
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Qi, T., Feng, W., Chen, Yunfei and Wang, Y.. (2017) When NOMA meets sparse signal 
processing : asymptotic performance analysis and optimal sequence design. IEEE Access 
 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/90396          
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for profit 
purposes without prior permission or charge.  Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
“© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting 
/republishing this material for advertising or promotional purposes, creating new collective 
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component 
of this work in other works.” 
 
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see the 
‘permanent WRAP URL’ above for details on accessing the published version and note that 
access may require a subscription. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/90396
mailto:wrap@warwick.ac.uk


1

When NOMA Meets Sparse Signal Processing:
Asymptotic Performance Analysis and

Optimal Sequence Design
Ting Qi, Student Member, IEEE, Wei Feng, Member, IEEE,

Yunfei Chen, Senior Member, IEEE, Youzheng Wang, Member, IEEE,

Abstract—Due to limited radio resources, non-orthogonal mul-
tiple access (NOMA) is a promising technology to enable massive
connectivity in future 5G and beyond wireless networks. However,
it suffers from the multiple access interference (MAI), which
usually requires a high detection complexity to mitigate. In this
paper, we consider NOMA with sparse multiple-access sequences,
so as to leverage the message passing algorithm (MPA) for low-
complexity and high-reliability multiuser detection. The optimal
sparsity of spreading sequences is analyzed by minimizing the
average bit error rate (BER) in the asymptotic large-system limit.
Based on the analysis, the optimal sparse sequences that optimize
the performance of MPA detector are designed in a systematically
hierarchical way. The sparse structure is constructed given the
target girth. Then, the values of nonzero entries are determined
to maximize the minimum distance. The detection performance
of the designed sparse sequences is presented for both additive
white Gaussian noise (AWGN) and Rayleigh fading channels.
Simulation results show the superiority of the proposed design
in comparison with existing schemes.

Index Terms—Detection performance optimization, message
passing algorithm (MPA), non-orthogonal multiple access (NO-
MA), sparse multiple-access sequences.

I. INTRODUCTION

NON-ORTHOGONAL multiple access (NOMA) [1], [2]
has been widely recognized as a promising technology

to address the challenge of massive connectivity in future 5G
wireless networks [3]. In NOMA, the system works in an
overload way, i.e., K users share N orthogonal resources, e.g.,
time slots or orthogonal subcarriers, for K > N . Therefore,
in NOMA systems, the multiple access interference (MAI) is
usually severe, which should be carefully alleviated by using
complicated multiuser detection (MUD).

A. Prior Works

The way that K users share N resources can be described
using a multiple-access matrix, denoted by S, each column of
which represents the spreading sequence of each user. Many
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schemes have been proposed to implement NOMA with rela-
tively low implementation complexity. One widely researched
scheme is to superpose the signals of two users and transmit
them on one resource [4], and the corresponding matrix is
simply S =

[
1 1

]
. Large gap between the channel gains

of pairing users is expected so that successive interference
cancellation MUD can be applied [5]. This scheme can achieve
the sum capacity of the channel and can be extended to more
than two users, and the system load, defined as K/N , takes
integer values.

To achieve more diverse load, the matrix S has to be
elaborately designed. Many researchers proposed to construct
sparsely structured matrix so as to take advantage of sparse
signal processing, i.e., the message passing algorithm (MPA)
to largely reduce the practical complexity of MUD. The
concept of sparse (also named low-density) spreading structure
was introduced in [6], wherein the iterative soft-in-soft-out
MUD based on MPA was studied and the advantage of this
scheme was presented by simulation. This structure has further
been applied to the orthogonal frequency division multiplex-
ing system over the multipath fading channel and achieved
significant performance improvement [7]. Recently, sparse
code multiple access that jointly designs symbol mapping and
sparse sequences was proposed in [8]. The sparse matrices
discussed in these works are generated randomly or found by
trial-and-error.

When NOMA meets sparse signal processing, the key
point lies in the multiple-access sequences. It is important
to construct the optimal sparse sequences to achieve the best
performance. The optimal sequences that can achieve both the
sum capacity and the maximum sparsity were investigated in
[9]. However, constructing the sparse matrix that optimizes the
performance of the relevant MPA detector is more challenging,
since there are no closed-form expressions for the relationship
between the detection performance of MPA and the sparse
sequences. Despite of the difficulty, the average performance
can be evaluated by the asymptotic large-system limit analysis
[10]–[13]. By establishing a probability density model for
the entries of sparse spreading sequences, a method based
on statistical mechanics was proposed to analyze the optimal
detection performance [11] as well as the spectral efficiency
of the scheme [10]. By letting the sparsity go to infinity
at a smaller rate, the authors in [12] and [13] studied the
performance of MPA and concluded that MPA detection for
the sparsely spread system is asymptotically optimal. Be-
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sides the asymptotic large-system limit analysis, for finite-
size multiuser systems, an iterative procedure utilizing the
extrinsic information transfer chart was proposed in [14] to
design the degree distribution for the low-density signature
structure. Based on the sparse structure of low-density parity-
check codes, the signature (value of non-zero entries) design
was investigated in [15], [16].

B. Contribution

The above mentioned works do not provide a systematic
design of the optimal sparse sequences that optimizes the
performance of MPA detector, especially with the constraints
on the transmission efficiency and the detection complexity.
It is critical for the practical application of NOMA to deal
with the MAI with low-complexity and high-reliability. This
motivates our work. The main contributions of the paper can
be summarized as follows:

• We propose a systematic scheme to construct the sparse
sequences in a hierarchical way with the aim of optimiz-
ing the performance of MPA. With this scheme, we are
able to implement NOMA using sparse signal processing,
i.e., MPA for low-complexity and high-reliability multius-
er detection.

• We analyze the average BER of MPA in the asymptotic
large-system limit by deriving the density evolution for-
mula for the MPA detector, and formulate an optimization
problem minimizing the average BER with the constraints
on the system load and detection complexity. To solve the
nonlinear integer programming problem, we propose an
efficient algorithm to find the optimal sparsity.

• Based on the optimal sparsity using the large-system limit
analysis, the optimal sparse sequences are designed in a
hierarchical way. First, given the target girth, the sparse
structure is constructed by leveraging the progressive
edge growth method. Then, in regard to the choice of the
values of nonzero entries, the minimum distance between
two transmitted signals is maximized to further optimize
the performance of MPA.

• The error performance of the designed sparse sequences
is investigated for both AWGN and Rayleigh fading
channels. The influence of constraints on the detection
is illustrated, and the superiority of the proposed scheme
is demonstrated in comparison with other schemes.

C. Organization

The rest of the paper is organized as follows. Section II
presents the general system model of NOMA with sparse
sequences, the factor graph representation and the MPA for
multiuser detection. Section III performs the asymptotic large-
system analysis of MPA and optimizes the sparsity by mini-
mizing the average BER. The optimal sparse sequences are
designed in a hierarchical way in Section IV. Section V
evaluates the detection performance of the designed sparse
sequences, and Section VI concludes the paper.

II. SYSTEM MODEL

A. NOMA with Sparse Sequences

Consider a NOMA system where K users share N or-
thogonal resources and K > N . The system load is defined
as β = K

N , which measures the user capacity, the ability
of accommodating users in the system and the efficiency
of the system. Assume that each user is equipped with one
antenna and consider the uplink channel where the users
simultaneously transmit to the base station.

Let xk denote the transmitted symbol of user k with a
normalized average power of 1, i.e., E[x2

k] = 1, ∀k =
1, · · · ,K. Assume that the symbols {xk} take values from the
constellation alphabet X with equal probability. In this paper,
we consider binary phase-shift keying (BPSK) modulation,
thus X = {+1,−1}. Each user spreads its symbol onto the
N resources using a sequence. Let the spreading sequence
of user k be sk = 1√

Λk
[s1k, . . . , sNk]

T where 1√
Λk

is the
normalization factor such that ∥sk∥2 = 1. The symbol xk

is modulated with the spreading sequence sk with positive
amplitude Ak. Assume that all symbols are transmitted with
the same amplitude A. Let x = [x1, x2, . . . , xK ]T be the
transmitted vector and S = [s1, . . . , sK ] denote the multiple-
access matrix, which represents the way users share the
resources. The channel of user k on the N resources is denoted
by the N × 1 vector hk. The received signal, which is the
superposed version of the transmitted signals from all users,
can be written in discrete-form as

y =

K∑
k=1

Ahk ⊙ skxk +w

= AH ⊙ Sx+w,

(1)

where y = [y1, y2, . . . , yN ]T is the received signal vector
collected from the N resources, and w ∼ CN (0, I) denotes
the white Gaussian noise vector, ⊙ represents the entrywise
product and H = [h1, . . . ,hK ] is the channel matrix. The
channel considered here is either AWGN channel, where
hnk = 1, ∀n, k, or Rayleigh fading channel, where hnk follows
i.i.d CN (0, 1). The signal-to-noise ratio (SNR) of each user is
equal to 20 log10 A dB.

To reduce the detection complexity, the matrix S is designed
to be sparse so as to leverage the low-complexity MPA
detection to achieve near optimal performance. Specifically,
each symbol is spread over a relatively small number of the
N resources and each resource is used by a relatively small
number of the K users. We define an N ×K binary indicator
matrix, denoted by G = {gnk}N×K , where ’1’s indicate the
nonzero entries in S, i.e., for ∀n, k, if gnk = 0, set snk = 0;
if gnk = 1, set snk ̸= 0. With S being sparse, the signal
model (1) can be represented by the factor graph, where the
transmitted symbol xk, denoted by variable node, and the
received symbol yn, denoted by function node, are connected
by edge ek,n if gnk = 1, and the gain corresponding to the
edge is snkhnk√

Λk
A.

The variable and function node sparsity are defined as the
number of edges connected with them, respectively and also
equal to the number of nonzero entries in columns and rows
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Fig. 1. The factor graph representation of sparse sequences with dv = 2
and df = 3.

of the matrix S. The matrix S is regular if the variable nodes
and the function nodes are of identical sparsity respectively,
otherwise it is irregular. Regular matrices potentially outper-
form irregular ones in terms of spectral efficiency and bit error
probability [11]. Therefore, in this paper, we focus on regular
structures. Let dv and df denote the variable and function node
sparsity respectively, and we have dv =

∑N
n=1 gnk, ∀k and

df =
∑K

k=1 gnk,∀n. Fig. 1 shows the factor graph of sparse
sequences with dv = 2 and df = 3. For regular structures, the
following relationship must be satisfied:

β =
df
dv

. (2)

B. MPA Detection

MPA is an iterative detection performed over the factor
graph. In each iteration, messages that measure the a posterior
probability of the variable node are sent to the connected
function nodes; each function node then computes messages
to send back to the variable nodes based on the observed
signal and the previously received messages. For detailed
description, we refer the readers to [6]. Let v(t)k→n and u

(t)
n→k

be the messages sent along edge ek,n between variable node
xk and function node yn in the t-th iteration. The messages
are represented in the form of log-likelihood ratio (LLR) for
BPSK. The update equations are given by (3) and (4) (on the
next page).

v
(t)
k→n =

∑
j∈ζk\n

u
(t−1)
j→k , (3)

where ζk (ζn) is the index subset of function (variable) nodes
connected to xk (yn), called its neighborhood; ζk \ n denote
the neighborhood of xk excluding yn.

The initial condition of the iteration is v
(0)
k→n = 0. After the

messages have converged or the maximum number of itera-
tions T has been met, all the messages coming to variable node
xk are summed to compute the final LLR vk→n =

∑
j∈ζk

u
(T )
j→k,

which can be used to make a final decision for symbol xk or
be sent to the following decoding module.

III. ASYMPTOTIC LARGE-SYSTEM ANALYSIS

As there is no closed-form expression for the relationship
between the detection performance of MPA and the sparse
sequences, it is intractable to optimize the sparse sequences
directly. To overcome this difficulty, we firstly investigate the
performance of MPA in the asymptotic large-system limit, by
letting K,N → ∞ with their ratio β fixed.

In the large-system limit, the average bit error rate (BER)
will be evaluated for the limiting variable and function node
sparsity of the matrix, based on which an optimization problem
that minimizes the average BER is formulated with constraints
on the system load and detection complexity. We perform the
large-system limit analysis by adopting the density evolution
(DE) framework. It was first introduced to calculate the
threshold of the sum-product decoding [17] and was used to
search for the capacity-approaching low-density parity check
codes (LDPC) [18]. DE is an effective tool for analyzing the
dynamic behavior of belief-propagation-like algorithms. We
will first derive the DE formula for the MPA detector and
analyze the impact of sparsity on the performance. We then
formulate an optimization problem to minimize the average
BER with the constraints of system load demand and detection
complexity. An efficient algorithm is proposed to obtain the
optimal variable and function node sparsity.

A. Analysis of MPA by Density Evolution

Assume that the indicator matrix G is uniformly and
randomly picked from the indicator matrix ensemble for the
given sparsity distribution. Nonzero entry snk is drawn i.i.d
from the distribution ps with zero mean and unit variance.
Average performance will be evaluated by DE.

Large-system limit renders the random sparse graphs to be
locally tree-like, which ensures that the incoming messages
are independent. DE treats the sent messages as independent
random variables, and tracks the probability density function
(PDF) of the messages. Without loss of generality, assume
that all inputs are +1 and that the messages follow Gaussian
distribution. This approximation has good performance as
elaborated in [17], and we will show later that it is valid in
this case. Moreover, the MPA detector fulfills the symmetry
condition [13], which leads to σ2 = 2m for a Gaussian
distribution with mean m and variance σ2. Thus, tracking the
mean of the message is enough, which dramatically reduces
the computational complexity of DE.

Let v and u be the message from a variable node and a
function node, respectively. The DE formula for the MPA
detector is given as follows.

Theorem 1: Denote mu and mv as the mean of u and v,
respectively. Then, mu and mv are calculated by (5) and (6)
in the t-th iteration, respectively, written as

m(t)
u =

2A2

dv

∫ ∞

−∞

1

α 4ev

(ev+1)2 + 1
· 1

4πm
(t)
v

e
− (v−m

(t)
v )2

4m
(t)
v dv,

(5)

m(t)
v = (dv − 1)m(t−1)

u , (6)

where α =
df−1
dv

A2. The initial condition is

m(0)
u =

2A2

dv(α+ 1)
. (7)

Proof: See the appendix.
After the maximum number of iterations T has been met or

the messages have converged, the final message v follows a
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u
(t)
n→k = log

∑
i∈ζn\k
xk=+1

exp

(
−1

2 (yn −
∑
i∈ζn

snihni√
Λi

Axi)
2 +

∑
i∈ζn\k

xi

2 v
(t)
i→n

)
∑

i∈ζn\k
xk=−1

exp

(
−1

2 (yn −
∑
i∈ζn

snihni√
Λi

Axi)2 +
∑

i∈ζn\k

xi

2 v
(t)
i→n

) , (4)
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Fig. 2. The asymptotic average BER of MPA in large-system limit for various
sparsity settings (dv , df ) and the fixed load β = 1.5.

Gaussian distribution N (m∗
v, 2m

∗
v) with m∗

v = dvm
(T )
u . The

equivalent average SNR is m∗
v/2 and the BER is given by

BER = Q
(√

m∗
v

)
, (8)

where Q(x) is the Q-function of standard normal distribution.
We will use the derived DE formula (5) and (6) to evaluate

the performance of MPA in the large-system limit and provide
some insights on the influence of sparsity and system load.

Fig. 2 shows the asymptotic average BER achieved by the
MPA detector for various sparsity settings (dv, df ) and fixed
load β = 1.5. The single user bound, which is the BER
of orthogonal multiple access system (OMA) system, is also
plotted for comparison. It reveals that the performance of
MPA approaches the single user bound as SNR increases. It is
observed that, for fixed system load, the performance improves
with increasing sparsity in the medium and high SNR regime,
and the improvement reduces as the sparsity increases further.
This feature is further examined in Fig. 3, which plots the
variation of the BER vs. sparsity for different fixed system
loads. The performance is improved dramatically when dv
increases from 2 to 6 and remains approximately the same
when dv is beyond 6.

Fig. 4 presents the variation of BER vs. the system load
given SNR = 8 dB. The BER performance becomes worse
as the system load increases, as expected. Moreover, there is
a threshold of system load for each variable sparsity, beyond
which the performance deteriorates rapidly.
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Fig. 3. The variation of the asymptotic average BER vs. sparsity for different
fixed system loads and SNR = 8 dB.
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Fig. 4. The variation of the asymptotic average BER vs. system load under
SNR = 8 dB.

B. Optimization of Sparsity

Denote Pe as the average BER performance of MPA de-
tector in the asymptotic large-system limit. According to the
previous analysis, Pe is a function of df and dv when SNR is
fixed. We formulate an optimization problem that minimizes
the average BER with the constraints on the system load and
the detection complexity. The optimization problem is given
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by

min
dv, df

Pe (9a)

s.t. β ≥ β0, (9b)
df ≤ df , (9c)
dv, df ∈ N+ ≥ 2, (9d)

where β0 is the required minimum system load, and inequation
(9c) gives the detection complexity constraint, because the
complexity of MPA is O(|X |df ) [15]. Constraint (9d) means
dv and df can only take positive integer values larger than
2. With these objective function and constraints, we have
formulated a nonlinear integer programming problem.

This problem is hard to solve because no analytic expression
can be derived for Pe (dv, df ), as MPA is a nonlinear iterative
detection method. By leveraging the previous analysis of
MPA and investigating the characteristics of the problem, we
will propose an efficient algorithm to search for the optimal
solution.

Theorem 2: If we extend the feasible region to the real
domain, i.e., remove the integer constraint (9d), the optimal
solution to (9) is obtained when constraints (9b) and (9c) are
satisfied with equality simultaneously.

Proof: Suppose there exists an optimal sparsity pair
(d′v, d

′
f ), for which one of the following three cases is valid:

1) β′ = β0, d′f < df ; 2) β′ > β0, d′f = df ; 3) β′ > β0,

d′f < df , where β′ =
d′
f

d′
v

.
For case 1), keep β′ fixed and increase (d′f , d

′
v) to

(d
(1)
f , d

(1)
v ) so that d(1)f = df . This will improve the detection

performance, i.e., Pe(d
(1)
v , d

(1)
f ) < Pe(d

′
v, d

′
f ), so that (d′v, d

′
f )

is not optimal. For case 2), decrease β′ by increasing d′v so
that the detection performance is improved. For case 3) we
can verify that (d′v, d

′
f ) is not optimal in a similar manner.

Thus the proposition is true.
When the integer constraint is added, the optimal sparsity

pair may not be the point that satisfies constraints (9b) and
(9c) with equality any more, but it will be close to the optimal
value. Based on this observation, an algorithm is proposed in
TABLE I, where ⌊z⌋ means getting the largest integer smaller
than or equal to z. The algorithm starts from the integer point
nearest to the boundary of the feasible region and searches
along the descent direction of objective function. The total
number of points possible to be searched is evaluated to be
(d

(1)
f −2)(d

(1)
v ). Therefore, the complexity of the algorithm is

O
(
(df − 2)⌊df

β0
⌋
)

. Since the searching space is limited, the
algorithm will converge after a few loops. In each loop, the
algorithm can search all the points superior to the current one
in the feasible region. Thus the solution of the algorithm is
optimal.

We will give the optimization results for various configura-
tions of constraint parameters.

Result 1: Given SNR = 8dB and the system load demand
β0 = 1.5, the optimal sparsity under various d̄f settings is
presented in TABLE II.

Result 2: Given SNR = 8dB and the complexity constraint
parameter d̄f = 6, the optimal sparsity under various load β0

TABLE I
PROPOSED ALGORITHM FOR DESIGN OF OPTIMAL SPARSITY

Input: Given SNR, the system load demand β0,
complexity constraint parameter df

Output: Optimal sparsity (d∗v , d
∗
f ).

Initialize d∗f = df , d∗v = ⌊d′v⌋ with df/d
′
v = β0,

i = 1, d(1)v = d∗v , d(1)f = d∗f ;

while d
(i)
v > 1

if the current load d
(i)
f /d

(i)
v ≥ β0

if Pe(d
(i)
f , d

(i)
v ) ≤ Pe(d∗f , d

∗
v)

Update the current optimal sparsity (d∗v , d
∗
f ) = (d

(i)
v , d

(i)
f );

end
if d(i)f > d

(i)
v + 1

Update (d
(i+1)
v , d

(i+1)
f ) = (d

(i)
v + 1, d

(i)
f );

else
Update (d

(i+1)
v , d

(i+1)
f ) = (d

(i)
v , d

(i)
f − 1);

end
else

Update (d
(i+1)
v , d

(i+1)
f ) = (d

(i)
v − 1, d

(i)
f − 1);

end
i = i+ 1;

end

is presented in TABLE III.

TABLE II
THE OPTIMAL SPARSITY UNDER VARIOUS d̄f , SNR=8 dB, β0 = 1.5.

d̄f 3 4 5 6 7 8 9

d∗v 2 2 3 4 4 5 6
d∗f 3 3 5 6 6 8 9
P ∗
e 2.7e-3 2.7e-3 7.6e-4 4.7e-4 4.7e-4 4.1e-4 3.6e-4

TABLE III
THE OPTIMAL SPARSITY UNDER VARIOUS LOAD, SNR=8 dB, d̄f = 6.

β0 1 1.2 1.5 1.6 2 2.5 3

d∗v 6 5 4 3 3 2 2
d∗f 6 6 6 5 6 5 6
P ∗
e 3.1e-4 3.6e-4 4.7e-4 7.6e-4 9.7e-4 0.11 0.15

IV. SPARSE SEQUENCES DESIGN

Based on the large-system limit analysis, in the following,
the optimal sparse sequences that optimize the performance
of MPA detector is designed in a systematically hierarchical
way, as illustrated in Fig. 5. First, the dimensions of the
matrix are determined and the sparse structure is constructed
given the target girth. This step gives the indicator matrix.
Then, the values of nonzero entries are designed with the
aim of maximizing the minimum Euclidean distance of the
transmitted vector, to optimize the detection performance.

A. Sparse Structure Design

Given the variable and function node sparsity, the next step
is to design the sparse structure that gives the position of



6

...

..
.

0

0

0

0

0

0

0

0

0

0

0

0

6 3

6 3

6 3

6 3

1 0 0 0

1 0 0 01

2
0 1 0 0

0 1 0 0

j j

j j

j j

j j

e e

e e

e e

e e

p p

p p

p p

p p

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

Sparse structure

given the target girth
Nonzero entry

value design

Fig. 5. The schematic diagram of the proposed hierarchical scheme for the sparse sequences design.

nonzero entries in the matrix. This is performed under the
condition of limited dimension, which may lead to cycles
in the factor graph. The MPA over cycle-free factor graphs
provide optimal detection, but cycles especially small cycles
deteriorate the performance of MPA. Hence it is necessary to
mitigate the influence of the cycles. The girth of a factor graph
is defined as the length of the smallest cycle in the graph, and
the smaller the girth, the worse the performance will be.

To guarantee the performance, a tolerable girth is set for
this procedure and the goal is to construct the factor graph
with girth meeting the requirement from an ensemble of factor
graphs given the sparsity.

The problem of constructing sparse factor graphs was
widely researched in LDPC [19]. Typical LDPC construction
methods is introduced as follows. Gallager’s construction is
based on a banded structure in check matrix with random
submatrices. There is no guarantee that small cycles are not
present. Progressive edge growth (PEG) is a graph based
method, where edges are added to the factor graph progres-
sively in an edge-by-edge manner, so as to maximize the local
girth at the current variable node. Thus, PEG method avoids
the occurrence of small cycles [20], and it is adopted in this
paper to generate the indicator matrix, given the sparsity.

The following proposition gives the range of the number of
resources so as to satisfy the girth requirements with the given
sparsity.

Theorem 3: Consider a regular indicator matrix with vari-
able sparsity dv and function sparsity df . Given the desired
girth g, the number of rows in the matrix, denoted by N , is
in the interval [Nl, Nu) where

Nl =
[(df − 1)(dv − 1)]

g−2
4 − 1

1− dv

df (dv−1)

+ 1,

Nu =
[(df − 1)(dv − 1)]

g
2 − 1

df − df

dv
− 1

(10)

Proof: The girth g is lower bounded and upper bounded
by g ≥ 2(⌊t⌋+ 2) and g ≤ 4⌊t⌋+ 2, respectively [20] where

t =
log(Ndf − Ndf

dv
−N + 1)

log[(dv − 1)(df − 1)]
− 1. (11)

Therefore we have the bound for t given by
g − 2

4
≤ t <

g

2
− 1. (12)

Substituting (11) into (12) and solving (12), we can obtain the
lower and upper bound given in (10).

There are actually multiple factor graphs satisfying the girth
requirement. We will select the one with minimum dimension
in order to make the system more flexible. The algorithm to
generate the optimal sparse structure is listed in TABLE IV.

TABLE IV
ALGORITHM FOR THE CONSTRUCTION OF OPTIMAL INDICATOR MATRIX

Input: Given sparsity dv and df , the minimum girth g,
Output: Optimal indicator matrix G.

Calculate Nl and Nu by (10);
N = ⌈Nl

dv
⌉dv ,K = ⌈Nl

dv
⌉df ;

loop
Construct the sparse indicator matrix G by the PEG algorithm
with input N,K, dv , df ;
N = N + dv ,K = K + df ;
until the girth of G is not smaller than g

The following example gives the constructed indicator ma-
trices, denoted by G(dv,df ),g, given the target girth g and
sparsity (dv, df ).

Result 3: Given (dv, df ) = (2, 3), if we set the target girth
g = 6, the indicator matrix is

G(2,3),6 =


1 0 1 0 1 0

1 0 0 1 0 1

0 1 1 0 0 1

0 1 0 1 1 0

 , (13)

if we set the target girth g = 8, the indicator matrix is then

G(2,3),8 =



1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1

0 1 0 0 0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 1 0 0 1

0 0 0 1 0 0 1 0 0 0 1 0


.

(14)

B. Nonzero Entry Value Design

This section addresses the problem of choosing the values
of nonzero entries in the matrix S for the best detection
performance. The distance spectrum, related to the matrix and
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the constellation alphabet, determines the performance of opti-
mal detection. The distance between two arbitrary transmitted
vectors x1,x2 ∈ X is defined by D = ∥AS(x1 − x2)∥. Let
∆X = {0,±2} and ∆XK be the set of length K vectors with
entries taken values from ∆X . The minimum distance is thus
given by

Dm = min
∆x∈∆XK ,∆x̸=0

D(S,∆x).

D(S,∆x) =

√√√√ N∑
n=1

∣∣∣∣∣
K∑

k=1

1√
Λk

Asnk∆xk

∣∣∣∣∣
2 (15)

Since constant-modulus value is in favor of implementation,
we assume the nonzero entries snk = ejθ, θ ∈ [0, 2π) for
hnk = 1 and denote S as the matrix set with such unit-
modulus value. Particularly, the BER is approximately propor-
tional to e−Dm at high SNR. Therefore, given the indicator
matrix, we design the optimal matrix with the maximum
minimum distance.

However, finding the optimal matrix is generally an in-
tractable problem with high complexity. The following propo-
sition provides a method of reducing the size of searching
space.

Proposition 1: ( [16],Theorem 3) Let G be the indicator
matrix with cycles in the corresponding factor graph and
denote E as the edge subset that after delating the edges
inside, the graph becomes a tree. The optimal matrix with
the maximum minimum distance is in the subset {S|snk =
ejθk , θ1 = 0, θ2, · · · , θK ∈ [0, π

2 ) for en,k ∈ Ē and snk =
ejθnk , θnk ∈ [0, 2π) for en,k ∈ E}.

Nevertheless, it is still complicated to search for the optimal
matrix when G is of relatively large dimension or sparsity.
To simplify the problem, an efficient way is to limit the
non-zero entries of each row of S to take values from
the same finite constellation, represented by {ai}, and the
size of the constellation equals to the function sparsity df .
Specifically, non-zero entries of each row take distinct values
from {ai}, i = 0, 1, · · · , df − 1. Furthermore, let {ai} satisfy
the row-wise unique decodability requirement, that is for two
distinct transmitted vector x1,x2 and x1 ̸= x2, Sx1 ̸= Sx2

element-wisely, which guarantees that S is uniquely decod-
able. A empirically good design based on extensive simulation
is [15]

ai = exp (j
2π

C
i), i = 0, 1, · · · , df − 1, (16)

where C =
4df

gcd (2,df )
is chosen to get good distance spectrum.

Let S(dv,df )(N,K) represent the designed N ×K multiple-
access matrix with sparsity (dv, df ). In the following, a simple
example is given to demonstrate the design procedure.

Example 1: Setting β0 = 1.5, d̄f = 3 and given SNR=8dB,
the optimal sparsity is (2, 3) according to TABLE I. Then
let the target girth g = 6 and the constructed optimal
indicator matrix is shown by (13). The value constellation
is ai = exp (j π

6 i), i = 0, 1, 2 according to (16). Thus the
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constructed matrix is

S(2,3)(4,6) =
1√
2


1 0 ej

π
6 0 ej

π
3 0

1 0 0 ej
π
6 0 ej

π
3

0 1 ej
π
6 0 0 ej

π
3

0 1 0 ej
π
6 ej

π
3 0

 . (17)

Other matrices for various parameter settings can be con-
structed in a similar way.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we simulate the BER performance of the
designed sparse sequences under different conditions. Firstly,
we will depict the performance of MPA for AWGN channel
and investigate the influence of constraints.

Fig. 6 presents the performance of three sparse matrices
designed with various complexity parameter d̄f , identical
system load β0 = 1.5 and target girth g = 6. The single
user bound is provided as a benchmark, as the optimal
performance for OMA. It can be seen that the detection
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Fig. 8. The average BER under matrices with various girth, the same β0 =
1.5 and d̄f = 3.

complexity can be traded for better performance approaching
the single user bound in high SNR regime. Our NOMA scheme
using the designed matrices S(3,5)(48,80) and S(4,6)(228,342)

can accommodate 50% more users than OMA scheme with a
performance loss of only about 0.07dB at BER = 10−5 over
the single user bound.

The performance of sparse matrices for various system loads
is shown in Fig. 7 for the same complexity parameter and
target girth. The increasing load incurs performance loss and
especially, increasing the load from 2 to 2.5 aggravates the
loss, which is also demonstrated in Fig. 4. Despite the high
load, S(3,6)(78,156) achieves an excellent BER performance,
almost as good as S(4,6)(228,342) at high SNR.

Fig. 8 illustrates the performance of sparse matrices for
various girths when β0 = 1.5 and d̄f = 3. Note that
not all girth setting can obtain corresponding regular sparse
matrix, for example for sparsity (2, 3), g = 8 regular sparse
matrix cannot be found. Given the sparsity, girth influences the
dimension of the matrix and the optimality of MPA detection.
It shows that the performance of S(2,3)(48,72) and S(2,3)(12,18)

have very small gap but are better than S(2,3)(4,6). This implies
that large girth improves the performance, but the impact
becomes weaker as girth increases.

Assuming perfect channel state information at the receiver,
we simulate the performance of the proposed scheme over
Rayleigh fading channel. Fig. 9 gives the average BER perfor-
mance of S(4,8)(348,696) and S(3,6)(78,156) with the system load
β = 2. The performance of the NOMA scheme in [7] with also
200% overload and OMA with QPSK modulation are provided
for comparison. It reveals that the proposed NOMA scheme
outperforms the other two while achieving the same spectral
efficiency. It can be observed that the proposed NOMA scheme
is able to obtain the diversity gain in fading channel through
spreading the signal over several resources. The diversity gain
the NOMA scheme can obtain is approximately the same as
the designed variable sparsity. The theoretical BER of OMA-
QPSK with diversity gain being 3 and 4 are also plotted to
verify the observation.
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Fig. 9. The average BER in Rayleigh fading channel when the rates of
various schemes are identical.

VI. CONCLUSION

In this paper, we consider the NOMA with sparse multiple-
access sequences, so as to leverage the message passing
algorithm (MPA) to largely reduce the practical complexity of
MUD. Particularly, the optimal sparse sequences that optimize
the performance of MPA detector have been investigated. To
make the problem tractable, the optimal sparse sequences are
designed in a systematically hierarchical way. The optimal
sparsity of sequences is analyzed by minimizing the average
BER in the asymptotic large-system limit. On this basis, the
sparse structure is constructed given the target girth and then
the values of nonzero entries are chosen with the aim of max-
imizing the minimum distance. Simulation results have shown
the detection performance of the designed sparse sequences
in both AWGN and Rayleigh fading channel. It shows that by
careful choice of parameters, the performance of the sparse
NOMA schemes can approach the single user bound at high
SNR while supporting system overload. The superiority of the
proposed scheme in Rayleigh fading channel due to the ability
of obtaining diversity gain is revealed.

APPENDIX
PROOF OF THEOREM 1

According to (3), v is equal to the sum of the incoming
messages from other connected function nodes, denoted by
uj , j = 1, · · · , dv − 1, i.e.,

v =

dv−1∑
j=1

uj . (18)

Since uj’s are i.i.d. and have the same mean, the mean of
v at the t-th iteration is updated as

m(t)
v = (dv − 1)m(t−1)

u . (19)

To calculate mu, Gaussian approximation for interference
is exploited. Specifically, the signal received at resource n can
be written as

yn =
snkhnk√

Λk

Axk + znk, (20)
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where znk =
∑

i∈ζn\k

snihni√
Λi

Axi+wn contains interference and

Gaussian noise. When dv is large enough, the central limit
theorem works; then znk approximately follows a Gaussian
distribution N (µz, σ

2
z) with

µz =
∑

i∈ζn\k

snihni√
Λi

AE(xi), (21)

σ2
z =

∑
i∈ζn\k

|sni|2|hni|2

Λi
A2Var(xi) + 1, (22)

where E(xi) and Var(xi) denote mean and variance of xi

respectively, written as

E(xi) =
evi→n − 1

evi→n + 1
, (23)

Var(xi) =
4evi→n

(evi→n + 1)2
. (24)

Therefore, the message u
(t)
n→k reduces to

u
(t)
n→k =

2

σ
2(t)
z

s∗nkh
∗
nk√

Λk

A(yn − µ(t)
z ). (25)

Given snk, hnk and yn, taking the mean of (25) over v with
distribution N (mv, 2mv), we obtain (we omit (t) for brevity)

mu(S,H, yn) =
2s∗nkh

∗
nk√

Λk

A

[
Ev(

1

σ2
z

)yn − Ev(
µz

σ2
z

)

]
. (26)

For all +1 input, we have yn ∼ N (
∑
i∈ζn

snihni√
Λi

A, 1). Note that

the nonzero entries of S are i.i.d variables with zero mean
and unit variance, and hnk is either equal to 1 or follows
Gaussian distribution with zero mean and unit variance. Taking
the expectation over the randomness of S,H and yn, the first
term and the second term in the right of (26) respectively equal
to

E
[
2s∗nkh

∗
nk√

Λk

AynEv(
1

σ2
z

)

]
=

2A2

dv
Ev

(
1

αVar(xi) + 1

)
,

(27)

E
[
2s∗nkh

∗
nk√

Λk

AEv(
µz

σ2
z

)

]
= 0. (28)

Substituting (27) and (28) into (26), we can obtain (5). To
begin with, because of no message from the observed signal,
let E(xi) = 0,Var(xi) = 1 to obtain the initial condition.
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