

Original citation:

Biggs, Caroline I., Packer, Christopher, Hindmarsh, Steven A., Walker, Marc, Wilson, Neil R., Rourke, Jonathan and Gibson, Matthew I.. (2017) Impact of sequential surface-modification of graphene oxide on ice nucleation. Physical Chemistry Chemical Physics, 19. 21929-21932.

Permanent WRAP URL:

http://wrap.warwick.ac.uk/91013

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available.

Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

Publisher statement:

First published by Royal Society of Chemistry 2017 http://doi.org/10.1039/C7CP03219F

A note on versions:

The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP URL' above for details on accessing the published version and note that access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

ROYAL SOCIETY OF CHEMISTRY

Journal Name

COMMUNICATION

Impact of Sequential Surface-Modification of Graphene Oxide on Ice Nucleation

Received 00th January 20xx, Accepted 00th January 20xx Caroline I. Biggs, ^a Christopher Packer, ^a Steven Hindmarsh, ^c Marc Walker, ^c Neil. R. Wilson, ^c Jonathan P. Rourke ^a and Matthew I. Gibson ^{a,b}*

DOI: 10.1039/x0xx00000x

www.rsc.org/

Base-washed graphene-oxide which has been sequentially-modified by thiol-epoxy chemistry, results in materials with ice-nucleation activity. The role of hydro-philic/phobic grafts and polymers was evaluated with the most potent functioning at just 0.25 wt %. These 2-D hybrid materials may find use in cryopreservation and fundamental studies on ice formation.

The formation and growth of ice crystals presents problems in many fields from aerospace to cell cryopreservation to the automotive industry. Whilst ice formation is thermodynamically preferred below 0 °C, there exists a large barrier to this, such that pure water undergoes homogenous nucleation at ~ - 40 °C. For nucleation to occur above this temperature, a nucleator is necessary. In the environment, nucleators have been identified including dust,¹ minerals, birch and conifer pollen² and recently a species of fungus was found to be a potent nucleator.³ Ice nucleating proteins also exist in living species, 4 for example Pseudomonas syringae produce ice nucleating proteins to promote frost formation on plant leaves, to release nutrients for feeding.⁵ However, the mechanisms of ice nucleation are not understood, and remain a significant challenge for modelling and theory.^{6,7} A key barrier to this understanding is the lack of sequentially modified materials to enable structure-activity relationships to be drawn. The few known nucleators are insoluble, inorganics such as kaolinite⁸ or bacterial proteins. Synthetic ice nucleators could play a key role in e.g. cellular cryopreservation, where control over the exact nucleation temperature could improve reproducibility in the cryopreservation process.9 In the past few years, significant progress has been made in the development of synthetic materials for ice recrystallization inhibition (IRI) - the growth of pre-formed ice crystals as mimics of antifreeze proteins (which sometimes, but not always, can influence ice nucleation also). 10 For example, Gibson et al. have explored poly(vinyl alcohol) and poly(ampholytes) as an IRI active biomimetics. 11,12 Progress in synthetic mimics of ice nucleators has been slower though. Whale et al. have reported that carbon nanotubes and graphene nanoflakes can promote ice nucleation, which is appealing as these are synthetic, organic, and compared to previous inorganic nucleators, very small in size. 13 Soots (carbon rich materials) present in the atmosphere (from burning of fuels) have also been found to show a range of nucleation temperatures supporting carbonaceous materials as promising lead candidates for new nucleators. 14,15 Suspensions of these materials are unstable, settling out of solution rapidly preventing their application and testing. Rourke and coworkers have demonstrated that base-washed graphene oxide reproducibly provides a route to a distinct graphene-like material, of higher quality than normal graphene oxide. 16,17 The base-washing process removes oxidative debris from the surface revealing reactive epoxide groups on the surface, enabling conjugation of a range of functionalities, including thiols, gold nanoparticles, ¹⁸ atomically precise clusters¹⁹ and polymers.²⁰

Considering the above, we hypothesised that the surface modification of base-washed graphene oxide would provide a versatile template to evaluate the potential of 2-dimensional carbon nanomaterials as ice-nucleating materials and also to provide a versatile scaffold to enable the role of surface chemistry to be probed. Base-washed GO (bwGO) was prepared using established methods¹⁶ to generate a 'clean' surface bearing epoxy groups available for orthogonal conjugation to thiols. For the surface modification, a small library of small molecule thiols was chosen, to give a range of hydrophilic/phobic functionalities. Water-soluble polymers with thiol-termini were also synthesised using RAFT (reversible addition fragmentation -transfer) polymerization. RAFT not only enables access to functional polymers of defined chain length and dispersity, but also introduces a thio-carbonyl at the $\ensuremath{\omega}\xspace$ end-group, which can be reduced to a thiol. Using this method, poly(N-isopropylacrylamide), pNIPAM with degree of polymerization of 55 and 140 was synthesised, to use as a water soluble polymeric grafting agent, Table 1.20

^{a.} Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK. E-mail: m.i.gibson@warwick.ac.uk

^{b.} Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK

^c Department of Physics, University of Warwick, Coventry, CV4 7AL, UK

[†] Electronic Supplementary Information (ESI) available; This includes full experimental procedures and additional characterisation information. See DOI: 10.1039/x0xx00000x

COMMUNICATION Journal Name

Table 1. Polymers synthesised

Polymer	DP ^a	Conversion (%)	Mn ^a (g.mol ⁻¹)	Mw/Mn ^a
pNIPAM ₁₄₀	140	60.5	15700	1.11
pNIPAM ₅₅	55	85.0	6200	1.08

^a Determined by SEC; ^b determined by NMR

To synthesise the GO composites, the thiols (Scheme 1) were reacted with bwGO in DMF suspension and the composites isolated by repeated centrifugation/washing cycles and freeze-drying. Infrared spectroscopy of the pNIPAM conjugates revealed characteristic amide bond stretches, but the alkyl thiols did not have characteristic stretches. Therefore, XPS (X-ray photo-electron spectroscopy) and TGA (thermogravimetric analysis) was employed to confirm successful grafting (Supp. Info.). The actual grafting density is low, limited by the number of epoxide groups for all the additives used and could only be detected by XPS not FTIR analysis. SEM analysis confirmed a wide range of GO sheet sizes from 100 nm – 1μm (ESI).

 $\textbf{Scheme 1.} \ \textbf{Synthetic procedure used to generate graphene oxide composite materials}.$

To quantify ice nucleation activity, a microliter droplet freezing assay was performed – it is essential to have large data sets for this, due to the stochastic nature of ice nucleation, which makes single-point measurements unsuitable. Briefly, 1 μL droplets of (Milli-Q) water were added to a hydrophobic glass slide. Small droplets reduce the probability of competing nucleators being present and enable a true "average" nucleation temperature to be determined. These droplets were cooled under an atmosphere of dry nitrogen, and the freezing point of each droplet recorded by visual observation using a microscope. Example images of droplets nucleating are shown in Figure 1.

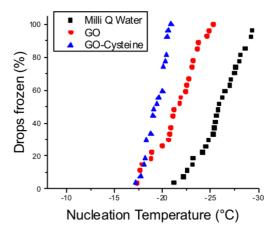
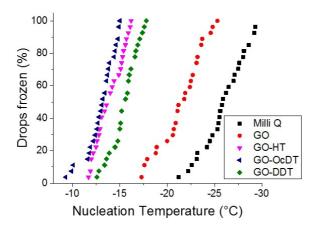



Figure 1. Example ice nucleation assays. Red circles are to show droplets which have frozen. At -20 °C all water droplets but at -30 °C all have frozen.


Initially, ultra-pure Milli-Q water, bwGO and bwGO-Cysteine were tested for their nucleation activity. Pure water nucleated at -26 °C in our assay above the homogenous nucleation temperature of water suggesting some heterogeneous nucleation; it should be noted that batch to batch differences in water source can affect this value, hence all experiments were conducted with a single batch of water, which was tested for background nucleation before each experiment. There is always some variation in this value though. ¹⁰ Both the bwGO and bwGO-Cyst increased the nucleation temperature by over 5 °C, to -20 and -18 °C, in line with observations by Whale at el. ⁸ This is a significant deviation itself, as very few materials are reported to either promote or inhibit nucleation. ¹⁰

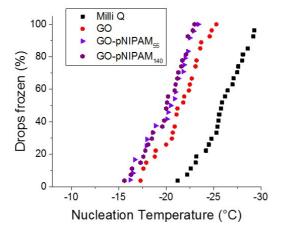


Figure 2. Ice nucleation spectra comparing the activity of Milli-Q water and 2.5 mg.mL⁻¹ solutions of graphene oxide and cysteine-functionalised graphene oxide in Milli-Q water

Encouraged by our initial results, the full library of bwGO composites were assayed for nucleation activity, Figure 3. Hydrophobic alkane modifications gave remarkable nucleation promotion activity, increasing the nucleation temperature by > 15 °C to −12 °C in the case of octadecanethiol modified bwGO. All the alkyl modified GOs were more active than bwGO and the cysteine modified bwGO, suggesting that their increased hydrophobicity might play a role and were all more active than previously reported 'bare' graphenic surfaces. 8 The pNIPAMbwGO conjugates showed almost identical activity to the native bwGO indicating it had little affect the nucleation temperature. It has been recently observed that GO has some ice recrystallization inhibition (IRI) activity, which is a mechanistically distinct process to nucleation, but in these other reports, GOs did not have the oxidative debris layer removed.²¹ IRI tests were conducted on the bwGO composites used here, but no significant activity was seen. It should be noted that at the concentration required for IRI (~ 10 mg.mL⁻¹) the composites aggregated in the frozen wafer, which could have neutralized activity and this does not suggest that 2D materials cannot be employed as cryoprotectants in the future.

Journal Name COMMUNICATION

Figure 3. Ice nucleation spectra comparing the activity of Milli-Q water and 2.5 mg.mL-1 solutions of graphene oxide and graphene oxide functionalised with hexanethiol, octadecanethiol and dodecanethiol, pNIPAM55 and pNIPAM140

The data above clearly supports the hypothesis that 2dimensional materials are appealing candidates for the discovery of new ice nucleating materials. Whilst the mechanisms for nucleation are not revealed here, this is a longstanding problem. Recent modelling results from Michaelides and coworkers found that both hydrophobicity and surface roughness can contribute to ice nucleation²² but other simulations have suggested that hydrophobicity does not contribute. 6 The GO surface is intrinsically heterogeneous and the low density, grafted ligands used here increase this, which at a first approximation would support that hydrophobicity promotes nucleation. It should be noted that each GO derivative has a different extent of aggregation, with larger aggregates potentially leading to more nucleation. Due to the size distributions of the GO it was not possible to precisely correlate this effect, and as the grafting densities were low, even the most hydrophobic (ODT) modification was not obviously more aggregated. The role of the underlying GO is not clear, but its flat structure, enabling layers of water to form, is likely to play a role.

In conclusion, we have demonstrated a synthetically accessible approach to generate surface-modified GO as a 2D template to enable the development, and study, of ice nucleating materials. It was found that hydrophobic chains increased the heterogeneous nucleation temperature by over 15 °C. Hydrophilic surface modifications (small molecule and polymer) did not promote activity, but also did not reduce the underlying nucleation activity of the GO, but role of aggregation state has not yet been determined. These results are significant as we introduce a highly tuneable surface, which will enable the extraction of structure-activity relationships and help design new ice nucleating materials which would have many applications ranging from cellular cryopreservation to cloud seeding.

Notes and references

This study has received funding from ERC grant (CRYOMAT 63866). The Royal Society are also thanked for funding the cryomicroscopes used in this study. The Electron Microscopy research technology platform and photo-emission facility, supported by Advantage West Midlands and the ERDF are thanked also.

- B. J. Murray, D. O'Sullivan, J. D. Atkinson and M. E. Webb, Chem. Soc. Rev., 2012, 41, 6519.
- B. G. Pummer, H. Bauer, J. Bernardi, S. Bleicher and H. Grothe, Atmos. Chem. Phys. Atmos. Chem. Phys., 2012, 12, 2541–2550.
- D. O'Sullivan, B. J. Murray and J. F. Ross, Sci. Rep., 2015, 5, 8082.
- 4 J. G. Duman, Annu. Rev. Physiol., 2001, **63**, 327–357.
- 5 N. Cochet and P. Widehem, *Appl. Microbiol. Biotechnol.*, 2000, **54**, 153–161.
- L. Lupi, A. Hudait and V. Molinero, J. Am. Chem. Soc., 2014, 136, 3156–3164.
- A. Haji-Akbari and P. G. Debenedetti, *Proc. Natl. Acad. Sci.*, 2015, **112**, 201509267.
- B. J. Murray, S. L. Broadley, T. W. Wilson, J. D. Atkinson and
 R. H. Wills, *Atmos. Chem. Phys.*, 2011, 11, 4191–4207.
- 9 G. John Morris and E. Acton, *Cryobiology*, 2013, 66, 85–92.
- T. Congdon, B. T. Dean, J. Kasperczak-Wright, C. I. Biggs, R. Notman and M. I. Gibson, *Biomacromolecules*, 2015, 16, 2820–2826.
- T. Congdon, R. Notman and M. I. Gibson, Biomacromolecules, 2013, 14, 1578–1586.
- 12 C. Stubbs, J. Lipecki and M. I. Gibson, *Biomacromolecules*, 2017, **18**, 295–302.
- 13 T. F. Whale, M. Rosillo-Lopez, B. J. Murray and C. G. Salzmann, *J. Phys. Chem. Lett.*, 2015, **6**, 3012–6.
- 14 B. J. Murray, D. O'Sullivan, J. D. Atkinson and M. E. Webb, Chem. Soc. Rev., 2012, 41, 6519.
- K. Diehl and S. K. Mitra, Atmos. Environ., 1998, 32, 3145–3151.
- J. P. Rourke, P. A. Pandey, J. J. Moore, M. Bates, I. A. Kinloch, R. J. Young and N. R. Wilson, *Angew. Chemie Int.* Ed., 2011, 50, 3173–3177.
- 17 H. R. Thomas, S. P. Day, W. E. Woodruff, C. Valles, R. J. Young, I. A. Kinloch, G. W. Morley, J. V. Hanna, N. R. Wilson

COMMUNICATION Journal Name

- and J. P. Rourke, Chem. Mater., 2013, 25, 3580-3588.
- H. R. Thomas, A. J. Marsden, M. Walker, N. R. Wilson and J.
 P. Rourke, *Angew. Chemie Int. Ed.*, 2014, **53**, 7613–7618.
- 19 C. Bosch-Navarro, Z. P. L. Laker, H. R. Thomas, A. J. Marsden, J. Sloan, N. R. Wilson and J. P. Rourke, *Angew. Chemie Int. Ed.*, 2015, **54**, 9560–9563.
- H. R. Thomas, D. J. Phillips, N. R. Wilson, M. I. Gibson and J.
 P. Rourke, *Polym. Chem.*, 2015, 6, 8270–8274.
- H. Geng, X. Liu, G. Shi, G. Bai, J. Ma, J. Chen, Z. Wu, Y. Song,
 H. Fang and J. Wang, *Angew. Chemie Int. Ed.*, 2017, 56,
 997–1001.
- 22 M. Fitzner, G. C. Sosso, S. J. Cox and A. Michaelides, *J. Am. Chem. Soc.*, 2015, **137**, 13658–13669.