

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/91214

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/91214
mailto:wrap@warwick.ac.uk

M
A

E
G
NS

I
T A T

MOLEM

UNIVERSITAS WARWICENSIS

Platforms for Deployment of Scalable

On- and Off-line Data Analytics

by

Peter Coetzee

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

April 2017

Abstract

The ability to exploit the intelligence concealed in bulk data to generate ac-

tionable insights is increasingly providing competitive advantages to businesses,

government agencies, and charitable organisations. The burgeoning field of Data

Science, and its related applications in the field of Data Analytics, finds broader

applicability with each passing year. This expansion of users and applications is

matched by an explosion in tools, platforms, and techniques designed to exploit

more types of data in larger volumes, with more techniques, and at higher

frequencies than ever before.

This diversity in platforms and tools presents a new challenge for organisations

aiming to integrate Data Science into their daily operations. Designing an

analytic for a particular platform necessarily involves “lock-in” to that specific

implementation – there are few opportunities for algorithmic portability. It is

increasingly challenging to find engineers with experience in the diverse suite

of tools available as well as understanding the precise details of the domain in

which they work: the semantics of the data, the nature of queries and analyses

to be executed, and the interpretation and presentation of results.

The work presented in this thesis addresses these challenges by introducing

a number of techniques to facilitate the creation of analytics for equivalent

deployment across a variety of runtime frameworks and capabilities. In the

first instance, this capability is demonstrated using the first Domain Specific

Language and associated runtime environments to target multiple best-in-class

frameworks for data analysis from the streaming and off-line paradigms.

This capability is extended with a new approach to modelling analytics based

around a semantically rich type system. An analytic planner using this model is

detailed, thus empowering domain experts to build their own scalable analyses,

without any specific programming or distributed systems knowledge. This

planning technique is used to assemble complex ensembles of hybrid analytics:

automatically applying multiple frameworks in a single workflow.

Finally, this thesis demonstrates a novel approach to the speculative construc-

tion, compilation, and deployment of analytic jobs based around the observation

of user interactions with an analytic planning system.

ii

Acknowledgements

In the first instance, a debt of gratitude goes to my supervisor, Prof. Stephen

Jarvis, for affording me the opportunity to both undertake the research described

in this thesis and for introducing me to the cast of colleagues and friends who

have so wonderfully coloured the years of my Ph. D.

None of this work would have been possible without the support, discussions,

and coffee-breaks offered by these colleagues and friends. I am particularly

keen to thank James Archbold, Dr. David Beckingsale, Dr. Robert Bird,

Richard Bunt, Dr. Adam Chester, Prof. Graham Cormode, James Davis, James

Dickson, Dr. Nathan Griffiths, Tim Law, Danielle Lloyd, Andy Mallinson, James

Marchant, Dr. John Pennycook, Caroline Player, Stephen Roberts, Faiz Sayyid,

Phil Taylor, and Dr. Steven Wright. Thank you all for your open ears and

minds, for proof-reading reams of draft writing, and for countless much-needed

diversions.

Further, I have greatly enjoyed the professionalism and assistance of a number

of support staff in the Department of Computer Science, including Jane Clarke,

Richard Cunningham, Sharon Howard, Dr. Christine Leigh, Lynn McLean, Dr.

Roger Packwood, Catherine Pillet, and Gill Reeves-Brown. Your tireless efforts

go unrecognised all too often; we would all be stranded without you.

Beyond the University of Warwick, particular thanks go to my mentor at IBM

Research, Octavian Udrea, as well as the whole ACAM team: Mark Feblowitz,

Anton Riabov, and Shirin Sohrabi. You provided me with a fascinating and

stimulating summer of research and a wonderful insight into one of the world’s

great research organisations. I am also grateful to the wider Streams department

for all their support to the Speculative MARIO project. My sincere gratitude

goes to all of those involved in this research within my sponsors: my supervisors

and contacts have been helpful and supportive throughout. They will never be

thanked enough for all they do.

Finally, but by no means least, my love and boundless gratitude to my whole

family for their unwavering support; in particular to Mum, Dad, Chris, and Amy.

For safe haven, last-minute getaways, and words of encouragement and love, a

heartfelt thanks I will never be able to put into words, and will never forget.

iii

Declarations

This thesis is submitted to the University of Warwick in support of the author’s

application for the degree of Doctor of Philosophy. It has been composed by the

author and has not been submitted in any previous application for any degree.

The work presented (including data generated and data analysis) was carried

out by the author except in the following case:

• Execution times for Speculative MARIO (Chapter 6) were collected with

the assistance of Dr. Octavian Udrea and Dr. Anton Riabov (IBM

Research, T.J. Watson)

Parts of this thesis have been previously published by the author in the following:

[23] P. Coetzee and S. Jarvis. CRUCIBLE: Towards unified secure on- and off-

line analytics at scale. In Proceedings of the 2013 International Workshop

on Data-Intensive Scalable Computing Systems, pages 43–48, Denver, CO,

USA, 2013. ACM.

(The work presented in this paper appears in Chapter 4).

[26] P. Coetzee, M. Leeke, and S. Jarvis. Towards unified secure on-and off-line

analytics at scale. Parallel Computing, 40(10):738–753, 2014.

(The work presented in this paper appears in Chapter 4).

[24] P. Coetzee and S. Jarvis. Goal-based analytic composition for on- and off-

line execution at scale. In Proceedings of IEEE Trustcom/BigDataSE/ISPA,

2015, volume 2, pages 56–65, Helsinki, Finland, 2015. IEEE.

(The work presented in this paper appears in Chapter 5).

[25] P. Coetzee and S. A. Jarvis. Goal-based composition of scalable hybrid an-

alytics for heterogeneous architectures. Journal of Parallel and Distributed

Computing, 2016. URL http://doi.org/10.1016/j.jpdc.2016.11.009.

(The work presented in this paper appears in Chapter 5).

iv

[27] P. L. Coetzee, A. V. Riabov, and O. Udrea. Methods and systems for

improving responsiveness of analytical workflow runtimes, November 2016.

US Patent 9,495,137.

(The work on which this patent is based appears in Chapter 6).

Sponsorship and Grants

The research presented in this thesis was made possible by the support of the

following benefactors and sources:

• The University of Warwick, United Kingdom:

Engineering and Physical Sciences Research Council CASE Studentship

(2012–2016; K503204)

• IBM T.J. Watson Research, Yorktown Heights:

Summer Internship (2015)

• EPSRC Capital Equipment Grant:

“Provision of a Portfolio of Massively Parallel, Data-intensive Analytics

Platforms” (2014–2015; K011618)

vi

Abbreviations

AI Artificial Intelligence

API Application Programming Interface

CDR Call Data Records

CSV Comma Separate Values

CURIE Compact URI

DAG Directed Acyclic Graph

DFS Depth First Search

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

DSL Domain Specific Language

ECG Electrocardiogram

ETL Extract Transform and Load

FATE Fault Tolerant Execution

FFT Fast Fourier Transform

GFS Google File System

HDFS Hadoop Distributed File System

HPC High Performance Computing

HTN Hierarchical Task Network

HTTP HyperText Transfer Protocol

IBM International Business Machines

IDE Integrated Development Environment

IP Internet Protocol

IPC Inter-Process Communication

JAR Java Archive

JNI Java Native Interface

JSON JavaScript Object Notation

vii

JVM Java Virtual Machine

MAC Media Access Control

MARIO Mashup Automation, Runtime Instrumentation, and Orchestration

OLAP Online Application Processing

OWL Web Ontology Language

PE Processing Element

POSIX Portable Operating System Interface

RAM Random Access Memory

RDD Resilient Distributed Dataset

RDF Resource Description Framework

RDFS RDF Schema

RPC Remote Procedure Call

SAMOA Scalable Advanced Massive Online Analysis

SOAP Simple Object Access Protocol

SPADE Stream Processing Application Declarative Engine

SPL Stream Processing Language

SPLMM SPL Mixed Mode

SPPL Streaming Processing Planning Language

SQL Structured Query Language

SSD Solid State Disk

TCP Transmission Control Protocol

UI User Interface

URL Uniform Resource Locator

URN Uniform Resource Name

UUID Universally Unique Identifier

WSDL Web Services Description Language

XML Extensible Markup Language

ZK ZooKeeper

Contents

Abstract ii

Acknowledgements iii

Declarations iv

Sponsorship and Grants vi

Abbreviations vii

List of Figures xv

List of Tables xvi

1 Introduction 1

1.1 Motivation . 3

1.2 Methodology . 5

1.3 Thesis Contributions . 6

1.4 Thesis Overview . 7

2 Architectures for Data Analytics 10

2.1 Offline Data Analytics . 12

2.1.1 Data Management . 15

2.2 Online Data Analytics . 16

2.3 Hybrid Analytic Architectures . 19

2.4 Summary . 20

3 Composition of Data Analytics 21

3.1 Programming Frameworks . 21

3.1.1 MapReduce . 21

ix

3.1.2 DAG Runtimes . 23

3.1.3 Streaming Frameworks . 24

3.2 SQL and SQL-like Interfaces . 26

3.3 Visual Workflow Languages . 27

3.4 Automated Planning & Composition 28

3.5 Summary . 30

4 Unified Secure On- and Off-Line Analytics 32

4.1 Crucible System . 33

4.1.1 Crucible DSL . 34

4.1.2 Message Passing . 37

4.1.3 Security Labelling . 39

4.1.4 Global Synchronisation & State 43

4.1.5 Crucible Runtimes . 45

4.1.6 Standard Library . 49

4.2 Crucible Runtime Performance 50

4.2.1 Experimental Setup . 50

4.2.2 Analysis . 52

4.3 Crucible Runtime Optimisation 53

4.3.1 Standalone Processing . 53

4.3.2 On-Line Processing . 58

4.3.3 Off-Line Processing . 63

4.4 Summary . 66

5 Composition of Hybrid Analytics for Heterogeneous Architec-

tures 68

5.1 High-Level Overview . 70

5.1.1 Methodology . 72

5.1.2 Impact of Design Choices 72

5.2 Modelling Analytics . 73

5.2.1 PE Formalism . 76

5.2.2 PE Model Abstraction . 79

5.3 Goal-Based Planning . 80

5.3.1 Type Closure . 80

5.3.2 Conditions . 82

5.3.3 Search & Assembly . 83

5.4 Code Generation . 87

5.4.1 DSL Code Generation . 87

5.4.2 Native Code Generation 88

5.4.3 Integrating Complex Analytics 90

5.5 Case Studies . 91

5.5.1 Flickr FFT Workflow . 94

5.5.2 Case Study: Flickr Facial Recognition 94

5.5.3 Case Study: Telecommunications Call Events 95

5.5.4 Case Study: Telecommunications IP Endpoints 95

5.6 Performance Evaluation . 96

5.6.1 Planner Performance . 96

5.6.2 Runtime Performance . 98

5.7 Summary . 105

6 Speculative Execution of Analytic Workflows 106

6.1 Approach . 107

6.2 Implementation . 112

6.3 Policies . 113

6.3.1 Compilation Policy . 113

6.3.2 Parameter Generation Policies 113

6.3.3 Deployment Policies . 114

6.3.4 Termination Policy . 114

6.3.5 Sub-Flow Identification & Sharing 115

6.4 Deployment Considerations . 116

6.4.1 Alternative Deployment Scenarios 117

6.4.2 Policy Design . 118

6.5 Performance Evaluation . 119

6.6 Conclusions . 129

7 Discussion and Conclusions 130

7.1 Limitations . 132

7.2 Applications . 134

7.3 Further work . 135

7.4 Final Remarks . 136

Bibliography 137

Appendices 152

A Crucible DSL Grammar 153

B Mendeleev Inference Results 155

C Mendeleev Case Study Library 158

List of Figures

1.1 MapR Hadoop Technology Stack 3

2.1 Offline Data Warehousing Architecture. 12

2.2 Extending the Offline Data Warehouse for Analytics. 14

2.3 Accumulo Key-Value Store field structure. 16

2.4 Online Analytics Architecture. 17

2.5 Examples of windowing configurations. 18

3.1 Phases of MapReduce Execution. 22

4.1 Components of the Crucible system. 37

4.2 Crucible Model Composition diagram, showing the composition

of the core model and the runtime injectable components. 38

4.4 Crucible Accumulo Runtime Message Dispatch, demonstrating

how Scanners are used to pull data through a collection of custom

Iterators to analyse data sharded across Accumulo Tablets. . . . 48

4.5 Scalability comparison of Crucible Runtimes against hand-

written Native Implementations. 51

4.6 Function runtime breakdown across Standalone Dispatchers. . . . 54

4.7 Thread utilisation in the Standalone, Backpressure, and Disruptor

Dispatchers respectively. 55

4.8 Scalability Comparison of Crucible Standalone Runtimes and

Native Implementations. 56

4.9 Function runtime breakdown across On- and Off-line Dispatchers. 59

4.10 SPL Tuple I/O Instrumentation. 59

4.11 Crucible Code Generation Hierarchy. 60

xiii

4.12 Scalability Comparison of Crucible Online Runtimes and Native

Implementations. 61

4.13 Thread utilisation in the Accumulo (v2) Dispatcher. 63

4.14 Scalability Comparison of Crucible Offline Runtimes and Native

Implementations. 64

4.15 Scalability Comparison of Crucible Standalone Runtimes and

Native Implementations, including Apache Spark (Local Mode). . 65

5.1 A sample analytic, reading profile pictures from Flickr and using

facial recognition to populate an Accumulo table. 69

5.2 Steps in composing an analytic. 71

5.3 Graph visualisation of the RDF description of a portion of the

example model. 75

5.4 Using the PE Model abstraction to separate planning and concrete

PE implementations. 79

5.5 Top: Mendeleev message passing model for a process f. Bottom:

Crucible wrapper-based model of field copying semantics. . . . 87

5.6 Deployment scenarios for complex analytics. 90

5.7 Planned analytics for Flickr Image and Telecommunications Data

analysis. 93

5.8 Benchmark results for the Mendeleev planner when applied to

the case studies. 96

5.9 Scaling of the Mendeleev planner with knowledge-base size for

both bounded and unbounded case studies. 97

5.10 Execution time for each runtime mode and code type. NB: Charts

(d) and (e) have no Crucible implementation. 102

5.11 Execution latency for each runtime mode and code type. NB: Charts

(d) and (e) have no Crucible implementation. 103

6.1 Architecture of an analytic workflow composition tool. 107

6.2 Model control flow of an existing analytic assembly system 108

6.3 New analytic assembly control flow with Speculative Plugin (ex-

isting components shaded) . 108

6.4 Sample analytic workflows . 111

6.5 Time taken for repeated compilation, deployment, and collection

of first results for real-world analytics through MARIO (5 minute

timeout on results collection) . 121

6.5 (contd.) Time taken for repeated compilation, deployment, and

collection of first results for real-world analytics through MARIO

(5 minute timeout on results collection) 122

6.6 Moving average of improvement in job launch times with the

Speculative Plugin. Y-Axis clamped at -10 seconds. 123

6.7 Average improvement in launch times and result collection times

for each policy . 124

6.8 Time taken for repeated compilation, deployment, and collection

of first results for real-world analytics through Speculative MARIO

(5 minute timeout on results collection) 127

6.8 (contd.) Time taken for repeated compilation, deployment, and

collection of first results for real-world analytics through Specula-

tive MARIO (5 minute timeout on results collection) 128

List of Tables

4.1 Worked example of security label application 43

5.1 Mendeleev Import/Export implementations. 89

5.2 Number of plans considered and returned in the 500 PE stress

test knowledge-base for both (b)ounded and (u)nbounded queries. 99

5.3 Benchmarking results (makespan wall time and per-tuple latency)

for each runtime mode and code type. 100

5.4 Relative speedup of Mendeleev to Crucible and hand-written

code over Mendeleev. 104

5.5 Relative speedup of hand-implemented native runtimes over

Mendeleev. 104

6.1 Hit rate for each application suite, detailing full hits, partial hits,

and misses for both full flows and on a per-component basis. . . 125

xvi

CHAPTER 1
Introduction

J. Lyons and Co.’s LEO I computer [13] represented an early shift in the

application of calculating machines: extracting insights from data faster and

more accurately than any human could reasonably achieve. In such early

systems, data were typically homogeneous, structured, and predictable in nature;

applications were restricted to well specified areas such as stock tracking and

payroll. Within a decade, these simple applications gave rise to the notion of

Business Intelligence [70]; the automated extraction and aggregation of content

from the existing documents and metadata available to an organisation, in order

to provide actionable insights. In many respects, these goals are an extension of

the concept of Scientific Management [104] popularised by Taylor at the turn of

the 20th century: applying the scientific method (in the form of measurement,

analysis, hypothesis generation, and experimentation) to business processes.

For many years Business Intelligence applications focused on structured data

in OLAP databases, perhaps integrating data from two disparate sources to

summarise and report on business activities, or to provide evidence to support

complex decision making. Much of the work during this period was on ETL

(Extract, Transform, Load) applications, and reporting front-ends. Some effort

was put into data integration, and basic statistical summaries.

It was not until the turn of the 21st century that Thomas Davenport fused his

seminal work on enterprise knowledge management [32] with principles of data-

driven computation and the science of statistics, formulating the principle of data

exploitation as a competitive advantage for businesses [31]. In a brief few years,

adoption of such analytical techniques rose rapidly, alongside the burgeoning

field of Data Science [69]. Data Scientists specialise in the application of complex

1

1. Introduction

statistical and machine learning models, extracting valuable information from a

sea of data. These skills have found a natural home in a tremendous breadth of

application areas, including cybersecurity, manufacturing, customer relationship

management, advertising, and digesting data from the Internet of Things. The

unique value offered to an organisation by data science is well presented by Hal

Varian, chief economist at Google [109];

“ The ability to take that data – to be able to understand it, to

process it, to extract value from it, to visualise it, to communicate it

– that’s going to be a hugely important skill in the next decades, not

only at the professional level but even at the educational level for

elementary school kids, for high school kids, for college kids. Because

now we really do have essentially free and ubiquitous data, so the

complementary scarce factor is the ability to understand that data

and extract value from it.

I think statisticians are part of it, but it’s just a part. You also

want to be able to visualise the data, communicate the data, and

utilise it effectively. But I do think those skills – of being able to

access, understand, and communicate the insights you get from data

analysis – are going to be extremely important. Managers need to

be able to access and understand the data themselves. ”The scale of recent adoption of large-scale data analysis platforms and

the principles of data science has led to a matching growth in the ecosystem of

supporting technologies. This ecosystem was initially launched by the publication

of Google’s MapReduce [34], but has quickly grown to include novel products

and research from the likes of The Apache Foundation, Hortonworks, Cloudera,

MapR, IBM, UC Berkeley’s AMPLab, and a multitude of others [16, 33, 41, 50,

54, 82, 89, 94, 123]. These supporting technologies, each with their own strengths

and capabilities, have elevated the simple process reporting enabled by early

business intelligence techniques to a scale, complexity, and utility previously

unheard of: all under the umbrella of Data Analytics.

2

1. Introduction

Figure 1.1: MapR Hadoop Technology Stack1.

1.1 Motivation

This explosion of analytical techniques, programming frameworks, and runtimes

has stemmed from a recognition that different classes of problem require different

analytical approaches. Selecting the approach to use for a given problem (and

completing a successful implementation) is non-trivial, requiring both expertise

and experience in an enormous breadth of systems (see Figure 1.1 for an overview

of just some of the tools available from a single vendor) as well as a strong

theoretical grounding in the computer science principles behind them.

Furthermore, specialists with all of the relevant skills must typically make

a vital engineering decision before beginning to craft their analytic: do they

wish to use a bulk analytic paradigm which permits enormous historical analyses

but may struggle to deliver timely insight? Or should they instead target a

streaming runtime, making use of a more challenging programming model but

with the ability to achieve continuous or near-real-time insight? Often, such a

specialist will select whichever runtime seems the most natural to the problem

they are trying to express: should later requirements emerge which result in this

choice being sub-optimal, or a need for multiple paradigms arises, the specialist

engineer(s) must adopt the burden of maintaining multiple implementations of
1Reproduced from https://www.mapr.com/support/overview

3

1. Introduction

the same analytic whilst ensuring their analyses are both correct and equivalent.

Chapter 4 aims to lighten this burden by implementing a domain specific

language (DSL) which describes analytics at a high level as communicating

sequential processes. This DSL targets execution through a common runtime

model in multiple streamed and bulk analytic environments, and includes an

implementation of automated cell-level security labelling.

This implementation challenge is further compounded by a split in knowledge

present in many organisations. Typically, an organisation contains domain

experts who understand their data, relevant queries, and business requirements –

but lack understanding of programming analytic frameworks, concurrency, and

so forth. The software engineers responsible for implementing these requirements

represent a separate group of stakeholders altogether. This split in expertise

often results in many iterations of development, and sometimes failure of an

analytics project altogether [53]. It is challenging to recruit individuals with

both sets of skills, and so they either accept the possibility of failure through a

traditional iterative model, or they attempt to empower their domain experts to

express their analyses themselves – often concealing the power of the underlying

analytic framework through high-level abstractions.

Addressing the challenges faced by domain experts in formulating their

queries requires a different approach. Given the range of analytic platforms and

paradigms already discussed, and an ever-present need for domain experts to

deploy analytics which exploit the increasing heterogeneity in their environments

rapidly enough to deliver results in time, programming-based solutions are no

longer sufficient. Chapter 5 examines the use of an abstract analytic model

to enable goal-based planning of analytics, handing control of analytic design

and execution to the aforementioned domain experts, and permitting software

engineers to concentrate on small, composable analytic components. This thesis

investigates the use of this planning technique, in association with platform-

specific code generation, to a number of case studies – including a variety of

runtime platforms, as well as hybrid analytics that are deployed across multiple

4

1. Introduction

platforms simultaneously on a heterogeneous platform.

A further issue that becomes apparent when enabling domain experts to

compose their own analytics is the latency between completion of the design of

their analytic and the availability of their results. In some instances, this delay

is a result of platform start-up costs (as in MapReduce [84]), while elsewhere it

results from the complexity of compiling the analytic (as in InfoSphere Streams).

Almost all analytics will ultimately suffer from delays in the actual processing of

the results, delivering their first insights sometimes minutes or hours after an

analytic is actually launched.

Traditional solutions to this problem have sought to optimise the underlying

platform, or design faster implementations of the algorithms powering their

analysis. These optimisations are time-consuming and difficult to implement,

and are only able to deliver a limited performance improvement. Furthermore,

when used in a multi-tenancy analytic environment, the bursty nature of queries

often results in poor system utilisation [60, 122].

Chapter 6 demonstrates an alternative approach to reducing this so-called

time to insight, based around the use of heuristics to speculatively compile and

deploy arbitrary analytics, making use of spare capacity in the cluster. A variety

of approaches to this speculative execution are discussed, and evaluated using a

selection of real-world analytics.

1.2 Methodology

The research described in this thesis has been motivated by the goal of improving

the ability of expert users to express their analytics to the underlying framework

in a manner that enables them to achieve timely insight. In order to accomplish

this, a three-phased approach has been used for each contribution described;

1. Background reading into the problem and research into the current state

of the art in the literature, helping to inform;

2. Design, implementation, and iterative improvement of a novel approach to

5

1. Introduction

the problem, which is then used to;

3. Evaluate the resulting solution using exemplar workloads.

The nature of the evaluation phase changes depending on the aim of the con-

tribution; it includes a range of benchmarks, profiling tools, and qualitative

analyses of the system in use. The selection and design of these tests has been

informed by the author’s industrial experience as a practitioner, in addition to

private validation with the work’s industrial sponsors.

1.3 Thesis Contributions

The research presented in this thesis makes the following contributions:

• We develop the first reported high-level Domain Specific Language (DSL)

and suite of runtime environments, adhering to a common runtime model,

that provide consistent execution semantics across on- and off-line data,

called Crucible. This is the first DSL designed specifically to target the

execution of on- and off-line analytics with equal precedence. This DSL

permits a single analytic to be run equivalently over multiple data sources:

locally, over Accumulo data, and over files in the Hadoop Distributed File

System (HDFS). It includes a novel framework for the semi-automated

management of cell-level security, applied consistently across runtime

environments, enabling the management of data visibility in on- and off-

line analysis. We additionally present an evaluation of the performance of

Crucible on a set of best-in-class runtime environments, demonstrating

framework optimisations that result in an average performance gap of just

14⇥ when compared to a suite of native implementations

• We use a new abstract model of assembly and execution for arbitrary

analytics, centred around a semantically rich type system to enable a

novel solution for goal-based planning of on- and off-line hybrid analytic

applications, requiring little programming ability or prior knowledge of

6

1. Introduction

available analytic components by the user. We demonstrate automatic

code generation for the planned analytic across scalable compute archi-

tectures, integrating heterogeneous on- and off-line runtime environments,

and validate its use through application to four case studies taken from

the domains of telecommunications and image analysis. Our results in-

clude an exploration of the performance and scalability of the planning

engine as well as the resulting analytics in both on- and off-line runtime

environments, demonstrating comparable performance with equivalent

hand-written alternatives.

• We present the first reported modular, generalised approach to speculative

composition, compilation, and execution of data analytics which makes

decisions in an on-line fashion, without requiring any a priori knowledge

of analytical components or configuration. This approach includes a

collection of policies which configure its decision-making behaviours, as

well as a detailed exploration of real-world deployment considerations for

such a system informed by both streaming and batch real-world customer

applications. We demonstrate how this approach to speculative execution

is used to make successful predictions in these applications about the

analytics a user will compose, how this improves response times in both

streaming and offline analysis, and include a rigorous evaluation of how

the above policies work together to compile, deploy, and in some cases

being collecting results before the user completes the specification of their

analytic. Within these applications, we show how speculative execution

can deliver over 100⇥ improvements in time-to-results by exploiting the

spare compute capacity in production environments.

1.4 Thesis Overview

The remainder of the thesis is structured as follows:

Chapter 2 presents an overview of the architectures, concepts, and terminology

7

1. Introduction

currently used in creating scalable data analytics. It discusses the foundational

research and development in this field as well as the basic techniques used for

distributed computation with, and analysis of, large-scale data.

Chapter 3 details the current state-of-the-art in tools and techniques for com-

posing data analytics for deployment on the scalable architectures discussed in

Chapter 2, including a survey of related work in the field. There are a variety of

techniques for designing data analytics, which are discussed in detail here, along

with the key types of framework in which they run. This chapter also covers

high level non-programming based approaches, and discusses their strengths and

limitations.

Chapter 4 describes Crucible, a first-in-class framework for the analysis of

large-scale datasets that exploits both streaming and batch paradigms in a

unified manner. The Crucible framework includes a domain specific language

for describing analyses as a set of communicating sequential processes, a common

runtime model for analytic execution in multiple streamed and batch environ-

ments, and an approach to automating the management of cell-level security

labelling that is applied uniformly across runtimes. This chapter shows the

applicability of Crucible to a variety of state-of-the-art analytic frameworks,

and discusses detailed optimisation considerations for these frameworks.

Chapter 5 proposes a novel semi-automated approach to the composition,

planning, and code generation of scalable hybrid analytics, using a semantically

rich type system which requires little programming expertise from the user.

This approach is the first of its kind to permit domain experts with little or no

technical expertise to assemble complex and scalable analytics, for hybrid on-

and off-line analytic environments, with no additional requirement for low-level

engineering support. This chapter includes an analysis of the performance of

the planning engine, and shows that the performance of its generated code is

comparable with that of hand-written analytics.

8

1. Introduction

Chapter 6 demonstrates a novel approach to speculatively compiling and

deploying analytics using statistics-based heuristics and automated reuse of

deployed code, as well as a set of policies to be used within this speculative

execution framework and explores deployment considerations arising from a set

of real-world customer analytics. This chapter explores how this approach is

used to make successful predictions in real-world streaming and batch customer

applications about the analytics a user will compose, as well as detailing a

rigorous evaluation of how the available policies work together to compile, deploy,

and in some cases collect the user’s results before they complete their analytic

specification.

Chapter 7 concludes the thesis, including a summary of the research contri-

butions and discusses alternative applications and future avenues for ongoing

research in this field.

9

CHAPTER 2
Architectures for Data Analytics

Enabling data scientists and domain experts to analyse their data at scale

presents a unique set of challenges to the software engineers responsible for

crafting scalable systems for analysis. It is no longer sufficient to simply procure

a single large system for analysis of many datasets – the magnitude of the data

and complexity of analysis involved often cannot be processed in a reasonable

timeframe on a single compute node. As a result, data scientists require a

distributed systems approach to the deployment of their analytics: a collection

of (often commodity class) compute nodes, which are responsible for the storage

and processing of data according to the end users’ requirements.

Prior to the dawn of the field of data science, much research went into

distributed processing environments. Typically, this was in one of two areas:

either Grid Computing or High Performance Computing (HPC). Grid Computing

largely focuses on how to schedule collections of tasks to individual compute

nodes, with little emphasis on performance or co-ordination across the logical

cluster; instead, it favours loosely coupled (possibly geographically distributed)

nodes working in concert to accomplish a larger task. HPC, by comparison, is

concerned primarily with highly compute intensive simulation problems requiring

maximum floating point performance, with a secondary focus on the memory

hierarchy, interconnects, and I/O; eking out maximum performance for a limited

set of problems through tight integration of the complete hardware and software

stack.

By contrast, Cloud Computing typically uses a large number of commodity-

class nodes to serve the compute requirements of remote customers. This can be

by concealing the complexity of managing the hardware estate through multi-

10

2. Architectures for Data Analytics

tenancy virtualisation, or by offering a set of higher-level services which further

conceal the compute fabric beneath. As such, much of the research in cloud

computing has investigated [1, 29, 35, 49, 56] problems which are applicable to

systems for data analysis at scale; scheduling, security, and performance.

Problems which are data rather than compute intensive reflect novel challenges

over and above traditional distributed systems:

Volume: The sheer quantity of data to be analysed, often multiple petabytes

(1015 bytes) in size, exceeds the reasonable capability of a

compute-intensive architecture. Simply storing the raw data, let

alone performing complex analysis, can be a challenge.

Velocity: Many of these data sets are not static; the rate of arrival of new

data is a challenge for both the ingest pipeline and to maintain

the freshness of analytical results.

Variety: Often, extracting insight from data requires the integration of a

number of disparate sources of data, often encoded in different

formats (semi-structured or structured), or with subtly different

semantics on their fields.

Veracity: Every data source has some form of uncertainty, whether re-

sulting from sensor deviation (e.g., in Internet of Things sensor

packages) or outright misinformation (e.g., as is often seen on

Twitter [17, 86]). Analytics consumers must be careful when us-

ing such information to be sensitive to this within their domain,

lest predictions are skewed, compound errors inflate, or worse.

As a result, these problems require a different approach – new architectures, new

programming models, and new supporting frameworks. Broadly, there are two

categories of approaches to this problem: offline, or bulk analysis, and online,

also known as streaming analysis.

11

2. Architectures for Data Analytics

Client Applicat ion

Master
(metadata store)

HDD / SSDHDD / SSDHDD / SSDHDD / SSD

Data Node

HDD / SSDHDD / SSDHDD / SSDHDD / SSD

Data Node

HDD / SSDHDD / SSDHDD / SSDHDD / SSD

Data Node

Data Block
Operat ions
Balancing +
Replicat ion

Legend

Client
Requests

Request block list for file

Retrieve file
blocks

Assign blocks to
data nodes

Figure 2.1: Offline Data Warehousing Architecture.

2.1 Offline Data Analytics

A typical bulk analytical system consists of a large number of heterogeneous

nodes, each of which contains multiple local hard disks (typically magnetic disk,

but more recently systems using SSD or large banks of volatile storage are

starting to emerge [59, 117]). A Distributed File System (DFS) is then deployed

atop this cluster of nodes, responsible for co-ordinating their behaviour into a

single coherent file system. Figure 2.1 illustrates this model; each Data Node

contains a set of hard disks, and are coordinated by the Master. When a Client

Application wishes to read or write a file, it communicates with the Master to

request a block list for the file. This block list describes a mapping from file

blocks to Data Nodes: the Client then communicates directly with each Data

Node to store/retrieve the file block-by-block. Once the file has been stored once,

the Master directs the Data Nodes to exchange blocks in order to maintain data

redundancy and level out the load across the cluster’s disks.

12

2. Architectures for Data Analytics

Google’s distributed file system, GoogleFS [43] was one early DFS technology

of this type, giving rise to the open source Hadoop Distributed File System

(HDFS) [97]. As hardware failure is a near-certainty for systems at this scale [48,

96, 120], the Master Node also manages replication of these file blocks, ensuring

that duplicate copies of each block are stored in multiple nodes, racks, and

even data centres. Crucially, all of this replication complexity, in addition to

the awareness of the physical layout of the cluster (racks, network topology,

and geographic distribution), is managed by the Master Node and concealed

entirely from applications running over the DFS. Note that no data blocks ever

pass through the Master Node: it is solely used for metadata operations. A

client requests a block list for a given file (either for storage or retrieval), and

communicates directly with the Data Nodes responsible for holding those blocks.

Block-level replication happens directly between Data Nodes on the most local

network interconnect available.

Unlike traditional relational databases, once data is stored to a node, it

is rarely retrieved by a client: data is not split into readily retrieved records,

but rather recorded in enormous flat files – too large for any client to retrieve.

Instead, queries or analytical tasks are submitted to the cluster, which will

schedule them across as many nodes as are required to complete the jobs in

a timely fashion, such that the analysis of a given chunk of data occurs on a

node which already holds that data. Results are gathered over the network and

aggregated centrally. Such jobs can take anywhere from seconds to hours to

execute, depending on their complexity.

The DFS architecture in Figure 2.1 is readily extended to encompass this

style of distributed data analysis, as in Figure 2.2. Here, instead of a client

application simply retrieving or storing blocks of a file, it submits a job to the

Resource Manager – the only architectural difference between this and the model

in Figure 2.1. Note here that the Master still supports direct access to file

block lists, and manages the assignment of file blocks to the Data Nodes. The

Resource Manager uses the block metadata to determine where a job should be

13

2. Architectures for Data Analytics

Client Applicat ion

Master
(metadata store)

HDD / SSDHDD / SSDHDD / SSDHDD / SSD

Data Node
& Applicat ion

Container

HDD / SSDHDD / SSDHDD / SSDHDD / SSD

Data Node
& Applicat ion

Container

HDD / SSDHDD / SSDHDD / SSDHDD / SSD

Data Node
& Applicat ion

Container

Block/ Applicat ion
Operat ions

Balancing +
Replicat ion

Legend

Client
Requests

Request applicat ion
launch

Resource Manager

Retrieve block
metadata

Assign blocks to
data nodes

Assign tasks to containers

Figure 2.2: Extending the Offline Data Warehouse for Analytics.

executed, taking into account the current load on the cluster. The job request

issued by the Client includes a description of the job’s inputs and of the analysis

to be performed (encoded in a runtime-specified fashion), which the Resource

Manager uses alongside the block metadata to determine how to parallelise and

schedule the job. This set of scheduling decisions result in a collection of tasks

and a partial ordering for them. The Resource Manager then assigns tasks to

application containers on the Data Nodes themselves based on the location of

the input blocks each task uses.

The processing capability of this kind of cluster depends heavily on the nature

of the data and the applications to be run: typically, cluster capabilities are

analysed in terms of the ratio of CPU cores to hard disk spindles, of spindles to

GB of storage, and of CPU cores to memory for highly iterative workloads (e.g.,

offline model building for machine learning).

14

2. Architectures for Data Analytics

2.1.1 Data Management

A number of projects build data management systems on top of the underlying

file-based interface of the DFS. Google originally proposed Bigtable [19] as

a key-value store on top of GFS. Apache HBase [6] is a common open source

implementation of this principle, built on top of HDFS. Instead of simply splitting

a flat file across the DFS, these schema-less stores assign key-value pairs to tables,

and then split the data in each table into shards; continuous subsets of the key-

space, written to the DFS as separate files. Each of these systems add a server

process alongside each Data Node, which manages the shard of a table assigned

to that server. Different implementations also refer to these shards as regions or

tablets.

A third project (privately developed in parallel with HBase and later made

available as open source), Apache Accumulo [5], adds cell-level security, increased

fault tolerance (through its FAult Tolerant Execution framework, FATE), and a

novel server-side processing paradigm [39] to the existing Bigtable infrastructure1.

An Accumulo key is split into a number of fields, as illustrated in Figure 2.3.

Keys are sorted in lexicographical order, with no constraints on the format of

the Column Family, Column Qualifier, or Row ID: these are defined by the

application. Column Visibilities specify a boolean cell-level security expression,

supporting arbitrary labels and a syntax including AND (&) and OR (|) specifiers,

as well as parentheses to override the natural order of these operators. The

inclusion of a timestamp for a given Key permits the server to efficiently write a

stream of mutations to the table, and in a later procedure (called compaction)

remove mutations which are overwritten by a later change. As the table is sorted

by the key, when a client scans the table the Accumulo server may simply skip

repeated mutations for a given key, taking the first (most recent) timestamp it

encounters.

1As Apache Accumulo is used for experiments later in this thesis, further explanations of
these Bigtable-based stores refer to the specific details of Accumulo’s implementation.

15

2. Architectures for Data Analytics

Key
Value

Row ID
Column

Timestamp
Family Qualifier Visibility

Figure 2.3: Accumulo Key-Value Store field structure.

Accumulo is optimised for random insertion and retrieval of massive amounts

of structured data (e.g., tens of trillions of records, multiple petabytes of data,

and ingest of 100,000,000 entries per second [61]), as well as large scans across a

table. It supports the MapReduce programming model, in addition to a server-

side processing paradigm called iterators. These iterators may alter the stream

of key-value pairs on the tablet server before they are returned to the client, or

before mutations are written to disk during compaction. This model is described

as particularly valuable for maintaining statistical measures or summations over

a dataset.

2.2 Online Data Analytics

An alternative approach to data analysis, known as online or streaming analysis,

sees the data source treated as a potentially infinite stream of values. In this

model, it is not feasible to store all of the raw data for later analysis: instead,

nodes in the cluster store queries or analytic tasks, executing them over each

datum as it arrives. In addition to ameliorating the cost of storing data, this

model of analysis need not wait for the entire dataset to be processed before

results are delivered. This facilitates near-real-time (or “as soon as possible”)

analysis for some problem domains.

While it is not necessarily feasible to create a streaming analytic for all types

of data or all algorithms, often a new online algorithm can be created to achieve

similar results to its offline counterpart. Sometimes, significant research effort

is required to uplift an offline analytic onto an online platform – in some cases,

trading off the speed of result generation with accuracy of those results. One

significant example of this is in SAMOA [33], which aims to enable Machine

16

2. Architectures for Data Analytics

Physical
host

Physical
host

Physical host

Physical hostPhysical host

Physical host

Logical Cluster

PE

PEPEPE

PE

PE

PEPE

PE

PE

PE

PE

PE

PE

PE

Master

Source
1

Source
4

Source
3

Source
2

Client
Applicat ion

Client
Applicat ion

Client
Applicat ion

Request job
launch

Schedule PEs onto hosts,
collect status informat ionData Flow

Legend

 Job
Operat ions

Figure 2.4: Online Analytics Architecture.

Learning on streaming processing platforms to both validate and update models

in near-real-time.

Most streaming frameworks express their analytics as workflows, passing

tuples of data from one Processing Element (PE) to another. The framework

is then responsible for scheduling PEs onto the available hardware, ensuring

maximal throughput and minimal latency for each job, as seen in Figure 2.4.

Optionally, a framework may also offer placement constraints, such as to ensure

two PEs are always/never scheduled onto the same node, or to partition a cluster

to reflect variation in classes of hardware or user. Fault tolerance in such an

environment typically involves re-scheduling PEs from the failed node onto other

available nodes in the cluster, potentially shuffling PEs from other jobs in the

process. More advanced fault tolerance can also maintain state about which

PEs a tuple has passed through, buffering tuples until they are acknowledged as

having been processed by the job. This necessarily adds overhead to each PE

(particularly in memory use), but offers a valuable capability in environments

where tuple loss is unacceptable.

These PEs each express an atomic operation on a tuple of data. Most frame-

works offer a library of standard PEs, as well as a facility for defining arbitrarily

complex PEs using either a standard imperative programming language, or

a Domain Specific Language (DSL). Some examples of reusable PEs include

17

2. Architectures for Data Analytics

Stream of tuples

1 2 3 4 5

(a) Tumbling window, 1 second wide.

Stream of tuples

1 2 3 4 5

(b) Tumbling window, 2 tuples wide.

Stream of tuples

1 2 3 4 5

(c) Sliding window, 2 seconds wide, evicts
every 1 second.

Stream of tuples

1 2 3 4 5

... etc.

(d) Sliding window, 3 tuples wide, evicts
after each tuple.

Figure 2.5: Examples of windowing configurations.

facilities for splitting apart and union-joining flows of tuples, for load shedding,

reading and writing common data formats, network I/O, or filtering a stream.

More advanced operations such as aggregations and identity joins typically

require windowing. Streaming windows can be modelled as lists of tuples, with

an initially empty state. Tuples are added to the window as they arrive on the

stream. Each window is configured with an emit policy and an eviction policy

dictating its behaviour. The emit policy determines when the contents of the

window are emitted to the PE on which the window is applied; for example,

this could be based on time (“emit every second”), or on count of tuples (“emit

every 10 tuples”). The eviction policy dictates when old tuples are removed from

the window: again, these are determined by elapsed time since the start of the

window or the count of tuples in the window. Windows which evict all tuples

after each emit are called tumbling windows; examples of these can be seen in

18

2. Architectures for Data Analytics

Figures 2.5(a) and 2.5(b). Sliding windows, as seen in Figures 2.5(c) and 2.5(d),

evict only a part of the window at a time. This technique allows for operations

which must otherwise scan an entire dataset to return a partial or approximate

result in a timely fashion.

A typical cluster procured for streaming analysis differs from the hardware

deployed for offline analytics: systems often lack local storage, and emphasis is

placed on minimising the latency of their interconnect and memory hierarchy.

The ratio of CPU cores to both memory and network bandwidth is a valuable

metric for the processing capability of such a system.

2.3 Hybrid Analytic Architectures

Most of the above technologies facilitate execution of an analytic over a single

paradigm, be it online or offline. AT&T Research, as part of their Darkstar

project [58], have constructed a hybrid stream data warehouse, DataDepot [45].

This uses online techniques to perform analysis on data as it arrives at the data

warehouse, updating the contents of the bulk data store in the process. The

trade-off between result latency and accuracy has led Marz et al.to propose the

Lambda Architecture [73], in which a streaming platform is used to maintain an

approximate set results (e.g., by sampling a random subset of the input values

to generate a near-real-time summary of data), and longer-running offline jobs

are used to correct the error in this system over time.

A small body of research has examined the use of a single language to target

both streaming and offline runtimes. For example, IBM DEDUCE [64] defines

code for MapReduce using SPADE (Stream Processing Application Declarative

Engine), the programming language used in early versions of InfoSphere Streams.

This permits a unified programming model and syntax, but does not offer any

direct execution equivalence between a MapReduce PE and a PE written for

Streams. Furthermore, SPADE is now deprecated, as it has been replaced by

SPL (Stream Processing Language).

19

2. Architectures for Data Analytics

2.4 Summary

The particular set of challenges facing data scientists in extracting high value,

low volume information from high volume, low value data necessitates a novel

set of software approaches to the distributed storage and analysis of their data.

A number of common approaches to solving these problems have been explored

in this chapter, building on the early research and development presented in

Google’s GFS [43] and MapReduce [34] as well as IBM’s InfoSphere Streams [89].

Although an increasing number of research and engineering organisations are

starting to examine the convergence and integration of online and offline analytic

techniques, at the time of writing this research is still in its infancy. This is

partly a result of the diversity of programming models used in these analytical

platforms (examined in further detail in Chapter 3), and the corresponding

diversity in runtime models. The research presented in this thesis examines the

application of a number of best-in-class platforms for online and offline analysis

(Apache Hadoop, Accumulo, and InfoSphere Streams) in unified and hybrid

analytic applications. It will also address the question of how to permit domain

experts and data scientists to interact with their datasets and analyses without

first requiring that they learn these diverse programming and runtime models.

20

CHAPTER 3
Composition of Data Analytics

The frameworks discussed in Chapter 2 impose a low-level model of runtime

execution on analytics. They do not, necessarily, dictate the programming model

that must be used to interact with that execution model. There is considerable

further work in the literature on techniques and tools to enable various types of

user to interact with their data in a natural fashion. In this chapter, we examine

some of these approaches, and the trade-offs they incur.

3.1 Programming Frameworks

Since the early implementations of scalable data analytics using a DFS and

MapReduce, much work has gone into models for storing and analysing data.

While MapReduce makes it much simpler for an engineer to write an analytic

to be distributed over a dataset, as described in Section 3.1.1 its expressivity

is somewhat constrained. This has led to a number of alternative approaches

being proposed, described further in Sections 3.1.2 and 3.1.3.

3.1.1 MapReduce

The MapReduce programming model (see Figure 3.1) begins with a map phase,

in which data is read from disk, parsed, and turned into key-value pairs: a

programmer-supplied Mapper defines how to turn a datum from the input into a

set of keys and values. After the map phase, data is shuffled by the framework: it

is written to disk, sorted by key, and potentially redistributed onto the nodes that

will perform the next phase of the computation. The final phase is the reduce: a

programmer-supplied Reducer is supplied with a key and a list of values for each

key produced by the Mapper. It emits a (usually reduced) set of key-value pairs

21

3. Composition of Data Analytics

Figure 3.1: Phases of MapReduce Execution.

for the input. Depending on the job configuration, the MapReduce framework

may insert an optional combine phase between the map and reduce phases.

This phase is supplied with a separate Reducer which is both commutative and

associative, which the framework can apply to subsets of the output of the map

phase (potentially repeatedly, as needed). This optimisation is necessary for

jobs generating particularly large value lists for each key, as the full set of values

need not be collected and processed in a single Reducer operation. The results

of the computation are written back to the DFS.

Apache Pig [82] builds on top of the MapReduce engine, adding a scripting

language (Pig Latin) for defining steps to be executed in a workflow. These

steps are compiled into a series of Mappers and Reducers, which are executed in

a Bulk Synchronous Parallel fashion [20]. Pig Latin adds the ability to specify

simple iterative algorithms, filter using arbitrary predicates, as well as performing

simple aggregations, grouping, and joins.

While Pig improves the expressivity of MapReduce, there is a significant

latency in the startup of jobs on the Hadoop MapReduce framework [84]. As

Pig Latin scripts are executed as a series of MapReduce jobs, the impact of this

startup latency (as well as the cost of disk reads and writes for each phase of

the computation) quickly multiplies.

22

3. Composition of Data Analytics

3.1.2 DAG Runtimes

An alternative use of the MapReduce paradigm is to encode more complex

analytical workflows as Directed Acyclic Graphs (DAGs) of low-level components.

In such DAG runtimes, nodes represent the analytic components, and edges

the dataflows between these components. For example, Cascading [16] uses the

Java programming language to define a DAG, with each component assigned

to Mappers or Reducers in the MapReduce framework. Of particular value

here is the breadth of the standard library which Cascading is distributed with:

many classes of problem can leverage this library of standard functions to reduce

development time.

Apache Spark [123] offers a notable extension of this model: it facilitates

the use of a cluster, which may optionally be running Hadoop, for in-memory

analytics. Spark is sensitive to HDFS data locality, but does not depend on

HDFS directly. It can operate equally effectively over local storage or a custom

storage layer built by the Spark team, Tachyon [67]. Spark implements its own

execution framework on top of the base operating system, handling the scheduling

of its atomic operations onto available hardware. These atomic operations are

inspired by the functional programming paradigm: they include builtins such

as map, reduce, flatMap, filter, join, take, count, etc.. However, unlike

the declarative graph definitions like those employed by Cascading or Apache

Storm (see Section 3.1.3), Spark wraps its operations in procedural Java code

which results in a lazily generated and evaluated graph of operations in the

Spark runtime. This offers the user more flexibility, defining the precise flow of

operations at run-time rather than design-time.

Spark operations are represented as transformations of Resilient Distributed

Datasets (RDDs) [124]. Each Spark operation transforms an RDD of one type

to an RDD of another: these RDD definitions are constructed and maintained

by the Spark runtime. While an operation may be applied to a single RDD,

the execution framework will map that operation to a number of partitions (for

example, one per block of data in HDFS) executing on any number of nodes in

23

3. Composition of Data Analytics

the cluster, optimised for data locality. In Spark’s nomenclature, each operation

is executed as a set of stages, which are mapped to workers. A given stage

may have dependencies on the execution of prior stages in the workflow. A

stage either executes in the driver (the machine hosting the application), or is

distributed to a worker node which hosts the referenced partition of an RDD

(Spark may move or shuffle RDD partitions during execution of a job to facilitate

data parallelism; a Spark application may also request re-partitioning of an RDD

as needed).

If at any time in a computation the node hosting a partition of an RDD

fails, Spark can recover that subset of the analysis from the definition of the

RDD. Spark may additionally speculatively “race” nodes to completion of a given

operation on an RDD, if it suspects a node is running slowly.

There are a variety of extensions to the base Spark programming model.

GraphX and Bagel [116] are both graph processing engines built on top of the base

Spark runtime, based on Google’s Pregel [71] research. There are a collection of

machine learning algorithms built on Spark ready for reuse in Spark applications,

called MLlib [38]. Finally, Spark Streaming [125] is a solution for implementing

streaming analytics on the Spark runtime. It does not permit direct portability

of offline analytics to an online environment (the RDD definitions differ), but

reuses many of the atomic operations and concepts in its programming model.

3.1.3 Streaming Frameworks

In addition to the offering from Apache Spark described above, a number of

online analytic frameworks offer their own programming models for describing

streaming analysis. These often consist of an API or language to declaratively

describe the topology of an analytic as a collection of Processing Elements (PEs),

and connections between these PEs (tuples traverse these edges during execution).

This directed graph representation then uses an imperative language to define

the behaviour of each PE. This behaviour can be purely reactive (tuples are

produced in response to an input tuple), or in a multi-threaded PE tuples may

24

3. Composition of Data Analytics

be generated asynchronously (e.g., in a time-based window operator).

One of the earliest streaming data analytics platforms to be deployed at scale

was IBM’s InfoSphere Streams [89] (marketed initially as System S), followed

shortly by the open source Apache Storm [7], originally developed by BackType.

Others include Yahoo!’s S4 [78] (also in the Apache Incubator), which offers an

agent-based programming model rather than the typical workflow-based model.

This makes deployment scenarios and performance prediction somewhat more

challenging than Storm and Streams, which offer a lower-level abstraction, but

permits analytics to be designed in a more loosely coupled fashion. Alternatives

include Esper [37], which provides a cross-platform streaming analysis API for

Java and .NET, and Microsoft’s StreamInsight [3] product, which offers tight

integration with Microsoft SQL Server.

Apache Storm is notable for its popularity and short learning curve. It offers

a number of models through which to design a Storm topology, the simplest of

which behaves as described above: a Java API is used to declare the PEs in a

topology (“Bolts” in the Storm model; data sources are referred to as “Spouts”)

and their connections. Configuration is available to manually define the level

of parallelism of a PE, as well as how data should be shuffled and distributed

to PEs in these parallel regions. Storm additionally offers guarantees about

message processing: when a message is assigned an identifier, Storm tracks this

identifier through the topology to ensure it is acknowledged as processed. If it is

not processed within a timeout window, PEs which may have processed it are

informed that the message has failed, and offered the chance to re-process that

message. A second API, called Trident, offers a higher-level abstraction over

the Storm topology with an API akin to that used by Apache Spark. It uses

primitive operations such as project, join, partitionAggregate, and each to

describe the transformations that should be applied to a stream. The Trident

abstraction is used to generate a standard Storm topology, which is ultimately

compiled into Java bytecode and deployed on a Java Virtual Machine (JVM) for

execution within the Storm framework.

25

3. Composition of Data Analytics

IBM InfoSphere Streams uses a Domain Specific Language (DSL) to model the

processing graph, which it then translates into C++ code (a process called tran-

spilation), which is compiled against the Streams libraries for high-performance

execution. It additionally offers declarative annotations to describe the paral-

lelism of PEs, as well as partitioning requirements, to ensure host co-location

(the given PEs must be grouped on the same host) and ex-location (the given

PEs may never be scheduled onto the same host) where needed. In addition to

these language-level capabilities, the Streams compiler reasons about a topology

in order to perform fusion of PEs: combining two streaming tasks into a single

PE, such that it is ultimately compiled to one C++ operator, and all message

passing between these PEs is performed in-memory, without having to enter the

operating system’s network stack. Where available, the optimality of fusion can

be improved using sample workload data, which the compiler uses to simulate

the flow of tuples through the topology. These advanced optimisations result in

considerable performance gains over the pure JVM implementations offered by

Apache Storm [76].

3.2 SQL and SQL-like Interfaces

Some vendors offer solutions for authoring analytics that do not employ complete

programming languages. SQL provides one such vehicle for this; Apache Spark

SQL [115] and Cloudera Impala [62] both offer an SQL-style interface onto

NoSQL data stores. Apache Hive [107] offers an API to describe the structure

of data already stored in HDFS, treating flat files as virtual database tables. It

then permits arbitrary queries to be executed against these pseudo-tables, using

a derivative of SQL called HiveQL. Tools such as Google’s Dremel [74], and

the Apache Software Foundation implementation Drill [50], promise SQL-like

interactive querying over data stored in a variety of NoSQL data stores, from

flat files (CSV, JSON, etc.) to the likes of Bigtable [19] and HBase [6].

The work of Jain et al.[55] aims to standardise the use of SQL for streaming

26

3. Composition of Data Analytics

analysis, but its techniques have not been applied to both on- and off-line

analytics. Furthermore, other than through the introduction of User Defined

Functions or syntax extensions, there exist entire classes of analytics that cannot

be represented in SQL [66].

3.3 Visual Workflow Languages

A variety of approaches allowing less technical users to compose analytics have

been reported. Research in this area is often in the context of web-based

mashups, however many of the requirements for consuming data at “web scale”

are equally applicable to data analytics. Yu et al. [119] provide a rich overview of

a number of different approaches, including Yahoo! Pipes [87]; one of the first in

a number of recent dataflow-based visual programming paradigms for mashups

and analytics. Such solutions require sufficient technical knowledge from their

users so that they can navigate, select and compose components of a processing

pipeline. Knowledge of a supporting programming language is not required,

which removes the challenge of learning programming syntax, but this does not

obviate the need for a detailed understanding of the available components, their

semantics and their use.

Pipes has inspired a number of extensions and improvements, such as

Damia [4], PopFly [68] and Marmite [114]. The work of Daniel et al. [30]

aims to simplify the use of tools like Pipes by providing recommendations to

a non-expert on how to compose their workflows. Others, such as Google’s

(discontinued) Mashup Editor [46] take a more technical approach, requiring

an in-depth knowledge of XML, JavaScript, and related technologies, but in so

doing permit a greater degree of flexibility.

27

3. Composition of Data Analytics

3.4 Automated Planning & Composition

Often, subject-matter domain experts lack the technical skills to make use of

the approaches outlined above. As a result, a number of research projects have

investigated the automated composition of analytics, using techniques from AI

planning. Whitehouse et al. [112] propose a semantic approach to composing

queries over streams of sensor data, employing a declarative mechanism to

drive a backward-chaining reasoner and solving for possible plans at execution

time. Sirin et al. [98] introduce the use of OWL-S [72] for query component

descriptions in the SHOP2 [77] planner (a hierarchical task network planner).

OWL-S extends the purely syntactic composition of services afforded by WSDL

by adding a semantic model of the inputs and outputs to a web service. Another

common approach, taken by Pistore et al.in BPEL4WS [85], uses transition

systems as a basis for planning. A recurring theme in these approaches is that

of composing queries by satisfying the preconditions for executing composable

components. The runtime composition approach is flexible, but has implications

for performance at scale.

There has been considerable work in the area of web service composition for

bioinformatics; BioMOBY [113] specifies a software interface to which services

must adhere, then permits a user to perform discovery of a single service based

on their available inputs and desired outputs; it does not manage the planning

and composition of an entire workflow. Taverna [81] offers a traditional “search”

interface (making use of full-text and tag-based search) to locate web services

which a user can manually compose in the Taverna interface. This form of manual

search and assembly requires considerable user expertise, and an understanding

of the art of the possible.

Research in Software Engineering has examined analogous problems to this.

Stolee et al. [102] examined the use of semantic models of source code as an

indexing strategy to help identify blocks of code that will pass a set of test

cases, presenting the user with a collection of existing candidate solutions to

28

3. Composition of Data Analytics

their problem. Such semantic searches have additionally been trialled in web

service composition [10, 28]. However, the complexity of the semantic model

and inherent uncertainty in retrieval accuracy make assembly of multiple blocks

of code somewhat risky – there is a considerable probability that the retrieved

code samples are not composable.

These web-services-based systems typically involve considerable user training

(whether in the composition interface or in the formal specification of their query

language), and at their core aim to answer single questions through service-

oriented protocols such as WSDL and SOAP. Often, large-scale data analytic

workflows aim instead to analyse significant amounts of data in parallel – an

execution model which is closer to that found in high-performance computing

simulations than in web mashups. In addition to the complexity of WSDL and

SOAP definitions, the services offered must often be written specifically for use

with such a system: their implementation depends directly on, e.g., a SOAP

implementation. There are many existing libraries of components in the data

analytics space which cannot be reasonably re-written to enable integration with

a composition system: instead, it is desirable for such a system to interface with

the existing APIs of the target runtime directly.

One noteworthy solution to the composition problem is that taken by IBM’s

research prototype, MARIO [92], which builds on SPPL, the Streaming Process-

ing Planning Language [90, 91]. The authors characterise MARIO as offering

wishful search, which a user drives by entering a set of goal tags. The MARIO

planning engine then aims to construct a sequence of analytical components that

will satisfy those goals. Tags correspond to those applied to flows of components

within engineer-defined code templates. In practice, due to the tight coupling

between the engineer-created tagsonomy and the actions available to the end user

(components are often manually tagged as compatible), it is rare for MARIO to

create a novel or unforeseen solution to a problem.

In addition to being a standalone planner, MARIO is integrated into the IBM

Automated Analytics Composer. This solution provides the user interface onto

29

3. Composition of Data Analytics

the MARIO planner, as well as orchestrating the compilation and deployment of

the resulting jobs onto the correct runtime framework. It will additionally collect

results for presentation to the user using a framework called WebViz [126]. As a

result of this orchestration and deployment engineering, MARIO and the IBM

Automated Analytics Composer are particularly well-suited for integration into

experimental analytic systems, such as for automated data exploration [11, 93]

and hypothesis generation [101]. It is in this context which MARIO is used

later in this thesis (Chapter 6) to demonstrate and evaluate an approach to

speculative compilation and deployment of analytic workflows.

The principle of speculative execution has been widely studied in Computer

Science. There is a long history of branch and value prediction in CPU ar-

chitecture to enable instruction-level parallelism, pipelining, and speculative

execution [40, 57, 100]. Exploitation of such fine-grained techniques enable

considerable performance improvements in production codes [88, 95] by making

sub-millisecond performance gains many times over millions of instructions.

More coarse-grained speculative execution is used to hide latency in expen-

sive operations, such as in hard disk controller software [18, 22] or network

clients [63, 75, 83]. Speculative execution has additionally been used in data

analytics workflows before: Apache Hadoop uses it as a mechanism for mitigating

the impact of faults [21, 121] by executing single tasks on multiple nodes when

a cluster has spare capacity.

3.5 Summary

Crafting scalable analytics for deployment either on- or off-line requires a mastery

of an enormous variety of runtimes and programming models. Some of these are

based on bulk synchronous runtimes, while others treat analytics as workflows of

communicating sequential processes. Each offers its own advantages, optimisation

potential, and has its own degree of suitability for a given problem – few

implementations permit portability between these runtimes.

30

3. Composition of Data Analytics

In addition to the differences in programming model, a number of the

implementations explored in this chapter are targeted at different levels of user

ability. From SQL dialects to point-and-click assembly interfaces, these various

interaction models each abstract away the complexity of planning and optimising

code in detail, relying instead on advanced code analysis and optimising compilers.

Most of these approaches aim to model the nature of an analytic in an

abstract form, before compiling it for execution in a specific framework. Few,

if any, of these implementations attempt to use this model of an analytic to

target more than one runtime. Apache Spark makes some steps towards this

with its RDD abstraction, but it requires the use of separate APIs for dealing

with streaming data. As discussed in Section 2.3, there is an increasing appetite

for combining the low-latency processing capabilities of streaming analytical

engines with the bulk analysis capabilities of offline data stores. This thesis

aims to address the challenge of programming these diverse systems, as well as

bridging the gap between those with the knowledge of how to program these

systems and those with the knowledge of what analysis to perform.

31

CHAPTER 4
Unified Secure On- and Off-Line Analytics

To derive insight and provide value to organisations, data scientists must make

sense of a greater volume and variety of data than ever before. In recent years

this challenge has motivated significant advances in data analytics, ranging from

streaming analysis engines such as IBM’s InfoSphere Streams to an ecosystem of

products built on the MapReduce framework.

When data specialists set out to perform analysis they are typically faced

with a decision: they can opt to receive continuous insight but limit analytic

capabilities to a functional or agent-oriented streaming architecture, or make use

of a bulk data paradigm but risk batch analyses taking hours or even days to

complete. It is, of course, possible to maintain systems that target streamed and

batch paradigms separately, though this is less desirable and more costly than

having a single system with the semantics to account for those paradigms in a

unified manner. The need to support multiple methodologies presents a further

challenge: ensuring analyses are correct and equivalent across platforms. These

issues are complicated further by deployment scenarios involving multi-tenant

cloud systems or environments with complex access control requirements.

The research described in this chapter seeks to alleviate many of these issues

through the development of Crucible, a framework consisting of a domain spe-

cific language (DSL) for describing analyses as a set of communicating sequential

processes, a common runtime model for analytic execution in multiple streamed

and batch environments, and an approach which automates the management of

cell-level security labelling uniformly across runtimes. In particular, this chapter

demonstrates how Crucible (named after the containers used in chemistry

for high-energy reactions) can be used across multiple data sources to perform

32

4. Unified Secure On- and Off-Line Analytics

highly parallel distributed analyses of data simultaneously in streaming and

batch paradigms, efficiently delivering integrated results whilst making best use

of existing cloud infrastructure.

The remainder of this chapter is structured as follows: Section 4.1 introduces

the Crucible system and describes its abstract execution model; Section 4.2

presents a performance analysis and discussion of the three key Crucible

runtimes; Section 4.3 details their associated optimisations. Finally, Section 4.4

summarises this research.

4.1 Crucible System

Crucible builds on the most desirable attributes of existing analytic approaches

in order to offer a single framework for developing secure analytics to be deployed

at scale on state of the art multi-tenancy on- and off-line data processing

platforms. It employs a similar programming model and approach to task

parallelism as the likes of InfoSphere Streams, while offering consistent execution

semantics across both on- and off-line data.

Software applications written for bulk analysis in a high security environment

must maintain annotations on their data, also known as security labels. Crucible

facilitates this through the inclusion of a semi-automated framework for the

management of these labels, and permits the application of them equivalently

across data sources and runtimes (as discussed in Section 4.1.3). In order to ease

the creation of analytics at scale, Crucible requires support for synchronisation

across components deployed on a given runtime (discussed further in Sections 4.1.4

and 4.1.5), to ensure the integrity of shared state. Finally, to realise its aim

of easing the creation of scalable analytics, support for a standard library of

broadly applicable cross-platform components is important: this is discussed in

Section 4.1.6.

In order to facilitate the creation of advanced analytics for on- and off-

line distributed execution, the Crucible DSL makes use of a higher level

33

4. Unified Secure On- and Off-Line Analytics

language abstraction than typical analytic frameworks, such as those discussed

in Chapter 3. This enables a degree of portability that is not typically achievable

under other schemes; an engineer may write their analytic once, in a concise

high-level language, and execute across a variety of paradigms without knowledge

of runtime-specific implementation details. In addition, the user is afforded the

ability to exploit an array of best-in-class runtime models for the execution of

Crucible code.

Furthermore, this approach seeks to free domain specialists from concerns

about the portability of an analytic’s correctness and security. Each Crucible

runtime is responsible for ensuring that analytics are run with equivalent exe-

cution semantics, through adherence to Crucible’s execution model. This is

the foundation on which Crucible’s assurances of cross-platform correctness

are built. The high level nature of the Crucible language permits the user

greater confidence that the analytic they intend is the analytic they have written.

As well as providing assurances regarding functional correctness, automated

application of security labelling frees the user from having to ensure they have

not violated the security constraints associated with the data they are using.

A risk organisations face when integrating a suite of analytics into their

operations is the constantly evolving state-of-the-art in analytic frameworks.

Crucible can help to mitigate this risk, as the “porting” of an entire suite of

analytics becomes a matter of introducing a new Crucible runtime for the

new framework; provided the runtime adheres to Crucible’s execution model,

portability of correctness is assured.

4.1.1 Crucible DSL

As the vast majority of analytic frameworks are built on the Java Virtual Machine,

Crucible must target the JVM in the first instance; support for other languages

and interfaces is secondary. By targeting the JVM, Crucible additionally gains

the use of the vast library of existing open-source Java code. It would be possible

to design Crucible as a set of Java interfaces to the runtimes discussed later in

34

4. Unified Secure On- and Off-Line Analytics

this chapter, however in our experience this results in extremely verbose code:

it is the goal of Crucible to move the expression of an analytic to be as close

as possible to the user’s intended analysis, with a minimum of “scaffolding”. It

is therefore important that the design of the DSL facilitates the integration of

both JVM primitives and other Java libraries.

Instead of designing the language semantics for a novel language from scratch,

Crucible’s DSL is built on the XText [36] language framework. Through

XText’s use of XBase, an embeddable version of the XTend Java Virtual Machine

(JVM) language, Crucible avoids the need to implement a new parser and

design a Turing-complete language implementation. Crucially, the XBase syntax

is not dissimilar to Java (with some higher level primitives and syntactic sugar).

Crucible’s extension to XBase provides a syntactic framework for modelling

Processing Elements (PEs), while the syntax and semantics of standard XBase

code are reused for each PE’s processing logic.

At a high level, a Crucible analytic (such as in Listing 4.1, a topology of

three linearly connected PEs) is structured similarly to a Java code file; it consists

of a package declaration for code organisation (line 1), a set of Java/Crucible

imports (lines 3-4), and then one or more process declarations, each describing

a PE (lines 6, 14, 29). In the Crucible DSL, each PE is modelled by a Java

class, with a name and an optional superclass. The body of a PE is divided into

a set of unordered blocks:

• config – Compile-time configuration constants. The initialisation of these

may involve an arbitrary expression. These are transpiled to const fields

in the Java class. (Lines 7, 15, 33);

• state – Runtime mutable state; shared globally between instances of this

PE. These variables may be declared local, in which case their values are

stored only locally on instances of the PE. Section 4.1.4 discusses the use

of global state in Crucible. These are transpiled as instance variables on

the Java class. (Lines 16, 31);

35

4. Unified Secure On- and Off-Line Analytics

1 package eg . counter
2
3 import c r u c i b l e . l i b . pe . F i l eSource
4 import c r u c i b l e . l i b . pe . F i l eS ink
5
6 process Source extends Fi l eSource {
7 config : {
8 Filename = ' / usr / share / d i c t /words '
9 ReadLines = fa l se // Read chars , not l i n e s

10 }
11 outputs : [F i l eL ine , F i l eCharacte r]
12 }
13
14 process F i l t e r {
15 config : i n t N = 1500000 // For TopN ca l c u l a t i o n
16 state : i n t seen = 0
17 output : Keys
18 input : Source . F i l eCharac te r �> {
19 i f ((seen) >= N) {
20 Keys . emit (' done ' �> true , ' key ' �> Character : :MIN_VALUE)
21 } else i f (Character : : i s L e t t e r (cha rac t e r)) {
22 seen = seen + 1
23 Keys . emit (' key ' �> Character : : toUpperCase (charac t e r) ,
24 ' done ' �> fa lse , ' t o t a l ' �> seen)
25 }
26 }
27 }
28
29 process CountingWriter extends Fi l eS ink {
30 output : Resu l t s
31 state : counts = ('A ' . charAt (0) . . 'Z ' . charAt (0))
32 . toInvertedMap [new AtomicInteger]
33 config : Filename = ' counts . txt '
34 input : F i l t e r . Keys �> {
35 i f (done) {
36 l og . i n f o (counts . t oS t r i ng)
37 Resu l t s . emit (' t o t a l ' �> tota l , ' counts ' �> counts as Map,
38 ' tstamp ' �> System : : cur rentTimeMi l l i s)
39 }
40 counts . get (key . charValue as i n t) ? . incrementAndGet
41 }
42 input : CountingWriter . Resu l t s �> super
43 }

Listing 4.1: An Example Crucible Topology fragment, counting the frequency
of characters in the input.

• output(s) – Declaration of the named output ports from the process.

Each output is represented in the transpiled code as an instance variable

of the Crucible library Output. (Lines 11, 17);

• input – A block which maps the qualified name of an output (in the form

ProcessName.OutputName) to a block of code to execute upon arrival of a

tuple from that port. The keys inferred to be present on the input tuple

are present as variables in this code block. In the transpiled Java class,

each input is generated as a receive method, based on the qualified name

of the output to which it subscribes (Lines 18, 34, 42).

36

4. Unified Secure On- and Off-Line Analytics

Figure 4.1: Components of the Crucible System. Entries in italics are external
dependencies.

Crucible transpiles a topology described in the DSL into idiomatic Java

based on the Crucible PE Model (the bottom layer of Figure 4.1). This is in

contrast to many other JVM languages, such as Scala [79], which directly compile

into unreadable bytecode. Compiler support is used to provide syntactic sugar

for accessing global shared state and the security labelling mechanism, which

are discussed in more detail in Section 4.1.3. The Code Generation component

noted in Figure 4.1 is responsible for this transpilation process. It is built on

the XText Java Model Inferrer, which uses the syntax description (as listed in

Appendix A) to generate a parser and abstract syntax tree (AST) generator.

This AST is supplied to code implemented in Crucible for gathering tuple

types through XBase’s type inference, and generating Java classes in accordance

with the description above. The result of this process is a series of Java classes

which inherit from PEDefinition and interact with the internal Crucible Java

API, shown in Figure 4.2. These classes turn the various Crucible keywords

described above into class fields and methods – effectively generating for the

user the verbose Java “scaffolding” which Crucible avoids. For example, the

87-line sample Crucible file in Listing 4.1 is transpiled to 560 lines of Java

across four separate classes; to give a sense of the complexity of these classes, the

class representing the Filter PE consists of 10 fields and 14 public methods.

4.1.2 Message Passing

Crucible PEs communicate using message passing; a call to Output.emit(...)

causes all subscribers to that output to receive the same message. No guarantees

37

4. Unified Secure On- and Off-Line Analytics

Figure 4.2: Crucible Model Composition diagram, showing the composition of
the core model (white) and the runtime injectable components (grey).

are given about the ordering of messages interleaved from different sources.

Messages are emitted as a set of key-value pairs, encoded as a single tuple. At

compile time Crucible performs type inference on all of the emit calls in the

topology to generate a correctly typed and named receive method interface on

each subscriber; the key of an item in the tuple is used as the parameter name

on the method. This type inference is based on the semantics of the XBase

language; in order to support implicit type declaration (akin to val and var in

Scala, or var in C#), XBase supports introspection-based type inference. The

algorithm used in Crucible is based on this implementation, with an extension

to trace the origin of a particular variable (and thus its type) across not just

method calls, but across PE subscriptions in the Crucible execution model.

These subscriptions are modelled as method calls for the purposes of this type

inference, thus preventing the need to extend any formal verification of the

XBase type system.

38

4. Unified Secure On- and Off-Line Analytics

4.1.3 Security Labelling

Crucible’s Security Labelling system is motivated by the need to cope with

complex access control requirements in multi-tenancy environments. For example,

the provenance or classification of data may need to be tracked on a cell level

in order to determine the visibility of a datum for a user. Ensuring that these

visibilities are tracked consistently is a challenge that requires a great deal of

attention to detail throughout the evolution of an analytic system. Reasoning a

priori about these labels in a consistent manner is impossible when labels must

be determined at runtime based on attributes of the data or the data source: a

use case which it is important for Crucible to support.

Crucible’s labelling protocol is built on the concept of cell-level visibility

expressions, similar to those described by Bell and LaPadula [9]. As in the

Bell and LaPadula security model (BLM), Crucible uses the Star property to

arrange that a given user (in this case, their agent in the form of an analytic)

may not write down in terms of security level: in Crucible this is implemented

by accumulating an expanding set of labels for each cell (datum) in the form of

a visibility expression.

This expression is given as a conjunction of disjunctions across named la-

bels. For example, the expression “Marketing & (Administrator | Manager)”

requires that a user is authorised to read the Marketing label, as well as either

Administrator or Manager. If they lack sufficient authorisation, they are not

permitted awareness of the existence of that cell. Crucially, Crucible lacks the

notion that one label (or level, in the BLM) is inherently “lower" than another;

instead, expanding a set of labels to require more authorisations is considered

equivalent to requiring a higher security level.

In practise, this principle is implemented by declaring an empty security

label for every instance of a variable in the system. This label is accessible to

a developer by calling the label extension method on an object reference. A

user may manually add a conjunction to a label using the += operator – this

label may be statically defined or generated at runtime. For example, the label

39

4. Unified Secure On- and Off-Line Analytics

associated with the x variable is expanded through either literal expansion; calling

x.label += "A | B", or expansion by label reference; x.label += y.label.

More formally, consider a function � which returns the visibility expression for

the datum held by a given identifier, and a label expansion function ✏(a, b) which

re-assigns the visibility expression held by identifier a to include the visibility

expression (lambda) of b:

�(a) : Expression for identifier a

✏(a, b) : �
1

(a) = {�
0

(a), �(b)}
(4.1)

Note that here the syntax �
n+1

is used to denote the “next expression” for a

given identifier: each time expansion occurs, n is incremented.

Labelling of object-oriented method invocation makes the conservative as-

sumption, in the interests of correctness, that the receiver’s state may be mutated

by the supplied arguments. Therefore:

c.foo(d, e, f))

8
>>>><

>>>>:

✏(c, d)

✏(c, e)

✏(c, f)

�
1

(c) = {�
0

(c), �(d), �(e), �(f)}

(4.2)

Assignment of a value to a non-final Java variable (e.g., as in g = h, where h is

any expression; not to be confused with g.label = h.label) requires clearing

the contents of its label prior to expansion, as accumulated state is discarded. If

the right expression (h) contains any identifiers, expansion must occur;

g = h)

8
>>>><

>>>>:

�
1

(g) = ;

8(i) 2 h, identifier(i)) ✏(g, i)

�
2

(g) = {�(i
0

) .. �(i
n

)}

(4.3)

As objects may contain mutable state, when a label for x expands to encompass

the label for y, and y’s label is later expanded, x’s label must include these

40

4. Unified Secure On- and Off-Line Analytics

additions:

1 # Ass : y . l a b e l == ‘ ’
2 x . l a b e l += ‘ foo ’
3 x . doSomething (y)
4 y . l a b e l += ‘ bar ’
5 x . l a b e l == ‘ bar&foo ’

�
0

(y) = ;
�
0

(x) = {“foo”}
✏(x, y)

�
1

(y) = {“bar”}
�
2

(x) = {“bar”, “foo”}

(4.4)

As a result of this system of label manipulations, Crucible is able to ensure that

write up semantics, as used in the BLM, are applied throughout code written

in the DSL. In the process of ensuring this is the case, in particular in the case

highlighted in Equation 4.4, the model errs on the side of over -protection of

information. If desired, a Crucible development environment can be configured

to allow a user direct access to the label clear mechanism to reset a label,

effectively empowering them (and the PE) as Trusted Subjects in the BLM.

Application of Labelling

This labelling requires support from the Crucible compiler to transform in-

vocations of the tuple emission method, emit(Pair<String,?> ... tuple),

into invocations of the form emit(Pair<SecurityLabel, Pair<String,?>>

... tuple). Note that in the Java type system this has the same type era-

sure as the original method, allowing the signature replacement to be made

transparently. The API seen by the user does not present the requirement

for a SecurityLabel; the user only expects to provide their emit method a

varargs input of Pair<String,?>. However, during transpilation each of these

parameters is wrapped in another Pair, this time with generic parameters

SecurityLabel and Pair<String,?>, to hold the generated label and the origi-

nal parameter element respectively. Therefore, when the user’s attempt to invoke

emit(Pair<String,?> ... tuple) instead calls emit(Pair<SecurityLabel,

Pair<String,?>> ... tuple), Java’s generated bytecode considers both to

be an invocation of the same emit(Pair[] tuple) method.

Concordantly, when generating the signature for a receive method, the com-

piler interleaves parameters with their labels: an interface of hString, Integeri

41

4. Unified Secure On- and Off-Line Analytics

1 process Mean {
2 state : i n t sum = 0
3 output : RunningAverage
4 input : F i l t e r . Keys �> {
5 i f (seen % 100 == 0) {
6 RunningAverage . emit ('mean ' �> sum / seen)
7 sum = 0
8 }
9 sum = sum + key . charValue as i n t

10 }
11 }

Listing 4.2: Crucible fragment for calculating the mean of results from
Listing 4.1.

1 protected int $_sum = 0 ;
2 protected f ina l Secur i tyLabe l sum$label = new Secur i tyLabe l () ;
3
4 public void r e c e i v e$F i l t e r $Key s (
5 f ina l Secur i tyLabe l done$labe l , f ina l boolean done ,
6 f ina l Secur i tyLabe l key$ labe l , f ina l char key ,
7 f ina l Secur i tyLabe l s e en$ labe l , f ina l int seen) {
8 i f (((seen % 100) == 0)) {
9 int _divide = (this . getSum () / seen) ;

10 Pair<Object , Object> _mappedTo = Pair .<Object , Object>o f (
11 "mean" , In t eg e r . valueOf (_divide)) ;
12 this . RunningAverage . emit (Pair .<Secur i tyLabe l , Object>o f (
13 new Secur i tyLabe l (sum$label , s e en$ l ab e l) , _mappedTo)) ;
14 this . setSum (0) ;
15 sum$label . $ c l e a r () ;
16 }
17 char _charValue = Character . valueOf (key) . charValue () ;
18 this . setSum (this . getSum () + ((int) _charValue)) ;
19 sum$label . expand (key$ l abe l) ;
20 }

Listing 4.3: Fragment of transpiled Java code from Listing 4.2.

instead becomes hSecurityLabel, String, SecurityLabel, Integeri. List-

ing 4.2 shows a simple Crucible fragment, designed to illustrate the automated

application of security labelling in practice, while Listing 4.3 shows what this

code transpiles to after processing by the Crucible compiler. Note in this

listing how the declared state variable, sum, is given an instance variable, $_sum,

and a SecurityLabel, sum$label (The $ character is reserved for use in Cru-

cible identifiers, but permitted in Java source; as such, it is used throughout

the generated code to create identifiers which will not risk naming collisions).

Furthermore, the labelling rules described above are applied consistently in the

code: as sum is modified using the value of key, the sum$label is expanded to

encompass the instance of key$label passed from the upstream PE (Listing 4.3

Line 19, per Rule 4.2). Similarly, when the value of sum is cleared (Listing 4.2

Line 7), sum$label is also cleared (Listing 4.3 Line 15), per Rule 4.3. As the

assignment is to an absolute value with no associated label, no further expansion

42

4. Unified Secure On- and Off-Line Analytics

is required at this point.

Thus, if the sequence of tuples in Table 4.1 (each containing a key, a seen

count, and a field to indicate if the stream is done, as emitted on lines 20 and 23

of Listing 4.1) were emitted to the Mean PE from Filter.Keys, the given output

would occur on Mean.RunningAverage. The table uses [..] notation to denote

the security label associated with a value. In this example, keys are labelled as

to whether they are a consonant (“C”), or a vowel (“V”). The seen total has the

label “S”, for Seen, added. The addition of these annotations is not shown in

Listing 4.1 in the interests of simplicity. The annotations on key and seen are

added manually by the author, using the var.label += "X" syntax, while the

mean label is accumulated automatically.

Filter.Keys → Mean.RunningAverage

done key seen mean

false [] G [C] 98 [S] 0.72 [C & S]
false [] H [C] 99 [S] 1.44 [C & S]
false [] I [V] 100 [S] 0.73 [V & S]
false [] J [C] 101 [S] 1.46 [V & C & S]

Table 4.1: Worked example of security label application

It is important to note that due to Crucible’s integration with the JVM, this

mechanism should not be considered secure for arbitrary untrusted code; it aims

only to assist the security-conscious engineer by making it easier for them to

comply with security protocols and audit requirements.

4.1.4 Global Synchronisation & State

Figure 4.2 shows how classes in the model interact; instances of many of these

classes (shaded) are injected at runtime using Google Guice [108], permitting

the behaviour of the runtime to be integrated with the relevant platform without

changes or specialisation in the user code.

Crucible’s global synchronisation and shared state components make use

of GlobalStateProvider and LockingProvider implementations which are

injected at runtime, based on the configured runtime environment. As discussed

43

4. Unified Secure On- and Off-Line Analytics

previously, if not marked local, state variables are globally scoped. Thus, if

multiple instances of a PE are run simultaneously, they will share any updates

to their state; these changes are made automatically. This mechanism is applied

without any guarantees about transactional integrity or serialisability, which in

limited circumstances is acceptable, e.g., when sampling for ‘a recent value’.

In those circumstances which require serialisability, an atomic extension

method is provided to take an exclusive reentrant lock on a field, and apply

the given closure to the locked state in a form of distributed locking. For

example, to take a lock on myObject and invoke method f on it, one may write

myObject.atomic[myObject.f()]. The behaviour of this is similar to Java’s

synchronized keyword, with two key distinctions: the locking is guaranteed

across multiple instances of a PE within a job, even across multiple hosts; and

the atomic method may be applied to multiple objects by locking a list of

variables e.g., #[x, y, z].atomic[...code block...], in which case all locks

are acquired before invoking the closure. A consistent ordering of locking and

unlocking is applied, as well as a protocol lock, to ensure that interleaved requests

across critical regions do not deadlock. This locking protocol obeys the strong

strict two-phase commit rule, by expanding all locks before entering the critical

region (the code block in the closure), and releasing all locks thereafter.

The runtimes described in Section 4.1.5 make use of two possible synchroni-

sation implementations. The first of these is entirely in-memory and suitable

only for single-JVM deployments – the shared state implementation assumes

that only a single PE of each type is running at a time. The locking provider

employs the Java library’s java.util.concurrent.locks.ReentrantLock to

implement the protocol lock and per-variable locks as described above.

The distributed implementation is slightly more involved, using an Apache

ZooKeeper [8] (ZK) quorum for inter-process and inter-host synchronisation.

Global locking is based on a per-job ZK path for each named lock. This path

is created when the lock is first instantiated – when a client wishes to take the

lock, they perform the following sequence:

44

4. Unified Secure On- and Off-Line Analytics

1. Create a node under the lock path with the ephemeral and sequence flags

set; retain the node sequence number

2. Enumerate the children of the lock node (without setting a watcher)

3. If the lowest sequence number in Step 2 is equal to that of the node created

in Step 1, exit the protocol as the lock is held by this client

4. Maintain a watcher on the next-lowest sequence number: when that node

is deleted, this client holds the lock and exits the protocol

When a client wishes to release a lock, it simply deletes the relevant node from

the ZK quorum. Note that this protocol involves no polling or timeouts – and

each deletion only notifies (and thus wakes) the client which owns the lock next.

The ZK-backed Global shared state provider involves a simpler protocol,

since it does not offer any protection against race conditions. All state operations

for a given PE are performed within a per-job per-class ZK path. Any global

fields within the PE are created as nodes within the relevant ZK path on PE

instantiation: serialised data is stored in these nodes when a field is updated.

Each client maintains a watcher on the nodes associated with its fields – when

the watcher is triggered, the client updates the state on the PE with the new

value. By loading data from ZK asynchronously, reads of global state variables

are efficient (potentially at the cost of unnecessary network traffic, if a variable

is updated often but rarely read).

4.1.5 Crucible Runtimes

Crucible offers three key runtime environments for the execution of analytics

transpiled from the DSL source. This model, in which an executable compiled to

Java source is integrated with existing environments by a runtime shim, is similar

to that used in COMPSs [105], the componentised superscalar programming

model and runtime system. COMPSs uses the EMOTIVE [44] middleware

to enable execution on a variety of runtime environments; in a similar vein,

45

4. Unified Secure On- and Off-Line Analytics

Crucible uses its own novel library of runtime middleware to convert each

framework’s native runtime behaviour to integrate with the Crucible message

passing model. The key advancement of Crucible’s implementations over

the likes of COMPSs is that instead of simply converting between APIs with

essentially similar runtime models (e.g., for the deployment of virtual machines on

a cloud and scheduling of jobs on those instances), each of the Crucible runtimes

described below must integrate fundamentally different execution models.

Standalone Processing

The first, and simplest, runtime environment is designed for readily testing a

Crucible topology locally, without any need for a distributed infrastructure.

This Standalone environment executes a given topology in a single JVM, relying

heavily on Java’s multithreading capabilities. Simple in-memory locking and

global state are provided as the topology will always be located in a single JVM.

Message passing is performed entirely in-memory, using a shared Dispatcher

instance with a blocking concurrent queue providing synchronisation. This

queue, an instance of java.util.concurrent.LinkedBlockingQueue, main-

tains a queue of java.lang.Runnable tasks which are passed to a java.util.

concurrent.ExecutorService for execution in a thread-pool. These tasks are

used for registering/de-registering subscribers, and submitting tuples to the list

of subscribers for a given PE. Multiple Reader Single Writer semantics for the sub-

scriber mapping are ensured using a series of java.util.concurrent.Semaphore

mutexes.

On-Line Processing

IBM’s InfoSphere Streams provides the platform for Crucible’s streaming

(on-line) runtime engine. An extension to the Crucible DSL compiler generates

a complete SPL (IBM’s Streams Processing Language) project from the given

topology. This project can be imported directly into InfoSphere Streams Studio;

it consists of the required project infrastructure (including toolkit and classpath

46

4. Unified Secure On- and Off-Line Analytics

dependency references), and a single SPL Main Composite describing the topology.

Each SPL PE in Streams is an instance of a Streams-specific wrapper class,

CruciblePE. This class handles invocation of the receive$... tuple methods,

dispatch between Streams and the CruciblePEs, and tuple serialisation.

There is a one-to-one mapping between tuples emitted in Crucible and

tuples emitted in Streams. Each key in a Crucible tuple has a fixed field

in a Streams tuple type, and values for all keys are transmitted with each

emission. These values are interleaved with their associated security labels,

such that the label for a given key immediately precedes it. Tuple values must

be converted between Streams and Crucible using a serialisation framework

of some kind: this framework is injected into the PE at runtime. Kryo is a

runtime library for Java which serialises an arbitrary Java Serializable into a

buffer of bytes with a similar contract to the built-in Java ObjectOutputStream

and ObjectInputStream, only with superior time and space efficiency [2, 99].

On these strengths, the default serialiser for Crucible is Kryo – but it would

be feasible to add, for example, a Protocol Buffers [47] based implementation

if interoperability with external systems were required. Security Labels are

not serialised through Kryo; to facilitate their inspection by debug tooling on

the Streams instance, as well as easing their consumption in a non-Crucible

analytic workflow, they are encoded as strings. Security Labels are written

as rstring values, while all others are serialised as an immutable list<int8>

(representing an array of the serialised bytes).

Each of these CruciblePE instances can be scheduled into separate JVMs

running on different hosts, according to the behaviour of the Streams deployment

manager. Manual editing of the generated SPL, e.g., to use SPLMM (SPL Mixed

Mode, using Perl as a preprocessor), can be used to parallelise a single PE across

multiple hosts. The injectable global synchronisation primitives discussed in

Section 4.1.4 may be used to ensure correctness in this form of data-parallelism.

47

4. Unified Secure On- and Off-Line Analytics

Figure 4.4: Crucible Accumulo Runtime Message Dispatch, demonstrating
how Scanners are used to pull data through a collection of custom Iterators to
analyse data sharded across Accumulo Tablets.

Off-Line Processing

The mapping from Crucible’s execution model to Accumulo for off-line pro-

cessing is more involved. In order to exploit the data locality and inherent

parallelism available in HDFS, while maintaining the event-driven programming

model employed in the Crucible DSL, the Accumulo runtime makes use of

Accumulo Iterators [39]. An Iterator may scan multiple tablets in parallel, and

will stream ordered results to the Scanner which invoked the iterator. Crucible

makes use of this paradigm by spawning a CrucibleIterator for each PE in

the topology, along with a multithreaded Scanner to consume results. Each

CrucibleIterator may be instantiated and destroyed repeatedly as the scan

progresses through the data store.

Each CrucibleIterator is assigned to its own table, named after the UUID

of the Job and the PE to which it refers. Values map onto an Accumulo Key by

using a timestamp for the Row ID, the Source PE of a tuple as Column Family,

and the emitted item’s key as Column Qualifier. Column Visibility is used to

48

4. Unified Secure On- and Off-Line Analytics

encode Security Labels, making efficient use of Accumulo’s native support for

cell-level security.

In this way, the CrucibleIterator can invoke the correct receive method

on a PE, by collating all hkey, value, labeli triples of a given RowID. By mapping

Crucible Security Labels onto Accumulo Visibilities, all message passing data

(and final results) are persisted to HDFS with their correct labels: external

Accumulo clients may read that state, provided they possess the correct set of

authorizations: ensuring cell-level security well beyond the Crucible system

boundary.

Crucible’s AccumuloDispatcher takes tuples emitted by a PE, and writes

them to the tables of each subscriber to that stream, for the relevant Crucible

Iterator to process in parallel. The final component is the multithreaded

Scanner, which continually consumes from the iterator stack, restarting from

the last key scanned when the stack exhausts available input, thus ensuring that

the job fully processes all tuples in all tables.

This flow is presented in Figure 4.4: the Accumulo Master schedules Cru-

cible’s Iterators onto Tablet Servers as a result of requests from the client-side

Scanners. There is one Scanner present for each PE in the system: in Figure 4.4

there are therefore three PEs shown – there could be a many-to-many mapping

of PEs to Tablets, as Accumulo distributes data for each PE’s table across the

available Tablet Servers. Note here that only the final results are returned to

the client-side Scanners: all intermediate data is written across the Accumulo

cluster’s internal network.

4.1.6 Standard Library

The last Crucible component is the standard library. This includes the compo-

nents necessary for the operation of the aforementioned runtimes, along with a

set of base PE implementations to simplify the creation of Crucible topologies.

These provide examples of data ingest from a variety of sources, such as from

the APIs of Flickr and Twitter, along with primitives to read and write file data.

49

4. Unified Secure On- and Off-Line Analytics

An XPath PE is valuable for extracting data from XML. This library addition-

ally includes operators for bloom filters and serialisation to/from common data

formats such as JSON.

This library is implemented in standard Java, and no special infrastructure

is required to extend it. It is intended that users of Crucible may extend this

library with custom PEs, or publish their own, simply by writing Java which

conforms to a given interface, and making it available on the classpath. For

single-use Java operators this may additionally be done within the analytic’s

Crucible IDE project – the compiler will load and integrate the operator

automatically.

4.2 Crucible Runtime Performance

Crucible’s functional correctness has been validated using a suite of JUnit

unit tests, integration testing of analytics against known-good results, and

through user acceptance testing. However, beyond this functional correctness,

it is necessary to validate the performance of the various Crucible runtimes.

This initial analysis of Crucible’s performance presents results from the pre-

optimisation codebase, with a focus on comparing the scaling behaviour of each

Crucible runtime against a functionally equivalent native implementation.

4.2.1 Experimental Setup

In order to analyse the scaling behaviour and accurately compare the performance

of Crucible against native implementations, a cross-platform benchmark is

required. Most data-intensive benchmark suites in the literature [29, 42, 52, 111]

focus on a single type of runtime: OLAP queries, streaming analysis, MapReduce,

etc. As a result, this thesis uses its own simple benchmark design, counting

the frequency of letter occurrence in a dictionary (akin to Listing 4.1), limited

to the top N results, where N is the configured problem size. This design has

been selected to maximise the impact of the software design on the wall-time of

50

4. Unified Secure On- and Off-Line Analytics

101 102 103 104 105 106
100

102

104

106

108

Problem Size (Tuples)

Ex
ec
ut
io
n
Ti
m
e
(m

s)

101 102 103 104 105 106
100

102

104

106

108

Problem Size (Tuples)

Ex
ec
ut
io
n
Ti
m
e
(m

s)

101 102 103 104 105 106
100

102

104

106

108

Problem Size (Tuples)

Ex
ec
ut
io
n
Ti
m
e
(m

s)

Standalone SPL (Global) Accumulo (Global)
Native Java SPL (Local) Accumulo (Local)

Native SPL Native Accumulo

Figure 4.5: Scalability comparison of Crucible Runtimes against hand-written
Native Implementations.

51

4. Unified Secure On- and Off-Line Analytics

the analysis: a more compute-intensive benchmark would be better suited to

testing the performance of the underlying hardware architecture. As it stands,

this benchmark should spend most of its execution time in the various runtimes

under test, highlighting their performance characteristics as much as possible

– as shown in the subsequent analysis (Section 4.2.2), this benchmarking task

sufficiently demonstrates the performance gap between the Crucible framework

and native implementations. There is a key distinction between Crucible and

the native implementations here; as the native environments lack support for

security labelling, only the Crucible runtimes track the per-cell security labels.

These results were collected on a small development cluster, consisting of

three Tablet Servers, one Master, and three Streams nodes. Each node hosts two

dual-core 3.0 GHz Intel Xeon 5160 CPUs, 8 GB RAM, and 2⇥1GbE interfaces.

4.2.2 Analysis

The three graphs in Figure 4.5 shows the results of this testing across the

Standalone, Streams SPL, and Accumulo runtimes respectively. It is clear from

these results that the Crucible runtimes, in the main, scale proportionally to

their native equivalents. There is a noticeable performance gap for each of the

runtimes in this basic implementation of Crucible, demonstrating the need for

further optimisation to enhance the per-tuple processing delay in all Crucible

runtimes (to be discussed in Section 4.3).

The “Global” and “Local” data series are worth noting, as they highlight

the performance difference between Global (ZooKeeper-based) and Local (in-

memory) shared state providers (see Section 4.1.4, and the discussion at the end of

Section 4.1.5). Some analytic jobs do not require all of the features of Crucible

at all times, and thus it is valuable to be able to disable performance-hampering

features such as these.

While comparing the absolute performance of Crucible and the native

implementations, it is important to consider the engineering implications of the

approach in Crucible. Removing much of the “scaffolding” of other solutions

52

4. Unified Secure On- and Off-Line Analytics

has enhanced the expressivity of the Crucible DSL to the point where the above

benchmark was implemented in ⇠40 lines of the Crucible DSL, as opposed

to ⇠260 for the three native implementations. Furthermore, the Crucible

implementation can be executed across multiple runtimes, whereas the native

implementations are each specific to either on- or off-line environments. In our

experience, the two to three days taken to write and debug the suite of native

analytics was reduced to under a day with Crucible.

4.3 Crucible Runtime Optimisation

Section 4.1.5 described the implementation of the three core Crucible run-

times. Section 4.2 demonstrated near linear scaling of their performance over

growing input sizes. However, it also showed that they lacked sufficiently strong

performance when compared to hand-written implementations. A series of signif-

icant enhancements and optimisations have been implemented in each of these

runtimes, in order to improve time-to-solution performance. The experimental

results described in Sections 4.3.1– 4.3.3 were collected on the same specification

of system described for the original Crucible experimental results, using the

same benchmark – no code optimisations have been applied to the benchmark

itself. These results are, therefore, directly comparable.

4.3.1 Standalone Processing

The standalone runtime provides an ideal test environment for general optimi-

sations to the Crucible framework, due to its lack of complex inter-process

communication (IPC). Figure 4.6 shows the proportion of the runtime spent in

various functional sections of the code for a variety of standalone runtime models

discussed in further detail below. Figure 4.6 (and later 4.9) were generated using

the YourKit instrumenting Java profiler [118] on the maximum problem size.

The profiler was used to find method hotspots, and measure the call tree time

(the total time spent executing code in the method body, and the cost of its

53

4. Unified Secure On- and Off-Line Analytics

Standalone v1Standalone v2 Backpressure Disruptor Spark (Local)

0

0.5

1
Fu

nc
ti

on
R

un
ti

m
e

P
ro

po
rt

io
n

String Building Security Labelling Tuple Collect PE Invoke
Output Emit Dispatch Loop Analytic Code Other

Figure 4.6: Function runtime breakdown across Standalone Dispatchers.

method calls, recursively) from those hotspots: these are the functions broken

out in the figures. The profiler was configured to omit the analytic’s warm-up

time, in order to illustrate the proportional function runtimes for an analytic

during the bulk of its execution. It is important to note that these data do not

capture the proportion of time spent blocked or context switching, and thus are

not sufficient on their own to compare the absolute performance of the runtimes.

The original version of the standalone runtime (Standalone v1) spends over

75% of its wall time building strings, either naïvely for logging purposes or for

analytic output. The Standalone v2 entry avoids building descriptions of data

structures and components for logging if the log message is not going to be

emitted. In addition to this, the profiles in Figure 4.6 show that approximately

7.5% of the runtime is spent examining PE configuration and building data

structures to invoke the topology’s PEs. The Standalone v2 entry addresses

this by introducing new code generation to enforce a set of guarantees to the

Crucible runtime that permit accurate compile-time reasoning about the

ordering of keys in tuples. As a result, tuple keys (parameters) on the emit

and receive interfaces of a given PE are equivalently ordered when the code is

generated, which allows the runtime to avoid reordering and validating tuples

when invoking a PE. These changes result in this entry spending a significantly

54

4. Unified Secure On- and Off-Line Analytics

main
FileS

ou
rceWork
er1Work
er2Work
er3Work
er4Work
er5Work
er6Work
er7Work
er8

T
hr

ea
ds

Standalone Dispatcher

mainFileS
ou

rceWork
er1Work
er2Work
er3Work
er4

T
hr

ea
ds

Backpressure Dispatcher

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500
Work

er7Work
er6Work
er5Work
er4

Cou
ntFilte
r

FileS
ou

rce
main

Time (seconds)

T
hr

ea
ds

Disruptor Dispatcher

Figure 4.7: Thread utilisation in the Standalone, Backpressure, and Disruptor
Dispatchers respectively. Green blocks represent the periods when the thread
was in the Running state; Red blocks represent periods the thread was not
running.

55

4. Unified Secure On- and Off-Line Analytics

101 102 103 104 105 106

10�1

100

101

102

103

104

Problem Size (Tuples)

Ex
ec
ut
io
n
Ti
m
e
(s
)

Standalone v1
Disruptor
Spark (Local)

Figure 4.8: Scalability Comparison of Crucible Standalone Runtimes and
Native Implementations.

higher proportion of its time (⇠ 40% rather than ⇠ 4%) performing the actual

analysis.

With a better optimised Standalone environment, the importance of thread

utilisation becomes increasingly apparent. Figure 4.7 has been derived from the

same YourKit Profiler traces as Figures 4.6 and 4.9; it gives a description of when

threads in each dispatcher are actually executing (they may be scheduled off the

CPU by a lack of work to be done, or being switched out of the Runnable state

for other reasons, such as being blocked waiting on I/O or a lock). Each line

corresponds to a worker thread – where possible, these have been labelled with

the work done by that thread, if a single task was consistently scheduled onto it.

The top chart of this figure shows that the set of workers in the Standalone v2

dispatcher spend a significant amount of time switching in and out of a runnable

state; none of the Worker threads (responsible for receiving submitted tuples and

invoking the relevant PE) show full CPU utilisation. Two further experiments

were conducted based on these results. The first of these, illustrated in the

middle chart of Figure 4.7, introduced the use of backpressure [103] to slow down

PEs that were producing tuples faster than downstream PEs could consume

56

4. Unified Secure On- and Off-Line Analytics

them (thus reducing the probability of resource starvation).

In this arrangement, the queues which form the message passing buffers

between PEs are given a fixed upper bound in size (512 elements). When

a PE generates more than this many elements without any being processed

downstream, a semaphore controlling access to the queue is exhausted and blocks

awaiting a permit. Permits are released into the semaphore when elements are

removed from the end of the queue; in this way, if PEs downstream are unable

to process tuples at the rate they are being produced, the upstream PEs are

blocked from executing, permitting the downstream PEs more scheduled CPU

time to “catch up”. This shows much better thread utilisation, but does not

make adequate use of the multi-core architecture on which it runs.

The final, and best performing, standalone Dispatcher implementation makes

use of the LMAX Disruptor [106], detailed in the bottom chart of Figure 4.7.

The LMAX Disruptor is a lock-free (avoiding the cost of managing locks, even

through the relatively efficient CAS (compare-and-swap) mechanism used in

modern locking protocols) thread-safe implementation of a ring-buffer, which

maintains two pointers: one for the current write-position of the buffer, and

one for the last “committed” entry – slots in the buffer are “claimed” by a

thread before being written to, and “committed” when the write is complete.

The Disruptor is designed specifically for high-throughput producer/consumer

operations, and as such is ideally suited to use in a Dispatcher. It maintains its

own thread pool for consumers (downstream PEs) – as a result of its pointer

arrangement, messages (in Crucible’s use, tuples) are automatically batched.

The Disruptor can either be configured to overwrite elements in the ring-buffer

when it is full (which would result in lost messages, in what is typically referred

to as load shedding), or to reject requests to write if the buffer is full: in which

case the calling thread may block until the buffer has space. The latter semantics

are used in Crucible, thus extending the notion of backpressure discussed

above into the Disruptor Dispatcher. It is noteworthy that the Disruptor

Dispatcher scheduled each PE to its own thread consistently, and significantly

57

4. Unified Secure On- and Off-Line Analytics

reduced the amount of context switching by permitting the threads to run

truly concurrently whenever there was data available. The superior thread

utilisation of the Disruptor Dispatcher is borne out in the runtime results of

Figure 4.8, demonstrating a speedup of over 16⇥ of a Disruptor-based runtime

model over the original Standalone model. Whereas the original model suffered

a performance penalty of 526⇥ over the native implementation, the Disruptor

model is only 32⇥ slower, with no code changes to the analytic itself.

There is no significant difference in the actual analytical code executed in the

Crucible implementation than the hand-written implementation; this relatively

simple analytical task exposes the costs of running the Crucible framework

(maintaining threads, dispatch mechanisms, etc.). The single-threaded hand-

written implementation suffers none of these costs – it simply executes the

core analytic. Comparing the “Analytic Code” segment of the Disruptor chart

in Figure 4.6 to the absolute runtime of the Native Java implementation in

Figure 4.5 bears this out; at the maximum problem size, Native Java took

395 ms to execute, whereas the Disruptor’s Analytic Code executed in 347ms.

The difference between these is due to the startup time of the Native Java

implementation, which is not accounted for in the Disruptor runtime.

4.3.2 On-Line Processing

Figure 4.9 details how the framework optimisations already described have

impacted the breakdown of function runtime in Streams CruciblePEs. In order

to better understand the costs involved in the existing Crucible SPL execution

model, an SPL topology was instrumented to measure the latency introduced by

tuple I/O. The Native SPL results show the latency in passing a message into

or out of a PE written entirely in SPL. JNI (the Java Native Interface) does

not involve any Crucible code; it simply measures the latency introduced by

causing tuples to be passed from the Streams SPL interface into the Streams

Java interface. This is a necessary precondition for execution of Crucible’s

Java target code. The final results include the SPL and JNI latencies, as well

58

4. Unified Secure On- and Off-Line Analytics

Streams v1 Streams v2 Accumulo v2 Spark (Accumulo)

0

0.2

0.4

0.6

0.8

1

Fu
nc
tio

n
Ru

nt
im

e
Pr
op

or
tio

n

String Building Security Labelling Tuple Collect PE Invoke
Output Emit Dispatch Loop Analytic Code Other

Figure 4.9: Function runtime breakdown across On- and Off-line Dispatchers.

Native With JNI CRUCIBLE
100

101

102

103

Ti
m
e
(m

s)

Tuple Input
Tuple Output

Figure 4.10: SPL Tuple I/O Instrumentation.

59

4. Unified Secure On- and Off-Line Analytics

Figure 4.11: Crucible Code Generation Hierarchy.

as those introduced by transcoding and converting data types between Streams

Java tuples and tuples in Crucible, as well as execution of the PE invocation

logic (but no PE logic). These results are presented in Figure 4.10; the JNI

interface is responsible for a considerable proportion of the latency in invoking a

Crucible PE.

In order to minimise the impact of Streams’ JNI latency, it is necessary to

improve Crucible’s generation of the SPL target to make better use of native

SPL operators. For example, many of the Crucible library functions exist

natively within SPL (e.g., file sources and sinks, or timed “beacon” emitters)

as higher performance variants of the Java code. By introducing pluggable

code generators, Crucible enables library developers to override the default

generation engine and create runtime specific variants of a given PE.

This pluggable code generation system offers each generator for a pair of

hPE class, Runtime environmenti the opportunity to generate code for a given

instance of a PE by simply being loaded on the classpath for the IDE. The gen-

erators are sought using their annotation: @Generate(target=SomePE.class,

60

4. Unified Secure On- and Off-Line Analytics

101 102 103 104 105 106

10�1

100

101

102

103

104

Problem Size (Tuples)

Ex
ec
ut
io
n
Ti
m
e
(s
)

Streams v1
Streams v2
Native SPL

Figure 4.12: Scalability Comparison of Crucible Online Runtimes and Native
Implementations.

type="SPL") indicates that the annotated class is a generator for SomePE in

the SPL (Streams) runtime. The integration of the various code generation

components in the new architecture is highlighted in Figure 4.11. The existing

Crucible Java code generation is performed by the same JVM Model Inferrer

as before; the extended architecture simply adds the pluggable generators on

the bottom layer. For example, Listing 4.4 shows the original output of the

Crucible SPL generator; note the application of a CruciblePE instance to

each PE in the SPL graph. Listing 4.5 shows the same analytic compiled under

the new code generation mechanism. The type signatures are identical, but

native code is instead generated to support the file source and sink PEs from

the Crucible topology without altering the semantics of the tuple processing.

Figure 4.12 illustrates the 2.3⇥ speedup that more advanced SPL generation

has allowed on the existing Crucible benchmark – the performance of Crucible

transpiled for InfoSphere Streams, once 22⇥ slower than a native implementation,

is now under 10⇥ slower. The nature of these improvements is such that they

can offer even greater speedups as the topology becomes more complex, making

use of more SPL library functions.

61

4. Unified Secure On- and Off-Line Analytics

1 composite Process {
2 type

3 FilterCount__Results__Type = tuple<rstring counts__label ,
4 l i s t <int8> counts , rstring total__label , l i s t <int8> tota l ,
5 rstring tstamp__label , l i s t <int8> tstamp >;
6 Source__FileLine__Type = tuple<rstring done__label ,
7 l i s t <int8> done , rstring l ine__label , l i s t <int8> l ine >;
8 Source__FileCharacter__Type = tuple<rstring character__label ,
9 l i s t <int8> character , rstring done__label , l i s t <int8> done>;

10 graph

11 (stream<Source__FileLine__Type> Source__FileLine ;
12 stream<Source__FileCharacter__Type> Source__FileCharacter
13) = CruciblePE () {
14 param

15 peClass : ' f r e q . Source ' ;
16 configModule : ' f r e q . ProcessConf igurat ionModule ' ;
17 }
18
19 (stream<FilterCount__Results__Type> FilterCount__Results) =
20 CruciblePE (Source__FileCharacter) {
21 param

22 peClass : ' f r e q . F i l te rCount ' ;
23 configModule : ' f r e q . ProcessConf igurat ionModule ' ;
24 }
25
26 () as Write = CruciblePE (FilterCount__Results) {
27 param

28 peClass : ' f r e q . Write ' ;
29 configModule : ' f r e q . ProcessConf igurat ionModule ' ;
30 }
31 }

Listing 4.4: Crucible Streams v1 SPL Generation.

1 composite Process {
2 type

3 // Repeated types omitted f o r b r ev i ty
4 graph

5 stream<blob value> Source__File__Source = Fi l eSource () {
6 param

7 f i l e : ' / usr / share / d i c t /words ' ;
8 format : block ;
9 b lo ckS i z e : 1u ;

10 }
11
12 stream<Source__FileCharacter__Type> Source__FileCharacter =
13 Functor (Source__File__Source) {
14 output Source__FileCharacter :
15 character__label = ' ' ,
16 cha rac t e r = (ustring) convertFromBlob (value) ,
17 done__label = ' ' ,
18 done = fa l se ;
19 }
20
21 (stream<FilterCount__Results__Type> FilterCount__Results) =
22 CruciblePE (Source__FileCharacter) {
23 param

24 peClass : ' f r e q . F i l te rCount ' ;
25 configModule : ' f r e q . ProcessConf igurat ionModule ' ;
26 }
27
28 () as Write = Fi l eS ink (Count__Results) {
29 param

30 f i l e : ' / n f s /tmp/count . txt ' ;
31 append : true ;
32 format : txt ;
33 }
34 }

Listing 4.5: Crucible Streams v2 SPL Generation.

62

4. Unified Secure On- and Off-Line Analytics

0 250 500 750 1,000 1,250 1,500 1,750 2,000 2,250 2,500FileS
ou

rce

Poll
ing

Sca
nn

er

Poll
ing

Sca
nn

er

Poll
ing

Sca
nn

er

Ta
ble

t Read
Ta

ble
t Read

Ta
ble

t Read
Ta

ble
t Read

Ta
ble

t Read
Ta

ble
t Read

Ta
ble

t Read
Ta

ble
t Read

Ta
ble

t Read
Ta

ble
t Read

Time (seconds)

T
hr

ea
ds

Figure 4.13: Thread utilisation in the Accumulo (v2) Dispatcher.

4.3.3 Off-Line Processing

Figure 4.13 reveals problems with interfacing Accumulo with the original runtime

model: even after the optimisations described in Section 4.1.5, the large number

of Tablet Read-Ahead threads show drastic under-utilisation for the workload.

These threads are an Accumulo optimisation, which predict the data to will be

read next in a table scan, and buffer that data in memory. As data is read, it is

passed through the Iterator stack configured on that table and that connection

(see Figure 4.4 for an overview of how the PollingScanner instances interact with

Accumulo’s tablet servers; these Tablet Read threads host the custom Crucible

Iterators described in the figure). There is no client control over how these

threads are spawned and scheduled – a single datum can be read many times

by these threads; if an Iterator in the stack performs significant computation,

it will slow down the whole read-ahead thread. Furthermore, the process of

swapping an Accumulo Iterator out of a read-ahead thread is such that it forces

63

4. Unified Secure On- and Off-Line Analytics

101 102 103 104 105 106

10�1

101

103

105

Problem Size (Tuples)

Ex
ec
ut
io
n
Ti
m
e
(s
)

Accumulo v1
Accumulo v2
Spark-Accumulo
Spark-HDFS
Native Accumulo
Native Spark

Figure 4.14: Scalability Comparison of Crucible Offline Runtimes and Native
Implementations.

a rebuild of the iterator’s state when it is swapped back in. The impact of this

can be clearly seen the Accumulo v2 column of Figure 4.9; a vanishingly small

proportion of time is spent processing the actual analytic, with the vast majority

being spent constructing and configuring Iterators (the “PE Invoke" segment).

These results reveal that the Accumulo Iterator model is incompatible with

performing heavy computation and message passing using the Accumulo table

interfaces at scale. Instead, these optimisations make use of Apache Spark for

execution of Crucible analytics over data in either Accumulo or native HDFS.

In support of this, we add a new DataSource PE which is closely integrated

with the Spark Code Generator. A Crucible DataSource is an abstraction of

the concept of a source PE, identified by a URN, with a fixed set of outputs per

tuple. The precise code used to retrieve tuples from the source are determined

by the runtime that is loaded; it may be an Accumulo table, a file in HDFS,

or a streaming source, e.g., a network socket. This abstraction can be seen as

analogous to the protocol segment of a URI (e.g., http:// or hdfs://), only with

a greater degree of flexibility in the parsing of the URN and its transformation

into a data source PE specification.

64

4. Unified Secure On- and Off-Line Analytics

101 102 103 104 105 106

10�1

100

101

102

103

Problem Size (Tuples)

Ex
ec
ut
io
n
Ti
m
e
(s
)

Standalone v1
Disruptor
Spark (Local)
Native Java

Figure 4.15: Scalability Comparison of Crucible Standalone Runtimes and
Native Implementations, including Apache Spark (Local Mode).

The Crucible Spark runtime schedules a graph of map operations, starting

with the relevant DataSource, applying the directed graph of Crucible PEs

to the full dataset. The precise scheduling of these operations is determined

and optimised by the Spark runtime engine. Each map operation emits an RDD

(Resilient Distributed Dataset; an abstraction for a collection of data managed

by Spark) of pairs hOutput Name, Tuple Datai, which is split along the key to

create the relevant source of tuples for the next stage(s) of the analytic.

Figure 4.9 demonstrates how superior the function breakdown is for the

Accumulo-Spark runtime model compared to the original Accumulo Iterator

interface, and Figure 4.14 shows the significant performance enhancement in

terms of time-to-solution that this offers; over 480⇥ from the original Accumulo

Iterator model to running Spark over Accumulo. Furthermore, the Crucible

Spark runtime with the DataSource abstraction for the first time enables the

processing of arbitrary Hadoop files and text files in an equivalent and scalable

fashion using Crucible.

At higher scales, the performance of Crucible’s Spark-HDFS environment

converges on that of the native implementation. In practice, the higher-level

65

4. Unified Secure On- and Off-Line Analytics

Spark builtins used in this native implementation come with a small performance

penalty at scale. This somewhat surprising result bears out the idea that while

layers of abstraction increase expressivity, they always come with a performance

cost: Crucible uses only low-level Spark primitives, and the cost of its abstrac-

tion is similar to that of the high-level Spark primitives at scale. Performing

bulk analysis through the use of Accumulo Iterators with Crucible was approx-

imately 10⇥ slower than the equivalent native implementation; with Spark on

HDFS files, this is now almost 1.2⇥ faster than the native implementation used.

This Spark-based approach has the added advantage of providing an al-

ternative execution paradigm for Standalone mode (the functional runtime

breakdown for this mode is detailed in Figure 4.6, and the relative performance

in Figure 4.15), as Spark may be run over in-memory datasets without the

backing of a Hadoop RDD.

4.4 Summary

This chapter has detailed the development and optimisation of Crucible, a

framework consisting of a DSL for describing analyses as a set of communicat-

ing sequential processes, a common runtime model for analytic execution in

multiple streamed and batch environments, and an approach to automating

the management of cell-level security labelling that is applied uniformly across

runtimes. This research has served to validate the approach that Crucible

takes in transpiling a DSL for execution in a unified manner across a range

on- and off-line runtime environments, as well as forming an investigation into

techniques for deployment across these architectures. The work has demon-

strated the application of analysis written in Crucible to data sources including

HDFS files, Accumulo tables, and traditional flat files. The results presented

demonstrate that the selection of runtime model for execution of Crucible

topologies is critical; making a difference of up to 480⇥. The net result of

these optimisations is a suite of best-in-class runtime models with equivalent

66

4. Unified Secure On- and Off-Line Analytics

execution semantics and a 14⇥ performance penalty over the equivalent native

hand-written implementations.

This research has demonstrated a number of valuable capabilities as a result of

being based on a DSL; the tight integration of key language features, particularly

security labelling and atomic operations, enables the implementation of sample

analytics in one sixth the amount of code as the native implementations – a

substantial improvement in engineering time, cost, and risk.

Contributions such as the cell-level security labelling framework may be

applied to other DSL-based frameworks, such as InfoSphere Streams; it may be

possible to plug a labelling system into another JVM language’s compiler (e.g.,

Scala or Jython), however this approach has not been tested here. Frameworks

which do not use a DSL, such as Spark or COMPSs, may be able to make use of

some of the middleware design concepts in this chapter. For example, typically

when a framework such as Spark wants to target a new runtime mode of operation

it implements a new runtime framework for that mode of operation (such as with

the introduction of Spark Streaming). Instead, a Crucible-style middleware

approach could allow analytics to be executed on existing scalable runtimes,

thereby making use of existing work in the scalability and fault-tolerance of

these systems without having to reimplement such concepts from scratch.

67

CHAPTER 5
Composition of Hybrid Analytics for Heterogeneous

Architectures

Large organisations rely on the craft of both systems engineers and domain ex-

perts to create specialist analytics which provide actionable business intelligence.

In many cases their knowledge is complementary; the engineer has knowledge

of concurrency, parallel architectures and engineering scalable systems, and the

domain expert understands detailed semantics of their data and appropriate

queries on that data.

Recruiting individuals with both sets of knowledge is challenging, particularly

in a growing market, so organisations are typically left with two options: (i)

They make use of traditional (often iterative) development models, in which

engineers elucidate requirements from stakeholders, develop a solution to meet

those requirements, and then seek approval from the stakeholders; or (ii) Engi-

neers empower domain experts by offering high-level abstract interfaces to their

execution environments, thus concealing the difficulty (and often the potential

for high performance and scalability) of developing a hand-tuned analytic.

Consider the Flickr1 analytic depicted in Figure 5.1. Each component of the

analysis is represented by a box, with arrows indicating the flow of data from

one component to another. There are many runtime environments in which

the components of this analytic could be deployed, depending on the wider

system context. If user data is being crawled, for example, a streaming (on-line)

analytic engine such as IBM InfoSphere Streams might be employed for subset

A, while person data in subset B might reside in an HDFS (Hadoop Distributed

File System) data store. Each of these runtime environments specify their own
1http://www.flickr.com/, a photo sharing website

68

5. Composition of Hybrid Analytics for Heterogeneous Architectures

A

B

C

Flickr User Data Fetch Photo
Facial

Recognition

Person Details

Join on
person_id

Write to
Accumulo

Figure 5.1: A sample analytic, reading profile pictures from Flickr and using
facial recognition to populate an Accumulo table.

programming model, optimisation constraints and engineering best practices.

This complexity is increased when constructing a hybrid analytic which makes

use of data from multiple runtimes: should subset C of this Flickr analytic be

executed in an on- or off-line runtime environment, and which configuration

would be most performant and scalable?

The divide between engineering expertise and domain knowledge has led

researchers to consider approaches which make best use of available skills, without

the drawbacks inherent in traditional models of cooperation, as discussed in

Chapter 3. This chapter presents a new approach to this problem, in providing a

framework through which domain experts can compose and deploy efficient and

scalable hybrid analytics without prior engineering knowledge. This approach

removes the need for the user to understand the variety of runtime frameworks

on which their analytics may be deployed, the specifics of how to transform data

for processing across multiple heterogeneous frameworks, or even an a priori

understanding of the components available to them. For example, in the Flickr

analytic described above, the user might understand that they wish to use both

Flickr and their Person Details database, but not the specifics of how to turn

a stream of Flickr crawl data into photographs for facial recognition, how to

perform the join, and how to make Accumulo and Streams interact. A suitable

planning framework allows for a system to fill in such gaps with feasible analytics,

without the user needing training in these engineering concepts.

The research described in this chapter directly targets the challenges of

delivering on-demand results for novel analytics, in the face of ever increasing

complexity and heterogeneity of both large networked data sources and the

69

5. Composition of Hybrid Analytics for Heterogeneous Architectures

systems used to analyse these data at scale. As the range of software models

and hardware platforms increases apace, new models for creating fast data

analytics must target not only the engineers with experience of these systems,

but specialists with domain knowledge to craft the right analytics, rapidly

enough to deliver results in time. Traditional languages are not sufficient for this:

automated composition presents the best opportunity to enable non-technical

specialists to interact with the analytic platforms crafted by expert engineers.

The remainder of this chapter is structured as follows: Section 5.1 outlines

the high-level approach adopted in this research and the implications of design

choices; Sections 5.2 and 5.3 detail our approach to modelling analytics and

planning their execution respectively; Section 5.4 describes the process of efficient

code generation; Section 5.5 illustrates the application of this approach through

four case studies. Finally, Section 5.6 provides a performance evaluation of this

framework, before summarising the research in Section 5.7.

5.1 High-Level Overview

To compose an analytic from a user’s goals, the approach presented here employs

the components outlined in Figure 5.2. An abstract Analytic Model (detailed in

Section 5.2) is used to create a knowledge-base of processing elements (PEs). This

knowledge-base encodes information about the types available in the planning

system, the PEs which produce and consume these data types, and a collection

of pre- and post-conditions attached to these PEs. It is important to note that

the creation of this knowledge-base is beyond the scope of this research: it is

assumed that engineers in organisations with a need for an analytic planning

system are willing to undertake the manual annotation of the PEs they make

available to their users.

This knowledge-base provides a semantically precise description of the infor-

mation encoded in the data both required and produced by the available PEs. It

is the contention of this research that this metadata is sufficient to facilitate the

70

5. Composition of Hybrid Analytics for Heterogeneous Architectures

Figure 5.2: Steps in composing an analytic.

automated composition and deployment of complex analytics across multiple

runtime platforms in a heterogeneous data-intensive compute environment.

In order to do this, the system collects goals from the user as a second input

to the planning process. There are three types of goals that the user may supply

to constrain the planning process (see Section 5.3):

• The output types that the analytic must produce;

• The datasource with which the analytic must begin;

• Post-conditions, including those concerned with the state of the runtime

environment in which the analytic executed.

For example, to create the sample analytic described in Figure 5.1, the user

might specify:

• Types: person_id, person_name, postal_address, email_address

• Source: FlickrUserData

• Post-condition: AccumuloSink PE Used

These constraints are provided to a planning process (Section 5.3), which uses a

bidirectional search strategy to traverse the graph of possible PE connections. It

71

5. Composition of Hybrid Analytics for Heterogeneous Architectures

aims to satisfy the given constraints using a minimal number of PEs, producing

a set of possible analytics which can be presented to the user. A user-friendly

rendering of the analytic can be provided along with textual descriptions of

the PEs in the analytic to help the user select which version to deploy. Any

unbound configuration options are then supplied by the user to the assembly

process (e.g., which Accumulo table to write to, or tunable parameters for the

facial recognition), which makes the abstract plan concrete and resolves any

ambiguities (e.g., which of the available URL fields to fetch). Finally, code

generation (Section 5.4) is invoked on the plan to create an executable analytic.

5.1.1 Methodology

The approach described in this chapter is applicable to a number of runtime

models and analytic frameworks. We have implemented and tested it using real

analytics in a system called Mendeleev, named after the scientist responsible

for composing and organising the periodic table as we know it today. We

use a library of real PEs and customer problems to test the scalability of the

code generation, and a synthetically generated representative PE library to

test the scalability of the planning approach. This, coupled with a qualitative

investigation of the use of the planner to generate solutions to these customer

problems, forms the basis of the rigorous evaluation in Sections 5.5 and 5.6.

5.1.2 Impact of Design Choices

One of the key assumptions made in this research is a workflow-style execution

model. This model pervades the literature on data analytics [7, 16, 34, 50, 54,

82, 89, 123]: while it places a limitation on the range of frameworks that can be

used (particularly outside of the real of scalable data analysis), it enables high

performance execution across the most common data analytic platforms.

The use of an RDF model [65] to encode the PE knowledge-base slightly

increases the set of skills required by engineers to annotate their PEs. However,

as discussed in Section 5.3, the strong semantics behind an RDF ontology enable

72

5. Composition of Hybrid Analytics for Heterogeneous Architectures

the use of both system- and engineer-defined inference rules (along with special

predicates, as in Section 5.3.2) to enrich the knowledge-base, ultimately reducing

the effort required to describe all aspects of the PEs.

In order to make best use of the applicability of the message-passing model,

no further assumptions are made during the planning process as to the suite of

runtime frameworks which are available or in use. These frameworks are encoded

in two places only: the customer-specific model of library PEs, and in a set of

pluggable code generation modules. This prevents the planning process from

using runtime-specific knowledge (which must be encoded in inference rules or

special predicates), but makes it simple to add further runtime frameworks to

the Mendeleev implementation.

Approaches which do not use Mendeleev’s semantically rich model, or

its planning mechanism based around path-finding through candidate analytic

space, suffer from the need to manually annotate PE compatibility rules, or to

manually assemble elements together after using another discovery mechanism.

Furthermore, existing approaches do not attempt to assemble hybrid analytics for

execution on heterogeneous architectures; the separation in Mendeleev’s model

between the abstract concept of an analytic and the specific implementation

details of code generation etc. is key in facilitating this.

5.2 Modelling Analytics

This research employs a novel abstraction by which the planning and the con-

crete implementation of an analytic can be logically separated. There are two

components to this model: a semantically rich type system, and a set of analytic

components which reference these types. This research models an analytic as

a set of parallel-composed communicating sequential processes [51], called Pro-

cessing Elements (PEs). These pass tuples of data (consisting of a set of named,

strongly typed elements) from one PE to the next. When a PE receives a tuple, it

causes a computation to occur, and zero or more tuples are emitted on its output

73

5. Composition of Hybrid Analytics for Heterogeneous Architectures

based on the results of that computation at some point thereafter. Data source

PEs may emit tuples spontaneously, without any input occurring. Nothing in

the model is specific to the planning process – it is an abstract representation of

the concrete implementation of a collection of composable components.

The model is encoded in an RDF graph describing the available types and

PEs2. Types may exhibit polymorphic inheritance, as in a typical second-order

type system, indicated using the mlv:parent relationship. The statement :x

mlv:parent :y asserts that :y is the super-type of (and therefore subsumes)

:x. These inheritance relationships may form an acyclic graph, provided a

single type name is specified for the target runtime (for example, a Java class

or SPL primitive type). Each type declares this using a single mlv:nativeCode

statement per runtime somewhere in its hierarchy. For example, a buffer of bytes

might represent more than one type of information (e.g., a PDF file or an image),

even though the data underlying it is the same type, as in Listing 5.1.

Listing 5.1: RDF graph for a simple type hierarchy.

The "raw" ByteBuffer parent type
type: byteBuffer rdf:type mlv:type ;

mlv: nativeCode [rdfs:label "java.nio. ByteBuffer " ;
mlv: runtime mlv: crucible] ;

mlv: nativeCode [rdfs:label "list <uint8 >" ;
mlv: runtime mlv: streams] .

An image encoded in a ByteBuffer
type: image rdf:type mlv:type ;

mlv: parent type: byteBuffer .
A PDF file encoded in a ByteBuffer
type: pdfFile rdf:type mlv:type ;

mlv: parent type: byteBuffer .

In addition to this basic polymorphism, a type may contain an unbound variable

with an optional parameter (akin to a generic type in Java [14], or a template

in C++ [110]). This is used to describe PEs which transform an input type

to an output without requiring precise knowledge about interpretation of the

information encoded in the data. This information is instead passed using the
2RDF types are given in this chapter using W3C CURIE [12] syntax. The following RDF

namespaces are used:

rdf http :// www.w3.org /1999/02/22 - rdf -syntax -ns#
rdfs http :// www.w3.org /2000/01/ rdf - schema #
mlv http :// go. warwick .ac.uk/ crucible / mendeleev /ns#
type http :// go. warwick .ac.uk/ crucible / mendeleev / types #

74

5. Composition of Hybrid Analytics for Heterogeneous Architectures

type:byteBuffer

type:image

mlv:parent

type:pdfFile

ml
v:
pa
re
nt

type:URL

ml
v:

pa
re

nt

mlv:parent

ml
v:
ge
ne
ri
c

Pa
ra
me
te
r

“url"
rdf:type

“body"

rdf:type

mlv:parameter

mlv:parameter

pe:fetch_url

mlv:inputml
v:

ou
tp

ut

Figure 5.3: Graph visualisation of the RDF description of a portion of the
example model. _:urlType bnode represented by .

unbound variable specified as a generic parameter. For brevity, these generic

parameters are described here as typehgenericParameter typei. For example

(see Listing 5.2), a PE for fetching data over HTTP might take an input type of

type:URL, which has been parameterised with the generic parameter h_:urlType

mlv:parent type:byteBufferi. It would then output data with the type of

the variable _:urlType, a subtype of type:byteBuffer which is bound to a

specific type (e.g., type:image in the Flickr analytic described above) during

the planning process.

Listing 5.2: Modelling unbound type variables in RDF.

Declaration of a generic type
type:URL rdf:type mlv: genericType ;

mlv: nativeCode [rdfs:label "java.net.URL" ;
mlv: runtime mlv:crucible , mlv: accumulo] ;

mlv: nativeCode [rdfs:label " rstring " ; mlv: runtime mlv: streams]
.

PE input declaration for url <_:urlType >
(bnode _: urlType represents variable)
_: sampleInput rdf:type [

mlv: parent type:URL ;
mlv: genericParameter _: urlType

] .
Variable for the type parameter to URL
_: urlType rdf:type type: byteBuffer .
PE output parameter using the variable
_: sampleParameter rdf:type _: urlType .

75

5. Composition of Hybrid Analytics for Heterogeneous Architectures

A visualisation of the RDF graph resulting from this type hierarchy can be

seen (along with a subset of the PE model described in Listing 5.3 later) in

Figure 5.3. The unbound variable _:urlType is highlighted as a filled black

circle in this figure.

As suggested by the types used above, the engineers who describe their PEs

are encouraged to do so using the most specific types possible. For example, the

more precise semantics of type:image are to be preferred to type:byteBuffer,

even though both result in the same mlv:nativeCode.

5.2.1 PE Formalism

Mendeleev’s model of execution makes assumptions about the behaviour

of PEs described to the Mendeleev system, and the manner in which they

are assembled. These assumptions are encoded in a formalism describing the

Mendeleev model implemented in the planner (detailed in Section 5.3). PEs

which do not fully conform with these assumptions may still be described to the

system – these require the use of constraints, described in Section 5.3.2. However,

the manner in which PEs are assembled may not be directly influenced by the

PE descriptions: it is this which is defined below.

In this model, we consider a PE �
n

to have a set of declared input types µ
n

,

and a set of declared output types ⌫
n

. For a data source, µ
n

= ; (it produces

data without any inputs being present), while for a sink ⌫
n

= ; (it receives

inputs of data, but produces no output). Tuple data generally accumulates as

it passes through each PE, treating it as an enrichment process on the data it

receives; the model assumes that the inputs to a given PE’s computation are

not discarded during computation, meaning these data are available for use in

PEs later in the chain. No specific knowledge about the processing performed is

encoded in the model. More formally, a PE �
n

has an accumulated output type

(denoted as ⌧
n

) based on the type of the tuple received on its input, ⌧
n�1

. Thus,

76

5. Composition of Hybrid Analytics for Heterogeneous Architectures

to determine ⌧
n

for a given PE, the entire enrichment chain must be known:

⌧
n

= ⌫
0

[⌫
1

[... [⌫
n�1

[⌫
n

(5.1)

Or, inductively:

⌧
n

= ⌧
n�1

[⌫
n

(5.2)

This model can be extended to include PEs (e.g., complex aggregations) that

clear the accumulated data in a tuple declaration before emitting their outputs;

this extension is considered in greater detail as part of the planning process

in Section 5.3.2. This extension allows the introduction of PEs which are not

enrichment operators.

One important extension to this model is in support of operators which

require inputs on more than one port, such as join operators (discussed in further

detail in Section 5.3). These receive two or more discrete sets of input types, and

by default emit the union of their accumulated inputs. Thus, for an operator �
n

with inputs �
i

and �
j

, ⌧
n

is given as follows:

⌧
n

= ⌧
i

[⌧
j

(5.3)

The ability for two PEs to connect relies upon reasoning about a form of

subsumption compatible with the type model described above. A type u can be

said to be subsumed by a type v (u / v) if one of the following cases hold true:

u / v (

8
>><

>>:

u mlv:parent v

u mlv:parent t, t / v

(5.4)

uhti / vhsi (u / v ^ t / s (5.5)

A PE �
x

is considered fully compatible with �
y

, and is thus able to satisfy the

77

5. Composition of Hybrid Analytics for Heterogeneous Architectures

inputs of PE �
y

, if the following holds true:

8t 2 µ
y

, 9u 2 ⌧
x

| u / t (5.6)

Types on PEs are therefore compared by equality and subsumption; no other

comparisons are possible in the Mendeleev system. In the RDF model, each PE

definition includes the native type name associated with the PE, as well as the set

of (typed) configuration parameters, and input and output ports. Additionally,

the model may include user-friendly labels and descriptions for each of these

definitions. Unlike other planning engines (particularly HTN style planners such

as MARIO), which require the engineer to additionally implement prototype

code templates, this RDF model is the only integration that is required between

a PE and the Mendeleev system. For example, a more complete version of the

HTTP fetching PE described above is shown in Listing 5.3. Appendix B details

the results of applying inference to this model. These inference steps make it

possible to use a SPARQL query such as that shown in Listing 5.4 to retrieve all

PEs which may emit a given type.

Listing 5.3: Modelling an SPL (IBM’s Streams Processing Language) HTTP

Fetch PE in RDF.

pe: fetch_url rdf:type mlv: spl_pe ;
mlv: nativeCode "lib.web :: FetchURL " ;
mlv:input [

mlv: parameter [# url is a URL <?T>
rdfs: label "url" ;
rdf:type [

mlv: parent type:URL ;
mlv: genericParameter _: fetch_type

]
]

] ; # End input declaration
mlv: output [

rdfs: label " HttpOut " ;
mlv: parameter [# httpHeaders is a header_list

rdfs: label " httpHeaders " ;
rdf:type type: header_list

] ;
mlv: parameter [# body is a ?T

rdfs: label "body" ;
rdf:type _: fetch_type

]
] . # End output declaration

78

5. Composition of Hybrid Analytics for Heterogeneous Architectures

Runt ime 1

Concrete PE
Concrete PE

Concrete PE

Runt ime 3

Concrete PE
Concrete PE

Concrete PE

Runt ime 2

Concrete PE
Concrete PE

Concrete PE

PE Knowledge Base

Abstract PE Abstract PE Abstract PE Abstract PEAbstract PE Abstract PE Abstract PE Abstract PEAbstract PE Abstract PE Abstract PE Abstract PE

Runt ime 1

Concrete PE Concrete PE

Runt ime 3

Concrete PE

Concrete Analyt ic Result

Planning Code
Generat ionAssembly

Goal-based Planning Engine

Figure 5.4: Using the PE Model abstraction to separate planning and concrete
PE implementations.

byteBuffer is the parent type of ?T
_: fetch_type rdf:type type: byteBuffer .

Listing 5.4: Querying the RDF knowledge-base for PEs which emit a given type

SELECT DISTINCT ?pe
WHERE {

?pe rdf:type mlv:pe ;
mlv: output ? output .

? output mlv: parameter /rdf:type/rdfs: subClassOf ?type .
}

5.2.2 PE Model Abstraction

This model abstracts the concrete implementation of an analytic away from

runtime framework-specific details. This is vital to enable hybrid planning, as

all runtime frameworks may be treated equally: as seen in Section 5.3, PEs from

any framework may be assembled in a workflow. The PEs represented by this

abstraction are later made concrete by the code generation process (Section 5.4),

79

5. Composition of Hybrid Analytics for Heterogeneous Architectures

which translates from the execution model assumed in the PE model to runtime

primitives, invoking the user-defined components the model describes, as shown

in Figure 5.4.

5.3 Goal-Based Planning

Building on the semantically rich type system described above, this approach

implements a goal-based planner. The aim of this planner is to explore the

graph of possible connections between PEs using heuristics to direct the search,

accumulating types in the ⌧ set until the user-supplied constraints have all been

satisfied, or the planner determines that no solution exists. This custom planner

utilises an off-the-shelf forward chaining reasoner to perform initial inference over

the RDF graph, and then materialises possible analytic subgraphs as exploration

occurs. In this way, the potential explosion of the complexity of the graph is kept

to a minimum: only those parts of the graph required for the plan exploration

are created in memory.

5.3.1 Type Closure

Given the RDF model of the PE knowledge-base, a suite of forward inference rules

are pre-computed before any planning may occur. These rules are applied using

a forward chaining reasoner (the Rete-UL algorithm implemented in FuXi [80]),

and compute three key types of closure. First, RDFS [15] reasoning is applied to

the types in the knowledge-base (primarily to compute the closure over second-

order types). Next, unbound type variables are compared, to compute potential

subsumption. Finally, candidate PE matches are inferred based on rules derived

from the full compatibility specification in Section 5.2, Equation 5.6. A PE �
x

is

considered partially compatible with �
y

, and is thus a potential candidate for

80

5. Composition of Hybrid Analytics for Heterogeneous Architectures

sending tuples to PE �
y

, if one of the following holds:

9t 2 µ
y

, u 2 ⌫
x

| u / t (5.7)

9t 2 µ
y

, u<v> 2 µ
x

, v 2 ⌫
x

| v / t (5.8)

9s<t> 2 µ
y

, u<v> 2 ⌫
x

| u / s, v / t (5.9)

Less formally; if there is a type in the output signature of PE �
x

which subsumes

a type in the output of PE �
y

, then there is a candidate connection between �
x

and �
y

(from the rule in 5.7). The rule in 5.8 unpacks generically parameterised

types on the input to �
x

, such that if uhvi is in the input set of �
x

and v is

in the output set, then any type t on the inputs to �
y

allows for a candidate

connection between these PEs. Finally the rule in 5.9 allows for generically

typed parameters in the output set of �
x

which are subsumed by parameters in

the input set of �
y

to also allow for a candidate connection between these PEs.

For example, consider pe:fetch_url described in Listing 5.3; it requires

a URL parameterised with any type:byteBuffer. Consider also a PE called

pe:exif, which (for the sake of this example) requires a type:image on its input

(where type:image / type:byteBuffer), and outputs a number of Exif3 facts:

µ
fetch_url

={type:urlh_:T / type:byteBufferi} (5.10)

⌫
fetch_url

={_:T} (5.11)

µ
exif

={type:image} (5.12)

⌫
exif

={type:camera, type:lat,

type:lon, type:fstop, ...} (5.13)

Through Equation 5.8 above, the _:T output by pe:fetch_url can potentially

be used to satisfy the input to pe:exif. In this case, pe:fetch_url is considered

partially compatible with pe:exif, and is marked as a candidate connection

when _:T is bound to type:image.
3Exchangeable image file format; image file metadata

81

5. Composition of Hybrid Analytics for Heterogeneous Architectures

5.3.2 Conditions

Once the type closure is computed, a further suite of rules annotates each PE in

the knowledge-base with a set of pre- and post-conditions, derived from the input

and output specification. A pre-condition is automatically applied specifying the

runtime environment for each PE: this is derived from the rdf:type specified

for the PE. These inferred conditions can be augmented in the RDF PE model

with two further types of condition.

The first of these condition types are used to alter the behaviour of the infer-

ence or the search process. For example, a mlv:clearPreConditions statement

is used when modelling PEs which do not automatically pass on the data received

on their inputs. Such PEs may include aggregation operations (grouping etc.),

windowing operators, or those which apply complex non-enrichment algorithms

to their inputs. Another special condition, mlv:clearRuntime is implemented

to remove post-conditions from the ⌧ set which specify the current runtime

environment. For example, Listing 5.5 models a PE which aggregates input data

into a Gaussian Mixture Model using an Expectation Maximisation algorithm.

Listing 5.5: RDF Model for a Gaussian Mixture Model implemented on Apache

Spark

pe:gmm2d a mlv: spark_pe ;
rdfs: label "Apply EM to generate a 2D Mixture of Gaussians

modelling the input" ;
mlv: nativeCode " mendeleev .pe. GMM2D " ;
mlv:input [

mlv: parameter [rdfs: label "x" ; rdf:type type: double] ;
mlv: parameter [rdfs: label "y" ; rdf:type type: double]

] ; # Clear existing pre - conditions
mlv: postCondition [mlv: clearPreConditions pe:gmm2d] ;
mlv: output [# Emit a collection of weighted 2D Gaussians

rdfs: label " Gaussians " ;
mlv: parameter [rdfs: label " weight " ;

rdf:type type: gmm_weight] ;
mlv: parameter [rdfs: label "x" ;

rdf:type type: gaussian_x] ;
mlv: parameter [rdfs: label "y" ;

rdf:type type: gaussian_y] ;
mlv: parameter [rdfs: label " theta " ;

rdf:type type: gaussian_rotation] ;
mlv: parameter [rdfs: label "A" ;

rdf:type type: gaussian_magnitude]
] .

82

5. Composition of Hybrid Analytics for Heterogeneous Architectures

The second type of user-specified condition is one which has no special

meaning to the planner, but makes an assertion about the state of the analytic.

These are employed, in conjunction with the mlv:clearRuntime condition above,

to manage the transition between runtimes. Listing 5.6 gives an example of

how synthetic runtimes are used (in this case, mlv:accumulo_to_streams) to

constrain the planner, so that an Export node from one runtime is followed

immediately by an Import node for the next. These provide the necessary hooks

for the code generators (discussed in Section 5.4) to create suitable code for

managing the inter-runtime transport of data.

Listing 5.6: RDF Model for an Import and Export transport from the Accumulo

Iterator paradigm into IBM InfoSphere Streams.

pe: accumulo_to_streams_export a mlv: accumulo_pe ;
rdfs: label " Export Accumulo -> Streams " ;
mlv: nativeCode " mendeleev .pe. StreamsExportIterator " ;
mlv:input [rdfs: label "Data"] ;
Clear existing runtime ; reset to the synthetic
mlv: accumulo_to_streams runtime
mlv: postCondition [mlv: clearRuntime

pe: accumulo_to_streams_export] ;
mlv: postCondition [mlv: runtime mlv: accumulo_to_streams] .

pe: accumulo_to_streams_import a mlv: spl_import_pe ;
rdfs: label " Import Accumulo -> Streams " ;
mlv: nativeCode " mendeleev .pe :: AccumuloImport " ;
mlv: output [rdfs:label "Data"] ;
Require the synthetic mlv: accumulo_to_streams runtime
mlv: preCondition [mlv: runtime mlv: accumulo_to_streams] ;
Replace the mlv: accumulo_to_streams runtime with mlv: streams
mlv: postCondition [mlv: clearRuntime

pe: accumulo_to_streams_import] ;
mlv: postCondition [mlv: runtime mlv: streams] .

In practice, this inference closure is calculated offline and the resultant graph is

stored in order to ensure interactive performance.

5.3.3 Search & Assembly

The search through the graph of partially compatible PEs is outlined in Algo-

rithm 1. This algorithm finds a set of pathways through the graph of candidate

PE connections which will generate the required set of post-conditions, while

fulfilling the pre-condition requirements of each PE. In order to minimise the

83

5. Composition of Hybrid Analytics for Heterogeneous Architectures

search-space explosion and minimise memory consumption, the search is per-

formed bi-directionally with iterative deepening, using an empirically selected

heuristic to expand the search space backwards for every three levels of forward

search. This setting may be configured in the Mendeleev implementation –

other settings were tested, but in practice a ratio of 1:3 was found to perform

well. Similarly, if a source or a sink constraint is specified, it is used to optimise

the search process. The algorithm proceeds in six stages:

L2-4: Every 3 levels of forward search, expand the set of backward search

candidates by one more step;

L5-11: If the call to solve does not provide a bound on the source, launch a

solver to generate results for all sources in the model;

L12-17: If the current PE has more than one input, launch a new solve to

satisfy the pre-conditions of each input;

L18-21: Update the sets of accumulated conditions (⌧), and test to see if all

required post-conditions are satisfied; if so, this branch of the search

terminates;

L22-26: Attempt to search the next level (recursively), using only the set of

backwards candidates;

L27-29: If the above step did not yield any new paths, repeat the search with

PEs not in the set of backwards candidates.

A simple heuristic ranking may be applied to this set of candidate pathways

e.g., based on the number of PEs in the path (if two paths accumulate the same

post-conditions, it can be considered that their results are similar, and thus the

shorter, “simpler” path should be preferred). It is not sufficient to automatically

select and assemble one of the available paths arbitrarily: some user interaction

is required to validate that the correct analytic is selected.

Once the user selects an execution plan from the generated options, it must

be assembled into a concrete plan. This process involves binding keys from

84

5. Composition of Hybrid Analytics for Heterogeneous Architectures

Algorithm 1 Bidirectional Planning, searching for a given set of target condi-
tions (�), source PE (�), accumulated conditions (⌧), and backwards search set
(�).

1: procedure solve(�,�, ⌧,�)
. Every 3 levels of forward search, advance backwards

2: if search_level % 3 == 0 then
3: � � [providers_of(�)
4: end if
5: if � not given then
6: results ;
7: for all source s in model do
8: results solve(�, s, ⌧,�)
9: end for

10: return results
11: end if
12: results ;

. Check � for secondary inputs
13: for all input i in inputs(�) do
14: if i not satisfied by ⌧ then
15: results results [solve(preConditions(i),�, ;, ;)
16: end if
17: end for

. Update ⌧ with postConditions of �, and check for completion
18: ⌧ ⌧ [postConditions(�)
19: if ⌧ satisfies � then
20: return [�]
21: end if

. Depth-first search of PEs in �
22: forward consumers_of(⌧)
23: candidates dfs_search(forward \ �,�,�, ⌧)
24: for all candidate in candidates do
25: results results [[�, candidate]
26: end for

. Depth-first search of remaining candidates
27: if results == ; then
28: results dfs_search(forward� �,�,�, ⌧)
29: end if
30: return results
31: end procedure

85

5. Composition of Hybrid Analytics for Heterogeneous Architectures

Algorithm 2 Type Pruning.
1: procedure prune_types(pe,�)

. Remove types from ⌧
pe

that are not in the � set
2: ⌧

pe

 ⌧
pe

\ �
. Add types to the � set that are required by this PE

3: � � [µ
pe

. Recurse to all publishers of data to this PE
4: for all � in publishers(pe) do
5: prune_types(�,�)
6: end for
7: end procedure

each tuple to the required output types. For example, if a tuple of Flickr user

data contained two type:urlhtype:imagei parameters, a profile background

and a user avatar, and it was passed to the aforementioned pe:fetch_url, the

assembly process must bind one of these parameters on its input. In practice,

no reliable heuristic is available for this, and user configuration is required. For

a domain expert this should not present a difficulty, as they can be expected

to understand both the nature of the fields in their data and (with the brief

descriptions of PEs in the RDF knowledge-base) how the PEs will operate on

the fields they configure.

This planning and assembly process generates an acyclic graph of PEs as its

output, with a single goal-state node and one or more source nodes. It can also,

therefore, be considered a tree rooted on the goal node. The goal node will have

a ⌧ which includes all types passed forward to that node – however, many of the

types specified in the post-conditions may not be needed in order to correctly

complete the computation. As a result, the assembly process takes a second pass

across the topology to prevent it from passing unnecessary data forwards. This

type pruning algorithm is outlined in Algorithm 2; it makes a single breadth-first

traversal over the topology backwards from the goal node, computing this set of

required types and simultaneously removing any types which are not required

later in the topology. This helps to control the otherwise unlimited expansion of

tuple width, improving the space, time and message passing complexity of the

resultant analytic.

86

5. Composition of Hybrid Analytics for Heterogeneous Architectures

Figure 5.5: Top: Mendeleev message passing model for a process f. Bottom:
Crucible wrapper-based model of field copying semantics.

5.4 Code Generation

Once the concrete execution plan is assembled, it is passed to a pluggable code

generator. Mendeleev’s planner produces a concrete plan, which the code

generator must turn into native code for execution on a mixture of on- and off-line

runtimes. The only form of optimisation performed at this stage is the type

pruning described above; other forms of task-level parallelism, scheduling, shuffle

strategies, etc. are determined by the runtime framework on which the generated

analytic is executed. To deploy an analytic on a given framework, Mendeleev

may either be used to generate native code for each runtime directly, or an

intermediate representation which manages the differences in runtime models.

5.4.1 DSL Code Generation

Mendeleev has been designed to generate code using the Crucible DSL

(Chapter 4) as an intermediate representation. Crucible’s suite of runtime

environments, adhering to a common runtime model, help provide Mendeleev-

generated analytics with consistent execution semantics across on- and off-line

runtimes.

There is one key difference between the Mendeleev and Crucible execution

models: whereas Mendeleev assumes that all keys in the input tuple are

87

5. Composition of Hybrid Analytics for Heterogeneous Architectures

passed through on the output, Crucible does not perform this pass-through

automatically. It is possible to implement these semantics in Crucible, however.

Figure 5.5 illustrates how this might be achieved in the basic Crucible execution

model. Mendeleev’s conceptual model (the top of Figure 5.5) shows a PE f(a,

b) which generates the tuple he, fi as its results, passing through the full input

tuple along with those results. At the bottom of Figure 5.5, an implementation

of the Mendeleev tuple field copying semantics in the basic Crucible model

shows how each functional PE is wrapped in one which stores the input tuple

fields, and appends them to the output of each tuple from that functional PE.

While this theoretical approach produces correct results, the extra message

passing it involves would slow topologies down considerably (as discussed in

Chapter 4, minor changes in message passing patterns or costs can have a

significant impact on scalability in a Crucible topology). Instead, Mendeleev

generates a synthetic parent PE in Java for each PE in the Crucible topology,

overriding a small portion of the base Crucible runtime on a per-PE basis with

generated code. This parent is responsible for intercepting received and emitted

tuples, recording the inputs in local state, and appending the relevant outputs

of that PE’s pruned accumulated type on tuple output. To use the example of

pe:fetch_url in the Flickr analytic above, this synthetic parent might record

the type:profile_image URL on its input, and append it to the output tuple.

Note that this synthetic parent must be aware of tuple fields which have been

pruned from the output in Algorithm 2.

5.4.2 Native Code Generation

When an analytic does not require the flexibility or features of the Crucible

DSL (or PEs are only available in a native implementation, not a Crucible

library), direct native code generation may be a more performant option. This

code generation option relies on the accuracy of both the input and output

specifications, and the manually entered pre- and post-conditions of PEs to

generate the correct code. Four native code generators are implemented in

88

5. Composition of Hybrid Analytics for Heterogeneous Architectures

Mendeleev: two for Accumulo, one for IBM InfoSphere Streams SPL, and one

for the Meteor.js reactive web presentation framework.

Accumulo requires two separate code generators: one for the base Accumulo

table (consisting of heterogeneous rows of Key-Value pairs), and one for an

Iterator stack which may be applied on top of this. These generators simply

create a pair of Java classes which configure an Accumulo connection, set up the

requisite Iterator stack, and return a Scanner of rows to the calling site. This

Iterator stack executes on the server-side as the Scanner is used on the client

which consumes the results.

Mendeleev includes a set of inter-runtime transports, enabling the motion of

data from one analytic to another. Modelling these with pre- and post-conditions

(Section 5.3.2) affords the ability for each transport to have a distinct implemen-

tation designed for optimal performance (such as sending JSON to Meteor.js,

but writing Key-Vaue Mutations to an Accumulo table). The implemented

transports, and their Export / Import mechanisms, are outlined in Table 5.1.

Source Export Import Destination
Runtime Behaviour Behaviour Runtime

Accumulo No-Op Scanner; SPL type
conversion Streams

Accumulo JSON Serialisation Scanner; JSON parse Meteor.js

Streams

Convert SPL types to
Java; Kryo Serialise;
write to Accumulo

table

No-Op Accumulo

Streams JSON Serialisation;
TCP socket server

TCP socket client;
JSON parse Meteor.js

Meteor.js TCP socket client
TCP socket server;

JSON parse; SPL type
conversion

Streams

Crucible

TCP socket server TCP socket client;
SPL type conversion Streams

Crucible

Kryo Serialise; write to
Accumulo table No-Op Accumulo

Table 5.1: Mendeleev Import/Export implementations.

89

5. Composition of Hybrid Analytics for Heterogeneous Architectures

Complex Analytic Job Query Server

Sink to O�ine Store / TCP

Source

Analyse

Render

External Data Source

Source

Render

Source

Render

Results Stream

Results Stream

Request

Response

...... ...

Figure 5.6: Deployment scenarios for complex analytics.

5.4.3 Integrating Complex Analytics

Some users of a system such as Mendeleev require complex carefully engineered

analytics (e.g., to build up state about a set of identifiers, or for performance-

tuned machine learning algorithms). In the interests of efficient system utilisation,

it is often desirable to run these types of analytic as a central job to which other

analytics may subscribe. Several patterns can be used to expose this behaviour

transparently to a user in Mendeleev, as illustrated in Figure 5.6.

First, it is possible to simply write all results from the “Complex Analytic

Job” to a persistent store, as a results cache (shown below the complex job in

Figure 5.6). This approach results in treating the output as an offline data source

for each new Mendeleev analytic. It is also possible to achieve a streaming

equivalent by exporting results on a TCP Socket Server. This approach has a

relatively low implementation overhead, but depending on the use cases for the

complex analytic may result in more complex Mendeleev plans (e.g., due to a

frequent need to join this data with other sources). An alternative for analytics

which use the complex job as a source of enrichment is that of an RPC-style

model (shown to the right of the job in Figure 5.6). This is suitable for large

stateful analytics, although it requires the maintenance of an RPC query server

90

5. Composition of Hybrid Analytics for Heterogeneous Architectures

and associated infrastructure for distributed configuration. This infrastructure

is outside the scope of Mendeleev; systems such as Apache ZooKeeper have

been found to fulfil this distributed configuration requirement in practice.

As well as complex analytic jobs, some organisations will have complex sources

of data (e.g., a large relational database with many views). The complexity of

extracting data from such a system need not be reflected by equivalent complexity

in Mendeleev; each potential view can be considered a different source PE in

the knowledge-base, with its own tuple type information entered accordingly.

Note that Mendeleev has no restriction on the number of times a single target

PE type (a given value of mlv:nativeCode) may appear in a knowledge-base

(e.g., with different configuration parameters to turn on or off features of that

PE). This is a useful design pattern; engineers can prepare a single general-

purpose accessor PE which is configured in the knowledge-base to represent

many different data sources. As the PE knowledge-base is RDF-based, it is

additionally possible to extend the set of inference rules to include generators for

permutations and combinations of different PE parameters, rather than entering

them by hand.

5.5 Case Studies

To better understand the process of composing analytics in Mendeleev, this

section presents a series of case studies and an evaluation of this technique. These

analytics have been generated with Mendeleev, using a small shared library

(see Appendix C for a full listing of the PEs in this library) of general-purpose

PEs. Figure 5.7 illustrates the generated analytics for each case study below;

each figure shows the PEs in an analytic (as boxes), the tuple subscriptions

between those PEs (arrows indicate the direction of flow), and the runtime

for each subset of PEs (shaded outer boxes). Note that, for brevity, explicit

Import/Export nodes have been omitted from these representations.

Each section below describes a new case study; the set of constraints for each

91

5. Composition of Hybrid Analytics for Heterogeneous Architectures

case study describes the full specification that was given to the Mendeleev

planner to return the analytic or set of analytics described. No further tweaking

of the knowledge-base or planner were required.

92

5. Composition of Hybrid Analytics for Heterogeneous Architectures

St
re
am

s

Fl
ic
kr

Fe
tc
hU

RL
FF
T

H
D
FS

(a
)

F
lic

kr
P

ho
to

F
F
Ts

.

St
re
am

s

A
cc
um

ul
o

A
cc
um

ul
o

Fl
ic
kr

Ex
pa
nd

U
se
rD

et
ai
ls

Fe
tc
hU

RL
Fa
ce
D
et
ec
t

Pe
rs
on

D
et
ai
ls

A
cc
um

ul
oL

oo
ku

p
A
cc
um

ul
oT

ab
le

(b
)

P
ro

fil
e

P
ic

tu
re

Fa
ce

D
et

ec
ti

on
.

St
re
am

s

H
D
FS

M
et
eo

r.j
s

CD
R_

St
re
am

Cl
iT
oC

el
lID

To
w
er
Lo

ca
tio

ns
To

w
er
Fi
le
ET

L

In
M
em

or
yJ
oi
n

G
oo

gl
eM

ap
s

(c
)

C
D

R
C

al
lL

oc
at

io
ns

.

A
cc
um

ul
o

St
re
am

s
M
et
eo

r.j
s

IP
N
et
�o

w
G
eo
IP

Bo
un

di
ng

Bo
xF
ilt
er

Lo
ca
tio

nC
lu
st
er
in
g

G
oo

gl
eM

ap
s

(d
)

C
us

to
m

er
E

nd
po

in
t

C
lu

st
er

in
g.

Fi
gu

re
5.

7:
P

la
nn

ed
an

al
yt

ic
s

fo
r

Fl
ic

kr
Im

ag
e

an
d

Te
le

co
m

m
un

ic
at

io
ns

D
at

a
an

al
ys

is
.

93

5. Composition of Hybrid Analytics for Heterogeneous Architectures

5.5.1 Flickr FFT Workflow

The user wishes to compute and store the Fourier transform of images from Flickr,

and store those results in HDFS for use later in their workflow. Engineers have

exposed a crawl operator which emits Flickr photo metadata to the Mendeleev

system. The user selects the following bounds from the user interface:

1. PE Used: HDFS

2. Types: image, fft2d4

With each refinement of a bound, the Mendeleev UI plans a new set of plausible

analytics to answer that query. It is interesting to note here, that the query does

not explicitly require data from Flickr; any data sources in the knowledge-base

which can be used to return an image may be offered to complete this query.

In this instance, Mendeleev produces a single result: the analytic shown in

Figure 5.7(a).

5.5.2 Case Study: Flickr Facial Recognition

A different analyst has an interest in annotating Flickr images with the email

addresses of the people in them using a facial recognition system, sending their

results to an Accumulo table (as described in the original example in Figure 5.1.

They configure Mendeleev to search as follows:

1. PE Used: AccumuloTable

2. Types: person, emailaddress

The user is presented with a single analytic, but closer inspection shows that

it does not use Flickr as a datasource. They refine their query interactively

to bind the source to “Flickr”. This returns four candidate analytics; the user

selects the version which crawls Flickr for new results using the Streams runtime

(shown in Figure 5.7(b)), writing results to an Accumulo table. This data is
4The output of a Fourier transform on 2-D input data

94

5. Composition of Hybrid Analytics for Heterogeneous Architectures

used to look up Person Details from an Accumulo table in a compaction-time

Accumulo Iterator. During the assembly stage, there are two image URLs to

choose between; the Flickr photo and the user’s profile picture. They configure

the FetchURL PE to use the latter and complete their assembly.

5.5.3 Case Study: Telecommunications Call Events

An analyst for a mobile telecommunications company wishes to display a live

map of call events for a video wall in their Network Operations Centre. They

configure the following query, which results in the analytic in Figure 5.7(c):

1. PE Used: GoogleMaps

2. Types: msisdn5, tower_latitude, tower_longitude

5.5.4 Case Study: Telecommunications IP Endpoints

A further analyst, with an interest in IP traffic and routing, wishes to determine

hotspots with which their customers communicate, for both network layout

purposes and to check the telecommunications company has the right peering

agreements in place. They configure a query:

1. PE Used: BoundingBoxFilter, GoogleMaps

2. Types: ipaddress, cluster_latitude, cluster_longitude

Their resulting analytic is shown in Figure 5.7(d) – this has been selected from

the three analytics returned by the query. However, their analytic is not fully

assembled until the GeoIP PE has its ipaddress parameter bound to the source

or destination IP. As the analyst is interested in determining the locations their

connections terminate, they select the destination IP, and complete the analytic

assembly. Note here that plans were additionally generated for deployment

against streaming IP Netflow data, as well as this historical database of events.

This is an ideal use case for a Crucible-based solution: the generated code can
5A unique telecoms subscriber identifier

95

5. Composition of Hybrid Analytics for Heterogeneous Architectures

FFT Face CDR IP
0

0.02

0.04

0.06

Case Study
(Bounded / Unbounded)

Ex
ec
ut
io
n
Ti
m
e
(s
)

Planning
Assembly
Code Generation

Figure 5.8: Benchmark results for the Mendeleev planner when applied to the
case studies.

then simply be deployed to either their streaming or their offline platform, and

the Crucible framework will select the relevant instance of the datasource.

5.6 Performance Evaluation

In order to better understand the performance characteristics of the Mendeleev

implementation, and thus demonstrate its viability for real-world use, two key

aspects of performance are examined: (i) the time taken for the planning and

assembly process; and (ii) the runtime performance of the resulting analytics.

5.6.1 Planner Performance

In order to examine the performance of the planning process, the four case

studies discussed above are again used. Each case study has been benchmarked

as a bounded query (with a data source specified) and as an unbounded query

(no source specified, forcing the planner to attempt to infer possible sources).

The performance of the planner against a test knowledge-base of 20 PEs can be

seen in Figure 5.8. This test knowledge-base describes the real PEs used in the

96

5. Composition of Hybrid Analytics for Heterogeneous Architectures

0 100 200 300 400 500

0.02

0.04

0.06

0.08

Number of PEs in KB

P
la

nn
in

g
T

im
e

(s
)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

Number of PEs in KB

P
la

nn
in

g
T

im
e

(s
)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

Number of PEs in KB

P
la

nn
in

g
T

im
e

(s
)

0 100 200 300 400 500

0.02

0.04

0.06

0.08

Number of PEs in KB
P

la
nn

in
g

T
im

e
(s

)

FFT (b) Face (b) CDR (b) IP (b)
FFT (u) Face (u) CDR (u) IP (u)

Figure 5.9: Scaling of the Mendeleev planner with knowledge-base size for
both (b)ounded and (u)nbounded case studies.

case studies described in Section 5.7. On average, each PE is described with 11

RDF statements, and there are 75 types described in the model. To highlight

the accessibility of this approach, these planner experiments are performed on a

typical workstation class machine – containing a 4-core Intel Core i7 CPU with

8 GB of RAM.

The backwards search optimisations used in the planning algorithm prevent

many of the unbounded queries from taking significantly longer than their

bounded equivalents. The two notable exceptions to this are in the FFT query

(which does not list any grounded types in its goal to inform the choice of

source), and the Face Detection query, which, in its unbounded form, altogether

fails to generate a correct solution (but does so quickly). The bounded Face

Detection query is the longest-running assembly and generation process, due to

the complexity of the resulting analytic; both in terms of the number of tuple

fields to be processed in the pruning analysis, and the number of PEs in the

resulting analytic. In this small knowledge-base, planning takes consistently less

than 60 milliseconds across all of these tests.

97

5. Composition of Hybrid Analytics for Heterogeneous Architectures

In order to better understand how the bidirectional search in the planning

phase scales as the knowledge-base expands, a further set of planner benchmarks

are presented in Figure 5.9 for knowledge-bases of varying size over both the

bounded and unbounded query variants above. The PEs in this expanded

knowledge-base were synthetically generated, using the following strategy:

• Types in the existing knowledge-base were manually classified into four

categories: General (17 types), IP (5 types), Web (24 types), and Telephony

(13 types)

• Each synthetic PE selects a primary category at random. There is a 30%

chance that a PE also selects a secondary category

• There is a 90% chance a PE has an input description, and a 90% chance it

has an output

• Each input/output generates a set of parameters (the count of which is

Gaussian distributed with µ = 5 and � = 2) from the set of types belonging

to its category/categories

All synthetic PEs are “reachable” in the graph search, and as such have an impact

on planning time. They show that in scaling the size of the knowledge-base from

20 to 50 PEs there is a noticeable performance impact. However, due to the

bidirectional optimisation in the search, beyond this scale there is little negative

impact on the search time. At no point does the planning take longer than 80

milliseconds in the case studies tested, regardless of knowledge-base size. More

complete information about the number of plans considered in the search, and

the number found and returned, can be seen in Table 5.2.

5.6.2 Runtime Performance

It is valuable to compare the performance of Mendeleev’s generated code to

hand-written analytics in both the Crucible DSL and in native code. For

this, hand-written native and Crucible code for each runtime is compared

98

5. Composition of Hybrid Analytics for Heterogeneous Architectures

Plans Plans Planning
Query Considered Returned Time (s)

FFT (b) 53 9 0.017
FFT (u) 126 14 0.072
Face (b) 16 4 0.051
Face (u) 1 1 0.013
CDR (b) 40 31 0.019
CDR (u) 40 31 0.025

IP (b) 8 3 0.012
IP (u) 9 3 0.022

Table 5.2: Number of plans considered and returned in the 500 PE stress test
knowledge-base for both (b)ounded and (u)nbounded queries.

to Mendeleev, using a shared library of basic Java operations to implement

two variants of the “IP Communications Endpoints” case study described above

(Figure 5.7(d)). In the first set of experiments, Crucible is used as the target

for comparison, comparing the performance of Mendeleev-generated Cru-

cible code to both hand-written Crucible and native implementations. For

these experiments, the full un-filtered dataset is explored. The second set of

experiments compare the performance of Mendeleev’s native code generation

to hand-written native code for the bounding-box filtered version of the analytic.

These analytics were all executed against 194 offline packet capture files,

corresponding to 100 Gb of raw capture data (5.8 GB of packet headers). Results

were collected on a test cluster consisting of three Hadoop Data Nodes / Accumulo

Tablet Servers, one NameNode / Accumulo Master, and two Streams nodes.

Each node hosts two 3.0 GHz Intel Xeon 5160 CPUs, 8 GB RAM and 2⇥1GbE

interfaces: the same specification of system used for benchmarking in Chapter 4.

99

5. Composition of Hybrid Analytics for Heterogeneous Architectures

R
ec

or
ds

P
ro

ce
ss

ed
(m

ill
io

ns
)

5
10

20
30

40
50

C
od

e
T

yp
e

T
im

e
La

te
nc

y
T

im
e

La
te

nc
y

T
im

e
La

te
nc

y
T

im
e

La
te

nc
y

T
im

e
La

te
nc

y
T

im
e

La
te

nc
y

St
an

da
lo

ne
R

un
ti

m
e

A
ut

o-
ge

ne
ra

te
d

D
SL

29
6.

73
0.

13
59

1.
69

0.
11

11
79

.9
3

0.
13

17
70

.0
9

0.
11

23
59

.7
2

0.
10

29
48

.6
0

0.
12

H
an

d-
w

ri
tt

en
D

SL
33

3.
53

0.
16

66
4.

23
0.

16
13

24
.3

0
0.

17
19

83
.1

3
0.

16
26

44
.0

4
0.

16
33

05
.2

3
0.

16
H

an
d-

w
ri

tt
en

Ja
va

22
7.

52
0.

40
45

3.
88

0.
38

90
6.

48
0.

40
13

60
.0

2
0.

39
18

13
.8

3
0.

40
22

65
.4

4
0.

38

Sp
ar

k
R

un
ti

m
e

A
ut

o-
ge

ne
ra

te
d

D
SL

13
1.

69
0.

14
20

8.
44

0.
14

32
6.

59
0.

16
44

4.
34

0.
14

56
1.

01
0.

14
67

7.
45

0.
13

H
an

d-
w

ri
tt

en
D

SL
17

7.
22

1.
52

26
8.

73
0.

24
44

2.
72

0.
29

60
8.

24
0.

29
76

8.
83

0.
24

93
9.

39
0.

40
H

an
d-

w
ri

tt
en

Sp
ar

k
11

7.
75

1.
24

18
6.

86
1.

56
28

6.
40

1.
58

38
4.

19
1.

38
48

2.
51

1.
93

57
9.

88
1.

54

St
re

am
s

R
un

ti
m

e

A
ut

o-
ge

ne
ra

te
d

D
SL

12
74

.6
8

1.
03

25
09

.7
4

1.
09

49
77

.6
4

1.
06

74
43

.3
7

1.
08

99
06

.0
7

1.
04

12
36

9.
67

1.
00

H
an

d-
w

ri
tt

en
D

SL
14

01
.6

8
1.

20
27

62
.8

8
1.

18
54

76
.1

1
1.

20
81

81
.2

0
1.

15
10

88
6.

18
1.

15
13

59
5.

48
1.

14
H

an
d-

w
ri

tt
en

SP
L

10
41

.2
4

1.
00

20
63

.1
7

0.
98

41
03

.6
8

0.
97

61
43

.7
5

1.
00

81
73

.9
0

1.
01

10
19

5.
93

1.
01

St
re

am
s

O
nl

y
A

ut
o-

ge
ne

ra
te

d
33

82
.7

5
0.

25
50

07
.4

5
0.

12
73

85
.1

0
0.

98
96

16
.3

0
0.

19
11

01
8.

85
0.

18
12

33
8.

60
0.

25
H

an
d-

w
ri

tt
en

26
91

.5
0.

13
37

76
.9

0.
10

58
87

.6
5

0.
12

79
95

.0
5

0.
17

96
77

.6
0

0.
15

11
36

9.
15

0.
20

St
re

am
s

+
It

er
at

or
s

A
ut

o-
ge

ne
ra

te
d

95
7.

75
0.

12
17

88
.0

0
0.

08
34

04
.0

0
0.

10
53

95
.8

0
0.

28
70

46
.4

8
0.

59
87

61
.2

8
0.

13
H

an
d-

w
ri

tt
en

77
4.

45
0.

10
14

55
.7

0
0.

07
28

46
.5

5
0.

09
45

69
.5

0
0.

27
60

14
.6

5
0.

34
78

14
.3

5
0.

11

Ta
bl

e
5.

3:
B

en
ch

m
ar

ki
ng

re
su

lt
s

(m
ak

es
pa

n
w

al
lt

im
e

an
d

pe
r-

tu
pl

e
la

te
nc

y)
fo

r
ea

ch
ru

nt
im

e
m

od
e

an
d

co
de

ty
pe

.

100

5. Composition of Hybrid Analytics for Heterogeneous Architectures

Unfiltered Crucible Analysis

Five equivalent variants of the unfiltered analytic were created: (i) Mendeleev-

generated Crucible; (ii) hand-written Crucible; (iii) a multi-threaded Java

analytic; (iv) a Spark topology written in Java; and (v) an SPL topology, with

associated Java primitive operators. The upper half of Table 5.3 shows the

performance and scalability (makespan time for a given input size and latency

per tuple) of the analytic on each runtime type in turn; Standalone, Apache Spark

(HDFS mode) and on IBM InfoSphere Streams. These data are additionally

presented graphically in Figures 5.10 and 5.11.

These benchmark results show that Mendeleev’s auto-generated code

consistently outperforms the hand-written Crucible topology by as much as

1.4⇥, without any programming or engineering expertise from the user. This

somewhat counter-intuitive result is a side-effect of the additional compile-time

knowledge that Mendeleev infers about the input and output tuples. Hand-

written Crucible code has to pass and validate much wider tuples, containing

all of the fields generated by the base PE being used. Mendeleev, by contrast,

is able to make stronger assumptions about the fields required at each stage;

the synthetic parent Crucible PE that Mendeleev generates (described in

Section 5.4.1) avoids much of the tuple validation that Crucible must perform

on hand crafted PEs, and passes fewer fields at each stage.

An equivalent analytic, hand-written and hand-tuned for each runtime, out-

performs Mendeleev by a maximum of 1.3⇥ in these experiments. Furthermore,

the latency on a per-tuple basis remains low, with a variance of between 10�3

and 10�5. The relative speedup of Mendeleev to Crucible and a manually

written topology on each runtime environment is detailed in Table 5.4.

Filtered Native Analysis

This final set of experiments examines the performance of the Mendeleev-

generated native code executing across all three supported runtimes simultane-

ously. Four variants of the filtered analytic are used: (i) Mendeleev-generated

101

5. Composition of Hybrid Analytics for Heterogeneous Architectures

0 10 20 30 40 50
0

1,000

2,000

3,000

Records Processed (millions)

E
xe

cu
ti

on
T

im
e

(s
)

(a) Standalone runtime

0 10 20 30 40 50
0

300

600

900

Records Processed (millions)

(b) Spark runtime

0 10 20 30 40 50
0

5,000

10,000

15,000

Records Processed (millions)

E
xe

cu
ti

on
T

im
e

(s
)

(c) Streams runtime

0 10 20 30 40 50
0

5,000

10,000

Records Processed (millions)

E
xe

cu
ti

on
T

im
e

(s
)

(d) Streams Only

0 10 20 30 40 50
0

3,000

6,000

9,000

Records Processed (millions)

(e) Streams + Iterators

Native Crucible Mendeleev

Figure 5.10: Execution time for each runtime mode and code type. NB: Charts
(d) and (e) have no Crucible implementation.

102

5. Composition of Hybrid Analytics for Heterogeneous Architectures

0 10 20 30 40 50
0

0.5

1

Records Processed (millions)

La
te

nc
y

(s
)

(a) Standalone runtime

0 10 20 30 40 50
0

2

4

6

8

Records Processed (millions)

(b) Spark runtime

0 10 20 30 40 50
0

0.05

0.1

0.15

Records Processed (millions)

La
te

nc
y

(s
)

(c) Streams runtime

0 10 20 30 40 50
0

0.05

0.1

0.15

Records Processed (millions)

La
te

nc
y

(s
)

(d) Streams Only

0 10 20 30 40 50
0

0.2

0.4

0.6

Records Processed (millions)

(e) Streams + Iterators

Native Crucible Mendeleev

Figure 5.11: Execution latency for each runtime mode and code type. NB: Charts
(d) and (e) have no Crucible implementation.

103

5. Composition of Hybrid Analytics for Heterogeneous Architectures

Mendeleev vs Manual vs
Environment Crucible Mendeleev

Standalone 1.12⇥ 1.30⇥
Spark 1.39⇥ 1.15⇥

Streams 1.10⇥ 1.22⇥

Table 5.4: Relative speedup of Mendeleev to Crucible and hand-written
code over Mendeleev.

SPL, pulling all data out of Accumulo and processing it entirely in InfoS-

phere Streams; (ii) An equivalent Streams-only hand-written analytic; (iii)

Mendeleev-generated SPL with Accumulo Iterators to perform the GeoIP and

BoundingBoxFilter steps; and (iv) An equivalent hand-written Streams with

Accumulo Iterators implementation. The first two variants perform the entire

work of the analytic in Streams, while the latter two implementations push the

GeoIP and bounding box filtering work into the Accumulo Iterator, and perform

the clustering calculations in Streams.

The performance gap between the auto-generated and hand-written code is

smaller here than when Crucible is used; on average, Mendeleev’s code is

only 1.1⇥ slower than the equivalent hand-written implementation. The full

results for both makespan and per-tuple latency are shown in the latter half of

Table 5.3 and Figures 5.10 and 5.11. These results are summarised in the relative

speedup of Mendeleev to these hand-written implementations in Table 5.5.

Native vs
Environment Mendeleev

Streams Only 1.12⇥
Streams + Iterators 1.09⇥

Table 5.5: Relative speedup of hand-implemented native runtimes over
Mendeleev.

In addition to assessing the performance of Mendeleev, these results also

highlight the value of a hybrid approach to analytic execution: the hybrid

Streams-Iterator approach is at least 1.5⇥ faster than a pure streaming solution.

This performance increase is not as a result of Accumulo Iterators being inherently

104

5. Composition of Hybrid Analytics for Heterogeneous Architectures

faster than Streams, but rather through the reduction in data passed over the

network, and the extra parallelism in Accumulo’s Iterator execution model.

5.7 Summary

This chapter has documented: (i) A new abstract model for the assembly and

execution of hybrid analytics, based on a semantically rich type system; (ii) A

novel approach to goal-based planning using this model, which requires little

engineering expertise from the user; (iii) A mechanism for performant, scalable

code generation for these analytics, integrating data across heterogeneous on- and

off-line platforms; (iv) An implementation through a system called Mendeleev;

(v) demonstration of the applicability of this technique through a series of

case studies, where a single interface is used to create analytics that can be

run simultaneously over on- and off-line environments; and (vi) Performance

benchmarking that shows that Mendeleev-generated analytics offer runtime

performance comparable with hand-written code.

Crafting scalable analytics in order to extract actionable business intelligence

is challenging. It requires both domain-level and technical expertise; experience

of tuning and scaling, and supporting tools for analytic composition, planning,

code-generation and effective deployment. Few frameworks exist that provide

end-to-end solutions that address these challenges.

The research presented in this chapter builds on the wishful-search concept

behind MARIO (introduced in Section 3.4), yet at the same time allows the

discovery and composition of novel analytics. It is the first documented approach

to target the execution of automatically generated hybrid analytics in hetero-

geneous compute environments. The performance penalty over hand-written

and tuned analytics has been shown to be a maximum of 1.3⇥ in the included

experiments; an acceptable cost for an automated framework of this type.

105

CHAPTER 6
Speculative Execution of Analytic Workflows

Chapters 3-5 have introduced a variety of techniques, both novel and from

existing literature, which permit different types of user to compose analytics for

deployment on a number of scalable data-intensive compute architectures. These

techniques often suffer a considerable latency between the completion of the

user’s design process and delivery of the first set of results from the composed

application. In some cases this is due to start-up costs associated with the

analytic framework [84], while in others the complexity of the analytic itself is

to blame. This latency between composition of an analytic and delivery of its

results can be minutes or even hours – a considerable delay for users attempting

to explore their data through analysis, or who require interactive results.

One common approach to mitigating this latency is through traditional

software optimisation; whether of the user-generated code, or of the underlying

framework. This form of optimisation delivers varying degrees of improvement,

but will always have its limits – and costs. Such optimisations are time consuming

to implement, and typically significantly increase the complexity of the optimised

codebase.

The research presented in this chapter makes use of a high-level analytic

composition tool, backed by a catalogue of composable analytic components

(as in Figure 6.1). Many existing approaches aim to improve cluster utilisation

through code optimisation and improved job scheduling: however this rarely

results in complete utilisation, and production environments often have unused

compute capacity [60, 122]. Instead of attempting to make an individual analytic

execute faster, this chapter describes a novel approach to speculatively compiling

and deploying analytics in order to make use of spare cluster capacity. This

106

6. Speculative Execution of Analytic Workflows

Component
Catalogue

Plat form
Compiler 1

Analyt ic
Composit ion Tool

Plat form
Compiler 2

User's Analyt ic
Specificat ion

Analyt ic
Plat form 2Analyt ic
Plat form 2Analyt ic
Plat form 2Analyt ic

Plat form 2Analyt ic
Plat form 2

Analyt ic
Plat form 1Analyt ic
Plat form 1Analyt ic
Plat form 1Analyt ic
Plat form 1Analyt ic
Plat form 1

Figure 6.1: Architecture of an analytic workflow composition tool.

approach employs statistics-based heuristics and automated reuse of deployed

analytic components in order to improve the response time in deployment of

complex analytic workflows.

The remainder of this chapter is structured as follows: Sections 6.1 and 6.3

detail the approach taken in this research and the decision-making policies tested,

while Section 6.4 discusses a number of real-world deployment considerations

arising from customer analytics. Section 6.5 describes a detailed evaluation of

the speculative execution system in this chapter. Finally, Section 6.6 summarises

the research presented in this chapter.

6.1 Approach

In this research, we present a novel approach to speculatively compiling and

deploying dynamically assembled analytic workflows in order to reduce the

latency between a user’s request and the delivery of the first results from their

analysis. This research collects statistics on the analytics users create, and uses

these in a set of heuristic policies to predict the analytic a user is intending

to create, while they are still designing that analytic. Once a prediction is

made, code may be generated; compiled; and deployed to start generating results

107

6. Speculative Execution of Analytic Workflows

Specify Partial
Analytic

Validate
Plan &

Configuration
Deploy? Compile

& Deploy Terminate

Refine Analytic Specification

Figure 6.2: Model control flow of an existing analytic assembly system

Specify Partial
Analytic

Validate
Plan &

Configuration
Deploy? 6) Find

Deployed Jobs
Compile
& Deploy Terminate

1) Extract
Statistics

2) Compila-
tion Policy

4) Deploy-
ment Policy

5) Termina-
tion Policy

Speculative Store 3) Parameter
Generation

Refine Analytic Specification

Figure 6.3: New analytic assembly control flow with Speculative Plugin (existing
components shaded)

for that analytic on an entirely automated basis. Common sub-components of

analyses are reused where possible to further reduce time-to-insight.

This middleware-based approach is agnostic to the runtime framework in

use, and is demonstrated in this chapter using both IBM InfoSphere Streams

and Apache Pig. This research requires no modifications to the runtime frame-

work, nor changes to the analytic components themselves: all modifications

are performed within the analytic assembly system. This chapter refers to the

speculative extensions to such a system as a “Speculative Plugin”.

The approach taken by this research makes certain assumptions about the

control flow in the target assembly system. This flow, illustrated in Figure 6.2,

sees the user provide the system with a specification for a (not necessarily

complete) analytic. This specification is validated by the assembly system,

potentially collecting further user-supplied configuration parameters. If the user

is not satisfied with the analytic’s current state, they may iteratively refine

the specification they supply to the assembly system. When the user requests

deployment of this plan, this research assumes that a directed acyclic graph

of components is generated, and passed on to a compilation and deployment

108

6. Speculative Execution of Analytic Workflows

step. The nature of the work done during the compilation step depends on the

framework the job in question targets. For example, Apache Pig requires no

pre-compilation step (the Pig script is compiled upon job submission), while

InfoSphere Streams invokes a complex optimising compiler to transpile SPL into

C++ and compile that C++ to object code. After deployment, the resulting

job will run until user cancel or natural termination of the job.

This research extends the base model to include (Figure 6.3):

1. A component to observe all user interactions with the system and Extract

Statistics on that basis;

2. A further observer of all valid plans for a given specification, which passes

them into a Compilation Policy. This policy works to predict the set of

possible analytics the user might deploy (Section 6.3.1);

3. A Parameter Generation Policy, which generates compile-time parameters

for jobs (Section 6.3.2);

4. A Deployment Policy, responsible for considering which of these compiled

jobs would be valuable to deploy (Section 6.3.3);

5. A Termination Policy, which works to ensure that old, unused, and less-

valuable sub-jobs are terminated (Section 6.3.4); and

6. A modification to the deployment process which finds and reuses existing

jobs or sub-jobs for a user’s deployment request (Section 6.3.5).

This model results in user-visible performance improvements provided either

(i) the Speculative Plugin successfully begins compilation or deployment of the

user’s target job while they are still iterating on their specification; or (ii) the

job they wish to deploy contains common sub-flow(s) with existing compiled

or deployed job(s), in which case sub-component reuse will occur. Note that

this model starts “cold”; without any prior knowledge of the plan space or user

preferences. It must learn all relevant details about parameters and plans whilst

it attempts to generate speculative jobs on-line.

109

6. Speculative Execution of Analytic Workflows

Statistics are updated on-line, each time a user submits a specification for

a partial analytic or deploys a job. These statistics include the frequency

with which features of specifications are requested, the frequency with which

particular components or sub-graphs appear in an assembled analytic, as well as

the configuration parameters that jobs are ultimately deployed with. The model

of analytic composition used in this research makes the conservative assumption

that parameters may alter the generated source code for a given workflow.

As a result, the compilation policy outlined above additionally references the

parameter generation policy to decide which sets of parameters to compile for a

given plan. This on-line approach to learning analytic patterns complicates the

design and implementation of policies, but ensures that the Speculative Plugin

remains flexible in the face of new usage patterns and unseen workflow graphs.

Both the base and extended models described above are compatible with

a number of existing analytic assembly systems in the literature. Taverna, for

example, offers a flexible model for assembling workflows for bioinformatics,

performing in silico experiments and analysis using a variety of web services. It

incorporates a tag-based search capability and a visual workflow assembly tool,

which users employ to specify and compose their analytic. The resulting code

(in a language called SCUFL2) is executed on a Taverna server.

Alternatively, some approaches use component identifiers (URIs or tags) and

an AI planner or reasoner to assemble workflow components on an automated

basis; as in MARIO and the Mendeleev planner detailed in Chapter 5. Such

approaches may include multiple possible plans for a given specification: the

plan validation stage described above may therefore include user input to select

the desired plan from a range of options.

To illustrate the assembly of analytics as a workflow of components, Figure 6.4

depicts two possible cybersecurity analytics inspired by the evaluation analytics

used in Section 6.5, as assembled by the MARIO system. In this example, the

analytic components are depicted by rectangles and the dataflow connections

between them by arrows. The analytic in Figure 6.4(a) uses Netflow data, filtered

110

6. Speculative Execution of Analytic Workflows

Netflow
Data Source

Netflow

Filter rele-
vant traffic

Build traffic
profile per IP

IP

Build/update
traffic model Detect outliers

Outliers

(a) Requested tags: Netflow, Outliers, IP

Netflow
Data Source

Netflow

DHCP Data
Source

Filter rele-
vant traffic

Build lease
profile

Build traffic
profile per IP

IP

Build traf-
fic profile
per MAC

¬IP,MAC

Build/update
traffic model Detect outliers

Outliers

(b) Requested tags: Netflow, Outliers, MAC

Figure 6.4: Sample analytic workflows

of irrelevant and special traffic (e.g., from DNS servers) to profile the amount

of traffic of every IP on the network; this information is used to continuously

update a model of normal traffic (e.g., by using a Gaussian Mixture Model) and

detect outlier IPs according to that model. The analytic in Figure 6.4(b) does

something very similar, but also brings DHCP lease data into the picture, thus

building profiles on a per-MAC-address rather than per-IP-address basis.

Note that the analytic components and the resulting workflows in Figure 6.4

are platform agnostic. In a streaming environment, the Netflow Data Source

represents a live connection to the Netflow packet stream produced by a network

switch, whereas in an offline environment such as Apache Pig, this component

can be implemented as a Pig language fragment that LOADs a recorded dataset

from disk. In Figure 6.4, the outputs of the analytic components are annotated

with tags depicted above the analytic components for convenience1. In this

context, a user’s specification of an analytic is a set of tags together with any

parameters required by the analytic components assembled into the workflow

matching the user tags. Partial specifications such as Netflow, Outliers can be

matched by multiple analytics – in this case, both analytics in Figure 6.4. The

assembly system proposes the “best” combination according to the combined

cost and quality of analytic components, or lacking that information, by simply

choosing the shortest workflow.
1Note here that one component uses a negated tag, ¬IP . The full tag algebra in the

MARIO system is described in [92]

111

6. Speculative Execution of Analytic Workflows

Lastly, it is useful to note the potential for computation reuse exhibited in this

example – the sub-flow hNetflow Data Source, Filter relevant traffic, Build traffic

profile per IPi is common to both analytics. If the analytic in Figure 6.4(a) is

already running in a streaming environment or has already completed execution

in an offline environment, the intermediate data streams or data sets created by

this sequence could be reused when the analytic in Figure 6.4(b) is requested by

the user.

6.2 Implementation

This approach is demonstrated in this chapter using the IBM research prototype

MARIO, which assembles, compiles, deploys, and manages results for analytics

for a variety of runtime frameworks annotated using the CASCADE language.

While it would be possible to apply this approach to Mendeleev, there would

be a significant amount of non-research engineering required to automatically

compile and deploy the code generated by Mendeleev, as well as manage the

jobs it deploys. These features have been integrated and well tested in MARIO

already.

CASCADE annotations include a set of tags for each analytic component,

which a user selects from in order to specify the behaviour of the analytic they

wish to deploy. MARIO leverages an AI planner for assembly of these analytics,

although the research described in this chapter requires only that a catalogue of

analytics is available, searchable by tags. Components in MARIO are represented

as code fragments that can be assembled and deployed using platform-specific

plug-in extensions, which were developed for IBM InfoSphere Streams, Apache

Pig, shell scripts and other platforms. Compilation and deployment are multi-

threaded, with a priority queue for each ensuring that the newest and highest

scoring plans are compiled first. The remainder of this chapter refers to the

application of the Speculative Plugin to MARIO as “Speculative MARIO”.

112

6. Speculative Execution of Analytic Workflows

6.3 Policies

Each of the policies described in the model above are first considered in isolation

in order to understand how they work individually. Section 6.5 considers the

interaction of configurations and combinations of these policies together.

6.3.1 Compilation Policy

When a user submits their partial specification, and the plan search returns its

results, the compilation policy is able to start recommending plans for compilation.

This is a three stage process. First, the policy enumerates all possible plans

for this specification, and all rooted subgraphs (subgraphs which start at a data

source, and perform zero or more analytical steps on that data) within each

plan, accumulating the frequency with which each subgraph appears in the set

of possible plans. These subgraphs and frequencies are then sorted such that

subgraphs with the highest frequency of occurrence appear first in the output.

Subgraphs with equal frequency are sorted in descending order of the number of

components in the graph; longer subgraphs are preferred, as they are more likely

to result in an (at least partially) successful match when the user finalises their

design. This sorted set of subgraphs will naturally contain many plans which

are covered by (are strict subsets of) others in the enumeration. The final stage

of the compilation policy thus discards any so-called covered plans which are

sorted later in the output, so as to minimise redundant compilation effort.

6.3.2 Parameter Generation Policies

Each of the plans generated above makes use of a parameter generation policy

before being added to a compilation queue. This research examines three

different parameter generation policies, each of which is limited to producing

a fixed number of parameter sets for each plan – this number is governed

by a system-level parameter. If a parameter has not yet been observed by

the Speculative Plugin, a default value is generated or retrieved from that

113

6. Speculative Execution of Analytic Workflows

component’s specification (if possible). If no default value can be generated

or retrieved, speculative compilation of this candidate plan is cancelled – the

next time a plan with this parameter is deployed by a user, there will be an

observation to inform future parameter generation.

The first of these policies, Random, simply selects combinations of parameters

at random, based on those which have been deployed before. A refinement of this,

Frequency Weighted, selects parameters randomly with a weight derived from the

frequency with which a given parameter set has been observed before. Finally,

the Top Frequency generation policy generates a list of parameters based purely

on the frequency with which they have been deployed, without any stochastic

component.

6.3.3 Deployment Policies

Deployment decisions are taken on an on-line basis, as plans for a given search

event are generated. This research tests four configurations of deployment. The

first two configurations simply Disable all speculative deployment, or Deploy

Everything that is compiled. This provides a set of baseline figures for a naïve

approach. A third policy tests deployment of a Random selection of compiled

jobs, with a system-level tuneable parameter for the probability of deploying a

given plan. Finally, the Top N policy uses the ordering of plan scores created

in the compilation policy to deploy only top-rated plans, limited to a number

defined in a system-level parameter.

6.3.4 Termination Policy

In order to ensure that speculatively executed jobs do not overwhelm available

cluster resources, a termination policy is used. This employs the concept of server

ticks as a proxy for time which takes into account the level of activity in the

Speculative Plugin: a server tick occurs every time a job is compiled or deployed

by the Speculative Plugin. A job is described as having been “used” if either

a user has requested its deployment (and not yet requested its termination),

114

6. Speculative Execution of Analytic Workflows

or another job has used data which it publishes. If a job has not been “used”,

therefore, within the last T server ticks, it is terminated immediately and marked

as unavailable for reuse. This approach can be considered similar to a Least

Recently Used cache invalidation policy.

The behaviour of termination varies depending on the platform on which

the given job is deployed. In most environments, termination should cancel any

running tasks associated with the job (e.g., streaming processors, MapReduce

tasks, Yarn containers, etc.). An extension to the termination policy may further

be used to “clean up” unused data stored to shared filesystems (such as the

output files from an Apache Pig job, or debug logging from a streaming analytic).

The precise number of server ticks to use for these timeouts depends on the size

and capacity of the cluster to which jobs are submitted. As such, it is dictated

by a system-level tuning parameter.

6.3.5 Sub-Flow Identification & Sharing

In order to facilitate job sharing and sub-flow reuse, it is necessary to define a

stable scheme for identifying a subgraph within a flow. This research achieves this

by traversing the graph in topological order, accumulating a textual description

of the generated code and input / output connections from each component.

In the event of a tie in the topological ordering, the traversal uses a stable

solution for tie-breaking. For each intermediate output in the plan’s flow, the

accumulated description is hashed using SHA-256: the resulting digest is used

as an identifier for that flow.

Once a job is generated in the Compilation Policy, an Export Selection Policy

adds nodes to the flow for platform-specific export implementations. These

exports indicate that results from this portion of the analytic should be made

available to future subscribers. The specific implementation of this loosely framed

requirement depends on the runtime model employed in the target framework.

For example, in IBM InfoSphere Streams, an Export processing element is

included in the graph, to export a live stream of results; no caching occurs,

115

6. Speculative Execution of Analytic Workflows

and the cost of this export operation is near-zero. In Apache Pig, this export

operation must persist the full result-set of this portion of the analytic to the

underlying filesystem (typically HDFS). This is not without cost, but has the

advantage of making the full set of partial analysis available for future re-use –

not just results for the data analysed while both the “publisher” and “subscriber”

job are running.

When a plan is passed to the deployment process, it seeks the longest rooted

subgraph which has results available, or failing that the longest which has

already been compiled. These existing nodes are then cut from the new plan,

and replaced with a matching Import node, to make use of the results from the

speculatively prepared flow. When deployment for such a cut flow is requested,

each of its transitive dependencies must first be deployed if results are not already

available.

6.4 Deployment Considerations

In real-world deployments, there are a number of engineering-related consid-

erations not addressed above. Often, some components of an analytic have

side effects on external systems; e.g., writing results to an external store, or

altering the configuration of connected hardware. It is not desirable that these

external systems should be affected by speculatively executed analytics, however

it is not plausible to reliably isolate them in the presence of arbitrary analytic

code. Furthermore, some components may alter their behaviour (e.g., to change

database authorisations) based on the user who launches it, and thus must not

be shared between jobs for multiple users.

Speculative MARIO proposes an engineering solution to these problems based

around CASCADE annotations. When components are added to the MARIO

system, they may be annotated to indicate that no sharing of this component

may take place. These annotations add a constraint to Speculative MARIO,

indicating that these components may be present in speculatively compiled jobs,

116

6. Speculative Execution of Analytic Workflows

but that jobs containing these components may not be speculatively deployed.

If Speculative MARIO encounters such a component, it will be able to both

compile and deploy the rooted subgraph of any components up to that point in

the plan graph. Listing 6.1 below gives an example of a component annotated in

CASCADE to indicate it may not be speculatively deployed.

1 /#∗

2 @type " sp l "

3 @title "Send user a l e r t s by emai l "

4 @tags UserAlert Output Email

5 @speculative "no�deploy "

6 ∗#/

7 component EMailUserAlerts (input AlertStream) {

8 // Component SPL code omitted f o r b r ev i ty

9 }

Listing 6.1: CASCADE annotation specifying that a component may not be

speculatively deployed.

An alternative solution to this problem would be to add gateway components to

the deployed job. These could be configured to only enable a flow of data into a

given component (whether by disabling the stream in a Streams topology, or

delaying a processing stage in Pig or Bash) when the user requests its deployment.

In this way, a Speculative Plugin may submit the entire speculative job to the

runtime, and begin its processing, without impacting external systems.

6.4.1 Alternative Deployment Scenarios

While this research has been demonstrated as an optimisation of the performance

of the interactive MARIO user experience, there are other deployment scenarios

in which it may be valuable. For example, if early speculative results can be

obtained for an analytic before the user completes their planning, it is possible

to present them with a live results view alongside their planning session: as they

modify parameters, or add tags to their search, the impact of these changes

can be demonstrated interactively. In an exploratory data analysis context, this

could significantly improve a user’s ability to gain understanding of the nature

of their data and the analytic they are designing. For example, the case study

117

6. Speculative Execution of Analytic Workflows

presented in Section 5.5.2 sees a user inspecting the analytic workflow generated

by the Mendeleev planner, and deciding to refine their bounds. With this

interactive result presentation in place, the user’s decision can be informed by

the actual results created by the analytic, not just Mendeleev’s visualisation

of the generated workflow. In an exploratory data analysis context, this could

significantly improve a user’s ability to gain understanding of the nature of their

data and the analytic they are designing.

A second context where this research applies, which is not directly explored

in this thesis, is for hypothesis testing (as described by Riabov, Sohrabi, et

al. [93, 101]), which would see Speculative MARIO used instead by a non-human

agent – this has the potential for deeper collaboration between the AI systems.

For example, the scoring of plans in the compilation policy may be informed

by the hypotheses under test – or the testing agent may use information about

currently available speculative jobs to decide which hypothesis to test next.

6.4.2 Policy Design

When deploying this speculative approach against real-world systems, policy

design may be influenced by differences in the behaviour and capabilities of

the target framework. For example, when Speculative MARIO is deployed

against the Apache Pig framework, there is almost no compilation time to

account for: many more Pig scripts can be generated and speculatively prepared

during the users’ planning session than for a compiled language like SPL. By

the same token, a Streams job may begin processing and delivering results, once

deployed, far quicker than a Pig script which must process its dataset in full

before delivering any results at all. Deployments in homogeneous systems, e.g.

a purely Apache Pig environment, may find that some policies can be tuned

to better suit that single platform. This possibility has not been explored in

this thesis: as demonstrated in Section 6.5, the set of policies and heuristics

detailed in this research can be applied successfully to both streaming and offline

analysis.

118

6. Speculative Execution of Analytic Workflows

6.5 Performance Evaluation

In order to evaluate both the general approach and the specific policies presented

above, this research makes use of a user simulator. In each iteration of the

simulator, it decides on a target analytic which it intends to compose. It then

generates a series of requests to the MARIO web interface in order to emulate

the behaviour of a user, refining the requirements of their analytic specification.

Once the simulator generates the target analytic, it requests deployment of the

job and awaits the return of results, multiple times. This process is instrumented

in order to collect timing information on the code generation, compilation, job

launch time, and the time for the first results to return.

This simulator was used to benchmark MARIO without the Speculative

Plugin in place. A collection of 32 customer analytics, from three different

problem domains (healthcare, cyber security, and manufacturing) and with two

different target platforms (IBM InfoSphere Streams and Apache Pig), were

used in the benchmark. The healthcare analytics are provided with ECG

(electrocardiograph) data, and other sensors from hospital beds, in order to

predict critical care incidents before they happen. The cyber security analytics

use network probe data to model gaussian mixture models of “normal” activity

on the network (DHCP probes, DNS resolution, etc.), and detect hosts which

behave outside of this normal, reporting on them for further investigation (akin

to the sample analytics in Figure 6.4). Finally, the manufacturing data comes

from a CPU fabrication plant, using quality control metrics from various stages

on the production line to predict the yield of CPUs on a given silicon wafer –

these data can be used to recycle wafers which will likely have a high failure rate

before completing manufacture and test.

These results can be seen in Figure 6.5, showing the times for code generation

and compilation; deployment; and collection of the first results from the analytic

(if such results were generated within a 5 minute timeout). Each analytic was

composed and deployed six times. As the existing implementation does not reuse

119

6. Speculative Execution of Analytic Workflows

either sub-flows or complete analytics, no improvement in deployment time is

evident across repeated runs.

These non-speculative results additionally demonstrate that, in spite of

considerable variety in details of the analysis and problem domain, there is

a consistently high cost to compilation of the generated streaming analytics;

typically more than 40 seconds. Depending on the details of the analysis

performed, around 25% of the jobs returned results in under a second: the rest

either exceeded the timeout, or returned results within minutes of the launch.

Results differed noticeably in the Apache Pig tests; there is no compilation step

to speak of, only code generation for the Pig script. Each of the analytics in this

test suite returned results in around 5–11 seconds.

The same suite of instrumented customer analytics and user simulator were

used to collect timing information for each of the policies discussed in Section 6.3.

In order to compare the performance of these policies, the Speculative Plugin

was started from a cold state, and a trace of 60 analytic composition sessions

launched against it sequentially. Each test uses the compilation policy described

in Section 6.3.1, one parameter generation policy from Section 6.3.2, and one

deployment policy from Section 6.3.3. These configurations are described in

these results as Deployment Policy/Parameter Policy.

120

6. Speculative Execution of Analytic Workflows

1 2 3 4 5 6 7
0

100

200

300

Analytic

E
xe

cu
ti

on
T

im
e

(s
)

(a) Critical care ECG analysis (InfoSphere Streams).

1 2 3 4 5 6 7 8 9 10 11 12 13
0

100

200

300

Analytic

E
xe

cu
ti

on
T

im
e

(s
)

(b) Cyber security attack detection (InfoSphere Streams).

Compilation Deployment Result Collection

Figure 6.5: Time taken for repeated compilation, deployment, and collection
of first results for real-world analytics through MARIO (5 minute timeout on
results collection)

121

6. Speculative Execution of Analytic Workflows

1 2 3 4 5 6
0

100

200

300

Analytic

E
xe

cu
ti

on
T

im
e

(s
)

(c) CPU fabrication defect rate analysis (InfoSphere Streams).

1 2 3 4 5 6 7
0

5

10

Analytic

E
xe

cu
ti

on
T

im
e

(s
)

(d) Offline cyber security attack detection (Apache Pig).

Compilation Deployment Result Collection

Figure 6.5: (contd.) Time taken for repeated compilation, deployment, and
collection of first results for real-world analytics through MARIO (5 minute
timeout on results collection)

122

6. Speculative Execution of Analytic Workflows

0 10 20 30 40 50 60
�10

0

10

20

30

40

Request Number

La
un

ch
T

im
e

Im
pr

ov
em

en
t

(s
)

(H
ig

he
r

is
be

tt
er

)

Compilation Only Random/Random
Random/TopN Random/Freq
TopN/Random TopN/TopN
TopN/Freq

Figure 6.6: Moving average of improvement in job launch times with the Specu-
lative Plugin. Y-Axis clamped at -10 seconds.

Figure 6.6 shows a moving average of the improvement in job launch time

for these analytics (that is, the difference between the time taken to launch

each analytic with and without the Speculative Plugin) as the policies warm up.

These results show a rapid warm-up to a steady state (in around 10 requests) for

most of the policies. The Random deployment policy offers highly unpredictable

results, often resulting in actually increased job launch times (the Y axis of

this chart is clamped to -10 seconds for clarity: the Random policies have been

observed causing as much as an 80 second increase in launch times over the

base results presented in Figure 6.5). This is a result of the extra load this

implementation of the Speculative Plugin puts on the MARIO job deployer:

there is an internal deployment queue which is saturated with less useful jobs.

The most consistently successful configuration of policies here appears to be

Top N Deployment, and Frequency-Weighted Random Parameter Generation,

providing some validation of the decision process described in Section 6.3.1.

Figure 6.7 summarises these improvements for each policy, and additionally

123

6. Speculative Execution of Analytic Workflows

Com
pil

ati
on

Only

Ran
do

m/R
an

do
m

Ran
do

m/T
op

N

Ran
do

m/F
req

To
pN

/R
an

do
m

To
pN

/T
op

N

To
pN

/F
req

�50

0

50

100

Configuration

Im
pr

ov
em

en
t

(s
)

(H
ig

he
r

is
be

tt
er

)

Launch Improvement Results Improvement
Total Improvement

Figure 6.7: Average improvement in launch times and result collection times for
each policy

presents the average improvement in results collection time for each configuration.

These aggregated results demonstrate that while most policy combinations

resulted in a net positive “Total Improvement”, the selection of parameter

generation strategy has a noticeable impact on the size of this improvement.

The deployment strategy appears to be less significant, provided some form of

speculative deployment is enabled. The heuristic approaches presented in this

chapter consistently outperform random selection: the best results are obtained

by using the Frequency Weighted parameter generation policy, and the Top N

deployment policy (TopN/Freq).

124

6. Speculative Execution of Analytic Workflows

A
pp

lic
at

io
n

Su
it

e
C

P
U

D
ef

ec
ts

C
ri

ti
ca

lC
ar

e
C

yb
er

Se
cu

ri
ty

O
ffl

in
e

C
yb

er
Se

cu
ri

ty
A
ve

ra
ge

s
C

ou
nt

Pe
rc

en
ta

ge
C

ou
nt

Pe
rc

en
ta

ge
C

ou
nt

Pe
rc

en
ta

ge
C

ou
nt

Pe
rc

en
ta

ge
C

ou
nt

P
er

ce
nt

ag
e

To
ta

l
R

eq
ue

st
s

R
eq

ue
st

ed
Fl

ow
s

15
0

N
/A

15
0

N
/A

28
0

N
/A

21
3

N
/A

19
3.

3
N

/A
R

eq
ue

st
ed

C
om

po
ne

nt
s

87
0

N
/A

45
0

N
/A

10
45

N
/A

97
5

N
/A

78
8.

3
N

/A

C
om

pi
la

ti
on

Fu
ll

H
it

95
63

.3
%

92
61

.3
%

19
4

69
.3

%
N

/A
N

/A
12

7.
0

65
.7

%
M

is
s

(I
n

P
ro

gr
es

s)
47

31
.3

%
51

34
%

67
23

.9
%

N
/A

N
/A

55
.0

28
.4

%
M

is
s

(C
om

pl
et

e)
8

5.
3%

7
4.

7%
19

6.
8%

N
/A

N
/A

11
.3

5.
9%

D
ep

lo
ym

en
t

–
Fu

ll
Fl

ow

Fu
ll

H
it

45
30

%
49

32
.7

%
10

5
37

.5
%

91
42

.7
%

72
.5

36
.6

%
Pa

rt
ia

lH
it

43
28

.7
%

37
24

.7
%

70
25

%
74

34
.7

%
56

.0
28

.2
%

M
is

s
(I

n
P

ro
gr

es
s)

53
35

.3
%

55
36

.7
%

84
30

%
35

16
.4

%
56

.8
28

.6
%

M
is

s
(C

om
pl

et
e)

9
6%

9
6%

21
7.

5%
13

6.
1%

13
.0

6.
6%

D
ep

lo
ym

en
t

–
C

om
po

ne
nt

s

Fu
ll

H
it

30
6

35
.2

%
14

4
32

%
37

2
35

.6
%

48
9

50
.2

%
32

7.
8

39
.3

%
Pa

rt
ia

lH
it

65
/

12
6

7.
5%

/
14

.5
%

48
/

10
6

10
.7

%
/

23
.6

%
93

/
27

4
8.

9%
/

26
.2

%
12

1
/

29
2

12
.4

%
/

29
.9

%
81

.7
5

/
19

9.
5

9.
8%

/
23

.9
%

M
is

s
(I

n
P

ro
gr

es
s)

38
0

43
.7

%
17

1
38

%
32

1
30

.7
%

14
1

14
.5

%
25

3.
3

30
.3

%
M

is
s

(C
om

pl
et

e)
58

6.
7%

29
6.

4%
78

7.
5%

53
5.

4%
54

.5
6.

5%

Ta
bl

e
6.

1:
H

it
ra

te
fo

r
ea

ch
ap

pl
ic

at
io

n
su

it
e,

de
ta

ili
ng

fu
ll

hi
ts

,p
ar

ti
al

hi
ts

,a
nd

m
is

se
s

fo
r

bo
th

fu
ll

flo
w

s
an

d
on

a
pe

r-
co

m
po

ne
nt

ba
si

s.

125

6. Speculative Execution of Analytic Workflows

Table 6.1 presents the results of a hit-rate analysis over each of these application

suites for this optimal set of policies. Each set of results (with the exception of

Compilation, which has no concept of a Partial Hit) is divided into up to four

categories:

• Full Hit: The proportion of requests which were speculatively computed

in their entirety;

• Partial Hit: Those requests in which a subgraph within the flow had

been speculatively computed, but the remainder must be computed;

• Miss (In Progress): Indicates requests for which speculative computation

had begun, but which were not complete by the time the user submitted

their deployment request;

• Miss (Complete): Requests which the Speculative Plugin failed to predict

in time.

The compilation results indicate that approximately 2/3 of requests hit the

compilation cache successfully. With additional compilation resources available,

results suggest this could go as high as 94%, due to the proportion of compilation

requests successfully predicted but not completed. The hit rates for deployment

are somewhat lower, due to constraints on the amount of cluster resource available

to Speculative MARIO. These indicate a little over a 1/3 full hit rate, with a

further 1/4 of requests partially hit.

In order to better understand these partial hits, the final set of data in

Table 6.1 shows per-component hit rates rather than per-flow hit rates. The

partial hit data in this set of results indicates both the number of components

in partial hits which were speculatively deployed, and the number of requested

components in these flows which resulted in a partial hit. Across the full set

of experiments, there is a consistently under 7% complete miss rate: over 93%

of jobs were speculatively predicted and had at least begun to be compiled or

deployed prior to the users’ request.

126

6. Speculative Execution of Analytic Workflows

0 5 10 15 20 25 30 35 40 45 50
0

50

100

Request Number

E
xe

cu
ti

on
T

im
e

(s
)

(a) Critical care ECG analysis (InfoSphere Streams).

0 10 20 30 40 50 60 70 80 90
0

50

100

Request Number

E
xe

cu
ti

on
T

im
e

(s
)

(b) Cyber security attack detection (InfoSphere Streams).

Figure 6.8: Time taken for repeated compilation, deployment, and collection
of first results for real-world analytics through Speculative MARIO (5 minute
timeout on results collection)

127

6. Speculative Execution of Analytic Workflows

0 5 10 15 20 25 30 35 40 45 50
0

50

100

Request Number

E
xe

cu
ti

on
T

im
e

(s
)

(c) CPU fabrication defect rate analysis (InfoSphere Streams).

0 10 20 30 40 50 60
0

2

4

6

8

10

Request Number

E
xe

cu
ti

on
T

im
e

(s
)

(d) Offline cyber security attack detection (Apache Pig).

Base Launch Base Results
Speculative Launch Speculative Results

Figure 6.8: (contd.) Time taken for repeated compilation, deployment, and
collection of first results for real-world analytics through Speculative MARIO (5
minute timeout on results collection)

Finally, the results of applying the optimal set of policies over these applica-

tions are presented in Figure 6.8. The original job launch and results collection

times are given for each analytic in the background: in many cases, the Spec-

ulative Plugin causes results to be collected before even the Base Launch is

complete, representing a considerable improvement in user experience. The

128

6. Speculative Execution of Analytic Workflows

longer the Speculative Plugin is active for, the better its results become: in later

runs, even when the system is presented with a novel analytic that it has to

do some compilation for, results are still returned in under 0.1 seconds. This

is a result of the reuse of common sub-jobs: as partial processing has already

occurred for these workflows, the time taken to finish processing is far lower.

6.6 Conclusions

This chapter has detailed (i) the first reported generalised approach to on-line

speculative composition, compilation, and execution of data analytics; (ii) A

novel collection of modular policies to be used within this framework to alter

how its decisions are made. It has described (iii) how real-world deployment

considerations inform the implementation of this speculative framework in prac-

tice. This implementation is (iv) used to demonstrate the application of this

speculative execution model to real customer analytics, considerably improving

response times for users of both streaming and batch analytic systems, as well

as (v) informing a rigorous evaluation of how each of these policies influence the

performance improvement afforded by the system.

This research has demonstrated that existing systems for composing analytic

workflows are capable of predicting the analytics a user is attempting to generate

based on only partial specifications of their target analytic. This predictability

can be exploited to speculatively generate, compile, and begin execution of such

workflows without additional user input. This speculative execution has been

shown to significantly reduce the users’ perceived latency in such a workflow

composition system by exploiting spare compute capacity in production environ-

ments: at worst, runtimes are not negatively impacted, and at best results are

available with sub-0.1 second latencies.

129

CHAPTER 7
Discussion and Conclusions

This thesis has explored a number of issues arising out of the explosive growth of

analytical techniques, requirements, and frameworks in recent years. Much of the

existing literature in this area has focused on the optimisation of a single class

of algorithms on a single runtime framework, either by improving the underlying

framework, or through the introduction of a novel abstraction, programming

model, or domain specific language (DSL). This thesis has described and proposed

solutions to some of the challenges in navigating the available architectures for a

particular analytic workload, as well as in finding and training expert users to

employ these systems.

Specifically, Chapter 4 introduced the first reported DSL to target execution

on both on-line (streaming) and off-line (bulk) analytical frameworks with equal

precedence. There has been prior work in this area to take offline analytics and

re-engineer them for execution in streaming environments [33, 45, 58]. Other

approaches define frameworks from the ground up for analytic execution (e.g.

Spark [123] or Cascading [16]), adding support for a streaming execution model.

IBM’s DEDUCE [64] is the closest approach in existing literature to that taken

in Chapter 4; it used SPADE (a predecessor to SPL) to define MapReduce jobs,

providing some commonality in the language used to write analytics. This chapter

instead described the first DSL with a common execution model for analytics

which is applied to provide consistent semantics across a collection of runtime

implementations. The DSL, called Crucible, permits a user to craft a single

analytic, and execute it equivalently over a number of data sources and runtime

models. In the described implementation, these analytics may be executed

using IBM InfoSphere Streams, Apache Spark, and Apache Accumulo, as well

130

7. Discussion and Conclusions

as in a local testing mode – wherever the user’s data is available. It includes

a novel framework for managing cell-level security labels, and automatically

propagating labels through the execution path taken by each datum. This

chapter additionally presented an evaluation of Crucible’s performance across

the suite of runtime implementations, and discussed framework optimisations

that resulted in a typical 14⇥ performance gap when compared to hand-tuned

native code.

In Chapter 5, this thesis explored an alternative approach to composing ana-

lytics for execution both on- and off-line. It described Mendeleev, a goal-based

planning engine using a model of analytic behaviour based on transformations of

a semantically rich type system. Mendeleev was applied in this thesis to on-line,

off-line, and hybrid analytic planning using a collection of case studies taken

from the domains of telecommunications and image analysis. These case studies

demonstrate automatic analytic code generation for Crucible, IBM InfoSphere

Streams, Apache Accumulo Iterators, and Apache Spark (which may be executed

in local or distributed mode), in addition to visualisation code based around the

JavaScript frameworks Meteor and D3. The results presented in this chapter

demonstrated performance of the generated analytics which is comparable to

hand-tuned native code, as well as interactive performance and scalability of the

planning engine itself. Existing approaches to the automated composition of code

prior to Mendeleev were often in the realm of web mashups [30, 119]. Some

use hierarchical planning approaches to generate code [85, 98, 112] – much like

Mendeleev, many such systems answer queries by satisfying the preconditions

for executing composable components. Of particular relevance to Mendeleev is

IBM’s MARIO [92], which builds on SPPL, the Streaming Processing Planning

Language [90, 91]. IBM characterises MARIO as offering wishful search, which

a user drives by entering a set of goal tags. In practice it is rare for MARIO

to create a novel or unforeseen solution to a problem. Mendeleev builds on

the wishful-search concept behind MARIO while allowing for the discovery and

composition of novel complex analytics, using a higher-level granular model of

131

7. Discussion and Conclusions

analytic behaviour, utilising existing techniques from AI planning.

Finally, Chapter 6 described the first reported use of automatic speculative

composition, compilation and execution of analytic workflows. It made use of

the flexibility of a goal-based planning engine to significantly reduce the time

to insight; that is, the perceived latency between the user submitting a job

for execution, and that job beginning to return useful results. This chapter

made use of IBM’s Automated Analytics Composer (built on the MARIO

planner) to demonstrate its abstract model for speculative execution, due to the

maturity of the engineering behind its runtime orchestration capability. Within

the framework of this implementation, this thesis has evaluated a collection

of strategies and configurations for each of the decision points in Speculative

MARIO. These strategies were shown to improve the apparent performance of

the IBM Automated Analytics Composer by over 100⇥ using spare production

cluster capacity – in many cases, delivering results for a user’s analytic before

they complete its design and deployment. In spite of the breadth of previous

study of speculative execution [21, 40, 57, 100, 121], no attempt has been made to

use it to improve the performance of analytic workloads by utilising spare cluster

capacity. Unlike existing approaches in the literature, the research in Chapter 6

speculatively generates coarse-grained tasks for execution based on predictions

of the analytic a user intends to deploy. Further, it aggressively caches and

shares results of sub-components in the workflow in a platform-sensitive manner.

These capabilities combine to create considerable improvements in the perceived

performance of the user’s data analytics platform.

7.1 Limitations

The work in Chapters 4 and 5 of this thesis has been benchmarked and demon-

strated using a limited set of exemplar applications. These applications are

designed to be similar to real-world workloads, although do not come from

actual enterprise deployments: unfortunately, such applications are typically

132

7. Discussion and Conclusions

commercially sensitive and not suitable for publication. There is generally a

lack of high-grade analytic benchmark suites with representative workloads for

execution in on-, off-line, and hybrid contexts in the literature. Most existing

benchmarks [29, 42, 52] target bulk analysis on Hadoop only (with the notable

exception of the recently published BigDataBench [111], which offers multiple

analytics, each with an associated runtime), aiming to compare implementations

of the Hadoop runtime. None of these benchmarks compare the execution of the

analysis encoded in the benchmark on different paradigms. As a result, this thesis

was compelled to use its own exemplar applications and benchmarks, based on

the author’s experience of analytics “in the wild”. These exemplar applications

are selected to cover a sufficiently diverse range of analytic requirements to be

able to support the claims made in this thesis.

Even with these benchmarks, it is challenging to objectively and holistically

evaluate Crucible and Mendeleev against hand-written code: runtime is

only one aspect of the value of an analytic framework. These runtime-based

evaluations fail to capture the ease with which an analytic may be expressed,

understood by an outsider, and debugged. They do not capture the learning curve

of the resulting system, nor its expressivity – some of the evaluated approaches

may not be able to express all possible analytics, or the difficulty of doing so

may be prohibitive for a user.

Another potential limitation of the work in this thesis is the scope of the

implementation of Mendeleev in Chapter 5. While the work correctly generates

hybrid analytics for execution on a variety of platforms, it does not attempt to

solve associated scheduling problems. As the concrete plan describes a directed

acyclic graph of processing elements, there is no ambiguity in the job dependencies.

This scheduling is therefore considered an engineering problem, as opposed to

a research challenge: frameworks exist in the literature to manage scheduling

of workflows within a single runtime (e.g., Apache Oozie [54]). However, no

such frameworks are described for scheduling workflows across multiple such

runtimes (e.g., for hybrid applications on InfoSphere Streams and using Accumulo

133

7. Discussion and Conclusions

Iterators). This engineering problem should be readily solvable within an existing

cross-platform deployment orchestrator such as IBM’s Automated Analytics

Composer.

Finally, there is a potential limitation in the manner in which Speculative

MARIO was benchmarked. While every effort has been made to generate realistic

workloads, the benchmark employs a synthetic user simulator, not actual traces

of user activity. As existing deployments of the IBM Analytics Composer are

on private, protected (often classified) networks, obtaining actual traces of user

activity is not possible. The simulator used was designed to stress the system

as much as possible: it subjected MARIO to a higher load than any of these

existing deployments of the technology. It is therefore believed that the results

are sufficiently representative to support the conclusions presented in Chapter 6.

7.2 Applications

The research in this thesis has been demonstrated and tested on a limited but

varied set of application areas. However, the frameworks and technologies on

which it builds, and which it enhances, are applicable (and in use) across a wide

range of industries – some of these include;

• Reconfigurable analysis for the complex variety of sensor configurations

and analyses required to enable oil exploration

• Low latency hybrid batch and stream processing for hedge funds

• Analysis of high-dimensional high-variety data for national security appli-

cations across both offline and streaming data sources

• Analysis of user profiles across historical and real-time click streams for

marketing applications

• Time-series analysis using workflows of custom tools for neuroscience and

research.

134

7. Discussion and Conclusions

These applications barely scratch the surface of current deployments of tools

like Apache Spark, IBM InfoSphere Streams, Apache Accumulo, MARIO, and

so forth. However, each area has the potential to benefit from a converged

DSL such as Crucible (particularly those with hybrid analytics, or both batch

and stream requirements), or an analytic planning approach like that offered

by Mendeleev (those with exploratory analytics, or analytic reconfiguration

problems in particular). These can therefore also benefit from the speculative

execution approach described in Chapter 6.

This speculative execution approach, in particular, is amenable to general-

isation: while the work was demonstrated on IBM’s MARIO system, and its

applicability to Mendeleev was described, the approach could be valid for any

workflow assembly system. All that is required is some library of components,

and an interactive workflow design process – whether this is on a vertically

integrated platform like BioMOBY/Taverna [81, 113] or any one of the Yahoo!

Pipes [87] derivatives [4, 68, 114].

7.3 Further work

The research presented in this thesis is amenable to a number of extensions and

further investigation. The work described in Chapter 6 highlighted the value of

reusing partial computation across analytic jobs. Pushing this capability down

into the Crucible runtime framework could have interesting ramifications for the

performance of both hand-written Crucible code, as well as for Mendeleev-

generated jobs. In this way, only the subsets of analyses which are different

across given topologies must be computed separately, significantly enhancing

the overall utilisation of cluster resources. In a similar vein, the capability to

subscribe to results published from one job in another will permit a manually

specified form of these efficiencies.

In order to improve Crucible’s runtime performance further, there may be

value in investigating alternative compilation strategies for topologies, in order

135

7. Discussion and Conclusions

to enable their execution of alternative compute architectures. This will enable

workload-based optimisation for architecture selection – directly impacting both

deployment and system procurement decisions. A component of this work could

additionally examine the use of PE fusion (combining multiple PEs into a single

operator) and fission (replicating an operator multiple times over subsets of its

data inputs) techniques to enhance data parallelism.

One promising area of research is in the automated learning of analytic

design patterns. As a Mendeleev instance is deployed over an extended period

of time, analysis of usage patterns may permit the system to recommend to

the user analysis for a given data source, or to alter rankings based on those

analytics users typically deploy for a given query. These advanced models of

analytic design patterns can then feed directly into more advanced modelling

of user behaviour for the Speculative Plugin. Taking into account further user

attributes, such as business unit or job role, as well as behavioural seasonality

(e.g., “Users with role X tend to deploy analytic Y at the start of the month

and Z most other mornings”) would be an extremely valuable extension of the

Speculative Plugin work presented in this thesis.

7.4 Final Remarks

This thesis has presented a number of approaches designed to ease the process

of deploying scalable data analytics across a variety of platforms. As require-

ments and techniques continue to evolve, such approaches will likely increase in

prevalence and significance – albeit in increasingly advanced and usable fashions.

Many of the themes of this research are expected to pervade future work in this

area: empowering domain experts, ensuring scalability, and enabling complex

deployments of hybrid analytics.

136

Bibliography

[1] D. Agrawal, S. Das, and A. El Abbadi. Big data and cloud computing:

Current state and future opportunities. In Proceedings of the 14th Inter-

national Conference on Extending Database Technology, pages 530–533,

Uppsala, Sweden, 2011. ACM.

[2] T. Aihkisalo and T. Paaso. A performance comparison of web service

object marshalling and unmarshalling solutions. In Proceedings of the 2011

IEEE World Congress on Services, pages 122–129, Washington, DC, USA,

2011. IEEE.

[3] M. Ali. An introduction to Microsoft SQL Server StreamInsight. In Pro-

ceedings of the 1st International Conference and Exhibition on Computing

for Geospatial Research & Applications, page 66, Washington, DC, USA,

2010. ACM.

[4] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie, V. Markl, L. Mau,

Y.-H. Ng, D. Simmen, and A. Singh. Damia: A data mashup fabric for

intranet applications. In Proceedings of the 33rd international conference

on Very large data bases, pages 1370–1373, San Jose, CA, USA, 2007.

VLDB Endowment.

[5] Apache Software Foundation. Apache Accumulo, accessed 2015.

URL http://accumulo.apache.org/.

[6] Apache Software Foundation. Apache HBase, accessed 2015.

URL http://hbase.apache.org/.

[7] Apache Software Foundation. Apache Storm, accessed 2015.

URL http://storm.apache.org/.

137

7. BIBLIOGRAPHY

[8] Apache Software Foundation. Apache ZooKeeper, accessed 2015.

URL http://zookeeper.apache.org/.

[9] D. E. Bell and L. J. La Padula. Secure computer system: Unified exposition

and multics interpretation. Technical report, MITRE Corporation, ESD-

TR-75-306 (MTR-2997), McLean, VA, USA, 1976.

[10] R. Bergmann and Y. Gil. Retrieval of semantic workflows with knowledge

intensive similarity measures. In Case-Based Reasoning Research and

Development, pages 17–31. Springer, New York, NY, USA, 2011.

[11] A. Beygelzimer, A. Riabov, D. Sow, D. S. Turaga, and O. Udrea. Big

data exploration via automated orchestration of analytic workflows. In

Proceedings of the 10th International Conference on Autonomic Computing

(ICAC 13), pages 153–158, San Jose, CA, USA, 2013.

[12] M. Birbeck and S. McCarron. CURIE syntax 1.0: A syntax for expressing

compact URIs. W3C Working Group Note, 2008.

[13] P. J. Bird. LEO: The first business computer. Hasler Publishing Ltd.,

Wokingham, UK, 1994.

[14] G. Bracha. Generics in the Java programming language. Sun Microsystems,

java.sun.com, 2004.

[15] D. Brickley, R. V. Guha, and B. McBride. RDF vocabulary description

language 1.1: RDF schema. W3C Recommendation, 2014.

[16] Cascading Project. Cascading – Platform for big data, accessed 2015. URL

http://www.cascading.org/.

[17] C. Castillo, M. Mendoza, and B. Poblete. Information credibility on

Twitter. In Proceedings of the 20th International Conference on World

wide web, pages 675–684, Hyderabad, India, 2011. ACM.

[18] F. Chang and G. A. Gibson. Automatic i/o hint generation through

speculative execution. In Proceedings of the Third Symposium on Operating

138

7. BIBLIOGRAPHY

Systems Design and Implementation, volume 99, pages 1–14, New Orleans,

LA, USA, 1999. USENIX Association.

[19] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed storage

system for structured data. ACM Transactions on Computer Systems

(TOCS), 26(2):4, 2008.

[20] T. Cheatham, A. Fahmy, D. Stefanescu, and L. Valiant. Bulk synchronous

parallel computing: A paradigm for transportable software. In Tools and

Environments for Parallel and Distributed Systems, pages 61–76. Springer,

New York, NY, USA, 1996.

[21] Q. Chen, C. Liu, and Z. Xiao. Improving MapReduce performance using

smart speculative execution strategy. IEEE Transactions on Computers,

63(4):954–967, 2014.

[22] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, and W. Gropp. Hiding i/o latency

with pre-execution prefetching for parallel applications. In Proceedings of

the 2008 ACM/IEEE conference on Supercomputing, page 40, New York,

NY, USA, 2008. IEEE Press.

[23] P. Coetzee and S. Jarvis. CRUCIBLE: Towards unified secure on- and off-

line analytics at scale. In Proceedings of the 2013 International Workshop

on Data-Intensive Scalable Computing Systems, pages 43–48, Denver, CO,

USA, 2013. ACM.

[24] P. Coetzee and S. Jarvis. Goal-based analytic composition for on- and off-

line execution at scale. In Proceedings of IEEE Trustcom/BigDataSE/ISPA,

2015, volume 2, pages 56–65, Helsinki, Finland, 2015. IEEE.

[25] P. Coetzee and S. A. Jarvis. Goal-based composition of scalable hybrid an-

alytics for heterogeneous architectures. Journal of Parallel and Distributed

Computing, 2016. URL http://doi.org/10.1016/j.jpdc.2016.11.009.

139

7. BIBLIOGRAPHY

[26] P. Coetzee, M. Leeke, and S. Jarvis. Towards unified secure on-and off-line

analytics at scale. Parallel Computing, 40(10):738–753, 2014.

[27] P. L. Coetzee, A. V. Riabov, and O. Udrea. Methods and systems for

improving responsiveness of analytical workflow runtimes, November 2016.

US Patent 9,495,137.

[28] I. Constantinescu, B. Faltings, and W. Binde. Large scale, type-compatible

service composition. In Proceedings of the IEEE International Conference

on Web Services, pages 506–513, San Diego, CA, USA, 2004. IEEE.

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.

Benchmarking cloud serving systems with YCSB. In Proceedings of the

1st ACM Symposium on Cloud Computing, pages 143–154, Indianapolis,

IN, USA, 2010. ACM.

[30] F. Daniel, C. Rodríguez, S. Roy Chowdhury, H. R. Motahari Nezhad,

and F. Casati. Discovery and reuse of composition knowledge for assisted

mashup development. In Proceedings of the 21st International Conference

on World Wide Web, pages 493–494, Lyon, France, 2012. ACM.

[31] T. H. Davenport and J. G. Harris. Competing on analytics: The new

science of winning. Harvard Business Press, Boston, MA, USA, 2007.

[32] T. H. Davenport and L. Prusak. Working knowledge: How Publishers

manage what they know. Harvard Business Press, Boston, MA, USA, 1998.

[33] G. De Francisci Morales. SAMOA: A platform for mining big data streams.

In Proceedings of the 22nd International Conference on the World Wide

Web companion, pages 777–778, Rio de Janeiro, Brazil, 2013. International

World Wide Web Conferences Steering Committee.

[34] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

140

7. BIBLIOGRAPHY

[35] H. Demirkan and D. Delen. Leveraging the capabilities of service-oriented

decision support systems: Putting analytics and big data in cloud. Decision

Support Systems, 55(1):412–421, 2013.

[36] S. Efftinge and M. Völter. oAW XText: A framework for textual DSLs. In

Proceedings of Eclipse Modeling Symposium at Eclipse Summit, volume 32,

page 118, Esslingen, Germany, 2006.

[37] EsperTech Inc. Esper – complex event processing, accessed 2015. URL

http://www.espertech.com/esper/.

[38] M. Franklin et al. Mllib: A distributed machine learning library. In

Proceedings of NIPS Workshop on Machine Learning Open Source Software,

Lake Tahoe, NV, USA, 2013.

[39] A. Fuchs. Accumulo – Extensions to Google’s Bigtable design. Technical

report, National Security Agency, March 2012.

[40] F. Gabbay and A. Mendelson. Speculative execution based on value predic-

tion. PhD thesis, Technion – Israel Institute of Technology, 1996.

[41] A. E. Gattiker, F. H. Gebara, A. Gheith, H. P. Hofstee, D. A. Jamsek,

J. Li, E. Speight, J. W. Shi, G. C. Chen, and P. W. Wong. Understanding

system and architecture for big data. Journal of IBM research, 2012.

[42] A. Ghazal, T. Rabl, M. Hu, F. Raab, M. Poess, A. Crolotte, and H.-A.

Jacobsen. BigBench: Towards an industry standard benchmark for big

data analytics. In Proceedings of the 2013 ACM SIGMOD international

conference on Management of data, pages 1197–1208, New York, NY, USA,

2013. ACM.

[43] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google file system. ACM

SIGOPS operating systems review, 37(5):29–43, 2003.

[44] I. Goiri, F. Julia, J. Ejarque, M. De Palol, R. M. Badia, J. Guitart, and

J. Torres. Introducing virtual execution environments for application life-

141

7. BIBLIOGRAPHY

cycle management and SLA-driven resource distribution within service

providers. In Proceedings of the 8th IEEE International Symposium on Net-

work Computing and Applications. (NCA 09), pages 211–218, Cambridge,

MA, USA, 2009. IEEE.

[45] L. Golab, T. Johnson, J. S. Seidel, and V. Shkapenyuk. Stream warehousing

with DataDepot. In Proceedings of the 35th SIGMOD Conference on

Management of Data, pages 847–854, Providence, RI, USA, 2009. ACM.

[46] Google, Inc. Google Mashup Editor, accessed 2015. URL https://

developers.google.com/mashup-editor/.

[47] Google Inc. Protocol Buffers, accessed 2015. URL https://developers.

google.com/protocol-buffers/.

[48] T. J. Hacker, F. Romero, and C. D. Carothers. An analysis of clustered fail-

ures on large supercomputing systems. Journal of Parallel and Distributed

Computing, 69(7):652–665, 2009.

[49] I. A. T. Hashem, I. Yaqoob, N. B. Anuar, S. Mokhtar, A. Gani, and

S. U. Khan. The rise of “big data” on cloud computing: Review and open

research issues. Information Systems, 47:98–115, 2015.

[50] M. Hausenblas and J. Nadeau. Apache Drill: Interactive ad-hoc analysis

at scale. Big Data, 1(2):100–104, 2013.

[51] C. A. R. Hoare. Communicating sequential processes. Communications of

the ACM, 21(8):666–677, 1978.

[52] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang. The HiBench benchmark

suite: Characterization of the mapreduce-based data analysis. In IEEE

26th International Conference on Data Engineering Workshops, pages

41–51, Long Beach, CA, USA, 2010. IEEE.

[53] W. S. Humphrey. Why big software projects fail: The 12 key questions.

142

7. BIBLIOGRAPHY

In D. J. Reifer, editor, Software Management. IEEE, New York, NY, USA,

seventh edition, 2005.

[54] M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srinivasan, C. Peters,

A. Neumann, and A. Abdelnur. Oozie: Towards a scalable workflow

management system for Hadoop. In Proceedings of the 1st ACM SIGMOD

Workshop on Scalable Workflow Execution Engines and Technologies, page 4,

Scottsdale, AZ, USA, 2012. ACM.

[55] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakrishnan,

U. Çetintemel, M. Cherniack, R. Tibbetts, and S. Zdonik. Towards a

streaming SQL standard. Proceedings of the VLDB Endowment, 1(2):

1379–1390, 2008.

[56] C. Ji, Y. Li, W. Qiu, U. Awada, and K. Li. Big data processing in cloud

computing environments. In 12th International Symposium on Pervasive

Systems, Algorithms and Networks, pages 17–23, San Marcos, TX, USA,

2012. IEEE.

[57] N. P. Jouppi and D. W. Wall. Available instruction-level parallelism for

superscalar and superpipelined machines, volume 17. ACM, New York, NY,

USA, 1989.

[58] C. R. Kalmanek, I. Ge, S. Lee, C. Lund, D. Pei, J. Seidel, J. Van der

Merwe, and J. Ates. Darkstar: Using exploratory data mining to raise

the bar on network reliability and performance. In Proceedings of the 7th

International Workshop on Design of Reliable Communication Networks,

pages 1–10, Alexandria, VA, USA, 2009. IEEE.

[59] S.-H. Kang, D.-H. Koo, W.-H. Kang, and S.-W. Lee. A case for flash

memory SSD in Hadoop applications. International Journal of Control

and Automation, 6(1):201–210, 2013.

[60] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan. An analysis of traces

from a production MapReduce cluster. In 10th IEEE/ACM International

143

7. BIBLIOGRAPHY

Conference on Cluster, Cloud and Grid Computing, pages 94–103, Mel-

bourne, Australia, 2010. IEEE.

[61] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,

M. Hubbell, P. Michaleas, J. Mullen, A. Prout, et al. Achieving 100,000,000

database inserts per second using Accumulo and D4M. In IEEE High Per-

formance Extreme Computing Conference (HPEC), pages 1–6, Waltham,

MA, USA, 2014. IEEE.

[62] M. Kornacker and J. Erickson. Cloudera Impala: Real-time queries in

Apache Hadoop, 2012. URL http://blog.cloudera.com/blog/2012/10/

cloudera-impala-real-time-queries-in-apache-hadoop-for-real/.

[63] T. M. Kroeger, D. D. Long, and J. C. Mogul. Exploring the bounds of web

latency reduction from caching and prefetching. In USENIX Symposium

on Internet Technologies and Systems, pages 13–22, Monterey, CA, USA,

1997.

[64] V. Kumar, H. Andrade, B. Gedik, and K.-L. Wu. DEDUCE: At the

intersection of MapReduce and stream processing. In Proceedings of the

13th International Conference on Extending Database Technology, pages

657–662, Lausanne, Switzerland, 2010. ACM.

[65] O. Lassila, R. Swick, et al. Resource Description Framework (RDF) model

and syntax specification. W3C Recommendation, 1998.

[66] Y.-N. Law, H. Wang, and C. Zaniolo. Query languages and data models

for database sequences and data streams. In Proceedings of the 30th

International Conference on Very Large Data Bases, pages 492–503, San

Jose, CA, USA, 2004. VLDB Endowment.

[67] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica. Tachyon: Reliable,

memory speed storage for cluster computing frameworks. In Proceedings

of the ACM Symposium on Cloud Computing, pages 1–15, Seattle, WA,

USA, 2014. ACM.

144

7. BIBLIOGRAPHY

[68] T. Loton. Introduction to Microsoft Popfly, No Programming Required.

Lotontech Limited, 2008.

[69] M. Loukides. What is data science, 2010. URL http://radar.oreilly.

com/2010/06/what-is-data-science.html.

[70] H. P. Luhn. A business intelligence system. IBM Journal of Research and

Development, 2(4):314–319, 1958.

[71] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski. Pregel: A system for large-scale graph processing.

In Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data, pages 135–146, Indianapolis, IN, USA, 2010. ACM.

[72] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,

S. Narayanan, M. Paolucci, B. Parsia, T. Payne, et al. OWL-S: Semantic

markup for web services. W3C member submission, 22:2007–04, 2004.

[73] N. Marz and J. Warren. Big Data: Principles and best practices of scalable

realtime data systems. Manning Publications Co., Greenwich, CT, USA,

2015.

[74] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,

and T. Vassilakis. Dremel: Interactive analysis of web-scale datasets.

Proceedings of the VLDB Endowment, 3(1-2):330–339, 2010.

[75] J. W. Mickens, J. Elson, J. Howell, and J. Lorch. Crom: Faster web

browsing using speculative execution. In Proceedings of the 7th USENIX

conference on Networked systems design and implementation, volume 10,

page 9, Boston, MA, USA, 2010.

[76] Z. Nabi, E. Bouillet, A. Bainbridge, and C. Thomas. Of Streams and

Storms. Journal of IBM research, 2014.

[77] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and

145

7. BIBLIOGRAPHY

F. Yaman. SHOP2: An HTN planning system. Journal of Artificial

Intelligence Research, 20(1):379–404, 2003.

[78] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4: Distributed

stream computing platform. In Proceedings of the 2010 IEEE International

Conference on Data Mining Workshops (ICDMW), pages 170–177, Sydney,

Australia, 2010.

[79] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Maneth, S. Micheloud,

N. Mihaylov, M. Schinz, E. Stenman, and M. Zenger. An overview of

the Scala programming language. Technical report, EPFL Lausanne,

IC/2004/64, 2004.

[80] C. Ogbuji et al. FuXi 1.4: A python-based, bi-directional logical reasoning

system for the semantic web, accessed 2015. URL https://code.google.

com/p/fuxi/.

[81] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,

T. Carver, K. Glover, M. R. Pocock, A. Wipat, et al. Taverna: A tool for

the composition and enactment of bioinformatics workflows. Bioinformatics,

20(17):3045–3054, 2004.

[82] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig Latin:

A not-so-foreign language for data processing. In Proceedings of the 2008

ACM SIGMOD International Conference on Management of Data, pages

1099–1110, Vancouver, BC, Canada, 2008. ACM.

[83] V. N. Padmanabhan and J. C. Mogul. Using predictive prefetching to im-

prove world wide web latency. ACM SIGCOMM Computer Communication

Review, 26(3):22–36, 1996.

[84] A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, and

M. Stonebraker. A comparison of approaches to large-scale data analysis.

In Proceedings of the 35th SIGMOD Conference on Management of Data,

pages 165–178, Providence, RI, USA, 2009. ACM.

146

7. BIBLIOGRAPHY

[85] M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated synthesis

of composite BPEL4WS web services. In Proceedings of the IEEE Inter-

national Conference on Web Services, pages 293–301, Orlando, FL, USA,

2005. IEEE.

[86] R. Procter, F. Vis, A. Voss, M. Cantijoch, Y. Manykhina, M. Thel-

wall, R. Gibson, A. Hudson-Smith, and S. Gray. Riot rumours:

How misinformation spread on Twitter during a time of crisis,

2011. URL http://www.guardian.co.uk/uk/interactive/2011/dec/

07/london-riots-twitter.

[87] M. Pruett. Yahoo! Pipes. O’Reilly, Sebastopol, CA, USA, first edition,

2007.

[88] B. R. Rau and J. A. Fisher. Instruction-level parallel processing: History,

overview, and perspective. The Journal of Supercomputing, 7(1-2):9–50,

1993.

[89] R. Rea and K. Mamidipaka. IBM InfoSphere Streams: Enabling complex

analytics with ultra-low latencies on data in motion. IBM White Paper,

2009.

[90] A. Riabov and Z. Liu. Planning for stream processing systems. Proceedings

of the AAAI National Conference on Artificial Intelligence, 20(3):1205,

2005.

[91] A. Riabov and Z. Liu. Scalable planning for distributed stream processing

systems. In Proceedings of The International Conference on Automated

Planning and Scheduling, pages 31–41, Pittsburgh, PA, USA, 2006. AAAI

Press.

[92] A. V. Riabov, E. Boillet, M. D. Feblowitz, Z. Liu, and A. Ranganathan.

Wishful search: Interactive composition of data mashups. In Proceedings

of the 17th International Conference on World Wide Web, pages 775–784,

Beijing, China, 2008. ACM.

147

7. BIBLIOGRAPHY

[93] A. V. Riabov, S. Sohrabi, D. Sow, D. Turaga, O. Udrea, and L. Vu.

Planning-based reasoning for automated large-scale data analysis. In

Proceedings of the 25th International Conference on Automated Planning

and Scheduling, Jerusalem, Israel, 2015.

[94] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino.

Apache Tez: A unifying framework for modeling and building data process-

ing applications. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’15, pages 1357–1369, Mel-

bourne, Victoria, Australia, 2015. ACM.

[95] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyanskiy,

M. Girkar, and P. Dubey. Can traditional programming bridge the ninja

performance gap for parallel computing applications? ACM SIGARCH

Computer Architecture News, 40(3):440–451, 2012.

[96] B. Schroeder and G. A. Gibson. Understanding failures in petascale

computers. In Journal of Physics: Conference Series, volume 78, page

012022, Boston, MA, USA, 2007. IOP Publishing.

[97] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The Hadoop Dis-

tributed File System. In Proceedings of the 26th Symposium on Mass

Storage Systems and Technologies (MSST), pages 1–10, Lake Tahoe, NV,

USA, 2010. IEEE.

[98] E. Sirin and B. Parsia. Planning for semantic web services. In Semantic

Web Services Workshop at 3rd International Semantic Web Conference,

pages 33–40, Hiroshima, Japan, 2004. Springer.

[99] E. Smith. JVM serializers project, accessed 2015. URL https://github.

com/eishay/jvm-serializers/wiki.

[100] J. E. Smith. A study of branch prediction strategies. In Proceedings of

the 8th annual symposium on Computer Architecture, pages 135–148, Los

Alamitos, CA, USA, 1981. IEEE Computer Society Press.

148

7. BIBLIOGRAPHY

[101] S. Sohrabi, O. Udrea, and A. Riabov. Knowledge engineering for planning-

based hypothesis generation. In Proceedings of the Automated Planning

and Scheduling (ICAPS) Workshop on Knowledge Engineering for Planning

and Scheduling (KEPS), pages 46–53, Portsmouth, NH, USA, 2014.

[102] K. T. Stolee, S. Elbaum, et al. Solving the search for source code. ACM

Transactions on Software Engineering and Methodology, 23(3):26, 2014.

[103] L. Tassiulas and A. Ephremides. Stability properties of constrained queue-

ing systems and scheduling policies for maximum throughput in multihop

radio networks. IEEE Transactions on Automatic Control, 37(12):1936–

1948, 1992.

[104] F. W. Taylor. Shop management. McGraw-Hill, New York, NY, USA,

1911.

[105] E. Tejedor and R. M. Badia. COMP Superscalar: Bringing grid super-

scalar and GCM together. In Proceedings of the 8th IEEE International

Symposium on Cluster Computing and the Grid. (CCGRID 08), pages

185–193, Lyon, France, 2008. IEEE.

[106] M. Thompson, D. Farley, M. Barker, P. Gee, and A. Stewart. Disruptor:

High performance alternative to bounded queues for exchanging data

between concurrent threads, 2011. URL http://disruptor.googlecode.

com/files/Disruptor-1.0.pdf.

[107] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,

P. Wyckoff, and R. Murthy. Hive: A warehousing solution over a MapRe-

duce framework. Proceedings of the VLDB Endowment, 2(2):1626–1629,

2009.

[108] R. Vanbrabant. Google Guice: Agile Lightweight Dependency Injection

Framework. Apress Media LLC, New York, NY, USA, 2008.

[109] H. Varian. How the web challenges managers. McKinsey Quarterly, 2009.

149

7. BIBLIOGRAPHY

[110] T. Veldhuizen. Expression templates. C++ Report, 7(5):26–31, 1995.

[111] L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi,

S. Zhang, et al. Bigdatabench: A big data benchmark suite from internet

services. In IEEE 20th International Symposium on High Performance

Computer Architecture, pages 488–499, Orlando, FL, USA, 2014. IEEE.

[112] K. Whitehouse, F. Zhao, and J. Liu. Semantic streams: A framework for

composable semantic interpretation of sensor data. In Wireless Sensor

Networks, pages 5–20. Springer, Banff, Alberta, Canada, 2006.

[113] M. D. Wilkinson and M. Links. BioMOBY: An open source biological web

services proposal. Briefings in Bioinformatics, 3(4):331–341, 2002.

[114] J. Wong. Marmite: Towards end-user programming for the web. In IEEE

Symposium on Visual Languages and Human-Centric Computing, pages

270–271, Coeur d’Alene, ID, USA, 2007. IEEE.

[115] R. Xin, J. Rosen, et al. Shark: SQL and rich analytics at scale. In Proceed-

ings of the 2013 ACM SIGMOD International Conference on Management

of Data, pages 13–24, New York, NY, USA, 2013. ACM.

[116] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. Graphx: A resilient

distributed graph system on Spark. In First International Workshop on

Graph Data Management Experiences and Systems, page 2, New York, NY,

USA, 2013. ACM.

[117] Q. Yang and J. Ren. I-CASH: Intelligently coupled array of SSD and HDD.

In IEEE 17th International Symposium on High Performance Computer

Architecture, pages 278–289, San Antonio, TX, USA, 2011. IEEE.

[118] YourKit LLC. YourKit Java Profiler, accessed 2016. URL https://www.

yourkit.com/java/profiler/features/.

[119] J. Yu, B. Benatallah, F. Casati, and F. Daniel. Understanding mashup

development. Internet Computing, IEEE, 12(5):44–52, 2008.

150

7. BIBLIOGRAPHY

[120] Y. Yuan, Y. Wu, Q. Wang, G. Yang, and W. Zheng. Job failures in high

performance computing systems: A large-scale empirical study. Computers

& Mathematics with Applications, 63(2):365–377, 2012.

[121] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I. Stoica.

Improving mapreduce performance in heterogeneous environments. In

Proceedings of 8th USENIX Symposium on Operating Systems Design and

Implementation, volume 8, page 7, San Diego, CA, USA, 2008.

[122] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and

I. Stoica. Job scheduling for multi-user MapReduce clusters. Technical

report, EECS Department, University of California, Berkeley, 2009.

[123] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica.

Spark: Cluster computing with working sets. In Proceedings of the 2nd

USENIX conference on Hot topics in cloud computing, volume 10, page 10,

Boston, MA, USA, 2010. USENIX Association.

[124] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-

tolerant abstraction for in-memory cluster computing. In Proceedings of the

9th USENIX conference on Networked Systems Design and Implementation,

page 2, Berkeley, CA, USA, 2012. USENIX Association.

[125] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized streams:

An efficient and fault-tolerant model for stream processing on large clusters.

In Proceedings of the 4th USENIX conference on Hot Topics in Cloud

Computing, page 10, Boston, MA, USA, 2012. USENIX Association.

[126] Y. Zhou, R. M. Weiss, E. McArthur, D. Sanchez, X. Yao, D. Yuen, M. R.

Knox, and W. W. Czech. WebViz: A web-based collaborative interactive

visualization system for large-scale data sets. In GPU Solutions to Multi-

scale Problems in Science and Engineering, pages 587–606. Springer, New

York, NY, USA, 2013.

151

Appendices

152

APPENDIX A
Crucible DSL Grammar

1 grammar uk . ac . warwick . dcs . c r u c i b l e . lang . Cruc ib l e with org . e c l i p s e . xtext .

xbase . Xbase

2

3 generate c r u c i b l e "http :// dcs . warwick . ac . uk/ c r u c i b l e / lang / Cruc ib l e "

4

5 import "http ://www. e c l i p s e . org / xtext /common/JavaVMTypes"

6

7 Document :

8 package = Package?

9 imports += Import∗

10 pes += PE∗

11 ;

12

13 // Package d e c l a r a t i on

14 Package :

15 ' package ' name=Qualif iedName ' ; ' ?

16 ;

17

18 // Imports

19 Import :

20 ' import ' importedNamespace=Quali f iedNameOptionalWildcard ' ; ' ?

21 ;

22

23 Quali f iedNameOptionalWildcard :

24 Qualif iedName ' .∗ ' ?

25 ;

26

27

28 // PE De f i n i t i o n

29 PE:

30 ' p roce s s ' name=ValidID (' extends ' extended=JvmTypeReference) ? ' { '

31 (((' conf ' | ' c on f i g ') ' : ' conf+=ConfigBlock) |

32 (' s t a t e ' ' : ' s t a t e+=StateBlock) |

33 ((' output ' ' : ' outputs+=Output ' ; ' ?) | (' outputs ' ' : ' ' [' outputs

+=Output? (' , ' outputs+=Output) ∗ '] ' ' ; ' ?)) |

34 ((' input ' | ' inputs ') ' : ' inputs+=InputBlock)) ∗

35 ' } '

36 ;

37

38 // Conf igurat ion

39 ConfigBlock :

40 {ConfigBlock }

41 ' { ' l i n e s+=Conf igLine ∗ ' } ' | l i n e s+=Conf igLine

42 ;

153

A. Crucible DSL Grammar

43

44 Conf igLine :

45 type=JvmTypeReference? name=ValidID '=' value=XExpression ' ; ' ?

46 ;

47

48 // Mutable s t a t e

49 StateBlock :

50 { StateBlock }

51 ' { ' l i n e s+=StateLine ∗ ' } ' | l i n e s+=StateLine

52 ;

53

54 StateLine :

55 l o c a l ?= ' l o c a l ' ? type=JvmTypeReference? name=ValidID '=' value=

XExpression ' ; ' ?

56 ;

57

58 // Stream inputs

59 InputBlock :

60 { InputBlock }

61 ' { ' l i n e s+=Input ∗ ' } ' | l i n e s+=Input

62 ;

63

64 Input :

65 source=OutputReference '�>' (body=XBlockExpression | super?= ' super ')

66 ;

67

68 // Outputs

69 Output :

70 name=ValidID

71 ;

72

73 OutputReference :

74 pe=[PE] ' . ' output=[Output]

75 ;

Listing A.1: Crucible DSL grammar, expressed using XText’s language

specification syntax.

154

APPENDIX B
Mendeleev Inference Results

Listing B.1: Modelling an SPL (IBM’s Streams Processing Language) HTTP

Fetch PE in RDF: Inference Results.

@ prefix mlv: <http :// go. warwick .ac.uk/ crucible / mendeleev /ns#> .
@ prefix pe: <urn:pe ://> .
@ prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
@ prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #> .
@ prefix type: <http :// go. warwick .ac.uk/ crucible / mendeleev / types#> .

rdfs: Class a rdfs:Class ;
rdfs: subClassOf rdfs: Class .

mlv:type a rdfs:Class ;
rdfs: subClassOf mlv:type .

mlv: genericType a rdfs:Class ;
rdfs: subClassOf mlv: genericType ,

mlv:type .

mlv:pe a rdfs:Class ;
rdfs: subClassOf mlv:pe .

mlv: spl_pe a rdfs:Class ;
mlv: runtime mlv: streams ;
rdfs: subClassOf mlv:pe ,

mlv: spl_pe .

type:URL a mlv: genericType ,
mlv:type ,
rdfs: Class ;

mlv: nativeCode "java.net.URL" ;
mlv: parent type: string ;
rdfs: subClassOf type:URL ,

type: string .

type: byteStream a mlv:type ,
rdfs: Class ;

mlv: nativeCode "java.nio. ByteBuffer " ;
rdfs: subClassOf type: byteStream .

type: image a mlv:type ,
rdfs: Class ;

mlv: nativeCode "java.nio. ByteBuffer " ;
mlv: parent type: byteStream ;
rdfs: subClassOf type: byteStream ,

type: image .

155

B. Mendeleev Inference Results

type: header_list a mlv:type ,
rdfs: Class ;

mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe.http. HeaderList "
;

rdfs: subClassOf type: header_list .

type: http_response a mlv:type ,
rdfs: Class ;

mlv: nativeCode "java.lang. String " ;
rdfs: subClassOf type: http_response .

type: mime_type a mlv:type ,
rdfs: Class ;

mlv: nativeCode "java.lang. String " ;
rdfs: subClassOf type: mime_type .

_: mlv_type_1 a mlv:type ,
rdfs: Class ;

rdfs: label " fetch_url generic type parameter " ;
mlv: nativeCode "java.nio. ByteBuffer " ;
mlv: parent type: byteStream ;
rdfs: subClassOf _:mlv_type_1 ,

type: byteStream .

_: mlv_param_1 a type:URL ;
rdfs: label "url" ;
mlv: genericParameter _: mlv_type_1 .

pe: fetch_url_spl a mlv:pe ,
mlv: spl_pe ;

rdfs: label "Fetch the contents of a URL" ;
mlv:input [rdfs: label "data" ;

mlv: parameter _: mlv_param_1] ;
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe:: FetchURL " ;
mlv: output [rdfs:label " Output " ;

mlv: parameter [a _: mlv_type_1 ;
rdfs: label "body"],

[a type: http_response ;
rdfs: label " response "],

[a type: header_list ;
rdfs: label " headers "],

[a type: mime_type ;
rdfs: label "type"]] ;

mlv: postCondition [mlv: hasField type: string],
[mlv: hasField type:URL ;

mlv: provenance mlv: preCondition],
[mlv: provenance mlv: preCondition ;

mlv: runtime mlv: streams],
[mlv: peUsed pe: fetch_url_spl ;

mlv: provenance mlv: baseRule],
[mlv: hasField type: header_list ;

mlv: provenance mlv: output],
[mlv: hasField type: mime_type ;

mlv: provenance mlv: output],
[mlv: hasField _: mlv_type_1 ;

mlv: provenance mlv: output],
[mlv: hasField type: byteStream],
[mlv: hasField type: http_response ;

mlv: provenance mlv: output],

156

B. Mendeleev Inference Results

[mlv: paramType type:URL ;
mlv: unboundGenericParameter _: mlv_param_1] ;

mlv: preCondition [mlv: hasField type:URL ;
mlv: provenance mlv:input],

[mlv: provenance rdf:type ;
mlv: runtime mlv: streams] .

157

APPENDIX C
Mendeleev Case Study Library

Listing C.1: Mendeleev PE library used in case studies.

@ prefix mlv: <http :// go. warwick .ac.uk/ crucible / mendeleev /ns#> .
@ prefix pe: <urn:pe ://> .
@ prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
@ prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #> .
@ prefix type: <http :// go. warwick .ac.uk/ crucible / mendeleev / types#> .

Basic datatype declarations
type:ANY a mlv:type .
type: string a mlv:type .
type:int a mlv:type .
type: double a mlv:type .
type: location a mlv:type;

mlv: parent type: double .
type: expression a mlv:type .

mlv: genericType rdfs: subClassOf mlv:type .
type:URL a mlv: genericType ;

mlv: parent type: string .
type: byteStream a mlv:type .
type: image a mlv:type;

mlv: parent type: byteStream .
type:text a mlv:type;

mlv: parent type:byteStream , type: string .

PE Super -types
mlv: crucible_pe rdfs: subClassOf mlv:pe; mlv: runtime mlv: crucible .
mlv: spark_pe rdfs: subClassOf mlv:pe; mlv: runtime mlv: spark .
mlv: spl_pe rdfs: subClassOf mlv:pe; mlv: runtime mlv: streams .
mlv: accumulo_pe rdfs: subClassOf mlv:pe; mlv: runtime mlv: accumulo .
mlv: accumulo_table rdfs: subClassOf mlv:pe;

mlv: runtime mlv: accumulo .
mlv: meteor_pe rdfs: subClassOf mlv:pe; mlv: runtime mlv: meteor .

Import / Export PEs to transfer between runtimes
pe: cru_to_streams_export a mlv: crucible_pe ;

rdfs: label " Export for CRUCIBLE -> Streams ";
mlv: nativeCode

"uk.ac. warwick .dcs. mendeleev .pe. StreamsExportNode ";
mlv:input [rdfs:label "Data"];
mlv: postCondition [mlv: clearRuntime pe: cru_to_streams_export];
mlv: postCondition [mlv: runtime mlv: cru_to_streams]

.
pe: cru_to_streams_import a mlv: spl_import_pe ;

rdfs: label " Import for CRUCIBLE -> Streams ";
mlv: nativeCode " ImportNode ";
mlv: output [rdfs: label "Data"];

158

C. Mendeleev Case Study Library

mlv: preCondition [mlv: runtime mlv: cru_to_streams];
mlv: postCondition [mlv: clearRuntime pe: cru_to_streams_import];
mlv: postCondition [mlv: runtime mlv: streams]

.

pe: cru_to_accumulo_export a mlv: crucible_pe ;
rdfs: label " Export for CRUCIBLE -> Accumulo ";
mlv: nativeCode

"uk.ac. warwick .dcs. mendeleev .pe. AccumuloExportNode ";
mlv:input [rdfs:label "Data"];
mlv: postCondition [mlv: clearRuntime pe: cru_to_accumulo_export];
mlv: postCondition [mlv: runtime mlv: cru_to_accumulo]

.
pe: cru_to_accumulo_import a mlv: accumulo_import_pe ;

rdfs: label " Import for CRUCIBLE -> Accumulo ";
mlv: nativeCode " ImportNode ";
mlv: output [rdfs: label "Data"];
mlv: preCondition [mlv: runtime mlv: cru_to_accumulo];
mlv: postCondition [mlv: clearRuntime pe: cru_to_accumulo_import];
mlv: postCondition [mlv: runtime mlv: accumulo]

.

pe: cru_to_meteor_export a mlv: crucible_pe ;
rdfs: label " Export for CRUCIBLE -> Meteor ";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe. MongoExportNode ";
mlv:input [rdfs:label "Data"];
mlv: postCondition [mlv: clearRuntime pe: cru_to_meteor_export];
mlv: postCondition [mlv: runtime mlv: cru_to_meteor]

.
pe: cru_to_meteor_import a mlv: meteor_import_pe ;

rdfs: label " Import for CRUCIBLE -> Meteor ";
mlv: nativeCode " MongoCrucibleDataSource ";
mlv: output [rdfs: label "Data"];
mlv: preCondition [mlv: runtime mlv: cru_to_meteor];
mlv: postCondition [mlv: clearRuntime pe: cru_to_meteor_import];
mlv: postCondition [mlv: runtime mlv: meteor]

.

pe: accumulo_to_cru_export a mlv: accumulo_pe ;
rdfs: label " Export for Accumulo -> CRUCIBLE ";
mlv: nativeCode

"uk.ac. warwick .dcs. mendeleev .pe. CrucibleExportIterator ";
mlv:input [rdfs:label "Data"];
mlv: postCondition [mlv: clearRuntime pe: accumulo_to_cru_export];
mlv: postCondition [mlv: runtime mlv: accumulo_to_cru]

.
pe: accumulo_to_cru_import a mlv: accumulo_import_pe ;

rdfs: label " Import for Accumulo -> CRUCIBLE ";
mlv: nativeCode

"uk.ac. warwick .dcs. mendeleev .pe. AccumuloImportNode ";
mlv: output [rdfs: label "Data"];
mlv: preCondition [mlv: runtime mlv: accumulo_to_cru];
mlv: postCondition [mlv: clearRuntime pe: accumulo_to_cru];
mlv: postCondition [mlv: runtime mlv: crucible]

.

pe: accumulo_to_streams_export a mlv: accumulo_pe ;
rdfs: label " Export for Accumulo -> Streams ";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe. StreamsIterator ";

159

C. Mendeleev Case Study Library

mlv:input [rdfs:label "Data"];
mlv: postCondition [mlv: clearRuntime pe: accumulo_to_streams_export

];
mlv: postCondition [mlv: runtime mlv: accumulo_to_streams]

.
pe: accumulo_to_streams_import a mlv: spl_import_pe ;

rdfs: label " Import for Accumulo -> Streams ";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe:: AccumuloImport ";
mlv: output [rdfs: label "Data"];
mlv: preCondition [mlv: runtime mlv: accumulo_to_streams];
mlv: postCondition [mlv: clearRuntime pe: accumulo_to_streams_import

];
mlv: postCondition [mlv: runtime mlv: streams]

.

pe: streams_to_meteor_export a mlv: spl_pe ;
rdfs: label " Export for Streams -> Meteor ";
mlv: nativeCode

"uk.ac. warwick .dcs. mendeleev .pe:: MeteorExportNode ";
mlv:input [rdfs:label "Data"];
mlv: postCondition [mlv: clearRuntime

pe: streams_to_meteor_export];
mlv: postCondition [mlv: runtime mlv: streams_to_meteor]

.
pe: streams_to_meteor_import a mlv: meteor_import_pe ;

rdfs: label " Import for Streams -> Meteor ";
mlv: nativeCode " ImportNode ";
mlv: output [rdfs: label "Data"];
mlv: preCondition [mlv: runtime mlv: streams_to_meteor];
mlv: postCondition [mlv: clearRuntime

pe: streams_to_meteor_import];
mlv: postCondition [mlv: runtime mlv: meteor]

.

pe: streams_to_accumulo_export a mlv: spl_pe ;
rdfs: label " Export for Streams -> Accumulo ";
mlv: nativeCode

"uk.ac. warwick .dcs. mendeleev .pe:: AccumuloExportNode ";
mlv:input [rdfs:label "Data"];
mlv: postCondition [mlv: clearRuntime

pe: streams_to_accumulo_export];
mlv: postCondition [mlv: runtime mlv: streams_to_accumulo]

.
pe: streams_to_accumulo_import a mlv: accumulo_import_pe ;

rdfs: label " Import for Streams -> Accumulo ";
mlv: nativeCode " ImportNode ";
mlv: output [rdfs: label "Data"];
mlv: preCondition [mlv: runtime mlv: streams_to_accumulo];
mlv: postCondition [mlv: clearRuntime

pe: streams_to_accumulo_import];
mlv: postCondition [mlv: runtime mlv: accumulo]

.

pe: streams_to_cru_export a mlv: spl_pe ;
rdfs: label " Export for Streams -> CRUCIBLE ";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe:: CruExportNode ";
mlv:input [rdfs:label "Data"];
mlv: postCondition [mlv: clearRuntime pe: streams_to_cru_export];
mlv: postCondition [mlv: runtime mlv: streams_to_cru]

160

C. Mendeleev Case Study Library

.
pe: streams_to_cru_import a mlv: cru_import_pe ;

rdfs: label " Import for Streams -> CRUCIBLE ";
mlv: nativeCode " ImportNode ";
mlv: output [rdfs: label "Data"];
mlv: preCondition [mlv: runtime mlv: streams_to_cru];
mlv: postCondition [mlv: clearRuntime pe: streams_to_cru_import];
mlv: postCondition [mlv: runtime mlv: crucible]

.

Suite of join PEs for each runtime
pe: cru_join a mlv: crucible_pe ;

rdfs: label " Adaptive join";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .lib.join. AdaptiveJoin "

;
mlv: config [

rdfs: label "Join type hint";
mlv: configElement " JoinHint ";
rdf:type type: string

];
mlv:input [

rdfs: label "Left";
mlv: parameter [

rdfs: label " join_id ";
rdf:type type: identifier

]
];
mlv:input [

rdfs: label "Right ";
mlv: parameter [

rdfs: label " join_id ";
rdf:type type: identifier

]
];
mlv: output [

rdfs: label " JoinedData ";
]

.

pe: spl_join a mlv: spl_pe ;
rdfs: label " Adaptive join";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe.join ::

StreamsAdaptiveJoin ";
mlv: config [

rdfs: label "Join type hint";
mlv: configElement " JoinHint ";
rdf:type type: string

];
mlv:input [

rdfs: label "Left";
mlv: parameter [

rdfs: label " join_id ";
rdf:type type: identifier

]
];
mlv:input [

rdfs: label "Right ";
mlv: parameter [

rdfs: label " join_id ";

161

C. Mendeleev Case Study Library

rdf:type type: identifier
]

];
mlv: output [

rdfs: label " JoinedData ";
]

.

pe: cru_geo_annotate_join a mlv: crucible_pe ;
rdfs: label " Geospatial join";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .lib.join.

GeoAnnotateJoin ";
mlv: config [

rdfs: label "Join Tolerance (metres)";
mlv: configElement " Tolerance ";
rdf:type type: double

];
mlv:input [

rdfs: label " Database ";
mlv: parameter [

rdfs: label " db_lat ";
rdf:type type: latitude

];
mlv: parameter [

rdfs: label " db_lon ";
rdf:type type: longitude

]
];
mlv:input [

rdfs: label " Stream ";
mlv: parameter [

rdfs: label " data_lat ";
rdf:type type: latitude

];
mlv: parameter [

rdfs: label " data_lon ";
rdf:type type: longitude

]
];
mlv: output [

rdfs: label " AnnotatedData ";
]

.

General library PEs
pe: fetch_url_spl a mlv: spl_pe ;

rdfs: label "Fetch the contents of a URL";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe:: FetchURL ";
mlv:input [

rdfs: label "data";
mlv: parameter [

rdfs: label "url";
rdf:type type:URL;
mlv: genericParameter _: fetch_type_spl

]
];
mlv: output [

rdfs: label " Output ";
mlv: parameter [

162

C. Mendeleev Case Study Library

rdfs: label " response ";
rdf:type type: http_response

];
mlv: parameter [

rdfs: label " headers ";
rdf:type type: header_list

];
mlv: parameter [

rdfs: label "type";
rdf:type type: mime_type

];
mlv: parameter [

rdfs: label "body";
rdf:type _: fetch_type_spl

]
]

.

_: fetch_type_spl
rdfs: label " fetch_url generic type parameter ";
mlv: parent type: byteStream # Default type , but restricts

subclasses also
.

pe: fetch_url a mlv: crucible_pe ;
rdfs: label "Fetch the contents of a URL";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .lib.web. FetchURL ";
mlv:input [

rdfs: label "data";
mlv: parameter [

rdfs: label "url";
rdf:type type:URL;
mlv: genericParameter _: fetch_type

]
];
mlv: output [

rdfs: label " Output ";
mlv: parameter [

rdfs: label " response ";
rdf:type type: http_response

];
mlv: parameter [

rdfs: label " headers ";
rdf:type type: header_list

];
mlv: parameter [

rdfs: label "type";
rdf:type type: mime_type

];
mlv: parameter [

rdfs: label "body";
rdf:type _: fetch_type

]
]

.

_: fetch_type
rdfs: label " fetch_url generic type parameter ";
mlv: parent type: byteStream # Default type , but restricts

163

C. Mendeleev Case Study Library

subclasses also
.

pe: location_clustering a mlv: crucible_pe ;
rdfs: label " Location Clustering ";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe. LocationClustering

";
mlv: config [

rdfs: label " Number of clusters ";
mlv: configElement " ClusterCount ";
rdf:type type:int

];
mlv: config [

rdfs: label " Window Size (tuples)";
mlv: configElement " WindowSize ";
rdf:type type:int

];
mlv:input [

mlv: parameter [
rdfs: label "key";
rdf:type type: identifier

];
mlv: parameter [

rdfs: label " latitude ";
rdf:type type: latitude

];
mlv: parameter [

rdfs: label " longitude ";
rdf:type type: longitude

]
];
mlv: output [

rdfs: label " Clusters ";
mlv: parameter [

rdfs: label " clusterLat ";
rdf:type type: cluster_latitude

];
mlv: parameter [

rdfs: label " clusterLon ";
rdf:type type: cluster_longitude

];
mlv: parameter [

rdfs: label " members ";
rdf:type type: cluster_density

]
];
mlv: postCondition [mlv: clearPreConditions pe: location_clustering]

.
type: cluster_latitude mlv: parent type: latitude .
type: cluster_longitude mlv: parent type: longitude .
type: cluster_density mlv: parent type:int .

pe: spl_location_clustering a mlv: spl_pe ;
rdfs: label "SPL Native Location Clustering ";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe::

LocationClustering ";
mlv: config [

rdfs: label " Number of clusters ";

164

C. Mendeleev Case Study Library

mlv: configElement " ClusterCount ";
rdf:type type:int

];
mlv: config [

rdfs: label " Window Size (tuples)";
mlv: configElement " WindowSize ";
rdf:type type:int

];
mlv:input [

mlv: parameter [
rdfs: label "key";
rdf:type type: identifier

];
mlv: parameter [

rdfs: label " latitude ";
rdf:type type: latitude

];
mlv: parameter [

rdfs: label " longitude ";
rdf:type type: longitude

]
];
mlv: output [

rdfs: label " Clusters ";
mlv: parameter [

rdfs: label " clusterLat ";
rdf:type type: cluster_latitude

];
mlv: parameter [

rdfs: label " clusterLon ";
rdf:type type: cluster_longitude

];
mlv: parameter [

rdfs: label " members ";
rdf:type type: cluster_density

]
];
mlv: postCondition [mlv: clearPreConditions pe: location_clustering]

.

pe:FFT a mlv: crucible_pe ;
rdfs: label "2- Dimensional FFT";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .image .2 dFFT";
mlv:input [

mlv: parameter [
rdfs: label "image ";
rdf:type type:image

]
];
mlv: output [

rdfs: label "fft";
mlv: parameter [

rdfs: label "fft";
rdf:type type:fft2d

];
]

.
type: fft2d mlv: parent type: byteStream .

165

C. Mendeleev Case Study Library

pe: bounding_box_iterator a mlv: accumulo_pe ;
rdfs: label "Lat/Lon bounding box filtering Accumulo Iterator ";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe. BBoxFilterIterator

";
mlv:input [

mlv: parameter [
rdfs: label " latitude ";
rdf:type type: latitude

];
mlv: parameter [

rdfs: label " longitude ";
rdf:type type: longitude

]
];
mlv: output [

rdfs: label " filtered "
]

.

pe: bounding_box_pe a mlv: spl_pe ;
rdfs: label "Lat/Lon bounding box filtering SPL PE";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe. GeoIPIterator ";
mlv:input [

mlv: parameter [
rdfs: label " latitude ";
rdf:type type: latitude

];
mlv: parameter [

rdfs: label " longitude ";
rdf:type type: longitude

]
];
mlv: output [

rdfs: label " filtered "
]

.

PEs specific to case studies
pe: flickr a mlv: crucible_pe ;

rdfs: label " Flickr crawl data";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .lib.web.

FlickrInterestingnessSource ";
mlv: output [

rdfs: label " Output ";
mlv: parameter [

rdfs: label " accuracy ";
rdf:type type:hdop

];
mlv: parameter [

rdfs: label " dateTaken ";
rdf:type type: timestamp

];
mlv: parameter [

rdfs: label " description ";
rdf:type type: description

];
mlv: parameter [

rdfs: label "id";
rdf:type type: flickr_photo_id

166

C. Mendeleev Case Study Library

];
mlv: parameter [

rdfs: label " largeUrl ";
rdf:type [

rdfs: label " Generic instance of URL <Image > (flickr :
largeUrl)";

mlv: parent type:URL;
mlv: genericParameter type:image

]
];

mlv: parameter [
rdfs: label "owner ";
rdf:type type: flickr_user

];
mlv: parameter [

rdfs: label " placeId ";
rdf:type type: flickr_placeId

];
mlv: parameter [

rdfs: label "tags";
rdf:type type: taglist

];
mlv: parameter [

rdfs: label "title ";
rdf:type type: title

];
mlv: parameter [

rdfs: label "url";
rdf:type [

rdfs: label " Generic instance of URL <Image > (flickr :
largeUrl)";

mlv: parent type:URL;
mlv: genericParameter type:image

]
]

]
.

type: username mlv: parent type: identifier .

pe: flickr_user_details a mlv: crucible_pe ;
rdfs: label "Fetch Flickr user details ";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .lib.web.

FlickrUserDetails ";
mlv:input [

rdfs: label "User ID";
mlv: parameter [

rdfs: label "user";
rdf:type type: flickr_user

]
];
mlv: output [

rdfs: label " UserDetails ";
mlv: parameter [

rdfs: label " realName ";
rdf:type type: fullname

];
mlv: parameter [

rdfs: label " location ";

167

C. Mendeleev Case Study Library

rdf:type type: flickr_location
];
mlv: parameter [

rdfs: label " mbox_sha1sum ";
rdf:type type: mbox_sha1sum

];
mlv: parameter [

rdfs: label " photosCount ";
rdf:type type: count_of_photos

];
mlv: parameter [

rdfs: label " photosurl ";
rdf:type [

rdfs: label " Generic instance of URL < flickr_photo_page > (
flickr : photosurl)";

mlv: parent type:URL;
mlv: genericParameter type: flickr_photo_page

]
];
mlv: parameter [

rdfs: label " profileurl ";
rdf:type [

rdfs: label " Generic instance of URL < flickr_profile > (flickr
: profileurl)";

mlv: parent type:URL;
mlv: genericParameter type: flickr_profile

]
];
mlv: parameter [

rdfs: label " buddyIconUrl ";
rdf:type [

rdfs: label " Generic instance of URL <Image > (flickr :
buddyIconUrl)";

mlv: parent type:URL;
mlv: genericParameter type: image

]
]

]
.

pe: exif_extract a mlv: crucible_pe ;
rdfs: label " Extract EXIF data from image ";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .image.EXIF";
mlv:input [

rdfs: label "Image Data";
mlv: parameter [

rdfs: label "image ";
rdf:type type:image

]
];
mlv: output [

rdfs: label " extracted_exif ";
mlv: parameter [

rdfs: label " creator ";
rdf:type type: person_name

];
mlv: parameter [

rdfs: label " camera ";
rdf:type type: camera

168

C. Mendeleev Case Study Library

];
mlv: parameter [

rdfs: label " manufacturer ";
rdf:type type: camera_manufacturer

];
mlv: parameter [

rdfs: label " latitude ";
rdf:type type: latitude

];
mlv: parameter [

rdfs: label " longitude ";
rdf:type type: longitude

];
mlv: parameter [

rdfs: label " exif_timestamp ";
rdf:type type: exif_timestamp

];
mlv: parameter [

rdfs: label " fnumber ";
rdf:type type:fnum

];
mlv: parameter [

rdfs: label " colour_space ";
rdf:type type: colourspace

]
]

.

type:imsi mlv: parent type: identifier .

pe: imsi_ip a mlv: crucible_pe ;
rdfs: label " Stream of IMSI -IP Address observations ";
mlv: nativeCode "uk.ac. warwick .dcs. crucible . telephony .

IMSI_IP_Observations ";
mlv: output [

rdfs: label " imsi_ip ";
mlv: parameter [

rdfs: label "imsi";
rdf:type type:imsi

];
mlv: parameter [

rdfs: label "ip";
rdf:type type: ipaddress

]
]

.

pe: telephony a mlv: crucible_pe ;
rdfs: label " Telephony data";
mlv: nativeCode "uk.ac. warwick .dcs. crucible . telephony .

TelephonySource ";
mlv: output [

rdfs: label "calls ";
mlv: parameter [

rdfs: label " source ";
rdf:type type: telnum

];
mlv: parameter [

rdfs: label "dest";

169

C. Mendeleev Case Study Library

rdf:type type: telnum
];
mlv: parameter [

rdfs: label "mcc";
rdf:type type:mcc

];
mlv: parameter [

rdfs: label "mnc";
rdf:type type:mnc

];
mlv: parameter [

rdfs: label "lac";
rdf:type type:lac

];
mlv: parameter [

rdfs: label "cid";
rdf:type type:cid

];
mlv: parameter [

rdfs: label " length ";
rdf:type type: call_length

];
mlv: parameter [

rdfs: label "imsi";
rdf:type type:imsi

];
mlv: parameter [

rdfs: label "imei";
rdf:type type:imei

]
]

.

type: cell_id a mlv:type;
mlv: parent type: identifier .

pe: cell_id a mlv: crucible_pe ;
rdfs: label "Mint Cell Identity ";
mlv: nativeCode "uk.ac. warwick .dcs. crucible . telephony . MintCellID ";
mlv:input [

rdfs: label "cli";
mlv: parameter [

rdfs: label "mcc";
rdf:type type:mcc

];
mlv: parameter [

rdfs: label "mnc";
rdf:type type:mnc

];
mlv: parameter [

rdfs: label "lac";
rdf:type type:lac

];
mlv: parameter [

rdfs: label "cid";
rdf:type type:cid

]
];
mlv: output [

170

C. Mendeleev Case Study Library

rdfs: label " cellid ";
mlv: parameter [

rdfs: label " cellid ";
rdf:type type: cell_id

]
]

.

pe: cell_id_spl a mlv: spl_pe ;
rdfs: label "Mint Cell Identity ";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe:: MintCellID ";
mlv:input [

rdfs: label "cli";
mlv: parameter [

rdfs: label "mcc";
rdf:type type:mcc

];
mlv: parameter [

rdfs: label "mnc";
rdf:type type:mnc

];
mlv: parameter [

rdfs: label "lac";
rdf:type type:lac

];
mlv: parameter [

rdfs: label "cid";
rdf:type type:cid

]
];
mlv: output [

rdfs: label " cellid ";
mlv: parameter [

rdfs: label " cellid ";
rdf:type type: cell_id

]
]

.

pe: cell_location_beacon a mlv: spl_pe ;
rdfs: label " Periodically trigger release of cell locations ";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe:: Beacon ";
mlv: output [

rdfs: label " trigger ";
mlv: parameter [

rdfs: label " trigger ";
rdf:type type: cell_location_trigger

]
]

.

pe: cell_location_trigger a mlv: crucible_pe ;
rdfs: label " Periodically trigger release of cell locations ";
mlv: nativeCode "uk.ac. warwick .dcs. crucible . telephony . Trigger ";
mlv: output [

rdfs: label " trigger ";
mlv: parameter [

rdfs: label " trigger ";
rdf:type type: cell_location_trigger

171

C. Mendeleev Case Study Library

]
]

.

type: tower_latitude mlv: parent type: latitude .
type: tower_longitude mlv: parent type: longitude .

pe: cell_locations a mlv: crucible_pe ;
rdfs: label " Stream of cell tower location updates ";
mlv: nativeCode "uk.ac. warwick .dcs. crucible . telephony .

CellLocations ";
mlv:input [

rdfs: label " trigger ";
mlv: parameter [

rdfs: label " trigger ";
rdf:type type: cell_location_trigger

]
];
mlv: output [

rdfs: label " cell_locations ";
mlv: parameter [

rdfs: label " cellid ";
rdf:type type: cell_id

];
mlv: parameter [

rdfs: label "lat";
rdf:type type: tower_latitude

];
mlv: parameter [

rdfs: label "lon";
rdf:type type: tower_longitude

]
]

.

pe: spl_cell_locations a mlv: spl_pe ;
rdfs: label " Stream of cell tower location updates ";
mlv: nativeCode "uk.ac. warwick .dcs. crucible . telephony ::

CellLocations ";
mlv:input [

rdfs: label " trigger ";
mlv: parameter [

rdfs: label " trigger ";
rdf:type type: cell_location_trigger

]
];
mlv: output [

rdfs: label " cell_locations ";
mlv: parameter [

rdfs: label " cellid ";
rdf:type type: cell_id

];
mlv: parameter [

rdfs: label "lat";
rdf:type type: tower_latitude

];
mlv: parameter [

rdfs: label "lon";
rdf:type type: tower_longitude

172

C. Mendeleev Case Study Library

]
]

.

type: ipaddress mlv: parent type: identifier .

pe: network_data a mlv: crucible_pe ;
rdfs: label " Network trace data";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .model.impl. DataSource "

;
mlv: config [

rdfs: label "Data Source URI (netflow ://...) ";
mlv: configElement " Source ";
rdf:type type: string

];
mlv: output [

rdfs: label "Data";
mlv: parameter [

rdfs: label "srcIP ";
rdf:type type: ipaddress

];
mlv: parameter [

rdfs: label " destIP ";
rdf:type type: ipaddress

];
mlv: parameter [

rdfs: label "port";
rdf:type type: tcp_port

];
mlv: parameter [

rdfs: label "ttl";
rdf:type type:ttl

];
mlv: parameter [

rdfs: label "ts";
rdf:type type: ns_timestamp

]
];

.

pe: network_data_table a mlv: accumulo_table ;
rdfs: label " Network trace data table ";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe. AccumuloTable ";
mlv: config [

rdfs: label "Table name (try: ’netflow ’)";
mlv: configElement " Source ";
rdf:type type: string

];
mlv: output [

rdfs: label "Data";
mlv: parameter [

rdfs: label "srcIP ";
rdf:type type: ipaddress

];
mlv: parameter [

rdfs: label " destIP ";
rdf:type type: ipaddress

];
mlv: parameter [

173

C. Mendeleev Case Study Library

rdfs: label "port";
rdf:type type: tcp_port

];
mlv: parameter [

rdfs: label "ttl";
rdf:type type:ttl

];
mlv: parameter [

rdfs: label "ts";
rdf:type type: ns_timestamp

]
];

.

pe: geo_ip a mlv: spl_pe ;
rdfs: label "Geo -IP Service ";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe:: GeoIP ";
mlv:input [

mlv: parameter [
rdfs: label "ip";
rdf:type type: ipaddress

]
];
mlv: output [

rdfs: label "Geo";
mlv: parameter [

rdfs: label "ip";
rdf:type type: ipaddress

];
mlv: parameter [

rdfs: label "lat";
rdf:type type: latitude

];
mlv: parameter [

rdfs: label "lon";
rdf:type type: longitude

]
]

.

pe: geo_ip_iterator a mlv: accumulo_pe ;
rdfs: label "Geo -IP Service as an Accumulo Iterator ";
mlv: nativeCode "uk.ac. warwick .dcs. mendeleev .pe. GeoIPIterator ";
mlv:input [

mlv: parameter [
rdfs: label "ip";
rdf:type type: ipaddress

]
];
mlv: output [

rdfs: label "Geo";
mlv: parameter [

rdfs: label "lat";
rdf:type type: latitude

];
mlv: parameter [

rdfs: label "lon";
rdf:type type: longitude

]

174

C. Mendeleev Case Study Library

]
.

pe: detect_face a mlv: crucible_pe ;
rdfs: label "Face Detection ";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .faces. FaceDetection ";
mlv:input [

mlv: parameter [
rdfs: label "image ";
rdf:type type:image

]
];
mlv: output [

rdfs: label " person ";
mlv: parameter [

rdfs: label "id";
rdf:type type: faceID

];
]

.
type: faceID mlv: parent type: identifier , type:int .

pe: face_details a mlv: crucible_pe ;
rdfs: label "Data about Faces";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .faces. FaceData ";
mlv: output [

rdfs: label "face";
mlv: parameter [

rdfs: label "id";
rdf:type type: faceID

];
mlv: parameter [

rdfs: label "email ";
rdf:type type:email

];
mlv: parameter [

rdfs: label "name";
rdf:type type: person_name

]
]

.

Generic sinks
pe:table a mlv: meteor_pe ;

rdfs: label "Data Table Visualisation ";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .vis. DataTable ";
mlv:input [

rdfs: label "data"
]

.

pe:chart a mlv: meteor_pe ;
rdfs: label "Chart Visualisation ";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .vis.Chart";
mlv: config [

rdfs: label "Chart Type";
mlv: configElement "chart";
rdf:type type: string

];

175

C. Mendeleev Case Study Library

mlv:input [
rdfs: label "data";
mlv: parameter [

rdfs: label " x_label ";
rdf:type type: string

];
mlv: parameter [

rdfs: label " y_value ";
rdf:type type: double

]
]

.

pe: temporal_chart a mlv: meteor_pe ;
rdfs: label "Chart over time";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .vis. TemporalChart ";
mlv:input [

rdfs: label "1 d_data ";
mlv: parameter [

rdfs: label " timestamp ";
rdf:type type: timestamp

];
mlv: parameter [

rdfs: label "value ";
rdf:type type: double

]
]

.

pe: labelled_temporal_chart a mlv: meteor_pe ;
rdfs: label "Chart over time (labelled)";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .vis.

LabelledTemporalChart ";
mlv:input [

rdfs: label " labelled_data ";
mlv: parameter [

rdfs: label " timestamp ";
rdf:type type: timestamp

];
mlv: parameter [

rdfs: label "value ";
rdf:type type: double

];
mlv: parameter [

rdfs: label "group ";
rdf:type type: string

]
]

.

pe: file_sink a mlv: crucible_pe ;
rdfs: label "File Sink";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .lib.pe. FileSink ";
mlv: config [

rdfs: label "File name";
mlv: configElement " Filename ";
rdf:type type: string

];

176

C. Mendeleev Case Study Library

mlv: config [
rdfs: label "Write data as CSV?";
mlv: configElement " WriteCSV ";
rdf:type type:bool

];
mlv:input [

rdfs: label "data";
]

.

pe: google_maps a mlv: meteor_pe ;
rdfs: label "Pins on a map";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .vis. GoogleMaps ";
mlv:input [

rdfs: label " locations ";
mlv: parameter [

rdfs: label "id";
rdf:type type: identifier

];
mlv: parameter [

rdfs: label " latitude ";
rdf:type type: latitude

];
mlv: parameter [

rdfs: label " longitude ";
rdf:type type: longitude

]
]

.

pe: open_street_map a mlv: crucible_pe ;
rdfs: label "Open Street Map pins on a map";
mlv: nativeCode "uk.ac. warwick .dcs. crucible .vis. OSMaps ";
mlv:input [

rdfs: label " locations ";
mlv: parameter [

rdfs: label "id";
rdf:type type: identifier

];
mlv: parameter [

rdfs: label " latitude ";
rdf:type type: latitude

];
mlv: parameter [

rdfs: label " longitude ";
rdf:type type: longitude

]
]

.

177

C. Mendeleev Case Study Library

Listing C.2: Forward-chaining inference rules applied to the above.

@ prefix mlv: <http :// go. warwick .ac.uk/ crucible / mendeleev /ns#> .
@ prefix pe: <urn:pe ://> .
@ prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
@ prefix rdfs: <http :// www.w3.org /2000/01/ rdf - schema #> .
#
TYPE INFERENCE / HIERARCHY RULES
#

Types are types , types are classes
{ ?x a ?t . } => { ?t a rdfs:Class } .
{ ?x a mlv:type . } => { ?x a rdfs:Class } .
{

?x mlv: parameter ?p .
?p a ?t .

} => {
?t a mlv:type.

} .

Parents are super - classes
{ ?t mlv: parent ?t2 } => {

?t rdfs: subClassOf ?t2 .
?t2 a rdfs:Class .
?t a mlv:type .
?t2 a mlv:type .

} .

Sub - classes are classes . Also , are sub - classes of themselves
{ ?t a rdfs:Class . } => { ?t rdfs: subClassOf ?t } .
{ ?x rdfs: subClassOf ?y } => {

?x a rdfs: Class .
?y a rdfs: Class .

} .

Propagate PE type as far as necessary
{

?x rdfs: subClassOf mlv:pe .
?n a ?x .

} => {
?n a mlv:pe .

} .

Generic parameter values are still types
{

?y mlv: genericParameter ?p .
} => {

?p a mlv:type .
} .

X<T>, Y<U>, X SUB Y, T SUB U -> X<T> SUB Y<U>
{

?x a mlv:type ;
mlv: parent ? x_parent ;
mlv: genericParameter ? x_param .

?y a mlv:type ;
mlv: parent ? y_parent ;
mlv: genericParameter ? y_param .

178

C. Mendeleev Case Study Library

? x_parent rdfs: subClassOf ? y_parent .
? x_param rdfs: subClassOf ? y_param .

} => {
?x rdfs: subClassOf ?y .

} .

Parent relationship copies all statements
{

?x mlv: parent ?y .
?y ?p ?o .

} => {
?x ?p ?o .

} .

#
PRE - CONDITION EXPANSION RULES
#
{

?x a mlv:pe .
} => {

?x mlv: postCondition [mlv: peUsed ?x ; mlv: provenance mlv:
baseRule] .

} .

Pre - condition propagates by default , unless magic postCondition
is present . Also , don ’t copy the provenance information .
Runtimes are handled explicitly by the second rule.
{

?x mlv: preCondition [?condP ?condO] .
?condP log: notEqualTo mlv: provenance .
?condP log: notEqualTo mlv: runtime .
?x mlv: has_no_post_condition mlv: clearPreConditions .

} => {
?x mlv: postCondition [?condP ?condO ; mlv: provenance mlv:

preCondition] .
} .
{

?x mlv: preCondition [mlv: runtime ? runtime] .
?x mlv: has_no_post_condition mlv: clearRuntime .

} => {
?x mlv: postCondition [mlv: runtime ? runtime ; mlv: provenance mlv:

preCondition] .
} .

PE type implies preCondition , if it receives inputs (i.e. isn ’t a
datasource)

{
?x a mlv:pe .
?x a [mlv: runtime ? runtime].
?x mlv: has_predicate mlv: input .

} => {
?x mlv: preCondition [

mlv: runtime ? runtime ; mlv: provenance rdf:type
] .

} .

Datasource PE implies its own runtime as postCondition
{

179

C. Mendeleev Case Study Library

?x a mlv:pe .
?x a [mlv: runtime ? runtime].
?x mlv: has_no_predicate mlv:input .

} => {
?x mlv: postCondition [

mlv: runtime ? runtime ; mlv: provenance mlv: isSource
] .

} .

PE input implies preCondition
{

?x mlv:input [
mlv: parameter ?param

] .
?param a ?type .

} => {
?x mlv: preCondition [

mlv: hasField ?type ; mlv: provenance mlv: input
] .

} .

PE output implies postCondition
{

?x mlv: output [
mlv: parameter ?param

] .
?param a ?type .

} => {
?x mlv: postCondition [

mlv: hasField ?type ; mlv: provenance mlv: output
] .

} .

Annotate unbounded generic postconditions
{

?x mlv: postCondition ?cond .
?cond mlv: hasField ?type .
?param mlv: genericParameter ?type .
?param a ? paramType

} => {
?x mlv: postCondition [

mlv: unboundGenericParameter ? param ;
mlv: paramType ? paramType

].
} .

Expand bounded generic postconditions
{

?x mlv: postCondition ?cond .
?cond mlv: hasField ?type .
?type a mlv: genericType ;

mlv: genericParameter ? param ;
mlv: parent ? parent .

} => {
?x mlv: postCondition [

mlv: boundedGenericField ? parent ;
mlv: genericParameter ? param

].
} .

180

7. Mendeleev Case Study Library

Post condition expansion through RDFS subclass inference
{

?x mlv: postCondition [
mlv: hasField ?o

] .
?o mlv: parent ? superO .
?o log: notEqualTo ? superO .

} => {
?x mlv: postCondition [

mlv: hasField ? superO
] .

} .

181

