFB16]. �ey observe only a small range of re�ection
angles which depends weakly on system parameters. Certain swimming
microorganisms also exhibit similar re�ection behaviour [SL12]. �is was
drawn to our a�ention a�er our own study had concluded. In this case, the
long-term dynamics have been studied in a manner that generalises to other
nonspecular billiard systems [WLST15].

We extended the study of spiral pinballs in Chapter 3, using the asymptotic
theory of response functions, which reduces the dynamics of dri� to three
coupled ODEs whose form can be obtained numerically. We were thereby
able to describe the underlying details governing re�ections. �e fundamental
reason for re�ection in the small-core regime was already known to Bikta-
shev and Holden: perturbation of the spiral core alters the rotation frequency,
pushing the system o� resonance and changing the direction of dri�. How-
ever, by carefully examining the response function ODEs, one is able to see
explicitly the details of the process. We described the dynamics and explained
the qualitative form of the dependence of re�ection angle on incidence angle
in both the small and large core regimes. Re�ections of large-core spirals
are particularly nontrivial. Response functions explain typical large-core
re�ections well, but were found not to predict the more exotic glancing and
binding trajectories. In the asymptotic limit, we compared response function
predictions with direct numerical simulations and found excellent agreement.
Moreover, our analysis agrees qualitatively with our observations of spiral
pinballs in Chapter 2 that exist far beyond this limit.

In Chapter 4, we directed our a�ention to spiral waves in deforming media.
�ough motivated by the case of cardiac tissue, which features reciprocal
coupling between nonlinear elastic deformations and excitable wave propa-
gation, our primary interest was a generic system in which spiral wave and
mechanics interact with one another. We covered the theory behind such a
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system in detail, discussed a suitable model and its implementation via the �-
nite element method. A number of di�erent results using this implementation
were demonstrated.

Finally, in Chapter 5 we proposed a new approach to modelling dielectric
elastomers (DEs). �ese are elastic capacitors made with compliant electrodes
that deform into interesting shapes when subjected to a potential di�erence.
Our primary contention is thus: in situations where it is important to match
out-of-plane deformation shapes accurately, it is necessary to model the e�ect
of the electric fringing �eld at the boundaries of the electrodes. �is edge
e�ect is small and typically considered to be negligible. �rough comparison
with experiments conducted by our colleagues, we showed that it neverthe-
less plays an important role in the selection of equilibrium shapes. When
the fringing e�ect was accounted for, agreement between experiment and
simulation was excellent. Neglecting the e�ect led to poor agreement that
in some situations was not even qualitatively accurate. �e model proposed
decomposes the stresses induced by electrostatic forces into two components
input via boundary conditions: a normal pressure due to mutual a�raction of
the electrodes and a tangential traction due to the fringe e�ect. �e advantage
of this approach is its simplicity. Simulations are straightforward compared to
more detailed models and the fringing e�ect is easily investigated by varying
its magnitude. With this, we captured simple out-of-plane deformations and
nontrivial pa�erns. In the la�er case, we demonstrated the nonuniqueness
of equilibrium shapes and the importance of computing multiple solutions.
An algorithm called ‘de�ation’, whose application in the context of nonlinear
PDE solving was recently proposed by Farrell et al. [FBF15], was shown to be
useful and necessary in this context. At the end of the chapter, by solving the
Laplace equation, we independently veri�ed that the applied traction used in
the model was of an appropriate magnitude, thereby further justifying our
model.
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S. Müthing, M. Nolte, M. Piatkowski, and O. Sander, �eDistributed and Uni�ed

Numerics Environment, Version 2.4., Archive of Numerical So�ware 4 (2016),
no. 10, 13–29.

[BBS11] V. N. Biktashev, I. V. Biktasheva, and N. A. Sarvazyan, Evolution of spiral and

scroll waves of excitation in a mathematical model of ischaemic border zone,
PLoS ONE 6 (2011), no. 9, e24388.

[BC08] E. Biddiss and T. Chau, Dielectric elastomers as actuators for upper limb pros-

thetics: Challenges and opportunities, Med. Eng. Phys. 30 (2008), no. 4, 403–
418.

[BE93] M. Bär and M. Eiswirth, Turbulence due to spiral breakup in a continuous

excitable medium, Phys. Rev. E 48 (1993), no. 3, R1635.

[BEB99] I. V. Biktasheva, Y. E. Elkin, and V. N. Biktashev, Resonant dri� of spiral waves

in the complex Ginzburg-Landau equation, J. Bio. Phys. 25 (1999), no. 2-3, 115–
127.

[Bel59] B. P. Belousov, A periodic reaction and its mechanism, Collection of essays on
radiation medicine, year 1958, 1959, pp. 145–147. (In Russian).

[Ber91] A. J. Berno�, Spiral wave solutions for reaction-di�usion equations in a fast

reaction/slow di�usion limit, Physica D 53 (1991), no. 1, 125–150.

[BH93] V. N. Biktashev and A. V. Holden, Resonant dri� of an autowave vortex in a

bounded medium, Phys. Le�. A 181 (1993), 216–224.

146



[BH95] , Resonant dri� of autowave vortices in two dimensions and the e�ects

of boundaries and inhomogeneities, Chaos, Solitons Fractals 5 (1995), 575–622.

[BHB06] I. V. Biktasheva, A. V. Holden, and V. N. Biktashev, Localization of response

functions of spiral waves in the FitzHugh-Nagumo system, Int. J. Bif. Chaos 16
(2006), no. 05, 1547–1555.

[Bik00] I. V. Biktasheva, Dri� of spiral waves in the complex Ginzburg-Landau equation

due to media inhomogeneities, Phys. Rev. E 62 (2000), 8800–8803.

[Bik07] V. N. Biktashev, Dri� of spiral waves, Scholarpedia 2 (2007), no. 4, 1836.

[BP10] P. Brochu and Q. Pei,Advances in dielectric elastomers for actuators and arti�cial

muscles, Macromol. Rapid Comm. 31 (2010), no. 1, 10–36.

[Bus10] J. W. M. Bush, �antum mechanics writ large, P. Natl. Acad. Sci. USA 107
(2010), no. 41, 17455–17456.

[CBC+11] R. H. Clayton, O. Bernus, E. M. Cherry, H. Dierckx, F. H. Fenton, L. Mirabella,
A. V. Pan�lov, F. B. Sachse, G. Seemann, and H. Zhang, Models of cardiac tissue

electrophysiology: progress, challenges and open questions, Prog. Biophys. Mol.
Biol. 104 (2011), no. 1, 22–48.

[CBDR10] F. Carpi, S. Bauer, and D. De Rossi, Stretching dielectric elastomer performance,
Science 330 (2010), no. 6012, 1759–1761.

[CDR04] F. Carpi and D. De Rossi, Dielectric elastomer cylindrical actuators: electrome-

chanical modelling and experimental evaluation, Mater. Sci. Eng. C. 24 (2004),
no. 4, 555–562.

[CF06] Y. Couder and E. Fort, Singe-particle di�raction and interference on a macro-

scopic scale, Phys. Rev. Le�. 97 (2006), 154101.

[CF12] , 2012. (Private communication).

[CFGB05] Y. Couder, E. Fort, C.-H. Gautier, and A. Boudaoud, From bouncing to �oating:

noncoalescence of drops on a �uid bath, Phys. Rev. Le�. 94 (2005), 177801.

[CFNT08] C. Cherubini, S. Filippi, P. Nardinocchi, and L. Teresi, An electromechanical

model of cardiac tissue: Constitutive issues and electrophysiological e�ects, Prog.
Biophys. Mol. Biol. 97 (2008), no. 2, 562–573.

[CPFB05] Y. Couder, S. Protière, E. Fort, and A. Boudaoud, Walking and orbiting droplets,
Nature 437 (2005), 208.

[CPZ+14] J.-X. Chen, L. Peng, Q. Zheng, Y.-H. Zhao, and H.-P. Ying, In�uences of periodic
mechanical deformation on pinned spiral waves, Chaos 24 (2014), no. 3, 033103.

147



[CXYY09] J.-X. Chen, J.-R. Xu, X.-P. Yuan, and H.-P. Ying, In�uences of periodic mechanical

deformation on spiral breakup in excitable media, J. Phys. Chem. B 113 (2009),
no. 3, 849–853.
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