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1 Introduction

As prompted by the seminal work of Merton (1969), thereis a large literature on the dy-
namic portfolio choice problem that has typically been studied in continuous-time models
primarily due to their analytical tractability. There are two popular methods that are
widely employed to solve this problem. The first one is the HIB-based approach pro-
posed by Merton (1969), and the other isthe martingale approach advanced by Karatzas,
Lehoczky and Shreve (1987) and Cox and Huang (1989). In both approaches, the in-
vestor’s utility function plays a fundamental role in seeking the optimal portfolio policy.t
Unfortunately, it is well known that semi-analytical solutions to the dynamic portfolio
choice problem are generally unavailable, although they are vitally important to facilitate
economic insights and empirical applications. In this paper, we solve the optimal asset
allocation problem in closed form for multi-asset jump-dilusion models in the way that
the solutions provide a new instrument to analyze the behavior of investors with general
HARA preferences towards distinct risk factors.

In a growing literature, numerous elorts have been made to solve the portfolio choice
problem in closed form. Specifcally, Bajeux-Besnainou and Portait (1998) extend the
static setup in Markowitz (1952) to a much more challenging dynamic version and ex-
plicitly solve the dynamic mean-variance problem in a complete pure-diusion model.
Recently, by using the martingale approach, Lioui and Poncet (2016) provide closed-form
solutions to the dynamic mean-variance problem in a complete al'he dilusion model.As
remarked by the authors, the dynamic mean-variance model in Section 2.3 of Lioui and
Poncet (2016) may result in time-inconsistent portfolio strategies, showing that the in-
vestor may fnd it optimal to deviate from her initial policy. In contrast, Basak and
Chabakauri (2010)° explicitly solve the time-consistent dynamic mean-variance policy
based on a recursive representation. In a continuous-time mean variance model with
constraints on portfolio policy, Wang and Forsyth (2011) develop a numerical schemeto

determine the optimal time-consistent asset allocation strategy®. For a von Neumann-

1The widely used utility functions belong to the so-called hyperbolic absolute risk aversion (HARA)
family, including quadratic (with restrictions on parameters), exponential, logarithmic, and power forms.

2We thank an anonymous referee for pointing this out to us.

3For a good discussion on time-inconsistent portfolio strategies, see Dang and Forsyth (2016).



Morgenstern utility, Detemple, Garcia and Rindisbacher (2003) also use the martingale
approach to solve the portfolio choice problem in a complete pure-dilusion model which
may include a large number of assets and state variables with non-alne structures. They
obtain the optimal portfolio strategy using the Monte Carlo simulation, yet which may
be time-consuming in the presence of a large number of assets and state variables.

As discussed in Bardhanand and Chao (1996), a jump-dilusion model with random
jump sizes is inherently incomplete. One of the key assumptions in the aforementioned
papers is the completeness of the market. In general, it is a daunting task to explicitly
solve the optimal portfolio choice problem in an incomplete market. One usually resorts
to either the HIB equation or the martingale method. Asiswell known, it is dilcult to
apply the HIB equation to a high-dimensional prablem in both complete and incomplete
markets. Furthermore, it is very challenging to use the martingale method in an incom-
plete market since there are infinitely many martingale measures. To solve the optimal
portfolio problem in incomplete pure-diusion models, approximation methods are pro-
posed in Bick, Kraft and Munk (2013) and Haugh, Kogan and Wang (2006), respectively.
Yet, their solutions are numerically approximated and thus may suler inaccuracy.

In contrast, by assuming quadratic conditions in pure-dilusion models, Liu (2007)
explicitly solves the optimal dynamic portfolio choice problem in both complete and in-
complete markets, up to the solutions to a set of ordinary dilerential equations (ODES).
Specifically, he solves a set of ODEs by guessing the exponential linear form of the indi-
rect value function without simulation. This method iswidey used in the asset allocation
literature of pure-difusion models nowadays. However, much lessis known about the con-
ditions that can lead to the ODE-based analytic solution to the optimal portfolio choice
problem in jump-dilusion models especially when both stock prices and state variables are

allowed to jump.* The objective of the present paper is then to generalize the afore-

4Mounting empirical evidence suggests that the jump risk needs to be captured in asset price processes
and other risk factors, such as volatility processes, in addition to the difusion risk. For example, Eraker, J
ohannes and Polson (2003) and Eraker (2004) among many others find strong evidence for co-jumps in
volatility and stock returns, i.e., that a big jump in stock pricesis likely to be associated with a big jump
in volatility. Besides, Das (2002) shows that a class of Poisson-Gaussian models oer a good statistical
description of short rate behavior and capture empirical features of the data which would not be captured
by Gaussian models (We thank an anonymous referee for bringing this issue to our attention). In the
meantime, it is well understood that jump risk in stock prices has a substantial impact on portfolio



mentioned ODE-based approach in pure-dilusion models to jump-diusion models which
nest the former (e.g., Liu (2007)) as special cases.

More specifically, we first consider constant relativerisk aversion (CRRA) utility func-
tions and provide the conditions under which theindirect value function in jump-diLusion
models has an exponential linear form. Theindirect value function and the optimal port-
folio strategy can then be obtained by solving a set of ODEs. By providing an el cient
two-step approach, we further extend our ODE-based method to more general HARA
utility functions given their popularity in financial economics.® Our results show that the
indirect utility function for a HARA utility takes a form significantly diferent from the
exponential linear one for a CRRA utility. To the best of our knowledge®, we are not
aware of any semi-analytical solution to the dynamic asset allocation problem in jump-
difusion models where risk-averse investors face jumps in multiple risky assets and state
variables. More importantly, the semi-analytical solutions may greatly facilitate economic
insights and enhance our understanding of investors behavior towards jump risks.

Our paper is closdly related to the work of Jin and Zhang (2012) in that they use a
decomposition approach based on an HIB equation to solve a portfolio selection problem
that includes a large number of risky assets and state variables. But their state variables
are pure-dilusion processes and theindirect value function is evaluated by the Monte Carlo
simulation. Our paper also relates to the work of Das and Uppal (2004) and
Ait-Sahalia, Cacho-Diaz and Hurd (2009). These studies solve the portfolio selection
problem in jump-diusion models, but without statevariables. In contrast, we obtain semi-
analytical solutions to the optimal portfolio strategy under jump-diusion models that

include a large number of assets and state variables. These solutions therefore allow

selection, see, for example, Liu, Longstalland Pan (2003) and Das and Uppal (2004).

*More importantly, Perets and Yashiv (2016) show that the HARA utility is more fundamental to
economic analysis. This functional form is the unique one which satisfies basic economic principles in an
optimization context. Therefore, the use of HARA utility functionsis not just a matter of convenience or
tractability, but rather emerges from economic reasoning, i.e, it is inherent in the economic optimization

roblem.
P 51t should be noted that for the logarithmic utility maximization under jump dilusions, semi-analytical
solutions are generally available primarily due to its myopic nature of the optimal portfolio strategy. For
example, in a general semimartingale market model, Goll and Kallsen (200) explicitly solve the prob-
lem of maximizing the expected logarithmic utility from consumption or terminal wealth. We thank an
anonymous referee for suggesting this discussion.



us to solve in a computationally ellcient way the dynamic portfolio selection problem in
jump-difusion models where both stock returns and state variables can jump.

By using the theoretical framework developed in this paper, we study the problem of
how jumpsin stock returns alect the optimal cash-bond-stock portfolio in a dynamic asset
allocation model where an investor can trade one stock, two bonds, and cash. Especially,
we revisit the asset allocation puzzle raised in Canner, Markiw and Weil (1997). They
document the empirical evidencethat strategic asset allocation advicestend torecommend
a higher bond/ stock ratio for a more risk-averse investor. Several studies have attempted
to explain the rationality of this puzzle. For instance, Brennan and Xia (2000) and
Bajeux-Besnainou and Portait (2001) relate the puzzle to a hedging component in the
stochastic interest rate and provide elegant solutions to the asset allocation puzzle. All
of these studies assume that both the short-term interest rate and stock returns follow
pure dilusion processes. Our framework generalizes these studies by incorporating jumps
into stock returns and examining the role of risk aversion in determining the optimal
cash-bond-stock portfolio. In particular, we show both theoretically and numerically
that unlike the pure-difusion models in Brennan and Xia (2000), Bajeux-Besnainou and
Portait (2001) and Lioui (2007), there is no clear-cut answer to the bond/stock ratio
puzzle in jump-difusion models even despite the aforementioned hedging assumption. In
other words, the puzzle itself cannot be rationalized by the hedging assumption in the
presence of jumps in stock returns. The underlying reason for this is that an investor
responds distinctly to difusion risk premium and jump risk premium when there is an
increase in the investors's relative risk aversion coel cient.

In summary, our paper makes three contributionsto the literature on portfolio choice.
First, our work generalizes the popular ODE-based approach used in pure-difusion mod-
ds to jump-difusion modes for CRRA utility functions, which may greatly alleviate
computational elorts in seeking the optimal portfolio strategy. Second, we provide an
el cient two-step method for solving HARA preference-based ODEs. This then extends
the applicability of our approach within a family of general utility functions. Finally, we
illustrate that the hedging assumption in pure-dilusion models fails to resolve the asset

allocation puzzle in jump-dilusion models, which further provides a new channel for us



to understand the nature of this wel-known puzzle.

Therest of the paper isorganized asfollows. In Section 2, we present the framework for
Merton's dynamic portfolio selection problem in jump-dilusion models and then present
alne conditions in the jump-difusion models. In Section 3, we use the al’ne conditions
to explicitly solve the indirect value function and the optimal portfolio strategy in terms
of the solutions to a set of ODEs for general HARA preferences. In Section 4, we derive
semi-analytical solutions to the optimal bond-stock mix and especially investigate how
jump risk in stock returns alects bond/ stock ratios. Section 5 is devoted to a calibration
exercisein order toillustrate numerically the theoretical resultsin Section 4. We conclude

in Section 6. All proofs are collected in Appendices.

2 The Economy

In this section, we formulate a model of incomplete financial marketsin a continuoustime
economy where asset prices and state variables follow a multidimensional jump-ditision
process on the fixed time horizon [0; T] (0< T < o). We consider a complete probability
space (& F; P), where Qisthe set of states of nature with generic elements! s, and F is
the [Falgebra of observable events, while P is a probability measure on (Q; F).

We use an I-dimensional vector X = (X1t;::5; X 1) to denote the state variables of
the economy where the convention stands for the transpose of a vector or a matrix.
The state variables X; may include stochastic volatility and stochastic interest rate asits

components. We assume that state variables X follow a jump-dilusion process
dX¢ = B(X¢)dt + OF(X)dBX (8) + TE(X)(Y* « dN (1)) (1)

where b*(X¢) is an I-dimensional vector function, [¥(X;) isan | x | matrix function of Xy,
and [%(X¢) isan | x m matrix function of Xt, respectively. BX (t) = (B% (t);:::;BX (1))

is an |-dimensional standard Brownian motion; N(t) = (Ni(t);:::;Nm(t)) is an m-
dimensional multivariate Poisson processwith Ni(t) denoting the number of typek jumps

up to time t, while Y* = (Y{;::;Y %) represents an m-dimensional jump size process



with Y denoting the amplitude of the type k jump conditional on the occurrence of the k-
th jump. For any two n-dimensional vectorsx = (X1;:::;Xn) andy= (y1;:::;y¥n) , Wedenote
the component-wise multiplication as x * y = (X1Y1;::;XnYn) . Note that unlike Liu
(2007) and Jin and Zhang (2012), the above specification of X includes jumpsin state
variables. For instance, we can incorporate jumps into a volatility process. By letting
Y* = 0, our jump-diusion model reduces to its pure-diusion counterpart for the state
variables X;.

The uncertainty of the economy is also generated by a d-dimensional standard Brow-
nian motion BS(t) = (B (t);::;B3(t)) which drives stock prices defined below. Assume
BS(t) and BX (t) are correlated and E[dBX (t)d(BS(t)) ] = Odt, for some | x d matrix
(0. Theinformation flow in the economy is given by the natural filtration, i.e., the right-
continuous and augmented filtration {Fi}; o1; = {F¥ F{& FN;t  [0;T]}, where
FS = OBS(s);0<s<t), FX = OBX(s);0<s<t)and FN = O(N(s);0< s < t).
We suppose that observable events are eventually known, i.e.,, F = Fr1. For illustrative
purposes, we assume that Ny admits stochastic intensity [k(X) that represents the rate
of the jump process at time t.

The market includesn+ 1 assetstraded continuously on the time horizon [0; T]. One of

these assets, risk-free, has a price Sp(t) which evolves according to the dilerential equation
dSp(t) = Sp(t)r(X¢)dt; Sp(0) = 1:

Theremaining n assets, called stocks, arerisky, and their prices are modeled by the linear
stochastic dilerential equation

dsi(t)
Si(t-)

= b (Xy)dt + CP(X;)dBS(t) + (X)) (Y S+ dN3(t))

where i = L;n, NS(t) = (Ng(t); 5 Np—g(t)) , and YS = (Y& YR ) , with YR
denoting the amplitude of the type k jump conditional on the occurrence of the k-th
jump. Here [P(X;) is the d-dimensional di‘usion coelcient row vector and [(X;) is

the (n — d)-dimensional jump coelcient row vector. In particular, the Brownian motions



represent frequent small movements in stock prices, while the jump processes represent
infrequent large shocks to the market. Assuming n — d < m, the jumps N S(t) can be
regarded as common jumpsin stock returns and state variables.

To obtain the semi-analytical solutionsto the optimal portfolio choice problem, we now
turn to the assumption for a_he models. In this paper, we focus on Merton'’s problem of
maximizing the expected utility from the terminal wealth.” In this section, for illustrative
purposes, we follow the literature to consider the CRRA utility function given by

v T 20 @

—op; X <0

where ~(# 1) is the relative risk aversion (RRA) coeffaignit. \Wé willl solze ttie op-
timal portfolio choice problem flor mone genenall HARA uwitiity fimctions im the nexdt
section. Specificallly, we considier am inwestien witth the utilityy flinctiom W(k)), endwesd]
with some initial wealth wp that is invested in the above-mentioned n + 1 assets. Let
m(t) = (mh(t);:::;Th(t)) T denote a trading strategy, where the Fy-predictable @(t) is the
proportion of the total wealth invested in the i-th risky asset held at time t. Furthermore,
m(t) satisfies tthe standhndl sguane-integnalbiliityy conditiom discussed in Bremaud (1981).
Moreover, the portfolio policy @(t) has an associated wealth process W; that evolves as
I
W, = Wo+ /0

[ 4
¥ / W, i (s)S4(Xs)dBS(s) +
0

It
r(s)Wsds-H~/ W' (s)(b(s) — r(s)1n,)ds
0 J‘ .
| We & ()XY e dNS(s) (3
0

Where B(t) = (B¥e); - br(XD)) s Bu0Xy) is ah 1 x d matFix With o Being its i-th Tew,
E40%p) istHe oy BT T baAG & 65 r Pl "H RGBT, o torisTOtRE S
griiEnebian tbromr et shasernk hom sl bomsliey T s dtisiie dniidgtinsitent
EbrreapusanTy g diace sasdlies Yo 3 Madrantayave Yo migvd) to dendaitte
she seantathidgbrsit sdirry et besitheh ivter MoRP LG PO JiBiERPr TR gz Bkates

"A semi-analytical solution can be obtained for the optimal portfolio choice problem with the utility
function defined by (2) in Liu (2007) when the Brownian motions in prices and state variables are the
same, namely, BX (t) = BS(t). This condition is satisfied in the applications in Section 4.




that the investor attempts to maximize the following quantity
u(wo; Xo) = max J(wo; Xo) = E [U(WT)]:
U A(wo)

We consider the general case: n— d < m because, by letting Y = 0;k = mo+ 1;::;;m,
we can get the model where there are only mp (< n—d) types of jumpsin state variables.
Using the standard approach to stochastic control and an appropriate I1to's lemma for
jump-difusion processes, the optimal portfolio policy [0 and the corresponding indirect

value function J of the investor’s problem then follow the HIB equation:

{
1
0 = max Ji+ 5wtzm X, Www + We[O (b(t) — rin) + r]dw

FE()Ix + WeO To0 O (DIwx + %Tr(DX(t)DX dxx ) (4)
~d
+ [:kE[J(Wt'FWtD DqukS;Xt+ ka;t)_J(Wt;Xt;t)]
k=1
}

- CRELI (W X+ i t) = I (Wi X5 1)]
k=n—d+1
where g denotes the k-th column of [Jq. The above HIB equation nests the HJB
equation (3) for the pure-difusion model in Liu (2007) asa special caseby lettingn—d = 0.
In other words, we generalize the modelsin Liu (2007) by incorporating jumps into stock
returnsand state variables. It iswell-known that in the pure-difusion model in Liu (2007),

the indirect value function J(W;; X¢;t) is conjectured to have the form: J(W;; Xy;t) =

V\ﬁ IeA(t)+B(t) X' , where A(t) is a scalar and B(t) isan | x 1 vector. Then, under
the quadratic conditions, a set of ODEs for the functions A(t) and B(t) are obtained by
substituting the function J and the optimal portfolio strategy Linto the HIB equation
(4). Asshown below, the argument in Liu (2007) does not trivially apply to jump-dilusion
models because the portfolio policy 0 may depend on the state variables X;.

We now illustrate the di Cculty caused by jumps. More specifically, compared with the
HJB equation (3) in Liu (2007) for pure-dilusion models, the jump terms in the above

HJB equation create new dilculties for semi-analytical solutionsto the optimal portfolio



choice problem in jump-dilusion models. We now consider a simple case where there are
no jumpsin the state variables X by letting Y = O;k = 1;::;;n—d. Asin Liu (2007), we
substitute the indirect value function J (W¢; Xi;t) = WE (f (t; Xy)) into (4) and obtain

the following form for the last term:

d
E[J (Wi + WO Og Y& Xeit) — I(Wi; X5 1)]
k=1
1- Td
=W ex0) T OB O Dgd)t - 1
k=1

Asiswell-understood from, for instance, Liu (2007), in order to gain an exFIicit solution for
the indirect value function J(W;; X¢;t) of the form J(W;; X¢;t) = V‘{f eA+B() X
theterm E[(1+ O Dquks)l‘ ] should be an ane function of the state variables X;. This

term, however, ishard to be an alne function of the state variables X unless the optimal
jump exposure 0 Oy is a deterministic function of time t, because the function x!~ is
generally not an ahefunction. Based on thisobservation and inspired by theresultsin Liu
(2007) and theresult of decomposition of optimal portfolioweightsin Jin and Zhang (2012),
we are able to specify an a'he model® which leads to ODEs for A(t) and B(t) given in
Proposition 1 in Section 3.

More specifically, by setting ax = E(Y?);k = 1;::;;n — d, we assume that the matrix
X = [Xp Xg] isinvertible. The market price of risk is then represented by

= 27 HI(t) — rln + To(O° a); (5)

where O« a= (hay; 5 thogan-a) ;P = (X)) and = (0 ,) . Asshown
in Section 4, [P denotes the risk premium for the Brownian motion BF;i = 1;:::;d, while
Eﬁ represents the risk premium for the jump Nks; k= 1::n-d, inthestock returns. We

further make the following assumptions:

8Here, for expositional purposes, we consider aine models only asiit is straightforward to generalize our
results to quadratic processes defined in Liu (2007).

10



Assumption 1

b*(X) = k—-KX; X =hg+ hy-X;

r = +0X; P P=Ho+ HX; (6)
Ol = g+ @uX; OO0 O - X0 =lo+ Iy -X;

0 = O+ OX; f=0Q0ck=1:5n-d

wherek;[3;H; and gp arelx 1 constant vectors; K ; hg; g1 and lg arel x | constant matrices;
[9; Ho and [ are constants; [p isan (n—d)x 1 constant vector; 0y isan (n—d)x | constant
matrix; hy = hi,;isj k= Ll and g = Iy,;ij;k = 1151 are constant tensors with
three indices (one upper index and two lower indices). In particular, hy - X isan | x |

matrix whose (j; k) element is given as follows:

E |
(hl'x)jk= hlikxit:
i=1
Thel x | matrix I; - X is defined exactly in the same manner. The above assumptions
except the last two are similar to those madein Liu (2007), whilethe last two assumptions
on jump intensity and jump risk premium are also standard in literature, and the last

assumption statesthat therisk premium for the k-th jump is proportional to itsintensity.

3 The Portfolio Choice Problem

Given the al'he models in the proceeding section, we now explicitly solve the optimal
portfolio choice problem for hyperbolic absolute risk averson (HARA) utility functions
up to solving a set of ODEs. The most popular utility functions used in almost all
applied theories and empirical studiesin finance belong to the class of linear risk tolerance
(LRT) or HARA utility functions, including the quadratic function (with restrictions on
parameters), the CRRA utility, the exponential utility and the logarithmic utility as
special cases. Therefore, the explicit solutionsto the portfolio choice problem for HARA

preferences may cast new light on investors behavior towards distinct risk factorsin a

11



stochastic investment environment. More specifically, a HARA utility function is given

by

(-0 x>0

U(x) = (7)

—0o0 ; x<Q

For 0= 0; U(x) reduces to a CRRA utility function (2). Here we consider a realistic
case with 0> 0,° that is, the relative risk aversion is decreasing with wealth. In Bajeux-
Besnainou and Portait (2001), they interpret the constant Oas a “subsistence level”.
Canakoglu and Ozekici (2012) consider the optimal portfolio selection problem in
a continuous-time pure-diusion setting where the market statesfollow Markov pro- cesses.
They utilize the HIB-based approach to obtain semi-analytical solutions for the CRRA
utility, the exponential utility and the logarithmic utility, respectively. In Bajeux-
Besnainou and Portait (2001), they obtain closed-form solutions to the optimal dynamic
portfolios for the HARA utility in pure-diusion models. Specifcally, they employ the
duality results developed by Karatzas, Lehoczky and Shreve (1987), substantially rooted
in the key assumption of the existence of a unique equivalent martingale measure in a
complete market. In contrast, the markets in this paper are incomplete due to random
jump sizes and thusthere exist infinitely many equivalent martingale measures. Asin Jin,
Luo and Zeng (2016), to solve an optimal dynamic portfolio problem for the HARA un-
tility, we resort to the duality results for incomplete markets developed by Kramkov and
Schachermayer (1999) in combination with the results developed for the CRRA utility.
But our results diler from Jin, Luo and Zeng (2016) in that we incorporate jumps into
state variables and solve the optimal portfolio problem based on a set of ODEs instead
of a simulation-based approach used in their paper. Our main results are summarized in

the following two propositions.

°For the case O< 0O, similar to the results in Section 6.3 of Merton (1990), the unconstrained policies
derived by the method in the present paper may violate the nonnegativity condition on wealth. Thus, we
need to solve the constrained problem with a positive wealth process. This is beyond the scope of the
present paper and we leave it as a future research.

12



Proposition 1 Under Assumption 1, the indirect value function is represented as

( )1
W, — T - AD+( (- B®) X [ ]
J(Wi; Xi5t) = = AMFBO) X 8)

where A(t), B(t), (t) and (t) are obtained by ODEs in Appendix A.

Proof. See Appendix A. m

Theresult in (8) suggests that unlike the indirect utility function for a CRRA utility
by setting (0= 0, the one for a HARA preference cannot be separated into a product of
two functions, one depending on thewealth W and the other on the state variables X; and
timet. Thisresult extends the literature on the optimal portfolio choice with a HARA
utility. For detailed discussions, for example, Merton (1990) and Perets and Yashiv (2016)

suggest that the above decomposition holdstrue dueto constant investment opportunities.

Proposition 2 Under Assumption 1, the optimal portfolio weight 0 = (Oy; 5 0,) is
given by

( )
0 = By Bhyr Bl i Bhng) =0 (9)
where the optimal &}, is given by
[ ]
B = W—E/%(t;xt) ® oo By + AT (t)v—V BM)ULX) 4

and L solves the following optimization problem:

(
max  ByW (W — [o(t; X¢)) ™ (8 — Ckaw)
Bk Fk
[( )1 D

1% E - W(L+ (g Y$) - Co(t; X)e O BVe™ T e BO H% (1)

+

for k = 1;:::;n—d, where Fi is the set of feasible k-th jump exposures satisfying the jump
induced no-bankruptcy condition, namely, Fx = {x|x-y > -1; y Ay}, with Ay denoting
the support of the k-th jump size Y2, and g(t; X;) = e (0= A+ (= B(1) Xt

Proof. See Appendix B. m

13



The second term in (10) indicates that as opposed to a CRRA utility (= 0), aHARA
utility (/% 0) has a separate hedging demand for the interest rate related risk. This term
will disappear if the interest rate is a constant since in this case, 5(t) = +B(t) as can seen
in the proof of Appendix A. Furthermore, letting iy = 0 in (11) and using Assumption 1
gives the optimal jump exposure problem for a CRRA utility:

( LI D
<ELZV€ %Eﬁ = ak3 * 17E (W(L+ DOgY))T e BO B (12)

aqesr

The objective function in the optimization problem in (12) does not include the state
variables X and thus, for each k, the optimal jump exposure Eqk is deterministic.©
This justifies the conjectured exponential linear form of the indirect value function f%qa
CRRA utility. It is worth mentioning that despite the deterministic jump exposure e,
the optimal portfolio policy E) is stlll dependent on the state variables X; through the
optimal difuision exposures (e ,;:::; d) and the matrix X. This state-dependent portfolio
strategy reflects the investor’'s market timing behavior.

Aswediscussin Appendix B, the conjecture-based approach used in Liu (2007) isvery
likely inapplicable to a HARA utility in jump-dilusion models as it is hard to substitute
the optimal jump exposure in (11) into the HIB equation. Two reasons account for this
dillculty. On the one hand, as shown in the first-order condition for @E in Appendix
A, it is generally impossible to solve the optimal e | in closed form unless all jumps are
constants. On the other hand, the optimization problem in (11) shows that the jump
exposure Eqk depends on both the wealth W and the state variables X; and thus is not
deterministic, making it hard to use the conjecture-based method. Asaresult, we propose
a two-step approach to solving the optimal asset allocation problem for the HARA utility

function specified in (7) summarized as follows:

() In thefirst step, thefunctions (t); (t); A(t) and B (t) are determined by solving the
—optimal-asset-aleeationproblem for a CRRA utility function in (2);Dq

101t will be shown in Appendix A that the result of the deterministic jump exposure e, of the CRRA
utility function is particularly useful when we solve the optimal portfolio choice problem in closed form
with a more general HARA utility function.
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(ii) In the second step, the indirect utility function J(W¢; X¢;t) of the HARA utility
function is evaluated by (8) and then the optimal portfolio weights are determined
through (9), (10) and (11).

Our two-step approach therefore contributesto the literature in solving the optimal port-

folio choice problem for HARA preferences eliciently in jump-dilusion models.

4 Dynamic Asset Allocation for Stocks, Bonds and Cash

We now apply the results in Section 3 to examine the impact of jumps in stock returns
on the optimal cash-bond-stock mix in a dynamic model where an investor can trade
one stock, two bonds, and cash (or the called money market account). A closely related
problem is the asset allocation puzzle raised in Canner, Markiw and Weil (1997). They
empirically document that the strategic asset allocation advice tends to recommend a
higher bond/ stock ratio for an investor with more risk aversion. T his finding, however, is
inconsistent with Tobin (1958)’'s Separation Theorem that theratio of bondsto stocksin
the optimal portfolio is the same for all investors regardless of their risk aversion.
Brennan and Xia (2000) and Bajeux-Besnainou and Portait (2001) relate this puzzle
to a hedging component in the stochastic interest rate and provide elegant solutions to
the asset allocation puzzle. More specifically, as pointed out by Lioui (2007), the puzzle
can be resolved under the assumption that one or several bonds can perfectly hedge the
risk from the interest rate and the market price of risk. Yet, Lioui (2007) argues that
thereisno clear-cut answer to the puzzle if the hedging assumption isinvalid. All of these
studies assume that the short-term interest rate and stock returns follow pure-dilusion
processes. This section attempts to generalize these studies by incorporating jumps into
stock returnst! and examining the role of risk aversion in determining the optimal cash-
bond-stock mix in the presence of jump risk. Interestingly, we will show that unlike the

pure-di‘usion model in Lioui (2007), thereis no clear-cut answer to the bond/ stock ratio

1 For simplicity, we do not include jumps in the short-term interest rate which is a state variable in
this section. In Hong and Jin (2016), by using Propositions 1 and 2 developed in the present paper, they
show that jumpsin volatility process play a significant role in variance swap investmentsin a model where
volatility is a state variable.
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puzzle in a jump-difusion model even despite the aforementioned hedging assumption.
This finding demonstrates that the puzzle cannot be rationalized by the hedging assump-
tion in the presence of jumps and thus strengthens the claim made by Lioui (2007) that
the asset allocation puzzle is still a puzzle.

Like Lioui (2007), we adopt a two-factor term structure model that is a simplified
version of the multi-factor models in Sangvinatsos and Wachter (2005). We extend it by
adding a jump component in the stock price. The model assumes the following dynamics

under the physical measure P:

r(X(t);t) = Lo+ 0O X(t);
dX (t) = K (O- X (t))dt + Ox dZ (t); (13)

wherer(t) isthe short-term interest rate; X (t) isa 2x 1 vector of state variables; Z(t) =
(Z1(1); Zo(t)) is a standard 2-dimensional Brownian motion; 3 R;0 R2*%:K
R22%0 R¥L 0k = (Ok;)icij<2 isa 2x 2 non-singular matrix, and all of these
parameters are assumed to be constants.

For simplicity, we incorporate only one type of jump into the stock returns. We specify
the Radon-Nikodym derivative as 2 = § = [ as follows:

( [ )

F = Fexp —Alt) dZ(t) - At) A(t) dt
0

O (f ] )
=0 #(ti) (ti;z) exp (1-#(s) (s;2))l(Xs)P(s;dz)ds
0 A

i=1

NI =

where A(t) = T+ BX (1), 0 R2*lisaconstant vector; D, R2*2isaconstant matrix;
t; isthei—th jump time up to t; z is the corresponding jump size; #(s) and (s;z) are
positive stochastic processes, and (s; z) satisfies the relationship of ~, (t;2)®(t;dz) =
1where A and @(t;dz) are the support and distribution of the jump size, respectively.
By Theorem T10 of Bremaud (1981), under the probability measure Q, the intensity [
is#0and the density function ®°(t;dz) is (z)d(t;dz).

Due to no jumps in the interest rate, a zero-coupon can be priced by using Radon-
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Nikodym derivative [¥ . Asshown in Sangvinatsos and Wachter (2005), the nominal bond

price evolves as follows:

OIi‘li*:i((tt)) = (Aa(B)E A(t) + r()dt + Ax(B)Ex dZ(1;i = 1,2, (14)

where [ = T; —t tanddT{I dehol@sd hdenataritytdadetof diohdnid withitl = B, mhitdle
A7) CALALI 7B 2A L) )i aslax 2 oworestarttorfor= & 2., A nilneneoverclr, dito i ploepaix ik
ih Bafgvinaisosandid/athidrt ¢20a8))5M » A shlues theliol follind QD E

PO = K + ) - 0 (15)

with the boundary condition A,(0) = O1x».

To explain the asset allocation puzzle, Lioui (2007) assumes that only the short rate
is stochastic while the market prices are deterministic. For comparison, we follow Lioui
(2007) to assumethat the price of risk /_\(t) isa constant vector by setting ﬁz = Ox 2, and

then solve the equation in(15) to obtain the following
Ax(D =0 (e KP- 1Kt (16)
Denote the vectors of volatility and risk premia of the two bonds by

A
b = Ax(0)x 2(04) O = AsCy:

Az([2)k A2(L2)

and [ = Eb/_\(t), respectively.

To compare with the results of the bond/stock ratio in a pure-diusion model in
Brennan and Xia (2000), we assumethat theinvestor who has a CRRA utility function is
allowed to invest in two bonds, one stock, and cash. In addition to the above two bonds,

we assume there exist both an instantaneously riskfless money market account with the
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price B(t) and one stock index with the price S(t) where B(t) and S(t) satisfy

dB(t) _ )
B - O (7)
ds(t) _ (Os + r(t))dt + OsdZ (t) + JoN (t) — g F dt; (18)

S(1)

where Og = OsA(t) + gP P — gRR; O = (Ok1; Os2): ¢° and [P are the expected jump
size and jump intensity under the physical measure P, respectively; g? and [ are the
expected jump size and jump intensity under the risk neutral measure Q, respectively.
Specifically, s isthetotal risk premium for the stock with the term DS/_\(t) compensating
for the dilusion risk, while the term g” [ — gR R compensates for the jump risk.

This specification implies that the two bonds and cash are relatively safer than stock
during aturbulent period when jump occurs. Asiswell understood, jumpsin stock returns
have significant impacts on the optimal portfolio choice. For instance, Liu, Longstalland
Pan (2003) demonstrate that in the presence of jumpsin stock returns investors are less
willing to take levered or short positionsthan in a standard difusion model. Furthermore,
even when the chance of a large jump is remote, an investor has strong incentives to
significantly reduce her exposure to the stock market. The reason is that, if a jump
occurs, invested wealth can change significantly from its current value, and such changes
cannot be hedged through continuous rebalancing, resulting in potentially large losses for
investors with levered or short positions. In stark contrast, the changes in bond prices
can be hedged through continuous rebalancing as they follow pure-difusion processes.
A natural question is. how does a risk-averse investor choose her bond-stock mix when
facing uncertain abrupt changesin stock returns? More concretely, doesa morerisk-averse
investor hold more bonds and/ or cash than a less risk-averse investor does? To answer
these questions, we let Og;; Oz, and [ denote the fractions of the wealth invested in the
two bonds and the stock, respectively. And hence, theremainder [c = 1—- O — Og, — e
isinvested in cash. The following proposition presents a semi-analytical solution to the

optimal strategy.
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Proposition 3 The optimal portfolio weight 0 = (Cgq; Ug,; [k) is given by

]

-
e ST (19

(Lb1:LB2)
& = O, (20)

where the function f (t; X¢) is given in Appendix A, and &}, solves the following optimiza-

tion problem: [

sup By(—gRmR) +
gy F

(1+ 82)" ®(dz); (21)
1- A

where F speci es the set of feasible jump exposures satisfying the jump induced no-
bankruptcy condition, and A and &dz) are the support and distribution of the jump

size.

Proof. See Appendix C. =

Interestingly, Equation (20) shows that the demand for the stock index has a specu-
lative component to gain the risk premium only from jumps as suggested by the static
optimization problem for &l;, while the burden of hedging the interest rate risk and the
market price of risk isborne by thetwo bonds. Thisresult holdstrue regardless of whether
or not 4 = T, namely, thematurity of abond equal to the investment horizon. Thereason
underlying the resultsin Proposition 3 isthat the two bonds span therisk of the interest
rate and the market price of risk while only stock spans the jump risk. In contrast, the
bond portfolio weights have three components. The first is the myopic demand for the
risk premia of two dilusion risks; the second is the hedging demand against the risk stem-
ming from the two difusion risks; the third one is another myopic demand for the jump
risk premium. More specifically, as shown in Appendix C, the first two components are
identical to the optimal weightsin the market where the stock is not available for trading.
And thus, the third component determines more or fewer bonds the investor holds when
she can trade the stock. Although the two bonds are independent of jumps, the investor
can gain the jump risk premium by investing more in the two bonds, as the two bonds
and the stock are correlated via dilusion, suggested by the term [0,

To make the intuition behind the results as clear as possible, we concentrate on a
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simple case by further assuming that the jump sizesJ = g° and J = @@ are negative
constants under both the physical measure P and the risk-neutral measure Q. We follow
Sangvinatsos and Wachter (2005) to assume that the state variables X1 and X, follow

the equations below.

dXy(t) = Ko(0 — Xa(t))dt + Dk, dZa(t);
dX2(t) = Ka(Lh — Xa(t))dt + Dk, dZo(t); (22)

where K1 and K, are positive constants. In this case, by (16), we have

A2 (D = eK}fi_lDJ;i =12
We further assume that X; is a permanent state variable with a low value of K1 while
Xo isatrangtory state variable with a high one of K,. Like Table Il in Sangvinatsos and
Wachter (2005), we let [k, > 0;Ck,, > 0;061 < 0;062 > 0 and [k10k,, + Os2lk,, < O
so that the stock returns are negatively correlated with both the state variable X 1(t) and
the interest rate r(t). The negative correlation between stock returns and interest rates
has been documented in the literature (see, for example, Fama (1981) and Sangvinatsos
and Wachter (2005)). From (14), it is easy to check that the bond return and the interest
rate are negatively correlated as A»1(0) < 0 and Ax(D < 0. Furthermore, in order to
investigate whether or not the explanation of Lioui (2007) for the bond/ stock ratio puzzle
is still valid in our jump-di‘usion model, we assume that the maturity 4 of the first bond
is equal to the investment horizon T. Then, the optimal portfolio weights in Proposition

3 are given explicitly in the following result.

Proposition 4 The optimal portfolio weight [0 = (Og;; Ug,; C<) is given by

(% A ) ( ) ( )
[k, = 1 MAZZ(Q) - mAzl(Ejg) PRSI GRRNR A2([d) - 52 A (D) ;

|A2| Eb(l_l B(g_z ) ( |A2| [b(ll B(zz )
_ 1 A Ay(t) T Y Os2. .
(B, = ™ y %(55?22@); O, Ax(0) ™ EMAZZ(QH DXZZA21(E1) ,
1'%9 -t
[gzg,:gfp S -1; (23)
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where |Az| = Az (0)A2(0) — A2(E2)A2(H) < 0.

Proof. See Appendix C. m

The above results suggest that Bond 1 perfectly hedges the interest rate risk, which
is the same as a pure-diluson mode in Lioui (2007). Using the facts that Ax;(D <
0;A22(0) < O;|Az| < 0 and sy < O, we can verify that the coe cient of [ 4in the first
equation in (23) is positive while the one in the second equation in (23) is negative. In
other words, to gain jump risk premia, the investor holds more short-term bonds (Bond
1) and lesslong-term bonds (Bond 2) to olset the position in Bond 1. Meanwhile, thetotal
demand for the two bonds due to jump risk is positive, which can be rewritten as

Lo ]

_@ KM(AZZ(@) — Axn(l)) + i(AzﬂQ) = A (3)) (24)

and the coel cient of “his positive.

We now turn to the impact of the risk aversion coellcient on the bond/ stock ratio.
From Proposition 4, the bond/ stock ratio is separated into three terms that correspond
to three parts in the portfolio on the bonds. mean-variance allocation, hedging demand
for interest risk, and myopic demand for jump risk. The second term is actually exploited
to explain the asset allocation puzzle in the literature (e.g., Brennan and Xia (2000),
Bajeux-Besnainou and Portait (2001) and Lioui (2007)). It isinteresting to investigate
whether the ratio increases with the relative risk aversion coel cient in our model here.
For this purpose, we follow Brennan and Xia (2000) to rewrite the total demand for the

two bonds in Proposition 4 as:
B="+1-"—bh;

with

7[ o =
a = [Bﬂm) (Ax(3) — Axn(0)) + (Azl(Ei) - AZI(BZ)); ;

b = I/-\lzl DDxSfl (A2(2) — Ax(l)) + DXDQ; (A2(3Q) — Azu(B))
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And hence, the bond/ stock ratio is obtained as:

( )
B a—l+1

f()= - b (25)

1
Th

o5

implying that by using the third equation in (23),

£()= al)_ 1 [1_a_i(a;l+ 1) (gﬂ)‘%m(gQEP)]
d T g o o P PP

As shown below, the function f () can be either positive or negative depending on the
model parameters. For instance, we show that it can be negative under certain conditions.
For this, we consider the case of a > 1in which the investor takes highly levered positions
in bonds as documented in Table VI of Sangvinatsos and Wachter (2005) and in the
numerical analysis in the following section (Section 5).

We now rewritef () as

( )
f’ — ] (a—l+1) In,g%\
()=-F 1-a- ¢ )T
1 1- QR
gPDP
: : elucl E :
Assuming1< < 3, wecan show that f ( ) < Owhen g > g(a) = ﬁ , that is,

theratio related to the jump risk premium is higher than g(a) which is a function of the

dilusion risk premia. Therefore, in this case, the ratio DBiisadecreasing function of in
q

therange of [1; 3]. Thereason for thisisthat unlike a pure-di‘usion model, the demand th

for the stock is not proportional to 1= asindicated by thethird equation in (23). In fact,

)71:
Th d?cr _sfwer than 1= when increasssin that % = jjpln 33%3 ;’%ﬁ
Qe . . Q . .
and Mgp - increases with  for 8PH3 > 1. In other words, the investor with more

risk aversion holds relatively more stocks than bonds to exploit the jump risk premium
when the premia compensated for both the jump risk and dilusion risks satisfy the afore-
mentioned condition. Thisisin contrast with the observationsin a pure-dilusion mode.
Specifically, our jump-dilusion model reduces to a pure-dilusion model by replacing the

jump component in stock returns with a difusion one Z3(t). Then, the resultsin Propo-
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sition 4 except [k remain unchanged. Specifically, [k = Az= , where A3 > 0 is the risk

premium for the difuision term Z3(t). Asaresult,f( )= (a— 1+ ) i — b, which isan
3

increasing function of . And thus, as argued in Lioui (2007), this leads to the resolution
of the asset allocation puzzle in pure-dilusion models. In short, the rationality of the
bond/ stock ratio puzzle cannot be explained by the intertemporal hedging demand in the
presence of jumps in stock returns, and thus our jump-dilusion model provides another
channel to strengthen the issue addressed by Lioui (2007) that the asset allocation puzzle
is gtill a puzzle.

Finally, we conduct a comparative static analysisto investigate the elect of the jump
parameters on the cash-bond-stock mix. For simplicity, we just vary the jump intensity

[P while keeping the other parameters fixed. The third equation in (23) suggests that:

@hn 1 -

@F = (opy <O
o° 1 g
B
implying that the total demand O for the two bonds decreases with [F from (24) while

the cash holding increases with [. In contrast, the bond/ stock ratio increases with [
by (25) if a> 1. Theinvestor hence holds lessin stocks when facing more frequent jumps.
Namely, the investor reduces her position in stocks during a turbulent time of the stock
market, and also reduces her bond holding DB based on the above discussion. Interestingly,
theinvestor holds more bondsrelativeto stocks asindicated by theincreasing bond/ stock
ratio. As aresult, the investor holds more cash and relatively more bonds, reflecting the
phenomenon of flight-to-safety, when facing a high possibility of jump risk.

5 Numerical Results

In this section, we use a numerical example to illustrate the theoretical findings in the
preceding section. Especially, we investigate the elect of the extreme negative jump
risk on the bond/ stock ratio. The recent financial crises have fuelled a renewed interest
in modeling, estimating, and deriving the implications of extreme tail events. It has

been documented in the literature that the distribution for extreme events can be well
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approximated by a power law that capturesthe slow tail decay in financial returns. More
specifically, we adopt the single power law distribution of Barro and Jin (2011). Namely,
let Y denotethejump sizein stock returns, and the density function of a random variable

Z = % isgiven by

V(Z) = ZOZ_( +1);Z > 20> 1, > 0: (26)

This implies that Y is a negative jump with domain of (—1; 1=z; — 1] and the density

function of Y can be obtained as follows:
fy(y)= z(1+y) “hy (-11=z - 1J: (27)

Furthermore, it can be shown that fory (—1;1=z9 — 1),

P(Y 2y)=12z,(1+y) :

Thus, the parameter measures the fatness of the left tail of stock returns. In particular,
thesmaller thevalue of is, thefatter thetail is, provided that the probability P(Y <)
decreases with  sincez;(1+y) < 1fory (—1;,1=z,— 1). Theleft pand of Figure 1
depictstheleft tail for three cases: = 5;10 and 15, showing that the jump tail for =5
is much fatter than the one in the other two cases.

To estimate the parameters in this model, the calibration exercise below is based on
the estimatesreported in Table | and 11 of Sangvinatsos and Wachter (2005). Specifically,

we first initialize the parameters of the two-factor model in (22):
O0=0=00k, =k, = 1K1 = 0576;K, = 3:343:

Next, for the interest rate, we let [ = 0:056 as in Table | of Sangvinatsos and Wachter
(2005) and set 0= (4;03) by matching the volatilities of interest rates both in our
model and in their model. According to Table | in Sangvinatsos and Wachter (2005), the
volatility of the interest rate they used is equal to 0.0217 (= K 0:0182 + 0:0072 + 0:012),
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Figure 1: Tail Fatness and %ump Exposure. The first pane plots the Ieft tail of stock

returns with the various values of = 5:0;10:0 and 15:0, respectively. In the second panel
illustrates the jump exposure of ~" corresponding to = 4:0;5:0and 6:0within arange-of s.
1 X 2 X 1 2
— v

while the corresponding’volafility in our mode is P+ R, = ! [+ 2. Then
O= (3:03) satisfies [+ [ = 0:0217:12

For the stock return process, we choose its parameters by equating the risk premium
in stock returnsin our model to the one of the model in Sangvinatsos and Wachter (2005).
For simplicity, we assume the jump size distributions are the same under both the physical
probability P and the risk-neutral probability Q while the jump frequency (R under Q
is larger than the jump frequency [ under P reflecting a positive jump risk premium
for the investor to hold jump risk. We set [5; = —0:10, (k> = 0:10. In Sangvinatsos
and Wachter (2005), they report the stock return’'s risk premium in Tables Il and 11l as
[-1:255% (—0:563)+ 0:572x (—0:245)+ (—2:946)x (—0:219)+ 14:277x 0:44]=100 = 7:49%.
Thus, [P and ¢° satisfy the following equation

[1 X (—0:563) + Csp(—0:245) + [P — [(RgR = 7:49%;

MELE_QQ_ZQP_Zﬁ_ZlO_—l.JAL'Lth the parameters calibrated above, Table 1 reports

the optimal bond/ stock ratios. To investigate how the bond/ stock ratio changes with the

12T he solutions for O= (0; )" are clearly not unique. The results reported in Tables 1 and 2 remain
qualitatively similar when we vary the parameters  and [j. Thisis also the case for the parametersin
the stock return process detailed below.
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No jumps (0= 0) Jumps (0> 0) with various s
5 10 15 20 25
2 43.9201 67.1450 61.4360 61.4360 61.4360 61.4360
3 44.1629 64.3945 53.0696 50.4196 50.4196 50.4196
4 44.4057 63.3998 52.4153 49.3810 48.2053 47.6686
5 44.6485 63.0248 52.1821 49.2377 48.1044 47.5888
6 44.8913 62.9416 52.1441 49.2433 481316 47.6270
7 451341 63.0192 52.2130 49.3314 48.2302 47.7313

Table 1: Bond/ Stock Ratio. This table reports the optimal bond/ stock ratios. The relative
risk aversion coelcient varies in the set {2,3,4,5,6,7} and the tail parameter ranges in the
set {5,10,15,20,25} with the other fixed parameters as follows: T = 50 = b = 0;k,, =
Ok,, = LKy = 0:5760; K, = 3:3430; ) = 0:0560; 4 = 0:0180; 3 = 0:0122; > = 0:2500; [ =
0:5000; 51 = —0:1000; (k> = 0:1000; A; = —0:5630; A, = —0:2450. The maturities of two bonds
areT and 2T, respectively. In addition, (s3 = 0:1023 and Az = 0:4215in the pure-difusion model.

relativerisk aversion coe_cient and thetail parameter ,wevary and totest ther
electson the optimal bond/ stock ratioin Table 1. In our setting, as shown in each column
wherewevary only from two to seven, the optimal bond/ stock ratio first decreases with
and then increases with . This confirms the prediction of the theoretical results, that
is, the hedging demand assumption loses its explanatory power for the asset allocation
puzzle in the presence of jumps in stock returns. Next, we vary the parameter . As
shown in each row of Table 1, the optimal bond/ stock ratio decreases with  across all
S. The underlying reason is that the left tail of the stock returns becomes fatter when
decreases and thus the investor reduces her jump exposure T}, in stocks reflecting her
fear of jump risks. Asaresult, by (25), the bond/ stock ratio is bigger for smaller . This
is also confirmed by the right panel of Figure 1, illustrating how the jump exposure [,
respondsto and . It isclearly shown that that for a given , T}, increases with  due
to the less fear of tail risk and that for a given , T}, decreases with  due to more risk
aversion.
To compare with the pure-dilusion mode discussed in the second paragraph from the
end of the previous section, we estimate the model by matching the first two moments
in the pure-difusion model and jump-difuson model with = 5:0. The second column

under "No jumps’ in Table 1 reports the bond/ stock ratios, clearly indicating that the
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asset allocation is resolved. Interestingly, given a value of , the bond/stock ratios in
the pure-diusion model are much smaller than the ones in the jump-diusion model
reported in the rest columns of Table 1, as the stock holding [t = A= in the pure-
dilusion model is much larger than the one [ in, the jJump-dilusion model, again by (25),

leading to smaller bond/ stock ratios in the pure-difusion model.

6 Conclusion

In this paper, we obtain the semi-analytical solutions to the optimal dynamic portfolio
choiceproblem in multi-asset alnejump-dilusion modelswhereboth stock returnsand state
variables may exhibit time-varying jumps. More specifcally, our semi-analytical formulas
for the indirect value function and the optimal portfolio weights are obtained in terms of
the solutions to a set of ODEs for HARA preferences. Our results extend the
pure-di_ision models in Liu (2007) by incorporating jumps into both stock returns and
state variables.

We further apply the theoretical results to investigate the bond-stock mix puzzle.
In particular, our analysis shows that unlike in pure-dilusion models, thereis no clear- cut
answer to the bond/stock ratio puzzle in jump-dilusion models despite the hedging
assumption. This result then provides a new channel to understand the nature of this
well-known problem, and accordingly, the result further strengthens the claim made by

Lioui (2007) that the asset allocation puzzle is still a puzzle.
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