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Abstract 
An interesting insight has been developed into the roles of a paralogous pair of transcriptional 

regulators MmfR and MmyR in the regulation of methylenomycin antibiotic biosynthesis in 

Streptomyces coelicolor. Research involved the development and use of a luciferase reporter 

assay, optimised for use in GC high bacteria. MmfR belongs to the TetR-family of 

transcriptional repressor proteins and works as a single component system, binding to DNA at 

one of three methylenomycin auto-regulatory response element (MARE) operators. Here it 

represses transcription of five different operons until a conformational change is brought 

about by specific binding to one of five small signalling molecules; the methylenomycin 

furans (MMFs). 

This investigation revealed that the five different MmfR-regulated operons have promoters of 

differing strengths, which is also contributed to by a variation in the strength of MmfR 

binding to the three MARE operator sites. Each of the five naturally produced MMF ligands 

were also shown to have a different efficacy for deactivating and displacing MmfR. An in 

silico analysis of the MmfR primary and tertiary structures, followed by in vivo mutagenesis, 

revealed the presence of two tyrosine residues implicated in ligand binding. 

The paralogue MmyR was shown to vary in activity from that of MmfR. It showed weaker, 

but significant binding to only two out of the three MARE operator sites, binding with 

different affinities to each, and no significant removal of repression was seen in the presence 

of the MMF ligands. 

The MmfR/MMF/MARE operator system shows promise as something that can be developed 

into a novel inducible expression system for use in GC high bacteria. However, whether this 

system can be adapted to be efficient in multiple hosts is yet to be seen, with affinity for the 

MARE operators from exogenous regulatory proteins predicted. 
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1 Introduction 

1.1 Streptomyces and their Natural Products 
Streptomyces are Gram-positive actinomycetes found naturally in the soil. In fact, the earthy 

smell associated with soil comes from geosmin, a natural product produced by 

streptomycetes.(1) They breach the gap between bacteria and fungi with their complex 

mycelial life cycles (Figure 1.1). The life cycle starts with a spore, then, with the right 

nutrients present, this spore will germinate and form vegetative hyphae that branch into the 

surrounding growth media forming fungi-like mycelia. Upon nutrient depletion, non-

branching sporogenic aerial hyphae will also form.(2) These aerial hyphae septate to form 

largely dormant unigenomic spores that can then start the cycle again. It is during this spore 

formation stage that grey spore pigments are synthesised, as well as a range of other natural 

products.(3) A natural product is any substance or chemical produced by a living organism 

and is often used synonymously with the term ‘secondary metabolite’.(4, 5) The natural 

products produced by streptomycetes total over 70 per cent of commercially available 

antibiotics,(6) a number of these can be seen highlighted in Figure 1.2; a timeline of antibiotic 

discovery and their bacterial origins. It is clear therefore that streptomycetes are of huge 

importance in natural product research. 

 

 

Figure 1.1. Schematic representation of the streptomycete life cycle 
This image was taken directly from the paper by Seipke et al. from 2012 (7) 
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Figure 1.2. Key dates when antibiotics were discovered 

Antibiotics produced by streptomycetes are highlighted in red.(8-14) 
 

The natural products made by Streptomyces include antifungals such as nystatin,(15) as well 

as anti-bacterials like chloramphenicol,(11) neomycin,(10) and streptomycin (9) (highlighted 

in Figure 1.2).(8) Streptomycetes also produce a range of other useful natural products such 

the anti-parasitic ivermectin (16) as well as anti-tumour drugs, (17) immunosuppressive 

agents (18) and agrochemicals such as fungicides.(19) These natural products are often 

produced as a defence mechanism to fight other bacteria competing for resources. At sub-

lethal levels however, antibiotics may be able to function as signalling molecules, benefiting 

otherwise susceptible bacteria and helping to maintain homeostasis in microbial 

communities.(20) 

There is a need for new antibiotics, with resistance developing to new antibiotics within tens 

of years of clinical introduction, if not sooner.(21) Alexander Fleming famously warned of 

the inevitable risk of antibiotic resistance as early as 1945 in his Nobel Prize speech, with the 

widespread use of penicillin only coming about two years before and the first sulphonamide 

only having been commercially available since the 1930s.(22) Over-prescription and incorrect 

usage of antibiotics selects for resistant strains and has contributed to resistance being 

developed at an accelerated rate compared to that which would occur in the wild without this 

human interference. Interest into natural product antibiotic research declined due to the 
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frequent rediscovery of existing antibiotics and the development of a number of synthetic 

methods such as the screening of large libraries of synthetic compounds.(23-25) These 

synthetic methods proved to be largely unsuccessful and new strategies have again been 

developed for natural product discovery. The potential for discovering novel natural 

compounds is increasing again with the ‘genomic age’.(26) 

Importance of Genome Mining in Natural Product Research 
Despite Streptomyces already being the main source of commercially available antibiotics, 

there is still potential for the discovery of many more, with prospective natural products lying 

undiscovered in currently ‘silent’ and cryptic gene clusters. These are being further 

investigated by genome mining.(6) 

Entire genomes are scanned for sequences corresponding to hypothetical antibiotic regulatory 

or biosynthetic enzymes, based on sequence identity to clusters already studied 

experimentally. These ‘silent’ or cryptic gene clusters uncovered by genome mining often 

need very specific environmental conditions or inducer molecules for natural product 

biosynthesis to be switched on, often not present in standard laboratory conditions. For this 

reason, there are many hypothetical natural product gene clusters for which we know very 

little about the end product.(27) If the regulation of these clusters could be better understood 

then they could be genetically manipulated or put into a heterologous expression host (28) 

and the metabolites isolated. An example of a natural product that has been discovered by 

genome mining is coelichelin, a Streptomces coelicolor iron chelator.(26, 29, 30) 

As of 3rd August 2016, as many as 252 different streptomycetale strains had their complete 

genomes sequenced and listed on NCBI out of 8629 genomes available on this site.(31) Many 

more full genomic sequences are expected every year as genome sequencing becomes more 

economical.(27) The Streptomyces genus is therefore one of the most sequenced of non-

pathogenic bacteria, but the true extent of the implications of such widespread analysis on the 

production of useful metabolites is not yet realised with many biosynthetic investigations still 

on-going. 

 

1.2 Regulation of Natural Product Biosynthesis in 
Streptomyces 

1.2.1 An Introduction to Microbial Hormones 
It is important for bacteria to regulate the production of antibiotics, not only to conserve 

cellular resources but also to prevent the antibiotic having a potentially toxic or lethal effect 

on the producer strain. A variety of different regulatory mechanisms are utilised to control the 
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production of any natural products. Streptomycete regulatory systems include transcriptional 

activators and repressors, the use of rare codons, sigma factors, riboswitches and receptor 

ligand responses as well as the use of microbial hormones.(32) Natural product biosynthesis 

may also be influenced by environmental factors such as pH and nutrient deprivation as well 

as being effected by cell density via quorum sensing (see below). In this report, it is the 

regulation by microbial hormones and their cognate receptors that is of particular interest. 

A hormone is described as being a ‘regulatory substance produced in an organism and 

transported in tissue fluids such as blood or sap to stimulate specific cells or tissues into 

action.’(33) When applying this to the microbial level, a hormone could be described as a 

diffusible master switch for morphological differentiation and secondary metabolism.(34) The 

ability of bacteria to signal to one another using nanomolar concentrations of small molecules 

is well known.(35) This signalling is often influenced by a phenomenon called ‘quorum 

sensing’, where gene expression is regulated in response to population density and the 

accumulation of auto-inducing microbial hormones.(36) The higher the density of cells in an 

area, the greater the accumulation of signalling molecule that they produce. Once this 

signalling molecule reaches a threshold concentration, transcription of associated genes will 

be switched on. This is co-ordinated in the entire local population and has even been known 

to occur between species. In response to high population density therefore, streptomycetes 

will produce microbial hormones to signal for antibiotic production to kill competition for 

resources, as well as signalling to turn on the next stages in their complex sporogenic life 

cycle (Figure 1.1). 

1.2.2 The Gamma-Butyrolactones 
Examples of these microbial hormones in Gram-positive bacteria include the well-known 

gamma butryrolactones (GBLs). These are small signalling molecules involved in quorum 

sensing and the activation of antibiotic biosynthesis and cover a variety of similar small 

molecules (see Figure 1.3). GBL hormonal regulatory systems are found across a wide range 

of Streptomyces species and are formed of two parts; the enzymes for GBL synthesis as well 

as least one cognate receptor.(37) Examples of these receptor-ligand systems includes A 

factor and its receptor ArpA in Streptomyces griseus,(34) SCB1 and ScbR in S. 

coelicolor,(38) VB and BarA in Streptomyces virginiae (39, 40) and IM-2 and FarA in 

Streptomyces lavendulae (41, 42) (see Figure 1.3 for chemical structures of these microbial 

hormones). In the absence of their ligand, ArpA, ScbR, BarA and FarA will normally be 

bound to DNA at an operator site, repressing the production of an associated natural product. 

The production and detection of a threshold level of their hormone ligand will cause a 

conformational change and the release of the repressor from a promoter site, thereby allowing 

the expression of natural product biosynthetic genes. 
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1.2.3 TetR Family Transcriptional Repressors 
The cognate receptors for microbial hormones are often members of the TetR family of 

transcriptional repressors. This widespread family of transcriptional repressors includes 

hundreds of thousands of proteins found across a variety of genera of bacteria and 

archaea.(32, 43) TFRs (TetR family repressors) work as single component systems. Unlike 

two-component systems, such as kinase signalling pathways, the sensory and DNA binding 

components of these systems are located on the same polypeptide.(43) A single protein 

therefore receives the hormonal signal and transduces the message into a change in gene 

expression. These repressors are almost exclusively alpha helical and have an N-terminal 

DNA binding domain and C-terminal ligand binding domain. An N-terminal DNA binding 

domain has previously been associated with being a repressor whereas a C-terminal binding 

domain is often thought to relate to being an activator (note however that there are well 

documented exceptions to this rule).(43) TFR proteins are homodimeric meaning that for each 

dimer there are two identical ligand-binding pockets and two identical DNA-binding 

domains, usually binding to a palindromic operator sequence. A number of TFRs have had 

their 3D structure determined by X-ray crystallography including TetR,(44) QacR, CprB, 

SimR (45) and EthR (46) which has broadened our understanding of their functionality. 

The common motif that connects the proteins in this family is the conserved helix-turn-helix 

DNA binding domain.(32) Outside of this sequence of 47 amino acids, there is no clear 

conservation in amino acid sequence however and the TetR family has been shown to bind to 

a large range of different ligands. 

The TetR family of repressors are particularly common in microbes that have to adapt to 

changes in environment, for example soil dwelling bacteria such as Streptomyces or 

extremophiles and plant and animal pathogens. Regulation by this family of proteins is not 

limited to the biosynthesis of antibiotics with regulation of efflux pumps, responses to 

osmotic stress and the control of differentiation having been shown, amongst other 

targets.(32) The gene target for many TFRs is not known however. There are often repeated 

operator motifs, but these can be hard to predict.(43) 

The complexity of regulation varies within the TetR family. An example of simple regulation 

is that of the repression of tetA by TetR, which is then released by tetracycline, thereby 

regulating tetracycline resistance in Escherichia coli.(47) However, in other systems it can be 

more complicated with modulation by other regulators and cross-interactions with other 

networks including the regulation of pathway specific activators and the repression of 

multiple bidirectional operators.(32) One consensus between TFRs appears to be that they are 

self-regulatory. For example, TetR controls the repression not only of tetA but also of tetR, 
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the gene for its own production. However, as with any class of proteins, there are exceptions 

to the rule and not all TFRs will function in the manner just described. 

Pseudoreceptors 
GBL systems often have been found to contain two TetR family receptors, for example ScbR 

and ScbR2.(38, 48) ScbR2 appears to have a distinct role compared to the ScbR, the latter of 

which binds the S. coelicolor butyrolactone SCB1. This second type of protein is often 

thought of as a ‘pseudoreceptor’, sharing similar structures and sequence identity with the 

‘real’ cognate GBL receptors but showing differences in ligand binding specificity as well as 

the range of DNA targets it will bind to.(49)  

ScbR2 is the best studied of these pseudoreceptors.(50) ScbR and ScbR2, which share 33% 

identity over ~85% of their sequences, are involved in the regulation of antibiotics 

actinorhodin and undecylprodigiosin.(51) ScbR2 has been indicated to bind these and other 

end product antibiotics in vitro and in vivo as opposed to SCB1, thereby releasing its 

repression and influencing antibiotic production.(49, 52) ScbR has also been shown to be 

expressed at a different time to ScbR, further validating the evidence that it has a different 

role.(50)  

The ligand binding domains of the GBL receptors and pseudoreceptors are not conserved. It is 

thought that a range of both endogenous and exogenous non-GBL ligands may bind these 

second repressors meaning that they may have a cross-species regulatory function.(52) It is 

also hypothesised that in some systems, the second receptor may only become ‘activated’ as a 

repressor in the presence of a cognate ligand, potentially the end product antibiotic.(50) In 

this way, this second repressor is thought switch off antibiotic production once enough has 

been produced. Alternatively, they may be able to directly or indirectly activate transcription 

of some genes as well as controlling the repression of others, although the mechanistics of 

this are not established.(50) The differences in ligand binding capacity between the true 

receptor and pseudoreceptor are poorly understood in many TetR systems and many 

inferences remain as hypotheses that are yet to be experimentally proven.  

As well as differences in ligand binding, the DNA binding sequences for the pseudoreceptors 

have often been predicted to outnumber those for its paralogue and are also sometimes 

thought to be found in otherwise unrelated endogenous gene clusters, further indicating that 

these systems are cross-regulatory.(50) 

Having a second ‘pseudoreceptor’ adds an extra level of complexity and control over gene 

expression and understanding the role of these paralogous pseudoreceptors in the co-
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ordination of antibiotic biosynthesis is key to exploiting ‘cryptic’ natural product gene 

clusters and increasing the yield of commercially available antibiotics.(49) 

1.2.4 Other Microbial Hormones 
As well as these gamma-butyrolactones, other groups of microbial hormones include 

butenolides such as avenolide (53) and furans such as the methylenomycin furans,(54) which 

have also been shown to work with equivalent ligand-TetR family receptor/repressor systems. 

Examples of these hormones are shown in Figure 1.3. 

The small methylenomycin furans (MMFs) from Streptomyces coelicolor A3(2) belong to a 

group of 2-alkyl-4-hydroxymethylfuran-3-carboxylic acids (AHFCAs) that are structurally 

distinct from the GBL family.(35, 54) Five known furan hormones are believed to alter the 

action of TetR family member MmfR (and possibly its paralogue MmyR) by inducing a 

conformational change and releasing the repression of the methylenomycin antibiotic 

biosynthetic cluster.(55) MmfR is an orthologue of the previously mentioned ArpA receptor 

which binds the GBL; A-factor. It is these methylenomycin furans (MMFs) from model 

actinomycete Streptomyces coelicolor A3(2) that is of particular interest in this project. 
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Figure 1.3. Chemical structures of microbial hormones from Streptomyces species 

VB-A – S. virginiae GBL, IM-2 – S. lavenduelae GBL, A factor – S. griseus GBL, Avenolide – S. 
avermitilis butenolide, MMF1 – S. coelicolor furan, SCB1 – S. coelicolor GBL. 

 

1.3 Streptomyces coelicolor – A Model Organism 
1.3.1 S. coelicolor Genetics 
S. coelicolor (56) was initially chosen as a model organism as it produces red and blue 

pigments, a phenotype that is easy to observe and track in mutant strains.(57, 58) The name 

coelicolor comes from the Latin term coelus meaning ‘sky’ colour, referring to these blue 

pigments that this species produces.(59) 

More than 10 years ago the entire Streptomyces coelicolor A3(2) genome was sequenced, 

allowing a greater understanding of the biosynthesis of crucial metabolites.(6) These soil 

living bacteria have a large 8 667 507 base pair single linear chromosome, the largest known 

bacterial genome at the time of discovery. The genome also includes two plasmids; the linear 

OOH

HO

O

OOH

HO

O

O

A factor

SCB1
OH

HO

O

O

VB-A

O

HO

O

IM-2

O

HO

O

HO
MMF1

O

HO

R

O

Gamma-butyrolactone

O

R2

R2
O

Butenolide

R1

O

HO

O

HO

R
Methylenomycin furan

H

H

H

H

H

H

H

H

H

H

O

Avenolide
O

O

OH



Chapter 1 | Introduction 

 9 

SCP1 (356 023 bp) (60) and the circular SCP2 (31 317 bp), (61) which were also sequenced 

in 2004 and 2003 respectively. Of the large single chromosome, over 12% of protein coding 

genes are thought to be regulatory,(6) with roles in regulating morphological and metabolic 

changes as well as programming antibiotic synthesis via the use of microbial hormones.(32) 

S. coelicolor is known to produce at least five known antibiotics, including 

methylenomycin,(62) but the availability of the entire genome sequences has allowed the 

identification of a number of analogous pathways with unknown natural products, many of 

which are currently under further investigation.  

1.3.2 Methylenomycin 
Figure 1.4 shows the chemical structures of the methylenomycin antibiotic and its precursor 

from Streptomyces coelicolor A3(2). Methylenomycin A is a cyclopentanone antibiotic that 

acts upon both Gram-positive and Gram-negative bacteria, working optimally in low pH 

conditions.(63) It appears to be particularly active against the Gram-negative Proteus, also 

commonly found in soil as well as in faeces and manure.(64) Streptomyces violaceoruber is 

also known to produce methylenomycin, with 99% nucleotide identity shown in the 

biosynthetic cluster (65) but this strain has not been studied in this project. 

Figure 1.4. Chemical structures of the antibiotic methylenomycin A and its precursor, 
methylenomycin C from S. coelicolor A3(2) and S. violaceoruber 

 

Despite being discovered in the 1970s (14) the exact mechanism of methylenomycin 

antibacterial action is as yet unclear and it has shown little promise clinically with high levels 

of toxicity to animal cells shown. In the past, this antibiotic was of particular interest as all 19 

kb (54) of the 21 biosynthetic, regulatory and resistance genes are found in a cluster on the 

SCP1 plasmid of S. coelicolor (and pSV1 in S. violaceoruber) (66), (67), (68) (see Figure 

1.5). Although extra chromosomal giant plasmids are often associated with secondary 

metabolism,(69) methylenomycin is one of very few known antibiotics where the whole 

biosynthetic cluster is entirely plasmid based. Being plasmid based meant that the genes were 

easily transmissible between streptomycetes and it was relatively simple to produce knockout 

strains.(70) This was particularly important at a time before technologies for creating 

knockouts had advanced to the level they have today. For studying methylenomycin 
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production, the SCP1-free S. coelicolor strain M145 could be used to study sections of the 

biosynthetic pathway without background interactions from the wild type system. 

MmfR/MMF regulation of methylenomycin biosynthesis is analogous to a number of other 

antibiotic regulatory systems in other Streptomyces strains including S. venezuelae and S. 

avermitilis (see Section 1.4.3 on page 16). By further investigating this cluster that already 

has extensive research done on it and is partially understood, it might also be possible to shed 

some light on the regulation some of these other potentially harder to study biosynthetic 

clusters on which we have much less information. 

Methylenomycin Biosynthetic Cluster 
The 21 genes of the methylenomycin cluster include mmfR and mmyR, coding for the TetR 

family transcriptional repressors MmfR and its paralogue MmyR, and the mmfLHP operon, 

which is responsible for making the enzymes used in the production of the cognate furan 

ligands for MmfR; the MMF microbial hormones. The cluster also contains mmyJ and mmr, 

both involved in methylenomycin resistance as well as mmyB, which produces a pathway 

specific activator. There is also a selection of methylenomycin biosynthetic genes which 

come together in operons; mmyTOC, mmyBQEDXCAPK and mmmYF.(71) The assembly of 

these genes on the SCP1 plasmid are shown below in Figure 1.5 with different colours 

denoting different types of product. Biosynthetic genes are all shown in red, repressors in 

peach, genes associated with resistance in purple, MMF biosynthetic genes in blue and the 

MmyB activator is in green. 

 
Figure 1.5. Organisation of the methylenomycin biosynthetic gene cluster from the SCP1 
plasmid of S. coelicolor A3(2)1 

Proposed functional attributions are mmfR and mmyR – transcriptional repressors, 
mmfLHP – methylenomycin furan biosynthetic genes, mmyJ and mmr – methylenomycin 
resistance, mmyB – transcriptional activator, all others – methylenomycin biosynthesis, 
based on the work of Chater and Bruton (65) 

1.4 Regulation of Methylenomycin Biosynthesis  
1.4.1 MmfR – A TetR Family Transcriptional Repressor 
MmfR is a TetR family member and like them, is a homodimeric protein with a C-terminal 

DNA binding region and a N-terminal ligand-binding domain. As yet unpublished, the crystal 
                                                        
1 This diagram is to scale and represents the appropriate sizes of the individual genes, it was created 
using the SnapGene Viewer software (72. Biotech G. SnapGene Viewer. In: Glick B, editor. 3.0.3 ed. 
Chicago, IL2004-2016.) 
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structure of MmfR has been determined, both with and without MMF2 to a resolution of 

1.5Å. This reveals the molecular interactions between MmfR and MMF2 and opens up the 

potential for more bioinformatical analyses to be carried out on the protein (73) with a higher 

chance of accuracy for predictions of MmfR binding to the other four MMFs. 

Figure 1.6 shows two representations of the 3D structure of this repressor protein in its apo 

form, based on the crystal structure obtained. The cartoon model on the right hand side shows 

the location of the ligand binding pocket as well as the TetR HTH DNA binding domain, 

labelled as B and A respectively. Each monomer in this homodimer contains one ligand 

binding pocket and a DNA binding domain meaning that each complete dimer will bind two 

MMF molecules. Work is currently being carried out to achieve a crystal structure of MmfR 

bound to DNA to complete the picture of its different conformations. 

Figure 1.6. Representatives from the crystal structure of the TetR family homodimer 
MmfR from the methylenomycin biosynthetic cluster of S. coelicolor in its apo form 

Left) Filled surface model. Right) Cylindrical cartoon model; where A) indicates the location of the N-
terminal DNA binding domain in each monomer and B) the location of the C-terminal ligand-binding 

pockets. 
(Adapted from the work of Dean Rea et al.) (73) 

 

Methylenomycin Furans – Microbial Hormones 
In Figure 1.7, the chemical structure of the five structurally similar methylenomycin furan 

signalling molecules that are thought to bind MmfR can be found. These molecules are based 

around a furan group; a five membered ring made of four carbons and one oxygen atom. Each 

MMF also has a carboxylic acid group and a hydroxyl group attached to this furan group as 

well as a variable region with a branched or unbranched alkyl chain of differing length.(54) 
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Figure 1.7. Chemical structures of the known S. coelicolor methylenomycin furans 
(Based on the work by Corre et al.) (54) 

 
Previous research by Nicolas Malet has implied that it is the alkyl chain of these small 

molecules that allows the MMFs to fit the MmfR binding pocket completely and initiate the 

conformational change.(55) Work with synthetic analogues also indicated that an alkyl chain 

with a length of between three and five carbons is optimal triggering MmfR release. The 

hydrophobicity of this alkyl tail also means that the MMFs with longer chains are less soluble 

in water. The implications of the different properties of the five ligands in vivo are not known. 

 

Research carried out by Peter Harrison (73) revealed that the different MMFs vary in their 

binding kinetics to MmfR. In particular, his work consistently indicated that MMF1 with its 

branched alkyl chain was best at causing MmfR release. Findings on the other four MMFs 

were less distinct. It is not yet clear why there are five different methylenomycin furans and 

what impact the choice of these ligands will have on transcription. More in vivo work is 

needed before conclusions can be made about the five molecules. 

Methylenomycin Furan Biosynthesis 

Of MmfLHP, the enzymes responsible for the biosynthesis of MMF1-5, MmfL has shown 

25% amino acid identity and 43% similarity over 83% of its sequence to AfsA, a butenolide 

synthase used in the production of the GBL signalling molecule A-factor.(71, 74) MmfL also 

appears to be the most critical of the three in the MmfLHP operon with MMF production 

ceasing in mmfL knockouts and low level MMF production detected when mmfL was present 

but mmfH and mmfP were absent (see the genes highlighted in blue in Figure 1.5).(54, 71) On 

the other hand, the production of a mmfP or mmfH knockout did not result in the termination 

of MMF production but just lower levels produced, the indication of which being that MmfP-

like and MmfH-like proteins are present in S. coelicolor that can partially takes over their 
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roles.(54) The proposed functions of the three enzymes are that mmfL codes for a butenolide 

synthase, mmfH for a flavin dependent dehydrogenase and mmfP for a phosphatase.(75) It 

also appears likely that precursors to the steps catalysed by MmfLHP may be intermediates 

common also to the biosynthetic pathways of the GBLs.(54, 74)  

Transcriptional Regulation by MmfR 
MmfR is proposed to bind to three different intergenic locations within the methylenomycin 

cluster, thereby blocking five different promoters and regulating the expression of the five 

associated operons. These intergenic protein-binding regions are known as methylenomycin 

auto-regulatory response elements or MAREs. A diagram of the location of these operator 

sites within the methylenomycin biosynthetic cluster can be found below in Figure 1.8, with 

the MARE operators denoted with bold vertical black lines. (Please note that this diagram is 

not to scale and is purely a representation to show the assembly of the gene cluster. This 

diagram is a reduced form the one shown earlier in Figure 1.5 and has had a section of the 

biosynthetic cluster removed so to only focus on the areas surrounding the MARE operators.) 

 
 
Figure 1.8. Proposed regulation of the methylenomycin gene cluster from the SCP1 
plasmid of S. coelicolor by the TetR family member; MmfR 

The blue lines represents the proposed location of MmfR binding operator sites and red 
arrows indicate the operons regulated by these operators and the direction of transcription. 
Proposed functional attributions are mmfR and mmyR – transcriptional repressors, 
mmfLHP – methylenomycin furan biosynthetic genes, mmyT and mmyQ – methylenomycin 
biosynthetic genes, mmyB – transcriptional activator, based on the work of Chater and 
Bruton (65) 

 

The five operons directly regulated by MmfR are mmyR, mmfLHP, mmfR, mmyBQEDXCAPK 

and mmyYF. It has been shown experimentally that there is a lag in the expression of these 

different operons with the transcripts for the biosynthetic genes being detected last.(71) 

MmfR regulation of mmfR and mmfL means that the system is auto-regulatory with both 

negative and positive control mechanisms (Figure 1.8) where MmfR repression influences 

both its own synthesis as well as the synthesis of the MMFs which will then cause its release 

from the MARE operator. 
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The MARE operator sequences at each of the intergenic regions are as follows; 

mmfLR   5’ ATAATACCTTCC CGCAGGTATATT 3’ 
  3’ TATTATGGAAGG GCGTCCATATAA 5’ 
 
mmyR   5’ AACATACCTTCC CGAGGGTATGTT 3’ 
  3’ TTGTATGGAAGG GCTCCCATACAA 5’ 
 
mmyBY  5’ AAAAAACCTTCG GGAAGGTTTGAC 3’ 
  3’ TTTTTTGGAAGC CCTTCCAAACTG 5’ 
 
Conserved nucleotides between the three sites have been highlighted in yellow. The MARE 

operator sequences are 24 base pairs in length, 12 bp for each monomer, but are not a perfect 

palindrome despite MmfR being homodimeric. The three different intergenic MARE operator 

sequences do also vary quite considerably with only 13 out of the 24 bases remaining constant 

between the three sites, indicating possible different affinities of MmfR at each site. 

There are also different -35/-10 sequences for each of the five promoters regulated by MmfR 

(Table 3.1) in this cluster. These different promoters may therefore have different strengths, 

adding yet another layer of control to this biosynthetic cluster. The variation in promoter 

strength between the five operons is yet to be shown experimentally however. 

MmfR also has a paralogue, MmyR, which has been shown to also be involved in the 

regulation of methylenomycin biosynthesis. 

1.4.2 MmyR and its Role in Transcriptional Regulation 
Much less is known of the transcriptional regulation by MmyR. This TetR family member 

shares 35% identity with MmfR (over 54% of its sequence, covering the N terminal regions) 

(48) but research has suggested that it has a different mechanism of action. 

MmyR has been found to not be soluble when purification has been attempted with existing 

expression systems in E. coli. It has therefore not been possible to purify MmyR for 

crystallography or other in vitro analyses. For this reason, there is a lack of evidence as to 

whether MmyR will also bind the MMF molecules although genomic manipulations and the 

creation of knockout mutants have indicated that MmyR is not sensitive to the MMFs and will 

not transduce their signal.(71) The lack of an accurate crystal structure also limits the 

bioinformatical analysis that can be done on this homologue e.g. a docking analysis is a lot 

less likely to be reliable. 

MmyR can likely be regarded of as one of the pseudo-receptors mentioned in Section 1.2. 

These pseudo-receptors appear to share high levels of identity with their matching ‘real 

receptor’ but show differences in DNA and ligand binding properties, often binding a larger 
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range of DNA targets as well as sometimes acting only as a repressor in a ligand bound 

form.(50) Work by Choi et al. in 2004 into GBL receptors in non-streptomycete 

actinomycetes found that these pseudo-receptors often have a basic pI, usually around nine or 

ten. The real receptors on the other hand have a pI of around five or six.(76) Table 1.1 

contains details on the molecular weight and predicted isoelectric point of MmfR, MmyR and 

analogues ScbR and ArpA, as calculated using the software ProtParam.(77) MmfR has a 

predicted pI of 6.0 compared to 5.7 for ArpA and 6.4 for ScbR thus indicating that it is a ‘true 

receptor’, something which matches experimental findings.(71) MmyR on the other hand has 

a pI of 7.8 further indicating that it is unlikely to function as MmfR does or have the same 

operator/ligand binding properties. This does need to be proven experimentally however as 

this correlation between mode of action and predicted pI does not cover all cases and should 

be seen as no more than an indication of potential mechanism of action. Whether MmyR will 

bind to alternative ligands than the MMFs or different operators to the three MARE operators 

is yet to be seen.  

Table 1.1. Properties of TetR family member monomers MmfR, MmyR, ScbR and 
ArpA 

The predicted pI of these proteins comes from the ProtParam software, according to the 
standard parameters set by this software.(77)  

Protein Amino acid 
length 

Molecular weight 
(daltons) Theoretical pI 

MmfR 214 24052 5.99 
MmyR 203 21883 7.78 
ScbR 215 23861 6.38 
ArpA 287 32107 5.67 

 

Despite the unclear ligand/operator binding properties of MmyR, knockout strains for mmyR 

produce a phenotype overexpressing methylenomycin (65, 78) indicating a key role in 

regulation and repression. There is no experimental evidence that MmyR will bind the three 

MARE operators as yet however. An mmfR knockout on the other hand reveals a phenotype 

similar to that of the wild type strain despite the repression and release of MmfR by the 

MMFs having been shown experimentally.(54, 55, 71) It is clear therefore that regulation by 

the MmfR-MmfLHP-MmyR network is a complex one.(79) One hypothesis is that MmyR 

plays a secondary role, stopping the positive feedback loop once enough methylenomycin has 

been produced rather than allowing its initial production.(54) MmfR on the other hand is the 

preliminary repressor, only repressing the mmy biosynthetic genes in the absence of the auto-

inducing MMFs. More findings to support this hypothesis have been found in this project and 

will be discussed later. The regulation of natural product biosynthesis via MmfR/MmyR is 

something that is thought to be homologous in mechanism to the repression found in a 

number of other Streptomyces strains, this will now be discussed. 
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1.4.3 Analogous Systems to MmfR/MmfLHP/MmyR 
The analogous pathways in other strains of Streptomyces with similar control mechanisms to 

that found in the regulation of methylenomycin also include two distinct repressor proteins as 

well as analogues of the mmfLHP cluster. For example, SgnR and GbnR are MmfR and 

MmyR analogues respectively, found in S. venezuelae.(80) SAV_2270 and SAV_2268 from 

S. avermitilis and SHJG_7318 and SHJG_7322 from Streptomyces hygroscopicus are also 

close homologues of MmfR and MmyR.(81, 82) A schematic comparison of some of these 

clusters is represented in Figure 1.9 with the associated percentage identities at the amino acid 

level displayed. 

 

Figure 1.9. Organisation of mmfR/mmfLHP/mmyR-like clusters found in S. venezuelae 
and S. avermitilis and their associated amino acid percentage identities compared to the 

S. coelicolor cluster 
Orthologues are represented in matching colours and approximate gene sizes shown by the size of the 

arrows. This figure was taken directly from the 2016 paper by Niu et al. (35). 
 

A sequence analysis with MEME (Table 7.3) shows that all of the transcriptional repressor 

homologues have a highly conserved helix-turn-helix DNA binding domains consistent with 

being TetR family members.(83) 

These homologous transcriptional repressors not only show similarity in amino acid sequence 

but a comparison with the MARE operator sequence has revealed predicted intergenic auto-

regulatory response elements (AREs) where these homologous TetR family members are 

believed to bind in their own systems.(84) This conserved 24 bp protein binding DNA 

sequence from the four homologous strains just mentioned is shown in Figure 1.10. As yet 

however, there is no experimental data confirming TFR binding to this predicted motif. 
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Figure 1.10. Predicted motif of the intergenic auto-regulatory response element (ARE) 
sequences from S. coelicolor, S. venezuelae, S. avermitilis and S. hygroscopicus 

Schematic generated by the MEME suite (83) courtesy of Vincent Poon (84) 
 

The role of the pseudo-receptor appears to be conserved throughout the different strains 

where knockouts reveal a phenotype of natural product overproduction. For example the 

recent creation of a gbnR knockout in S. venezuelae resulted in the overproduction and 

discovery of novel natural products; the gaburedins (a family of γ-aminobutyrate (GABA)-

derived ureas).(75) These gaburedins bear very little structural or mechanistic resemblance to 

methylenomycin A the implications of which are that these homologous regulatory clusters 

are used to control the production of a range of unrelated natural products. Homology does 

not extent to the BGC (biosynthetic gene cluster). The BGC target in S. avermitilis and S. 

hygroscopicus are as yet unknown. 

Figure 1.9 also shows that, in addition to similarities between TetR receptors in these 

MmfR/MmfLHP/MmyR-like clusters, there are high levels of identity between MmfLHP and 

their orthologues giving the indication that these other strain may also produce AHFCA-like 

signalling molecules rather than GBLs.(54, 81) The AHFCAs may therefore be a novel and 

distinct class of microbial hormones found across multiple species. 

1.4.4 Other Methylenomycin Control Mechanisms 
In addition to the interaction of furan microbial hormones and the MmfR transcriptional 

repressor, methylenomycin production is also known to be regulated by pathway specific 

activators as well the use of rare codon and low alanine levels.(63) There is also activation of 

methylenomycin production upon a rapid drop in pH, an artefact that is little understood.(63) 

These factors all come together to produce a complex regulatory network, influencing the 

biosynthesis of methylenomycin. 

Transcriptional Activators 
Methylenomycin production is believed to be dependent on the presence of the pathway 

specific transcriptional activator; MmyB.(71, 85) The gene for this activator is the first found 

in the largest operon of methylenomycin biosynthetic genes; mmyBQEDXCAPK, one of the 

operons directly regulated by MmfR (and possibly MmyR). Research has indicated that 

MmyB binds to pseudo-palindromic B-boxes in the methylenomycin cluster and will activate 
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transcription of its own operon, mmyTOG, mmyY and mmyF.(71) It is hypothesised that 

maybe the main role of the MmfR/MMF/MARE operator regulatory system is to de-repress 

production of MmyB rather than direct the activation of biosynthetic genes via the removal of 

repression at the MARE operator. MmfR therefore may only indirectly influence 

methylenomycin biosynthesis. Knockout mmyB strains will not produce methylenomycin, 

even when MmfR/MmyR repression was removed by the MMFs.(71) MmyB does not appear 

to regulate the production of the MMFs but like MmfR, is potentially self-regulatory leading 

to a self reinforcing model of the activation of methylenomycin biosynthesis.(71) 

A bioinformatical analysis of MmyB shows similarities with Xre (Xenobiotic Response 

Element) family members, a family of common transcriptional regulators which, like TetR 

family members, have a HTH DNA binding domain.(85, 86) Members of this family will 

bind to DNA in homodimeric and heterodimeric forms and includes the lambda-

bacteriophage Cro protein. 

TTA Codon 
The gene for mmyB also contains the rare TTA codon thereby adding an extra level of 

translational regulation to the system.(87) The synthesis of tRNA for this codon (BldA) only 

occurs at the later stages in the complex Streptomyces life cycle.(88) Bld expression depends 

on the presence of the sigma factor BldN,(89) which itself is regulated by BldG and BldH 

both involved in preparing the cell for the production of aerial mycelium.(90) The TTA codon 

can also be found in mmfL, one of the genes to make an MMF biosynthetic enzyme. This use 

of the rare TTA codon is also found in a number of other antibiotic BGCs including those for 

achtinorhodin and prodiginine.(71) 

 
Hypothetical Regulatory Mechanisms 
Sigma Factors 
A number of other sigma factors may also be involved in the transcriptional regulation of this 

system. Promoter specificity of a polymerase can be influenced by sigma factors that interact 

with it and recruit the core RNA polymerase enzyme.(90) Alternative sigma factors are used 

to control gene expression. It is also possible to have anti-sigma factors and anti-anti-sigma 

factors, which exert yet more layers of control. E. coli only has seven sigma factors whereas 

S. coelicolor is believed to have at least 65,(90) showing the much more extensive control 

mechanisms found in streptomycetes. There is therefore potential that sigma factors are 

involved in the regulation of methylenomycin biosynthesis, however the specific sigma 

factors involved and the extent to which they have control is as yet unknown. 

Riboswitches 
It is also possible that the methylenomycin BGC is also regulated by riboswitches. 

Riboswitches are sections of mRNA molecules that can directly regulate themselves in the 
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presence of small effector molecules (possibly the MMFs).(91) Riboswitches are particularly 

common in bacteria but, as with sigma factors, the experimental evidence for their 

involvement in regulation of translation of the methylenomycin BGC is currently lacking. 

 

1.5 Introduction to Research Aims 
Research questions 

Do all five methylenomycin cluster promoters, controlled by MmfR, have the same 

strength? 

Does MmfR bind in the same way to all three MARE operator sequences? 

Is MmfR release by the MMFs the same at all three MARE operators? 

Does MmfR respond to all five furan compounds? 

Do all five MMFs have the same efficacy? 

What are the key residues in ligand binding? 

How does MmyR binding to the MARE operator and the MMFs vary from that of MmfR? 

Are there any other ligands that MmyR may bind to? 

Could MmfR, MMFs and MARE operators be used as a multi-host efficient novel inducible 

expression system for GC rich bacteria? Would this allow the purification of recombinant 

proteins? 

 

Hypothesis 

The promoters that are predicted to be controlled by MmfR have different -35/-10 

sequences so it is possible that they will have varying strengths. 

In vivo, MmfR will bind to DNA at the MARE operator and be released upon the addition 

of a MMF compound. 

The three MARE operators have different semi-palindromic sequences and so are 

likely to show differential binding to MmfR. 

MmfR will respond to all of the MMFs but due to the differing length of alkyl 

chain between the five molecules there are likely to be differences in the binding 

potential of each. 

MmyR is only produced after methylenomycin biosynthesis. It will bind to the 

methylenomycin cluster operators but not be released by the MMFs, thereby repressing 

biosynthesis when methylenomycin has been produced to conserve cell resources and to 

protect the bacterium from the potentially lethal effects of excess methylenomycin. 

Alternatively, an unknown ligand may ‘activate’ MmyR as a repressor. 
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1.5.1 How Will These Research Questions Be Answered? 
MmfR and MmyR functionality 
To assess the binding abilities of MmfR and MmyR to the MARE operator and MMFs a 

newly optimised luxCDABE (92) reporter system was developed for use in S. coelicolor (see 

Section 1.5.2 for more details). Vectors were created to contain luxCDABE under the control 

of different methylenomycin cluster intergenic regions (including the MARE operators), 

allowing the investigation of promoter strength as well as the effect of different operator sites. 

Vectors were also created that contained mmfR or mmyR to allow the study of TetR regulation 

over this BGC. MMFs could then be added to this system and their effects on 

bioluminescence measured. This luciferase assay as well as a bioinformatical analysis of 

amino acid sequences of MmfR, MmyR and their homologues fulfilled the investigative 

demands the first six research questions in this project. 

When investigating the ligand binding pocket of MmfR an in silico analysis of its crystal 

structure (73) as well as a comparison of primary structures with known homologues was 

done. This information was then used to perform site directed mutagenesis on these key 

ligand-binding residues and, using the luciferase assay, to study the effects this had on the 

release of MmfR from the MARE operators as well as whether MmfR function can be 

returned by a higher concentration of MMFs. 

A comparison could then be made between MmfR and MmyR activity in methylenomycin 

regulation and the information brought together to explain how MmfR/MmyR act together to 

regulate methylenomycin biosynthesis. 

Developing a Novel Inducible Expression System 
The production of a heterologous expression super host was investigated by adding the 

luxCDABE/mmfR system to the genetically streamlined Streptomyces albus host (93) to 

establish whether it would be suitable to use for the inducible expression system. This then 

lead onto an investigation of other alternative streptomycete hosts as well as a literature 

review of current expression systems. 

Following on from this, MmfR/MMF/MARE operator interactions were optimised so they 

could be adapted for use as a novel inducible expression system. Vectors were designed for 

the overexpression of a gene of choice to be trialled in this system and a protocol developed 

for the collection of recombinant proteins from S. coelicolor. An explanation of why a novel 

inducible expression system is needed can be found in Section 1.5.3. 
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1.5.2 Choice of Reporter System Used 
There are a number of reporter systems available and it was necessary to choose a suitable 

one for answering the research questions in this project. Unfortunately a number of reporter 

systems are not suitable for use in GC rich bacteria such as Streptomyces. The lacZ system for 

example, is a usually easy and sensitive reporter system and is widely used. Unfortunately, 

streptomycetes have an enzyme that has beta-galactosidase activity and therefore interferes 

with lacZ expression making it an unsuitable reporter system.(51) Efforts to produce 

Streptomyces knockout of this beta-galactosidase enzyme have often been unsuccessful and 

results in poorly growing colonies.  

A beta-glucorinidase system (94) has been used to study the regulation of virginiamycin 

biosynthesis by BarA and its cognate ligand VB from S. virginiae (Section 1.2.2) in tobacco 

plant cells in 2006.(95) This system was then later developed for use in actinomycetes, 

showing promise as a viable reporter system for these bacteria.(96) This is a colorimetric 

assay however and therefore limited in the quantitative results that can be obtained. It was 

therefore decided that it would be best to utilise a reporter system that produces more 

quantitative results such as fluorescence or bioluminescence. 

The gpf system has been trialled in Streptomyces with a degree of success. Streptomycetes 

will auto-fluoresce in blue light, limiting the range of colours that can be used to study 

different components of a system but otherwise appears to be fairly successful in these Gram-

positive bacteria. The disadvantage of the technique however, is that it tends to photo-bleach 

rapidly, limiting the genes it can be used to study as well as posing problems if multiple 

readings need to be taken.(92) 

A luxAB system from Vibrio harveyii has shown also a lot of potential for use in 

streptomycetes. The downside of this system is that luxAB only produce the enzyme 

luciferase and therefore there is the need to add a substrate to produce luminescence. This 

substrate may not pass through all bacterial cell walls with the same efficiency and may 

disrupt cell growth if overlaid onto a solid culture.(92) For this reason, the full luxCDABE 

system, which was optimised for GC high bacteria by Justin Nodwell and his team in Canada, 

(92) was used to investigate MmfR, MmyR, the MMFs and MARE operators further. LuxA 

and LuxB together form the heterodimeric luciferase protein whereas LuxC, D and E are the 

enzymes needed to form tetradecanal, the fatty aldehyde substrate of luciferase.(97) All other 

biochemicals required by this reaction are found naturally in bacterial cells allowing a self 

generated bioluminescent response with no need for external manipulations.(98) A diagram of 

the luxCDABE operon can be found in Figure 1.11. 
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Figure 1.11. Arrangement of open reading frames in the luxCDABE reporter system and 
the assigned functions of individual components of this operon 

This image was taken directly from the 2009 paper by Lin et al., (99) 
 

1.5.3 Why Do We Need A Novel Inducible Expression System? 
Currently, there are a number of commercially available inducible expression systems. 

Famous examples of these are the vectors regulating gene expression via the lac operon, 

inducible upon the addition of IPTG. IPTG is a lactose mimic that is not enzymatically 

broken down like lactose and so remains at a constant level, this will bind to the lac repressor 

(LacI) and cause its release from DNA thereby allowing the expression of a gene of 

interest.(100)  

Specificity of suitable expression hosts is little understood with each protein requiring a 

slightly different set of optimal expression conditions.(101) Many current systems are largely 

based in the Gram-negative Escherichia coli due to its fast growth, ease of culturing and well 

understood uses as a ‘cell factory’.(102) It is possible to optimise current expression systems 

to some extent to improve the expression of heterologous genes. For example genomic GC 

content varies widely across bacteria, ranging from anything between under 20% GC content 

to over 70% and so codon usage is also a key factor when designing recombinant genes.(103) 

There are a number of proteins that still cannot be efficiently over produced and purified 

using existing methods however. This can be due to a variety of complications such as 

physiological conditions not being suitable for the correct folding of the protein, low 

expression levels or because the host cannot carry out the required post-translational 

modifications.(101) Alternative expression systems have been developed to those in E. coli 

including systems based in yeast, other bacteria and fungi as well as those for mammalian 

cells.(104) These hosts will all provide slightly different conditions for protein expression, 

which may prove optimal for some proteins, but again these systems again cannot express all 

genes. There is no universal heterologous expression host. There is hope that the 

MmfR/MMF/MARE operator system, analogous to LacI/IPTG/lac operator can be used to 
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provide an alternative expression system for the overexpression of recombinant genes in the 

Gram-positive Streptomyces species. This system would hopefully be useful in the production 

of proteins currently not possible in existing systems. 

One benefit of using streptomycetes as an expression host is their high innate protein 

secretion capacity.(101, 105) This has the advantage of an increased chance of the protein 

folding properly (106) as well as a reduced requirement for expensive purification techniques. 

This is therefore something that would be beneficial to include in the expression system being 

designed in this project. 

In recent years there have been a number of systems developed for heterologous expression in 

streptomycetes that have shown promise. For example, the work by Noda et al. in 2015 

showed great success with the production of streptavidin from a streptomycete host.(107) 

Streptavidin is originally from Streptomyces avidinii so seems logical therefore that it is 

expressed better in these GC high bacteria as conditions are likely to be closer to the native 

conditions needed for streptavidin production. The work by Noda et al. resulted in the 

production of a much more thermostable streptavidin product compared to those produced by 

E. coli systems, thereby expanding the potential applications of streptavidin-biotin 

interactions. Not all streptomycete expression systems produce a high protein yield however 

and much optimisation is needed. An example of the type of optimisation done includes the 

work by Wilkinson et al. who investigated improving expression systems in actinomycetes 

based on optimising promoters. This lead to 100 times more product than when using than 

using wild type promoters.(108) Despite these successes however, there a still many instances 

where a heterologous protein cannot be purified from streptomycetes and so novel inducible 

expression systems are still very much in demand and it is for this reason that an additional 

inducible expression system is being developed in this project. 

 

1.6 Outline of Thesis Structure 
Chapter two specifies all of the stock solutions and protocols used to obtain results for this 

thesis as well as specifics on the source of all consumables used. Included in this section are 

details on primers used as well as lists of vectors and strains created. Further information on 

how these techniques developed based on experimental findings can also be found throughout 

the following research chapters. 

Chapter three presents the optimisation of the luxCDABE reporter gene system for GC high 

bacteria for use in studying the interactions between MmfR (and paralogue MmyR) with the 

MMFs and the binding to the MARE operator. The chapter gives details on the assembly of 
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vectors for this method and how these come together to create an arrangement that can be 

adapted to study different aspects of the regulation of methylenomycin biosynthesis. In 

addition, results from the investigation into the strength of different promoters in the 

methylenomycin biosynthetic cluster are reported within this chapter. 

Chapter four further expands on this luxCDABE reporter system specifically looking at MmfR 

as a transcriptional repressor. This chapter is divided into two main sections, the first looking 

at MmfR/MARE operator interactions and how binding varies at the three operators. The 

second is an investigation into MmfR/MMF interactions and includes details on all five 

methylenomycin furan ligands and their binding potentials to MmfR as well as an 

investigation into the MmfR ligand binding pocket and the production of mutants that were 

then also tested using the luciferase assay. 

Chapter five follows on from the investigation into MmfR, this time looking at its paralogue 

MmyR. Again both interactions with the MARE operator and the MMF ligands were 

investigated. Due to the functionality of MmyR being different to MmfR, this chapter then 

goes in a slightly different direction, investigating other possible ligands for this second 

repressor rather than studying key residues in ligand binding. 

Chapter six further explores the self-regulatory mechanism of MmfR, also using the luciferase 

assay. Investigations were carried out into the differences in MmfR repression and release 

when it is under the control of its own promoter. This chapter also briefly examines the 

potential of MmyR auto-regulation. This chapter is concluded with a proposed mechanism, 

combining the function of MmfR/MmyR in the regulation on methylenomycin biosynthesis, 

based on all of the investigative findings up until this point. 

Chapter seven is the final investigative chapter and summarises all of the findings of chapter 

three and four to develop a novel expression system for use in GC rich bacteria, utilising 

MmfR/MMF/MARE operator interactions to induce transcription. This chapter first looks at 

the potential of creating an optimised streptomycete expression host followed by details on 

the creation of vectors for this novel expression system as well as preliminary trials into using 

it with S. coelicolor as a heterologous expression host. 

Chapter eight and nine then discuss and conclude all of the findings from the previous five 

chapters as well as commenting on the implications of this work in wider research and 

explaining the possible future work that could be carried out. 
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2 Materials and Methods 

2.1 Materials and Equipment 
Table 2.1. Consumables used 

Supplier Material 

Agilent Technologies QuikChange Lightening SDM kit (109) 
Biotium GelRed™ nucleic acid dye 
Cell projects Ltd 2 mm short electroporation cuvettes 
Corre group, University of Warwick, 
Coventry, UK 

pCC4 – a pOSV566 derivative with apramycin resistance 
instead of ampicillin 

Corning 12-well plates - transparent, sterile flat bottomed tissue 
culture plates 

Day-Impex Ltd Virkon® disinfectant 
Expedeon InstantBlue™ Coomassie® stain 
GE Healthcare Ni Sepharose 6 Fast Flow 
Invitrogen One Shot® TOP10 Chemical Transformation kit 

Champion™ pET Directional TOPO® Expression Kits 
(110) 
Hygromycin B and UltraPure™ agarose 

Justin Nodwell et al., McMaster 
University, Canada 

Luciferase gene constructs,(92) in particular L1, 11NY 
and sp105 vectors shown in Table 2.5 

Merck-Millipore Amicon Ultra 15 Centrifugal Filter Unit MWCO 10 kDa 
Amicon Ultra 0.5 Centrifugal Filter Unit MWCO 10 kDa 
0.22 µm syringe filter 

MP Biomedicals FastDNA® SPIN Kit for Soil (111) and Lithium Chloride 
National Diagnostics ProtoGel 30% acrylamide 
New England Biolabs (UK) NEB 5-alpha Competent Escherichia coli 

Phusion high fidelity DNA polymerase 
High fidelity restriction enzymes with cut smart buffer 
Shrimp alkaline phosphatase 
ColorPlus™ Prestained Protein Ladder, Broad Range (10-
230 kDa) 

Pernodet Group, University of Paris-
Sud, France 

pOSV566 vector 

Roche Diagnostics Expand High Fidelity PCR System 
Sarstedt Petri dishes and universal tubes 
Scientific Laboratory Supplies Ltd. D-mannitol 
Sigma Aldrich Primers, agarose for electrophoresis, dialysis tubing 

Antibiotics; apramycin, ampicillin, kanamycin and 
chloramphenicol 
SIGMAFAST™ protease inhibitor cocktail tablets, 
EDTA-free for use in purification of histidine-tagged 
proteins 
Protease inhibitor cocktail, for use in tissue culture media, 
DMSO solution 

Thermo Fisher Scientific - Fermentas FastRuler™ DNA ladders 
GeneJET™ Plasmid Miniprep kit (112) 
GeneJET™ Gel extraction kit (113) 
Phusion High Fidelity DNA polymerase 
Restriction enzymes and buffers 
Routine PCR Taq DNA polymerase kit 
T4 DNA ligase and PEG (114) 
Wedge shaped spreaders and small cell scrapers 

VWR International Bacteriological agar 
Trichloroacetic acid for synthesis 
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Table 2.2. Equipment used 

Supplier 
Equipment 

Name Type 
Beckman Coulter Centrifuge Avanti j-25 
Bio-Rad Laboratories Ltd Horizontal electrophoresis system Wide Mini-Sub cell GT cell 
Cole-Parmer Water bath 2 litre StableTemp 
Eppendorf Microcentrifuge 

PCR machine 
PCR machine 

5424 R 
Mastercycler Nexus 
Mastercycler epgradient 

Fisher Scientific pH meter 
NanoDrop 

Acument basic AB15 
NanoDrop 2000 
Spectrophotometer 

Grant Water bath JB1 
Hettich Centrifuge Rotina 46R 
INFORS HT Incubator shaker Multitron 
New Brunswick Scientific Incubator shaker C24 
Photek Photon counting CCD camera 

Imaging software 
HRPCS4 
Photek IFS32 

StarLab Heat block Mini Dry Bath Incubator 
 

Table 2.3. Software used 

Software Distributor Reference 
ChemDraw Pro 15.0 Perkin Elmer  
Clone Manager Basic 9 Sci-Ed Software  
Clustal Omega v.1.2.1 Conway Institute UCD Dublin (48) 
Excel for Mac 2011 Microsoft Corporation  
GraphPad Prism 6 and 7 GraphPad Software (115) 
Image32 Photek  
Ligplot+ v.4.5.3 European Bioinformatics Institute (116) 
MEME v.4.10.0 National Centre for Research Resources (83) 
MacPyMOL v.1.3 Schrodinger (117) 
SnapGene Viewer v.3.0.3 GSL Biotech (72) 
SwissDock Swiss Institute of Bioinformatics (118) 
UCSF Chimera v.1.8.1 Resource for Biocomputing, 

Visualization and Informatics (119) 
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Table 2.4. Primers used 

Name Sequence 5’ to 3’ 
Screening primers  
T7 forward TAATACGACTCACTATAGGG 
T7 reverse/terminator GCTAGTTATTGCTCAGCGG 
 Luciferase screening forward AAGCCACTGAGCGGGAGCTTG 
 Luciferase screening reverse GACGCTGTTGTCGCCGAAGTTG 
gbnB insert screening forward CACGATCCAAAGGAGGATGACG 
gbnB insert screening reverse CACCTGCAGCCGGGCGGCC 
  
Primers for cloning intergenic regions into the lux vectors 
   mmfRp forward GGCTGCCTTCCTTCGTGTG 
   mmfRp reverse AGGGGCGCTACATCTCCCG 
   mmyRp forward CACGATATCATCCTGCCGCGCGGTAGCC 
   mmyRp reverse GTGGGATCCCAACGCCCGAGTCCTCTCAAG 
   mmyBp forward CCGGATATCGGTGAACTCCTTCGGCGAGTG 
   mmyBp reverse GTGGGATCCGGCGCCTCACAGTGTCAAACCTTC 
   mmfLp forward CACGGATCCGGCTGCCTTCCTTCGTGTG 
   mmfLp reverse GTGGATATCAGGGGCGCTACATCTCCCG 
   mmyYp forward CCGGGATCCGGTGAACTCCTTCGGCGAGTG 
   mmyYp reverse GTGGATATCGGCGCCTCACAGTGTCAAACCTTC 
   ermE* forward CACGGTACCAGCTTGCATGCCGGTC 
   ermE* reverse CACGATATCGCTGACGCCGTTGGATAC 
  

SDM primers 
   Y85F 1 CAGCGCGCGAAGTGCTCCTCCACCACG 
   Y85F 2 CGTGGTGGAGGAGCACTTCGCGCGCTG 
   Y144F 1 TCCAGTCCACGAAGGGCAGGGGCAG 
   Y144F 2 CTGCCCCTGCCCTTCGTGGACTGGA 
   Y85A 1 GGGCCAGCGCGCGGCGTGCTCCTCCACC 
   Y85A 2 GGTGGAGGAGCACGCCGCGCGCTGGCCC 
   Y144A 1 GGTCCAGTCCACGGCGGGCAGGGGCAGC 
   Y144A 2 GCTGCCCCTGCCCGCCGTGGACTGGACC 
  
Other primers 
mmfR forward (HindIII restriction, to 
clone from pCC2) CACAAGCTTAAAGGAGGGCAGCCATGACGAGCG 

mmfR reverse (NotI restriction, to 
clone from pCC2) CACGCGGCCGCGCGGACGCTCCCCGTC 
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Table 2.5. Vectors used in luciferase reporter gene assay 

Vector name Genes contained Resistance 
conferred Promoter Reference 

pCC4 - AprR and HygR 

ermEp* 

(120) 
pKMS01 pCC4 with mmfR1  AprR and HygR This project 
pKMS03 pCC4 with mmyR  AprR and HygR This project 
pOSV556 - AmpR and HygR (120) 

pKMS85 pOSV556 with Y85F mmfR 
mutant AmpR and HygR This project 

pKMS144 pOSV556 with Y144F mmfR 
mutant AmpR and HygR This project 

L1 luxCDABE, intergenic region for 
mmfL/mmfR AprR 

mmfLp 

(92) 

11NY luxCDABE, mmfR and intergenic 
region for mmfL/mmfR AprR (92) 

sp105 luxCDABE, mmyR and intergenic 
region for mmfL/mmfR AprR (92) 

L1F luxCDABE, reversed intergenic 
region for mmfL/mmfR AprR mmfRp This project 

L2 luxCDABE, intergenic region for 
mmfP/mmyR AprR mmyRp This project 

L3 luxCDABE, intergenic region for 
mmyY/mmyB AprR mmyBp This project 

L3F luxCDABE, reversed intergenic 
region for mmyY/mmyB AprR mmyYp This project 

L4 luxCDABE and intergenic region 
containing ermEp* AprR ermEp* This project 

 

Table 2.6. Other vectors used in this research project 

Vector name Extra details Size of 
vector 

Resistance 
conferred Reference 

pET151 lacZ, AmpR 5 760 bp AmpR (121) 
pET151:mmfR lacZ, mmfR, AmpR  AmpR This work 

pUZ8002 RP4 derivative ~ 60 000 bp KanR (51), (122) 

pKMS05 L1 vector with Streptococcus mutans 
gbnB and luxCDABE 13 047 bp AprR This work 

pKMS06 L1 vector with Salmonella enterica 
gbnB and luxCDABE 13 080 bp AprR This work 

pCC4 

AprR and HygR, int_pSAM2 
(containing attP for genomic 
integration), OriT, Ter, ermEp* (for 
more details see Figure 3.7) 

8 663 bp AprR and HygR (120) 

pOSV556 
AmpR and HygR, int_pSAM2 
(containing attP for genomic 
integration), OriT, Ter, ermEp* 

9 009 bp AmpR and HygR (120) 

 

 

                                                        
1 pKMS01 mmfR is sometimes referred to as wild type or WT mmfR when being compared to 
the mutants presents in pKMS85 and pKMS144 
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Table 2.7. Parent strains used in investigation 

Strain Genotype Reference 
Streptomyces coelicolor M145 SCP1- SCP2- (51) 

Streptomyces coelicolor M1152 SCP1- SCP2- Δact Δred Δcpk Δcda 
rpoB[C1298T]) (123) 

Streptomyces albus J1704 Wild type – GenBank: CP004370 (124) 

Escherichia coli TOP10 
F- mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 
Δ lacX74 recA1 araD139 Δ(araleu)7697 galU 
galK rpsL (StrR) endA1 nupG 

(110) 

Escherichia coli 
ET12567/pUZ8002 

F- dam-13::Tn9 dcm-6 hsdM hsdR zjj-202::Tn10 
recF143 galK2 galT22 ara-14 lacY1 xyl-5 leuB6 
thi-1 tonA31 rpsL136 hisG4 tsx-78 mtl-1 glnV44, 
pUZ8002 (KanR) 

(125), (122) 

 

Table 2.8. Strains created using various vectors to be used in the luminescence assay 
The parent strain used for all of these was S. coelicolor M145 and vector 2 always uses the 
ermEp* promoter. ‘Inducible’ refers to the possibility of the strain repression being released 
by the MMFs, this had not been proven experimentally for all vectors at the time of creation 
however. 

Name given to 
strain Vector 1 Vector 2 Type of sample Promoter in 

lux vector 
L1 L1 - Positive control 

mmfLp 

11NY 11NY - MmfR, inducible 
sp105 sp105 - MmyR, inducible 

L1+pCC4 L1 pCC4 Positive control 
L1+mmfR L1 pKMS01 MmfR, inducible 
L1+mmyR L1 pKMS03 MmyR, inducible 
L1+Y85F L1 pKMS85 MmfR mutant, inducible 

L1+Y144F L1 pKMS144 MmfR mutant, inducible 
L1F+pCC4 L1F pCC4 Positive control 

mmfRp L1F+mmfR L1F pKMS01 MmfR, inducible 
L1F+mmyR L1F pKMS03 MmyR, inducible 
L2+pCC4 L2 pCC4 Positive control 

mmyRp L2+mmfR L2 pKMS01 MmfR, inducible 
L2+mmyR L2 pKMS03 MmyR, inducible 
L3+pCC4 L3 pCC4 Positive control 

mmyBp L3+mmfR L3 pKMS01 MmfR, inducible 
L3+mmyR L3 pKMS03 MmyR, inducible 
L3F+pCC4 L3F pCC4 Positive control 

mmyYp L3F+mmfR L3F pKMS01 MmfR, inducible 
L3F+mmyR L3F pKMS03 MmyR, inducible 
L4+pCC4 L4 pCC4 Positive control ermEp* 
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2.2 Stock Solutions 
2.2.1 Media Stock Solutions 
 

LB medium 
10 g tryptone 
5 g yeast extract 
10 g NaCl 
Make up to 1 L with distilled water 
adjust the pH to 7.0 
Autoclave 
 

SOB media (126) 
20 g tryptone 
5 g yeast extract 
0.5 g NaCl 
Make up to 1 L with distilled water, 
adjust to pH 7.5 and autoclave 
Add filter sterilised MgSO4 to a final 
concentration of 20 mM 
 

LB agar 
10 g tryptone 
5 g yeast extract 
10 g NaCl 
15 g agar 
Make up to 1 L with distilled water 
adjust the pH to 7.0 
Autoclave 
 

SOC medium 
20 g tryptone 
5 g yeast extract 
0.5 g NaCl 
Make up to 1 L with distilled water, 
adjust to pH 7.5 and autoclave 
Add filter sterilised MgSO4 and glucose 
each to a final concentration of 20 mM 
 

SFM (soya flour mannitol) 
8 g bacto-agar 
8 g soya flour 
8 g mannitol 
Make up to 400 mL with tap water and 
mix together before autoclaving 
 

TSB medium 
17 g enzymatic digest of casein 
3 g enzymatic digest of soya bean meal 
5 g NaCl 
2.5 g dipotassium phosphate 
2.5 g glucose 
Make up to 1 L with distilled water 
adjust the pH to 7.3 (+/-0.2) 
 

2XYT broth 
16 g tryptone 
10 g yeast extract 
5 g NaCl 
Make up to 1 L with distilled water 
adjust the pH to 7.0 
Mix and autoclave 
 

Antibiotics were used at the following 
final concentrations: 
50 µg/ml apramycin 
100 µg/ml ampicillin 
25 µg/ml chloramphenicol 
50 µg/ml kanamycin 
50 µg/ml hygromycin 
25 µg/ml nalidixic acid 

 

Autoclaving was done at 121 °C for 20 minutes and then media was stored at room 
temperature. Once antibiotics were added the media would be used immediately or stored in 
the fridge until required. 
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2.2.2 DNA Gel Electrophoresis 
 

50X TAE buffer 
2 M Tris acetate, pH ~8.3 
50 mM EDTA 
In distilled water 
Filter sterilised 

1% gel – for one gel 
1 g agarose 
In 100 mL 1X TAE buffer (40 mM Tris acetate 
and 1 mM EDTA) 
Heat in the microwave at full power for 90 
seconds or until the agarose has dissolved 
Allow to cool slightly and add 5 µL GelRed™ 

 

2.2.3 Phenol Chloroform Extraction Buffers 
 

Buffer I 
50 mM Tris-HCl, pH 8 
10 mM EDTA 
 

Buffer II 
200 mM NaOH 
1% SDS 

Buffer III 
3 M potassium acetate, pH 5.5 
 

Buffers were stored at 4 °C until needed. 

 

2.2.4 Protein Purification Buffers and Solutions 
 

Protein purification buffer 
20 mM Tris-HCl pH 8 
100 mM NaCl 
10% glycerol 
 

Improved protein purification buffer for 
Ni Sepharose purification 
20 mM sodium phosphate (Na2HPO4 and 
NaH2PO4) 
500 mM NaCl 
pH 7.4 
 

Elution buffer 
20 mM Tris-HCl pH 8 
100 mM NaCl 
10% glycerol 
200 mM imidazole 
 

Improved elution buffer for Ni 
Sepharose purification 
20 mM sodium phosphate (Na2HPO4 and 
NaH2PO4) 
500 mM NaCl 
500 mM imidazole 
pH 7.4 
 

Buffers were all stored at 4 °C until 
needed. 
 

Protease inhibitors were used at the 
following final concentrations: 
1 mM EDTA and 1:500 protease 
inhibitor cocktail for tissue culture from 
Sigma-Aldrich for culture plates. 
 
One tablet of SIGMAFAST protease 
inhibitor cocktail in 100 mL ‘improved 
protein purification buffer’. 
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2.2.5 SDS-PAGE Reagents and Buffers 
 

4% SDS-PAGE stacking gel 
4% ProtoGel acrylamide 
125 mM Tris-HCl pH 6.8 
0.1% SDS 
0.05% APS 
0.01% TEMED 
 

12% SDS-PAGE resolving gel 
12% ProtoGel acrylamide 
375 mM Tris-HCl pH 8.8 
0.1% SDS 
0.1% APS 
0.01% TEMED 
 

SDS-PAGE loading dye (2x) 
125 mM Tris-HCl pH 6.8 
20% glycerol 
4% beta-mercaptoethanol 
0.2% bromophenol blue 
4% SDS 
 

SDS-PAGE running buffer (10x) 
250 mM Tris-HCl pH 8.8 
2 M glycine 
1% SDS 
 
Buffers were all stored at 4 °C until 
needed. 

 

2.3 Protocols 
2.3.1 Bacterial Cultures 
Escherichia coli 
Unless otherwise specified, E. coli cultures were grown at 37 °C using LB agar for solid 

cultures and LB media, shaking at 200 rpm for liquid cultures. Appropriate antibiotics were 

also added to the cultures at concentrations specified in Section 2.2.1. 

Streptomyces Species 
Unless otherwise specified, Streptomyces cultures were grown at 30 °C using SFM for solid 

cultures and 2xYT media, shaking at 200 rpm in baffled flasks for liquid cultures. Again, 

appropriate antibiotics were also added to the cultures at concentrations specified in Section 

2.2.1. 

2.3.2 Vector Creation 
Much of the investigative work during this project was done in vivo using new strains created 

to contain different reporter systems and genes of interest. These new strains were achieved 

via the transfer of vectors containing genes of interest into a host strain. 

 

In the case of E. coli, vectors were inserted via chemical or electro transformation (Sections 

2.3.3 and 2.3.6). Streptomyces species on the other hand require DNA to be transferred from a 

non-methylating E. coli strain via intergeneric conjugation (Section 2.3.7). The vectors for 

Streptomyces were designed so that DNA integrated into the host genome rather than having 

an extra chromosomal plasmid, as is done in E. coli. 
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Plasmid vectors were created by placing inserts into an existing plasmid backbone via the 

homologous recombination of sticky ends created by the restriction digest of the vector and 

insert. The inserts were either a PCR product or a synthetically produced gene from the 

GeneArt service by Thermo Fisher. 

 
PCR Protocol 
PCR was used to amplify the gene of interest and to add restriction sites to the 3’ and 5’ ends. 

Primer sequences can be found in Table 2.4 on page 27. The PCR reaction protocol used was 

as follows: 

5 µL 10X HF buffer 

1 µL10 mM dNTPs 

0.5 µL 100 µM forward primer 

0.5 µL 100 µM reverse primer 

0.5 µL template 

1.5 µL DMSO 

0.5 µL NEB high fidelity Phusion® DNA polymerase 

Up to 50 µL with water 

 

Table 2.9. PCR cycle times 
These cycle times are for use with the NEB high fidelity DNA polymerase. Steps two, three 
and four are all repeated 35 times before moving onto step five, the final extension. 

Stage Temperature: Length of time: 
1. Initial denaturation 95°C 2 minutes 
2. Denaturation 95°C 1 minute 
3. Annealing 45-72°C 1 minute 
4. Elongation 72°C 1 minute 
5. Final extension 72°C 15 minutes 
6. Hold 4°C - 

 
If this reaction did not produce a PCR product then the protocol was optimised by increasing 

the volume of DMSO to 2.5 µL, varying the annealing temperature or diluting the template 

1:3, 1:5 and 1:10 until a product was successfully obtained. 

Unless otherwise specified, this PCR protocol was used throughout the rest of the project. 

Gel Electrophoresis 

The size of PCR products as well as restriction digests and other DNA products were checked 

compared to a standard DNA ladder on a 1% agarose gel. This was made using the stock 

solutions specified in Section 2.2.2 using a 1% agarose gel in 1X TAE (40 mM Tris-acetate; 1 

mM EDTA). As a standard, gels were run at 100 V for 40 minutes before being observed 

under UV light. 
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Restriction Digest and Gel Extraction of DNA 
Two restriction endonucleases were selected that each cut once each within a chosen area in 

the backbone vector (either pCC4, pOSV556 or L1). These same restriction sites were also 

added to each end of the gene inserts allowing the ligation of the two parts of the vector. 

Details on the restriction enzymes used can be found in the table below. 

 
Table 2.10. Restriction sites used to create vectors for this investigation 

Vector name Genes contained Restriction 
sites used Insert type 

pKMS01 pCC4 with mmfR  HindIII and 
NotI PCR product 

pKMS03 pCC4 with mmyR  HindIII and 
StuI PCR product 

pKMS85 pOSV556 with Y85F mmfR 
mutant 

HindIII and 
NotI 

PCR product (created 
using Agilent 

QuikChange SDM kit) 

pKMS144 pOSV556 with Y144F mmfR 
mutant 

HindIII and 
NotI 

PCR product (created 
using Agilent 

QuikChange SDM kit) 

L1F luxCDABE, reversed intergenic 
region for mmfL/mmfR 

EcoRV and 
BamHI PCR product 

L2 luxCDABE, intergenic region for 
mmfP/mmyR 

EcoRV and 
BamHI PCR product 

L3 luxCDABE, intergenic region for 
mmyY/mmyB 

EcoRV and 
BamHI PCR product 

L3F luxCDABE, reversed intergenic 
region for mmyY/mmyB 

EcoRV and 
BamHI PCR product 

L4 luxCDABE and intergenic region 
for ermEp* 

EcoRV and 
KpnI PCR product 

pKMS05 L1 vector with Streptococcus 
mutans gbnB and luxCDABE 

BamHI and 
NotI Synthetic gene 

pKMS06 L1 vector with Salmonella 
enterica gbnB and luxCDABE 

BamHI and 
NotI Synthetic gene 

 
The concentration of DNA available for digestion was calculated using a NanoDrop and 

digestions carried out as specified in the protocols provided with the enzymes used. Where 

possible, NEB high fidelity enzymes were used. These enzymes have been optimised to work 

in the universal CutSmart buffer, allowing double digestion reactions and thereby increasing 

the yield of DNA that could be purified from a gel extraction as well as saving time. 

 
Example Protocol for EcoRV and BamHI 

2.5 µL 10x cut smart buffer 

5 units NEB high fidelity restriction enzyme 

0.5 µg DNA 

Up to 25 µL with water 

Incubate at 37 °C for an hour 
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Gel Extraction of DNA 
After digestion, the digestion products were then separated via gel electrophoresis on a 1% 

agarose gel as just described. The appropriate bands were then cut out and DNA was 

extracted using the Thermo Scientific GeneJET Gel Extraction Kit. The protocol provided 

with the kit was followed exactly until the final elution step, where 50 µl of 65 °C water was 

used instead of the elution buffer and samples were incubated for 10 minutes at room 

temperature before a final centrifugation was carried out at the highest speed for two minutes 

to collect the purified DNA. 

 
Ligation 
Ligation of the digested insert to the digested vector was carried out using a T4 ligase and 

50% PEG according to the protocol provided by Thermo Scientific.(114) PEG was used as 

some of the restriction enzymes used e.g. EcoRV, were blunt cutters. The polyethylene glycol 

helps to increase the ligation efficiency of blunt ended DNA. The vector was trialled at a ratio 

of molecular weights of 1:2, 1:3 or 1:5 compared to the insert for each of the reactions to 

increase the chances of successful ligation. 

Reaction mix: 

45 ng vector 

X ng insert 

2 µL 10x ligation buffer 

2 µL PEG (50%) 

1 µL T4 DNA ligase (5 units) 

Up to 20 µL with water 

 

After incubation at room temperature for an hour and then in the fridge overnight, 5 µL of the 

ligation products were used to transform 50 µL chemically competent TOP10 cells or 1-2 µL 

to transform electro-competent ET12567 cells. 

2.3.3 Chemical Transformation into TOP10 Cells 
Preparation of Chemically Competent TOP10 Cells 
For the creation of chemically competent TOP10 cells for transformation, 10 mL sterile LB 

was inoculated from a single TOP10 colony and grown overnight at 37 °C shaking. In the 

morning this starter culture was used to inoculate 500 mL sterile LB and was again grown at 

37 °C shaking, until the OD600 was between 0.35 and 0.40 (around three hours). The cells 

were then immediately placed on ice, transferring the culture to 50 mL falcon tubes. All steps 

from here on were kept at 4 °C and cell pellets were re-suspended as gently as possible. The 

cultures were allowed to chill for 20-30 minutes before centrifuging at 4000 rpm for 15 
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minutes at 4 °C. The supernatant was then decanted and the pellet re-suspended in ice cold 

sterile 100 mM MgCl2, mixing gently. (Cells could be combined in fewer tubes once re-

suspended to reduce workload). Samples were then centrifuged at 3000 rpm for 15 minutes at 

4 °C and the supernatant again decanted before ice cold sterile 100 mM CaCl2 was added. 

This was then chilled on ice for 20 minutes before centrifuging at 3000 rpm and decanting the 

supernatant as before. The pellet was then re-suspended in ice cold sterile 85 mM CaCl2 with 

15% glycerol before centrifuging at 2100 rpm for 15 minutes at 4 °C. After pouring away the 

supernatant, the cells were re-suspended in a total of 1 mL 85 mM CaCl2 with 15% glycerol 

and 50 µl aliquotted into pre-chilled cryovials. This was then either used immediately or flash 

frozen in dry ice and stored at -80 °C. 

Transformation Protocol 
Transformation into competent E. coli TOP10 cells was done following a protocol from the 

‘Invitrogen – Champion™ pET Directional TOPO® expression kits’ manual (page 20 from 

the One Shot® TOP10 Chemical Transformation Protocol).(110) Two changes were made to 

this protocol, firstly 2 µl of vector (instead of 3 µl) was added to 25 µl of competent E.coli 

DH5α (step 1) and LB (lysogeny broth) medium was used instead of S.O.C. medium (step 5). 

Transformed cultures were grown over night at 37 °C before single colonies were picked and 

stocks made with 50% glycerol for long-term storage at -80 °C. 

2.3.4 Plasmid Purification 
GeneJET™  Plasmid Miniprep kit  
Extraction and purification of cloned plasmids was needed to screen for the correct insert and 

successful vector synthesis. This was done using a GeneJET™ Plasmid Miniprep kit and 

associated protocol.(113) Changes to this protocol are as follows; 100 µl water at 70 °C was 

used instead of the elution buffer in the final step followed by incubation at room temperature 

for 15 minutes before the sample was centrifuged for two minutes to collect the purified 

DNA. 

Phenol Chloroform Purification of Cosmid DNA 
If plasmid DNA was not successfully recovered using the GeneJET™ Plasmid Miniprep kit, 

particularly a problem for larger pieces of DNA, then vectors could alternatively be extracted 

using a phenol chloroform protocol (see Section 2.2.3 for details on buffers and solutions). E. 

coli containing the plasmid of interest were grown at 37 °C overnight in a 10 mL culture with 

appropriate antibiotics. These cells were then pelleted by centrifugation at 2000 rpm for 15 

minutes. The supernatant was poured away and the cell pellet re-suspended in 100 µL of 

solution I (50 mM Tris-HCl, pH 8 and 10 mM EDTA) before being transferred into a 

microcentrifuge tube. 
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A volume of 200 µL of solution II (200 mM NaOH and 1% SDS) was then added the to the 

re-suspended cells and the tubes inverted ten times. Next, 150 µL of solution III (3 M 

potassium acetate, pH 5.5) was added and the tubes inverted ten times to mix the solutions. 

Samples were then centrifuged at full speed in a microcentrifuge for five minutes to pellet the 

cell matter. Immediately, 400 µL phenol-chloroform was added to the extracted supernatant 

and samples vortexed for two minutes. 

The samples were then centrifuged at full speed for five minutes to separate the mixture into 

two phases, the vector DNA should be in the upper phase. The upper phase was then 

transferred into a fresh microcentrifuge tube and 600 µL ice cold 2-propanol was added. This 

were then left on ice for 15 minutes before samples were spun at full speed for five minutes to 

pellet the vector DNA. The supernatant was then removed and the pellet washed with 200 µL 

ice cold ethanol before centrifuging again as before. After the supernatant was removed, the 

tube was left open and the pelleted DNA was left to dry at room temperature for ten minutes 

before the pellet was re-suspended in 50 µL water (or 10 mM Tris-HCl, pH 8 for longer term 

storage). 

2.3.5 Vector Screening and Sequencing 
Newly synthesised vectors were screened both using a PCR reaction as well as a restriction 

digest compared to a control reaction. Sequencing was also carried out on the clones that 

showed most promise in the screening, as a final check for the correct product. 

PCR Screening 
For the PCR screen, primers were designed to bind either side of inserts, ideally producing 

products of different sizes if the gene of interest was present or absent (alternatively primers 

were designed so one bound within the insert and one outside). The screening PCR reaction 

was done following the protocol from the NEB HF Phusion® DNA polymerase described 

previously unless there were a large number of samples in which case a standard Taq 

polymerase was used, as it is less costly. The protocol for the Taq polymerase follows. 

Reaction mix: 

10 µL 5X Taq buffer (NH4SO4) 

2 µL10 mM dNTPs 

1 µL 100 µM forward primer 

1 µL 100 µM reverse primer 

0.5 µL template 

1.5 µL DMSO 

0.5 µL Taq DNA polymerase 

Up to 50 µL with water 
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Table 2.11. PCR cycle times 
These cycles times are for use with the Taq polymerase. Steps two, three and four are all 
repeated 30 times before moving onto step five, the final extension. 

Stage Temperature: Length of time: 
1. Initial denaturation 95°C 2 minutes 
2. Denaturation 95°C 45 seconds 
3. Annealing 45-72°C 45 seconds 
4. Elongation 72°C 1 minute 
5. Final extension 72°C 15 minutes 
6. Hold 4°C - 

 

Again, if this PCR reaction did not produce a product then the protocol was optimised by 

increasing the volume of DMSO to 2.5 µL, varying the annealing temperature or diluting the 

template 1:3, 1:5 and 1:10 until a product for the control reaction was successfully obtained. 

Restriction Digest Screening 
A restriction digest was also run to check for expected product sizes from a successfully 

created vector. Restriction endonucleases were selected to give different product sizes for a 

control compared to the desired ligated vector and the products of these reactions analysed by 

gel electrophoresis. The digestion protocol described previously in Section 2.3.2 was again 

used, this time scaled down to be done with only around 10 µL purified DNA and no 

subsequent gel extraction. 

Sequencing 
Sequencing was done using the GATC LIGHTrun™ sequencing service, usually using the 

primers that had been used for the PCR screening step. Sequencing results could then be 

analysed for correct insertion orientation as well as mistakes that may have occurred during 

the PCR synthesis of the insert. 

2.3.6 Electro-Transformation of Vectors into ET12567/pUZ8002 
TOP10 cells were used to clone plasmids and for the creation of plasmid stocks, much of the 

work in this project however was done in vivo in S. coelicolor. S. coelicolor does not accept 

methylated DNA and so could not be directly transformed with plasmid vectors. Instead, the 

purified vectors were first transformed into a non-methylating strain of Escherichia coli; 

ET12567/pUZ8002. The transformants were then used to transfer the DNA vectors to 

Streptomyces coelicolor via intergeneric conjugation. 

Preparation of Electro-Competent ET12567/pUZ8002 

ET12567 cells with pUZ8002 were streaked out on an LB plate with kanamycin and 

chloramphenicol and grown overnight at 37 °C to produce single colonies. One of these 
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colonies was then picked and grown in 10 mL LB media with kanamycin and 

chloramphenicol overnight at 37 °C shaking. Of this starter culture, 200 μl was used to 

inoculate 10 mL fresh media with the same antibiotics. This was the grown at 37 °C until the 

OD600 was between 0.4 and 0.6 (around four hours). This cell culture was then spun at 2000 

rpm at 4 °C for 10 minutes and the supernatant removed before the cells were re-suspended in 

10 ml of ice cold 10% glycerol. Cells were then spun down again (keeping them at 4 °C) and 

re-suspended in 5 mL of ice-cold 10% glycerol. After a final centrifugation and removal of 

the supernatant, cells were re-suspended in the residual liquid. These cells were now 

competent and either kept on ice and used immediately or stored at -80 °C for later use. 

Electroporation Technique 
Taking care too keep the whole reaction on ice, 80 μl electro-competent ET12567 cells and 2 

μl vector were added to a 2 mm electroporation cuvette. The cells were then electroporated at 

2.5 kV before 1 mL ice-cold LB was immediately added. The transformants were then 

transferred into a microcentrifuge tube and left for an hour at 37 °C shaking. The culture was 

then plated out on LB agar with kanamycin and chloramphenicol to select for the de-

methylating pUZ8002 vector and an appropriate antibiotic to select for the vector being 

transformed. This was then grown overnight at 37 °C. Single colonies were picked and stocks 

made with 50% glycerol for long-term storage at -80 °C or immediate use in the intergeneric 

conjugation protocol. 

2.3.7 Intergeneric Conjugation to Introduce Vectors into Streptomyces 
coelicolor M145 

Unless otherwise noted, Streptomyces coelicolor M145 was used as the host strain for this 

assay. The transfer of vectors into this strain was carried out using the protocol specified in 

‘Practical Streptomyces Genetics’.(51) 

Single colonies of ET12567 cells with pUZ8002 containing the relevant vector were picked 

and grown overnight at 37 °C shaking in LB with the appropriate antibiotics. The next 

morning 200 μl of this starter culture was used to inoculate 10 mL fresh media (with the same 

antibiotics) and this was grown at 37 °C shaking until the OD600 was between 0.4 and 0.6 

(around four hours). This was then centrifuged for ten minutes at 2000 rpm to pellet the cells. 

The pellet was then re-suspended in 10 mL LB and centrifuged again before the washing step 

was repeated to remove any remaining antibiotics. The cell pellet was then re-suspended in 

the residual LB to give a total volume of 1 mL. 

A volume of 10 μl Streptomyces spore stock was added to 500 μl 2xYT media and the cells 

heat-shocked at 50 °C for ten minutes before being mixed with 500 μl of the prepared 
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ET12567 cells. This mixture was then serially diluted and the two strains were grown 

overnight together on SFM media on four different plates containing dilutions of between 10-1 

and 10-4. The next morning the plates were overlaid with nalidixic acid to kill the E. coli and 

apramycin or hygromycin to select for Streptomyces colonies contain the luciferase constructs 

or pCC4 vectors. This was then left to grow for three to four days, when single colonies could 

be collected and used to inoculate fresh plates. 

Intergeneric conjugation into S. albus required a lower heat shock temperature of 40 °C 

compared to the 50 °C specified in Practical Streptomyces genetics (51) and used for S. 

coelicolor. Heat shocked cells S. albus were then kept at 30 °C for four hours before being 

combined with ET12567 strains containing pUZ8002. 

Spore Stock Production 
To produce spore stocks of Streptomyces, four or five SFM plates with appropriate antibiotics 

were inoculated with a lawn of Streptomyces. After incubating at 30 °C for five days, around 

3 mL sterile water was added to each plate. A sterile wedge shaped spreader was used to free 

the spores and create a suspension, which was then collected. The suspension was filtered 

through sterile non-adsorbent cotton wool to remove any agarose that had been picked up. 

The suspensions were then centrifuged at 4000 rpm for five minutes to pellet the spores. The 

supernatant was removed and the cells re-suspended in approximately 1 mL of sterile 50% 

glycerol before being stored at -80 °C.  

 

Genomic Extraction of Genomic DNA from Streptomyces 
Genomic DNA extraction from Streptomyces was performed using the FastDNA Spin Kit for 

Soil from MP Biomedicals.(111) The protocol was followed exactly according to the kit. 

Genomic DNA from Streptomyces could then be screened using the same protocols as were 

just described for E. coli in Section 2.3.5 to check for the insertion of the desired genetic 

material. 

2.3.8 Measurement of Bioluminescence 
Luminescence was measured using a Photek - CCD (charge coupled device) camera. Photons 

hit the silicon surface of the CCD chip and an electron is liberated. This then creates an 

electron deficient site or ‘hole’. These charges are then stored until a voltage is applied and 

the collected charges can be shifted along, measured and converted into a digital copy of the 

light patterns. This provides both quantitative results of the amount of luminescence produced 

as well as a colour code image representing the amounts of luminescence produced by 
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different samples. The CCD used in this project is a HRPCS (high resolution photon counting 

system) and is so sensitive that it can measure single photons. 

The protocol for preparing cells for measuring bioluminescence was developed as part of the 

experimental investigation and can be found in Chapter 3. 

2.3.9 Site Directed Mutagenesis 
Mutants were created using the Agilent QuikChange Lightening kit.(109) The protocol was 

followed as specified in the manual and primers were designed using the online Agilent 

facility.(127) Screening was carried out with standard T7 primers. 

As a template for the mutagenesis the vector pET151:mmfR was used. The small size of this 

vector made the PCR aspect of the Agilent protocol easier to carry out than the pKMS01 

vector also trialled. Mutant mmfR sequences were then cloned via PCR and inserted into the 

pCC4 vector. This was done according to the restriction digest sub-cloning protocol described 

in Section 2.3.2. 

2.3.10 Bacterial Cultures for Protein Purification 
Liquid Culture 
Unless otherwise stated, liquid cultures of S. coelicolor strains containing the gbnB analogue 

were grown in baffled flasks with 2xYT media containing appropriate antibiotics at 30 °C in a 

shaking incubator at 200 rpm. Unless otherwise specified, these cultures were grown for 72 

hours before the secreted proteins were harvested. 

Solid Culture 
Strains were grown on SFM (soya flour mannitol) media at 30 °C with appropriate 

antibiotics, on top of a layer of sterile dialysis tubing to make collection of secreted proteins 

easier. Nutrients and other small molecules should be able to pass through the tubing but not 

any proteins secreted by the Streptomyces. The dialysis tubing was cut into appropriately 

sized pieces and autoclaved in a glass petri dish between layers of filter paper to stop it from 

sticking to itself. 

In later stages of protocol optimisation, plates also contained a final concentration of 1 mM 

EDTA to inhibit metalloproteases and were overlaid with the Sigma Aldrich Protease 

Inhibitor Cocktail for Tissue Culture after 24 hours growth (final concentration 1:500). For 

further details on the development of this protocol see Section 7.4. 

Unless otherwise specified, these cultures were grown for 72 hours before the secreted 

proteins were harvested. 
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2.3.11 Collection and Purification of Secreted Proteins from 
Culture Media 

Harvesting Secreted Proteins 
To harvest the secreted proteins from liquid media, cultures were spun down and the 

supernatant collected before being passed through a 0.22 µm filter to remove any residual cell 

mass. The supernatant was then concentrated using an Amicon Ultra 15 centrifugal filter unit 

with a molecular weight cut off of 10 kDa. Protein concentration was measured via a 

Bradford protein assay to establish when the samples had been concentrated enough. 

To harvest secreted proteins from the solid media, a cell scraper was used to detach cells from 

the dialysis tubing. The cell mass was then re-suspended in one of the protein purification 

buffers specified in Section 2.2.4 before being centrifuged and passed through an 0.22 µm 

filter to remove the cell mass. The volume of buffer used for re-suspension was kept very low 

meaning that further concentration of samples was not needed. 

Concentrated protein samples collected could then be run directly on an SDS-PAGE gel or 

carried forward for further purification using nickel Sepharose or were collected via 

precipitation with lithium chloride and trichloroacetic acid.  

Nickel Sepharose Purification 
The protein of interest was designed with an N-terminal polyhistidine-tag and therefore was 

purified via nickel Sepharose purification using GE Healthcare Ni Sepharose 6 Fast Flow. 

The Sepharose was washed according to the bench top protocol specified by GE healthcare1 

using the buffers specified in Section 2.2.4. (Initially the ‘protein purification buffer’ and later 

the corresponding ‘elution buffer’ were used and then after optimisation of the protocol, the 

‘optimised’ buffers were used, see Chapter 7.) 

After the washing of the Sepharose slurry however, the GE healthcare specified protocol was 

not followed for the remainder of the purification. The method being used for overexpression 

was novel and therefore required a lot of optimisation and produced huge numbers of samples 

to be processed. To save both time and resources a packing column was not used, instead, as 

with the initial Sepharose washing steps, the protocol was continued in microcentrifuge tubes 

with the supernatants being collected after elution steps, as is described now. 

Secreted protein samples were added to the Sepharose slurry and incubated at 4 °C for an 

hour to allow binding of the protein to the nickel. This mix was then spun down in a 

microcentrifuge at the highest speed for three minutes and the supernatant collected and 

                                                        
1 https://www.gelifesciences.com/gehcls_images/GELS/Related%20Content/Files/131474296
7685/litdoc11002497AB_20110831013915.pdf 
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labelled as ‘unbound proteins’. The pellet was then washed once with 1 mL of the ‘protein 

purification buffer’, centrifuged and the supernatant collected as ‘unbound proteins wash’. 

This was followed by 500 µL elution buffer (containing imidazole) being added to the pellet, 

after centrifugation the supernatant collected was labelled as ‘elution’. The pellet was then 

washed twice with ‘protein purification buffer’ (containing no imidazole) and the 

supernatants collected were labelled as ‘wash 1’ and ‘wash 2’. The unbound proteins and 

elution fractions were then concentrated using an Amicon ultra 0.5 centrifugal filter unit with 

a 10 kDa molecular weight cut off before analysis by SDS-PAGE. 

This analysis was done as a proof of concept investigation into optimal conditions for protein 

over production in Streptomyces species. For a higher level of purity to achieve a single band 

on an SDS-PAGE gel and potentially obtain useable proteins, a more thorough purification 

protocol could be used, for example FPLC (fast protein liquid chromatography). 

Precipitation of Proteins from Solid Culture 
Proteins secreted by S. coelicolor growing on solid media could be purified by precipitation 

with lithium chloride and trichloroacetic acid according to a protocol taken from the 2006 

paper by Widdick et al.(128) 

A lawn of the Streptomyces strain of interest was grown on an SFM plate on top of a layer of 

sterile dialysis tubing for 72 hours. A cell scraper was used to collect the biomass from these 

plates and this was then dispersed in around 3 mL 5 M lithium chloride solution and left on 

ice for thirty minutes. Samples were then vortexed for two minutes and centrifuged at the 

highest speed in a microcentrifuge for five minutes before being passed through a 0.22 µm 

filter to remove the biomass. The secreted proteins should remain in the lithium chloride 

solution. Trichloroacetic acid was then added to the solution to a final concentration of 20% 

before the solution was again incubated on ice for thirty minutes before being centrifuged at 

the highest speed for 15 minutes. Two phases were formed, the proteins being in the lower 

phase. The upper phase was removed and water added to an equivalent volume. At this point 

the sample then turns cloudy as the proteins precipitate. The sample was then centrifuged for 

15 minutes at the highest speed to pellet the precipitated proteins. The pellet was then washed 

two or three times with -20 °C acetone (taking care not to disturb the precipitate too much). 

Samples were then air dried before being re-suspended directly into 2x SDS-PAGE loading 

buffer and checked via SDS-PAGE. 

Cell Lysis for Protein Analysis 
The expression system used in this investigation was designed so that the protein of interest 

should be secreted from Streptomyces. However, it was necessary to check inside the cells to 
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make sure that the export tag being used was indeed working. The Streptomyces cells were 

lysed using ‘lysis matrix E’, a component usually provided with the MP Biomedicals’ 

FastDNA spin kit. This matrix contains ceramic and silica spheres as well as a large glass 

bead to allow the mechanical shearing of cells. 

The pelleted Streptomyces cell mass collected from the solid cultures grown on dialysis 

tubing were added to a 2 mL lysing matrix tube followed by 1 mL sodium phosphate buffer 

with SIGMAFAST™ protease inhibitor cocktail (as described in Section 2.2.4). After 

vortexing for two minutes the suspension was allowed to settle before the supernatant was 

collected. The supernatant was then added to the nickel Sepharose, as described before, to 

check for the presence of any intraceullular histidine-tagged protein. 

2.3.12 SDS-PAGE 
All SDS-PAGE cells were run using a 12% resolving gel with a 4% stacking gel using the 

mixtures specified in Section 2.2.5. The 12% gel was allowed to set for 30 minutes before the 

4% gel was added on top. 

Collected protein samples were mixed 1:1 with 2X SDS-PAGE loading dye and boiled for 

five minutes before being allowed to cool. Between 10 and 20 µL stained protein sample was 

the loaded per gel and run at 180 V for five minutes and then 200 V for 35-40 minutes before 

being stained for one hour with InstantBlue™ Coomassie® stain and then washed with 

distilled water. 

2.3.13 SDS-PAGE Gel Extraction Protocol for Mass 
Spectrometry Analysis 

Proteins were extracted from SDS-PAGE gels for LC-MS analysis over two days using a 

protocol supplied by Dr Cleidiane Zampronio from the Proteomics Facility at the University 

of Warwick. 

First bands of interest were cut out of the SDS-PAGE gel using a clean razor blade and placed 

in a microcentrifuge tube before being cut into four or five smaller pieces to increase the 

surface area of the slice. These gel pieces were then washed using 150 µL 50% ethanol in 50 

mM ammonium bicarbonate and incubated at 55 °C for 20 minutes shaking. The supernatant 

was then pipetted off and the wash repeated until the gel was de-stained (usually one or two 

more times). 

The gel pieces were then be dehydrated by adding 100 µL pure ethanol and incubating for 

five minutes at 55 °C shaking. This produced a shrunken, white gel. The ethanol was then 

removed and disulphide bonds reduced by adding 100 µL 10 mM DTT in 50 mM ammonium 

bicarbonate and incubating for the samples 30 minutes at 56 ºC shaking. The free liquid was 
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then removed and samples allowed to cool before 100 µL 55 mM iodoacetamide (IAA) in 50 

mM ammonium bicarbonate was added. The IAA alkylates the cysteine residues in the 

protein. After the IAA was added samples were incubated for 20 minutes at room temperature 

while being kept in the dark. The free liquid was then removed and disposed of. 

The wash steps with 50% ethanol in 50 mM ammonium bicarbonate were then repeated, 

followed by dehydration in pure ethanol. A tryptic digest of samples was then carried out by 

adding 40 µL 2.5 ng/µL trypsin in 50 mM ammonium bicarbonate. After allowing the gel to 

rehydrate for ten minutes, and additional 15 µL 50 mM ammonium bicarbonate was added to 

make sure the gel was well covered and samples incubated overnight at 37 ºC with shaking. 

The next morning the tryptic digest was stopped by adding 100 µL 5% formic acid in 25% 

acetonitrile and sonicating samples for five to ten minutes. The supernatant was then collected 

and this formic acid-acetonitrile step repeated three more times, each time collecting the 

supernatant in the same microcentrifuge tube. The combined peptide supernatants were then 

dried in a Speed-Vac at 40 °C for four hours before freezing, ready for LC-MS analysis. 

The actual LC-MS analysis was then carried out by the Proteomics Facility, according to their 

standard protocols. 
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3 Development of Luciferase Reporter Gene 
Constructs 

3.1 Aims and Strategy of Investigation 
3.1.1 Reporter Genes 
Figure 3.1 shows a schematic of a general reporter gene system that can be used in vivo to 

study transcriptional regulation. Here, a regulatory sequence of interest is put upstream of a 

reporter gene instead of its usual cognate gene. This regulatory sequence can contain -35 and 

-10 promoter sequences as well as operators for transcription factors. The reporter gene is 

designed to produce a protein that results in a measureable result, for example a coloured 

product or a fluorescent/bioluminescent product. The amount of reporter produced should be 

proportional to promoter strength and be regulated by any control mechanisms present that 

normally influence the regulatory sequence in the wild type system. Thus, the production of 

the reporter protein should be representative of the expression of the wild type gene cognate 

to the regulatory sequence. Repressor proteins as well as their ligand inducers can also be 

added to the system and changes in the production of the reporter protein observed. 

 
Figure 3.1. Schematic of reporter gene systems and how they can be used to study 
transcriptional repressors and their cognate inducer ligands 

 

With the eventual aim of developing a novel inducible expression system, this investigation 

utilised a Photorhabdus luminescens luciferase reporter gene assay to produce a measurable 

bioluminescent product under the control of the methylenomycin BGC regulatory system. 

This luxCDABE system was recently optimised to be expressed in GC high streptomycetes by 

Justin Nodwell and this research group.(92) 



Chapter 3 | Development of Luciferase Reporter Gene Constructs 

 47 

3.1.2 Regulatory System of Interest – The Methylenomycin 
Biosynthetic Gene Cluster 

As discussed in the introduction, methylenomycin biosynthesis is tightly regulated by a 

number of different mechanisms including the use of a rare TTA codon, transcriptional 

repressors, transcriptional activators as well as the use of microbial hormones.(71)  

The entire methylenomycin cluster is found on a 19 kb region the S. coelicolor SCP1 

plasmid.(65) The arrangement of the five operons in this cluster and how they are thought to 

be regulated by transcriptional repressor MmfR and its cognate ligands, the MMFs, is shown 

in Figure 3.2. In this figure, operons and the direction of transcription is indicated by the red 

arrows and intergenic regions with MmfR-binding MARE operator sites are signified by 

vertical black lines. These are found between mmfR and mmfL, mmyR and mmfP, and mmyY 

and mmyB. This figure shows the influence of the presence and absence of the 

methylenomycin furans on the auto-regulation of this cluster as well as the influence over 

expression of other biosynthetic genes.(71) In the absence of MMF microbial hormones 

(shown in the blue section at the bottom of the figure), MmfR binds to DNA at the MARE 

operator, repressing transcription. Upon MMF binding (in the peach section at the top) there 

is a conformational change to MmfR, it is released from the DNA and transcription begins at 

the five operons. Replacing any one of the five operons with a reporter gene would allow the 

study of the regulation of that particular operon. (Please note that the diagram in Figure 3.2 is 

not to scale.) 

 
Figure 3.2. Proposed regulation of the methylenomycin biosynthetic gene cluster from 
the SCP1 plasmid of S. coelicolor by the TetR family member, MmfR and cognate MMF 
ligands 

Horizontal blue lines indicate the location of proposed MmfR binding operator sites with the 
vertical black lines represent where the MARE operators can be found. Red arrows indicate 
the operons regulated by these operators and the direction of transcription. Proposed 
functional attributions are mmfR and mmyR – transcriptional repressors, mmfLHP – 
methylenomycin furan biosynthetic genes, mmyT and mmyQ – methylenomycin biosynthetic 
genes, mmyB – transcriptional activator, based on the work of Chater and Bruton (65) 
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The biological function of the MmfR paralogue, MmyR is much less clear than that of MmfR 

and it is not know whether it will bind to any of the MARE operator sites or the MMFs. 

Although there is limited evidence that it would be a suitable choice for a repressor in an 

inducible expression system, understanding the role of this second repressor is also important 

in further interpreting the regulation of the methylenomycin biosynthetic cluster. For this 

reason, MmyR was also under investigation in this research, secondary to the work done with 

MmfR. 

 

The development of a bio-luminescing reporter gene assay involved the design of two 

separate vectors in a strategy that will now be described. One of these vectors contained the 

luxCDABE operon under the regulation of one of the three MARE operator containing 

intergenic regulatory sequences (indicated by vertical black lines in Figure 3.2). A second 

vector contained mmfR (or mmyR) under the regulation of ermEp*. 

 

Strategy for Luciferase Reporter Gene Assay 
Figure 3.3 shows a schematic of how the two vectors types just described should come 

together to form the reporter assay in S. coelicolor M145 for studying MmfR. Both vectors 

will integrate in different positions on the S. coelicolor genome and are replicated along with 

the rest of the genome as the cell replicates. 

The expression of luxCDABE is under the control of one of the promoters from the 

methylenomycin gene cluster (see Figure 3.6 for a diagram showing the positions of these 

promoters) as well as predicted regulation by MmfR repression at the MARE operator.  

As shown in Figure 3.3, in the absence of the MMFs, MmfR are predicted to be produced and 

bind on to the MARE operator, thereby repressing the expression of the lux genes. If one of 

the five MMFs are then added to the system they are expected to bind to MmfR and cause a 

conformational change, releasing it from the MARE operator and allowing the expression of 

the lux genes. Depending on the strength of binding of MmfR to the different MARE 

operators and level of release by the MMFs, different levels of luminescence could be 

expected. Data collected can then be compared to positive and negative controls and 

inferences made (see Figure 3.1). 
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Figure 3.3. Schematic of lux reporter system in Streptomyces coelicolor M145 
Two vectors are integrated into the Streptomyces genome; one containing mmfR (or an empty pCC4 
control vector) under the control of the ermEp* promoter and the other containing luxCDABE under 
the control of one of five relevant methylenomycin cluster promoters and one of three MARE operator 
sequences. In the absence of the furan ligands, MmfR will bind to the MARE operator and repress the 
expression of luxCDABE. Upon the addition of one of the methylenomycin furans (MMFs) there will 
be a conformational change in MmfR and it will be released from the MARE operator resulting in the 

production of luminescence via luxCDABE expression, producing luciferase and its substrate. 
 

For the investigation of MmyR, a similar system to that shown in Figure 3.3 was used, only 

with pKMS03 (containing mmyR) used instead of pKMS01 (containing mmfR) (see Table 

2.5). The outcome of the presence of different MARE operators and MMFs in this mmyR 

system was not known before studies began. 

Details on luxCDABE 

LuxA and LuxB together form the heterodimeric luciferase protein. LuxC, D and E are the 

enzymes needed to form tetradecanal, the fatty aldehyde substrate of luciferase.(97) All other 

biochemicals required by this reaction are found naturally in bacterial cells allowing a self 

generated bioluminescent response with no need for external manipulations.(98) Expression 

of the pentacistronic luxCDABE operon results in a blue-green light being emitted at 490 

nm.(129) 

 

3.2 Plasmid Design and Assembly 
3.2.1 Luciferase Vectors 
Figure 3.4 shows a diagram of a vector with a MARE operator containing intergenic sequence 

(Figure 3.2) inserted upstream of a 5668 bp optimised luxCDABE luciferase reporter gene 
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cluster.(92) The particular vector shown in Figure 3.4 is labelled as ‘L1’ and has the lux genes 

under the control of mmfLp, this was constructed by Professor Nodwell’s group in Canada 

and is an updated version of the pMU1 plasmid.(92) It contains the entire intergenic region 

from between mmfR and mmfL (labelled in the diagram as the ‘mmfLR regulatory sequence’). 

This plasmid formed the backbone for a number of other vectors produced during this project, 

with different intergenic regions being inserted next to the lux operon using the EcoRV and 

BamHI restriction sites shown in the figure.  

 
 
Figure 3.4. L1, an integrating luxCDABE reporter plasmid 

tfd – transcriptional terminator from phage fd, ori – origin of replication, AprR – apramycin 
resistance cassette, oriT – origin of transfer, int and attp – integrase and attachment site of 
ΦBT1 phage, allows integration via site specific recombination to matching attB site in the S. 
coelicolor genome, mmfLR regulatory sequence – intergenic region from between mmfR 
and mmfL, containing the ‘L1 MARE operator’ and in the direction of mmfLp, luxCDABE – 
genes for luciferase and the biosynthesis of its substrate.(92) Upstream of the mmfLR 
regulatory sequence is a RBS as well as a STOP sequence containing stop codons covering 
all three reading frames. 

Please note that the close up version of the insert between EcoRV and BamHI 
restriction sites is not to scale and is purely a representation of the layout of the vector. 
This vector was created by Justin Nodwell et al., optimised from work in (92). 

 
Dependent on the orientation of the three intergenic regions inserted between the EcoRV and 

BamHI restriction sites, the regulation of the five different operons (shown in Figure 3.2) 

could be studied. This created a total of five different lux plasmids, labelled as L1, L1F, L2, 

L3 and L3F. A schematic showing the designation of this nomenclature can be found in 

Figure 3.5. This nomenclature is now used throughout the rest of the project. 
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Figure 3.5. Assigned nomenclature for lux vectors containing different intergenic 
regions from the methylenomycin gene cluster, cloned upstream of luxCDABE 

Vertical blue lines indicate the location of proposed MmfR binding operator sites and black 
arrows denote the direction of transcription for each promoter. ‘F’ indicates the reverse 
sequence of a particular intergenic region. This diagram is to scale and based on individual 
gene sizes. 

Proposed functional attributions are mmfR and mmyR – transcriptional repressors, 
mmfLHP – methylenomycin furan biosynthetic genes, mmyT and mmyQ – methylenomycin 
biosynthetic genes, mmyB – transcriptional activator, based on the work of Chater and 
Bruton (65) 

 
In this nomenclature, ‘F’ indicates the same intergenic region that has been inverted and 

inserted back into the vector. For example, the intergenic region containing within L1F is the 

exact reverse sequence of that contained in the L1 vector. MmfR is homodimeric and so 

affinity in either orientation would be expected to be unchanged as the 24 bp MARE operator 

is the same in either orientation (see Figure 3.6B for sequences).(84) However, the orientation 

of the insert may result in promoters of different strengths being used. Figure 3.6A shows the 

predicted positions of the -35/-10 promoter sequences found in each methylenomycin cluster 

intergenic region. In one orientation, only one of the promoters should drive the expression of 

the lux genes.  

No L2F was created as there is only one promoter to study in the L2 intergenic region and so 

a reverse was not necessary for the study of promoter strength. If extra time had allowed 

however, a L2F vector could have been constructed and used as an extra negative control. 

 

 

 

 

 

 



Chapter 3 | Development of Luciferase Reporter Gene Constructs 

 52 

 

  

Figure 3.6A and B. Details on the methylenomycin cluster MARE operators 
A. Schematic of predicted MARE operator position with respect to the promoters they 

regulate in the intergenic regions of the methylenomycin biosynthetic cluster 
MmfR is predicted to bind three different MARE operators, thereby regulating five 
different operons by repressing five promoters. 

Please note that this diagram is not to scale. 
B. Predicted MARE operator sequences 

The MmfR-binding MARE operators are partially palindromic 24 bp sequences and 
display a motif found across a number of streptomycetes. The sequences shown here 
correspond to the operators in the adjacent schematics in A. 

Adapted from the work of Vincent Poon (84) 
 

The luciferase vectors were transferred into S. coelicolor via intergeneric conjugation 

(Section 2.3.7) where upon they stably integrate into a single place the Streptomyces 

coelicolor genome via the φBT1 phage system. This system is based on how bacteriophages 

integration into specific sites of the host genomes via site specific recombination using an 

integrase. The phage contains an attP site (Figure 3.4,) that matches an ‘attB’ site in the target 

host where it will integrate and establish a lysogenic state.(130) 

In the absence of MmfR, these lux vectors should work as a positive control. Constitutively 

luminescing, proportional to the strength of the promoter being analysed in that particular 

vector. A schematic of this type of positive control can be found in Figure 3.1. 

MmfR and MmyR were added to the reporter system on a different vector, described next. 
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3.2.2 Vectors Containing mmfR or mmyR  
The second type of vector used in this assay was based on pCC4 plasmids, containing the 

gene for transcriptional repressor MmfR or its paralogue MmyR. A schematic of the mmfR 

vector (pKMS01) can be found in Figure 3.7, showing the HindIII and NotI restriction sites 

used to insert this repressor gene into the pCC4 vector. The mmyR vector (pKMS03) was 

constructed in an analogous way, only with mmyR inserted instead of mmfR and using HindIII 

and StuI restriction sites instead of HindIII and NotI (see Table 2.10). 

Figure 3.7. pKMS01, an integrating plasmid with mmfR controlled by ermEp* (72) 
ori – origin of replication, int_pSAM2 – integrase site, hygR – hygromycin resistance, MmfR – TetR 

family transcriptional repressor gene, ermEp* – strong constitutive promoter, oriT – origin of transfer 
AprR – apramycin resistance. 

 

It was decided that MmfR production should be under the control of ermEp*,(131) a strong 

constitutive promoter unrelated to the methylenomycin cluster, rather than its own promoter. 

This should mean that MmfR will be produced at a constant rate, unaffected by its own self-

regulatory action (see Figure 3.2). The alternative, self-regulation of MmfR, would mean that 

under the control of mmfRp and the MARE operators MmfR would repress its own 

production. The levels of this repressor would be influenced by the concentration of MMF 

present, making luminescence readings hard to interpret (see Chapter 6 for more information 

on this topic). 

The self-regulation of MmyR is not known but this was also placed under the control of 

ermEp* to ensure consistency. 
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The pCC4 vectors are again transferred to Streptomyces via intergeneric conjugation where 

they integrate into the genome. This integration happens using a similar system to the 

attP/attB one from the luciferase vectors but plasmids integrate at a different position in the S. 

coelicolor genome. This pSAM2 system is not phage derived but comes from an 11 kb 

integrative element from Streptomyces ambofaciens.(120) This type of mobile genetic 

element is only thought to be found in Streptomyces but has been shown to work in a similar 

way to the temperate phage systems.(132) 

The construction of the pKMS01 and 03 vectors allowed the study of MmfR and MmyR 

binding to the three MARE operator sites as well as any release of the repressor upon MMF 

binding (see Figure 3.1 and Figure 3.3). 

3.3 Initial Investigation of the Reporter System 
3.3.1 Details on the Bioluminescence Assay 
Once the two vector types just described were integrated into the S. coelicolor genome and 

had been screened via PCR for successful conjugation, the levels of luminescence produced 

by different promoters and MmfR binding at the MARE operator and to the MMFs could then 

be studied. As this system had not been used before, optimisation of methods was required 

before a full investigation could take place. 

Preliminary tests with a limited number of repeats were done to optimise the luminescence 

assay and find the best ways of measuring light production before a complete data set with 

multiple readings was taken. This saved resources such as the synthetic MMFs which are not 

available commercially. A number of factors needed to be determined from optimisation 

trials, such as time points when readings were to be taken, the optimal concentration of MMF 

inducer molecule and when in the assay the inducer molecule should be added. The MmfR 

system was used to optimise the assay protocol as there was a clearer understanding of the 

type of results expected compared to MmyR. Once the methodology was optimised it could 

then be applied to the study of MmyR. 

Luminescence was measured using a Photek CCD camera and the associated software (see 

Methods section for details on this technique). S. coelicolor does not grow uniformly in liquid 

culture, they form large clumps of cells and will not sporulate and do not complete their full 

life cycle. An advantage of this luciferase system and the CCD camera was not only that it is 

highly sensitive but also that it could be used to take measurements from solid cultures, which 

should be more representative of transcriptional regulation in the wild type system and how it 

alters over the complex life cycle of S. coelicolor. 
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A lawn of Streptomyces was grown on selective SFM media for four to five days at 30°C. 

This formed a fresh starter culture for the rest of the study. A sterile loop was then used to 

inoculate the wells of a 12-well plate, each well containing 2.5 mL SFM media. Picking cells 

fresh from a selective SFM plate ensured that they would be luminescing optimally.1 

Different sample types were spread randomly across multiple plates. The Photek CCD camera 

took a more sensitive reading from the centre of its ‘view’ and so by rotating the way samples 

were spread out, anomalies or bias were avoided. Having this random spacing of samples also 

avoided any bias potentially caused by increased drying of samples in outer wells or a lack of 

oxygen to wells in the centre of the plate. 

3.3.2 Preliminary Observations 
Figure 3.8 shows an example of the type of readings taken using the Photek CCD camera. 

The strains used in this figure include M145 (negative control), L1+pCC4 (positive control 

with no repressor, labelled as ‘L1’ in Figure 3.8), L1+mmfR (labelled as ‘mmfR’) and 

L1+mmyR (labelled as ‘mmyR’). These were not grown in twelve well plates this one time for 

the sake of making this figure easy to read and label. For more details on the vectors in these 

strains please see Table 2.5 and Table 2.8. 

Figure 3.8A shows how the strains look when grown on solid culture and the corresponding 

image when being measured by the CCD camera for thirty seconds is shown in Figure 3.8B. 

Figure 3.8C shows schematics of all the vectors used in the strains included in this figure. It 

can be seen that the luciferase assay in Streptomyces strains produces very clear levels of 

luminescence, easily detectable and measurable within a thirty second reading.  

                                                        
1 Preliminary studies performed in this investigation showed that freezing samples and using 
glycerol stocks directly could compromise the amount of luminescence produced. 
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Figure 3.8A-C. Details on and visual representations of strains containing the lux genes 
under the control of mmfLp  

Assigned nomenclature = M145 – S. coelicolor M145 negative control with no luciferase 
genes, L1 – positive control with luxCDABE under the control of mmfLp and the empty pCC4 
vector, mmfR – strain containing L1 and pKMS01, mmyR – strain containing L1 and pKMS03 

A. Strains growing on SFM media 
B. Luminescence seen in the Photek CCD camera during a thirty second reading by 

strains shown in A. 
C. Schematic representation of reporter plasmids used 

 

As an initial observation from Figure 3.8, it appears that MmfR is a much better repressor 

than its paralogue MmyR, preventing lux expression a lot more efficiently (shown by the 

lower level of luminescence produced by the L1+mmfR strain versus the L1+mmyR strain). 

This was surprising as previous investigations by Sean O’Rourke et al. revealed that a mmyR 

knockout produces the phenotype of methylenomycin overexpression whereas a mmfR 

knockout does not.(71) Possible reasons for this inconsistency were further investigated and 

will be discussed further later in the report. Also of note, neither MmfR or MmyR appear to 

cause full repression of luxCDABE with both allowing some leaky expression, a detail also 

discussed later. As expected, the M145 negative control parent strain does not produce any 

measurable background luminescence whereas the positive control L1+pCC4 produced the 

greatest level of luminescence of the four strains. 

3.3.3 Timing of Measurements 
Streptomyces are slow growing bacteria, usually taking four to five days at 30 °C to get a 

lawn of bacteria on culture media. This is due to their complex mycelial lifecycle, which 

shows a number of similarities to the sporogenic fungi life cycle. A number of different time 

points were therefore trialled for measuring luminescence in this assay. 

Figure 3.9 shows the readings collected daily over 16 days for the M145 and L1+pCC4 

strains. These readings were taken to check when was best to measure luminescence. Here, 

and in all later trials, 0 hours refers to the time when plates have been inoculated and first 

placed in the incubator.  
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Figure 3.9. Changes in levels of luminescence over 16 days where luxCDABE is under 
the control of mmfLp, compared to a negative control 

The level of luminescence was calculated as a ratio of luminescence for L1+pCC4 compared 
to the negative M145 control strain (wild type S. coelicolor without SCP1 or SCP2). 

 

As can be seen in Figure 3.9, there appears to be a rapid change in the amount of 

luminescence at around the 24-hour time point and this would then continue to increase over 

the next few days. After around day three there would still be measureable luminescence but 

it appeared to fluctuate a lot, likely to be due to the bacteria entering different stages in the 

cell cycle. By two weeks of growth there was still detectable luminescence but the SFM 

media in the 12-well plate had started to dry out and crack therefore making the results hard 

to compare with the initial readings. 

Due to these findings, more time points were trialled around 24-72 hours including 

measurements being taken at 0.5, 4, 13.5, 16, 17, 18, 19, 20, 21, 22, 24, 38, 40, 48, 65 and 72 

hours. Readings from some of these investigations are shown later in Figure 3.10, Figure 3.12 

and Figure 3.13. Based on all of these experiments, measurements at time points of 21, 24, 

27, 48 and 72 hours were chosen for later tests. This allowed readings to be taken within the 

area of peak luminescent activity without having to take samples in and out of the incubator 

too often, risking both contamination and the effects of the decrease to room temperature in 

the Photek CCD camera.1 

3.3.4 Investigating How and When to Add the MMFs 
Tests were run to establish the effect of adding the MMFs L1+mmfR strains at different time 

points and using different protocols. The results from one of these trials are shown in Figure 

                                                        
1 The Photek CCD camera was used at room temperature as there was no heating option with 
the equipment. Readings would be taken as quickly as possible, minimizing the effects of this 
temperature change. 
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3.10. For this figure, trials were run where MMFs were added at the beginning of 

Streptomyces growth (0 hours) either on top of the media or to the molten media before it had 

set or where the MMFs were overlaid at 24 hours, after a lawn had started to grow. This was 

then compared to luminescence produced by a M145 negative control strain and the relative 

ratio of luminescence calculated. 

 

Figure 3.10. Changes in luminescence produced by the lux operon under the control of 
mmfLp and MmfR by adding 400 nM MMF4 at different time points  

The level of luminescence was calculated as a ratio of luminescence produced by the M145 
negative control strain. MMF4 added at 0hr and 24hr was overlaid on top of the SFM plate. 
Strains: L1+mmfR – luxCDABE under the control of mmfLp (L1 vector) and mmfR under 
the control of ermEp* (pKMS01 vector). 

 

As an initial observation, MmfR repression of the lux genes does indeed appear to be 

removed to some extent by the addition of MMF4. It was found that adding the MMFs at 24 

hours growth would disrupt the surface of the lawn of growing colonies. This disruption was 

enough to reduce the levels of luminescence produced. It would then take a few days for the 

luminescence levels (and cell growth) to recover to their previous level.  Figure 3.10 shows 

that luminescence for the strain where MMF4 was added at 24 hours is in fact lower than the 

non-induced L1+mmfR strain for the next five days until it recovers and increases again. 

Mixing the MMF with the SFM media appeared to produce very similar levels of 

luminescence to the L1+mmfR strain with no MMF, indicating that the furans might not 

diffuse through the SFM efficiently enough or that they were affected by the temperature of 

the molten SFM before it had set. (The SFM used had a pH of 7, previous investigations have 

indicated that the MMFs may diffuse better at around pH 5.)(14) Overlaying the hardened 

SFM with MMF4 at 0 hours shows a distinct peak in luminescence straight away. For these 
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reasons, it appeared best to add the MMFs on top of the media at ‘time 0’, when the plates are 

also being inoculated with Streptomyces. 

It is important to note that the concentration of MMF4 in these trials was only 400 nM. 

Although this produced detectable amounts of luminescence, future trials often used ten times 

this concentration of MMF to get a more distinct result. Also, the results from Figure 3.10 are 

taken over ten days, as discussed in Section 3.3.3 these later time points were not used in later 

investigations due to the plates drying out and the media cracking. 

 

3.3.5 Release of MmfR by Different Small Molecules 
To assess whether MmfR was released from the MARE operator by the different MMFs, 

MMF2, 4 and 5 were added to the L1+mmfR strain. Levels of luminescence were then 

compared to a negative control of the same strain with no MMFs as well as an L1+pCC4 

positive control  (representing how the system looks with no repression). 

Data was also collected for two other small molecules; molecule 70 and SCB1. Molecule 70 

is a synthetic analogue from the work of Nicolas Malet that has the same core structure as the 

MMFs but lacks the alkyl chain, which has been shown to be necessary for fitting the binding 

pocket.(55) SCB1 is a S. coelicolor butyrolactone signalling molecule, known to bind to the 

TetR family member ScbR. Neither of these analogues were expected to bind MmfR and so 

function as another negative control for this study. The chemical structures of these negative 

controls along with MMF2, 4 and 5 can be found in Figure 3.11. Luminescence results from 

these studies can be found in Figure 3.12. 

 

Figure 3.11. Chemical structures of MMF2, 4 and 5 and SCB1 from S. coelicolor and 
synthetic molecule 70 
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Figure 3.12. Changes in luminescence produced by the lux operon under the control of 
mmfLp and MmfR in the presence 100 µM of different microbial hormones 

Strains used: L1 – positive control, luxCDABE under the control of mmfLp and empty pCC4 
vector with no repressor, L1+mmfR –luxCDABE under the control of mmfLp (L1 vector) 
and mmfR under the separate control of ermEp* (pKMS01 vector). 
The level of luminescence was calculated as a ratio of luminescence produced by L1+mmfR 
with no MMFs present. 
 

In Figure 3.10 there was an observable increase in luminescence by L1+mmfR in the presence 

of 400 nM MMF4 after 48 hours growth. The inducibility of L1+mmfR strains can again be 

seen in Figure 3.12 where there is a clear increase in luminescence produced in the presence 

of 100 µM MMF2, 4 and 5 compared to no MMFs. At this concentration none of the MMFs 

achieve levels of luminescence compared to the L1+pCC4 positive control, indicating that 

higher concentrations could also be trialled. As expected, molecule 70 and SCB1 give levels 

of luminescence very close to those for the negative control (L1+mmfR with no small 

molecule added). 

Effect of the MMFs on a Positive Control 
The five MMFs were also added to the L1+pCC4 positive control strain at a concentration of 

100 µM. Upon a statistical analysis of data (not shown here), no significant difference was 

found in the levels of luminescence produced in the presence of the MMFs compared to the 

absence for this strain. This indicates that the concentrations being used, the MMFs are not 

having a toxic effect of Streptomyces growth or regulating the methylenomycin BGC in other 

ways, independent of MmfR/MmyR. 

Investigating the Release of MmyR by the MMFs 
When equivalent trials were run with L1+mmyR instead of L1+mmfR, there was no 

observable increase in luminescence upon the addition of the MMFs. This and the much 
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lower levels of luminescence repression observed for mmyR strains shown earlier in Figure 

3.8 indicates that MmyR has a very different role to MmfR. This is further discussed later in 

Section 5. 

3.3.6 Optimal Concentration of Inducers 
Following on from Figure 3.12 where it was seen that at 100 µM MMF did not achieve levels 

of luminescence in line with that of the L1+pCC4 positive control, a range of different MMF 

concentrations were trialled to see if full release of MmfR could be attained. Results from 

assays where MMF2 and 5 were added at various concentrations between 0.05 µM and 400 

µM are shown in Figure 3.13A and B.  

Figure 3.13A and B. Luminescence produced by the lux operon under the control of 
mmfLp and MmfR upon the addition of different concentrations of MMF2 and MMF5 

A. Data collected for MMF2 B. Data collected for MMF5 
Strain used: L1+pCC4 – positive control, luxCDABE under the control of mmfLp and empty pCC4 

vector with no repressor, L1+mmfR –luxCDABE under the control of mmfLp (L1 vector) and mmfR 
under the separate control of ermEp* (pKMS01 vector). The level of luminescence in both charts was 

calculated as a ratio of luminescence produced by L1+mmfR with no MMFs present. 
 

Figure 3.13A shows the results from an investigation that used MMF2 at a concentration 

range of 0.5 µM to 10 µM. All of these concentrations produce more luminescence than a 

control without MMFs with up to 3.5 more luminescence being produced for the highest 

concentration compared to no MMFs being present. However, around twice as much as this is 

needed to achieve the same levels of luminescence as the positive control. 

As can be seen in Figure 3.13B, MMF5 was trialled at concentrations between 2 µM and 400 

µM. Concentrations of MMF5 above 200 µM appear to no longer cause an increase in 

bioluminescence, possibly indicating the toxicity of the MMF compounds or a saturation of 

MmfR binding. A concentration of 100 µM was chosen as a standard to use in later 
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investigations as it was a concentration in the middle of those that showed good levels of 

luminescence. 

MMF2 was later trialled at concentrations in the range of 40 µM to 400 µM and MMF4 in the 

range of 2 µM and 400 µM (not shown here) and gave similar data sets to that seen for 

MMF5. 

3.3.7 Summary of Strategy Chosen to Investigate 
MmfR/MMF/MARE Operator Interactions 

In conclusion, the strategy designed to investigate MmfR/MMF/MARE operator interactions 

(Figure 3.3) and the research questions for this project proved to be functional in vivo in 

Streptomyces. The luciferase assay produced easily detectable levels of luminescence for the 

positive control (L1+pCC4) and MmfR repression of luxCDABE appeared to be released by 

the addition of three of the known MMFs at concentrations within the micromolar range. The 

luciferase assay was therefore deemed suitable for use in the remainder of the investigation 

into MmfR (an MmyR) interactions with the MMFs and MARE operators and the findings 

from this chapter formed the basis of much of the rest of the investigative work done in this 

project. 

An optimised protocol was designed using data collected in this chapter, considering the best 

time to add the MMFs, the optimal concentration to use, which time points to take readings at 

as well as how to prepare bacterial cultures for analysis. 

Finalised Bioluminescence Protocol 
The following protocol was used to collect all future bioluminescence data. To each well of a 

12 well plate, 2.5 mL SFM was added and allowed to set. The MMFs were diluted in DMSO 

to an appropriate concentration before being diluted one in ten with water and 10 µL added to 

each well. (A 10% DMSO solution was used instead as a control when no MMFs were 

required, giving a final DMSO concentration of 0.0004%.) To find out the Kd and Bmax for 

each MMF a concentration range of 5 µM to 400 µM was used. For all other tests requiring 

MMFs, a concentration of 100 µM MMF was used as a standard. 

After the MMFs were added, plates were inoculated with the Streptomyces strain of interest 

collected from a fresh starter culture plate and incubated at 30 °C with readings being taken at 

21, 24, 27, 48 and 72 hours using the Photek CCD camera. 

One down side of the luciferase assay was that there were large variations between results 

collected. For this reason, in the future multiple repeats were collected and data was again 

analysed as a ratio relative to a control sample. 
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3.4 Promoter Strength 
3.4.1 Strategy for Investigating Promoter Strength 
As explained earlier, there are three different MARE operator sites that MmfR is thought to 

bind to, regulating the expression of five different operons by blocking five promoter 

sequences. A diagram of the methylenomycin cluster can be found in Figure 3.5 and Figure 

3.6 with an explanation of the nomenclature used in this investigation. 

Each of the promoters downstream of a MARE operator sequence was tested by cloning 

different intergenic regions and placing them in different orientations upstream of the 

luxCDABE operon, according to the protocol explained in Section 3.2. These vectors were 

then studied in the absence of the transcriptional repressor MmfR or MmyR to investigate the 

strength of the promoter only, creating the L1+pCC4, L1F+pCC4, L2+pCC4, L3+pCC4 and 

L3F+pCC4 strains. No MMFs were added during this investigation and the optimised 

protocol laid out in Section 3.3.7 was used. A schematic of how this assay was set up can be 

found in Figure 3.14 (see also Figure 3.1). In the absence of MmfR/MmyR and the MMFs, 

the lux genes should be constitutively expressed and the bioluminescent output proportional 

to the strength of the promoter in the vector being used. 

 

Figure 3.14. Schematic of luciferase assay used to investigate the strength of promoters 
from the methylenomycin biosynthetic cluster 

To investigate promoter strength, one vector is integrated into the Streptomyces genome; containing 
luxCDABE under the control of one of the five relevant promoters from the methylenomycin cluster. 
No MmfR or MmyR is produced by these strains; instead an empty pCC4 vector is used as a control. 
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3.4.2 Results on Comparison of the Five Methylenomycin Cluster 
Promoter Strengths 

Figure 3.15 shows the levels of luminescence produced over 72 hours by strains containing 

the five different methylenomycin cluster lux vectors. Figure 3.16 is a boxplot of the data 

from Figure 3.15 at the 72 hour time point.1 This box plot includes data from 10-90% 

percentiles and all other results shown as outliers. For both figures, data is normalised against 

luminescence values for the M145 negative control. 

 

Figure 3.15. Luminescence produced by the lux operon when under the control of 
different promoters from the methylenomycin gene cluster 

Data normalised against luminescence values for the M145 negative control. 
Strains used: M145 – negative control strain (wild type S. coelicolor without SCP1 or SCP2), 
all other strains – contain luxCDABE under the control of different promoters from the 
methylenomycin gene cluster  

 
 
 

                                                        
1 This figure also contains results from analysis of ermEp*, detailed later in Section 3.4.3. 
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Figure 3.16. Boxplot of luminescence produced by the lux operon when under the 
control of different promoters, at 72 hours growth 

Data normalised against luminescence values for the M145 negative control. This box plot 
includes data from 10-90% percentiles and all other results are shown as outliers. 
Strains used: M145 – negative control strain (wild type S. coelicolor without SCP1 or SCP2), 
all other strains – contain luxCDABE under the control of different methylenomycin cluster 
promoters 

 
Figure 3.16 suggests the following order in terms of promoter strength; 

mmyRp > mmfRp > mmyYp > mmyBp > mmfLp 

L2 > L1F > L3F > L3 > L1 

Another way of displaying this is; 

TetR > TetR > biosynthetic gene > transcriptional activator > MMF production 

Both mmyRp and mmfRp produce an average of more than 100 times the level of 

luminescence produced by the M145 control whereas mmyYp and mmyBp produce between 

70 and 80 times that of the control. Even the weakest promoter, mmfLp, produced 45 times as 

much luminescence as the M145 control. 

It is also interesting to point out that the three promoters which produced the highest levels of 

luminescence (L1F, L2 and L3F) also show some phenotypical differences from the L3 and 

L1 strains. In particular, the blue pigments normally seen when growing S. coelicolor are 

missing. This indicates the possible toxicity of high levels of luxCDABE expression or just the 

drain on cell resources that such high expression levels produce. The cells do however appear 

to grow at the same rate and still sporulate after three or four days growth and a 16S analysis 

of the DNA (not shown here) did reveal that it was indeed S. coelicolor present rather than a 

contaminant strain. The implications of these observations are therefore unclear. 
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It should be noted that at 48 hours compared to 72 hours, mmyYp and mmyBp will swap 

places in terms of promoter strength (otherwise the order of promoter strength remains the 

same). It is hard therefore to say which is stronger overall; mmyYp or mmyBp. It may be more 

accurate to say; L2 > L1F > L3F ≈ L3 > L1. However, as the L3F strain shows the 

phenotypic differences associated with the stronger promoters and the L3 strain does not, it 

does seem that mmyYp is likely to be slightly stronger than mmyBp. Therefore the order of 

promoter strength displayed previously does seem the most probable. 

The implications of the TetR family repressors; MmfR and MmyR having the strongest 

promoters are unclear. The mmyR gene is known to be expressed after mmfR (71) so possibly 

the high levels of expression are necessary to make enough quickly enough for it to be able to 

carry out its repressive role. In addition, whereas one of each of the MmfLHP enzymes can 

make many MMF molecules, one repressor protein dimer can only bind and block one 

operator site and so many more are needed. A larger number of structural proteins are needed 

than enzymatic ones. 

When analysing this data it is also important to consider that all of the lux constructs used 

here have relied on the same RBS1 for controlling translation of the lux genes. These results 

therefore show the relative amount of expression generated by a promoter rather than the 

absolute amount (the number of elongating polymerases per second) (133) that may be found 

in the wild type system. Another factor which may influence the relative versus absolute 

promoter strengths is the interplay of sigma factors (Section 1.4.4). It is not known whether 

the different genes in the methylenomycin BGC recruit different sigma factor/polymerase 

complexes, thereby altering the absolute expression at a particular promoter.  

3.4.3 Comparison with Other Promoters 
The luciferase system used in this investigation was fairly recently developed and its use in 

Streptomyces has been limited. For this reason, it was decided to check the system using the 

well-known Streptomyces promoter ermEp* as a benchmark for the methylenomycin cluster 

promoters. The ermEp* promoter is well characterised (131) and known to work as a 

relatively strong promoter in S. coelicolor, it was also the promoter used to produce MmfR 

and MmyR at a constant level. Table 3.1 shows a comparison of the sequence for ermEp* 

with five of the methylenomycin cluster promoters. 

                                                        
1 RBS sequence used was 5’ AAGGAGG 3’ 
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Table 3.1. Comparison of the different methylenomycin cluster promoter sequences with 
strong constitutive promoter, ermEp*  

Promoter 
name 

-35 
(5’ to 3’) 

-10 
(5’ to 3’) 

Strength 
(from 

Figure 
3.16) 

Full double stranded promoter sequence (with -10 and 
-35 sequences underlined) 

ermEp* TTGCAT GAGGATCCT - 5’ AGCTTGCATGCCGGTCGACTCTAGAGGATCCTACC 3’ 
3’ TCGAACGTACGGCCAGCTGAGATCTCCTAGGATGG 5’ 

mmfLp TTGCAT AGGTATATT 5 5’ CCCATTGCATAATACCTTCCCGCAGGTATATTTCT 3’ 
3’ GGGTAACGTATTATGGAAGGGCGTCCATATAAAGA 5’ 

mmfRp TTGCCG CGGTAAGCT 2 5’ AGCTTACCGATCCCGGCTGTCTTGCAGCGCGGCAA 3’ 
3’ TCGAATGGCTAGGGCCGACAGAACGTCGCGCCGTT 5’ 

mmyRp CTAACA GGGTATGTT 1 5’ CCCACTAACATACCTTCCCGAGGGTATGTTTTCCG 3’ 
3’ GGGTGATTGTATGGAAGGGCTCCCATACAAAAGGC 5’ 

mmyBp TTAACT AGTCATAAA 4 5’ CCGGTTTAACTCTCCGTTACGAGTCATAAAAAACC 3’ 
3’ GGCCAAATTGAGAGGCAATGCTCAGTATTTTTTGG 5’ 

mmyYp TTTATG AGTTAAACC 3 5’ CCCCGGTTTAACTCTCCGTTACGAGTCATAAAAAA 3’ 
3’ GGGGCCAAATTGAGAGGCAATGCTCAGTATTTTTT 5’ 

 

An ermEp* vector was created as before, with the ermEp* promoter being subcloned 

upstream of luxCDABE using L1 as a template backbone.(92) This vector has been called L4 

(see Table 2.5) and was used to create the L4+pCC4 strain. This was then used to test the 

strength of ermEp* in the same way as the methylenomycin cluster promoters were tested 

(see Figure 3.14).  

Figure 3.16 shows the results collected using L4+pCC4 compared to the data collected for the 

methylenomycin cluster promoters. Data from this figure indicates that ermEp* falls within 

the following order of promoter strength; 

mmyRp > mmfRp > ermEp* > mmyYp > mmyBp > mmfLp 

An observation from Figure 3.16 is that there is not a huge difference between any of the 

promoters with the mean luminescence produced ranging between 45 and 126 times that of 

the M145 control at 72 hours. Other studies involving promoter strength often involve a much 

larger magnitude of variation in possible promoter strengths. For example, Bai et al. saw a 

190 fold difference in promoter strength when analysing different modular regulatory 

elements whereas there is less than a three fold different seen here.(134) It is conceivable that 

these promoters are all of similar strengths but it is also a possible indication of the limitations 

of the luxCDABE system in Streptomyces. Using luxCDABE compared to luxAB is beneficial 

because nothing needs to be added to the system. Both luciferase and its substrate are 

produced and so there is luminescence generated without any external manipulations. The 

down side of this is the possibility that the constitutive expression of luxCDABE is very 

taxing on the cell’s resources and perhaps the strongest promoters are not revealing their true 
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strength. Despite this possible limitation however, the technique is still useful for the aim of 

this project; to develop a novel inducible expression system. The luciferase reporter assay can 

reveal which promoter is strongest and therefore most suitable for use in the inducible 

expression system being designed. For this reason, and the successes encountered while 

optimising this technique, the luciferase assay was used for more investigations into 

MmfR/MMF/MARE operator interactions. 

A possible improvement to this protocol for the future would be to use the luciferase assay to 

assess other well-studied promoters. In this way, the effects of the potentially taxing 

expression of luxCDABE could be further explored. For example, the work by Bai et al. in 

2015 could be used as a benchmark for promoter strength. In this work, hundreds of 

promoters were compared using a novel streptomycete gfp assay. It would be interesting to 

see how the data they collected may correlate with data produced by the system studied here. 

The recently developed kasOp* promoter (135) has been found to be ~20 times stronger than 

ermEp* and if added to the lux system,(134) would provide an insight into the implications of 

high promoter strength in an energy-demanding reporter assay. 

 

3.5 Conclusions Drawn from Preliminary Investigation and 
Outlook for Future Investigations 

MmfR/MARE Operator Binding 
Investigations thus far have shown that MmfR will bind to the intergenic region between 

mmfR and mmfL. Using the finalised bioluminescence protocol (Section 3.3.7), MmfR 

binding to the two other intergenic regions between mmyY and mmyB, and mmyR and mmfP 

are also to be investigated. 

MmfR/MMF Binding 

Preliminary trials showed that MmfR repression could be released from the intergenic region 

between mmfR and mmfL upon the addition of MMF2, 4 or 5 (Figure 3.10 and Figure 3.12). 

Different concentrations of these MMFs trialled produced quantifiable results that were 

distinct from one another and would be suitable for testing using statistical analyses such as a 

t-test. Following on from this it was decided to trial all five MMFs using the finalised 

protocol described, using a range of concentration to obtain Kd and Bmax values for each of the 

MMFs and from this calculate the binding potential of each. The conclusions from trialling 

different concentrations of MMFs in Section 3.3.6 (Figure 3.13) were particularly useful 

when designing experiments to investigate the Kd and Bmax values for each of the MMFs. The 
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findings of the investigation into MmfR/MARE operator and MmfR/MMF binding can be 

found in Section 4. 

MmyR Interactions with the MARE Operators and MMFs 
The mechanism by which MmyR works is still unclear and the potential results from further 

investigations are intriguing. Preliminary trials indicated that there was little MmyR binding 

to the intergenic region between mmfR and mmfL and the addition of the MMFs did not 

produce an obvious change in luminescence produced (Figure 3.8). As with the plans for the 

further investigation into MmfR, MmyR was also investigated using the luciferase assay 

trialled here (Chapter 5). This was done to further investigate potential MmyR binding at the 

two other intergenic regions between mmyY and mmyB, and mmyR and mmfP as well as 

investigating possible ligands for this ‘pseudoreceptor’ type of TFR. 

Promoter Strength 
It was seen from the investigation carried out in Section 3.4 that the different promoters in the 

methylenomycin biosynthetic cluster had different strengths. In particular, the promoters for 

the transcriptional repressors were stronger than those for biosynthetic enzymes. This data 

will be useful as a benchmark and baseline when studying MmfR/MARE operator 

interactions adjacent to or in line with the DNA sequences for these promoters. 
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4 Mode of Action of Transcriptional Repressor 
MmfR in Streptomyces coelicolor 

4.1 Aims and Strategy of Investigation 
In this section, a more complete selection of bioluminescence results are displayed, looking 

specifically at the function of MmfR. The methodology used to collect this data is based on 

the finding of the preliminary results collected in Section 3 and the optimised protocol 

specified in Section 3.3.7. Vectors used to obtain results were explained previously in Section 

3.2 and Table 2.8. 

For each measurement there were at least 16 biological and technical repeats spread across at 

least three different ‘sessions’ of taking results. By taking measurements during different 

sessions any fluctuations due to variations in the communal incubator door being opened and 

different batches of media etc. should be accounted for. Data collected were analysed, finding 

averages and looking at the relative ratios between results as well as looking for statistical 

significance using a t-test. 

The investigation was split into two main parts designed to study MmfR binding to the 

MARE operator or the methylenomycin furan ligands. Variables tested to study MARE 

operator interactions include observing the reduction in luminescence produced upon MmfR 

binding at the MARE operator regions as well as investigating the level of MmfR release at 

the different MARE operator sites by a single concentration of MMF. Variables tested to 

study ligand interactions included trialling different concentrations of each of the five MMFs 

and calculating the binding potentials for each. Following on from this, the ligand binding 

pocket was investigated in silico and mutants created that allowed the further exploration of 

key ligand binding residues. 

 

4.2 Statistical Explanation of Data Handling 
As explained earlier in Section 3.3.1, Streptomyces coelicolor do not grow well in liquid 

culture, never reaching the sporulation stage and forming large clumps of aggregated cells. 

For this reason, the analysis was always done using solid cultures. A downside of the 

technique used was that the exact number of cells was never known. This therefore meant that 

there was a lot of variation between repeats and a high coefficient of variance. Measuring the 

mass of cells on solid culture can be a very lengthy process and would not allow samples to 

be used for repeat measurements. For this reason, luminescence was recorded as a relative 
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ratio of light produced compared to the negative control for a particular sample. By 

calculating a ratio, the variance between the different sample types should cancel one another 

out.  

It was also found that there is much less variability between readings at later time points (e.g. 

when looking at promoter strength in Figure 3.15) making these more reliable report points. 

More detailed statistical analyses of results collected were done with data from the 48 and 72 

hour times points, when the standard deviation and coefficient of variance was lower. A 

possible reason for why results appeared to stabilise at the later time points could be that the 

cells were entering the stationary phase of growth. 

 

4.3 MmfR-MARE Operator Interactions 
4.3.1 Details on the MARE Operator Sequences 
Within the intergenic regions of the lux vectors used (Figure 3.6A), it is not only the promoter 

region that is of interest but also mainly the MARE operator sequence and the binding affinity 

of MmfR to it. These methylenomycin auto-regulatory response elements vary in sequence 

between the three known sites. The different sequences therefore can be expected to have 

different affinities for MmfR. The sequence of the three methylenomycin cluster MARE 

operators can are as follows:  

L1  5’ ATAATACCTTCC CGCAGGTATATT 3’ found between mmfL and mmfR 
 3’ TATTATGGAAGG GCGTCCATATAA 5’ 
 
L2 5’ AACATACCTTCC CGAGGGTATGTT 3’ found between mmfP and mmyR 

3’ TTGTATGGAAGG GCTCCCATACAA 5’ 
 
L3 5’ AAAAAACCTTCG GGAAGGTTTGAC 3’ found between mmyY and mmyB 

3’ TTTTTTGGAAGC CCTTCCAAACTG 5’ 
 

The nucleotides found across all three MARE operators are highlighted in yellow. A reminder 

of the nomenclature used in strains created corresponding to the location of these MARE 

operators can be found in Figure 4.1.  
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Figure 4.1. Schematic showing nomenclature of lux vectors, based on the MARE 
operator being studied for a particular methylenomycin cluster intergenic regions 

Here the earlier nomenclature of L1 and L1F and L3 and L3F have been combined simply as L1 and 
L3 respectively. Please note that this diagram is not to scale. 

For a scale diagram please see Figure 3.5. 
 

To investigate MmfR-MARE operator interactions, experiments were done with the aim of 

observing the reduction in luminescence produced upon MmfR binding at the MARE 

operator regions as well as exploring the level of MmfR release at the different MARE 

operator sites by a single concentration of MMF. This investigation requires the full two-

vector luciferase system to be used, with both the lux vector and the pKMS01 vector (Figure 

3.3). 

MmfR is homodimeric and so affinity to the MARE operator in either orientation within a 

vector would be expected to be unchanged as the 24 bp MARE operator is the same in either 

direction (i.e. L1F should be the same as L1). However, the relative location of the promoter 

sequences to MmfR binding site (Figure 3.6A) may have an effect of the degree of repression 

that is achieved meaning that there may be differences between repression seen in L1F versus 

L1 and L3F versus L3 strains. In this investigation into MARE operator binding the L1, L2 

and L3 vectors were used but not L1F or L3F. If more time had been allowed then L1F and 

L3F would also have been trialled, adding pKMS01 to create L1F+mmfR and L3F+mmfR. 

4.3.2 Strength of MmfR Binding to the MARE operators 
Figure 4.2 shows the results of an investigation into the strength of MmfR binding to the three 

different MARE operators. In this figure, luminescence produced by L1, L2 and L3 vectors 

are compared when pKMS01 is present versus a pCC4 control with no mmfR. This study gave 

information on the level of repression that is achieved in the presence of MmfR compared to a 

negative control (M145) and positive control (L1+pCC4, L2+pCC4 or L3+pCC4) for a 

particular operator. 

For Figure 4.2, all data is normalised and calculated as a ratio of the level of luminescence 

produced by the M145 control at 48 hours. L1+pCC4, L2+pCC4 and L3+pCC4 represent the 

level of luminescence expected to be produced at a particular promoter in the absence of any 

repression. 
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Figure 4.2. Luminescence produced by the lux operon under the control of different 
methylenomycin cluster operators in the presence and absence of MmfR at 48 hours 
growth compared to a S. coelicolor M145 negative control 

Box plot includes data from 10-90% percentiles and all other results shown as outliers. 
Key: ‘mmfR’ refers to the presence of the pKMS01 vector with mmfR under the control of 
ermEp*, L1, L2 and L3 refer to the lux vectors with luxCDABE under the control of different 
MARE operators, pCC4 is an empty vector used as a control for pKMS01 

 

From Figure 4.2 it can be seen that there is a 10-fold decrease in luminescence from the L1 

operator upon MmfR binding compared to 3.5-fold and 6.5-fold for L2 and L3 respectively at 

48 hours growth. This indicates that MmfR binds best to the L1 MARE operator, between 

mmfL and mmfR, followed by the L3 MARE operator, between mmyY and mmyB, and least 

strongly to the L2 MARE operator, between mmfP and mmyR. A similar pattern of results was 

also seen at 72 hours (not displayed here). 

Of note is that at no operator site was there seen to be full repression of the lux operon (for all 

mmfR strains there was always more measureable luminescence than the level produced by 

the M145 negative control).  At 48 hours L1+mmfR produced three times as much 

luminescence as the M145 control and for L3+mmfR there was almost nine times as much 

whereas there was over 24 times as much luminescence for L2+mmfR compared with the 

M145 control. This revealed varying degrees of apparent leakiness in the system. The level of 

luminescence will be influenced not only by the strength of MmfR binding but also the 

promoter strength at each of the sites. 

The biological implications of this leakiness is unclear but it is potentially helpful in 

regulating methylenomycin biosynthesis and maintaining equilibrium between MmfR release 

and repression. If there is leakiness in the wild type system, the five operons may be 

expressed at a low level including the production of small amounts of MMFs by the mmfLHP 
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operon. This does not however appear to be enough to trigger the production of 

methylenomycin under normal laboratory conditions.(71) The mmfR and mmyR promoters are 

the strongest (Section 3.4), high levels of these repressors maybe enough to switch off the 

system until a threshold concentration of MMFs is achieved and the level of MmfR cannot 

keep up with the de-repression. However, there are a number of reasons why this leakiness 

may not actually be found in the wild type system. One is that in the wild type system, mmyB 

and mmfL expression are also controlled by the temporal use of a rare TTA codon, which can 

only be expressed in later stages of the cell cycle, when it’s tRNA is available. Also, in vivo in 

wild type S. coelicolor A3(2), where SCP1 and the entire methylenomycin cluster and other 

regulatory elements are present, it is reasonable to predict that maybe the leakiness observed 

in this assay would be lower due to the constant self-regulatory production of MmfR (see 

Chapter 6 for more details). Once MmfR is under the control of its own promoter and MARE 

operator (rather than ermEp*) there is likely to be tighter regulation of the levels of this 

repressor. There is also potential additional assistance from sigma factors and other regulatory 

molecules on the regulation of this repressor when in the wild type system. The extent to 

which these different factors may play a role however, is unclear. 

4.3.3 Investigation into Release of MmfR from the MARE Operator 
by MMF4 

MmfR affinity for the MARE operator could also be studied by looking at how easily the 

repressor is released in the presence of the MMF at each of the three sites. A concentration of 

100 µM MMF4 was added to L1+mmfR, L2+mmfR and L3+mmfR and the levels of 

luminescence compared to the same strains with no MMFs. By comparing the results with the 

same strains with no MMFs, it was possible to offset the variation caused by different 

promoter strengths next to the different MARE operators. Data for the positive control as a 

ratio of each mmfR strain is also shown to represent maximal luminescence for a particular 

promoter in the absence of repression (L1+pCC4, L2+pCC4 and L3+pCC4 strains). The 

results from this investigation are found in Figure 4.3. 
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Figure 4.3. Boxplot of luminescence produced by the lux operon under the control of 
different MARE operators and MmfR in the presence and absence of 100 µM MMF4, 
compared to luminescence produced by luxCDABE under the control of the same 
operator but no MmfR at 48 hours 

The data for the mmfR strains with MMF4 were normalised against the same strain with no 
MMF to give a relative ratio of 1 for the negative control. The box plot includes data from 10-
90% percentiles and all other results shown as outliers. Key: ‘mmfR’ refers to the presence of 
the pKMS01 vector with mmfR under the control of ermEp*, L1, L2 and L3 refer to the lux 
vectors, pCC4 is an empty vector used as a control for pKMS01 in the positive control strains. 

 

Comparison with the Negative Control 

Upon the addition of MMF4 to mmfR strains at the 48 hour time point there is an average of 

around between 3 and 3.3 times as much luminescence produced for the L2 and L3 operators 

respectively, compared to over nine times more for L1. This reveals that as well as binding 

most strongly to the L1 MARE operator (Figure 4.2), MmfR is also released most readily 

from it in the presence of its ligand. 

Comparison with the Positive Control 

The results comparing MmfR/MMF4 data with the pCC4 positive controls for each MARE 

operator follows a similar pattern. The L1+mmfR strain with MMF4 achieves the closest 

levels of luminescence to the positive control, producing 96% of the luminescence that the 

positive control produced. On the other hand, L3+mmfR with 100 µM MMF4 only achieves 

around 50% of the luminescence produced by the positive control and L2+mmfR achieves 

around 87%. This indicates that MmfR is less readily released at the L3 MARE operator, 

followed by L2 with L1 being the most readily release. The data from Section 4.3 is 

summarised in Table 4.1. 
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4.3.4 Discussion of MmfR/MARE Operator Binding Data 
Table 4.1 shows a comparison of all the results obtained from the luminescence assay on the 

affinity of MmfR for each of the methylenomycin cluster intergenic regions it is known to 

bind as well as data on the strength of promoters in each region. 

Table 4.1. Summary of MmfR-MARE operator binding data 
The data in this table summarises the findings from Figure 4.2, Figure 4.3 and Figure 3.16. Data in 
this table is taken from analyses done at either 48 or 72 hours growth. 

MARE 
operator 

site 

Corresponding 
promoter 

Strength 
of MmfR 
binding 

MmfR release in the 
presence of MMF4 

compared to a 
negative control 

MmfR release in the 
presence of MMF4 

compared to a 
positive control 

Relative 
promoter 

strength (1 
being 

highest) 
L1 mmfLp Greatest Greatest Greatest 5 

L1F mmfRp - - - 2 
L2 mmyRp Weakest Weakest Middle 1 
L3 mmyBp Middle Middle Weakest 4 

L3F mmyYp - - - 3 
 

It appears, according to the comparison of results in Table 4.1, that MmyR production has the 

strongest promoter but is one of the ‘hardest’ to switch on with the lowest level of release of 

MmfR measured from the L2 intergenic region upon the addition of MMF4 compared to the 

same strain with no MMFs. This may explain why MmyR production has previously been 

shown to occur after the production of MmfR.(54) 

The mmyBY intergenic region (L3) appears to produce results in the middle in terms of both 

promoter strength and MmfR binding whereas the mmfR and mmfLHP operons are quite 

clearly the easiest to switch on and off. The MARE operator between these two operons (L1 

MARE operator) was also shown to be the least leaky, producing only three times as much 

luminescence in the presence of MmfR as the M145 control compared to 24 times for the L2 

MARE operator. For this reason, the L1 MARE operator seems to be the most suitable choice 

for use in a novel inducible expression system. Following on from this, the L1 vector was also 

used in all future investigations in Section 4.4. L1 was chosen for this instead of L1F strains 

due to the phenotypic differences in the strains with stronger promoters (referred to after 

Figure 3.16 on page 65). It is as yet unclear what the implications of using the high strength 

promoters in the resource demanding luxCDABE system so to ensure consistent and reliable 

results the more ‘healthy’ looking L1 strains were used. Also, the differences in promoter 

strength were just over two fold between L1 and L1F, not a huge difference when one looks 

at the almost 200 fold difference in promoter strength see by Bai et al. (134) when this 

Chinese group studied a variety of promoters. A two-fold difference in promoter strength 
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therefore is not significant enough to pick one promoter over another, especially where one 

appears phenotypically distinct from the wild type. 

The findings in Section 4.3 complement the previous gel shift assays run by Peter Harrison 

where the implication was that MmfR is more readily released for the mmfRL intergenic 

region (L1 MARE operator) than the mmyBY intergenic region (L3 MARE operator). 

The results from Section 4.3 indicate the potential importance of the nucleotides that are not 

conserved between the three MARE operators in terms of providing the differential strength 

of binding to MmfR. The L1 (mmfLR) MARE operator was shown to bind most strongly to 

MmfR. Nucleotides that are found in this operator but neither of the other two MARE 

operators are highlighted; 

5’ ATAATACCTTCC CGCAGGTATATT 3’ 
3’ TATTATGGAAGG GCGTCCATATAA 5’ 

 
These nucleotides are potentially what give this L1 MARE operator its strength of binding 

and so are potential targets for future site directed mutagenesis to see how they impact the 

strength of MmfR binding. 

 

4.4 MmfR-MMF Interactions 
4.4.1 Different MMFs 
Five methylenomycin furan ligands are naturally produced by S. coelicolor A(3)2. As seen in 

Figure 4.4, the structures of the different MMFs vary in the length and branches of the alkyl 

chain, and have all been shown experimentally to bind MmfR and induce methylenomycin 

production by previous researchers.(55) 

Figure 4.4. Chemical structures of the methylenomycin furans (MMFs) 
These five molecules have experimentally been shown to be involved in the regulation of 

methylenomycin biosynthesis 

When optimising the luciferase assay in Section 3.3.6, a range of different MMF 

concentrations of MMF2, 4 and 5 were trialled. It was found that methylenomycin furan 

concentrations above 5 µM produced a detectable change in luminescence. Concentrations up 
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to 400 µM were trialled and saturation of MmfR appeared to occur between 200 and 400 µM 

for MMF5. From this it was decided that a final concentration of 100 µM MMF should be 

used as a standard for future tests. 

Each MMF was added at a final concentration of 100 µM to the L1+mmfR strain and the 

increase in luminescence compared to the same strain with no MMFs was measured. The 

results from this investigation are presented in Figure 4.5 and Figure 4.6. Figure 4.5 shows the 

effect on luminescence of all five MMFs over five time points for 72 hours. In this figure, 

data is normalised against L1+mmfR with no MMFs and also shows a comparison with the 

L1+pCC4 strain (positive control, no MmfR). Figure 4.6 shows a bar chart of the data from 

Figure 4.5 at 48 hours only. Data from this figure is again normalised against L1+mmfR in the 

absence of MMFs. A t-test was run with the data collected for Figure 4.6 to establish whether 

there was significant release of MmfR by each of the five MMFs, this data is displayed in 

Table 4.2. 

 

Figure 4.5. Luminescence produced by the lux operon when under the control of mmfLp 
and MmfR upon the addition of 100 µM of different MMFs compared to no MMFs over 
time 

Luminescence produced is calculated as a ratio of the luminescence produced by the 
L1+mmfR with no MMFs, meaning that the luminescence produced by this strain has a value 
of one. Strains used: L1+pCC4 – positive control, luxCDABE under the control of mmfLp, 
L1+mmfR – luxCDABE under the control of mmfLp and mmfR under the control of ermEp* 
(pKMS01) 
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Figure 4.6. Bar chart of luminescence produced by the lux operon when under the 
control of mmfLp and MmfR in the presence of 100 µM of different MMFs compared to 
no MMFs at 48 hours 

Luminescence produced is calculated as a ratio of the luminescence produced by the 
L1+mmfR with no MMFs, meaning that the luminescence produced by this strain has a value 
of one. Error bars show the standard deviation from the mean with all data points collected 
plotted. Strains used: same as Figure 4.5 

 

Table 4.2. A t-test analysis of significant changes in the luminescence produced by 
luxCDABE when under the control of mmfLp and MmfR in the presence of different 
MMFs compared to no MMFs 

Two tailed t-test with unpaired samples of equal variance used as parameters. The average 
induction of luminescence is calculated as a ratio of L1+mmfR with no MMFs (giving this 
sample type a value of 1). 

MMF added to 
L1+mmfR p-value Significant 

increase? 

Average 
induction at 48 

hr (R.R.) 
MMF1 6.62E-26 TRUE 11.48 

MMF2 1.29E-15 TRUE 7.28 

MMF3 6.40E-24 TRUE 10.65 

MMF4 6.08E-18 TRUE 9.49 

MMF5 3.19E-17 TRUE 9.29 

 

As expected, the t-test analysis (see Table 4.2) showed that all five MMFs cause a significant 

release of MmfR from the DNA, with the p-value being well below 0.05 for all at 48 hours 

growth.  

Data from Figure 4.5 and Figure 4.6 indicates that the two branched chain MMFs (MMF1 and 

3) cause slightly higher levels of MmfR release than the other MMFs. Figure 4.5 shows that 

levels of luminescence being produced in the presence of the MMFs were anywhere between 

seven and 12 times that of the same strain without induction. However, despite varying 
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efficacy of the MMFs, at a concentration of 100 µM none of the MMFs cause total MmfR 

release, with levels of luminescence still being below those produced by the L1+pCC4 strain 

(positive control, representing no repression). 

Figure 4.6 shows the following order of efficacy for the MMF molecules at 48 hours: 

MMF1 > MMF3 > MMF4 > MMF5 > MMF2 

The biological need for five different inducer molecules with similar levels of binding to 

MmfR is unclear. However, an explanation may be that the MmfLHP biosynthetic enzymes 

are not specific enough to make a single type of MMF, thereby resulting in five similar 

molecules that can all bind to MmfR. 

Data for 72 hours growth also showed a significant increase in luminescence in the presence 

of the five MMFs (data not shown here) and measurements at this time point produced the 

same order of efficacy by the different MMFs as was seen at 48 hours. 

4.4.2 Different Concentrations of MMFs 
Once it was established that the addition of all five MMFs produced significant changes in the 

luminescence produced by the L1+mmfR strains and could be suitably analysed using the 

luciferase assay, further investigations were carried out to look at the binding affinities of 

each MMFs, calculating the Kd and Bmax values from a standard curve. The Bmax represents 

the maximum luminescence produced by L1+mmfR in the presence of the MMFs as a relative 

ratio of same strain with no MMFs whereas the Kd represents the equilibrium binding 

constant, the concentration (in µM) needed to achieve half the maximum binding of the 

MMFs to MmfR. The equation for a standard curve is as follows; Y = Bmax x X / (Kd + X), 

where Y is the ratio of luminescence and X is the final concentration of the MMFs. 

MMF4 is used as an example of how these binding potential for each of the MMFs were 

determined and a full set of data is shown in Figure 4.7 and Figure 4.8. The same analysis was 

then done for the other four MMFs and the data summarised in Figure 4.9, Figure 4.10 and 

Table 4.3. 

Figure 4.7 shows the data collected for the L1+mmfR strain in the presence of six different 

concentration of MMF4 over 72 hours compared to a negative and positive control. Figure 4.8 

shows a standard curve produced using luminescence readings from the just 48-hour time 

point. 
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Figure 4.7. Dose-response of MMF4 over time, in strains where lux operon expression is 
controlled by mmfLp and MmfR 

Luminescence produced is calculated as a ratio of the luminescence produced by the 
L1+mmfR with no MMFs. Strain used: L1+mmfR – luxCDABE under the control of mmfLp 
(L1) and mmfR under the control of ermEp* (pKMS01) 

 

Figure 4.7 revealed that 400 µM MMF4 appeared to cause the greatest release of MmfR from 

the MARE operator, producing up to 20 times the luminescence of the non-induced strain. In 

fact, at a number of time points, 400 µM MMF4 being added to L1+mmfR produced higher 

levels of luminescence than even the positive control for the same operator sequence 

(L1+pCC4). It is not entirely clear why this is the case. Possibly the reason for this is the 

margin of error for the data collected, which does have some overlaps (not shown here). 

Alternatively, the MMFs may have a separate activator role as well as directly triggering the 

release of MmfR. Possibly the MMFs can be used to recruit sigma factors or other 

transcriptional regulators, but there is no experimental evidence of this being the case as yet. 

Further investigation would be needed to test this theory, particularly as the presence of the 

MMFs caused no significant change in the luminescence produced by the positive control 

strains (Section 3.3.5). 

Data collected for final concentrations between 50 µM and 200 µM appear to be very similar, 

particular at later time points, indicating that MmfR/MMF binding is saturated and a 

threshold level of MMFs has been reached that is enough to activate the total biosynthetic 

pathway. 
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In Figure 4.7, at the time points around 24 hours, there does not appear to be a direct 

correlation between concentration and luminescence. Some lower concentrations appear to 

produce greater levels of luminescence than the higher concentrations. There was a huge 

deviation between these earlier results however, so this lack of correlation in some cases may 

just be an artefact of biological variation and the cells stabilising in growth. At 48 and 72 

hours however, there is a direct correlation between MMF concentration and luminescence 

produced as well as there being a lower standard deviation and coefficient of variance 

between results which makes this data more suitable for comparisons. For this reason, these 

later time points were used to create a standard curve and determine the Bmax and Kd values in 

Figure 4.8. 

 

Figure 4.8. Dose-response curve of MMF4 at the 48 hour time point, in strains where lux 
operon expression is controlled by mmfLp and MmfR 

Shown in black is the actual data for each MMF with the fitted standard curve shown in red. 
Strain used: L1+mmfR – luxCDABE under the control of mmfLp (L1) and mmfR under the 
control of ermEp* (pKMS01) 

 

In Figure 4.8, the fitted hyperbolic curve to the data is shown in red, this has an R2 value of 

0.9597, indicating a very good fit of the model to the data (where 1 is a perfect fit and 0 is no 

relationship). The equation for this standard curve is Y = Bmax*X/(Kd + X), where Y is the 

relative ratio of luminescence at a particular concentration compared to the same strain with 

no MMFs. The Bmax for this data is 18.3. In other words, the maximum amount of 

luminescence produced by adding high concentrations of MMF4 is 18.3 times the 

luminescence produced when there is no MMF added. The Kd reveals that an average of 

69.42 µM MMF4 is expected to achieve half the Bmax. 
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Following on from the analysis of different concentrations of MMF4, Figure 4.9 shows the 

standard curves collected for MMF1, 2, 3 and 5 at 48 hours. Again, shown in black is the 

actual data for each MMF with the fitted standard curve shown in red. To make comparison 

of one MMF with another easier, the fitted standard curves for all five MMFs have been 

combined into a single chart, shown in Figure 4.10. The details of the Bmax and Kd and the 

relative binding potential for each of the MMFs are shown in Table 4.3. The binding potential 

is calculated by dividing the Bmax by the Kd and is representative of how ‘good’ each MMF is 

as a ligand for MmfR.(136) It is a value that combines both the availability of MmfR ligand 

binding pockets and the affinity each MMF has for the residues in this pocket.  

 

 

Figure 4.9. Dose response curves for MMF1, 2, 3 and 5 at 48 hours growth using strains 
where lux operon expression is controlled by mmfLp and MmfR  

Shown in black is the actual data for each MMF with the fitted standard curve shown in red. 
Y = Bmax x micromolar concentration / (Kd + micromolar concentration) 
Strain used: L1+mmfR – luxCDABE under the control of mmfLp (L1) and mmfR under the 
control of ermEp* (pKMS01) 
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Figure 4.10. Compiled dose-response standard curves showing the relationship between 
the concentration of all five MMFs and the luminescence produced in strains where lux 
operon expression is regulated by mmfLp and MmfR, at 48 hours growth 
 

In Figure 4.9 and Figure 4.10 it can be seen that different MMFs have different Bmax values. It 

is unclear why this is the case but again, one possible explanation is the possible involvement 

of unknown regulatory mechanisms, genetically separate to the methylenomycin gene cluster 

and therefore still present in the S. coelicolor M145 control strain which are effected by the 

MMFs. It should be noted that the L1+pCC4 positive control strain will give an average 

maximum ratio of luminescence (compared to L1+mmfR with no MMFs) of around 10. All of 

the MMFs, except MMF2, have an average Bmax above this, further indicating that the MMFs 

are doing more than just releasing MmfR from the MARE operator. 

If these MMFs do have an extra role you may also expect to see a difference in luminescence 

produced by the L1+pCC4 positive control strain in their presence. However, L1+pCC4 in the 

presence and absence of the five MMFs gives statistically similar luminescence readings at 

the time points and concentrations trialled (Section 3.3.5). How exactly this extra 

functionality of the MMFs works is therefore unclear. Potentially MmfR needs to be present 

and bound to the MMFs for them to have this extra regulatory function. Alternatively, this 

strain was only tested with a maximum concentration of 100 µM of each MMF and maybe a 

higher threshold concentration of MMFs is needed to cause a significant change in the 

luminescence produced by the L1+pCC4 control strain. 
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Table 4.3. Binding kinetics data for MmfR with each of the five methylenomycin furans 
including the Bmax, Kd and binding potential values for each at 48 hours growth 

Binding potential = Bmax/Kd 
Analysis MMF1 MMF2 MMF3 MMF4 MMF5 

Bmax 12.12 9.796 12.88 18.30 12.93 

Kd (µM) 17.99 44.87 25.38 69.42 39.06 

Binding potential 0.6737 0.2183 0.5074 0.2636 0.3310 

 

From these findings the following order of efficacy for the MMFs is given as; 

MMF1 > MMF3 > MMF5 > MMF4 > MMF2 

This is very close to the first estimation made from preliminary work in Section 4.4.1. Only 

MMF4 and MMF5, which already gave very similar results, have swapped places. It can be 

seen from Table 4.3 that the two branched chain MMFs (MMF1 and MMF3) have the highest 

binding potentials. Following on from this, the MMFs with the longest straight alkyl chains 

have the highest binding potentials. The MMF with the lowest binding potential was MMF2, 

which has the shortest alkyl chain. This indicates that the bigger and longer alkyl chains are 

needed to best fit the MmfR binding pocket. The findings in this investigation therefore 

suggest that either MMF1 or MMF3 are most suitable for use when developing the novel 

inducible expression system. 

In Vitro Work - Data from Gel Shift Assays 
Interestingly, in vitro work was carried out by another lab member, Shanshan Zhou, to 

analyse the binding of the five MMFs to MmfR. For their investigation they performed a gel 

electrophoresis mobility shift assay (EMSA) using purified MmfR and each of the five furan 

ligands. This showed a very similar pattern of binding abilities between the five furans as the 

in vivo data collected from the luciferase assay. The main differences in the data were that 

MMF1 and 3 gave very similar shifts to one another as did MMF4 and 5. An EMSA did not 

provide the resolution to distinguish between possible binding differences in these two pairs 

of ligands. 

Binding profiles established from the EMSA were as follows; 

MMF1 ≈ MMF3 > MMF5 ≈ MMF4 > MMF2 

It is promising that both in vivo and in vitro data give a very similar pattern of MmfR/MMF 

binding affinities. 
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4.4.3 In Silico Analysis of MmfR Ligand Binding Pocket 
Following on from the luminescence assay investigation of MmfR/MMF binding, the amino 

acids directly involved in ligand binding are of interest. A crystal structure of MmfR has 

previously been solved both in the apo form and with MMF2 bound. (73) This allowed 

analysis of the ligand-binding site at an atomic resolution. Shown in Figure 4.11 is the crystal 

structure found for MmfR with MMF2. This was then compared with a protein:ligand 

docking analysis carried out using ‘SwissDock’ for the apo crystal structure of MmfR and 

MMF2 and it was found to be a close match, indicating that an in silico docking may be a 

useful and accurate way of studying MmfR/MMF binding. The docking was therefore done 

with the apo crystal structure of MmfR and all five MMFs as well as synthetic analogue 

molecules 70 and 121 and S. coelicolor hormone SCB1 as controls, using the SwissDock 

online software with the default parameters. A summary of these results is found in Table 4.4 

and the structures of the ligands are displayed in Figure 4.12. 

 

Figure 4.11. LigPlot+ schematic of MmfR bound to MMF2, as shown by X-ray 
crystallography data 

The schematic created for this figure was done using the LigPlot+ software, designed by 
Wallace et al. (116) and is based on the protein work by Rea et al. (73) 

 

SCB1 is a S. coelicolor butyrolactone signalling molecule, known to bind to the TetR family 

member ScbR. This SCB is structurally distinct from the MMFs (Figure 1.3 and Figure 4.12) 

and has been shown experimentally in vitro not to bind MmfR and so works as a negative 

control for the docking analyses (see results from Section 3.3.5). Molecule 70 is a synthetic 

MMF analogue that can also be used as a negative control, it has the same core structure as 
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the MMFs but lacks the alkyl chain, which has been shown to be necessary for inducing 

antibiotic production.(55) Molecule 121 is another synthetic MMF analogue, again it has the 

same core structure as the MMFs but its alkyl chain is one carbon longer than MMF5. The 

nomenclature for these synthetic molecules comes from the work of Nicolas Malet at the 

University of Warwick.(55) 

A docking analysis was also attempted with MmyR and ScbR for comparison with MmfR but 

without access to crystal structures for these TetR family members the level of accuracy 

achieved from protein modelling was not good enough to get realistic results from a docking 

analysis. 

 

Figure 4.12. Chemical structures of the MMFs, SCB1 and other synthetic analogues 
 

Table 4.4. Summary of docking analysis of MmfR with the MMFs and other synthetic 
and natural analogues 

Key: (?) - Sometimes it was unclear whether a particular amino acid was involved in ligand 
binding, being present in some models but not all. This has been denoted with a question 
mark. 

Ligand 
Scoring 
function 

(Best ΔG) 

Amino acids involved in H-
bonding 

No. of H-
bonds 

MMF1 -7.24 Histidine 84 (?), Tyrosine 85, 
Tyrosine 144 4 

MMF2 -7.17 Histidine 84 (?), Tyrosine 85, 
Tyrosine 144 4 

MMF3 -7.03 Tyrosine 85, Tyrosine 144 2 
MMF4 -6.86 Tyrosine 85, Tyrosine 144 3 
MMF5 -6.88 Tyrosine 85, Tyrosine 144 2 

Molecule 70 -6.43 Tyrosine 85, Tyrosine 144 2 

Molecule 121 -6.13 No realistic matches, Glycine 
94(?) 1 

SCB1 -6.33 No realistic matches, Arginine 
87 (?), Aspartate 120 (?) 2 

 

It appears that tyrosines 85 and 144 are consistently involved in hydrogen binding with the 

furan ligands in the models and so are likely to be crucial to the conformational change 
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leading to the release of the MmfR protein from the MARE operator sequence of DNA. 

Histidine 84 may also play a role but was not constantly found between different models and 

so seems to be less important. There are also a number of other amino acids that are 

consistently involved in hydrophobic interactions with the ligand in the MmfR binding pocket 

(shown in Figure 4.13).  

In silico, molecule 121 appears to not bind MmfR, despite it being shown to induce 

methylenomycin production in previous in vivo experimentation by Nicolas Malet,(55) with 

the implication from his research that molecule 121 can cause the conformational change in 

MmfR that will release it from the DNA. This disparity indicates that the simulations from 

this in silico analysis are only estimations and cannot be taken as final proof of what occurs in 

vivo. The lack of flexibility of MmfR and the ligand molecule during the docking is the most 

likely cause of the anomaly.  

Molecule 70 is lacking the alkyl chain usually found in the MMFs. In vivo it has been shown 

not to induce methylenomycin production. The docking shows that molecule 70 can still bind 

to the active region of MmfR but it would seem that with the lack of alkyl chain, these 

hydrogen bonds alone would not be enough to induce a conformational change to MmfR. In 

vivo, there would also be water molecules present in this docking and so potentially such a 

small molecule would not bind to the active site. As expected, the docking done with SCB1 

showed no convincing binding models to MmfR. 

Results from the luciferase assay done to study MmfR/MMF binding indicated that MMF1 

and 3 worked best to release MmfR from the MARE operator sites. The in silico analysis did 

not show exactly the same pattern however. As just mentioned, there are a number of 

limitations of the in silico docking analysis and so the in vivo data is therefore likely to be 

more representative of the wild type MmfR/MMF binding profiles. The docking analysis is 

however, useful in narrowing down the selection of residues for mutagenesis to further study 

the MmfR ligand binding pocket. 

The 11 amino acids involved in hydrogen binding and hydrophobic interactions between 

MmfR and the MMFs have all been highlighted in Figure 4.13 to show how they are spread 

across the primary structure of MmfR. It was then possible to compare these residues to 

motifs found in MmfR orthologues. 
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Figure 4.13. Positions of ligand binding residues in the MmfR amino acid sequence 
Yellow – hydrogen bonds, Green – hydrophobic interactions 
This is based on the crystal structure of MmfR/MMF2, solved by Dean Rea et al. (73) 

 

A number of other systems in different Streptomyces strains encode TetR family proteins, 

orthologous to MmfR including SAV_2270 from S. avermitilis and SgnR from S. venezuelae. 

The presence of the two probable key ligand binding tyrosine residues in these streptomycete 

homologues would further increase the likelihood that these amino acids are indeed involved 

in ligand binding and therefore should be studied further. 

The key MmfR residues in ligand binding are spread across the entire amino acid and so 

entire sequence alignment and comparison was carried out between MmfR and orthologues 

SAV_2270 and SgnR. The results from this alignment are displayed in Figure 4.14. Matches 

to the MmfR polypeptide sequence are shown in blue with mismatches shown in yellow. 

Figure 4.14. Comparison of MmfR ligand binding amino acid residues with the 
sequences of orthologous TFRs SgnR and SAV_2270 
 Blue – matches with MmfR, Yellow – mismatches with MmfR 

Amino acid sequences used: MmfR – methylenomycin cluster transcriptional repressor, 
SgnR – MmfR homologue from Streptomyces venezuelae, SAV_2270 – MmfR homologue 
from Streptomyces avermitilis 

 

 
MmfR          ---MTSA--QQPTPFAVRSNVPRGPHPQQERSIKTRAQILEAASEIFASRGYRGASVKDV 
SAV_2270      MDVMSSERNGQSTRLPAGTPFDDTAHLKQQRAIRTRGTILNAAAAAFATDGFPQVTIKDI 
SgnR          -------------------MATPRSQPKQERARRTKVHILQSAAELFAERGYATVTLQDV 
                                         :* *: :*:  :*::*:  **  *:  ..:  : 
 
MmfR          AERVGMTKGAVYFHFPSKESLAIAVVEEHYARWPAAMEEIRIQGF-TPLETVEEMLHRAA 
SAV_2270      ADGAEMTKGAVYFHFPNKEALAVAVLEEFYRRMQEAVNGALEHGDPTSPTTVVDVMRRLA 
SgnR          AERAEMTKGAVYFHYTNKEALAVAVVQEHYARWPEILKGAEGDHA-EPFDMLTAVLDTVT 
              *  . *****:* *: .*::**  ::.:         .             :  ::   : 
 
MmfR          QAFRDDPVMQAGARLQSERAFIDAELPLPYVDWTHLLEVPLQD----AREAGQLRAGVD- 
SAV_2270      RAFHEDVFIHAGARLQIERPYIKAELPVPYVGTLKVLTELLDQ----CRTAGNLPKSTK- 
SgnR          RAFARDIVVQAGARLQIERALIDAELPEPYVGWEDYLTRLIAE----ARDAGQLRDGVE- 
              : :  *  .:*. **  :          *     . *     :    .* : :     .  
 
MmfR          -----PAAAARSLVAAFFGMQHVSDN-LHQRA--DIMERWQELRELMFFALRA---- 
SAV_2270      -----PEALARALGSAVFGAQHISWV-LNDRE--DIVERVEEIIDAFVPLH------ 
SgnR          -----PRAAARVLVSAFFGMQHISDV-LSGRS--DLTERYEELRTVLLEGLRR---- 
                   * . .: * :. :* .. :      *      :  : :   :    
 

 
> MmfR [Streptomyces coelicolor A3(2)] 
MTSAQQPTPFAVRSNVPRGPHPQQERSIKTRAQILEAASEIFASRGYRGASVKDVAERVGMTKGAVYFHF 
PSKESLAIAVVEEHYARWPAAMEEIRIQGFTPLETVEEMLHRAAQAFRDDPVMQAGARLQSERAFIDAEL 
PLPYVDWTHLLEVPLQDAREAGQLRAGVDPAAAARSLVAAFFGMQHVSDNLHQRADIMERWQELRELMFF 
ALRA 
 



Chapter 4 | Mode of Action of Transcriptional Repressor MmfR in Streptomyces 
coelicolor 

 90 

It appears that tyrosine 85 and 144 are conserved across the three orthologous amino acid 

sequences further suggesting that they are indeed crucial to ligand binding and are appropriate 

targets for site directed mutagenesis to further demonstrate their role in ligand binding. 

A number of the amino acids shown to involved in hydrophobic interactions with the MMF 

ligand for MmfR are also conserved in its orthologues, especially SgnR. It is possible 

therefore that these orthologues will interact with MMF-like ligands as the similarities in their 

ligand binding pockets mean that they could provide similar interactions with the acyl chain 

of the MMFs. 

4.4.4 Effect of Site Directed Mutagenesis on the Ligand Binding 
Domain of MmfR 

Site directed mutagenesis was carried out on the mmfR gene to create mutants with either Y84 

or Y144 converted to a phenylalanine residue in the MmfR protein using the Agilent 

QuikChange Lightening Site Directed Mutagenesis Kit. Figure 4.15 shows details of which 

atoms from the MmfR tyrosine residues are involved in MMF binding and how this will be 

effected in the phenylalanine mutants. 

As can be seen in this figure and Figure 4.11, it is the OH group of Y85 which interacts 

directly with the MMF molecule and the NH2 group of Y144. The NH2 group will still be 

present in the same position for the Y144F mutant. The conversion of tyrosine to 

phenylalanine will also not considerably change the size of the binding pocket and so it is 

expected that little change will be seen from this mutation. The NH2 group will be present in 

all amino acids so it would be very hard to create a mutant that will properly check for the 

function of Y144 in ligand binding. The Y144F mutant therefore worked as a negative control 

compared to the results from the Y85F mutant. In the Y85F mutants, it is expected that a 

more considerable effect on ligand binding will be seen due to the absence of the key OH 

group. In this Y85F mutant, the similarity in size between tyrosine and phenylalanine and the 

presence of the benzene ring should minimize the effects of changing the size and 

conformation of the binding pocket, allowing the analysis of just the hydroxyl group and its 

role in ligand binding. 
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Figure 4.15. Schematic highlighting the hydroxyl and amine groups of tyrosines 85 and 
144 from MmfR involved in MMF binding 

This schematic is based on the crystal structure of the MmfR/MMF2 complex. (73) 
 

Once the mmfR sequence was mutated in E. coli to now code for phenylalanine instead of 

tyrosine, the sequence was inserted into the pCC4 vector where the wild type mmfR was 

normally inserted, creating pKMS85 and pKMS144. This could then be integrated into the 

Streptomyces coelicolor M145 genome along with the L1 luxCDABE vector, allowing the 

mutants to be analysed using the luciferase reporter assay. This assay was carried out as with 

the wild type MmfR and a final concentration of 100 µM or 200 µM MMF was added to 

cultures and the luminescence produced compared to no MMFs measured. The results 

collected from the initial trials with the Y85F and Y144F mutants can be found in Figure 4.16 

and Figure 4.17. Figure 4.16 shows the luminescence produced at five time points over 72 

hours by L1+WTmmfR,1 L1+mmfR Y85F and L1+mmfR Y144F in the presence and absence 

of MMF4.2  Figure 4.17 is a bar chart of data from Figure 4.16 at the 48-hour time point only. 

A t-test analysis of data can be found in Table 4.5 with L1+WTmmfR and 100 µM MMF4 

being compared to the Y85F and Y144F mutants with MMF4 to look for significant 

differences in ligand binding properties. 

                                                        
1 This is the same strain as was referred to earlier as simply L1+mmfR. 
2 MMF4 is used as it has been synthesised on a larger scale than the other MMFs and so was 
more readily available. 
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Figure 4.16. Luminescence produced by the lux operon when under the control of 
mmfLp and MmfR tyrosine mutants compared to wild type MmfR, in the presence and 
absence of MMF4 

Luminescence produced is calculated as a ratio of the luminescence produced by the 
L1+WTmmfR with no MMFs. Strains used: L1+WTmmfR, L1+mmfR Y85F and L1+mmfR 
Y144F – luxCDABE under the control of mmfLp (L1) and mmfR under the control of 
ermEp* producing either the wild type MmfR, a Y85F mutant or a Y144F mutant (pKMS01, 
pKMS85 and pKMS144 respectively). 

 

 

Figure 4.17. Boxplot of luminescence produced by the lux operon when under the 
control of mmfLp and MmfR tyrosine mutants, compared to wild type MmfR measured 
in the presence of MMF4 at 48 hours 

Luminescence produced is calculated as a ratio of the luminescence produced by the 
L1+mmfR with no MMFs, meaning that the luminescence produced by this strain has a value 
of one. Error bars are shown as the standard deviations of data with all data points collected 
also shown on the chart. Strain used: same as Figure 4.7 
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Table 4.5. A t-test analysis luminescence produced by luxCDABE when under the 
control of mmfLp and the Y85F and Y144F MmfR mutants in the presence of 100 µM or 
200 µM MMF4 to look for significant differences in the removal of repression 

Strain used p-value Significant 
difference? 

Average induction at 48 hr 
compared with L1+WTmmfR 

and 100 µM MMF4 (R.R.) 
Y85F and 100 µM 

MMF4 1.60E-5 YES 0.576 

Y85F and 200 µM 
MMF4 2.30E-1 NO 0.865 

Y144F and 100 µM 
MMF4 3.36E-2 YES 1.284 

 

The Y85F strain did show a lower level of de-repression by MMF4 compared to the wild type 

strain. Only at twice the level of MMF4 did the Y85F strain produce statistically similar 

levels of induction to those seen in the wild type. As predicted, the Y144F mutation did not 

cause a significant reduction in release of MmfR by MMF4. Interestingly it did actually 

appear to produce significantly higher levels of luminescence upon the addition of 100 µM 

MMF4, with more than 125% of luminescence of the wild type strain with MMF4 at 48 hours 

(see Figure 4.17). Whether this mutation has indeed ‘optimised’ the binding pocket and made 

it more sensitive is as yet unclear but would be an interesting idea to investigate further in the 

project. It was an artefact also identified by Shanshan Zhou when running an in vitro gel shift 

assay, further indicating that a version of MmfR with improved ligand binding has indeed 

been produced.  

Another observation from Figure 4.16 is that neither the Y85F or Y144F mutants appear to be 

as good at repressing luminescence as the wild type MmfR at the mmfLR intergenic region 

with both L1+mmfR Y85F and L1+mmfR Y144F producing higher levels of luminescence 

L1+WTmmfR in the absence of the MMFs. Y144F appears to be a better repressor than Y85F 

however. Although the mutations were to the ligand binding pocket, they are close to the 

dimer interface and so could be also effecting the overall structure of the protein and therefore 

its DNA binding properties. 
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Data from Figure 4.17 in particular, reveals large standard deviations and huge overlaps in the 

error bars. A t-test did show that the variation in the different sets of results were statistically 

significant but it is unclear whether from this data alone, reliable conclusions can be made 

about the activities of the mutant MmfRs compared to the wild type. For this reason it was 

decided that a range of concentrations of MMF4 would be trialled and the Bmax and Kd values 

derived in the hope of achieving some more distinct differences between samples. To obtain 

the Bmax and Kd values, MMF4 was added at the same ranges of concentrations as were added 

to the wild type MmfR strains in Section 4.4.2. 

The standard curves collected for MMF4 binding to L1+mmfR Y85F and L1+mmfR Y144F 

compared to earlier data collected for L1+WTmmfR with MMF4 are shown in Figure 4.18. 

Using this data, the Bmax, Kd and binding potential of MMF4 to each of the mutants was 

calculated. These values have been compared to those from the wild type MmfR in Table 4.6. 

 

Figure 4.18. Standard curve for production of luminescence as a result of MMF4 
binding to and releasing the wild type MmfR compared to tyrosine 85 and 144 mutants 

Strain used: L1+WTmmfR, L1+mmfR Y85F and L1+mmfR Y144F – luxCDABE under the 
control of mmfLp (L1) and mmfR under the control of ermEp* producing either the wild type 
MmfR, a Y85F mutant or a Y144F mutant (pKMS01, pKMS85 and pKMS144). 
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Table 4.6. Binding kinetics data for MMF4 binding wild type MmfR compared to the 
tyrosine 85 and 144 MmfR mutants, including the Bmax, Kd and binding potential values 
for each at 48 hours growth 

Binding potential = Bmax/Kd 

L1+mmfR strain Bmax Kd (µM) Binding potential 

WT and MMF4 18.3 69.42 0.26 

Y85F and MMF4 2.8 37.51 0.07 

Y144F and MMF4 5.8 11.13 0.52 

 

As can be seen in Table 4.6, the binding potential of the Y85F MmfR mutant to MMF4 is 

much lower than the wild type binding to the same ligand. This data further confirms that the 

hydroxyl group of the tyrosine residue in position 85 of MmfR is likely to be necessary for 

ligand binding and the resultant conformational change causing its release from the MARE 

operator. The Y144F mutant on the other hand appears to have a binding potential of almost 

double that of L1+WTmmfR with MMF4. It again appears therefore that this mutation has 

optimised the repressor, reducing the amount of MMFs needed to achieve de-repression. 

Further investigation is needed to establish whether the same would be seen for all five 

MMFs. 

It is also of note that both the Y85F and Y144F mutants have a lower Bmax than the wild type. 

This indicates that for both of these mutants, there were differences in the level of MmfR 

release from the MARE operator that can be achieved the presence of the MMFs at a 

saturating concentration. The differences in DNA binding properties of the mutants is still 

poorly understood however. 

Alanine Mutants 
Alanine mutants of the tyrosine residues were also created by another group member and 

were used to carry out gel shift assays. It appears that despite the NH2 group being present in 

alanine, the change the shape of the binding pocket by the smaller amino acid was enough to 

significantly alter MMF binding in the Y144A mutant. This therefore gives further evidence 

to tyrosine 144 being key to ligand binding as well as the tyrosine in position 85. 

4.4.5 Discussion of MmfR/MMF Binding Data 
Figure 4.19 summarises the data found on MmfR/MMF binding using the luciferase reporter 

gene assay, combining both the analyses done on the binding affinities of the five MMFs to 

the wild type MmfR as well as the MmfR ligand binding pocket tyrosine mutants. Unless 

otherwise stated, this figure refers to the wild type mmfR strains. 
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Figure 4.19. Bar chart showing a comparison of the binding potentials of MMF1-5 for 
WT MmfR, as shown by the levels of luxCDABE expression when under the control of 
mmfLp and WT MmfR, compared to the binding potential for MMF4 with the Y85F or 
Y144F MmfR mutants  

Binding potential = Bmax/Kd Strains used: L1+WTmmfR – luxCDABE under the 
control of mmfLp and wild type mmfR under the control of ermEp* (pKMS01), L1+mmfR 
Y85F – luxCDABE under the control of mmfLp and mmfR with a mutation to tyrosine 85 
under the control of ermEp* (pKMS85), L1+mmfR Y144F – luxCDABE under the control of 
mmfLp and mmfR with a mutation to tyrosine 144 under the control of ermEp* (pKMS144). 
Unless otherwise stated, L1+WTmmfR is used for all data points. 

 

Results from the luciferase assay revealed that there are detectable changes in lux gene 

expression with concentrations of the MMFs as low as 5 µM, with the Kd values ranging 

between 18 and 70 µM for the five molecules. Saturation of MmfR appears to occur sometime 

after around 200 µM, and varies between the particular ligands. The binding potentials varied 

between the different MMFs, with the branched alkyl chains providing the best efficacy. 

Four out of the five MMFs had a calculated Bmax bioluminescence reading greater than the 

maximal reading for the positive control (L1+pCC4) indicating that they may have more of a 

dose effect that just releasing MmfR and may work as some kind of activator. This is 

something which would be exciting to investigate further, potentially with a more high 

throughput assay than the luciferase one used here. 

An in silico analysis of MmfR and its homologues indicated that there are two key residues 

involved in ligand binding in MmfR, that of tyrosines in amino acid positions 85 and 144. 

This was indicated to be consistent in binding across all five MMFs and mutants created for 

these residues provided an interesting set of data. 
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To summarise the findings from Section 4.4, the following binding potentials were calculated 

for all of the samples tested (see Figure 4.19); 

MMF1 > Y144F MMF4 > MMF3 > MMF5 > MMF4 > MMF2 > Y85F MMF4 

The binding potential of the Y85F MmfR mutant to MMF4 is much lower than the wild type 

binding to the same ligand, or indeed any of the other furans. The Y144F MmfR mutant on 

the other hand appears to have increased release from the MARE operator in the presence of 

MMF4 when compared to the wild type. This mutant also appears to have greater binding 

potential to MMF4 than the wild type strain does to either MMF2, 3 or 5. 

Although the Y144F mutant appears to be more sensitive to the MMFs, it was not deemed 

suitable for later use in the novel inducible expression system due to its decreased repressive 

activities. These decreased repressive activities were also seen for the Y85F mutant, possibly 

as a result of the ligand binding residues selected for mutation being close to the dimer 

interface of MmfR and therefore are potentially having an effect on MmfR conformation and 

consequently, DNA-binding ability. 

 

 

4.5 Outlook for Further Investigations 
In this chapter MmfR has been shown to cause repression at the three known methylenomycin 

gene cluster MARE operators as well as being released upon the binding of all five MMFs, in 

line with the hypotheses for this investigation. When stating these hypothesis, it was 

explained that the role of the MmfR paralogue, MmyR was much less understood. Knockouts 

of this protein, a potential pseudo MMF receptor, produce the phenotype of methylenomycin 

overproduction.(71) It is therefore clear that it has a repressive role. The DNA binding 

sequences and ligands of this second type of TFR are ambiguous however. The next stage of 

this investigation into methylenomycin cluster repressor/ligand interactions is to use the 

luciferase assay to study the role of paralogue, MmyR. Many of the methods used in Chapter 

4 were also used for this investigation. For example, an investigation into strength of MARE 

operator binding could be done in the same way with this alternate repressor. 

 

 



Chapter 5 | Mode of Action of Transcriptional Repressor MmyR in Streptomyces 
coelicolor 

 98 

5 Mode of Action of Transcriptional Repressor 
MmyR in Streptomyces coelicolor 

5.1 Comparison of MmyR with MmfR and Homologous 
Regulatory Pathways 

Before the investigations in this project, the ligand and DNA binding properties of MmyR 

were unknown and it was thought to be a protein akin to the GBL pseudoreceptor type TetR 

family members. An investigation of identity and similarity between MmfR and MmyR 

reveals that they share 35% identity and 56% similarity over 110 amino acids (just over 50% 

of their sequences) (see Table 7.3, Table 7.4 and Appendix C). Unsurprisingly the area where 

most identity is shared covers the N-terminal TetR family HTH domain. MmyR also shares 

47% and 39% identity across 58% and 94% of its amino acid sequence with its orthologues 

GbnR and SAV_2268 from S. venezuelae and S. avermitilis respectively compared to 36% 

and 50% identity seen with their paralogues, SgnR and SAV_2270 (across 72% and 34% of 

its sequence). Despite these general similarities however, there are key differences in the 

ligand (Section 5.4) and DNA binding (Section 5.3.1) regions of MmfR and MmyR. 

Figure 4.14 shows an entire amino acid sequence alignment and comparison carried out for 

homologues MmfR, MmyR, SAV_2270 and SgnR. Residues identified as being found in the 

ligand binding pocket of MmfR in Section 4.4.3 have been highlighted. Matches to the MmfR 

polypeptide sequence are shown in blue with mismatches shown in yellow. 

It appears that the tyrosines in positions 85 and 144, believed to be involved in hydrogen 

binding the ligand, are conserved across all of the MmfR orthologues but are absent in the 

paralogous MmyR and its own orthologues (not shown here). Preliminary trials with the 

luciferase assay indicated that MmyR is not released upon the addition of MMFs to the 

media, it is not surprising therefore that MmyR is not shown to include either of these 

tyrosine residues or the majority of the residues involved in hydrophobic interactions. This 

and the low levels of repression by MmyR seen in the luciferase assay indicate that MmyR 

works in a very different way to MmfR. These differences are under investigation in this 

chapter, also using the luciferase assay.  
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Figure 5.1. Comparison of MmfR ligand binding amino acid residues with the sequences 
of homologues MmyR, SgnR and SAV_2270 
 Blue – matches with MmfR, Yellow – mismatches with MmfR 

Amino acid sequences used: MmfR – methylenomycin cluster transcriptional repressor, 
MmyR - methylenomycin cluster transcriptional repressor, SgnR – MmfR homologue from 
Streptomyces venezuelae, SAV_2270 – MmfR homologue from Streptomyces avermitilis 

 

5.2 Aims and Strategy of Investigation 
Previous investigations have shown that recombinant MmyR is not soluble when purified 

from standard E. coli expression systems and it has therefore not yet been possible to purify it 

for crystallisation. Without currently being able to purify this protein, the types of analyses 

that can be run on it are more limited, for example a gel shift assay cannot be run. Without the 

3D structure of this protein in silico docking analyses are also much less reliable. The 

bioluminescence assay therefore offers a very useful technique for studying MmyR in vivo.  

Again, the two vector system was used (Figure 3.3) with mmyR added in a vector under the 

control of ermEp* (pKMS03) instead of mmfR (pKMS01) in addition to the lux vector with 

luxCDABE under the control of one of the MARE operators containing methylenomycin 

cluster intergenic regions. As was done for MmfR, this investigation was split into two main 

parts. The first was to investigate MmyR/MARE operator binding, looking at the three known 

MmfR binding sequences, this time with MmyR. The second part of the investigation looked 

at MmyR/MMF binding. This also included an investigation into other potential cognate 

 

MmfR          ---MTSA--QQPTPFAVRSNVPRGPHPQQERSIKTRAQILEAASEIFASRGYRGASVKDV 
MmyR          --------------------------MKQARAMRTRDQVLDAAAEEFALHGYAGTNLATV 
SAV_2270      MDVMSSERNGQSTRLPAGTPFDDTAHLKQQRAIRTRGTILNAAAAAFATDGFPQVTIKDI 
SgnR          -------------------MATPRSQPKQERARRTKVHILQSAAELFAERGYATVTLQDV 
                                         :* *: :*:  :*::*:  **  *:  ..:  : 
 
MmfR          AERVGMTKGAVYFHFPSKESLAIAVVEEHYARWPAAMEEIRIQGF-TPLETVEEMLHRAA 
MmyR          AVRTGMTKGALYGHFPSKKALADELVSQSTETWNTIGRSIAETAC-APETALRALVLAVS 
SAV_2270      ADGAEMTKGAVYFHFPNKEALAVAVLEEFYRRMQEAVNGALEHGDPTSPTTVVDVMRRLA 
SgnR          AERAEMTKGAVYFHYTNKEALAVAVVQEHYARWPEILKGAEGDHA-EPFDMLTAVLDTVT 
              *  . *****:* *: .*::**  ::.:         .             :  ::   : 
 
MmfR          QAFRDDPVMQAGARLQSERAFIDAELPLPYVDWTHLLEVPLQD----AREAGQLRAGVD- 
MmyR          RQMKHDIRFRAALRLAADC-------TMPAGGAPDLLDRIRREMAAAARDTQQQQAPYSP 
SAV_2270      RAFHEDVFIHAGARLQIERPYIKAELPVPYVGTLKVLTELLDQ----CRTAGNLPKSTK- 
SgnR          RAFARDIVVQAGARLQIERALIDAELPEPYVGWEDYLTRLIAE----ARDAGQLRDGVE- 
              : :  *  .:*. **  :          *     . *     :    .* : :     .  
 
MmfR          -----PAAAARSLVAAFFGMQHVSDN-LHQRA--DIMERWQELRELMFFALRA---- 
MmyR          LATQPPDVVVHLLLTVAYGLSFAAERGAPGRSPATTDKVWELLLTALQLEDISTCHN 
SAV_2270      -----PEALARALGSAVFGAQHISWV-LNDRE--DIVERVEEIIDAFVPLH------ 
SgnR          -----PRAAARVLVSAFFGMQHISDV-LSGRS--DLTERYEELRTVLLEGLRR---- 
                   * . .: * :. :* .. :      *      :  : :   :    
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ligands for MmyR, in line with the differential ligand binding properties of the pseudo GBL-

receptors, analogous to this protein. 

In addition to the in vivo reporter gene analysis of MmyR activity, a number of in silico 

amino acid sequence analyses were also carried out in an attempt to better understand the 

differences between MmyR and the paralogous MmfR and which motifs in their amino acid 

sequences may be responsible for any different functionality seen. 

 

5.3 MmyR-MARE Operator Interactions 
5.3.1 Strength of MmyR Binding to the MARE Operator 
In the previous chapter, MmfR was shown to cause repression of the lux operon in the 

presence of all three predicted 24 bp MARE operators, here we are investigating if this is also 

the case for MmyR. The same nomenclature for strains is used here as were followed in 

Chapters 3 and 4. 

Figure 5.2 shows a bar chart of data collected of luminescence produced by Streptomyces 

strains at 48 hours in the presence of MmyR compared to no repressor at the same MARE 

operator (pCC4 positive control) and the M145 negative control. If MmyR were binding to a 

particular MARE operator then a reduction in luminescence would be expected for that strain 

compared to the positive control strain with no repressor. The luminescence produced by the 

M145 control strain represents how the system looks in the absence of luxCDABE expression. 

Data on MmfR repression at each MARE operator is also included in Figure 5.2 as a 

reference point of what significant repression in this luciferase reporter system may look like. 

The data from Figure 5.2 was then used to perform a t-test to check if the level of repression 

caused by MmyR at each MARE operator was a statistically significant level of repression or 

down to natural fluctuations in bioluminescence. The results from this t-test are found in 

Table 5.1. The p-values for the mmyR and mmfR strains were calculated against the results for 

the L1, L2 or L3 + pCC4 positive control strains (offsetting the influence of promoter strength 

on data). The mean and median luminescence shown in Table 5.1 was calculated as a ratio, 

relative to the luminescence produced by the M145 control. 
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Figure 5.2. Bar chart of luminescence produced by S. coelicolor M145 strains at 48 
hours, where luxCDABE expression is controlled by different MARE operators, in the 
presence or absence of MmfR or MmyR 

Luminescence produced is calculated as a ratio of the luminescence produced by the M145 
negative control. Error bars are shown as the standard deviations of data with all data points 
collected also shown on the chart. 
Strains used: M145 – negative control strain, L1, L2 and L3 + pCC4 - luxCDABE under the 
control of mmfLp, mmyRp or mmyBp with empty pCC4, L1, L2 and L3 + mmfR – 
luxCDABE under the control of mmfLp, mmyRp or mmyBp and mmfR under the control of 
ermEp* (pKMS01), L1, L2 and L3 + mmyR – luxCDABE under the control of mmfLp, 
mmyRp or mmyBp and mmyR under the control of ermEp* (pKMS03). 

 

Table 5.1. Statistical analysis of luminescence produced by S. coelicolor M145 strains at 
48 hours, where luxCDABE expression is controlled by different MARE operators, in 
the presence or absence of MmfR or MmyR 

Strains used: same as Figure 5.2. Luminescence produced is calculated as a ratio of the 
luminescence produced by the M145 negative control. Results for t-test were calculated 
against the results for the L1, L2 or L3 + pCC4 positive control strains. 

Strain 
Mean 

luminescence 
produced 

Median 
luminescence 

produced 

t-test results of 
data compared 
to L1, L2 or L3 

+ pCC4 

Significant 
binding at the 

MARE 
operator? 

M145 1.0 0.86 - - 
L1+mmfR 3.2 2.81 6.8E-17 YES 
L1+mmyR 21.7 21.59 1.2E-03 YES 
L1+pCC4 32.0 31.94 - - 
L2+mmfR 24.4 23.81 1.9E-11 YES 
L2+mmyR 94.9 103.60 3.9E-01 NO 
L2+pCC4 86.2 86.54 - - 
L3+mmfR 8.7 8.34 1.1E-13 YES 
L3+mmyR 34.6 31.95 1.1E-04 YES 
L3+pCC4 57.7 53.09 - - 
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As can be seen from the results of the t-test (Table 5.1), there was indeed a significant level of 

repression by MmyR at two of the three MARE operator sites; the L1 and L3 MARE 

operators. The levels of repression at both these sites are much lower than MmfR binding 

however with between 3.9 and 6.8 times more luminescence being produced by the mmyR 

strains compared to the mmfR strains at the L3 and L1 MAREs respectively. 

The t-test indicated that at the MARE between mmyR and mmfP (L2 MARE operator) there is 

not a significant change in luminescence when MmyR is present compared to when it is not. 

It is interesting that MmyR does not appear to bind to the MARE operator that regulates its 

own expression, meaning that it is potentially not self regulatory in the way that MmfR is (see 

Chapter 6). MmfR does show significant binding to the L2 MARE, but it is the weakest 

binding of the three, indicating that this operator has the least regulation. 

To further compare findings from Table 5.1 and Figure 5.2 with the data collected on MmfR 

in last chapter; MmfR binds to the L1 intergenic region with the greatest affinity showing a 

average of 90% reduction in luminescence, followed by L3 with an 85% reduction and then 

L2 at 72% reduction compared to a positive control. MmyR on the other hand appears to bind 

best to the L3 intergenic region, seeing a 40% reduction in luminescence compared to the 

positive control without repressors followed by the L1 intergenic region strains which sees an 

average reduction in luminescence of 32%. 

To understand the differences in MmfR and MmyR binding to the MARE operators it is 

necessary to check their amino acid sequences. Both MmfR and MmyR have a predicted 

DNA binding motif within their TetR type HTH domains. Within this 20 bp region, there 

were found to be conserved similarities and differences between MmfR and MmyR and their 

individual orthologues from S. venezuelae and S. avermitilis. Table 5.2 shows a comparison 

of these DNA binding motifs in the six homologues. There is a conserved GAVYFH sequence 

found in MmfR, SgnR and SAV_2270 whereas MmyR and its orthologues have an alternative 

conserved GALYGH sequence. These conserved two amino acid variations are the potential 

cause of the different DNA binding profiles. This would make an interesting target for site 

directed mutagenesis, to see if the DNA binding profiles of MmfR and MmyR can be 

exchanged by altering only these two residues. 
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Table 5.2. Sequences of DNA binding regions from MmfR, MmyR and their homologues 
Name Sequence (20 aa) 
MmfR SVKDVAERVGMTKGAVYFHF 
SgnR TLQDVAERAEMTKGAVYFHY 

SAV_2270 TIKDIADGAEMTKGAVYFHF 
SAV_2268 NLQNIADRIRLTKGALYGHF 

GbnR NLADITARTGLTKGALYGHF 
MmyR NLATVAVRTGMTKGALYGHF 

 

Having seen the limited repressive activity of MmyR on the methylenomycin cluster MARE 

operators it begs the question of how a mmyR knockout brings about the phenotype of 

methylenomycin over production when the mmfR knockout does not (Table 6.1). Based on the 

findings of there being a conserved and different DNA binding motif in MmyR and its 

orthologues to MmfR, it would not be unrealistic to conclude that maybe MmyR binds 

additional, as yet unknown, DNA targets and regulates methylenomycin biosynthesis by 

another means. It may repress less strongly than MmfR but have many more genetic targets. 

Another possible theory is that it is only the strength of the mmyR promoter (L2 strains, see 

Section 3.4) and therefore the amounts of MmyR produced that allow repression of the 

methylenomycin cluster by MmyR to take place. In this system, MmyR levels are limited by 

the weaker ermEp* promoter and so the full level of repression expected in vivo in the wild 

type system may not be seen. An alternative hypothesis is that maybe MmyR is only active as 

a repressor in a ligand bound form rather than the apo form. 

The luciferase assay was therefore again utilised to try and further understand the complex 

relationship between MmyR and methylenomycin regulation. An initial investigation was 

done in the same way as was done for MmfR in the previous chapter, looking for the release 

of MmyR by a single concentration of MMF4 at each of the MARE operators. 

5.3.2 Investigation into Release of MmyR from MARE operators by 
MMF4 

Preliminary research (Section 3.3.5) indicated that MmyR will not bind to the MMFs and be 

released from the DNA as MmfR is. MmyR also lacks the two tyrosine residues present in the 

ligand binding pocket of MmfR that are believed to form hydrogen bonds with the furan 

ligands. However, the potential release of MmyR by the MMFs did need to be checked to 

confirm the preliminary findings using the fully optimised luciferase assay. This assay was 

carried out in the same manner as the investigation into MmfR in Section 4.3.3. However, 

reduction as well as increase in luminescence was looked for this time, in case MmyR was 

only working as a repressor in a ligand bound form.  
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Figure 5.3 shows the luminescence from L1+mmyR and L3+mmyR strains in the presence of 

100 µM MMF4 compared to the same strains without MMF4. This data was then checked 

with a t-test to see if there was any significant change in the amount of luminescence 

produced in the presence of MMF4, the results of which are displayed in Table 5.3. The 

L2+mmyR strain was also included in this study as a control, no significant MmyR binding to 

the L2 MARE operator was seen and therefore no removal of repression would be expected to 

be seen either. 

 

Figure 5.3. Bar chart of luminescence produced by the lux operon when under the 
control of different MARE operators and MmyR, in the presence and absence of 100 
µM MMF4 at 48 hours 

The data for the mmyR strains with MMF4 were normalised against the same strain with no 
MMF to give a relative ratio of 1 for each negative control. The error bars for this data show 
the standard deviations. Strains used: L1, L2 or L3 + mmyR – luxCDABE under the control 
of mmfLp, mmyRp or mmyBp and mmyR under the control of ermEp* (pKMS01) 

 

Table 5.3 Statistical analysis of luminescence produced by the lux operon when under 
the control of different MARE operators and MmyR, in the presence and absence of 100 
µM MMF4 at 48 hours 

Strains used: same as Figure 5.3. The data for the mmyR strains with MMF4 were 
normalised against the same strain with no MMF to give a relative ratio of 1 for each 
negative control. 

Strain 
Mean ratio of 
luminescence 

produced 
p-value Significant change in 

luminescence? 

L1+mmyR 0.93 0.3122 NO 

L2+mmyR 0.94 0.5756 NO 

L3+mmyR 0.56 0.0016 YES (significant 
decrease) 
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As expected, there was no significant change in the L2+mmyR strain in the presence of 

MMF4. The same was also found for L1+mmyR. The results were more noteworthy for 

L3+mmyR however, where a significant decrease in luminescence was observed in the 

presence of MMF4. This is inline with the hypothesis that MmyR is active in its ligand bound 

form and indicates that MmyR binds better to the L3 MARE operator in the presence of 

MMF4. However the change is not large, with L3+mmyR with MMF4 still producing an 

average of 19 times as much luminescence as the M145 control (compared to nine times more 

for L3+mmfR1). This decrease in luminescence may still not be sufficient to make a 

significant impact on the expression of methylenomycin biosynthetic cluster. The true 

implication of this result is therefore as yet unclear. Due to a lack of data on the structure of 

MmyR it is unfortunately not possible to determine the 3D ligand binding pocket to try and 

interpret these results better. MmyR binding at the mmyB/mmyY intergenic region was 

therefore further investigated in Section 5.4.3 on page 113 using the luciferase assay. 

5.3.3 Discussion of MmfR/MARE Operator Binding Data 
Table 5.4 summarises the findings found of MmyR binding and release from the three 

methylenomycin cluster MARE operators. It can be seen that MmyR binds best at the 

operator between mmyY and mmyB (L3) and this binding is appears to strengthen upon the 

addition of 100 µM MMF4. Binding is also shown to the L1 MARE operator but with no 

significant change upon the addition of MMF4. No binding to the L2 MARE operator was 

detected either in the presence or the absence of the MMFs. 

Table 5.4. Summary of binding data for MmyR and the MARE operators 

MARE 
operator 

site 

Corresponding 
promoter 

Strength of MmyR 
binding 

Significant change in 
MmyR binding upon 
addition of MMF4 

Relative promoter 
strength (1 being 

the highest) 
L1 mmfLp Weakest NO 5 

L1F mmfRp - - 2 
L2 mmyRp No binding shown NO 1 
L3 mmyBp Greatest YES (increased binding) 4 

L3F mmyYp - - 3 
 

When comparing the sequences of the three individual operators it was found that there is 

almost 80% identity between the L1 and L2 MARE operator but each of these only share 62-

67% identity with the L3 MARE operator (for L1 and L2 respectively), according to an 

alignment (137) run with T-Coffee; 

 

                                                        
1 See Section 4.3 
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L1   5’ ATAATACCTTCC CGCAGGTATATT 3’ 
3’ TATTATGGAAGG GCGTCCATATAA 5’ 
 

L2   5’ AACATACCTTCC CGAGGGTATGTT 3’ 
3’ TTGTATGGAAGG GCTCCCATACAA 5’ 
 

L3   5’ AAAAAACCTTCG GGAAGGTTTGAC 3’ 
3’ TTTTTTGGAAGC CCTTCCAAACTG 5’ 

                  *  * ******   *  *** *    
 

It seems strange therefore, that it is the L2 MARE operator, rather than L3, which has the 

more distinct MmyR binding profile. This weaker binding and repression at the L2 MARE 

operator is also something that is seen for the data collected on the mmfR strains in the 

previous chapter however, emphasising the potential importance of the two residues that are 

conserved between the L1 and L3 MARE operators (highlighted in yellow) but not present in 

L2 in interacting with the HTH DNA binding domain of MmyR (and MmfR). 

The investigation in Section 5.3.2 gave evidence of possible MmyR/MMF interactions and 

there was a interest in investigating this further. L1+mmyR strains were first used to trial all of 

the MMFs (Section 5.4.1) to allow a direct comparison with data from L1+mmfR. The 

potentially more important L3+mmyR strains were then investigated with the MMFs, the data 

from which can be found in Section 5.4.3. 

 

5.4 MmyR-MMF Interactions 
5.4.1 Effect of MMFs on MmyR Binding at the L1 MARE Operator 
As reported in Section 5.3, it is clear that 100 µM MMF4 does not cause the release of MmyR 

from the L1 MARE operator. It seems unlikely that any of the other MMFs will bind to and 

release MmyR from the DNA at this site either. However, there is limited experimental data 

to prove that this is the case and so all were therefore analysed, particularly as some MMFs 

have a greater relative binding potential than others. The structural differences between the 

five MMFs mean that the possibility of MmyR binding to some MMFs, even if it was not 

seen in the case of MMF4, cannot be discounted. MMF1, 2, 3 and 5 (Figure 5.6) were all 

added at a concentration of 100 µM to the L1+mmyR strains and the luminescence assay 

carried out in the same way as it was done for L1+mmfR strains in Section 4.4. 

The findings from measuring luminescence at five time points over 72 hours can be found in 

Figure 5.4. This data was then analysed as before using a bar chart to look results at from 48 

hours only, this can be found in Figure 5.5. A t-test was then used to determine if there are 



Chapter 5 | Mode of Action of Transcriptional Repressor MmyR in Streptomyces 
coelicolor 

 107 

any statistically significant results, the results of which can be found in Table 5.5. Results for 

L1+mmfR are also included to represent what more significant repression in this system might 

look like. 

 

Figure 5.4. Luminescence produced by the lux operon when controlled by mmfLp and 
MmyR in the presence of 100 µM MMF1-5 compared to no MMFs 

Average light production is calculated as a relative ratio of luminescence produced by 
L1+mmyR with no MMFs (giving this sample a value of 1). Strains used: L1+mmfR – 
luxCDABE under the control of mmfLp and mmfR under the control of ermEp* (pKMS01), 
L1+mmyR – luxCDABE under the control of mmfLp and mmyR under the control of 
ermEp* (pKMS03). Unless otherwise specified, all data points are for the L1+mmyR strain. 

 

As can be seen in Figure 5.4, there are some fluctuations in luminescence produced by 

L1+mmyR in the presence of the MMFs compared to no MMFs present but results using 

different furans never vary significantly from the negative control (L1+mmyR, no MMFs). 

The levels of luminescence produced by L1+mmfR are distinctly lower that those for the 

L1+mmyR strain in the presence of the MMFs at all time points however. This indicates that 

the MMFs are not causing MmyR to act as a repressor in a ligand bound form at the L1 

MARE operator. Figure 5.5 and Table 5.5 also support this. 
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Figure 5.5. Effect on luminescence produced by the lux operon, when controlled by 
mmfLp and MmyR, by the addition of 100 µM MMF1-5 at 48 hours growth 

Average light production is calculated as a relative ratio of luminescence produced by 
L1+mmyR with no MMFs (giving this sample a value of 1). Strains used: Same as Figure 
5.4. Unless otherwise specified, all data points are for the L1+mmyR strain. 

 

Table 5.5. A t-test analysis of the effects on luminescence produced by the lux operon, 
when controlled by mmfLp and MmyR, by the addition of 100 µM MMF1-5 at 48 hours 
growth 

Average light production is calculated as a relative ratio of luminescence produced by 
L1+mmyR with no MMFs (giving this sample a value of 1). The p-value was also calculated 
based on L1+mmyR with no MMFs. Data for L1+mmfR is included as a comparison to 
represent how more significant repression look in this kind of assay. 

MMF added to 
L1+mmyR p-value Significant 

difference? 

Average light 
production at 48 

hr (R.R) 
MMF1 (100 µM) 0.2008 FALSE 1.09 

MMF2 (100 µM) 0.3266 FALSE 0.93 

MMF3 (100 µM) 0.1041 FALSE 1.13 

MMF4 (100 µM) 0.3122 FALSE 0.93 

MMF5 (100 µM) 0.3327 FALSE 1.08 

L1+mmfR (no MMF) <0.0001 TRUE 0.15 

 

The t-test results shown in Table 5.5 confirm that there is no significant release or extra 

binding of MmyR upon the addition of the five MMFs when looking at measurements for the 

L1 MARE operator. Without there being any significant effects on luminescence by adding 

the MMFs to the L1+mmyR strains, no further analyses were done to try and work out the Kd 

and Bmax values for this strain. 
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Following on from the work with MmyR with the five MMFs, a further investigation was 

carried out to look for other potential cognate ligands for MmyR, in line with the hypothesis 

that this pseudo GBL-receptor analogue may bind alternative ligands to MmfR. 

5.4.2 Effect of Other Potential Ligands on MmyR Binding at the L1 
MARE Operator 

Previous studies of MmyR homologues such as ScbR2 have shown that this pseudo GBL 

receptor will bind to and be released by endogenous antibiotics, potentially a form of cross 

regulation between pathways.(138) It would appear logical that either an MMF or the end 

product of the methylenomycin biosynthetic cluster; methylenomycin A, or one of its 

precursors may bind to MmyR. In this case however, with limited repression seen in the apo 

form, MmyR may only be ‘activated’ as a repressor by the cognate antibiotic. Binding to 

methylenomycin A or a precursor could be a method to prevent the over production of the 

antibiotic, something that would be potentially toxic to the streptomycetes as well as a drain 

on cell resources if the antibiotic is not needed anymore. As yet, there has been no 

experimental evidence of this negative feedback loop. 

Both methylenomycin A and the precursor methylenomycin C (Figure 5.6) trialled with the 

L1+mmyR strain to look for any significant change in luminescence produced. This could be 

either an increase in luminescence if these small molecules cause the release of MmyR or a 

reduction in luminescence if they are ‘activating’ MmyR as a repressor. 

 

 
Figure 5.6. Chemical structures of methylenomycin furans, methylenomycin A and its 

precursor; methylenomycin C 
 

Methylenomycin A and C have lengthy purification procedures which do not yield large 

amounts of product. For this reason, preliminary trials were run where the methylenomycins 

were added in different concentrations to sterile filter paper discs on top of a lawn of 

L1+mmyR, in an effort to decrease the volumes of these small molecules needed. From this, 

the aim was that more thorough trials could be designed and run when more was known about 

optimal concentration of the potential ligands. The methylenomycin molecules were diluted 

in DMSO and added at a range of concentrations that have been shown by other researchers 
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in the group to not be toxic to Streptomyces. Figure 5.7 shows these L1+mmyR plates with 

methylenomycin C and A added. 

        

Figure 5.7. CCD camera images of luminescence produced by a lawn of S. coelicolor 
M145 containing the lux operon under the control of mmfLp and MmyR in the presence 
of methylenomycin A and C compared to a DMSO control 

Methylenomycin A and C were used diluted in DMSO at a concentration of 5.5 mM and 6.0 
mM respectively and added to sterile paper dots on a lawn of L1+mmyR. Equivalent amounts 
of DMSO were added as a negative control. 

 

As can be seen in Figure 5.7, there does not appear to be any obvious difference in 

luminescence when adding methylenomycin A or C when compared to a DMSO control. 

However, it was very hard to spread an even lawn of Streptomyces over such a large plate, 

meaning that any small changes in luminescence may be missed due to a non-uniform lawn of 

streptomycetes present. This investigation was therefore carried forward to tests involving 

quantitative data taken from 12-well plates as was done in all previous investigations with the 

luciferase assay. The data for this investigation can be see in Figure 5.8 and Figure 5.9. Due 

to the lack of methylenomycins available however, the number of trials that could be run were 

limited and not every possibility could be tested. 

Figure 5.8 compares luminescence produced by the L1+mmyR strain in the presence and 

absence of methylenomycin A or C compared to the L1+mmfR strain over five time points in 

72 hours. 
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Figure 5.8. Luminescence produced by luxCDABE, under the control of mmfLp and 
MmyR, in the presence of different concentrations of methylenomycin A and C 

Average light production is calculated as a relative ratio of luminescence produced by 
L1+mmyR with no potential ligand added (giving this sample a value of 1). 
Strains used: L1+mmfR – luxCDABE under the control of mmfLp and mmfR under the 
control of ermEp* (pKMS01), L1+mmyR – luxCDABE under the control of mmfLp and 
mmyR under the control of ermEp* (pKMS03). Unless otherwise specified, all data points are 
for the L1+mmyR strain. 
 

The data collected from the methylenomycins show more promise in having interactions with 

MmyR at the L1 MARE operator than the MMFs. As can be seen in Figure 5.8, there is a 

general decrease in the levels of luminescence in the presence of methylenomycin A and C 

compared to those seen for the MMFs in Figure 5.4.  

The effects of methylenomycin C and A on luminescence appear greatest in the first 27 hours 

but this fluctuates a lot, with different concentrations swapping in position in terms of greatest 

level of light produced. It was found in earlier investigations (see Chapter 3 and 4) that 

readings from the 48 and 72 hour time points had smaller standard deviations and the cell 

cultures appeared to have stabilised in growth. The methylenomycins were added at a 

concentration below the predicted lethal level but will likely still cause stress to the cells and 

so potentially disrupt their growth. This may explain why a general dip in luminescence was 

seen at 21 hours in Figure 5.8 before increasing again over the next few days. As a control, 

methylenomycin C was added to L1+pCC4 strains (data not shown here), this showed no 

significant difference in luminescence produced when compared to the same strain in the 

absence of methylenomycin C during the first four time points. There was however a decrease 

in luminescence at the 72-hour time point, possibly due to cell death caused by the antibiotic. 

For these reasons, a statistical analysis run from MmyR/methylenomycin data at the 48 hour 
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time point, to avoid this potential cell death and the larger deviations at the earlier time points 

as well as allowing direct comparisons with all other data collected in previous chapters. The 

results from this analysis can be found in Figure 5.9 and the corresponding Table 5.6. 

 

Figure 5.9. Bar chart of the effect on luminescence produced by luxCDABE, under the 
control of mmfLp and MmyR, by the presence of different concentrations of 
methylenomycin A and C at 48 hours growth 

Average light production is calculated as a relative ratio of luminescence produced by 
L1+mmyR with no potential ligand added (giving this sample a value of 1). 
Strains used: Same as Figure 5.8. Unless otherwise specified, all data points are for the 
L1+mmyR strain. 

 

Table 5.6. A t-test analysis of the effect on luminescence produced by luxCDABE, under 
the control of mmfLp and MmyR, by the presence of different small molecules at 48 
hours growth  

Average light production is calculated as a relative ratio of luminescence produced by 
L1+mmyR with no MMFs (giving this sample a value of 1). p-value was also calculated 
based on L1+mmyR with no MMFs. Data for L1+mmfR is included as a comparison to 
represent how more significant repression may be seen in the assay. 

MMF added to 
L1+mmyR p-value Significant 

difference? 

Average light 
production at 48 hr 

(R.R) 
MMF1 (100 µM) 0.2008 FALSE 1.09 

MMF2 (100 µM) 0.3266 FALSE 0.93 

MMF3 (100 µM) 0.1041 FALSE 1.13 

MMF4 (100 µM) 0.3122 FALSE 0.93 

MMF5 (100 µM) 0.3327 FALSE 1.08 

MmA (2.2 µM) 0.0003 TRUE 0.72 

MmC (2.4 µM) 0.0017 TRUE 0.79 

MmC (7.2 µM) 0.3645 FALSE 0.90 

MmC (12 µM) 0.5558 FALSE 0.95 

L1+mmfR (no MMF) <0.0001 TRUE 0.15 
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Figure 5.9 and the corresponding t-test analysis from Table 5.6 reveal that both 

methylenomycin A and C will cause a significant change in luminescence produced by 

L1+mmyR. However, this was only the case for the lowest concentration of methylenomycin 

C, with the higher ones showing no significant effect on luminescence produced by 

L1+mmyR. Equivalent trials were also run with methylenomycin A but there was not enough 

compound available to get the full set of repeats and so these are not presented here. 

Nonetheless, the few trials that were run did indicate the same pattern, where only the lowest 

concentration of methylenomycin A caused a significant change in luminescence produced. 

The change produced even by the lowest concentrations of methylenomycin A and C are not 

large however, with a reduction in luminescence of less than 30% for L1+mmyR compared to 

the same strain with no compound being present. This compares to presence of MmfR 

(L1+mmfR) producing 85% less luminescence than the L1+mmyR strain (Table 5.6). It is still 

possible that methylenomycin A or C do cause the ‘activation’ of MmyR as a repressor but 

results are currently inconclusive and will likely remain so until the effect of methylenomycin 

concentration and its mechanism of antibiotic action is understood better. 

5.4.3 Further Investigation - Effect of MMFs on MmyR Binding at the 
L3 MARE Operator 

In Section 5.3, MMF4 was shown to cause a significant reduction in luminescence produced 

by the L3+mmyR strain, something not seen at either of the other MARE operators. It was 

therefore decided to investigate further into this result, adding 100 µM MMF2 and MMF5 to 

L3+mmfR and inspecting for changes in luminescence. The assay was carried out using the 

same methods as were used for L1+mmyR strains and results are shown in Figure 5.10, Figure 

5.11 and Table 5.7. Data has also been compared to luminescence produced by L3+mmfR 

(representing more significant repression in this assay) and the positive control; L3+pCC4. 
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Figure 5.10. Luminescence produced by the lux operon under the control of mmyBp and 
MmyR in the absence and presence of 100 µM MMF2, 4 or 5 compared to a positive 
control over 72 hours 

Average light production is calculated as a relative ratio of luminescence produced by 
L3+mmyR with no MMFs (giving this sample a value of 1). Strains used: L3+mmfR – 
luxCDABE under the control of mmyBp and mmfR under the control of ermEp* (pKMS01), 
L3+mmyR – luxCDABE under the control of mmyBp and mmyR under the control of 
ermEp* (pKMS03), L3+pCC4 – luxCDABE under the control of mmyBp, no repressors. 
Unless otherwise specified, all data points are for the L3+mmyR strain. 

 

 

Figure 5.11. Bar chart of luminescence produced by the lux operon under the control of 
mmyBp and MmyR in the absence and presence of 100 µM MMF2, 4 or 5 compared to a 
positive control at 48 hours 

Average light production is calculated as a relative ratio of luminescence produced by 
L3+mmyR with no MMFs (giving this sample a value of 1). 
Strains used: Same as Figure 5.10. Unless otherwise specified, all data points are for the 
L3+mmyR strain. 
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Table 5.7. A t-test analysis of luminescence produced by the lux operon under the 
control of mmyBp and MmyR in the presence of 100 µM MMF2, 4 or 5 at 48 hours  

Average light production is calculated as a relative ratio of luminescence produced by 
L3+mmyR with no MMFs (giving this sample a value of 1). The p-value was also calculated 
based on L3+mmyR with no MMFs. Data for L3+mmfR is included as a comparison to 
represent more significant repression seen in this kind of assay. 

MMF added to 
L1+mmyR p-value Significant 

difference? 

Average light 
production at 48 

hr (R.R) 
MMF2 (100 µM) 0.5222 FALSE 0.88 

MMF4 (100 µM) 0.0016 TRUE 0.56 

MMF5 (100 µM) 0.0002 TRUE 0.39 

L3+mmfR (no MMF) <0.0001 TRUE 0.26 

 

The findings of the t-test analysis in Table 5.7 showed that both MMF4 and MMF5 caused a 

significant decrease in luminescence of the L3+mmyR strain, with up to a 61% reduction in 

luminescence seen compared to no MMFs. This compares to a reduction in luminescence of 

74% for L3+mmfR versus L3+mmyR indicating that the presence of MMF5 brings MmyR 

repression almost to the level of that seen for MmfR. MMF2 did also cause a slight decrease 

in luminescence but it was not enough of one to be classed as statistically significant. 

Therefore, the greater the binding potential of the MMF to MmfR the greater the apparent 

decrease in luminescence it brought about in the L3+mmyR strain as well as the lower the p-

value. A higher concentration of MMF2 therefore may reveal more significant results if 

trialled. 

It should be noted that due to time constraints, L3+pCC4 had not been trialled with all five of 

the MMFs as a control during the preliminary investigations in Chapter 3. However, when 

trialled with L1+pCC4, none of the MMFs produced a significant change in luminescence at a 

100 µM concentration. It cannot be said with certainty that this is also the case with the 

L3+pCC4 strain but it reduces the chances that the MMFs are bringing about a change in 

luminescence for the L3+pCC4 strain in the absence of MmyR/MmfR. There is also currently 

no experimental evidence of this extra MMF transcriptional regulation. Therefore, until 

further research is done, MMF interactions with MmyR rather than any other transcriptional 

control are the most reasonable explanation for the changes in luminescence seen in Table 5.7 

and Figure 5.11. 

Based on the analysis from Table 5.7 and Figure 5.11 therefore, it is possible that at least 

some of the MMFs can bind to MmyR to an extent and, in combination with the DNA 

binding sequence at the L3 MARE operator, cause MmyR to work better as a repressor. It has 
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been shown by amino acid sequence analysis that MmyR does not have the same ligand-

binding pocket as MmfR (Figure 5.1). However, if MmyR was indeed binding the MMFs at 

the L3 MARE operator, it appears to lead to a conformational that may help it better bind the 

DNA instead of its release. It is not inconceivable therefore that the ligand-binding site could 

vary considerably between MmfR and MmyR and yet they can still both interact with the 

MMFs, with the differences in the structure of the binding pocket resulting in the opposite 

effect that the MMFs have on each. 

When looking at the levels of repression achieved by L3+mmyR in the presence of the MMFs, 

there is never more than a 60% reduction in luminescence compared to when no MMFs are 

present. The impact of this leaky repression in the wild type system is not known. It must not 

be forgotten however, that the mmyR promoter was shown to be the strongest of the five 

studied in the methylenomycin cluster (Figure 3.16), indicating that relatively high levels of 

MmyR are produced in the absence of repression. In this assay, MmyR repression is limited 

by the strength of the ermE* promoter. MmyR also appears to not regulate itself at the L2 

MARE operator, potentially leading to even greater levels produced in a wild type system 

compared to MmfR, which can repress its own production. 

If the MMFs are promoting the binding of MmyR at the L3 MARE operator then the 

implications would be the repression of the mmyBQEDXCAPK and mmmYF operons, where 

mmyB codes for a pathway specific transcriptional activator and all other genes code for 

enzymes thought to be used in methylenomycin biosynthesis. If there are greater levels of 

MmyR produced in a wild type system than this synthetic system then there may be total 

repression of the production of MmyB, which could be enough to stop the entire biosynthetic 

pathway from being expressed. 

In Section 5.3, it was found that MmyR caused the greatest repression at the L3 MARE 

operator, followed by the L1 MARE operator, with no binding shown at the L2 operator. It is 

not totally clear why MmyR did not also work as a better repressor at the L1 operator in the 

presence of the MMFs. It is possible that the weaker binding of MmyR at 24 bp L1 MARE 

operator sequence means that the addition of 100 µM MMFs was not enough to cause a 

significant change in luminescence. If this is the case, a higher concentration of MMFs being 

added to the L1+mmyR may reveal higher levels of repression. Alternatively, when MmyR 

binds to the L1 MARE operator it may do so in a conformation that makes it harder for the 

MMFs to enter or interact with its ligand-binding pocket. The operator at the L3 intergenic 

region shares less than 63% identity (137) with the one at the L1 intergenic region, it is 

possible therefore that MmyR is in a slightly different conformation when bound at each of 

these sites. 
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5.4.4 Discussion of MmyR-Ligand Interactions 
The results from the investigation into MmyR ligands revealed that there is no significant 

binding to any of the five MMFs in the L1+mmyR strain at a concentration of 100 µM. The 

data collected on methylenomycin A and C as possible ligands was inconclusive with only the 

lowest concentrations giving a significant decrease in luminescence produced for the 

L1+mmyR strain. At this point, it is unclear why the higher concentrations did not show the 

same effects.  

At the L3 MARE operator, the addition of the 100 µM MMFs did appear to cause a 

significant reduction in luminescence produced, indicating the ‘activation’ of MmyR as a 

repressor in the presence of some of the MMFs (particularly those that showed a higher 

MmfR binding potential). To further understand the exact role of MmyR however, 

supplementary investigations are needed. 

A number of papers have indicated that in systems with two repressors such as MmfR/MmyR, 

the second repressor binds a much wider variety of DNA targets as well as ligands.(50) It is 

unclear how many different DNA sequences MmyR may be able to bind to and what its exact 

set of receptor-ligand interactions are. The regulatory role of MmyR appears to be much more 

complicated than that of MmfR. In particular, finding out more about the structure of MmyR 

would be very helpful. As mentioned before, it has not been possible to purify MmyR from 

standard E. coli expression systems available. However, there are some close homologues of 

MmyR from other Streptomyces strains that have shown promise in terms of solubility and 

during crystallisation trials. A broader understanding of the role of one of the MmyR 

homologues would greatly assist in finding out about potential ligands for MmyR as well as 

understanding the conformational change these ligands bring about. These results would also 

hopefully shed some light on how and when MmyR will bind to the MARE operators or other 

DNA sequences.  

As well as work on the structure of MmyR, if larger amounts of methylenomycin A and C 

could be obtained, some more trials could to be run, possibly with lower concentrations of 

these molecules to look for more conclusive results than those found in this investigation. It 

would also be helpful to test L3+mmfR with the remaining MMF1 and MMF3 ligands to 

check whether these two furans also help to activate MmfR as a repressor. These two ligands 

had the greatest binding potential to MmfR and so could be expected to also perform well 

with MmyR. The reason these extra trials with MMF1 and 3 were not run were due to time 

limits on the project as well as lack of availability of the ligands at the time when experiments 

were being run.  
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5.5 Outlook for Further Investigations 
Following on from this investigation of MmyR, it would be interesting to compare the data 

gained here with that obtained for MmfR and together, draw some conclusions about the 

overall regulation of methylenomycin biosynthesis, in particular looking at the combined 

regulation of their own genes as well as other biosynthetic operons. Of particular interest are 

the positive and negative feedback loops that MmfR and MmyR may create through the 

regulation of mmfLp, mmfRp and mmyRp. Through these feedback loops it appears that S. 

coelicolor A(3)2 can retain silence in the methylenomycin gene cluster until needed and then 

switch it off again once no longer required. A further investigation was carried out in the 

following chapter, including the collection of new luminescence data as well as an analysis of 

data already collected from Chapters 3, 4 and 5. From this investigation, there is hope that a 

more complete picture of regulation can be achieved, something that will then be used in the 

development of a novel inducible expression system. 
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6 Investigation of MmfR/MmyR Self-Regulation 

6.1 Background and Strategy of Investigation 
This chapter follows on from the work done with MmfR and MmyR in the previous three 

chapters and their binding affinities to the three MARE operators and five MMFs. It appears 

clear that MmfR and MmyR have different roles in regulation and come together to create a 

complex regulatory network, responding differently to the MARE operators and MMFs. 

The five operons thought to be directly regulated by MmfR are mmyR, mmfLHP, mmfR, 

mmyBQEDXCAPK and mmyYF. In Chapter 4, MmfR was shown to bind to the three 

operators between these operons and be released upon the addition of any of the five MMFs. 

Like other TetR repressors therefore, MmfR appears to controls its own expression as well as 

influencing the expression of the methylenomycin biosynthetic genes (directly or indirectly). 

MmyR on the other hand showed weak binding to only two of the three operators and showed 

no significant release by the MMFs (Chapter 5). Interestingly, MmyR did not show any 

significant binding to the operator that controls its own expression, indicating that unlike 

MmfR, it is not directly auto-regulated. Although no significant release of MmyR was seen in 

the presence of the MMFs, there did however seem to be some interaction of the MMFs with 

MmyR at the L3 MARE operator, with an increased repression of luxCDABE seen.  

The two vector luciferase reporter systems described in Figure 3.3 were used to study MmfR 

and MmyR regulation with the transcriptional repressors being produced under the control of 

the constitutive promoter ermEp* at a constant rate. To study the auto-regulatory action of 

MmfR, a vector that contained mmfR under the control of its native promoter was utilised. 

This vector was constructed by Justin Nodwell and his team and named as 11NY (see Table 

2.5 and Table 2.8).(92) MmyR was also further investigated via another equivalent vector 

named sp105, also constructed by Justin Nodwell and his team. Both 11NY and sp105 have 

the same sequence as the L1 vector (shown previously in Figure 3.4) except for the addition 

of mmfR or mmyR, upstream of the L1 intergenic region (Figure 6.1). These variations are 

represented in the diagram in Figure 6.2C. 

The diagram in Figure 6.1 highlights the intergenic region (found between mmfR and mmfL) 

that is contained in the L1, 11NY and sp105 vectors. It can be seen than in these vectors, 

luxCDABE is under the control of mmfLp and mmfR or mmyR under the control of mmfRp. 

The expression of both luxCDABE and mmfR or mmyR were also predicted to be regulated by 

any repression of the MARE operator. 
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Both MmfR and MmyR were shown to cause significant repression of the reporter genes in 

strains that contained the L1 MARE operator. Therefore, in both 11NY and sp105 containing 

strains, MmfR or MmyR should hypothetically be able to regulate their own expression. 

Figure 6.1. Visual representation of the intergenic region located between mmfR and 
mmfL, as found in the 11NY and sp105 vectors 

Please note that this diagram is not to scale and purely a representation of the approximate position of 
the -35/-10 sites and MARE operator. 

The 11NY and sp105 vectors are from the work of Nodwell et al. (92) 
 

By studying repression and possible release of MmfR and MmyR by the MMFs from strains 

containing the 11NY and sp105 vectors and comparing it to data collected for mmfR and 

mmyR under the control of ermEp* it was possible to draw further conclusions about the 

complex regulation of the methylenomycin biosynthetic cluster and the significance of TetR 

family auto-regulation. 

6.2 Preliminary Observations 
Figure 6.21 shows initial readings taken for the strains containing 11NY and sp105 compared 

to M145, L1+pCC4 (labelled as ‘L1’ in Figure 6.2), L1+mmfR (labelled as ‘mmfR’) and 

L1+mmyR strains (labelled as ‘mmyR’). In this figure, M145 works as the negative control 

whereas L1+pCC4 is the positive control, with no repressor present. Figure 6.2A is a photo of 

how these strains look when grown on solid culture and the corresponding image of the same 

plates when being measured by the CCD camera for thirty seconds is found in Figure 6.2B. 

Figure 6.2C on the other hand shows the schematics of key reporter vectors from the strains 

included in this figure. 

 

                                                        
1 This figure is based on the earlier Figure 3.8 which contained data on M145, L1+pCC4, 

L1+mmfR and L1+mmyR only 
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Figure 6.2. Details on and visual representations of strains containing the lux genes 
under the control of mmfLp, with or without the repressor proteins MmfR or MmyR 
under the control of ermEp* or mmfRp 

Assigned nomenclature = M145 – S. coelicolor M145 negative control with no luciferase 
genes, L1 – positive control with luxCDABE under the control of mmfLp and the empty 
pCC4 vector, 11NY – luxCDABE under the control of mmfLp and mmfR under the control of 
mmfRp, sp105 – luxCDABE under the control of mmfLp and mmyR under the control of 
mmfRp, mmfR – contains L1 and pKMS01, mmyR – contains L1 and pKMS03 

A. Strains growing on SFM media 
B. Luminescence seen in the Photek CCD camera during a thirty second reading by the 

strains shown in A 
C. Schematic representation of reporter plasmids used 

 

In Figure 6.2B, when mmfR expression is under the control of mmfRp (in the 11NY strain), 

MmfR appears to more completely repress the expression of the reporter genes as opposed to 

when it is controlled by ermEp* (in the L1+mmfR strain). Firstly, Figure 3.16 indicated that 

ermEp* is a weaker promoter than mmfRp, meaning that without the presence any other 

regulatory mechanisms, a higher level of MmfR could potentially be expected in 11NY strain 

compared to L1+mmfR, thereby causing a greater level of repression. However, mmfRp was 

not considerably stronger than ermEp* (showing a 1.1 fold increase in luminescence) and 

hence would not be expected to produce such a pronounced difference in luminescence as 

was observed in Figure 6.2. Secondly, it is also unlikely that the tighter repression of the lux 

genes is due to MmfR being able to work as an activator at its own promoter but repress other 

genes. The differences in luminescence for strains containing the 11NY vector compared to 

pKMS01 are therefore an indicator of the benefits of the self-regulatory control of mmfR by 

MmfR at the MARE operator. As soon as MmfR is released in the 11NY strain there will be 

no repression of mmfR expression and so more MmfR will be made, ensuring a constant level 

of repression. It is this tight control over MmfR production, allowing synthesis of this 

repressor as and when needed, that appears to be the likely cause of more complete repression 

achieved in the 11NY strain compared to when mmfR is under the control of the unrelated 

ermEp*.  
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On the other hand, when under the control of mmfRp, MmyR (in the sp105 strain) appears to 

repress luminescence to a lesser degree than when MmyR production it is controlled by 

ermEp* (in the L1+mmyR strain). Put simply, this phenotype indicates that MmyR under self-

regulation does not result in improved repression of the L1 MARE operator. 

The mmyR strain phenotypes seen in Figure 6.2 help confirm the observations made in 

Section 5.3 where it was found that MmyR caused the greatest repression at the L3 MARE 

operator, followed by the L1 MARE operator, with no binding indicated at the L2 MARE 

operator. If MmyR will not bind to the L2 MARE operator then it will not regulate mmyRp 

and its own expression. As there was no repressive advantage observed for having mmyR 

under an auto-regulatory control system it is possible that this second repressor is not auto-

regulatory. MmyR may be regulating itself in some way, but it is evidently different to the 

direct control mechanism MmfR exerts on mmfR. 

It should be noted however that these results are not quantitative and purely based on visual 

observations and so may not hold true when further analysed quantitatively. 

 

6.3 Effect of the MMFs on MmfR When Under MARE 
Operator Regulation 

In Chapter 4 it was seen that when any of the five MMFs were added to the L1+mmfR strain, 

there was an apparent release of MmfR and an increase in luxCDABE expression. MMF4 was 

added to the 11NY strain and the effects on luminescence observed. The results from this 

assay can be found in Figure 6.3. Data for 11NY was compared to the M145 negative control 

and L1+pCC4 positive control. 
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Figure 6.3. Relative level of luminescence produced by the lux operon under the control 
of mmfLp and MmfR (under its own auto-regulatory control) in the presence and 

absence of 400 nM MMF4 over time 
The level of luminescence was calculated as a ratio compared to that of the M145 strain 

 

The 11NY strain was more representative of the wild type system than L1+mmfR, i.e. mmfR is 

being controlled by its native promoter rather than ermEp*. Despite this, it can be seen from 

Figure 6.3 that the expression of the lux genes was not inducible upon the addition of MMFs 

in the 11NY strain. In the presence of MMF4, the levels of luminescence remain very close to 

those produced by the M145 negative control. The reason for this is again likely to be the 

auto-regulatory nature of MmfR. Upon the release of MmfR from the operator by MMF4, 

there is only a short window of lux expression before more MmfR is also made, repressing the 

expression of the luciferase genes almost immediately. Finding this very short window of 

luminescence was not experimentally practical.  

A concentration of 400 nM MMF4 was used for the 11NY data collected, this is the same 

concentration as was used for the experiment displayed in Figure 3.10 where there was an 

observable increase in luminescence by L1+mmfR in the presence of MMF4. As the 

L1+mmfR strain has mmfR under the control of the constitutive ermE* promoter, it means that 

there are much longer lasting effects of de-repression by the MMFs. MmfR is produced at a 

relatively constant rate, where expression is presumed to be unaffected by the addition of the 

MMFs and is independent of its own repressive activity. 

Trials where the concentration of the MMFs was increased did not show any more release of 

MmfR in the 11NY strains (data not shown here). 

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

Time (days)

R
at

io
 o

f l
um

in
es

ce
nc

e 

11NY inducibility

M145
L1_noMMF

11NY_noMMF
11NY_400 nM MMF4



Chapter 6 | Investigation of MmfR/MmyR Self-Regulation 

 124 

It is unclear how these findings on the lack of observable effect of the addition of the MMFs 

in the 11NY strain is representative of what actually occurs in the wild type system. Studies 

with mmfLHP mutants have shown that the addition of MMFs will induce the production of 

methylenomycin (Table 6.1).(71) There are a number of possible explanations on how this 

release of MmfR occurs in the wild type system when it was not seen in this reporter system. 

The first is that there was a small window of MmfR release (and therefore increased 

luminescence) but due to readings only being taken every 24 hours, this period of luxCDABE 

expression was missed. A small window of expression may be enough to result in the 

expression of mmyB and thereby switching on the entire biosynthetic cluster. Another 

possible explanation is that in the wild type system it is a very specific threshold 

concentration of the MMFs needed to release MmfR. A concentration too far above or below 

this specific threshold level may not alter the MmfR/MMF/operator feedback loops in a way 

that results in methylenomycin production. This precise threshold concentration of MMFs is 

not known but if more time was available, a gradient of different MMF concentrations could 

be trialled with the 11NY strain to check this hypothesis (see Figure 6.4). A final 

consideration as to how MmfR is released in the wild type system is that other factors may 

also be at play, altering the window of time during which MmfR is released. In the M145 

strain used in this assay, none of the methylenomycin BGC is present except those genes 

added in the lux vectors and so any extra regulation by this cluster would also be lacking. 

Figure 6.4. Schematic of proposed assay to measure the effects of a gradient of MMFs on 
the repression of the lux operon when mmfR expression is under auto-regulatory control 

The lux operon is under the control of mmfLp and the L1 MARE operator. If there is a narrow 
threshold window of MMF concentration that will induce the strains containing the 11NY vector, this 

will be seen as a circle of luminescence on the plate. 
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6.4 Effect of the MMFs on MmyR When Under MARE 
Operator Regulation 

When MMF4 was trialled with the sp105 strain, no obvious change in luminescence was 

observed (data not shown here). This is consistent with the data reported in Section 5.4 where 

the addition of MMF4 produced no significant changes in luminescence for strains containing 

the L1 intergenic region with mmyR under the control of ermEp*. Having mmyR under the 

control of the L1 MARE operator and mmfRp would not be expected to change this phenotype 

as there should be no change in the ligand-binding pocket of MmyR. 

Although MmyR may not directly control the expression of its own gene, there is a possibility 

that it has an indirect regulatory effect on its own activity. This hypothesis relates to putative 

interactions with the MMFs and will now be discussed.  

In Chapter 5, a reduction in lux expression was observed for mmyR strains in the presence of 

100 µM MMF2, 4 and 5 at the L3 MARE operator. It appears therefore that in some cases, the 

MMFs may improve the repressive ability of MmyR. This however was a property not seen 

for MmyR binding at the L1 MARE operator. It is possible that weaker binding of MmyR 

seen at the 24 bp L1 MARE operator sequence is not strong enough for the addition of 100 

µM MMFs to cause a significant change in luminescence. If this is the case, a higher 

concentration of MMFs added to the L1+mmyR may reveal higher levels of repression. 

Alternatively, MmyR may bind to the two operator sites in a slightly different conformation. 

The L1 and L3 MARE operators share less than 63% identity (137) and it is possible that this 

difference could have enough of an effect on the MmyR tertiary structure to alter the way that 

the MMFs can enter its ligand-binding pocket. 

There is a biological explanation for why the wild type system may be set up so that at the L1 

MARE operator, MMFs would not enhance MmyR binding. This is due to the genes actually 

being regulated at the L1 MARE site; mmfR and mmfLHP. In particular, mmfLHP which code 

for MmfLHP, the enzymes used in the assembly of the MMFs. 

If the MMFs could bind to MmyR at the L1 MARE operator and make it a better repressor, it 

would create a negative feedback loop. A MMF-induced enhancement of MmyR repression 

would switch off the production of more MMFs. This decrease in the concentration of the 

MMF ligands would then lead to MmyR becoming a less efficient repressor again and a 

return the system to the over-production of the MMFs. This would then become a feedback 

cycle alternating between enhanced and reduced MmyR activity, something that would 

clearly not be productive whilst trying to switch off methylenomycin production. It is 

therefore not logical for MmyR to only be able to optimally switch off MmfLHP production 
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at the L1 MARE operator in the presence of the MMFs. The more MmyR represses these 

genes, the more it would be down regulating its own effects and thus preventing further 

repression. The hypothesised different conformations of MmyR therefore may make it 

indirectly auto-regulatory, based on its resultant control over the levels of MMFs produced, 

which are possibly needed for its full repressive activity at the L3 MARE operator. 

This inference is entirely hypothetical however, and purely based on there results collected in 

this projects investigation. It does appears however that the different MARE operator 

sequences are more important in controlling the promiscuous effects of MmyR than MmfR, 

the latter of which appears to be less selective and have a more similar role at each operator 

site.  

It is very hard to shed light on the exact role of MmyR, which proves to be much more 

elusive and complex than MmfR regulation. One area that may help develop hypotheses 

about MmyR activity (and MmfR) is that of a mathematical model of the methylenomycin 

regulatory system. 

 

6.5 Mathematical Modelling of the MmfR/MMF/MARE 
Operator Regulatory Network 

During this PhD, work has been carried out in conjunction with the Department of 

Engineering at the University of Warwick where a PhD student, Jack Bowyer, was 

mathematically modelling the methylenomycin regulatory system. Here Bowyer et al. created 

five different architectures of possible regulatory systems and then compared the output of the 

models with a range of laboratory generated experimental findings.(79) This collaboration 

involved extensive discussion between the Department of Engineering and the School of Life 

Sciences as well as the sharing of raw data to be compared with the mathematical models. 

From this analysis, one particular architecture was chosen as being the most representative of 

the MmfR/MmyR regulation. This architecture accounts for reversible MmfR and MmyR 

binding at the MARE operators, where expression of these two regulators is controlled within 

the methylenomycin cluster. 

Other alternative architectures trialled has a number of variable components including the 

regulation of MmfR by a constant and external parameter (mirroring the control by ermEp*, 

investigated in this thesis) or having MmfR only being able to bind to the MMFs in a 

MmfR/DNA complex rather than in its apo form when it is free in solution. 
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The experimental data used to test these architectures focussed on the seminal 

methylenomycin paper by Sean O’Rourke et al. from 2009.(71) In this paper, a number of 

mutants were created for methylenomycin cluster elements, for example mmfR and mmyR 

knockouts. The genetic and metabolic profiles for these mutants were then assessed by 

O’Rourke et al., shedding light on the role of the individual genes of the 19 kb 

methylenomycin cluster. A summary of the findings of these assays can be found in Table 

6.1. Here it can be seen that methylenomycin production increases drastically in the mmyR 

mutants but not mmfR mutants. The mutants for transcriptional activator MmyB on the other 

hand, show repressed methylenomycin production but increased levels of the MMFs. Only 

mathematical models that presented these phenotypes as outputs when altering different 

parameters were deemed to be representative of wild type MmfR/MmyR regulation. 

Table 6.1. Phenotypes of methylenomycin cluster mutants 
The phenotypes displayed were reported by Sean O’Rourke et al.(71) 

Mm = methylenomycin 

Strain Gene deletion Mm production MMF production MMF responsive 
J1506  - + n/a n/a 
J2629 ΔmmyR::aac(3)IV +++ n/a n/a 
J2650 ΔmmfP::scar ++ n/a n/a 
J2642 ΔmmfH::scar − − + 
J2643 ΔmmfL::scar − − + 
J2635 Δ(mmfP→mmfL)::aac(3)IV – − + 
J2636 ΔmmfR::aac(3)IV –/+ n/a n/a 
J2637 Δ(mmyR→mmfR)::aac(3)IV +++ n/a n/a 
J2638 Δ(mmyR→mmfL)::aac(3)IV – − + + 
J2639 Δ(mmfP→mmfR)::aac(3)IV –/+ − − 
J2641 ΔmmyR::aac(3)IV,ΔmmfR::scar +++ n/a n/a 
J2644 ΔmmyB::scar − + − 

 

In all the model systems created by Jack Bowyer, the methylenomycin BGC was split into 

two parts. The first is the apm or antibiotic producing module, this encompasses mmyTOG, 

mmyBQEDXCAPK and mmyYF and is controlled by the L3 MARE operator. The second 

module is the fpm or the furan producing module, this includes mmyR, mmfR and mmfLHP 

which is are controlled by both the L1 and L2 MARE operators. 

The diagram in Figure 6.5 shows the model architecture that was shown to produce results 

closest to those in the wild type system. This figure was adapted from a conference paper 

written by Jack Bowyer et al. in 2016 to go with his research findings.(79) In this model, 

MmfR is produced by the fpm in an auto-regulatory fashion and is bound to the fpm and apm 

in the ‘resting state’. Both MmfR and MmyR are modelled to bind and regulate the two 

modules but only MmfR was modelled to bind and be released by the MMFs. 
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Figure 6.5. Model architecture of the methylenomycin biosynthetic cluster 
apm – antibiotic producing module, fpm – furan producing module, Ø - degradation 

Reversible and irreversible reactions are represented by double and single ended arrows respectively. 
Underlined elements denote those with initial non-zero concentrations. 

 

The modelling from this architecture is very simplified compared the wild type system 

however. Although the chosen model architecture does not contradict any of the findings 

from this thesis, it combines the L1 and L2 MARE operator regulation as well as not factoring 

in the TTA codons or any other potential transcriptional control. It also does not consider all 

potential MmyR ligand interactions, alternative DNA binding sequences or mmyR regulation 

that is separate from the fpm. In addition, the modelling did not consider the findings found 

on variations in operator binding for MmyR compared to MmfR as well as the differing 

binding potentials of the five MMFs. Finally, the initial construction of each alternative 

architecture was also largely based on assumptions present at the beginning of the work e.g. 

that the MMFs will only bind MmfR when it is bound to the MARE operators and that MmyR 

will not be released by the MMFs. It is therefore not possible to draw firm conclusions from 

this work, instead the model produced offers an indication of the regulation in the 

methylenomycin network and helps to point researchers in the right direction when planning 

future experiments.  

Despite its limitations however, the chosen model architecture does suggest that the self-

regulatory function of MmfR is key to producing results in line with those for the wild type. 

Models that showed constant mmfR expression under the control of separate regulatory 

regions did not match experimental data. It was only when mmfR is under the control of the 

fpm that the system was closest to the phenotype of wild type one. The model also predicted 

that the MMFs would not bind to MmfR when it was free in solution, they would only 

interact when MmfR was bound to the apm or fpm, then causing its release upon a 

conformational change. 
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Models where MmyR was released by the MMFs did not produce results in line with 

experimental data. This matches the findings of Section 5.4, where no significant de-

repression of luxCDABE was seen in the presence of any of the MMFs for the L1+mmyR 

strain. (De-repression was not seen in any of the MMFs trialled in the L2+mmyR or 

L3+mmyR strains either.) However, the models investigated by Bowyer et al. did not consider 

an increased binding of MmyR in the presence of the MMFs and so no conclusions can be 

drawn on this aspect of regulation using this model. 

The modelling also excluded the feasibility of architectures where MmyR was released from 

the fpm upon binding to methylenomycin. The experimental findings from this thesis using 

the luciferase assay into MmyR/methylenomycin binding were inconclusive (Section 5.4.2). 

The model indicates that this hypothesis can most likely be discounted but some future 

experimentation may be helpful with validating this aspect of the chosen architecture. 

There are plans in the future to use findings from this thesis, including those collected in the 

luciferase assay on MMF Kd and Bmax values and the binding affinities of MmfR and MmyR 

for each of the MARE operators, in a more rigorous validation of the currently proposed 

mathematical model. The inclusion of this extra data should helping to give the model more 

capacity for the conclusions that can be drawn from it and increase the likelihood of it being 

biologically representative and reliable. 

By combining all the information collected via this mathematical model as well as the 

experimental findings from this and the previous three chapters it is possible to bring together 

the findings on MmfR repression in combination with those of MmyR and propose how they 

may work together to regulate methylenomycin biosynthesis. 

 

6.6 Proposed Function of MmfR and MmyR In Regulating 
Methylenomycin Biosynthesis 

Figure 6.6 is a schematic showing a visual representation of the proposed regulation of the 

methylenomycin biosynthetic cluster by MmfR and MmyR based on all experimental 

evidence revealed in this project. Parts A-G of this figure are referred to in the following text, 

where this proposed pathway is explained. 

In Section 4.3, MmfR was shown to bind best at the L1 MARE operator, controlling the 

expression of itself and that of mmfLHP. MmfR will also bind and repress at the L2 and L3 

MARE operators but with less strength, thereby regulating the expression of mmyR and the 

operons starting with mmyB and mmyY (A). There is some leakiness in the system at this point 
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but MMF levels remain below the threshold needed to release MmfR and result in 

methylenomycin biosynthesis. 

Upon production, or detection by quorum sensing, of a threshold level of the MMFs and the 

consequent release of MmfR from all three operators (B), the five operons will be expressed 

and methylenomycin biosynthesis begins. 

The release of repression from the mmfLHP and mmfR intergenic region results in the 

production of the enzymes needed to produce the MMFs as well as MmfR. Two MmfR 

monomers are needed to repress at one MARE operator site, however each MmfL, H and P 

produced will result in the synthesis of thousands of MMFs molecules generating a positive 

feedback loop in MMF over-production (C). Although MmfR is also being produced it is 

continuously released by the MMFs. 

The research in this investigation has implied that the repression of mmfR and mmfL at the L1 

MARE operator is most easily released (B), followed by mmyB and mmyY and then finally 

mmyR (Table 4.1). This potentially causes lag in the expression of these operons with a 

potentially later expression of the mmyB and mmyY operons (D) followed closely by the 

mmyR gene (E) (see also later discussion on page 133).  

Once MmyR has been produced, my suggestion is that it will then bind the MMFs (F), 

allowing it work more fully as a repressor in combination with the right genetic sequence for 

DNA binding. MmyR/MMF binds the L3 MARE operator to regulate the production of 

transcriptional activator MmyB and biosynthetic enzyme MmyY and the operons they come 

from, starting to switch off methylenomycin production once it is no longer needed. As 

mentioned in the introduction, it is hypothesised that the main role of MmfR/MmyR/MMF 

regulation may be to control the expression of mmyB, this proposed pathway is in line with 

this hypothesis therefore. 

MmyR also appears to cause some repression at the L1 MARE operator (further regulating 

mmfR and mmfLHP) but this does not appear to be influenced by the presence of the MMFs at 

the concentrations trialled (G). At this point MmfR is no longer significantly repressing the 

production of MmyR due to its release by the MMFs, and MmyR does not regulate itself at 

the L2 MARE operator leading to huge amounts of this second repressor being produced. Due 

to this lack of mmyR repression it is likely that once expression has begun, MmyR production 

will not be switched off again until the entire biosynthetic pathway has been turned off and 

MMF production/detection has ceased. 
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As MMF levels drop again, repression by MmfR will increase (and MmyR decrease). MmfR 

has been shown to have least affinity for the L2 MARE operator and so it is possible that this 

is the last place to be repressed, allowing mmyR expression (and therefore its repressive 

activity) to continue for longer than the expression of other elements of the BGC, returning 

the methylenomycin cluster to its ‘resting state’ (A). 
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Figure 6.6. Schematic of proposed MmfR/MmyR regulation of the methylenomycin 
biosynthetic cluster 

This schematic is based on the findings of the luciferase assay utilised in this project. 
Assigned functions: mmfR and mmyR – transcriptional repressors, mmfLHP – 
methylenomycin furan biosynthetic genes, mmyJ and mmr – methylenomycin resistance, 
mmyB – transcriptional activator, all others – methylenomycin biosynthesis 
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There are of course still gaps in this proposed pathway and it does not account for the TTA 

codon, sigma factors or any potential extra signalling roles of the MMFs or any other possible 

transcriptional regulation. However, this proposed pathway does not contradict the 

mathematical model produced and combines all of the experimental findings of the luciferase 

assay. 

Research by O’Rourke et al. indicated that transcripts of mmyR, mmfL and mmfR were 

produced before mmyB which in turn was produced before any of transcripts for biosynthetic 

genes.(71) This does show slight differences to the proposed pathway here, which is based on 

ease of MmfR release from each operator. In particular, the presence of mmyR transcripts 

early on is something not proposed in Figure 6.6. It is unclear however whether these 

transcripts observed by O’Rourke et al. were due to the leakiness of the system rather than 

expression having been actively switched on and whether a threshold level of MmyR is 

needed before it can have its regulatory function. The presence of a mmyR transcript also does 

not mean that it is binding to the MARE operators and is exerting its repressive activity, 

especially as it has been indicated to have weaker binding that MmfR and therefore may take 

more time. Alternatively, there may be extra translational regulation of the system that is as 

yet unknown which could explain these differences. 

An extra comment on the findings of O’Rourke et al. is that the release of MmfR from the L2 

and L3 MARE operators seen in Section 4.3 was at times very similar or the order reversed 

(depending on whether compared to its negative or positive controls), so it is possible that 

there is not the lag in the production of their associated genes shown in Figure 6.6, and steps 

D and E therefore may be either combined or reversed. However, the proposed pathway still 

remains even if MmfR has the same strength of release at the L2 and L3 sites. If mmyR is 

expressed alongside the mmyB and mmyY operons or even before them, the enzymes and 

activators will catalyse many more reactions than the structural MmyR which can only 

repress one site at a time. Only a short window of de-repression of the mmyB and mmyY 

operons may be needed for the activation of methylenomycin biosynthesis, before MmyR 

accumulation and resultant repression occurs to a significant level and prevent the production 

of more enzymes. 

 

6.7 Conclusions and Summary 
It is clear from this investigation that methylenomycin regulation is very complex. In the wild 

type system, MmfR production and its release by the MMFs will be influenced by not only its 

own auto-regulation but also MmyR repression, quorum sensing and the presence of 
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endogenous and exogenous MMFs as well as potential interactions of sigma factors and other 

regulator proteins that are yet to discovered. Although the findings of this chapter do not 

show the whole picture of MmfR auto-regulation it is clear that when under the control of its 

wild type operator and promoter, much tighter regulation of gene expression is obtained. 

MmyR on the other hand does not appear to have a direct effect on its own expression. The 

role of MmyR is still much less well understood than that of MmfR. 

Moving forward from the luminescence work and onto the development of a novel inducible 

expression system, it appears clear that as we much better understand the role of MmfR, it is a 

much more suitable component for an optimised inducible system. Of the three MmfR 

binding intergenic regions, the L1 region (between mmfL and mmfR) appears to be most 

suitable, with the greatest repression by MmfR seen as well as the greatest increase in 

luminescence produced upon the addition of a single concentration of MMFs (Figure 4.3). Of 

the five MMFs, the furans with the branched alkyl chains; MMF1 and 3, appeared to have the 

greatest binding potential to MmfR at the L1 MARE operator (Figure 4.19) and are therefore 

obvious choices as ligands to induce the system that will be developed. Work was moved 

forwards to start developing this novel inducible expression system for use in streptomycetes. 

In this system the MmfR/MARE operator regulatory sequence was placed upstream of a gene 

of interest. The auto-regulation of MmfR was chosen to be excluded from the system, due to 

the poorly understood nature of how MmfR is released by the MMFs when under this control, 

instead regulation by ermEp* was used, as is described and explained in the following 

chapter. 
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7 Development of a Novel Inducible Expression 
System for Streptomycetes 

7.1 Aims at Strategy of Investigation 
7.1.1 Existing Heterologous Expression Systems 
There are a number of well-known and validated E. coli expression systems that are utilised 

for controlling the production of a huge variety of proteins.(102) E. coli is not always suitable 

for every protein of interest however, with a number of polypeptides proving to be insoluble 

or difficult to purify in these Gram-negative bacteria. It can be hard to predict the conditions a 

specific protein needs for the synthesis of an active product, with problems encountered in 

proteins folding into the correct conformation, poor expression levels as well as an inability to 

carry out the necessary post-translational modifications. It is unsurprising therefore that the 

same system cannot be used to achieve the successful purification of soluble proteins in all 

cases. Expression systems have been developed for a number of different types of organism, 

increasing the variety of conditions present in hosts and broadening the number of 

recombinant genes that can be expressed but again this does not cover all cases. The Gram-

positive Streptomyces have shown promise as heterologous expression hosts, with the 

possibly of improved expression of genes from other GC high or Gram-positive bacteria.(139, 

140) There is hope that the MmfR/MMF/MARE operator system, analogous to LacI/IPTG/lac 

operator, could possibly be used to provide an alternative inducible expression system for the 

overexpression of recombinant genes. 

7.1.2 MmfR/MMF/MARE Operator as an Inducible Expression 
System in Gram-Positive Bacteria 

In the previous four chapters, the MmfR/MMF/MARE operator system from the 

methylenomycin cluster of the SCP1 plasmid of S. coelicolor has been investigated. It has 

shown promise as an inducible expression system in terms of promoter strength as well as 

removal of MmfR repression by the furans ligands. Using these findings, research has been 

carried out in two main areas, firstly an investigation into the choice of a Streptomyces host 

suitable for an inducible expression system. Secondly, preliminary work was undertaken to 

start to develop an inducible expression system that can be used to control the production of 

recombinant proteins that are otherwise difficult to obtain e.g. because they are toxic to the 

host. 

To turn the modified lux system into a novel inducible expression system that can be adapted 

to study and produce recombinant proteins of interest, using a strain with a reduced genome 

could be advantageous, to decrease the chances of background interactions with the system as 
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well as metabolically streamlining the host to conserve resources for the over production of 

the protein of interest. Up until now, all of the investigations into MmfR/MMF/ operator 

using the luciferase assay were done using S. coelicolor M145. This is a genetically reduced 

derivative of the wild type and model organism Streptomyces coelicolor A3(2). The M145 

variant was developed via the removal of the SCP1 and SCP2 plasmids. Conveniently, all of 

the methylenomycin cluster, including all biosynthetic, regulatory and resistance genes are 

found on the SCP1 plasmid. This made M145 a suitable host strain for the luciferase reporter 

gene assay with no background interactions from the methylenomycin cluster being present in 

this strain. In particular, the absence of the native mmfR, mmyR and mmfLHP were 

particularly beneficial. Components of the methylenomycin cluster were added as and when 

needed. For the development of the novel inducible expression system, a further investigation 

was carried out into whether an even more streamlined host could be achieved, trialling 

Streptomyces albus as a potential superior expression host. 

7.2 Streptomyces albus as a Potential Host 
7.2.1 Introduction to S. albus 
S. albus has one of the smallest known genomes of any in the streptomycete genus at only 6.8 

Mb.(27, 93) This strain provides a very interesting case study when looking at phylogenic 

relationships and the evolution of genetic elements due to the natural removal of any 

apparently unneeded genetic material from the genome. S. albus has recently started to be 

widely studied with the potential of it being used as a premium host for heterologous 

expression of natural products.(93, 141) In this report, genomic, transcriptomic and in vivo 

analyses have been carried out on S. albus strain J1074 to better understand how it can be 

used as a super host and whether there will be any background interactions with 

MmfR/MMF/MARE operator from native gene expression. 

7.2.2 Luminescence Assay in S. albus 
To check S. albus for suitability as an expression host, the previously used luciferase reporter 

gene assay was transferred over to this strain. For this strain to be a suitable host for the 

MmfR/MMF/MARE operator inducible expression system, results collected for the lux strains 

created would need to be akin to those collected for S. coelicolor M145. Comparable results 

would indicate that the MmfR/MMF/MARE operator system works in S. albus as well as S. 

coelicolor without any background interactions from existing S. albus networks. 

The L3 vector (containing mmyBp) used in the earlier luciferase assay as well as mmfR and 

mmyR (in pKMS01 and 03) were all integrated into S. albus creating S. albus L3+mmfR and 
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L3+mmyR strains.1 These were then analysed via the measurement of luminescence produced 

using the Photek CCD camera in the same way that the S. coelicolor M145 strain was in the 

previous four chapters. Measurements were again taken at 21, 24, 27, 48 and 72 hours growth 

and the luminescence compared to a negative control strain with no luxCDABE insert and a 

positive control strain with no repressor (L3+pCC4). The findings of this investigation are 

shown in Figure 7.1 and Figure 7.2. Figure 7.1 shows the luminescence produced at the five 

time points over 72 hours for all samples and Figure 7.2 shows a bar chart that compares 

luminescence at just the 48 hour time point. A t-test analysis was then run with data from 

Figure 7.2, the results of which can be found in Table 7.1. 

 

Figure 7.1. A comparison of luminescence produced by the luxCDABE operon in S. 
albus, as regulated by the presence and absence MmfR, MmyR and MMF4 over 72 
hours 

Average light production is calculated as a relative ratio of luminescence produced by the S. 
albus negative control with no insert (giving this sample a value of 1). Strains used: S. albus 
– wild type negative control strain, S. albus L3+pCC4 - luxCDABE under the control of 
mmyBp and pCC4, S. albus L3+mmfR – luxCDABE under the control of mmyBp and 
mmfR under the control of ermEp* (pKMS01), S. albus L3+mmyR – luxCDABE under the 
control of mmyBp and mmyR under the control of ermEp* (pKMS03) 

 

                                                        
1 This nomenclature is the same as that which was used for the equivalent investigation in 
Streptomyces coelicolor M145, see Chapter 3. 
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Figure 7.2. Bar chart comparing luminescence produced by the luxCDABE operon in S. 
albus, as regulated by the presence and absence MmfR, MmyR and MMF4 at 48 hours 

Average light production is calculated as a relative ratio of luminescence produced by the S. 
albus negative control (giving this sample a value of 1). Strains used: same as Figure 7.1 

 

Table 7.1. A t-test analysis of the luciferase assay results collected from S. albus data at 
48 hours 

Average light production is calculated as a relative ratio of luminescence produced by S. 
albus with no insert (giving this sample a value of 1). The p-value was also calculated based 
on S. albus with no insert. Strains used: same as Figure 7.1 

Strain p-value Significant 
difference? 

Average light 
production at 48 

hr (R.R) 
S. albus L3+pCC4 5.06E-01 FALSE 0.82 

S. albus L3+mmfR 8.27E-01 FALSE 0.95 

S. albus L3+mmyR 8.64E-12 TRUE 77.07 

S. albus L3+pCC4 MMF4 9.87E-01 FALSE 1.01 

S. albus L3+mmfR MMF4 2.27E-02 TRUE 2.25 

S. albus L3+mmyR MMF4 1.32E-13 TRUE 97.72 

 

It was found that the MmfR/MMF/MARE operator inducible expression system in S. albus 

was not comparable to that in S. coelicolor M145 indicating that S. albus is not a suitable 

heterologous expression host for this particular expression system. As can be seen in both 

Figure 7.1 and Figure 7.2, the S. albus L3+pCC4 positive control and L3+mmfR both appear 

to have almost entirely repressed levels of luminescence. The L3+mmyR strain on the other 

hand produces high levels of luminescence both in the presence of the MMFs and without. 

The findings of the t-test in Table 7.1 show that there is a significant increase in luminescence 

produced by the L3+mmfR strain in the presence of MMF4 but this is only minimal with 

twice as much luminescence being produced as is for the control strain with no lux insert. 
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This is still nowhere near close to the levels of luminescence produced by S. albus L3+mmyR 

or the levels of induction seen for the equivalent system in S. coelicolor. 

A possible interpretation as to why the L3+pCC4 and L3+mmfR strains produce no 

luminescence is that a protein from the S. albus genome could be causing repression at the 

MARE operator sequence. The L3+mmyR strain still produces high levels of luminescence 

and the conclusion inferred from this is that MmyR can bind genetic elements in the S. albus 

genome and thereby repress the expression of this native TetR that might otherwise bind the 

MARE operator. 

Where it is possible that a native protein from S. albus is binding to the MARE operator 

sequence and preventing the expression of the luciferase genes, it appears unlikely that this 

protein also has the correct binding pocket for the MMFs and for this reason the addition of 

100 µM MMF4 causes little or no induction of lux expression. This potential native S. albus 

TetR, homologous to MmfR/MmyR, is discussed further in the following paragraphs.  

It is also necessary to consider that, despite the plasmid inserts in S. albus being checked by 

PCR and the ex-conjugants gaining the selective apramycin and hygromycin resistance from 

the vectors inserted, it is still entirely possible that the inserted genes are not being expressed 

properly in S. albus. As mentioned previously, S. albus is known to have a streamlined 

genome due to genetic reshufflings and deletions of ‘unnecessary’ genes, this is something 

which may have occurred to the L3, pKMS01 and pKMS03 inserts after they had been 

screened by PCR. In hindsight it may have been helpful to run extra screenings of the ex-

conjugants during and after the luciferase assays to check for maintenance of the insert. Until 

this has been investigated further therefore, the analyses just discussed should be studied with 

caution. 

7.2.3 Investigating potential GBL-related TetRs in S. albus 
Discovery of SSHG_01258 
A literary and database investigation was carried out to look in the S. albus genome for a 

potential native TetR family member that would bind to the methylenomycin cluster MARE 

operator sequences. Zaburannyi et al. described the sequencing of the streamlined S. albus 

genome, where duplicates and redundant genes have efficiently been removed (93) meaning 

that this strain has a smaller genome than even many artificially reduced streptomycete 

strains. In particular, they noticed that no butenolide synthase or genes associated with the 

production of GBLs/AHFCAs were present in the S. albus genome.(93) However, there is 

still a gene for a predicted GBL-binding TetR family member, that has not been lost during 

chromosomal rearrangements.(93) A BLAST sequence analysis revealed only one significant 

MmfR homologue, identified as SSHG_01258, showing over 40% identity with the S. 
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coelicolor MmfR over 86% of its sequence (Table 7.3 and Figure 7.4). As no gene name was 

given in the Zaburannyi paper it can only be assumed that this is the GBL binding protein that 

they were referring to. No obvious homologue of MmyR could be found. 

Through an analysis of the primary structure of SSHG_01258 compared to MmfR and other 

TFRs, this potential MARE operator-binding protein could be better understood. In particular, 

the ligand and DNA binding domains were of particular interest to try and explain better the 

results collected in Figure 7.1 and Figure 7.2. 

TetR Family DNA Binding Motif of SSHG_01258 
The amino acid sequence analysis in Section 5.3.1 revealed that within the predicted 20 bp 

DNA binding region of MmfR, there was a conserved GAVYFH sequence found in MmfR and 

its orthologues from S. venezuelae and S. avermitilis whereas their paralogues showed an 

alternative conserved GALYGH sequence. Table 7.2 shows a comparison of the DNA binding 

motifs from these proteins with that of the hypothetical S. albus protein. It appears that 

SSHG_01258 shows the conserved GAVYFH sequence found in MmfR and homologues SgnR 

and SAV_2270. It is therefore plausible that SSHG_01258 is indeed binding to the 

methylenomycin cluster operator site contained in the L3 vector and is repressing lux gene 

expression, analogous with the stronger binding to the MARE operator seen for MmfR 

compared to MmyR. 

 

Table 7.2. DNA binding region sequence of SSHG_01258 compared to that of MmfR 
and MmyR and their orthologues 

Protein name p-value Sequence (20 aa) 
SSHG_01258 6e-19 SVNDISARSGRTSGAVYFHY 

MmfR 8e-21 SVKDVAERVGMTKGAVYFHF 
SgnR 4e-20 TLQDVAERAEMTKGAVYFHY 

SAV_2270 3e-18 TIKDIADGAEMTKGAVYFHF 
SAV_2268 1e-19 NLQNIADRIRLTKGALYGHF 

GbnR 3e-18 NLADITARTGLTKGALYGHF 
MmyR 4e-18 NLATVAVRTGMTKGALYGHF 

 

A further analysis of the seven homologues just discussed was carried out, looking at 

percentage identity as well as alignment scores. Results of these findings can be found in 

Table 7.3, Table 7.4 and Table 7.5.1 It can be seen that there is a high level of identity across 

all seven amino acids, where MmfR shares 47% and 54% identity with its orthologues from S. 

venezuelae and avermitilis respectively, across 98% of their sequences. The S. albus 

homologue falls just below this with 41% similarity across 86% of its sequence. The BLAST 

                                                        
1 Sequence similarities can be found in ‘Appendix C. Sequence Analysis of MmfR and 
Homologues’ 
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alignment score for SSHG_01258 (Table 7.5) also indicates that it falls within the same bands 

as SgnR and SAV_2270 when compared to MmfR with all having scores well over 100.  

As may be expected from TetR family members, the regions of highest percentage identity 

between the homologues falls across the DNA binding domain within the TetR type HTH 

motif. This therefore adds further to the possibility of all these homologues binding the same 

MARE operator sequences. 

Table 7.3. Percentage identity of amino acid sequence between MmfR and MmyR 
homologues from S. venezuelae, S. avermitilis and S. albus 

 
MmfR MmyR SgnR GbnR 

SAV_ 
2270 

SAV_ 
2268 

SSHG_ 
01258 

MmfR 100 35 54 28 47 33 41 
MmyR 35 100 36 47 50 39 36 
SgnR 54 36 100 31 53 34 43 
GbnR 28 47 31 100 35 37 56 

SAV_2270 47 50 53 35 100 33 35 
SAV_2268 33 39 34 37 33 100 33 

SSHG_01258 41 36 43 56 35 33 100 

 

Table 7.4 Percentage coverage of analysis of amino acid sequence between MmfR and 
MmyR and their homologues from S. venezuelae, S. avermitilis and S. albus 

Query sequence 
Alignment sequence 

MmfR MmyR SgnR GbnR 
SAV_ 
2270 

SAV_ 
2268 

SSHG_ 
01258 

MmfR 100 51 92 66 85 75 89 
MmyR 54 100 72 58 34 94 53 
SgnR 98 75 100 72 91 81 90 
GbnR 72 61 61 100 68 96 19 

SAV_2270 98 32 83 61 100 74 77 
SAV_2268 75 91 78 68 78 100 72 

SSHG_01258 86 47 86 25 75 71 100 
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Table 7.5. Total score of alignment, according to NCBI BLAST, for the amino acid 
sequences for MmfR and MmyR and their homologues from S. venezuelae, S. avermitilis 
and S. albus 

Red - >= 200, Pink – 80-200, Green – 50-80, Blue – 40-50 
The NCBI BLAST score is based on the standard parameters provided by the BLAST software. 
(31, 142, 143) 

Query sequence 
Alignment sequence 

MmfR MmyR SgnR GbnR 
SAV_ 
2270 

SAV_ 
2268 

SSHG_ 
01258 

MmfR 433 73 210 61 179 88 144 
MmyR 73 413 72 95 62 90 64 
SgnR 197 72 401 68 165 69 140 
GbnR 63 98 73 401 52 79 46 

SAV_2270 177 71 174 58 448 62 85 
SAV_2268 88 105 75 78 59 412 55 

SSHG_01258 132 69 140 46 79 48 410 

 

Ligand Binding Domain of SSHG_01258 
In Figure 7.2, there did not appear to be any pronounced release of lux repression in the 

presence of MMF4. An analysis of the SSHG_01258 sequence compared to MmfR 

specifically looking at the ligand binding pocket, shown in Figure 7.3, reveals that 

SSHG_01258 does not contain the two tyrosine residues predicted to be key to MMF ligand 

binding in MmfR. There are instead two phenylalanine residues. Previous work with the 

bioluminescence assay (Section 4.4.4) showed that although the Y144F mutant appeared to 

improve ligand binding, when working with an MmfR Y84F mutant, a single tyrosine 

replacement with phenylalanine was enough to significantly reduce ligand binding. This and 

the fact that only 56% of the nine residues involved in hydrogen binding the MMFs are 

conserved between MmfR and SSHG_01258 indicates why the addition of MMF4 did not 

release the repression of luxCDABE in S. albus (Figure 7.2 and Table 7.1). The small amount 

of luminescence induction seen in the presence of MMF4 was likely to be due to MmfR 

having bound the MARE operator in some cases whereas the lack of further induction is 

presumed to be an indication of the presence of SSHG_01258 at the MARE operator, which 

is then not released by the MMFs. To confirm this hypothesis, sshg_01258 could be cloned 

into the pCC4 vector and added to the lux system and the effects on repression with and 

without the MMFs observed in S. coelicolor M145. 
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Figure 7.3. Amino acid sequence comparison of MmfR and orthologue SSHG_01258 
from S. albus 

TetR HTH domain shown in red and predicted DNA binding residues are underlined. Y85 and 
Y144 involved in hydrogen binding the MMFs in MmfR have also be underlined. Highlighted 
in yellow are all the residues shown to be involved in ligand binding in MmfR. The equivalents 
in the SSHG_01258 homologue are also highlighted, with yellow indicating a match and blue 
indicating a mismatch. 

 

Following on from this analysis of the DNA and ligand binding domains of SSHG_01258 it 

was of interest to see how this protein fits into the larger picture of TetR phylogeny and 

whether there are any other homologues with similarity of DNA binding motifs to MmfR, 

shedding light on the possible interactions of alternative repressors with the methylenomycin 

cluster operator sites. This was of interest in terms of choosing other possible hosts for the 

MmfR/MMF/MARE operator inducible expression system. 

Sequence Comparison of SSHG_01258 with Other MmfR-Like and 
MmyR-Like Proteins 

A phylogenetic analysis was carried out with a much larger array of TetR family members, 

particularly from streptomycetes, and to include the GBL binding receptors mentioned in the 

introduction. The findings of these analyses can be found as a phylogenetic tree in Figure 7.4 

with the homologies summarised in Table 7.6. 

Following on from this investigation, the 20 bp DNA binding motifs from MmfR and MmyR 

were searched for in each of the 24 homologues analysed in Figure 7.4. The alignments of 

these sequences are presented in Table 7.7. 

 

 
SSHG_01258      ----------------------------------MEAAALLFAEQGYAGTSVNDISARSG 
MmfR            MTSAQQPTPFAVRSNVPRGPHPQQERSIKTRAQILEAASEIFASRGYRGASVKDVAERVG 
                                                  :***: :**.:** *:**:*:: * * 
 
SSHG_01258      RTSGAVYFHYASKEGLALAVVQHRFATWPGLAARYTDRAEPPLEKLVALSFDIAHALAED 
MmfR            MTKGAVYFHFPSKESLAIAVVEEHYARWPAAMEEIRIQGFTPLETVEEMLHRAAQAFRDD 
                 *.******: ***.**:***:.::* **.   .   :.  ***.:  : .  *:*: :* 
 
SSHG_01258      PLARAGARLWAERDTIDAPLPDPFALWTTATTRLLAQARTAGHLTPHIRPAPTARSLVRA 
MmfR            PVMQAGARLQSERAFIDAELPLPYVDWTHLLEVPLQDAREAGQLRAGVDPAAAARSLVAA 
                *: :***** :**  *** ** *:. **      * :** **:*   : ** :***** * 
 
SSHG_01258      FFGLCTLTEALEGPTAVTARLTDWWLLTLGSLQQRPDAAGVLGRVRARGGLLGERMGAAC 
MmfR            FFGMQHVSDNLHQRADIMERWQELRELMFFALRA-------------------------- 
                ***:  ::: *.  : :  *  :   * : :*:                            
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Figure 7.4. Phylogenetic tree (144) showing the relationship between MmfR, 
SSHG_01258 and other TetR family homologues across their amino acid sequences 

 

Table 7.6. Summary of homology between TetR family members across different 
bacterial species 

Protein name Strain Homologue 
MmfR Streptomyces coelicolor A3(2)  
MmyR Streptomyces coelicolor A3(2)  
SgnR Streptomyces venezuelae ATCC 10712 MmfR 
GbnR Streptomyces venezuelae ATCC 10712 MmyR 

SAV_2270 Streptomyces avermitilis MA-4680 MmfR 
SAV_2268 Streptomyces avermitilis MA-4680 MmyR 

SHJG_7318 Streptomyces hygroscopicus MmfR 
SHJG_7322 Streptomyces hygroscopicus MmyR 

SSHG_01258 Streptomyces albus J1074 MmfR 
CprA Streptomyces coelicolor A3(2)  
CprB Streptomyces coelicolor A3(2) CprA 
ScbR Streptomyces coelicolor A3(2)  

ScbR2 Streptomyces coelicolor A3(2)  
TetR Escherichia coli  
ArpA Streptomyces griseus TetR 
AcrR Pantoea ananatis LMG 20103 TetR 
JadR Streptomyces venezuelae ATCC 10712 TetR 

JadR2 Streptomyces venezuelae ATCC 10712 ScbR2 
SabR Streptomyces acidiscabies ScbR 
SabS Streptomyces acidiscabies CprA 
BarA Streptomyces virginiae ScbR 
BarB Streptomyces virginiae ScbR2 
SagR Streptomyces aureofaciens ScbR 

Aur1R Streptomyces aureofaciens ScbR2 
FarA Streptomyces lavendulae ScbR 

FarR2 Streptomyces lavendulae ScbR2 
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Table 7.7. Comparison of 20 amino acid conserved DNA binding motifs in TetR family 
repressors with the motif from MmfR and MmyR 

Name Sequence 

Exact motif match? 
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m
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) 
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H
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yR
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G
A

LYG
H

 

G
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H
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LH
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H
 

N
o M

atch 

MmfR SVKDVAERVGMTKGAVYFHF X      
MmyR NLATVAVRTGMTKGALYGHF  X     
SgnR TLQDVAERAEMTKGAVYFHY X      
GbnR NLADITARTGLTKGALYGHF  X     

SAV_2270 TIKDIADGAEMTKGAVYFHF X      
SAV_2268 NLQNIADRIRLTKGALYGHF  X     

SHJG_7318 TMLDVAELSGMTKGAVYFHF X      
SHJG_7322 NLQRVAAEANLTKGALYAHF      X 

SSHG_01258 SVNDISARSGRTSGAVYFHY X      
CprA SLSEIVAHAGVTKGALYFHF    X   
CprB TLSEIVAHAGVTKGALYFHF    X   
ScbR TITEILKVAGVTKGALYFHF    X   

ScbR2 SLTMISSRAGVSNGALHFHF     X  
TetR No motif match      X 
ArpA No Motif match      X 
AcrR SLADVASAASVTRGAIYWHF      X 
JadR No Motif match      X 

JadR2 KLSAISSGAGVSPGALHFHF     X  
SabR TIAMVLERSAVTKGALYFHF    X   
SabS SLSDIVEHAQVTKGALYFHF    X   
BarA TVAEILSRASVTKGAMYFHF      X 
BarB SLTAISNSAGVSNGALHFHF     X  
SagR TISEILSEAGVTKGALYFHF    X   

Aur1R TLSMISVGAGVSPGALHFHF     X  
FarA TISEILTVAGVTKGALYFHF    X   

FarA2 TLSMISVGAGVSPGALHFHF     X  
 

The most closely related receptors of those analysed to MmfR were SgnR, SAV_2270, 

SHJG_7318 and SSHG_1258 of which SSHG_01258 appears to be the least related to MmfR, 

as shown by the clades on the phylogenetic tree in Figure 7.4. If SSHG_01258 is indeed 

binding to the MARE operator of the L3 vector then it could be expected that possibly SgnR, 

SAV_2270 and SHJG_7318 are also able to bind, due to their even closer sequence similarity 

to MmfR (Table 7.3) and conserved GAVYFH DNA binding domain. It would be interesting 

to clone sav_2270, sgnR or shjg_7318 into the pCC4 vector and see if it can indeed bind the 

S. coelicolor MARE operators using the lux assay.  

MmyR has shown significant binding to some of the MARE operators indicating that the 

conserved GALYGH motif is also viable in interacting with some methylenomycin cluster 

operators. It is therefore possible that SAV_2268 and GbnR are also capable of binding the 

L1 and L3 MARE operators. 
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As well as the MmfR-type GAVYFH and MmyR-type GALYGH DNA binding domain there 

were also commonly found to be GALYGH and GALHFH motifs conserved in the homologues. 

A GAVYGH motif on the other hand was not found, despite its similarities to the other motifs, 

which may reveal more about which residue combinations are key to DNA binding. ScbR, 

ScbR2, CprA and CprB contain either the GALYGH and GALHFH sequences. These four 

proteins come from S. coelicolor and do not appear to have interfered with the earlier 

luminescence assay indicating that they do not bind to the MARE operators. It is seems likely 

therefore that their orthologues, with the same DNA binding motif, will not bind to the 

MARE operators either. However, these interactions are not fully understood yet so these 

possibilities cannot be ruled out. 

SHJG_7322 and BarA do show a motif with some identity to the ones from MmfR and 

MmyR but this is not as conserved as other motifs and so the inference is that they are also 

less likely to bind the MARE operators than some of the other homologues. TetR and its 

orthologues ArpA, AcrR and JadR on the other hand do not have a DNA binding motif 

resembling the ones from MmfR or MmyR and can likely be ruled out as potential interactors 

with the methylenomycin cluster operators.  

Despite the assertions that the TFRs containing the MmfR-type GAVYFH or MmyR-type 

GALYGH motifs are more likely to interact with the MAREs whilst the other proteins are not, 

this has not been shown experimentally and therefore cannot be confirmed. The DNA binding 

region will be influenced by more than the block of 20 amino acids analysed here. For 

example, the amino acids found at the dimer interface of all these homodimers will effect the 

conformation of the DNA binding region. It is therefore possible that some of the proteins 

containing the MmfR or MmyR type motifs may not bind to the MARE operators whereas 

some of the other motifs may sometimes bind the MARE operators. The cut-off for amino 

acid sequence identity resulting in binding to the same DNA operators is not known and, 

without crystal structures of the proteins or an in vivo/in vitro analysis, would be very hard to 

predict. 

7.2.4 Implications of Findings on S. albus 
The findings on SSHG_01258 reveal more about the potential use of MmfR/MMF/MARE 

operator as an inducible system in a variety of hosts. It is likely that the sshg_01258 gene 

from S. albus would need to be inactivated before this strain would be viable as an expression 

host. 

S. venezuelae was also a potential host for the expression system due to its ability to complete 

its life cycle and sporulate in liquid culture. For large-scale protein purification, liquid culture 
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is preferable to solid culture. The findings from working with S. albus indicates that for S. 

venezuelae to be used as an expression host, the sgnR/gbnR/sgnLHP cluster would likely need 

to removed to prevent interference with the MARE operator from SgnR, GbnR or their 

cognate ligands. Even if these MmfR homologues were removed from potential host strains 

however, it is unclear as to whether even more distantly related receptors may also interact 

with the pathway. Therefore, due to time limitations on developing this novel inducible 

expression system, it was decided to continue working with Streptomyces coelicolor as the 

system has already been shown to work in this strain without detectable cross-repression. 

At a later date, there are hopes to further optimise S. coelicolor M145 to create a more 

streamlined host via gene deletion. (Section 8.5.2). There are hopes that a reduced S. 

coelicolor M145 a strain, in addition to being more suitable for gene expression, the 

phenotypic differences sometimes observed in the luminescence assay may also be reduced as 

the cells can focus their resources on the expression of a more select number of genes. 

 

7.3 Development of Vectors for Inducible Expression 
7.3.1 Strategy of Inducible Expression System Mechanism 
Based on all of the findings of the bioluminescence assay it was decided that the 

MmfR/MMF/MARE operator system has potential for development as the control mechanism 

in a novel inducible expression system. Synthetic expression vectors were designed to work 

in a similar way to the luciferase reporter gene assay, relying on two different vectors (Figure 

3.3). One of these vectors was designed to include one of the MARE operators in front of a 

gene of interest (instead of luxCDABE) which was then integrated into the S. coelicolor M145 

genome along with pKMS01; mmfR on the pCC4 vector (a vector derived from pOSV556) 

(120) under the control of ermEp*. A schematic of how this will look once in the 

Streptomyces genome can be found in Figure 7.5. MmfR is expected to be produced 

constitutively, binding to the MARE operator and repressing the expression of the 

downstream gene. The addition of the MMFs to the system should then switch on the 

production of the protein of interest. 
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Figure 7.5. The genetic basis of the novel inducible expression system designed to be 
regulated by MmfR/MMF/MARE operator in the S. coelicolor M145 chromosome 

The intergenic region between mmfR and mmfL (containing the L1 MARE operator and in the 

direction of mmfRp) was selected for the expression system as it showed the strongest MmfR 

binding as well as the easiest release of repression upon the addition of the MMFs. In terms of 

selecting which MMFs to use, both MMF1 and MMF3 (those with branches alkyl chains) 

were shown to have the highest binding potentials to MmfR and so are the logical choice as 

the inducer in the inducible expression system. 

An additional feature that was desirable for this inducible expression system was the 

introduction of a secretion signal for the protein of interest. This signal would allow recovery 

of the protein from the culture supernatant without having to lyse the Streptomyces cells. Not 

only does this reduce the number of proteins present in the initial sample to be purified but 

also streptomycetes are much harder to lyse than E. coli, thus avoiding this potentially tricky 

step in purification is preferential. There are two main bacterial export systems, the Tat (twin 

arginine translocation) system (145) and the Sec system.(146) The Sec system is universally 

conserved across bacteria and archaea and is usually the main route of protein export for cells. 

This pathway exports proteins in their unstructured state and is used to move proteins 

involved in a large number of different processes. The Tat system on the other hand is 

unusual as it exports proteins in their fully folded state (147) and is therefore of particular 

interest in developing this expression system. This system has fewer substrates and is found in 

fewer types bacteria than the Sec system (146) but the Streptomyces genus are the largest 

known users of this Tat pathway, with S. coelicolor having more than 100 Tat substrates.(128, 

148) (Although this means that there are a number of naturally exported proteins that will be 

collected alongside the protein of interest, the number obtained will still be many less than 

would be found from lysing the same cells and collecting intracellular proteins.) 
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Both the Sec and more recently the Tat pathway have shown successes for use in expression 

systems.(149) In particular the Tat pathway was successfully used in Streptomyces lividans 

for the collection of proteins with a Tat signal peptide added.(150, 151) The aim therefore is 

to trial this export pathway alongside regulation by MmfR/MMF/MARE operator in S. 

coelicolor. 

7.3.2 Selecting a Protein for Over Production 
To test out the novel inducible expression system there was a range in choices of genes that 

could be expressed. Our group has been interested in characterising urea synthetases, with 

particular interest in orthologues of S. venezuelae GbnB from Salmonella enterica and 

Streptococcus mutans. For this reason, these two proteins were chosen as the focus of the 

expression system being designed. 

S. venezuelae contains a gene cluster annotated as sgnLHP/sgnR/gbnR, which is homologous 

to mmfLHP/mmfR/mmyR from S. coelicolor. In S. venezuelae these genes are thought to 

regulate the expression of gbnABC, the biosynthetic and export genes for the recently 

discovered gamma-aminobutyrate urea natural products; the gaburedins. GbnA is a glutamate 

decarboxylase which is thought to produce GABA whereas GbnB works as an ATP-

dependent enzyme belonging to the acyl-CoA synthetase family and GbnC as a gaburedin 

exporter protein.(75) 

GbnB shares between 27% and 31% identity with its analogues from S. mutans and S. 

enterica respectively, across 96% of their sequences. Like GbnB, both analogues are 

predicted to be acyl-CoA synthetases (AMP-forming)/AMP-acid ligases. Based on their 

similarities, it can be predicted that possibly both analogues may also be involved in natural 

product biosynthesis, hence the desire to purify and characterise them. Details on the 

properties of the amino acid sequences for all three of these AMP-binding proteins can be 

found in Table 7.8.  

Table 7.8. Details on S. venezuelae GbnB and its analogues 
Details on the predicted pI are from ProtParam(77). Strains: Streptomyces venezuelae ATCC 
10712, Salmonella enterica subsp. enterica serovar Schwarzengrund str. CVM19633 and 
Streptococcus mutans GS-5 

Strain Amino acid length Molecular 
weight (daltons) Theoretical pI 

S. venezuelae 532 57642 5.17 
S. mutans 487 55627 8.8 
S. enterica 498 56347 6.15 

 

As yet, neither of these GbnB-like proteins from S. enterica and S. mutans have been 

successfully purified from existing commercially available expression systems in E. coli. If 
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they can successfully be over produced and purified from S. coelicolor M145 therefore it 

would certainly be helpful in showing the usefulness of such an expression system. 

Expression vectors were therefore designed to include one or the other of these genes. 

7.3.3 Design of the Expression Vectors 
In addition to the already engineered pKMS01 (containing mmfR under the control of 

ermEp*), two more vectors were created for use in the expression system. These are called 

pKMS05 and pKMS06 for S. mutans and S. enterica gbnB respectively (see Figure 7.6, Table 

2.5 and Table 2.6) and contain the analogues under the control of the mmfL/mmfR intergenic 

region. To make these vectors, the already existing L1 vector was used as a backbone. 

   

Figure 7.6. pKMS05, an expression vector containing the S. mutans gbnB orthologue 
and luxCDABE, both under the control of mmfLp 

This vector contains the mmfL/mmfR intergenic region meaning that the expression of the 
gene insert is under the control of mmfLp and the L1 MARE operator.  

The gbnB-like genes were inserted into the L1 vector downstream of the methylenomycin 

cluster intergenic region. Depending on the restriction enzymes used, the lux genes could 

either be cut out or left downstream of the insert. The lux genes were left in the vectors while 

the system was being optimised as an extra control that could be easily observed. 

Luminescence produced should reflect when the gene of interest was also being expressed. 

Once the system has been shown to be working, the extra luxCDABE genes can then be cut 

out using the NotI restriction sites and the vector re-ligated (Figure 7.6). 

The gbnB analogue insert was created synthetically via the GeneArt service by Thermo Fisher 

and included a number of extra features, which will now be explained. A diagram of the 

layout of the insert can be found in Figure 7.7. 
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Figure 7.7. Layout of synthetic gbnB insert for vectors pKMS05 and pKMS06, for use in 
the novel inducible expression system 

BamHI, MunI, NotI and NdeI all refer to the restriction sites added in these positions. RBS 
indicates the ribosome binding site. 

 

Firstly the insert was designed to include a codon optimised gbnB gene, specific to 

Streptomyces codon usage, producing genes with 65% and 58% GC content for S. enterica 

and S. mutans gbnB respectively, compared to the average genomic GC content of 72% for S. 

coelicolor. Between the start codon and the rest of the gene sequence, a polyhistidine tag was 

added to allow easy nickel Sepharose purification of the protein. A Tat signal was also added 

next to the Histidine tag. The Tat signal was a twin arginine repeat translocation pathway 

signal (Section 7.3.1), with the specific sequence taken from the work carried out by Palmer 

et al. (146) giving the following amino acid sequence; 

TKPVVPSGVSRRGFLGGSLGVAGAVLLAA 

The specific conserved Tat pattern within this sequence has been underlined. This sequence 

was also codon optimised for S. coelicolor expression. 

Also added to the synthetic insert was a synthetic Streptomyces ribosome binding site (5’ 
AAGGAGG 3’) as well as a number of different restriction sites. These restriction sites were 

designed so that different components of the insert could be cut out if needed. For example, 

allowing the choice of leaving the luxCDABE genes in the L1 host vector. The MunI and NotI 

restriction sites can be used to easily swap in and out alternative genes for over expression 

into this vector. The full sequences of the synthetic inserts used are in Appendix A and B. 

Details on the properties of the GbnB-like proteins that are predicted to be purified from 

strains expressing pKMS05 and 06 can be found in Table 7.9. The increased molecular 

weights compared to the earlier Table 7.8 are down to the polyhistidine tag and export signal 

being added to the peptide sequence. 

Table 7.9. Details on synthetic GbnB orthologues predicted to be produced by the new 
constructs; pKMS05 and pKMS06 

Details on the stability and the predicted pI are from ProtParam (77).  

GbnB analogue Amino acid length Molecular 
weight (daltons) Theoretical pI Predicted 

stability 
S. mutans 524 59410 9.03 Stable 
S. enterica 535 60156 6.54 Unstable 

 

BamHI | RBS | ATG | TAT signal | 6 Histidine | MunI | gbnB gene | NotI |NdeI | 
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After the synthetic gene had been synthesised, cloned into the L1 vector and the construct 

checked via sequencing and restriction digests, the new vectors were transferred into S. 

coelicolor M145 by intergeneric conjugation. This new inducible expression system was then 

tested and optimised for purification of the proteins of interest. 

 

7.4 Optimisation of a Novel Inducible Expression System 
7.4.1 Strategy of Protocol Optimisation 
Research into protein over production is streptomycete systems is much more limited than 

that for equivalent E. coli expression systems. For this reason, optimisation of the method had 

to begin with the very basics. First the streptomycete system was trialled to see at which time 

point any exported proteins might be present. It was also necessary to try different types of 

media, for both liquid and solid cultures as well as investigating different carbon sources 

present in the media. In addition to this, different buffers were trialled in the nickel Sepharose 

purification of the protein as well as the addition of protease inhibitors to cultures. An outline 

of the methods used can be found in Section 2.3.11. 

Many of the trials were run initially with only the vector created for the S. mutans GbnB 

orthologue (pKMS05). This protein was predicted by ProtParam to have greater stability than 

the S. enterica equivalent (see Table 7.9). Although this is only a fairly arbitrary value, there 

was a desire to reduce the workload of trialling both vector types and so only one was 

selected for use primarily and there was no other clear reasoning for choosing one over the 

other. Initial trails were also run with no MmfR present (pKMS01 was not added). The 

inducible aspect of the system was only added once optimisation of protein over production 

has yielded some results. The strains containing pKMS05 or 06 are referred to as M145:L1 

and M145:pKMS05 throughout the rest of the chapter. 

Protein samples collected were processed and then checked using SDS-PAGE for the 

presence of a band in the expected position. As can be seen in Table 7.9, a protein of around 

60 kDa is expected for both orthologues. A number of the extracellular protein samples 

collected were also further purified using their poly-histidine tag, based on nickel Sepharose 

affinity (see Section 2.3.11). As many samples were being processed it was not practical for 

high levels of purification to be obtained for each sample. To save both time and resources, a 

packing column was not used, instead the nickel Sepharose protocol was carried out in 

microcentrifuge tubes with the supernatants being collected after each of the elution steps. 

This of course will result in the presence of a larger number of non-specific proteins being 

collected in the elution fractions as well as the protein of interest. This should be taken into 
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consideration when looking at all gels of purified proteins in these preliminary optimisation 

trials. For a higher level of purity to achieve a single band on an SDS-PAGE gel and 

potentially obtain useable proteins, a more thorough purification protocol could later be used, 

for example FPLC (fast protein liquid chromatography). 

Before any protein recovery trials were carried out, the strains were first checked for 

luminescence to determine whether the expression system vectors were integrated into the 

Streptomyces genome and were indeed being expressed. It was found that the cells containing 

pKMS05 and 06 were luminescing at all time points checked. 

7.4.2 Selecting Time points for Protein Purification 
Whereas E. coli will often produce a protein of interest in the first 24 hours of growth, 

Streptomyces have a much slower doubling time of 2.2 hours (51, 152) compared to 20 

minutes for E. coli.(153) The heterologous expression of some antibiotics in Streptomyces 

may take up to two weeks to achieve a good yield (152) and so it is likely that measurable 

heterologous expression in streptomycetes will occur after the 24 hour time point. Based on a 

literary review, it was expected that protein overproduction in the streptomycetes may peak 

anywhere within the first 72 hours of growth, although longer trials were possible for this 

assay if necessary.(101) 

S. coelicolor M145 with pKMS05 (S. mutans gbnB) were grown in 2xYT media in baffled 

flasks. The supernatant was then collected at 24, 48 and 72 hours growth before being 

concentrated in a centrifugal column and run out using SDS-PAGE. Figure 7.8A-D show the 

results of such collections. Expression levels were compared to a control sample of L1 with 

no gnbB insert, which represents the levels of exported proteins normally produced by S. 

coelicolor M145. 

At the 24-hour time point, very few exported proteins were seen so no extra purification 

methods were utilised. At both 48 and 72-hour collections however, the proteins present in 

the supernatant were analysed as well as proteins ‘purified’ on nickel Sepharose1. Both the 

elution and washing stages of the protein purification have been shown on the SDS-PAGE 

gels in Figure 7.8B and D. 

 

 

                                                        
1 During the nickel Sepharose purification, the buffers described in Section 2.2.4 as ‘protein 
purification buffer’ and ‘elution buffer’ with 200 mM imidazole were used. 
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Figure 7.8A-D. Secreted proteins produced at different time points by the M145:L1 
control strain compared to the strain designed to produce S. mutans GbnB 
(M145:pKMS05) 

All samples are collected from concentrated 2xYT growth media supernatant 
A. 24 hours growth 
B. 48 hours growth, purified with nickel Sepharose 
C. 72 hours growth 
D. 72 hours growth, purified with nickel Sepharose 

 

As can be seen in Figure 7.8A, there were very little exported proteins seen at 24 hours. At 48 

hours there are more detectable proteins in the supernatant of the M145:L1 and 

M145:pKMS05 cultures but very few bands were observed after nickel Sepharose purification 

of either samples. The 72-hour time point shows most promise in terms of total protein yield 

but at no time point is there a really distinct band in the position of the expected molecular 

weight, even after nickel Sepharose purification. For example, Figure 7.8C and D show bands 

at the size of the expected product but they are no more distinct that any of the others that can 
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be seen in these samples. It is promising however that there are some bands produced by the 

gbnB strain which are not obviously present in the samples produced by the L1 control, these 

extra bands are all smaller than 60 kDa and therefore may represent the GbnB-like proteins 

degraded into smaller polypeptides. The indication from this data is that an optimisation of 

growth conditions may be needed to obtain the protein of interest.  

Based on observations from Figure 7.8, all optimisation trials from here on were run for at 

least 72 hours before exported proteins were collected and checked via SDS-PAGE. 

7.4.3 Considerations on Further Optimisation of the Protocol 
Cultures from the investigation represented in Figure 7.8A-D were being grown in 2xYT, a 

variant on LB media with increased levels of tryptone and yeast extract. A limitation of this 

media is that it lacks any real carbon source (154), which may be detrimental to protein 

overproduction. For this reason, the following medias and supplements were also trialled; 

2xYT, LB, TSB (0.25% glucose), 2xYT with 3% mannitol, 2xYT with 3% glucose, 2xYT 

with 5% glucose, 2xYT with 3% glycerol, 2xYT with 3% fructose, 2xYT with 3% sucrose. 

The data for this investigation is not shown here but there was no clear impact on the size of 

the band at ~60 kDa in the presence of any of the different media or supplements. One feature 

that was particularly distinct in these results however, was the presence of very large bands at 

the bottom of the SDS-PAGE gel, possibility indicating streptomycete cell lysis in liquid 

media. This cell lysis would cause the internal as well as exported proteins became mixed and 

the release of many proteases, therefore explaining the lack of larger molecular weight bands 

seen elsewhere on the gels. Reducing this cell lysis is therefore of interest when optimising 

this protocol. 

Widdick et al. (128) have reported that in liquid media, energy demanding systems or systems 

that put stress on a cell can result in the lysis of streptomycetes. It is possible that having the 

luxCDABE system in addition to the expression system both working in Streptomyces could 

be causing the cell lysis observed by Widdick et al. (128). The maintenance of the lux genes 

in the L1 vector when creating pKMS05 and 06 was to act as a second marker for gene 

expression, easier and quicker to measure than protein export. The implications this was to 

have on the health of the cell were not known and in the future, when time allows, this extra 

marker should maybe be removed or replaced with something less energy demanding. 

In the paper by Widdick et al., an alternative method of purifying exported proteins from S. 

coelicolor was described, this time using solid media where the streptomycetes appeared to 

grow better even if they had been shown to lyse in liquid media.(128) This approach was 

therefore adopted.  
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7.4.4 Work on Solid Culture and Addition of MmfR and the MMFs 
Using solid culture has the added benefit of not only potentially reducing cell lysis but also 

allowing the S. coelicolor M145 strains to enter the sporulation stage of their life cycle, not 

normally possible in liquid media. It also means that cultures can be grown on smaller scales, 

reducing the demand for high volumes of MMF inducers.  

When using solid media, exported proteins were collected by washing the cell mass that had 

been grown on dialysis tubing. This sterile tubing had been placed on top of the solid soya 

flour mannitol growth media and allowed the passage of nutrients from the medium to the 

bacteria, while keeping proteins produced on top of the tubing for easy harvesting. These 

harvested proteins often did not need to be concentrated further and could either be used 

straight away in nickel Sepharose purification or be precipitated out by lithium 

chloride/trichlororacetic acid precipitation (see Section 2.3.11). Both these sample types could 

then be analysed by SDS-PAGE. The lithium chloride/trichlororacetic acid precipitation 

protocol follows the one specified by the Widdick paper exactly except that they used 

cellophane instead of dialysis tubing (and did not utilise the alternative nickel Sepharose 

purification). 

For the trials with solid media, both the S. mutans and the S. enterica GbnB-like proteins were 

tested and pKMS01 (containing mmfR) was added to the system. MMF51 was then added to 

check the inducible aspect to the expression arrangement and for any changes in protein over 

production. 

Figure 7.9A shows the lithium chloride and trichloroacetic acid precipitation of secreted 

proteins from M145:L1, M145:pKMS05 and M145:pKMS06 in the presence and absence of 

MmfR (from pKMS01) and MMF5 on an SDS-PAGE gel. This gel shows all of the 

precipitated exported proteins collected, with no selection for the histidine-tagged analogues. 

Figure 7.9B shows the nickel Sepharose purification of secreted proteins from M145:L1 and 

M145:pKMS05 (producing S. mutans GbnB) in the presence and absence of MmfR and 

MMF5 and Figure 7.9C shows the same for pKMS06 (S. enterica GbnB). During the nickel 

Sepharose purification, the buffers described in Section 2.2.4 as ‘protein purification buffer’ 

and ‘elution buffer’ with 200 mM imidazole were again used. 

                                                        
1 MMF5 was used rather than one of the MMFs with a higher binding potential due to 
availability of the furans that had been synthesized at the time of this trial. The more efficient 
MMF1 and 3 were then used again when they became available. 
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Figure 7.9A-C. Secreted proteins produced by the M145:L1 control strain compared to 
the strains designed to produce S. mutans or S. enterica GbnB (M145:pKMS05 and 06 
respectively) in the presence and absence of MmfR and MMF5 

All samples collected after 72 hours growth on SFM media. 
UB = unbound proteins E = eluted proteins 

A. S. mutans and S. enterica GbnB - LiCl/TCA precipitation of secreted proteins 
B. S. mutans GbnB - nickel Sepharose purification of secreted proteins 
C. S. enterica GbnB - nickel Sepharose purification of secreted proteins 
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General Observations 
For the gel shown in Figure 7.9A it was possible to see a faint band in the position of ~60 kDa 

in all the pKMS05 and 06 strains (although this is not always apparent on the scans of these 

gels). This band does not appear to be present in exactly the same position for the L1 control 

strain but the band is by no means distinct in any of the pKMS06 or 05 samples. 

The samples in Figure 7.9A contain precipitations of all of the many exported proteins from 

S. coelicolor, without any nickel Sepharose selection for the GbnB analogues, so are expected 

to show multiple bands. However, in a very efficient expression system it would be hoped 

that a bolder band may be seen here at 60 kDa. This therefore does indicate that this system is 

not yet working as desired and more adjustments are necessary. As was mentioned 

previously, it is known that luxCDABE are being expressed in these strains and so it is 

expected that the gbnB-like genes are also being expressed. 

In Figure 7.9B and C, after nickel Sepharose purification the band at ~60 kDa which was seen 

in Figure 7.9A remains (see red arrows) but it is still not any more distinct than the eight or 

nine others also seen. When compared to the L1 control it can be seen that some of these 

bands are also present in the control but a few do seem to be in a slightly different position. 

When considering these gels, it is interesting that all of the bands in the nickel Sepharose 

purified samples appear to be 60 kDa or smaller and, although there isn’t such a distinct band 

at the bottom if the gel like those seen when trialling different carbon sources, there is still an 

indication of protein degradation. If the GbnB-like proteins are being proteolytically cleaved 

there will still be the histidine-tag attached to their N-terminals, resulting in a purified protein 

with a smaller molecular weight. On solid media there does not appear to be the cell lysis 

seen in liquid cultures and so the majority of internal Streptomyces proteases are likely being 

kept separate from the protein of interest. There are however still the proteases that are being 

released by S. coelicolor to assist with aspects of its normal sporulation cycle. Limiting cell 

lysis will not directly reduce the activity of these exported proteases and so the use of 

protease inhibitors was implemented, with the aim that this may result in the production of a 

more distinct 60 kDa band. 

To further understand the nature of the proteins being purified on nickel Sepharose, samples 

from Figure 7.9B were sent for LC-MS analysis. Three of the bands at ~60 kDa, 27 kDa and 

12 kDa were cut out of the gel, digested and processed according to the protocol specified in 

Section 2.3.13. Samples were processed by the Proteomics Facility at the University of 

Warwick. Unfortunately however, the results from this analysis were not conclusive and 

largely showed proteins associated with those native to the Streptomyces genus. 
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It is also of note that the bands on the gel for the S. enterica GbnB (Figure 7.9C) were less 

defined than those for S. mutans GbnB, especially around 60 kDa. As was seen in the earlier 

Table 7.9, the S. enterica GbnB is predicted to be an ‘unstable’ protein whereas the S. mutans 

GbnB classified as being ‘stable’. This is a possible explanation therefore of why S. mutans 

GbnB will give more promising bands on a gel therefore. However, the classification of 

‘stable’ versus ‘stable’ is based on calculations using the ProtParam standard set of 

parameters and therefore is unlikely to directly representative of expression in S. coelicolor. 

There are many other factors that may have also contributed to the differences between the 

gels for these analogues including the level of completion of successful protein folding 

achieved and the possibility that the intracellular pH of Streptomyces is more optimal for one 

protein than the other. 

Inducibility of the System 

Figure 7.9 shows the first results from adding the MMF-inducible MmfR to the expression 

system. A number of the bands in Figure 7.9B and C are very faint so it is not yet possible to 

comment on the effect of adding mmfR to the expression system (via pKMS01). In particular, 

better samples need to be collected from these strains in the presence of the MMFs as these 

gels are particularly indistinct and the total amount of proteins harvested (including wild type 

proteins) was low. The production of gels with proteins from a greater number of culture 

plates may result in the bands on these gels being more distinct due to an increased protein 

yield. 

MmfR binding to the L1 MARE operator has been shown to be leaky (Section 4.3) and so 

some level of the production of the GbnB-like proteins in the repressed mmfR strains was also 

expected to be seen. This does appear to potentially be the case for the gels in Figure 7.9, with 

a number of similar bands being seen when the pKMS01 was added compared when it is not. 

However, the levels of all protein bands produced from these gels appears to be very similar 

indicating that there is little difference in expression the presence of MmfR. The level of 

similarity between the sample types suggests that when under the control of ermEp*, MmfR 

does not result in enough repression for the system to be properly controlled in an inducible 

manner. Whether the current MmfR/MMF/MARE operator system is indeed too leaky for use 

in this system is not clear however or whether the similar bands could be a result of all 

proteins seen being native proteins and therefore unrelated to the expression vectors and the 

desired recombinant proteins. 
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7.4.5 Optimisation with Protease Inhibitors 
A number of the proteins potentially secreted by Streptomyces are proteases, so adding 

protease inhibitors throughout the growth of cultures could increase the yields of the proteins 

of interest.  

When using standard expression systems, such as those using the E. coli host BL21*, protease 

inhibitors are generally only needed to be present in buffers once cells have been lysed. These 

optimised expression hosts often have their genes for secreted proteases knocked out and 

therefore only when intracellular proteases are released is protease inhibition needed. These 

protease inhibitors therefore usually have a short half-life as purification procedures will often 

follow immediately. This standard inhibitor half-life of less than 24 hours at temperatures 

above 4 °C brought some challenges when selecting the right inhibitor cocktail for use in this 

assay. Secreted proteases were likely being released throughout growth of the cells, along 

with the desired GbnB-like protein and so would need constant inhibition over 72 hours. A 

protease inhibitor cocktail specifically designed for tissue cultures and which remains active 

for at least 48 hours at 37 °C was identified and tested, adding it to plates after 24 hours 

growth. This protease inhibitor cocktail was also checked to make sure that at the 

concentration used, none of the components were known to interact with nickel Sepharose. 

No predicted interactions were found. 

Protein samples were prepared for both nickel Sepharose purification and lithium 

chloride/trichloroacetic acid precipitation from M145:L1, M145:pKMS05 and 

M145:pKMS06 in the presence and absence of MmfR and MMF1 from solid cultures as 

before. This time however, the solid culture plates contained 1 mM EDTA (to inhibit 

metalloproteases) and at 24 hours growth were overlaid with the protease inhibitor cocktail 

for tissue culture to a final dilution of 1:500.1 These plates were then allowed to grow for a 

further 48 hours before the secreted proteins were harvested. 

The buffer for nickel Sepharose purification had also been altered for this stage in the trials. 

Not only was the protein purification buffer now used with an extra protease inhibitor cocktail 

but instead of the Tris-HCl buffer, a sodium phosphate buffer with higher sodium chloride 

levels was used.2 This change was made due to concerns over the influence that temperature 

has on the pH of Tris-HCl buffers and whether at 4 °C, the pH of the buffer was too close to 

the theoretical pI of the proteins trying to be purified. Having a pH close to that of the pI of a 

protein has been indicated to have a negative effect on protein purification by other 

                                                        
1 See Section 2.2.4 for more details 
2 See ‘Improved protein purification buffer for Ni Sepharose purification’ in Section 2.2.5. 
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researchers. A corresponding sodium phosphate elution buffer with increased imidazole 

concentration to 500 mM compared to the 200 mM used before was also utilised. The chosen 

optimised sodium phosphate buffers were produced following guidelines that came with the 

nickel Sepharose kit. 

Results from these investigations into the influence of protease inhibition in protein 

purification can be found in Figure 7.10A-C, with results from the lithium 

chloride/trichloroacetic acid precipitation found in Figure 7.10A and the nickel Sepharose 

purification of S. mutans and S. enterica GbnB in Figure 7.10B and C respectively. 
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Figure 7.10A-C. The effects of 
protease inhibitors on 
secreted proteins produced by 
the M145:L1 control strain 
compared to the strains 
designed to produce S. mutans 
or S. enterica GbnB 
(M145:pKMS05 and 06 
respectively) in the presence 
and absence of MmfR and 
MMF1 
All samples collected after 72 
hours growth on SFM media 
containing 1 mM EDTA. Plates 
were overlaid with Sigma Aldrich 
protease inhibitor cocktail for 
tissue culture at 24 hours growth. 
SIGMAFAST protease inhibitor 
cocktail was also added to the 
protein re-suspension buffer. 
 
UB = unbound proteins 
E = eluted proteins 
 
A. S. mutans and S. enterica GbnB 
- LiCl/TCA precipitation of 
secreted proteins 
B. S. mutans GbnB - nickel 
Sepharose purification of secreted 
proteins 
C. S. enterica GbnB - nickel 
Sepharose purification of secreted 
proteins 
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As can be seen in Figure 7.10B in particular (nickel Sepharose purification of S. mutans 

GbnB), there was a marked increase in the boldness of the band at around 60 kDa for all of 

the pKMS05 strains. There are still some other bands present, likely to be due to the level of 

purity achieved from the way the nickel Sepharose samples were processed. The 60 kDa band 

is however now the largest of those seen. The same can also be seen for the strains containing 

pKMS06 (S. enterica gbnB) although this protein is still giving less distinct results. The 

increase in intensity of the band size ~60 kDa might reflect a halting or reduction in protease 

degradation of the protein of interest, increasing its yield. The L1 control also appears to not 

have some of the bands that are present in the samples from the strains containing the 

expression vector on each gel, increasing that prospect that the GbnB-like proteins are 

produced.  

Despite the successes increasing the prominence of the band consistent with the GbnB-like 

protein molecular weight however, there are still concerns as to whether enough MmfR is 

present to efficiently repress and switch off the expression of the gene of interest in the 

absence of the MMFs. In Figure 7.10A, B and C the profiles shown on the gels for both 

expression vectors looked very similar in the presence and absence of MmfR and the MMFs. 

This therefore casts some doubt on the band being seen at 60 kDa being for the GbnB-like 

protein. For this reason, a number of the bands were cut out of the gels shown in Figure 7.10B 

and C and again analysed by LC-MS. The bands at the expected size of around 60 kDa were 

cut out for both the S. mutans and S. enterica samples, as well as a number of prominent 

smaller bands from the S. mutans sample (from ~50, 43, 37 and 26 kDa) to check for protein 

degradation. Most LC-MS samples collected were from the S. mutans GbnB producing strains 

as these bands were more distinct. Samples were also always taken from the positive controls 

containing the expression vectors (pKMS05 or 06) with no MmfR repression due to it not 

being clear how well MmfR was working in the system as a repressor. The contribution of the 

WPH Proteomics RTP, Gibbet Hill Road, University of Warwick, UK should be 

acknowledged for the processing for these samples and help with the analysis of the results. 

As might be expected, the main hits from the LC-MS analysis data returned were again for 

Streptomyces proteins. For none of the samples were there detectable Photorhabdus 

luminescens associated proteins indicating that the luciferase and the enzymes for its substrate 

were remaining inside the streptomycete cells.  

Both S. venezuelae GbnB and its two analogues belong to the acyl-CoA synthetase AMP-

binding family of enzymes. Any AMP binding enzymes found in the bands analysed for LC-

MS would therefore indicate the potential presence of the protein of interest. The six bands 

analysed showed sequence similarity to very few non-actinomycete proteins and the results 
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were largely inconclusive in terms of detecting the presence of the two GbnB-like proteins. 

Some of the bands showed similarity with a sugar ABC transporter substrate-binding protein 

from S. enterica (A0A0W5EVT2_ SALCE), unfortunately this protein does not bear much 

resemblance to the family of proteins that the GbnB analogues come from. There are also at 

least six possible amino acids detected in various bands that are Acyl-CoA binding enzymes 

from the Streptomyces species. These could possibly in fact be the Acyl-CoA synthetases 

being looked for due to the high identity found been the analogues. Unfortunately however, 

no conclusions can be made from this data on the successes of the successful export and 

purification of the GbnB analogues. With further purification of protein samples, the bands 

collected may hopefully yield more relevant results with less interference from exported 

proteins native to S. coelicolor M145. 

Checking Inside Cells for GbnB Orthologues 

As expression vectors were designed to attach a Tat signal to the protein of interest and label 

it for export out of the cell, all trials up until now have been run looking for proteins in the 

supernatant of liquid cultures or by washing the cell mass of solid cultures. To make sure that 

the protein of interest was properly being exported, the cell mass that had been collected for 

the experiments in Figure 7.10 was lysed and the cell contents checked for the GbnB 

orthologues. After cell lysis, the samples were processed in the same way as the exported 

proteins had been previously, using the optimised buffer with protease inhibitor cocktail 

present and purifying via nickel Sepharose purification. These purified proteins were then 

analysed using SDS-PAGE, images of these gels are shown in Figure 7.11A and B. 

As explained before, it is known that some expression of the pKMS05 or 06 inserts is 

occurring, as luminescence is seen when checked for the Photek camera. Assuming the 

upstream gbnB analogues are also being expressed it is therefore a case of finding out whether 

a corresponding protein has been produced and if so, where this may be; whether it is a case 

of successful folding and export but in low amounts, the folded proteins remaining inside the 

cell with failed export or alternatively, incorrect folding and degradation of the protein 

analogues. 
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Figure 7.11A and B. Intercellular proteins produced by the M145:L1 control strain 
compared to strains designed to produce S. mutans or S. enterica GbnB (M145:pKMS05 
and 06 respectively) in the presence and absence or MmfR and MMF1 

A – S. mutans GbnB B – S. enterica GbnB 
All samples collected after 72 hours growth on SFM media containing 1 mM EDTA. Plates 
were overlaid with Thermo Fisher protease inhibitor cocktail for tissue culture at 24 hours 
growth. SIGMAFAST protease inhibitor cocktail was also added to the protein re-suspension 
buffer. Intracellular proteins were collected using the method specified in Section 2.3.11. 

 

Unsurprisingly, there are many more bands seen for internal cell proteins collected than for 

the exported ones studied earlier. Even after nickel Sepharose purification there were no 

distinct bands that would have indicated the accumulation of a particular protein in the 

imidazole elution fraction. This appears therefore to suggest that it is unlikely that there is 

significant accumulation of folded GbnB analogues inside the cell which are not being 

exported. This does leave the possibility of the gbnB genes are not being expressed at all or 

are being expressed but incorrect folding results in protein degradation within the cell. 

However, due to the presence of bands of the correct molecular weight seen in Figure 7.10, 
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low expression levels might explain why the protein of interest was not seen previously, 

something that could be improved with further optimisation of the culture protocol as well as 

a more rigorous purification system to achieve fewer non-specific bands. Whether these 

GbnB analogues can be purified as functional enzymes however, is yet to be seen. 

 

7.5 Discussion and Conclusions on the Work to Develop a 
Novel Inducible Expression System 

Whereas the luminescence data collected on MmfR and MmyR helped draw conclusions and 

offered a fairly complete picture of their regulatory activity, the work creating a novel 

inducible expression system did not reach such completion with much optimisation left to be 

done. This chapter utilises a number of technologies that had not been previously used in this 

project and so learning them took time. Time limitations meant that optimisation could not be 

carried out to a level where the inducible expression system was ready for use by others with 

alternative recombinant proteins. The research did however provide some unexpected insights 

into the regulatory activity of MmfR/MmyR. 

Although the attempt to develop S. albus as an optimised heterologous expression host was 

not successful, these investigations did provide extra information on the regulatory natures of 

MmfR and MmyR and how these relate to the activity of homologues. Specifically, the 

investigation into S. albus as a potential host revealed the possibility of MmfR/MmyR 

homologues interacting with the MARE operator s. From the in silico and reporter gene assay 

analysis carried out in Section 7.2 it is not unreasonable to predict that possible MmfR will be 

able to bind alterative operators in different streptomycete hosts as well as MmfR orthologues 

possibly being able to bind the methylenomycin cluster operators. 

Despite these findings being very interesting however, the cut off point for sequence identity 

in the DNA binding region of MmfR, MmyR and their homologues where they will bind the 

MARE operators and other operators is not known. This therefore casts doubt on the 

MmfR/MMF/MARE operator system being used in strains of streptomycetes which have 

MmfR homologues with particularly high sequence identity, with the possibility of the 

presence of alternative MmfR binding sequences as well as other TetR family members 

interacting with the MARE operators in the inducible system. As a result, a wider analysis of 

MmfR homologues and MARE operator-like sequences is needed to further understand the 

interactions suggested in Section 7.2.  
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The developing inducible expression system shows promise as something that is worthwhile 

continuing to optimise. Results from SDS-PAGE gels indicate that the previously unpurified 

GbnB-like proteins may have been successfully produced by this streptomycete system with 

bands produced at the expected size but this is currently at a fairly low level. The luxCDABE 

operon, located downstream of the gbnB analogues being expressed and successfully resulted 

in luminescence being produced, so it is conceivable that the gbnB analogues are also being 

expressed. However, it is still not entirely clear whether the analogues are successfully being 

exported or folding into their native conformation, with the results from the LC-MS analysis 

not offering any clear indication of the presence of S. enterica or S. mutans peptides. 

Hopefully with the use of a more rigorous purification technique, there will be more distinct 

bands seen for the histidine-tagged proteins. Should more time have been available for this 

project, a more thorough purification protocol, such as FPLC would also have been attempted 

to achieve a reduced number of bands. 

In terms of the inducible nature of the system, this is not something that has yet been shown 

experimentally, with strains containing pKMS01 giving no clear differences to those 

containing only pKMS05 or 6. However, it is known from the luciferase assay in Section 4.4 

that the release of MmfR will be induced upon the addition of any of the five MMFs and so 

this system should hypothetically be adaptable for the regulation of other genes. The 

MmfR/MMF/MARE operator system could be tested further using an alternative reporter 

assay such as gusA or through the use of an antibiotic resistance gene, where the detection of 

repression and its consequent release would validate the inducibility of the system. 

The luminescence trials showed that there was leakage of luxCDABE expression when the 

MmfR repressor was under the control of the ermE* promoter. Since the development of 

ermEp* in 1985 (131) as a strong constitutive promoter, much more research has been carried 

out into stronger promoters that can be used in these GC high bacteria. If ermEp* was 

replaced with another stronger promoter such as kasOp* (134) in pKMS01, a higher level of 

MmfR would likely be produced and therefore more full repression at the methylenomycin 

cluster promoter of the expression vectors may be seen. 

The majority of the work done with optimising the expression system was done using solid 

cultures. For large-scale industrial production of soluble proteins of course, liquid cultures are 

preferable due to their ability to be scaled up to a larger extent. With the removal of the 

energy demanding lux genes and some further fine-tuning, it is hoped that liquid culture 

without the cell lysis will give a useful system. 

Testing the novel inducible expression system on two proteins that had never successfully 

been purified was always going be to challenging and in hindsight, a control vector 



Chapter 7 | Development of a Novel Inducible Expression System for 
Streptomycetes 

 168 

overexpressing a gene known to be purifyable from streptomycete systems should have also 

been created. This would have made results from optimisation trials easier to interpret. 

The future work required to develop this expression system has been discussed further in 

Section 8.5. 
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8 General Discussion 

8.1 Research Questions and Summary of Findings 
In the introduction the following research questions and hypotheses were laid out: 

Research questions 

Do all five methylenomycin cluster promoters, controlled by MmfR, have the same 

strength? 

Does MmfR bind in the same way to all three MARE operator sequences? 

Is MmfR release by the MMFs the same at all three MARE operators? 

Does MmfR respond to all five furan compounds? 

Do all five MMFs have the same efficacy? 

What are the key residues in ligand binding? 

How does MmyR binding to the MARE operator and the MMFs vary from that of MmfR? 

Are there any other ligands that MmyR may bind to? 

Could MmfR, MMFs and MARE operators be used as a multi-host efficient novel inducible 

expression system for GC rich bacteria? Would this allow the purification of recombinant 

proteins? 

 

Hypothesis 

The promoters that are predicted to be controlled by MmfR have different -35/-10 

sequences so it is possible that they will have varying strengths. 

In vivo, MmfR will bind to DNA at the MARE operator and be released upon the addition 

of a MMF compound. 

The three MARE operators have different semi-palindromic sequences and so are 

likely to show differential binding to MmfR. 

MmfR will respond to all of the MMFs but due to the differing length of alkyl 

chain between the five molecules there is likely to be differences in the binding 

potential of each. 

MmyR is only produced after methylenomycin biosynthesis. It will bind to the 

methylenomycin cluster operators but not be released by the MMFs, thereby repressing 

biosynthesis when methylenomycin has been produced to conserve cell resources and to 

protect the bacterium from the potentially lethal effects of excess methylenomycin. 

Alternatively, an unknown ligand may ‘activate’ MmyR as a repressor. 
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An attempt was made to answer these research questions via the use of a luciferase reporter 

gene assay, in silico amino acid and gene analyses, the creation of repressor mutants and 

optimisation trials of an MmfR/MMF/MARE operator based inducible expression system in 

Streptomyces. 

Findings from the luciferase assay indicated the relative strength of binding at the different 

MARE operators for both MmfR and MmyR as well as their affinities for the five MMFs. It 

should be noted however that the relevance of these findings in the larger picture of the wild 

type system is still not fully understood. The MmfR/MMF/MARE operator system showed 

promise as a component of a novel inducible expression system, the development of which 

was met with varying levels of success. 

In Section 8.2, each individual research question has been presented and a summary of the 

findings made for each question displayed. (An analysis of data collected can also be found 

previously at the end of each individual research chapter.) The impact of this data in then 

discussed in Section 8.3. The methods used to perform the luciferase assay as well as 

developing the novel inducible expression system have also been assessed and comments 

made on possible improvements in Section 8.4.1 and 8.5.1. Following on from this, a 

discussion of suggested future work is also presented in Section 8.4.2 and 8.5.2. A final 

summary of all the findings from this project can then be found in Chapter 9. 

 

8.2 Answers to the Research Questions 
8.2.1 Do all five methylenomycin cluster promoters, controlled by 

MmfR, have the same strength? 
It was shown that the five promoters1 in the three different intergenic regions were of 

different strengths (Figure 3.16). The luminescence assay indicated that the strength of 

promoter goes in the following order; mmyRp > mmfRp > mmyYp > mmyBp > mmfLp. The 

range in levels of luminescence by the unrepressed positive controls was between an average 

of 44.6 and 126.2 times the levels produced by the M145 negative control at 72 hours. This 

represents only a 2.8 fold difference in luminescence between all five promoters, whereas for 

example, Bai et al. saw a 190 fold difference in promoter strength when analysing different 

modular regulatory elements.(134) It is unclear whether this small range in promoters 

strengths is indeed representative of the wild type promoter strength or whether the resource 

demanding nature of the luxCDABE system is a limiting factor on measurable luminescence. 

                                                        
1 See Figure 3.5 and Figure 3.6 for the location of these promoters within the methylenomycin 
BGC 
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It is interesting that mmfR and mmyR have the strongest promoters. For each site that is 

repressed, two MmfR or MmyR monomers are needed. For the enzymes and other regulators 

coded for by other operons, one single protein molecule should be able to exert its effects on 

multiple targets. It therefore appears logical that their promoters are not as strong as those for 

mmfR and mmyR. 

8.2.2 Does MmfR bind in the same way to all three MARE operator 
sequences? 

Research indicated that MmfR binds differently to each of the MARE operators. MmfR was 

shown to bind best at the L1 MARE operator, controlling the expression of its own gene and 

mmfLHP. For the L1+mmfR strain there was shown to be a 10-fold decrease in luminescence 

compared to the positive control L1+pCC4 (Figure 4.2) at 48 hours growth when MmfR was 

under the control of ermEp*. MmfR will also bind and repress at the L2 and L3 MARE 

operators but with less strength. There was seen to be a 6.5 fold decrease in luminescence for 

L3+mmfR compared to L3+pCC4 and a 3.5 fold decrease for L2+mmfR compared to 

L2+pCC4 thereby influencing the expression of mmyR and the mmyBQEDXCAPK and 

mmyYF operons. A similar pattern of results was also seen at 72 hours. 

For all mmfR strains there was always more measureable luminescence than the level 

produced by the M145 negative control, indicating that there was not full repression of the lux 

operon. At 48 hours L1+mmfR produced three times as much luminescence as the M145 

control and for L3+mmfR there was almost nine times as much whereas there was over 24 

times as much luminescence for L2+mmfR compared with the M145 control. This revealed 

varying degrees of apparent leakiness in the system, which will not only be influenced by the 

level of MmfR binding but also the promoter strength at each of the sites. 

As was seen in Chapter 6, the self-regulatory nature of MmfR will also influence the level of 

leakiness seen in the system. When under the regulation of the L1 intergenic region and 

mmfRp instead of ermEp*, MmfR appeared to more tightly regulate the luminescence 

produced. Therefore, the levels of leakiness seen in the earlier luminescence assays (Figure 

4.2) are likely to be greater than that which would be present in the wild type system, where 

mmfR would be naturally under the control of mmfRp. It is likely however that in the wild 

type system, the same pattern will be seen with the L2 MARE operator still being the most 

leaky followed by the L3 MARE operator and then the L1 MARE operator, due to the 

predicted relative strength of MmfR binding at these sites.  
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8.2.3 Is MmfR release by the MMFs the same at all three MARE 
operators? 

As well as variations in promoter strength and strength of MmfR/operator binding, there also 

seems to be variation between the ease of release of MmfR repression from the different 

MARE operator sites. This was seen when MMF4 was trialled at a single concentration of 

100 µM in the L1, L2 or L3 based strains (Figure 4.3). L2+mmfR and L3+mmfR both start 

with already high levels of luminescence and produce an average of three to 3.3 times as 

much luminescence upon addition of MMF4 respectively, compared to nine times more for 

L1+mmfR at 48 hours when compared to the same strains without MMFs. 

When compared to a pCC4 positive control strain (representing no repression) the L1+mmfR 

strain with MMF4 produces 96% of the luminescence that L1+pCC4 produced. On the other 

hand, L3+mmfR with 100 µM MMF4 only achieves around 50% of the luminescence 

produced by its positive control and L2+mmfR achieves around 87%. This indicates that 

compared to the positive control, MmfR is less readily released at the L3 MARE operator, 

followed by L2, with L1 being the most readily release. (By comparing the values for mmfR 

strains with MMF4 with their own individual positive and negative control strains, the effects 

of different promoter strengths should also have been offset in these datasets.) 

8.2.4 Does MmfR respond to all five furan compounds? 
All five MMFs (Figure 4.4) produced a significant increase in luminescence for the L1+mmfR 

strain, containing the mmfL/mmfR intergenic region when analysed using a t-test (Figure 4.6 

and Table 4.2). At a concentration of 100 µM, there was seen to be an increase in 

luminescence of between 7.3 and 11.5 times that of the L1+mmfR in the absence of any 

MMFs. This is between 23.6 and 37.2 times the levels of luminescence produced by the 

M145 negative control. 

8.2.5 Do all five MMFs have the same efficacy? 
The Bmax and Kd values were calculated for each of the MMFs for MmfR at the L1 intergenic 

region, from this it was also possible to calculate the binding potential of each when under the 

particular conditions found in the luminescence assay. It is apparent that the relative binding 

potential for each MMF did vary, with the values ranging from 0.22 to 0.67, a three-fold 

difference. 

This data produce the following order of efficacy: 

MMF1 > MMF3 > MMF5 > MMF4 > MMF2 
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It appears that the MMFs with the branched alkyl chains (Figure 4.4) work the best at 

releasing MmfR from the L1 intergenic region followed by the MMFs with the longest 

straight alkyl chains. 

These calculated binding potentials represents the efficacy of each MMF for MmfR in 

causing its release from the mmfL/mmfR intergenic region. It is therefore possible that it will 

vary at the L2 and L3 intergenic regions. When binding the different operators, MmfR might 

have a slightly different conformation as a result of the interactions with different DNA 

sequences, therefore slightly altering the way the MMFs enter and interact with the binding 

pocket. Unfortunately there was not time to test the full range of concentrations at every 

MARE operator site. 

8.2.6 What are the key residues in ligand binding? 
Based on an in silico analysis of MmfR and observations from its crystal structure with 

MMF2, two tyrosine residues in positions 85 and 144 were selected as being likely to be 

involved in ligand binding in vivo. The mmfR gene had point mutations made to alter these 

amino acids in MmfR to phenylalanine residues (Figure 4.11). These mutants were added to a 

pCC4 vector and which was then put into Streptomyces strains containing luxCDABE under 

the control of mmfLp (L1 strains), allowing the analysis of the ligand-binding activities of 

these mutants via the luciferase assay.  

The Y85F mutant appeared to be released by MMF4 to a significantly lower level than the 

wild type MmfR. Even at a 200 µM concentration of MMF4 this mutant did not result in the 

same levels of luminescence as were induced in the wild type MmfR with 100 µM MMF4 

(Figure 4.17). This indicates that this tyrosine residue is indeed key to ligand binding. 

The Y144F mutant on the other hand was not expected to show any difference in ligand 

binding as it is the amine group that is involved in binding the MMFs, and this remained the 

same in the mutant. Rather unexpectedly however, Y144F with 100 µM MMF4 appeared to 

produce around 125% the luminescence of the wild type strain with the same concentration of 

MMF4. This indicates the possibility that this change to the ligand-binding pocket may have 

optimised furan binding, however more in vitro tests are needed to prove whether this is 

indeed the case. 

It is also of note that both the mutants appeared to produce slightly less repression of 

luxCDABE. Despite being mutants for the ligand binding pocket, the mutations lie close to the 

dimer interface of MmfR and so may influence the overall structure of MmfR and therefore 

also its DNA binding properties. 
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8.2.7 How does MmyR binding to the MARE operators and the 
MMFs vary from that of MmfR? 

Table 8.1 shows a comparison of data collected on MmfR and MmyR in terms of strength of 

binding to the MARE operators. 

Despite MmyR knockouts having been shown to overproduce methylenomycin, the 

luminescence assay showed a much lower level of repression by MmyR compared to MmfR 

(Figure 3.8). MmyR showed the greatest level of luminescence repression at the L3 MARE 

operator followed by the L1 MARE operator. No significant reduction in luminescence was 

detected in L2+mmyR compared to L2+pCC4 however, indicating that MmyR does not bind 

the L2 MARE operator. 

Table 8.1. Summary of data on MmfR and MmyR binding to the MARE operators 
The data in this table summarises the findings from Section 4.3 and 5.3 

MARE 
operator 

site 

Correspo-
nding 

promoter 

Strength of binding (no 
MMFs present) 

MmfR release in the 
presence of MMF4 

compared to a control 

Significant 
change in 

MmyR 
binding upon 

addition of 
MMF4 

Relative 
promoter 

strength (1 
being the 
strongest) MmfR MmyR Negative 

control 
Positive 
control 

L1 mmfLp Greatest Weakest Greatest Greatest NO 5 

L1F mmfRp - - - - - 2 

L2 mmyRp Weakest No 
binding  Weakest Middle NO 1 

L3 mmyBp Middle Greatest Middle Weakest 
YES 

(increased 
binding) 

4 

L3F mmyYp - - - - - 3 

 

To compare findings on MmyR relative to the data collected on MmfR; MmfR appears to 

bind the L1 intergenic region with the greatest affinity showing a average of 90% reduction in 

luminescence compared to L1+pCC4, followed by L3 with an 85% reduction and then L2 at 

72% reduction compared to their own pCC4 positive controls. MmyR on the other hand sees 

a 40% reduction in luminescence for L3+mmyR compared to L3+pCC4 and an average 

reduction in luminescence of 32% for the L1+mmyR strain compared to L1+pCC4. It is clear 

therefore than in their apo forms and under the control of the ermEp* promoter, MmfR binds 

more strongly to the MARE operators than MmyR. 

In Table 8.1, it seems clear that the L2 intergenic region has the least regulation by the TFRs; 

MmfR and MmyR. MmfR best regulates the L1 intergenic region, controlling the production 

of itself and MmfLHP whereas MmyR appear to best regulate mmyBQEDXCAPK and 

mmyYF. It was hypothesised in the 2009 paper by O’Rourke et al. (71) that the main role of 
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MmfR may be to regulate MMF production and the main role of MmyR to regulate the 

transcriptional activator MmyB. This premise is therefore in line with what was suggested by 

the data here. 

How MmyR actually carries out its repressive role appears to be complex, with much lower 

levels of repression seen than those produced by MmfR. One theory was that MmyR may 

need to be bound to a ligand for it to be able to bind the MARE operator and repress 

transcription. MmyR lacks both the tyrosine 85 and 144 residues previously associated with 

hydrogen binding with the furan ligand in MmfR (Figure 4.14). Unsurprisingly therefore, 

luminescence in the L1+mmyR strains did not show any significant induction in the presence 

of any of the MMFs at a concentration of 100 µM (Table 5.6). There was however an 

indication that MmyR will work better as a repressor in the presence of the MMFs when 

bound at the L3 MARE operator. The addition of 100 µM MMF5 to L3+mmyR appeared to 

bring the levels of luminescence closer to those seen for mmfR strains, showing 25% of the 

luminescence seen for L3+pCC4 (compared to 15% for L3+mmfR with no MMFs). Future 

trials with MMF1 and 3 will hopefully bring about even greater levels of repression, 

particularly as they had the highest binding potentials when binding MmfR. 

It is not clear why no such difference in luminescence was seen in the presence of the MMFs 

at the L1 MARE operator. However at this MARE operator there was seen to be weaker 

binding of MmyR and it is possible that only with a higher concentration of MMFs that a 

significant change in the levels of repression may be seen. Alternatively, the differences in the 

MARE operator sequences between the L1 and L3 sites may slightly alter the conformation of 

MmyR in a way that adjusts how the MMFs can bind. Again, this is something that would be 

interesting to look at in future trials. 

In summary, MmyR appears to have very different binding affinities for both the MMFs and 

the MARE operators when compared to MmfR. It appears to significantly interact with the 

methylenomycin system, but in a very different way to MmfR. Having two repressors with 

different roles and affinities thereby appears to allow tighter control of methylenomycin 

regulation. 

8.2.8 Are there any other ligands that MmyR may bind to? 
In other GBL binding systems there is often a TetR family GBL receptor as well as a 

paralogous ‘pseudoreceptor’ which has different ligand binding properties as well as a greater 

promiscuity of DNA targets. As MmyR is analogous to some of these ‘pseudoreceptors’ it 

seemed logical that it may bind an alternative ligand than the MMFs. 

Methylenomycin A and its precursor methylenomycin C were trialled to see if they caused a 



Chapter 8 | General Discussion 

 176 

significant change in luminescence in the L1+mmyR strain. Results from this assay were 

inconclusive with the lower concentration of the methylenomycins producing greater changes 

than the higher concentrations. Despite controls being run, it was unclear whether these 

artefacts where a results of the toxicity of the compounds in the cultures or truly 

representative of a change in repressive activity of MmyR. However, when a number of 

different architectures were trialled in mathematical models of the methylenomycin 

regulatory system, models where MmyR was released upon binding methylenomycin did not 

match the phenotypes seen in previously collected experimental data. This therefore indicates 

that it is unlikely that MmyR binds methylenomycin A or C. It would be helpful to analyse 

this further with the luciferase assay however due to the limitations of the mathematical 

modelling performed (Section 6.5). 

The potential of an alternative MmyR ligand cannot be excluded but as yet there are no firm 

hypotheses on what these molecules may be. 

8.2.9 Could MmfR, MMFs and MARE operators be used as a multi-
host efficient novel inducible expression system for GC rich 
bacteria? Would this allow the purification of recombinant 
proteins? 

In terms of developing a novel inducible expression system, the lux vectors have certainly 

shown promise with high levels of expression produced clearly measureable levels of 

luminescence, with up to an 18 times increase in luminescence once the MMF inducer has 

been added (Figure 4.7). The lux genes can easily be replaced with a gene of interest to be 

over expressed, under the control of MmfR/MMF/MARE operator, which should 

hypothetically be able to be controlled in the same way as the lux genes were. Two separate 

GbnB analogues from S. mutans and S. enterica were inserted between the L1 intergenic 

region and luxCDABE in the L1 vector for use as a novel inducible expression system. 

The optimisation of the inducible expression system proved to be challenging however, with 

little known about how to purify proteins from S. coelicolor compared to the better-known E. 

coli systems. In particular there were a number of challenges that were encountered when 

trying to develop a heterologous expression super host meaning that trials were done in S. 

coelicolor M145 instead, a strain which has limitations when trying to grow it in liquid 

culture. While optimising this system there appeared to be a good improvement in protein 

yield of secreted protein of the expected molecular weight when using a selection of protease 

inhibitors, indicating that protein degradation may have a significant impact on protein yield. 

There is hope that with even further optimisation and more extensive purification of the 

proteins of interest that a continued improvement in protein yield may be seen. 
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The presence of a band of the right size for the GbnB analogues does indicate that this 

actinomycete system may allow the purification of recombinant proteins from GC rich 

bacteria. This however still needs to be confirmed with further tests on the purified proteins to 

identify them as the desired GbnB-like proteins, as the LC-MS analysis done was largely 

inconclusive. 

The development of an optimised heterologous expression host was met with very limited 

success. It did however, help to shed some light on the cross-species promiscuity of GBL-like 

receptors, through the in vivo and in silico work done with S. albus. The lux system was 

added to S. albus with the potential of it being used as a host for the novel inducible 

expression system due to its very small, streamlined genome size. It was found however that 

luminescence for the L3+pCC4 positive control was repressed (Figure 7.1). A BLAST search 

for MmfR homologues found the TetR family member SSHG_01258, which shared over 40% 

identity with MmfR (across 86% of its sequence) and was potentially binding to the MARE 

operator and repressing mmyBp. No significant MmyR homologue could be found however. 

This indicates an extra hurdle when developing a multi-host efficient inducible expression 

system. TetR family members share a homologous helix-turn-helix DNA binding region 

which sometimes may share enough sequence identity to bind to one another’s target DNA 

sequences. This poses a limitation when transferring the MmfR/MMF/MARE operator 

expression system between hosts that also contain homologues with high sequence identity to 

MmfR/MmyR. Even weak binding to the MARE operator by native host receptors could be 

enough to considerably interfere with an inducible expression system and its regulation. Of 

course, with the advancing and increasing availability of many bacterial genomes, an 

examination could be run in potential expression hosts for MmfR homologues. However, the 

cut off for sequence identity that would result in these analogues binding the methylenomycin 

cluster MARE operators is as yet unknown. 

In summary, the MmfR/MMF/MARE operator system still shows promise as an inducible 

expression system in streptomycetes. However, much more optimisation is needed before it 

could be widely used. 

 

8.3 Impact of Data Collected 
There is hope that the research presented in this thesis can shed some light on the biosynthesis 

of some other natural products from strains of Streptomyces that contain homologues of the 

MmfLHP/MmfR/MmyR system. For example, tyrosine 85 and 144 (believed be used in 

ligand binding) are conserved in other homologous proteins indicating that other systems may 
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also use furan molecules as ligands. Some of these homologues are from otherwise silent and 

less well understood pathways and so have the potential of revealing otherwise undiscovered 

antibiotics if manipulated in the correct way. 

In particular this research has revealed more about the functioning of TetR family pairs 

analogous to GBL receptors and pseudoreceptors and how they have distinct roles in 

regulating secondary metabolism. It is apparent that whereas the GBL-like receptors often 

have similar and predictable mechanisms of action where they bind a hormonal ligand and 

then are released from a DNA operator, the paralogous ‘pseudoreceptors’ are much hard to 

predict the function of. Despite the knockouts of these pseudoreceptors often bringing about 

the same phenotype of overproduction of the cognate secondary metabolite, the mechanism 

by which they achieve repression appears to vary hugely. Sometimes the pseudoreceptor will 

only be released by a different, non-GBL ligand, possibly the cognate natural product. The 

findings of this thesis on the other hand, indicate that MmyR and MmfR may both bind the 

MMFs but this will bring about a completely different effect on MmyR, that of increased 

repression compared to a release of repression that these ligands bring about for MmfR. There 

are also quite distinct differences in the affinity of MmfR versus MmyR for the DNA 

operators. All this information is helpful when trying to switch on secondary metabolite 

production for silent gene clusters, with a broadened selection of possible alternatives to be 

trialled when trying to manipulate the activity of MmyR analogues. 

The research into the DNA binding domains of MmfR, MmyR and their homologues (Table 

7.7) revealed a number of common motifs, which could also be of relevance when 

manipulating TetR family binding to a chosen DNA operator. This does need further 

investigation but could prove to be very useful when seeking to control other biosynthetic 

clusters as well as engineering the novel inducible expression system. In particular, the work 

on MmfR/MmyR may help to better understand the regulation by SAV_2270 and SAV_2268 

in S. avermitilis and SHJG_7318 and SHJG_7322 in S. hygroscopicus, of which the natural 

product they regulate is unknown. These homologues shared the identical DNA binding 

motifs to those found in MmfR and MmyR and so possibly will reveal similar DNA binding 

profiles to those in the methylenomycin regulatory system studied here. 

 

8.4 Discussion and Improvements of Luciferase Assay 
8.4.1 Discussion of Techniques 
The chosen luminescence assay provided easily detectible results quantitative results which 

were possible to collect in a 30 second reading making this assay quick to obtain data from. 
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The Photek CCD camera was sensitive enough that small changes in luminescence could be 

detected for concentrations of the MMFs as low as 5 µM. A summary of the positive and 

negative aspects of the luxCDABE assay has been presented in Table 8.2. 

Table 8.2. Summary of the positive and negative aspects of the luxCDABE reporter gene 
assay 

Positive aspects Negative aspects 
Allowed the use of solid cultures Energy taxing nature of the luxCDABE operon 

resulted in phenotypic differences of some cells 
Multiple readings over time was possible as this 
was a non-destructive assay 

It was not practical to measure the cell mass from 
solid cultures 

Did not need to add substrates for luciferase, 
everything was made in the system 

Large deviations between results meaning that a 
number of repeats needed to be taken 

Easy manipulation of the system to study 
alternative operators, promoters and repressors via 
the sub-cloning and manipulation of vectors 

The software for the Photek camera was old so 
transfer of data into a readable format for other 
computers could be a lengthy process 

Very sensitive CCD camera  
Quantitative and easily detectable results  

 

In particular, this luciferase assay allowed the use of solid culture, where S. coelicolor grows 

better, completing its complex sporogenic life cycle. The use of solid culture also tends to be 

less susceptible to contamination while manipulating samples to take multiple readings. In 

addition to this, solid cultures were smaller in volume than the liquid ones trialled and so were 

less demanding on the synthesis of purified MMFs, which are not commercially available. 

The measurement of luminescence from solid cultures using the Photek CCD camera was also 

non-destructive, allowing the collection of repeat measurements from the same samples over 

time. 

Liquid cultures proved to be impractical to use for this assay. The large clumps that S. 

coelicolor form in liquid culture meant that there was huge variation between results 

collected. Also, without being able to complete its sporogenic life cycle, it is unclear how 

results collected from liquid cultures may be representative of methylenomycin regulation in 

the wild type system, with unknown interplay from extra transcriptional control such as sigma 

factors and riboswitches possible that may be dependent on different stages in the life cycle. 

The use of baffled flasks needed for Streptomyces growth in liquid culture also meant that 

samples had to be transferred into a different plate for measurements by the Photek camera, 

increasing the chances of contamination. It was also not practical to add the sample back into 

the baffled flask after the luminescence had been measured, meaning that the assay was 

destructive and reduced the volume of the culture each time a reading was taken. Other strains 

of Streptomyces such as S. venezuelae do grow better in liquid culture but as was seen in 
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Section 7.2, analogous TFRs may interfere with the system and so knockouts would need to 

be created. Using an alternative host is therefore not as simple a transition as may be desired. 

A downside of using solid culture was that the exact mass of cells was not known for each 

sample. Methods to measure the mass of solid cultures are often disruptive to the lawn of 

bacteria or be destructive to the sample and result in contamination and so would have 

prevented repeat readings being taken for the same cultures over time. Also, when inoculating 

plates directly from glycerol stocks (which were of a known concentration), luminescence 

production appeared to be effected by storage of the stocks at -80 °C. For this reason, a lawn 

of Streptomyces was grown on selective SFM media for four to five days at 30°C and this 

formed a fresh starter culture for the rest of the study. Picking cells fresh from a selective 

SFM plate ensured that they would be luminescing optimally for data collection but the 

concentration of cell mass was not known. To overcome the problem of not knowing the 

exact cell density, multiple repeats were done for each sample type and luminescence was 

calculated as a ratio, relative to a control sample. This control samples would be under the 

same variations in the inoculation of individual cultures and so should cancel out any effects 

of variation in cell mass and can be used to normalise data. 

It was also found that there is much less variability between readings at the later time points 

likely to be due to the stability brought about by cells were entering the stationary phase of 

growth. These 48 and 72 hour time points were therefore more reliable time points to study in 

detail, using boxplots and t-tests, due to a lower standard deviation and coefficient of 

variance. If these assays were to be done again, it is likely that the decision would also be 

taken to reduce the number of readings taken, removing the 21 and 27 hour time point 

readings and just collecting data at 24, 48 and 72 hours. The earlier time points were initially 

used as there was a lot of change in luminescence earlier on in growth, however the 

deviations in luminescence during this exponential phase make a reliable analysis of results 

difficult. Reducing the number of readings taken around 24 hours would have the benefit of 

decreasing any impact of temperature changes when taking samples out of the 30 °C 

incubator. Although samples are removed from the incubator for less than ten minutes at a 

time, it is unclear what the impact of initially doing this every three hours was. 

Another positive aspect of the luciferase assay was that it was easy to adjust and adapt for the 

study of different operators, promoters and repressors. Through the use of restriction digests 

and sub-cloning, different methylenomycin cluster intergenic regions could be studied and 

MmfR mutants were easily added to the system. This allowed the creation of a large array of 

different lux strains, permitting the analysis of a range of variables, brought together in 

different combinations. 
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Using luxCDABE compared to luxAB is beneficial because nothing needs to be added to the 

system. Both luciferase and its substrate are produced and so there is luminescence generated 

without any external manipulations. Anything extra needed to produce this bioluminescence 

is already present in the lux host strain. The downside of this self-contained system is the 

likelihood that the constitutive expression of luxCDABE is very taxing on the cells resources 

and perhaps for example, the strongest promoters are not revealing the true extent of their 

strength when tested with this assay. This is something that would be helpful to investigate 

further, looking at the different metabolic profiles of cells with phenotypic differences 

compared with those presenting the wild type phenotype of pigments produced. 

In conclusion, the luciferase assay proved to be very useful in the study of methylenomycin 

regulation in S. coelicolor. As with any reporter gene assay there were both positive and 

negative aspects of collecting results in this manner. The main downside of this technique was 

the variation between results. With more information on the cross-species affinity TFRs have 

for each others operator sites, this system could be developed for use in streptomycete strains 

that grow better in liquid culture. This would allow the calculation of cell mass in each 

sample and would hopefully reduce the deviations between data sets. However, until this is 

achieved, the luciferase assay would likely be suitable as it is in future investigations. 

8.4.2 Luciferase Assay Future Work 
The luciferase assay provided a lot of useful data on the regulation of methylenomycin 

biosynthesis and so would be used again to test more variables involving MmfR, MmyR and 

the MMFs. In particular, there is a desire to collect data on a number of other controls to 

produce a better-rounded assessment of biosynthetic regulation. There is hope that some of 

these trials will be completed during a short post-doctorate project to be carried out after the 

conclusion of this report and will be done again using the protocols specified in Section 3.3.7 

and Figure 3.3. These potential trials will now be discussed. 

A control test was run where the five MMFs were tested on the L1+pCC4 strain to look for 

significant changes in luminescence, in the absence of MmfR or MmyR. In the light of 

research indicating that the MMFs may have extra activator roles as well as causing the 

release of MmfR from the MARE operator (Section 4.4.2) it seems apparent that a full set of 

trials should also be run with L2+pCC4 and L3+pCC4 with all five MMFs. Preliminary trials 

were run with these two strains in the presence of a single concentration of some of the 

MMFs but this was not prioritised and a full data set was not collected. It would maybe even 

be useful to trial a range of concentration of the MMFs with these positive control strains to 

assess whether there is a calculable Kd or Bmax value. It is possible that the MMFs may be 

used to recruit other transcriptional regulators, located at different loci to the methylenomycin 
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cluster and so would be able to alter levels of luminescence even in the absence of 

MmfR/MmyR. Alternatively, the MMFs may be involved in the activation of a riboswitch in 

some of the methylenomycin cluster genes. 

Another area that would be interesting to explore with the luciferase assay would be a study 

into the strength of other streptomycete promoters. In this way, the effects of the potentially 

taxing expression of luxCDABE could not only be further explored but also a promoter could 

be selected for the over expression of mmfR. Something that would be particularly useful in 

the development of the novel inducible expression system where more complete repression of 

recombinant genes by MmfR is desired (see Section 8.5). The gfp assay work by Bai et al. 

from 2015 could be used as a benchmark for promoter strength in this particular assay. In 

their work, Bai et al. developed the kasOp* promoter (135) which was found to be ~20 times 

stronger than ermEp* and so is of potential interest as a strong constitutive promoter. As 

before, alternative promoters could be inserted upstream of the luxCDABE genes and the 

relative bioluminescence produced observed in the same manner as was done in Section 3.4. 

This could also then be compared to the work by Bai et al. to see if the same fold difference 

in luminescence for different promoters was seen in their equivalent gfp assay, thus indicating 

any limitations of luxCDABE expression. 

If more time allowed the L1F+mmfR and L3F+mmfR strains would also be further explored 

and compared to their L1 and L3 counterparts to investigate the influence of promoter 

position compared to the MARE operator in the reversed intergenic regions. The strength of 

MmfR/MmyR binding should be the same in either orientation due to the MARE operator 

remaining the same but the proximity of the MARE to the corresponding promoter may have 

an effect on the ‘leakiness’ of the system. 

Investigations into MmfR/MMF/MARE operator interactions were more extensive than those 

done for MmyR. There is interest in further investigating the role of the lesser-understood 

MmyR, in particular looking at the effect of different concentrations of the MMFs on this 

repressor at the different MARE operators. During investigations in Section 5.4 there was a 

lack of evidence of a significant effect on luminescence by 100 µM for L1+mmyR and so no 

trials were run to find out the Kd and Bmax values for mmyR strains, in an attempt to conserve 

MMF stocks. However, since then possible MmyR/MMF interactions have been shown at the 

L3 intergenic region, showing more promise for the production of significant and utilisable 

results if trialled with a full range of MMF concentrations. These trials were not run 

previously due to the finalisation of the lab project but it would be very interesting to carry 

out these tests in the near future. The aim of these further trials would be to investigate 
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whether higher concentrations of the MMFs could be used to achieve ‘full’ repression at the 

L3 intergenic region or possibly a significant change in repression at the L1 intergenic region. 

Another area that would be fascinating to explore using the luciferase assay is the cross-strain 

promiscuity of the DNA binding domain of TetRs analogous to MmfR. Either sav_2268 or 

sgnR could be subcloned downstream of ermEp* in pCC4 and added to the system along with 

the L1, L2 or L3 vectors. The level of repression achieved by these homologous repressors at 

the different intergenic regions, if any, could then be determined. In addition to looking at 

DNA binding properties, these analogues share high sequence identity in their ligand binding 

pockets to MmfR and so this assay set up could also be used to investigate whether 

SAV_2268 and SgnR can bind to and are released by the furan ligands in vivo. 

Finally, the investigation into the auto-regulation of MmfR and possible MmyR was only in 

its preliminary stages before this project concluded. There are many more investigations that 

could be carried out using the sp105 and 11NY strains, including the trial of a gradient of 

MMFs to see if luminescence could be induced at a specific threshold level. It would also be 

interesting to alter the 11NY and sp105 vectors to include alternative intergenic regions in an 

auto-regulatory system. 

 

8.5 Discussion and Improvements of the Novel Inducible 
Expression System 

8.5.1 Discussion of Techniques 
Investigations into the development of a novel inducible expression system were divided into 

two main parts; research into the potential use of S. albus as heterologous super host and the 

optimisation of the MmfR/MMF/MARE operator inducible expression system in a S. 

coelicolor M145 host. This investigation came after a selection of data from the luciferase 

assay had been obtained. For this reason, this section of the investigation was much more 

constrained by time as it came nearer the end of the project. These methods required much 

optimisation and could not be developed as far as a being a useable heterologous expression 

system that could be employed in multiple hosts. However, the data collected did form a good 

basis of preliminary investigations, which can then be developed further in the future. For this 

reason there are large overlaps between technique discussion and improvements and planned 

future experimentation compared to the discussion of the luciferase assay technique. 

Creation of an Optimised Heterologous Expression Host 
The luciferase assay used to investigate the MmfR/MMF/MARE operator system in S. albus 

has already been discussed in Section 8.4.1 but there are some further improvements that 
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would be beneficial with regards to this particular strain. In particular, it was a concern that 

some of the findings of the luciferase assay in Section 7.2.2 were due to problems with 

luxCDABE expression in S. albus, possibly as a result of the genome rearrangements this 

strain undergoes. It would potentially be beneficial therefore to regularly re-check the S. albus 

genome for the presence of the luciferase inserts should the assay be done again, to confirm 

that the results seen were not due to impeded genomic lux maintenance. 

Optimising the Novel Inducible Expression System 
When developing the inducible expression system for S. coelicolor M145 a number of 

different variables were trialled including the use of liquid versus solid media, different 

carbon sources, harvesting proteins at different time points as well as the use of protease 

inhibitors. The use of protease inhibitors showed promise in the optimisation of the technique 

and so is something that should certainly continue to be used over the 72 hours of 

Streptomyces growth in future trials. One major way in which the results of these optimisation 

trials may be improved is through the use of more extensive purification methods. During the 

investigation in Section 7.4, a very basic nickel Sepharose purification technique was used to 

provide a more high throughput system to test assorted variables. However, a more distinct 

band at the expect position on the SDS-PAGE gel may be achieved with a more refined 

method such as fast protein liquid chromatography FPLC. This semi-automated technique 

would hopefully reduce the number of non-specific bands seen in the purified samples and 

make results easier to analyse. 

Also, despite SDS-PAGE bands being analysed using LC-MS, the results from this were at 

times hard to analyse and inconclusive, due to the presence of so many potential polypeptides. 

An additional technique such as Western blotting therefore may be of use when looking for 

the presence of the histidine tagged recombinant GbnB-like proteins. 

Further improvements could also be made to the design of the expression vectors being used, 

with the benefit of hindsight and lessons learnt while optimising the expression system. For 

example, there was no spacer included between the TAT export signal and the 6xhis-tag. It 

became apparent later that the natural cleavage of the TAT signal might also cleave off some 

of the histidine tag, resulting in a potentially lower binding affinity for the nickel Sepharose. 

To remove this possible problem, either a spacer of random DNA could be added between the 

TAT signal and histidine tag or the histidine tag could be made longer so that any cleavage 

would still leave at least six histidine residues. 

In addition to this, there was no cleavage site added for the removal of the histidine tag. 

Although this was not a problem in the optimisation trials, for the expression system to be 

adaptable for a wide range of different proteins and uses it would be helpful to add a cleavage 
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site. Another obvious improvement that will need to be made to the expression vectors is the 

removal of luxCDABE. These genes were left in the vectors created to allow expression to be 

tracked via luminescence measured with the Photek CCD camera as well as via the more 

lengthy process of checking proteins via SDS-PAGE. However, due to the resource 

demanding nature of these lux genes, it is likely that protein expression is not optimal while 

they are still in the system and so will be removed, using the restriction sites included in the 

vector for this very reason, before any future trials. 

8.5.2 Novel Inducible Expression System Future Work 
Creation of an Optimised Heterologous Expression Host 
In addition to S. albus, there are a number of other possible streptomycetes that could be 

developed as heterologous expression super hosts. One of these is the reduced S. coelicolor 

strain, M1152.(123) Like S. coelicolor M145, this strain is lacking the SCP1 and SCP2 

plasmids but also has a number of extra genes removed, making this strain even more 

streamlined and therefore potentially a better host. Due to M1152 being a reduced version of 

M145, there is little chance of any unexpected background interactions not encountered in the 

work done for this project. It is not currently the perfect host however. It was found recently 

that the M1152 host still contains some biosynthetic genes from its gamma butyrolactone 

pathway but lacks repressor ScbR2 and therefore overexpresses these GBLs.(155) It has been 

experimentally shown that SCB1-3 (S. coelicolor butyrolactones 1-3), involved in coelimycin 

regulation, are over produced in the M1152 strain as well as five novel SCBs (SCB4-8).(155) 

This is a drain on the cells resources as well as adding the potential of these unregulated 

signalling molecules interacting with other pathways. In the M145 strain, these SCBs are 

under their normal wild type regulation by both ScbR and ScbR2 and so this overproduction 

has not been shown to be a problem. 

Before M1152 can be used as a heterologous expression host, this problem ideally needs to be 

solved and three genes of interest removed from the genome; scbR, scbA and scbB. ScbA and 

ScbB are involved in the biosynthesis of the SCBs. There are a number of techniques that 

could be used to achieve these gene knockouts. An example of a technique for gene 

manipulation which has recently grown in fame is that of CRISPR/cas9.(156) Unfortunately 

this technique has not shown successes when trialled in S. coelicolor by other lab members at 

Warwick, due to potential toxicity caused by unrepaired double stranded breaks in the 

genome and inefficient transfer of DNA via conjugation. It is unfortunate that such a powerful 

technique cannot be used for this purpose, at least not without some major improvements. 

Mutagenesis techniques in streptomycetes often employ gene targeting, where homologous 

recombination is used to change a plasmid-based endogenous gene, followed by transfer into 
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Streptomyces via conjugation. Problems often come about at the stage of conjugal transfer of 

plasmids from E. coli into Streptomyces. Techniques recently developed by Netzker et al. 

earlier in 2016 (157) may be able to assist with solving these problems. This research group 

developed an optimised conjugation protocol by looking and different media, antibiotic 

concentration, temperature and calcium ion concentration. It is therefore suggested these 

newly optimised conjugal transfer techniques are used to remove scbR, scbA and scbB from S. 

coelicolor M1152, possibly using PCR targeting. PCR targeting is a protocol specified in the 

‘Redirect technology: PCR-targeting system in Streptomyces coelicolor’ manual (158) 

designed by Bertolt Gust, Tobias Kieser and Keith Chater from the John Innes Centre. This 

protocol is based on a well known mutational technique developed by Datsenko and Wanner 

in 2000 for use in E. coli (159) but has been adapted for S. coelicolor. The procedure involves 

the excision of specific genes from a streptomycete cosmid in exchange for a PCR product of 

a selectable marker with added short homologous arms. This is done in a strain of E. coli with 

a high recombination and mutation rate (due to the presence of genes for λ RED 

recombination). These modified cosmids are then transferred to S. coelicolor via conjugation 

and the mutation integrated into the genome via homologous recombination of large stretches 

of native DNA in the cosmid. 

These techniques could also possibly be used for the removal or sgnR/gbnR/sgnLHP from S. 

venezuelae or sshg_01258 from S. albus with the prospect that removing these genes may 

prevent any interference with MmfR/MMF/MARE operator in these alternative hosts, 

hopefully allowing the cross-species adaptability of the inducible expression system. S. 

venezuelae has been shown to sporulate in liquid cultures and liquid cultures have the 

potential to produce larger volumes of biomass and therefore a greater potential protein yield 

meaning that this is a attractive alternative host. 

In addition to work to be done in the laboratory, a more widespread amino acid analysis with 

a detailed look at predicted TetR family protein functions would also be beneficial. Any extra 

information obtained on the cross-species affinity TFRs have for each others operator sites 

would assist in the development of the MmfR/MMF/MARE operator system for use in 

alternative streptomycete strains e.g. S. lividans. DNA binding promiscuity between 

transcriptional repressors could also be investigated in vitro using a gel shift assay or surface 

plasmon resonance (SPR) to test for receptor affinity for specific DNA sequences and cross-

talk with the MmfR/MARE operator system. 

Optimising the Novel Inducible Expression System 
It was seen in Section 7.4.4 that the addition of pKMS01 (mmfR) to strains containing 

pKMS05 or 06 did not result in any obvious reduction in protein synthesis. This is possibly 
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because the bands seen are unrelated to luxCDABE or the GbnB analogues, and are therefore 

not controlled by MmfR repression. Alternatively it could be due to the ‘leakiness’ of 

repression at the L1 intergenic region. The L1 intergenic region was selected for use in the 

inducible expression system as MmfR showed the strongest binding at this site, it appears 

however that even this small amount of leakiness may still result in significant levels of 

recombinant gene expression. To fully optimise the system, it would be preferable that mmfR 

be put under the control of a stronger promoter than ermEp* with the hope that higher levels 

of MmfR will result in more complete repression. There was evidence in Section 6.2 when 

under the control of its own promoter, levels of MmfR repression appeared greater. This 

indicates that it is a problem with the levels of MmfR present rather than its repressive ability 

that allows significant leaky gene expression. Unfortunately the native methylenomycin 

promoters such as mmfLp are unsuitable for controlling mmfR expression due to their self-

regulatory control and lack of observable induction by the MMFs under laboratory conditions. 

Instead there are a variety of strong constitutional promoters that could be trialled, for 

example the kasOp* promoter which was indicated to produce 20 times more gfp 

fluorescence than when the same gene was under the control of ermEp* (See also Section 

8.4.2).(135) Again using the luciferase assay, the promoter that is shown to achieve the best 

levels of MmfR repression could then be used in the novel expression system to make it truly 

inducible. 

An additional adjustment that would also be interesting to explore is the use of a different Tat 

export signals. Li et al. presented research on Tat export in S. coelicolor A(3)2 in 2005 (148) 

where details were given of the signal peptides for 129 possible Tat substrates, as predicted 

by their software; TATscan. It is possible that if a different one of these was used, an 

improvement in protein yield may also be seen. The specific efficiency of different signal 

peptides is not known and so one was picked at random for this assay but it may not be as 

efficient as other signal peptides. A range of alternative Tat signals could be sub-cloned into 

pKMS05 or 06 and expression levels assessed. 

When designing the expression system, the two GbnB analogues were selected due to the 

interest by the research group at Warwick and GSK into their purification. However in 

hindsight, selecting two proteins that had never before been successfully purified was not a 

good place to start with a technique that needed so much optimisation. It would be beneficial 

instead to also try over expressing a gene that is known to be extractable from current systems 

available for GC high bacteria such as the gene for that of streptavidin.(107) This would then 

provide a control for optimisation trials. It is possible that a better indication of the presence 

of the GbnB-like proteins was not achieved because the system was not optimal for protein 
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folding or any other factors involved in the successful collection of a soluble protein for these 

specific polypeptides rather than a flaw in the actual expression system. 

 

8.6 Other Relevant Future Work 
As mentioned in the introduction, the exact mechanism of methylenomycin activity is as yet 

unknown. There are plans to investigate this further in the future. A selection of B. subtilis 

reporter strains have been developed which contain five different promoters attached to the 

firefly luciferase gene.(160),(129) The levels of luminescence produced by each strain in the 

presence of an antibiotic indicate what its biological target is. Once this target has been 

established, further research can be carried out looking for greater depth of understanding on 

interactions with this target. Another researcher within Warwick University is currently 

carrying out this work. 

In addition, work is also being carried out to purify a MmyR orthologue from Streptomyces 

avermitilis; SAV_2270. This orthologue has been indicated to be soluble when purified with 

commonly used E. coli systems, meaning that crystallisation may be possible. This would 

help to shed light on the functionality of these ‘pseudoreceptor’ type proteins. If the crystal 

structure of SAV_2270 could be obtained, the structure of MmyR may also be possible to be 

modelled based on this analogue, allowing a greater understanding of key amino acids in 

DNA and ligand binding including opening the possibility of more accurate docking analyses 

with potential ligands. Previous attempts to model MmyR based on MmfR have as yet proved 

to be unsuccessful, with not enough homology of structure to produce viable docking 

analyses. 
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9 Summary of Results and Conclusions 
To conclude all of the observations made during the experimentation carried out for this 

project, an interesting insight has been developed into the roles of the paralogous pair MmfR 

and MmyR in the regulation of methylenomycin biosynthesis. 

The better-understood MmfR was previously predicted to bind three different intergenic 

regions at a 24 bp methylenomycin auto-regulatory response element site, thereby regulating 

the expression of five different operons. This investigation revealed that these five different 

operons have promoters of differing strengths. The promoters for mmfR and mmyR appeared 

to be the strongest whereas the promoters for other enzymes and regulators were weaker. In 

addition to this, there is a variation in the strength of MmfR binding to the three MARE 

operator sites as well as the level of release of this repressor that can be induced by a single 

concentration of MMF4 ligand. Each of the five MMF ligands were shown to have a different 

efficacy for MmfR when it was repressing at the mmfL/mmfR intergenic region, with the 

furans that have the branched alkyl chains proving to be the most efficient ligands. An in 

silico analysis of the MmfR primary and tertiary structure revealed the presence of two 

tyrosine residues thought to form hydrogen bonds with the furan ligands. A mutational 

analysis of these residues indicated that they are indeed involved in ligand binding and may 

also effect DNA binding due to their close proximity to the dimer interface. 

The activity of MmyR varied from that of MmfR. This paralogue showed significant binding 

to two out of the three MARE operator sites that MmfR was indicated to bind, but showed no 

significant binding to the intergenic region that contains the promoter for its own gene. As 

with MmfR, there was variability in affinity of MmyR for each of the two operator sequences 

it did appear to bind. MmyR showed no significant release in the presence of the MMFs from 

either site, however a level of significant improvement in repression was detected for MmyR 

at the mmyY/mmyB intergenic region in the presence of all the MMFs trialled. No conclusive 

data was collected on the possibility of MmyR binding to methylenomycin A or C but the 

possibility of other alternative ligands cannot be ruled out. 

The MmfR/MMF/MARE operator system shows promise as something that can be developed 

into a novel inducible expression system, although much optimisation is necessary. In 

particular the use of protease inhibition throughout culture growth appeared to be key to the 

recovery of proteins. However, whether this system can be adapted to be efficient in multiple 

hosts is yet to be seen, with affinity for the MARE operators from exogenous proteins 

predicted. 
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Appendices 

Appendix A. Nucleotide Sequences 
Intergenic regions 

MARE operator sequences shown in bold 
 
mmfL_mmfR (194 bp) – L1 
GGCTGCCTTCCTTCGTGTGTGCGGGCCCTGCGGGCGCCATGCTGGTGCGACCCGGGTCGGCACGGAAACCCATTGCATAATACCTT
CCCGCAGGTATATTTCTCTCGGTCAGCTTACCGATCCCGGCTGTCTTGCAGCGCGGCAAGCCAGCCGGTGGTCCCGTACGAGGACA
CACCGGGAGATGTAGCGCCCCT 
 
mmfP_mmyR (150 bp) – L2 
ATCCTGCCGCGCGGTAGCCGTGCTGCCTCCACTTTTGCGCCGATGACTGGGACATCGTCCACGTGCGCCGACCGCCCCCACTAACA
TACCTTCCCGAGGGTATGTTTTCCGGGCCCGTTGGCTCACGACCTTGAGAGGACTCGGGCGTTG 
 
mmyY_mmyB (229 bp) – L3 
GGTGAACTCCTTCGGCGAGTGGTTCGGATCGCTGGCGAGTATCGGCAGGGTCGTGCGAAGGCTGCCAGAGCGAACTTCTGCTAGGG
GCCTCAGACGTGGTGTTCTCAGCACCAGGGCCCCGCCGAGTTGCGGTCCAAACACCGAGGCCCCGCCGCTCTCGTAAGCCCCGGTT
TAACTCTCCGTTACGAGTCATAAAAAACCTTCGGGAAGGTTTGACACTGTGAGGCGCC 
 

ErmE* insert containing promoter 
-35 and -10 sequences shown in bold 

AGCTTGCATGCCGGTCGACTCTAGAGGATCCTACCAACCGGCACGATTGTGCCCACAACAGCATCGCGGTGCCACGTGTGGACCGC
GTCGGTCAGATCCTCCCCGCACCTCTCGCCAGCCGTCAAGATCGACCGCGTGCACCTGCGATCGCCGATCAACCGCGACTAGCATC
GGGCGCAAGCCACCACTCGAACGGACACTCGCACTTAAGACGGATCTTTTCCGCTGCATAACCCTGCTTCGGGGTCATTATAGCGA
TTTTTTCGGTATATCCATCCTTTTTCGCACGATATACAGGATTTTGCCAAAGGGTTCGTGTAGACTTTCCTTGGTGTATCCAACGG
CGTCAGC 

 

GbnB synthetic analogues 
BamHI | RBS | ATG | TAT signal | 6 Histidine | MunI |GbnB  analogue| NotI |NdeI |  

CAC|GGATCC|AAAGGAGG|ATG|ACGAAGCCGGTCGTCCCCTCGGGGGTCTCCCGGCGCGGGTTCCTCGGGGGGTCCCTGGGCGT
CGCGGGCGCGGTCCTGCTCGCCGCC|CACCATCACCATCACCAC|CAATTG|GbnB analogue|GCGGCCGC|CATATG|CAC| 

 

Streptococcus mutans 
CACGGATCCAAAGGAGGATGACGAAGCCGGTCGTCCCCTCGGGGGTCTCCCGGCGCGGGTTCCTCGGGGGGTCCCTGGGCGTCGCG
GGCGCGGTCCTGCTCGCCGCCCACCATCACCATCACCACCAATTGCTGGCCCTGGAGAACCTGATCCAGATCCGCAACCGCAACCC
GGACAAGCTGATCCTGATCTCCGACGAGAAGTCCTTCTCCTGGAAGGAGTACACCAACCTGGTCATCAACAACCTGCGCAACACCA
CCCTGCAGTCCGTCCTGAACAAGACCGACCGCGCCATCATCATCTCCGAGAACACCTGGAAGGTCTTCACCATCTACTCCTGCCTG
TCCACCCAGAAGATCCCGTACTCCGGCATCGACTACTCCATGGAGGACGACAAGAAGGTCGCCGCCATCAACAAGTCCGGCGCCAA
CACCGTCTTCTACTCCAAGGACCAGAAGCCGTCCCAGAACCTGCGCAACTCCCTGAAGGGCGTCTCCTTCATCTCCCTGGACATCC
TGCACGACGACATCGAGGGCTCCGACCTGTCCGACTTCAACATCAAGAAGCACTCCGACTCCATCGTCTCCTTCGGCTTCACCTCC
GGCACCACCGGCCTGCCGAAGTGCATCTACCGCGACTACTCCTTCGCCACCGAGCGCATGAAGGAGCTGACCAAGCTGTACAACTT
CAACGCCACCGACGTCTTCCTGGTCACCATGCCGTTCTACCACGTCTCCGTCAACGGCTGGGTCAAGCTGACCCTGAACAACGGCG
GCTCCGTCGTCCTGGGCGACTTCAACAACCCGATCGACCTGTCCTCCAAGATCAAGCAGTACGACATCACCACCATGCTGATCACC
CCGCCGGTCCTGAAGTCCCTGAACTTCGTCCTGAACCAGCAGGGCTTCATCAACTCCACCGTCCGCTTCATCATGGTCGGCGGCAA
GAACTTCCCGCCGAAGCTGAAGGAGGAGACCCAGAACCTGTTCGGCTCCGTCCTGCACGAGTACTACGGCTCCTCCGAGACCGGCA
TCAACGTCCTGGCCAACTCCTCCGACATGATGCTGTACCCGTCCTCCTCCGGCCGCGTCATGAAGGGCTCCGACGTCATCATCGTC
GACTCCGACAACCGCAAGATCCCGAACAACCACATCGGCCGCATCGCCATCTACTCCTACCAGAACGCCACCGGCTACATCAACCA
GCCGCTGGAGAAGTTCAACTACCGCCAGAAGGAGTACATCCTGACCTCCGACTACGGCTACGTCAACAACGAGGGCTACATCTTCG
TCGTCCAGCGCATCCTGAACCACGAGAACAACAAGATCATCAACGTCTTCCAGATCGAGAACCGCCTGCGCCTGATCAAGGACATC
GACGACGTCGCCATCGTCCAGAAGAACAACCTGCTGCTGGTCAACATCAAGCTGAAGAAGATCTCCGAGATGAAGCGCTCCCTGGT
CAACGACCTGGTCTGCTGGATCTTAGAGAAGACCAAGATCCCGTACGACCTGAAGTACACCGACGAGATCCACTACTCCATGTCCG
GCAAGGTCAAGTACACCGAGGTCATCAACTCCGAGGGCCGCGCGGCCGCCATATGCAC 
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Salmonella enterica 
CACGGATCCAAAGGAGGATGACGAAGCCGGTCGTCCCCTCGGGGGTCTCCCGGCGCGGGTTCCTCGGGGGGTCCCTGGGCGTCGCG
GGCGCGGTCCTGCTCGCCGCCCACCATCACCATCACCACCAATTGATCACCCTGCGCCGCCTGAACGAGATCGCCATCACCCGCGG
CAACGACATCTGCATCATCGACAAGGAGCGCCAGTACACCTGGTACGACATCATCCGCCGCACCGAGTCCCGCATCGTCTTCCTGC
GCCGCGCCTTCAACCCGGAGCAGCTGCGCTCCGTCTGCTACCTGTCCAAGAACTCCGTCGACCTGATCTGCTGGCTGGCCGCCTTC
GCCACCCTGGGCATCCCGGCCAACGGCCTGGACTACTCCCTGCCGATCGAGACCCTGCGCGGCCTGCTGATCAAGATCAACCCGGG
CCTGATGCTGGTCTCCTTCTCCCTGTACTCCCCGGACGAGCTGAACAAGCTGCACGTCCGCACCATCACCATGCTGGCCGTCGACG
CCCCGACCGACCCGGTCATCGGCTCCATCGGCGAGTTCCACCACCCGGAGCTGGAGTCCCTGCTGGCCACCCACATCCCGGCCCCG
TTCCGCTCCGTCTCCCTGACCTCCGGCACCTCCTCCGCCCCGAAGATCGTCCTGCGCTACAACTCCTTCGACGCCCGCCGCTTCGA
CTGGTTCACCCAGCGCTTCAACTTCACCCACCACGACGGCTTCCTGCTGATCCTGCCGCTGTACCACGCCGCCGGCAACGGCTGGG
CCCGCATGTTCATGGGCCTGGGCGCCTCCCTGCACCTGGTCGACCAGGACGACGAGTCCGCCCTGATCCAGGCCCTGTCCCTGAAC
TCCGTCAAGGCCACCGTCATGACCCCGAACCTGGTCTCCCGCCTGACCAAGCTGGCCTCCGAGACCGTCCTGCACCACTACCTGCG
CTGGGTCCTGGTCGGCGGCTCCTACTTCCCGGTCAAGTCCAAGATCGCCGCCTACACCCACCTGGGCCACATCTTCAACGAGTACT
ACGGCTGCACCGAGACCGGCGTCAACGTCCTGTCCGAGTCCTCCGACATGTTCGAGTGCCCGGGCTCCGTCGGCCGCGCCTTCGAC
GGCAACAAGATCCGCATCCTGGACGAGGACAACGTCCCGCTGAAGGCCGGCAACCGCGGCCGTATCGCCGTCGCCTCCTACATGCT
GATGGACGAGTACGGCGACGGCTCCCGCCCGTTCATCGAGATCGACTCCGAGCGCTACTTCCTGATGGCCGACTACGGCTACCTGG
ACGACAACGGCCGCCTGTTCCTGATGAACCGCAACTCCGAGATCAAGTGCGAGCAGGACATCTACCACATCGAGGAGCACCTGCGC
GCCCTGCCGTGCATCACCGACGTCGCCCTGATCCCGATCCGCCAGCAGAACAAGGACCACATCCGCTGCATCTTCTCCGCCAAGTA
CATCAACGAGGACGACGTCTCCTTCATCATGGACGAGATCAAGAACAAGATCAACCACATCGGCGTCACCGACTTCACCGCCCACA
TGGTCGACAAGATCCCGTACTCCCCGTCCGGCAAGGTCCGCTTCTCCGAGATCGTCCAGACCCTGACCGCCGCCGCGGCCGCCATA
TGCAC 

 

Appendix B. Amino Acid Sequences 
> MmfR [Streptomyces coelicolor A3(2)] 

MTSAQQPTPFAVRSNVPRGPHPQQERSIKTRAQILEAASEIFASRGYRGASVKDVAERVGMTKGAVYFHFPSKESLAIAVVEEHYA
RWPAAMEEIRIQGFTPLETVEEMLHRAAQAFRDDPVMQAGARLQSERAFIDAELPLPYVDWTHLLEVPLQDAREAGQLRAGVDPAA
AARSLVAAFFGMQHVSDNLHQRADIMERWQELRELMFFALRA 

>MmyR [Streptomyces coelicolor A3(2)] 

MKQARAMRTRDQVLDAAAEEFALHGYAGTNLATVAVRTGMTKGALYGHFPSKKALADELVSQSTETWNTIGRSIAETACAPETALR
ALVLAVSRQMKHDIRFRAALRLAADCTMPAGGAPDLLDRIRREMAAAARDTQQQQAPYSPLATQPPDVVVHLLLTVAYGLSFAAER
GAPGRSPATTDKVWELLLTALQLEDISTCHN 

> GbnB analogue [Streptococcus mutans synthetic sequence] 

MTKPVVPSGVSRRGFLGGSLGVAGAVLLAAHHHHHHQLLALENLIQIRNRNPDKLILISDEKSFSWKEYTNLVINNLRNTTLQSVL
NKTDRAIIISENTWKVFTIYSCLSTQKIPYSGIDYSMEDDKKVAAINKSGANTVFYSKDQKPSQNLRNSLKGVSFISLDILHDDIE
GSDLSDFNIKKHSDSIVSFGFTSGTTGLPKCIYRDYSFATERMKELTKLYNFNATDVFLVTMPFYHVSVNGWVKLTLNNGGSVVLG
DFNNPIDLSSKIKQYDITTMLITPPVLKSLNFVLNQQGFINSTVRFIMVGGKNFPPKLKEETQNLFGSVLHEYYGSSETGINVLAN
SSDMMLYPSSSGRVMKGSDVIIVDSDNRKIPNNHIGRIAIYSYQNATGNQPLEKFNYRQKEYILTSDYGYVNNEGYIFVVQRILNH
ENNKIINVFQIENRLRLIKDIDDVAIVQKNNLLLVNIKLKKISEMKRSLVNDLVCWILEKTKIPYDLKYTDEIHYSMSGKVKYTEV
INSEGR 

> GbnB analogue [Salmonella enterica GbnB synthetic sequence] 

MTKPVVPSGVSRRGFLGGSLGVAGAVLLAAHHHHHHQLITLRRLNEIAITRGNDICIIDKERQYTWYDIIRRTESRIVFLRRAFNP
EQLRSVCYLSKNSVDLICWLAAFATLGIPANGLDYSLPIETLRGLLIKINPGLMLVSFSLYSPDELNKLHVRTITMLAVDAPTDPV
IGSIGEFHHPELESLLATHIPAPFRSVSLTSGTSSAPKIVLRYNSFDARRFDWFTQRFNFTHHDGFLLILPLYHAAGNGWARMFMG
LGASLHLVDQDDESALIQALSLNSVKATVMTPNLVSRLTKLASETVLHHYLRWVLVGGSYFPVKSKIAAYTHLGHIFNEYYGCTET
GVNVLSESSDMFECPGSVGRAFDGNKIRILDEDNVPLKAGNRGRIAVASYMLMDEYGDGSRPFIEIDSERYFLMADYGYLDDNGRL
FLMNRNSEIKCEQDIYHIEEHLRALPCITDVALIPIRQQNKDHIRCIFSAKYINEDDVSFIMDEIKNKINHIGVTDFTAHMVDKIP
YSPSGKVRFSEIVQTLTAA 
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Appendix C. Sequence Analysis of MmfR and Homologues 
 

Table C.i Percentage similarity between MmfR and MmyR and their homologues from 
S. venezuelae, S. avermitilis and S. albus 

Details on percentage query coverage shown in following table 
Amino acid sequences used: same as Table 7.3 
 

MmfR MmyR SgnR GbnR 
SAV_ 
2270 

SAV_ 
2268 

SSHG_ 
01258 

MmfR 100 56 71 48 64 54 56 
MmyR 56 100 47 54 67 54 53 
SgnR 71 47 100 49 65 49 60 
GbnR 48 54 49 100 50 47 75 

SAV_2270 64 67 65 50 100 49 48 
SAV_2268 54 54 49 47 49 100 44 

SSHG_01258 56 53 60 75 48 44 100 
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