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does not suffer from the so-called curse of dimensionality. In this method, the relevant parameter values
are drawn from their probability distributions and the governing equations are solved for such samples.
This gives a set of samples of the output variables, from which various statistics of the quantity of interest
(Qol), such as the mean and the variance, can be calculated. The main constraint of this method is its slow
rate of convergence: the error decreases approximately as the inverse of the square root of the number of
samples [2].

In this paper, we investigate three existing methods for outperforming MC, namely, multilevel Monte
Carlo (MLMC) [3], quasi-Monte Carlo (QMC) [4] and multilevel quasi-Monte Carlo (MLQOMC) [5]. We
apply these methodologies to the problem of travel time estimation in heterogeneous porous media. This
is of central importance in a series of engineering applications ranging from groundwater management
to groundwater remediation. It also involves the development of mathematical models for reactive
transport in porous media. These models are used to assess, for instance, groundwater contamination,
CO; sequestration, residence time distributions, etc. The Qol considered in this study will be the result
of an ODE (the transport equation (2.4)) which uses a solution of a PDE with random inputs (equation
(2.2)). Multilevel methods have been proved [2] to reduce significantly the classical MC asymptotic
computational cost during the UQ in groundwater flow models in porous media. These methods exploit
the linearity of the expectation, by expressing the Qol of a given problem on the finest spatial grid of the
computational domain in terms of the same quantity on a relatively coarser grid and correction terms.
The dramatic reduction in cost associated with the MLMC method over standard MC is due to the fact
that most of the uncertainty can be captured on the coarsest grids, and thus, the number of realizations
needed on the finest grids is greatly reduced. The QMC method is based on quasi-random sequences,
which are deterministic alternatives to pseudo-random sequences [6,7]. While pseudo-random sequences
try to mimic the properties of random sequences, quasi-random sequences are designed to provide
better uniformity than a random sequence and hence faster convergence for quadrature formulae [8]. In
practical terms, QMC uses uniformly spaced generated inputs from previously sampled quasi-random
sequences [8] to estimate the Qol, providing a better rate of convergence than MC, and consequently,
reducing significantly the computational cost in an uncertainty analysis.

The outline of this paper is as follows. In §2, we present the governing equations for our physical
problem, we show how to model the hydraulic conductivity as a log-Gaussian random field, and finally,
we describe the numerical method used to solve the equations with random coefficients. In §3, we
describe the four MC simulation methodologies in a general context and show the algorithms used
for implementation. In §4, we present and discuss our numerical results for the application of the four
MC methods to a two-dimensional model problem. In §5, we give our conclusions and make some
suggestions for future work.

2. Mathematical model

The classical equations governing (steady-state) single-phase subsurface flow, subject to suitable
boundary conditions, consist of Darcy’s Law coupled with an incompressibility condition [2,9,10]:

q+KVh=g, V.q=0, inRCR? 2.1)

where &1 (m) denotes the pressure head, K (m s71) the hydraulic conductivity, q (m2s71) the Darcy flux
and g represents the source terms.

The process considered in this study is the flow of an incompressible liquid in a horizontal confined
aquifer. For this problem, we consider a square flow domain R =[0,1] x [0,1] C R?, and the source terms
are set to zero for simplicity, i.e. g =0. The governing equations defined in (2.1) are coupled to yield a
single equation for the pressure head:

V- (K(x)Vh(x)) =0, x=(x,y)eR. (2.2)
The Qol to be considered in this problem is the travel time t that a convected particle released at

the centre of the domain R takes to reach the boundary of the domain, dR, i.e. from the point (xq, yo) =
(1/2,1/2) to (1,y) € 9R. The boundary conditions considered are

oh oh
h(0,y)=250, h(1,y)=0, @(x, 0)=0, @(x, 1)=0. (2.3)
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To compute the travel time 7, we let x=¢(t) = (1(t), £2(f)) be the location of a particle. After the
pressure is calculated from (2.2), the trajectory ¢(t) is computed by solving the transport equation (2.4)
subject to the initial condition ¢(0) = (%, 1/2). We then determine the time t for which ¢1(r) =1, i.e. the
convected particle lies on the right boundary, by solving [11,12]

dg() _ K(©)

TR —TVh(;), (2.4)
where ¢ is the rock porosity (dimensionless), i.e. the ratio of void volume in a rock to total volume.
To solve equation (2.2) in R, we used a numerical code based on the standard cell-centred finite-
volume method. After the pressure field /1 is computed, for simplicity, the spatial gradient of heads
is approximated by using the central finite difference (141 — hi;)/Ixi+1; — Xijl, where x;; denotes the
centroid of each cell in the computational mesh (see [2] for full details). Equation (2.4) was solved by
direct Euler integration.

In this application, the uncertain inputs for the simulator will be the values of the hydraulic
conductivity K at each of the nodes of the computational domain. The simulator output will be the
travel time. It is common in groundwater flow studies [13-16] to model K as a log-Gaussian random
field, i.e. to replace the conductivity by a scalar valued field, K(x), whose log is Gaussian, Z(x) :=logK(x)
or K(x) = exp(Z(x)). By doing this, we also guarantee that K > 0 in R. Several studies [17-19] have shown
that although the conductivity values can exhibit large spatial variations, these are spatially correlated.
A correlation function that has been extensively used [2,11,19,20] for modelling the correlation of Z(x) is
the following exponential covariance function:

c(x;, x]-) =02 exp (M) Xi, Xj € R, (2.5)
where A denotes the correlation length and o2 is the process variance. In groundwater flow
applications, the geostatistical /variogram parameters, in this case, » and o2, must be chosen according
to the geostatistics of the considered porous medium. In this work, the parameters representing the
conductivity fields have been selected from ranges gathered from the literature. Values around 0.3 for A
and around 1.0 for o appear to be the preferred in similar studies (e.g. [14-16]). Thus, in this paper, we
will use 2 = 0.3 and o2 = 1.0. Note also that an appropriate discretization scheme for this type of models
must be designed according to the value of A; in other words, the size of the computational domain has
to be chosen significantly larger than the value of A and also allow 4 to be large enough to be taken into
account in the numerical formulation [2], i.e. in our case, larger than the distance between centroids in
adjacent cells.

To generate samples of K(x) at the nodes of the computational domain, first, we need to generate
samples of Gaussian field Z(x) at such nodes. One of the most popular methods to generate different
(Gaussian distributed) Z(x) is the Karhunen-Loéve (KL) expansion method [2,13-16,21,22]. This method
provides an approximation (due to the truncation of an infinite series) of the permeability fields at all
the points of the continuous domain, which can be sampled afterwards on any grid. In order to avoid
adding extra errors (arisen from the truncation of the KL expansion) to the model and produce more
accurate representations of the hydraulic conductivity, alternative methods might be considered, for
instance, the circulant embedding algorithm [23-25]. The circulant embedding method provides fast and
exact representations of the Gaussian field but requires the use of the fast Fourier transform method,
and thus, it is not straightforward to implement. Two alternatives to the circulant embedding method
for producing exact decompositions of the covariance matrix associated to the correlation function
given in (2.5) are the Cholesky method [11,25,26] and the KL decomposition [22,27]. These methods
are not recommended for covariance functions that are differentiable at zero lag distance, e.g. the square
exponential (or Gaussian) correlation function [22,28]. In those cases, the associated covariance matrix
is likely to become extremely ill-conditioned [29,30]. They could be also inappropriate for problems
in which the simulator necessitates an extremely fine discretization of the computational domain [30],
but this does not apply to the problem considered in this paper. Conversely, the main advantages of
this approach is that it only requires a single eigen-decomposition of the covariance matrix, the results
of which are stored and used to generate new realizations of the permeability field very cheaply, and
furthermore, its implementation is very simple and straightforward. In this paper, we will opt for the KL
decomposition method, which is described briefly next (for full details, e.g. [22,25]).

Let {x]-}].\i 1 C R be the set of nodes for a given discretization of the problem domain R. To generate
samples of Z(x), we let C be the positive semi-definite covariance matrix associated to the function c,
i.e. Cjj = c(x;, X;), X;, Xj € R. This matrix admits an eigen-decomposition [26]: C = (¢ AY2) (@ AV)T, where

€0204L % s uado 205y BuoBuysiiqndAsaposieforsos:


http://rsos.royalsocietypublishing.org/

Downloaded from http://rsos.royalsocietypublishing.org/ on August 9, 2017

A is the M x M diagonal matrix of ordered decreasing eigenvalues A1 > 13 >---> Ay >0, and @ is the
M x M matrix whose columns ¢;, i=1,...,M, are the eigenvectors of C. Let § ~N(0,1), i=1,...,M,
be independent and identically distributed (i.i.d.) random variables. We can draw samples from Z ~
N (m, C) at the points x; using the KL decomposition of Z :=(Zy, ..., Zp)T using the following [25]:

(Z1,..., Zw)T=m+ ®AV2(&, ... &m)T. (2.6)

Without loss of generality, we will set m =0 in (2.6), and thus, the discrete random permeability field is
therefore given by

K= (exp(Z1),...,exp(Zm))T. 2.7)

The terms & ~ N(0, 1) above will be called KL coefficients. Now, for each new ensemble {S{, e, 51]\.4}, je

N, of random variables El! ~ N(0,1), we can generate a new realization of the conductivity K/ € RM. Note
that this method only provides values of the conductivity at the nodes and not in the whole continuum R.

In the following section, we include a review of the literature related to the implementation of the
four MC methods.

3. Monte Carlo simulation methods

Let (£2, F,P) be a probability space. Let Xp1 := (&1, ...,&m)T be the random vector formed with a given
ensemble of M KL coefficients which yields to a discrete random permeability field K € RM, Let Ty =
f(Xpm) € R, where f denotes the travel time simulator, be the approximation of the travel time obtained
with the simulator based on a computational domain of M nodes {xj}].‘il. We denote by T the true
(underlying) travel time random variable T : £2 — R solution of (2.2), and assume that the expected value
E[Tym] — E[T], as M — oo, and that (in mean) the order of convergence is « >0 (see [2,3] for further
details), i.e.

[E[Tm — T]I < CeM™ (3.1)

for some constant C,. We are interested in estimating E[T]. Thus, given M € N sufficiently large, we
compute approximations (or estimators) Ty of E[T] and quantify the accuracy of our approximations
via the root mean square error (RMSE):

e(Ta) := (E[(Tm — E[T]])M2. (3.2)

We will denote by C; the computational ¢-Cost used to achieve an RMSE e(f“M) <e¢. This e-Cost is
quantified by the number of floating point operations that are needed to achieve an RMSE of e(Ty) < .

As it could be well known to the reader (but it is important to remark here before discussing the
MLMC method), when solving a system of PDEs, a computer model needs to retain all the important
features of the physical domain (a continuum medium) of the problem and reduce them into a simplified
form, called the computational domain (a discrete set of points). Throughout this paper, we will use the
term grid for the structured distribution of points, called nodes, that form the computational domain
used by the computer model to solve the equations, and M will denote the number of nodes which
form the corresponding grid. According to this, given two grids M; and M; with i <j, i,j € N, we will
say that M; is a subgrid of M;, and we will write M; <M, if all the nodes contained in M; are also
contained in M;. We will then say that M; is coarser than M; and conversely that M; is finer than M;.
For solving efficiently a system of PDEs, choosing M sufficiently large corresponds to choosing a fine
enough grid that guarantees that the computer model is providing an accurate approximation of the true
solution of the problem. Figure 1 shows an example of two grids for the same physical domain used by
a computer model.

In the following sections, we describe how to implement each of the MC methods. Note that while for
all of the methods the Qol is E(Ty), in each of the methods we use a different estimator to approximate
E(Tp)-
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Figure 1. (a) Example of a grid of 25 nodes and (b) a grid of 81 nodes. (c) Grid of 25 nodes (circles) seen as a subgrid of a grid of 81 nodes
(dots) for the domain D = [0,1] x [0, 1].

3.1. Classical Monte Carlo simulation method

We define the standard MC estimator for estimating E(T)) as follows:

N
o 1 ;
MC . (@)
M= 22 T (33)
i=1

where TI(Q is the ith sample of Ty and N independent samples are computed in total. Note that IE[TM%] =
E[Tpm], i.e. TM% is an unbiased estimator of E[Tys]. We assume that the cost to compute one sample T](\Z
of Ty is 4

C(TE\Z) <MV, forsomey >0 (3.4

and hence the total cost of the MC estimator satisfies [2]
C(TyS) < NMY. (3.5)
The MSE of j%% can be expressed as follows [2]:

V[Tml
N
where V[Ty] is the variance of the MC estimator, which represents the sampling error and decays
inversely with the number of samples. The second term on the right-hand side is the square of the error
in mean between T and T, also called the discretization error or the bias. Thus, once we have obtained
a sufficient resolution of the problem by choosing a fine enough grid for the domain R (i.e. M large),
the condition to achieve an accurate approximation of our Qol E[T] lies in generating a large number of
samples N [3]. To bound the RMSE by &, we can seek to bound each term in equation (3.6) by &2 /2. Note

that, for the second term, it is sufficient to choose M = M > (g/(~/2Cy )~ Y/

e(TNS)* = + ([T — T, (3.6)
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Figure 2. Two samples of the same random permeability field in two consecutive levels £ (a) and £ 4 1(b) to be used as input in the
MLMC method. In this example, we used £ = 3.

3.2. Multilevel Monte Carlo simulation

The main idea behind the MLMC simulation method is to start obtaining approximations of T from
several grids, starting by the coarsest and stopping when the given MSE has been numerically achieved.
For a detailed description of the method, the reader is referred to [2,3]. In this section, we only give a
brief summary of the practicality of the approach.
Let {M;:£=0,...,L} be an increasing sequence of embedded grids in N called levels, i.e. My < M; <
-+ <My, =: M. The goal is to avoid estimating E[T, ] from a very fine level ¢, but instead to estimate the
correction with respect to the next lower level, i.e. E[Y(], where Y :=Ta1, — Th, ,. Setting for simplicity
Yy := T, and using the linearity of the expectation operator, we have

L

L
E[Tm] =E[Trm,] + Y E[Tym, — Tar, 1= Y E[Y(]. (3.7)
=1 =

All the terms E[Y,] in the sum are independent and thus we estimate each of the expectations
individually. Let Y, be an unbiased estimator for E[Y/], in this case, the standard MC estimator with
Ny samples:

yMC . (1) ()
YN, = =N Z(Tl Tat, ) (3.8)

then the multilevel estimator is defined as

e =)V (3.9)
=0
We will denote the MLMC estimator by T%IL{%[S, where the individual terms are estimated using the
standard MC, f/%\%.
Note that, for computing the quantities ngz — T](\Zlil for €= 1,:..,L, the terms TI(CL and T](\ZH are
simulated separately, each of them from the same random sample o e 2 restricted to the corresponding
level ¢, i.e. we use a coarsened version of the same input used for TI(\/} in calculating T | (see figure 2

for clarification). As all the expectations E[Y,] are estimated independently, the variance of the MLMC
estimator is V[T}\\AAL] = Z%:o N[lV[Yg], and so the MSE is

SMLA2 . ML 2 VY] )
(T =BTy~ —EIT)*1=) N, m— T (3.10)
=0

We see that the MSE for the multilevel estimator consists of two terms, the variance of the estimator
and the approximation error. To bound the RMSE by ¢, we can seek to bound each term above by
¢2/2. Note that the second term is exactly the same as in equation (3.6) and so it is sufficient to choose
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M=M;j > (¢/(~/2Cy)) "1/ again. Thus, to then achieve an overall RMSE of ¢, the first term of e(f“}}/I/IL)2 is
also bounded by €2/2. The computational cost of the MLMC estimator is [2]:

L
C(IMM=> "NeCy, (3.11)
=0

where Cy:=C (Yg)) represents the cost of a single sample of Y.
The variance of the MLMC estimator can be minimized [2] for a fixed computational cost by choosing

VY]

Np >~ ,
¢ C

(3.12)

with the constant of proportionality chosen so that the overall variance is £2/2. So, the total cost on level
¢ is proportional to \/V[Y,]C; and hence we can write [31]:

L 2
cryh =677 (Z VV[Ye]Ce) : (3.13)
(=0

In practice, optimal values for L and {N, }%:0 can be computed from sample averages and the unbiased
sample variances of Y. If we assume that [E[Ty; — T]| @ M™%, then it follows that [E[Y,]| ~M~™* and
IE[Y.]| =~ M~ for Np sufficiently large, providing us with a computable error estimator to determine
either whether M is sufficiently large or whether the number of levels L needs to be increased.

The above conditions and statements are formally presented in the following theorem [2]:

Theorem 3.1. Let f/g = f/%\% and suppose that there are positive constants o, B,y ,Cq, Cg, C, > 0 such that
a> % min(B, y) and

(i) IE[Ty, — T1I < CaM;%;
(ii) VIY] <CsM,”;
(ili) C, < C, M.

Then, for any e <e™!, there exist a positive constant CML, a value L (and corresponding M= M) and a
sequernce {Ng}%:() such that

o(TMEY2 .= E[(TMT — E[T])?] < &?

and
CMLg=2 if B>y,
C(THMY) = { CMLe2(loge)?,  if =y,
CMLg—2=(y=B)/a  jf B<vy,
whereas

C(T}\\A/IC) — CMCe—Z—y/ot
for some positive constant CMC,
Proof. The proof is given in [2]. |

The MLMC algorithm can be implemented in practice as follows:

(i) Start at the coarsest level (L = 0).
(ii) Estimate V[Y[] by the sample variance of an initial number of Nj, samples.
Remember that Y :=T)y,, i.e. Qol in level 0 (coarsest level) and Y :=Tp;, — T, ;-
(iii) Calculate the optimal N, £=0,...,L, using (3.12), Remember that C; := C(Yy)) represents the
cost of a single sample of Y.
This step aims to make the variance of the MLMC estimator (3.9) less than %82.
(iv) Evaluate extra samples at each level as needed for the new Nj.
(v) If L > 1, test for convergence using lA/L ~ M™%,
Remember that Y, = ?%\C,l = N% Z?ﬁl(Tz(\l/L — Tz(\l/}g,l)'
This step tries to ensure that the remaining bias (E[Tys — T]) is less than (1/ V2)e.
(vi) If not converged, set L=L + 1 and go back to 2.

~
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The parameters, «, f and y that can be estimated empirically as follows:

For y, we assume that the number of operations to compute one sample on level ¢ is C; = M? for
some constant ¢ independent of ¢. For g, we can use as an approximation the slope of the line for log
VI[Y¢], mg, because V[Y,] ~ M;mﬂ . For @, we can use as an approximation the slope of the line for log
|E[T¢ — Ty_1]|, my, because E[Ty — Ty_1] >~ Mzm“.

3.3. Quasi-Monte Carlo simulation

Many of the existing variance reduction methods built upon pseudo-random sequences, e.g. MLMC,
are focused on reducing the overall computational cost of a numerical simulation. QMC methods
aim to accelerate the rate of convergence of MC by using deterministic (also called quasi-random or
low-discrepancy) sequences instead of pseudo-random. The discrepancy of a sequence is a measure
of its uniformity and it is computed by comparing the actual number of sample points in a given
volume of multidimensional space with the number of sample points that should be there assuming a
uniform distribution. These methods normally achieve a convergence rate of O((log N YM/N). Hence, the
convergence rate is directly related to the dimension of the space. This dependence on the dimension of
the space together with the correlation of the points generated by the QMC method yields sometimes
non-accurate and biased results. That is the main reason why, during the past two decades, QMC
methods have been mostly applied to models defined over low-dimensional probability spaces [8,32,33].
In recent years, there has been an increasing interest in tackling the problem of UQ in models of
physical processes, for instance, transport in porous media or carbon capture and storage in deep
saline aquifers. As discussed in §2, the uncertainty in those models is often represented by truncated
KL expansions of log-Gaussian random fields defined in high-dimensional probability spaces. The
truncation of these KL expansions adds more uncertainty to the model and this affects the accuracy
of the results. Although QMC methods have already been successfully applied to problems defined
in high-dimensional spaces by employing different representations of the random inputs [34-37],
to the best of our knowledge they have not yet been used in models represented by direct KL
decompositions. In this section, we apply the QMC method to an extremely high-dimensional problem
with log-Gaussian distributed inputs and present numerical evidence of the acceleration of the MC rate
of convergence.

Before introducing the QMC simulation method, let us describe in more detail the MC integration
procedure. The MC method uses pseudo-random number sampling algorithms, i.e. during the
generation process, uniformly distributed pseudo-random numbers are generated and transformed into
the KL coefficients which jointly form random input vectors in RM, and these are distributed according
to a certain probability distribution, in our case, AV'(0,I). Let us see an illustrative example: let (2, F,P)
be a probability space and let g: [0, 1]M — R, and Y = g(Z), where Z is an uniformly distributed random
vector in [0, 1]M. Suppose that we wish to compute I = f[o,l]M g(&) d& with the MC method. Let p denote
the uniform probability density function and letting & be uniformly distributed in [0, 1], we can apply
MC quadrature to approximate I, for a given N € N, in the following way:

1 N
I= J[O,”M g(§)dé = J[O - 8E)p(®) ds =Elg(®)] = ]zzl g(E(@) =In,

’

where w;j € £2 and the values §(w)) € RM are i.i.d. random vectors sampled uniformly by sampling the
components &;(w;) independently and uniformly on the interval [0, 1].

Some examples of quasi-random sequences are: digital nets [38], rank-1 lattice rule [39], Faure
sequences [40] or Sobol sequences [41]. From a deep review of the literature, Sobol sequences seem
to be the most popular for being used by the QMC method in mathematical models with random
inputs [4,6,8], and thus, we will opt for Sobol sequences in this paper. The biggest difference to
pseudo-random sequences is that the sample values are chosen under consideration of the previously
sampled points, thus avoiding the occurrence of spatial clusters and gaps, as we can observe in
figure 3. Figure 3a shows 100 pseudo-random numbers sampled from a uniform distribution in the
unit square. Figure 3b shows the same number of points generated by using a Sobol sequence. It can
be observed that the sampling space is filled in a more uniform manner in figure 3b. Figure 3c,d show,
respectively, the spatial distribution of 2000 points with pseudo-randon numbers generation and Sobol
sequences.
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Figure 3. Various pseudo-random and Sobol sequences sampling over the unit square. (a) 100 and (c) 2000 two-dimensional pseudo-
random numbers generated uniformly over the unit square. (b) 100 and (d) 2000 two-dimensional numbers generated by Sobol
sequences over the unit square.

In practice, to implement the QMC method, we use a Sobol sequence to generate N points in [0, 1]M.
Each of the M components of these points can be considered as possible values of the cumulative
distribution function of a normally distributed random variable in R. Each of the N points are pushed
component-wise through the inverse cumulative distribution function of M random variables distributed
according to A(0, 1), to jointly form {f;‘l(l), cee ]E;I) }fi 1 which are then used as the KL coefficients, and for
each of them compute the corresponding travel time Tx} fori=1,...,N.

The QMC estimator used for estimating IE(Ty) in this case is defined as

N

pomc . 1§

TN =5 2 Tow (3.14)
i=1

where Tg) v is the ith sample of Ty generated from QMC inputs, and N samples are computed in total.

3.4. Multilevel Quasi-Monte Carlo simulation

Although there are currently many researchers using MLOMC, there are still very limited works (most
of them still in press) in the literature [39,42,43]. Thus, to the best of our knowledge, the application of
MLQMC to the case of direct KL decompositions for log-Gaussian random fields is also new. This method
is a consequence of combining the MLMC algorithm with a randomized QMC estimator instead of the
MC estimator. In this paper, we use the MLQMC algorithm developed by Giles & Waterhouse [5]. In
order to obtain unbiased estimators for the variances, we need to induce some randomness to the QMC
points, this process is known as QMC randomization. There are several ways of QMC randomization,
depending on the type of low-discrepancy sequence used. In this study, we use the digital scrambling
technique described in [44]. This consists in building a set of n (we will use n = 16 in this study) scrambled
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Table 1. MLMC estimation with bounds of the average travel time according to a given MSE = 0.01. The last row of the first column n
shows the level at which the code stops.

&2-Cost (€2 = 0.01) MLMC bounds

Table 2. MLMC estimation with bounds of the average travel time according to a given MSE = 0.0064. The last row of the first column
shows the level at which the code stops.

level £ no. samples, N &2-Cost (2 = 0.0064) MLMC bounds

€0704L % s Uado 205y BuoBuysiqndAzaposjeforsos:

Table 3. MLMC estimation with bounds of the average travel time according to a given MSE = 0.0025. The last row of the first column
shows the level at which the code stops.

level £ no. samples, N, &= = MLMC bounds

Sobol’ sequences to obtain averages for the quantity Y atlevel ¢, ie. Yy is the average of the quantities
TO and T@ T( 1 (for £ > 0) over the 16 sets of Ny QMC points. The MLOMC algorithm (described in [5])
can then be summarized as follows:

(i) Start L=0.
(if) Estimate V[Y7] using the 16 sets of QMC points and N; =1.
(iii) While ZIE:O V[Y¢] > £/2, double N, on the level with largest V[Y,]/(2°Ny).
(iv) If L <2 or the bias estimate is greater than ¢/ V2,setL:=L+1and go to step (ii).
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Figure 4. Performance plots for the expectation in the MLMC method. The plots show the numerical verification of the asymptotic
behaviour of the expectation of T and the convergence of IE[Y,]. Expected values (a—c) of T, and Y, =T, — T,_, respectively, for
MSE = 0.01, MSE = 0.0064 and MSE = 0.0025.

In the following section, numerical results from the application of the above methods to the model
problem described in §2 for several discretizations of the physical domain are discussed.

4. Numerical results

The procedure followed for conducting the experiments is as follows: firstly, we check (empirically) from
which level (i.e. the value of M) the asymptotic hypotheses of theorem 3.1 are satisfied (this assures that
the simulations at the coarsest grid are reliable approximations of the Qol); secondly, we set the tolerance
(MSE) for which we wish the MC algorithms to stop; thirdly, we use the conclusions of theorem 3.1
to implement the four methods as discussed earlier in §3; and finally, the performance of each of the
methods is tested by comparing their computational e2-Cost, i.e. the number of floating point operations
that are needed to achieve the given MSE.

The three tolerances employed for all the comparisons are: 0.01, 0.0064 and 0.0025. The average travel
times estimated with MC, MLMC, QMC and MLQMC methods will be denoted, respectively, by Tyic,
Tyime, Tome and Tvinomc. The sequence of levels will start with Mo = 81. This enables one to get a
minimal level of resolution of the problem [2,3]. The maximum level considered will be M5 = 66 049 grid
points. The other intermediate levels are M1 =289, M = 1089, M3 = 4225 and My =16 641.

The conditions of theorem 3.1 for the mean and the variance of the MLMC and MLOQMC estimators
will be numerically confirmed for each of the cases. The estimates of the parameters « and g will be
computed ‘on the fly” from sample averages. The dominant cost will rely on the PDE solution, and an
algebraic multi-grid method is used as the iterative linear solver. Hence, y =1 in all the simulations. To
quantify the cost of the algorithms, we will assume that the number of operations to compute one sample
on level £ is Cy = cM; for some fixed constant ¢, and thus, in the results presented in this paper, we will
show the standardized costs, scaled by 1/c, i.e. the cost is defined as Z%:o N¢Mg.

€0704L % s Uado 205y Buo'Buysiqndizaposjeorsos:


http://rsos.royalsocietypublishing.org/

Downloaded from http://rsos.royalsocietypublishing.org/ on August 9, 2017

(@) )
4 —T,
o o Ty=Ty | |
(]
2 Of i)
3 0.
§ -2t Y | —4r
I _6 L .
ED al .
8t
-6t Oy -10 - "
_8t l =12F
0 1 2 3 4 5 0 1 2 3 4 5
level ¢ level £
© s
0

log, variance
L
S

0 1 2 3 4 5
level ¢
Figure5. Performance plots for the variance in the MLMC method. The plots show the numerical verification of the asymptotic behaviour

of the variance of T and the convergence of V[Y,]. Variances (a—c) of T, and ¥, =T, — T,_;, respectively, for MSE = 0.01, MSE =
0.0064 and MSE = 0.0025.

4.1. Comparison between classical Monte Carlo and multilevel Monte Carlo

In this section, we compare the performance of MC and MLMC methods for the tolerances above. As
could be expected from similar works in the field and after reviewing the theory related to both methods,
the MLMC method clearly outperforms the standard MC. The MLMC results are presented in tables 1-3.
The MC results are given in table 4. Thus, by looking at tables 1-4, we observe that while the MLMC
method reduces the computational cost of MC for the same degree of accuracy at a rate of 20-26 for
tolerances of MSE = 0.01 and MSE = 0.0025, the reduction reaches its peak at the rate of 80 for a tolerance
of MSE = 0.0064. Henceforth, in this application, MLMC performs best for a grid of My = 16 641 elements.

Tables 1-3 show the number of samples, N, used by the MLMC method in each level, ¢, for the given
MSE, £2, the final computational £2-Cost (cost for that given tolerance €2), the value of the average travel
time, Tvimc, and the corresponding bounds for the estimation (Tvimc — €, Tmimc + €)-

Figure 4 shows the expected value of T, and Y, =T; — Ty—; and how the slope of the line for
E[T; — T¢—1] has a decreasing tendency. It also shows how E[T;] is approximately constant on all levels,
numerically verifying condiction (i) of theorem 3.1.

Figure 5 shows the behaviour of the variance of Ty and Y, =T, — T;_1 for each level ¢, and how the
condition (ii) of theorem 3.1 is numerically satisfied on the levels shown.

4.2. Comparison between Monte Carlo and quasi-Monte Carlo

In this section, we compare the performance of MC and QMC methods for the same tolerances used in
the previous sections. In this case, low-discrepancy sequences clearly outperform pseudo-random for
all the tolerances. Similarly to what happened with MLMC, the reduction in cost provided by the QMC
method when compared to MC reaches its peak at level 4. The reduction rate achieved at this level is 9.
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(a) MC (blue) and QMC (red) convergence at level 3

(b) MC (blue) and QMC (red) convergence at level 4
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(c) MC (blue) and QMC (red) convergence at level 5
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Figure 6. (a—c) Analysis of the convergence of the MC (blue) and QMC (red) methods for the average travel time at levels 3, 4 and 5. The
convergence is calculated over a sample of 25 000 travel times.

Table 5. Comparison of the travel time estimations obtained with the MC and QMC methods at each level.

level £ T_MC25 000 samples T_QMC25 000 samples

3 13255 1.3305
..................................... e
...................................... e

Table 6. MLQMC estimation with bounds of the average travel time according to a given MSE = 0.01. The last row of the first column
shows the level at which the code stops.

&%-Cost (¢ = 0.01)

level £ no. samples, N, MLQMC bounds

Thiome

This could indicate that after the discretization error has been adequately reduced, and consequently,
a fine resolution of the Qol is being obtained in each simulation, there is not much additional gain by
reducing the sample variance (or sampling error). The latter can be also deduced from figure 9, where
after level 4 (or tolerance 0.0064) the slope of the cost for standard MC is nearly constant.
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Figure 7. Performance plots for the expectation in the MLOMC method. The plots show the numerical verification of the asymptotic
behaviour of the expectation of T and the convergence of IE[V,]. Expected values (a—c), of T, and ¥, =T, — T,_, respectively, for
MSE = 0.01, MSE = 0.0064 and MSE = 0.0025.

Table 7. MLOMC estimation with bounds of the average travel time according to a given MSE = 0.0064. The last row of the first column
shows the level at which the code stops.

level £ no. samples, N &2-(ost (& = 0.005) Tviamc MLQMC bounds

Table 4 provides the data comparison of the computational £2-Cost for the MC and QMC. These
quantities are obtained in the corresponding MLMC and MLQMC simulations. To calculate the costs for
the MC and QMC methods, we use the estimator provided in [3]:

L
C*=> N;M,, (4.1)
=0

where Nj = 2¢72V[T,], so that the variance of the MC (3.3) and QMC (3.14) estimators is %82 as with the
corresponding MLMC and MLQMC methods.

In addition to this s2-Cost comparison, we will analyse the convergence of the MC and QMC methods
at each of the levels where the multilevel methods converged. Figure 6 shows the convergence analysis,

€0704L % s Uado 205y Buo'Buysiqndizaposjeorsos:


http://rsos.royalsocietypublishing.org/

Downloaded from http://rsos.royalsocietypublishing.org/ on August 9, 2017

(@) : : : : (b)
5 4
2 L
O o
g O =2 .
2 4
s —o 1, -6
o | 8t
oS YRy _10l O o
—12+
_10 L N _14t <>
-16+ ‘
0 1 2 3 4 5 0 1 2 3 4 5
level ¢ level £
© 5
0
[
o 5r
§ -10 o o
&'
2 —15¢
20+
25tk ‘ ‘ ‘ ‘ ]
0 1 2 3 4 5
level ¢

Figure 8. Performance plots for the variance in the MLOMC method. The plots show the numerical verification of the asymptotic
behaviour of the variance of T and the convergence of V[Y,]. Variances (a—c), of T, and ¥, = T, — T,_ respectively, for MSE = 0.01,
MSE = 0.0064 and MSE = 0.0025.

Table 8. MLOMC estimation with bounds of the average travel time according to a given MSE = 0.0025. The last row of the first column
shows the level at which the code stops.

level £ no. samples, Ny &2-Cost (¢ = 0.0025) Thiome MLQMC bounds

based on N = 25000 travel times, of MC and QMC methods for the average travel time at levels 3, 4 and
5. Table 5 gives the values of the MC and QMC estimators at each level based on N = 25 000.

4.3. Comparison between quasi-Monte Carlo and multilevel quasi-Monte Carlo

In this section, we compare the performance of QMC and MLQMC methods for the same MSEs as
above. In this case, unlike in the comparison between MC and MLMC, MLOMC outperforms QMC
in a monotonic order, i.e. the reduction in the cost follows an increasing rate along with the increase in
the degree of accuracy (or reduction in tolerance). That is, the reduction rates of MLOMC with respect to
QMC are, respectively, 8, 12 and 18 for the tolerances 0.01,0.0064 and 0.0025. These results are within
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Figure 9. £2-Cost for the MC, QMC, MLMC and MLQMC methods for MSE: 0.01, 0.0064 and 0.0025.

the logic of deterministic sequences generation, and they seem to be (as one could expect) a direct
consequence of the ordered (deterministic) way in which the MLQMC estimator is built.

We illustrate next the same tables and figures shown in the previous section for the MC and
MLMC methods. Tables 6-8 give the number of samples, Ny, used by the MLOMC method in each
level, ¢, for the given MSE, &2, the final computational £2-Cost incurred by using the given tolerance,
the value of the average travel time, Tmiomc, and the corresponding bounds for the estimation,
(Tmrome — &, Tmrome + €).

Figure 7 shows the expected value of T and Y, =T; — Ty_; and how the slope of the line for E[T; —
T¢—1] has a decreasing tendency. It also shows how E[T,] is approximately constant on all levels.

Figure 8 shows the behaviour of the variance of T, and Yy =T, — T;_1 for each level ¢, and how the
condition (ii) of theorem 3.1 is numerically satisfied on the levels shown.

4.4. Comparison of Monte Carlo, quasi-Monte Carlo, multilevel Monte Carlo and multilevel
quasi-Monte Carlo

The overall picture with the performance of all the methods is shown in figure 9. We can see how the
MLQMC method produces a lower computational cost for all the tolerances. MLMC is performing better
than MC and QMC, and in conclusion, MC seems to be the least efficient method.

5. Conclusion and further work

In this paper, we analysed the efficiency of MC, MLMC, QMC and MLOMC in achieving a desired error
level on the estimation of the average travel time during the transport of particles in heterogeneous
porous media. The analysis was focused on employing the four methods to solve, under the same
conditions, a stochastic model defined in a high-dimensional probability space, and in comparing the
computational costs incurred by the four different approaches. The improvements were related to the
use of low-discrepancy (Sobol) sequences for the space filling design (QMC) and variance reduction in
the multi-grid schemes (MLMC).

One conclusion that can be drawn from the review of the literature and the results obtained in this
paper is that, on one hand, for ‘smooth” uncertain model parameters defined in high dimensions, e.g. the
log-Gaussian representation of the hydraulic conductivity in Darcy’s Law, we can rely on QMC methods
to significantly reduce the computational cost in an uncertainty analysis, while providing accurate results
when compared with other methods like MC. On the other hand, in cases where the uncertain parameters
are not smooth enough (e.g. with discontinuities), the QMC method reviewed in this paper may yield
inaccurate and biased results. In this case, the use of unbiased randomized QMC estimators as the
one used in the MLOMC method might be an alternative, although this would lead to a loss of the
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deterministic control offered by the standard QMC. A description of such randomized QMC methods is
provided in [5].

We provided a detailed comparison of the accuracy and efficiency between the different methods.
From the numerical results obtained in the model problem studied in this paper, the QMC and MLMC
methods provided the same order of accuracy that the classical MC with considerably less computational
runs. The combination of both methods led to the MLQMC method, which was proved to provide the
optimal computational effort for the simulator while retaining the same accuracy in the calculations.

In terms of practicality, the multilevel schemes require additional work on the simulator’s numerical
code in order to carry out the corresponding multi-grid approach, and this could be impractical for users
of Engineering commercial packages for instance. Although the multilevel approaches could also be used
for non-nested grids, for non-uniform shapes of the computational domain, methods like the multi-index
Monte Carlo [45] could be a better choice.

Further research may include testing the performance of the methods by considering alternative
pseudo-random sequences to Sobol when building the QMC and MLOMC estimators, for instance, rank-
1 lattice rule [39] or Faure sequences [40]. Refining the MLOMC method discussed in this paper, and
therefore reducing its computational cost, is also possible by exploiting the deterministic way in which
the estimation of the Qol is conducted, i.e. we could design an algorithm that returns the minimum
number of samples needed at each level that makes the statistical error be lower than the given tolerance,
instead of using just an exceeding estimation.
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