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Abstract 

The average structures of the polycrystalline pyrochlores (Na0.60Bi1.40)(Fe1.06Mn0.17Bi0.77)O6.87 

and (K0.24Bi1.51)(Fe1.07Mn0.15Bi0.78)O6.86 can be refined through Rietveld refinement against 

Bragg scattering data using cubic space group Fd3�m, with off-centred 96h and 32e positions 

describing the A2Oʹ network. Investigation of their local structures through neutron total 

scattering confirms the extent of disorder within these materials, and furthermore shows 

significant deviation from the average structure, which is not accounted for through analysis 

of Bragg data alone. Reverse Monte Carlo (RMC) analysis with a 6 × 6 × 6 supercell was 

used to model accurately this local disorder, revealing ellipsoidal distributions for A-site 

potassium, distinctly different to the hollow torus-shaped distributions for the sodium and 

bismuth cations. It is shown through bond valence sum analysis that whilst these atomic 

displacements allow for the steric preferences of Bi3+, they are also necessary to satisfy the 

valence of both the bismuth and the alkali metals on the A sites. Analysis of the final RMC 

configuration showed the BO6 octahedra for the separate B site metals to be more regular (O–

B–O ≈ 90°) than those in the Rietveld model (O–B–O ≈ 85/95°) which describes an average 

of the three different environments. 

Introduction 

Oxide pyrochlores A2B2O6Oʹ, where the ionic radius of A (eight-coordinate cation) is larger 

than that of B (six-coordinate cation), typically adopt the cubic symmetry of space group 

Fd3�m with the A, B, O and Oʹ atomic positions commonly defined by the 16d (1/2, 1/2, 1/2), 

16c (0, 0, 0), 48f (x, 1/8, 1/8), and 8b (3/8, 3/8, 3/8) sites, respectively.1 This apparently 

simple structure has the ability to accommodate high levels of structural disorder that leads to 

increased complexity in describing the atomic-scale structure. This disorder can arise from 

deficiencies of the Oʹ site or occupancy of this site by other anionic species such as hydroxide 

or halide ions, metal vacancies on the A site, or the mixing of metals across both the A and B 

positions, in addition to displacement of any or all of the atoms from their ideal positions.2 

The compositional flexibility of the pyrochlore structure can lead to a wide variety of 

interesting physical properties and potential applications. Depending upon the metal cations 
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incorporated, varied electronic behaviour from insulating, through semiconducting, to 

metallic has been observed,3-6 as well as low temperature superconductivity.7-8 Pyrochlores 

with cation substitutions on both sites, such as (Bi,Zn)2(Zn,Nb)2O7 ceramics, have proved 

useful as dielectric materials.9-11 Other fields of application for pyrochlores include solid-

oxide fuel-cell electrolytes and electrodes,5, 12 photoluminescence,13-14 and the immobilisation 

of radioactive cations from nuclear waste.15 Extensive study has been undertaken on many 

pyrochlores due to the phenomenon of frustrated magnetism that results from the geometrical 

nature of the corner-connected A4 and B4 tetrahedral sublattices.4, 16 Spin glass-like magnetic 

behaviour has been the focus of attention in many pyrochlores when magnetic ions are 

included, and has been reported for mixed metal pyrochlores with non-trivial compositions 

such as (Bi1.89Fe0.11)(Fe1.05Nb0.95)O7 and (Bi1.88Fe0.12)(Fe1.42Te0.58)O6.87.
17-18 

The use of reverse Monte Carlo (RMC) modelling to interpret pair distribution functions 

derived from Fourier transformation of total scattering data is becoming increasingly 

common in the study of disorder in crystalline systems providing local structural information 

which is usually overlooked in the analysis of Bragg data alone.19 RMC modelling has been 

integral to understanding the structural disorder in many stoichiometric and non-

stoichiometric pyrochlores; for example, highlighting the presence of coherent Pb2+ off-

centring, expected for this 6s2 ‘lone pair’ cation, and the correlation of this with low-

temperature Einstein modes observed in heat capacity data of the 'ordered-ice' Pb2Ru2O6.5,
20 

as well as understanding order-disorder phenomena in ionic conductor materials by 

distinguishing the six-coordinate B site and the eight-coordinate A site of the pyrochlore from 

the nominally seven-coordinate environments of the defect fluorite.21-22 Another 6s2 cation is 

Bi3+ and this is also found in pyrochlore and fluorite oxides where its presence introduces 

local disorder: for example, in the fast oxide ion conductor δ-Bi2O3, the application of RMC 

showed that the environments local to the Bi3+ cations are five-coordinate like those of the α-

polymorph, rather than the expected eight-coordinate geometry of the average fluorite 

structure.23-24 RMC analysis was used to model cation off-centring in insulating Bi2Ti2O6Oʹ, 

driven by valence requirements, and highlighted the presence of smaller cation displacements 

in metallic Bi2Ru2O6Oʹ due to screening by conduction electrons of the B site metal.25 For the 

ferroelectric perovskite Na0.5Bi0.5TiO3, RMC analysis proved that the environments local to 

bismuth and sodium are distinct, with each cation showing different displacements away 

from the ideal A site position.26-27 
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In this paper we describe a neutron total scattering study of two highly disordered 

pyrochlores, (Na0.60Bi1.40)(Fe1.06Mn0.17Bi0.77)O6.87 and (K0.24Bi1.51)(Fe1.07Mn0.15Bi0.78)O6.86, 

synthesised through hydrothermal methods. The local disorder present in these materials is 

accurately modelled by RMC methods and is compared against the average structural models 

obtained from Rietveld refinement of Bragg data, which we have previously reported.28 The 

previous Rietveld refinements reported on the average structures of 

(Na0.60Bi1.40)(Fe1.06Mn0.17Bi0.77)O6.87 and (K0.24Bi1.51)(Fe1.07Mn0.15Bi0.78)O6.86 pyrochlores 

presented strong evidence for complex disorder, as might be expected with the multiple 

occupancy of both the A and B sites and presence of stereochemically-active lone-pair cation 

Bi3+, resulting in increased metal off-centring and distortion of the local oxygen 

environment.28 This prompted a more detailed examination of the structures of these 

materials, using the same dataset as previously measured,27
 but now making use of the high 

momentum transfer range for PDF analysis.  

 

Experimental Methods 

The hydrothermal syntheses of the two pyrochlores was performed as reported previously,28 

with sodium bismuthate(V) dihydrate (0.5 g; 85% Acros Organics), iron(III) nitrate 

nonahydrate (0.3306 g; 98% Aldrich) and manganese(II) nitrate tetrahydrate (0.0313 g; 99% 

Alfa Aesar) dissolved into solutions of either sodium or potassium hydroxide (4.0 M) before 

being heated in sealed stainless-steel autoclaves to 200 °C for six hours. 

Neutron total scattering data were collected using the GEneral Materials diffractometer 

(GEM) at ISIS, the U.K. spallation neutron source.29 The dried, powdered samples were 

loaded into thin-walled vanadium cylindrical cans of inner diameter 0.6 cm and wall 

thickness of 0.004 cm. The effect of incoherent scatter by hydrogen was minimised by 

synthesising all powders in D2O, whilst residual moisture was removed by drying at 80 °C 

overnight under reduced pressure in a ThermoScientific Heraeus Kelvitron T vacuum oven 

prior to measurement. To achieve a high statistical quality, data were recorded for six hours 

from each sample. Data were also collected from an empty vanadium can, the empty 

instrument, and a vanadium rod of 0.834 cm diameter for normalisation purposes. 

Data from four different detector banks on GEM (banks 2 - 5) were merged to produce the 

distinct scattering, i(Q), in the program GudrunN (Figure 1a).30 Fourier transformation of 
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i(Q) using Qmax of 26 Å–1 and the step modification function, M(Q), yields the differential 

correlation function, D(r), also known as the pair distribution function (PDF), shown through 

Equation 1 (Figure 1b). 

 
D�r� = 2

π
� Qi�Q�M�Q� sin�rQ�dQQmax

0

 (1) 

Refinements of the structural models obtained from Rietveld analysis against the PDF data 

were performed using the program PDFgui.31 

The total correlation function, T(r), relates to the PDF through Equation 2, 

 
T�r� = 4πrg0 �� clb�l

l

�
2

+
2

π
� Qi�Q�M�Q� sin�rQ�dQQmax

0

 (2) 

where g0 is the atomic number density, and cl and 	�
 are the atomic fraction and coherent 

scattering length for element l, respectively.29 Analyses of the first and second correlations in 

the T(r) were undertaken through a peak fitting approach. The fitting of a resolution-

broadened Gaussian to the first (or first few) correlations to obtain its area is a commonly-

used method in the study of non-crystalline materials like glasses and liquids.29, 32 In this 

instance, it was used to model the first two correlations in the T(r) based on contributions 

from the individual B site metals and oxide ions by using the distance between atoms l and lʹ, 

rllʹ, and coordination number of the central atom (l) from bond valence in Equation 3, 

 nll'�	 rll'All'�2–δll'�clb�lb�l'  (3) 

 

where Allʹ is the area of the peak and δllʹ is the Kronecker delta.33 

The program RMCProfile was used for reverse Monte Carlo modelling of the PDF data.34 

The datasets used for RMC were the Bragg scattering data from bank 3 of GEM and the pair 

distribution function, D(r). Correlations in the D(r) below r = 1.76 Å were determined to be 

nonphysical by displaying a dependence upon the value of Qmax, and were therefore excluded 

from the RMC fit. 

Results and Discussion 

The crystallographic disorder revealed previously by Rietveld refinement of 

(Na0.60Bi1.40)(Fe1.06Mn0.17Bi0.77)O6.87 and (K0.24Bi1.51)(Fe1.07Mn0.15Bi0.78)O6.86 pyrochlores 

(henceforth referred to as Na- and K-pyrochlore, respectively) was accounted for by off-
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centre A and Oʹ positions modelled using the 96h and 32e positions in the Fd3�m space 

group,28 respectively (Supporting Information, Figure S1), commonly used to account for 

disorder in pyrochlores when analysis of Bragg scattering is performed.18, 35-39 The 

incorporation of multiple metals on both the A and B sites, and the mixing of bismuth across 

both cation sites add further complexity to the complete description of the structures of our 

materials. The PDFs derived from both pyrochlores indicate that their structures are very 

similar (Figure 1), displaying sharp, resolved features out to distances well beyond 25 Å, 

showing that the extended structure of these materials resembles a crystalline pyrochlore, 

consistent with our previous analysis and implying that disorder is present only on a local 

length scale. The shortest interatomic correlation observed in the PDFs of both pyrochlores 

corresponds to contributions from the B–O distances between the octahedral B site metal and 

coordinating 48f oxygen, agreeing well with the expected distance of ~2.06 Å from the 

Rietveld model. The second, much broader, correlation consists of contributions from both 

the A–O and non-bonding O–O distances. In an ideal stoichiometric pyrochlore, with the A 

site metals on the 16d position, the neighbouring oxide positions are situated 2.33-2.4 Å from 

the cations, however, with the displacement of the A site away from the ideal position, in 

reality the range of A–O bond lengths in these two materials is expected to be much larger, 

with potential distances over 2.3-2.9 Å. 

Figure 2a and 2b display fits to the PDFs of both pyrochlores using the Rietveld model as a 

starting point and with refinement of the coordinates of the 96h and 48f(x) atomic positions, 

and atomic displacement parameters (Supporting Information, Table S1). It is clear that the 

Rietveld model provides a good description of the mid-to-long range structure over length 

scales larger than the unit cell, however, for the low r region (r < 5 Å), the fit is rather poor 

implying that the average model does not account for the local structure present in these 

pyrochlores even when using the displaced 96h and 32e positions. Confining the A site 

cations on the 16d site and Oʹ site onto the 8b position results in a poorer fit than either of the 

above (Supporting information, Figure S2). It is of particular note that the main discrepancies 

between the data and model arise from the second and third pair correlations at r = 2.9 and 

3.75 Å, respectively, involving the A and Oʹ sites, whose local coordination environments are 

likely to be complex, given the presence of the lone pair cation Bi3+. Although the areas of 

the first and fourth peaks are not accurately reproduced, their simulated positions are 

modelled well indicating that the bond distances responsible for these correlations are correct. 

Fitting only the low r region of the PDF improved the modelled areas of these peaks over 
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fitting to 20 Å, highlighting further the inconsistencies between the short-range and average 

long-range structures. The fit to the low r region can be enhanced through relaxation of the 

Fd3�m symmetry using the non-centrosymmetric subgroup F4�3m (Figure 2c and 2d). This 

provides a convenient means of creating a lower symmetry model for small-box modelling; 

by removing the centrosymmetric constraint it can allow the structure some flexibility to fit 

the local structure whilst maintaining the average cubic symmetry observed through Rietveld 

analysis,28 without introducing too many parameters to the refinement. This has been used to 

model successfully the short-range disorder in a range of metal oxides that have average 

long-range structures based upon Fd3�m symmetry,40-41 and in particular accurately describes 

the structures of many pyrochlore materials.42-48 More recently, a symmetry-based approach 

showed how a monoclinic cell was required to model correctly the much-debated α-structure 

of pyrochlore Bi2Sn2O7.
32 However, for our materials we find no evidence in the diffraction 

data for such superstructures (extra weak Bragg peaks in the data are due only to a small level 

of α-Bi2O3 impurity, which has negligible contribution to the total PDF, Supporting 

Information Figure S3) and the simulated PDFs using these symmetries show similar 

discrepancies as those modelled from Fd3�m, with significant deviation observed on the local 

scale for the second and third atomic pair correlations (Supporting Information, Figure S4). 

Through peak fitting, it is possible to model the first peak of the PDF using the separate 

contributions from the three metals on the B site (Figure 3a). The Rietveld model constrains 

the three metals to the same position, leading to identical distances to the neighbouring 48f 

oxide anions for each metal, 2.0651 and 2.0635 Å for the Na- and K-pyrochlores, 

respectively. In reality, the metals have different ionic radii, and therefore would not share 

the same distance with the neighbouring oxygen positions (Supporting Information, Table 

S2). Rietveld refinement thus results in an average of the three different environments, which 

is a possible explanation of why the refined x positional parameter for the 48f oxide position 

in both pyrochlores has a value above 0.3125 (x = 0.32770(7) for Na-pyrochlore, x = 

0.32704(6) for K-pyrochlore), which corresponds to regular symmetric BO6 octahedra. This 

simple modelling of the second correlation in the PDF is more difficult due to contributions 

from several atom pairs such as A–O and O–O (Figure 3b), however, it is worth noting that 

modelling three separate B–O distances would therefore result in three sizes of BO6 

octahedra, each with different distances between their vertex oxide ions. Using three separate 

O–O distances for each B site metal improves the fit to the second correlation in the PDF 

(Figure 3c), with the contributions of each being weighted by the metal occupancy and 
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neutron scattering length. Despite the A site accommodating the majority of the disorder, the 

disorder resulting from metal mixing on the B site must also be considered in order to achieve 

a true model of the short-range structure in these materials. 

To avoid the limitations inherent in crystallographic analysis of Bragg diffraction data, a 

large configuration of atoms, built from Rietveld models with the atoms on the ideal sites 

(16d, 16c, 48f and 8b) was analysed through the reverse Monte Carlo (RMC) method.34 A 6 × 

6 × 6 supercell was generated from the Rietveld models for each pyrochlore, leading to 

configurations built from 216 unit cells containing a total of 19008 atoms. A larger 8 × 8 × 8 

supercell was also tested but no improvement in the final fit was achieved and the increased 

number of atoms (45056) resulted in the calculations becoming significantly more 

computationally expensive. The oxygen vacancies for each pyrochlore, and the A site 

vacancies of the K-pyrochlore were distributed randomly within the configurations, and an 

atom-swap procedure was used to randomise the configuration such that initial bias was 

minimised in the fitting.34 Bond valence sum (BVS) constraints and hard-sphere cut-off 

distances were defined for each ion present in the configuration to maintain physically 

reasonable coordination environments.49 The BVS weightings were set to be the same for 

each cation, while weightings for both the O and Oʹ positions were higher (relative 

weightings for cations and anions were 0.01 and 0.02, respectively). To ensure that the 

resulting configurations agree with both the short-range structure and long-range periodicity, 

fits were made simultaneously against both the real-space D(r), and also reciprocal-space 

Bragg data from bank 3 of GEM. Figure 4 shows fits against these data after approximately 

eight million random atom moves were generated and tested, and no further improvements 

were observed. The figures show that excellent agreements between model and data in the 

low r region of the PDFs (Figures 4a and 4b) are possible through RMC whilst maintaining a 

satisfactory fit to the Bragg data (Figures 4c and 4d). The intensities of Bragg reflections are 

correctly modelled and the fits are comparable to those obtained through Rietveld refinement, 

showing that the atoms need to be displaced only slightly away from crystallographic 

positions such that the fit to the average structure is not degraded and the disorder described 

by the PDF is simultaneously modelled.  

The RMC configurations were built from models based on the ideal Fd3�m cubic pyrochlore 

with the A sites on the 16d positions, and Oʹ sites on the 8b positions, so it is interesting that 

refinement of the configurations always resulted in these two particular sites moving away 

from the ideal position, much like in their Rietveld models (Figures 5a and 5b and 5c). Close 
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inspection reveals well-defined, compact B site atom “clouds”, despite the presence of three 

different B site metals. (Supporting Information, Figure S6) and therefore that the majority of 

the disorder in these pyrochlores resides on the A2Oʹ network. The O' 8b sites display the 

most largest “clouds”, consistent with the Rietveld models where large displacement 

parameters were required to model accurately these positions. Throughout the RMC 

refinements, the A site metals are observed to move away from their central positions 

forming anisotropic distributions that are elongated within the plane of the neighbouring 48f 

oxygen atoms (Figure 5d). When viewing the A sites of the RMC configurations along the 

[111] direction, normal to the Oʹ–Bi–Oʹ distances, it becomes clear that they have been 

sufficiently displaced from their average crystallographic site to form torus-shaped 

distributions, where atom density is greater at the edges of these distributions rather than the 

centre (Figure 5e and 5f), and thus resembling the 96h sites of the Rietveld model. The 

displacements for the A site cations are comparable to those of ≈ 0.3285 Å from Rietveld 

refinement (Figure 6a and 6b), however, through RMC it is clear that the separate metals are 

all displaced by different amounts from the ideal position (Bi3+ displacement in both 

pyrochlores ≈0.4 Å, Na+ displacement ≈0.425 Å, K+ displacement ≈0.35 Å). Furthermore, the 

Bi3+ distributions show suggestions of six-fold symmetry to the tori (Figure 5e and 5f) 

corresponding to that of the 96h position, with the corners of the hexagon directed in between 

the neighbouring 48f positions. Similar displacements of ≈0.4 Å were observed for the A site 

in an RMC study of Bi2Ti2O7 for which Bi3+ was also found to be displaced off-centre from 

its ideal position in hollow rings with the Oʹ sites distributed in a tetrapod centred around the 

ideal site.50 It was concluded in that study that these displacements resulted from the need to 

satisfy Bi3+ valence with the surrounding (48f) oxygen and allowed the lone pair to be 

accommodated in the opposite direction, which resulted in zig-zag arrangements of 

neighbouring bismuth atoms. A study of Bi2Ru2O7, however, exhibited incoherent atom 

displacements of much smaller magnitude as these were driven solely by lone pair effects.25 

It is also interesting to note that alongside their different displacement magnitudes, 

differences in the distributions of the separate A site metals in 

(Na0.60Bi1.40)(Fe1.06Mn0.17Bi0.77)O6.87 and (K0.24Bi1.51)(Fe1.07Mn0.15Bi0.78)O6.86 are revealed 

through RMC analysis (Figure 6c and 6d). The distributions of Bi3+ in both pyrochlores show 

that the highest density is focused around average displacement distances of ≈0.4 Å, 

supporting the hollow torus-shaped distributions with little to no density in the centre 

observed in Figure 5. Interestingly, the distributions of the alkali metals are not the same; 

sodium is distributed similarly to the bismuth with low density in the centre of a "hollow" 
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ring, whereas potassium is uniformly flattened into ellipsoids within the plane of the 

neighbouring 48f oxide ions, normal to the disordered Oʹ sites. The different distributions of 

alkali metals are likely due to the valence requirements of each; potassium is much larger 

than sodium (K+ ionic radius = 1.51 Å, Na+ ionic radius = 1.18 Å, based on eight-coordinate 

values), and as a result smaller displacements are needed to satisfy the valence requirements 

of potassium, compared to sodium. This shows that bismuth and alkali metals occupying the 

same average crystallographic position need to modelled separately, a distinction that may 

prove important to many materials and indeed was observed previously in Na0.5Bi0.5TiO3 

ferroelectrics.26-27 

The partial contributions to the PDFs from RMC modelling of each pyrochlore (Figure 7a 

and 7b) highlight the contributions to the first few peaks of the PDF. As expected from the 

Rietveld model and the peak fitting approach implemented in Figure 3, the main 

contributions to the first correlation (~2.06 Å) are from distances involving the B site metals 

and the coordinating 48f oxide ions in the BO6 octahedra. Interestingly, the A site metals are 

displaced sufficiently that distances involving these atoms also contribute to the first 

correlation. Contributions over a broad range of distances from 2.1-3.0 Å are observed for 

correlations between bismuth and oxygen, including both the O and Oʹ positions. This is also 

the case for sodium, whereas potassium-oxygen distances cover a shorter range of 2.35-3.0 

Å. The main contribution to the second correlation comes from the shortest non-bonding 

oxygen-oxygen distances, involving the 48f oxide ions on the vertices of the BO6 octahedra. 

This again supports the fits to the PDF shown in Figure 3c and highlights the broad range of 

distances that these O–O correlations can cover when multiple metals are incorporated onto 

the octahedral position. As a result of the B site metals being modelled in accordance with 

their different valence requirements, the octahedra for each are more regular than those 

described by the average Rietveld models, with O–B–O bond angle distributions centred 

around ≈90°, Figure 7c. Although the octahedra are more regular, the multiple O–O 

correlations lead to increased disorder in the 48f oxygen positions, which was accounted for 

in the Rietveld refinements by distortion of the octahedra such that angles adopted the 

discrete values of 85 and 95°. The bond valence sums of the metals present in these models 

are summarised in Table 1, alongside the values from the Rietveld models, which are clearly 

erroneous. The metals modelled on the same crystallographic position are distinguished in the 

refined RMC configurations with clear evidence of A and B site bismuth in +3 and +5 

oxidation states, respectively, and also the three separate B site metals, supporting the 
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experimental results from XANES analysis reported previously.28 The final bond valence 

distributions for both pyrochlores are shown in Figure 8 and are compared against those from 

Rietveld refinement. Also shown are distributions from RMC configurations refined without 

BV constraints. It is clear that to guide the simulations toward accurate end models these BV 

constraints are required to maintain chemical sense, and it shows that the displacements 

observed in Figure 5 and Figure 6 are not driven solely by the steric requirements of Bi3+, but 

are also necessary to  maintain physical valence sums for the cations, as observed previously 

in Bi2Ti2O7.
25 

Conclusions 

Investigations using neutron total scattering have shown how on a local scale the structures of 

the two pyrochlores, (Na0.60Bi1.40)(Fe1.06Mn0.17Bi0.77)O6.87 and 

(K0.24Bi1.51)(Fe1.07Mn0.15Bi0.78)O6.86, deviate from the average Fd 3� m models obtained 

previously from Rietveld analysis, in which the A and Oʹ sites were displaced from their ideal 

positions to attain best agreement between data and model. Attempts using lower symmetry 

variants of the average Rietveld structure were made, however, a true description of the local 

disorder present in these materials required that the symmetry constraints of crystallography 

be removed. Further information about the local coordination of metals within these materials 

was revealed by modelling accurately the short-range structure using a reverse Monte Carlo 

approach, whilst agreeing with the average periodic structure through simultaneous fitting of 

Bragg data. Atomic probability densities showed the formation of hollow tori of sodium and 

bismuth and flattened ellipsoids of potassium within the plane of the surrounding 48f oxygen 

anions, normal to the Oʹ–A–Oʹ chain, with diffuse clouds representing the Oʹ 8b sites. RMC 

modelling demonstrated that the observed off-centring is not driven solely by steric 

requirements of the lone pair Bi3+ cation, with both alkali metals also being displaced, which 

is necessary to stabilise the valence of the metals present. RMC analysis showed that the 

three different metals on the B site each have more regular local octahedral environments 

than the Rietveld models showed and lead to further disorder in the 48f oxygen sites which 

share bonding with the off-centred A site cations; information which is lost within large 

thermal displacement parameters through analysis of Bragg data alone. While this is not the 

first time that such conclusions have been drawn from this type of study, it highlights how 

analysis of all of the information contained within a diffraction pattern through total 

scattering methods is necessary to understand fully the structures of complex materials, and 
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for the analysis of mixed-metal pyrochlores provides an approach to modelling their 

structures that will be applicable to other compositions.  
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Tables 

Table 1: Comparison of bond valence sums for both pyrochlores from Rietveld refinement to those 

refined from RMC configurations with and without bond valence constraints. 

 

  

Element (ideal site) Rietveld 
BVS 

RMC 
[6×6×6] box 

RMC 
without BV 

Na-pyrochlore    
Bi3+ (A - 16d) 2.61 2.83 2.35 
Na+ (A - 16d) 1.19 1.00 1.16 
Fe3+ (B - 16c) 2.62 2.94 2.71 
Mn4+ (B - 16c) 2.58 3.79 2.63 
Bi5+ (B - 16c) 5.93 5.10 6.10 
O2– (O - 48f) 1.74 1.72 1.70 
O2– (Oʹ - 8b) 1.82 2.23 2.08 
K-pyrochlore    
Bi3+ (A - 16d) 2.44 2.85 2.39 
K+ (A - 16d) 2.88 1.03 2.66 
Fe3+ (B - 16c) 2.63 2.91 2.63 
Mn4+ (B - 16c) 2.58 3.85 2.81 
Bi5+ (B - 16c) 5.94 5.08 5.97 
O2– (O - 48f) 1.87 1.71 1.68 
O2– (Oʹ - 8b) 1.89 2.29 2.39 
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Figures 

 

Figure 1: Distinct scattering functions, i(Q), for Na- (blue) and K-pyrochlores (green) 
produced through merging Bragg scattering data from four detector banks on GEM (banks 2-
5) are shown in a). The dashed line illustrates the selection of Qmax = 26 Å–1. The use of this 
value with the step modification function in the Fourier transform (Equation 1) results in the 
pair distribution functions (PDFs) of the Na- (blue) and K- (green) pyrochlores plotted out to 
r = 25 Å. 
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Figure 2: Least squares refinement of the Rietveld models (Fd3�m 96h A site) against PDF 

data for the a) Na- and b) K-pyrochlores up to r = 20 Å. Separate fits and associated statistics 

to these are shown; the first up to 5 Å and the second from 5 to 20 Å. Panels c) and d) show 

fits to the low r region using the lower symmetry F4�3m space group. Data are shown as black 

crosses, calculated PDFs as red lines, and difference curves as blue and green lines for the 

Na- and K-pyrochlores, respectively. 
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Figure 3: Fitting of the a) first correlation in T(r) of the Na-pyrochlore using partial 

contributions from B–O distances determined from bond valence. Atomic pair displacement 

parameters, which determine partial widths, were fixed to 0.0687 Å2. Contributions of O–O 

atom pairs based on the average Rietveld model (O 48f x = 0.32770(7)) are shown in b) and 

those based around ideal BO6 octahedra in c), respectively. Displacement parameters for O–O 

pairs were set to 0.1 Å2. 
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Figure 4: RMC fits to the D(r) and Bragg data of the a) and c) Na-pyrochlore, b) and d) K-
pyrochlore, respectively. Data are shown as black crosses, fits as red lines, and difference 
curves as blue and green lines for the Na- and K-pyrochlores, respectively. 
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Figure 5: a) The refined crystal structure of (Na0.60Bi1.40)(Fe1.06Mn0.17Bi0.77)O6.87 from 

Rietveld analysis viewed along the [010] direction with B site atoms removed, highlighting 

displaced 96h positions used to model the A site cations. Final atomic arrangements from 

RMC supercells for Na- and K-pyrochlores are shown in b) and c), respectively. The majority 

of the disorder within these pyrochlores exists within the A2Oʹ network, as illustrated in d) for 

the K-pyrochlore where distributions of A and Oʹ sites both exhibit distinct shapes. Example 

A site Bi3+ distributions viewed along the [111] direction are shown for the e) Na- and f) K-

pyrochlores displaying the formation of hollow tori. The red line represents the six-fold 

symmetry of these distributions and acts as a guide to the eye. Bismuth atoms are shown in 

blue, alkali metals in green, and oxygen in red. B site atoms are not shown. 
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Figure 6: Histograms of cation displacement away from the ideal 16d crystallographic 

position for the A site metals in the a) Na- and b) K-pyrochlores. Histograms of shell density 

display cation distributions as a function of distance from the ideal position in c) and d) for 

the Na- and K-pyrochlore, respectively (shells are concentric hollow spheres increasing in 

radius from the ideal position). Densities for bismuth and sodium are highest close to average 

displacements, supporting the observation of hollow tori through supercell visualisation, 

whereas potassium is uniformly distributed within flattened ellipsoids. 
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Figure 7: Partial PDFs for a) Na- and b) K-pyrochlores displaying contributions from nearest 

neighbour correlations involving the A and B sites and their local oxide ions, as well as the 

shortest oxygen-oxygen distance also. Comparison of O–B–O (where B = Fe3+, Mn4+ and 

Bi5+) bond angle distributions for the c) Na- and d) K-pyrochlores. dashed lines represent 

angles from the Rietveld models (approximately 85/95° in both pyrochlores) which give an 

average picture of the environments local to the three separate B site metals. The partials and 

bond angle distributions were calculated from 100 refined configurations that were summed 

together. 
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Figure 8: Bond valence distributions from RMC modelling for each atom type in the Na- 

(blue) and K-pyrochlores (green). Initial (Rietveld) values are shown as delta functions. 

Distributions from configurations using bond valence (BV) constraints are shown as solid 

lines, while distributions from configurations without BV constraints are shown as dashed 

lines. Oxidation states shown on the plots are average values from configurations using BV 

constraints. 
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