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Abstract

This paper studies the opt imal port folio select ion problem in jump-diffusion models where 

an investor has a HARA ut ility funct ion, and there are potent ially a large number of assets 

and state variables. More specifically, we incorporate jumps into both stock returns and 

state variables, and then derive semi-analyt ical solut ions for the opt imal port folio policy 

up to solving a set of ordinary different ial equat ions to great ly facilitate economic insights 

and empirical applicat ions of jump-diffusion models. To examine the effect of jump risk on 

investors’ behavior, we apply our results to the bond-stock mix problem and part icularly 

revisit the bond/ stock rat io puzzle in jump-diffusion models. Our result s cast new light 

on this puzzle that unlike pure-diffusion models, it cannot be rat ionalized by the hedging 

demand assumpt ion due to the presence of jumps in stock returns.
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1 Introduction

As prompted by the seminal work of Merton (1969), there is a large literature on the dy- 

namic port folio choice problem that has typically been studied in cont inuous-t ime models 

primarily due to their analyt ical t ractability. There are two popular methods that are 

widely employed to solve this problem. The first one is the HJB-based approach pro- 

posed by Merton (1969), and the other is the mart ingale approach advanced by Karatzas, 

Lehoczky and Shreve (1987) and Cox and Huang (1989). In both approaches, the in- 

vestor’s ut ility funct ion plays a fundamental role in seeking the opt imal port folio policy.1 

Unfortunately, it is well known that semi-analyt ical solut ions to the dynamic port folio 

choice problem are generally unavailable, although they are vitally important to facilitate 

economic insights and empirical applicat ions. In this paper, we solve the opt imal asset 

allocat ion problem in closed form for mult i-asset jump-diffusion models in the way that 

the solut ions provide a new inst rument to analyze the behavior of investors with general 

HARA preferences towards dist inct risk factors.

In a growing literature, numerous efforts have been made to solve the port folio choice 

problem in closed form. Specifically, Bajeux-Besnainou and Portait (1998) extend the 

stat ic setup in Markowitz (1952) to a much more challenging dynamic version and ex- 

plicit ly solve the dynamic mean-variance problem in a complete pure-diffusion model. 

Recent ly, by using the mart ingale approach, Lioui and Poncet (2016) provide closed-form 

solut ions to the dynamic mean-variance problem in a complete affne diffusion model.As 

remarked by the authors, the dynamic mean-variance model in Sect ion 2.3 of Lioui and 

Poncet (2016) may result in t ime-inconsistent port folio st rategies, showing that the in- 

vestor may find it opt imal to deviate from her init ial policy. In cont rast , Basak and 

Chabakauri (2010)2 explicit ly solve the t ime-consistent dynamic mean-variance policy 

based on a recursive representat ion. In a cont inuous-t ime mean variance model with 

const raints on port folio policy, Wang and Forsyth (2011) develop a numerical scheme to 

determine the opt imal t ime-consistent asset allocat ion st rategy3. For a von Neumann-
1 T he widely used ut ility funct ions belong to t he so-called hyperbolic absolut e risk aversion (HARA) 

family, including quadrat ic (with rest rict ions on parameters), exponent ial, logarit hmic, and power forms.
2 We thank an anonymous referee for point ing this out t o us.
3 For a good discussion on t ime-inconsist ent port folio st rat egies, see Dang and Forsyth (2016).
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Morgenstern ut ility, Detemple, Garcia and Rindisbacher (2003) also use the mart ingale 

approach to solve the port folio choice problem in a complete pure-diffusion model which 

may include a large number of assets and state variables with non-affne st ructures. They 

obtain the opt imal port folio st rategy using the Monte Carlo simulat ion, yet which may 

be t ime-consuming in the presence of a large number of assets and state variables.

As discussed in Bardhanand and Chao (1996), a jump-diffusion model with random

jump sizes is inherent ly incomplete. One of the key assumpt ions in the aforement ioned 

papers is the completeness of the market . In general, it is a daunt ing task to explicit ly 

solve the opt imal port folio choice problem in an incomplete market . One usually resort s 

to either the HJB equat ion or the mart ingale method. As is well known, it is diffcult to 

apply the HJB equat ion to a high-dimensional problem in both complete and incomplete 

markets. Furthermore, it is very challenging to use the mart ingale method in an incom- 

plete market since there are infinitely many mart ingale measures. To solve the opt imal 

port folio problem in incomplete pure-diffusion models, approximat ion methods are pro- 

posed in Bick, Kraft and Munk (2013) and Haugh, Kogan and Wang (2006), respect ively. 

Yet , their solut ions are numerically approximated and thus may suffer inaccuracy.

In cont rast , by assuming quadrat ic condit ions in pure-diffusion models, Liu (2007)

explicit ly solves the opt imal dynamic port folio choice problem in both complete and in- 

complete markets, up to the solut ions to a set of ordinary different ial equat ions (ODEs). 

Specifically, he solves a set of ODEs by guessing the exponent ial linear form of the indi- 

rect value funct ion without simulat ion. This method is widely used in the asset allocat ion 

literature of pure-diffusion models nowadays. However, much less is known about the con- 

dit ions that can lead to the ODE-based analyt ic solut ion to the opt imal port folio choice 

problem in jump-diffusion models especially when both stock prices and state variables are 

allowed to jump.4 The object ive of the present paper is then to generalize the afore-
4 Mount ing empirical evidence suggest s t hat t he jump risk needs t o be captured in asset price processes 

and other risk factors, such as volat ility processes, in addit ion t o t he diffusion risk. For example, Eraker, J 
ohannes and Polson (2003) and Eraker (2004) among many others find st rong evidence for co-jumps in 
volat ility and stock returns, i.e., t hat a big jump in stock prices is likely t o be associat ed with a big jump 
in volat ility. Besides, Das (2002) shows that a class of Poisson-Gaussian models offer a good st at ist ical 
descript ion of short rat e behavior and capture empirical features of t he dat a which would not be captured 
by Gaussian models (We thank an anonymous referee for bringing this issue t o our at t ent ion). In t he 
meant ime, it is well understood that jump risk in stock prices has a subst ant ial impact on port folio
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ment ioned ODE-based approach in pure-diffusion models to jump-diffusion models which 

nest the former (e.g., Liu (2007)) as special cases.

More specifically, we first consider constant relat ive risk aversion (CRRA) ut ility func-

t ions and provide the condit ions under which the indirect value funct ion in jump-diffusion 

models has an exponent ial linear form. The indirect value funct ion and the opt imal port - 

folio st rategy can then be obtained by solving a set of ODEs. By providing an effcient 

two-step approach, we further extend our ODE-based method to more general HARA 

ut ility funct ions given their popularity in financial economics.5 Our result s show that the 

indirect ut ility funct ion for a HARA ut ility takes a form significant ly different from the 

exponent ial linear one for a CRRA ut ility. To the best of our knowledge6, we are not 

aware of any semi-analyt ical solut ion to the dynamic asset allocat ion problem in jump- 

diffusion models where risk-averse investors face jumps in mult iple risky assets and state 

variables. More important ly, the semi-analyt ical solut ions may great ly facilitate economic 

insights and enhance our understanding of investors’ behavior towards jump risks.

Our paper is closely related to the work of J in and Zhang (2012) in that they use a 

decomposit ion approach based on an HJB equat ion to solve a port folio select ion problem 

that includes a large number of risky assets and state variables. But their state variables 

are pure-diffusion processes and the indirect value funct ion is evaluated by the Monte Carlo 

simulat ion. Our paper also relates to the work of Das and Uppal (2004) and

Aı̈t -Sahalia, Cacho-Diaz and Hurd (2009). These studies solve the port folio select ion

problem in jump-diffusion models, but without state variables. In cont rast , we obtain semi-

analyt ical solut ions to the opt imal port folio st rategy under jump-diffusion models that 

include a large number of assets and state variables. These solut ions therefore allow

select ion, see, for example, Liu, Longst affand Pan (2003) and Das and Uppal (2004).
5 More import ant ly, Peret s and Yashiv (2016) show that t he HARA ut ility is more fundamental t o

economic analysis. T his funct ional form is t he unique one which sat isfies basic economic principles in an 
opt imizat ion context . T herefore, t he use of HARA ut ility funct ions is not just a mat t er of convenience or 
t ract ability, but rather emerges from economic reasoning, i.e., it is inherent in t he economic opt imizat ion 
problem.

6 It should be not ed that for t he logarit hmic ut ility maximizat ion under jump diffusions, semi-analyt ical
solut ions are generally available primarily due t o it s myopic nature of t he opt imal port folio st rat egy. For 
example, in a general semimart ingale market model, Goll and Kallsen (200) explicit ly solve t he prob- 
lem of maximizing the expect ed logarit hmic ut ility from consumpt ion or t erminal wealth. We thank an 
anonymous referee for suggest ing this discussion.
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us to solve in a computat ionally effcient way the dynamic port folio select ion problem in

jump-diffusion models where both stock returns and state variables can jump.

By using the theoret ical framework developed in this paper, we study the problem of 

how jumps in stock returns affect the opt imal cash-bond-stock port folio in a dynamic asset 

allocat ion model where an investor can t rade one stock, two bonds, and cash. Especially, 

we revisit the asset allocat ion puzzle raised in Canner, Markiw and Weil (1997). They 

document the empirical evidence that st rategic asset allocat ion advices tend to recommend 

a higher bond/ stock rat io for a more risk-averse investor. Several studies have at tempted 

to explain the rat ionality of this puzzle. For instance, Brennan and Xia (2000) and 

Bajeux-Besnainou and Portait (2001) relate the puzzle to a hedging component in the 

stochast ic interest rate and provide elegant solut ions to the asset allocat ion puzzle. All 

of these studies assume that both the short -term interest rate and stock returns follow 

pure diffusion processes. Our framework generalizes these studies by incorporat ing jumps 

into stock returns and examining the role of risk aversion in determining the opt imal

cash-bond-stock port folio. In part icular, we show both theoret ically and numerically

that unlike the pure-diffusion models in Brennan and Xia (2000), Bajeux-Besnainou and 

Portait (2001) and Lioui (2007), there is no clear-cut answer to the bond/ stock rat io 

puzzle in jump-diffusion models even despite the aforement ioned hedging assumpt ion. In 

other words, the puzzle it self cannot be rat ionalized by the hedging assumpt ion in the 

presence of jumps in stock returns. The underlying reason for this is that an investor 

responds dist inct ly to diffusion risk premium and jump risk premium when there is an 

increase in the investors’s relat ive risk aversion coeffcient .

In summary, our paper makes three cont ribut ions to the literature on port folio choice.

First , our work generalizes the popular ODE-based approach used in pure-diffusion mod- 

els to jump-diffusion models for CRRA ut ility funct ions, which may great ly alleviate 

computat ional efforts in seeking the opt imal port folio st rategy. Second, we provide an 

effcient two-step method for solving HARA preference-based ODEs. This then extends 

the applicability of our approach within a family of general ut ility funct ions. Finally, we 

illust rate that the hedging assumpt ion in pure-diffusion models fails to resolve the asset 

allocat ion puzzle in jump-diffusion models, which further provides a new channel for us
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to understand the nature of this well-known puzzle.

The rest of the paper is organized as follows. In Sect ion 2, we present the framework for 

Merton’s dynamic port folio select ion problem in jump-diffusion models and then present 

affne condit ions in the jump-diffusion models. In Sect ion 3, we use the affne condit ions 

to explicit ly solve the indirect value funct ion and the opt imal port folio st rategy in terms 

of the solut ions to a set of ODEs for general HARA preferences. In Sect ion 4, we derive 

semi-analyt ical solut ions to the opt imal bond-stock mix and especially invest igate how 

jump risk in stock returns affects bond/ stock rat ios. Sect ion 5 is devoted to a calibrat ion 

exercise in order to illust rate numerically the theoret ical result s in Sect ion 4. We conclude 

in Sect ion 6. All proofs are collected in Appendices.

2 The Economy

In this sect ion, we formulate a model of incomplete financial markets in a cont inuous t ime 

economy where asset prices and state variables follow a mult idimensional jump-diffusion 

process on the fixed t ime horizon [0;T ] (0 < T < ∞ ). We consider a complete probability 

space (Ω;F ;P ), where Ω is the set of states of nature with generic elements ! s, and F is 

the �-algebra of observable events, while P is a probability measure on (Ω;F ).

We use an l-dimensional vector X t = (X 1t ; :::;X lt )  to denote the state variables of

the economy where the convent ion  stands for the t ranspose of a vector or a mat rix. 

The state variables X t may include stochast ic volat ility and stochast ic interest rate as it s 

components. We assume that state variables X t follow a jump-diffusion process

dX t = bx (X t )dt + �x (X t )dB X (t) + �x (X t )(Y x • dN (t)) (1)

where bx (X t ) is an l-dimensional vector funct ion, �x (X t ) is an l × l matrix funct ion of X t , 

and �x (X t ) is an l × m matrix funct ion of X t , respect ively. B X (t) = (B X (t); :::;B X (t))  

is an l-dimensional standard Brownian mot ion; N (t) = (N 1(t); :::;N m (t))  is an m - 

dimensional mult ivariate Poisson process with N k (t) denot ing the number of type k jumps 

up to t ime t , while Y x = (Y x ; :::;Y x )  represents an m -dimensional jump size process
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with Y x denot ing the amplitude of the type k jump condit ional on the occurrence of the k -

th jump. For any two n-dimensional vectors x = (x 1; :::;x n )  and y = (y1; :::;yn ) , we denote 

the component -wise mult iplicat ion as x • y = (x 1y1; :::;x n yn ) . Note that unlike Liu 

(2007) and J in and Zhang (2012), the above specificat ion of X t includes jumps in state 

variables. For instance, we can incorporate jumps into a volat ility process. By let t ing

Y x = 0, our jump-diffusion model reduces to it s pure-diffusion counterpart for the state 

variables X t .

The uncertainty of the economy is also generated by a d-dimensional standard Brow-

nian mot ion B S (t) = (B S (t); :::;B S (t))  which drives stock prices defined below. Assume 

B S (t) and B X (t) are correlated and E [dB X (t)d(B S (t)) ] = �t dt , for some l × d matrix

�t . The informat ion flow in the economy is given by the natural filt rat ion, i.e., the right -

cont inuous and augmented filt rat ion {F t } t∈[0;T ] = {F S ∨F X ∨F N ; t ∈ [0;T ]} , where 

F S = �(B S (s); 0 ≤ s ≤ t), F X = �(B X (s); 0 ≤ s ≤ t) and F N = �(N (s); 0 ≤ s ≤ t). 

We suppose that observable events are eventually known, i.e., F = FT . For illust rat ive 

purposes, we assume that N k admits stochast ic intensity �k (X t ) that represents the rate 

of the jump process at t ime t .

The market includes n + 1 assets t raded cont inuously on the t ime horizon [0;T ]. One of 

these assets, risk-free, has a price S 0(t) which evolves according to the different ial equat ion

dS 0(t) = S 0(t)r(X t )dt; S 0(0) = 1:

The remaining n assets, called stocks, are risky, and their prices are modeled by the linear 

stochast ic different ial equat ion

dS i (t)
S i (t−) 

= bi (X t )dt + �b(X t )dB S (t) + �q(X t )(Y s • dN S (t))

where i = 1; :::;n , N S (t) = (N 1(t); :::;N n − d(t)) , and Y s = (Y s ; :::;Y s− d) , with Y s 

denot ing the amplitude of the type k jump condit ional on the occurrence of the k -th 

jump. Here �b(X t ) is the d-dimensional diffusion coeffcient row vector and �q(X t ) is 

the (n − d)-dimensional jump coeffcient row vector. In part icular, the Brownian mot ions
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1−γ , ∀x > 0;

−∞, ∀x ≤ 0,
(2)

where γ(̸= 1) is the relative risk aversion (RRA) coefficient. We will solve the op-

timal portfolio choice problem for more general HARA utility functions in the next

section. Specifically, we consider an investor with the utility function U(x), endowed

with some initial wealth w0 that is invested in the above-mentioned n + 1 assets. Let

π(t) = (π1(t), ..., πn(t))
⊤ denote a trading strategy, where the Ft-predictable πi(t) is the

proportion of the total wealth invested in the i-th risky asset held at time t. Furthermore,

π(t) satisfies the standard square-integrability condition discussed in Bremaud (1981).

Moreover, the portfolio policy π(t) has an associated wealth process Wt that evolves as

Wt = W0 +

∫ t

0
r(s)Wsds+

∫ t

0
Wsπ

⊤(s)(b(s)− r(s)1n)ds

+

∫ t

0
Wsπ

⊤(s)Σb(Xs)dB
S(s) +

∫ t

0
Ws−π

⊤(s−)Σq(Xs)(Y
s • dNS(s)) (3)

where b(t) = (b1(Xt), ..., bn(Xt))
⊤, Σb(Xt) is an n × d matrix with σbi being its i-th row,

Σq(Xt) is the n× (n− d) matrix with σqi being its i-th row. Here we use 1n to denote the

n-dimensional column vector of ones. The portfolio policy π(t) is said to be admissible if

the corresponding wealth process satisfies Wt ≥ 0 almost surely. We use A(w0) to denote

the set of all admissible trading strategies. Then, Merton’s portfolio choice problem states

represent frequent small movements in stock prices, while the jump processes represent 

infrequent large shocks to the market . Assuming n − d ≤ m , the jumps N S (t) can be 

regarded as common jumps in stock returns and state variables.

To obtain the semi-analyt ical solut ions to the opt imal port folio choice problem, we now 

turn to the assumpt ion for affne models. In this paper, we focus on Merton’s problem of 

maximizing the expected ut ility from the terminal wealth.7 In this sect ion, for illust rat ive 

purposes, we follow the literature to consider the CRRA ut ility funct ion given by

U(x ) =
; ∀x > 0;

−∞ ; ∀x ≤ 0;
(2)

where (= 1) is the relat ive risk aversion (RRA) coeffcient . We will solve the op-

t imal port folio choice problem for more general HARA ut ility funct ions in the next 

sect ion. Specifically, we consider an investor with the ut ility funct ion U(x ), endowed 

with some init ial wealth w0 that is invested in the above-ment ioned n + 1 assets. Let

�(t) = (�1(t); :::;�n (t))  denote a t rading st rategy, where the F t -predictable �i (t) is the

proport ion of the total wealth invested in the i-th risky asset held at t ime t . Furthermore,

�(t) sat isfies the standard square-integrability condit ion discussed in Bremaud (1981). 

Moreover, the port folio policy �(t) has an associated wealth process W t that evolves as

W t = W0 +
∫ t

r(s)W s ds +
∫ t

W s � (s)(b(s) − r(s)1n )ds
∫ t

0 ∫ t
+ W s � (s)Σ b(X s )dB S (s) +

0
W s− � (s−)Σ q(X s )(Y s • dN S (s)) (3)

where b(t) = (b1(X t ); :::;bn (X t )) , Σ b(X t ) is an n × d matrix with �b being it s i-th row, 

Σ q(X t ) is the n × (n − d) mat rix with �q being it s i-th row. Here we use 1n to denote the n-

dimensional column vector of ones. The port folio policy �(t) is said to be admissible if the 

corresponding wealth process sat isfies W t ≥ 0 almost surely. We use A (w0) to denote the 

set of all admissible t rading st rategies. Then, Merton’s port folio choice problem states
7 A semi-analyt ical solut ion can be obt ained for t he opt imal port folio choice problem with t he ut ility 

funct ion defined by (2) in Liu (2007) when the Brownian mot ions in prices and st at e variables are t he 
same, namely, B X (t) = B S (t). T his condit ion is sat isfied in t he applicat ions in Sect ion 4.
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that the investor at tempts to maximize the following quant ity

u(w0;X 0) = max J (w0;X 0) = E [U(WT )] :
�∈A (w0 )

We consider the general case: n − d < m because, by let t ing Y x = 0;k = m 0 + 1; :::;m ,

we can get the model where there are only m 0 (≤ n − d) types of jumps in state variables. 

Using the standard approach to stochast ic cont rol and an appropriate Ito’s lemma for

jump-diffusion processes, the opt imal port folio policy � and the corresponding indirect

value funct ion J of the investor’s problem then follow the HJB equat ion:

{
0 = max

�
J t + 

1
2

W 2� Σ bΣ b �J W W + W t [� (b(t) − r1n ) + r]JW

+ bx (t)JX + W t � Σ b�t �x (t)JW X + 
1
2

T r(�x (t)�x (t)JX X ) (4)

+
n − d

k = 1

�k E [J (W t + W t � �qk Y s ;X t + Y x ; t) − J (W t ;X t ; t)]

+
∑m

k = n − d+ 1

�k E [J (W t ;X t + Y x ; t) − J (W t ;X t ; t)]

where �qk denotes the k -th column of �q. The above HJB equat ion nests the HJB 

equat ion (3) for the pure-diffusion model in Liu (2007) as a special case by let t ing n−d = 0. 

In other words, we generalize the models in Liu (2007) by incorporat ing jumps into stock 

returns and state variables. It is well-known that in the pure-diffusion model in Liu (2007),

the indirect value funct ion J (W t ;X t ; t) is conjectured to have the form: J (W t ;X t ; t) =
W 1−

1−

[
eA (t )+ B (t ) X t

]
, where A (t) is a scalar and B (t) is an l × 1 vector. Then, under

the quadrat ic condit ions, a set of ODEs for the funct ions A (t) and B (t) are obtained by 

subst itut ing the funct ion J and the opt imal port folio st rategy � into the HJB equat ion 

(4). As shown below, the argument in Liu (2007) does not t rivially apply to jump-diffusion 

models because the port folio policy � may depend on the state variables X t .

We now illust rate the diffculty caused by jumps. More specifically, compared with the

HJB equat ion (3) in Liu (2007) for pure-diffusion models, the jump terms in the above 

HJB equat ion create new diffcult ies for semi-analyt ical solut ions to the opt imal port folio
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choice problem in jump-diffusion models. We now consider a simple case where there are

no jumps in the state variables X t by let t ing Y x = 0;k = 1; :::;n − d. As in Liu (2007), we

subst itute the indirect value funct ion J (W t ;X t ; t) = W 1− 
(f (t;X t )) into (4) and obtain

the following form for the last term:

n − d

E [J (W t + W t � �qk Y s ;X t ; t) − J (W t ;X t ; t)]
k = 1

= 
W 1− 

(f (t;X t ))
n − d

k = 1

�k (X t )E [(1 + � �qk Y s )1− − 1]:

As is well-understood from, for instance, Liu (2007), in order to gain an explicit solut ion for

the indirect value funct ion J (W t ;X t ; t) of the form J (W t ;X t ; t) = W 1− eA (t )+ B (t ) X t ,

the term E [(1+ � �qk Y s )1− ] should be an affne funct ion of the state variables X t . This 

term, however, is hard to be an affne funct ion of the state variables X t unless the opt imal

jump exposure � �qk is a determinist ic funct ion of t ime t , because the funct ion x 1− is

generally not an affne funct ion. Based on this observat ion and inspired by the result s in Liu 

(2007) and the result of decomposit ion of opt imal port folio weights in J in and Zhang (2012), 

we are able to specify an affne model8 which leads to ODEs for A (t) and B (t) given in 

P roposit ion 1 in Sect ion 3.

More specifically, by set t ing ak = E (Y s );k = 1; :::;n − d, we assume that the mat rix 

Σ = [Σ b;Σ q] is invert ible. The market price of risk is then represented by

 �
b

 = Σ − 1(b(t) − r1n + Σ q(�• a)); (5)

where �• a = (�1a1; :::;�n − dan − d) ;�b = (�b; :::;�b)  and �q = (�q; :::;�q
− d) . As shown 

in Sect ion 4, �b denotes the risk premium for the Brownian mot ion B S ; i = 1; :::;d, while

�q represents the risk premium for the jump N S ;k = 1; :::;n − d, in the stock returns. We

further make the following assumpt ions:
8 Here, for exposit ional purposes, we consider affne models only as it is st raight forward to generalize our 

result s t o quadrat ic processes defined in Liu (2007).
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A ssumption 1

bx (X ) = k − K X ; �x �x  = h0 + h1 · X ;

r = �0 + � X ; �b �b = H0 + H X ; (6)

�x �t �b = g0 + g1X ; �x �t �t �x  − �x �x  = l0 + l1 · X ;

� = �0 + �1X ; �q = �0�k ;k = 1; :::;n − d;

where k;�1;H1 and g0 are l× 1 constant vectors; K ;h0;g1 and l0 are l× l constant mat rices;

�0;H0 and �0 are constants; �0 is an (n − d)× 1 constant vector; �1 is an (n − d)× l constant

matrix; h1 = h i
1j k ; i; j ;k = 1; :::; l and l1 = li 

j k ; i; j ;k = 1; :::; l are constant tensors with 

three indices (one upper index and two lower indices). In part icular, h1 · X is an l × l 

matrix whose (j ;k ) element is given as follows:

∑l

(h1 · X )j k = h i
1j k X it :

i= 1

The l × l matrix l1 · X is defined exact ly in the same manner. The above assumpt ions 

except the last two are similar to those made in Liu (2007), while the last two assumpt ions 

on jump intensity and jump risk premium are also standard in literature, and the last 

assumpt ion states that the risk premium for the k -th jump is proport ional to it s intensity.

3 The Portfolio Choice P roblem

Given the affne models in the proceeding sect ion, we now explicit ly solve the opt imal 

port folio choice problem for hyperbolic absolute risk aversion (HARA) ut ility funct ions 

up to solving a set of ODEs. The most popular ut ility funct ions used in almost all 

applied theories and empirical studies in finance belong to the class of linear risk tolerance 

(LRT) or HARA ut ility funct ions, including the quadrat ic funct ion (with rest rict ions on 

parameters), the CRRA ut ility, the exponent ial ut ility and the logarithmic ut ility as 

special cases. Therefore, the explicit solut ions to the port folio choice problem for HARA 

preferences may cast new light on investors’ behavior towards dist inct risk factors in a
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stochast ic investment environment . More specifically, a HARA ut ility funct ion is given

by

U(x ) =
0

1−
(x − �)1− ; ∀x > �

: (7)

For � = 0; U(x ) reduces to a CRRA ut ility funct ion (2). Here we consider a realist ic 

case with �> 0,9 that is, the relat ive risk aversion is decreasing with wealth. In Bajeux- 

Besnainou and Portait (2001), they interpret the constant �as a “subsistence level”.

Canakoglu and Ozekici (2012) consider the opt imal port folio select ion problem in

a cont inuous-t ime pure-diffusion set t ing where the market states follow Markov pro- cesses. 

They ut ilize the HJB-based approach to obtain semi-analyt ical solut ions for the CRRA 

ut ility, the exponent ial ut ility and the logarithmic ut ility, respect ively. In Bajeux- 

Besnainou and Portait (2001), they obtain closed-form solut ions to the opt imal dynamic 

port folios for the HARA ut ility in pure-diffusion models. Specifically, they employ the 

duality result s developed by Karatzas, Lehoczky and Shreve (1987), substant ially rooted 

in the key assumpt ion of the existence of a unique equivalent mart ingale measure in a 

complete market . In cont rast , the markets in this paper are incomplete due to random 

jump sizes and thus there exist infinitely many equivalent mart ingale measures. As in J in, 

Luo and Zeng (2016), to solve an opt imal dynamic port folio problem for the HARA un- 

t ility, we resort to the duality result s for incomplete markets developed by Kramkov and 

Schachermayer (1999) in combinat ion with the result s developed for the CRRA ut ility. 

But our result s differ from J in, Luo and Zeng (2016) in that we incorporate jumps into 

state variables and solve the opt imal port folio problem based on a set of ODEs instead 

of a simulat ion-based approach used in their paper. Our main result s are summarized in 

the following two proposit ions.

9 For t he case �< 0, similar t o t he result s in Sect ion 6.3 of Merton (1990), t he unconst rained policies 
derived by the method in t he present paper may violat e t he nonnegat ivity condit ion on wealth. T hus, we 
need to solve t he const rained problem with a posit ive wealth process. T his is beyond the scope of t he 
present paper and we leave it as a future research.
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P roposit ion 1 Under A ssumption 1, the indirect value function is represented as

J (W t ;X t ; t) =

(
W t − �e (t )− A (t )+ ( (t )− B (t )) X t

1 −

) 1−
[
eA (t )+ B (t ) X t

]
(8)

where A (t), B (t), (t) and (t) are obtained by ODEs in A ppendix A .

P roof. See Appendix A.

The result in (8) suggests that unlike the indirect ut ility funct ion for a CRRA ut ility

by set t ing �= 0, the one for a HARA preference cannot be separated into a product of 

two funct ions, one depending on the wealth W and the other on the state variables X t and 

t ime t . This result extends the literature on the opt imal port folio choice with a HARA 

ut ility. For detailed discussions, for example, Merton (1990) and Perets and Yashiv (2016) 

suggest that the above decomposit ion holds t rue due to constant investment opportunit ies.

P roposit ion 2 Under A ssumption 1, the optimal portfolio weight �  = (� ;:::;� ) is

given by

� =
(

�e 1; :::;�e d;�e 1; :::;�e (n − d)

)
Σ − 1 (9)

where the optimal e is given by

�e  = 
W − �g(t;X t )

[
eb

+ �t �x B (t)

]

+ 
�Σ b�t �x ( (t) − B (t))g(t;X t )

W
(10)

and e k solves the following optimization problem:

(
max

�e qk ∈F k
�eqk W (W − �g(t;X t ))− (eq − �k ak )

+
�k

1 −
E W (1 + ��qk Y s ) − �g(t;X t )e (t ) �x 

k Y x
) 1−

e B (t ) �x 
k Y x 

(11)

for k = 1; :::;n − d, where F k is the set of feasible k-th jump exposures satisfying the jump 

induced no-bankruptcy condition, namely, F k = {x |x ·y > −1;∀y ∈A k }, with A k denoting 

the support of the k-th jump size Y s , and g(t;X t ) = e (t )− A (t )+ ( (t )− B (t )) X t .

P roof. See Appendix B.
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The second term in (10) indicates that as opposed to a CRRA utility (η = 0), a HARA

utility (η ̸= 0) has a separate hedging demand for the interest rate related risk. This term

will disappear if the interest rate is a constant since in this case, β(t) = γB(t) as can seen

in the proof of Appendix A. Furthermore, letting η = 0 in (11) and using Assumption 1

gives the optimal jump exposure problem for a CRRA utility:

max
π̃qk∈Fk

(
π̃qk

(
θ0k − ak

)
+

1

The second term in (10) indicates that as opposed to a CRRA ut ility (�= 0), a HARA 

ut ility (�= 0) has a separate hedging demand for the interest rate related risk. This term

will disappear if the interest rate is a constant since in this case, (t) = B (t) as can seen

in the proof of Appendix A. Furthermore, let t ing �= 0 in (11) and using Assumpt ion 1 

gives the opt imal jump exposure problem for a CRRA ut ility:

max
�e qk ∈F k

(
�eqk

(
�0 − ak 

) 
+

1
1 
−

E
[
(W (1 + ��qk Y s ))1− e B (t ) �x 

k Y x
] )

(12)

The object ive funct ion in the opt imizat ion problem in (12) does not include the state 

variables X t and thus, for each k , the opt imal jump exposure �e k is determinist ic.10

This just ifies the conjectured exponent ial linear form of the indirect value funct ion for a

CRRA ut ility. It is worth ment ioning that despite the determinist ic jump exposure e k , 

the opt imal port folio policy � is st ill dependent on the state variables X t through the 

opt imal diffusion exposures (e 1; :::;�e d) and the mat rix Σ . This state-dependent port folio 

st rategy reflects the investor’s market t iming behavior.

As we discuss in Appendix B, the conjecture-based approach used in Liu (2007) is very 

likely inapplicable to a HARA ut ility in jump-diffusion models as it is hard to subst itute 

the opt imal jump exposure in (11) into the HJB equat ion. Two reasons account for this 

diffculty. On the one hand, as shown in the first -order condit ion for �e k in Appendix 

A, it is generally impossible to solve the opt imal e k in closed form unless all jumps are 

constants. On the other hand, the opt imizat ion problem in (11) shows that the jump 

exposure �e k depends on both the wealth W and the state variables X t and thus is not 

determinist ic, making it hard to use the conjecture-based method. As a result , we propose 

a two-step approach to solving the opt imal asset allocat ion problem for the HARA ut ility 

funct ion specified in (7) summarized as follows:

(i) In the first step, the funct ions (t); (t);A (t) and B (t) are determined by solving the

opt imal asset allocat ion problem for a CRRA ut ility funct ion in (2);
10 It will be shown in Appendix A that t he result of t he det erminist ic jump exposure e k of t he CRRA 

ut ility funct ion is part icularly useful when we solve t he opt imal port folio choice problem in closed form 
with a more general HARA ut ility funct ion.
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(ii) In the second step, the indirect ut ility funct ion J (W t ;X t ; t) of the HARA ut ility 

funct ion is evaluated by (8) and then the opt imal port folio weights are determined

through (9), (10) and (11).

Our two-step approach therefore cont ributes to the literature in solving the opt imal port - 

folio choice problem for HARA preferences effcient ly in jump-diffusion models.

4 D ynamic Asset A llocation for Stocks, Bonds and Cash

We now apply the result s in Sect ion 3 to examine the impact of jumps in stock returns

on the opt imal cash-bond-stock mix in a dynamic model where an investor can t rade 

one stock, two bonds, and cash (or the called money market account ). A closely related 

problem is the asset allocat ion puzzle raised in Canner, Markiw and Weil (1997). They 

empirically document that the st rategic asset allocat ion advice tends to recommend a 

higher bond/ stock rat io for an investor with more risk aversion. This finding, however, is 

inconsistent with Tobin (1958)’s Separat ion Theorem that the rat io of bonds to stocks in 

the opt imal port folio is the same for all investors regardless of their risk aversion.

Brennan and Xia (2000) and Bajeux-Besnainou and Portait (2001) relate this puzzle

to a hedging component in the stochast ic interest rate and provide elegant solut ions to 

the asset allocat ion puzzle. More specifically, as pointed out by Lioui (2007), the puzzle 

can be resolved under the assumpt ion that one or several bonds can perfect ly hedge the 

risk from the interest rate and the market price of risk. Yet , Lioui (2007) argues that 

there is no clear-cut answer to the puzzle if the hedging assumpt ion is invalid. All of these 

studies assume that the short -term interest rate and stock returns follow pure-diffusion 

processes. This sect ion at tempts to generalize these studies by incorporat ing jumps into 

stock returns11 and examining the role of risk aversion in determining the opt imal cash- 

bond-stock mix in the presence of jump risk. Interest ingly, we will show that unlike the 

pure-diffusion model in Lioui (2007), there is no clear-cut answer to the bond/ stock rat io
11 For simplicity, we do not include jumps in t he short -t erm int erest rat e which is a st at e variable in 

t his sect ion. In Hong and J in (2016), by using P roposit ions 1 and 2 developed in t he present paper, t hey 
show that jumps in volat ility process play a significant role in variance swap investment s in a model where 
volat ility is a st at e variable.
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puzzle in a jump-diffusion model even despite the aforement ioned hedging assumpt ion. 

This finding demonst rates that the puzzle cannot be rat ionalized by the hedging assump- 

t ion in the presence of jumps and thus st rengthens the claim made by Lioui (2007) that 

the asset allocat ion puzzle is st ill a puzzle.

Like Lioui (2007), we adopt a two-factor term st ructure model that is a simplified

version of the mult i-factor models in Sangvinatsos and Wachter (2005). We extend it by 

adding a jump component in the stock price. The model assumes the following dynamics 

under the physical measure P :

r(X (t); t) = �0 + � X (t);

dX (t) = K (�− X (t))dt + �X dZ (t); (13)

where r(t) is the short -term interest rate; X (t) is a 2 × 1 vector of state variables; Z (t) = 

(Z 1(t);Z 2(t))  is a standard 2-dimensional Brownian mot ion; �0 ∈R ;� ∈R 2× 1;K ∈

R 2× 2;� ∈ R 2× 1;�X = (�X i j )1≤ i;j ≤ 2 is a 2 × 2 non-singular mat rix, and all of these

parameters are assumed to be constants.

For simplicity, we incorporate only one type of jump into the stock returns. We specify 

the Radon-Nikodym derivat ive as dQ
P = �t = �Z �N as follows:

�Z = �Z exp
(
−Λ̄(t) dZ (t) − 

1 
∫

0

t
¯(t) ¯(t) dt

)

N (t )

�N = �N  #(t i ) (t i ; z i ) exp
i= 1

( ∫

0

t ∫

A
(1 − #(s) (s;z ))�(X s )Φ(s;dz )ds

)

where Λ̄(t) = �̄1 + ¯2X (t), ¯1 ∈R 2× 1 is a constant vector; ¯2 ∈R 2× 2 is a constant mat rix;

t i is the i− th jump t ime up to t; z i is the corresponding jump size; #(s) and  (s;z ) are

posit ive stochast ic processes, and  (s;z ) sat isfies the relat ionship of
∫

A  (t; z )Φ(t;dz ) =

1,where A and Φ(t;dz ) are the support and dist ribut ion of the jump size, respect ively. 

By Theorem T10 of Bremaud (1981), under the probability measure Q, the intensity �Q 

is #� and the density funct ion ΦQ (t;dz ) is  (z )Φ(t;dz ).

Due to no jumps in the interest rate, a zero-coupon can be priced by using Radon-
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Pi(t)
= (A2(τi)σXΛ̄(t) + r(t))dt+A2(τi)σXdZ(t), i = 1, 2, (14)

where τi = Ti − t and Ti denotes the maturity date of bond i with τ1 ̸= τ2, while

A2(τi) = (A21(τi), A22(τi)) is a 1×2 row vector for i = 1, 2. And moreover, from Appendix

A in Sangvinatsos and Wachter (2005), A2(τ) solves the following ODE

dA2(τ)

Nikodym derivat ive �Z . As shown in Sangvinatsos and Wachter (2005), the nominal bond 

price evolves as follows:

dPi (t)
Pi (t)

= (A 2(�i )�X Λ̄(t) + r(t))dt + A 2(�i )�X dZ (t); i = 1;2; (14)

where �i = Ti − t and Ti denotes the maturity date of bond i with �1 = �2, while A 2

(�i ) = (A 21(�i );A 22(�i )) is a 1× 2 row vector for i = 1;2. And moreover, from Appendix A 

in Sangvinatsos and Wachter (2005), A 2(�) solves the following ODE

dA 2(�)
d�

= −A 2(�)(K + �X ¯2) − � ; (15)

with the boundary condit ion A 2(0) = 01× 2.

To explain the asset allocat ion puzzle, Lioui (2007) assumes that only the short rate

is stochast ic while the market prices are determinist ic. For comparison, we follow Lioui 

(2007) to assume that the price of risk Λ̄(t) is a constant vector by set t ing ¯2 = 02× 2, and 

then solve the equat ion in(15) to obtain the following

A 2(�) = � (e− K � − 1)K − 1: (16)

Denote the vectors of volat ility and risk premia of the two bonds by

�P =  A 2(�1)�X

A 2(�2)�X

 =  A 2(�1)

A 2(�2)
�X = A 2�X ;

and �P = �P Λ̄(t), respect ively.

To compare with the result s of the bond/ stock rat io in a pure-diffusion model in 

Brennan and Xia (2000), we assume that the investor who has a CRRA ut ility funct ion is 

allowed to invest in two bonds, one stock, and cash. In addit ion to the above two bonds, 

we assume there exist both an instantaneously riskfless money market account with the

17

�

�



price B (t) and one stock index with the price S (t) where B (t) and S (t) sat isfy

dB (t)
B (t)
dS (t)
S (t)

= r(t)dt; (17)

= (�S + r(t))dt + �S dZ (t) + J dN (t) − gP �P dt; (18)

where �S = �S Λ̄(t) + gP �P − gQ �Q ; �S = (�S 1;�S 2); gP and �P are the expected jump 

size and jump intensity under the physical measure P , respect ively; gQ and �Q are the 

expected jump size and jump intensity under the risk neut ral measure Q, respect ively. 

Specifically, �S is the total risk premium for the stock with the term �S Λ̄(t) compensat ing 

for the diffusion risk, while the term gP �P − gQ �Q compensates for the jump risk.

This specificat ion implies that the two bonds and cash are relat ively safer than stock 

during a turbulent period when jump occurs. As is well understood, jumps in stock returns 

have significant impacts on the opt imal port folio choice. For instance, Liu, Longstaffand 

Pan (2003) demonst rate that in the presence of jumps in stock returns investors are less 

willing to take levered or short posit ions than in a standard diffusion model. Furthermore, 

even when the chance of a large jump is remote, an investor has st rong incent ives to 

significant ly reduce her exposure to the stock market . The reason is that , if a jump 

occurs, invested wealth can change significant ly from it s current value, and such changes 

cannot be hedged through cont inuous rebalancing, result ing in potent ially large losses for 

investors with levered or short posit ions. In stark cont rast , the changes in bond prices 

can be hedged through cont inuous rebalancing as they follow pure-diffusion processes. 

A natural quest ion is: how does a risk-averse investor choose her bond-stock mix when 

facing uncertain abrupt changes in stock returns? More concretely, does a more risk-averse 

investor hold more bonds and/ or cash than a less risk-averse investor does? To answer 

these quest ions, we let � 1;� 2 and �  denote the fract ions of the wealth invested in the 

two bonds and the stock, respect ively. And hence, the remainder �C = 1− � 1 − � 2 − �  

is invested in cash. The following proposit ion presents a semi-analyt ical solut ion to the 

opt imal st rategy.
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P roposit ion 3 T he optimal portfolio weight � = (� 1;� 2;� ) is given by

[ ¯(t)  
(� 1;� 2) = + 

f 
�X 

] 
�− 1 − ˜ q�S �− 1; (19)

�  = �̃ ; (20)

where the function f (t;X t ) is given in A ppendix A , and e solves the following optimiza-

tion problem:

sup
�e q ∈F

�eq(−gQ �Q ) +
�P

1 −

∫

A
(1 + �eqz )1− Φ(dz ); (21)

where F speci es the set of feasible jump exposures satisfying the jump induced no- 

bankruptcy condition, and A and Φ(dz ) are the support and distribution of the jump 

size.

P roof. See Appendix C.

Interest ingly, Equat ion (20) shows that the demand for the stock index has a specu- 

lat ive component to gain the risk premium only from jumps as suggested by the stat ic 

opt imizat ion problem for �e , while the burden of hedging the interest rate risk and the 

market price of risk is borne by the two bonds. This result holds t rue regardless of whether 

or not �1 = T , namely, the maturity of a bond equal to the investment horizon. The reason 

underlying the results in Proposit ion 3 is that the two bonds span the risk of the interest 

rate and the market price of risk while only stock spans the jump risk. In cont rast , the 

bond port folio weights have three components. The first is the myopic demand for the 

risk premia of two diffusion risks; the second is the hedging demand against the risk stem- 

ming from the two diffusion risks; the third one is another myopic demand for the jump 

risk premium. More specifically, as shown in Appendix C, the first two components are 

ident ical to the opt imal weights in the market where the stock is not available for t rading. 

And thus, the third component determines more or fewer bonds the investor holds when 

she can t rade the stock. Although the two bonds are independent of jumps, the investor 

can gain the jump risk premium by invest ing more in the two bonds, as the two bonds 

and the stock are correlated via diffusion, suggested by the term �S �− 1.

To make the intuit ion behind the result s as clear as possible, we concent rate on a
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simple case by further assuming that the jump sizes J = gP and J = gQ are negat ive 

constants under both the physical measure P and the risk-neut ral measure Q. We follow

Sangvinatsos and Wachter (2005) to assume that the state variables X 1 and X 2 follow

the equat ions below.

dX 1(t) = K 1(�1 − X 1(t))dt + �X 11 dZ 1(t);

dX 2(t) = K 2(�2 − X 2(t))dt + �X 22 dZ 2(t); (22)

where K 1 and K 2 are posit ive constants. In this case, by (16), we have

A 2i (�) = 
e− K i � − 1

�i ; i = 1;2:
i

We further assume that X 1 is a permanent state variable with a low value of K 1 while 

X 2 is a t ransitory state variable with a high one of K 2. Like Table II in Sangvinatsos and 

Wachter (2005), we let �X 11 > 0;�X 22 > 0;�S 1 < 0;�S 2 > 0 and �S 1�X 11 + �S 2�X 22 < 0 

so that the stock returns are negat ively correlated with both the state variable X 1(t) and 

the interest rate r(t). The negat ive correlat ion between stock returns and interest rates 

has been documented in the literature (see, for example, Fama (1981) and Sangvinatsos 

and Wachter (2005)). From (14), it is easy to check that the bond return and the interest 

rate are negat ively correlated as A 21(�) < 0 and A 22(�) < 0. Furthermore, in order to 

invest igate whether or not the explanat ion of Lioui (2007) for the bond/ stock rat io puzzle 

is st ill valid in our jump-diffusion model, we assume that the maturity �1 of the first bond 

is equal to the investment horizon T . Then, the opt imal port folio weights in P roposit ion

3 are given explicit ly in the following result .

P roposit ion 4 T he optimal portfolio weight � = (� 1;� 2;� ) is given by

1 ( ¯1(t) ¯2(t) ) ( �̃  ( �S 1 �S 2
)

|A 2| �X 11 �X 22

� 2 =
1

|A 2|
−

¯1(t)
�X 11

A 22(�1) +
¯2(t)
�X 22

A 21(�1) −
|A 2|

− �S 1

�X 11 

A 22(�1) +
�S 2

�X 22 

A 21(�1) ;

� = �̃ =
1

gP gP �P − 1 ; (23)
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where |A 2| = A 21(�1)A 22(�2) − A 21(�2)A 22(�1) < 0.

P roof. See Appendix C.

The above result s suggest that Bond 1 perfect ly hedges the interest rate risk, which

is the same as a pure-diffusion model in Lioui (2007). Using the facts that A 21(�) < 

0;A 22(�) < 0; |A 2| < 0 and �S 1 < 0, we can verify that the coeffcient of �̃ in the first 

equat ion in (23) is posit ive while the one in the second equat ion in (23) is negat ive. In 

other words, to gain jump risk premia, the investor holds more short -term bonds (Bond

1) and less long-term bonds (Bond 2) to offset the posit ion in Bond 1. Meanwhile, the total 

demand for the two bonds due to jump risk is posit ive, which can be rewrit ten as

�̃  [ �S 1 
]

− 
|A

�S 2

2| �X 11 

(A 22(�2) − A 22(�1)) + 
�X 22 

(A 21(�1) − A 21(�2)) (24)

and the coeffcient of ˜ is posit ive.

We now turn to the impact of the risk aversion coeffcient on the bond/ stock rat io.

From Proposit ion 4, the bond/ stock rat io is separated into three terms that correspond 

to three part s in the port folio on the bonds: mean-variance allocat ion, hedging demand 

for interest risk, and myopic demand for jump risk. The second term is actually exploited

to explain the asset allocat ion puzzle in the literature (e.g., Brennan and Xia (2000),

Bajeux-Besnainou and Portait (2001) and Lioui (2007)). It is interest ing to invest igate

whether the rat io increases with the relat ive risk aversion coeffcient in our model here.

For this purpose, we follow Brennan and Xia (2000) to rewrite the total demand for the 

two bonds in P roposit ion 4 as:

�  = 
a 

+ 1 − 
1 
− b�̃ ;

with

[ �
a = 0

�1 (t ) (A 22(�2) − A 22(�1)) + 
�2 (t ) (A 21(�1) − A 21(�2))

] 
;

b = 1
|A 2 |

�S 1
�X 11

X 22

�S 2(A 22(�2) − A 22(�1)) + �X 22 
(A 21(�1) − A 21(�2))
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And hence, the bond/ stock rat io is obtained as:

f ( ) = 
�

 = 
( 

a − 1 
+ 1

)

S

1
�̃ 
− b; (25)

implying that by using the third equat ion in (23),

) 1
[

1
(

a − 1
) ( gQ �Q ) − 1 ( gQ �Q ) ]

1 ˜  gP ˜ gP �P gP �P

As shown below, the funct ion f ′( ) can be either posit ive or negat ive depending on the 

model parameters. For instance, we show that it can be negat ive under certain condit ions. 

For this, we consider the case of a > 1 in which the investor takes highly levered posit ions 

in bonds as documented in Table VI of Sangvinatsos and Wachter (2005) and in the 

numerical analysis in the following sect ion (Sect ion 5).

We now rewrite f ′( ) as

1 
1 − a −

1 ˜ 

(
a − 1

) ln

1 −

(
gQ �Q

gP �P

gQ �Q

gP �P

) 

:

Assuming 1 ≤ ≤ 3, we can show that f ′( ) < 0 when gQ �Q
P > g(a) =

(
a+ 2
a− 1

) 3
, that is,

the rat io related to the jump risk premium is higher than g(a) which is a funct ion of the

diffusion risk premia. Therefore, in this case, the rat io �
 is a decreasing funct ion of in

q

the range of [1;3]. The reason for this is that unlike a pure-diffusion model, the demand ˜ 

for the stock is not proport ional to 1= as indicated by the third equat ion in (23). In fact ,

�̃ decreases slower than 1= when increases in that @~  
= 1

2 gP ln
(

gQ �Q

gP �P

) (
gQ �Q

gP �P

) − 1=

and gQ �Q

gP �P increases with for gQ �Q 
> 1. In other words, the investor with more

risk aversion holds relat ively more stocks than bonds to exploit the jump risk premium 

when the premia compensated for both the jump risk and diffusion risks sat isfy the afore- 

ment ioned condit ion. This is in cont rast with the observat ions in a pure-diffusion model. 

Specifically, our jump-diffusion model reduces to a pure-diffusion model by replacing the 

jump component in stock returns with a diffusion one Z 3(t). Then, the result s in P ropo-

22
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�̃ q

f ′( ) = 
df ( 

= 1 − a − + 1 ln :
d �q �q

�q
f ′( ) = + 1 ( ) 1

gP �

B
~�

�q

q
�q

@
( ) − 1=

gP �P



sit ion 4 except �  remain unchanged. Specifically, �  = Λ3= , where Λ3 > 0 is the risk

premium for the diffusion term Z 3(t). As a result , f ( ) = (a − 1 + ) 1 − b, which is an
3

increasing funct ion of . And thus, as argued in Lioui (2007), this leads to the resolut ion

of the asset allocat ion puzzle in pure-diffusion models. In short , the rat ionality of the

bond/ stock rat io puzzle cannot be explained by the intertemporal hedging demand in the 

presence of jumps in stock returns, and thus our jump-diffusion model provides another 

channel to st rengthen the issue addressed by Lioui (2007) that the asset allocat ion puzzle 

is st ill a puzzle.

Finally, we conduct a comparat ive stat ic analysis to invest igate the effect of the jump

parameters on the cash-bond-stock mix. For simplicity, we just vary the jump intensity

�P while keeping the other parameters fixed. The third equat ion in (23) suggests that :

@�̃ 
@�P =

1

gP (�P ) 
1
 − 1

( gQ

g
�Q ) − 1 < 0;

implying that the total demand �  for the two bonds decreases with �P from (24) while 

the cash holding increases with �P . In cont rast , the bond/ stock rat io increases with �P 

by (25) if a > 1. The investor hence holds less in stocks when facing more frequent jumps. 

Namely, the investor reduces her posit ion in stocks during a turbulent t ime of the stock 

market , and also reduces her bond holding �  based on the above discussion. Interest ingly, 

the investor holds more bonds relat ive to stocks as indicated by the increasing bond/ stock 

rat io. As a result , the investor holds more cash and relat ively more bonds, reflect ing the 

phenomenon of flight -to-safety, when facing a high possibility of jump risk.

5 N umerical Results

In this sect ion, we use a numerical example to illust rate the theoret ical findings in the 

preceding sect ion. Especially, we invest igate the effect of the ext reme negat ive jump 

risk on the bond/ stock rat io. The recent financial crises have fuelled a renewed interest 

in modeling, est imat ing, and deriving the implicat ions of ext reme tail events. It has 

been documented in the literature that the dist ribut ion for ext reme events can be well
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approximated by a power law that captures the slow tail decay in financial returns. More 

specifically, we adopt the single power law dist ribut ion of Barro and J in (2011). Namely, 

let Y denote the jump size in stock returns, and the density funct ion of a random variable

Z = 1
1+ Y is given by

v(z ) = z0 z− ( + 1) ; z ≥ z0 > 1; > 0: (26)

This implies that Y is a negat ive jump with domain of (−1;1=z0 − 1] and the density 

funct ion of Y can be obtained as follows:

f Y (y) = z0 (1 + y) − 1;y ∈(−1;1=z0 − 1]: (27)

Furthermore, it can be shown that for y ∈(−1;1=z0 − 1),

P (Y ≤ y) = z0 (1 + y) :

Thus, the parameter measures the fatness of the left t ail of stock returns. In part icular,

the smaller the value of is, the fat ter the tail is, provided that the probability P (Y ≤ y)

decreases with since z0 (1 + y) < 1 for y ∈(−1;1=z0 − 1). The left panel of Figure 1

depicts the left t ail for three cases: = 5;10 and 15, showing that the jump tail for = 5

is much fat ter than the one in the other two cases.

To est imate the parameters in this model, the calibrat ion exercise below is based on

the est imates reported in Table I and II of Sangvinatsos and Wachter (2005). Specifically, 

we first init ialize the parameters of the two-factor model in (22):

�1 = �2 = 0;�X 11 = �X 22 = 1;K 1 = 0:576;K 2 = 3:343:

Next , for the interest rate, we let �0 = 0:056 as in Table I of Sangvinatsos and Wachter 

(2005) and set � = (�1;�2) ′ by matching the volat ilit ies of interest rates both in our

model and in their model. According to Table I in Sangvinatsos and Wachter (2005), the

volat ility of the interest rate they used is equal to 0.0217 (=
√

0:0182 + 0:0072 + 0:012),
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Figure 1: Tail Fatness and Jump Exposure. The first panel plots the left t ail of stock
returns with the various values of = 5:0;10:0 and 15:0, respect ively. In the second panel
illust rates the jump exposure of ˜ � corresponding to = 4:0;5:0 and 6:0 within a range of s.

while the corresponding volat ility in our model is

�= (�1;�2) ′ sat isfies 
√ 

�2 + �2 = 0:0217:12

√
�2�2

11
+ �2�2

22
=
√

�2 + �2. Then

For the stock return process, we choose it s parameters by equat ing the risk premium

in stock returns in our model to the one of the model in Sangvinatsos and Wachter (2005). 

For simplicity, we assume the jump size dist ribut ions are the same under both the physical 

probability P and the risk-neut ral probability Q while the jump frequency �Q under Q 

is larger than the jump frequency �P under P reflect ing a posit ive jump risk premium 

for the investor to hold jump risk. We set �S 1 = −0:10, �S 2 = 0:10. In Sangvinatsos

and Wachter (2005), they report the stock return’s risk premium in Tables II and III as 

[−1:255× (−0:563) + 0:572× (−0:245) + (−2:946) × (−0:219) + 14:277× 0:44]=100 = 7:49%. 

Thus, �P and gP sat isfy the following equat ion

�S 1 × (−0:563) + �S 2(−0:245) + �P gP − �Q gQ = 7:49%;

where gQ = gP = 1
1+ z0

− 1. With the parameters calibrated above, Table 1 reports

the opt imal bond/ stock rat ios. To invest igate how the bond/ stock rat io changes with the
12 T he solut ions for �= (�1 ;�2 ) ′

 are clearly not unique. T he result s report ed in Tables 1 and 2 remain 
qualit at ively similar when we vary t he parameters �1 and �2 . T his is also t he case for t he parameters in 
t he stock return process det ailed below.
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J umps (�> 0) with various s

5 10 15 20 25

2 67.1450 61.4360 61.4360 61.4360 61.4360

3 64.3945 53.0696 50.4196 50.4196 50.4196

4 63.3998 52.4153 49.3810 48.2053 47.6686

5 63.0248 52.1821 49.2377 48.1044 47.5888

6 62.9416 52.1441 49.2433 48.1316 47.6270

7 63.0192 52.2130 49.3314 48.2302 47.7313

Table 1: B ond/ Stock R at io. This table report s the opt imal bond/ stock rat ios. The relat ive
risk aversion coeffcient varies in the set {2,3,4,5,6,7} and the tail parameter ranges in the
set {5,10,15,20,25} with the other fixed parameters as follows: T = 5;�1 = �2 = 0;�X 1 1 =
�X 2 2 = 1;K 1 = 0:5760;K 2 = 3:3430;�0 = 0:0560;�1 = 0:0180;�2 = 0:0122;�P = 0:2500;�Q =
0:5000;�S 1 = −0:1000;�S 2 = 0:1000;Λ1 = −0:5630;Λ2 = −0:2450. The maturit ies of two bonds
are T and 2T , respect ively. In addit ion, �S 3 = 0:1023 and Λ3 = 0:4215 in the pure-diffusion model.

relat ive risk aversion coeffcient and the tail parameter , we vary and to test their

effects on the opt imal bond/ stock rat io in Table 1. In our set t ing, as shown in each column

where we vary only from two to seven, the opt imal bond/ stock rat io first decreases with

and then increases with . This confirms the predict ion of the theoret ical result s, that 

is, the hedging demand assumpt ion loses it s explanatory power for the asset allocat ion

puzzle in the presence of jumps in stock returns. Next , we vary the parameter . As

shown in each row of Table 1, the opt imal bond/ stock rat io decreases with across all

s. The underlying reason is that the left tail of the stock returns becomes fat ter when 

decreases and thus the investor reduces her jump exposure �̃ in stocks reflect ing her 

fear of jump risks. As a result , by (25), the bond/ stock rat io is bigger for smaller . This

is also confirmed by the right panel of Figure 1, illust rat ing how the jump exposure �̃ 

responds to and . It is clearly shown that that for a given , �̃ increases with due

to the less fear of tail risk and that for a given , �̃ decreases with due to more risk

aversion.

To compare with the pure-diffusion model discussed in the second paragraph from the 

end of the previous sect ion, we est imate the model by matching the first two moments

in the pure-diffusion model and jump-diffusion model with = 5:0. The second column

under ”No jumps” in Table 1 reports the bond/ stock rat ios, clearly indicat ing that the
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asset allocat ion is resolved. Interest ingly, given a value of , the bond/ stock rat ios in 

the pure-diffusion model are much smaller than the ones in the jump-diffusion model 

reported in the rest columns of Table 1, as the stock holding �  = Λ3= in the pure- 

diffusion model is much larger than the one �̃  in the jump-diffusion model, again by (25), 

leading to smaller bond/ stock rat ios in the pure-diffusion model.

6 Conclusion

In this paper, we obtain the semi-analyt ical solut ions to the opt imal dynamic port folio 

choice problem in mult i-asset affne jump-diffusion models where both stock returns and state 

variables may exhibit t ime-varying jumps. More specifically, our semi-analyt ical formulas 

for the indirect value funct ion and the opt imal port folio weights are obtained in terms of 

the solut ions to a set of ODEs for HARA preferences. Our result s extend the

pure-diffusion models in Liu (2007) by incorporat ing jumps into both stock returns and

state variables.

We further apply the theoret ical result s to invest igate the bond-stock mix puzzle.

In part icular, our analysis shows that unlike in pure-diffusion models, there is no clear- cut 

answer to the bond/ stock rat io puzzle in jump-diffusion models despite the hedging 

assumpt ion. This result then provides a new channel to understand the nature of this

well-known problem, and accordingly, the result further st rengthens the claim made by

Lioui (2007) that the asset allocat ion puzzle is st ill a puzzle.
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