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a b s t r a c t

The accuracy of identifying the parameters of models describing lithium ion batteries (LIBs) in typical
battery management system (BMS) applications is critical to the estimation of key states such as the state
of charge (SoC) and state of health (SoH). In applications such as electric vehicles (EVs) where LIBs are
subjected to highly demanding cycles of operation and varying environmental conditions leading to
non-trivial interactions of ageing stress factors, this identification is more challenging. This paper pro-
poses an algorithm that directly estimates the parameters of a nonlinear battery model from measured
input and output data in the continuous time-domain. The simplified refined instrumental variable
method is extended to estimate the parameters of a Wiener model where there is no requirement for
the nonlinear function to be invertible. To account for nonlinear battery dynamics, in this paper, the typ-
ical linear equivalent circuit model (ECM) is enhanced by a block-oriented Wiener configuration where
the nonlinear memoryless block following the typical ECM is defined to be a sigmoid static nonlinearity.
The nonlinear Weiner model is reformulated in the form of a multi-input, single-output linear model.
This linear form allows the parameters of the nonlinear model to be estimated using any linear estimator
such as the well-established least squares (LS) algorithm. In this paper, the recursive least square (RLS)
method is adopted for online parameter estimation. The approach was validated on experimental data
measured from an 18650-type Graphite/Lithium-Nickel-Cobalt-Aluminium-Oxide (C6/LiNiCoAlO2)
lithium-ion cell. A comparison between the results obtained by the proposed method and by nonpara-
metric frequency-based approaches for obtaining the model parameters is presented. It is shown that
although both approaches give similar estimates, the advantages of the proposed method are (i) the sim-
plicity by which the algorithm can be employed on-line for updating nonlinear equivalent circuit model
(NL-ECM) parameters and (ii) the improved convergence efficiency of the on-line estimation.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Effective real-time control of LIB systems relies on efficient esti-
mations of the state of charge (SoC) and state of health (SoH). This
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Nomenclature

BMS battery management system
ECM equivalent circuit model
EIS electrochemical impedance spectroscopy
EV electric vehicle
KF Kalman filter
LIB lithium ion battery
LS least squares
NL-ECM nonlinear ECM

OCV open circuit voltage
RC resistor-capacitor
RLS recursive least squares
SoC state of charge
SoH state of health
Wm Wiener model
WSRIV simplified refined instrumental variable for Wiener

model
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in turn, depends on operating conditions and usage, particularly
the frequency of cycling as well as the complex interactions
between voltage, current, temperature and depth of discharge
[1–3] during both cycling and storage [4–7]. State estimation is
especially important for applications such as electric vehicles
(EVs) where the inaccurate estimation of SoC and SoH can lead
to over-charge or over-discharge events with significant implica-
tions for system safety and reliability [8]. As such, Battery Manage-
ment Systems (BMS) typically employ physical models to estimate
the states of a given battery through the model parameters [9–13] .
To this end, there has been a large body of work focusing on devel-
oping methods of estimating LIB model parameters for use within
real-time operation. This includes, for example, least square meth-
ods [14–18], state observer and adaptive observer techniques [15],
[17–19], support vector machines [20] and genetic algorithms [21].

Fleischer et al. [22] summarised the most commonly used
methods for on-line estimation LIB model parameters into three
subgroups: methods using electrochemical impedance spec-
troscopy (EIS), methods employing ECMs and methods based on
electrochemical models. EIS methods such as that proposed by
Howey et al. [23], [24], where it’s argued that the harmonics gen-
erated by the electric motor connected to the EV powertrain can be
harnessed to estimate the EIS and hence battery impedance. The
challenge in this case, in addition to the requirement for bespoke
electronics which may be prohibitively expensive, is the limited
range of excitation frequencies present [22]. Furthermore, apart
from cell impedance, it is not obvious how EIS can be used to
define other important metrics such as the SoC, SoH and cell capac-
ity. The second subgroup of parameter estimation methods is
based on traditional linear ECMs [22]. To identify the unknown
model parameters and states, various implementations of the least
squares (LS) method have been applied to estimate the best solu-
tion of an overdetermined system which minimises the sum of
squared residuals [22]. The variations of LS filters include the RLS
filter and the weighted RLS filter [25–32]. Non-recursive filters
such as batch learning [33,34], which also employ an iterative LS
procedure, enable the estimation of NL-ECM parameters, although
this is at a cost of higher memory and computing resource [22].
Furthermore, with such non-recursive filters, high frequency
real-time parameters may evolve during the evaluation procedure
and therefore may not be up-to-date with the corresponding oper-
ating point [22]. More accurate but computationally expensive
filters for parameter estimation are based on different implemen-
tations of the Kalman filter (KF). The KF is a recursive procedure
which combines analytical and probabilistic Bayesian models.
Although the assumption of linearity and Gaussian noise in typical
KFs are applicable to a wide class of problems, for highly nonlinear
model equations such as the case for LIBs, generalisations of the KF
are required. Such generalisations include: the dual extended KF
[35–37] which consists of two different extended KFs in which
the results are calculated in parallel; the joint extended KF
[38,39] where model parameters are re-adapted at the same time,
thus increasing computing effort due to the higher dimensional
model matrices [22]; the dual sigma-point KF [35]; the joint
sigma-point KF [40]; and the particle filter [41]. Although KF based
approaches may be more accurate, the computational cost is
known to be significantly higher due to the required matrix inver-
sions which may lead to numerical instability. To take into consid-
eration both the nonlinearity of models and the uncertainties and
noise in measurements, nonlinear and robust observers such as H-
infinite filters [42,43] and sliding mode observers [44–46] have
been applied for battery parameters and state estimation.

Both LS and KF methods have been applied to electrochemistry
based battery models [5,47–50] for estimating model parameters.
The complex calculations of the models themselves, let alone the
adaptive filters, render the applicability of such techniques chal-
lenging for many commercial BMS’s that employ low-cost micro-
controllers. Furthermore, as discussed in Refs. [5,47], the
relatively large number of model parameters associated with elec-
trochemical battery models means that parameters are seldom
uniquely identifiable. A more detailed review and discussion of
commonly used methods for parameter and state estimation are
beyond the scope of this work, interested readers are directed to
Ref. [22].

Although ECMs are comparatively simple and require less com-
putational effort to evaluate [1], [51], they are unable to capture
important dynamics such as solid phase diffusion limitation result-
ing from large current loads or low ambient temperatures [52].
Electrochemical models on the other hand, which have a recognis-
able correspondence with electrochemistry, can readily accommo-
date solid phase diffusion [52] – at the expense of extra
computational resource, however. The trade-off between model
accuracy and computational resource adopted in this work is to
consider a Weiner configuration cascade of an ECM coupled with
a nonlinear overpotential correction function. The latter is moti-
vated by the Butler-Volmer relation and accommodates for the
nonlinear voltage response generated by high current densities
and/or low temperatures [53]. In the context of real applications,
the advantages of the Hammerstein/Wiener/Hammerstein-Wiener
class of nonlinear models include: (i) that the dynamics of systems
are mainly generated by the linear subsystem so that algorithms
and techniques developed for the linear systems may be adopted
for the Hammerstein/Wiener model and (ii) if the static nonlinear-
ity has an inverse function, such that it allows for a cancellation
with the static nonlinearity, then linear control algorithms can be
applied. Thus, the adopted Weiner model in this paper can capture
the nonlinear dynamics of a LIB while still maintaining a simple
model structure with low complexity allowing a suitably simple
online estimation technique to be adopted.

The estimation approach of the Wiener models can either be
categorised as iterative or non-iterative. This work has primarily
focused on iterative methods. In the discrete time-domain, the iter-
ative algorithm proposed in [54] is based on accessing the internal
signals by using the key term separation principle as a decomposi-
tion technique. This algorithm was extended for the case of multi-
inputs by Vörös in [55]. The approach adopted in [54,55] express



Fig. 1. The block diagram of the NL-ECM.
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the Hammerstein and Wiener models in a linear-in-the-parameter
manner. The key term separation principle and estimated linear
outputs, adopted in [54,55], are also used in the case of the Wiener
model in [56]. The principle drawbacks of this approach are
namely, that it is not a direct identification method and the conver-
gence is not guaranteed. Other approaches for discrete iterative
methods can be found in [57]. In recent studies in the discrete
domain, the kernel, Volterra and fractional least mean square algo-
rithms have been applied for estimating the parameters of the
Hammerstein models associated with coloured noise process
[58]. These approaches were able to estimate the model parame-
ters but required a large number of iterations. Although the itera-
tion number was shown to be reduced by employing the sliding-
window approximation-based fractional least mean squares in
[59], still, the iteration number is considerably large. The afore-
mentioned approaches are all in the discrete-time domain and
are employed for obtaining the continuous-time transfer function
of the linear subsystem. A further step is required to convert from
the discrete-time to the continuous-time domain and this class of
estimation approaches is termed indirect.

The contributions of this paper are summarised as follows.
Firstly, a nonlinear Weiner-type battery model, consisting of a lin-
ear ECM and a new static sigmoid block – motivated by the Bulter-
Volmer equation – is proposed. In addition to capturing nonlinear
battery dynamics, the model also maintains a simple structure and
low complexity. Secondly, the proposed estimation method
directly estimates the parameters of the nonlinear model from
the measured data (current and voltage), while previous methods
were nonparametric [60] and limited to off-line estimation.
Thirdly, the model equations are reformulated into a linear-in-
the-parameter form using the instrumental variables technique.
This then lends itself for nonlinear model parameter identification
using any linear estimator, such as the well-established LS algo-
rithm. In this way, the computational efficiency of the LS method
can be capitalised without loss of model fidelity. Fourthly, the clas-
sical form of the simplified refined instrumental variable method
(SRIVC) is extended to the simplified refined instrumental variable
for Wiener model (WSRIVC) in the continuous-time domain for
non-invertible static nonlinearity. This is then applied off-line to
estimate model parameters. Fifthly, the proposed WSRIVC method
is extended from an iterative off-line to an iterative on-line method
in a recursive manner for parameter identification in real time. For
this, the estimation step is decoupled into linear and nonlinear
sub-estimations to ensure the stability of estimator. This extension
increases the applicability of the algorithm to real-time applica-
tions where the model parameters within the look-up table need
to be updated due to battery degradation. Finally, original test data
is collected for commercial Li-ion NCA cells under various temper-
atures and SOC conditions.

This paper is structured as follows: background on the structure
and parameter estimation technique is presented in Section 2. The
problem description in terms of the Wiener sub-model (Wm) of
the NL-ECM and problem reformulation based on Wm are then
addressed in Section 3 and 4, respectively. Furthermore, the
derivation of the WSRIVC method for the selected nonlinearity is
given in Section 5, which is then extended to the on-line parameter
estimation in Section 6. Section 7 presents and discusses the
obtained results. Section 8 presents the conclusions and further
work from this research.
Fig. 2. The linear ECM.
2. Background of nonlinear battery model and parameter
estimation

The NL-ECM model adopted in this work is presented in Fig. 1
and consists of three elemental blocks, i.e., an ECM, a nonlinear
over-voltage function f ðv lÞ and an open circuit voltage (OCV) cou-
pled with hysteresis [53]. The OCV represents the equilibrium
potential of the system, i.e., the potential difference between the
negative and positive electrodes when no current is applied and
the system is at rest. Hysteresis on the other hand accounts for dif-
ferences observed in OCV measurements depending on the path
taken to a particular state, i.e., whether the particular SoC was
reached via a charge or discharge [60]. Hysteresis is related to ther-
modynamic entropic effects, mechanical stress, and microscopic
distortions within the active electrode materials following the
application of an electrical load [61], [62].

The ECM, shown in Fig. 2 [63], characterises the dynamics of the
battery. The model structure comprises of two parallel resistor–ca-
pacitor (RC) networks connected in series with a resistor. Each cir-
cuit element represents a particular phenomenon governed by its
respective timescales. The pure Ohmic resistance R0 comprises all
electronic resistances of the battery and corresponds to the instan-
taneous voltage drop when a battery is connected to an electrical
load. The charge transfer process which is attributed to the charge
transfer reaction at the electrode/electrolyte interface and the
double layer capacitance [3] is captured by Rp1 and Cp1 and
typically corresponds to a frequency (f ) of f P 1Hz. Ionic diffusion
in the solid phase is represented by Rp2 and Cp2 and is usually
characterised in pulse power tests as the linear (or close to linear)
voltage drop and corresponds to a frequency of between
0:001Hz 6 f 6 1Hz. Solid phase ionic diffusion is usually consid-
ered to be the rate determining step for Li ion batteries [52]. It is
noteworthy that the ECM structure presented in this paper
neglects the high frequency inductive behaviour of the battery,
which is known to occur at much higher frequencies, e.g.,
f > 300 Hz and is therefore beyond the frequency range associated
with most battery management control systems.

The linear kinetics of the LIB is phenomenologically modelled in
this paper using an ECM. Nonlinearity associated with current den-
sity comprises of concentration polarisation and active polarisa-
tion, which is dominant [52]. In classical electrochemistry,
concentration polarisation is described by Fick’s diffusion equation
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while the reaction kinetics of the battery (and thus active polarisa-
tion) is modelled by the Butler-Volmer equation:

id ¼ i0

�
exp

aaF
RT

g
� �

� exp
acF
RT

g
� ��

ð1Þ

where id, g; i0, T , F,R;aa and ac represent the current density, over-
potential, exchange current density, temperature, Faraday constant,
the universal gas constant, and the anodic and cathodic exchange
coefficients, respectively. Eq. (2) combines two Tafel expressions
of the form

g ¼ aþ b logðidÞ ð2Þ
to handle the forward and reverse reaction rates that occur at the
electrode–electrolyte interface. The parameters a and b in Eq. (2)
are constants, typically defined through fitting to constant current
discharge curves. The Tafel expressions skew the forward or reverse
reaction depending on the sign of the applied over-potential [64]. In
the high over-potential regime, i.e. the Tafel regime, the Faradic
reaction kinetics are nonlinear [65]. This nonlinearity is captured
in the equivalent circuit formulation by a nonlinear over-voltage
function f ðv lÞ and takes the form [53]:

f ðv lÞ ¼ c1v lðtÞ
1þ c2kv lðtÞk ð3Þ

where v lðtÞ is the linear over-voltage signal and c1 and c2 are sig-
moid coefficients that need to be estimated. Derivation of f ðv lÞ as
well as further discussion on the form of f ðv lÞ can be found in
[53], [66]. The Weiner sub-model is described in the following
section.
3. Problem description for the Wiener sub-model

This section describes the Wm for the NL-ECM shown in Fig. 1.
The Wm is a cascade of the ECM and the nonlinear over-voltage
function that represents the continuous-time linear model and
output static nonlinear function, in the classical Weiner formula-
tion respectively. The input to the Wm is the load current iðtÞ
and the output is the Wiener voltage, denoted by vW ðtÞ, as shown
in Fig. 1. The NL-ECM can be described by three input-output rela-
tionships as follows:

v lðtÞ ¼ BðDÞ
AðDÞ iðtÞ

vWðtÞ ¼ c1v lðtÞ
1þc2kv lðtÞk

vðtÞ ¼ vwðtÞ þ vOCV ðtÞ þ eðtÞ
ð4Þ

where the current iðtÞ and the voltage v lðtÞ are the input and output
of the continuous-time linear sub-model model and the subscript l
refers to linear. The output of the continuous-time linear sub-model
v lðtÞ is the input of the output-static nonlinear function (nonlinear
over-voltage function). The sigmoid function with an absolute
expression is selected to describe the output static nonlinear func-
tion whose output is vWðtÞ. The square-root expression adopted in
[53] is replaced in this work, without loss of generality, by the abso-
lute expression v lðtÞ for simplicity in forthcoming derivations. The
constants c1 and c2 are real scalar weighting coefficients which sig-
nify the relative importance of the nonlinear function. The sampled
form of vWðtÞ at instance k is denoted vWðtkÞwhere t ¼ kTs and Ts is
the sampling time. The last equation in (4) shows vðtkÞas the mea-
sured signal which is produced by corrupting the sum of vWðtkÞand
the open circuit voltage vOCV ðtkÞwith discrete white (zero mean)
noise eðtkÞrepresenting the measurement noise. This process of
including noise is usually known as output error, representing mea-
surement noises. The continuous-time linear sub-model is
described by input and output polynomials, denoted BðDÞand
AðDÞ;respectively, and are known, from Fig. 2 to be second order,
such that:

AðDÞ ¼ a0D2 þ a1Dþ a2
BðDÞ ¼ b0D2 þ b1Dþ b2

ð5Þ

where Dn is the nth order time derivative term dn
=dtn; n 2 R and the

coefficients ajðj ¼ 0;1;2Þ and bjðj ¼ 0;1;2Þ are real and bounded to
match the selected structure. The increase in order does not affect
the derivation of the proposed algorithm.
4. Reformulation of the Wiener model for the WSRIVC method

This section illustrates how the nonlinear Wm presented in (4)
can be re-arranged such that the relation between iðtÞ and vW ðtÞ is
described by a linear model which then allows any linear estimator
to be used in estimating the model parameters. Both iðtÞ and vWðtÞ
are assumed to be accessible and the parameter estimation is
based on the collected iðtÞ and vWðtÞ data. The second equation
in (4) can be re-arranged and expressed as:

vWðtÞ ¼ c1v lðtÞ � c2gðtÞ ð6Þ
where gðtÞ ¼ vWðtÞkv lðtÞk. Replacing v lðtÞ with BðDÞ

AðDÞ iðtÞ leads to a re-

expression of (6) as:

vWðtÞ ¼ c1BðDÞ
AðDÞ iðtÞ � c2gðtÞ ð7Þ

It can readily be observed that c1 and BðDÞ can be combined without
loss of generality. For simplicity c1 is assumed to be a positive real
constant. So this property can be used to reformulate (7) such that
�BðDÞ ¼ �b0s2 þ �b1sþ �b2 and �gðtÞ ¼ vWðtÞk�v lðtÞk where �bi ¼ c1bi and
�v lðtÞ ¼ �BðDÞ

AðDÞ. This leads to the re-expression of (7) as:

vWðtÞ ¼
�BðDÞ
AðDÞ iðtÞ � c�gðtÞ ð8Þ

where c ¼ c2=c1.

5. SRIVC method for Wiener Sub-model (WSRIVC)

In what follows the Wiener sub-model is expressed within the
framework of the simplified refined instrumental variable method
for the continuous-time system identification. The Wm is
re-expressed as a multi-input, single-output continuous-time
model. Thus, the error function in (4), considering (8), can be
expressed as:

eWðtÞ ¼ vðtÞ � dOCV �
� �BðDÞ
AðDÞ iðtÞ � c�gðtÞ

�
ð9Þ

where the subscript W refers to Wiener and the offset dOCV is a con-
stant and is introduced to approximate the open circuit voltage
within an infinitesimal SoC window. The Laplace transform of (9),
considering zero initial conditions, is therefore:

EWðsÞ ¼ VðsÞ � dOCV ðsÞ �
� �BðsÞ
AðsÞ IðsÞ � c�GðsÞ

�
ð10Þ

where dOCV ðsÞ ¼ 1
s dOCV and the Laplace transforms of the output and

input polynomials, respectively, are given by:

AðsÞ ¼ a0s2 þ a1sþ a2
�BðsÞ ¼ �b0s2 þ �b1sþ �b2

ð11Þ

To approximate the derivative terms, while retaining EWðsÞ on the
left-hand side of (10) without filtering, a filter 1

AðsÞ is introduced in

the first term on the right hand side of (10). This step leads to the
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introduction of an output polynomial AðsÞ in the first term of (10) as
follows:

EWðsÞ ¼ AðsÞ 1
AðsÞVðsÞ � dOCV ðsÞ � ½�BðsÞ 1

AðsÞ IðsÞ � c�GðsÞ� ð12Þ

Eq. (12) can then be transformed back to the time-domain and
expressed as:

eWðtÞ ¼ AðDÞ 1
AðDÞvðtÞ � dOCV � ½�BðDÞ 1

AðDÞ iðtÞ � c�gðtÞ� ð13Þ

It can be observed that �gðtÞ is not filtered by 1
AðDÞ :This is because the

function �gðtÞ does not contain derivative terms which is required for
estimation. Thus, the error function in (13) is rearranged and
described in a filtered form as:

eWðtÞ ¼ AðDÞvFðtÞ � dOCV � ½�BðDÞiFðtÞ � c�gðtÞ� ð14Þ
where the subscript F denotes a signal filtered by 1

AðDÞ. The filtered

input and output are iFðtÞ and vFðtÞ, respectively, and are obtained
by:

iFðtÞ ¼ 1
AðDÞ iðtÞ

vFðtÞ ¼ 1
AðDÞvðtÞ

ð15Þ

The pseudo-linear regression form can be obtained from the sam-
pled form of (15) and expressed as:

D2vFðtkÞ ¼ uT
F;WðtkÞhW þ ewðtkÞ ð16Þ

where a0 ¼ 1 and

hW ¼ ½ a1; a2; �b0;
�b1;

�b2; c; dOCV �T ð17Þ

uT
F;WðtkÞ¼ ½�DvFðtkÞ; �vFðtkÞ; D2iFðtkÞ; DiFðtkÞ; iFðtkÞ; ��gðtkÞ; 1 �

ð18Þ
The �gðtkÞ function is not directly accessible. However, since �gðtkÞ is a
function of v lðtkÞ and vWðtkÞ, it can be simulated based on previ-
ously (recent) obtained estimates. The estimated v̂ lðtkÞ and v̂WðtkÞ
can be approximated using ĉ; d̂OCV , v̂ lðtkÞ, �̂BðDÞ and ÂðDÞ. In this

paper, the first �̂BðD; ĥ1;WÞ and ÂðD; ĥ1;WÞ polynomials are selected
with the following considerations: (i) the output steady state of
Fig. 3. The block diagram of the WSRI
the linear system, (ii) the type of linear system, whether it is under-
damped or over-damped, and (iii) the cut-off frequency that can be
selected according to the state variable filter design [67]. Similarly,
the initial filter in (15) can be selected as 1

ÂðD;ĥ1;W Þ. The nonlinear and

offset coefficients ĉ and d̂OCV are selected to be zeros.
The iterative WSRIVC method is illustrated in Fig. 3 and its exe-

cution is summarised as follows:
Simulate the noise-free output �̂v lðtÞ using:

�̂v lðtÞ ¼
�̂BðD; ĥL�1;WÞ
ÂðD; ĥL�1;WÞ

iðtkÞ ð19Þ

v̂W ðtÞ ¼ �̂v lðtÞ
1þ ĉk�̂v lðtÞk

ð20Þ

where �̂v lðtÞ and v̂WðtÞ are used as the input to �̂giðtkÞ. The subscript L
indicates the current iteration number and L� 1 indicates the pre-
vious iteration number.

Filter vðtkÞ and iðtkÞ to generate their respective filtered forms
containing higher derivatives, using:

FðDÞ ¼ 1

ÂðD; ĥL�1;WÞ
ð21Þ

Generate �̂gðtkÞ in (18) using �̂v lðtÞ and v̂WðtÞ .
Obtain the estimated parameters using the LS algorithm:

ĥl;W ¼ ð
XN
k¼1

ûF;WðtkÞûT
F;WðtkÞÞ

�1XN
k¼1

ûF;WðtkÞD2vFðtkÞ ð22Þ

where ûT
F;W is defined as:

ûT
F;W ðtkÞ¼ ½�DvFðtkÞ; �vFðtkÞ; D2v l;F ðtkÞ; Dv l;F ðtkÞ; v l;F ðtkÞ; ��̂gðtkÞ; 1 �

ð23Þ

There is no need to use the instrumental variable regression vector
because the estimated �gðtkÞ is used as an instrumental variable.

Iterate from (I) to (IV) until the sum of the squares of the
differences between ĥL�1;W and ĥL;W is significantly small

kĥL�1;W � ĥL;Wk < 104 or for a defined number of iterations. Themax-
imum number of iterations is selected to be 5 such that the steps (I)
VC approach shows steps I to IV.
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to (IV) are repeated until L = 5. This is because in a case study pre-
sented later, convergence is found to occur after 3 iterations.

6. On-line parameter estimation and updating

This section presents how the off-line estimation can be
extended to on-line estimation. Since the parameters can be esti-
mated off-line and the model can be expressed in linear regression
form, as given in (16), the off-line estimator can be extended to on-
line estimation. This estimation process is divided into linear and
nonlinear parts where the linear estimation extracts the parame-
ters of the linear submodule and the nonlinear estimation part
obtains the nonlinear coefficients.

For estimating the linear sub-model parameters, there is a need
to estimate the linear voltage �̂v lðtkÞ, given in (20) and illustrated in
Fig. 1. The linear voltage can be estimated using the inverse of the
vwðtkÞ function in (20) which is expressed as:

�̂v lðtkÞ ¼ v̂WðtkÞ
1� ĉðtkÞkv̂WðtkÞk ð24Þ

where v̂WðtkÞ ¼ vðtkÞ � d̂OCV ðtkÞ. Since the input �̂v lðtkÞ and output
vðtkÞ of the linear sub-model are realisable, the pseudo- regression
form of the linear sub-model can be derived and expressed as:

D2�vF;lðtkÞ ¼ uT
F;lðtkÞhl ð25Þ

where a0 ¼ 1 and

hl ¼ ½ a1; a2; �b0;
�b1;

�b2 �T ð26Þ

uT
F;lðtkÞ ¼ ½�D�vF;lðtkÞ; ��vF;lðtkÞ; D2iFðtkÞ; DiFðtkÞ; iFðtkÞ � ð27Þ

Following the classical derivation of the RLS algorithm with an
inherent mechanism for tracking time-varying parameters as given
in [68], the general form of RLS is expressed as:

Prediction Step:

ĥlðtkÞ ¼ ĥlðtk�1Þ
P�ðtkÞ ¼ P�ðtk�1Þ þ

P
v

ð28Þ

Correction Step:

LðtkÞ ¼ P�ðtkÞûF;lðtkÞð1þ ûT
F;lðtkÞP�ðtkÞûF;lðtkÞÞ�1

ĥlðtkÞ ¼ ĥlðtkÞ þ LðtkÞðD2�vF;lðtkÞ � ûT
F;lðtkÞĥlðtk�1ÞÞ

P�ðtkÞ ¼ ðP�ðtkÞ � LðtkÞûT
F;lðtkÞP�ðtk�1ÞÞ

ð29Þ

The initial values ofP�ð0Þare selected as P�ð0Þ ¼ lI wherel > 0and I
is an identity matrix while

P
v ¼ kI and 0 < k < 1. In this paper,

they are selected such as k ¼ 10�6 and Pð0Þ ¼ 10�4 � I. This is
because hnð0Þ is extracted from hW which is obtained from the
off-line estimation. This means there is no need for large
corrections.

The sampling interval of the nonlinear estimation (TK) is 250
times slower than the linear estimation sampling interval
TK ¼ 250Tk where Tk is the sampling time of the system and is
selected to beTk ¼ 0:1sfor linear estimation. The form for the
pseudo-linear regression, considering that the nonlinear parame-
ters are derived from the substitution of Eq. (8) into the last equa-
tion in (4), can be expressed as:

xðtKÞ ¼ uT
nðtKÞhn ð30Þ

where

xðtKÞ ¼ vðtKÞ � �v lðtKÞ ð31Þ

hn ¼ ½ c; dOCV �T ð32Þ
uT
nðtKÞ ¼ ½��gðtKÞ; 1 � ð33Þ

The parameter vector hn at sample K is obtained using all data col-
lected between K � 1 and K in the LS algorithm by using:

ĥnðtKÞ ¼ ð
XK

k¼K�1

unðtkÞuT
nðtkÞÞ

�1 XK
k¼K�1

unðtkÞxðtkÞ ð34Þ

The iterative on-line estimation process is illustrated in Fig. 4 and
summarised as follows:

I. Use the estimated nonlinear parameters vector ĥnðtK�1Þ ¼
½ĉd̂OCV � for estimating v̂ lðtkÞ using the inverse function in
(24) where ĥnð0Þ is obtained using off-line estimation.

II. Filter v̂ lðtkÞ and iðtkÞ for producing their filtered data using:
FðDÞ ¼ 1

ÂðD; ĥL�1;lðtk�1ÞÞ
ð35Þ
III. Obtain the estimated parametersĥlðtkÞusing RLS given in (28)
where subscript L refers to the iteration number.

IV. Update the parameters in the NL-ECM at the sample k.
V. Steps I to IV are repeated for L = 3 iterations.
VI. Update ĥnðtK�1Þ at t ¼ tK . Updating ĥnðtK�1Þ is achieved by the

following steps:
i. Use the matrix of parameter vectors ĥlðtk:KÞ and ĉðtK�1Þ to

simulate �̂v lðtÞ using:
�̂v lðtk:KÞ ¼
�̂BðD; ĥlðtk:KÞÞ
ÂðD; ĥlðtk:KÞÞ

iðtk:KÞ ð36Þ

v̂Wðtk:KÞ ¼
�̂v lðtk:KÞ

1þ ĉðtK�1Þk �̂v lðtk:KÞk
ð37Þ
where vectors �̂v lðtk:KÞ and v̂Wðtk:KÞ are used as inputs to
generate �̂giðtk:KÞ

ii. Obtain the estimated parameters using (34).
iii. Use ĥnðtKÞ to update the nonlinear parameters in the

NL-ECM and return to step I for the next sample.

7. Results and discussion

The results obtained from the approach proposed in this
paper, in terms of estimation efficiency (off-line convergence and
on-line parameter estimation) and physical parameters (i.e.,
R0;RP1;RP2; sP1; sP2; dOCV ; c), are presented in this section.

The algorithm was tested with experimental data collected
from a commercial 3Ah 18650-type cell which comprises graphite
negative electrode, a LiNiCoAlO2 positive electrode and commercial
electrolyte. For off-line parameter estimation, data was collected at
20 different battery operating points which are the various
combinations of SoC ¼ ½10%;20%;50%;80%;95%� and tempera-
tures T ¼ ½0oC;10oC;25oC;45oC�:At each operating point, a
Fig. 4. On-line estimation block diagram of NL-ECM.



W. Allafi et al. / Applied Energy 204 (2017) 497–508 503
pulse-multisine current signal [53] is applied to the cell using a
Bitrode cell cycler. The corresponding voltage response is mea-
sured. An example, of the pulse-multisine current signal and the
voltage response for the 3 Ah 18650 cell used in this work is shown
in Fig. 5. Within the figure, a positive current indicates charging
while a negative current depicts discharge. For increased robust-
ness of results, four different cells were tested. Thus, the algorithm
was executed, off-line, 80 times.

The estimated parameters are averaged over four cells. Because
the parameters are state-dependent (i.e., dependant on SoC and
temperature), the obtained parameters for a given state are put
into a 2D look-up table and are linearly interpolated to approxi-
mate the parameters between the selected intervals.

7.1. Off-line estimator performance

The convergence of the algorithm is typically determined by the
stability of the linear sub-model of the NL-ECM. The estimations of
the linear sub-model obtained in all-20 iterations, for 80 runs, were
found to be numerically stable. To facilitate the discussion, the
results of one run – corresponding to T ¼ 00C and SoC ¼ 95% – is
addressed in this subsection. This particular combination was
chosen because at low temperatures and extreme SoC values the
battery is known to exhibit strong nonlinear characteristics.
Fig. 6 shows that the estimates converge to acceptable values in
the third iteration. The results also show that after the third itera-
tion, there is no significant difference in magnitude and phase. It
can also be noted that for higher frequencies (circa.
x > 2rad � s�1), both phase and magnitude do not fluctuate around
one value but both increase as the iteration number increases. This
may be because the system is of much higher order.
Fig. 5. Pulse-multisine test at SoC ¼ 50% and T ¼ 0o

Fig. 6. Shows the logarithmic magnitude of vl (left panel) and the phase (right panel) aga
off-line WSRIVC method. The first iteration is depicted in lightest grey-line, the last iterat
iteration numbers. The mean of the last ten iterations is depicted by a black-dashed-lin
The convergence of the coefficient of the nonlinear over-
potential function c is given in Table 1. The offset parameter dOCV

stabilised in the second iteration and negligibly changed as the
number of iterations increased beyond 2, as shown in Fig. 7. The
performance of the estimated nonlinear overpotential function is
shown in Fig. 8. It can be seen that, apart from the first iteration
which is the initial value, the performance exhibits no difference
after the second iteration. These results highlight the efficiency
of the estimator performance and convergence. Although the
WSRIVC is modified for the nonlinear model shown in Fig. 1, it pro-
vides similar statistical convergence of parameters, as shown in
Table 1, and frequency response, as shown in Fig. 6, to results
obtained using the SRIVC method [69] which was designed for
the linear system. This efficiency in convergence and frequency
response mean that the proposed method can be applied online
to estimate the parameters of nonlinear models with the same
computational effort as traditional linear models. More investiga-
tion however, is required to fully understand the higher frequency
performance of the model. For this purpose, the ECM defined in
Fig. 2, which is inherently limited by the bandwidth, needs to be
reformulated to capture a higher frequency range, using for exam-
ple, constant phase element blocks.
7.2. Identified model parameters

The proposed algorithm in this paper is used to estimate the
NL-ECM parameters for a 3 Ah C6/LNiCoAlO2 18650 Li-ion battery
using a pre-defined set of pulse-multisine signals. The mean
and standard deviation of the NL-ECM parameters
R0; Rp1; Rp2 sp1; sp2; c dOCV , calculated over four cells, corre-
sponding to each battery state, are tabulated in Table 1. It is note-
C. (A) The current and (B) the voltage response.

inst frequency response of the linear sub-model for 20 iterations obtained using the
ion is presented in black-line; consecutively darker shades of grey are used for larger
e. The multisine test data at T ¼ 00C and SoC ¼ 95% are used here.



Table 1
The mean and standard deviation of the estimated ECM and nonlinear over-voltage function coefficient of the NL-ECM model based on the four 18650 3.03 Ah Li-ion NCA cells,
using the multisine test data at 20 different SoC and temperature combinations.

Temp SoC R0 (mX) Rp1 (mX) Rp2 (mX) sp1 (s) sp2 (s) c dOCV

0 �C 10% 97.5 ± 1.7 82.5 ± 0.8 9.2 ± 0.465 1.1 ± 0.009 10.1 ± 0.12 0.0549 ± 5 � 10�4 3.4 ± 3 � 10�3

20% 91.3 ± 1 73.4 ± 2.2 1.8 ± 0.075 0.9 ± 0.003 12.2 ± 0.13 0.0356 ± 9 � 10�4 3.5 ± 3.4 � 10�3

50% 82.5 ± 1.2 10.1 ± 0.4 1.4 ± 0.004 0.9 ± 0.005 11.2 ± 0.08 0.0087 ± 1 � 10�4 3.7 ± 0.7 � 10�3

80% 74.4 ± 1 8.1 ± 0.2 1.6 ± 0.004 0.9 ± 0.003 15.4 ± 0.1 �0.0015 ± 3 � 10�4 3.8 ± 2.1 � 10�3

95% 111.3 ± 1.8 25.3 ± 0.4 2.6 ± 0.038 1.2 ± 0.010 10.7 ± 0.06 �0.047 ± 14 � 10�4 4.0 ± 1.5 � 10�3

10 �C 10% 92.9 ± 1.8 23.8 ± 1.4 6.7 ± 0.444 1.3 ± 0.049 10.5 ± 0.09 0.085 ± 7 � 10�4.3 3.3 ± 7 � 10�3

20% 68.1 ± 0.9 18.9 ± 0.9 1.3 ± 0.017 0.8 ± 0.005 11.9 ± 0.09 0.022 ± 7 � 10�4 3.5 ± 1.1 � 10�3

50% 52.6 ± 0.6 0.9 ± 0 0.2 ± 0.003 0.9 ± 0.001 12.9 ± 0.06 0.003 ± 1 � 10�4 3.6 ± 1.1 � 10�3

80% 56.8 ± 0.8 1.7 ± 0.1 1.5 ± 0.006 1.0 ± 0.004 12 ± 0.05 0.003 ± 3 � 10�4 3.9 ± 1.2 � 10�3

95% 70.5 ± 1 7.4 ± 0.2 8.8 ± 0.009 0.9 ± 0.003 11.9 ± 0.07 �0.0087 ± 6 � 10�4 4.1 ± 0.7 � 10�3

25 �C 10% 53.2 ± 0.5 27 ± 1 1.9 ± 0.058 0.7 ± 0.001 12.5 ± 0.09 0.06 ± 15 � 10�4 3.4 ± 3.6 � 10�3

20% 45.4 ± 0.5 1.9 ± 0.1 1.1 ± 0.003 0.8 ± 0.005 12.8 ± 0.11 0.014 ± 4 � 10�4 3.5 ± 1.4 � 10�3

50% 36.4 ± 0.5 0.1 ± 0.1 0.8 ± 0.005 0.8 ± 0.002 14.1 ± 0.07 0.006 ± 1 � 10�4 3.6 ± 1.0 � 10�3

80% 37.4 ± 0.5 0.5 ± 0 0.9 ± 0.005 0.9 ± 0.002 12.9 ± 0.08 0.0087 ± 1.3 3.9 ± 2.1 � 10�3

95% 50.5 ± 0.8 0.5 ± 1.3 1.5 ± 0.016 0.9 ± 0.004 10.5 ± 0.06 0.0078 ± 7 � 10�4 4.1 ± 0.6 � 10�3

45 �C 10% 33.7 ± 0.4 1.9 ± 0.1 0.9 ± 0.002 0.8 ± 0.005 12.6 ± 0.05 0.016 ± 6 � 10�4 3.4 ± 2.3 � 10�3

20% 30.4 ± 0.4 0.6 ± 0 0.8 ± 0.004 0.8 ± 0.004 11.5 ± 0.06 0.005 ± 1 � 10�4 3.5 ± 1.3 � 10�3

50% 27.7 ± 0.4 0.68 ± 0.1 0.6 ± 0.008 0.8 ± 0.003 12.7 ± 0.05 0.0089 ± 2 � 10�4 3.7 ± 1.4 � 10�3

80% 27.6 ± 0.4 0.4 ± 0 0.8 ± 0.004 0.9 ± 0.003 13.1 ± 0.06 0.0169 ± 2 � 10�4 3.9 ± 1.4 � 10�3

95% 31.1 ± 0.5 0.0243 ± 0.1 1 ± 0.006 0.9 ± 0.001 11.2 ± 0.05 0.0117 ± 5 � 10�4 4.1 ± 1.1 � 10�3

Fig. 7. The estimated c and dOCV for 22 iterations.

Fig. 8. Estimated nonlinear over-potential function. The multisine test data at T ¼ 00C and SoC ¼ 95% are used here.
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worthy to highlight that the trend of Ro in Table 1 varies with SoC,
contrary to what is expected by definition [3]. As previously dis-
cussed in Section 2, theoretically, Ro is the pure Ohmic resistance
of the battery corresponding to a frequency f � 1Hz, while Rp1

and Rp2 are associated with the charge-transfer process

(f P 1 Hz) and ionic diffusion (10�3 Hz 6 f 6 1 Hz), respectively.
A major drawback of the Multisine approach, adopted in this work
due to its suitability for online parameter estimation, is that Ro is
no longer well defined. The principal component of the driving
multisine current load is f ¼ 1 Hz. Thus, the analogy of the ECM
components with physio-chemical sub-processes are undermined.
This issue is also persistent in pulse power experiments (typically
f 6 0:1 HzÞ. Nevertheless, the sum of resistances R0; Rp1; Rp2,
which will govern the voltage response, at all temperatures follow
the general theoretical trend for cell resistance as a function of SoC.
That is, the total resistance is at a minimum for circa. 50% SoC,
with the highest resistances observed as SoC tends towards 0%
and 100% SoC (although total resistance is higher for 0% than
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100% SoC) as shown in the leftmost plot in Fig. 9. Moreover, the
leftmost plot in Fig. 9 illustrates that the increase in temperature
causes a reduction in all resistance parameters.

Nonlinearity, quantified by c, is found to be most significant at
low SoCs and low temperatures, where ion dynamics are relatively
slower. For higher values of SoC and temperatures, c is found to be
small, such that vw ¼ �v l

1þck�v lk 	 �v l. That is, in the c 
 1, the shape of

the sigmoid is incentive to c:

As expected, the estimated offset parameter d̂OCV is highly cor-
related to the SoC such that a higher offset is obtained with higher
SoC, as shown in Table 1 and the rightmost plot in Fig. 9. The tem-
perature has an insignificant effect on the estimated offset param-
eter, in agreement with previous studies [63].

Using the estimated mean parameters presented in Table 1, the
NL-ECM model is validated with a charge sustaining drive-cycle
current profile recorded from a prototype EV when driving in an
urban environment with frequent acceleration and regenerative
braking events. This highly dynamic driving cycle is employed for
validation because under extended periods of high current loads,
the battery enters a regime of diffusion limitation [52] where the
NL extension to the linear ECM becomes significant. Such a current
profile was also used for validation in [53] where the first order lin-
ear ECM displayed a root-mean-square error of 3:3� 10�2 under
the same SoC and temperature conditions considered in this work.
Fig. 10. Validation results of current drive cycle for first 500 s of the 1200 s at 70% SoC a
voltage in (B) and measured and model voltage in (C) and presented in black and grey,

Fig. 9. Sum of the resistance elements in the NL-ECM is presented on the left-side, the es
side.
As shown in Fig. 10, there is very good agreement between themea-
sured and modelled voltage. The proposed model generates a root-
mean-square error of 2:51� 102 over 1200 s of cycling, which rep-
resents a significant improvement from the linear case [53,63].
7.3. On-line estimation

The result of on-line estimation is presented in Fig. 11. The
results for on-line estimation show amore accurate voltage estima-
tion than its off-line counterpart, which is clearly identified by com-
paring the voltage error in Figs. 10(B)–11(B). It is noteworthy that in
the first 200 s a large correction occurred following which all the
estimates tend to an asymptotic value. The model parameters are
also shown to smoothly converge, as illustrated in Fig. 11(C–J).
The accuracy of the estimates of the linear sub-model leads to an
almost zero error for approximately three-quarters of the 1200 s
load cycle. This was because the iterative technique used for the
on-line estimation of parameters sampled at each time step, thus
improving the correction. The excessive, but inexpensive, correc-
tions to the parameter estimates caused a minimisation of the error
between the modelled and actual voltages.

Because the error between the modelled and actual voltages is
zero after the first circa. 200 s, the nonlinear coefficient was not
subject to significant corrections, as shown in Fig. 11(J). This is
nd temperature at 10 �C in (A) and the difference between measured and modelled
respectively.

timated nonlinear coefficient ĉ is located on the middle and d̂OCV plot is on the right-



Fig. 11. The results of on-line estimation and prediction of NL-ECM with the same validation profile, shown in Fig. 10 where (A) shows the predicted and actual voltages, (B)
gives the error between the actual and estimated voltages (C–F) present the resistance in the NL-ECM in a form of R0, Rp1 Rp2 and R0 þ Rp1 þ Rp2, respectively, (G, H) are the
time constants sp1 and sp2, respectively and (I, J) show the estimated nonlinear coefficient c and offset dOCV , respectively, for 48 samples because estimation of the nonlinear
part occurs after 25 s. The test is run at 70% SoC and temperature at 10 �C.
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because the correction factor is a function of error. The charge sus-
taining drive cycle used to demonstrate on-line parameter estima-
tion consumed a total of 6% SoC (from a starting SoC of 70%). For
the commercial battery considered in this study, this change in
SoC corresponds to an OCV change of more than 70 mV.

8. Conclusions and further work

8.1. Conclusions

In this paper, a novel algorithm is proposed that directly esti-
mates the model parameters of a nonlinear equivalent circuit
model from observed input–output data. The parameter estima-
tion algorithm extends the simplified refined instrumental variable
method to estimate the Wiener model, which itself was reformu-
lated into a multi-input/single-output linear model using a static
nonlinear function (i.e., sigmoid function) that characterises the
nonlinear voltage response of a LIB under a diffusion limited
regime. A recursive least squares algorithm was then employed
for parameter estimation.

The iterative offline estimation algorithm is extended to an iter-
ative online estimation. The online estimation is divided into two
sub-estimators. The first estimator extracts the parameters of the
linear sub-model and executes at timescales within the sampling
timescale of collected data. The second sub-estimator obtains the
coefficient of the nonlinear static function and the offset and runs
after a pre-defined number of samples.

Both on-line and off-line approaches were applied to a
commercially available 3Ah C6/LNiCoAlO2 18650-type cell using
pulse-multisine tests. The extracted parameters were then
validated using a charge sustaining drive-cycle recorded from a
prototype electric vehicle driving in an urban environment. Both
the on-line and off-line validation results showed very good agree-
ment with measured terminal voltage. The parameter estimation
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algorithm for the nonlinear battery model proposed in this work
exhibited fast convergence, similar to that demonstrated with lin-
ear models [69], which is advantageous for on-line BMS applica-
tions. In addition, the algorithm depends only on the on-board
available signals, i.e., the battery terminal voltage and current mea-
surements, and thus is suitable for EV applications. The low model
complexity and the efficient recursive algorithm can facilitate real
time implementation.
8.2. Further work

The model was validated using short-term drive cycle data, so it
is difficult to assess how the model will adapt to changes in battery
characteristics due to the aging process. Future work will thus
focus on state of health estimation, in particular assessing the algo-
rithm response to battery degradation. In addition to SoH, it will
also be of interest to investigate the possibility of using this, more
accurate identification procedure, for OCV estimation and hence
online SoC estimation.
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