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Abstract

Kansei or affective engineering is the discipline of designing products to be
psychophysically more appealing to the human mind and senses. Touch-feel percep-
tion of the materials used in consumer products ranging from portable electronics,
furniture to automotive interiors plays an important role in the attractiveness of a
product. Touch-feel perception is a qualitative measure and is an extrinsic property
of the material. To better assist designers and material scientists to optimise aspects
of a material for touch-feel perception, it is important to find a link between the
qualitative touch-feel attributes with quantitative intrinsic properties of the mater-
ials. There is ongoing research in trying to decipher the links between touch-feel
perception expressed through semantic psychophysical descriptor words, to physical
parameters of the material sample such as the surface topographical, mechanical and
tribological attributes. The objective of this work is to fill the current knowledge
gap between micro-surface physical properties and customer’s perceptual response
to surface tactile sensory information as well as their affective preference through
theory, correlation models and experimentation.

A conceptual framework of surface tactile evaluation system can be divided
into three parts: measurement of the surface physical characteristics, sensory evalu-
ation and correlation analysis. To this end, the thesis documents the development of
a friction measurement apparatus including an artificial finger to estimate the friction
of a material against human skin in an accurate and repeatable manner. Secondly,
correlation analyses were performed on the skin-against-material friction and the
tribological factors, including the material surface parameters (e.g. roughness) and
physical characteristics (e.g. hardness) of various metal and thermoplastic materials.
Finally, the human touch-feel perception was assessed through a questionnaire and
the results were modelled to obtain a link between the tribological factors and
touch-feel perception.

Generally, human beings feel a surface by stroking or sliding one’s finger,
which experiences friction. It is challenging to objectively describe the friction
experienced by a human finger with respect to surfaces being stroked, as different
surfaces and different working conditions can all influence the results. In order to
understand the interaction between different surfaces and the friction experienced
by a human finger, one has to minimise the variation due to human fingertips and

xxi



touch conditions across experiments, such as fingertip humidity, temperature and
elastic properties. To achieve this, a friction measurement apparatus incorporating an
artificial fingertip has been developed. The artificial fingertip is made of multi-layered
materials to mimic the structure, shape, softness and friction properties of a real
human fingertip. The friction test apparatus consists of the artificial fingertip, a
linear flexure mechanism and a reciprocal linear stage. It is capable of measuring
the contact force and friction force simultaneously to give an estimate of the friction
coefficient of the material-under-test. Twelve aluminium samples and five steel
samples of different surface finishes were tested under different contact forces and
stroking speeds. Comparisons were made between the friction results measured in
vivo by a human fingertip and those by the artificial fingertip. The results have shown
that for the material samples investigated, measurements from the artificial finger
achieved a high correlation with results from real human fingers (r2 = 0.8 ∼ 0.98) for
surface ground steel and milled aluminium. Therefore the artificial finger can be used
to mimic the friction characteristics of a real human fingertip and more importantly
to measure the skin-against-material friction accurately and in a repeatable way.

In addition, in order to better understand the contact mechanism between
the artificial finger and the surface, a suitable theoretical model which incorporates
how the contact force relates to the contact area is essential. To enable the modelling
of the contact mechanism, the Young’s modulus of the artificial fingertip has to be
identified, as it is an essential input parameter for all contact theory models as well
as FEM. The artificial finger was measured by using micro- and nano-indentation
with Berkovich/spherical-tipped indenters. The contact area measurement was
conducted by loading a custom-built glass plate on the artificial fingertip and
observing the contact area under an optical microscope. Hertz theory was used to
model the fingertip and predictions were compared against finite element analysis.
The results support the fact that the Hertz contact theory is valid for modelling
the contact mechanism of the artificial finger. Thermoplastic elastomers (TPE) and
copolymers of elastomer are commonly used in manufacturing car interiors to give
the surface a less harsh and more pleasing feel. Ongoing research has been trying
to decipher the links between touch-feel perception expressed through semantic
psychophysical descriptor words, to physical parameters of the material sample such
as the surface topographical, mechanical and tribological properties. A series of five
patterned and five coated TPE surfaces provided by an automotive manufacturer
were characterized-topographical parameters of the samples by a surface profiler and
mechanical/tribological parameters by a nanoindenter. The friction characteristics
of these specimens were measured by the friction test apparatus and the artificial
finger. The results showed that the artificial finger is representative of a human
finger in its friction-sensing capability.

In the second part of the thesis, the relationship between the skin-against-
material friction coefficient and the surface topography parameters Rq and Sm were
deduced according to Hertz contact theory. The theory gives good agreement with
experimental results. In addition, the relationship between the friction coefficient and
the other mechanical parameters such as the Young’s modulus, skewness, kurtosis,
surface slope were investigated through correlation analysis. Finally, 54 people of

xxii



different age and gender were asked to rank the specimens in terms of 5 pairs of
psychophysical descriptors, such as ‘rough/smooth’, ‘cold/warm’, ‘slippery/sticky’,
‘soft/hard’ and ‘like/dislike’. A rank-ordered logit model was deployed to correlate
the human touch feel perception rankings and the thermoplastic samples, and
the results were compared with correlation methods used in previous work. The
results indicated the specific parameters which are correlated with human touch-feel
perception and also their relative contributions.The results form a good guideline
for material scientists and designers to, for example, build more touch-desirable car
interior materials and consumer packaging.
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Chapter 1

Introduction

T
actile perception is a fast developing subject that attracted great attention.

Customer-oriented affective design, which takes account of their feelings and

preferences are of great importance for the commercial success. This interest is

driven by a range of factors: the development of a sense of touch in robotics, haptic

perception for virtual reality and remote sensing, as well as the desire to improve the

tactile aesthetics in “touch intensive” consumer products such as phones, touch-pads,

paper, fabrics and conditioners [1].

People make a judgement about whether they like a touch sensation or not for

products selection. It is crucial for industries such as automotive, textile, cosmetics

and telecommunication to identify a way of quantifying the touch feel perception and

introducing it as a key design factor [2]. In today’s markets, consumers regularly take

functionality, usability and safety for granted and look for an emotional connection

with a product, especially in the automotive industry where the customer will spend

a large amount of time inside their vehicle.

1.1 Background

Nowadays customer-oriented affective design is becoming increasingly important in

consumer product development. Unlike vision or sound, touch-feel perception can

only be considered during skin contact or when stroking the surface of an object, and

designing a better-perceived surface material is often left to trial-and-error. If the

relationship between surface characteristics and touch-feel perception is understood,

better surfaces can be designed to satisfy the customers’ needs. It is also an important

factor in affective and hedonistic touch, and in associated emotional attributes such

1



1.1. Background

as pleasantness and comfort [3]. Hence, there has been growing interest in quantifying

and modelling touch friction perception recently [4–12].

Skin friction has a direct effect on touch-feel perception. It is influenced by

many factors such as skin moisture, age and temperature [13]. Because an artificial

finger is more or less immune to skin moisture, ageing and temperature effects,

an artificial finger can measure surface properties with much higher repeatability.

However, to be able to sense touch in a similar way to that of a human finger, the

artificial finger should be designed such that it is anthropomorphic, i.e. to have

physical properties resembling a human finger. An artificial finger with touch sensing

capability offers several applications, for example, telepresence can be enhanced with

robot hands transmitting touch-feel information remotely to the haptic actuators at

operator’s end. A robot that is more human-like would need to understand what

make something ‘nice’ to touch—it has been found that a target surface that is less

rough than a fingertip is more pleasant to touch or stroke [14]. Artificial fingers can

also be used to validate advanced haptic devices and models such as that of [15] and

[16] in an automated manner. Previous research involving quantifying the perception

of touch feeling had been conducted, for example, on car interior components using

the tribological probe microscope (TPM) [17–19]. The TPM however, could not

replicate the same measurement conditions a human finger experiences, e.g. the

stroking motion, and did not have the same mechanical properties of a human

fingertip.

Moreover, we can design better touch-desirable components or materials if

the correlation between human touch-feel and the physical properties of the contact

surfaces can be understood. Commercially, products are increasingly focused on

ergonomics and there is increasing demand for surface materials with desirable

touch-feel properties [20]. Correlation and regression analyses were carried out on

materials used in confectionery packaging to identify the relationships between the

people’s touch feel responses and the physical measurements of thirty-seven tactile

textures; the results showed that touch perception is often associated with more than

one physical property [7]. The artificial finger friction sensing capability is correlated

against typical surface topography parameters to see which parameters are linked

to friction coefficients for various materials. These parameters are then correlated

against subjective touch-feel perception on two of the fundamental (lowest-level, see

Nagano, Okamoto and Yamada [21]) psychophysical semantic touch-feel descriptors:

‘rough/smooth’ and ‘slippery/sticky’.

‘Soft-touch’ polymer surfaces should offer desirable features of warm and

velvet-like feel, high scratch resistance and aesthetically pleasing features such as

2
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contrasting surfaces, reducing sheen, and enhancing colour depth [22]. As far as

car interior surfaces are concerned, the market requires an innovative design of

functionality, aesthetics and ergonomics. Specifically, a proper tactile design of

polymer surface finishing is essential to achieve such design in terms of cost, safety,

comfort and attractiveness [23]. As an cost-effective routine, paint finishes and

coating of soft polymers such as thermoplastic elastomers (TPE) and copolymers of

elastomer are commonly used in manufacturing car interiors to give the surfaces a

less harsh and more pleasing feel. Over-moulding of TPE is also widely applied in

manufacturing control knobs and switches to achieve so-called ‘soft-touch’ feel.

However, to guide the tactile design of ‘soft-touch’ polymer surface, the data-

base of their physical properties and perceived tactile sceneries should be established

and then the potential links could be explored. The physical softness of a material is

often measured by Vickers hardness and stiffness (elastic modulus). But the sensorial

‘softness’ or ‘soft-touch’ is a combination of sensations derived from the contact

interaction with a surface. Inevitably, such interactions are influenced by both skin

features and a range of surface properties such as topography, hardness and friction

resistance. In contrast, the sensation of ‘soft-touch’ is subjectively evaluated or

quantified by a procedure of psychophysical test.

©2011 Bruker Corporation, reprinted with permission from Cohen et al. [24, Fig. 2]

Figure 1.1: Surface textures can vary widely while their Ra values are similar when
using stylus profilometers

Traditionally, surface texture is measured with a stylus, also known as contact

profilometer. While stylus profilometers are indeed useful, the resulting surface

parameters are of 2D nature—measured by striding a line over the surface. The

measured 2D parameters are conventionally denoted by the letter R, such as Ra, Rz

and Rpm. They typically prove too vague in characterising the nature of the surface.
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For example, a surface with mostly sharp spikes, deep pits, or general isotropy may

all yield the same average roughness value (see Fig. 1.1). Parameters relating to the

maximum and minimum profile height ar highly sensitive to the location and length

of the measurement site. Moreover, the stylus tool itself can contribute error to the

measurement—Shaft alignment of the stylus is critical, as its orientation with respect

to the shaft will affect the measured roughness. Even if the stylus scan begins with

the stylus translating parallel to the shaft, the tip can sometimes get caught in a

groove and bumped off-axis. Also, with soft materials deformation may occur and

this affects the accuracy of the results.

International Standards Organization [25] developed a set of comprehensive

3D surface parameters, called S-parameters, for quantitative 3D metrology [26, 27].

Material surfaces can be measured and characterised by instruments such as surface

profilometers or microscopes. Apart from 2D/3D raw data of the surface profile,

software of the profilometers often output statistics of the profiles called surface

topography parameters. They are denoted by capital S for statistics related to 3D

profiles, opposed to the conventional capital R for 2D profiles. This thesis uses the

following common parameters: Average roughness Sa, root mean square roughness

Sq, maximum valley depth Sv and mean spacing between peaks Sm are parameters

that provide hybrid roughness and spatial information of 3D surfaces. Skewness Ssk

is a measure of the asymmetry of the amplitude density curve and Kurtosis Sku is

the measure of the peakiness of the amplitude density curve; they are, respectively,

the third moments and fourth moment of the surface topography. Root mean square

surface slope Sdq and arithmetic mean slope Rda quantify the gradient of the surface

topography.

Because friction measurement is performed by physical contact, it is essential

to study the relationship between the measured surface friction coefficient and the

physical property parameters of the material. Although there is ongoing research on

this subject, there are still many unanswered questions. Previous studies showed

the friction coefficient is related to several surface topography parameters. However,

the association depends on many environmental factors and initial conditions. For

example, when one of the contact surfaces is a compliant material, such as an elastic

material or skin, an increased surface roughness will result in a larger separation

between the mean planes of contact surfaces, causing a reduction in the adhesion

amount. Therefore a reduced friction will be shown with an increase of surface

roughness when friction is dominated by adhesion [28]. In addition, other lateral

geometry such as wavelength or the spacing between the individual asperities also

plays an important role in friction [29]. The friction behaviour of human skin in

4



1.2. The objective and the outline of the thesis

contact with well-defined regular patterned surface shows that the determining

parameter is the ratio of the asperity size to the inter-asperity distance [30]. However,

until now there is no clear picture on how the surface topography of a material can

affect human fingertip friction.

1.2 The objective and the outline of the thesis

1.2.1 The objective of the thesis

The mechanoreceptors in the skin are more sensitive to dynamical stimuli such as

stroking the finger on a surface [31]. As such, friction mechanisms directly influence

the stimuli on the mechanoreceptors. It follows that an important part of touch-feel

perception is to quantify the friction coefficient experimented by a human finger. To

address this a friction measurement apparatus was developed. The idea is for such an

apparatus to be useful in the industry to simulate and quantify the friction interaction

between a human fingertip and a material sample to aid affective engineering design.

This thesis introduces an artificial finger specifically developed to have prop-

erties close to that of a human finger, both structurally and the way it strokes

and applies a load to the surface. The objective is to enable the artificial finer to

experience friction in a similar way to that of a human finger, by linking human

touch-feel perception to the different surface physical/topographical parameters.

1.2.2 Outlines of the thesis

The thesis is split into 7 chapters.

Chapter 2 presents a literature review following topics in the order of appear-

ance in the thesis. It summarises the latest research work on artificial fingertips

and friction measurement apparatuses for tribological studies, and in particular,

their advantages and disadvantages. Furthermore, the relationships between surface

property parameters and their friction coefficient highlighted by existing literature are

examined. Correlation studies between touch-feel perception and surface properties

in the literature are also discussed.

The first part of Chapter 3 gives a detailed illustration of the complete

friction test apparatus design, which includes 1) a new multilayered artificial fingertip,

mimicking structure and elasticity of a human fingertip; 2) a linear stage system

that simulates the reciprocating movements of a human finger; 3) a flexure system

previously designed and used by our research group. Then, calibration of the system

was carried out to make sure the apparatus produce valid and accurate measurements.
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In the second part of the chapter, 12 aluminium samples and 5 steel samples were

measured by the friction test apparatus under different normal forces and different

stroking speeds. The influence of normal loads and sliding speeds on the friction

measurement results were investigated. Comparisons were made with the human

fingertip measurement results and an old silicone rubber roller design previously

used in the research group.

To aid understanding of the experiment results, the theoretical contact mech-

anism between the artificial fingertip and the contacted samples should be invest-

igated. Chapter 4 gives a formal definition of human skin friction coefficient, and

the various contact theory models in the literature were discussed, including 1) The

classic Hertz contact model for solid contact between two elastic bodies; 2) The

Johnson-Kendall-Roberts (JKR) model for a contact with adhesion mechanisms 3)

Greenwood-William model for a contact between a sphere and a rough surface with

Gaussian-distributed asperities; 4) Kotwal-Bhushan contact theory which relaxes the

Gaussian assumption. The value of Young’s modulus of the artificial fingertip plays a

key role in the theoretical modelling analysis, therefore different indentation methods

were applied to measure its value. The resulting Young’s modulus was applied a FEM

analysis of the artificial fingertip. An experiment on the contact mechanism of the

artificial fingertip was carried out, using a specially designed instrument simulating

a contact with a controlled load. The contact area and deformation depth were

measured using a Bruker 3D microscope. The results suggested that the contact

could be suitably modelled using the Hertz contact theory.

Touch-feel perception of materials in car interiors is a topic of great interest

to car manufacturers. Chapter 5 presents a study of five coated thermoplastic

samples and ten patterned thermoplastic samples that are commonly used in the

manufacturing of car interiors. Surface topography, materials mechanical properties

and their friction coefficient were measured using different instruments. Comparisons

were made with results from the tribological probe microscope (TPM) [17–19].

Chapter 6 documents correlation analyses performed using data obtained

from Chapter 5. Fifty-seven people of different age and gender were asked to rank the

TPE samples using the 5 pairs of psychophysical descriptors. Then, Spearman’s rank

method was used to identify which material property parameters were correlated

with measured friction coefficients. The various relationships between surface friction

measurements with various parameters that were found to be possibly correlated,

including 1) Sa, Sm; 2) Young’s modulus; 3) Rsk, Rku; and 4) Rda were analysed in

more detail both theoretically and experimentally.

After studying the links between surface topography parameters, material

6



1.3. Contributions

mechanical properties and surface friction coefficients, Chapter 7 looks at the rela-

tionships between friction coefficients measured by a human/artificial finger and the

physical parameters. Firstly, theoretical modelling using the Hertz and Greenwood-

William contact theory is presented. Secondly, experiment was performed where 54

people of different gender and age were asked to touch the material samples and rank

them using 5 different psychophysical descriptor pairs, namely 1) ‘rough/smooth’,

2) ‘soft/hard’, 3) ‘cool/warm’, 4) ‘slippery/sticky’ and 5) ‘like/dislike’ [32]. Several

correlation methods already applied in previous work were summarised and their

strength and weakness were discussed. The rank-ordered logit modelling technique

was used to develop a model for the correlation between the touch-feel perception and

the material surface topographical parameters, mechanical properties and friction

coefficients.

1.3 Contributions

The thesis introduces a new anthropomorphic artificial finger that has properties close

to that of a human finger, both structurally and mechanically. The artificial finger is

integrated with a linear stage mechanism to form parts of a friction measurement

apparatus. The linear stage allows the artificial finger to simulate the way human

finger strokes and applies a load onto a surface. The friction measurement apparatus

avoids the uncertainty of human finger-based in-vivo testing due to natural variations

between subjects such as skin temperature, humidity and loading forces.

Finite element method (FEM) has been carried out to analyse the contact

mechanism of the artificial finger. The contact mechanism was also looked at using

theory-based models from the literature. A compact contact area measurement

device was developed in order to validate the model and theory experimentally.

Based on the theoretical modelling results and friction measurement results,

further relationships between friction coefficients and surface physical property

parameters have been investigated according to Hertz contact theory. The results

provide a guideline for better surfaces design in industries. Thermoplastic materials

have been widely applied in car interiors. While people have a degree of personal

taste regarding the materials in a car interior, if the physical property parameters

such as surface topography, surface hardness and surface friction characteristics can

be determined accurately, their identified correlations with human touch perception

can nevertheless give a quantifiable direction for the designers to pursuit from.

In this case, the physical characteristics of 5 coated and 5 patterned TPE

samples have been measured, including 3D surface topography, surface mechanical
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properties by nano-indentation and surface friction by the newly developed friction

test rig. In addition, correlations between these physical characteristics with the

touch-feel perception obtained from a survey were sought.

Fifty-four candidates with different age and different sex touched the samples

for the psychological part experiments. They were asked to rank the feeling on

the measured samples in terms of 6 dimensions, namely rough/smooth, soft/hard,

sticky/slippery, cold/warm, like/dislike and ’soft-feel’. Based on several correlation

methods, rank ordered logit modelling has been chosen to correlate the touch-feel

perception rankings with physical properties of TPE materials. The results have

potential to guide industrial materials design.
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Chapter 2

Literature Review

T
he objective of this thesis is to investigate the relationship between human touch

feel perception and different materials, so this chapter reviews the literature

following the research cue. Normally human touch-feel perception is evoked by

stroking fingers over a surface, which is largely affected by friction. Because of

this, human skin friction mechanism is reviewed first in this chapter. Secondly, an

overview of the history of the artificial finger is presented. Thirdly, the literature

on the relationship between surface friction and their physical parameters such as

surface topography, surface mechanical properties were reviewed according to the

contact theory based on different surface textures. Lastly, correlation studies in the

literature on touch-feel perception and materials physical property including their

friction characteristics are summarised.

2.1 Human skin friction mechanism

As described in [33], the sensory evaluation is defined as “a scientific discipline used

to evoke, measure, analyse and interpret reactions to those characteristics of food and

other materials as they are perceived by the sensation of sight, smell, taste, touch and

hearing.” Tactile evaluation specifically refers to perception through touch, which

can only be considered when human skin in contact or stroking over the surface of

an object. To be more specifically, tactile perception is realised by stroking, tapping

or pinching the surface with a tip of a finger, which illustrated in Fig. 2.1 of [32].

Touch evaluation is a complex process involving the physical and psychological

domains, and can be separated into three parts in the order of: 1) the physical

interaction level, 2) neuron sensory level and 3) the psychological evaluation level.
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2.1. Human skin friction mechanism

Reproduced with permission from Yue [32].

Figure 2.1: The tactile perception process with finger touching

In the physical interaction level, a human finger interacts with the sample surface

by reciprocating stroking or sliding motion. It established the physical interfacial

interaction between the finger skin epidermis layer and the surface. This interaction

is determined by the strain/stress or thermal state of the dermis layer of the skin,

changes of which are picked up as tactile stimuli by numerous mechanic-receptors or

thermo-receptors at the neural sensory level [34]. At the final psychological evaluation

level, the psychological judgements are made by the tactile stimuli transferred. By

combining and comparing to the memory of a previous experience, the affective

judgement is expressed [35].

Tribology is defined as the ‘science and technology of interacting surfaces in

relative motion’ [36]. The sliding friction of human finger to the contacted surface is

highly complex due to deformation of the finger under pressure and lateral movement

[1, 13, 37]. In addition, the surface topography, the frictional force between finger

and surface and the mechanical vibration introduced by sliding will also affect the

friction results [9, 38, 39]. A schematic of fingertip subsurface structure is shown in

[40]. The blood circulation, sebum/sweat lubrication both have effects on the sliding

friction results [41]. The human touch perception related to surfaces roughness,

softness and warmth which would influence the strain, strain rate and temperature

receptors [34]. In this case, a new artificial finger design becomes a trend for touch

feel perception research.

The fingertip has three main components: it has firstly the bone structure,
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2.1. Human skin friction mechanism

which combines rigidity with light weight. It connects with the muscles in the forearm

by ligaments fixed on the bone. Secondly, collagen fibres link the skin with the

bone tip. The collagen fibres in the subcutaneous tissues constitute the intermediate

layer of the fingertip. Large deformation occurs in this composite material during

sliding. The last medium is the human skin, which is the cover of the human fingertip.

It is crucial to understand the friction properties of human skin. The touch-feel

perception can be displayed in Fig. 2.2.

Reproduced with permission from Wiertlewski [42].

Figure 2.2: Mechanism of tactile evaluation. Mechanoreceptors location (top left),
afferent responses (top right), and mechanical interaction during tactual exploration
(bottom).

In order to understand the human finger friction characteristics, first of

all it is important to understand and characterise skin friction. Egawa et al. [43]

evaluated the friction properties of human skin under different moisture and viscosity.

The KES-SE friction tester—a commercial device for surface friction coefficient

measurement—was used. An arm holder was added to the device to measure the

skin friction coefficient of a human forearm. Measurements were taken along the

surface of the contact probe; from which the averaged value was taken as the friction

coefficient and the mean deviation was computed. The moisture content in the
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stratum corneum was measured with a CM825 Corneometer, the transepidermal

water loss with a Tewameter TM210, the viscoelastic properties of the skin with a

Cutometer SEM575 and the skin surface pattern by observing the negative replica

made with silicon rubber. The results showed that friction coefficient of the skin was

not influenced by load but by skin moisture. The mean deviation was influenced

by the pattern and the viscosity of the skin. On the contrary, Koudine et al. [44]

argued that for skin, Amontons’ Law stipulating the invariance of friction coefficient

with load does not hold. The experiment results also showed that friction coefficient

depends on the load applied to the finger pad.

©2002 John Wiley and Sons, reprinted with permission.

Figure 2.3: The view of arm skin friction measuring unit of Egawa et al. [43]

Tang et al. [45] conducted tests on forearm skin with the UMT Series Micro-

Tribometer, shown in Fig. 2.4, to assess the influence of sliding speed and the normal

load of the measurement probe on the skin friction measurement. The probe was a

polypropylene sphere of 10 mm in diameter attached to a suspension system. The

forearm was kept immobile while the probe was pressed onto the skin with a normal

load maintained constant by a servo feedback loop. As the normal load was increased

from 0.1 N to 0.9 N, the probe was moved linearly for 12 mm at a constant speed

of 1 mm s−1. Then, the sliding speed was increased from 0.5 mm s−1 to 4 mm s−1

and the probe moved on the right forearm skin linearly for 12 mm at a constant

normal load of 0.2 N. The friction coefficient and the friction force between skin

and probe were measured with a load cell, and the normal displacement was also

recorded. When the normal load increases, the normal displacement and friction

coefficient of skin increase. The friction of the rigid probe sliding on the viscoelastic
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2.1. Human skin friction mechanism

skin surface is determined by adhesion, probably due to the molecular bonding of

surface atoms in both contacting surfaces as well as the deformation during the

mutual mechanical interaction of the asperities of the rigid probe surface into the

soft skin surface. Meanwhile, sliding speed also influences the friction behaviour of

human skin. When the sliding speed increases, friction coefficient increases and the

“stick-slip” phenomenon becomes more pronounced. As the sliding speed increases,

hysteric friction increases with more energy lost in elastic hysteresis [45], i.e. the

energy dissipated due to material internal friction.

©2008 Elsevier, reprinted with permission.

Figure 2.4: Measurement of skin frictional properties by Tang et al. [45]

In[46], how the epidermal hydration affects the friction between human skin

and textiles was investigated. Eleven males and eleven females rubbed their forearm

against textile samples on a force plate using defined normal loads and friction

measurements. The results showed there is a highly positive linear correlation

between skin moisture and friction coefficient. No correlation was observed between

moisture and elasticity, nor between elasticity and friction.

Another study on the effect of hydration on friction coefficient involved a

method for measuring the friction coefficient between non-woven materials and the

curved surface of the volar forearm. The measurement was tested on normal (dry)

and over-hydrated volar forearms of five female volunteers [47, 48]. Straight and

curved friction experiments had been carried out. The instruments are shown in

Fig. 2.5. For the three non-woven polymer fibre material tested, the friction coefficient

results varied in the ranges of about 0.3 to 0.5 when the skin of the participant’s

forearm was dry and 0.9 to 1.3 when the skin was wet.

A key to understanding human finger friction mechanism is to investigate the

mechanical responses of a fingertip under a linear load. The vibrotactile sensation

and tactile performance are believed to be strongly influenced by the non-linear

and time-dependent properties of soft tissue [49]. Wu et al. [49]’s paper developed
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©2008 SAGE Publications, reprinted with permission.

Figure 2.5: Configurations for (a) straight and (b) curved friction experiments in
Cottenden et al. [47]

a structural model of the fingertip incorporating its anatomical structure and the

nonlinear and time-dependent properties of soft tissue. It proposed that surface

deflection most occurs in the soft tissue of human fingertips. Researchers also think

stratum corneum contributes a friction adhesion component which influences the

overall skin friction behaviour. By realising in vivo tribological test with a tribometer

(indentation and friction), the results showed principally an increase of the adhesion

force between the probe and skin surface and a decrease of the lateral stiffness in

absence of the stratum corneum [50] (removed in vivo by successive tape-stripping).

©2007 Elsevier, reprinted with permission.

Figure 2.6: Skin tribometer developed in Pailler-Mattei et al. [50]

However, in-vivo friction measurements are very much influenced by the

environment and test conditions. The friction coefficient changes between subjects

and with factors such as age and skin temperature [13]. For instrumentation and

experiment design, there is a need to look into the literature to identify these

confounding factors.

2.2 Artificial finger

Artificial finger specifically designed to be anthropomorphic in order to emulate

human friction sensing capability or touch-feel is a relatively new field. The earliest

design of artificial finger using elastic material began with Hanafusa and Asada [51];
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the use of elastic materials was to enhance the gripping power of robotic hands or be

compatible with various tactile sensors, rather than to emulate human friction sensing

[52–54]. An early attempt for to develop an anthropomorphic artificial fingertip is

shown in Fig.2.7 [55, 56]. The artificial finger was comprised of cover, filler and

bone parts. The cover part was made of silicone rubber with a thickness of 1 mm;

the filler part contained silicone rubber and silicone gel, and the bone was made of

aluminium. The stiffness values of the artificial fingertip in unloading and loading

condition have been analysed. The friction results show lower friction coefficients

and larger normal forces compared to those of a human finger. The analysis and

measurement of the softness of finger joint provided important guidelines for the

future design of artificial fingers.

©1999 IEEE

Figure 2.7: The multilayered artificial fingertip designed by Han and Kawamura [55]

Wettels et al. [57] developed a tactile sensor array mimicking the mechanical

properties and distributed touch receptors of human skin. The sensor array was

not intended for friction characterisation, but was developed to be integrated into

a robot in order to produce patterns of grip force that mimic those described in

psychophysical experiments on human subjects. Later, Wettels, Fishel and Loeb [58]

built an artificial finger called BioTac with a skin layer encapsulating a fluid filled

rigid core. Changes in the impedance of the fluid due to deformation are picked

up by impedance electrodes. The fluid also acts as a conduit for acoustic waves

produced during sliding movement, which is then picked up by a built-in pressure

sensor. The artificial finger was capable of measuring forces in multiple axes and

hence allows friction coefficient measurement. It could also measure micro-vibrations

patterns when stroking over a textured surface, as well as estimate the temperature
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©1992 IEEE Reproduced with permission from Shimoga and Goldenberg [53].

Figure 2.8: The comparison between a human finger and a robotic finger

of an object with a built-in thermistor.

An artificial fingertip with a viscoelastic core, skin with fingerprint surface

has been constructed in Shao, Childs and Henson [5] and is shown in Fig. 2.9. Its

objective was to mimic the structure, the shape, softness and friction properties

of human fingertips. Their pure silicone artificial fingertip had different friction

characteristics compared to a real fingertip—the pure silicone used was softer and

deformed more under friction. However, when the softness of the artificial fingertip

was made closer to real human fingertips, the frictional properties also became more

similar to human fingertips. Based on [5], a multi-layered artificial finger construction

with the softness of the fingertip as close to that of a human is desirable. The softness

can be characterised by the surface mechanical parameters such as Young’s modulus

and Vickers hardness. To facilitate choosing the right material, these parameters

should be known. Young’s moduli of various part of human fingers (including plate,

bone, soft tissue, epidermis and dermis) are provided in Shao et al. [59].

A multilayered 2D finite element (FE) fingertip model was created using the

commercial software Abaqus by Shao et al. [59]. The results show that fingertip’s

epidermal ridges have little effect on stress distribution within the fingertip in static

loading but significantly increase oscillations when sliding over a textured surface.

In the case of sliding contacts, the existence or absence of epidermal ridges strongly

affects the models’ behaviours. FE modelling was able to give insights as to how

microstructures on the skin may aid tactile perception.

Based on the above analyses, there are a few key aspects in the design of
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©2009 Elsevier, reprinted with permission.

Figure 2.9: The pure silicone artificial fingertip used in Shao, Childs and Henson [5]

artificial finger to better replicate the human finger friction characteristics. Firstly,

the shape, size and the structure should resemble a human finger. Secondly, the

‘softness’ characterised by Young’s modulus and Vickers hardness is important—the

artificial fingertip should have a multilayer composite structure and suitable materials

should be chosen with similar Young’s modulus and hardness of each layer. To this

end, a new artificial fingertip has been designed and documented in this thesis, details

of which are shown in Chapter 3.

If the developed artificial fingertip can represent the real human fingertip

friction, accurate friction coefficients can be obtained to link the touch feel perception.

The next step is to understand the contact mechanism between the fingertip and the

touched surface. In addition, better friction measurement instruments are reviewed.

2.3 Friction theory and measurement

A static elastic model of a hemispherical soft fingertip undergoing large contact

deformation has been established in [60]. An elastic potential energy function based

on virtual springs inside a hemispherical soft fingertip for the finger deformation

has been formulated. The equations are functions of two variables: the maximum
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displacement of the hemispherical fingertip and the orientation angle of a contact

planar object. The elastic potential energy has a local minimum in the model.

In [61], it has been shown that for ‘tactile friction’, the friction coefficient

cannot be considered a property of the skin alone, but depends on the whole system;

it required a full understanding of the contact mechanics and the behaviour of human

skin.

The friction force during contact between human skin and a counter surface

is a combination of forces due to both adhesion and deformation [62–64].

Ff,adh = π ∗ τ0 ∗ (
3R

4E∗
)2/3 ∗N2/3 (2.1)

Ff,def = 0.17 ∗ βve ∗ (
1

R2 ∗ E∗ )1/3 ∗N4/3 (2.2)

µ =
Ff

N
(2.3)

where Ff,i represents the respective friction forces, τ0 is the shear strength of the

interface, R is the reduced radius of the two contact bodies, βve is the visco-elastic

hysteresis loss fraction, N is the applied normal load and E∗ is the reduced Young’s

modulus. In the skin contact case, E∗ depends solely on the properties of the skin.

By combining the equations above, the adhesion friction coefficient reduces

with the increasing normal load N , while the deformation friction coefficient increases

with increasing load [44]. More details are summarised in Chapter4.

µ ∝ Cadh ∗N−1/3 + Cdef ∗N1/3 (2.4)

Once an artificial finger has been designed, the next task is to measure the

friction between the artificial fingertip and contacted surfaces. Generally speaking,

the load force applied by people when they feel a surface is not larger than 2 newton

[3, 65]. Because of this, a sensitive and accurate setup to measure the frictional force

and the normal force is required. The friction measurement apparatus can either be

custom-built or uses commercially available bespoke solutions; this section reviews a

few of the setup used in the literature.

In Skedung et al. [11], friction was measured with a device shown in Fig. 2.10

that consists of a three-component piezoelectric force sensor (Kistler 9251A) with

a charge amplifier (Kistler 5038A3). When moving the finger over the surface, the

normal force and friction forces were recorded; the resultant tangential force or the

friction force was divided by the normal force to obtain the friction coefficients using

Amontons’ laws of friction. The force transducer was fixed between two parallel

steel plates and the paper samples were mounted on the top plate with double
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sided adhesive tape. However, only paper samples were tested. A new measurement

apparatus suitable for other material samples such as those used in car interiors is

essential for the aim of this thesis.

©2001 Elsevier, reprinted with permission.

Figure 2.10: Finger friction measurement on printing paper from Skedung et al. [11]

Another paper describes the design, construction, and use of a multi-sensory

measurement system for tactile sensation that can be used to evaluate the feel of

different packaging materials [6]. This paper has demonstrated a new approach to

quantifying touch perception of different surfaces using a multi-sensory measurement

system. The experiments were conducted by sliding or pressing an artificial fingertip

with embedded sensors against the surfaces of different samples which were fixed on

a force table. The roughness, friction coefficients, compliance, and rate of change

in the temperature were obtained. Forty volunteers were asked to touch and rate

the samples by filling in questionnaires about how they felt. A multi-regression

analysis was performed to examine the relationship and strong correlations were

found between subject’s feelings and the physical measurements. Although the

types of samples may have limited the application, the results show very promising

correlations between tactile perception and the measured surface parameters.

[66] detailed a set-up based on a balanced loading arm supported on a variable

velocity stage, where a human finger pad would rub against a small selection of

solid materials with a range of sliding velocities (from 1 mm s−1 to 100 mm s−1) at a

fixed normal load (0.2 N). The measurement apparatus is shown in Fig. 2.11. The

frictional force was measured using a strain-gauged double cantilever transducer.

The friction coefficients measured were in the range from 0.2 for filter paper to 4 for

smooth glass.

A friction measurement apparatus design had been proposed in [61]. The

apparatus uses strain-gauged flexure element technology. Measurement of the vertical

force was made using three strain-gauged flexure couples. The schematic diagram is
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Figure 2.11: The orientation of the index finger and the counter-surface in the
tribological experiments

shown in Fig. 2.12. The normal load was applied in experiments between about 2 N

to 20 N. It was found that human finger resulted in higher friction coefficient than

using a rubber probe or a steel probe.

©2005 Elsevier, reprinted with permission.

Figure 2.12: Schematic diagram of soft metrology friction test system in [61]

Another approach is using a commercial load cell to measure the friction such

as [9]. The ATI force transducer measures the forces with six degrees of freedom.

The normal force(z-direction) and the two forces in the tangential or xy-plane were

20



2.4. Relationship analysis between friction and surface physical parameters

measured. The resolution of the force measurements is 25 mN in the normal direction

and 12.5 mN in the tangential direction.

2.4 Relationship analysis between friction and surface

physical parameters

Since the objective of the thesis is to link the human touch-feel perception and the

various surface physical parameters of the material, and that friction is the most

direct property a human finger experiences, the relationship between friction and

surface physical parameters need to be identified.

Surface topographical parameter Ra gives an overall summary of height

variations, however, it does not give any information on waviness and it is insensitive

to small height changes. Rq gives more information about height variations, but

it still does not give a satisfactory description of the surface roughness. Rsk is the

skewness and is sensitive to deep valleys and high peaks. Zero skewness reflects in

symmetrical height distribution; positive skewness occur when a surface has high

peaks or filled valleys; negative skewness describes surfaces with deep scratches or

lack of peaks. Rku is the kurtosis which measures the sharpness of both peaks and

valley. Rku is less than 3 when surfaces have relatively smooth peaks and valleys,

while Rku is more than 3 for surfaces with relatively sharp peaks and narrow valleys

[67].

Skin friction appears to dependent on several factors such as age, anatomical

site and skin hydration. In addition, the choice of the probe and the test apparatus

will also influence the measurement. Differences in probe material, geometry and

smoothness affect friction coefficient measurements. An increase in skin hydration,

either through water or moisturiser application, increases its friction coefficient;

whereas a decrease in skin hydration, either through clinical dermatitis or through

alcohol addition, decrease the coefficient [3, 43, 44, 46, 47, 66]. Differences are

present between anatomical sites. Conflicting results are found regarding age and no

differences are apparent as a result of gender or race [68].

In van Kuilenburg et al. [10], four different surface structures of metal and

polymer were made with picosecond laser pulses. The four different surface textures

were composed of two different radii and two different spacings. Sliding friction was

measured in-vivo against the human skin. van Kuilenburg et al. [10] found that

the friction coefficient decreased strongly with the increase of the normal loads. In

addition, the adhesion friction is the dominant friction mechanism.
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Four types of surface textured (produced on 080 M40 (E80) steel plates)

have been dry grinned against dry emery paper in Menezesa, Kishorea and Kailasb

[69]. The correlation between friction and surface topography parameters has been

analysed in lubricated conditions. The results are shown in the Fig. 2.13. It was

calculated using the variance method as it was suggested that the variation method

was substantially more accurate than the other methods. It had been observed that

for a given kind of surface texture, the coefficient of friction did not vary with Ra.

However, the mean slope of the profile, δa was found to explain the friction variations

best. The coefficient of friction depends on δa values irrespective of surface textures.

The coefficient of friction primarily depends on the mean slope of the profile. The

slope of the asperities can be used to predict boundary friction. It was concluded that

friction coefficient decreases as the asperity slope of the harder surface decreases [70].

The lower value of δa causes lower stresses and corresponding ploughing component

of friction results in a mild shear failure and lower material transfer. The theoretical

analyses of the influence of surface roughness on the adhesion of elastic solids suggest

that the introduction of roughness should reduce the adhesion to an extent governed

by an adhesion parameter [71].

The friction coefficient in dry conditions depends on the real area of contact

and the shear strength of the materials due to adhesion and two-three body de-

formation [3]. The real contact area depends on the surface topography and elastic

modulus for elastic contact, and on the hardness for plastic contact. In the presence

of a liquid film, the measured value of the friction coefficient is different from the dry

friction due to the meniscus contribution. The coefficients of friction during two-body

deformation depends on the average slope of the rough surface. The average slope is

scale dependent due to the scale dependence of the standard deviation of the surface

heights and the correlation length. As a result, the two-body deformation component

of the coefficient of friction increases with decreasing scale. The contact area for

particles decreases with decreasing scale because, for smaller average contact sizes,

the probability particles with a certain size distribution to be trapped at the contact

decreases [72].

For random surfaces, the low value of the slope will lead to lower stresses and

corresponding ploughing component of friction results in a mild shear failure and

lower material transfer [70].

In most cases, the influence of surface physical parameters such as Ra, Rq

and E to the friction coefficient can be calculated according to Hertz contact theory

(elastic). In most contact models, surface height distribution is assumed to follow

a Gaussian distribution. However, most engineering surfaces are frequently non-
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2.5. Correlation study between touch-feel perception and surface properties

(a) dry condition (b) lubricated conditions

Figure 2.13: Correlation coefficient between coefficient of friction and roughness
parameters under (a)dry and (b)lubricated conditions. White and black bars represent
positive and negative correlations, respectively

gaussian with the degree of non-gaussianity dependent upon materials and surface

finishing process used. A positive skewness value and a kurtosis value of at least 3 or

greater substantially lowers the real area of contact, meniscus force, and sensitivity

of film thickness to static friction [73].

Compared with the Gaussian distribution (Rsk = 3, Rku = 0), surfaces with a

higher Rku value and a positive Rsk value should be result in a lower static friction

coefficient demonstrated in the dry contact model of Michalski and Pawlus [74]. At

high Rku values, the static friction coefficient will decrease with the reduced load,

while higher Rsk values would result in an increased static friction coefficient [75].

[76] found an increased contact area, static friction coefficient decreased by a factor

of about 6 when Rku increased from 2 to 10. The maximum pressure, the area and

load rotations increase when Rku increases [77]. In dry sliding, surface with a positive

Rsk should show good adhesion resistance. Positive Rsk values lead to a greater real

contact area and large numbers of peaks in the contact, with tangential and adhesion

forces more similar to a Gaussian distribution. On the contrary, a negative Rsk leads

to lower values and larger deviations from the Gaussian distribution [78].

2.5 Correlation study between touch-feel perception and

surface properties

As Katz [79] pointed out, “In touching, one brings object properties to life, creating

through one’s muscular activity such qualities as roughness and smoothness, and

hardness and softness”, and “Eye movements do not create colour the way finger

movements create touch”. The movement of the fingertip across a surface plays an
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2.5. Correlation study between touch-feel perception and surface properties

important part in the perception of surface roughness/smoothness, high/low friction

and to a lesser extent, surface hardness.[79]. Finally, Katz concluded that the ’feel’

of a surface is a summation of the perception through the fingertips of the warmth/

coolness, roughness/smoothness, hardness/softness and slipperiness/stickness of the

surface. The theory and initial investigations are detailed in [80].

Tactile information may be transferred by compressing, stretching, vibrating,

changing the temperature of the skin surface [81]. The tactile sensation can be an

important cue to any user-interface and as methods of producing tactile simulation

mature, the tactile technology has become more widespread [82, 83].

There are growing interests in the automotive industries application for

quantifying the touch feel perception studies. Better car interior materials can

be made to meet the personal preferences of the customers. In the previous work

of our group, ten specimens with materials ranging from natural wood, leather to

engineered plastics and metal were selected for investigation. It is aimed to understand

what properties matter and to what extent the different factors weight the human

perception. A group of untrained people were asked to rank the sample surfaces in

terms of smooth/rough, soft/hard, slippery/grippy, warm-cold and like/dislike. In

addition, surface topography, friction, Young’s modulus and hardness of the samples

were measured by an instrument called the tribological probe microscope (TPM),

which through point-by-point scanning [2]. Cross correlation between function had

been established. The results showed that the human touch perception may be

influenced by the nano-micro surface structure [2, 84].

Toyota Motor has been described a study in the subjective assessment of

seven paint finishes on smooth ABS panels in Kawazu et al. [85]. The assessed

samples include 5 soft-feel finishes with intentionally different tactile properties, 2

with conventional ’hard’ finishes, and 8 without paint finishes. They proposed a

hypothetical equation for soft-feel (S0) by giving weights a, b, c, d to each of the four

sensory modes of: ’Moist/Dry’,’Smooth/Rough’,’Warm/Cool’ and ’Soft/Hard’, as in

S0 = a(Moist/Dry) + b(Smooth/Rough) + c(Warm/Cool) + d(Soft/Hard) (2.5)

Multivariate and multiple regression analysis of the results using the ‘soft-feel’ score

as the object variable and the four other sensory factors as the explanatory variables

gave partial regression coefficients of

S0 = 0.13(Moist/Dry)+0.03(Smooth/Rough)+0.11(Warm/Cool)+0.68(Soft/Hard)

(2.6)

The results showed that for soft-feel paints, ‘Soft/Hard’ and ‘Moist/Dry’ are the
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2.5. Correlation study between touch-feel perception and surface properties

dominant perceptions while ‘Smooth/Rough’ perception was not significant. The

‘Warm/Cool’ dimension was significant with warm materials perceived as being soft.

In a touch-feel perception study by Skedung et al. [11], 25 undergraduates

students including 10 females and 15 males were asked to touch and rate several

different coated paper and uncoated paper samples. They are allowed to arbitrarily

create their own scoring scale from the first sample. For example, if the second

sample was perceived to be twice as coarse as the first sample, then its assigned

score should be doubled. The aim was to investigate if and how perceived coarseness

is linked to physical roughness and friction. The experiment results showed that

both the roughness parameter and the finger friction can be related to perceived

coarseness, where group data show that perceived coarseness increase with increasing

roughness. The research showed clearly that smoother papers have higher finger

friction than rougher papers [11].

Correlation and regression analyses were carried out to investigate the rela-

tionships between subject’s responses and the physical measurement in Chen et al.

[7]. Thirty-seven tactile textures including 22 cardboards, 9 flexible materials and

6 laminate boards were tested. The author performed 4 physical measurements on

surface roughness, compliance, friction and the rate of cooling of an artificial finger

when samples were touched. On the other hand, 18 participants (12 males and 6

females, aged 20 to 60) completed questionnaires to rank the material samples against

six word pairs: warm-cold, slippery-sticky, smooth-rough, hard-soft, bumpy-flat and

wet-dry. The pairs of words were separated on a twenty point scale from −10 to 10.

The results show that touch-feel perception is often associated with more than one

physical property, and the strength and form of the combined contribution can be

represented by a regression model.

Barnes et al. [14] performed multivariate statistical analysis of self-report

data to measure how roughness affects a person’s feeling when the person believes

the material sample (glass) was intended to be used in cosmetics packaging. The

conclusion from principal component and cluster analyses was that when the surface

is less rough than a fingertip, it generates desirable feelings. On the other hand,

when the surface is rougher than a fingertip, it generates undesirable ones.

In Elkharraz et al. [86], Twenty-four tactile plagues were manufactured and

the textural features of the plaques’ topographies were extracted using the most

common statistical analysis techniques used in machine vision. One hundred and

seven participants were asked to touch and rate the plagues against a set of 20

adjectives in a psychological experiment. And the words were presented on a seven-

point bi-polar scale. Then partial least squares regression based on genetic algorithm
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(PLSRGA) and wrapper methodology were used to find out the most important

computational textural features. The results identify a subset of features that appear

to have the most important effect on human touch feeling. These results will be used

to synthesise plaques with the required human touch feeling features.

In Childs and Benson [13], Several people stroked their fingers over 16 different

patterned polyester sheets. The patterns were arrays of bumps or pockets with

different pitch and percentage coverage of ink. They were asked to report their feelings

in terms of 15 pre-chosen word pairs, ranging from psycho-physical smooth-coarse to

the more impressionable or affective artificial-natural and happy-sad. Sliding friction

was measured about the samples. The apparent contact area between a fingertip

and a flat surface had been measured through the paper sheet ink as a function of

load. The area was circular. At loads up to 2 N, the contact diameter increased with

load to the power of 0.2. Analysis of the self-report experimental data has shown

that almost 80% of the variance of feelings that people had on touching the printed

surfaces could be described within a two-dimensional semantic space. The results

showed that the human touch-feel perception depends on a surface’s roughness and

also on the sliding friction coefficient.

Thirty-seven material samples were reported in Chen et al. [8] with their

physical parameters such as samples roughness, compliance, sliding friction and

thermal contact properties measured. Psychophysical and affective judgements were

requested from subjects, such as how pleasurable, exciting, indulgent, the samples

felt to touch. The relationship between the Psychophysical and affective judgement

and the physical measurement was explored by using principle component analysis

and Pearson correlation analysis. However, further work was needed on how to

quantify some aspects of surface properties, particularly of roughness and sliding

friction.

2.6 Summary

This chapter summarised the literature on various topics according to the whole

thesis cue. For human skin friction, the typical touch-feel process and several human

skin friction measurement and simulation studies have been introduced. For artificial

fingertip design and friction measurement, several types of research have been carried

out with respect to size and material properties. With guidance from literature, a

multilayered artificial finger has been developed in this thesis.

If the links between friction coefficients, surface physical parameters and

touch-feel perception can be identified, designer and material scientists would be
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able to easily design products that satisfies customer’s touch-feel requirement. At

the moment in literature, the relationships are not obvious and are very system-

dependent.
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Chapter 3

Instrument Design

T
his chapter describes an investigation into a new design of friction test apparatus

with an artificial fingertip. In order to mimic a human finger stroking on

surfaces, a special friction apparatus consisting of an artificial fingertip, a linear

flexure mechanism and a reciprocal stage was developed. The apparatus measures

normal forces and friction forces simultaneously. The detailed design, as well as the

calibration of the friction test rig, are discussed. Experiments were carried out to

measure surface friction coefficients of aluminium and steel with different roughness,

under different contact forces and different stroking speeds. Comparison between

human finger friction and artificial finger friction are made. The friction measurement

results demonstrate that the designed artificial finger can be used to represent the

real human fingertip for friction tests.

3.1 Introduction

Touch-feel perception has been investigated in cosmetic and clinical studies. It has

been found that a target surface that is less rough than a fingertip is more pleasant to

touch or stroke [14], but it is unclear what other factors are involved. Commercially,

products are increasingly focused on ergonomics and there is increasing demand for

surface materials with desirable touch-feel properties [20]. Touch-feel perception is

influenced by human skin friction, which in turn is influenced by many factors such as

skin moisture, age, temperature, anatomical site [13]. Hence, it is not a surprise that

development of an artificial fingertip that mimics a human’s fingertip in quantifying

touch-feel perception has been very challenging [87]. To objectively quantify touch-

feel perception, therefore it is important to build artificial finger measurement devices
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3.2. Design of friction test rig

with structural and mechanical properties resembling real human fingers. The aim

of the present study is to construct an artificial fingertip mimicking the structure,

the shape, softness and friction properties of human fingertips for studies of tactile

measurements and to aid product design.

Previous research involving quantifying perception of touch feeling had been

conducted, for example, on car interior components using the tribological probe

microscope (TPM) [17–19]. The TPM however, cannot replicate the same measure-

ment conditions a human finger experiences, e.g. the stroking motion, and does not

have the same mechanical properties of a human fingertip. To this end, this thesis

combines idea from four areas of research, introduced in the following paragraph, to

develop an anthropomorphic artificial finger and fingertip assembly.

Shimoga and Goldenberg [88] reported a multiple layer artificial fingertip

model which has an external elastic cover and gel for the filler material. Phillips,

Johansson and Johnson [89] proposed ‘continuum’ fingertip virtual models where

the skin and subcutaneous tissues were represented by homogeneous, isotropic, and

incompressible elastic media. The continuum fingertip models predict the stress and

strain distributions within the tissues, and thus the response profiles of the receptors

within the skin tissue. Derler, Schrade and Gerhardt [12] introduced a polyurethane

coated polyamide fleece with a surface structure similar to that of human skin. Its

properties are most similar with human skin under dry conditions. Shao et al. [59]

developed two-dimensional finite element (FE) models of fingertips, which included

the most important anatomical structures: soft tissue, nail, and bone. The skin was

considered as hyper elastic and viscous, and the subcutaneous tissue was modelled

using a sponge-like media. Guided by Young’s modulus analysis and FE modelling of

human fingertips, materials for artificial fingertip can be chosen to have a comparable

stiffness to human fingertips [5, 6].

The artificial finger and fingertip assembly were mounted on an improved

version of the friction test rig previously used by our research group [4, 32]. To

test the apparatus, twelve aluminium samples and five steel samples were tested

and comparison was made between the friction profile of human fingertip measured

in-vivo and that of the artificial fingertip. Further, the new artificial fingertip was

compared to a silicone cover previously used by the group [32].

3.2 Design of friction test rig

The apparatus consists of two major parts: an artificial finger and a friction test rig

which are described in detailed in the following sections.
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3.2. Design of friction test rig

First, in order to better illustrate the subcomponents of the friction apparatus,

the parts were drawn using SolidWorks computer aided design (CAD) software,

shown in Fig. 3.1 and Fig. 3.2. In the figures, different components are displayed

in different colour. Refer to Appendix A.1 for the complete set of drawings for the

design.

Figure 3.1: Exploded view of the whole apparatus in SolidWorks from below

3.2.1 Construction of the multilayer artificial fingertip

Table 3.1: Mechanical properties of the fingertip model in Shao et al. [59]

Part Young’s
modulus
(MPa)

Poisson’s
ratio

Bone 17000 0.3
Soft tissue 0.024 0.4
Epidermis 0.08 0.48
Dermis 0.05 0.48
Nail 170 0.3
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3.2. Design of friction test rig

Figure 3.2: Unexploded view of the apparatus in SolidWorks

(a) Structure view (b) Mesh view
©2009 Elsevier, reprinted with permission from Shao et al. [59]

Figure 3.3: FE model of the fingertip
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3.2. Design of friction test rig

The basic structure of human skin consists of the epidermis as the surface

layer, beneath which there is the dermis, followed by the subcutaneous and the bone.

As shown in Fig. 3.3, Shao et al. [59] developed a finite element model of a human

fingertip, and Table 3.1 shows the mechanical properties of each part used in their

model. These values were used as a guideline to select the materials to make the

artificial finger introduced in this work.

The artificial fingertip has a multilayered construction comprising of the

cover layer, the filler layer and an internal bone support structure. The fingertip

has a diameter of 15 mm, typical size of a human index finger [90]. To mimic the

stiffness (Young’s modulus) of the epidermis of a human fingertip, the cover layer

was made from 1 mm thick silicone rubber RTV139 (hardness: Shore A 23-33 cured

with catalyst 148 ); the thickness is comparable to that of the epidermis of an index

finger at 250 µm [91]. Similarly, mimicking the dermis layer of a human fingertip,

the filler part was made from 3 mm thick silicone rubber RTV 135 (hardness: Shore

A 13-17, cured with catalyst 135 ). Lastly, the internal bone structure was made of

aluminium with a thickness of 2.5 mm and was slotted into a supporting base. The

details are shown in Fig. 3.4.

Figure 3.4: The multi-layer artificial fingertip (a) side view (b) top view with a
diameter of 15 mm

3.2.2 Fingerprint imprint on the artificial finger

A fingerprint sample was taken from a technician with his consent by imprinting it

onto wax. The surface parameters of the fingertip of the technician were measured in

vivo using a Taylor Hobson Form Talysurf surface profilometer, along the longitudinal
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axis of the finger. The results are listed on Table 3.2, from which one can see the

mean spacing successive ridge and valley were approximately Sm = 0.5 mm. The

wax was pressed onto the cover layer of the artificial fingertip during the curing

stage in order to transfer the fingerprint pattern. The realistic surface contour of the

resulting artificial fingerprint serves to replicate the friction characteristics of a real

human fingertip.

Table 3.2: Fingerprint surface topographical and mechanical parameters measured
by Form Talysurf surface profilmeter

The fingertip surface Ra(µm) Rq(µm) Rsk Rku Sm(µm) Sdq

Topography 44.824 49.822 -0.1 1.6 488.295 47.26

Figure 3.5: The press used to imprint the fingerprint on the artificial fingertip

3.2.3 Friction test rig

The friction test rig is shown in Fig. 3.6, which consists of the artificial finger support

structure fixed to a linear stage. The height of the whole structure is adjustable

to accommodate a large range of thickness of the material samples. The flexible

design of the friction test rig has several advantages over previous designs [4, 32]:

firstly, the adjustable spring load provides a continuous fine tuning mechanism for

application of a constant normal force; secondly, the simplicity of the single moving

part design means minimal calibration is required; and finally, the linear stage

provides a repeatable and programmable reciprocating motion.
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Figure 3.6: Photo of the friction test apparatus with labelled parts

Linear stage mechanism

To simulate the reciprocating human fingertip movement, a programmable linear

stage was utilised, comprising of a Physik Instrumente PI M-272.2c ultrasonic

piezomotor driven by a C-867.OE motion controller. This linear stage improved

upon the roller mechanism reported previously [4]. It moves the artificial finger back

and forth can provide a stroking velocity up to a maximum of 150 mm s−1. It was

programmed in LabVIEW software running on a computer, which interfaces directly

with the C-867.OE motion controller. Once programmed, the linear stage generates

accurate (±0.9 µm) and consistent reciprocating motion (bidirectional repeatability

< 3µm) [92].

Damped artificial finger support structure with adjustable spring

The artificial finger support structure has an adjustable spring which can be used

to finely control the constant loading force exerted by the artificial fingertip on the

material sample. The structure also contains a damper arrangement which will help

to dampen down any vertical vibrations during operation of the linear stage.
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Flexure and sample holder

Figure 3.7: The notch hinge structure

A notch type flexure [93, see Fig. 3.7] incorporating a capacitive sensor was

used to measure the friction force. The notch acts as an elastic rotary bearing [94],

allowing deflection tangentially. It works on the basis of the mechanical principle

that a force applied to an elastic element produces a measurable deflection [95]. The

advantages of flexure are 1) it gives a linear output relationship between the applied

force and the measured deflection, and 2) it is insensitive to forces which are not

aligned with the principal axis of the sensing elements. 3) displacement output is

easy to measure with high accuracy, despite being small in magnitude. The force

for a given deflection is dependent upon the elastic modulus of the flexure, and the

effective stiffness of a flexure system is reduced by the presence of externally applied

loads, hence it is important to verify the contact force working range to make sure

the flexure does not over-deform as to affect the effective stiffness. The calculation is

shown in Appendix A.2 [96–98].

The flexure used in the friction test apparatus may be considered as a simple

linear spring mechanism. The parameters for each notch is defined as t = 1 mm,

R = 5 mm, b = 25 mm, h = 11 mm and L = 15 mm, with respect to Fig. 3.7.

For flexure hinge design, compliance is the most important parameter, and it

can be calculated based on the bending theory of Euler-Bernoulli beam. A simple

linear spring has four notches. The accuracy of the spring flexure is primarily

dependent upon the accuracy of the centre of the holes, with the materials removed

from the rest of the original blank being of little influence.
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3.3. Calibration and testing of the friction measurement apparatus

(a) sample holder (b) Load cell (c) Capacitive Sensor

Figure 3.8: Capacitive sensor, load cell and the sample holder

3.3 Calibration and testing of the friction measurement

apparatus

3.3.1 Calibration of the flexure

To calibrate the flexure mechanism for friction measurement, the stiffness of the

load region should be measured. The flexure was mounted vertically and precision

weights were placed on the top of the flexure. Its displacement was measured by a

Taylor Hobson Form Talysurf surface profilometer. The results are shown in A.2.2.

The stiffness of the flexure was measured to be 33.5 kN m−1.

The mass of the ‘moving part’ of the flexure (the blue region shown in

Fig. 3.9a) is estimated by SolidWorks to be 227.42 g, with a volume of 87 450 cm3.

Fig. 3.9a shows the deflection of the flexure under a load in the direction of the

purple arrows using FEA analysis; the blue region experiences the most deflection,

about 0.56 mm under a load of 10 N. FEA modal analysis was also performed and

the natural frequency of the flexure was found to be 61.08 Hz.

3.3.2 Calibration of the capacitive sensor and the load cell

In the design of friction test apparatus, a load cell (XLF212R Miniature, Measurement

Specialities Inc.) was fixed under the flexure (see Fig. 3.8b). Then, a sample holder

was fixed above it (see Fig. 3.8a) to measure the normal forces pressed to the samples.

The load cell has a temperature compensation module integrated into the output

cable. Unlike sensors with flat forces application surfaces, the XLF212R incorporates

a spherical load button, which results in more precise point loading application
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3.3. Calibration and testing of the friction measurement apparatus

(a) FEA analysis of the flexure (b) Stiffness calibration of the flexure

Figure 3.9: FEA analysis and experimental calibration of the flexure

and measurement accuracy. Likewise, the sample holder also has a steel ball at the

contact point to make sure normal forces would be focused on this point.

The load cell has a range of 10 N, but was calibrated up to 2 N including

the weight of the sample holder by putting standard weights from 0 g to 150 g on

the sample holder. This range covers the normal force that human fingers exert

and coincides with suggestions in skin tribology studies of about 0 N to 1.5 N. As

shown in Fig. 3.10a, the output of load cell gives a sensitivity of 1.371 V N−1, with

an amplification of 100 in the conditioning circuit.

The capacitive sensor, shown in Fig. 3.8c, is used for friction force measurement

by sensing the deformation of the flexure. A suitable distance between two pieces of

the capacitive sensor is very important because high sensitivity and high accuracy

are essential for reliable friction coefficient measurement. The sensor was calibrated

using standard weights. The flexure was vertically placed and the weights were set

on top of one arm, while the output of the capacitive sensor was monitored. It is

shown in Fig. 3.10b. The capacitive sensor output voltage is proportional to the

normal force with a sensitivity of about 0.9276 V N−1, with the root mean square of

noise equivalent to 1.2 mN.

3.3.3 Testing the friction measurement apparatus

Different stroking speeds and distances can be set up in the PI measurement software.

The load cell and the capacitive sensor configurations were controlled by a LabVIEW-

based software system which operated on the PC installed with a data acquisition

card, as shown in Fig. 3.11. The software interface was designed to display the

real-time measurements of the normal force and the friction force based on the
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3.3. Calibration and testing of the friction measurement apparatus

(a) Load Cell (b) Capacitive Sensor

Figure 3.10: Calibration of the load cell and the capacitive sensor

Figure 3.11: Software panel

acquisition from outputs of the sensors and its own calibration coefficients, which is

detailed in appendix. The operation software system can be described as follows:

a) Setting: The sampling rate can be set manually. Also the stroking speed and

stroking distance can be set manually in different measurement conditions.

Because the natural frequency of the flexure is 61.08 Hz, the sampling fre-
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quency should be at least the same or higher as twice of the natural frequency

according to sampling theory. 1000 Hz was selected during the whole friction

measurement.

b) Real-time Display: Including real-time graphs of friction force, normal force

and the dynamic friction coefficient (the ratio of real time friction to normal

force); the offset of both can be adjusted in the control box of the LabVIEW

Software.

c) Recording & Data Processing: When ’Collect Data’ button is clicked, the

recording process starts with Direct Memory Allocation(DMA) mode triggered,

while the real-time display screen would stop. Then the time average friction

force and normal force as well as friction coefficient, would be displayed in the

indicators of the red framed box, as shown in Fig. 3.11.

Signal to noise analysis

Signal-to-noise ratio (SNR) analysis was performed during calibration of the instru-

ments. SNR is defined as the ratio of signal power to the noise power, often expressed

in decibels. A ratio higher than 1:1 (greater than 0 dB) indicates more power in

information than noise.

SNR =
Psignal

Pnoise
=

(
Asignal

Anoise

)2

(3.1)

Figure 3.12: One of the measurement taken during SNR analysis
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The aluminium sample AM5 was arbitrarily chosen to experimentally measure

the SNR of the friction measurement rig. The sampling frequency of DAQ acquisition

card was 1000 Hz. The measurement record was chosen to be 40 seconds. The output

signals of both load cell (for normal force) and capacitive sensor (for friction force)

during static and sliding working conditions were measured: Firstly, the background

noise level was measured while the apparatus was idling. Secondly, a contact force

and a stroking motion were applied to the AM5 sample (e.g. see Fig. 3.12). Using

(3.1), both SNRs of friction force and normal force were determined.

(a) Noise PSD (under no force) on the capa-
citance sensor (friction force sensor)

(b) Noise PSD (under no load) on the load
cell (normal force sensor)

Figure 3.13: Power spectral density (PSD) of sensor outputs when there is no
operation

(a) PSD of the signal on the capacitance sensor
(friction force sensor)

(b) PSD of the signal on the load cell (normal
force sensor))

Figure 3.14: Power spectral density (PSD) of sensor outputs during measurement
under normal load and friction
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While the friction force measurement in Fig. 3.12 appear noisy at first glance—

to the contrary, those are high-frequency signal components due to the surface

roughness of the sample being measured. The SNR is considered by comparing

the power of the signal during measurement versus the power of the background

noise when the sensors were subjected to no inputs. As shown in Fig. 3.13, without

physical contact, the average power spectral density (PSD) of the capacitance sensor

signal was about −195 dB and the average PSD of the capacitance sensor signal was

about −140 dB. In contrast, the average PSD of the output signals were shown in

Fig. 3.14 when the normal force was 0.5 N. By averaging over the spectrum, the

load cell had an SNR of about 32 dB and the capacitive sensor had an SNR of about

18 dB. However, because the friction test apparatus is a low frequency device, the

higher frequencies can be filtered out and only frequencies from 0 Hz to 10 Hz were

considered for SNR calculation. The load cell had an SNR of about 49.7 dB and the

capacitive sensor had an SNR of about 33.3 dB.

Static friction measurement was also performed and the instruments had a

very low bias (< 4%). In order to set the optimal working conditions for friction

measurements, different contact forces, different stroking distances and different

stroking speeds were tried. The contact force was applied from 0.35 N to 2.5 N, the

stroking distance was tried from 2 mm to 12 mm, and stroking speed was tried from

0.5 mm s−1 to 10 mm s−1. When the contact force is too low, the stroking distance is

too long/short, or the stroking speed is too high/low, the uncertainty of the friction

measurement would be high because of the sensitivity of the sensors or mechanical

instability. Because of this, the range of the contact force was chosen to be from

0.5 N to 1.5 N, the stroking distance at 6 mm (±3 mm from the central point) and

the stroking speed was set from 2 mm s−1 to 8 mm s−1. The contact forces are still

within the reasonable range expected on a human finger on a touch-feel perception

task, which is between 0.2 N to 0.8 N [99]. The current setup is unable to match

the range of sliding speed observed with a human finger by Tanaka et al. [99] of

between 50 mm to 130 mm. However, the size of the sample used in this thesis is

much smaller (¡25% the size) compared to the reference, and therefore it is safe to

assume that the participants would have stroked the sample at a slower pace.

Stick-slip Analysis

Stick-slip can be described as surfaces alternating between sticking to each other

and sliding over each other, with a corresponding change in the force of friction.

Typically, the static friction coefficient (a heuristic number) between two surfaces

is larger than the kinetic friction coefficient. If an applied force is large enough to
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3.3. Calibration and testing of the friction measurement apparatus

overcome the static friction, then reduction of the friction to the kinetic friction can

cause a sudden jump in the velocity of the movement.

The stick-slip effect should be into consideration in friction test apparatus

design, because the presence of stick-slip effect will introduce large errors to the

friction measurement and that the reciprocating movement of the linear stage

increases the likelihood of the effect happening—the phenomenon occurs easiest at

the end points of sliding motion when the linear stage changes direction.

Here, the linear stage sliding speed was set to 2 mm s−1, the sliding distance

was set to 3 mm and the normal force was set to 0.5 N, 4000 points were sampled.

As shown in Fig. 3.15, there was a disturbance on the normal force measurement

when the linear stage changed its direction. However, there was no corresponding

obvious effect on the friction force and the friction coefficient measurement, whereas

one would expect visible jumps on both ends if the stick-slip effect was significant.

The non-negative friction force reading after direction change on the figure is due to

bias before calibration settings were applied.

Figure 3.15: Stick-slip effect check during friction measurement
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3.3. Calibration and testing of the friction measurement apparatus

Bias Characterisation, optimal normal force and movement range

One of the objectives of calibration is to make sure there is no significant bias in

the friction coefficient measurement. Another objective is to find the optical normal

force and the travelling distance for accurate friction measurement. Here, one of

milled aluminium samples, AM4, was used to test for bias and to choose the optimal

normal force and measurement range. Its size is 20 mm× 15 mm. The central point

of the sample was at −11.5 mm in the linear stage axis. Normal forces of 0.5 N, 1.0 N,

1.5 N and 2.0 N were applied. Bias measurement was performed by setting linear

stage speed to zero. The procedure was performed at different points of the AM4

sample from 0 mm to 17 mm, measured from one of the edges.

Figure 3.16: Bias measurement of AM0.4

As shown in Fig. 3.16, the friction coefficient was stable between 0 to 0.05

when the normal forces were 0.5 N, 1.0 N and 2.0 N. This low level of bias can safely

be ignored. The friction coefficient jumped above 0.2 at 4 mm when the normal force

was 1.5 N in the linear stage axis, which is 7.5 mm away from the central point of

the sample. Because the normal stroking force of human fingertip is at about 0.5 N

[99], 0.5 N and 1.0 N were chosen as default settings for future friction measurement.

Also, ±5 mm was chosen as the largest travelling distance away from the central
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3.4. Friction measurement of metal samples

point, corresponding to 6.5–17.5 mm on Fig. 3.16.

3.4 Friction measurement of metal samples

In order to minimise the influence due to different materials and further understand

the surface topography effect on touch friction, a set of samples made of aluminium

milled/turned and ground steel were first selected for the investigation. The friction

coefficient measurement experiment is separated into two parts; the first part concerns

with different contact forces and the second part concerns with different linear sliding

speeds. As shown in Tables 3.3 and 3.5,the aluminium and steel samples have

roughness ranging from about 0.1 µm to 25 µm, and spacing parameter Sm ranging

from approximately 20µm to 600µm .

3.4.1 Topography measurements

(a) Taylor Hobson Form Talysurf 2D stylus
surface profilometer

(b) Bruker Corporation ContourGT-K 3D op-
tical microscope

Figure 3.17: 2D and 3D surface metrology instrument

In order to compare the differences between traditional 2D contact stylus

and 3D optical profilometers, and to measure the topography of the surfaces more

accurately, the Taylor Hobson Form Talysurf and Bruker Corporation ContourGT-
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3.4. Friction measurement of metal samples

K were used to measure the above samples shown in Fig. 3.17. All of the 3D

measurement images were shown in Appendix A.4.

Figure 3.18: The Bruker scanning results of one of the steels samples (ID S2)

Figure 3.19: The Bruker scanning results of one of the milled aluminium samples
(ID AM3)

Because the contact radius under the range of normal forces during frictional

measurement is no more than 3 mm (see Section 4.4), the stitching setup in the

Bruker was set to be 3 mm × 3 mm. Fig. 3.18 and Fig. 3.19 show the detailed

topography in both 2D plan view (left) and 3D view (right), measured from the

centre of the sample. The red colour indicates regions of high surface height, while

the blue colour indicates regions of low surface height. Each sample was measured 5

times and results were averaged.
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3.4. Friction measurement of metal samples

The summary bar plots of measurements using 2D and 3D methods for

various materials are shown in Figures 3.20, 3.21 and 3.22. The blue bars the

Bruker ContourGT-K measurement results while the red bars are the Taylor Hobson

Form Talysurf measurement results. Compared with the conventional 2D roughness

parameters of Ra, Rq from the Form Taysurf, the 3D Sa, Sq results from ContourGT-

K are numerically greater. The 3D measurements include extra spatial information

over a large area through stitching and can be expected to be more accurate than

2D measurements where the directionality may affect the results in some materials.

Figure 3.20: Roughness measurements of steel obtained using ContourGT-K (blue)
and Form Talysurf (red)

Figure 3.21: Roughness measurements of milled aluminium obtained using
ContourGT-K (blue) and Form Talysurf (red)

The inferred surface roughness parameters are shown in Tables 3.3 and 3.4 for

the aluminium samples and 3.5 and 3.6 for the steel samples. While R parameters

represent the data measured by the Taylor Hobson Form Talysurf, the S parameters

represent the data measured by the Bruker Contour GT-K. In this thesis, unless
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3.4. Friction measurement of metal samples

Figure 3.22: Roughness measurements of turned aluminium obtained using
ContourGT-K (blue) and Form Talysurf (red)

otherwise specified, topography parameters data reported without symbols are 3D

parameters from the Bruker Contour GT-K.

Table 3.3: Surface texture parameters of the Aluminium samples measured by Bruker

Sample Sa(µm) Sq(µm) Ssk Sku Sm(µm)

M
il

le
d

AM1 0.531 0.698 −0.899 4.208 51.797
AM2 1.083 1.317 −0.811 2.854 130.745
AM3 1.935 2.328 −0.075 2.223 253.498
AM4 3.868 4.552 0.120 1.785 283.379
AM5 6.310 7.931 1.073 3.744 365.373
AM6 15.768 18.651 0.970 3.252 530.893

T
u

rn
ed

AT1 0.485 0.622 0.338 5.120 30.342
AT2 1.184 2.711 0.500 2.100 86.657
AT3 3.507 4.619 1.240 3.713 214.751
AT4 4.997 6.122 1.218 5.733 346.076
AT5 10.367 11.104 0.323 1.383 508.793
AT6 21.121 23.133 0.334 1.492 602.454

3.4.2 Friction measurement results and analysis

The sliding (stroking) speed of the linear stage, as well as the contact force applied

by the spring, can be varied to accommodate the investigation. The mean friction

coefficient is obtained by averaging the absolute values of friction coefficient derived

from the reciprocating motion in both directions. The sampling rate of 100 Hz was

used and each measurement took about 40 s. Every set of measurement was repeated

five times and results were averaged.
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3.4. Friction measurement of metal samples

Table 3.4: Surface texture parameters of the Aluminium samples measured by Taylor
Hobson

Sample Ra(µm) Rq(µm) Rsk Rku Sm(µm)

M
il

le
d

AM1 0.424 0.550 −0.845 4.235 40.836
AM2 0.911 1.122 0.268 2.674 67.507
AM3 1.702 2.158 0.268 3.622 140.656
AM4 3.507 4.174 0.381 2.327 191.311
AM5 6.564 7.619 0.423 2.028 277.230
AM6 13.823 16.080 0.436 1.956 413.422

T
u

rn
ed

AT1 0.411 0.513 −0.059 2.838 45.750
AT2 0.720 0.879 0.655 2.612 70.241
AT3 3.259 3.890 −0.038 1.937 118.056
AT4 4.867 5.525 0.117 1.733 184.615
AT5 7.294 8.287 0.034 1.685 238.177
AT6 15.142 17.079 −0.686 1.970 390.947

Table 3.5: Surface texture parameters of the steel samples measured by Bruker

Sample Sa (µm) Sq (µm) Ssk Sku Sm (µm)

S1 0.179 0.451 −0.800 4.500 21.884
S2 0.184 0.254 0.267 8.700 25.441
S3 0.464 0.586 −0.243 7.300 23.776
S4 0.834 1.092 −0.908 7.780 32.504
S5 2.567 2.948 −1.900 16.700 35.078

Table 3.6: Surface texture parameters of the steel samples measured by Taylor
Hobson

Sample Ra(µm) Rq (µm) Rku Rsk Sm (µm)

S1 0.061 0.101 0.225 5.398 6.558
S2 0.110 0.183 0.225 5.398 6.914
S3 0.220 0.312 −1.228 7.179 8.162
S4 0.430 0.532 −0.619 3.996 9.740
S5 0.790 0.824 0.249 2.829 14.363
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3.4. Friction measurement of metal samples

For human finger measurements, 10 subjects were recruited to stroke on six

different milled aluminium samples and turned aluminium samples, 6 subjects for

the five ground steel samples (see Table 3.3 and Table 3.5). Before the experiment,

participants were asked to wash their hand with soap and dried with a towel. Material

samples were cleaned with isopropyl alcohol. The subjects were then asked to 1)

stroke the material surface using his/her index finger back and forth, at an angle of

about 60 degrees 2) maintain a normal force as specified by the test (0.5 N) with

feedback from a computer monitor 3) maintain a natural stroking speed. The stroking

direction was perpendicular relative to the axis of the surface texture (along the

x-axis as seen in Figures 3.18 and 3.19). The results were labelled ‘human finger’

in the subsequent figures. The average human fingertip stroking speed is about

8 mm s−1 and the average contact force is approximately 0.5 N [32].

For the artificial fingertip friction experiment in this paper, the contact loading

forces of 0.5 N, 1 N, 1.5 N and 2 N and the sliding speeds of 0.5 mm s−1, 2 mm s−1,

5 mm s−1, 8 mm s−1 and 10 mm s−1 were investigated. It was later found that some

of the extreme values were outside the linear range of the capacitive sensor and

excess vibration on the sample holder was observed. Because of this, results are

only reported for the sliding speed settings of 0.5 mm s−1, 2 mm s−1, 5 mm s−1 and

8 mm s−1 and contact force settings of 0.5 N and 1 N.
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(c) Steel samples

Figure 3.23: Friction coefficient measurements comparing human fingertip and ar-
tificial fingertips applied on (a and b) aluminium and (c) steel samples at various
stroking speed and loading forces. Boxplot applicable to human fingertip measure-
ments of 10 adult subjects for aluminium samples and 6 subjects for steel samples —
dotted black whiskers: data range, blue boxes: 25% – 75% quartiles, horizontal cyan
lines: median, blue crosses: mean, small red plus signs: outliers.

Comparison with human fingertip friction

In order to assess if the artificial fingertip was close to human fingertip in terms of

friction properties, Fig. 3.23 was plotted. It contains the results of friction coefficient

measurement obtained from human fingertips (boxplot with blue crosses marking

the means) and that from the artificial fingertip on aluminium and steel samples.

Overall the results show that the artificial finger is relatively close to human finger

in terms of the friction measurement characteristics for these samples, compared to

previous attempts by our group [32]. The results are better matched with milled

aluminium samples (root mean squared error (RMSE) ∼ 0.043 – 0.13) compared to

steel samples (RMSE ∼ 0.12 – 0.19), with the outlier S3 contributing to most error.

Considering the results on the milled aluminium samples in Fig. 3.23a, it can be

seen that for the smoother samples AM1–6 (lower Sa and Sq values, see Table 3.3),

the lowest root mean square error (RMSE = 0.043) was obtained with the artificial

finger at a sliding speed of 8 mm s−1 and a normal force of 0.5 N.
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3.4. Friction measurement of metal samples

As shown in Fig. 3.23b, the friction measurement results for the turned

aluminium samples are less satisfactory. It may be due to the fact that the surfaces

of the aluminium turned samples are not strictly flat, but slightly curved because

of different machining technology. For AT1 and AT2, the artificial finger friction

measurements are quite close to the mean human finger measurement results under

all conditions. The 8 mm s−1 condition results seems to better compared with the

5 mm s−1. For the remaining 4 samples, it is difficult to identify their friction

coefficients. The artificial fingertip occurs the same trends, which is different from

the human fingertip measurement results. However, the 8 mm s−1 and 1 N results

are the most similar to human fingertip friction results.

For the steel samples in Fig. 3.23c, the trend is different; a sliding speed of

5 mm s−1 and a normal force of 1.0 N seem to result in the lowest error between the

artificial finger measurements and the human finger measurements for the smoother

samples S1–S3 (RMSE = 0.135). For these samples, it will be seen later that

2 mm s−1 achieve even better matching with the human finger measurements. The

faster sliding speed of 8 mm s−1 was slightly closer to human finger for samples S4

and S5 (RMSE = 0.060). At higher roughness (Sa > 6 µm), AM5 and AM6 results

suggest that higher sliding speeds and/or lower normal forces may match better with

human finger measurements. The influences of normal force and sliding speed will be

discussed in more detail later in Sections 3.4.5 and 3.4.6. It is interesting to note that

the outliers marked by crosses for S1 and S2 are results from the same participant

and similarly the outliers for S3–S5 are results from the same participant.

The variation of human results for the steel samples is indicated by the

averaged standard deviation across the samples of 0.11. This is lower than the value

for milled aluminium of 0.16 and that turned aluminium of 0.15. A hypothesis is that

the steel surface topography is irregular and random as shown in Appendix A.4.1,

compared to that of aluminium samples which have regular patterns as shown in

Appendix A.4.1.

To study the overall correlation between human finger friction results with the

artificial finger results, sliding speeds as low as 0.5 mm s−1 were tried on steel samples

and 2 mm s−1 on the aluminium samples. The coefficient of determination, commonly

known as the r2 value, are computed on the friction coefficient measurement results

for each material and for each condition. The r2 values are shown in Table 3.7. The

closer the r2 value is to one, the higher the correlation is between the artificial finger

and human finger friction results. However, this measure is heavily influenced by

outliers and no obvious trend can be observed. Therefore, the RMSE values are also

tabulated in Table3.8.
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3.4. Friction measurement of metal samples

Table 3.7: Coefficient of determination r2 between artificial finger and human finger
friction measurements

Configuration Material

Sliding speed
(mm s−1)

Normal force
(N)

Aluminium
(milled)

Aluminium
(turned)

Steel
(ground)

0.5 0.5 0.8755
0.5 1 0.7448
1 0.5 0.6787
1 1 0.6385
2 0.5 0.9141 0.0306 0.9721
2 1 0.8787 0.1832 0.9102
5 0.5 0.9023 0.8494 0.9250
5 1 0.8209 0.0705 0.8566
8 0.5 0.4679 0.0176 0.9183
8 1 0.8067 0.1648 0.8251

Table 3.8: Root mean squared errors between artificial finger and human finger
friction measurements

Configuration Material

Sliding speed
(mm s−1)

Normal force
(N)

Aluminium
(milled)

Aluminium
(turned)

Steel
(ground)

0.5 0.5 0.2681
0.5 1 0.2820
1 0.5 0.2211
1 1 0.2127
2 0.5 0.1027 0.2357 0.2315
2 1 0.1281 0.2991 0.2387
5 0.5 0.1583 0.1104 0.1098
5 1 0.1329 0.2554 0.1259
8 0.5 0.1822 0.3443 0.0426
8 1 0.1179 0.1658 0.0867
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3.4. Friction measurement of metal samples

The trend is clearer with RMSE. There is a clear trend of decreasing error

when the sliding speed is increased for the materials except for the turned aluminium.

This is expected as the typical speed at which human stroke one’s finger during

touch sensing is usually greater than 50 mm s−1 [99]. The trend is less clear with

respect to which contact force offers lower error. The settings of 8 mm s−1 and 1 N

offers the best performance in this set of experiment.

Comparison with previous roller-on-block friction rig

Previously a friction apparatus with a flexure mechanism was built for the in-situ

measurement of friction properties; both contact force and frictional force can be

measured simultaneously [4]. The apparatus provided a direct measurement of

the friction when the human finger stroked on the test specimen. However, the

friction measurement results varied significantly across human subjects. In order to

mimic a human finger, a roller-on-block friction test configuration was developed by

using steel, brass and rubber materials [32]. The results were not satisfactory; for

example, the steel and brass were too hard and thus the measurement results were

not representative of that from human fingertips. The rubber roller was however too

soft to resemble human fingertip. The rubber, lacking a solid core, deformed during

measurement.

To see if the new multilayer artificial finger design is better than the previously

used rubber roller rig, the same five steel samples listed in Table 3.5 were tested on

the current friction test rig using linear stage sliding speeds of 0.5 mm s−1, 1 mm s−1,

2 mm s−1 and 5 mm s−1, matching the roller rotation speeds used in Yue [32]. For a

contact force of 0.5 N, the previous measurements of friction coefficients ranged from

1.2 to 1.7. The high friction coefficients were due to the soft pure silicone rubber used

as the tip material. In comparison, the multilayered artificial fingertip in this paper

resulted in friction coefficients ranging from 0.1 to 0.9. The friction measurement

results from the roller apparatus also had significantly lower correlation (r2 < 0.5)

compared to the new apparatus (r2 = 0.5 ∼ 0.91).

3.4.3 Influence of material roughness

Figure 3.25 shows that increasing roughness of the material results in lower measured

friction coefficient regardless of sliding speed. Although only Rq is shown here, similar

observations can be made with Ra and indeed the S parameters from Tables 3.3 and

3.5. A similar trend can also be seen with a lower contact force of 0.5 N.
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Figure 3.24: Comparison of friction coefficients against sliding speed of steel samples
measured using the artificial finger and the roller rig with silicone cover
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Figure 3.25: Friction coefficients of the ground steel samples against Rq at different
sliding speeds with fixed contact force OF 1 N
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3.4. Friction measurement of metal samples

With aluminium samples, apart from AT1 and AT2, Figures 3.23a and 3.23b

also support the idea that increasing roughness parameter result in lowered measured

friction coefficient, as the sample IDs are also ordered in increasing Ra and Rq (see

Table 3.4).

The trend seen here agrees with theory which will be discussed at the end of

Section 4.2.4.

3.4.4 Influence of the fingerprint

To better replicate the friction characteristics of a human fingertip, a real human

fingerprint pattern was imprinted on the surface of the artificial fingertip. In order

to assess the effect of this addition, we compared the steel samples friction with and

without a fingerprint as follows. The linear stage sliding speeds were set to 2 mm s−1

and 5 mm s−1, and the normal forces applied were 0.5 N and 1 N.

As shown in Fig. 3.26, the curves with diamond markers are the friction

measurement results without fingerprint, where the surface of the artificial fingertip

was smooth and hemispherical. The curves with circle markers are the friction

measurement results with a fingerprint; it can be seen that the friction coefficients

increase when the fingerprint was present. This increase may have been caused by

higher pressure induced deformation due to fingerprint edges decreasing the apparent

contact area. The deformation may also cause adhesive friction mechanisms, described

by the Greenwood-Williamson (GW) theory (Section 4.2.4) [100]. The results with

fingerprint track the human fingertip trajectory through the samples better, and

hence the inclusion of the fingerprint is beneficial in mimicking human finger friction

properties.

3.4.5 Influence of normal force

The friction coefficient is the ratio of the friction force to the normal load which,

according to Amontons’ first Law, is constant regardless the applied normal force

for well-behaved materials. However, adhesion friction is the dominant friction

mechanism and the viscoelastic nature of human skin leads to nonlinear deformation.

This results in a strong dependence of the measured coefficient of friction on the

applied normal load caused by normal adhesion. At high loads and high roughness,

the frictional force contains a deformation component which should not be ignored

[9].

Putting this in context with human skin studies, Naylor [101] showed that

the friction coefficient was a constant for a range of normal forces from 2 N to 7 N.

56



3.4. Friction measurement of metal samples

S1 S2 S3 S4 S5
0

0.2

0.4

0.6

0.8

1

(a) 0.5 N

F
ri

ct
io

n
co

effi
ci

en
t

Human fingertip

2 mm s−1 without fingerprint

2 mm s−1 with fingerprint

5 mm s−1 without fingerprint

5 mm s−1 with finger print

S1 S2 S3 S4 S5
0

0.2

0.4

0.6

0.8

1

(b) 1 N

F
ri

ct
io

n
co

effi
ci

en
t

Human fingertip

2 mm s−1 without fingerprint

2 mm s−1 with fingerprint

5 mm s−1 without fingerprint

5 mm s−1 with fingerprint

Figure 3.26: The influence of fingerprint texture on the artificial fingertip friction;
In-vivo friction of 6 adult subjects—dotted black whiskers: data range, blue boxes:
25% – 75% quartiles, horizontal cyan lines: median, blue crosses: mean.
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Table 3.9: Friction coefficients of aluminium samples

Sample Friction coefficient µ

Sliding speed at Sliding speed at
Finger stroke contact force = 0.5 N contact force = 1 N

2 mm s−1 5 mm s−1 2 mm s−1 5 mm s−1

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

M
il

le
d

AM1 0.54 0.27 0.39 0.06 0.46 0.07 0.20 0.10 0.40 0.15
AM2 0.39 0.19 0.14 0.10 0.32 0.11 0.13 0.15 0.31 0.09
AM3 0.32 0.15 0.09 0.06 0.21 0.10 0.12 0.09 0.23 0.17
AM4 0.28 0.15 0.06 0.05 0.20 0.10 0.09 0.06 0.19 0.08
AM5 0.30 0.14 0.03 0.05 0.18 0.07 0.08 0.09 0.12 0.14
AM6 0.27 0.12 0.01 0.03 0.10 0.04 0.05 0.05 0.12 0.06

RMSE 0.08 0.07 0.13 0.08

T
u

rn
ed

AT1 0.44 0.24 0.35 0.11 0.42 0.17 0.32 0.16 0.37 0.22
AT2 0.33 0.17 0.14 0.08 0.25 0.13 0.18 0.17 0.24 0.16
AT3 0.27 0.15 0.73 0.24 0.86 0.23 0.80 0.20 0.80 0.17
AT4 0.26 0.13 0.53 0.23 0.68 0.15 0.62 0.17 0.56 0.15
AT5 0.28 0.15 0.29 0.19 0.40 0.20 0.57 0.09 0.37 0.15
AT6 0.23 0.11 0.18 0.10 0.30 0.17 0.30 0.11 0.28 0.19

RMSE 0.19 0.44 0.29 0.51
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(a) Milled, sliding speed = 5 mm s−1
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Figure 3.27: Friction coefficients of the milled aluminium samples at different contact
forces with fixed sliding speeds of (a) 5 mm s−1 and (b) 8 mm s−1; Boxplots only
applicable to human fingertip measurements of 10 adult subjects—dotted black
whiskers: data range, blue boxes: 25% – 75% quartiles, horizontal cyan lines: median,
blue crosses: mean.

58



3.4. Friction measurement of metal samples

Table 3.10: Friction coefficients of steel samples

Sample Friction coefficient µ

Finger stroke
Sliding speed at contact force = 0.5 N

0.5 mm s−1 1 mm s−1 2 mm s−1 5 mm s−1

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

S1 0.62 0.13 0.27 0.02 0.46 0.02 0.60 0.02 0.82 0.02
S2 0.58 0.07 0.20 0.02 0.22 0.03 0.55 0.06 0.72 0.11
S3 0.38 0.07 0.14 0.07 0.18 0.12 0.38 0.24 0.55 0.23
S4 0.27 0.11 0.10 0.03 0.11 0.04 0.20 0.21 0.29 0.19
S5 0.17 0.19 0.06 0.03 0.07 0.05 0.05 0.10 0.10 0.12

RMSE 0.25 0.19 0.09 0.19

Finger stroke
Sliding speed at contact force = 1 N

0.5 mm s−1 1 mm s−1 2 mm s−1 5 mm s−1

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.

S1 0.62 0.13 0.28 0.03 0.58 0.05 0.55 0.02 0.70 0.03
S2 0.58 0.07 0.16 0.03 0.24 0.05 0.48 0.10 0.58 0.10
S3 0.38 0.07 0.14 0.14 0.22 0.04 0.37 0.20 0.51 0.34
S4 0.27 0.11 0.07 0.06 0.08 0.16 0.14 0.28 0.20 0.28
S5 0.17 0.19 0.05 0.05 0.05 0.11 0.03 0.19 0.09 0.28

RMSE 0.26 0.18 0.11 0.13

Human finger (mean) n = 0.5 N n = 1 N
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(a) Turned, sliding speed = 5 mm s−1
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(b) Turned, sliding speed = 8 mm s−1

Figure 3.28: Friction coefficients of the turned aluminium samples at different contact
forces with fixed sliding speeds of (a) 5 mm s−1 and (b) 8 mm s−1; Boxplots only
applicable to human fingertip measurements of 10 adult subjects—dotted black
whiskers: data range, blue boxes: 25% – 75% quartiles, horizontal cyan lines: median,
blue crosses: mean.

59



3.4. Friction measurement of metal samples

Human finger (mean) n = 0.5 N n = 1 N

S1 S2 S3 S4 S5
0

0.2

0.4

0.6

0.8

1

Steel sample

F
ri

ct
io

n
co

effi
ci

en
t
µ
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Figure 3.29: Friction coefficients of the ground steel samples at different contact forces
with fixed sliding speeds of (a) 5 mm s−1 and (b) 8 mm s−1; Boxplots only applicable
to human fingertip measurements of 6 adult subjects—dotted black whiskers: data
range, blue boxes: 25% – 75% quartiles, horizontal cyan lines: median, blue crosses:
mean.

When the normal load was increased from 0.25 N to 1.8 N, the friction coefficient

decreased [102]. For normal loading forces in the range of 0.05 N to 0.8 N, it has been

established that the friction coefficient is inversely proportional to the normal force

raised to the power of one-third [44, 103], such that µ ∝ N−
1
3 . This is in agreement

with Hertz contact theory [104]. However, there are some reports claiming that for

some materials, the contact area during sliding is proportional to the normal force

rather than to its cubic root [105, 106]. For such materials, the friction coefficient is

proportional to the normal forces.

With respect to Figs. 3.27, 3.28 and 3.29, one can observe that the friction

coefficient generally decreases as the normal force increases. This is verified for the

steel samples with an extended ranged of normal forces applied, from 0.25 N to 1.5 N,

but only 0.5 and 1 N results are shown in Fig. 3.29. The trend is similar for milled

aluminium samples in Fig. 3.27, although the difference between the normal forces

is less pronounced. Note that the roughness range of the steel sample tested was

narrower from Sa = 0.179 µm to 2.567 µm, compared to the aluminium samples with

a roughness range from 0.485 µm to 21.121 µm. It can be seen that for the rougher

samples AM4–6 (Sa above 4 µm), the friction coefficient remains fairly constant when

roughness increases. For the rougher turned aluminium samples AT3–6, there is a

significant discrepancy of the friction coefficient measurement under the different

normal forces. This may be due to the fact that the adhesion friction is the dominant

friction mechanism. The strong dependence of the measured coefficient of friction
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3.4. Friction measurement of metal samples

on the applied normal load is expected to be caused by normal adhesion. At high

loads and high roughness, the friction force contains a deformation component which

should not be ignored [9].

Overall, for the normal forces investigated, the influence on the friction

measurement is relatively small and the error bounds overlap, except for the very

smooth samples (S1 and S2), and the rougher turned aluminium (AT3–6).

3.4.6 Influence of stroking/sliding speed
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Figure 3.30: Friction coefficients of the ground steel samples at different sliding
speeds with fixed contact forces of (a) 0.5 N and (b) 1 N

Comparing the sub-figures in Fig. 3.27 and Fig. 3.29, friction coefficients seem

to increase when the sliding speed of the linear stage was increased from 5 mm s−1

to 8 mm s−1, except for turned aluminium AM3–AM6. To verify this, the experiment

was repeated with steel samples only but with an extended range of sliding speeds

of 0.5 mm s−1, 1 mm s−1, 2 mm s−1, 5 mm s−1 and 8 mm s−1; the result of which is

shown in Fig. 3.30. The trend of increasing friction coefficient with sliding speed is

consistent with the different contact forces of 0.5 N and 1 N for smooth surfaces.

To explain the trend, consider that the sliding motion of the artificial fingertip

against the material sample causes a cyclic deformation of viscoelastic silicone rubber

of the artificial finger. Energy is dissipated through internal damping when through
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the deformation and relaxation cycle [106–108]. When the sliding speed is low, the

loss through the hysteric component of the friction mechanism is small. However, as

the sliding speed increases, the deformation rate increases and the recovery is slow

to recoup the elastic energy. The hysteric friction increases as more energy is lost

in elastic hysteresis [45]. Recently, numerical simulations and analytical solutions

based on Persson’s theory (Section 4.2.6) show the increase in friction with sliding

speed [109].

3.5 Conclusion

Touch friction is complicated and it can be affected by many factors such as surface

material, surface properties, skin conditions and test conditions. An artificial finger

can potentially eliminate much of the variability of real human fingers and also allow

a much more automated iterative design process for touch-feel optimised materials.

Expanding on the work performed in the research group on the friction aspect

of touch-feel perception, an anthropomorphic artificial finger had been developed.

The artificial finger is multilayered, including a bone support and two layers of

silicone rubber. The rubber that makes up the cover layer was chosen to mimic

the stiffness and the thickness of the epidermis, whereas the rubber that makes up

the inner filler layer was chosen to mimic the stiffness of the dermis. The artificial

finger was mounted on an improved friction measurement rig that is capable of

measuring normal forces and friction forces simultaneously, with a load cell and a

capacitive sensor, respectively. Measurements were taken on a set of aluminium and

steel specimens with different roughness. The results of the artificial finger on the

new friction test rig show a much-improved correlation between real human finger,

with coefficients of determination (r2) between 0.5 to 0.91 compared to that of an

older roller-on-block rig (r2 < 0.5) [32].

The friction coefficient measurement obtained through the artificial finger is

very similar to that from a real human fingertip, as evidence from Section 3.4.2 shows.

Overall the setting of 5 mm s−1 sliding speed and 0.5 N normal force achieved the

highest r2 correlation with human finger results, while the setting of 8 mm s−1 and

1 N resulted in the lowest root mean squared errors (RMSE), followed by 5 mm s−1

and 0.5 N. A trend can be observed with the RMSE that it seems to decrease with

increasing sliding speed. This is reasonable as human finger typically stroke a sample

during touch-feel at more than 50 mm s−1 [99]. Normal force applied seemed to have

no effect on the RMSE, more contact forces should be tested to investigate this

further.
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3.5. Conclusion

The results in Section 3.4 show that, even with the same material, different

experiment conditions produces different friction results. Section 3.4.3 shows that

rougher surfaces tend to have lower friction coefficients for the materials tested.

Section 3.4.4 looked at the effect of the presence of a fingerprint on friction measure-

ments and found that the fingerprint increases friction except for the roughest steel

samples tested (S4 and S5). Ridges on the fingerprint increases the apparent contact

area leading for a given pressure or loading force (see Section 4.5.2), and therefore

increases friction.

Analyses were performed in Section 3.4.5 on the relationship between surface

friction coefficients and the contact forces. It is concluded that as the contact forces

increase, the friction coefficients decrease. Section 3.4.6 investigates the relationship

between surface friction coefficients and the linear stage sliding speeds. When the

linear stage sliding speeds increases, the obtained friction coefficients increase.

Future work is required on looking at natural variability of different human

fingertips and how to best design an artificial finger that can emulate these differences

in a controlled manner. Increasing the capability of the apparatus to operate at

higher sliding speed may improve the matching with human fingers.
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Chapter 4

Measurement and Theoretical

Analysis of Contact Area

C
hapter 3 introduced a multi-layered artificial fingertip design mimicking the

structure, shape, stiffness and the friction properties of real fingertips in order

to facilitate human touch-feeling studies. Experiment results confirmed that the

friction properties of the artificial fingertip are close to that of a real human fingertip.

In order to understand the contact mechanism, a suitable theoretical model of the

friction mechanism, in particular, how the normal force and contact area relates to

the friction perceived by people is essential in understanding touch-feel perception.

4.1 Introduction

There is a growing interest in quantifying and modelling touch-feel perception over

the past decade in order to understand customers’ needs in product design [4–12].

Touch-feel perception can only be evaluated when a person performs skin contact

or strokes over the surface of an object. Designing a surface material for desirable

touch-perception is often left to trial-and-error and hence a time-consuming process.

From Chapter 3, an artificial fingertip can replace a human fingertip for friction

characterisation with much higher repeatability (precision), controllability and lower

turn-around time. Identifying the relationship between the friction measurement and

touch-feel perception is not enough—a designer can only design a material against

material properties quantified by surface topographical parameters and mechanical

parameters. Hence, it is essential to first identify the links between the friction
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4.2. Contact Mechanics theories

characteristics and the material properties—this is to study the contact mechanism

(see Section 1.1)

For ‘hard-on-hard’ surface contact such as steel-on-steel, it is generally accep-

ted that there is only negligible association between surface roughness and friction

force [110, 111]. The real contact area is the summation of the localised spots inside

the contact where actual micro-scale contact occurs; the real contact area is much

smaller than the apparent contact area. However, when one of the contact surfaces

is a compliant material that is not overly soft, such as rubber or skin, an increased

surface roughness will result in a larger separation between the mean planes of contact

surfaces, causing a reduction in the adhesion amount. Therefore an increase in surface

roughness manifests as reduced friction when friction is dominated by adhesion [28,

112]. In addition, lateral geometrical parameters such as the wavelength or the

spacing between the individual asperities also play an important role in friction [29].

Experiments on the friction characteristics of human skin in contact with well-defined

regular patterned surface show that the determining parameter is the ratio of the

asperity size to the inter-asperity distance [30]. Persson [105] showed that surface

roughness that results from frozen capillary waves can have a large influence on the

contact between solids. Still, there is no clear picture on how surface topography

and mechanical parameters affects the friction perceived by a human fingertip.

This chapter investigates the possible contact mechanism between the artificial

fingertip and hard surfaces. The developed artificial fingertip can be used to simulate

the human fingertip under different working conditions (see Chapter 3). The contact

areas when the artificial fingertip presses against the test samples under different

contact forces have been measured using an optical profiler (Bruker ContourGT-K

3D optical microscope). Finite element modelling (FEM) has also been carried out

to model the contact mechanism between the artificial fingertip and the hard surface

using the software Abaqus.

4.2 Contact Mechanics theories

4.2.1 Human skin friction coefficient

The coefficient of friction (CoF), also known as the ‘friction coefficient’ and con-

ventionally denoted by Greek letter µ, is a dimensionless value which describes the

ratio of the friction force between two bodies and the force pressing them together.

Generally, the CoF depends on the applied materials. For example, the CoF is low for

contact between ice and steel, while a contact between rubber and pavement results

in a relatively high CoF. Most dry materials in combination have CoF values from
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4.2. Contact Mechanics theories

0.3 to 0.6, while rubber in contact with other surfaces can yield friction coefficients

from 1 to 2 [105]. For most material interactions, CoF is less than 1, but this may

not be true for soft materials such as rubber which can be substantially larger than

1. A value above 1 merely implies that the force required to slide an object along

the surface is greater than the normal force on the object such as silicone rubber or

acrylic rubber-coated surfaces.

©2011 Elsevier, reprinted with permission from Masen [9].

Figure 4.1: Partial contact and full contact depends on the surface micro-geometry
and loading conditions

While it is often stated that µ is a ’material property’, it is better categorised

as a ’system property’ [9]. Unlike true material properties(such as conductivity,

hardness, yield strength), µ for any two materials depends on system variables like

temperature, velocity, atmosphere and also what are now popularly described as

age and dealing times, as well as on geometric properties of the interface between

materials. In this thesis, the friction coefficient is simplified as the friction between

the multi-layered artificial fingertip and metal (hard) or thermoplastic (soft) materials.

Fig.4.1 simulates the contact between human skin and different surfaces. The height

and spacing of the surface texture both affect the friction coefficient. When the

asperities are too high or positioned too close to each other, the valleys will not be

filled and only partial contact occurs [9]. In addition, human skin shows similar

viscoelastic material properties as a soft elastomer; the human fingertip deforms

during sliding friction.

In dry conditions, when the viscosity component of friction can be ignored,

friction of the interface involves two mechanisms

Ftotal = Fadh + Fdef (4.1)
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where Fadh is the adhesive force and Fdef is the deformation force. The relationship

between the adhesive and deformation components in the friction force are given in

Wolfram [62] and Johnson [104] as

Fadh = τ0π

(
3R

4E∗

)2/3

FN
2/3 (4.2)

Fdef = 0.17βveπ

(
1

R2E∗

)2/3

FN
4/3 (4.3)

where τ0 is the shear strength of the interface, R the reduced radius of the two bodies

in contact,βve is the viscoelastic hysteresis loss fraction, and FN is the applied normal

force. E∗ is the reduced Young’s modulus, which in the case of contact between skin

and a rigid counter body depends solely on the properties of the skin. During the

skin friction process, it is considered that adhesion is the main mechanism, where the

deformation friction is believed to be unimportant [37, 46], i.e. the adhesion friction

coefficient dominates. The deduction of its equation will be given in Chapter6.

The adhesion friction analysis uses Hertz contact theory, which considers

elastic bodies contact. However, Hertz contact theory is not suitable for analysing

all contact mechanisms, especially when the surface is discontinuous, conforming or

non-smooth. The area of real contact influences a large number of physical properties

such the contact resistivity, heat transfer, adhesion and friction.

In order to better understand the contact mechanism between rough surfaces

and soft materials and to choose an accurate theoretical model framework for our

experiments, various contact mechanism theories including the Hertz model, the

Johnson-Kendall-Roberts (JKR) model, the Greenwood-Williamson (GW) model

and the Persson model are discussed and compared with each other in the following

subsections.

4.2.2 Hertz contact model

The Hertz contact theory treats each contacting surface as elastic half-spaces, being

perfectly smooth and approximated by elastic spheres with radii R1 and R2. In most

cases, when the average distance between nearby contact regions is large enough,

the elastic couplings between the asperity contact regions are neglected. Hertz

made several assumptions: 1) the strains are small and within the elastic limits

2) the contacting surfaces are elastic half-spaces 3) Surfaces are continuous and

non-conforming (implying that the area of contact a should be much smaller than

the dimension of the half-spaces R), and 4) the surface at points of contact are
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4.2. Contact Mechanics theories

frictionless. The normal force must be weak such that the real contact area is small

compared to the nominal contact area [28, 113, 114]

The deformation area can be determined by the normal force (FN) pressed

on the bodies. Minimising the elastic deformation energy, the radius of the circular

contact area (a0) is calculated as

a0 =

(
3FNR

4E∗

)1/3

, (4.4)

where

1

R
=

1

R1
+

1

R2
, (4.5)

1

E∗
=

1− ν2
1

E1
+

1− ν2
2

E2
, (4.6)

R1, R2 are the curvature radii of the two solids, E1, E2 are the Young’s moduli of

the elastic solids and ν1, ν2 are the corresponding Poisson’s ratios. In addition, the

deformation distance s when the two solids penetrate is calculated by

s =

(
R1 +R2

R1R2

)1/3(3FN(1− ν2)

4E∗

)2/3

(4.7)

For the contact between a sphere and a flat surface whose R is approximately

infinite, the contact area can be obtained using (4.4) and (4.7):

A = πa0
2 = πRs = π

(
3FNR

4E∗

)2/3

(4.8)

and the normal force is

FN =
4E∗

3(1− ν2)
s
3/2R

1/2. (4.9)

The pressure distribution in the contact area depends only on the distance

from the centre of the circular contact area:

σ(a) = σ0

[
1−

(
a

a0

)2
]0.5

, (4.10)

where σ0 = FN/πa0
2 is the average pressure in the contact.

While one of the assumptions of the theory was that the contact surfaces

are smooth such that there is full contact throughout the nominal elliptical area of

contact, in reality, all surfaces are rough to some degree and intimate contact only

takes places at the crests of the contact surface asperities. Statistical theories of

surface contact suggest that the roughness influence is governed primarily by a single
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non-dimensional parameter α [115], defined by:

α ≡ σR

a2
0

(4.11)

where σ is the combined roughness of the two surfaces, R is the radius of the sphere

and a0 is the contact radius for the smooth surfaces given by Hertz contact theory.

Experimental and theoretical examinations showed that if the value of α is less than

0.05, errors in the application of Hertz Contact theory are not likely to exceed about

7 percent due to the influence of surfaces roughness. But when α is larger than 0.05,

the influence of surface roughness is not negligible and should be considered.

4.2.3 Johnson-Kendall-Roberts (JKR) contact model

The Johnson-Kendall-Roberts (JKR) theory is a generalisation of the Hertz contact

model by allowing tensive adhesive forces inside the area of contact [116]; this is

opposed to the Derjaguin-Muller-Toporov (DMT) model of elastic contact where it

considers additional attractive interactions outside the area of contact. The contact

area calculation relies on elastic material properties and the interfacial interaction

strength. Contacts can be formed during the unloading cycle and in the negative

loading (pulling) regime. However, the JKR solution is restricted to elastic sphere-

to-sphere contact [104]. When the normal force is low, the contact area between

the two elastic bodies is larger than that predicted by the Hertz model and tends

towards a constant finite value as the normal force is reduced to zero. In addition,

the contact area closely follows the Hertz theory when the normal force is high. The

JKR theory may be applied to tips with a large curvature radius (most applicable

to macroscopic bodies) and small stiffness. This kind of system is termed strongly

adhesive.

The adhesion force between two rigid spheres can be described as [100]

Fadh = −2πR∆γ (4.12)

∆γ = γ1 + γ2 − γ12 (4.13)

where ∆γ is called the ‘work of adhesion’ per unit area, R is the combined curvature

radius of the two bodies, as shown in Eq. (4.5). This corresponds to both the Bradley

model and DMT model of adhesion. The elastic adhesion model in JKR provides

Fadh = −3

2
πR∆γ (4.14)

which considers adhesion over the contact area, and an elastic response of the spheres.

Based on this model, the contact area A can be easily deduced from its contact
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©1987 Cambridge University Press, reprinted with
permission from Johnson [104]

(a) JKR: fully elastic model considering adhe-
sion in the contact zone

©2011 Springer Science+Business Me-
dia, reprinted with permission from
Fischer-Cripps [117]

(b) Plot of the forces and the penet-
ration depth of the JKR, Hertz and
DMT model

radius, i.e,

a0 =

[
3R

4E∗

(
FN + 3πR∆γ + 2

√
6πR∆γ + (3πR∆γ)2

)]1/3

. (4.15)

The displacement is given by

s =
a0

2

R
− 2

3

√
6π∆γ

E∗
. (4.16)

The JKR expression result in contact radius approaches that of the Hertz contact

theory for vanishing work of adhesion (4γ). The difference of the two models

becomes significant when the normal force FN is small [104].

Tabor [118] showed that the discrepancy between the DMT (eq. (4.13)) and

JKR (eq. (4.14)) models can be resolved by a unified theory parametrised by the

Tabor parameter, defined as

µ0 = −R
1/3∆γ

2/3

σE∗
2/3

(4.17)

where E and R are the combined Young’s modulus and curvature radius as shown in

Eq. (4.5), and σ is the characteristic atom-atom distance. This coefficient determines

whether or not the sphere maybe treated as rigid. µ expresses the relative importance

of the adhesive interaction versus the elastic deformation. The JKR theory is more

appropriate for to large, compliant spheres when µ0 is large, e.g. > 5, which is
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typical for soft organic materials.

4.2.4 Greenwood-Williamson contact theory

Greenwood and colleagues [28, 119] proposed the Greenwood-Williamson (GW)

theory, which is to extend Hertz contact theory by considering one of the contact

surfaces as being rough. The GW theory assumes [120]:

1. the rough surface is isotropic;

2. asperities are spherical near their summits;

3. all asperity summits have the same radius of curvature and their heights vary

stochastically around an average value;

4. there is no interaction between neighbouring asperities; and

5. there is no bulk deformation.

The contact occurs at a number of discrete micro contacts. The total force is the

sum of all of the equal “summit” forces, which can be still calculated using Hertzian

contact theory. Therefore, the total contact area is the sum of the individual “micro”

contact areas. The asperity summits can be approximated as spherical bumps with

an equal radius of curvature R and with a Gaussian height distribution, as follows:

Ph =
1

(2π)1/2h∗
exp

(
− h2

2h∗2

)
(4.18)

where h∗ is the root mean square of the height distribution of the summits, given by

h∗ =
√
h2. (4.19)

Because summits are considered instead of the asperities, h∗ is related but not

equivalent to the roughness parameter.

The separation distance between surfaces is defined as h0, the contact will

occur when the asperity h > h0, and h−h0 is defined as the ‘penetration depth’. For

a single contact, according to the Hertz contact theory, the radius of contact area is

obtained as ∆a = R(h− h0). Therefore, the contact area of a single asperity is

∆A = πa2 = πR(h− h0), (4.20)

and the normal force on a single asperity is

∆FN =
4

3
E∗R

1/2(h− h0)
3/2. (4.21)
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The total number of contacts, the total contact area, and the total normal

force FN are found through integration over all the asperities in contact, meaning

that the integration must be performed over all height values from h0 to infinity,

resulting in

n =

∫ b

a
n0Ph dh; (4.22)

A =

∫ b

a
n0PhπR(h− h0) dh; (4.23)

FN =

∫ b

a
n0Phπ

4

3
E∗R

1/2(h− h0)
3/2 dh. (4.24)

for the total numbers of contacts, total area and the total force, respectively. It can

be seen as the bodies are pressed closer together (a decrease in h0), their values

increase exponentially due to the Ph term in the equations. The average contact

area of an asperity can be calculated with

〈∆A〉 =
A

n
=

∫ ∝
h0
n0PhπR(h− h0) dh∫ ∝

h0
n0Ph dh

. (4.25)

By inserting the dimensionless variable ξ = h/h∗, and defining ξ0 = h0/h
∗, one

obtains:

〈∆A〉 = πRh∗

(∫ ∝
ξ0

exp(−ξ2/2)(ξ − ξ0) dξ∫ ∝
ξ0

exp(−ξ2/2) dξ

)
. (4.26)

The results in [104] shown that the ‘typical’ range of average normal forces which

correspond to a real contact area of between 10−2 and 10−4 of the apparent contact

area is achieved when ξ0 = 2.5 to 3.5. The value of ξ0 is not realistic, because in this

case, the contact will only exist at very few contact points. The ratio 〈∆A/πRh∗〉
changes in this range only marginally around the value 0.3. A good approximation

for the average area of an asperity is therefore,

〈∆A〉 ≈ Rh∗. (4.27)

The average value of a microscopic contact area remains practically constant as the

forces changes by several orders of magnitude. In addition, the ratio of the total

contact area to the normal force remains constant when the ξ changes from 2.5 to
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3.5 [104].

A

FN
=

∫ ∝
h0
n0PhπR(h− h0) dh∫ ∝

h0
n0Ph

4
3E
∗R1/2(h− h0)3/2 dh

(4.28)

=

(
R

h∗

)1/2 3π

4E∗

∫ ∝
ξ0

exp(−ξ2/2)(ξ − ξ0)∫ ∝
ξ0

exp(−ξ2/2)(ξ − ξ0)3/2

The ratio ( A
FN

)/( Rh∗ )
1/2 3π

4E∗ changes only marginally around the value of 1.4. Hence,

a good approximation for the ratio of the real contact area can be approximated as:

A

FN
≈
(
R

h∗

)1/2 3.3

E∗
(4.29)

The equation shows that when the surface roughness h∗ increases, the contact area

decreases, and hence the friction coefficient decreases as well.

4.2.5 Kotwal-Bhushan contact theory for non-Gaussian surfaces

Gaussian distribution of peak heights is often assumed in contact analyses in order

to determine the real contact area. However, this is generally not true [121]. Positive

skewness is produced by certain milling and turning operations. A kurtosis greater

than three can be produced using laser polishing. When the actual surface height

distribution is non-Gaussian, the assumption can lead to errors. According to [122],

a contact model applicable for non-Gaussian surfaces should fulfil two objectives: 1)

Correct trends for the real contact area can be predicted; 2) An optimum skewness

and kurtosis can be determined for the smallest real contact area. The probability

density function of the non-Gaussian asperity heights can be generated in two ways,

either by 1) direct 3D surface topography profiling by imaging, or by 2) measuring

the mean, standard deviation, skewness and kurtosis parameters and then fitting

distribution basis functions such as Pearson system of frequency curves in order to

obtain a synthetic distribution matching those parameters [122]. Once the probability

distribution function is known, the contact model can be built using GW modelling

approach described in the previous section of 4.2.4.

It is convenient to use standardized variables and describe heights in terms

of the equivalent standard deviation of the peak asperities, σ, of the two surfaces

given by

σ =
√
σ1

2 + σ2
2 (4.30)

where σ1 and σ2 are the standard deviations of the peak asperities of the two contacted

surfaces. This equation is valid if the random distributions are independent.
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The surface density of asperities η is defined as

η = n0/Aa (4.31)

where Aa is the nominal contact area, n0 is the nominal contact number of asperity

peaks. Incorporating into equations (4.22), (4.23) and (4.24) results in:

n = ηAaF0(h′) (4.32)

A = πηAaRσF1(h′) (4.33)

FN =
4

3
ηE∗R0.5σ1.5F1.5(h′) (4.34)

where h′ is the standardized separation given by d/σ and

FN(h′) =

∫ ∞
h′

(s− h)np∗(s) ds (4.35)

where s = z/σ, p∗(s) is the standard height distribution, normalised such that its

standard deviation equals unity.

Using the contact model described, the normalised load is FN
ηAaE∗R0.5σ1.5

, the

normalised number of contacts is n
ηAa

, the normalised real area of contact is A
πηAaRσ

.

The normalised mean asperity contact area is the ratio of the normalised real area of

contact to the normalised number of contacts. Finally, the normalised mean contact

pressure is the ratio of the normalised load to the normalised real area of contact

[73, 114].

4.2.6 Persson contact theory

Motivated by rubber friction, Persson and colleagues developed a contact theory

suitable for randomly rough surfaces [106, 107, 123].

The Persson model is valid not only when the area of real contact is small

compared to the nominal contact area but is particularly accurate when the squeezing

force is so high that nearly complete contact occurs within the nominal contact

area [125, 126]. Fig. 4.3 illustrates the contact between two solids at increasing

magnification ζ. At low magnification (ζ = 1) it looks as if complete contact

occurs between the solids at many macro-asperity contact regions; but when the

magnification is increased, roughness manifests in a smaller length scale, and only

partial contact occurs at the asperities. In many cases, the local pressure at asperity

contact regions at high magnification will become so high that the material yields

plastically before reaching the atomic dimension. In these cases, the size of the real

contact area will be determined mainly by the yield stress of the solid.
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©2015 Springer, cited with permission from Persson et al. [124]

Figure 4.3: A rubber block (dotted area) in adhesive contact with a hard rough
substrate (dashed area).

The magnification ζ refers to some (arbitrary) chosen reference length scale.

This could be set to the lateral size L of the nominal contact area, in which case

ζ = L/λ = q/qL, where λ is the shortest wavelength roughness which can be resolved

at magnification ζ. The roll-off wavelength λ0 = 2π/q0 is the reference length so

that ζ = λ0/λ = q/q0. Let us define the stress distribution at the magnification ζ:

P (σ, ζ) = 〈δ(σ − σ(x, ζ))〉 (4.36)

Here σ(x, ζ) is the stress at the interface calculated when only the surface

roughness components with wave vector q < ζqL is included. The angular brackets

〈〉 denotes the ensemble average, which is in most cases equivalent to the average

over the surface area.

P (σ, ζ) =
1

A0

∫
dx2δ(σ − σ(x, ζ)) (4.37)

Where A is the area of contact. If the integral in Eq. (4.37) would be over the whole

surface area A0 then P (σ, ζ) would have a delta function [(A0−A)/A0]δ(σ) but this

term is excluded with the definition Persson used. The area of real contact, projected

on the xy-plane, can be obtained directly from the stress distribution, since from

Eq. (4.37).
A(ζ)

A0
=

∫
dσP (σ, ζ) (4.38)

we will often denote A(ζ)/A0 = P (ζ),L is the diameter of the nominal contact area

between the solids andλ is the shortest surface roughness wavelength which can be

detected at the resolution ζ.

Assuming complete contact one can show that P (σ, ζ) satisfied the diffusion-
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like equation
∂P

∂ζ
= f(ζ)

∂2P

∂σ2
, (4.39)

and

f(ζ) =
π

4

(
E

1− ν2

)2

qLq
3C(q) (4.40)

where qL = 2π/L and q = ζqL. It is now assumed that Eq. (4.2.6) holds locally

also when only partial contact occurs at the interface. The calculation of the stress

distribution in the latter case involves solving Eq. (4.2.6) with appropriate boundary

conditions.

If a rectangular elastic block is squeezed against the substrate with the

(uniform) stress σ0, then at the lowest magnification ζ = 1 where the substrate

appears flat, we have

P (σ, 1) = ζ(σ − σ0) (4.41)

which forms an ‘initial’ condition. In addition, the two boundary conditions along the

σ-axis are necessary in order to solve Eq. (4.2.6). For elastic contact, P (σ, ζ) must

vanish as σ →∞. In the adsense of an adhesion interaction, the stress distribution

must also vanish for σ < 0 since no tensile stress is possible without adhesion.

Eq. (4.2.6) is easy to solve with the ’initial’ condition Eq. (4.41) and the boundary

condition P (0, ζ) = 0. The area of (apparent) contact when the system is studied at

the magnification ζ is given by

A(ζ)

A0
=

1√
π

∫ √G
0

e−x
2/4dx = erf(1/2

√
G) (4.42)

Where

G(ζ) =
π

4

(
E

(1− ν2)σ0

)∫ ζqL

qL

q3C(q)dq (4.43)

When the squeezing force FN = σ0A0 is so small that A� A0, the equation

above reduce to A = αFN with α given by

α = κ
1− ν2

E

(∫
d2qq2C(q)

)−1/2

(4.44)

where κ = (8π)
1/2.

The Persson contact theory can also predict that the contact area increases

linearly with the squeezing force FN as long as the contact area is small compared

to the nominal contact area. It has been shown that the Persson contact theory is

in good agreement with the numerical calculations [109]. The analytical model, in

addition to providing deeper insight into the nature of the area of contact, can be
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4.3. Measuring the Young’s modulus of the artificial fingertip

applied to surfaces with arbitrary surface roughness with only a small computational

effort. The theory can also be applied to viscoelastic solids by treating the elastic

modulus as a complex variable on frequency. The theory plays an important role in

the theory of sliding friction for visco-elastic materials such as rubber [105–107].

4.3 Measuring the Young’s modulus of the artificial fin-

gertip

©2011 Elsevier, reprinted with permission from Masen [9]

Figure 4.4: Effective Young’s modulus as a function of length scale for dry and
hydrated skin

According to the various contact models, in order to calculate the contact

area, the Young’s modulus of human skin is an essential input parameter. It is also

important for an artificial finger material to have similar Young’s modulus to simulate

the friction behaviour of human skin. Skin elasticity is a function of the Length

scale of the contact [127, 128]. The effective elastic modulus of human skin decreases

several orders of magnitude when the length scale increases Pailler-Mattei et al. [50],

Tobin [129], Pailler-Mattei, Bec and Zahouani [130] and van Kuilenburg, Masen and

van der Heide [131]. At an indentation depth of 10 µm, the effective elastic modulus

was shown to decrease from 0.15 MPa to 0.015 MPa when the radius of curvature

of the indenter increases from 10 µm to 10 mm [131–133]. Fig. 4.4 illustrates how

the effective Young’s modulus depends on the length scales [9]. The appropriate

value of Eeff to be used should be determined at the correct length scale and under

representative conditions. In addition, the composition and properties of different

skin layers will also affect the elasticity variation. The effective elastic modulus of

77



4.3. Measuring the Young’s modulus of the artificial fingertip

skin also depends on variables such as age, gender and environmental conditions (e.g.

skin moisture).

The materials that made up the artificial fingertip are elastic and the inertial

effect can be ignored. The hardness of silicone rubber used in this thesis are specified

in the Shore hardness scales. The Shore-A scale (SA) can be converted to Young’s

Modulus E (in MPa) using log10E = (SA × 0.0235− 0.6403) for 20 < SA < 80 [134].

This is only an approximation as the true value depends on the thickness of the

material. For the artificial finger, the Young’s moduli of the silicone cover layer,

the silicone filler layer and the aluminium bone layer are, respectively, 0.9486 MPa,

0.7499 MPa and 70 GPa. All of these values were supplied to the Abaqus FEM

software.

Due to the multilayered nature of the finger, it is difficult to envision how

each layer affects the Young’s modulus of the artificial fingertip. In this case, the

materials constituting each layer were separately subjected to micro-indentation.

Then, the artificial fingertip was subjected to micro- and nano-indentation. Based

on experience, the maximum deformation during friction contact is known to be less

than about 0.6 mm, limited by the maximum applied contact force of 2 N. Because

of this, the Young’s modulus was measured when the deformation was smaller than

0.6 mm.

4.3.1 Theory of micro-indentation

The mechanical strength of the multilayered artificial finger is determined by the

mechanical strength and the viscosity of the substrates and the curing catalysts

from which each layer was made. Depth sensing micro-indentation has been widely

used to characterise mechanical properties of various materials, in particular soft

materials [135]. Micro-indentation has been well recognised for characterising the

mechanical properties of solid materials due to its non-destructive approach. The

rubber is often idealised as incompressible due to the structure of rubber containing

cross-linked polymer chains with covalent bonding which makes rubber exhibit a

high bulk modulus.

Although the Hertz contact theory and indentation methods are suitable for

soft materials, some methodological consideration needs to be first addressed due to

the assumptions of the theory (see Section 4.2.2) [136]. Several of the assumptions

have been listed plus additions to the classical Hertz contact theory and these

assumptions will be addressed with the practical application and restrictions.

A micro-indentation experiment involves specifying the continuous loading

parameters and measuring the depth of indentation into the material. Analysis of the
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4.3. Measuring the Young’s modulus of the artificial fingertip

measured force-displacement curves uses contact theory with mathematical principles

regarding spherical and conical indentation to determine the Young’s modulus.

In this thesis, the experiments were carried out by a Stevens CR Analyser.

Observing the assumptions of the Hertz contact theory, the physical dimensions

of the materials should be much larger than the dimensions of the contact surface,

typically at least 10 times the radius of the indenter [137], such that the material is

able to demonstrate continuous and non-conforming properties. This ensures the

stresses that arise due to the contact dissipate at the opposite end of the body. The

spherical indenter used in experimentation was designed with this consideration. The

loads applied was static, which allows for seismic dissipation of energy (vibrations or

sound waves) during the collision between the two objects to be neglected. Because

the diameter of the artificial fingertip is 15 mm, the radius of sphere indenter chosen

was 1 mm so that the deformation of the artificial fingertip surface is assumed to be

small. This reduces geometric non-linearities that arise due to large deformations.

For the individual analysis of the two layers (cover layer and filler layer), each of

them was made from the same rubber type as the two layers in the artificial fingertip,

with a square cross-section of 15 mm× 15 mm—a similar footprint as the artificial

fingertip. The cover layer sample had a thickness of 2 mm and the filler sample had

a thickness of 3 mm. Each set of measurement was repeated 5 times.

The micro-indentation theory is valid for small deformations caused by a

non-adhesive elastic sphere against a flat surface. According to Hertz contact radius

equation in (4.4), a spherical indenter with a specified radius R causes an indentation

depth δ given by

δ =
a2

R
=

[
3FN

4E∗
√
R

]2/3

(4.45)

when the normal force FN is applied. In addition, Eq. (4.4) and Eq. (4.45) are used to

calculated the Young’s modulus of the test material [138]. For the rubber materials,

the Poisson’s ratio is assumed to be 0.5.

The Stevens CR Analyser measures the depth of indentation when a H1KS-

0088 force transducer applies a set loading. The silicon rubber from which the artificial

fingertip cover was made had a Shore-A hardness of 23. The Shore hardness was

the basis of selection as the Young’s modulus was not provided from the distributor

initially.

Fig. 4.5 shows the micro-indentation measurement results of the Young’s

modulus for the artificial fingertip using Stevens CR Analyser. The measured

surface mechanical properties (hardness and Young’s modulus) vary depending on

the indentation depth and load due to the indentation size effect [139, 140]. Here,
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(a) Under different displacements (b) Under different normal forces

Figure 4.5: Measurement of the Young’s modulus measurement of the artificial
fingertip

Table 4.1: Young’s modulus measurement results on the multilayer artificial finger
and its constituent materials

Part Cover Filler Bone (Aluminium) Combined finger

Young’s modulus (MPa) 1.25 0.742 70× 103 0.945

we take an average of the Young’s modulus by considering the asymptotic stiffness

at high loads (when load > 2N), resulting in a stiffness value of 0.945 MPa. Similar

characterisations were performed on the materials that made up the cover and filler

parts of the artificial fingertip independently. The results are shown in table 4.1.

4.3.2 Nano-indentation

Theory

Nanoindentation is an indentation test in which the length scale of the penetration

is measured in nanometres rather than micrometres or millimetres, the latter being

common in conventional hardness tests. As with conventional micro-indentation,

nanoindentation can also be used to calculate elastic modulus, strain-hardening

exponent, fracture toughness (for brittle materials), and viscoelastic properties.

In indentation testing, the most common types of indenter is either blunt

or sharp. The most common types of blunt indenter are the spherical and the

spheroconical tips. The most common types of blunt indenters are the conical, the

four-sided Vickers indenter and the three-sided Berkovich indenter. An important

result for the Hertz contact equations occurs when the derivative of the force with

respect to the depth is taken. This quantity, dP
dh , is the contact stiffness, where P
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©2011 Springer Science+Business Media, reprinted with permission from Fischer-Cripps [117]

Figure 4.6: (a) The indenter and specimen surface at full load and unload for a
conical tip (b) Load versus displacement for elastic-plastic loading followed by elastic
unloading

©2011 Springer Science+Business Media, reprinted with permission from Fischer-Cripps [117]

Figure 4.7: Geometry and compliance curve of loading for a spherical tip
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(a) The Berkovich indenter (b) The sphere-conical indenter

Figure 4.8: The shape of indenters

is the normal force and h is the penetration depth. For example, in the case of a

spherical indenter, Oliver and Pharr [141] gives

dP

dh
= 2
√
R (h− he)E

∗ (4.46)

where he is the elastic depth of penetration for unloading (see Fig. 4.6b); R =(
R−1

i +R−1
r

)−1
and Ri is the radius of the spherical indenter and Rr is the curvature

of the residual unloaded impression (see Fig. 4.7); E∗ is the combined elastic modulus

of the indenter and the specimen. The contact depth hc = 0.5 (hmax + he). Note

that Hertz contact analysis is only valid when the depth of penetration h is small

relative to the radius of the sphere.

Similar method applies to other indenter shapes to determine the hardness

and modulus [141]; who gave

βE∗ =
1

2

dP

dh

√
π√
A

(4.47)

where A is the projected contact area and β is a correction term depending on the

tip geometry and is close to unity. Eq. (4.47) forms the basis of analysis techniques

in nano-indentation testing where the contact stiffness is evaluated at the beginning

of the unloading response. Indentation tests on many materials result in both

elastic and plastic deformation of the specimen material. In brittle materials, plastic

deformation most commonly occurs with pointed indenter such as Vickers diamond

pyramid.
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The Berkovich indenter is shown in Fig. 4.8a [142]. It is generally used in

small-scale indentation studies and has the advantage that the edges of the pyramid

are more easily constructed to meet at a single point compared to a four-sided Vickers

pyramid. Thus it can allow a more precise control over the indentation process.

The face angle of the Berkovich indenter used in this thesis is 65.27◦, which gives

the same actual surface area to depth ratio as a Vickers indenter. The radius of

the tip is smaller than 0.2 µm. The mean contact pressure is usually determined

from a measure of the contact depth of penetration, hc. Once hc is found, then the

projected area of contact is calculated and the hardness computed from H = P/A,

i.e.:

A = 3
√

3h2
ctan θ2 (4.48)

where θ = 65.27◦. It evaluates to

A = 24.494h2
c (4.49)

and hence the mean contact pressure, or hardness, is

H = P/A =
P

24.5h2
c

(4.50)

Fig. 4.6 shows the schematic of the indenter and specimen surface after full

loading and unloading of a conical indenter on the left and a load versus displacement

curve for elastic-plastic loading followed by elastic unloading on the right. hr is the

depth of the residual impression, hmax is the depth from the original specimen surface

at load Pmax, he is the elastic displacement during unloading, and ha is the distance

from the edge of the contact to the specimen surface at full load. Upon elastic

reloading, the tip of the indenter moves through a distance he, and the eventual

point of contact with the specimen surface moves through a distance ha.

Test procedures

A typical nanoindentation test cycle consists of an application of load followed by

an unloading sequence, but there are many variations. The load may be applied

continuously until the maximum load is reached, or as a series of small increments.

At each load increment, a partial unloading may be programmed to provide a

measurement of stiffness of the contact, which is important for measuring changes in

the elastic modulus or the hardness with penetration depth. Contact stiffness may

also be found by superimposing a small oscillatory motion onto the load signal.
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©2011 Springer Science+Business Media, reprinted with permission from Fischer-Cripps [117]

Figure 4.9: Various components of a nano-indentation test cycle

The indentation instrument may be set into either load or depth control. In

load control, the user specifies the maximum test force (usually in mN) and the

number of load increments or steps to use. The progression of load increments may

be typically set to be a square root or linear progression. A square root progression

attempts to provide equally spaced displacement readings. In a depth control mode,

the user specifies a maximum depth of penetration. It should be noted that most

nanoindentation instruments are inherently load-controlled devices, but true load and

depth control is available if there is a feedback loop employed which can take a signal

from either a force or displacement sensor. It is customary for a nanoindentation

instrument to allow for a dwell or hold period at each load increment and at maximum

load. The dwell settings at each load increment allow the instrument and specimen

to stabilise before depth and load readings are taken. Hold period data at maximum

load can be used to measure creep within the specimen. Hold measurements are

carried out at the end of indentation to minimise any effects from creep within the

specimen. The test cycle is shown in Fig. 4.9.

For the case of a Berkovich indenter, the loading curve can be found from

the addition of hc and ha as shown in Fig. 4.6. For a load of Pmax,

hc =
Pmax

3
√

3Htan θ2
. (4.51)

The distance ha is most easily determined from the intercept of the slope of the

unloading curve at maximum load Pmax with P = 0, as shown in Fig. 4.6. This is
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given by

ha = ε
πPmaxH

2E∗
(4.52)

where ε is equal to 0.72, or, as is usually used for a Berkovich indenter, to 0.75. The

total depth hmax is thus

hmax =
√
Pmax

[
1√

3
√

3Htan θ2
+ ε

√
Hπ

2E∗

]
. (4.53)

This equation is applicable at any load P given a depth of penetration h and so the

subscripts ‘max’ can be discarded if desired [117].

4.3.3 Nano-indentation results with different indenters

The choice of the indenter tip is important and depends on upon the information one

wishes to obtain from the indentation test. The representative strain in the specimen

material, for example, depends solely on the effective cone angle of the indenter. The

sharper the angle, the great the strain. According to Tabor, the representative strain

for a conical indenter is given by ε = 0.2 cotα [143]. For a Berkovich and a Vickers

indenter, this evaluates to about 8%. Sphere intenders offer a gradual elastic to

elastic-plastic response. The representative strain varies as the load is applied is given

by ε = 0.2 aR [143]. A fully developed plastic zone will be obtained when measuring

hardness using a spherical indenter. The spherical indentation strain will be smaller

than that of the Berkovich tip. The changing strain throughout an indentation test

with a spherical indenter enables the elastic and elastic-plastic properties of the

specimen to be examined along with any strain-hardening characteristics.

Young’s modulus measurement using a Berkovich tip

Figure 4.10: The nano-indentation setup and the Berkovich tip used

In order to better validate the true Young’s modulus of the artificial fingertip,

nanoindentation measurement of the artificial fingertip was carried out using the
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Anton-Paar NHT2 nano-indenter shown in Fig. 4.10. The instrument uses a camera

with high resolution (0.25 µm pixels) in X-Y. The range of normal load supported is

1 mN to 500 mN. The load resolution is 20 nN and its depth resolution is 0.06 nm.

The maximum penetration depth for this instrument is 200 µm. The Berkovich

indenter, made of diamond, has a tip radius smaller than 0.2 µm. The artificial

fingertip was measured under the tip by applying linear loading. In order to reduce

the creep effect of the artificial fingertip, after reaching the maximum normal force,

a pause of 15 seconds was applied to each measurement. The hardness and Young’s

modulus are calculated automatically by the software.

Figure 4.11: The Young’s modulus measurement of the artificial fingertip (Pmax =
75 mN)

Fig. 4.11 shows the result from one nano-indentation experiment of the

artificial fingertip. The maximum load was set to 75 mN. The loading rate was

set to 450 mN min−1. As shown in Fig. 4.12, the Young’s modulus (the slope of

the load curve) changes when the normal force changes. When the normal force

was increased from 2 mN to 100 mN, the penetration depth increased from 25 µm to

160 µm. The Young’s modulus was 2.2 MPa when the normal force was 70 mN. This

is about 2 times higher than the micro-indentation estimate from 4.1. According to

the contact radius measurements shown in Table 4.3, the penetration depth can
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be calculated to be about 200 µm using the Hertz Contact theory. However, the

maximum penetration depth of the nano-indenter is limited to 200µm.

Figure 4.12: The Young’s modulus measurement results by applying different max-
imum loads

Young’s modulus measurement using a Sphero-conical tip

Spherical-capped indenters are increasingly popular because this type of indenter

provides a smooth transition from elastic to elastic-plastic contact. Indenters can

generally be classified into two categories: sharp or blunt. For soft materials, a

sphero-conical tip is more suitable for preventing contact damage during indentation.

Generally speaking, spherical-capped indenter is termed blunt. It is particularly

suitable for measuring soft materials and for replicating contact damage in in-service

conditions. Han, Sanei and Alisafaei [140], for example, shows that spherical intenders

measure a stable Young’s modulus value regardless of penetration depth for soft

materials, whereas a Berkovich tip resulted in measured stiffness changing upon

different penetration depths. The response of the sample materials follows that

predicted by the expanding cavity model or the elastic constraint model, depending

on the type of specimen and magnitude of the load.

For this case, the hardness and indentation depth are calculated following

the equations.

hmax = hc + ha (4.54)

hc = hmax −
hmax

2
(4.55)

H =
P

A
(4.56)
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where A is the area of contact given by πa2 with the term a being the radius of the

circle of contact at P = Pmax. Elastic modulus is determined from the slope of the

unloading curve or by the Hertz equation directly.

Compared with the Berkovich tip, the sphero-conical tip is much larger,

whose radius is 20 µm. Limited to the maximum penetration depth of 200 nm, the

maximum load that could be applied to the sample was found by trial-and-error to

be 30 mN. As shown in Fig. 4.13, green lines represent the nanoindentation results

by the sphero-conical tip, and blue lines represent the results by the Berkovich tip.

sphero-conical tip penetration depth is much larger than the Berkovich tip. However,

limited by the accuracy of the instrument, the Young’s modulus was measured as

4 MPa, which is not satisfactory.
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Figure 4.13: The indentation results for the artificial fingertip

4.4 Contact area measurement

4.4.1 Instrument Design

In order to better understand the contact mechanism between human fingertip

friction and surfaces topography, a contact area measurement instrument, shown in
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Figure 4.14: Schematic Diagram of the instrument

(a) Top view (b) Side view

Figure 4.15: Contact measurement instrument
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Fig. 4.15, was built. The schematic diagram of the instrument design is in Fig. 4.14.

Glass was chosen as the material for the plate because its Young’s modulus is

very similar to that of aluminium (about 70 GPa); more crucially, it is transparent—

allowing an optical microscope, namely, the Bruker ContourGT-K 3D to be used

to measure the contact area. According to Hertz contact theory, the choice of the

material has a limited effect on the measurement as long as the material is highly

rigid (i.e., its Young’s modulus is high) and is flat (near infinite curvature radius),

such that the effective contact radius and the effective combined Young’s modulus

only depends mostly on the fingertip [104]. The glass plate used was 1 mm thick and

has a negligible weight of 0.2 g. The Bruker Through Transmissive Media (TTM)

module shown in Fig.4.17 was used to compensate for interference fringes caused by

the glass plate, by inserting another identical plate between the beam splitter and

reference mirror.

4.4.2 Methodology

(a) Front view (b) Side view

Figure 4.16: Contact measurement instrument

Contact areas were measured using the Bruker microscope with the TTM

module mentioned. As shown in Fig. 4.16, the artificial finger was fixed on the
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Figure 4.17: Schematic diagram of TTM module, reprinted from Bruker [144]

measurement instrument. The glass plate was fixed at one end and its centre rests

freely on top of the artificial fingertip. Precision weights are suspended from the

unfixed end of the plate to vary the normal force acting on the fingertip. According

to the lever principle, the force acting on the artificial finger is half of the weight

hanging on the unfixed side of the glass. The weights used were 20 g, 25 g, 50 g, 80 g,

100 g, 150 g and 200 g, resulting in corresponding normal forces of 0.392 N, 0.49 N,

0.98 N, 1.568 N, 1.96 N, 2.94 N and 3.92 N (to 3 significant figures).

4.5 Results and Analysis

4.5.1 Measurement Results

First of all, it is important to test the artificial fingertip’s deformation under no load

and under the weight of the glass plate (0.2 g, approximately 1.96 mN). Fig. 4.18a is

the surface profile of the hemispherical fingertip measured without the glass plate nor

the TTM module. Fig. 4.18b shows the results with the TTM module and glass plate.

Here the black shadow represents the area of contact where the glass plate pressed

against the artificial finger and covers the whole surface of the artificial fingertip.

Comparing this to results shown later of the cases with loading applied, the shadow

pattern under no load has negligible effects on the contact area measurement.

Fig. 4.19 shows the contact area measurement results obtained from the

Bruker microscope when the weights were 50 g and 100 g. Part results for other
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4.5. Results and Analysis

(a) The artificial fingertip image (b) With TTM module and glass plate

Figure 4.18: Artificial finger surface metrology under the Bruker microscope

Table 4.2: Surface parameters of the artificial finger (units in µm)

Ra Rp Rq Rt Rv

0.246 0.445 0.484 15.568 15.123

(a) Weight = 50 g (b) Weight = 100 g

Figure 4.19: Contact area measurement results for 50 g and 100 g weights
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weights are shown in Appendix A.3. For each weight, three points at the edge of the

contact area guide the construction of a circle, and the contact radius is defined as

the radius of the said circle. The radius of contact area increases with increasing

weight (i.e. contact normal force). Based on the contact area measurement results,

the next step is to analyse the contact mechanism between the surfaces.

Table 4.3: Contact radii and deformation depth under different weights (normal
forces) (Experiment)

Weight (g) Contact force (N) Contact radius (mm)

20 0.39 1.350
25 0.49 1.492
50 0.98 1.906
80 1.57 2.045
100 1.96 2.302

4.5.2 Hertz contact theory, JKR contact theory and finite element

modelling

According to the Hertz contact model, if an elastic body with curvature radius R

indents a flat rigid surface (flat in the macroscopic sense that its curvature radius is

infinite), it can be shown that the contact radius a is given by Eq. (4.4)

a0 =

(
3FNR

4E∗

)1/3

(4.57)

where FN, and E∗ are respectively the normal force and Young’s modulus of the

elastic body. In addition to the relatively simple theory, a complex finite element

model was also developed using the software Abaqus (see next section) to account for

the structure and different layers of material used to construct the artificial fingertip.

Since the artificial fingertip material is made of rubber—a relatively soft material—

JKR model was also investigated to model the contact between the artificial fingertip

and the glass plate.

The combined curvature radius of the artificial fingertip and the glass plate

calculated according to Eq. (4.5) is R = 0.0075 m, ∆γ(rubber) = 30 mJ/m2 and

E∗ = 1.067 MPa. Substituting these into Eq. (4.17), the Tabor coefficient is

µ =
(0.0075)

1/3(0.03)
2/3

(σ × 10−9)(1.067× 106)2/3
= 5.3244× 103 � 5 (4.58)
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with σ = 0.34 nm. As µ > 5, the contact model of the artificial fingertip should be

analysed by JKR model [145]. Based on Eq. (4.15), the radii of contact area under

different normal forces is given in 4.4.

Table 4.4: Contact radii under different normal forces (JKR simulation)

Weight (g) Contact force (N) Contact radius (mm)

20 0.39 1.314
25 0.49 1.391
50 0.98 1.687
80 1.57 1.943
100 1.96 2.082

In order to better understand the contact mechanism between the artificial

fingertip and contacted surfaces, finite element models (FEM) were developed. As

the artificial fingertip is composed of three different material layers (namely, the

cover layer, the filler layer and the aluminium bone), the Abaqus CAE (Complete

Abaqus Environment) FEM suite was used to model the component assembly, with

the geometries and the material parameters of the three material layers accurately

specified in the software. The Young’s modulus settings for each layer was determined

by the micro-indentation measurement results in Table 4.1. 20 000 elements were used

in the FEM analysis; more mesh elements were used on the outside layer (cover layer)

compared to the bone structure. The interface between the cover, filler layers and

the bone have merged geometry (partitioned as different material but share mesh) to

ensure displacement continuity at the interfaces. Boundary conditions were applied

to fix the ‘root’ of the bone structure in translation and rotation. A maximum

0.5 mm displacement load, equal to about 2 N was applied i.e. Abaqus steadily

increase the force until the surface of the fingertip achieves a displacement of 0.5 mm.

The displacement-force curve of the centre of the contact was extracted. The total

contact area results under the set of loading forces from the experiment are shown in

Table 4.3. The von Mises stress distribution is shown in Fig. 4.20. The displacement

and contact area were used in the subsequent modelling analysis. As shown in

Fig. 4.21, the displacement-normal force curve follows a nonlinear relationship, and

the contact area is not linearly proportional to the normal force because of the

cover and filler layers the artificial fingertip being of different properties. Note that

the plots involving contact area look jagged because the number of elements at the

contact point in the 2D simulation is limited in number (see the deformed flat bottom

of Fig. 4.20).

Fig. 4.22 plots the relationship between contact radius and normal force
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4.5. Results and Analysis

Figure 4.20: Analysis of the contact mechanism using the Abaqus software

Table 4.5: Contact radii under different normal forces (FEM Simulation)

Weight (g) Contact force (N) Contact radius (mm)

20 0.392 1.198
25 0.49 1.292
50 0.98 1.619
80 1.568 1.899
100 1.96 2.039
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Figure 4.21: The FEM displacement-loading analysis on the artificial finger
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Figure 4.22: Comparison between theory, simulation and experiment results of the
relationship between contact radius and normal force

found using the Hertz model, the JKR model and FEM compared with experiment

results in Table 4.3. The Young’s modulus value used for all three approaches was

0.945 MPa, from Table 4.1. There is a very good agreement between the approaches.

The JKR contact model is slightly more accurate. However, the averaged root mean

squared errors between the Hertz contact theory and the JKR contact theory is only

0.0748 mm; the coefficient of determination is r2 = 0.9954. Because of this, contact

of an artificial finger with a smooth surface can be modelled well with the Hertz

contact theory.

The FEM and theoretical models do not take into account the presence of

fingerprint ridges; the higher than expected contact radii with the experiment result

seen in Fig. 4.22; one hypothesis is that the ridges increases the apparent contact

area (which is being measured), due to a larger real contact area is required to

maintain the same pressure for a given normal force.
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4.6 Conclusion

Several contact theories are detailed in this chapter with equations linking friction

forces, normal forces and the contact area. Micro- and nanoidentation techniques

were introduced, with the different indenter tips compared.

This chapter introduced a simple measurement mechanism to measure the

contact area between the artificial fingertip and the surfaces under various loading

forces, using a Bruker microscope with a Through Transmissive Media (TTM)

module on a pivoted glass plate. In addition, finite element modelling was applied to

simulate the contact behaviour between the artificial fingertip and different surfaces.

By choosing a range of hard and textured aluminium and ground steel surfaces used

previously to limit deformation of the material, the FEM simulation, the theoretical

model, and the experiment results are shown to have good agreement with each

other—the JKR theory fitted the experiment better while the FEM simulation

followed the Hertz theory better. The FEM and theoretical models do not take into

account the presence of fingerprint ridges; it may be that the ridges increases the

apparent contact area due to a larger real contact area is required to maintain the

same pressure for a given normal force.

Overall, the contact radius was shown to be proportional to the loading force

raised to the power of 1/3. The results also show that the contact of the artificial

finger with a smooth surface is approximated well by the Hertz contact theory for

loads up to 2 N.

98



Chapter 5

Friction and Young’s Modulus

Measurement of Thermoplastic

Materials

T
hermoplastic elastomer (TPE) and copolymer of elastomer are commonly

used in manufacturing of car interiors to give surfaces a less harsh and more

pleasing feel. Materials in car interior should reflect customers’ touch-feel personal

taste and comfortability especially for luxury cars. Before investigating how the

thermoplastic metals will affect the touch feel perception, it is important to know

their physical characteristics. This chapter focuses on the measurement of the

physical characteristics of selected TPE samples, such as surface topography, surface

mechanical characterizations including elastic modulus and nano-hardness, and the

friction characteristics. A series of coated and patterned surfaces were selected in this

chapter for the objective, whose surface parameters were orthogonally independent

designed. The details of measurements were explained in this chapter . For the

coated samples, the thickness of the coating will affect the mechanical characteristics

of the samples. Hence, the thickness of the coatings were measured first and then the

hardness measurement of the samples was carried out with different penetration depth

during nano-indentation. For the patterned samples, their mechanical properties are

affected by the different patterns. Nano-indentation measurement were carried out

in order to understand the effect of the patterns. For friction characterisation, all the

friction coefficients were measured by the new friction test apparatus introduced in

Chapter 3. All of the thermoplastic plates were tested under different contact forces

(0.35 mm s−1, 0.5 mm s−1 and 0.75 mm s−1) and stroking speeds (2 mm s−1, 5 mm s−1
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and 8 mm s−1).

5.1 Introduction

Surface affective engineering focuses on design factors in enhancing the touch-feel

quality of surface materials or textures. As an cost-effective routine, paint finishes and

embossment of soft polymer such as thermoplastic elastomer (TPE) and copolymer

of elastomer are commonly used in manufacturing car interiors to give the surfaces a

less harsh and more pleasing feel. They have been used for non-load bearing parts

and interiors such as battery frames and bumpers in mass-produced cars, and for

more complex applications such as monocoques [146]. Over-moulding of TPE are

also widely applied in manufacturing control knobs and switches to achieve so-called

’soft-touch’ feel [84].

The use of thermoplastic elastomer (TPE) materials offers a number of key

advantages, for example: 1. easy thermoplastic processing 2. short cycle times

3. low energy consumption 4. thermal stability, providing large processing window

5. multi-component processing and thus reduced assembly costs 6. combination of

two materials (hard-soft composite) 7. fully recyclable, and 8. versatile dying options,

including colour effects for more advanced design. Based on the advantages of TPE

materials, there is essential to understand the ’touch-feel’ perception of thermoplastic

materials in order for better car interiors selection.

When a person touch or stroke a surface, the surface topography and softness

influence the person’s perception and feel. However, the sensorial ‘softness’ or

‘soft-touch’ is a combination of sensations derived from the contact interaction with

object surface and a general sensing of touch movement. Inevitably, such interaction

objectively associates with both skin features and a range of surface properties such

as topography, hardness and friction resistance. For surface topography, it can be

measured as Sa, Sq, Sm and so on. The physical softness of a material is often

measured as compressibility, hardness and elastic modulus. For friction resistance,

the friction results can be easily influenced by the measurement condition. In this

case, all of the friction coefficients are measured by the newly developed friction

apparatus based on the artificial fingertip.

Five coatings (Mankiewicz Gebr. & Co. ALEXIT series) and five patterned

polymer surfaces (Lyondellbasell, Basell, German) were selected for the investigation.

The patterned samples were heated and embossed with N111, N127 pattern types.

Water-based solvents (e.g waterborne polyurethane) were used for the coating. An

ABS-based (acrylonitrile butadiene styrene) plastic substrate is used to paint the
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5.1. Introduction

polymer coating. All the samples are cut into pieces of size 20 mm× 10 mm. These

thermoplastic samples had different coatings, different surface patterns and different

substrate materials (see Table 5.1).

To better understand the effects of the patterning, five additional samples

were created by sanding the original five patterned samples. The sanded/smoothed

variants are henceforth labelled with suffix ‘s’ for sanded. All of the physical

measurement results are used in the subsequent correlation analysis. The logical

order of this chapter is as follows: the surface topography and their Young’s modulus

were measured first in order for later theoretical analysis. Similar to the metal

samples in Chapter3, for comparison the friction coefficients were measured using

both the artificial fingertip and in vivo with human fingertips. The human fingertip

results will also be used in the later chapters (6 & 7).

Table 5.1: Description of soft-feel coated and patterned TPE and copolymer samples

Name Pattern Material Code Description

S
of

t-
fe

el
co

at
in

gs

s44 Coating Comfortlack 341-44 Water based paint
s58 Coating Laser-coating 342-58 Water based paint with

laser treatment
s83 Coating Decorlack 342-83 Water based paint
s97 Coating Soft-coating 341-97 Water based paint
s97R Coating Soft-coating 361WSL Water based, matt, soft

S
o
ft

-t
ou

ch
p

ol
y
m

er
co

m
p

os
it

es

1N111* N111† P1: Softtell TKG 300N 25% glass fibre rein-
forced thermoplastic
polyolefin compound

4N111* N111† P4: Softtell TKS 209N Unfilled TPO compound

5N111* N111† P5: Hostacom HC ERC
342

10%mineral filled
polypropylene copoly-
mer

4N127* N127‡ P4: Softtell TKS 209N Unfilled TPO compound

5N127* N127‡ P5: Hostacom HC ERC
342

10% mineral filled
polypropylene copoly-
mer

†Fine patterns; ‡Coarse patterns; *Sandpaper smoothed variations
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5.2. Surface topography measurement of thermoplastic Materials

Figure 5.1: Gold sputter coating machine

5.2 Surface topography measurement of thermoplastic

Materials

Surface topography of these thermoplastic samples was measured first. All samples

were cut into pieces of size 20 mm×10 mm. The name and description of the samples

are detailed in Table 5.1. For the patterned samples, the patterns affect the surface

topography measurement results and it is difficult to make sure every asperity of

the surface is the same. Hence, only the central part of the surface (3 mm× 3 mm)

was measured by a Bruker ContourGT-K 3D optical microscope, with 3 mm× 3 mm

the maximum range offered by the instrument. The Taylor Hobson Form Taysurf

surface profilometer was also used to measure the topography of the samples; the

measurement range was 0.8 mm and cut-off length was 0.08 mm.

Commonly-used topographical parameters such as Sa, Sm, Sq, Ssk and Sku

are recorded and averaged across multiple tests. Because Bruker works through light

interferometry, and all the samples were black, it is necessary to coat a reflective gold

layer to the thermoplastic samples to obtain results that were satisfactory. Sputtering

deposition creates a very thin coating of gold and is essential for Scanning Electron

Microscopy (SEM) imaging. Since with SEM one can use sputtering techniques to

image down to nanometre scales, one assumes the sputtering process would not alter

the micrometre scale surface topography of the samples. The sputtering machine is

as shown in Fig. 5.1.

5.2.1 Coated polymer samples

As shown in Figures 5.2, 5.3, 5.4 and 5.5, the surface topography of coating samples

are quite smooth compared with patterned samples. Their surface texture measured
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5.2. Surface topography measurement of thermoplastic Materials

by Bruker and observation with a SEM are shown in the following figures [32].

They have a matt-like structure with a few defects due to bubble implosions. The

measurement area was also set to 3 mm × 3 mm. Note that the measurement

from Bruker ContourGT-K is three dimensional, compared with two-dimensional

measurements from the Taylor Hobson Form Talysurf. Both 2D and 3D results are

recorded and they are shown in Fig. 5.11.

Figure 5.2: Surface topography of s44 by Bruker ContourGT-K and its SEM photo

Figure 5.3: Surface topography of s58 measured by Bruker ContourGT-K and its
SEM photo

5.2.2 Patterned polymer samples

In order to observe the clear structure of patterned samples, they were scanned by a

conventional Nikon Optiphot microscope [32]. The results are shown in Fig. 5.6 and

Fig. 5.7. The finely patterned samples ending N111 appear to have many irregular
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5.2. Surface topography measurement of thermoplastic Materials

Figure 5.4: Surface topography of s83 measured by Bruker ContourGT-K and its
SEM photo

Figure 5.5: Surface topography of s97 measured by Bruker ContourGT-K and its
SEM photo

and bumpy grains. The grain sizes of N111’s differ slightly among the samples 1N111,

4N111 and 5N111. The coarse patterned samples ending N127 appear to have arrays

of many glossy spherical bumps. As a matter of appearance, 5N127 have a more

glossy surface finish than 4N127.

All the measured topography parameters of patterned samples are displayed

in Table 5.2. Fig. 5.8 and Fig. 5.9 showed different surface topography of -N127

and -N111 patterns, within which different colour represents different height of the

surface asperity of the material. The spacing of N127 is comparatively larger than

N111’s although they have similar roughness. The figures of other patterned samples

texture are shown in Appendix A.4. Fig. 5.8 and Fig. 5.10 showed the samples of

4N127 before and after sanding with sandpaper. The most obvious difference is the

decrease of surface roughness after processing. Other differences will be discussed
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5.2. Surface topography measurement of thermoplastic Materials

later.

(a) 1N111 (b) 4N111

(c) 5N111

Figure 5.6: Observations of Fine polymer patterned surface morphology by microscope
at same illumination condition

In order to better understand the differences between the 2D and 3D surface

topography measurements, the 2D surface topography measurements of coating

and thermoplastic patterned samples are also shown in Fig. 5.11 and Fig. 5.12.

For the Form Talysurf 2D measurements, the measurement range was 0.8 mm and

cut-off length was 0.08 mm. The blue bars are the measurement results by Bruker

ContourGT-K, while the red bars are the measurement results by Taylor Hobson

Form Talysurf. In Fig. 5.13, the blue bars are the normal (non-sanded) TPE samples

data, and the red bars are the sanded TPE samples data. The results showed that

compared with the hard materials such as steel, aluminium that are characterised in

Chapter 3, the roughness values estimated by Bruker are larger than those from Form

Talysurf. However, for the coated thermoplastic samples, the Bruker measurements

are smaller. One reason for the disagreement is that the 2D line measurement
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(a) 4N127 (b) 5N127

Figure 5.7: Observations of coarse polymer patterned surface morphology by micro-
scope at same illumination condition

Figure 5.8: Surface texture of 4N127 under Bruker
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Figure 5.9: Surface texture of 4N111 under Bruker

Figure 5.10: Surface texture of smoother 4N127 under Bruker

performed by Form Talysurf was not representative of the topography across a wider

area. In addition, deformation may occur on the soft material during the Form

Talysurf measurement due to the contact nature as opposed to the non-contact

nature of the Bruker optical microscope. Based on these two reasons, the surface

topography results from Bruker would be used, as they are expected to be more

representative and accurate.
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(a) Ra (b) Rq

Figure 5.11: Roughness measurements of coated TPE samples comparison using
ContourGT-K (blue) and Form Talysurf (red)

(a) Ra (b) Rq

Figure 5.12: Roughness measurements of patterned TPE samples using ContourGT-K
(blue) and Form Talysurf (red)

5.2.3 Summary

Based on the above analysis, the measurement results of all thermoplastic samples

are summarised in Table. 5.2. All of the surface topography measurement results

are applied in subsequent correlation analysis between human touch-feel and sample

physical characteristics in Chapter 7.

5.3 Nano-indentation of the Thermoplastic Materials

Previously, the surface mechanical characteristics of the polymer samples have been

measured by the tribological probe microscope (TPM) [17–19]. It measures the
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5.3. Nano-indentation of the Thermoplastic Materials

(a) Ra (b) Rq

Figure 5.13: Roughness measurements of normal patterned (blue) and sanded (red)
TPE samples comparison measured by ContourGT-K

surface height first in the normal scanning mode and then switches to the ramping

mode to increase the contact force to a pre-set value and decrease it again, while

the deformation/penetration is measured. However, the TPE is limited to scanning

a small area of 100 µm × 100 µm. Also, it is limited to measuring surfaces with a

roughness less than 15 µm due to the probe working range (< 15 µm) in the z-direction.

It is recognised that surface strength (hardness and modulus) varies depending on

the indentation depth and load, thus the test should be made at critical load when

the value of the hardness and modulus are relatively stable. Considering the scale of

the micro-features in the polymer patterns, nano-indentation test was applied here

to characterise their surface nano-hardness and elastic modulus. Nanoindentation is

capable of measuring local properties of both the hardness and stiffness of materials,

and are capable of determining properties of thin coatings or films.

5.3.1 Nano-indentation of coating polymer samples

The coating samples include two layers: coating and substrate. The details of each

layer are described as above in Table 5.1 and the majority of the substrate were

made from polyurethane materials. The nanoindentation results depend on which

layer was pressed; if the penetration depth is deeper than the coating layer, the

mechanical property inferred will be of the substrate, otherwise, the measurement

would be of the coating layer. Because of this, the first important task is to determine

the thickness of the coating layer for these TPE samples.

All of the five coated samples were moulded in resin and their cross-sections

were polished after 24 hours of drying. Then, the cross-section of the coating was
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5.3. Nano-indentation of the Thermoplastic Materials

observed under a Nikon Optiphot microscope as shown in Fig. 5.14. It is shown that

for s97R and s83, the thickness of their coating layers was 65 µm and 67.5 µm. s44’s

coating was 48.75 µm, s58’s coating was 20 µm and s97 coating was 67.5 µm. Here,

the cross-section of s97R and s83 are given in the figure, while the cross-sectional

photographs of the remaining samples are shown in the Appendix A.4. Because

the maximum load for nano-indenter setting applied in this thesis was 500 mN, the

coating thickness is much larger than the penetration depth occurred during contact.

Hence, the whole contact mechanism is influenced more by the coating layer rather

than at the substrate. As such, from the modelling perspective, the contact problem

can be simplified to a contact between the coating layer and the artificial fingertip.

(a) s97R (b) s83

Figure 5.14: The cross-section (moulded in resin) taken by microscope

Nano-indentation with different penetration depth

In order to better observe the change of hardness and Young’s modulus of the samples

due to the applied loads, different loading forces from 30 mN to 500 mN were applied

during the measurement. Four different spots on the surface were measured at each

measurement, and every test was repeated 3 times. Every applied load was held

for 5 seconds in order to avoid the creep effect. All nano-indentation images when

the maximum load was 500 mN are shown in Figures 5.15, 5.16, 5.17 and 5.18. The

indenter applied in these experiment s was a Berkovich tip [142]. The image also

showed the indentation shape of every sample amplified by 20 times.

However, for the NHT nano-indenters, the measured surface mechanical

properties (hardness and Young’s modulus) vary depending on the indentation depth

and load due to the indentation size effect [139, 140]. Both the measured hardness

and modulus are seen to decrease with the TPE samples, converging to a constant
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5.3. Nano-indentation of the Thermoplastic Materials

value when the load is high enough. Thus, the test should be made at a critical load

when the value of the hardness and modulus are relatively stable.

As shown in Fig. 5.20, the maximum penetration depth was smaller than

20 µm; this was limited by the maximum load of 500 mN. It proves that all the

contact occur in the coating layer and not in the substrate. As shown by the

nanoindentation results, coating samples have much higher Young’s modulus and

hardness values. s83 is the hardest sample while s97 is the softest one. Although

they share same substrate material, different coating mechanisms lead to different

mechanical properties. Both the Young’s modulus and the hardness of the coating

samples follows the order of s97 < s58 < s44 < s97R < s83.

Figure 5.15: Before and after the nano-indentation of s44

Figure 5.16: Before and after the nano-indentation of s58
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5.3. Nano-indentation of the Thermoplastic Materials

Figure 5.17: Before and after the nano-indentation of s83

Figure 5.18: Before and after the nano-indentation of s97

Figure 5.19: Before and after the nano-indentation of s97R
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Figure 5.20: The nano-indentation results of s58, s83 and s97 when the maximum
load was 500 mN
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5.3. Nano-indentation of the Thermoplastic Materials

5.3.2 Nano-indentation of patterned polymer samples

As for the patterned samples, their hardness and modulus become relatively stable

when the maximum load is larger than 50 mN; this is due to the indentation size

effect discussed in the previous section. To reduce the influence of indentation size

effect further, four relative stable reading at different loads ranging from 50 mN to

500 mN were averaged. In addition, to reduce local effects, the indentations were

performed at four different matrix locations on each sample. The total averaged

values of these hardness and moduli were recorded in the following database.

The results are shown in Fig. 5.21. The sanded patterned samples practically

have the same measured nano-hardness and stiffness. For the other patterned

samples, 5N127 has noticeably higher stiffness than that of 5N111 but they have

similar nano-hardness. The nano-hardness (and stiffness to a lesser extent) of 4N111

is somewhat higher than that of 4N127. Even though the substrate material is the

same, the material might have been sensitive to the surface pattern embossment

process, e.g. it may not be thermally stable in the heat press process. The results

show that the coated samples with the exception of s97 are comparably harder and

stiffer than the patterned polymer samples.
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Figure 5.21: Mechanical properties of the TPE samples

5.3.3 Comparison with TPM measurements

The TPM is capable of multi-functional mapping of surface topography, nano-

hardness and elastic modulus in an area of 10 µm × 10 µm. However, it is limited

to measuring surface roughness of less than 15 µm due to the probe working range

in z direction [32]. Thus, the mapping functions are only applicable for the coated
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5.4. Friction measurement of thermoplastic materials

rather the patterned samples. The NHT nano-indenter does not have this limitation.

However, for the NHT is susceptible to the indentation size effect discussed in

Section 5.3.1. From experience when the applied load is larger than 100 mN, the

measurement stabilises. Here, a comparison between two measurement methods was

made to form better understanding of the results shown in Fig. 5.22.

4N
12

7

4N
12

7s

4N
11

1

4N
11

1s

1N
11

1

1N
11

1s

5N
12

7

5N
12

7s

5N
11

1

5N
11

1s

s4
4

s5
8

s8
3

s9
7

s9
7R

0

1

2

3

Material sample

Y
ou

n
g’
s
m
o
d
u
lu
s
(G

P
a)

Nano-indenter
TPM

4N
1
27

4N
12

7
s

4
N
11

1

4
N
11

1s

1N
11

1

1N
11

1s

5N
12

7

5N
12

7s

5N
11

1

5N
11

1s

s4
4

s5
8

s8
3

s9
7

s9
7R

0

50

100

150

Material sample

N
an

o-
h
ar
d
n
es
s
(M

P
a
)

Nano-indenter
TPM

Figure 5.22: Comparison with TPM measurement

The difference between two methods is smaller for the patterned samples

compared with coated samples, and when measuring hardness instead of stiffness.

The maximum load applied in the NHT nanoindenter was 500 mN, therefore the

deformation may be different because of the difference in the maximum load.

5.4 Friction measurement of thermoplastic materials

Compared with the metal samples, the thermoplastic samples were rougher and

softer. In this section, all the coating and patterned samples were measured at the

same working conditions as metal samples and each measurement was repeated 3

times. The contact forces tried were 0.35 N, 0.5 N and 0.75 N and the stroking speeds

tried were 2 mm s−1, 5 mm s−1 and 8 mm s−1. For the human finger measurements,

6 people with different age and different gender were asked to test the thermoplastic

patterned samples, and one subject tested the coated samples. The comparison

analysis will be shown in a later section.
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Figure 5.23: Polymer coating friction measurement under different conditions

5.4.1 Friction measurement of coated polymer samples

The friction measurement results for the coated samples are shown in Fig. 5.23. The

blue line with crosses are the human finger friction coefficients, which contains data

from one subject only for the coated samples. The other lines mark the measurement

results carried by the artificial fingertip. The artificial fingertip measurement results

are the closest to those of the human finger friction results when the contact force was

0.75 N and the stroking speed was 8 mm s−1. For s44, s58 and s83, the remaining

measurement conditions are a little far from the human finger measurement results.

However, for s97 and s97R, all of the four measurement results are close to the

human finger measurement. But the human finger friction measurement was just

carried out by 1 person, so the results are not very reliable.

Comparing the 5 coated samples, s97R owns the highest friction coefficient,

and s44, s58, s83 follows the order of s44 < s58 < s83. However for s97,it is not

very clear it is higher or lower than other samples. For s44, s58, s83 thermoplastic

samples, their coating material are quite similar,and they have higher Young’s

modulus and hardness compared with s97 and s97R based on the nano-indentation

measurement results. Their surface topography are similar to each other. Their

friction coefficient are very close but s97R is higher than s97.

Depending on the human skin factors and materials tribological properties,

the artificial fingertip offers an alternative for friction measurement.
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5.4. Friction measurement of thermoplastic materials

5.4.2 Friction measurement of patterned polymer samples

The role that pattern type and sanding plays in the comparison of artificial fingertip

friction coefficients was examined.

For human fingertip friction measurement, 6 people with different age and

gender were asked to measure their friction coefficients [32]. The contact force applied

was averaged at 0.5 N. For the artificial fingertip friction measurement, the normal

load was set in a range of 0.35 N, 0.5 N and 0.75 N, and the linear stage sliding speed

was set in a range of 2 mm s−1, 5 mm s−1 and 8 mm s−1. In the case of ‘soft-touch’

polymer, where larger friction fluctuation is expected, the output friction coefficient

through human fingertip and artificial fingertip was defined in a time-averaged sense.

In addition, the five patterned thermoplastic samples that were sanded by sandpaper

were tested as well. The analysis is as follows.

Comparison between the human fingertip and artificial fingertip meas-

urement
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Figure 5.24: Friction coefficient measurements comparing human fingertip and
artificial fingertips applied on patterned TPE samples at various stroking speed
and loading forces. Boxplot applicable to human fingertip measurements of 6 adult
subjects — dotted whiskers: data range, blue boxes: 25% – 75% quartiles, horizontal
red lines: median, blue crosses: mean

The friction measurement result is shown in Fig. 5.24. The box plot summar-

ises the human fingertip friction coefficient measured by 6 people. The blue lines

with crosses mark the arithmetic average of the human fingertip friction coefficient.
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5.4. Friction measurement of thermoplastic materials

Other lines show the friction measurement results of the artificial fingertip with

different working conditions. The figure showed that the artificial fingertip friction

measurement result is closest to human fingertip friction results when the stroking

speed is 8 mm s−1 and the contact force is 0.5 N. The results at 8 mm s−1 are closer

to human fingertip friction measurement results compared with 5 mm s−1 results,

mirroring observations with metallic samples in Chapter3. The same argument that

the stroking speed of a human finger is faster applies [99].

The correlation coefficients between human fingertip friction coefficient and

artificial fingertip friction under different working conditions are given in Table 5.3.

When the sliding speed of the linear stage is slower, higher correlations (r2 =

0.80 ∼ 0.98) were observed between artificial fingertip friction measurements and

those obtained by a human fingertip. Paradoxically, the correlation factors are

lower(r2 = 0.0545 ∼ 0.67) at higher speeds. Note that r2 is known to be a problematic

measure when there are outliers and when the relationship is nonlinear. Referring

to the root mean squared errors (RMSE) quoted in Tables 5.4 to 5.6, one can see

that the higher sliding speed have less error against human fingertip results. While

the results with TPE samples are not as good as those of the metallic samples in

Chapter 3, the friction properties of multilayer artificial fingertip is closer to a real

fingertip compared to the pure material roller rig [32].

Table 5.3: Correlation between artificial finger and human finger in friction measure-
ment

Friction Measurement conditions

Sliding speed Loading force r2

2 mm s−1 0.50 N 0.9524
2 mm s−1 0.35 N 0.9210
2 mm s−1 0.75 N 0.6982
5 mm s−1 0.50 N 0.8003
5 mm s−1 0.35 N 0.6334
5 mm s−1 0.75 N 0.1792
8 mm s−1 0.50 N 0.5431
8 mm s−1 0.35 N 0.0545
8 mm s−1 0.75 N 0.7667
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5.4. Friction measurement of thermoplastic materials

Analysis of the artificial fingertip friction results

The detailed friction measurement results of patterned thermoplastic samples are

shown in the following figures. In the case of contact between the artificial finger and

the soft polymer patterns, the results measured largely depend on surface strength

since the deformation is large enough to flatten the local asperity. The dry sliding

friction mainly depends on the surface strength of the candidate samples. The

samples made of the material P4 still have the largest µartificial overall as comparing

Figures 5.25 to Figures 5.26 and Fig. 5.27. However, samples made of P1 and P5 have

similar dry frictional behaviour as shown by the 1N111 and 5N111 friction results.
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Figure 5.25: Comparison between P4 material patterned samples and sanded samples

Compared with the rougher N127 patterns, the smoother N111 patterns have

higher friction coefficient (when they are made with the same material). With the

increase of linear stage sliding speeds, higher friction coeffients were observed. For

instance, a rougher surface pattern tends to help in reducing friction coefficient. This

may be explained by the contact area being smaller when the surface is rougher

and spacing is larger, which leads to a lower friction resistance. This general trend

was also observed with the metal samples in Section 3.4.3. The detailed analysis on

the relationship between friction and surface topography will be discussed in later

section.

In addition, sanded samples have higher friction coefficients than the normal

samples. That is because the surface roughness decreases when sandpaper was used
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Figure 5.26: Comparison between P5 material patterned samples and sanded samples
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Figure 5.27: Comparison between 1N111 patterned samples and sanded samples
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5.5. Conclusion

to sand the surface patterns. According to Chapter 4, the contact area increases as a

result and the friction coefficient will, therefore, be higher. One can also see from the

figures that as the stroking speed increases, the friction coefficient measured is higher.

The relationship between the surfaces roughness Rq and the adhesive component of

friction force will be discussed in Section 6.3. The friction coefficients and normal

forces seem to be proportional to each other, but not to a power of −1/3 as the case

with hard materials. According to Tang et al. [45], the normal displacement increases

linearly with the normal force. The difference in relative hardness of two surfaces

will lead to ploughing of the artificial fingertip surface. A greater friction force is

required to maintain that motion.

According to Tabor’s theory [118], the friction or lateral force depends on the

product of the real contact area and shear strength of interface. Meanwhile, the real

contact area is related to the deformation and the surface topography. Therefore,

a variation of design in surface topography or mechanical properties could result

in notably different tribological behaviour. Indeed, it is necessary to understand

which factor dominates the mechanism of friction here. In general, samples made of

material P4 have a higher friction resistance than P5 and P1. It also worth pointing

out that material P4 is less stiff than the other material as shown in Table 5.21 by

Young’s moduli. Also, the Friction coefficient of P4 decreased with the increase of

the normal forces, while P1 and P5 show the opposite trend. The material P1 and

P5 showed similar friction behaviour in the comparison between 1N111 and 5N111

(t = 0.994, p = 0.367).One hypothesis is that for softer material, the deformation

between the contacted bodies can not be ignored, and there is adhesion between

the P4 material and the rubber artificial fingertip. It leads to a bigger contact area

(see the JKR model in Section 4.2.3) which may be the reason of the higher friction

coefficients.

5.5 Conclusion

The friction aspect of touch-feel perception is investigated for a series of thermoplastic

elastomer (TPE) samples in this chapter. Thermoplastic samples are commonly

used in car interiors. For these materials, different surface roughness, coatings,

surface patterns and experiment conditions are shown to influence friction results.

It is essential to understand their properties and their correlation with touch-feel

perception, which include friction as well. Surface topographical parameters such as

roughness and mechanical parameters such as hardness were measured.

122



5.5. Conclusion

Table 5.4: Friction measurement results of thermoplastic samples at 2 mm s−1 sliding
speed (artificial finger only)

No. In-vivo 0.5 N 0.35 N 0.75 N

5N111 1.23 0.29 0.29 0.53
5N111smooth 1.30 0.71 0.58 0.82
1N111 1.37 0.28 0.13 0.39
1N111smooth 1.50 0.23 0.30 0.48
4N111 1.94 0.57 0.73 0.52
4N111smooth 2.50 0.65 0.83 0.40
5N127 0.99 0.17 0.24 0.20
5N127smooth 1.04 0.38 0.33 0.42
4N127 1.78 0.47 0.43 0.34
4N127smooth 2.00 0.52 0.61 0.40

RMSE 3.79 3.95 7.04

Table 5.5: Friction measurement results of thermoplastic samples at 5 mm s−1 sliding
speed (artificial finger only)

No. In-vivo 0.5 N 0.35 N 0.75 N

5N111 1.23 0.48 0.39 0.74
5N111smooth 1.30 0.72 0.69 0.87
1N111 1.37 0.45 0.43 0.65
1N111smooth 1.50 0.28 0.24 0.48
4N111 1.94 0.52 0.44 0.58
4N111smooth 2.50 0.89 0.92 0.76
5N127 0.99 0.29 0.31 0.43
5N127smooth 1.04 0.54 0.37 0.37
4N127 1.78 0.44 0.48 0.40
4N127smooth 2.00 0.57 0.66 0.40

RMSE 3.52 3.30 3.82

123



5.5. Conclusion

Table 5.6: Friction measurement results of thermoplastic samples at 8 mm s−1 sliding
speed (artificial finger only)

No. In-vivo 0.5 N 0.35 N 0.75 N

5N111 1.23 0.65 0.58 0.55
5N111smooth 1.30 0.89 0.81 0.96
1N111 1.37 0.56 0.69 0.62
1N111smooth 1.50 0.54 0.37 0.44
4N111 1.94 0.73 0.82 0.63
4N111smooth 2.50 1.2 1.27 1.44
5N127 0.99 0.44 0.38 0.57
5N127smooth 1.04 0.57 0.50 0.61
4N127 1.78 0.46 0.51 0.39
4N127smooth 2.00 0.65 0.73 0.43

RMSE 3.05 2.04 2.25

Nano-indentation experiment was performed to measure nano-hardness and

the stiffness of the TPE samples. These were shown to be significantly different from

the micro-indentation. The correlation was better with nano-hardness than Young’s

modulus, and with patterned samples than the coated samples. The difference

in applied load may have contributed to the differences. Both the nano-hardness

and Young’s modulus measurement values was seen to decrease with increasing

penetration depth; this is the indentation size effect seen in other literature [139,

140]. Overall the patterned samples were rougher than the coated samples while the

coated surfaces were harder than the patterned samples.

On the friction characterisation, it was found that rougher surfaces were

perceived to have lower friction coefficients. Higher sliding speeds generally result

in higher measured friction coefficients and also lead to lower error against in vivo

results. Friction coefficient for material P4 decreased with the increase of the normal

forces, while materials P1 and P5 shows the opposite trend. Adhesion forces might

have contributed to the phenomenon with P4.

Sanding the patterned samples to smooth them result in an insignificant

change in nano-hardness and Young’s modulus measurements; however, it resulted

in visibly higher measured friction coefficient for all the patterned samples except

sample 1N111.

Overall, the correlation between the in vivo friction measurements and those

by the artificial finger is lower than the metal samples. The ‘softer’ TPE samples

may have more complex interactions between the surfaces due to higher levels of

deformation, and adhesive friction mechanism may be non-negligible.
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Chapter 6

Relationship between Friction and

Surface Parameters

I
n ergonomics, components or materials that are more touch-desirable can be

made if the relationship between human touch-feel perception and the physical

properties of the contact surfaces can be understood. Commercially, products

are increasingly focused on ergonomics and there is increasing demand for surface

materials with desirable touch-feel properties[20]. In Chen et al. [8], correlation and

regression analyses were carried out on materials used in confectionery packaging to

identify the relationships between the people’s touch-feel responses and the physical

measurements of thirty-seven tactile textures; the results shown that touch perception

is often associated with more than one physical property. These parameters are then

correlated against subjective touch-feel perception on two of the fundamental (see [21])

psychophysical semantic touch-feel descriptors: ‘rough/smooth’ and ‘slippery/sticky’.

Stroking the surface an object to experience its friction is one of the most

direct way to elicit a touch-feel perception, therefore it is desirable to be able to

understand the relationship between the skin-against-material friction coefficient

and the tribological/mechanical parameters. These parameters include surface

topography parameters (see Section 1.1) and surface mechanical properties such as

the Young’s modulus E and hardness H. According to the validation experiments

performed in Chapter 3, the custom-built artificial finger can replicate the frictional

properties of a human finger. In this chapter, both in-vivo and artificial finger friction

coefficient results were used to investigate the relationships. Firstly, the Spearman’s

correlation analysis was performed; its objective is to give a general idea of the

correlation between the friction coefficient results and the tribological/mechanical
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parameters. Secondly, the relationships between the friction coefficients and the

tribological parameters Sq, Sm, Sku, Ssk, Rdq and the Young’s modules E were

deduced according to the Hertz and the Greenwood-Willam contact theories. Finally,

simulation and experiment results were used to validate the theoretical relationships.

6.1 Spearman’s Rank correlation analysis

The Pearson’s product moment correlation coefficient (PPMCC or Pearson’s r) is

often used to statistically assess the level of linear correlations between two sets of

variables. A value of +1 indicates total positive correlation; 0 indicates no correlation

and -1 indicates total negative correlation. Numerically it is the covariance of

two variables normalised by the product of their standard deviations. When the

underlying data is discrete (not continuous), or if they have non-linear associations, or

the presence of outliers is giving a distorted picture of the association between the two

variables, the non-parametric Spearman’s rank correlation (also called Spearman’s

rho) should be used. Numerically the Spearman’s rank correlation is the Pearson’s

product moment correlation of the rankings of the two set of variables. It is often

used in hypothesis testing to see if there is statistically significant association or

correlation between the two variables. Hypothesis tests were conducted in this

task to identify statistical significant correlation between the friction coefficient

measurements and the tribological/mechanical parameters.

The material samples mentioned in Chapters 3 and 5 were divided to two

different groups: metal and polymer. The metal group includes the milled aluminium

samples from Chapter 3 labelled AM1–AM6, the turned aluminium samples labelled

AT1–AT6, and the grinded steel samples S1–S5. The polymer group includes all the

thermoplastic elastomer (TPE) samples, which comprises of 5 types of coated samples

plus 10 types of patterned samples (see Table 5.1). Firstly, all the physical parameters

data were converted into rankings. Secondly, Spearman’s rank correlation coefficients

between these physical parameters and the 1) human fingertip friction results, 2)

artificial fingertip friction results were calculated. Thirdly, two-tailed hypothesis tests

on the strength of the correlation were performed by calculating the corresponding

Student’s t values, which is then converted into p-values using statistical tables.

Values of p below 0.05 was taken as statistically significant correlations.

6.1.1 Correlation analysis for the metal samples

For the artificial finger, results from experiments performed with normal forces of

0.5 N and 0.75 N, and stroking speeds of 5 mm s−1 and 8 mm s−1 are also available.
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Figure 6.1: Spearman’s correlations (absolute) between material properties and
friction coefficients measured by human and artificial finger for metal samples
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6.1. Spearman’s Rank correlation analysis

It was found that the combination of 0.75 N and 8 mm s−1 (amongst the 4 sets

tried) results in highest overall correlations with the mechanical and topographical

parameters. Hence, this set of results are used for comparison with the human finger

correlations in Fig. 6.1.

Since one is not interested in the direction of correlation at the moment,

the absolute values of the Spearman’s correlation for the metal samples are plotted.

Blue bars represent the correlation against human finger in-vivo friction coefficient

measurements, while the maroon bars represent the artificial finger friction results.

Correlation values above the dotted line have p values less than 0.05 and are therefore

statistically significant.

The pattern of Spearman’s ranking correlation coefficients is somewhat dif-

ferent between the in-vivo human finger results and those of the artificial finger.

However, considering the statistically significant correlations between the in-vivo

results, 4 out of 6 of which are also statistically significant for the artificial finger.

The artificial finger and human finger have statistically significant correlations

with 4 of the S-parameters. In addition, the human finger is correlated with Rda

and Sdq which are respectively the arithmetic mean slope and the root mean square

slope. This is interesting as it means the human finger friction is influenced by the

slope of the hills and valleys, but to a lesser extent for the artificial finger. On the

other hand, the artificial finger is somewhat sensitive to the kurtosis parameter Sku

but not so much for the human finger.

6.1.2 Correlation analysis for the polymer samples

Results of the Spearman’s rank correlation analysis for the thermoplastic materials

are shown in Fig. 6.2. In contrast to the metal samples, all material properties

have statistically significant correlation with both the human and the artificial

finger friction coefficients, indicating complex interactions between the parameters

and friction. Mechanical properties such as E and H show the highest correlation

coefficient—0.92 and 0.84 respectively for human finger. Correlation with E and H

is lower at 0.69 and 0.66 for artificial finger. This is in contrast with the case with

metals where E and H were uncorrelated with friction. The contact mechanism

with TPE is different compared to metal, with the softer plastic contact giving

rise to adhesive forces and higher deformations. Sdq and Rda characterise the slope

of the surface topography, which also shows the high correlation with the friction

coefficients (0.7 ∼ 0.85). The topographical parameters of Sa, Sq, Sz, Sm and Sv

provide roughness, spatial and hybrid topographical information for the 3D surface,

which are all somewhat related. Their correlations are in the range of 0.52 ∼ 0.68
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6.1. Spearman’s Rank correlation analysis

for. Lastly, Ssk is a measure of the asymmetry of the amplitude density curve and

Sku are measures of the peakiness of the amplitude density curve. Their influence

(0.4 ∼ 0.7) was mainly due to the contact area change during the sliding friction.
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Figure 6.2: Spearman’s correlations between material properties and friction coeffi-
cients measured by human and artificial finger

The Spearman’s correlation analysis showed that there are statistically signific-

ant correlations between friction coefficients and specific surface physical parameters.

However, theoretical analysis should be performed to investigate the underlying

mechanism and look for any cause-and-effects. First, the relationships between

surface friction coefficients and Rq, Sm are deduced and validated by the metal and

thermoplastic samples measurement results; Secondly, the relationships between

surface friction coefficients and the surface mechanical properties such as E are

investigated; Thirdly, Ssk and Sku are studied and correlated to surface friction
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6.2. Surface height distributions

measurement; Finally, the relationships between surface friction coefficients and

surface slope parameter Rda and Sdq are described.

Chapter 4 has shown that the Hertz contact theory is suitable for modelling

the contact mechanism. However, for a rough surface with random roughness, the

Greenwood-Williamson (GW) model (see Section 4.2.4) should be applied instead.

On the other hand, GW modelling is based on an assumption that the height

distribution of the asperity summits should follow a Gaussian distribution. Hence,

the surface height distribution should be investigated to check if it follows a Gaussian

distribution.

6.2 Surface height distributions

All the test surfaces had their surface topography imaged first with a Bruker

ContourGT-K optical microscope. These are then analysed using MATLAB to

compute their surface height distribution and Q-Q plots are plotted. Q-Q plots are

used to evaluate whether a given dataset follows a known theoretical distribution—in

this case, the standard Gaussian distribution was used as the reference. The surface

height distributions and the corresponding Q-Q plots are shown in Figures 6.3, 6.4,

6.5 and 6.6—one sample for each of the milled aluminium, turned aluminium, steel

and TPE samples, in that order. AM1 has a heavy tail towards the low heights. Since

GW model is concerned with summit height distribution being Gaussian, the heavy

tail is of no concern. s58 is the least Gaussian-like, with lighter tails at both ends.

For this sample only, GW may be unsuitable. Otherwise, the Greenwood-Williamson

model was used to model the contact mechanism. The surface height distributions

of other surfaces are shown in the Appendix A.5.

6.3 The relationships between the friction coefficient,

Sq and Sm

Sa, Sq, Sz, Sm and Sv are tribological parameters commonly used to quantify the

surface roughness [25]. They are various statistical measures or summaries of the

surface height profile of a given material. Previous literature showed an inverse

linear relation between the adhesion of two surfaces and the surface roughness, such

that Fadh ∝ R−1
q [110]. Greenwood and Williamson [147] modelled rough surfaces

as a collection of spherically tipped asperities, all with equal radius and a Gaussian

asperity height distribution. This enables the use of Hertz theory on rough surfaces

[104]. For many engineering surfaces, the product of the density of asperities η, their
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Figure 6.3: The surface height distribution of milled aluminium sample AM1
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Figure 6.4: The surface height distribution of turned aluminium sample AT1
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Figure 6.5: The surface height distribution of grinded steel sample S3
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Figure 6.6: The surface height distribution of coated TPE sample s58
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6.3. The relationships between the friction coefficient, Sq and Sm

radius of curvature β and the standard deviation of the asperity height distribution

σ is constant [148]. In symbols:

η · β · σ = C (6.1)

where C is a constant, η is a spatial or lateral parameter, i.e. describing surface

micro-geometry in the xy-plane, whilst σ only describes the z-direction. Therefore,

these two parameters are orthogonal and as a first approximation, σ does not vary

much with changing roughness [149]. By ‘translating’ the Greenwood-Williamson

parameters β , R and σ ≈ Rq, it can be deducted that the curvature radius R and

Rq are inversely proportional [9].

6.3.1 Theoretical deduction of the relationships

The surface heights of many samples used in this thesis roughly follows a Gaussian

distribution. Because the metals samples are designed to have regular roughness Sa

and Sq, they can be seen as regular patterned samples. For this type of surfaces, one

can follow the analysis given by Masen [9]. With help of the GW theory, a detailed

explanation was given as follows.

©2011 Elsevier, reprinted with permission from Masen [9]

Figure 6.7: Definition of Spacing of surfaces

The coefficient of friction is composed of a deformation and an adhesion

component, while the deformation friction can be ignored as the contact materials

are both elastic,

µ ≈ µadh. (6.2)

Since the surface features are arranged in a regular pattern having a pillar spacing

Sm, the number of surface features N in contact with the skin can be approximated

from the contact area A0 using

A0 = NS2
m. (6.3)
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6.3. The relationships between the friction coefficient, Sq and Sm

The total normal load Fn is the combined the normal loads of N surface

features Fn,i:

Fn = NFn,i (6.4)

assuming that the individual surface features of the textures are perfectly spherical

and assuming elastic behaviour of the skin.

The Hertz theory of elastic bodies relates the circular contact area of a sphere

with a plane (or more generally, between two spheres) to the elastic deformation

properties of the materials. The theory neglects surface interactions.

Reproducing Eq. (4.4) from Chapter 4,

a0 =

(
3Fn,iR

4E∗

)1/3

. (6.5)

The contact area A0 = Nπa2. Substituting (6.5) one obtains:

A0 = Nπ

(
3Fn,iR

4E∗

)2/3

. (6.6)

Assuming the pattern is regular (repeating), Eq.(6.6) also can be expressed as

A0 = NS2
m [9].

The coefficient of friction is then:

Fadh = τ0 ·A0 = τ0πN

(
3Fn,iR

4E∗

)2/3

= τ0π

(
3Fn,iR

4E∗

)2/3

·N

= τ0π

(
3RFn

4E∗N

)2/3

·N

= τ0π

(
3RFn

4E∗

)2/3

·N 1/3

Using N = A0
S2
m

Fadh = τ0π

(
3RFn

4E∗

)2/3

·
(
A0

S2
m

)1/3

. (6.7)
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6.3. The relationships between the friction coefficient, Sq and Sm

µadh =
Fadh

Fn

= τ0π

(
3R

4E∗

)2/3

·
(

1

Fn

)1/3

·
(
A0

S2
m

)1/3

= τ0π

(
3

4E∗

)2/3

·
(
R

Sm

)2/3

·
(
A0

Fn

)1/3

(6.8)

µadh ∝ τ0E
∗(−2/3) ·

(
R

Sm

)2/3

·
(
A0

Fn

)1/3

(6.9)

As before, following Eq. (6.1), R ∝ R−1
q , hence,

µadh ∝ τ0E
∗(−2/3) ·

(
1

RqSm

)2/3

·
(
A0

Fn

)1/3

∝ (RqSm)−
2/3. (6.10)

As shown in Eq. (6.10), µadh is proportional to Fn
−1/3, the normal force. µadh

is also proportional to E∗(−
2/3), and to RqSm

−2/3. This result ignores the effect of

deformation.

6.3.2 Correlation of theory and experiment for aluminium and steel

samples

Frictions results from the aluminium and steel samples were first used to validate

the theory derived above. Here we look at results from the human finger (in-vivo

measurements) and friction results from the artificial finger when the normal forces

were 0.5 N and 0.75 N with corresponding linear stage sliding speeds of 5 mm s−1 and

8 mm s−1.

Table 6.1: Coefficient of determination (r2) for the relationship curve fitting

Materials 5 mm s−1 8 mm s−1

µin-vivo µF=0.5 N µF=0.75 N µF=0.5 N µF=0.75 N

Surface ground steel 0.0777 0.8050 0.8507 0.8964 0.8777
Milled aluminium 0.8679 0.3563 0.4386 0.8845 0.8999
Turned aluminium 0.8194 0.6094 0.5463 0.5285 0.9113

Considering the relationship predicted by the theoretical analysis in Eq. (6.10),

a log-log plot of friction µ against the product of RqSm should result in a straight

line with a slope of −2/3. In Figures. 6.8 and 6.9 one can see that the data roughly

follows a straight line relationship. The data were regressed (curve fit) to the form

135



6.3. The relationships between the friction coefficient, Sq and Sm

100 101 102
10−2

10−1

100

RqSm (µm2)

F
ri

ct
io

n
co

effi
ci

en
t
µ

log-log plot

Human fingertip

µ = 1.265 (RqSm)−
2
3

Artificial fingertip, F = 0.5 N

µ = 1.239 (RqSm)−
2
3

Artificial fingertip, F = 0.75 N

µ = 1.051 (RqSm)−
2
3

(a) 5 mm s−1

100 101 102
10−2

10−1

100

RqSm (µm2)

F
ri

ct
io

n
co

effi
ci

en
t
µ

log-log plot

Human fingertip

µ = 1.265 (RqSm)−
2
3

Artificial fingertip, F = 0.5 N

µ = 1.466 (RqSm)−
2
3

Artificial fingertip, F = 0.75 N

µ = 1.151 (RqSm)−
2
3

(b) 8 mm s−1

Figure 6.8: Steel Samples
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Figure 6.9: Milled aluminium Samples
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Figure 6.10: Turned aluminium Samples
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6.3. The relationships between the friction coefficient, Sq and Sm

of a (RmSq)−
2/3, such that the value of a resulting in the least squared errors was

found and shown on the legends of the figures. For experiment results with the

8 mm s−1 sliding speed setting, the theoretical relation fit the data relatively well on

the log-log scale (the least square fitting and the associated statistics on Table 6.1

was based on the log-log space). Overall, the fit with 5 mm s−1 setting appears to

be worse especially for the aluminium samples. Indeed in previous chapters, it was

found that the higher 8 mm s−1 setting for the artificial finger sliding speed results

in better correlation with in-vivo human finger results.

Table 6.1 showed the coefficient of determination (r2) between the theoretical

relationship and the data. It is shown that a high r2 (0.8 ∼ 0.9) is obtained for steel

and milled aluminium samples. For turned aluminium, the fit was unacceptable

(worse than a horizontal null line) if the outliers of AT1 and AT2 were included.

Discounting them in the fit improved the correlation to as high as 0.91. The results

support the fact the theoretical relationship give a satisfactory description of reality

and the friction measurement is accurate for metals.

The results have implications for industrial application—if the friction coeffi-

cients a surface preferred by customers is known, the relative surface topography

parameters such as Rq, Sm can be used to tune the friction characteristics according

to Eq. (6.10).

6.3.3 Correlation of theory and experiment for thermoplastic Samples

Compared with metal samples, thermoplastic materials are much softer, with a higher

risk of large deformation occurring, potentially violating the assumptions of Hertz

and GW contact models. The five patterned samples (1N111–5N127 plus their five

sandpapered counterparts in Table 5.1) have their the Rq and Sm values measured

using the Bruker optical microscope and their friction coefficients measured using

human and artificial fingers. Similar to Figures. 6.8 and 6.9, the results from the

TPE samples are plot in log-log axes and shown in Fig. 6.11.

It can be seen from the figure that the picture is more complicated; the

theoretical slope of −2
3 is only observed to fit a few data points (e.g. the rightmost 4

points of artificial finger). The true slope seems to be shallower. There is insufficient

data to conclusively say whether the theoretical relationship still holds or otherwise.

More data from the lower end of RqSm is needed to investigate this further. The large

variance of the friction result among the samples with similar RqSm either indicate

that RqSm has no correlation with friction for these polymer samples, or it indicates

a presence of complex phenomena. Since the samples are comparably softer than

metal samples, it is possible that there were large deformations during contact. The
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Figure 6.11: Thermoplastic patterned samples

contact area might have been larger due to adhesion. In addition, the assumption

that A = NSm
2 is not strictly correct because the surfaces of thermoplastic materials

do not have regular patterns.
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Figure 6.12: Thermoplastic coating samples

Results on the coated samples (s44–s97R in Table 5.1) are shown in Fig. 6.12.

Like the case with patterned samples, the data seems to have a slope shallower

than the theoretical relationship, but there are insufficient samples to draw any

concrete conclusions. There are several reasons for possible deviations from theory;

like the patterned samples, the coated samples do not have regular patterns on the

surface, and the assumption that A = NSm
2 used to derive Eq. (6.10) is only an

approximation. The contact for the coated samples is also more complex because

the substrate still has an effect on the deformation during friction measurement even
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6.4. The influence of Young’s modulus to contact area and friction coefficient
analysis

though the friction mechanism only occurs on the coating.

6.4 The influence of Young’s modulus to contact area

and friction coefficient analysis

According to Eq.(6.10), the Young’s modulus also has an influence on the contact

area. When the Young’s modulus is smaller, the real contact area increases. As a

result, the perceived friction also increases. Although it is generally accepted that

the Young’s modulus affects the friction coefficient, it still worth investigating the

real contact area. Here the ratio of the nominal contact area to the real contact area

was calculated using the Greenwood-William simulation program developed in [150,

151]. The MATLAB implementation is shown in Appendix A.8.

6.4.1 Simulation of the Greenwood-Williamson Model

The GW model can be used to analyse the real contact area of various surfaces

of different characteristics. While the Hertz contact theory allows one to estimate

how many peaks and valleys are included in the contact area, the GW model can

calculate the real contact area as a ratio of the nominal contact area in every peaks

and valleys. However, the GW model is limited to several assumptions: 1) The rough

surface is covered with a number of asperities, which, at least near their summit,

are spherical; 2) All the asperity summits have a constant radius on each surface; 3)

The asperity heights vary randomly; Height profiles of many engineering surfaces

obey Gaussian distribution.

The GW model is normally applied to model contact between randomly rough

surfaces and the Hertz contact theory is applied to contact between each asperity.

It results in the real contact area that is dependent (slightly) non-linearly on the

load even for a very small load. In this case, a more general and accurate contact

mechanics theory which can be applied to many different length scales is needed.

Aramaki, Cheng and Chung [151] used a quadratic function to approximate

an asperity with width L and height ζ, in the form of

z = − 4ζ

L2
x2 +

4ζ

L
x. (6.11)

The Greenwood-William simulation MATLAB program mentioned before [150, 151]

uses this approximation to fit the roughness of the surface.

Software simulations were performed to analyse the real and nominal contact

area for the metal and thermoplastic samples. As shown in Fig. 6.13b for the sample
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(a) The original surface roughness of AM1 (b) Contact surface profile before and after
approach when normal force was 0.98 N
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(c) The surfaces separation before and after
the deformation

Figure 6.13: AM1 rough approach and its contact results

AM1 (see Table 3.3), the surface approximation by the Aramaki formulation captures

most of the surface roughness details, although there is an error of 0.2µm in some

peaks of the surfaces. After the surface approximation, the GW contact model was

used to analyse the contact mechanism of every peak and valley when the surface

height was higher than the separation distance between the two contact surfaces.

The contact force was set to 0.98 N, and the radius of artificial fingertip was set to

7.5 mm. Fig. 6.13c showed the deformation between the contact of artificial fingertip

and the AM04 sample. The contact radius was calculated as 1.7 mm and the real

contact area was calculated as 99.72% of the nominal contact area.

Comparing Fig. 6.13b to Fig. 6.14 for AM6, the contact surface profile changed
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(a) The original surface roughness of AM6 (b) Contact surface profile before and after
approach when normal force was 0.98 N

(c) The surfaces separation before and after
the deformation

Figure 6.14: AM6 rough approach and its contact results

when the surface roughness changed. However, the real contact to nominal contact

area ratio remains the same at 99.72%. However, aluminium is not a very good

material for this kind of modelling because it is too hard relative to the artificial

fingertip, meaning that nearly all of the deformation occurs on the artificial fingertip

rather than on the contact surface. This is why there was no observable change in

the contact area between the aluminium (and steel) samples.

In Chapter 4, the contact areas were investigated using an optical contact

area measurement mechanism consisting of a glass plate in lieu of a material sample.

The MATLAB program introduced in this section also validates the results from

Chapter 4. The GW model is suitable for modelling the contact mechanism for the

samples investigated.
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6.4.2 The correlation analysis results

Table 6.2: Contact area simulation of various materials with different Young’s moduli

Sample Young’s modulus (MPa) Contact radius (µm) % of real contact

Steel 220.000 1695 99.55%
Aluminium 70.000 1695 99.55%
5N127 779.5 1696 99.60%
5N111 182.5 1698 99.65%
1N111 69.5 1703 99.70%
4N127 17.5 1728 99.72%
4N111 14.25 1735 99.78%

(a) Contact radii of different surfaces with
different Young’s moduli

(b) The ratio of real to nominal contact area

Figure 6.15: Contact area results when the normal force was 0.98 N

Contact area analysis results of all samples are tabulated in Table 6.2 and

plotted in Fig. 6.15. The change of contact radius is small across the materials. The

normal force in all contact was set to 0.98 N. The contact area increases when the

material Young’s modulus increases, i.e. when the material is less stiff, or colloquially,

softer. The proportion of the real contact area also increases when the material

is less stiff. The ratio shows that there was nearly full contact between the two

bodies across different roughness. According to the Eq. (6.10), dry sliding friction

also becomes higher when the material is less stiff. The friction results are already

presented in Chapters 3 to 5—the friction coefficients of TPE materials were much

bigger than the steel and aluminium samples in the same measurement conditions.
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6.5 The relationship analysis between friction, Ssk and

Sku

For description of surface topography, the roughness parameters Sa and Sq do not

capture all the information. Very different surface profiles can show similar or

identical values of standard roughness parameters. The opposite is also possible, very

similar surfaces may end up having very different roughness parameters. Sa describes

the overall height variations, without any details on waviness and it is not sensitive

to small changes in profile height. Compared with Sa, Sq is more sensitive to the

variance of height, while it does not pick up detailed information on the surface

roughness.

Skewness and kurtosis are the third and fourth moment of the density function,

which are used to characterise asymmetry and the flatness of the surface distribution.

For engineer surfaces that have non-Gaussian surface topography, Ssk gives the

skewness on the distribution and is sensitive to occasional deep valleys or high

peaks. Zero skewness by definition appears in symmetrical height distributions, while

positive skewness describes surfaces with high peaks or filled valleys, and negative

skewness describe surfaces with deep scratches or lack of peaks. Sku is defined as

kurtosis which describes the sharpness of the probability density distribution of the

height profile. Sku is less than 3 when surfaces have relatively few high peaks and

low valleys, while Sku is more than 3 when the surfaces have relatively high number

of high peaks and low valleys [67, 78].

©2012 SAGE Publications, reprinted from Sedlaček, Podgornik and J.Vižintin [67]

Figure 6.16: Surfaces with various skewness and kurtosis values

The nth moment of the surface roughness function can be described as follows.
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The probability density function Ph defines the probability of locating a point at a

height h. Denote h̄ to be the mean height (the first moment of height). This is not

to be confused with Sa, which is the L1-norm of height, i.e. the averaged absolute

height values about the mean. Sa is the first moment only if the heights are strictly

positive. Sq is the second moment of height. Fig. 6.16 shows the effect of Ssk and

Sku on the surface roughness [73].

hn =

∫ ∝
−∝

(h− h̄)nPh dh (6.12)

Rsk =
1

σ3

∫ ∝
−∝

(h− h̄)nPh dh (6.13)

Rku =
1

σ4

∫ ∝
−∝

(h− h̄)nPh dh (6.14)

where σ is the Sq of the surface and the standard deviation of Ph. For a Gaussian

distribution, the skewness is zero and the kurtosis is 3. Sedlaček, Podgornik and

J.Vižintin [67] reported that for dry sliding, positive Ssk values lead to a greater real

contact area and a large number of peaks in the contact, as well as the tangential and

adhesion forces compared to a Gaussian distributed surface. It means that negative

Rsk lead to lower friction. Negative Ssk values describe surfaces with deep scratches

or a lack of peaks; the real contact area decreases in this case[152]. For Sku greater

than 3, surfaces is filled with high peaks and low valleys. The real contact area will

decrease due to partial contacts. The influence of Ssk and Sku on dry sliding friction

can be used as a guideline for designing surface topography with reduced friction.

Compared to the Gaussian distribution(Sku = 3, Ssk = 0),surfaces with a

high Sku and a positive Ssk should result in a lower static friction coefficient during

dry contact [74]. When Sku increases from 2 to 10, the static friction decreases by

a factor of about 6 [75], mainly due to an increased contact area [76]. Under dry

sliding higher values of parameter Sku and more negative values of Ssk led to lower

friction, indicating that deep valleys act as wear particle traps [152].

6.5.1 The theoretical analysis

According to the GW contact model described in Section 4.2.4, if the surface height

distribution is known, the real contact area between surfaces can be calculated using

the equations given. The probability density function (pdf) of the surface height

defines the probability of locating a point at a height h and is denoted by Ph. The

probability density function can be used to calculate the higher order moments of
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the height distribution, using

mn =

∫ ∝
−∝

(h− h̄)nPh dh (6.15)

where h̄ is the mean height of h, which is generally removed during data processing

and therefore is usually zero. As such, the first moment is zero. The second moment

m2 is the variance σ2, which is the square of the standard deviation when h̄ = 0.

The third moment m3 is the skewness, which shows degree of symmetry of the

surface profiles. If the mean is on the left side of the distribution mode, the skewness

will be negative with a relatively large numbers of peaks than valleys at a certain

height. The skewness of Gaussian distribution surfaces is 0. The fourth moments

m4 represents the peakedness(degree of pointedness or bluntness) of the distribution.

A surface with low kurtosis has a relatively larger number of peaks than valleys at a

certain height. The influence of Ssk and Sku to surface height probability as shown

in Figures 6.17 and 6.18 [73].

Figure 6.17: The influence of skewness to surface height probability distribution [73]

As the skewness and kurtosis are the third and fourth moments of the

probability density function, the curve fitting parameters can be determined in terms

of the skewness and the kurtosis. Once the probability density function is determined,

a contact model can be developed using the GW modelling approach [147]. Based

on the classical theory of friction[153], the kinetic friction is proportional to the real

area of contact which is higher for smoother surfaces [147].

The Pearson system of frequency curves, based on the methods of moments,

provides a family of curves which can be used to generate an equation for a distribution

for which the first four moments are known [154], i.e. the probability density function

can be generated for a distribution having a known mean, standard deviation,

skewness and kurtosis.
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Figure 6.18: The influence of kurtosis to surface height probability distribution [73]

In Pearson’s curve fitting, κ is defined as the type of the height probability

distribution in Eq. (6.16). Different values of κ determine different equations obtained

for the probability density functions. The value of κ ranges from ∞ to −∞, and

depending on the range it calculated, the appropriate equation of the density function

is obtained. The list of the different types of curves and the range of κ for which they

are applicable is shown [155]. There are three main types of Pearson curves which

cover the majority of the cases. These are types I, IV and VI. The parameters for

the different types of density functions depend solely on the skewness and kurtosis

[75].

κ =
Ssk

2(Sku + 3)2

4(2Sku − 3S2
sk − 6)(4Sku − 3Ssk

2)
(6.16)

The value of κ determines the type of the curve. There are three main types

of Pearson curves which cover the majority of the cases. According to the contact

model described in Section 4.2.5, the probability distribution of the surface height

can be determined. The parameters in the curves for the non-Gaussian probability

density functions are functions of the standard deviation, skewness and the kurtosis.

Once the non-Gaussian probability density functions are obtained in this manner,

the calculated results can be substituted into the Greenwood-Williamson model.

Based on the classic GW contact model, the normalised contact area, norm-

alised number of contacts and the normalised contact force can be calculated. The

following figures show the simulated contact area and the friction results in [73] on

one material. In order to better understand how Ssk and Sku affect the contact and

the friction, simulation based on our samples was performed compared with the

friction coefficient experiment results.
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6.5.2 The real contact area analysis

According to the above theoretical analysis, if we know the surface height data such

as surface mean height (h̄), the standard deviation (Sq), the third moment (Ssk) and

the fourth moment (Sku), the surface probability distribution can be constructed.

The more moments are known, the more precisely the shape of the distribution will

fit the real sample.

In this thesis, all surface height data are measured accurately (see Chapter 3).

Based on Kotwala and Bhushan [122], the probability density distribution of height

profile of the measured surfaces can be derived using the MATLAB statistics toolbox.

The influence of Ssk and Sku can be simulated using the GW model described

before. The milled aluminium sample AM1 was chosen and either one of the parameters

Ssk and Sku was set to be constant while the other was varied. The analysis results

are shown in Fig. 6.19. When Ssk = 0, the nominal real contact area decreases with

the increase of Sku. And when Sku = 3, the nominal real contact area decreases

with the increase of Ssk. However, the results is only valid when the other surface

topography parameters remains the same. The influence of surface topography on

the surface friction will mostly likely depend on other parameters such as Sq and Sm.

(a) Influence of Sku when Ssk = 0 (b) Influence of Ssk when Sku = 3

Figure 6.19: Influence of Sk and Sku on the normalised real contact area

6.6 The relationship between surface friction and the

surface slope (Rda, Sdq)

The averaged slope of the surface profile, Rda and Sdq, were shown to correlate with

surface friction. It is defined as the mean absolute profile slope over the assessment

length. This parameter can be calculated by calculating all the slopes between each
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two successive points of the surface profile, then calculating the average of such

slopes. The mathematical expression for calculation the mean slope parameters is

given by [156]:

Sdq =
1

L

∫ L

0
|dy
dx
| dx (6.17)

and numerically evaluated as

Sdq =
1

n− 1

n−1∑
i=1

δyi

δxi
. (6.18)

When the slope of the harder asperities increases, the stresses required to

overcome these asperities also increase during sliding. This situation induces a higher

level of shear stresses in the pin and thus result in a higher coefficient of friction

[157].

Yandell [158] indicated that approximately 80% of the hysteretic energy

dissipated occurs in the volumes represented by the hatching observed in Fig. 6.20. It

is concluded that the coefficient of hysteretic friction of the two textural components

can be predicted reasonably well by the average slope of their contacted surfaces

in the direction of sliding. Yandell [158] also theorised that the load dependence

of rubber µ values obtained from dry testing of smooth surfaces where adhesion

is usually considered predominating could be attributed to a hysteric mechanism

involving the micro-roughness of a smooth, paired material.

When the mean surface slope increases, the real contact area decreases, and

the friction coefficient decreases as well. When the same material has the same

roughness parameters such as Sq, higher surface slopes will have fewer asperity at

the sampling length. It means that the real contact decreases at the sampling length,

and the friction coefficient decreases as a result. In order to validate the analysis, the

metal samples and the thermoplastic samples are applied to analyse the relationship

between friction and surface mean slope.

The relationship between the mean slope Rda and µ of metal samples are

shown in Figures 6.21 and 6.22. Following from the theoretical analysis, the friction

coefficient decreases when the mean slope increases. The results support this view,

especially on the steel and milled aluminium samples. However, this is based on the

assumption that the samples are the same material. When looking across samples of

different materials, the µ are not necessarily correlated to Rda.

As shown in Fig. 6.23, the thermoplastic patterned and coated samples don

not obey this rule because the substrate was made of different materials, with different

Young’s modulus and hardness. The contact mechanism between the two bodies are
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©2008 Taylor and Francis, reprinted with permission from Smith [157]

Figure 6.20: Analysis of surface texture as two components. Hatched areas represent
volumes of rubber in which about 80 percent of hysteretic energy is dissipated
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Figure 6.21: The relationships between Rda and friction coefficient for the steel
samples
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(a) Milled aluminium

8 8.5 9 9.5 10
0

0.2

0.4

0.6

0.8

1

Rda

F
ri

ct
io

n
C

o
effi

ci
en

tµ

Human fingertip

5 mm s−1, 0.5 N

5 mm s−1, 1.0 N

8 mm s−1, 0.5 N

8 mm s−1, 1.0 N

(b) Turned aluminium

Figure 6.22: The relationships between Rda and friction coefficient for the aluminium
samples

different, and the relationship is not clear anymore.

6.7 Conclusion

This chapter studied the relationship between surface friction coefficients and surface

properties parameters, both theoretically and experimentally. Firstly, a correlation

analysis has been carried out using Spearman’s rank correlation method. For metal

samples, a subset of surface topography parameters such as Sa, Sku, Sq, Sv, Sz and Sm

appear to have varying influence on the friction coefficient. For thermoplastic samples,

which are softer, every surface parameter including the mechanical parameters of E

and H appears to influence the surface friction.

Theoretical analyses has been carried out to offer insights into the relationships

systematically by grouping related parameters First, the relationships between surface

friction coefficients and Rq, Sm were deduced using Greenwood-Williamson theory,

and comparisons were made with the metal and thermoplastic samples measurement

results; Secondly, the relationships between surface friction coefficients and the
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Figure 6.23: The relationships between Rda and friction coefficient for the thermo-
plastic patterned and coated samples
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surface mechanical properties such as E are investigated; Thirdly, Ssk and Sku are

studied and correlated to surface friction measurement; Finally, the relationships

between surface friction coefficients and surface slope parameter Rda and Sdq are

described.

GW model predicts the dependence of friction on the product of RqSm raised

to the power of −2/3. Correlation and curve fitting shows the model prediction is

acceptable for metal but much less so for the thermoplastic samples. Compared with

metal samples, thermoplastic materials are much less stiff and softer, with a higher

risk of large deformation occurring, potentially violating the assumptions of Hertz

and GW contact models. For example, the contact area might have been larger

due to adhesion. In addition, the assumption in GW theory that A = NSm
2 is not

strictly correct because the surfaces of thermoplastic materials do not have regular

patterns.

Simulation was performed to analyse the real and nominal contact area for the

metal and thermoplastic samples. The MATLAB program introduced also validates

the results from Chapter 4. There was no observable change in the contact area

between the aluminium (and steel) samples due to their hardness being much greater

than that of the artificial finger, and the majority of the deformation occurs on the

artificial fingertip.

The theory also predicts a decrease of the friction coefficient when the mean

slope (Rda) increases. The results support this view, especially on the steel and

milled aluminium samples. The relationship only holds true across the same material.

This is why the prediction does not hold true for TPE results, whereas the material

varies between the samples.

As the friction coefficient is system dependent, a more comprehensive look at

different materials and surface patterns is required.
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Chapter 7

Modelling Touch-feel Perception

T
ouch-feel perception of products has become a dominant factor in winning

or losing customers in many industries from automotive, consumer electronics,

to packaging of luxury products such as perfumes and cosmetic boxes [15, 85, 87].

The pursuit for higher perceived product quality has led to growing R&D globally in

quantifying and modelling touch-feel perception over the past decade [14, 159]. If

the relationship between the qualitative touch-feel perception and the quantitative

surface physical properties can be established, material and surface texture design

can be guided to meet the customer demands [7].

Following surface characterisation in previous chapters, the touch-feel percep-

tion ranking experiments in terms of 5 pairs of psychophysical adjectives/descriptors

[160] had been introduced in this chapter. The significance of every surface para-

meters on the touch-feel perception was analysed using Spearman’s rank correlation

coefficient initially. Then, the more sophisticated rank-ordered logit (ROL) models

were deployed to look for multinomial associations [161, 162]. ROL is one of the

standard tools specifically designed to model rank data [163]. ROL model uses latent

(unobserved) segments to endogenously identify the unobserved ranking capabilities

of respondents. In addition to being able to test statistical significance of the rela-

tionships like the Spearman’s rank correlation analysis, the ROL model outputs a

linear logistic regression model of the relationship between the surface parameters to

a latent preference factor, which may then be used to establish the probability of

observing a specific rank through logistic link functions.
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7.1 Introduction

Affective engineering is the study of the interactions between the customer and

the product at the emotional level. It is also known as ‘Kansei engineering’—the

development of products and services by translating the customer’s psychological

feelings and needs into the domain of product design [164]. In the research stage,

different material surfaces are produced, then categorised by subjectively feeling

and describing them semantically using various adjectives. Multivariate analysis

methods are then applied to investigate the relationship between the adjectives

and the surface physical properties. Generally, touch-feel is concerned with four

psychophysical descriptor pairs: ‘smooth/rough’, ‘slippery/sticky’, ‘warm/cold’ and

‘soft/hard’ [159, 160, 165]. These four pairs are underpinned by different mechanisms.

For example, soft/hard feel is dominated by material hardness followed by friction

resistance [85], and warm/cold is attributed to the heat transfer property between

textures and finger skin [165]. A fifth subjective ‘like/dislike’ descriptor pair was

also investigated for completeness, but it is unlikely to have causal or mechanistic

relationships.

Previous research in quantifying perception of touch-feeling had been conduc-

ted within our research group, on car interior components using the custom-built

tribological probe microscope (TPM) [17–19]. The results show the strongest correl-

ations between the perceived feeling and the measured surface roughness, followed

by hardness, and the weakest—but still modest—with the friction coefficient. On

the other hand, no concrete evidence supported touch-feel associations with friction

for moist/dry or slippery/sticky descriptors.

Researchers often rely on surveys to determine the individual preferences,

and sometimes the respondent is asked to rank a set of presented choices in order of

preference or against a set of criteria. Rank-ordered logistic regression (ROL) is one

of the standard tools specifically designed to model rank data [163]. ROL models

were introduced by [166], and is also known as the Placket–Luce model [167] or the

exploded logit model [168]. The method using maximum likelihood estimator can be

applied to both complete and incomplete ranking data, and to data with tied ranks

[161]. It has been applied in many aspects such as voter preferences, ageing studies

marketing and transportations.

In this chapter, 54 subjects were asked to rank the thermoplastic elastomer

(TPE) samples in terms of the aforementioned 5 pairs psychophysical adjectives/-

descriptors. Then ROL modelling analysis was carried out using the Stata software.

Compared with the other correlation methods, the results not only give the signific-
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ance of the correlation between human touch-feel perception descriptors and surface

physical parameters, but it also give the regression coefficients on the parameters as

a linear latent factor model.

7.2 Touch-feel perception ranking measurement

In this thesis, part of the touch-feel perception ranking data came from [32] with

permission of the author. The tactile evaluation process is divided into two parts

according to their materials: metal samples and TPE samples. Before the evaluation

session, its purpose and the procedure were explained to the participants. The TPE

samples include five coated samples and five patterned samples characterised in

Chapter 5.

The metal samples include six milled aluminium samples, six turned alu-

minium samples and five surface ground steel samples; all of which were characterised

in Chapter 3. For the metal samples only, the subjective evaluation session was

conducted by Yue [32] from whom the data were borrowed. Six people of different age

and gender (students, technicians, and academic staff recruited from the University

of Warwick) formed the participant group. Each participant was asked first to

rank the material specimens in terms of ‘smooth/rough’, and then similarly for

‘slippery/sticky’. The session lasted approximately 20 minutes for each participant.

Since only two descriptor pairs were tested and the number of participants was low,

only Spearman’s rank correlation analysis was performed for these data.

For the TPE samples, the five coated and five patterned samples (excluding

the sandpapered variants, see Table 5.1) were evaluated together by 54 subjects,

recruited from the University of Warwick comprising of students and members of

staff. The participants include 28 females (aged 26–50 years, mean = 34.6) and 26

males (aged 26–60 years, mean = 36.8). In the evaluation process, all the participants

did not previously participate in any tactile evaluation or sensory experiments and

were not aware of the purpose of the experiment. Each evaluation took about 20

minutes. The participants were asked to rank the feelings on the samples in terms of

the five descriptor pairs: rough/smooth, soft/hard, sticky/slippery, cold/warm and

like/dislike. These are the four fundamental touch-feel psychophysical descriptor

pairs [159, 160, 165], but with an additional subjective general preference term

‘like/dislike’ added.
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7.3 Literature review on correlation methods

With the data for touch-feel perception, surface physical characteristics and friction

data available, the next step is to perform correlation analysis between them. There

are many correlation methods from the simplest regression models to the complex

statistical models. Here, the advantage and disadvantage of several typical correlation

methods are illustrated as follows.

7.3.1 Linear regression and partial correlation

Partial correlation is the marginal contribution of a single predictor to reduce the

unexplained variation in the outcome of linear regression [169]. Partial correlation

indicates the explanatory value attributable to a single predictor after taking into

account all of other predictors. In linear regression, it is explained in terms of the

reduction of the sum of the squared errors attributable to an individual predictor.

Due to the nature of the ranking data, the partial correlation method is only feasible

if the averaged ranks are used, in which case it cannot provide information on the

significance of correlations between the various physical characteristics. A partial

correlation statistic for logistic regression has been proposed [170], based on Wald

chi-square statistic for individual coefficients and the likelihood of an intercept-

only model. While this statistic has the same range as partial correlation in linear

regression and there are some similarities in interpretation. However, the Wald

chi-square statistic may be a poor estimator in small-to-medium size samples [171].

In order to illustrate the weakness mentioned, the analysis results from previous

work are shown in Fig. 7.1.

As shown in Fig. 7.1, the correlation between different average perceived

ranking and relative surface physical parameters are expressed. The results can prove

that perceived roughness was highly correlated with Sm, the perceived softness was

correlated with H/E, and the human in vivo friction coefficients are highly correlated

with the ‘cool/warm’ rankings and the ‘slippery/sticky’ rankings. However, there are

several problems with this method. Firstly, much of the inter-subject information

may be lost by using the averaged perceived ranking. Secondly, the model ignores

any covariance between different physical parameters by looking at the correlation

one variable at a time. For example, the perceived rough/smooth ranking may be a

combination of many parameters such as the hardness and the friction of the surfaces.

Lastly, the method can not solve the small-to-medium size data. Most importantly,

this method cannot assess the correlation significance, unless the Spearman’s rank

correlation analysis is also performed.
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Figure 7.1: Comparison of the tactile sensorial rankings and sensitive physical
parameters Yue [32]

7.3.2 Kendall’s W test, Wilcoxon signed-rank test and Spearman’s

rank correlation analysis

Before establishing the relationship between touch-feel perception and surface physical

parameters, an effective evaluation to differentiate the difference among the samples

was carried out in [32]. The ranking data were analysed using non-parametric

statistics. Kendall’s W test [172] is conventionally employed to test the samples and

study the concordance or effectiveness of the evaluation.

The Kendall’s W value (also known as Kendall’s coefficient of concordance)

is defined as

W =
12S

k2(n3 −N)
(7.1)

where S is defined as

S =
N∑
i=1

(Ri −R)2 =
N∑
i=1

Ri
2 − (

∑N
i=1Ri)

2

N
(7.2)

where Ri is the rank sum of the sample i evaluated by all the subjects and N is the

total number of the samples. The Kendall’s W value ranges from 0 to 1, where zero

represents the evaluation is not effective, and one means there is a great concordance

among the subjects. An asymptotic chi-square value can be calculated to assess the

correlation significance based on Kendall’s W. If the asymptotic Chi-square value

calculated from Kendall’s W is greater than the critical chi-square value at a targeted
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confidence level [173], e.g. 0.05, such that

χ2
r = k(N − 1)W > χ0.05/2

2 × (N − 1), (7.3)

then significant differences exist among the samples in the candidate evaluation

mode. It also means at least one sample is effectively perceived to be different.

The advantage of this method is the ease of computation and is able to quantify

the correlation significance with a p-value. However, the results only indicate the

evidence that there is some correlation between the rankings, not the magnitude of the

influence. Although p-value decreases as the magnitude of an influence increases, the

magnitude is not quantifiable nor interpretable, especially with categorical ranking

data.

In addition, Wilcoxon signed-rank test was applied to further explore the

pairwise difference among the samples. In the Wilcoxon test, the pairwise difference

in ranking is associated with a positive or negative sign. The output contains two

parameters: one is the normalised z-value (standard score) calculated from the rank

sum of the less frequent sign, the other is the p-value (2-tailed) for examining the

confidence level at the significant difference among the samples. In our case, by

comparing the samples in pairs, their tactile evaluation difference could be statistically

confirmed. However, the results still can not give a clear, interpretable relationship

between the perceived touch-feel perception and surface physical parameters.

For the tactile evaluation data, the evaluation process can be treated as

a case of k people evaluating N samples in m terms of tactile senses (described

by sensorial/affective adjectives). So the evaluation rankings are assembled to a

N ×m × k data array. In previous work [32], each type of touch-feel perception

ranking was reduced to averaged ranking data for each sample and perceptual items.

Spearman’s rank correlation analysis was then performed on the combined matrix.

Correlation between each pair of the measured surface properties and the evaluated

items was then calculated. The correlation between the physical parameters and the

tactile perceptions was marked significant when the correlation coefficient |rs| > 0.5

and p-value < 0.05. Comparisons of the correlation coefficient rs could assist in

selecting the most effective physical factors. However, similar to the other methods,

the magnitude of the correlation is not directly interpretable and cannot be used to

write an analytical relationship that links the ranking to a specific variable.

7.3.3 Factor Analysis and PCA

Factor analysis is a statistical process in which the values of observed data are

expressed as functions of a number of possible causes in order to find which are the
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most important. It is to determine the variability among the observed, correlated

variables in terms of a potentially lower number of unobserved variables called latent

factors. Factor analysis originated in psychometrics and is used in behavioural

science, social science, marketing product management, operations research. The

aim of this method is to reduce the dimensionality of data while maximising the

information preserved, collapsing from large numbers of observed variables to a

smaller number of underlying latent variables.

The most common form of factor analysis, PCA (principal component ana-

lysis), seeks a linear combination of variables such that the maximum variance is

extracted from the observed variables. PCA is available from the SPSS software

[172]. It involves the calculation of the eigenvalue decomposition of a data covariance

matrix, usually after mean centring the data for each factor. PCA results in a

reduction of interdependent variables, typically to two or three independent variables

called principal components, from which a majority of the data variance can be

explained. PCA has been applied in the study of semantic components of affective

words and seeking explanation of relations between affective and sensorial words [8].

Although the results have shown that the tactile perception is correlated with the

surface physical characteristics, the relationship cannot be interpreted or quantified

physically.

Figure 7.2: Biplot of the loadings of characteristic variables and the scores of the
samples (Yue [32])

Two factors (PC1 and PC2) were extracted using SPSS software in Yue

[32]. PC1 accounted for 63% of variance and PC2 for 19%, totalling 82%. PC1 is

physically dominated by roughness and in-vivo friction, while PC2 largely depends

on the compliance and dry sliding friction. The factor scores were shown in Fig. 7.2.

In this case, ‘smooth/rough’, ‘cool/warm’ and ‘soft-feel’ are highly independent and

they contributed to the major psychophysical loadings on PC1 at the psychophysical
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level. It means these perception modes are physically determined by the surface

topography and compliance index (H/E). For PC2, the result indicated the perceived

softness is linked with dry sliding friction or surface strength. However, the problem

with this method is that we can not define what the physical meaning of the two

factors is, even though there exists a clear correlation between the surface physical

parameters and human touch-feel perception.

7.3.4 Summary

Based on the discussions, each method has its pros and cons but the common

problem amongst them is the lack of ability to interpret and formulate a model

capable of prediction from the correlation observed. To this end, a method called

rank ordered logit (ROL) modelling is introduced. Not only does the significance of

the correlations is available, the model directly fits a linear regression model from the

surface tribological/mechanical parameters to the touch-feel ranking data through

continuous latent factors. The model can then generate probabilistic predictions of

rank data by linking the latent factors with the probability distribution through

logistic link functions.

7.4 Rank ordered logit modelling Analysis

A ROL model uses latent segments to endogenously identify the ranking capabilities

of individuals. Each segment corresponds to a different assumption on the ranking

capability. Using simulations and empirical applications [163], it resulted in a clear

efficiency gain over a multinomial logit model in case some individuals are unable

to rank. In addition, the rank ordered logit modelling does not suffer from biases

due to ranking inabilities of some of the respondents. Generally we can suppose

that the objective is to learn the (determinants of) preferences of individuals over a

discrete set of items. Preferences can be recovered from historical data but if some

items are not available yet, a survey is usually the option. Denote the number of

ranking choices (items) by J . As described in [174], the individuals preferences are

represented using the random utility framework. The random utilities for individual

i are a set of latent variables Ui1,...,UiJ,defined as

Uij = Vij + εij (7.4)

where i = 1, ... , N indexes individuals and j = 1, ... , J indexes the items. The utility

consists of two parts: Vij is the deterministic component of the utility, which is

determined by the characteristics of the observed individuals; and εij is the random
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component of the utility of the alternative choice j for individual i. Generally, the

deterministic part of the utility is modelled as

Vij = x′iβj (7.5)

where xi is an m-dimensional vector with characteristics of individual i and βj is an m-

dimensional parameter vector specific to alternative j. Traditionally, respondents are

asked to choose their most preferred option out of the complete set of J alternatives.

Let yij = 1 denote the respondent i most prefers alternative j. The information

yij = 1 implies that for this respondent the utility of alternative j is larger than all

other alternatives, that is,

Uij ≥ max{Ui1, ..., UiJ} (7.6)

The probability depends on the distribution of εij. If we assume that εij has an inde-

pendent type-I extreme value distribution, which leads to the well-known expression

for the probability that item j is the most preferred by individual i. The equation is

the setup of a multinomial logit (MNL) model:

Pr[yij = 1;β] = Pr[Uij ≥ max{Ui1, ..., UiJ}] =
exp(Vij)∑J
l=1 exp(Vil)

(7.7)

where β = {β1, ..., βJ} and βJ is set to zero for identification.

Generally, the information of the most preferred item is enough to estimate the

model parameters. However, more information of every respondent will be obtained

if the ranking of alternatives is known. In this case, the response of respondent i by

the vector is defined as yi = (yi1, ..., yiJ)′, which denotes the rank that individual i

gives to item j. For example, yij = 2 means the respondent ranked the alternative j

to be the second most preferred option. For notational convenience, the item number

rij = (ri1, ..., riJ)′ was defined as the item number that received rank j by individual

i. The relation between them can be described as follows:

yik = j ⇔ rij = k (7.8)

for j, k = 1, ... , J . By combining the above equations, a complete ordering ranking

of the underlying utilities ri can be described as

Uiri1 > Uiri2 > ... > UiriJ (7.9)

Under the assumption of Eq. (7.4) and the assumption of the extreme value distribu-

tion, the rank-ordered logit (ROL) model can be obtained following Beggs, Cardell

and Hausman [166] and Chapman and Staelin [175]. The probability of deserving a
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particular ranking ri equals

Pr[ri;β] = Pr[Uiri1 > Uiri2 > ... > UiriJ ] = prodJ−1
j=1

exp(Virij)∑J
l=1 exp(Viril)

(7.10)

The ROL model can be seen as a series of MNL models described above: an MNL

for the most preferred item; another MNL for the second-ranked item to be preferred

over all items except the one with rank 1 and so on. Finally, the probability of a full

ranking is made up of the product of these separate MNL probabilities. The product

contains only J − 1 probabilities, because ranking the least preferred item (the last

item) is done with probability 1.

7.5 Analysis of the touch-feel perception data

The rank-ordered logit model was applied to analyse how decision makers combine

attributes of alternatives into overall evaluations of the attractiveness of these

alternatives. All of the data analysis are performed using the Stata software, which

fits the rank-ordered logistic regression model with maximum likelihood methods

[162].

Unlike the metal data which involved only 6 participants, there are data for

14 subjects with the TPE samples to fit a meaningful ROL model. The raw data

are shown in Appendix A.6. In this case, the correlation analysis between every

touch-feel perception descriptor and every single surface parameter were performed.

Not only the p-values were computed, the linear correlation coefficients and their

associated 95% confidence intervals are also available.

Firstly, the correlation analysis between each touch-feel perception descriptor

and every surface physical parameter was carried out by the Stata software, the

raw outputs are given in Appendix A.7. The program outputs the slope or the

linear factor of proportionality between the input tribological/mechanical/friction

parameters with the latent touch-feel factor. The associated p-values for the slopes

are also available. To avoid co-linearity among the parameters, the surface parameters

were divided as three groups according to difference properties: surface topography

parameters, surface mechanical parameters and surface friction parameters. One

parameter was selected from each group according to the smallest p-value. Then, the

linear correlation equation is calculated between each touch-feel perception descriptor

and the three parameters in order to give the most effective information for human

touch-feel perception study. For all of the touch-feel perception, ranking data is from

0-9 while 0 is corresponds to the material rated as having its attribute most closely
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associated with the first word of the descriptor pair, e.g. ‘smooth’. Similarly, a rank

of 9 means the second word is the best matching label.

7.5.1 Smooth/rough

Table 7.1: Surface topographical, mechanical, and friction parameters with statistic-
ally significant correlation with ‘smooth/rough’ ranking data

Corr. coef. Std. p-value 95% C.I.

R
o
u

gh
n

es
s

Sa 0.17 0.02 <0.001 0.13 0.21
Sp 0.04 0.004 <0.001 0.03 0.05
Sq 0.17 0.02 <0.001 0.13 0.22
Ssk −0.07 0.01 <0.001 −0.11 −0.04
Sv −0.09 0.01 <0.001 −0.11 −0.07
Sz 0.03 0.003 <0.001 0.02 0.04
Sm 0.005 0.000 <0.001 0.004 0.007
Sdq 0.09 0.01 <0.001 0.07 0.12
Rda 0.35 0.04 <0.001 0.27 0.43

M
ec

h
.

E −1.03 0.13 <0.001 −1.29 −0.78
H −0.012 0.001 <0.001 −0.015 −0.009

F
ri

c.

µin-vivo 1.6 0.2 <0.001 1.1 2.0
µartificial 1.8 0.5 <0.001 0.8 2.8

0.5 N; 5 mm s−1)

µartificial −11.2 1.1 <0.001 −13.6 −8.9
(0.75 N; 8 mm s−1)

For Smooth/Rough ranking looking at Table 7.1, most of the surface physical

parameters show high correlation with the ranking results (p < 0.05) except the

artificial finger friction results (0.5 N;8 mm s−1), where p > 0.28. For Sa, Sp, Sq ,Sz

,Sdq ,Rda and Sm, human in vivo friction and the two artificial fingertip friction

results, the ranking data is proportional to each surface physical parameter. In

contrast, Ssk, Sku, Sv, E, H and the artificial fingertip friction (0.75 N;8 mm s−1)

showed inverse relationship with the smooth/rough latent factor.

The direction of proportionality for artificial finger for the 0.5 N case disagrees

with the 0.75 N case. Indeed, it can be seen in the following section that the 0.5 N case

agrees with the in-vivo results but the 0.75 N case shows usually the opposite. Because

of this discrepancy, the human friction results are assumed to be representative of

the friction measurement.

To show an example of the correlation between touch-feel perception of

‘smooth/rough’ ranking with the engineering parameters, Sz and Sq are plotted

against the averaged ranking value for the different material samples in Fig. 7.3.

The lines connecting across the sample are there to better highlight the correlations
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Figure 7.3: Visualising the correlation between touch-feel perception of
‘smooth/rough’ ranking with surface roughness parameters Sz and Sq
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between the average ranking and the parameters, rather than indicating any relations

between the samples. The lines show an inverse trend with the ranking values

(higher ranking values = perceived to be rougher), i.e. samples with higher roughness

parameters were perceived to be rougher subjectively, which is to be expected. On can

also see the trends for Sz and Sq are both similar, meaning these parameters encode

similar information and has similar influence on touch-feel, and this co-linearity has

to be eliminated when fitting a multinomial ROL model, as done below.

Table 7.2: The combined parameters correlation with ‘smooth/rough’ Ranking

Parameters Corr. coef. Std. p-value 95% C.I.

Sp 0.028 0.007 0.000 0.014 0.042
E −0.059 0.209 0.775 −0.471 0.351

µin-vivo 1.179 0.362 0.001 0.469 1.889

The further step is to combine the influences of all the physical parameters

through multinomial regression, rather than looking at them independently. Sp, E

and human finger friction (µin-vivo) were chosen arbitrarily, each from the parameter

group of surface topography property, surface mechanical property and surface

friction characteristic respectively. The result is shown in table 7.2. It can be

seen that E cease to be statistically significant as opposed to the case when the

parameters are modelled one by one. The latent factor of ‘smooth/rough’ can then

be modelled as 0.0284736× Sp + 1.179652× µin-vivo.

7.5.2 Soft/hard

For soft/hard descriptor pair, the analysis results are quite different from Smooth/Rough

ranking. E and H displayed high correlation with the soft/hard ranking data as

expected with p ≤ 0.001 and p ≤ 0.021, respectively. E and H are positively pro-

portional to the latent factor—this means that when the test samples have lower E

and H values, people associate the samples to be softer and the resulting ranking

is numerically lower. For the influence of surface roughness parameters, there are

high correlation between Sp, Sz, Sdq, Rda and the soft/hard ranking results. These

parameters are inversely proportional to the soft/hard latent factor. For friction char-

acteristics, human fingertip friction showed the highest correlation with p < 0.001,

which has an inverse correlation with the ranking results. According to the contact

area calculation of Eq. (4.8), the contact area decreases when the hardness of the

surface increases. The friction coefficient decreases with a decrease of the contact
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Table 7.3: Surface topographical, mechanical, and friction parameters with statistic-
ally significant correlation with ‘soft/hard’ ranking data

Corr. coef. Std. p-value 95% C.I.

R
ou

g
h

n
es

s Sp −0.017 0.003 <0.001 −0.025 −0.010
Sq −0.015 0.008 0.044 −0.030 −0.0004
Sz −0.007 0.002 0.001 −0.012 −0.003
Sdq −0.027 0.009 0.002 −0.044 −0.010
Rda −0.073 0.024 0.003 −0.122 −0.024

M
ec

h
.

E 0.39 0.11 0.001 0.16 0.62
H 0.003 0.001 0.021 0.002 0.006

F
ri

c.

µin-vivo −0.9 0.2 <0.001 −1.3 −0.4
µartificial −1.229 0.583 0.035 −2.372 −0.087

(0.5 N; 5 mm s−1)

µartificial 2.4 0.903 0.006 0.6 4.2
(0.75 N; 8 mm s−1)

area, and hence the in vivo friction is inversely related to the soft/hard factor. The

correlation results support the theory.

7.5.3 Cool/warm

Cool/warm not only depends on the heat conductivity and diffusivity of the test

samples, but also depends on the ambient temperatures.

From Table 7.4, Sdq, Rda, E, H, and human friction showed the highest

correlation with p < 0.001. Sdq and Rda describe the average slope of the asperities

of the surfaces and they are proportional to the cool/warm ranking results. The reason

for this maybe when the average slope of the surface is higher, more friction/adhesion

induced heating when people stroke the samples. This also explains why the human

friction is also proportional to the ranking data. For surface hardness, lower values

of E, H lead to higher friction and more energy is loss during stroking, hence they

are inversely proportional to the ranking.

For other surface parameters, Sa, Sp, Sq, Ssk, Sv, Sz and the artificial fingertip

friction also correlated with the cool/warm ranking with p-value < 0.05. Ssk, Sv and

the artificial fingertip friction is inversely proportional to the ranking data while

others are proportional to the ranking.

To show an example of the correlation between touch-feel perception of

‘cool/warm’ ranking with the engineering parameters, Rda is plotted against the

averaged ranking value for the different material samples in Fig. 7.4. The result
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Table 7.4: Surface topographical, mechanical, and friction parameters with statistic-
ally significant correlation with ·cool/warm’ ranking

Corr. coef. Std. p-value 95% C.I.

R
ou

gh

Sa 0.019 0.008 0.018 0.0033 0.0035
Sp 0.011 0.003 0.002 0.0040 0.018
Sq 0.019 0.008 0.0013 0.0039 0.033
Ssk −0.046 0.018 0.010 −0.081 −0.011
Sv −0.012 0.04 0.007 −0.020 −0.003
Sz 0.006 0.002 0.002 0.002 0.011
Sm 0.001 0.000 <0.001 0.0005 0.0015
Sdq 0.039 0.008 <0.001 0.021 0.056
Rda 0.14 0.02 <0.001 0.09 0.19

M
ec

h
.

E −0.6 0.1 <0.001 −0.8 −0.4
H −0.008 0.001 <0.001 −0.011 −0.005

F
ri

c.

µin-vivo 1.1 0.2 <0.001 0.7 1.6
µartificial 1.122 0.545 0.039 0.053 2.192

(0.5 N; 5 mm s−1)

µartificial 1.249 0.565 0.027 0.142 2.356
(0.75 N; 5 mm s−1)

µartificial −2.8 0.864 0.001 −4.5 −1.1
(0.75 N; 8 mm s−1)
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Figure 7.4: Visualising the correlation between touch-feel perception of ‘cool/warm’
ranking with surface parameter Rda
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shows an positive trend with the ranking values, i.e. samples with higher Rda were

perceived to be warmer.

The multivariate correlation is shown in Table 7.5. Sm, E and human finger

friction were selected to represent their respective group. The results show that E and

human finger friction have higher influence than Sm according to the p-values. The

latent factor for ‘cool/warm’ can be modelled as −0.3816585×E+0.7120606×µin-vivo.

Table 7.5: The combined parameters correlation with ‘cool/warm’ Ranking

Parameters Corr. coef. Std. p-value 95% C.I.

Sm 0.0002 0.000 0.444 −0.0001 0.000 94
E −0.381 0.165 0.021 −0.706 −0.056

µin-vivo 0.712 0.324 0.028 0.075 1.348

7.5.4 Slippery/sticky

Table 7.6: Surface topographical, mechanical, and friction parameters with statistic-
ally significant correlation with ·slippery/sticky’ Ranking

Corr. coef. Std. p-value 95% C.I.

R
ou

gh

Sa 0.019 0.008 0.025 0.002 0.035
Sp 0.015 0.003 <0.001 0.007 0.022
Sq 0.018 0.007 0.019 0.003 0.034
Sv −0.010 0.004 0.017 −0.019 −0.002
Sz 0.007 0.002 0.001 0.003 0.012
Sdq 0.027 0.009 0.002 0.010 0.044
Sm 0.0009 0.000 <0.001 0.0004 0.001
Rda 0.09 0.02 <0.001 0.04 0.15

M
ec

h
.

E −0.45 0.127 <0.001 −0.70 −0.20
H −0.006 0.001 <0.001 −0.009 −0.003

F
ri

c.

µin-vivo 1.2 0.2505 <0.001 0.7 1.7
µartificial 1.364 0.528 0.010 0.327 2.400

0.5 N; 5 mm s−1)s
µartificial −2.479 0.910 0.006 −4.264 −0.694

(0.75 N; 8 mm s−1)

From Table 7.6, surface topography parameters Sp, Rda, Sm, surface mechan-

ical property parameters E, H, and human friction coefficients showed the highest

correlation with p < 0.001. Sp,Rda,Sm and human friction are proportional to

the slippery/sticky ranking. When the perceived friction is higher, many people

may associate it as sticky. In contrast, E and H are inversely proportional to the
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Figure 7.5: Visualising the correlation between touch-feel perception of ‘like/dislike’
ranking with in vivo friction coefficient µin-vivo

slippery/sticky ranking according to the results. This may have been mediated by

the influence of E and H on the perceived friction.

In addition, Sa, Sq, Sv, Sz, Sdq and the artificial fingertip friction coefficients

also showed statistically significant correlation with the ranking data. They are all

proportional to the ranking except Sv and the artificial fingertip friction with normal

force of 0.75 N and sliding speed=8 mm s−1.

With respect to multivariate model, as shown in the table 7.7, the importance

of human finger friction is stronger than Sm and E. The result suggests that ‘slippery-

sticky’ can be described mainly as a function of human fingertip.

Table 7.7: The combined parameters correlation with ‘slippery/sticky’ Ranking

Parameters Corr. coef. Std. p-value 95% C.I.

Sm 0.0003 0.000 0.382 −0.0003 0.0009
E −0.149 0.170 0.381 −0.483 0.184

µin-vivo 0.859 0.348 0.014 0.176 1.542

7.5.5 Like/dislike

To show an example of the correlation between touch-feel perception of ‘cool/warm’

ranking with the engineering parameters, Rda is plotted against the averaged ranking
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value for the different material samples in Fig. 7.4. The result shows an positive

trend with the ranking values, i.e. samples with higher Rda were perceived to be

warmer.

Like/dislike perception is perhaps the most subjective descriptor pair. Ob-

serving the results in Appendix A.7, the human in vivo friction coefficient is the only

parameter correlated with the like/dislike ranking results. The in vivo friction is also

plotted against the averaged ranking in Fig. 7.5 for different samples. The human

friction coefficients are inversely proportional to the rank values, which means that

the subjects preferred samples with higher friction. The lack of correlations may be

due to the fact that the descriptor requires very subjective judgements that are not

influenced by the parameters investigated.

Table 7.8: The highest correlated parameters with ‘like/dislike’ Ranking

Parameters Corr. coef. Std. p-value 95% C.I.

µin-vivo −0.773 0.241 0.001 −1.246 −0.301

7.6 Conclusions

In previous chapters, the database of surface physical properties including surface

topography parameters, surface mechanical properties and surface friction coefficients

have been established for a variety of metal and thermoplastic elastomer samples.

The relationship between surface friction coefficients and other physical parameters

has been investigated in Chapter 6. One of the objectives of the thesis is to identify

how the human touch-feel perception relates to the surface tribological/mechanical

parameters. To this end, this chapter compared several correlation methods suitable

for ranking data incorporated results from previous work [32].

Although several correlation methods can be applied, many of them are

limited by statistical power and inability to interpret the results and generate a

model that is capable of prediction. To remedy this, rank ordered logit modelling

method was introduced to model the human touch-feel perception and the surface

physical parameters of metal and thermoplastic materials.

A majority of the surface physical parameters showed correlation with the

‘smooth/rough’ ranking. For Sa, Sp, Sq, Sz, Sdq, rda, Sm, human friction and

artificial fingertip friction (0.5 N;5 mm s−1 and 0.75 N;5 mm s−1), the ranking data is

proportional to each surface physical parameter while Ssk, Sku, Sv, E, H and the

artificial fingertip friction (0.75 N;8 mm s−1) form inversely proportional relationship
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with the ranking. The latent factor can be modelled as 0.0284736× Sp + 1.179652×
µin-vivo.

For ‘soft/hard’ ranking, E and H showed high correlation with the ranking

data and they are proportional to the ranking results. It supports the fact that

the rank ordered logit modelling is applicable and that the correlation analysis is

correct. Most of the surface topography parameters are inversely proportional to the

ranking. The human friction and the artificial finger friction showed inversely linear

correlation with the ranking analysis.

For ‘cool/warm’ ranking, the surface topography parameters and human

friction coefficients display a positive correlation with the ranking, while other

parameters are inversely proportional to the ranking data. However, the results still

need to be investigated because the ‘cool/warm’ ranking should, in theory, be related

to the thermal conductance.

The ‘slippery/sticky’ rankings show similar results, with a higher friction

positively associated with the rank data. However, for ‘Like/dislike’ ranking, only

the human friction correlated with the ranking data. It is possible that the descriptor

is too subjective to be influenced by the parameters.
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Chapter 8

Conclusion

This chapter summarises the key research contributions and crucial findings of this

thesis.

8.1 Conclusion

This thesis concerns the following scientific fields: surface topography metrology,

micro- and nano-indentation, skin tribology, tribological instrument design using

computer-aided design; contact mechanism theory, finite element modelling, affective

engineering and modelling of touch-feel perception tactile.

8.1.1 The friction test apparatus with an artificial fingertip for

touch-feel studies

Touch-feel perception plays an important role in product design from automotive

interiors, consumer electronics to product packaging. Tribological studies have

been conducted in literature to try to link the touch-feel perception to surface

tribological parameters. Chapters 1 and 2 reviews the topics of tribology and touch-

feel perception in existing literature. Touch-feel perception is subjective and depends

on many test condition and factors, therefore an instrument that is able to predict

or quantify touch-feel perception in a more automated, repeatable, faster manner

can potentially enable faster turn-around and cost savings in product design and

affective engineering. Because experiencing friction is the most direct mechanism

for touch-feel perception, the design of a new friction measurement apparatus is the

first step in developing an artificial touch-feel perceiving device.
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Another way assist product development for affective engineering is to study

the correlation between the surface tribological/mechanical properties of a material

and the touch-feel perception. Any relationship that links a specific engineering

parameter or intrinsic property of the material to touch-feel perception helps material

scientists and designers to optimise a product for higher perceived touch-feel and

enhance the desirability and perceived quality of the end product.

To this end, the friction apparatus introduced in Chapter 3 is one of the focus

of the work presented. Human fingertip conditions such as age and wetness influence

the friction coefficient measurements. Different normal forces and sliding speeds also

influence the results. These lead to large variations between subjects. To make the

experiments more repeatable, controllable and robust against environmental factors,

an artificial fingertip was developed to replace in-vivo friction measurements with

human fingers. In order to minimise the differences between the results obtained

in-vivo and that using an artificial finger, the artificial finger is anthropomorphic—it

has a bio-inspired multilayered structure consisting of the cover, filler and bone layers

using materials that have similar mechanical properties to the epidermis, sub-skin

and bone of a human finger. The dimension of the fingertip is also similar to that of

a human index fingertip. The surface of the artificial fingertip was also imprinted

with a real human fingerprint, which was found to be beneficial (Section 3.2.2).

In the human friction measurement, the stiffness of the fingertip plays a

key according to the Hertz contact theory. Hence, the bulk Young’s modulus of

the artificial fingertip was simulated in finite element modelling and experimentally

measured using micro- and nano-indentation (Section 4.3). The results confirmed

that the artificial fingertip has properties similar to that of a human fingertip.

In addition, the artificial fingertip was designed to work in conjunction with

the friction test rig. The rig contains a sample holder platform with adjustable height,

dampers for stabilisation, spring for load force adjustment and most importantly, a

linear stage. the objective of the linear stage is to mimic the reciprocating movement

of a human fingertip when a person strokes the material surfaces. The mechanical

drawings of the apparatus are available and shown in Section 3.2.

Twelve aluminium and five steel samples were used to test the accuracy of

the friction measurement apparatus. By comparing with the in-vivo human fingertip

friction results and previous work [4, 32], it was shown that the new design is excellent

for emulating human finger at friction sensing and has outperformed older hardware

designs.
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8.1.2 The theoretical modelling for the contact between the artifi-

cial fingertip and the surfaces

The friction measurement results showed the artificial fingertip can represent the

human fingertip for friction properties determination. In order to better understand

the contact mechanism, the contact area was investigated to help validate and choose

a suitable theoretical contact model. A custom-built instrument was developed that

allows a variable loading force to be applied when a glass plate is pressed against the

artificial finger (Section 4.4). The transparent nature of the glass allows an optical

microscope to study the contact area. Because all the test materials were much

stiffer than the artificial fingertip, a glass plate was suitably representative as the

contact bodies. Based on the summarised theories and contact area measurement

results, the contact mechanism follows the Hertz contact theory.

8.1.3 The thermoplastic materials properties identification

Thermoplastic elastomers (TPE) are commonly used in automotive car interiors to

give the car interior surfaces a less harsh and more pleasing feel [2]. One of the

objectives of this thesis is to generate a guideline for car interiors designers and

material scientists to enhance the touch-feel aspect. To do so the properties of

thermoplastic samples should be investigated. Naturally, the surface topography,

material mechanical properties and their friction properties will affect the touch-feel

perception. To investigate this, four coated and five patterned TPE samples were

chosen to be characterised using different measurement instruments. Compared

to the metal samples, it is more difficult to measure the mechanical and friction

properties of the TPE samples. This is because their coatings and patterns influence

the measurement results even though the substrate material may be the same. The

coated samples were mould in resin first to observe their coating thickness. By

calculating the deformation depth occurs during friction, its mechanical properties

such as the Young’s modulus and hardness were established based on the coating

rather than the substrate. The mechanical properties were measured using the

NHT nano-indenter. For friction measurement, different normal forces and different

stroking speeds were applied to the samples. Compared to the metal samples, the

different patterns, coatings and the softness of the TPE samples mean that the

results were harder to interpret.

The relationship between surface friction coefficients and the contact forces

and the relationship between surface friction coefficients and the linear stage sliding

speeds were analysed. It is concluded that as the contact forces increase, the friction
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coefficients decrease; and with higher sliding speeds (which simulates the human

finger speed of stroking), the friction coefficients were higher.

8.1.4 Correlation analysis for touch-feel perception

With the availability of the surface friction measurement results and their surface

tribological/mechanical parameters, the next step is to correlate them with the touch

feel perception and this is discussed in Chapter 6. Firstly, because the friction is

the most direct feedback when a person feels a material surface, it is essential to

correlate the friction coefficients with other physical parameters. Spearman’s rank

correlation analysis was first applied to investigate their correlation. The results

showed for metal samples, all the surface topography parameters play a role in the

friction coefficient determination except the surface mean slope parameters Sdq and

Rda. For the TPE samples, all the parameters appear to have statistically significant

influences on the surface friction.

In addition, theoretical analysis predicted a power-law relationship between

friction coefficient and the product Rq · Sm. The log-log plot results of metal

and thermoplastic samples confirmed the prediction that the friction coefficient

is approximately proportional to (Rq · Sm)
2/3. The relationship between friction

coefficients and surface Young’s modulus was easily obtained from the Hertz contact

theory and the Greenwood-Williamson (GW) extension (Section 4.2.4). By simulating

the GW model, the real contact area results showed with the increase of Young’s

modulus, the real contact area will decrease. However, for the surface mean slope

Sdq and Ra, there is not a strict relationship between friction and them.

Lastly, the touch-feel perception was assessed by asking participants to rank

the material samples in a range of psychophysical measures. In Chapter 7, correlations

between samples physical property parameters and touch feel perception ranking data

were investigated. For metal samples, surface topography parameters such as Sa, Sp,

Sq and Sm appear to be highly correlated with human touch-feel perception (> 0.8).

In addition, the friction measurement also shows a high Spearman’s correlation

coefficient (0.95).

For thermoplastic samples, the results are more complicated. However, the

Spearman’s correlation analysis gave a guideline for touch feel perception studies.

8.2 Research limitations

Limited by time and funding, this research has several limitations detailed as follows,

suggestions on improvement and further work are also given.
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8.2.1 Limitations of instrumentation

As described in Chapter 3, a new friction measurement apparatus based on an

artificial fingertip has been introduced. The artificial fingertip can represent the

human fingertip in friction properties to some degree. However, the thermal properties

of human fingertip were not considered in this thesis. In addition, while dimensions

were similar, the shape of the artificial fingertip was not the same as a human

fingertip. Meanwhile, the friction measurement apparatus was sensitive to the

working environment. The signal-to-noise ratio limits the accuracy. These limits its

application as a benchmark test for dry sliding friction. A more accurate design to

compensate the effects and to increase the bandwidth of friction sensor is desirable.

Another limitation for this work is the thermal properties measurements

of the samples. Although the thermal measurement was developed in previous

work, the more accurate physical parameters such as thermal conductivity and

thermal diffusivity need to be measured more accurately. Better test samples can

be specifically designed to better validate the relationship equation introduced in

Chapter 6. The samples could be tuned with specific surface topography parameters,

e.g. Rq, Sm. In addition, test samples with less stiffness should be designed to validate

the relationship equation between friction coefficients and the Young’s modulus. In

the current results, as the artificial fingertip was too soft, and full contact almost

always occurs during the contact.

8.2.2 Case study limitations

Fifty-four subjects have been asked to rank the thermal-plastic samples by using

5 different descriptors. The ranking statistical analysis has given a guideline for

industries on how to design a material for better touch-feel. The intent of case study

research is one of analytic rather than statistical generalisation [176]. Therefore, a

larger sample of participants should be recruited to enhance the statistical power of

the relationships and to confirm the findings. Although this research contains both

analytic and statistical generalisation, the quality of the case study research is best

justified on its analytical results. Further work such as investigating age and gender

influences is also potentially very interesting for the industry.

Furthermore, research into improving the semantic descriptors to best quantify

human touch-feel perception may be beneficial. In this thesis, just 5 descriptors were

selected according to previous literature. When people choose one product, they

may have preconceptions or personal preferences that are not readily captured by
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the descriptors investigated. In recent literature, Rasch models have been applied to

develop a scale to measure tactile interaction linked with physical properties [177].
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A.1. Design of the friction measurement apparatus

According to the detailed design shown in chapter 3, all of the schematic

diagrams are shown as follows by using SolidWorks computer aided design (CAD)

software.

The flexure part is shown as follows:

Figure A.1: The structure of flexure

The whole design is shown as follows:

Figure A.2: The whole structure of the friction apparatus (1)
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A.1. Design of the friction measurement apparatus

Figure A.3: The whole structure of the friction apparatus (2)

Figure A.4: The whole structure of the friction apparatus (3)

Figure A.5: The whole structure of the friction apparatus (4)
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A.2. Stiffness estimation of the flexure in the friction apparatus

A.2 Stiffness estimation of the flexure in the friction

apparatus

A.2.1 Theoretical calculation

The flexure was made of aluminium (Young’s modulus = 70 GPa). The flexure works

on the basic mechanical principle that a force applied to an elastic element produces

a measurable deflection. The results obtained a linear output relationship between

the applied force and the measured deflection and to make the instrument insensitive

to forces which are not applied directly along the sensing elements. For a given size

and stiffness, the displacements are smooth and continuous. The force for a given

deflection is dependent upon the elastic modulus of the flexure [93].

(a) dry condition

Figure A.6: Flexure system

A small controlled displacement is achieved by applying a force to an elastic

mechanism of known stiffness. The simple cantilever is rarely usable because an

actuate locus is traced out by any point on the beam. To design a mechanism

for linear or angular motion we use other geometries that exploit symmetry and

superposition. The resistance to torsional deflection is commonly improved by

attaching two (or more) of these flexures together to form the simple linear spring

mechanism. Consequently, any change in height of platform A relative to its support

B will be compensated by an equal and oppsite change in height if B relative to the

base.

Consideration of the deflected shape of the leaf springs reveals that most of the

bending occurs near the roots, with the middle sections remaining relatively straight.
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A.2. Stiffness estimation of the flexure in the friction apparatus

Thus, for only a small increase in drive direction stiffness, the buckling strength of

the springs can be improved and errors due to their imperfections simultaneously

reduced by clamping thick reinforcing plates to the central section of the springs[93].

In the application where limited rotation is required, such hinges hold many

advantages over classical rotation joints, including no friction, no clearance, high

resolution, lightweight and compact.

Figure A.7: The instrument

Figure A.8: Notch hinge

Compliance is the most important parameter for flexure hinge design. It can
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A.2. Stiffness estimation of the flexure in the friction apparatus

be calculated based on the bending theory of Euler-Bernoulli beam:

a = t+ 2R− 2R cos θ (A.2.1)

du = d(R sin θ) = R cos θdθ (A.2.2)

dαz =
Mz

EIz
du =

12Mz

EbR2

cos θ

( tR + 2− 2 cos θ)3
dθ (A.2.3)

αz

Mz
=

12

EbR2

∫ θm

−θm

cos θ

( tR + 2− 2 cos θ)3
dθ (A.2.4)

which can be simplified as follows [94]:

θz =
9πR

1/2M

2Ebt5/2
(A.2.5)

The accuracy of the spring flexure is primarily dependent upon the accuracy of the

centre of the holes, with the materials removed from the rest of the body being of

little influence. A simple linear spring has four notches and each notch acts as a

rotary bearing. For small deflections and assuming that the ratio h/(2R + t) is near

unity—that is the notches are nearly semicircular—If a driven force F is applied in

the line of the mid-point of the legs, the moment at each hinge is simply FL/4, and

the displacement can be obtained as

λ =
F

q
' 8Ebt

5/2

9πL2R1/2
. (A.2.6)

Alternatively, for t < R < 5t, an approximation derived empirically from finite

element studies [93] is given by

θz =
2KRM

EI
=

24KRM

Ebt3
(A.2.7)

Where K is a correlation factor for the notch curvature modelled and K = 0.565 t
R +

0.166. Kt is the stress concentration factor caused by the circular notch hinge. A

stress concentration (often called stress raisers or stress risers) is a location in an

object where stress is concentrated. An object is strongest when force is evenly

distributed over its cross-sectional area. Usually, α is the ratio of the maximum

stress σmaxto the average stress σ on the same cross-section, where α = σmax
σ , it is

larger than 1.

As for the flexure used in this thesis, the dimensions are t = 1 mm, R =

5 mm, b = 25 mm, h = 11 mm, L = 50 mm. The maximum deflection of a notch

hinge mechanism is normally governed by the peak stress in the thinnest section

of the hinges. This peak stress or maximum allowable stress is typically 0.1 to 0.3

of the effective yield stress for metal springs. Here we choose σmax = 0.1MPa and
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A.3. Contact area measurement experiments

l5cm
Table A.1: Flexure stiffness measurement

Weight Load Deflection
(g) (N) (mm)

0 0 0
20 0.196 1.250
30 0.294 2.188
40 0.392 3.126
60 0.588 4.064

σr = 0.1 ∗ 20 = 2MPa. The parameters for the flexure used in this thesis are:

Kt =
2.7t+ 5.4R

8R+ E
+ 0.325 =

2.7 · 0.001 + 5.4 · 0.005

8 · 0.005 + 0.001
+ 0.325 = 1.049 (A.2.8)

Mmax =
bt2

6Kt
· σmax =

0.025 · 0.0012

6 · 1.049
· 2 · 106 = 7.9× 10−3N m (A.2.9)

θmax =
9πR

1/2M

2Ebt5/2
=

9 · 3.14 ·
√

(0.005) · 7.9 · 10−3

2 · 70 · 109 · 0.025 · 0.0015/2
= 1.43× 10−3 (A.2.10)

λ =
F

q
' 8Ebt

5/2

9πL2R1/2
=

8 · 70× 109 · 0.025 · 0.0015
5/2

9 · 3.14 · 0.0522 · 0.0051/2
= 81.57 kN m−1 (A.2.11)

Fmax = λ · qmax = 81.57× 103 · 74× 10−6 = 6.12 N (A.2.12)

Hence, according to the calculations, the maximum load we can apply to the

instrument is 6.12 N.

A.2.2 Experimental calculation

To calibrate the flexure mechanism for friction measurement, the flexure was mounted

vertically and precision weights were placed on the top of the flexure. Its displacement

was measured by a Taylor Hobson Form Talysurf surface profilometer. The results

are shown in Table A.1. By computing the slope of the data through linear regression,

the stiffness of the flexure was estimated to be 33.5 kN m−1.

A.3 Contact area measurement experiments

This section shows images of contact area measurement experiment using Bruker

optical microscope. The black area represents a contact in all figures below except

Fig. A.9.
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A.3. Contact area measurement experiments

Figure A.9: The artificial fingertip without the glass plate

(a) Contact area estimation (b) Contours

Figure A.10: Contact area measurement with glass plate resting on the fingertip (no
added weights)

202



A.3. Contact area measurement experiments

Figure A.11: The contact area with 50 g weight

Figure A.12: The contact area with 100 g weight

Figure A.13: The contact area with 200 g weight
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A.4. Surface topography measured by Bruker

Figure A.14: The contact area with 300 g weight

A.4 Surface topography measured by Bruker

The surface topography textures of the various metal and thermoplastic samples

were measured by a Bruker microscope, the results are shown in this section.

A.4.1 Metal Samples

Aluminium samples

(a) 2D (b) 3D

Figure A.15: The surface texture of AM1
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A.4. Surface topography measured by Bruker

(a) 2D (b) 3D

Figure A.16: The surface texture of AM2

(a) 2D (b) 3D

Figure A.17: The surface texture of AM3
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A.4. Surface topography measured by Bruker

(a) 2D (b) 3D

Figure A.18: The surface texture of AM4

(a) 2D (b) 3D

Figure A.19: The surface texture of AM5

206



A.4. Surface topography measured by Bruker

(a) 2D (b) 3D

Figure A.20: The surface texture of AM6

(a) 2D (b) 3D

Figure A.21: The surface texture of AT1
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A.4. Surface topography measured by Bruker

(a) 2D (b) 3D

Figure A.22: The surface texture of AT2

(a) 2D (b) 3D

Figure A.23: The surface texture of AT3
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A.4. Surface topography measured by Bruker

(a) 2D (b) 3D

Figure A.24: The surface texture of AT4

(a) 2D (b) 3D

Figure A.25: The surface texture of AT5
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A.4. Surface topography measured by Bruker

(a) 2D (b) 3D

Figure A.26: The surface texture of AT6
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A.4. Surface topography measured by Bruker

Steel samples

(a) 2D (b) 3D

Figure A.27: The surface texture of S1

(a) 2D (b) 3D

Figure A.28: The surface texture of S2

A.4.2 Thermoplastic Samples

The surface topography textures of the various thermoplastic samples are as follows.
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A.4. Surface topography measured by Bruker

(a) 2D (b) 3D

Figure A.29: The surface texture of S3

(a) 2D (b) 3D

Figure A.30: The surface texture of S4
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A.4. Surface topography measured by Bruker

(a) 2D (b) 3D

Figure A.31: The surface texture of S5

(a) 2D (b) 3D

Figure A.32: The surface texture of s44
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A.4. Surface topography measured by Bruker

(a) 2D (b) 3D

Figure A.33: The surface texture of s58

(a) 2D (b) 3D

Figure A.34: The surface texture of s83
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A.5. The height distribution of different surfaces

(a) 2D (b) 3D

Figure A.35: The surface texture of s97

Coated samples

Patterned Samples

(a) 2D (b) 3D

Figure A.36: The surface texture of 4N127

A.5 The height distribution of different surfaces
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A.5. The height distribution of different surfaces

(a) 2D (b) 3D

Figure A.37: The surface texture of sanded 4N127

(a) 2D (b) 3D

Figure A.38: The surface texture of 4N111
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A.5. The height distribution of different surfaces

(a) 2D (b) 3D

Figure A.39: The surface texture of sanded 4N111

(a) 2D (b) 3D

Figure A.40: The surface texture of 1N111
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A.5. The height distribution of different surfaces

(a) 2D (b) 3D

Figure A.41: The surface texture of sanded 1N111

(a) 2D (b) 3D

Figure A.42: The surface texture of 5N127
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A.5. The height distribution of different surfaces

(a) 2D (b) 3D

Figure A.43: The surface texture of sanded 5N127

(a) 2D (b) 3D

Figure A.44: The surface texture of 5N111
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A.5. The height distribution of different surfaces

(a) 2D (b) 3D

Figure A.45: The surface texture of sanded 5N111
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A.5. The height distribution of different surfaces
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(a) AM1
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(b) AM2
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(c) AM3
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(d) AM4
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(e) AM5
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(f) AM6

Figure A.46: The surface height distributions of the milled aluminium samples

221



A.5. The height distribution of different surfaces
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(c) t33
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(d) t46

−60 −40 −20 0 20 40 60 80
0

0.01

0.02

0.03

Surface height (µm)

P
ro
b
a
b
il
it
y
d
en

si
ty

fu
n
ct
io
n

(e) t79

Figure A.47: The surface height distributions of the turned aluminium samples
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A.5. The height distribution of different surfaces
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(a) S1
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(b) S2
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(c) S3

−10 −5 0 5 10
0

0.05

0.1

0.15

Surface height (µm)

P
ro
b
a
b
il
it
y
d
en

si
ty

fu
n
ct
io
n

(d) S4
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(e) S5

Figure A.48: The surface height distributions of the grinded steel samples

223



A.6. Touch-feel ranking raw data
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(b) s58
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(c) s83
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(d) s97
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Figure A.49: The surface height distributions of coated polymer samples

A.6 Touch-feel ranking raw data

This section lists the raw ranking data for the subjective touch-feel perception
of 14 subjects. A lower ranking means the subject preferred the first word of
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A.6. Touch-feel ranking raw data

the psychophysical descriptor. This table include additional material samples 2S

(2Stipple) and 3S (3Stipple) from Yue [32].

Table A.2: Smooth/rough touch-feel perception raw ranking data on TPE samples

Participant s44 s58 s83 s97 3S 3S 4N111 5N111 1N111

1 4 3 2 1 7 9 5 8 6
2 3 1 2 4 6 9 5 8 7
3 3 1 4 2 5 8 7 9 6
4 3 4 1 2 7 9 8 5 6
5 4 2 1 3 8 7 5 9 6
6 2 1 4 5 6 7 3 8 9
7 3 1 2 4 7 8 6 9 5
8 2 1 3 4 5 7 9 6 8
9 2 1 3 4 5 7 9 8 6

10 2 1 4 3 8 9 6 7 5
11 1 4 2 3 6 7 9 8 5
12 1 2 4 3 9 8 7 6 5
13 1 2 3 4 7 9 5 8 6
14 2 3 4 1 8 9 5 7 6

Table A.3: Soft/hard touch-feel perception raw ranking data on TPE samples

Participant s44 s58 s83 s97 3S 3S 4N111 5N111 1N111

1 2 4 3 1 7 9 5 8 6
2 6 9 5 3 4 8 1 7 2
3 2 6 5 1 4 7 8 9 3
4 4 5 3 6 2 8 1 7 9
5 2 7 8 9 1 5 4 3 6
6 1 2 3 4 5 7 9 8 6
7 4 1 3 2 6 7 5 8 9
8 2 3 1 4 7 6 5 9 8
9 2 5 4 1 6 8 3 7 9

10 1 6 6 6 6 6 6 6 2
11 9 7 8 6 5 3 1 2 4
12 3 5 6 7 2 8 1 9 4
13 1 2 4 3 6 5 7 8 9
14 8 7 6 3 2 5 1 4 9
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A.6. Touch-feel ranking raw data

Table A.4: Cool/warm touch-feel perception raw ranking data on TPE samples

Participant s44 s58 s83 s97 3S 3S 4N111 5N111 1N111

1 2 4 3 1 7 9 8 6 5
2 1 3 4 5 7 2 8 6 9
3 7 8 5 9 3 4 1 6 2
4 2 4 1 3 8 6 5 7 9
5 1 2 4 3 6 5 9 7 8
6 2 3 1 4 5 8 9 7 6
7 1 3 2 4 6 5 7 9 8
8 3 4 2 1 6 8 7 9 5
9 - - - - - - - - -

10 1 3 2 4 7 7 7 7 7
11 1 2 4 3 5 6 9 8 7
12 1 3 2 4 6 5 8 7 9
13 3 1 6 5 8 4 2 9 7
14 5 6 1 2 7 8 9 3 4

Table A.5: Slippery/sticky touch-feel perception raw ranking data on TPE samples

Participant s44 s58 s83 s97 3S 3S 4N111 5N111 1N111

1 3 2 4 1 7 6 9 8 5
2 2 1 4 8 5 6 9 3 7
3 2 7 4 1 5 8 9 6 3
4 4 3 1 2 7 8 9 6 5
5 8 7 9 - 1 2 - 3 4
6 2 3 1 4 7 8 9 6 5
7 1 4 2 3 5 6 9 8 7
8 2 4 3 1 5 7 8 9 6
9 2 1 3 5 7 4 9 8 6

10 4 1 3 2 6 7 9 5 8
11 1 3 2 4 5 8 9 7 6
12 2 1 3 4 7 8 9 5 6
13 3 1 2 5 4 6 9 7 8
14 8 6 7 2 5 4 1 3 9
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A.6. Touch-feel ranking raw data

Table A.6: Like/dislike touch-feel perception raw ranking data on TPE samples

Participant s44 s58 s83 s97 3S 3S 4N111 5N111 1N111

1 5 4 6 1 8 9 2 3 7
2 8 2 7 4 3 1 9 5 6
3 2 4 3 1 8 7 9 5 6
4 2 3 4 1 6 5 9 8 7
5 9 8 7 6 1 2 3 4 5
6 3 2 1 5 6 7 9 8 4
7 1 4 2 3 6 5 9 8 7
8 5 8 7 9 6 2 4 1 3
9 - - - - - - - - -

10 1 3 4 2 7 7 7 7 7
11 1 3 2 4 5 6 9 8 7
12 2 1 3 4 5 6 7 9 8
13 2 1 4 3 5 6 9 8 7
14 6 7 1 9 2 3 5 8 4
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A.7. Rank ordered logit model outputs

A.7 Rank ordered logit model outputs

This section contains the raw output from Stata software.
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        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sa |   .1768571   .0210967     8.38   0.000     .1355083    .2182059 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   skunounit |  -.0025742   .0008692    -2.96   0.003    -.0042777   -.0008707 

------------------------------------------------------------------------------ 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sp |   .0421991   .0046873     9.00   0.000     .0330122     .051386 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sq |   .1748451    .020858     8.38   0.000     .1339642     .215726 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   ssknounit |   -.077455   .0183808    -4.21   0.000    -.1134807   -.0414293 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sv |  -.0928602     .01019    -9.11   0.000    -.1128322   -.0728882 

------------------------------------------------------------------------------ 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sz |   .0346574   .0035288     9.82   0.000     .0277411    .0415737 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      sdqdeg |   .0985392   .0111322     8.85   0.000     .0767206    .1203579 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         rda |   .3574194   .0420403     8.50   0.000     .2750218    .4398169 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        egpa |  -1.036071   .1300179    -7.97   0.000    -1.290902    -.781241 

------------------------------------------------------------------------------ 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        hmpa |  -.0123763   .0015743    -7.86   0.000    -.0154619   -.0092907 

------------------------------------------------------------------------------ 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        smum |   .0059777   .0006757     8.85   0.000     .0046533    .0073022 

A.7. Rank ordered logit model outputs

A.7.1 Smooth/rough

229



          rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

humanfingertip |   1.617537   .2140939     7.56   0.000     1.197921    2.037154 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    f05n5mms |   1.886903   .5087345     3.71   0.000     .8898017    2.884004 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   f075n5mms |   1.614054   .5474985     2.95   0.003     .5409764    2.687131 

------------------------------------------------------------------------------ 

 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    f05n8mms |   .4936133   .4587409     1.08   0.282    -.4055024    1.392729 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   f075n8mms |  -11.28523   1.197521    -9.42   0.000    -13.63232   -8.938128 

------------------------------------------------------------------------------ 

 

A.7. Rank ordered logit model outputs
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   Soft-Hard    

 

  rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sa |  -.0157454   .0081792    -1.93   0.054    -.0317763    .0002854 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   skunounit |  -.0006424   .0008328    -0.77   0.440    -.0022748    .0009899 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sp |  -.0179318   .0039028    -4.59   0.000    -.0255811   -.0102825 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sq |  -.0155276   .0077085    -2.01   0.044    -.0306359   -.0004193 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   ssknounit |  -.0104221    .018052    -0.58   0.564    -.0458034    .0249593 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sv |   .0070789   .0042153     1.68   0.093     -.001183    .0153408 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sz |  -.0077923    .002247    -3.47   0.001    -.0121963   -.0033883 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      Sdq    |  -.0269975   .0087813    -3.07   0.002    -.0442085   -.0097865 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         rda |  -.0729725   .0248448    -2.94   0.003    -.1216675   -.0242776 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        egpa |   .3907037   .1168124     3.34   0.001     .1617556    .6196518 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        hmpa |   .0034152   .0014752     2.32   0.021     .0005239    .0063066 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

A.7. Rank ordered logit model outputs

A.7.2 Soft/hard
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-------------+---------------------------------------------------------------- 

        smum |  -.0000869   .0002965    -0.29   0.769     -.000668    .0004942 

------------------------------------------------------------------------------ 

 

-------------------------------------------------------------------------------- 

          rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

humanfingertip |  -.9117715   .2425994    -3.76   0.000    -1.387258   -.4362854 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    f05n5mms |  -1.229405   .5831025    -2.11   0.035    -2.372265   -.0865448 

------------------------------------------------------------------------------ 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   f075n5mms |  -.4293775   .5651098    -0.76   0.447    -1.536972    .6782174 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    f05n8mms |  -.1393298   .4681834    -0.30   0.766    -1.056952    .7782927 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   f075n8mms |   2.461545   .9034179     2.72   0.006     .6908782    4.232211 
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    Cool/warm 

 

 

    rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sa |   .0193054   .0081463     2.37   0.018      .003339    .0352718 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   skunounit |  -.0017034   .0008734    -1.95   0.051    -.0034152    8.52e-06 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sp |   .0112156   .0036578     3.07   0.002     .0040464    .0183847 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sq |   .0189439   .0076633     2.47   0.013     .0039241    .0339638 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   ssknounit |  -.0463632   .0181054    -2.56   0.010    -.0818491   -.0108773 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sv |  -.0116984   .0043305    -2.70   0.007    -.0201859   -.0032108 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sz |   .0064677   .0021084     3.07   0.002     .0023353    .0106001 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      sdqdeg |   .0392902   .0088375     4.45   0.000     .0219691    .0566113 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         rda |   .1425981   .0268104     5.32   0.000     .0900507    .1951455 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        egpa |  -.6547415   .1227156    -5.34   0.000    -.8952596   -.4142233 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        hmpa |  -.0085575   .0015322    -5.59   0.000    -.0115605   -.0055544 
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        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        smum |   .0010795   .0002468     4.37   0.000     .0005957    .0015633 

 

 

          rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

humanfingertip |   1.183851   .2241171     5.28   0.000     .7445897    1.623113 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    f05n5mms |   1.122841   .5453434     2.06   0.039     .0539872    2.191694 

------------------------------------------------------------------------------ 

 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   f075n5mms |   1.248937   .5646989     2.21   0.027     .1421472    2.355726 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    f05n8mms |   .5878243   .4583948     1.28   0.200    -.3106129    1.486262 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   f075n8mms |  -2.832103   .8644471    -3.28   0.001    -4.526388   -1.137818 
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        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sa |   .0187009   .0083168     2.25   0.025     .0024003    .0350016 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   skunounit |  -.0003995   .0008438    -0.47   0.636    -.0020534    .0012543 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sp |   .0149081   .0039646     3.76   0.000     .0071376    .0226786 

 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sq |   .0184435   .0078594     2.35   0.019     .0030392    .0338477 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   ssknounit |  -.0225969   .0184969    -1.22   0.222    -.0588503    .0136564 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sv |  -.0106285    .004462    -2.38   0.017    -.0193739    -.001883 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sz |   .0074487   .0022384     3.33   0.001     .0030615    .0118359 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      sdqdeg |   .0272854   .0087163     3.13   0.002     .0102018     .044369 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         rda |   .0935822     .02644     3.54   0.000     .0417607    .1454037 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        egpa |  -.4531487   .1270893    -3.57   0.000    -.7022392   -.2040583 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        hmpa |   -.006399   .0015738    -4.07   0.000    -.0094836   -.0033144 

------------------------------------------------------------------------------ 
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------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        smum |    .000988   .0002569     3.85   0.000     .0004845    .0014915 

------------------------------------------------------------------------------ 

 

-------------------------------------------------------------------------------- 

          rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

humanfingertip |   1.199367   .2508925     4.78   0.000     .7076273    1.691108 

-------------------------------------------------------------------------------- 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    f05n5mms |   1.363528   .5286251     2.58   0.010     .3274413    2.399614 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   f075n5mms |   1.095117    .565245     1.94   0.053    -.0127426    2.202977 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    f05n8mms |   .8611865   .4706108     1.83   0.067    -.0611936    1.783567 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   f075n8mms |  -2.478857   .9105878    -2.72   0.006    -4.263576   -.6941372 
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------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sa |  -.0032496    .008358    -0.39   0.697    -.0196309    .0131317 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   skunounit |   .0011956   .0007868     1.52   0.129    -.0003465    .0027377 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sp |  -.0052275   .0035387    -1.48   0.140    -.0121633    .0017083 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sq |  -.0037138   .0078453    -0.47   0.636    -.0190903    .0116626 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   ssknounit |   .0292743   .0174032     1.68   0.093    -.0048354    .0633839 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sv |   .0021325   .0042304     0.50   0.614    -.0061589     .010424 

 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

          sz |   -.002325   .0020882    -1.11   0.266    -.0064179    .0017678 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

      sdqdeg |  -.0083244     .00813    -1.02   0.306     -.024259    .0076102 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

         rda |   -.036923    .023376    -1.58   0.114    -.0827392    .0088932 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        egpa |   .1264147   .1133936     1.11   0.265    -.0958327    .3486621 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

A.7. Rank ordered logit model outputs

A.7.5 Like/dislike

237



        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        hmpa |   .0014538   .0015248     0.95   0.340    -.0015347    .0044424 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

        smum |  -.0002614    .000323    -0.81   0.418    -.0008945    .0003716 

------------------------------------------------------------------------------ 

 

-------------------------------------------------------------------------------- 

          rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

---------------+---------------------------------------------------------------- 

humanfingertip |  -.7736414   .2410955    -3.21   0.001     -1.24618   -.3011028 

-------------------------------------------------------------------------------- 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    f05n5mms |  -.4828978    .585076    -0.83   0.409    -1.629626    .6638302 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   f075n5mms |   .0992003   .5922853     0.17   0.867    -1.061658    1.260058 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

    f05n8mms |  -.5309948   .4761112    -1.12   0.265    -1.464156     .402166 

------------------------------------------------------------------------------ 

 

------------------------------------------------------------------------------ 

        rank |      Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval] 

-------------+---------------------------------------------------------------- 

   f075n8mms |   .9106376   .8304582     1.10   0.273    -.7170306    2.538306 

------------------------------------------------------------------------------ 
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A.8 MATLAB program code to simulate a Greenwood-

Williamson contact model

1 % model Greenwood and Will iamson (GW)
%func t i on [ p g ]=greenwood

3 %====================================
%===Greenwood and Will iamson Model===

5 %====================================
%Input data : vec to r data z with the roughness po in t s and vec to r

7 %data x with the r e s p e c t i v e coo rd ina t e s
%Output data : percentage o f contact r e a l area , deformation , plot with the

9 %o r i g i n a l p r o f i l e and deformed p r o f i l e
N=1*10ˆ3; %the sample po in t s

11 rL=10; %the l ength o f x
h=0.1 ; %he ight

13 c1 =0.05; % var iance
[ data z , data x ]=rsgene1D (N, rL , h , c1 ) ;

15 figure (1 )
plot ( data x , data z ) ;

17 x=data x ;
rug=data z ;

19 %load app l i ed
load=1.9894;%N/mm

21 %p r o p e r t i e s o f the mate r i a l
H=2785;%Mpa

23 E1=205000;% Mpa
E2=62750; % Mpa(%Glass )

25 niu1 =0.29;
niu2 =0.2 ;

27 Ecom=1/((1−niu1 ˆ2) /E1+(1−niu2 ˆ2) /E2) ; %[MPa]
%rug i s the vec to r with one p r o f i l e o f the roughness topography

29 %the p r o f i l e w i l l be approached by polynomial f u n c t i o n s us ing the
%Aramki fo rmulat ion

31 %determinat ion o f ACF( auto c o r r e l a t i o n func t i on ) l ength and the c o e f f i c i e n t
%o f ACF, ACF length i s the l ength where autocorr e l a t i o n i s 0.368(=1/ e )

33 [ACF, Lags , Bounds]=autocorr ( rug , length ( x )−1) ;
index ACF 0368 =1;

35 while ACF( index ACF 0368 ) >0.368
index ACF 0368=index ACF 0368 +1;

37 end
%plot (x ,ACF) ;%plot with the func t i on o f autocorr e l a t i o n

39 length ACF=x ( index ACF 0368 )−x (1) ;
a l f a =1/length ACF ;

41 %standard dev i a t i on ;
sigma=std ( rug ) ;

43 %d e f i n i t i o n o f a vec to r L peak ( peaks ) , obta ined c o n s i d e r i n g the c r o s s with
%the r e f e r e n c e l i n e ;

45 n=length ( x ) ;
k=1;

47 for i =1:n−1
i f ( ( rug ( i )<=0)&(rug ( i +1)>0) ) ;

49 j=i +1;
while ( ( rug ( j )>=0)&( j+1<n) )

51 i f rug ( j +1)<0
Lpeak (k , 1 )=x ( i )−rug ( i ) *( x ( i +1)−x ( i ) ) /( rug ( i +1)−rug ( i ) ) ;

53 Lpeak (k , 2 )=x ( j )−rug ( j ) *( x ( j +1)−x ( j ) ) /( rug ( j +1)−rug ( j ) ) ;
L peak ( k )=Lpeak (k , 2 )−Lpeak (k , 1 ) ;

55 k=k+1;
end

57 j=j +1;
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end
59 end

end
61 %d e f i n t i o n o f a vec to r L v a l l e y ( v a l l e y s ) , obta ined c o n s i d e r i n g the c r o s s

%with the r e f e r e n c e l i n e ;
63 k=1;

for i =1:n−1
65 i f ( ( rug ( i )>=0)&(rug ( i +1)<0) ) ;

j=i +1;
67 while ( ( rug ( j )<=0)&( j+1<n) )

i f rug ( j +1)>0
69 Lva l l ey (k , 1 )=x ( i )−rug ( i ) *( x ( i +1)−x ( i ) ) /( rug ( i +1)−rug ( i ) ) ;

Lva l l ey (k , 2 )=x ( j )−rug ( j ) *( x ( j +1)−x ( j ) ) /( rug ( j +1)−rug ( j ) ) ;
71 L v a l l e y ( k )=Lva l l ey (k , 2 )−Lva l l ey (k , 1 ) ;

k=k+1;
73 end

j=j +1;
75 end

end
77 end

%c r e a t e one vec to r with the x p o s i t i o n s o f the a l l c r o s s i n g s with the
79 %r e f e r e n c e l i n e

for i =1:( length ( L peak ) )
81 Lp( i )=Lpeak ( i , 1 ) ;

Lp( i+length ( L peak ) )=Lpeak ( i , 2 ) ;
83 end

for i =1:( length ( L v a l l e y ) )
85 Lv( i )=Lva l l ey ( i , 1 ) ;

Lv( i+length ( L v a l l e y ) )=Lva l l ey ( i , 2 ) ;
87 end

%vector x that conta in a l l x p o s i t i o n s ( po in t s o f rough po in t s and the
c r o s s i n g s )

89 X= [ ] ;
X=[x ’ ; Lp ’ ; Lv ’ ] ;

91 X=unique (X) ;
X=sort (X) ;

93

%c r e a t e one new vecto r RUG with the same length that X
95 RUG= [ ] ;

for i =1: length (X)
97 for j =1: length ( x )

i f X( i )==x ( j )
99 RUG( i )=rug ( j ) ; %the othe r s p o s i t i o n s RUG=0

end
101 end

end
103 %genera t i on o f the one p r o f i l e approach by parabo las

c s i p e a k=L peak*sqrt (2/pi ) * a l f a * sigma ; %equat ion 8 Aramki part I
105 c s i v a l l e y=L v a l l e y *sqrt (2/pi ) * a l f a * sigma ;

mean L peak=(mean( L peak ) ) ;
107 mean L val ley=(mean( L v a l l e y ) ) ;

mean L=1/2*(mean( L peak )+mean( L v a l l e y ) ) ;
109 K1 peak=8*( c s i p e a k ) . / ( L peak . ˆ 2 ) ; %equat ion 9−b Aramki part I

K1 va l l ey =8*( c s i v a l l e y ) . / ( L v a l l e y . ˆ 2 ) ;
111 %genera t i on o f the vec to r with po in t s that r e p r e s e n t parabo las

%s t a r t the ve c t o r s with z e ro s and the same length that X
113 parabola=zeros (1 , length (X) ) ;

parabola peak=zeros (1 , length (X) ) ;
115 p a r a b o l a v a l l e y=zeros (1 , length (X) ) ;

for i =1: length ( L peak )
117 j=find (X==(Lpeak ( i , 1 ) ) ) ;

while (X( j )>=Lpeak ( i , 1 )&X( j )<=Lpeak ( i , 2 ) )
119 parabola ( j )=−(4* c s i p e a k ( i ) /( L peak ( i ) ˆ2) ) *(X( j )−Lpeak ( i , 1 )−L peak ( i )

/2)ˆ2+ c s i p e a k ( i ) ;
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parabola peak ( j )=parabola ( j ) ;
121 j=j +1;

end
123 end

for i =1: length ( L v a l l e y )
125 j=find (X==(Lva l l ey ( i , 1 ) ) ) ;

while (X( j )>=Lva l l ey ( i , 1 )&X( j )<=Lva l l ey ( i , 2 ) )
127 parabola ( j ) =(4* c s i v a l l e y ( i ) /( L v a l l e y ( i ) ˆ2) ) *(X( j )−Lva l l ey ( i , 1 )−

L v a l l e y ( i ) /2)ˆ2− c s i v a l l e y ( i ) ;
p a r a b o l a v a l l e y ( j )=parabola ( j ) ;

129 j=j +1;
end

131 end
temp rq =0;

133 for i =1: length ( rug )
temp rq=temp rq+(rug ( i ) ) ˆ2

135 end

137 increment =0.0001; %increment o f the disp lacement de l t a [ micron ]
%c r i t i c i n t e r f e r e n c e f o r each peak

139 for i =1: length ( L peak )
d e l t a c ( i )=(pi*k*H/(2*Ecom) ) ˆ2*(1/ K1 peak ( i ) ) ; %micron

141 end
y=max( parabola ) ;

143 l t=zeros ( length ( L peak ) ,1 ) ; %vecto r taht i n d i c a t e i f the deformation i s
e l a s t i c (0 ) pr p l a s t i c (1 )

ltemp =0;
145 f=zeros ( length ( L peak ) ,1 ) ; %load app l i ed in each a s p e r i t y

n s t ep s =0;
147 while sum( f )<load

y=y−increment ;
149 n s t ep s=n s t ep s +1;

for i =1: length ( L peak )
151 %e l a s t i c

i f l t ( i , 1 )==0&(c s i p e a k ( i )−y )>0
153 f ( i ) =(4/3)*Ecom* ( (1 e−3/K1 peak ( i ) ) ˆ ( 0 . 5 ) ) * ( ( c s i p e a k ( i )−y ) *1e−3)

ˆ(3/2) ;
i f ( c s i p e a k ( i )−y>d e l t a c ( i ) )

155 l t ( i , 1 ) =1;
end

157 end
%p l a s t i c

159 i f l t ( i , 1 )==1&(c s i p e a k ( i )−y )>0
f ( i )=2*pi *(1 e−3/K1 peak ( i ) * c s i p e a k ( i )−y ) *1e−3*H;

161 end
end

163 end
%contact area

165 A cont =0;
for i =2: length (RUG)

167 i f parabola ( i )>=y
A cont=A cont+(X( i )−X( i −1) ) ;

169 end
end

171 %percentage o f contact area
A cont a=A cont/X( length (X) )

173 %plot deformed p r o f i l e
for i =1: length (RUG)

175 i f parabola ( i )>y
parabo la de ( i )=y ;

177 else
parabo la de ( i )=RUG( i ) ;

179 end
end
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181 figure (2 )
plot (X, parabola , ’ k ’ ) ;

183 hold on ;
plot (X, parabola de , ’ LineWidth ’ , 1 . 4 ) ;

185 hold o f f ;
%deformation

187 deformation=max( parabola )−abs ( y ) ;

Listing A.1: greenwood model.m
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