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SUMMARY

The thesis examines the behaviour and design of unbraced
rigid-jointed multi-storey steel frameworks subjected to combined

vertical and horizontal loading.

Design charts are presented which enable guidance to be given
on whether the serviceability limit on sway or ultimate limit state
under combined loading will be critical for the choice Qﬁ sections
in preliminary design. Parametric stﬁdies on forty~three
multi-storey, multi-bay rectangular frameworks provide the
verification of the Merchant-Rankine formula for the design of such

frames.

An alternative semi-empirical expression based on the study of
the deterioration of overall frame stiffness has been developed.
Comparison with the parametric study indicated a significant
improvement on the Meréhant-Rankine approach to estimate the
failure load of frameworks. The expression has then been used as
the basis of an approximate optimization procedure for the design

of frames to satisfy ultimate strength under combined loading.

An approximate hand method to trace the formation of plastic
hinges has been developed. The method is applicable to single bay
frames, and has also been extended to multi-bay frames. The latter

are transformed into equivalent single bay frames.
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A computer analysis program for semi-rigid connections has
been presented using the matrix displacement method. The technique
is reduced to an analysis of a rigid-jointed framework by repeated
modification of the load vector alone. The analysis program has
been uéed to investigate the sway deflection of unbraced frames and

the determination of the effective length of braced columns.
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NOTATION

Cross-sectional area.
Displacement transformation matrix.
Modifying factor.

Stiffness parameter. (EA/L)
Stiffness parameter. (12EI/L3)
Total cost of a frame.

Constant.

Force coefficient.

Direction cosine.

Stability function.,

Constant;

Connection dimension.,

Value of the determinant.
Stiffﬁess parameter. (—GEI/E )
Young's modulus of elasticity.
Constant.

Stiffness parameter. (4EI/L)
Total wind shear.

Constant.

Stiffness parameter. (2E1/L)
Yield stress.

Characteristic dead load.
Horizontal wind load.

Storey height,
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Column moment of inertia.

Beam moment of inertia.

General term for moment of inertia.
Joint number.

Constant.

Joint number.

Constant.

Overall stiffness matrix.
Dimensionless factor.

Stiffness of column. (I./h)
Stiffness of beam. (I,/L)

Member stiffness matrix,

Nominal stiffness of a member.
Distribution factor for the top joint.
Distribution factor for the bottom joint.
Sum of column stiffnesses.

Cost éactors.‘

Load vector. -

Lenéth of beam.

Effective length.

Connection dimension.

General term for bending moment.
Plastic moment of resistance.
Number of bays.

Total vertical design load.

Total number of members.

Squash load (A.fy)



-xi-

Storey indicator.

Stability function.

Ratio of axial load to squash load.
Stability function.

Total vertical: load.

Column axial load.

Euler load. (T?EI/h?)

Critical load.

Equivalent eccentriéity force.
Characteristic imposed load.
Dynamic wind pressure.

Beam stiffness.

Ratio of bay width to storey height.
Eccentricity parameter.

Spring stiffness.

Section size of member.

Stati;tical wind load coefficients.
Wind shear per bay. R
Cladding stiffness.

Total storey stiffness.

Connection dimension,

Ratio of restraining beam to column moments.
Vertical loading.

Total weight.

Characteristic wind load.

Load per unit length.

Eccentricity parameter.
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x-direction of overall coordinate system.

Joint displacement vector.
y-direction of overall coordinate
General term for Plastic modulus.
Coefficient.

Deflection coefficient.

Partial safety factor,
Displacement.

Parameter.

Distribution factor.

Rigid-joint rotation.

Semi-rigid connection rotation.
General term for load factor.
Elastic failure load.

Lowest elastic critical load.
Rigid-plastic collapse load.
Elastic—plastic failﬁre load;

Merchant-Rankine failure load.

system.

Merchant-Rankine-Wood failure load.

'Deteriorated' critical load.
Experimental failure load.

Proposed failure load.

Initial estimate of elastic critical load.

Uniformly distributed wind load.
Effective length ratio.
Ratio of axial load to Euler load.

Eccentricity parameter.
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Livesley's stability functions.
Coefficient in proposed expression.
Parameter.

Displacement.

Increment.

Permissible sway deflection.

Rate of change of failure load to total

weight.



CHAPTER 1

INTRODUCTION

The purpose of methods for structural analysis is to enable an
engineer to design safe and economical structures. Despite the
complexity and variety of present-day structures, the design
techniques in current use are generally sufficient to provide
adequate safety. Improving knowledge of structural behaviour is

mainly used to increase economy and reduce design time.

Many investigators have examined the various problems of
analysis and design, particularly of steel framed buildings. The
result is that today's engineer has at his disposal several
well-tried methods by which he can design a specific structure.
With the aid of computers, there is no doubt that analysis and
design methods have become more sophisticated. The tendency has
been to develop suitable computational methods to assess more
accurately the overall behaviour of the structure from the onset of

loading to collapse.

Nowadays, it is not only necessary for an engineer to be able
to design a safe structure. He must also make use 6£ available
resources in the most economical manner. Optimum design techniques
have been developed and used extensively in building structures, in
an attempt to reduce cost and increase efficiency. With increasing

competition, small savings in material and weight can influence the

result of a tender.



This thesis presents some developments in design methods for
plane unbraced multi-storey frames. To justify this research,

previous papers that are relevant to the research are first

discussed.

1.1 Elastic design of steel frameworks

The majority of present-day design methods for analysis and
design are based on the early observations of Hooke regarding the
properties of an elastic material. Since that time, a number of
important contributions incorporating the principles of elasticity
have been published. They include such analysis techniques as
moment distribution by Cross(l) and the slope-deflection method.
The moment distribution method in particular, enables the analysis
and design of some redundant frameworks to be carried out with
relative ease by hand. Due to the redundancy of the structure,
though, the distribution of moments depends on the stiffness of

each member in the structure, and initial estimates of member sizes

-
-

must be made. Strictly, therefore, an iterative procedure is
necessary. Further difficulty arises when a highly redundant

structure such as a multi-storey unbraced frame has to be analysed.

To avoid such problems, BS.449(1969) permits what is known as
the 'simplé' method of design. Two approaches are available, for
braced and unbraced structural steel frameworks respectively. The
former approach assumes the beams to be simply-supported; these
members are designed against failure from excessive bending and
shear. The columns are designed to carry the reactions from the

beams and moments due to eccentricities arising from the nominally



pinned connections. The combined stresses in the columns must not
exceed certain permissible stresses, These are dependant on the
yield stress of the steel and the susceptibility of the member to
buckling. Sway loads are resisted by walls or bracings and

transmitted by them to the foundations.

For unbraced frames, rigid joints are required to provide
lateral stability. To avoid analysis of a redundant structure, the
traditional procedure is to carry out a preliminary design based on
the method described above for vertical loads and then to determine
the additional forces and moments resulting from wind, using
approximate analyses(3). The commonly-used procedure is the
‘portal’ method, in which the frame is rendered statically
determinate by assuming points of contraflexure at mid-length of
all members. At this stage of design, the connections are assumed
rigid. As the frame is rendered statically-determinate, iteration
is avoided. The total member forces under combined loading are

obtained by using the principle of superposition.

An important criticism arising from this method is the
contradictory assumptions of pinned and rigid joints used to obtain
the combined stresses. Such assumptions are incompatible with the
actual behaviour of a frame. Although the method has not found
favour amongst some engineers, recent arguments have contested that
the method provides sound economic construction. Certainly, the
‘simple’ hethod is still widely accepted as a suitable method for

design.



The aim of the pre-w#r Steel Structures Research
Committee(SSRC) was to evolve a rational method for the design of
no-sway frames. It was recognised that the stresses developed in
actual building frames have little or no relation to those
calculated in the ‘'simple' method. The ‘'Recommendations for
Design'(4,5) allowed the engineer to make use of the rigidity of
the connection when selecting beam sizes, provided certain standard
connections were used. This formed the basis for a 'semi-rigid'
design method. The column design Qas based on a single chart. This
relates the permissible major end-bending stress, for the worst
conditions, to the axial stress and the slenderness ratio. The
resulting designs showed reductions of beam sizes, but with
corresponding increases in the column sizes due to the additional
end moment. Although this is a more rational method for design,
engineers failed to adopt this approach. Comparisons between
‘simple' and ‘'semi-rigid' designs indicated no appreciable savings
in weight., The design time was also increased due to the inherent

complexities of 'semi-rigid' design. -

Since the advent of computers, development in linear elastic
structural analysis has accelerated. The computer is able to
perform lengthy arithmetic and store hugh amounts of data with
great speed and accuracy. Therefore, the slope-deflection method is
no longer a tedious operation although it involves the solution of
simultanebus equations. The matrix displacement method has been
developed from this method. It utilizes matrix algebra, thus
permitting a systematic procedure for‘analysis to be programmed.

The unknown joint displacements can be obtained by solving the



simultaneous equations using standard Gaussian elimination

techniques. This can be expressed as,
X=K'L (1.1)

where X and L are the vectors of joint displacements and external

applied loads respectively and K is the overall stiffness matrix.

Computer methods have enabled engineers to extend their design
capability to larger and more'innévative structures which would not
have been possible previously. It must be realised though that
early computer programs did not design structures. This still had
to be carried out manually. The main function was to provide a
rapid analysis of a given frame at a specific loading level,
usually working load. Results from this analysis had to be checked

to ensure that all stresses and displacements were satisfactory.

Early programs were usually based on small deflection, linear
elastic theory, although Livesley(7) developed a program with the
option of including secondary effects due to axial load. These are
included by using stability‘functions. These functions depend on
the ratio of axial force to the Euler load of a member, and the
particular functions used by Livesley have the value unity for zero
load. Repeated analysis is necessary because the axial forces in
the members are initially unknown. The axial forces from the
previous.solution are therefore used to calculate the stability

functions for the current iteration.



It is instructive at this stage to clarify the general
load-deflection behaviour of the different methods of analyses.
This is shown in figure (1.1). Curve(l) represents the linear
elastic behaviour of an initially undeformed frame. Such behaviour
is given by the slope-deflection or moment distribution methods of
analysis. However, when the reduction in frame stiffness due to the
compressive axial forces is considered, then the non-linear elastic
response given by curve(2) is obtained. At any given load factor, A
the difference between this curve Qnd the linear elastic curve(l)
is a measure of the reduction in stiffness due to the compressive
axial forces at A . For the non-linear elastic response, the
lateral deflection tends to infinity as the applied load approaches
a value of Ag . It is at this load level, known as the elastic
failure load, that the frame stiffness becomes zero. This should
not be confused with the lowest elastic critical load, Ac . The
elastic critical load is the load at which bifurcation of
equilibrium occurs with the frame subjected to the loading shown in
figure (1.1 (b)). The distinction is a fine one because Ae and A¢

are virtually identical in value.

The main disadvantage of early computer programs was the size
of the overall stiffness matrix. There are, however, certain
special features of the stiffness matrix which can be used to
reduce the storage of the actual number of elements. These are
symmetry énd the existence of many zero sub-matrices outside the
irregﬁlar half band-width. Jennings(10) suggested a highly
economical storage scheme which makes use of these properties. In

this approach, only the elements which lie between the first



non-zero one and that on the leading diagonal, inclusive, for each
row of the stiffness matrix are stored. Once this is completed, a
rapid solution can be obtained by the method due to Jennings(1l0).
This is based on the Gaussian elimination technique for the direct
solution of linear simultaneous equations. A rapid solution is
obtained as the method operates only on the economically-stored
elements. Majid and Anderson(41) adopted such an approach for

elastic analysis of very large frames.

The analysis and design methoés outlined above do not consider
economical distribution of building materials. This is in contrast
to optimum design methods which attempt to produce structures which
are not only safe but also economical. In such methods, the aim is
often to maximise or minimise the value of a specified function
(the 'objective function') by means of mathematical programming.
Material weight is usually adopted as the objective function
because it is easily quantified. Although cost.is of more practical
importance, it is ofgen difficult to obtain a cost objective
function. One such method for minimising the cost of a structure to
sway deflection limitation has been proposed by Anderson and
Islam(59). This is discussed in Section (1.5). The specific
requirements to be satisfied in order for the design to be
acceptable are known as constraints. Optimization is usually an
iterative procedure because of the non-linearity of the objective

function or constraints, and computer methods are often employed.

In optimum elastic design, the constraints are usually
limitations on stress and deflection. In a method due to Moses(9),

equilibrium equations are obtained, which relate the member



deformations to the bending moments and axial forces. The required
constraints are then obtained by joint compatibility. These
constraints, together with the function to be optimised are
subsequently expanded in a linear first-order Taylor series about
an initial trial design. A solution is found by the simplex method
of linear programming operating on the linearised equations. The
process is repeated in the region of the new design point until no

reduction in weight is possible.

The optimum design program of Anderson(24) automatically
formulates the design problem for pinned and rigid-jointed frames,
with constraints obtained by the matrix force method of structural
analysis. The optimization includes both strength and deflection
constraints, and produces én optimum solution using piecewise
linearisation in conjunction with the simplex algorithm. The method
is restricted to relatively small frames due to the excessive

demand on computer time and storage.

1.2 Plastic design

It was recognised through the work of the SSkC(4) that
continuity in rigid-jointed steel frames results in a higher
load-carrying capacity and should offer greater economy than
'simple' design. After extensive research, first at Bristol
University and later at Cambridge, the rigid-plastic method was
proposed by Baker(1ll) and Baker et al(l2). The rigid-plastic design
method is based on the state of the frame at collapse. A factor of
safety is introduced by using factoréd loads in the design

calculations. The fundamental conditions of rigid-plastic analysis



which must be satisfied are,

a)Equilibrium - The bending moment distribution must be in
equilibrium with the externally applied
loads.

b)Yield - The bending moment at any point must not
exceed the plastic moment capacity of the
member,

c¢)Mechanism - A state of collapse due to a sufficient

number of plastic hinges must be obtained.

Referring to figure (1.1), rigid-plastic analysis is represented by
the vertical axis from zero to Ap . The deflection is assumed to
be negligible until Ap is reached. It is assumed that all members
remain fully elastic except at the discrete points at which plastic
hinges occur. Once such a hinge has formed, it is assumed that
indefinite plastic deformation can take place at that point. The
stiffness of the frame reduces when each hinge forms, and becomes
zero when the mechanism is complete. Collapse then occurs, as

indicated by the horizontal line at Ap (curve 3) in figure (1l.1l).

The principal assumptions upon which the rigid-plastic theory

is based are,

i)Changes in geometry are neglected.
ii)Buckling out-of-plane and local instability do not occur.
jii)Yielding is confined to the discrete plastic hinges.

iv)Strain hardening is neglected.
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Separate column checks are necessary for condition (ii), while
conditions (iii) and (iv) lead to reasonably accurate and safe
results. Assumption (i), however, can be applied only to simple
portal-type structures and structures not exceeding two storeys,

where changes in geometry is minimal.

I1ffland and Birnstiel(13) conducted an extensive survey of
design methods on realistic frames up to a maximum of two storeys.
This provides justification for the rigid-plastic method to be used
for such frames. This fact is empﬁasised by the AISC code(l4) which
allows rigid-plastic design up to two storeys provided the frame
can be shown to be sufficiently stiff. However, the effects of
changes of geometry especially in tall unbraced slender structures

are significant. They cause instability in the structure and cannot

be neglected.

Several techniques can be employed to degermine the
rigid-plastic collaése load. Neal and Symmonds(1l5) developed a
rapid upper bound method of analysis utilkising ‘combination' of
mechanisms. However, the method is usually restricted to relatively
small frames due to the excessive number of mechanisms to be .

investigated, particularly in non-rectangular frames.

Horne(1l6,17) proposed a direct method of plastic moment
distribution which is akin to elastic moment distribution. The
distribution of moment is arbitrary and checks are necessary to

ensure that the yield condition is not violated.
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A desigp in which the weak-beam, strong-column approach(18)
was adopted showed significant savings in the weight of steel when
applied to a four storey frame. The unbraced frame was designed for
vertical loads only because wind loading was not critical. This is
not surprising because for a relétively low unbraced framework, it
is usual for the choice of sections to be governed by vertical
loading rather than combined loading. The beams were designed
plastically for simple beam collapse while the columns were

designed elastically(1l9).

If instability effects in the frame are neglected, it is
possible to determine Ap by a succession of elastic analyses under
increments of loading. The formation of plastic hinges is
represented by inserting pins into the model of the structure. This
method permits the designer to trace the linear elastic-plastic
behaviour of the structure up to collapse, and'is represented by
curve(4) in figure (i.l). If necessary, the.reduction in plastic
moment capacity due to shear force and axial force can be included.
As the above procedure requires iteration, it is not used in

present-day manual design.

In one of earliest attempts on optimum plastic design,
Heyman(64) -applied the method of random steps to simple examples.
It was assumed that the weight of a member is proportional to the
product of its length and full plastic moment. The minimum weight
was obtained by linear programming by considering all the possible
rigid-plastic collapsé mechanisms of the structure. The method was

approximate and was suitable only for simple beams and portals.
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Indeed, all the methods described so far require considerable
expertise if used in hand calculation, particularly when larger

frames are involved. For this reason, computer methods have been

developed.

Methods of rigid-plastic analysis and design by computers have
been proposed by Livesley(8) and Ridha and Wright(21l). Both methods
include an element of optimization. In design, Livesley utilised a
search technique to proportion the members such that the frame
satisfies the conditions (a) to (d) for rigid-plastic collapse. The
frame is assumed to be subjected to concentrated loads only and
hence there is a fixed number of points at which plastic hinges can
occur. The moments at these hinge positions are expressed in terms
of the applied loads and ‘'redundants'. The values of the redundants
are determined by satisfying conditions (a) to (c). The unknown

terms to be solved are the redundant forces.

The method due ;o Ridha and Wright makés use of the method of
combination of mechanisms to generate a feasible design. To prevent
collapse by specific mechanisms, virtual work equations are changed
to an inequality. The set of inequalities is obtained by
considering all possible mechanisms for the structure. Both
computef methods appear to give economical designs but the
computing time becomes excessively high for large or

non-rectangular frames.
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1.3 Elastic-Plastic design

A close approximation to the true behaviour of an unbraced
frame is illustrated by curve(5) in figure (l.l). Throughout the
range of loading, reduction in frame stiffness occurs due to the
compressive axial forces in the columns. In addition, as the load
gradually increases, parts of the structure are stressed beyond the
elastic limit into the plastic range. In figure (1.1), it is
assumed that plasticity is confined to discrete points at which
plastic hinges occur. Spread of yiéld and the beneficial effects of
strain hardening under increasing load are assumed to be

negligible.

Whenever a hinge forms, the overall stiffness of the frame
deteriorates which in turn results in a faster rate of increase of
deflection than hitherto. The frame reaches collapse when the
stiffness is reduced to zero due to the combined éffects of
compressive axial forﬁes and plasticity. Thié is expressed
mathematically by the determinant of the overall stiffness matrix
becoming singular i.e. non-positive. Further, lateral deflection
has to be balanced by a corrésponding decrease in load if
equilibrium is to be maintained. The peak load, which is lower than
the rigid-plastic collapse load, is given by A , and is known as
the elastic-plastic failure load. To distinguish the ‘'collapse
load' given by rigid-plastic theory, the 'failure load' is used in

the text Eo indicate 'collapse' given by elastic-plastic theory.

Wood(26) illustrated this behaviour by reference to the

‘deteriorated critical load'. This is obtained by studying the
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non-linear elastic response ([curve(2) in figqure (1.1)]), but with
the plastic hinges replaced by real pins at the corresponding
locations. Thus, the effect of progressive formation of plastic
hinges in reducing the overall frame stiffness is illustrated by
figure (1.2) Each horizontal line corresponds to a value of the
‘deteriorated' critical load calculated from the pattern of plastic
hinges that are currently present in the frame. At some locad level,
the 'deteriorated critical load' coincides with or falls below the
rising load factor. The frame then has zero or negative stiffness

and therefore collapses.

The concept of the 'deteriorated critical load' makes it clear
that failure can occur long before a complete mechanism of hinges
has formed. Indeed, the positions and load levels at which the
plastic hinges form do not necessarily correspond to those obtained
from a rigid-plastic analysis. The rigid-plastic collapse load
provides an upper bound to the failure load and will be
particularly unsafe for unbraced multi-storef frames with
relatively high compressive axial loads. The design of such

structures is usually governed by overall stability.

Several methods have been proposed with the aim of obtaining
safe and economic designs for multi-storey unbraced frames.
Heyman(27) adopted a weak-beam, strong—qolumn ultimate load
approach by assuming a pattern of plastic hinges which involved
collapse in both beams and columns. As a safeguard against
instability, it was suggested that up to working load, a frame
should remain elastic and deflections should be limited. An

approximate method was proposed to calculate the sway deflections.
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Stevens(28) proposed a design method based on the collapse
state of the structure. Maximum overload deformations are specified
and used in formulating virtual work equations corresponding to
collapse mechanism in the deformed frame. Member sections are then
selected and the resulting design analysed by an approximate
method. If the specified deformations are exceeded, then the

procedure is repeated until a satisfactory design is obtained.

Holmes and Gandhi(31) and later Holmes and Sinclair-Jones(32)
proposed a hand method for modifying the rigid-plastic method with
an allowance for frame instability. The effects of compressive
axial loads, point of contraflexure not occurring at mid-height of
columns and the reduction of member stiffness due to the formation
of plastic hinges are incorporated into the design method. Collapse
is assumed to occur by beam, combined and sway mechanisms in the
upper, middle and lower regions of the frame respectively. In the
second paper, modified boundary conditions areAincluded and the
design calculations ;peeded up by reducing the number of iterations
to determine the necessary magnification factors. Attempts to
further reduce design time by using graphs were proposed. The
results of the numerous designs were checked against a non-linear

elasto-plastic design program of Majid and Anderson(42).

The methods described above depend on a predetermined pattern
of plastic hinges which may not occur and there is no guarantee
that defléctions are within reasonable limits. When deflections
were found excessive, no guidance was suggested to correct beam or
column members. Securing elasticity at working load does not

necessarily prevent early collapse. The application is restricted



=-16-

to regular and rectangular frames and considerable experience is

needed to design a specific structure.

A manual design method developed at Lehigh University(33)
makes use of sway sub-assemblages to obtain lateral deflections
under combined loads. The details of these sub-assemblages are also
discussed in relation to preliminary design of unbraced frames by
computer by Driscoll, Armacost and Hansell(43). Initial member
sizes are obtained by considering vertical loads only. The
appropriate sway sub-assemblage is then used to formulate
equilibrium equations for each storey. These equations enable the
bending moments due to the wind forces and the deformed shape to be
estimated. Beam-type members are designed so that the combined
collapse mechanism would only form when a specified level of
combined loading was exceeded. A moment redistribution procedure is
used to estimate the bendiﬁg moments in the columns and sections
for these members are then selected. Sway deflections are estimated
by a slope-deflectioﬂ method and the frame rédesigned if necessary.
Provisions which enable an engineer to obtain a safe design are
given when insufficient restraints are provided about both axes of
the columns. Collapse before a complete plastic mechanism has
formed was recognised but the method involves the extensive use of

charts.

Moy(74) proposed the storey stiffness concept for the design
of multi-étorey frames to satisfy strength and stiffness. The
fundamental problem is the determination of the stiffness of each
storey. Once this is determined, strength deéign follows by

modifying the member stiffnessess in a sub-assemblage.
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Sub-assemblages are used by assuming points of contraflexure at
mid-length of all members except for the roof and ground floor
region. The storey stiffness is taken as the sum of the stiffnesses
of its sub-assemblages. For example, when column axial forces are
less than half the Euler load in the intermediate sub-assemblages
of an intermediate storey, consisting of 'm' columns, the total

storey stiffness at a given load factor is,

where E = Young's modulus, I. = column inertia,

P = column axial load, h = storey height.
U = ratio of beams' restraining moment to column

moment taking the value as follows,

a)All storeys except for the top and bottom storey 2
b)Top storey 1
c)Bottom storey (pinned base) - 1.5
d)Bottom storey (fixed base) 2 <
g
and g = I¢ 1
h 3, (ai «Ipi /Lpi )
n = number of beams in a joint ( £ 2)

a; = beam stiffness modifying factor taking the value
corresponding to the conditions as follows,
e)Both ends rigid 1
f)Near end rigid, far end pinned 0.5
g)Near ehd pinned 0

and I,; and L, are the beam inertia and length respectively.

Sway deflections and bending moments are determined from the
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results of the storey stiffness. The effects of plastic hinges on
the beam stiffness are accounted by the modifying factor 'a;'. The
column stiffness was assumed to be zero when a plastic hinge
develops at the top end. When such hinges are found, reduction in
storey stiffness is observed in the above equation. Under
increments of load, the total bending moments and sway
displacements are obtained by summing the moments and displacements
existing at the previous load level and the incremental values.
Maximum strength is assumed when any storey stiffness becomes zero

or non-positive.

In a method due to Anderson and Islam(72), initial estimates
of the secant stiffness of beams are made in a substitute Grinter
frame analysis to determine the sway deflections. These
displacements are used in conjunction withvexpressions developed
from slope-deflection for the bending moments and joint rotations
based on a limited frame. Several cases of plastic hinges occurring
at prescribed positiéns in the limited framé were derived. These
hinges usually occur at the leeward end of beams for frames under
combined loading. A pattern of plastic hinges is initially assumed.
The method proceeds from one limited frame to the next; the resﬁlts
obtained in the former being used in the latter limited frame. When
the last limited frame has been analysed, the joint rotations are
used to modify the secant stiffness of the beams in the substitute
Grinter frame. The procedure is repeated until satisfactory
convergenbe is achieved. Sway deflections are determined with
allowance for the reduction in column stiffness due to compressive
axigl forces. Only one plastic hinge per beam is permitted in the

method unless a satisfactory design load level has been attained.
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Plastic hinges are not allowed in the columns below the design load

level for combined loading.

More recently, Scholz(68) proposed an approximate method which
relies on iteration between the rigid-plastic collapse load Ap and
the elastic critical load, A . The basis of the method is the
equivalent 'limiting frame'. Each group of 'limiting frames' is
identified by a common curve which relates the rigid-plastic
collapse load, Ap and the elastic critical load, Ac¢ to the
failure load, A¢ . Consequently, a family of curves for different
groups of frames can be related to the two parameters, A. and ,Kp.

The technique was compared with the results obtained from a
non-linear elasto-plastic computer analysis program. Scholz also
conducted model frame tests to further validate the approximate
approach. The method may be modified for frémes with semi-rigid
connections, partially-braced frames, or for frames subjected to

vertical loading alone.

The claim of the above methods as suitable for 'manual’
application is unjustified, particularly in the design of multi-bay
frames. Moy's method requireé the determination of each
sub—-assemblage stiffness, which correspond in number to the number
of columns in a storey. The method of Anderson and Islam involves
the use of numerous expressions for each limited frame with a
plastic hinge, and a separate analysis is required to determine the
sway defléctions. Furthermore, double hinges on the beams are not
permitted, and several iterations are required to locate the
position at which plastic hinges form. Scholz's method is

significantly more complex due to the need to evaluate 'limiting
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frame' parameters, apart from the rigid-plastic collapse load and
the elastic critical load. However, they can all be programmed for

use on desk-top computers.

Computer methods to assess the elastic-plastic behaviour of a
frame are well documented, although necessarily complex. Jennings
and Majid(36) used the matrix displacement methcd of Livesley(7)
and developed a general program to analyse elastic-plastic
frameworks subject to proportional loading. The method traces the
history of plastic hinge formationbfrom initial yielding to
ultimate collapse. The formation of each plastic hinge causes a
reduction in the frame stiffness. The 'modified’ frame is
reanalysed with a small increase in load, assuming the plastic
hinges to be real pins sustaining the plastic moment capacity of
the appropriate members. Failure occurs when the determinant is

non-positive.

A similar prograé developed by Parikh(3f) includes the effects
of axial shortening and residual stresses by a modified
slope-deflection method. Instead of tracing and inserting plastic
hinges under increasing load, the plastic hinge pattern itself ig
taken as the variable. Several examples were shown and verified by

comparison with frames designed by other investigators.

Davies(39,40) extended the elastic-plastic analysis method of
Jennings and Majid to include hinge reversal and unloading,
shakedown effects and the beneficial phenomenon of strain

hardening.
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Horne and Majid(38) proposed a complete elastic-plastic design
method for general plane frames. Commencing with an initial set of
sections, repeated cycles of elastic-plastic analysis and redesign
are carried out until the frame satisfies the design criteria,

a)Beams must remain elastic at working load.
b)Plastic hinges are not allowed in columns until a certain
load factor is reached.

Cc)A satisfactory collapse load factor must be attained.

In the course of the iterations, material is redistributed to those
regions where it is most beneficial, thereby leading to economy in

the final design.

The computer methods described above Quffer as a result of the
large amounts of storage and computer time demanded by repeated
cycles of analysis and redesign. Majid and Anderson(4l,42) took
advantage of the symﬁetry of the overall stiffness matrix and the
compact techniques of storage and solution-proposed by
Jennings(10), in order to analyse large frames more rapidly. They
also proposed measures to ensure that the initial design was '
realistic, in order to avoid an excessive number of iterations.
Even so, the computing time becomes extremely high for large
frames. Further, no attempt was made to restrict deflection which

may be the critical factor in design.

As a result, Horne and Morris(7) suggested an alternative
method of design based on the rigid-plastic theory, but with

allowance for changes in geometry of the structure. When such
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effects are taken into account in an analysis, the behaviour is
represented by the rigid-plastic 'drooping’ éurve(s) shown in
figure (l1.1). To preserve equilibrium, the applied loads must be
reduced. The method depend on the assumption that the displacement
of a point on the ‘'drooping' rigid-plastic curve(6) intersecting
the elastic-plastic failure load can be established. It was assumed
that the ratio of the sway deflection at such a point, to the
intersection of curve(l) with the rigid-plastic collapse load
curve(3) shown in figure (l1.1), is some function of the number of
storeys in a frame. A factor of 2.5 was proposed based on the study
of a number of frames. This factor, which must be multiplied by the
rigid-plastic collapse design load, is used as a common multiple
applied to the linear elastic working load deflection of the trial
frame. Sway deflections are obtained using the 'portal' method
described in Section (l.1). In this way, iﬁstability effects are
included in the design. The method is necessarily approximate due
to the assumption of the empirical displacemen; amplification
factor, dérived from”the studies of regular and rectangular frames

only. ~

1.4 Merchant-Rankine formula

Computer-based methods discussed in the previous Section for
the evaluation of the failure load of unbraced multi-storey steel
frames are most\appropriate. However, if suitable computational
facilities and software are not available, then the intuitive
Merchant-Rankine formula is an attractive alternative for the
design of such frames. Such an approach may also be required to

provide a check on a computer method and to satisfy the engineer
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who wishes to maintain full control of the design process.

The formula relates the failure loads, denoted here by Apr to

the lowest elastic critical load factor, A, and the rigid-plastic

collapse load, Ap ’

1l = 1 + 1 (1.2)

Merchant's proposal is the result of the early work of
Rankine(1866) on the failure load 6f’isolated struts. In either of
the extreme cases when Jcor Ap is large, equation (1.2) tends to
the correct estimate of the failure load, namely Apor Ac. In the
practical range, frames collapse by an interaction of the effects
of plasticity aﬁd elastic instability and therefore reasonable

approximations to the failure load can be expected from equation

{1.2).

Salem(45) conduéted a series of experimental tests on a large
number of single and two storey, one bay model frames. The bases
were fixed and the joints were rigidly-connected by gusset plates.
These models were fabricated from hollow tubular sections and in
all cases the Merchant-Rankine lcad provided a safe estimate of the
experimental failure load. Extreme care was taken to ensure that

the sections used were properly heat-treated to relieve all the

induced internal stresses.
Low(48) performed further model tests on three, five and seven
storey miniature frames. The frames were fabricated entirely from

rectangular sections, with some models subject to vertical loads
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only, while others were tested under combined horizontal and
vertical loads. For frames with low horizcntal loads in relation to
the vertical loads, equation (1.2) was very conservative, whilst
for those with significant side loads, the formula gave close

estimates of the failure load.

Ariaratnam(49) conducted a series of tests on four and six
storey, single bay models with rectangular sections while the three
and seven storey, single bay frames were fabricated from tubular
sections., Attempts to reduce the effects of strain hardening and
residual stresses on the specimens by annealing were reported.
Ariaratnam demonstrated that the Merchant-Rankine formula can
become unsafe when the frame is subject to side loads which are
high in re}ation to the vertical loads., It was recognised, though,
that these conditions are unlikely to be experienced in real

structures.

In contrast, Ad#m's investigation(46) suggests that the
Merchant-Rankine formula is unsafe when the ratio of the horizontal
load to the simultaneously applied vertical load is low. The six
storey, single bay frame examined by Adam in the studies was very
slender indeed, with the storey height twice the single bay width.
For such unusual and slender frames, the Merchant-Rankine failure
load overestimated the accurate failure load obtained from a

non-linear elasto-plastic analysis by as much as 22%.

It should be noted that all the experimental models and the
evidehce produced relate to single bay rectangular frames. None of

the tests was conducted on a multi-bay or non-rectangular frame,
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and no proposals for the evaluation of the two parameters Ac and Ap

were given to assist practical design using the Merchant-Rankine

formula.

Theoretical justification of the Merchant-Rankine formula was
provided by Horne(25). It was shown that the expression gives a
close approximation of the actual failure load on condition that
the rigid-plastic mechanism and the lowest elastic critical mode
were the same. Using a similar approach to Horne, Majid(47) showed
that the formula can be derived byvconsidering the linear and
non-linear elastic behaviour, and the rigid-plastic failure load,
as shown in figure (1.3). The basis of the derivation is the

geometrical relationship indicated by curve(l) and curve(2).

From geometry, Majid assumed that a particular point (J) on
the non-linear curve(2) could be obtained which is numerically
equal to the rigid-plastic collapse load factor. From similar

triangles, BDE and GOE,

g
)\p = Ap"‘ Ae =1 + Ap (1.3)
Amr bc Ac .
Similarly, by considering AOC and BOD
Ap = Ap (1.4)

Combining equations (1.3) and (1.4) results in the expression given
by equation (l1.2). An important development arising from this
method is the estimation of the elastic critical load by a similar

process utilising the geometrical layout given in figure (1.3).
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Examples published by Majid appear to indicate a reasonable
estimate of the failure load and the lowest elastic critical load.

An interaction formula similar to equation (l1.2) was

recommended by Lu{57),

ALU= 34Ac (1.5)
I+ 3 Ac
Au

where Ac has been defined previously and Ay is the ultimate load
corresponding to failure of the coiumns with the frame prevented
from swaying. This value is obtained from tables which relate the
axial force to the larger column end-moment and the column
slenderness ratio. The verification of the formula rests on
extensive tests on models and full-scale pinned base portals. The
design using such an expression is, however, suggested for frames
not exceeding three storeys. Further, equation (1.5) does not
consider the effects of horizontal loading andAis therefore

restricted to structures designed to support heavy vertical loads

only. -

In Section (l1.2), mention was made of the recent extensive
review of available design methods carried out by Iffland and
Birnstiel(13). As a result of the interest expressed by the above
authors in the Merchant-Rankine formula, further design studies
were conducteq. These consisted of 34 representative two storey,

two bay frames with a wide range of parameters. The frames examined

have such features as,

a)Fixed base,
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b)Pinned base,

c)Symmetrical configuration (16 number in ail),

d)Unsymmetrical configuration (18 number in all),

e)Vertical load acting alone,

f)High and low ratios of vertical to horizontal loading,

g)Horizontal loads applied from any of the two directions
for the unsymmetrical frames,

h)Erection tolerance for symmetrical frames.

The results of the study showed that the Merchant-Rankine formula
underestimated the failure loads obtained from a non-linear
elasto-plastic analysis program in all the symmetrical frames.
Unsafe cases arose in 4 out of the 18 unsymmetrical frames; three
frames by 5% and only one by 10%. Based on the limited numerical
studies above, the Merchant-Rankine formula has been proposed by

Iffland and Birnstiel for inclusion in a revised American

Specification.

Wood(50) recognised the generally conservative results given
by the Merchant-Rankine formula for bare frames and has suggested a
modified version, to account for the beneficial effects of strain

hardening and minimal composite action,

l =1 + 0.9 {(1.6)
Amrw  Ac Ap
The expression has since been included in European
Recommendations(54) and in a draft British Code of Practice(55). In
these documents, frames can be designed by equation (1.6) if

4 € Ac/Ap < 10. For Ac/Ap > 10, the failure load is taken as Ap.
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whilst if Ac/Ap < 4, a more accurate method than equation (1.6)
should be used. Plastic hinges developing in the columns below the
specified load level applicable to frames under combined loading
are not permitted. An exception is the comprehensive combined

collapse mechanism where plastic hinges are allowed only at the

base.

Early attempts to design frames using the Merchant-Rankine
formula were somewhat hindered because of the difficulty involved
in the calculation of the elastic éritical load. Several
approximate methods have since been published. Horne(S51) and
Bolton(52) adopt similar approaches. It is necessary in both these
methods to obtain values of linear elastic deflection. The minimum
storey deflection is used to determine the lowest elastic critical
load. However, Bolton's method is potentially dangerous as it
considers frame instability as a local phenomenon. The calculation
is based on a single joint from a 'no-shear’ f;ame and therefore
the lowest elastic cfitical load can be missed, while Horne's

approach will be conservative by no more than 20%.

Wood(50) introduced the method of stiffness distribution based
on an equivalent substitute Grinter frame, to calculate A, . The
basis of the Grinter frame is that for horizontal loads acting on
the real frame, the rotations of all the joints at any level are
approximately gqual, and that each beam restrains a column at both
ends. Beams are therefore bent into approximate double-~curvature.
Charts have been published which enables the engineer to speed up

the design process with little loss in accuracy.
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Williams(53) proposed a simplified design procedure which
takes full account of A without actually célculating Ac in a
trial design. It was shown by Williams that in a design situation
(as opposed to an analysis), a lower bound on A, is all that is
required to check the adequacy of the trial frame. Due to the
condition that must be observed for use of the modified

Merchant-Rankine formula, designs are permitted if the following

are satisfied,

)\mrw S A.P s 1.15 Amrw (107)

The factor of 1.15 is obtained by substituting the
ratio Ac/Ap=4 into equatioﬁ (1.6). With Anpryw as the required
load factor for collapse and Ap being the rigid-plastic collapse
load for the trial design, equation (1.6) can be rearranged to
express Ac¢ in terms of Amrw and Ap . A tri;l design is
therefore adegquate pfoviding a lower bound value of the elastic

critical load exceeds the minimum required value.

Williams suggested modifying the substitute Grinter frame into
'cells' to obtain a lower bound on A.. Each 'cell' is divided
longitudinally at the beam level except at the top and the ground
beam (if any). The beam stiffness is proportioned in the "'-2 form
of «R,; and (1— «j).Rpi » where «j is any coefficient between 0
and 1 and Ry is the stiffness of the beam. The two portions of
each beam are rigidly connected to a common roller at the far ends.
By this arrangement, each ‘cell’ buckles independantly and

therefore has its own critical load. The elastic critical load for
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each ‘cell’' may be obtained very rapidly using the critical load
charts due to Wood(50). If the lower bound value of A is
inadequate, then the engineer may be able to avoid altering his
design simply by refining his choice of « values to obtain a

closer lower bound value of A for the actual frame.

Williams's design procedure in which only a lower bound may be
required for A has much merit as long as it is Ac, rather than Ap
that is the more difficult to calculate. The evaluation of the
rigid-plastic collapse load has been discussed above, in
particular, the method of combining mechanisms due to Neal and
Symmonds(15). In addition, standard textbooks(12,17,22) provide

alternative procedures for calculating Ap .

When one tries to calculate the rigid-plastic collapse load
exactly, it is found that for relatively large frames, it is by no
means an easy task. For this reason, it is convgnient to alter
Williams's procedure go avoid the need to calculate an exact value
of AP . Using equation (1.6) under factored load conditions, the

required value of Apry 1is unity and the expression becomes,
Ap=0.9 [ 1-1/Ac ] (1.8)

where Ap is now the MINIMUM required value of the load level for

rigid-plastic collapse.

The designer has now to prove that the minimum value of the
rigid-plastic collapse load factor is at least reached. A lower

bound equilibrium approach can therefore be used, thus avoiding the
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need for an 'exact' value of Ap . This contrasts with the original
proposal of Williams(53) in which the rigid-plastic collapse load

was initially specified. As a result of the developments described
above, the lowest elastic critical load can be obtained accurately

and swiftly for a trial design.

The procedure given by equation (1.8) is therefore usually
more convenient. This form of equation is particularly useful for
tall unbraced frames, in which lateral stiffness, rather than
strength is often the dominant criferion in design. If such frames
are designed first to have adequate stiffness, then it wi#l only be
necessary to demonstrate that the factored load level for the

ultimate limit state can at least be attained.

1.5 Deflection control

Relatively high-load factors apply at the ultimate limit
state, and these prevent significant plasticity at the working
—
load. As a result, deflection calculations are usually based on
elastic behaviour. While beam deflections can readily be determined

by analysis of a limited frame(35), the problem has been horizontal

deflection in multi-storey frames.

Design Recommendations(54,55) forbid excessive horizontal
movement. The reasons for such action are to avoid discomfort and
alarm to occupants, and cracking of plaster, glazing and end-wall
panels. Restriction of sway also limits secondary 'P- A' effects

which cause instability of the structure (28,29).
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While the British code BS.449(1969) gives no recommendation
for limiting deflection in multi-storey frames, recent design
recommendations(54,55) have settled on a value of 1/300th of each

storey height based on calculations of the bare frame.

Design studies on multi-storey frames have been carried out by
Batten(34). The studies showed the sensitivity of frame weight to
alternative design methods and forms of construction. The following

parameters were also varied,

a)Building height,

b)Storey height,

c)Bay widths,

d)Location of braced bay,

e)Column splices,

f)Ratio of vertical to horizontal loading,
g)Deflection constraints,

h)Use of beam sections for columns and vice-versa.

Results from the studies provide guidance to designers on the

choice of methods for designing a specific structure.

A number of approximate methods for the calculation of sway
deflections are available for medium-rise frames. These methods are
suitable for pand calculation, while some enable direct design to
specified limits. Moy(58) proposed a satisfactory procedure which
enables the engineer to alter the sections in a trial design if the
need arose. This has the advantage that it provides guidance on

what member section changes will be required if deflections in a
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trial design are found to be excessive,

When the control of sway is likely to govern the choice of
sections in a design, then the method of Anderson and Islam(59) is
more appropriate. This direct method of design enables suitable
sections to be selected to satisfy limits on sway. The method makes
use of equations derived by considering sub-assemblages for'the
top, intermediate and lower regions of the frame. These
sub-assemblages are shown for a 'regular' multi-storey frame in

figure (1.4). The design equations were based on the following

assumptions,

i)Vertical loads have a negligible effect on the
horizontal displacements.

vii)A point of contraflexure occurs at the mid-height of
each column, except in the bottom storey, and at the
mid-length of each beam.

iii)The total horizoAtal shear is divided between the

bays in proportion to their relative widths.

These assumptions render a frame statically determinate, except in
the bottom storey, and enables each stofey to be considered in
isolation. The sub-assemblages, therefore, consists of an upper
beam, lower beam and an internal column. Equations relating the
sway deflectiqn over a storey height to the inertias of the column
and surrounding beams were then derived. Using equilibrium and
compatibility, the inertias of the beams and external columns were
expressed in terms of the inertia of an internal column. The need

to select trial values was avoided by introducing an element of
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optimization into the design. The cost function for a typical

intermediate storey is assumed to be in the form,

C = m.r.h(k, I, + kyI,) + (m-1)h.k3I; + 2h.k. I, (1.9)
2

where m = number of bays,

[a}
]

ratio of bay width to storey height,

=2
n

storey height,
I;,» I,, I3 and I, are the inertias for the upper beam, lower beam,
internal column and external column respectively.

kir k3, k3 and k, are the cost factors corresponding to I,, I, Ij

and I, .

Once the optimum value for the inertia of an internal column is
calculated, the inertias for other members are obtained by
back-substitution. The weakness of the method lies in the
difficulty of achieving in practice the ideal relationships between

the inertias of the internal columns and those of the other members

e

which are assumed in the derivation of the method. Selected
inertias are often higher than those calculated because of the

discontinuous range of available sections.

The charts of Wood and Roberts(60) are most convenient as a
check for sway of a trial design. The analysis was based on a
limited substitute frame which represents an individual storey of a
multi-storey frame. This consists of a column with beams attached
at the top and bottom ends. The far end of the lower beam was
rigidly fixed while the far end of the top beam was fixed against

rotation but free to sway. The single storey substitute frame is
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shown in figure (1.5). Using the method of slope-deflection, a
non-dimensional expression relating the sway angle to the joint

stiffnesses was then obtained, given by,

©= _A/h =M. 1+ 3(kp + kg = kp.ky)
F.h/12E.Kc I=3ky =3k, +2kp . Ky + 3(1-Kp.k/4)/3
where k; = K¢ ' ky, = Ke
Ke + Kpt Ke + Kpp

Ke = Ic/h-y  Kpy = Ipt /Ly » Kpp = Ipp/Lp
@ = sway angle, A/h,

F = total wind shear,

7]
n

cladding stiffness,

S = spring stiffness (force per unit displacement),
E = Young's modulus of elasticity,

A = sway deflection,

M=12/(12 + §8),

L = length of beam,

h = height of column,
Iy = second moment of area of the attached beam,

and the suffices 't' and 'b' refers to the top and bottom beams

attached to the column respectively.

To assist designers, Wood and Roberts presented their analysis in
the form of charts. The charts are constructed by selecting values
for ¢ , 5 and kyand solving the above equation for ky. For unclad

and unbraced frames, § = 0. No guidance was given, however, to the
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preferred choice of beam or column sections to be replaced when

sway limits are unsatisfactory.

In the above methods, differential axial shortening of columns
which can lead to significant additional sway is neglected. Such
eféects have been considered in multi-storey frames by Moy(62). He
considered a frame subject to uniform horizontal loadiné with the
floors assumed to be rigid and the cross-sections of columns
varying linearly from the roof to the base level. At any level, 'z'

measured above the foundation, the sway deflection is given by,

The expression was simplified in the.form of a chart relating all
the terms in the square bracket in the equation above to storey
height measured from the ground. Each storey is considered at a
time by selecting the corresponding coordinate at the top and
bottom end of a column measured from the base. From these two

~
values of 'z', the deflection coefficients [}z are obtained on the
appropriate curve on the chart. These two values of /[lz are

substituted into the following equation to give 6z and 6z2,

where generally,

£
=2
]
"
1)
<
]

uniformly distributed wind load,

total height of frame,

o
"

]
1]

Young's modulus of elasticity,
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2

Ty = 2A..d (at the lower column level),
A- = cross-sectional area of column,
d = distance from the column under consideration

to the centre of gravity of the columns at

roof level.

The storey deflection due to axial shortening is the difference

between these two values of 0z and 6z:.

When axial shortening is significant, then computer-based
methods are most appropriate. Majid and Elliott(6) proposed a
method for limiting deflection in frames using non-linear
programming techniques. Design charts for limiting deflection of
single bay fixed-base portal frames were shown. Their general
computer method, however, was restrictive because of the excessive

computer time and storage space required for the solution.

More récently, Majid and Okdeh(63)vp10posed a 'deflection
profile' technique for the design of multi-storey unbraced frames.
To limit deflection, an initial value is specified. The method
assumes a 'linear deflection profile' corresponding to the
specified sway iimit of the frame. This is expressed by a

deflection function of the form,
X = a; + aj.Y + a3.YI
The constants a; to aj; are obtained from the bocundary conditions

defining the geometry of the frame. The deflection, x, is the

horizontal sway corresponding to the position Y and the variable
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'i' is the 'economy power'. As the value of 'i' tends to a large
value, the deflection profile also tends to be linear. The
iterative procedure reduces the frame stiffness to satisfy the
deflection limit. It follows that 'i' takes a different value for
each frame. Initial design procedures are identical to that

proposed by Majid and Anderson(42) described in Section (1.3).

A method of incorporating the effects of compressive axial
forces in reducing the overall frame stiffness for direct design to
deflection limitation has been suggested by Anderson and
Salter(6l). The method utilises the matrix displacement method and
linear programming techniques for redesign to obtain a feasible
solution. Examples were shown and verified by comparing the

solution of frames designed by other methods.

1.6 Semi-rigid connections

In many locations, climatic conditions, safety regulations or
—
shortage of skilled labour limit the scope for site welding, and
bolted connections are therefore preferred. Bolted connections
reduce labour costs because the parts can be prepared in the
workshop and transported easily and provide flexibility for on-site
erection procedures. All the analysis and design methods described

so far, with the exception of that proposed by the SSRC, assume

such joints to be either pinned or fully-rigid.

Fully-rigid joints are assumed to provide full rotational
continuity between connecting members. Pinned joints are assumed to

act as shear pins. This is done despite the fact that experimental
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investigations of bolted connections show that 'fully-rigid®
connections have some flexibility while 'pinned' connections have
some rotational stiffness. Fully-rigid or pinned connections are
idealisations which enable engineers to design structures using

existing theories and knowledge.

When joint flexibility is taken into account in analysis,
redistribution of member forces throughout the structure occurs.
Furthermore, in an unbraced frame, sway deflections that were
obtained previously by assuming rigid joints, can now become
unacceptable. For bolted connections, the most useful

characteristic to define is the moment-rotation stiffness

behaviour.

A method incorporating semi-rigid end restraint for the
analysis and design of beams was proposed by Batho and Rowan(75),
which formed the basis of design for 'semi—rig;d' frames proposed
by the SSRC(5). This was described in Section (l.l). As it is usual
in steel structures for the columns to be ¢ontinuous, the
semi-rigid connections were taken to occur at the ends of beams-
only. End;restraint moments in the beams were determined for
certain types of connections and presented as charts in terms of
the length and total depth of the beam. The connection type varied
from relatively flexible top and seat angle cleats to stiff T-stub
connectors. TQe approach is applicable to simple beams and to
low-rise frames that are significantly stiff. The treatment of
semi-rigid connections in unbraced frames was examined by Baker(4).
The slope-deflection equations were modified by assuming a linear

relationship between the relative rotation of the member at a
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connection and the bending moment. The method was unsuitable for
manual application except for simple frames. For highly redundant

structures, therefore, computer methods are necessary,

Monforton and Wu(66) devised a computer program based on the
matrix stiffness method for the analysis of frames with semi-rigid
end-restraint. A semi-rigid connection could be located at any
position in the frame. A linear moment-rotation relationship was
assumed and fixed-end coefficients derived. The fixed-end moments
were then modified in terms of theée coefficients. A number of

modified fixed-end moments for different loading cases were given.

Non-linear standardised moment-rotation expressions for
several types of connectioné have been proposed by Frye and
Morris(69). These relationships have been incorporated into a
matrix stiffness computer program. The standardised moment-rotation
expressions were based on experimental and theoretical studies on
standard connections. These expressions are applicable to a given
type of connection with any variation of the size parameters. The
standardised expression was assumed to be represented by a sing;e

function for all connections of a given type by,

S i
8' = 3 Cj.(KM)
i=t
where ©' = rotational deformation of connection,
C = constant,
K = dimensionless factor whose value depends on the

size parameters for a particular connection,

M = moment applied to the connection.
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The factor 'K' was obtained experimentally and only odd powers in
'i' were considered for the first three terms in the above
expression., Generally, the moment-rotation characteristic for each

type of connection is of the form,
8' = a.(KM) + b.(KM)® + c.(KM)®

where 'a', 'b' and 'c' are coefficients applicable to a given type

of connection.

The effects of semi-rigid connections on sway deflection and
redistribution of member forces were shown by a number of examples.

As much as 20% additional sway was reported in comparison with the

assumed rigid joint analysis.

Full scale experiments to obtain suitable beha?iour
characteristics are gime-consuming and rather expensive. As a
result, Krishnamurty et al(66) developed a three-dimensional finite
element computef model for the numerical $olution of
moment-rotation characteristics. A number of types of connectiops,

mainly end-plate connections, have been successfully and accurately

modelled.

More recently, the influence of standard semi-rigid
connections on the strength and behaviour of steel columns was
investigated by Jones et al(67). The strength of no-sway columns
including the effects of residual stress, spread of yield, initial
curvature, and non-linear end reséraints was illustrated.

Comparison with a method of column design(50) suggest possible
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savings when end restraints are properly taken into account.
Experimental evidence was given for three types of end restraints
but no recommendations were proposed for rapid assessment of the

column strength.

1.7 The scope for the present work

To reduce time spent on calculations, it is helpful to know,
at an early stage, whether ultimate strength or the serviceability
limit on sway will dominate the choice of sections in the design of
multi-storey unbraced steel frames. Batten(34) has reported that
strength under combined locading will govern the design only if the
deflection limit is relaxed to 1/250th of the total structure
height. This contrasts with Design Recommendations(54,55) where
sway deflections are restricted to each storey height. However, the
critical limit will in fact be influenced by the configuration of
the frame and the relative values of vertical to horizontal load

and of bay width to storey height.

For multi-storey unbraced frames, combined loading is usually
the critical load case in design but little in the way of definite
guidance is available to designers. Part of the work described in
Chapter (2) attempts to distinguish at an early stage whether the
serviceability limit on sway or ultimate strength governs the

design under this loading case.

When deflection is found to be the governing criterion, then a
check is all that is required for ultimate strength. Rapid methods

for the calculation of the elastic critical load are available,
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thus avoiding the need for an 'exact' value of the rigid-plastic

collapse load. Such an approach makes the Merchant-Rankine formula

attractive.

The Merchant-Rankine formula and the modified version due to
Wood are subject to criticisms because they are empirical and
intuitive. Further, Wood's version is strictly applicable to clad
frames. Recent Design Recommendations(54,55) permit the use of the
modified Merchant-Rankine formula as an alternative to accuraté
computer methods for elastic—plastic analysis and design. This is
despite the fact that the basis of the validation of the
Merchant-Rankine formula rests on model frame tests, or theoretical
analyses on frames consisting of a few members only. This apparent
weakness was also recogniged in an extensive survey(l13) and so
further comparisons with computer analyses were made. However,
these were regarded as a pilot study and were restriéted to frames

that were only two bays in width and two storeys high.

Recently, Adam(46) demonstrated, by means of an unrealistic
slender frame, that the Merchant-Rankine formula is unsafe, but
because of the interest now being shown in the Merchant-Rankine
formula it is desirable that a study be made of its accuracy when

applied to realistic building frames.

One of the restrictions that must be observed when using the
modified ﬁerchant-Rankine approach is that frames must show a
combined rigid-plastic collapse, and other restrictions are also
imposed by the Design Recommendations. The accuracy of the formula

and the need for the restrictions are investigated in a parametric
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design study of medium-rise unbraced bare frames in the remaining
part of Chapter (2). Combinations of realistic horizontal and
vertical loads are adopted. The study provides an opportunity to
verify the Merchant-Rankine formula as a sound basis for the design

of such frames. Examples of designs are shown.

Chapter (3) attempts £o seek an alternative form of expression
which provides closer agreement with non-linear elasto-plastic
computer results. A suitable semi-empirical expression is presented
from the study of the 'deterioration' of critical loads of unbraced
frames. The accuracy of the expression is also compared with
published experimental results and a detailed design example is
provided. The estimated results are compared with the accurate

elasto-plastic analysis program of Majid and Anderson(4l).

Studies reported in Chapter (2) show that frame§ designed to
satisfactory sway lim%ts cannot be guaranteed to satisfy overall
ultimate strength. Therefore, the need arises for a method to
satisfy adequate strength under combined lSading. This should
provide information to the designer concerning the required changes

of member sections to strengthen a trial design.

An optimum design method is proposed in Chapter (4) which
makes use of the new expression developed in Chapter (3). It has
been mentioned that there is difficulty in determining an 'exact'
value of the rigid-plastic collapse load, but studies in Chapter
(2) have revealed a number of likely mechanisms under combined
loading. As a result, use is made of a finite number of

rigid-plastic collapse mechanisms as a basis for an approximate
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optimization design procedure. This contrasts with accurate
elasto-plastic analysis, where plaétic hinges are traced until
collapse occurs, which tends to be lengthy with high consumption of

computing time.

The proposed procedure relates the change in the approximate
failure load to increase in the overall weight in a particular
cycle of iteration. Examples of approximate and accurate
rigid-plastic analyses are compared for several rectangular and

non-rectangular frames.

The elastic—plastic.design method due to Anderson and Islam
discussed in Section (1.3) is not appropriate as a manual method,
but was found to be convenient on desk~top computers. The method
assumes an incomplete pattern of plastic hinges for the design of
multi-storey unbraced frames in recoénition of the drastic effects
of frame instability. Comparison with the design studies reported
in Chapter (2) shows tha£ the restriction of plastic hinges to the
leeward ends of beams is unnecessarily restrictive. Plastic hinges

tend to occur at mid-span as well before collapse occurs.

For single storey buildings, it is recognised that the use of
valley beams results in some frames being subjected at the eaves to
high concentrated forces due to vertical and wind loading. The
design of such frgmes by rigid-plastic theory may be unsafe due to

overall instability.

An approximate semi-analytical method to trace the development

of plastic hinges is described in Chapter (5). The proposal adopts
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an incremental step-by-step method of analysis. Suitable
expressions are derived using the slope~deflection equations to
evaluate the load level at which these hinges form. An appropriate
failure criterion based on a limited number of plastic hinges
occurring on two consecutive floor beams is proposed for
multi-stérey frames. It is shown that a multi-bay frame can be
treated as an equivalent single bay frame, and the procedure is
equally applicable to such structures. Initially, the problem is
demonstrated for a simple pinned base portal in which the
inadequacies of the plastic theory are illustrated for certain
types of single storey frames. Several design examples are shown

both for simple pinned base portals and multi-storey frames.

Beam-column connections are usually assumed as ‘fully-rigid'
or 'pinned'. However neither is true of bolted connections. Lateral
stiffness of unbraced frames depends on joint rigidity,'and
excessive sway deflection may occur due to inaccurate assumptions
of connection behaviour; Chapter (6) proposes a non-linear elastic
computer program for the analysis of frames with any combination of
pinned, rigid or semi-rigid connections. Non-linear moment-rotation
characteristics for any types of connection may be incorporated.
The effects of such connections on the sway deflection of frames
are shown. The influence of semi-rigid connections on the strengﬁh
of no-sway columns is examined and comparisons are made with

commonly-assumed values for effective length.
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CHAPTER 2

DESIGN STUDIES OF UNBRACED MULTI-STOREY FRAMES

2.1 Introduction

As shown in Chapter (1), the plastic design of plane unbraced
multi-storey steel frames is a relatively complicated task, because
of the néed to consider instability effects, For this reason,
computer-based methods are often the most appropriate. However, if
suitable computational facilities and software are not readily
available, then the Merchant-Rankine formula(44) provides an

attractive alternative for the design of such frames.

This formula has been discussed in Chapter (1), but for
convenience its form is repeated here. The load level at

failure, Ay , is given by,

1 = 1 + 1 (2.1)
)\mr )\C )\.P

where Ap is the load level for rigid-plastic collapse and Ac

denotes the lowest elastic critical load.

To allow for strain-hardening and stray composite action, Wood(50)

proposed that the formula be expressed as,

+ 0.9 (2.2)
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In this form, the formula has been included in a British draft Code

of Practice(55) and in European Recommendations(54).

It has long been recognised that although egquation (2.1) is
generally conservative, cases can arise in which this is not so.
These cases have not caused concern, however, because they arose

under unrealistically high ratios of side load to vertical load.

The main aim of this work is to assist the designer in
deciding whether ultimate strength.or the serviceability limit on
sway will be the major influence on choice of sections in an
unbraced multi-storey frame. This has been acccmplished by a

parametric study on a wide range of realistic frames.

Whereas Batten(34) conducted sensitivity studies on medium
rise steel frames using 'load factor' design, it is desirable that
the parametric studies be based on 'limit state’' design philosophy.

The study also provides the opportunity for an evaluation of

the accuracy of the Merchant-Rankine formula, in both its forms.

2.2 Design parameters

A total of forty three frames were examined in the studies.
The frames were rectangular in elevation, of four, seven and ten
storeys in height. The number of bays varied from two to four or
five bays. Typical elevations are shown in figure (2.1).-The storey
height was constant at 3.75 m but twb bay widths of 7.50 m and 5.00

m were considered. The frames were taken to be spaced evenly at
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4.00 m longitudinally and all bases were fixed. Although unbraced
construction provides freedom of layout in a building, it will
usually result in a higher weight of steel sections compared with
braced alternatives. The study was therefore restricted to ten
storeys because it is believed that unbraced construction would be
unlikely for structures of greater height. The variation in the
number of bays together with changes in wind speed were adopted to

enable a wide variation in wind shear per leg to be considered.

Details of the unfactored floér and roof loédings and the
basic wind speeds are given in table (2.l1). Horizontal forces were
calculated from the basic wind speeds by use of CP3: Chapter V:
Part 2(70). These forces were based on the total height of the
frame and were therefore of equal value at each floor level. The
force at roof level was taken as half that‘at an intermediate floor
level. The basic wind speed varied from 38 m/s to 50 m/s with the
appropriate S; factor corresponding to the height of each frame
shown in figure (2.1). S, factors were obtained from CP3: Chapter
V: Part 2, Table 3 assuming Category 3 and-Class B. The values
therefore correspond to a fairly exposed small town or the
outskirts of a large city.'s{ and S; factors were taken as 1.6.
Force coefficients are tabulated in Table 10 of CP3: Chépter V:

Part 2. The values used in the studies ranged between 1.2 and 1.4.

The wind code permits the designer, if he wishes, to use a
reduceé Qind speed below roof level, based on the actual height of
the storey considered. In the interest of simplicity, no advantage
was taken of this situation. On the éther hand, no allowance was

made for eccentricity of vertical loading arising from fabrication
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and erection tolerances given in Design Recommendations(54,55).
Also, no account was taken of the reduction in live loading

permitted in CP3: Chapter V: Part 1(71), for the design of columns.

The partial safety factors, Vs , were taken from the 1977
British draft steelwork Code(55). For loading at the ultimate limit

state, these are,

a)Dead load 1.4
b)Imposed load (in absence of wind) 1.6
c)Imposed locad (in combination with wind) 1.2
d)Wind load (in combination with imposed load) 1.2

The design strength of structural steel was taken throughout
as 240 N/mm’, to correspond to the appropriate grade 43 hot-rolled
sections. Young's modulus of elasticity was taken as 206 KN/mm2 .
Sway deflections due to unfactored horizontal wind load were to be
restricted to l/300tg of each storey height for the bare frame, in

accordance with recent Design Recommendations(54,55).

The maximum value of floor loading was combined with minimﬁm
values of wind loading and vice-versa. The results are shown in
tables (2.2) to (2.4). Several more frames with intermediate.values
of wind loading were also examined. The results are presented in
table (2.5). The procedure followed in the studies is described in
Section (2.3) and (2.4) below. Typical calculations are

demonstrated by means of an example in Section (2.6).
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2.3 Minimum design sections

Design Recommendations(54,55) require a frame to withstand a
higher level of vertical loading when full wind load is not
included in the loading combinations. Minimum sections were
determined, therefore, by designing against failure by beam-type
plastic hinge mechanisms or by squashing of the columns, under the

higher load factor appropriate to vertical loading only. Thus,

Design vertical load = ( 1.4 Gk +.1.6 Qy ) (2.3)

where Gy and Qi are the characteristic dead and imposed loads

respectively.

Universal beams were chosen for horizontal members, and Universal

columns for the vertical members.

2.4 Design under combined loading

To satisfy the limit on sway deflection at working load, the
minimum sections wefe increaéed as appropriate, using the methoé of
Anderson and Islam(59) described in Chapter (l1l). Column sections
were made continuous over at least two storeys, but the beam-
sections were changed at each floor level when the need arose. The
designs were @hen subjected to second-order elasto-plastic
analysis(@l) under the appropriately factored combined vertical and

wind loads as follows, i.e.,
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Combined design load = ( 1.4 G + 1.2 Qi + 1.2 W ) (2.4)

where Gk and Qi are defined above and Wy is the characteristic wind

load.

In the computer analyses, one half of the uniformly distributed
load is applied as a concentrated load at mid-span, and one half of
the remaining load is applied as a concentrated load at each end of
the beam. The verification of the accuracy of this program has been
given by Anderson(24), who made extensive comparison with

previously established work.

The failure loads, resulting from the elasto-plastic analysis,
denoted by A, are shown in tables (2.2) to (2.5). As the factored
loads were taken as the reference loads for the analysis, a value
of Ay 2 1.0 indicates that the factored load level for the
ultimate limit state under combined loading has been achieved. Such
a result therefore shows that ultimate strength under combined
loading was not the governing factor for the design of that

particular frame.

In order to make comparisons with the Merchant-Rankine
formula, the rigid-plastic collapse load, Ap , and the lowest
elastic critical load, A , were also determined. For convenience, Ap
was calculated by rerunning the elasto-plastic analysis program(4l)
with Youdg's godulus of elasticity given a very high value. AP can
also be obtained by the same analysis program with all the

stability '@’ functions given unit value.
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The accuracy of the values for Ap was checked by the present
writer by analysing some frames using a well—éstablished program
for rigid-plastic analysis owned by the University of Warwick. This
program is based on the work of Livesley(8), described in Chapter

(1).

The lowest elastic critical load, A, , was determined by using
a non-linear elastic analysis program(4l) in conjunction with a
modified Southwell plot. It should be noted that A, was
extrapolated from several position§ on the plot which were very
close to the critical load. These positions were characterised by
large horizontal deflections. The dead and imposed vertical loads
used as the basis for calculating A, , corresponded to the

relative values for combined loading, i.e. ,
Vertical load for Ac¢ = ( 1.4 Gk + 1.2 Qg ) (2.5)

These were coupled with a small horizontal disturbing force applied
at roof level. The accuracy of the results-for Ac was checked by
the present writer by recalculating some values using the charts

due to Wood(50).

Finally, the failure loads were calculated from equations
(2.1) and (2.2). Values obtained are given in tables (2.2) to (2.5)

denoted by Apr and Apry respectively.
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2.5 Governing design criterion under combined loading

The failure loads, X¢ are plotted in figures (2.2), (2.3) and
(2.4) against the ratio of the sum of the column axial forces, V,
to the corresponding total column wind shear, H, in a storey. The
ratio of V/H are averaged over all storeys of the frame. The values

of V and H were calculated using the factored combined loads,

<
"

2( 1.4 Gk + 1.2 Q) (2.6)

2]
"

21.2 Wi (2.7)

The results correspond to the two values of the ratio of bay width

to storey height.

For the ten storey frames, figure (2.4), the tendency is
clear. With high values of V/H, one should design first for
ultima;e strength. Two curves have been drawn to show this tendency
and they can be useddto predict the likely governing criterion for
a particular frame. However, some pairs of-results, taken in
isolation, would indicate a reverse tendency and these need to be

examined separately.

Consider the cases indicated by (a) and (b) in figure (2.4).
They both correspond to two bay frames, with a bay width of 7.50 m,
and were subject to the maximum values of imposed load. The frames
are indicéted in table (2.5). Intermediate wind speeds were chosen,
the wind loading on (a) being 10% lower than that on (b). However,
because of the limited number of sections available, the two.

designs were very similar; A, for (a) was only 5% lower than that
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for (b). It is not surprising, therefore, that frame (a) showed a
slightly higher failure load even though the ratio of V/H was
greater than that for (b). The higher failure load of frame (c)
compared to frame (d) arises in a similar manner. These frames are

indicated in tables (2.5) and (2.4) respectively.

The results for the seven storey frames shown in figure (2.3)
are of a form similar to those described abové, but those for
points (e) and (f) should be examined further. The frames are
indicated in table (2.3). Both theﬁe cases correspdnd to maximum
imposed load combined with minimum wind speed, frame (e) having
four bays while frame (£) had five bays. In both cases, the wind
shears per bay were very low, therefore, the minimum sections were
identical. The sections chosen to withstand vertical loading were
also sufficient to satisfy the limit on sway. Due to the lower
column shear in the five bay frame, this showed a siightly higher
value of Af . As the curves on figure (2.3) are to show the
influehce of sway de%lection on a design under combined loading,
the design curves have not been extendéd to cover such frames whose

sections are uninfluenced by this criterion.

If the bay width is 5.0 m (r = 1.33), the four storey frames
given in figure (2.2) shows the same general behaviour as thé
iarger structures. However, except for two cases, the frames with
the wider bay; showed only a small variation in Ajf , despite
large variations in the ratio of V/H. This is due to the strong
influence of vertical loading on such relatively low frames. Only
in case (g) in figure (2.2) which was tgo bays wide and subjected

to minimum vertical loading, was the wind loading sufficiently high
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to fequire an increase above the minimum sections in order to
satisfy the limit on sway. The curve showing the influence of sway
deflection as a design critefion under combined loading is
therefore applicable only to frames with low ratio of V/H and has
been drawn accordingly in figure (2.2). However, it is interesting
to note that for higher values of V/H, A; exceeds unity, showing
that the minimum sections provide adequate strength under combined

loading. For such cases, strength is the governing criterion in

design.

2.6 Design examples

Two examples are shown to demonstrate the earlier results
referred to in the design charts. The first example is a seven
storey frame and the results have been used to drawAthe curve in
figure (2.3). The second example is a six storey, two bay frame
with similar loads and properties to those examined in the
parametric studies. This is shown to illustrate the application of

e
the charts given in figures (2.2)-(2.4) to other frames similar to

the ones examined here.

2.6.1 Seven storey two bay frame

The frame shown in figure (2.5 (a)) is subjected to the
unfactored maximum vertical dead plus imposed floor loads given in
table (2.1). The basic wind speed was taken as 38 m/s with a force
coefficient, C¢y=1.2. The dynamic wind pressure, q, was found to be

0.782 KN/mZ and therefore the applied characteristic wind load at
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each floor level is given by,

o
]

C; . q . longitudinal spacing . storey height

(1.2 x 0.782) x 4.0 x 3.75

14.076 KN. (2.8)

The sums of the factored combined loads using equations (2.6) and
(2.7) for vertical and horizontal loads respectively are shown
alongside those of the characteristic dead plus imposed plus wind
loads. The average ratio of V/H, célculated in advance was equal to
46.54. With this value, figure (2.3) indicates that the frame will

not be governed by strength under combined loading.

The initial procedure is to calculate the minimum beam and
column sections required to sustain the factored values applicable
to dead plus imposed vertical load only, as given by equation
(2.3). These minimum sections have been obtained using simple
plastic theory with ehecks made against‘squashing and are chosen
from the range of British universal sections, with a design

strength of 240 N/mm? .

a)Roof beam

w = 30.6KN/m

Zpb - Mpb/fy W
= 30.6 x (7.5) x 1000 Mpb Mpb Mpb
16 x 240
_ 3

448.2 cm

Propose 305 x 102 x 33 UB (Mp = 115.2 KN.m)
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b)External roof column

w=30 6KN/m

OO YO ™

Mpc + 3Mpb = WLZ /4 MpC Mpl;
2 Mpo
Mpc = 30.6 x (7.5) - (3 x 115.2)
4
= 84.7 KN.m
Zpe = 353.0 cm®
Propose 203 x 203 x 52 UC (Mp = 136.3 KN.m)
c)Floor beams
Zpb = 58.8 x (7.5f x 1000 | W =58 8 KN/m
16 ¥ 240 = OO
KZ\O/'
pb Mpby
=861.3 cm’ Mpb P
Propose 406 x 140 x 46 UB (Mp = 213.2 KN.m)
d)External floor column
ZMPC + 3Mpb = WL2 /4
w 58.8KN/m
Y NN YY)
Mpe = 1 [58.8 x (7.5% = (3 x 213.2)} Mpe <
2 4 M — M
pec Mph P>
= 93.6 KN.m
Zpc = 390.2 cm’

-
Propose 203 x 203 x 52 UC (Mp = 136.3 KN.m)

The columns are taken to be continuous over at least two storeys to
reduce fabrication costs. Checks are therefore required for the
lower length only to resist squashing in the internal columns and
combined bending and axial load in the external columns. As
patterned loading has not been considered, it was decided that iﬁ
the top two storey the internal columns should not have a section

less than that of the external columns.
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External column

storey axial load seétion
(KN.)
6 335.4 203 x 203 x 52 UC
4 776.6 203 x 203 x 60 UC
1 1438.3 254 x 254 x 73 UC

Internal column

storey axial load section
(KN.)
6 670.7 A 203 x 203 x 52 UC
4 1553.0 203 x 203 x 60 UC
1 2876.6 254 x 254 x 107 UC

The initial minimum sections are shown in figure (2.5 (b)). The
method of Anderson and Islam(59) is then employed to increase the
preliminary sections as necessary in order to limit sway at working
load., It is recalled that the method of Anderson and Islam provides
a minimum cost desigﬁ. Strictly, this requires iteration for
calculation of the cost factor, 'k'. It is-assumed that all cost

factors take the value of unity.

As column sections are spliced at every two storeys, it is
only necessary to consider three different sub-assemblages. These
are for the top(n=0), n=2 and n=4 sub-assemblages as indicated in

figure (2.5 (a)). Calculation was carried out using the following

data,

s = H/m 14.076/2 .

7.038 KN.
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All k's = 1.0 .

r = Bay width / storey height = 2.0 .

Maximum deflection = 1/300th of each storey height.

A 12.5 mm.

Young's modulus of elasticity, E = 206 KN/mmz .

where H characteristic wind load at floor level,
m = number of bays,

k = cost factors,

n = integer shown in figure (2.5 (a)).

For the intermediate sub-assemblage, the theoretical inertias are

given by,

Internal column

I, = 600.6 [2n + 3 + 2 [(n+l.5) (4n+6) | ‘ (2.9)

It is noted that a typographical error exist in one of the
equations given by Anderson and Islam(59).for an intermediate

storey of a regular frame. Equation (20) in Reference (59) should

read,

I; = s.h |2n+ 3 +r / 2m(n+1.5).(k (n+1.0) + k,(n+2)]
kqy(m=1) + kj

Equation (2.9) given above is correct.

Lower beam

I, =  2402.2 (n+2) I, (2.10)
I, - [ 1201.1 (n+1.5) ]
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Upper beam
I; = (n+l) I, /(n+2) (2.11)

For the bottom sub-assemblage, the expressions for the required

inertias, with all k's =1, are,

Internal column

I; = 1201.1 {n + 1.5 + 1.2 [(n+l.5) (3n+5) | (2.12)

Lower beam

I, =[(15614.5 n) + 30628.4 - I3] I3 (2.13)
6 [I; =~ 1201.1(n +1.5) ]

Upper beam

I; = [(n+l) (I; + 61, )1/(6 (n+2)] ' (2.14)

It can be shown that strength under vertical loading only usually
controls the design for the top sub-assemblage and the design for

this storey is therefore not required.

Design of the bottom two storeys is governed by the storey
next to the bottom to avoid reverse column taper which would
otherwise result from the stiffness of a fixed base. Separate

expressions for pinned bases are also given in reference (59).

Ideally, the external column inertia should be taken as I,/2,
but owing to the discontinuous range of available sections, the
selected member is unlikely to observe this. criterion. The same
kind of difficulty also arises when selecting sections for other

members. This apparent weakness in the method is recognised but
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should not decrease greatly the specified sway limit. This is
because increased column stiffness can be offset to some extent by

reduced beam stiffness and vice-versa.

For example, the value of I; used to calculate the beam
inertias I, ;nd I, can be based on the column section selected,
rather than on the theoretically required value for I; . The
reverse procedure, in which a beam section is selected and then
used as the basis of the column design, can be seen by examining
the detailed design of the lower (néz and n=4) sub-assemblages.

In the fourth storey (n=2), equation (2.9) gives I3 =12613 cnf
This is greater than the minimum section (I1=6088 cm® ). Initially,
a 254 x 254 x 89UC (I=14307 cm® ) is adopted. Using equation

(2.10) for the lower beam gives I, =13607 cm‘

which is less than
the inertia of the minimum beam section provided (I=15647 cm* ).
The minimum beam section (I=15647 cnf ) is retained. Using equation
(2.10), a reduced column section can be obtained by solving for I,

With I, =15647 cm* , equation (2.10) gives I; =10894 cm” .

Therefore, a 254 x 254 x 73UC (I=11360 cm® ) is adopted for the

internal column.

Using equation (2.12) for the bottom sub-assemblage (n=4), the
internal column, I3 =19329 cm®* , which exceeds the minimum section
inertia (I=17§10 cm*” ). Adopting a 254 x 254 x 132UC (I=22416 cmL )
results in the lower beam, I, =16700 cm® using equation (2.13).
This value exceed the minimum of 15647 cm” . Instead of altering
two different sections,'it was decided to increase the beam section

only from a 406 x 140 x 46UB (I=15647 cm“ ) to a 457 x 152 x 52UB
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(I=21345 cm” ). Using the effective stiffness of I, =21345 cm‘ and
solving equation (2.13) gives I3 =16449 cm” ; which is less than
the value (I=17510 cm® ) provided by the initial minimum section.
This column section is therefore retained. With I; =17510 cm“ and
I,=21345 cm® , the required stiffness for the upper beam is found
to be I;=20219 cm® , using equation (2.14). The same section as the

lower beam (I=21345 cm” ) was adopted.

The final sections are shown in figure (2.5 {(c¢)). It is
noticed that some of the minimum séctions have been retained. The
minimum sections were sufficient to provide the required stiffness
against sway deflection. This is not surprising, becausé with such’
relatively heavy vertical load, strength under vertical loading
only would be the major influence in design but is not necessarily
the most critical. This is shown by the stiffer internal columns in
the fourth and fifth storeys and the beam sections for the lower
two floors. The sum of the horizontal shears at these levels is
significant in and ié beginning to affect the choice of sections.
Finally, to confirm figure (2.3), the frame is now subject to a

non-linear elasto-plastic analysis(4l). The failure load was found

to be 1.01.

2.6.2 Six storey two bay frame

In order to demonstrate the application of the proposed design
charts to other frames, a six storey two bay structure has been
designed and shown in figure (2.6 (a)). The frame is spaced

longitudinally at 4.50 m and the average ratio of V/H is 31.5. The
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following values have been adopted for this design,

Gk (roof) = 3.75 KN/m?,
Q (roof) = 1.50 KN/m? .
Gk (floor) = 4.80 KN/m?.
Q« (floor) = 3.50 KN/m?.

W, = 1.005 KN/m?,
All k's = 1.0 .

r = 6000/375 = 1.6 .

Maximum deflection 1/300th of each storey height.

LA

12.5 mm.
Young's modulus of elasticity, E= 205 KN/mm2 .

Steel design strength = 240 N/mmz.

It should be noted that as the frame is six storeys high with a
value of the ratio of bay width to storey height that is different
from the two values plotted in figure (2.2) to (2.4), strictly none

of these diagrams apply. However, they can be used as a guide by

allowing interpolation. <

Figures (2.2) and (2.3) suggests that ultimate strength will
not be the governing criterion in the choice of sections under
combined loading for this frame. The reason is due to the
relatively high horizontal locads in comparison to the
simultaneouslg applied vertical loads. Proceeding in a similar
manner asbthe first example, the final design was obtained and
shown in figure (2.6 (b)). It should be noted though that after
design using the method of Anderson and Islam(59), the sections

were adjusted to achieve greater economy by using the analysis
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method of Wood and Roberts(60), with the cladding stiffness

parameter, S, taken as zero.

The latter method can be usefully adopted in this way because
it does not rely on fixed relationships, such as equations (2.9) to
(2.11), between the inertias of beams and columns. Sway
deflections, predicted by the method of Wood and Roberts, at the
working load are shown alongside figure (2.6 (b)). Comparison of
sway deflection with computer analysis showed good agreement and
the design was also found to possess adequate strength under
combined loading. The failure load obtained by computer analysis
was 1.09. This confirms the initial prediction from the proposed
design chart that ultimate strength under combined locading would

not be critical for design.

2.7 Verification of the Merchant-Rankine formula

The failure load from equations (2.1) and (2.2) are given in

-

tables (2.2) to (2.5) under the heading Amr and Anrw
_respectively. The ratio of AC/AP varied from 3.2 to 16.2, thereby
covering the range 4 ¢ Ac/Ap < 10 proposed(50,54,55) for use of
the Merchant-Rankine formula. In all cases, Amr was below the

failure load obtained by second-order elasto-plastic computer

analysis.

The tables also indicate the rigid-plastic collapse

mechanisms, denoted by,
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B Simple beam-type collapse mechanism.
S Column sway mechanism.
C Combined mechanism.

It has been stated(54,55) that the Merchant-Rankine formula should
be used only when the rigid-plastic collapse mode is mechanism C,
in order to prevent the deliberate choice of a strong-beanm,
weak-column design with its attendant stability problems(50). A
combined mechanism cannot, however, be guaranteed when analysing a
trial design and the requirements for such a mechanism will
restrict the application of the Merchant-Rankine approach. The
results shown in tables (2.2) to (2.5) indicate that Apr provides
a safe result, irrespective of the shape of the rigid-plastic
collapse mechanism. This represent a significant departure from the
theoretical justification proposed by Horne(25). It is the opinion
that the limitations on sway of each storey, already included in
Design Recommendations(54,55), together with the need to achieve
-economy in steel weight‘and structure height, will be sufficient to

cause engineers to avoid strong-beam, weak-column designs.

For several frames, equation (2.1) provides a result that is
not unduly conservative. However, the Merchant-Rankine failure load
can be as low as 86% of the accurate cémputer result., From the
elasto-plastic computer analyses, one can tabulate the load
factor, Ay , at which the first plastic hinge formed. Tables (2.2)
to (2.5) sth that for a number of cases in which column sway
formed the rigid-plastic collapse mechanism, Apr is so
conservative that it lies below A, . This occurred particularly in

the four storey frames and frames with the maximum number of bays
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where strength under vertical load only controlled the design. It
was the possibility of unduly conservative results that led

Wood(50) to propose the modified formula given by equation (2.2).

The values of Apryw tabulated in tables (2.2) to (2.5) show
that equation (2.2) provides good agreement with the accurate
computer result. It tends to overestimate the accurate failure load
when collapse is by a local beam-type plastic hinge mechanism, but
by no more than 7%. It must also be noted that when the collapse
mode took this form, the failure load, Ay , was always gréater
than the required value of 1,0. This resulted from the higher
partial safety factors specified for vertical déad plus imposed
load only which were used in the initial design of individual beams
and columns. As this loading case provided a lower bound on section
size, an error in Ampry Wwill not lead the designer to reduce such

sections in an unsafe manner.

The same error of about 7% was shown by a ten storey, two bay
frame in table (2.4), for which the rigid‘blastic mechanism was
bottom storey column sway. In all other cases, the agreement
obtained from equation (2.2) and the accurate computer analyses was

very good, the maximum error being only 4%.

2.8 Slendef-bay frames and irregular-bay frames

As described in Chapter (1), early studies by Salem(45) and
Low(48) showed that equation (2.1) was particularly conservative
when side loads were small compared with the simultaneous applied

vertical loads. On the other hand, Ariaratnam(49) demonstrated that
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the formula can become unsafe when the side load is substantially

higher than those normally encountered in practice.

" More recently, Adam(46) found that the Merchant-Rankine load
can overestimate the accufate failure load when the side loads are
small compared with the vertical loads. The frame examined by
Adam(46) was a fixed base, six storey, single bay frame shown in
figure (2.7). It was composed of European steel sections and
designed using an overall load factor rather than the partial

safety factors of limit state design.

It will;be noticed that the bay width is only half the height
of one storey. Despite the extremely unusual nature of the frame,
Adam used it to argue that the Merchant-Rankine formula is
unreliable and, by implication, that it should not be included in
Design Recommendations. It should be noted that Adam took care to
ensure that rigid-plastic collapse occurred by a combined mechanism
and that the ratio of Ac/A, were between the limits of 4 and 10
required for use of the formula. No plastic hinges were present in
the frame at working load and at this load level the overall sway

deflection did not exceed 1/300th of the total height.

To investigate this matter further, the frame shown in fiqure
{2.7) was redesigned using British steel sections in grade 43
steel. The reason for selecting such sections was the absence of
the coefficients required for calculation of the reduced plastic
moment capacity in European section tables. These coefficients are
necessary for the evaluation of collapse loads by the second-order

elasto-plastic analysis program(4l). Young's modulus of elasticity
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was taken as 206 KN/mmz and the design strength was 240 N/mm2 .

At unit load factor, the linear elastic sway deflection was
not to exceed 1/300th of each storey height(55). To compare
directly with the results obtained by Adam and to obtain a

satisfactory design, the following design criteria were adopted,

a)Under combined dead plus live plus wind load, the frame
should not collapse until the load factor exceeded 1.40.
b)Under vertical dead plus live load only, collapse

should not occur until the load factor exceeded 1.75.

In order to achieve this, the following restrictions were

imposed(42),

c)Plastic hinges should not form in beams until the load
factor reached 1.00.

d)Under combined loading, plastic hinges should not form
in columns until the load factor reached 1.40.

e)Under vertical loading, plastic hinges should not form

in columns until the load factor exceeded 1.75.

The preceding criteria were satisfied by successive analysis.and
redesign(42) using the computer. The final sections are shown in
figure (2.8 (;)) along with the resulting sway deflections at unit
load factor, given by linear elastic computer analysis under
combined loading. For comparison, the values in square brackets
were thése obtained when the reduction in frame stiffness due to

compressive axial forces were considered in a non-linear elastic
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analysis(41). It is interesting to note that the difference between
the linear and non-linear deflections is significant, even at
working load. In fact, some of the non-linear values exceed the
limit of 1/300th of storey height. However, the overall non-linear

elastic deflection is less than 1/300th of the total height.

The results of the non-linear elasto-plastic computer analysis
of the final design are shown in figure (2.8 (b)). The
rigid-plastic behaviour with reduction in the plastic moment
capacity due to axial forces (but ﬁeglecting the effect of such
forces on the overall stiffness of the frame) is shown in figure

(2.8 (¢)).

In order to determine the Merchant-Rankine failure load, the
lowest elastic critical load factor was obtained using non-linear
elastic analysis under the loading shown in figure (2.8 (d)). The
frame was excited at the roof level by a horizontal force of A KN,
and a modified Southwell plot used to calculate A, . It was found
that Apr and Apry was respectively 8% and 18% higher than the
accurate failure lcad given by second-order elasto-plastic

analysis. These values are similar to those obtained by Adam.

The relative dimensions and loadings chosen by Adam, however,
are likely to be approached only in the design of sheltered racking
systems for use in large storage warehouses. Indeed, bracing would
usually Be provided across the single-bay depth of the structure.
To guard against the possibility of a designer attempting to use
the Merchant-Rankine formula on such unusual structures, it is

proposed that the formula be used only when the bay width is not
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less than the maximum height of one storey.
B

To examine this proposal, the bay width for the structure
shown in figure (2.7) was increased to 5.00 m, to equal the storey
height. The frame was then designed to satisfy the sway deflection
limit of 1/300th of each storey and also to meet the requirements
(a) to (e) described above. The frame was then subjected to the
computer analysis procedures in exactly the same manner as for
figure (2.8). The results of the final design and values of sway
deflection at unit load factor utiiising linear elastic analysis
are shown in figure (2.9 (a)). The computer analyses for A . Ap
and A, are indicated in figures (2.9 (b)), (2.9 (¢)) and (2.9 (4))
respectively. It was found that Apr now underestimated A¢ by

5% while Ap,, Overestimated A by 3%.

For multi-bay frames, it is proposed that the formula be
allowed, providing the average bay width is not less than the
maximum value of any storey height. A frame that just satisfies
this requirement is shown in figure (2.10)< Once again, it was
specified that the sway at each storey due to the unfactored
horizontal loads should not exceed 1/300th of each storey heighé
and the conditions listed from (a) to (e) be observed. However, a
combined mechanism for rigid-plastic collapse was not insistea on,
and the design:selected exhibited a sway mode in the bottom storey.
The results of their respective analyses are shown in figure
(2.10), the ratio of Ac/Ap being 4.18. The sway deflections at
working load were found to be well within the limit specified. The
first column hinge developed at a load factor of Acol=l.44.

Comparisons with accurate elasto-plastic analysis showed that Amr
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underestimated Ay by 5% and Apry oOverestimated Ay by 4%.

2.9 Conclusion

Studies carried out on practical multi-storey, unbraced frames
have enabled guidance to be given on the relative influences of
sway deflection and ultimate strength as design criteria under
combined loading. These frames have been subjected to realistic

values of vertical and horizontal loads that are normally

encountered in practice.

The procedure followed in the studies has been illustrated by
the design of a seven storey frame. The design charts which
resulted from the study have also been applied to a six storey
frame. Interpolation was necessary, but the example showed that the

correct guidance had been given to the designer.

The studies have also shown that the Merchant-Rankine formula,
given by equation (2.1), provides a safe ;;timate of the non-linear
elasto-plastic failure load, As , for frames of realistic
dimensions which satisfy a serviceability limit on sway of 1/300th
of storey height, and are designed against premature collapse by
simple beam-type plastic mechanisms. The modified formula given by
equation (2.2) generally provides better agreement, but in some
cases, the predicted load exceeds Af . However, the excess load

capacity is relatively small with a maximum error not greater than

7%.

The computer program(4l) used to calculate the failure lcad
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ignores the beneficial effects of strain hardening and stray
composite action. The accuracy of the formulaﬂis not significantly
affected by the form of the rigid-plastic collapse mechanism, and
the present insistence on a combined mode of collapse is
restrictive and difficult to observe, It is proposed that this
requirement be removed from Design Recommendations, providing it is
stated that each storey should satisfy a serviceability limit on
sway of 1/300th of storey height. Furthermore, the studies
presented are limited to structures not greater than ten storeys as

larger buildings are likely to be braced.

It has been confirmed that even the original Merchant-Rankine
formula can overestimate the accurate failure load for very tall
slender frames. Such unusual frames, in which the bay width is less
than the height of one storey and the wind loading is exceptionally
low in relation to the simultaneously applied vertical load, would
be braced and usually erected in large sheltered or enclosed
storage warehouses. In addition, the lower columns are normally
reinforced or stiffened to prevent accidental impact by mechanical
lifting devices. However, to guard against the possible use of the
Merchant-Rankine formula on such exceptionally slender frames, it
is proposed that the formula should not be used when the bay width

is less than the greatest height of one storey. .

For mulgi—bay frames with unequal bays, the average bay width
should bé compared with the storey height. Two examples that
satisfy this requirement showed that the Merchant-Rankine approach
continues to provide close estimates of the failuée load obtained

by accurate computer analyses.
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Loading Maximum Minimum

, 2 2
Dead on roof 3.75 kN/m 3.75 kN/m
Super on roof 1.50 1.50
Dead on floor 4.79 4.79
Super on floor 5.00 2.50
Basic wind speed 50 m/sec 38 m/sec

Table 2.1 Loading Values




Min, vertical : max, wind Max, vertical : min, wind
A A e Ia | Mech || A A A la Mech
4 storey frames 1 £ - mr | ‘mrw 1 £ = nr mrw
A P p
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3 .
: 2 bay || 1.00] 1.30]11.38 | 1.23| 1.34 B |/0.94]|1.20 |6.56 | 1.07| 1.17 B
3 3 bay 0.90{1.08 |5.37 [ 1.01]| 1.10 C
S _
- 4 bay \ ' 0.86{0.92 |3.34 | 0.81]0.88 | s
&
-E 5 bay || 0.91] 1.13] 5.34 | 1.07| 1.16] ¢ |[0.89]0.96 |3.19 | 0.83] 0.89 S
>
[}
m

Table 2.2 Four Storey Frames




Min, vertical : max. wind

Max. vertical : min. wind

A

A

7 storey frames A A c A A Mech || A A c | A A Mech
1 £ T mr | mrw 1 f ' ar mrw
P p
3 bay 0.87] 1.10} 12.82]1.07 |1.15| B 0.82]1.01 {5.66 | 0.94] 1.02 | C
n
~ bay 0.78/0.89 |4.74 | 0.82] 0.89 | C
Ko
)
3 bay 0.87/0.97 }4.48 | 0.89) 0.96 | S
=
ey bay 0.81f 0.95| 5.06[0.88}0.96| C 0.92/0.99 |4.36 | 0.89| 0.96 | S
/m . . .
g bay 1.09} 1.39| 16.59]1.34}1.42} B 0.88/1.15 | 7.98 | 1.09{ 1.20| B
g bay 0.91}1.04 |5.30 | 0.98| 1.07} s
b A
= bay ) 0.8310.99 | 4.11 | 0.90] 0.98 | S
o .
o . :
i bay 1.04) 1.26] b5.781.146)1.24| B 0.88/1.0313.98 { 0.92] 1.00| S
oy
=]

Table 2.3

Seven Storey Frames

(e)

(1)



Min, vertical

:+ maxX. wind

Max. vertical : min, wind

| A A
Mech
10 storey frames )\1 A Tc_ lmr }\mrw Mech || A, A _is_ - Amrw e
p P
o 2 bay |{ 0.88] 1.11}15.33 }1.08 |1.15] B 0.84] 1.0} 6.02| 0.96] 1.05 c
2
= 3 bay 0.81]| 0.96] 4.67| 0.88] 0.96 C
3
= 4 bay || 0.91] 1.04| 6.57 {0.97 |1.06| C 0.78| 0.91] 3.87f 0.82] 0.89 S
®
«Q
B 2 bay || 1.15| 1.40|14.90 {1.33 | 1.42] B 0.93| 1.10| 8.07} 1.07} 1.18 S
g
A 3 bay 0.93] 1.02f 6.19} 0.95] 1.04 S
’s N
o 4 bay || 1.03] 1.24] 8.23 {1.19 | 1.31| B 0.90| 1.02f{ 4.56{ 0.92} 1.00 S
3
>
6
[
Table 2.4 Ten Storey Frames

(d)



Frame Bay Vert | Wind load xl Af XE Amr Amrw Hech
width | load P
(mm)
4 storey 2 bay 7500 Max. | Intermediate | 0.86}1.03]5.82|0.95]1.03 c
4 storey 3 bay 7500 Max. Max. 0.8110.94|5.720.89} 0.97 S
4 storey 5 bay 7500 Max. Max. 0.96 1 1.03} 4.88]0.93]1.02 S
7 storey 2 bay 7500 Max. Intermediate | 0.79 | 1.00|6.15 | 0.94] 1.03 C
7 storey 5 bay 7500 Max. Max. 0.7910.8914.63|0.8310.91 S
10 storey 2 bay 7500 Max. | Intermediate | 0.87 | 1.05]8.07 |1.02]1.12 B
10 storey 2 bay 7500 Max. Intermediate | 0.89]1.08|7.64]1.02(1.12 B
10 storey 3 bay 7500 Max. Max. 0.89 1;04 6.41]10.99| 1.08 B
\
10 storey 2 bay 5000 Max. | Intermediate | 0.94 | 1.06|5.780.99 ] 1.08 S

Table 2.5

Various Frames

(b)

(a)

(c)
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CHAPTER 3

SEMI-EMPIRICAL METHOD OF DESIGN

3.1 Introduction

The parametric study presented in Chapter (2) confirmed the
conservative nature of the Merchant-Rankine formula when realistic
combinations of horizontal and vertical load were abplied. In some
cases, though, the formula is so conservative that the
Merchant-Rankine failure load could be below the load level at

which the first plastic hinge forms in a computer analysis.

Wood(50) proposed a modified relationship to make some
allowance for strain-hardening and stray composite action. This
form of the equation will also offset the tendency to underestimate
the load level at failure, It has been stated in Design
Recommendations(54,55) that the modifiedjformula should be used
only when rigid-plastic collapse is by a combined mechanism, and
the parametric studies given in Chapter (2) showed that failure
using this formula varied between 97% and 104% of computer ;esult

when this restriction was observed.

In practice, the designer will frequently wish to analyse a
trial set of sections which already satisfy criteria such as
adequate stiffness at working load, and a combined mechanism cannot
therefore be guaranteed. When the figid;plastic collapse mode was

unrestricted, the study showed that the modified failure load could
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now exceed the computer result by as much as 7%. This overestimate
was accepted because the modified form strictly applies only to
clad buildings, whilst the computer analyses were on bare frames

and strain-hardening was neglected.

It is recognised, though, that some engineers will prefer not
to rely on strain-hardening and cladding to ensure adequate
strength, and also that certain kinds of structure have minimal
composite action. Therefore, the need arises for the development of

an empirical method for estimating the failure load.

This Chapter attempts to seek an alternative expression for
the Eailure load which will retain the simplicity of the
Merchant-Rankine approach, but will provide closer agreement with
computer analyses on bare frames, irrespective of the shape of the
rigid-plastic collapse mechanism. Whereas Wood(50) used a single
factor of 0.9 to allow for the beneficial effects of
strain~-hardening and composite action (as well as the conservative
- tendency of the original Merchant—Rankiﬂg formula), such effects

may best be included as optional items to enhance the basic

strength of the frame at the designer's discretion.

3.2 Deteriorated critical loads of frames

WOod(go).demonstrated that the tangential rotational
stiffness, of beams bending in symmetrical double curvature,
reduces from 3kp to 0.75k|, when a pin is inserted at one end of the
beam (k;, being defined as the nominal beam stiffness In/Ly). A pin

inserted at mid-span, coinciding with a point of contraflexure in
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the original buckling mode, does not affect the rotational
stiffness of the same beam. When a second pin is inserted, the

rotational stiffness becomes zero.

An analogy can be made with a full plastic hinge rotating in
the same direction at constant moment. The contribution of a beam
with two such hinges towards the overall frame stiffness is
similarly zero. When such beams are present at consecutive floors
of a multi-storey frame, the effect on stiffness can be visualized;
the columns are converted to free-standing 'poles' of length

greater than the original column length.

Frame instability is not confined to any individual member but
concerns the overall behaviour of a frame. Wood(26) proposed the
term 'deteriorated’ critical load, Aget which controls and defines
frame instability, and is the critical load at which the overall
stiffness of the remaining elastic parts of the structure becomes
zero. It follows that the 'deteriorated' critical load of a
structure with a mechanism of hinges is zero. However, it was
recognised that because of instability effects, it may not be-
necessary for there to be a complete mechanism of hinges in the

frame for the stiffness to be reduced to zero.

As an example, consider the well-designed four storey
rigid-jointed. single bay frame of Wood(26) shown in figure (3.1).
The frame is subjected to combined horizontal and vertical loading.
The sway deflections at working load ranged between h/503 to
h/1134, well within the usual limits for a bare frame.

‘Deteriorated’ critical loads were calculated by Wood(26) for
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various possible combinations of plastic hinge locations as shown
in figures (3.1 (a)) to (3.1 (f)). They have been recalculated by
the present author during a study of the deterioration of frame
stiffness. The minimum design load factor for rigid-plastic
collapse of the frame was also given by Wood as 2.15. It is noted
that the loads used in this example are based on an overall load

factor. Therefore, a load factor of unity corresponds to the

working load.

To calculate the 'deteriorated' critical load, the plastic
hinges were replaced by inserting idealised pins at the
corresponding positions in the frame. In each case, the system of
loads acting on the frame was identical to that shown by figure
(3.1 (a)). The frame was excited at the roof level by a small
disturbing force. A non-linear elastic computer program was used
under increasing load to obtain the load/displacement curves. At a
certain multiple of the load factor, loss of equilibrium occurs
when the external disturbing force, however small, will give rise
to theoretically infinite displacement. fhe stiffness of the frame
has been reduced to zero and the ‘'deteriorated' critical

load, Agey  has therefore been found.

The original elastic critical load was found to be 12.9. This
‘value indicates that instability effects at the working load were
insignificant. When a pin is inserted at mid-span of the third
floor beam, the ‘deteriorated' critical load, Aget . remains
unchanged from the original critical load. This validates the
comment made above that a pin occurring at a point of contraflexure

will not affect the tangential rotational stiffness of a member.
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The elastic buckliﬁg mode for unbraced frames inevitably involves
sidesway. The corresponding load/displacement curve(a) is shown
which tends to infinity at the elastic critical load. A number of
curves for different combinations of pin patterns can therefore be

obtained.

For example, the pattern of pins shown in figure (3.1 (e))
causes A(pt to drop to approximately one-fifth of the original
critical load. This is not surprising because the three lower
column lengths, with no intermediate restraints from beams, have
been converted to a single length of three times the storey height.
Finally, the last pattern of pins gave a value of the
'‘deteriorated' critical load of 2.0. The corresponding
load/displacement curve(f) is plotted as shown. Other combinations
of pin patterns lead to values of Aget that may be higher or
lower than those shown. From the pattern of pins shown in figure
(3.1 (£)), it becomes clear that a collapse mechanism is unlikely

to occur, thus preventing the rigid-plastic collapse design load of

—

2.15 being reached.

To verify the concept of 'deterioration' of frame stiffness, a
non-linear elasto-plastic analysis was carried out on the frame of
Wood. The complete load/displacement behaviour is shown in figure
(3.2). Each point on the curve corresponds to the order of plastic
hinge formation shown by the frame in the figure. The sequence is
shown ringed in the upper diagram and the load levels at which

these plastic hinges formed are shown on the curve.

Failure occurred at a load level of 1.91 corresponding to the
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pattern of pins shown in figure (3.1 (f)). At{this stage, the
residual stiffness is represented by its 'deteriorated’' critical
load of 2.0, which is very close to the current value of the rising
load factor, A , on the applied loads. Above a load level of 1.91,
the non-linear elasto-plastic analysis program was unable to locate
any further hinges whilst still maintaining equilibrium, and

collapse was assumed to have been reached.

At this load level of 1.91, several partially-plastic zones
were observed in the computer analysis. The location of these zones
correspond to those indicated by Wood(26). Ratios of the

appropriate moments at these zones are shown as follows,

Location M/M(yield) M/Mp
a)Roof beam - mid span 1.09 0.95

b)Third floor beam - leeward end 1.04 0.91

c)Second floor leeward column

i)Top end 1.22 0.89
ii)Lower end 1.17 0.86
where M = bending moment,
M(yield) = yield moment = (l-n).ze.fy ’

Mp = reduced plastic moment of member,
n = ratio of axial force to squash load,
-Z2e = Elastic modulus,

fy = yield stress.

It is noted that the values for Mp/M(yield) for the column are

unusually high. This is because both Mp and M(yield) have been
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reduced due to axial load. Assuming these zones in turn as

idealised pins, in addition to those shown in figure (3.1 (f)), and
following the prqcedure described above, the 'deteriorated'

critical loads were determined. It was found that all the values of A det
were less than 1.60. This confirms the above elasto-plastic

computer analysis and the non attainment of the rigid-plastic

collapse mechanism discussed earlier.

The foregoing study has been adopted as a basis for.obtaining
a deterioration function to predict the failure load of
elastic-plastic plane frames. A close approximation of the failure
load can be bbtained from Adet if the positions of plastic
hinges, such as those indicated in figure (3.2) by elasto-plastic
analysis, are reproduced. The opportunity to examine such a
proposal is given by the results presented in Chapter (2). The
previous Chapter provides the necessary information on the position
and load factor at which each plastic hinge forms in a non-linear
elasto-plastic analysis. Accurate values of the rigid-plastic

qollapse load are also available. -

In order to calculate the 'deteriqrated‘ critical load
corresponding to the sequence of plastic hinge formation, the
existing non-linear elastic computer program(41l) has been hodified.
In its unmodified form, the computer program was used in Chapter
(2) to calculate the elastic critical load only. This becomes
time-consuming because several non-linear analyses are required to
determine an initial value close to the critical load. As there
were many frames to be examined, a rapid procedure was desirable to

estimate close bounds to the elastic critical load and successive
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‘deteriorated' critical loads.

The procedure adopted takes the form given by the flow-chart
shown in figure (3.3). Majid(23) suggested an approximate method
for evaluating A by considering the load-displacement behaviour
of the linear and non-linear response of a fully-rigid frame. In
the following derivation, it can be shown that a close
approximation of the elastic critical load and successive
‘deteriorated’ critical loads can be obtained by one linear and

non-linear analysis of the frame.

The well-known displacement amplification factor is given by,

bnon-linear = Alinear (3.1)
l - )\/Ac

Let the load factor, A = 1.0. Therefore,

Anon-linear = Alinear )
l - l/Ac
8linear =1 -1
A non-linear Ac
1l =1~ Alinear
Ac : Anon-linear

Rearranging gives the elastic critical load as,

Ac = dnon-linear (3.2)
Anon-linear - b8}inear
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It is proposed to adopt equation (3.2) to estimate an initial value
of Ac. Equation (3.2) can similarly be used to estimate close
bounds of Ag,y o simply by replacing A, by Ay.t in equation

(3.1), and proceeding in the manner described above.

It follows that there are as many critical loads as the number
of storeys in a frame because each joint displaces relatively in a
storey. In all examples, the frames were excited by a single
horizontal force at roof level. The value of Acor Ay,4 was taken
as the lowestbvalue of all the individual critical loads for each
storey and the frame reanalysed to the required degree of accuracy
as indicated by the flow-chart in figure (3.3). It is noted that
the critical loads were taken as the value characterised by large
deflections in Chapter (2). This\criterion has been adopted, in
addition to calculating the value of the determinant at the
corresponding load level in the program. This provide an additional
check on the lowest critical load in case it is missed. For
convenience, figure (3.3) is shown for the latter criterion only.

—

As an example on the use of equation (3.2), consider Woodfs
four storey frame shown in figure (3.1). The 'deteriorated'’
critical loads for each storey were calculated at working load from
the relative linear and non-linear sway displacements. In all
cases, the relative linear and non-linear elastic displacements
were taken at the windward joint at each floor level. The values
of Adet for each storey are shown in figure (3.4) for a range of
possible pin combinations. The non-linear elastic computer progrém
w;s used in each case with the loading given in figure (3.1 (a)).

The lowest value of Ag4ey is a good estimate of the accurate
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result. The accurate results were obtained iteratively using the
proposed computer program. These values were calculated to an
accuracy of one decimal place. For comparison, Wood's results are
also shown. It can be seen that the values of Agey calculated
from the deflections at unit load factor provide good bounds to the

accurate results.

3.3 Deterioration of stiffness

As real pins are inserted in a frame at discrete positions
corresponding to the sequence of plastic hinge formation in an
accurate elasto-plastic analysis, the deterioration of stiffness
can be expressed non-dimensionally as an interaction between
elastic instability and plasticity as shown by the axes in figure
(3.5). Failure is taken to occur when the reducing value of Adet

equals the rising load, A .

To illustrate the interaction of the.loss of stiffness under
increasing plasticity, two typical results are shown in figure
(3.5). The order and load level at which plastic hinges formed are
indicated. Values of 'deteriorated' critical loads are shown
alongside corresponding to the hinge patterns. The four storey
frame of Wood(26) shown in figure (3.1) is also included in the
plot. The vertical axis of Adet and Ac were obtained by the
computer program described earlier while the non-dimensional
abscissa of A and Ap were obtained by the non-linear
elasto-plastic analysis program. The 'deteriorated' critical load, Adet
only changes when a new plastic hinge forms but these points have

been joined by a continuous line to represent a gradual reduction
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in frame stiffness. It should be noted though that cases can arise
in which Aot remains constant. This is shown by the frame of
Wood. The first plastic hinge formed at mid-span, and as explained
earlier this does not cause a reduction in the elastic critical

load.

It can be seen from figures (3.2) and (3.5) that the three
frames failed before the rising load reached the rigid-plastic
collapse load. An expression for the failure load has been obtained
by seeking a smooth curve to fit these results, It is proposed that

the following expression be adopted,

’ 2
A =|1-0.4 2 |1 -/ Adet (3.3)
AP )\c Ac

When this is plotted for the four storey frame given at the top of
figure (3.5), the bold line shown in the diagram is obtained. It
can be seen that this is a reasonable representation of the
deterioration of stiffness, particularly after the first two hinges
have formed. As collapse occurs when the/}ising load factor, A
equals the 'deteriorated' critical load, Adet , the failure lpad

is found by solving the quadratic for A ,

. 2 '
A =(1-0.4 Xp 1-<A> (3.4)

AP Ac Ac

where A so calculated is the failure load and Ac and Ap are the
lowest elastic critical load and rigid-plastic collapse load

respectively.

The significant difference between the Merchant-Rankine approach
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and the proposed expression is that the curve is able to adjust its
position to any ratio of Ac/Ap , as shown in figure (3.6). Thus,
each frame has its own unique failure curve which is related to its
ratio of Ac/Ap. A high value of Ac/Ap implies a stiff design, and
the proposed expression permits the curve to move to the right, as
appropriate to such design. With a low value of ‘KC/AP , the frame
would be susceptible to early collapse due to the rapid
deterioration of frame stiffness. The proposed expression allows
for this by shifting the curve to the left. This movement is

achieved by the term (1 - 0.4 Ap/Ac ) in the expression.

It can be seen from figure (3.5) that there is a rapid
deterioration in the actual behaviour as Aget approaches the
rising load factor, A . Examples of such behaviour are shown for
the three frames in figure (3.5). In Wood's example, it was evident
that soon after the third plastic hinge was developed, Aget
dropped rapidly for a small rise in the load factor as shown in
figure (3.5) and figure (3.2) respectively. Figure (3.5) also shows
the plunging steep slope for the last feG/remaining plastic hinges

in all the frames. Such behaviour is obtained from the proposed

formula by the term [1 - (A./Ac)gl-

Finally, the coefficient of 0.4 has been chosen to give close
agreement between A given by equation (3.4) and failure
loads, A¢ , given by computer, but it can be seen from figure
(3.5) that the proposal also gives an approximate representation of
the deterioration of stiffness once hinges begin to form. Wood's
frame is an exception because the first hinge leads to no reducti;n

in the 'deteriorated' critical load. However, as most frames
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collapse in the vicinity of the bottom right hand corner of figure
(3.5), it is not necessary to consider the initial portion of the

curve unless the ratio of AC/AP is small.

Studies carried out in Chapter (2) have shown that the
original Merchant-Rankine formula consistently tends to provide a
better estimate of the accurate failure load for frames with high
ratios of Ac/Ap ( > 9) and the modified version tends to
overestimate the failure load. In contrast, the original formula
was very conservative for frames with low ratios of Ac/XP ( < 6)
while the modified version provides a better estimate of the
failure load. The results showed that the failure loads of
approximately 60% of the frames were overestimated by the use of
the modified formula. The reason can be seen by examining the
area formed by a square at the bottom right hand corner of figure
(3.6 (a)) and bounded by the values of Ac/Ap equal to 4.0 and
10.0; the failure loads of most of the frames examined in Chapter

(2) fall within this region.

Various ratios of Ac/Ap have been drawn in figure (3.6 (a))
radiating from the origin (0,0). Several of the proposed curves
cdrresponding to various ratios of ,KC/AP are also shown. These
curves and the Merchant-Rankine relationships are failure lines
obtained by letting A equalled to Aget . The behaviour of the
Merchant-Rankine approach can therefore be described as a
continuous linear descending function, for which the loss of
elastic stiffness is directly proportional to stages of increasing
plasticity. The modified formula deteriorates.in a similar manner

but the magnitude of plasticity differs from the original formula
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because of the introduction by Wood of a factor of 0.9.

Consider the positions (A) and (B) with Ac/A;=4.0 on the
original Merchant-Rankine formula and the modified version
respectively. To counteract the conservative tendency of the
original formula, the failure load should be given by a point such
as (C), close to the modified formula. A similar situation arises
for high values of ACIAP and a point such as (F) is required,
further away from the modified formula to provide an accurate
result. A compromise factor of 0.95 in the modified formula,
instead of the present value of 0.9, would be unsatisfactory
because this would cause an approximate percentage reduction, no

matter what the value of Ac/A;p .

The proposed expression for the failure load has been plotted
for ratios of Ac/Apequal to 4, 10 and infinity to illustrate its
flexibility. The positions of the proposed curves vary with the
ratio of ¢KC/AP, thus offsetting the inclination to overestimate or
underestimate the failure load in comparf;on to the
Merchant-Rankine formula. This is exhibited by positions (C) and

(F) for low and high ratios of ACIAP respectively in figure

(3.6 (a)).

3.4 Comparison with model experiments

Experiments on model structures have been conducted by
Low(48), Salem(45) and Ariaratnam(49). These provide an opportunity
to compare the results of the proposed semi-empirical expression to

those obtained experimentally. Unfortunately, only the results of
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the tests by Low(48) were published and these alone will be

considered.

The miniature models were three, five and seven storey., single
bay frames of rectangular configuration. All the f;ames were of
equal storey height and the bay width was twice the height of one
storey. Most of the frames were subjected to combined horizontal
and vertical loads, although some were subjected to vertical loads
only. Vertical loads were applied at the quarter points on all the
beams for both combined loading and the case of vertical load
alone. Horizontal loads were applied as appropriate at each of the

floor levels for frames under combined loading.

The results of these frames are shown in tables (3.1 (a)) and
(3.1 (b)) for the combined loading and vertical load alone
respectively. The failure loads calculated from equation (3.4) are
denoted by Apropland the experimental results by .Aexpt . A
histogram has been constructed for all the frames as shown in
figure (3.7). This relates the number of(Erames to the error in the
predicted failure load, expressed as a percentage of the
experimental failure loads. Except for a few cases, almost all the
résults obtained by the three expressions, namely Merchant-Rankine,
Merchant-Rankine-Wood and the proposed expression, underestimated
the experimental values. The histogram in general displayed similar
predictions of the failure load using the proposed expression and

the modified Merchant-Rankine formula.

As the experiments were conducted primarily to verify the

original Merchant-Rankine formula and to demonstrate the phenomenon



-89~

of frame instability, it is instructive to examine the relative
comparison of the failure loads given in tables (3.1 (a)) and
(3.1 (b)). Low(48) reported that only one, Frame (31), out of a
total of thirty-four frames tested was unsafe using the
Merchant-Rankine formula but by no more than 1%. This is clearly
shown in the figure (3.7). Frame (31) was reported to have a

maximum out-of-plumb of 1/160th of the ground storey prior to the

loading test.

Frame (24) was also reported to have an initial distortion of
1/120th of a storey height but the predicted failure load using the
Merchant-Rankine formula was marginally safe. Such initial
distortion is considered excessive but it can be seen that the
Merchant-Rankine formula provides safe estimates throughout.
However, the figures in table (3.1 (b)) suggest that the
Merchant-Rankine formula can be very conservative when no side load
is present, irrespective of the ratio of Ac/Ap. For such frames,
both the proposed expression and the modified formula also

-
underestimated the experimental results in all cases.

With reference to both tables (3.1 (a)) and (3.1 (b)), it is
nbticed that the ratios of Ac/Ap for all the frames, particularly
the taller models, are small in an attempt to highlight frame
instability. In Design Recommendation(54), the modified
Merchant-Rankine formula is not wvalid for such low ratios oflkc/Ap.
However, despite this, Apry is included for comparison. In all
cases where the ratio of Ac/Apexceeds 1.6, the proposed expression
provides better agreement than the original formula. At the same

time, it also maintains close agreement with the modified
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Merchant-Rankine formula, which in general is very successful in

predicting the experimental failure loads.

Two frames, numbers (20) and (31), were overestimated using
equation (3.4) by 1% and 7% respectively. The unsafe estimate of
Frame (31) arises for the reason discussed above. The 1% unsafe
estimate exhibited by frame (20) is insignificant. These features

are clearly indicated in the histogram given in figure (3.7).

For frames in which Acﬂkp< 1.6, the original Merchant-Rankine
formula and the proposed expression provide extremely good
estimates of the experimental results under combined loading,
whilst the modified version tends to exceed the latter results.
When the ratio of Ac/Apis less than 1.2, the failure load given by
the proposed expression falls below the Merchant-Rankine load
irrespective of whether the frames were subjected to combined
loading or vertical.load alone. The reason is that the proposed
expression 'crosses' over the linear Merchant-Rankine line for very
low values of Ac/Ap as shown in figure 15.6 (b)). These cases have
been drawn accordingly. The shaded wedge shows the area bounded by
the two relationships. ?wo wedges are shown to indicate the
pEOposed failure load falling below the Merchant-Rankine failure
load. It can be seen that for a small increase in the ratio of Ac/A,
such as the curve shown equal to 1.6, estimates of the failure load

using equation (3.4) are above the Merchant-Rankine failure line.
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3.5 Parametric studies and other comparisons

The parametric study presented in Chapter (2) and used to
examine the Merchant-Rankine formula will also demonstrate the
accuracy of the proposed equation (3.4). It is worth reiterating
that the frames all satisfied a limit of 1/300th of each storey due
to unfactored wind load. Loading generally consisted of extreme
values of the ratio of vertical to horizontal load, although some

intermediate values were also considered.

The results are summarised in tables (3.2) and (3.3). The
failure loads given by the proposal are denoted by Aprop. and the
computer results by A¢ . The rigid-plastic collapse mode is
designated by B, S and C indicating simple beam mechanism, column
sway and combined mechanism respectively. As two bay widths were
considered in the parametric studies, the symbol W and N refers to
wide (7500 mm) and narrow (5000 mm) bay widths.

Comparisons show that the proposed é;pression exceeds the
computer results by a maximum of only 3% compared to 7% by the
modified Merchant-Rankine approach., Both values are indicated by a
tén—storey frame in table (3.2) by an asterisk. A similar situation
arises for a four-storey frame where Apry and Aprop. Overestimated
by 7% and 1% respectively. In contrast, both Amprw and Aprop.
underestimated A by a maximum of 7% but this was a frame for
which AC/AP was just 3.19, indicated by a square symbol. It has
been proposed in Design Recommendations(54,55) that Amry should
not be used when Ac/A; is less than 4.0. Observing this

restriction, Amrw and Aprop give a maximum underestimate of 3%

Af
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and 5% respectively. These cases are indicated by a triangle in

table (3.2).

Although extreme errors have been compared, a closer
examination of the total of 43 results indicates that the proposal
is able consistently to estimate more accurately the computer
results than Aprw . Take for example, the frames indicated by a
spot in tables (3.2) and (3.3). They all collapse by simple beam
mechanism with Ac/Ap between 6.4 and 15.3. Equation (3.4) provides
better and more uniform estimates of the computer result.
Similarly, for lower ratios of Ac/Ap, , indicated by a circle,

consistently good estimates of the computer results are shown.

A histogram has been constructed to show the variation of the
estimates using the three approaches. This is shown in figure
(3.8). The histogram displays the conservative tendencies inherent
in the original Merchant-Rankine formula. It can be seen that none
of the forty-three results examined were overestimated using such
an approach. In contrast, the modified vé;sion which is strictly
applicable to clad buildings showed that the failure load was

overestimated for a number of frames.

The results shown by the proposed expression were consistently
good throughout with most of the frames falling between 95% and
103% of the accurate failure load. The frequency distribution of
the frames appeared to be cioser to computer results than the
results of the two versions of the Merchant-Rankine approach. It is
noted that in all cases examined, Aprop > Ay, wgere Ay is the load

factor at which the first plastic hinge forms in an accurate
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elasto-plastic computer analysis.

Other frames from the literature provide further comparison
between Amrw ,Apnxland the results of non-linear elasto-plastic
computer analysis. The results are shown in table (3.4), the load
factors now being multiples of the working loads. Equation (3.4)
showed a maximum deviation of +4% from the computer results,

while Apryw Overestimated As by 9%.

The cases in which the 9% error occﬁrred are indicated by
double asterisk. In defence of the Merchant-Rankine-Wood formula,
it should be noted that both frames had sway deflections at working
load which exceeded the usual limit of 1/300th of each storey
height. Indeed, the roof beam of the second example in table (3.4)
was simply supported to enable small column sections to be used.
However, it can be seen that equation (3.4) was able to deal with

these difficult cases in a significantly more satisfactory manner.
It was found that in the majority of these cases, the error

resulting from the use of equation (3.4) was approximately half the

error generated by the modified Merchant-Rankine formula.

3.6 Effect of the value of the coefficient on the

proposed formula

As the coefficient of 0.4 is increased in equation (3.4), a
corresponding reduction in the predicted value of the failure load

is observed. It has been mentioned previously that the proposed
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value was selected to give close estimates of computer results. A
total of 85 frames were compared which showed good agreement with

both computer and experimental results,

To investigate the sensitivity of the value of the
coefficient, two values of 0.30 and 0.35 were substituted in turn
to estimate the failure load given by equation (3.4). These will
increase the value of the failure load estimated by the proposed
formula. They coulé be of use if a designer wished to take account
of cladding stiffness or strain-hardening by deliberately

underdesigning the bare frame.

The results are given in tables (3.5) to (3.8). Two columns
representing the coefficient of 0.30 and 0.35 are designated by Ag3p
and Aj;5 . Each table has the exact format corresponding to

tables (3.1) to (3.4).

Tables (3.5 (a)) and (3.5 (b)) shows the comparison of model
frames subject to combined loading and vertical load alone to
experimental results respectively. It can be seen in table
{3.5 (a)) that the proposed expression has now overestimated a
number of cases compared to Low's experimental results for frames
uﬁder combined loading, even when 0.35 was used. It was also
obsérved that the estimate is not very sensitive to changes in the

coefficient.

In contrast, the frames subjected to vertical loads alone
indicated that the estimated failure loads were still very

conservative using a coefficient of 0.3, as shown in table
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(3.5 (b)). However, when the coefficient of 0.1 was substituted
into equation (3.4), the predicted failure load was in good
agreement with experimental results. This is shown by the third

column in table (3.5 (b)).

It is proposed that the coefficient of 0.1 be adopted to
estimate the failure load of frames subject to vertical loading
only. A histogram using such a factor on the 14 model frames is
shown in figure (3.9 (a)). The results obtained by both versions of
the Merchant-Rankine approach is also shown for comparison. It can
be seen that only one frame was overestimated by 1%. The results
showed that by using a coefficient of 0.1, the failure loads for
three-quarters of the frames were estimated to within 95% of
experimental results. It should be noted that the estimated failure

loads were in good agreement with experimental results irrespective

of the value of Ac/Ap.

The parametric studies under combined loading given in tables
'(3.6) and (3.7) showed that Aj,;5 < ,Kmrﬁrin all cases when frames
with 4 < Ac/Ap are ignored. However, when A, was compared,'a
number of values exceeded Amrw . These cases are indicated by a
circle in table (3.6) but the difference is insignificant. A
histogram showing the two coefficients of 0.30 and 0.35 has been
constructed and shown in figure (3.9 (b)). The bottom diagram in
figure (3.9 (b)) was redrawn from figure (3.8 (c)) for direct
comparison. It can be seen that the estimates are not very

sensitive to variations in the coefficient.

Similarly, table (3.8) exhibits the same behaviour when the
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frame with the low ratio of Ac¢/Ap was ignored. As a result, the
extreme errors quoted previously in section (3.5) remain

unaffected.

In conclusion, these studies show that the use of a factor of
0.30 overestimate the failure load of the experimental bare frames
subject to combined loading by a maximum of 12.0%. With 0.35, the
overestimate falls to 9.0% for the same frame. For realistic
frames, the errors were 5.6% and 4.9% corresponding to the above
coefficients respectively. For frames subjected to vertical load
alone, a factor of 0.1 was proposed, with only one experimental

frame overestimated by 1%.

3.7 Application in practice

The comparisons given above have shown the proposed expression
being used as an anaiysis tool with A determined by solution of
equation (3.4), once A¢ and Ap are known:JAs accurate comparisons
were required to validate the expression, A. and ‘Xp were
determined from suitable computer programs. Such programs may not
bg readily available to the designer and therefore alternative
manual methods are needed for the rapid evaluation of A¢ and Ap .
Several methods for calculating both A(50-53) and Ap(12,17,22)
are available. The following procedure is believéd to be the most

satisfactory for manual design, and is adopted for an example to be

shown in the next section.

The most convenient procedure is to take the minimum required

design load, A , as the specified load level for collapse. Using
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factored loads as the basis for design, A will therefore be unity.
The elastic critical load, A. , for a trial frame can be easily
determined to good accuracy from charts given in Design
Recommendations(54,55) and by Williams(73). For the required design
loads, the rigid-plastic collapse load can then be found by solving
equation (3.4) for Ap. In this manner, an exact calculation of the
rigid-plas;ic collapse load of a trial design can often be avoided.

With A =1.0, equation (3.4) can be rearranged to express Ap in

terms of A,

)\p = 1.25 Ac(l - &) (3.9)

where e=/1 - (1.6 Ac )
(A2-1)

Equation (3.5) is shown graéhically in figure (3.10), safe designs
being above the solid line. The Merchant-Rankine formula and its
modified version aré also plotted. It can be seen that the proposed
method gives results which are very simi{gr to Apgrw for low
values of .XC/AP » where Ap., has been found to be particularly
successful from the parametric studies described in Chapter (2) and

shown in tables (3.2) and (3.3). For higher values of Ac/Ap, the

modified formula is too optimistic.

Figure (3.10) illustrates that the proposed method
successfully caters for this, by requiring higher minimum values of Ap
in order to attain the design load. Two values of ACI.KP have been
included to indicate the extent to which Apry is applicable. It
can be seen that when the value of Ac/Apis greater than 10, Apry

is taken as Ap . A cut-off point is shown as a horizontal line
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while the proposed expression continues as an asymptote.

3.8 Design example

This design example is presented in detail to demonstrate the
manual process using the proposed expression and design criteria

outlined in Chapter (2) and in this Chapter.

Consider the six storey two bay frame shown in figure
(2.6 (b)) which satisfies the deflection limit of 1/300th of each
storey height. Following the preliminary guidance provided by the
proposed design charts presented in Chapter (2), the design shown
in figure (2.6 (b)) was obtained using the methods of Anderson and
Islam(59) and Wood and Roberts(50). This design will now be checked

for adequate strength.

Design Recommenﬁations(54,55) permit the calculation of the
elastic critical load using a substitute_ptinter frame. This is
shown in figure (3.11). As discussed in Chapter (1), the basis of
the substitute Grinter frame is to assume all joint rotations to be
approximately equal at any floor level when the real frame is
subject to horizontal loads, and each beam restrains a column at
both ends. ﬁeams are therefore bent into approximate double

curvature and at any storey, the effective stiffness of the beam in

the subétitute frame is,

where I, and L, are respectively the moment of inertia and span of
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a beam in the real frame and the summation is over all the bays at

that stoiey level.

The equivalent stiffness of the column in the Grinter frame is the
sum of the stiffnesses of the individual columns in the real frame
for the storey under consideration,

ke = 21I. / storey height (3.7)

where I. is the moment of inertia of the column.

These values have been calculated for the six storey frame as

follows,
storey ky (cm?) ke (cm?)
6 3x(2x4439)/600 = 44.4 3x4564/375 = 36.5
5 3x(2x7162)/600 = 71.6 " " = 36.5
4 " " = 71.6 (2x6088 + 14307)/375 = 70.6
- (3.8}
3 3x(2x12091)/600 = 120.9 " " = 70.6
2 3x(2x18626)/600 = 186.3 (2x7647 + 14307)/375 = 78.9
1 " " = 186.3 " " = 78.9

Values of kj, and k. are shown in figure (3.1l1). A first estimate is
made of A with allowance for continuity of columns. The
following calculations were obtained from the procedure detailed in

the European Recommendation(54),
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storey Nu m v= IP.h?/ I 1, 1, /1 Acr
6 0.45 0.50 0.39 1.41 26.1
S 0.50 0.60 1.00 1.56 8.31
4 0.60 0.54 0.83 1.59 9.64 (3.9)
3 0.54 0.45 1.14 1.46 8.33
2 0.45 0.46 1.30 1.38 8.17
1 0.46 0.00 1.58 1.19 9.04
where
Ny = distribution factor for the upper joint

1]

(ke + key ) / (ke + key + kyy),

M = gistribution factor for the lower joint
= (ke + key ) / (ke + kep + kyy)),
2P = Total vertical load at any storey in KN.,
h = storey height in metres,

2I. = Total column inertia of storey considered in cms
lx/1 =values read off chart with cladding stiffness, § = 0,
The values of 1,/1 are the effective length ratios
using the modified degrees of restf;int given above
by 7Nu and 1 to allow for continuity in the
substitute Grinter frame ( or fﬁ;7§: where P,
and P. are the Euler and critical loads respectively),

Acr = 20.23/[ v .(1/1) ).

Note that A, was calculated based on the value of Young's modulus

of elasticity, E = 20500 KN/cm’

for this example only.
The factor of 20.7 used in European Recommendation(54) assumed

E = 21000 KN/cm? .
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It can be seen that the second storey is most critical
with A.. =8.17. An improved estimate of A . may be obtained by

considering the upper and lower storeys adjacent to the critical

storey,
My = Mu [(key + ke) / (2ke)]
= 0.45 x (70.6 + 78.9) = 0.43
(2 x 78.9) (3.10)
ML= M1 [(kg + ke) / (2kQ)]

0.46 x (78.9 + 78.9) = 0.46

(2 x 78.9)
1 U
1 Ny Acr 77'| Acr
)\cru )‘crl
"\ Ac= 8.17 x 1l + 0.43 + 0.46 = 8.40

1l + 0.43(8.17/8.33) + 0.46(8.17/9.04)

-

where k¢,, ko and k.| are indicated in figure (3.11)
and Acru, Acr and Acrl are the critical loads for the upper,

middle and lower storeys given by the above calculations.

This improved value is greater than 8.31 given for the fifth storey

and therefore the lowest elastic critical load is taken as 8.31.

Alternatively, a rapid calculation for A, may be obtained by
the method of Williams(53). The procedure was ocutlined in Chapter
{1) but at this stage, it would be useful to illustrate the

swiftness of the method and compare the result with the one already
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calculated above. The individual 'cells' are divided as shown in
figure (3.13). The beam stiffnesses are proportioned randomly and
individual joint stiffnesses calculated. Values of V are taken
from equation (3.9). In a similar approach to the procedure above,
the effective length ratios (lix/l) for each 'cell' was read off the
appropriate chart(54). The resulting critical loads for each 'cell’
was then evaluated. It canbbe seen from figure (3.13) that the
lowest elastic critical load is located on the second storey with a
value of 8.17. This compares very well with that shown by equation

(3.9) which allowed for continuity of columns.

Irrespective of whichever value of A, used (i.e 8.31 or

8.17), equation (3.5) gives,
)\p = 1.07

A lower bound plastic analysis is required to show that this value
of Ap is not exceeded. Such an approach avoids the need for an

‘exact' calculation of Ap . -

Normal practice(3,17) assumes points of contraflexure to exist
at mid-height of all columns for the purpose of calculating the
windward and leeward column axial forces due to wind loading.

Starting at tne roof with factored locads (1.2W.),
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storey column axial load (KN.)
6 (10.2x3.75/2)/12 = 1.6
5 [(10.2x5.625)+(20.4x3.75/2)]/12 = 8.0
4 {(10.2x9.375)+20.4(5.625+1.875)]1/12 = 20.7
3 [(10.2x13.125)+20.4(9.375+5.625+1.875)]/12 = 39.8
2 [(10.2x16.875)+20.4(13.125+9.375+5.625+1.875)]/12
= 65.3
1 [(10.2x20.625)+20.4(16.875+13,125+9,375+5.625+

1.875)1/12 = 97.2

(3.11)

The results are shown in figure (3.12 (a)). These forces are added

onto the combined factored vertical loads (1.4Gy+1.2Q). The

total

axial forces in the columns are shown in figure (3.12 (b)). For

convenience and to ensure adequate out-of-plane member stability,

the moment capacity of a column is taken as the yield moment,

calculated as,

where n = ratio of axial load to squash load,
fy = yield stress,
Ze¢ = elastic section modulus,

It is emphasised that the value of 'n' is calculated for the

required value of Ap = 1.07
i.e. n = Ap .axial load / squash load
Axial forces shown in figure (3.12 (b)) have to be multiplied

by Ap and moment capacities are then calculated as follows,

(3.12)



storey ny M
6 0.071 100
5 0.178 89
4 0.217 109
3 0.292 99
2 0.303 119
1 0.359 109

Ne
0.144
0.368
0.305
0.420
0.535

0.650
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92

68

183

153

123

92

0.073

0.190

0.241

0.339

0.367

0.455

100

87

106

92

108

93

(3.13)

where n;, n. and n. refer to the values of n for the left, centre

and right hand columns with corresponding moment capacities M;, M.

and M, (KN.m. units) respectively.

The moment capacities are shown in figure (3.12 (c)). Axial forces

in the beams are small in comparison to the columns, and the full

plastic moment capacity of the beam has been assumed. Under

combined loading, plastic hinges tend to develop on the leeward end

and at mid-span of the beam. Referring to the lower diagram in

figure (3.14), the windward end moment for a plastic beam is M| .

By equilibrium,

M(free)

My

where M(free) = prLz/B.

For the roof beam,

M(free) = (1.07 x 31.7 x 6 x 6) / 8

For the floor beams,

M(free) = (1.07 x 49.1 x 6 x 6) / 8

3MP - 2M{(free)

-

—

152.6 KNm.

236.4 KNm.

(3.14)

(3.15)
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For convenience, equivalent point loads are useé for calculating
bending moments. Using the lower bound approach, the overall
bending moment distribution shown in figure (3.14) at a load factor
of 1.07 can be obtained. It can be seen that the bending moments
nowhere exceed the moment capacities given in figure (3.12 (c)).

Therefore Ap > 1.07 and the design is satisfactory.

For comparison, the lower bound elastic critical load for each
storey was calculated from equation (3.2) using the computer
program described in Section (3.2). The linear and non-linear

displacements under factored (design) loads were taken at the

windward joint,

storey lower bound on A,
6 10.33
5 8.98
4 8.54
3 8.35 (3.16)
v
2 8.30
1 8.30

After performing further iterations, the determinant of the overall
stiffness matrix was non-positive at Ac =8.60. The values for Ac
obtained manually were 8.31 and 8.17. These results are in

excellent agreement.

Accurate computer analysis showed that failure occurred at a
load level of 1.09 and a rigid-plastic analysis exhibited a simple

beam collapse of the fourth and fifth floor beams with ,Kp=l.l7.
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With the accurate results for Ac and Ap , equation (3.4)
gave Aprop =1.09 while  Apr =1.03 and  Apry =1.13. The latter two

results are 94% and 104% of the accurate failure load respectively.

The design has so far neglected initial eccentricity. The
British Design Recommendation(55) specify that eccentricity shall
not exceed 1/1000 of the total vertical height, while European
Recommendation(56) require such out-of-plumb to be represented by

fictitious horizontal loads,

Q =NT (3.17)

where N total vertical design load at each floor level,

T = T0r1 I,

T, = 1/200,
r, = [5/ each storey height in metres < 1.0,
r, = 0.5 [1 + 1/(number of loaded columns per storey)].

As the European specification is more severe, the values of the

fictitious horizontal loads are calculated for this example,

r, = /5/3.75 = 1.155 > 1.0

r, is therefore taken as 1.0,

r, = 0.5(1 + 1/3) =0.667,

-

~
(1}

1.0 x 0.667/200 = 1/300.

At the roof and at all the floor levels, the fictitious horizontal
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loads are given by,

Q(roof)

380.4/300 1.27 RN. (3.18)

Q(floor)

589.2/300

1.96 KN.

When these additional loads are added onto the wind forces shown in
figure (3.12 (a)), a small increase of column axial forces was
observed. However, the fictitious loads are small and have a
negligible effect on the moment capacities shown in figure

(3.12 (c)). In fact, the moment capacities are almost identical to
that shown in figure (3.12 (c)) when these fictitious loads are
incorporated. It can be similarly demohstrated that the lower bound
plastic analysis is satisfactory when such fictitious loads are

included in the horizontal loading.

3.9 Conclusion

A simple expression has been presented for estimating the
ultimate load capacity of plane unbraced bare frames under combined
loading and vertical load alone. The expression have been compared
both with published experimental model tests and accurate computer

analysis on realistic frames, and it has provided consistently

accurate estimates throughout.

Comparisons with 20 experimental miniature models of three,
five and seven storeys under combined loading have shown the
calculated values to vary between 90% and 107% of the values given
by‘experimental results. The single unsafe estimate of 7% was not

significant because the model was grossly out-of-plumb.
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Although the proposed expression is intended for collapse
under combined loading, a further 14 model frames subjected to
vertical loads only were also compared. The predicted failure loads
using a coefficient of 0.4 varied between 71% and 90% of
experimental results. A coefficient of 0.1 was proposed for
estimating the failure loads of such frames. The studies showed
that the use of a factor of 0.1 resulted in the predicted failure
loads varying between 84% and 101% of the experimental results.
Only a single frame for each of the extreme errors was found. The
models used in the studies represent the lower scale for the ratio

of /\C//\p with values ranging from as low as 1.1 to 4.0.

Studies on 43 realistic frames under combined loading with
ratios of Ac/Ap between 3.19 and 16.6 have shown the proposed
failure load to lie between 93% and 103% of the figures given by
second-order elasto-plastic computer analysis. The lower limit
rises to 95% if frames for which Ac/A, is less than 4.0 are

neglected. These realistic frames have been designed to practical

-

levels of loading and to deflection limitation at the working load.

Further comparisons of 8 other frames from the literature have
aléo shown the consistency of the proposed method in estimating the
failure loads. The maximum error was 4% but this was for a frame
that does not satisfy the usual deflection limit and with the

presence of real pins on the uppermost columns.

The proposed method will therefore prove acceptable to
designers who do not wish to rely on strain-hardening and stray

composite action to offset the higher collapse loads that can be
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predicted by the modified Merchant-Rankine formula. The proposal
should always be used instead of the latter whenever cladding is
minimal, especially as the expression is just as easy to apply as
the modified approach. This is demonstrated by an example of a
rectangular six storey frame. The detailed manual procedure was
shown. Several rapid methods for determining the lowest elastic
critical load were shown. Comparisons with accurate computer

analysis gave excellent agreement.
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Frame 35 Aexpt )‘mr iprop, mrw
No. Ap (1lbs) )‘expt. Aexpt, }‘expt
5 3.6 448.8 0.90 0.96 0.98
6 4.0 428.9 0.87 0.94 0.95
7 4,0 442.5 0.85 0.91 0.92
8 3.8 645.4 0.85 0.92 0.93
10 3.5 530.8 0.84 0.90 0.91
11 3.5 505.7 . 0.88 0.95 0.96

w

E 12 3.5 492.4 0.90 0.97 0.98

(o]

2113 2.7 458.6 0.86 0.92 0.92

o
14 2.7 423.8 0.92 0.99 1.00
15 2.7 434.2 0.92 0.98 0.99
16 . 3.0 487.7 0.85 0.91 0.91
18 2.9 489.8 0.86 0.92 0.93
19 3.0 458.6 0.90 0.96 0.97
20 2.9 434,7 0.94 1.01 1.02
23 1.4 577.7 - 0.93 0.94 0.99

o |24 1.4 530.1 0.99 1.00 1.05

[(]

8 |25 1.4 599.7 0.90 0.90 0.95

o]

/)]

n |29 1.6 609.0 0.95 0.97 1.01"
31 2.3 666.2 1.01 1.07 1.08

w

>

8 137 1.2 680.2 0.99 0.97 1.05

S

w

™~

Table 3.1(a) Comparison with Low's results

for frames uhder combined loading.




Frame 35 Aexpt 32& ’ 32523 mrw
No. Ap (1bs) Aexpt Aexpt expt
4 3.6 495.8 0.82 0.88 0.89
ol 9 3.6 657.1 0.81 0.87 0.88
g 17 3.0 534.,1 0.77 0.83 0.83
e | 26 2.7 523.3 0.75 0.80 0.81
27 3.0 539.8 0.76 0.82 0.82
21 1.3 768.6 0.71 0.71 0.75
;’; 22 1.4 672.2 0.80 0.80 0.84
5128 1.6 756.4 0.75 0.77 0.80
" 30 2.3 781.1 0.85 0.90 0.91
32 1.3 799.4 0.81 0.81 0.86
33 1.1 778.9 0.82 0.78 0.86
;? 34 1.1 730.5 0.78 0.74 0.82
2 35 1.1 707.5 0.80 0.76 0.85
" [ 1.1 - 821.5 0.77 0.74 0.81

Table 3.1(b)

Comparison with Low's results

for frames with vertical loads only -




Min. vertical : Max. wind Max. vertical : min. wind.

Frane iﬁ A A A_ IMech, iE. A A A Mech
storey Ap mrw | prop| £ Ap mrw | prop.| f )
x bay

bx 2w | 9.15 | 1.14 | 1.08 |1.07] B |5.75|1.04 |1.02 | 1.04 | ¢
4 x 2N {11,38 |1.34(1.28 {1.,30| B |6.56|1.17 }1.14 | 1.20 B
4 x 3W 5.25}1,04 11,02 | 1,04 S
4 x 3N 5.37|1.10{1.08 | 1.08 o
4 x &W 4.9311.04 |1.02 | 1.05 S
4 x 4N 3.34]0.88 |0.87 | 0.92 S
4 x 5W | 5.3411.01]0.99 }1.04 C {4.78 1,03 {1.01 | 1.05 S
4 x 5N ) 5,3 (1,16 | 1.14 [1.13}] C |3.19]0.89 |0.89 | 0.96 S
7 x 2w |12,83}1.15]1.11 |1.,10| B }5.66(1.02 {1.00 | 1.01 c
7 x 2N {16.59 { 1.421.38 {1.39{( B |7.981.20 |1.15 | 1.15 B
7 x 3W 4,74 { 0.89 |0.88 | 0.89 c
7 x 3N 5.3011.07 |1.05 | 1.04 S
7 x 4W 4,48 10.96 [ 0.95 | 0.97 S
7 x 4N 4.11 1 0.98 1 0.97 | 0.99 S
7 x5W | 5.060.96 | 0,94 [0.95 C [4.360.96 [0.95 0.99 S
7 x5N | 5,78 1.24]1.21 |1.26| B }3.98(1.00 [0.99 | 1.03 S -
10 x 2w |15.33{1.15(1.11 |1.,11| B |[6.021.05 |1.02 | 1.01 C
10 x 2N [14.90|1.42|1.37 {1.40| B |8.07 {1.18 |1.13 | 1.10 S
10 x 3W 4,67 10.96 {0.94 | 0.96 C
10 x 3N 6.19 [ 1.04 |1.01 1.02 S
10 x 4W | 6.57 |1.06{1.03 |1.04| C |3.87 {0.89 {0.88 | 0.91 S
10 x 4N | 8.23|1.31|1.25 {1,24| B }4.56 {1.00 |0.99 1.02 S
Notation

W = Bay width 7500

N = Bay width 5000

Table 3.2. Parametric studies under extreme loading




Frame Vertical dind load 32 \ \ \ Mect
storey x bay load Ap mew | prop f '

4 x 2W Max Inter | 5.82 {1,03 | 1.01}1.03| C

4 x 3W Max Max 5.72 |0.97 | 0.94} 0.,94] S °

4 x 5W Max Max 4,88 11,02 | 1.00]1.03} S °

7x2W Max .Inter | 6.15 |1.,03 | 1.00{1.00{ C

7 x 5W Max Max 4,63 0,91 | 0.89(0.89] S8 °
10 x 2w Max Inter | 8.07 {1.12 | 1.08[1.05( B .
10 x 3W Max Max 6.41 11.08 | 1.05|1.04 | B ]
10 x 2N Max Inter | 5.78 |1.08 | 1.05|1.06] S
10 x 2w Max Inter | 7.64 (1,12 | 1.08 11.08| B °
W = Bay width 7500 , N = Bay width 5000
Table 3.3 Parametric studies under various loadings

Reference Frame c
r Amrw Aprop. Af
storey x bay P

Majid & Anderson (Proc.ICE) 4x1 ~ [13.88 [1.56 | 1.51]1.49
Anderson (Ph.D. Thesis) 4 x1 7.71 |1.55} 1,49 ] 1.43
Anderson (Ph.D. Thesis) 8 x 2 5.06 |1.51 ] 1.48 11,48
Wood (Proc. ICE) 4 x 1 6.01 [2.01 | 1.96 }|1.91
Chapter 2 of this thesis 6 x1 5.02 {1.59 | 1.56 | 1.54
Anderson & Islam (Proc. ICE) 6 x1 10.32 |1.63 | 1,55 |1.49
Anderson & Islam (Proc. ICE) 15 x 3 3.49 11.37 | 1.37 |1.38
Chapter 2 of this thesis 6 x 3 4,18 |1.70 ] 1.67 | 1.64

Table 3.4 Other comparisons

¥




*0.3 | o.35
Agxpt. Aexpt.
0.99 0.98
0.96 0.95
0.93 0.92
0.94 0.93
0.92 0.91
0.98 0.96
0.99 0.98
0.95 0.93
1.03 1.01
1.02 1.00
0.94 0.92
0.95 0.94
0.99 0.98
1.05 1.03
1.00 0.97
1.06 | 1.03
0.97 0.93
1.03 1.00
1.12 1.09
1.05 1.01

Table 3.5 Llow's experimental results

(combined loading only)



20,30

20,35

0.10
)‘expt. Aexpt. Ae_xpt.
0.90 0.89 0.95
0.90 0.88 0.94
0.85 0.84 0.91
0.83 0.82 0.89
0.85 0.83 0.90
0.76 0.73 0.84
0.85 0.83 0.95
0.81 0.79 0.90
0.94 0.92 1.01
0.86 0.844 0.96
0.85 0.81 0.96
0.81 0.78‘ 0.92
0.83 0.80 0.95
0.80 0.91

0.77

Table 3.5(b) Low's experimental results

(vertical only loading)




‘arw | 20,30 | *0.35 A ‘wrw | 20.30 | %o0.35 Ae
1.14 1.10 1.09 | 1.07 | 1.04 1.03 1.02 | 1.04
1.34 1.29 1.29 | 1.30 | 1.17 1.15 1.14 | 1.20
1.04 1.04 1.03 | 1.04
1.10 | 1.10 | 1.09 | 1.08
1.04 1.04 1.03 | 1.05
0.88 0.90 0.89 | 0.92
1.01 1.01 1.00 | 1.04 || 1.03 1.04 1.03 | 1.05
1.16 1.16 1.15 | 1.13 | o0.89 0.91 0.90 | 0.96
1.15 1.12 1.11 | 1.10 || 1.02 1.02 1.0 | 1.00
1.42 1.39 1.38 | 1.39 | 1.20 1.17 1.16 | 1.15
0.89 0.89 0.89 | 0.89
1.07 1.07 1.06 | 1.04
0.96 0.97 | 0.96 | 0.97
0.98 0.99 0.98 | 0.99
0.96 0.96 0.95 | 0.95 || 0.96 0.97 0.96 | 0.99
1.24 1.23 1.22 | 1.26 | 1.00 1.01 1.00 | 1.03
1.15 1.12 1.12 | 1.11 | 1.05 1.04 1.03 | 1.01
1.42 1.38 1.38 | 1.40 | 1.18 | 1.15 1.14 | 1.10
0.96 0.96 0.95 | 0.96
1.0 | 1.02 | 1.02 | 1.02.
1.06 1.05 1.04 | 1.04 || 0.89 0.90 0.89 | 0.91
1.31 1.27 1.26 | 1.24 | 1.00 1.01 1.00 | 1.02
Table 3.6 Parametric studies (1)




Marw 20.30 20.35 Ag

1.03 1.03 1.02 1.03
0.97 0.96 0.95 0.94
1.02 1.02 1.01 1.03
1.03 1.02 1.01 1.00
0.91 0.91 0.90 0.89
1.12 1.09 1.09 1.05
1,08 1.07 1.06 1.04
1.08 1.07 1.06 1.06
1.12 1.09 1.08 1.08

Table 3.7 Parametric studies (2)

A~ 20.30 20.35 Ag

1.56 1,52 1.52 1.49
1.55 1.51 1.50 1.43
1.51 1.51 1.50 1.48
2,01 1.99 1.97 1.91
1.59 1.59 1.58 1,54
1.63 1.57 1.56 1.49
1.37 1.41 1.39 1.38
1.70 1.71 1.69 1.64

Table 3.8 Other comparisons
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CHAPTER 4

OPTIMUM ELASTO-PLASTIC DESIGN OF FRAMES

4.1 Introduction

Minimum weight design based on rigid-plastic theory is well
established, following the work of Livesley(8) described in Chapter
(1). In such approaches, compressive axial forces are ignored, and
the problem is usually converted into one of mathematical
programming and solved using techniques such as the simplex
algorithm. For all but the simplest frames, solution has to be
obtained by recourse to a computer. While this method may produce
economical structures, there is no guarantee that premature

collapse due to overall frame instability will be prevented.

For this reason, the methods proposed by Horne and Morris(20)
and Ridha and Wright(21l) enable instability effects to be
incorporated in the design routine. However, as explained in
Chapter (1), both methods are not based on an accurate assessmént
of frame instability effects. While Horne and Morris adopt the
'éortal' method to estimate sway deflections, Ridha and Wright

neglect the deflection constraint completely.

It has been argued in this thesis that it is advantageous for
a trial frame to possess adequate stiffness as this can lead to a
lower bound design for strength. However, cases can arise where

designs are controlled by strength. For such cases, it is uncertain
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as to which members should have their sections increased and by
what amount in order to achieve a satisfactory design. Therefore,
the need arises for a structural optimization method, which in turn
requires the rates of change of the failure load with increase in
sections of different members. Accurate non-linear elasto-plastic
analysis is unsuitable in such a procedure because of the excessive

demand on computer time inherent in such approaches.

This Chapter describes a simple but approximate method for the
design of multi-storey frames of rectanqular configuration that
already satisfy criteria such as adequate stiffness. The procedure
determines the most economical changes in sections following a
series of trial analyses; the latter are based on the expression
proposed in Chapter (3) for estimating the ultimate load. Linear
programming techniques are avoided because there is only one

constraints in the optimization procedure.

4.2 Optimization procedure -

Consider the variation of the locad factor, A , of a plane
f;ame such as that of figure (4.1). For convenience in explanation,
it will be assumed that all the beams are grouped together so that
they have the same section, denoted by S,,. Similarly, the columns

are grouped together, the section being denoted by S..

Let an initial trial design which satisfies the usual
deflection limits at the working load be analysed for the collapse
load. The resulting load factor is A , and the design load level

is denoted by unity. It is assumed that Af < 1.0. The design
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problem is therefore to determine the most economical changes in

section sizes that should be made to increase A from A; to unity.

The total weight, W, can be taken as representative of the
cost of a frame. Thus, the objective function can be expressed as,
N
W = zwi.li . (4.1)
iz
where w; 1is the weight per unit length of member 'i', which has a

length, 1;.

In practice, costs are still estimated in this way, although
usually a percentage increase is made to the weight of plain metal
to account for connections. This may differ from member to member.
Such differences are ignored in the work below, but could be easily

included if desired.
If JdX¢/0S is the rate of change of the load factor with the
section 3size of a member, then for the frame shown in figure (4.1)

the problem can be stated as,

Minimize W = ( w, + Awy).(4Ly + 2L + L3 ) +

( we + Awc).(2h, + 2h, + 3h; + 4h, ) (4.2)
subject to
Af + AAg = Ag + _OA¢ AS;  + _OAf ASc > 1
Sy, IS¢
a)\f ASb + a)\f AS. > 1 - )‘f (4.3)

asy, 0S.
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where W is the total weight of the beams and columns of
the frame,
S;, and S. are the initial section sizes of the
beams and columns respectively,

AS;, and AS. are changes in the sections
corresponding to S, and S in beams and columns
respectively,

w, and w. are the weight per unit length of a
member corresponding to §), and S. respectively,

Aw, and Aw. are changes in the weight per unit
length corresponding to changes AS;, and AS.
respectively,

L and h are the bay width and storey height

respectively.

As wy, and w. are constants, the objective function given by

equation (4.2) can be expressed as,

Minimize W = Aw,.(4Ly + 2L, + L3 ) +

ch.(2h1 + 2h2 + 3h3+ 4hL ) (4.4)

Furthermore, there is only one constraint in equation (4.3). If it
is assumed that Ay varies linearly with change in S, and change in
Scr it follows that for W to be a minimum, only one of AS)

and ASc will be non-zero. Hence, the optimization procedure is
reduced to determining the increase in A, relative to increase in

total weight given by each group,
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A = current value A¢- initial design value Ag (4.5)
current total weight - initial total weight

Values of A can be obtained by repeating the analysis witht Mpp and
Mpc increased in turn, whilst keeping the other value of Mp
constant at its initial value. Thus, specialized linear programming

algorithms are not required for the solution of the design problen.

In fact, A¢ does not vary linearly with change in §, or S,

because of the following reasons,

a)Once a section has been increased sufficiently to reduce or
eliminate plasticity in the corresponding members, further

increase in section size only lead to increase of stiffness.

b)The stiffness of the frame, which influences susceptibility

to instability, is dependant on the

moment of inertia of a section.

—

To take account of non-linearity, iteration is required to
determine the most economic change of member sections. The
procedure described above is followed, except that when a change.
in AS in section size is to be made, it is restricted to an
increase of just one section from the list of available sections.
The resulting design is then treated as a new initial design, and

the optimization procedure is repeated.

It is usual in structural optimization to assume a continuous
range of sections is available, so that a section can be chosen

with any specified properties. It can be seen that in the present



-115-

work, real sections are adopted. Within a range of real sections
tabulated in BCSA Handbook on Safe Loads, an economic section is
defined as one which equals or exceeds other sections of equal

weight with respect to the plastic modulus or moment of inertia.

Fortunately, the choice of economic Universal beam and
/Universal column sections is not affected if the moment of inertia
is treated as the governing section property, rather than the
plastic moment. Tables (4.1) and (4.2) shows the list of economic
beam and column sections in ascending order 6f preferred sections.
A similar list can be tabulated with respect to the total depth of
the section where restrictions on floor depth are the criterion for

the choice of sections in design.

4.3 Overall analysis and design

The overall procedure will be described first, with the

details of the calculation methods for Ap and A, given later. It
-

is assumed that the initial design satisfies adequate stiffness and
it is first required to determine the ultimate load of the trial
fr;me. If Af , obtained ffom equation (3.4) in Chapter (3) is less
than unity, increases in sections are requirea. The analysis .
procedure determines Ap and Ac for a chosen change in each member
group as shown in figqure (4.2). Values of Af and the total weight
of each cycle are evaluated. The rate of change of A to the
increment of total weight in each iteration is then determined

using equation (4.5).

In this and subsequent Sections, an iteration is defined as
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one complete process whereby a group with the highest

coefficient, A , is selected and a modified design obtained. A
cycle is defined as one group change. Therefore, the number of
cycles to be performed depends on the number of member groups in a
design. Each iteration involves the completion of this number of
cycles. Members may be sub-divided into as many groups as desired.
The limit of member grouping is therefore equal to the total number
of members in the structure. For instance, the frame shown in
figure (4.1) may be arranged to have eighteen groups comprising
seven beams and eleven columns. A total of eighteen cycles would be
executed in each iteration. It is, however, usual to provide column
lengths running through at least two floors and beams of the same
section on consecutive floors for economy in fabrication and |

erection, and this arrangement presents no problem for the proposed

procedure.

At the end of egch cycle, values of QA¢ and OW are
determined and stored for comparison'with the next cycle. When the
cycle is completed, the group with the highest coefficient QX¢/OW
is selected as that to be changed to provide the initial design for
the next iteration. The final test compares the failure load fof
the new design with the required value, terminating when the design
load is attained. Otherwise, the whole procedure is repeated'until

the minimum design locad is achieved.

To assist in the calculations, the expression given in the

previous Chapter is solved for As and is given by,

Ag=dle (202 P - 1 (4.6)
2
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where Q= AcAp= 0.4( Ap)
(A

In order that equation (4.6) may be used, both Apand A, must be

calculated rapidly.

4.4 Rigid-plastic collapse load factor

In considering the more significant parameter, Ap , it is
propésed that the rigid-plastic collapse load be calculated by the
method of combination of mechanisms. Although it appears more
advantageous to adopt the static form of rigid-plastic analysis as
opposed to the mechanism or kinematic approach, it is argued that
for most realistic frames, the mode of collapse is by one of a
limited number of mechanisms. These mechanisms have been identified
for the frames examined in Chapter (2). Therefore, restricting the
possible collapse modes to a relatively small number of similar

shape to those shown in the parametric studies in Chapter (2) is

justified. -

Strictly, the mechanism approach demands that all possible'
collapse modes be found with the result that the lowest calculated
vaiue of Ap is equal to the true value. As an example, consider
the seven-storey frame shown in figure (4.3). This is one of a
series of seven-storey frames used in the parametric studies and
designed in Chapter (2). Figure (4.3 (a)) shows the rigid-plastic
collapse mechanism obtained from an accurate computef analysis
while the figure on the right was determined by considering the

comprehensive combined-type as shown. The value of the collapse
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load obtained from figure (4.3 (b)) is in good agreement with the
accurate result. A validation exercise will be shown for all the
frames examined in Chapter (2) to demonstrate the accuracy of the

proposed method based on a finite number of mechanisms.

By limiting the number of mechanisms, computing time in
iterative analysis is reduced. The finite number of rigid-plastic
mechanisms are shown in figures (4.4) to (4.14). The diagram on the
left represents a form of collapse occurring in the mid-height
region of the frame, while the one alongside is an identical
mechanism but drawn to indicate collapse occurring at a different
location in the frame. The bounds of the mechanism vary from storey

to storey, to seek the lowest collapse load for each type of

mechanism.

Take for example the comprehensive combined-type mechanism
shown in figure (4.9). In the first mechanism of this type, the
column hinges are located at the base of the top storey with the
corresponding beam hinges for the roof members only. Subsequent 2,
3, 4, 5 and 6 storeys are considered as participating in the
mechanism. This is achieved by transferring the column hinges
downwards and placing plastic hinges on all the beams above the
coiumn hinges. The process terminates when all the storeys have

been included in the mechanism.

The mechanism shown in figure (4.11) must not be confused with
that of figure (4.12). The former allows the column hinges to move
downwards while the latter has 'stationary' plastic hinges at the

base. In both cases, sufficient beam hinges are inserted as the
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process is repeated at the next storey level. An exception to the’
procedure described above is the simple beam collapse mechanism,
where it is recognised that each beam may have different member
properties and magnitude of loading. For such a collapse mechanism,
each beam is analysed by writing down the appropriate work

equation.

For each of the mechanism shown in figures (4.4) to (4.14),
the analysis is executed by setting up the virtual work equation.

The lowest rigid-plastic collapse load factor is then cobtained and

the specific mechanism identified.

These collapse modes are associated with frames subject to
combined loading and most, if not all, are familiar to design
engineers because they have been applied successfully in practice
for the design of relatively low-rise frames(l17,32). The value of Ap
obtained in this manner is acceptable for use in the optimization
procedure although it is concievable that other mechanisms may

exist with a lower value than those proposed.

As an example, consider figures (4.4) and (4.9). The
rigid-plastic collapse load of the sway mechanism for each storey

from the roof to ground level of figure (4.4) is given by,

n1Mpc (reduced); (4.7)

The collapse load of the comprehensive combined mechanism of figure

(4.9) is given by,
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storey level starting at 1 from the top,

it

number of columns in each storey i,

number of bays in each storey,

{reduced) = reduced plastic moment capacity of
column at Ap R

= horizontal wind load,

= storey height,

= mid-span vertical load,

= bay width,

= full plastic moment capacity of the beams.

1thM + nan“h“” + o

the

Other types of collapse modes can similarly be shown as a

combination or slight modifications of these two equations.

(4.8)

In order to take into account the effects of axial forces on

the plastic moment capacities of column members, the analysis of

each mechanism is iterative. The assumptions for evaluating the

axial forces in the columns are identical to those described and

shown in the example in Chapter (3). The reduced plastic moment of

each column is given by one of the following expressions,

Mp(reduced) = {( Zp - CcC.n ) fy . n<F
Mp(reduced) = D (1 - n) (E + n) tfy n>F
where

n = |axial load| /[(cross-sect. area).(yield stress)],

(4.9)

(4.10)
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Zp = plastic section modulus.

The expressions apply equally to both tensile and compressive axial
forces in the columns. The constants C, D, E and F differ for each

of the sections listed in the BCSA Handbook.

The process of iteration terminates for each mechanism when
the assumed load factor (used to reduce the plastic moment
capacities of the columns) is within a suitable tolerance of the
calculated collapse load factor. It was found thét oscillation
occurred between collapse mechanisms when all the work equations
were set up simultaneously at a given (assumed) load factor. This
was due to certain mechanisms giving widely different values for
the collapse load. To overcome this problem, the collapse load was

calculated by iteration for EACH mechanism in turn.

The lowest calculated value of the collapse load of each
mechanism is compared with other mechanisms. Simple beam mechanisms
are calculated directly for each member, figure (4.13). In this

manner, the lowest rigid-plastic collapse load is obtained very

rapidly.

Four examples are shown in figures (4.15) to (4.18) using the
proposed procedure to estimate the rigid-plastic collapse load
factor. Accurate computer analyses for the same frames are shown
alongside for comparison. It can be seen that the proposed collapse
mechanisms are almost identical to accurate results. A number of
frames have been shown primarily to demonstrate the application to

irregular and unusual plane frames.

il
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A maximum error of 2.5% was found for the fifteen storey
rectangular frame. The frame is subjected to vafiable wind loads
and has different member yield stresses, and the proposal is
programmed to deal with such frames. Figure (4.15) is taken from
figure (2.7) Chapter (2), while figure (4.16) is taken from table
(3.4), Chapter (3). Although strict accuracy is sacrificed for
simplicity, the computing time for the fifteen storey building was

a small proportion of that required for accurate computer analysis.

In contrast to rectanguiar frames, figures (4.17) and (4.18)
illustrate the application of the proposed method to irregular
frames. This is achieved by introducing 'dummy’ members so that the
mechanisms shown in figure (4.4) to (4.14) are still valid. 'Dummy’
sections are input as members with zero stiffness and moment
capacity for the beams and columns. In both examples, the mechanism
approach showed very good agreement with accurate computér

analysis.

As an illustration of the proposed method, consider figure
(4.17). The reduced plastic moment capacities were calculateﬁ at a
load level of 1.24 and are shown adjacent to the plastic hinges.
given in figure (4.17). From rigid-plastic theory, the work

equation gives,

Hinge moments

Beams [(493.4 x 15) + (262.6 x 6)] © = 8976.6 8
Columns [ 230.3 + 183.6 + (185.8 x 3) +
227.9 + 300.9 + 163.1 ] © = 1663.2 8

Total 10639.8 ©
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External moments

Wind load ({(75 x 13) + (50 x 9) + (55 x 5)] © = 1700 @
Vertical load [(320 x 4 x 2) + (180 x 4.5) +

(340 x 8.5) + (150 x 4)] ®© = 6860 ©

Total = 8560 8

Ap = 10639.8 © = 1.24
8560 ©

It can be shown in a similar manner that other mechanisms have

higher collapse loads and this is therefore the lowest value.

4.5 Elastic critical load factor

The determination of the elastic critical load, A., is a
relatively simple process but considerable emphasis has been given
to the dangers of selgcting higher buckling modes(50,73). It is
proposed to adopt the approximate method of Williams(73). Although
the methods of Wood(50) and Williams(73) are basically similar, the
latter is most suitable for programming especially on ‘
micro-computers. A feature which makes this method attractive i§
that it guarantees convergence onto the lowest critical load. A
brief account only of the work due to Williams is given here Eut a

fuller explanation can be found in reference (73).

Consider the equivalent single storey frame shown in figure
(4.19 (a)). It was shown by Williams that the lowest elastic
critical load inevitably involves an antisymmetrical sway mode.

Therefore, A is given by an analysis of the antisymmetrical
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mode. It was assumed that for such mode, the beam rotations at both

ends are equal and the slope-deflection equations give,

where ki; = 6E.Ip; (i =1,2 -=-—- N)
Lp

Using the 'no-shear' stability functions 'n' and ‘o' for the 'i'th

column shown in figure (4.19 (a)), the column moments are given by,

MC” = nci 'kCi .el - OCi .kCi .9i+| (4.12)
Mci2 = =O¢j -k¢j .8 + ng¢j.k¢j .0, (4.13)
where Kk¢i = E.Igj (i = 1,2 =-==—- N)
h;
9; and 9, are the joint rotations for the upper

and lower end of the 'i'th column respectively,
Mcit and Mcjo are the bending moments for the upper

and lower end of the 'i'th column respectively.

As the calculations neglect the externally applied moment,
equilibrium of the joints is obtained by summing the appropriate
equations given from (4.11) to (4.13), and equating the sum to
zero. As an example, consider the top storey (i=1l). Equilibrium of

the top joint, using equations (4.11) and (4.12) gives,

Mpp + Meyqyy) =0

S Kpp 8+ ney ke <8 = Ogy ke By =0
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and equilibrium of the lower joint of the top storey, using

equations (4.11) to (4.13) gives,

Mpo + Mcy2) + Mcpq) =0
kj;2:©5 = O¢y «key B + ngy ke .0,

+ nc2.kC2.82 - OC2‘kC2’e3 =0

The rotation, ©;, for the top joint can be expressed in terms of O,
. Substituting this into the lower joint gives 65 in terms of 93.
The procedure can be repeatéd for the next storey. It has been
verified by Williams that the above equations can be reduced to a

general form given by,

ai .9. + bl .e‘|+1 =.0 (i = 112 """ N) (4.14)
ag,y O N4 =0 (4.15)
2 .
where a;,, = Ci4q - b; (i =1,2 ==———- N)
T
a; = ngy.key * kg
g
b, = =-0.; .k¢; (i =1,2 -———- N)
Ci = Ny cKeti-n * gk * kp o (1= 2,3 --o—- N)
CNat = neycken + Kpiney
For fixed base frames, kb(N+n =m® , therefore equation (4.14) gives,
ay.-8y =0 , since®,; =0 (4.16)

Equation (4.16) is satisfied only by ay, = 0 or 8y, = 0. Since e, # 0
in the first sway mode, figure (4.19 (a)), the condition for

buckling to occur in this mode is given by ay = 0.
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To avoid repeating all the terms above, the value of 'N' must be

replaced by 'N-1' in equations (4.14) and (4.15) because the base

is fixed.

The procedure is reduced to determining, at a trial value of

an assumed multiple of the loads, A , the signs of a; . These are

given as,
A < A if a; >0 (i = 1,2 -=-=--- N) (4.17)
)\c1< A. < Acz if ONE ai < 0 (i = 1'2 ----- N)

where Acy and A., are the first and second critical loads

respectively.

Equation (4.17) ensures that the lowest elastic critical load is
found and avoids confusion with higher critical loads. In addition,

Williams suggested checking the value of the determinant at every

load level given by,

a, ememm——— ay (4.18)

olm
~

~
Oluﬂl

w
Q

~
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To illustrate the application of the method, consider the irregular
four storey frame shown in figure (4.17). Using the procedure

described above, the lowest elastic critical load is calculated as

follows,
load A 22 2 2 4
12 170.9 323.3 414.8 49.0 0.468
13 169.3 312.0 389.0 -560.9 1.038

12,13 170.7 321.8 411.6 -1.57 -0.03
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At a load factor of 12, all the 'a,' terms corresponding to the
number of storeys and 'd' given by equation (4.18) were positive.
When a load factor of 13 was used, one 'a ' was negative, thus
satisfying the second of equation (4.17). Further iterations were
performed with a load factor between 12 and 13 since only one ‘'a; '

has been found. The elastic critical load was found to be 12,13,

A plot of 'd' against the load factor is shown in figure
(4.19 (b)). Using an accurate non-linear elastic program of Majid
and Anderson(4l1), in conjunction with a modified Southwell plot,
the lowest elastic critical load was found to be 11.91. The
apﬁroximate analysis of Williams(73) is in excellent agreement with

this value.

4.6 Comparison with parametric studies and limitations

The elastic critical loads and the rigid-plastic collapse
loads given in Chapter (2) were obtained by accurate non-linear
computer analyses. As the proposed method tonsiders only a finite
number of ;igid—plastic mechanisms based on assumed column axial
forces, it is necessary to validate such proposals. At the same
time, the lowest elastic critical load is calculated by the

approximate method of Williams(73) to confirm its accuracy.

A total of forty-three frames of varying rectangular
configuration were examined in the parametric studies described in
Chapter (2). The results will be compareq with those obtained from
the proposed method of calculating the rigid-plastic collapse load

and the lowest elastic critical load factors. These results are
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shown in tables (4.3) and (4.4). Both accurate and approximate
results are tabulated for Ap and A, . The layout of the two
tables are the same as that shown in Chapter (3). It is noted that
the values are given to two significant figures and therefore the

ratio of AC/AP may differ slightly from the values quoted in

previous Chapters.

The majority of values given by Williams' method overestimated
the accurate answers by an average of 3%. Two results exceeded the
accurate values by 13% and 7%. In both cases, this occurred for a
ten storey, narrow bay width frame. This does not influence the
predicted failure load significantly because A¢ is not sensitive
to A, . For instance, in the two examples mentioned above, the

resulting increases in A¢ given by equation (4.6), are less than

one percent.

The general overestimate of A, is due to the assumptions
made in the physical épproximation of the real structure. The
results based on the equivalent single bay frame of figure
(4.19 (a)) are 'exact' but the behaviour in real terms differs
somewhat from that of the equivalent frame. It was assumed that °
joint rotations are equal at each floor level and the beams bend in
symmetrical doﬁble curvature. This is approximately true if the
frame is subjected to horizontal loads only. Joint rotations for
the real frame vary, particularly at the upper storey levels where
vertical beam loading is significant in comparison with the
horizontal loads. As a result, the stiffnesses for the equivalent

single bay frame has been overestimated.
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The majority of results for the rigid-plastic collapse load
indicate a maximum error of less than 1%. Only in three cases, was Ap
overestimated by more than 1%, but the error did not exceed 3%.
These results are indicated by a spot in table (4.3). The frames
are relatively large and subject to maximum vertical loads. In such
cases, strength would normally be the governing criterion in design
under combined loading, so the proposed method is particularly
suitable. However, the predicted failure load is still below A
when these estimated values of A, and Ap given in table (4.3)
are substituted into equation (4.6). Not surprisingly, the accurate
value of Ap is given by the proposed method when the éorrect mode
of collapse was identical or very similar in appearance to one of

the finite number of selected mechanisms.

It is emphasised that the axial forces used in the proposed
method to evaluate the reduced plastic moment capacities of columns
are approximate. In addition, when the assumed mode of collapse was
not identical to the éomputer results, the latter revealed
partially-plastic zones occurring at positzpns corresponding to
those assumed in the proposed method. It is therefore not
surprising that when the approximate values of Ap were substituted
intQ equation (4.6) to recaiculate Af , the results were in good

agreement with accurate computer results.

Certain limitations to the proposed simplified method of
mechanisms are now discussed. It was assumed that local instability
such as buckling of flanges does not occur. Therefore, sections
that are unsuitable for plastic hinge action are excluded in the

list of economic sections. Lateral instability of beams is unlikely
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to happen due to restraint from floor slabs, and it is also assumed
that individual columns are not susceptable to lateral torsional
buckling. These criteria can be satisfied by selecting suitable

Universal sections.

The frames examined were rigid-jointed with fixed bases but
pinned bases can similarly be incorporated, simply by amending the
work equation relating to each of the proposed mechanisms shown in
figures (4.4) to (4.14). However, it would be uneconomical for
realistic frames of this nature to have pinned bases unless soil

‘conditions are critical in design.

Real pins occurring elsewhere cannot be disregarded,
particularly at the top of roof columns to reduce excessively large
bending moments caused by heavy loading (for example, due to
plant). Indeed, real pins can occur anywhere within the structural

framework. The proposed method is unable to deal with such cases.

The concept of the sagging mid-span plastic hinge in unbraced
construction is an idealisation that does not occur for unifofmly
distributed loading. A combination of wind and uniformly
distributed loads causes the central hinge to form at some
location, away from mid-span depending on the relative magnitude of
end moments. However, it was shown by Horne and Morris(17) that
iterative analysis to locate the exact position of the central
hinge does not alter the load factor significantly if a mid-span
hinge was assumed instead, and this assumption was used in the

proposed method.
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4.7 Design examples

Two examples are described using the proposed optimization
procedure. The first example is a seven storey three bay
rectangular frame in which the initial design satisfies deflection
limits at working load. This is one of the seven-storey frames used
in the design studies in Chapter (2). A second example is given to
illustrate the application of the method to an irreqular frame that
does not satisfy the usual deflection limit. In the initial design,
column sections were chosen to resist only squashing, while the
beam sections were selected without considering the higher design

load factor applicable to vertical load alone.

4.7.1 Seven storey three bay frame

The sections are shown in figure (4.20) and grouped
accordingly as shown. There are two beam and three column groups.
Therefore, five cycles-of analysis will be performed in each
iteration. Initial design was such that the-frame was adequate with
respect to lateral stiffness when subjected to unfactored
horizontal loads. The frame was required to sustain the applied
loads as shown. This form of loading corresponds to the ratio of
maximum vertical to minimum horizontal wind loading as shown in

table (4.3), and indicated by a triangular symbol.

Using the proposed method, the initial design of the frame was
found to have inadequate strength with A.=4.82, Ap=0.99
and A¢=0.88. This initial design is shown in figure (4.21 (b))

along with the accurate results in figure (4.21 (a)). Collapse
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mechanisms of the accurate and proposed methods are in good
agreement because the former mode has been identified and
duplicated in the proposed proéedure. The complete optimization
procedure is summarised in table (4.5). The group numbers shown in
figure (4.20) also serve as the order in which sections are changed

in the optimization procedure.

The roof member was selected from a section not listed in the
economic section table (4.1) due to restriction on beam depth.
Therefore, by replacing this group with an economic section of
similar weight will result in an infinite value of A given by
equation (4.5). The criterion for selection is however, dependant
on the highest value of A;. Table (4.5) shows that there is no
significant increase in Af because the critical collapse mechanism
do not involve the roof beam. Similarly sections indicated by group
"4" did not affect the rigid-plastic collapse load in the first
iteration. This is apparent from the table where the values
of Ac Ap and Ag are“unchanged in that cycle of analysis.
Comparing groups "2", "3" and "S5" in the first iteration showed
that the best action to cause a significant rise in the ultimate
strength would be to replace group "2". As the resulting value of Af

was less than the minimum design load, a second iteration was

performed.

The ‘'strengthened’' design is converted into an initial design
for the second iteration. Proceeding in a similar manner as the
first iteration, increasing group "5" gives the highest rate of
change of the failure load to the total weight. Furthermore, thé

predicted failure load is now greater than 1.00 and the procedure
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is terminated. This final design similarly gave the highest value
of Ap . This is some 8.5% above the initial design in the second
iteration and a 16% increase from the inadequate design in the
first iteration. The predicted failure load was found to have risen
by the same amount. The total weight of the final design was

increased by less than 8% compared with the original unsatisfactory

design.

In comparison with accurate non-linear elasto-plastic computer
analysis(4l), the final design was found to possess adequate
strength with A, =1.00 while the approximate proposal
gave A(=1.02, an overestimate of only 2% of the 'exact' result.
However, the rigid-plastic collapse load was identical even though
the collapse mode was dissimilar. Both modes of collapse are shown
in figures (4.21 (c)) and (4.21 (d)), obtained by an accurate and
the proposed method of analysis respectively. Values shown in
figure (4.21 (d)) are the reduced plastic moment capacities of the

appropriate final sections calculated at a load factor of 1.15.

-

It is noticedthat the accurate collapse mechanism in the final
design corresponds to the proposed mechanism shown in figure (4.6)
but the latter was not selected as the critical collapse mode. To
ensure that a wrong mechanism has not been selected from the finite
number shown in figures (4.4) to (4.14), it is proposed to
illustrate the reason by calculating the collapse load of the

mechanism given by figure (4.6). This is performed as follows,

a)At unit load factor, the approximate axial force in the

windward column of the second storey is 1015.9 KN.
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b)At the same load level, the approximate axial forces in all
the ground floor columns are, from left to right, 1189.6,

2498.8, 2498.8 and 1309.2 KN. respectively.

c)Assume a load factor of 1.15 [corresponding to the collapse
load shown in figure (4.21 (d))]) to evaluate the reduced

plastic moment capacities of the appropriate columns.

d)The moment capacity for the second storey windward column is
4295 KN.cm., while the ground floor columns are shown in
figure (4.21 (4)) as 2301, 11170, 11170 and 904 KN.cm. from
left to right respectively.
These values are determined from equations (4.9) and (4.10)

at a load factor of 1.15.

e)Full plastic moment capacity of the beams were assumed.

The values for each section in the group is 26256 KN.cm.

f)The external work due to the wind and vertical forces is

determined as follows,

(8.445 + (6 x 16.89)) x 375.6 + (190.6 x 375).8

= 112644.4 © KN.cm.

g)Hence,

Ap= sum of plastic hinge moments . hinge rotations
112644.4 ©

((3x26256) + 4295 + 2301 + (2x904) + (4x11170)]).8
112644.4 ©

1.17
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This shows that the proposed method calculates the collapse load
for the mechanism in figure (4.21 (c¢)) as (say an average of) 1l.16,
and therefore it is not regarded as critical. The error arises from
the assumption in the approximate method used to determine axial
forces in the columns, but it can be seen that this is
insignificant. It can similarly be demonstrated that the roof
member collapses by a beam-type mechanism at a locad factor of 1.16.
Therefore, the collapse mechanism shown in figure (4.21 (d)) is the

most critical according to the proposed method.

4.7.2 Irreqular four storey three bay frame

An example of the optimization procedure applied to an
irregular plane frame will now be described. The initial sections
have been selected randomly and tabulated in table (4.6). It is
required to sustain the applied vertical and horizontal loads given
in figure (4.22 (b)). There are two beam and four column groups,
thereby requiring a total of six cycles to be exescuted in each

-
iteration.

The member groups are denoted by integers shown on each
sectibn in figure (4.22 (a)). Note that two plots arekshown in this
figure to illustrate the variation of the rigid-plastic collapse
loads and the predicted failure loads at each cycle of every
iteration. The vertical axis denotes the load factor and the

abscissa represents the number of iterations.

The vertical axis shown in figure (4.22 (b)) represents the

total weight of the frame. It is noted that each circle shown in
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the figure correspond to the variation of the load factor given in
figure (4.22 (a)). The unknown initial design is indicated in both
figures (4.22 (a)) and (4.22 (b)). It is seen that the number of

iterations on the horizontal axis is shown in ascending order from

1 onwards to represent that particular iteration.

As in the first example, the numbers shown by the groups also
serve as the order of member group changes. Each circle on both
figures represents a member group change corresponding to the
numbered sequence shown in figure (4.22 (a)). A dark spot indicated
in each iteration represents the highest coefficient, A , for the
particular iteration. It follows that this dark spot forms the
initial design in the next iteration if the design load has not
been attained.

The critical collapse mechanisms corresponding to these spots are
shown in figure (4.22 (b)). The circles have been joined to
represent the variation of A¢ and Ap as member groups are changed
and analysed. Their corresponding total weights are similarly

joined for each cycle. -

Consider the initial iteration. The initial design developed'a
beam~type collapse of the longer middle span as the critical
mechanism. This corresponds to the highest rate of change of the
failure load to the total weight of the frame. Consequently, this
forms the basis for the first iteration. The critical mechanism is

shown at the top of the plot in figure (4.22 (b)).

In the first 2 iterations, group "2" was increased by as many

sections because it was most economical. In the first iteration,
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the mechanism was a simple beam collapse of the same member as the
initial critical design. The critical collapse mechanism in the

second iteration is given by figure (4.12).

In successive iterations, group "3" was increased once and
group "6" twice. Their respective critical collapse modes are shown
in figure (4.22 (b)). Finally, group "2" was increased again in

order to satisfy the minimum design load.

It is noticed that A¢ was 1.00 when group "2" was increased
in the fifth iteration. The reason for not selecting group "2" as
the initial design in the next iteration was due to the criterion
placed upon A given by equation (4.5). Instead, group "6" was
chosen because it gave the highest rate of change of the failure
load to the total weight. Had group "2" been selected in preference

to group "6", the procedure would have been stopped at the end of

the fifth iteration.

Not surprisingly, both the fifth and sixth iteration collapsed
by beam-type mechanisms since the column group "6", which was
increased previously, is independant of such collapse. A slight
increase in A, was noted in the final design. Increasing the beam
gr0up "2" in the last iteration caused the roof beam to collapée by

a beam-type mechanism.

In such circumstances, it is tempting to ignore the sixth
design but the total weight was just 1% above the fifth design. The
total frame weight for these two designs are indicated in figure

(4.22 (b)), and the designer could select either. As the method is
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approximate and the weights are so close, the writer would choose
the sixth design. Such designs are likely to be close to the

optimum. Sections for the sixth design is given in table (4.7).

An accurate computer result showed a simple plastic roof beam

collapse at Ap =1.05. The proposed method similarly gave,

Ap=8 x 888.4 x 24 = 1.05
180 x 900

The non-linear elasto-plastic failure load was 1.04 while the
approximate equation gave A¢=1.01l. The lowest elastic critical

load factor of this final design was 12.00.

It is interesting to compare the sway deflections due to
unfactored horizontal loads only of the initial design and the
final design. Unfactored wind loads were calculated by dividing the
values in figure (4.22 (b)) by 1.2. Linear elastic analysis showed
the lateral sway from roof to ground level of 1/369, 1/184, 1/208
and 1/238 of each storey for the initial de;ign, and 1/587, 1/311,
1/292 and 1/358 for the final design. This suggests that an

efficient design can be generated even from an initial design which

is totally unacceptable in terms of both strength and stiffness.
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4.8 Conclusion

An approximate optimization procedure has been shown which
considers, in a series of iterations, the most economical increases
in section to achieve a minimum weight design. No specialized
mathematical programming techniques were required because there is
only one constraint. The procedure makes use of the rate of change
of the failure load to the total weight as each member group is
increased successively. The problem is to determine the highest

rate of change in an iteration, until the design load is satisfied.

Each member in the frame may be specified as an individual
group in the proposed method but this is unusual for the type of
frames examined. The method is particularly suitable for
programming on desk-top computers. Examples of tge final design
were compared and shown to be in good agreement with accurate
computer results. The proposed method can be used on frames that
are designed by the Me?chant-Rankine approach simply by amending

the expression for the failure load. —

A simple procedure which determines the rigid-plastic collapée
load factor by the method of combination of mechanisms was shown to
estimate very accurately the true plastic collapse load of plane
rigid-jointed unbraced frameworks. The approximation depends only
on a limited number of collapse modes to establish the lowest
value. Sevéral examples of rectangular and non-rectangular frames
were examined and these showed excellent agreement with accurate

computer results for the rigid-plastic collapse load.
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A further validation exercise on forty-three rectangular
frames also provided generally good agreement in Ap, with only one
frame exceeding 2% but less than 3% of the result from accurate
analysis. The error was due to an inaccurate assessment of the
axial forces in the proposed method. In all cases, the error for Ap
was negligible as a result of close representations of the true

collapse mechanisms shown by the computer analysis.

Particular attention was given to the possible occurrence of
high column axial loads, variable wihd loads and member yield
stresses which are enqountered in practice. The proposal has
included such features in the analysis procedure and has been shown
to estimate satisfactorily Ap for a fifteen storey rectangular
building. In comparison with accurate computer analysis, the

computing time and storage was reduced dramatically.

The lowest value of Ap obtained by the proposed method of
finite mechanisms was.ﬁsed in conjunction with the lowest elastic
critical load to estimate the failure load. The method of
evaluating A, was based on an equivalent single bay frame. This is
very similar to the method proposed in Design
Recommendations(54,55) but has the advantage of guaranteeing
convergence onto the lowest critical load. The adopted method for
calculating Ac. due to Williams(73) provides a convenient
technique for programming, especially on desk-top computers. The
method haé also been verified in this Chapter but the approximate
failure load is not sensitive to relatively large changes in A..
For the majority of frames examined, an average overestimate of A

by about 3% was found when compared with accurate results. This
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does not cause any significant variation of the failure load given

in equation (4.6).

Two examples were described. In the first example, a seven
storey frame was shown to have inadequate strength initially but
satisfied the usual deflection limits, Using the proposed
procedure, two increases in member groups were sufficient to attain
the desired load level. The rigid-plastic collapse load was shown
to provide good agreement with accurate computer results even
though the mode of collapse was different. Manual calculations
showed the true collapse mechanism to have a collapse load which
differed by less than 1% from the mechanism selected by the
proposed method. The difference was due to the approximate method

used to estimate the axial forces in the columns in the proposed

method.

The second examplg of an irregular frame shows that a
completely unacceptable initial design can be used to generate an
acceptable minimum weight design. The strength was gradually built
up by selecting the most economic group to change in each |
iteration. Several iterations were required to obtain a
satisfactory collapse load. The final design was compared with
accurate computer analysis and the results showed good agreement in

both the failure load and the rigid-plastic collapse load.

Exact elasto-plastic optimum design of frames has never been
attempted due to excessive computing time but the proposed method
has shown that an approximate solution can be obtained with little

loss in accuracy. However, a final check could be made by one
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accurate non-linear elasto-plastic analysis, in case of concern

over the accuracy of the proposed method.



SC sC
Sp
S¢ S¢
Sp Sp
SC SC SC
Sp Sp Sp
SC Sc SC SC
1 L 4 L
L L2 Ls
Sp = BEAM  SECTION
Sc = COLUMN SECTION
FIG. 4 | IRREGUL AR FOUR STOREY PLANE FRAME




Read data of lower-
bound design.

Amax + h /300

!

Consider each member

- AR EE
] 1
[c2o2Te v
"‘——'ﬂ“:‘ =--1,)Dummy members
- Y erx ml-____:
- aOCYn | oo | accoocra |
— Qa0 | a0 | eXXOrea
NS 'S

group. Initial As and
total werght, W

Increase qroup by
one section

|

|

i

|

|

|

|

l

}

] YES
|

|

|

|

|

i

: mechanisms
i

Consider each mechanism
in turn. Fig. (4 4)- (4.14)

Initial A pj

Store
fowest Ap
Calculate lowest Ac

CYCLE

i

¥

Reduced Mp

¥

Calculate Apj

by work eq

n.

tolerance
satisfied

Calculate A¢ from eqn.(4.6)

and A from eqn.{4.5)

Return group to
previous design

YES

after last cycle

more

qroups

New Api

ITERATION

Curr

design replace previous
design

ent “strenqthened”

Increase qroup with
coefficient of

‘the corresponding

A= 07\1
oW

the highest

section

FIG. 4. 2

ORPTIMIZATION

NO

FLOW

DIAGRAM




Mp { beams)

52‘-9 105.8 ‘Oiﬂ 05,8 52{’
-/‘___/“ 8.445— _i/‘ j15.2 KNm.
o 95{3 100.6 “’Ci(’ 0.6 95‘3
_____'//"___./«/‘q |6_89—->’_____/__i/" 213.2
‘—__.//_"_—./’" IDENTICAL LOADING™ h_./"_.//’ 213.2
ON ALL FLOORS

________./"'.___/"q‘ . —»_____./‘_—__/ 2\3,2
W
‘ -—n____,/‘___,//’ 213 .2
_____./’/“____.///"' ___,___./‘___/—" 262 .6
;__//“:___;’)" N __.____/———‘____/ 262.6

r}hus.s KNm. ,,‘r,"s'O KNm. ;%91.4KNm.

+15.5+4650 +91.4

2 4
(o) >‘P - Bxll5.2 + 32X% 2132 + \6x262.6
12x7\4A75 + 1615.2

(a) ‘gxact’ Ap = 1104
—_— 5x 39675 +
_12217.5 -y 12
“

10987.7
of columns are

moment capacities
A=l it4

NOTE Reduced plastic
cc!culctcd at

7- STOREY FRAME

FIG. 4.3 COMPARISON OF Ap FOR



g

FIG. 4.4 STOREY SWAY MECHANISM

-

FIG. 4.5 DOUBLE SWAY MECHANISM

FIG. 4.6 COMBINED SWAY

MECHANISM




1

onadhan

FIG. 4.7

SINGLE COMBINE MECHANISM

-

DOUBLE COMBINE = MECHANISM

FIG. 4.9

TOP COMBINE MECHANISM




»-

FIG 4.10

BOTTOM COMBINE MECHANISM

FIG. 4 11

-

TOP COLUMN COMBINE( MECHANISM

FIG. 4.12 BOTTOM COLUMN COMBINE MECHANISM




b -J— e — L

FIG. 4 13 SIMPLE BEAM MECHANISM

L L

-

FIG. 4. 14 DOUBLE COLUMN MECHANISM




= 60000

I5 x 4000

75 150 75
o
1 8.6
R R
8.6
O 8.6
O
e}
O &
m 86
" Exact Ap=1.753 An=1.753
o P p
0 .
o e[
x FIG 415 SIX STOREY
O
y SINGLE BAY FRAME
— -
86
j——_l_ -!-. v ——
385 ,__ Sx77 385
T T
8.7 |s¢ 5xi12 56
T )
171
v V v
17.4
—_—
16.3
I5.5
—
15.5
...)‘
I5.5
—_— < \ 4
140
Iz—g o NOTE :
: IDENTICAL
52 o R LOADING ON
: ALL FLOORS
—
12.5
ALL LOADS
o R
10.5 ARE
MULTIPLES
—
8.6 OF A
— »
8.6 ,
—_—
86| 7000 [ 7000 { 7000
L o 1 -L dL . —L-
Exact Ap =1.639 Ap =1.680
FIG. 4.16 FIFTEEN STOREY THREE BAY FRAME




O

FIG 417 FOUR STOREY THREE BAY

IRREGUL AR

FRAME

= 22500

6 x 3750

Exact Ap =1.392

NOTE : ALL LOADS ARE
MULTIPLES OF A

E

|

FIG 418 SEVEN STOREY FOUR BAY

] 7500 | 7500 | 7500 | 8500 |

IRREGUL AR

FRAME




d

: VALUE OF DETERMINANT,

' I Notation
hl N = Number of storeys
EI = Flexural rigidity of
h2 member
L = Length of beam
h3
— h = Lenqth of column
IR
e = Ratio of compressive axial
r, P
—_ ~ load to Euler ioad of
ElcN ' ith column
h
PN NL . Pi(hj?
Level {N +})— T'(zEIc,'

Lb

A————

Zero axial load in all beams

L

{a) EQUIVALENT SINGLE BAY FRAME

160. 09 P
Ky = 631/ L 28.40 400
bi bi b 356 18
kei = $Zlci/h 28.40 1080
.07 498 48
i 77.14 2160
832 88
i ’ 69 .36 3910
e ke
g (Values of 'k’ in cm3)

E = 20600 KN/cm? .

{(b) FOUR STOREY FRAME

O A 1 A . i A i A 1

1.0 ' 1.5 .
LOAD FACTOR, A

FIG 4. 19 LOWEST ELASTIC CRITICAL LOAD




8 445— —{1} —{1} —{1}
Viroof}) = 28.20 KN/m
_
Vifloor} = 50.824 KN/m
6.69 —{— {3} 1z} -
- 2
) E 206 KN/mm
fy = 240 2
16.80 —»——3} {2} 5} Y N/mm
16.89 —2} {2}
=1 =1 M
1689 — —12] —12r x
~
1689 —» o} 2}
689 ———13) B B
_____,
A
7500 7500 7500
A A L | A
GROUP SECTION 'NERI'A Ze.
cm cm
I 305 x 102 x 33UB 6487 479.9
2 406 x 140 x 46UB 15647 -  888. 4
3 203 x 203 x 52UC 5263 568. 1
4 152 x 152 x 30UC 1742 247 .1
5 254 x 254 x 107UC 17510 1485. 0
INITIAL TOTAL WEIGHT = 13320 Kg.

FIG.4 20 SEVEN STOREY THREE BAY FRAME




() Exact A4=0.89 = O.88
" Ap=0.99 =0.99
Mechanism (4.12)
INITIAL DESIGN
102104 -
- [ p ( [
362 3062 7868
26256 KNjm. 50634
S ) et e e [
3315
\../.'.
904
230! 7
(c) Exact A¢f =1.00 (d} A¢ =1.02
" Ap =1.15 Ap = 1.5

FINAL DESIGN

FIG. 4. 21 INITIAL AND FINAL

COLLAPSE

Mechanism (4 .12)

MECHHANISMS




A

>

LOAD FACTOR

| //\7/\/,/)\—0\0,.—0’ o—o0—0— Ap
|
1004 ‘ A\
' A
/\/\/M cqn.f(4. 6)
0.95¢
0.901
[
0.851
0O.801

>?’oup‘ number

0. 751 (-
=
J 12} {1}
0.70%
FIG. 4.22a)
0.651
initial designl
1 -2 3 4 5 T 6
NO. OF ITERATIONS
FIG. 4. 22 IRREGULAR FRAME
—
ATOTAL WEIGHT —
{x 1000 kq.) - [ 11
8.01 g:q _ ]
L 7896—
7.8 7816— .
|
7.6
| .
7.4 - -
132 I8;J 132
r 1l 1 _1 25>
7.2 2||c> 320 2
] 50 —» 8
11 26 320 348 18O 132 Q
7.0 so»ﬁ 4 v x
™
f 22? 3¢o 45J6 31.0 324 lEiO 96
681} E =206 KN/mm2 35> —O"'
fy = 240 N/mm2 0
y e}
FIG 4 22(b) i 1
, , —_— 4 sooo L oooco 4 sooo L
6.6t nitial de:.|gn| N
| m—— At = += — +— - + >
n 4 g 6

2 3
NO. OF ITERATIONS




SECTION Zp Ix
(cm?) lem?)
205 x 102 x 22 261.9 2867
305 x 102 x 25 337.8 4387
305 x 102 x 28 407.2 542
356 x 127 x 33 539.8 8200
406 x 140 x 39 720.8 12452
406 x 140 x 46 888. 4 15647
457 x 152 x 52 1094 21345
457 x 152 x 6O 1284 25464
457 x 191 x 67 147 2940
457 x 191 x 74 1657 33388
533 x 210 x 82 2056 4749]
533 x 210 x 92 2366 55353
610 x 229 x 10l 2882 75720
610 x 229 x 113 3288 87431
686 x 254 x 125 3996 . 118003
686 x 254 x 140 4560 136276

TABLE 4.1 ECONOMIC BEAM SECTIONS




SECTION Zp Ix
(em3) (em4)

I52 x 152 x 30 247.1 1742
152 x 152 x 37 310.1 2218
203 x 203 x 52 568. 1 ' 5263
203 x 203 x 60O 652.0 6088
203 x 203 x .7| 802. 4 7647
254 x 254 x 73 988.6 11360
254 x 254 x 89 1228 14307
254 x 254 x 107 1485 17510
305 x 305 x li8 1953 27601
305 x 305 x 137 2298 32838
356 x 368 x 153 ﬂ 2964 48525
356 x 368 x 177 3457 57153
356 x 368 x 202 3977 66307

TABLE 4.2 ECONOMIC COLUMN SECTIONS




Min. vertical : Max, wind Max. vertical : Min. wind
ziiizy | Exact Proposed Exact Proposed
x bay A Ap Ac Ap Ac Ap Ac Ap
4 x 2w 10.50 |1.15 | 10.54 | 1.15 6.43 | 1.12 | 6.71 | 1.13
4 x 2N 15.21 |1.34 | 15.38 | 1.34 8.08 | 1.23 | 8.36 | 1.23
4 x 3W 5.95 | 1.13 | 6.14 | 1.14
4 x 3N 6.43 | 1.20 | 6.69 | 1,21
4 x 4W ‘ 5.63 | 1.14 | 5.83 | 1.14
4 x 4N 3.53 | 1.06 | 3.57 | 1.06
4 x 5W 5.89 {1.10 6.20(1.11 5.48 | 1.15 | 5.64 | 1.15
4 x 5N 6.77 |1.27 6.95 | 1.27 3.46 | 1.09 | 3.49 | 1.09
7 x 2W 14.73 |1.15 | 15.01 | 1.15 6.25 | 1,10 | 6.33 | 1.11
7 x 2N 23.52 | 1.42 | 24.27 | 1.43 9.81 | 1.23 {10.08 | 1.23
7 x 3W 4,70 | 0.99 | 4.82 | 0.99
7 x 3N 6.19 | 1.17 { 6.23 | 1.17
7 x W 4.85 1 1,08 | 4.97 | 1.10
7 x 4N ‘ 4,62 | 1,12 | 4.69 | 1.12
7 x 5W 5.33 {1.05 5.26 | 1.06 4,75 | 1.09 | 4.87 | 1.12
7 x 5N 7.70 11.33 7.7311.34 4,58 | 1,15 | 4.64 | 1.16

10 x 2w 17.61 |1.15 | 18.40 | 1.15 6.75 { 1.12 | 6.89 | 1.13
10 x 2N 21.13 |1.42 | 24,01 | 1.43 9.74 | 1.21 |10.08 | 1l.21
10 x 3W 4,98 | 1,07 | 5.03 | 1.09
10 x 3N ' 6.81 | 1.10 | 7.03 | 1.10
10 x 4W 7.37 {1.12 7.4311.12 3.99 | 1,03 | 4.02 | 1.03
10 x 4N 10.98 {1.33 | 11.33 | 1.34 5.13 | 1.12 | 5.21 | 1.12

W = Bay width 7500

=
(]

Bay width 5000

Table 4.3 Comparison with parametric studies under extreme loading.




VARIOUS LOADING

. Frame Vertical Wind load Exact Proposed
storey x bay load Xc Ap A kp
4 x 2w Max. Inter. 6.46 | 1.11 || 6.72| 1.11
4 x 3w Max., Max. 5.96 |1 1.04 || 6.15] 1.04
4 x 5W Max, Max. 5.47 | 1.12 || 5.64 | 1.12
7 x 2W Max. Inter. 6.75]1.10 || 6.79 | 1.10
7 x 5W Max. Max. 4.69 11.01 || 4.79{ 1.01
10 x 2w Max. Inter. 9.29 | 1.15 |} 9.60 ] 1.16
10 x 3W Max. Max., 7.3311.14 || 7.42]1.15
10 x 2N Max. Inter. 6.72 1,16 f} 7.19 { 1.16
10 x 2w Max. Inter. 8.8111.15 || 9.10 | 1.16
W = Bay width 7500
'N = Bay width 5000 -
TABLE 4.4 COMPARISON WITH PARAMETRIC STUDIES UNDER



TOTAL A A SECTION INERTIA
CYCLE A A eqn. (4.5) |Mech.
WEIGHT < P leqn ol 3 PREVIOUS |CURRENT
{kg.) x 10
Initial
design 13320 482 | 099 OV.BB —_— C —_— FIG. {4 20)
| 13320 48211099 | ©0.88 o] C 6487 8200
g 2 14130 5.5511.06 0.95 0.093 S 15647 21345
- _
é 3 13860 49511021 0.91 0.058 C 5263 6088
-
- 4 13425 482 [ 099 ] O.88 o . C 1742 2218
5 13567.5 |5.21 | L.OCO | O.90 | O.078 C 17510 2760l
initial g Group “2°
design 14130 5.55 | 1.06 | ©.95 — S — replaced
o | 14130 5.55 106 | ©.95 0] S 6487 8200
z
O 2 15210 592 | 1.O6 | 096 0.007 ) 21345 25464
S
o 3 14670 576 | 1.10 | 0.99 0.069 S 5263 6088
w
l_
4 14235 55511006 | 0.95 o _ ) 1742 2218
5 14377.5 |5.82 | 1.15 1.02 0.290 C 17510 27601
TABLE 4.5 EXAMPLE | OPTIMIZATION PROCEDURE

7 STOREY 3 BAY FRAME




Storey Bay 1 Bay 2 Bay 3

£ 4 | 406x140x46

% 3 457x152x52

g 2 457x152x52 | 406x140x46

% 1 457x152x52 457x152x52 | 406x140x46

. | Storey Column 1 Column 2 Column 3 Column 4

§ 4 203x203x71 | 203x203x71

Z 3 203x203x71 | 203x203x71

g 2 254x254x73 | 254x254x107 | 254x254x73

E 1 254x254x73 | 305x305x118 | 254x254x73 | 203x203x71
E = 206 KN/m> fy = 240 N/m?’ Total weight = 6689 Kg.
TABLE 4.6 Initial sections of 4-storey 3-bay irregular frame
Storey Bay 1 Bay 2 Bay 3

o 4 406x140%46

Z 3 533x210x82

g 2 533x210x82 | 406x140x46 o

5 1 533x210x82 | 533x210x82 | 406x140x46

o Storey Column 1 Column 2 Column 3 | Column 4

§ 4 254x254x73 | 254x254x73

’ 3 254x254x73 | 254x254x73

g 2 254x254x73 | 254x254x107 | 254x254%73

E 1 | 254x254x73 | 356x368x153 | 254x254x73 | 254x254x73

E = 206 KN/mn

fy = 240 N/m?

Total weight = 7896 Kg.

TABLE 4.7 Final sections of a 4-storey 3-bay irregular frame
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CHAPTER 5 (PART 1)

AN APPROXIMATE DETERMINATION OF THE FAILURE LOAD

OF SINGLE STOREY FRAMES

5.1 Introduction

As the deterioration of stiffness due to plasticity and
compressive axial forces is a major concern in the design of
unbraced multi-storey steel frames, computer methods are inevitably
the most appropriate. Several such methods have beeh reviewed in
Chapter (1). However, manual methods may be preferred for the

reasons given in that Chapter.

Both the European Recommendations for Steel Construction and
the draft for BS5950 allow the use of the empirical
Merchant-Rankine formula as a hand method, but Epis does not find
favour with all engineers because of its intuitive nature. In.
addition, there is a certain class of single storey portals that
are subjected to exceptionally high horizontal wind loads and
compressive axial forces which render both the simple piastic

method and the Merchant-Rankine approach unsuitable for design.

The method described in this Chapter attempts to trace the
development of plastic hinges under proportional increments of
loading. The position and load factor at which these plastic hinges
form are located using a step-by-step incremental analysis.

Expressions are derived by utilising the slope-deflection method of

-
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analysis té obtain the overall bending moment distribution of the
frame. The analysis, which is necessarily iterative and more
complicated than the Merchant-Rankine formula, is rendered suitable
for hand calculation by the use of limited single bay sub-frames.
Convergence is rapidly attained by interpolation from successive

iterations.

Secondary effects are incorporated by a combination of
stability functions and fictitious horizontal loads. Initially, the
proposed approach will be explained by réference to a single storey
pinned base frame. Derivations of the relevant expressions are
shown in the Appendix. In order to embark on the description, some

simplified assumptions have to be made.

5.2 Assumptions

The basis of the method rests on a detailed examination of the
simple pinned base portal shown in figure (5.1). For convenient
-
comparison with computer analysis, the distributed beam load has

been replaced by an equivalent central point load, AV.

Column end loads are represented by A(RV), where R‘is a
positive real valﬁe to simulate the applied load. The horizontal
ioad is shown as AH, taken as a point load concentrated at the
eaves level. The frame is proportionally loaded, identified by the
common load factor, A , but it must be emphasised that real
structures are subjected to pattern load fluctuations. The
following assumptions will be used in obtaining the approximate

failure load,
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a)the reduction in beam stiffness due to compressive axial

forces is negligible;

b)the effect of wind loading on the distribution of axial force
in the columns can be ignored when calculating the stiffness
of these members. i.e. the frames are treated with equally

compressed columns;
c)sway due to axial shortening is neglected;

d)the members are originally unstressed and the effects of

lack-of-fit are neglected;

e)out-of-plane displacements are prevented and failure occurs

in the plane of the frame only:;

f)spread of plasticity and the effect of strain-hardening are

neglected.

In the last of this list, a member is assumed to possess its
original stiffness rigidity, (EI), except at cross-sections where
the plastic moment of resistance, Mp} is developed. Plastic
deformation is limited to hinge rotation, under constant Mp, in the
same direction once started, Reversal of rotation is assumed not to
occur under an increase in load. The mcoment-curvature and

stress—strain relationships are shown in figures (5.2) and (5.3).
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5.3 Analysis of pinned base single storey frame

While the frame shown in figure (5.1) remains eldstic, the
bending moments at the possible plastic hinge positions may be

obtained by slope-deflection analysis given by,

MDc = MH + MV (5.1)
Mpe = MH - MV (5.2)
Mcp = MF - MV (5.3)
where MH = wind moment = AHh/2 + X¢(FV)6
MV = vertical moment = AWL |1 - 2k!
' 8 2k’ + s(l-c2)k"
MF = free moment = AWL/4
6 = horizontal eaves sway = AsHh o

(12EK'/h) - [2 A (FV) o]

(FV) = base reaction = A (RV) + AV/2
k' = I,/L
k" = I./h
=1 + 6k’
s(l=-c2)k" -

Equations (5.1) to (5.3) have been obtained by considering two
analyses. When the simple portal is subjected to the vertical

loads, the moment MV is obtained.

Wind moment, MH, is obtained by considering the portal
subjected to AH, along with a fictitious load A[V+2(RV)]6/h. The
latter allows for the 'P~ A' effect which result from the

horizontal translation of the vertical loads when sway occurs. The
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analysis assumes the joint rotations at (B) and (D) to be equal.
The stability functions 's' and 'c' are calculated from the total
value of A(FV). Bending moments are taken as positive when acting
in a clockwise direction on the end of a member between two loaded

points.

The first plastic hinge is found when the larger in magnitude
of My. and M., equals the full plastic moment of resistance, Mpp or
Mpc(reduced) whichever is the lower. Due to the constraint imposed
on the minimum design load factor for plastic hinges to form in
columns, it is usual to ensure that Mpc(reduced) > Mph . The value
of the load factor at this juncture is denoted by Ay. Under a
further increment of proportional loading, denoted by AA , the
plastic hinge is replaced by a real pin., As the first plastic hinge
can occur either at (C), directly under the central point load or
at the leeward end of the beam at (D), two incremental load cases

need to be examined.

5.3.1 PFirst hinge at mid-span of the beam

Let the second hinge form at a total load factor, A; , such
that A, - A4+ AA., When the first hinge forms, the frameris
reduced to a statically determinate structure as shown in figure
(5.4). Under the increment in mid-span vertical load, the bending
moments are equal in magnitude but opposite in sign at (B) and (D)

respectively, and are given by,

AMg (V) = = Mg, (V)

AAVL/4 (5.4)
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When the frame is subjected to the loads shown by figure (5.4 (b)),

the incremental moment at (D) on member B-D is the same as the

moment at (B),

AMpg (H)
where Hl =
Thus Hl =
2V =

v, =

)\Z(FV) =

(X1 =

n

AMBD(H)

( AAH + HL1).h/2 + A,(FV).v, ‘ (5.5)

fictitious horizontal load to allow for the increment
of vertical load acting on the sway, 6 , existing in
the frame at A, . 6 is shown in figure (5.4 (b)).
AA2V. (6 /h)

total vertical load on the frame at A = 1.
increméntal sway as shown in figure (5.4 (b))

( AAH + Hl).hoy
(12Ek'/h) - [2 X, (FV) «, ]

TOTAL base reaction
defined earlier but with the stability functions

calculated based on the TOTAL load, A, .

5.3.2 First hinge at leeward end of the beam

Figure (5.5) represents the poftal with a leeward hinge on the

beam. Under incremental loading the leeward column can take no

shear as it is pinned at both ends. It follows that an increment of

vertical loading will cause no shear at joint (A). First-order

analysis therefore gives the same result as for a simply-supported

beam,

AMcp (V) = AAVL/4 (5.6)
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As the frame is now unsymmetrical, the increment of vertical
loading will cause sway. It can be shown that this sway is equal to

that due to a horizontal force, H3, applied at the eaves,

H3 = 3AAVL 1
16h 1 + (k'/k") (5.7)

Thus, the incremental sway v, can be regarded as due to four

components of -horizontal load,
a)the increment of true horizontal load, AAH,
b)the fictitious force, HL, as defined in (5.3.1),
c)the fictitious force, H3, as given by equation (5.7),

d)a further fictitious horizontal force, H2, which allows for
the 'P- A' moment due to the total vertical load, 2V, at A,
acting on the incremental sway v,, as shown in figure (5.6),

—

H2 = A2V.(v,/h)

This term was not neéessary in the calculation of v, in (5.3.1)
because there, stability functions were included to allow for this
effect. Here it is proposed that the deflection be calculated

without their use.

The horizontal load, H* » applied to calculate v, is therefore

given by,
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H* = AAH + (HL + H2 + H3)

The deflection v, is then,

v, = m* .hzaz
3Ek'
where o, = 1 + (k'/k")

The resulting clockwise bending moment at (B) on member B-D is

given by,
AMBD(H) = (AAH + H1 + H2).h (5.8)
MM p(H) = AMBD(H)/Z (5.9)

It is noted that a linear elastic analysis has been utilised
but the fictitious loads provide sufficient influence on the
bending moments to offset the reduced stiffness of the columns. As
the frame sways under vertical load alone, H3 is included in the
total real plus fictitious load, n* , used to ca£;ulate vy. It is, .
however, excluded in equation (5.8) because the bending moment AMcplV)

calculated from equation (5.6) takes account of the freedom to

sway that now exists at joint (D).

The total moments at (B) or (C) are found by summing the
incremental values to those existing at the first load factor. In
this manner, the collapse load is found when the total moment with

the larger magnitude equals Mpb or Mpc(reduced).
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The solution procedure for both the first and second load
factor are cléarly iterative but convergence is rapia as long as
the frame is still stable as the load level approaches either A,
or A, . However, cases may arise when the frame collapses after
only one plastic hinge has formed. This is indicated by an
inability to converge onto a value for the incremental sway, no

matter how low the value of A\.

5.4 Verification of the method

Comparison with a second order elasto-plastic computer
analysis showed very good agreement, no matter whether the frame
collapsed with one or two plastic hinges present. Four separate
examples are shown. The two cases of the first plastic hinge
occurring at mid-span and at the leeward end of the beam are
illustrated. The third example illustrates the possibility of a
simple portal collapsing without having to develop a mechanism. The
final example shows a frame that is subjected to high wind loads in

—

comparison with the vertical loads. This is necessary before

proceeding to the next stage of application to multi-storey frames.

5.4.1 Example 1

In the following examples, Young's modulus of elasticity is
taken as 206 KN/mmz and the yield stress as 240 N/mm2 , unless
otherwise stated. Consider the frame given by figure (5.1) with the

following values,
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Beam (356 x 127 x 39 UB)

[

I, = 10087 x 10° mm Mph = 156.86 KNm.

Column (203 x 203 x 71 UC)

I = 7647 x 10° mm” Full Mpc

192,58 KNm.

Applied loads and dimensions

V = 156 KN R = 0.5 H = 24 KN (FV) = 156 KN
L = 6.00 metres h = 4.00 metres

Hence k' = 16811.7 mm® and k" = 19117.5 mm’

i) Let A, = 0.977

The stability functions 's' and 'c' are determined based on
equal column forces due to vertical load only. The ratio of axial

to Euler load is given by,

e = 0.977 x 156 x (4000)° = 0.01568
m2x 206 x 7647 x 104
s(l-c?) = 2.9688

Referring to Section (5.3) to evaluate the elastic bending moment

distribution,

a) Mv

0.977x156x%6 1 - 2x16811.7
8 2x16811.7 + 2.9688x19117.5

71.78 KNm.

b) MF 0.977 x 156 x 6 / 4 = 228.62 KNm.
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To determine the wind and (P- A) moments, two parameters must be

calculated fof'use in the term MH. These are,

o =1 + 6 x 16811.7 = 2.777
2.9688 x 19117.5

6 = 0.977x24x4000x2.777
(12x206x16811.7/4000) - (2x0.977x156x2.777)

27.29 mm

&

c) (0.977x24x4/2) + (0.977x156x27.29/1000)

51.06 KNm.

It is found that the first plastic hinge occurs at mid-span as

shown in fiqure (5.7 (a)). Equations (5.1) to (5.3) give the total

bending moment distribution at A,

=
]

122.84 KNm.

pc = 51.06 + 71.78
Mg, = 51.06 - 71,78 = -20.72 KNm.
M.y = 228.62 - 71.78 = 156.84 RNm.  ( =-Mpp )

ii) Now let the increment of load, AA = 0.114, resulting in the
total load of 1.091. The stability functions are calculated based

on the total load,

e =1.091 x 156 x (4000)° = 0.0175
T2 x 206 x 7647 x 10%
s(l-c?) = 2.9652

Referring to Section (5.3.1) for the first hinge at mid-span,
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d) Equation (5.4), AMyz(V) = 0.114x156x6/4

26.68 KNm.

Incremental wind plus (P~ A) moments are obtained by calculating

the necessary parameters,

Hl = 0.114 x (2x156) x 27.29/4000 = 0.243 KN

& =1+ 6 x 16811.7 = 2.7794
2.9652 x 19117.5

vy = (0.114x24 + 0.243)x4000x2.7794

(12x206x16811.7/4000) - (2x1.091x156x2.7794)

3.507 mm

e) Equation (5.5), AMpg(H) = (0.114x24 + 0.243)x4/2 +

{1.091x156x3.507/1000)

6.55 KNm,

Total moments at A, are determined by summing the existing moments

at Ay and AA,

My (T) = 122.84 + 26.68 + 6.55 156.07 KNm. ( = Mpp )

Mg (T) -20.72 - 26.68 + 6.55 = -40.85 KNm.

The second hinge is located at (D) and a collapse mechanism is now
present at an ultimate load factor of 1.09. The total horizontal
eaves sway is 30.80 mm. In comparison, accurate elasto-plastic
computer analysis indicated failure occurred at A; =1.09 with a

total average sway of 30.88 mm. The manual method is able to trace
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the development of the plastic hinges corresponding to that shown
by accurate coniputer analysis. The final bending moment
distribution is shown in figure (5.7 (b)) with the accurate results

given in brackets.

5.4.2 Example 2

The following values are used in this example,

Beam (457 x 152 x 52 UB)

I, = 21345 x 10° mm* Mph = 262.56 KNm.

Column (305 x 305 x 137 UC)

I. = 32838 x 10° mm* Full Mpc = 551.52 KNm.

2

A 17460 mm

Applied loads and dimensions

v

156 KN R = 6.0 H = 72 KN (FV) = 1014 KN

—

n

L 6.00 metres h = 4.00 metres

Hence k' = 35575 mm® and k" = 82095 mm’

Proceeding in exactly the same way as for the first example,

i) Let A, = 0.993

0.993 x 1014 x (4000) = 0.02413
T?x 206 x 32838 x 104

i}
n

"

s(1-c?) = 2.9517
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a) MV = 0.993x156x6 1l - 2x35575
8 2x35575 + 2.9517x82095

= 89.81 KNm.

b) MF = 0.993 x 156 x 6 / 4 = 232.36 KNm.
o =1+ 6 x 35575 = 1.8809
2.9517 x 82095
5 = 0.993x72x4000x1.8809
(12x206x35575/4000) - (2x0.993x1014x1.8809)
= 29.56 mm
c) MH = (0.993x72x4/2) + (0.993x1014x29.56/1000)

= 172.75 KNm.

It can be demonstrated that the first plastic hinge forms at the
leeward end of the beam as shown in figure (5.8 (a)). The total

bending moment at A, is given by,

-«

262.56 KNm. ( = Mpp )

=
i

pc = 172.75 + 89.91

=
"

gc = 172.75 - 89.91 = 82.94 KNm.

142.55 KNm.

=
]

o = 232.36 - 89.91

The plastic hinge forms on the beam because the reduced plastic
ﬁoment capacity of the column at unit load factor was 474.98 KNm,

far in excess of the end moment Moc‘

ii) Let the increment of load AA = 0.156. Therefore, the total
load is 1.149. The analysis described in Section (5.3.2) does not

make use of stability functions to determine any of the parameters,
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Instead, fictitious loads are evaluated to solve for v,. Referring

to Section (5.3.2),

Real wind load increment, AAH = 0.156 x 72 = 11.23 KN.

o]
[
1}

Fictitious force, AANZV.(6/h) 0.156x(2x1014)x29.56

4000

2.34 KN

Fictitious force, H2

AZV.(vy/h) = 1.149x%(2x1014)x v,

4000
= 0.5852 (v,;)
Fictitious force, H3 = 3x0.156x156x6000 1
16x4000 1 + (35575/82095)
= 4,78 KN

Total horizontal load, H" = [0.5852 (v,) + 18.35] KN

where v, is given in millimetre units. Further calculations involve
—

the expression given for v,,

Vz = H* hZC(Z
3Ek'

where &; =1 + (35575/82095) = 1.4333
Substituting ¥ into v, given above,

2
v, = [0.5852 (v,) + 18.35] x (4000) x 1.4333
3 x 206 x 35575
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Hence, vy = 49.13 mm and H2 = 28,75 KN,

d) Equation (5.6), AM.(V) = 0.156x156x6/4
= 36.50 KNm.
e) Equation (5.8), AMgp (H) = (11.23+2.34+28.75)x4

169.28 KNm.

The total moments at A\, are obtained thus,

Mgp (T) 82.94 + 169,28 = 252,22 KNm.

Mcp(T) = 142.55 + 36.50 + (169.28/2)

263.69 KNm. (= Mp)

This second hinge at mid-span transforms the portal into a
mechanism at A, =1.15 with a total sway deflection of (29.56 +
49.13) = 78.69 mm. Accurate computer analysis indicated failure at
a load factor of 1.15 and a total average sway of 78.30 mm. Values
of computer bending moments are shown in brgckets’in figure

(5.8 (b)).

5.4.3 Example 3

Let the previous member properties be adopted as a third
example. The dimensions are the same as example (2) but the applied

loads are given below,

V = 156 KN R = 22.82 H = 90 KN (FV) = 3638 KN

As example (2), k' = 35575 mm°> and k" = 82095 mm®

¢ +
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i) Let Ay = 0.660

0= 0.660 x 3638 x (4000) = 0.0575
T@x 206 x 32838 x 10°
s(l-c?) = 2.8845
a) MV = 0.660x156x6 1 - 2%35575
8 2x35575 + 2.8845x82095
= 59.38 KNm.
b) MF = 0.660 x 156 x 6 / 4 = 154,44 KNm.

o = 1 + 6 x 35575 = 1.9014
2.8845 x 82095

6 = 0.660x90x4000x1.9014

(12x206x35575/4000) -~ (2x0.660x3638x1.9014)

= 35.14 mm

c) MH = (0.660x90x4/2) + (0.660x3638x35.14/1000)

= 203.18 KNm.

The total bending moment at A, is given by equations (5.1) to

(5.3),

My, = 203.18 + 59.38 = 262.56 KNm. ( = Mpc )
M,. = 203.18 - 59.38 = 143.80 KNm.
M, = 154.44 - 59.38 = 95.06 Kim,

Due to such high column axial load, the reduced plastic moment of
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resistance is determined to ensure that the first plastic hinge

does not form in the column at this load level,

n = 0.660 x 3638 = 0.573 > 0.219
(240 x 174.6 / 10)

0.240 x [247.9(1-n) x (10.29+n)}

Mpc(reduced)

275.97 KNm > M

pb

This confirms that the first plastic hinge develops on the beam

rather than on the column.

ii) Let AA = 0.001 such that A, = 0.661. Proceeding in exactly
the same way as the second example to determine the real and

fictitious loads,

Real wind load increment, AAH = 0.09 KN
Fictitious force, Hl = 0.064 KN
Fictitious férce, H2 = 1.202 (v,)
Fictitious force, H3 = 0.031 KN

Total horizontal load, H® = [1.202 (v;) + 0.185] KN

1.4333

N
i

{1.202 (wvy) + 0.185) x (4000f x 1.4333
3 x 206 x 35575

V2

ie. vy - 0.76 mm
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The result has shown that the frame is swaying in the opposite
direction and H2 will therefore be negative for equilibrium to be

maintained. In fact, for zero increment, v, cannot be solved.

Computer analysis showed that failure has indeed occurred with
one plastic hinge at a load factor of 0.66. The average sway at
this load level was 35.20 mm compared with the manual calculated
value of 35.14 mm. The total bending moment is shown in figure

(5.9) along with the computer result given in brackets.

5.4.4 Example 4

This example demonstrates the applicability of the proposed
method in dealing with portals that are subjected to relatively
high ratios of horizontal to vertical loads in which it is likely
that all the plastic hinges will form at the beam-column joints.
European séctions are used fn this example with the following

parameters,

Beam (IPB 260)

I, = 14920 x 10° mm* Mpl, = 308.00 KNm.
A, = 11840 mm’

Column (IPB 200)
Ic = 5700 x 10° mm® Full Mpe = 154.00 KNm.
Ac = 7810 mm? Squash load, Np| = 1874.4 KN

Applied loads and dimensions

V = 102 KN R = 0.5 H = 104.3 KN (FV) = 102 KN
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L = 10.00 metres h = 2.70 metres

Hence k' = 14920 mm* and k" = 21111.1 mm’

Young's modulus of elasticity, E 210 KN/mm2

240 N/rnm2

Yield stress, £

i) Let A, = 0.667

European Recommendation(56) allow the calculations to be
) performed neglecting the reduction in plastic moment due to axial

load when the ratio of applied load to the squash load of a column

is less than a numerical value of (1/11). In this case,

N/NP[ = (0.667x102)/1874.4 < 1/11

where N = column axial force. In addition, because N is relatively

low, the stability functions will be taken as 's'=4 and 'c'=0.S5.

Following the steps given in example (1),

a) MV = 57.81 KNm.
b) MF = 170.09 KNm.
&= 2.4135

6 = 33,34 mm

c) MH = 96.19 KNm.
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The total bending moment at a load factor of 0.667 is given by,

Mpe = 96.19 + 57.81 = 154.0 KNm. (= Mpc )
Mge = 96.19 - 57.81 = 38,38 KNm.
M = 170.09 ~ 57.81 = 112.28 KNm.

The first plastic hinge occurs at the top of the leeward column.
With reference to the second example given earlier with an

increment of AA = 0.347 (total load = 1.014),

N/Npl = (1.014x102)/1874.4 < 1/11

Hence, the reduction in Mpc continues to be ignored.

&, = 1,7067
v, = 75.82 mm and H2 = 5.81 KN
MM, (V) = 88.49 KNm.

AMBD(H) = (36.19 + 0.87 + 5.81) x 2.7 = 115.75 KNm.

The total bending moment is obtained by summation of existing

values at A; and this increment of 0.347,

]

MBD(T) 38.38 + 115.75 = 154.13 KNm, (= MPc )

Mo (T) 112.28 + 88.49 + (115.75/2) = 258.65 KNm.

It can be seen that both plastic hinges developed in the columns.

The bending moment is shown in figures (5.10 (a)) and (5.10 (b)).

.



The results were confirmed by accurate computer analysis which

gave A; = 0.67 and A,= Af = 1.01.

5.5 Design criteria of portals

It is interesting at this stage to compare the failure loads
calculated above for all the examples to those obtained by
rigid-plastic theory. This permits an assessment of the provisions
_ of Design Recommendations(55) for the plastic analysis of portal

frames.

Consider examples (1) and (2). The reduced plastic moment
capacities of the columns are such that plastic hinges form in the
beams, the critical mechanism being the combined mode. Therefore,

the rigid-plastic collapse loads are obtained as follows,

Example 1
Ap = 4 x 156.86 = 1.11 )
(24 x 4) + (156 x 3) -
% error = 1.11/1.09 = + 2%
Example 2 ©(5.10)
AP = 4 x 262.56 = 1.39
(72 x 4) + (156 x 3)
$ error = 1.39/1.15 = + 21%

In the third example, the critical rigid-plastic collapse
mechanism can be shown to be the sway mode [identical to figure

(5.10 (b))]l. The reduced plastic moment capacities of the columns -
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were calculated at a load factor of 0.876 (ignoring the effect of
horizontal lo;ding), while the fourth example neglects the effect
of axial forces in the columns as permitted by European
Recommendation(56). The rigid-plastic collapse loads are therefore

given by,

Example 3

Mpc(reduced) = 157.45 KNm,

Ap = 2 x 157.45 = 0.875
(90 x 4)
$ error = 0.88/0.66 = + 33%

Example 4 (5.11)

Ap 2 x 154.00 = 1.09
104.3 x 2.70

H

$ error 1.09/1.01 = + 8%
The above comparisons indicate that for some frames the errors are

unacceptable, and that simple plastic theory should not be used.

-
i

In addition to the comparisons above, it is interesting to
examine the eaves deflection at working load. This is easily
determined by ignoring the second term in the denominator given by ¢

in Section (5.3),

6(linear) = AHh( _ ' (5.12)
(12Ek'/h)

In the examples, the linear elastic sway deflection is calculated
at working load, by dividing the horizontal applied force at the

eaves by a factor of 1.2. For comparison, accurate linear elastic
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deflections are also shown below. With A = 1, the calculated and

accurate eaves deflection are shown as,

Example H equation(5.12) é(computer) O6(computer)
(KN) (mm) {mm) h
1 20 21.24 21.31 1/188
2 60 20.38 20.50 1/195 {5.13)
3 75 25.47 25.63 1/156
4 86.92 40.67 40.78 1/66

It can be seen that the calculated values of the eaves deflection
is in good agreement with computer results for all the examples.
The sway in examples (1) and (2) would often be acceptable in
practice although the minimum eaves deflection is not specified in

Design Recommendations(55) for single storey frames.

It is also interesting to point out that the criterion given
in Design Recommendations(55) for sway stability was derived for a

multi-bay single storey pinned base portal. The derivation excludes

el

concentrated loads at the top or near the top of columns such as
those due to crane systems or pipework (example, in structures for
supporting chemical plant). In such cases, the criterion is
inapplicable. The proposed method is able to estimate the hltimate
load accurately without recourse to a second-order elasto-plastic

computer analysis.

In summary of the work presented above, it can be seen that
for the examples considered the design of pinned base portals using
the simple plastic theory can be unsafe by as much as 33%.

Admittedly, this design is governed by squashing of the columns.
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Pinned bases are still favoured because of the uncertainty of soil
conditions in ‘made-up' industrial sites, Cases can arise when
engineers prefer to design intermediate portals at certain
intervals to resist all the wind loads (figure 5.10 (c)).
Therefore, the last example is a real possibility that can occur
for shallow, long span portals. The reason for doing this, is so
that adjacent bays may be designed to sustain vertical loads alone.
Such designs may lead to greater overall economy. Similarly, the
stanchions may be omitted in certain frames, support being by
valley beams. In this case, high axial loads are applied to the
eaves of certain frames. Extreme cases of this are shown in
examples (2) and (3). The proposed method is able to deal with such
frames satisfaétorily without the need for 'exact' computer

analysis.
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CHAPTER 5 (PART 2)

AN APPROXIMATE DETERMINATION OF THE FAILURE LOAD

OF MULTI-STOREY FRAMES

5.6 Analysis of limited frame

The previous analysis has been extended to single bay
multi-storey frames, making use of sub-frames. The method is

applicable providing plastic hinges do not form in the columns.

Iﬁ earlier methods for elastic-plastic design (for example,'
Majid and Anderson, Anderson and Islam, Merchant-Rankine approach,
etc.), it has been specified that columns do not develop hinges
until the design load is reached. This is because of the
deterioration of stiffness that results from such hinges. This
restriction is retained here, and therefore the QfOposed analysis

can be used in design.

Whenvplastic hinges form in the beams, it is assumed that
failure occurs when two plastic hinges have formed in each of two
consecutive floors. Wood(26) has described such behaviour as a
gendency towards ‘'conversion' to chimneys. Failure occurs due to
loss of restraint to the columns. In addition, the frames examined

in Chapter (2) confirmed that such an assumption is justified.

Whilst the frame is elastic, the sub-frames are as shown in

figure (5.11). Under vertical loading, points of contraflexure are
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assumed to occur at the mid-height of each column, except those in
the bottom stofey. The analysis of the top storey is based on an

intermediate sub-frame, but with the upper legs removed.

The horizontal sways, 6, and 62 at each level are obtained
from an analysis of a substitute Grinter frame. A program is
available in Basic for use on desk-top computers. This makes
allowance for the reduction of column stiffness due to compressive
axial forces. The assumptions with regard to the Grinter frame has
already been described. Incremental storey shears, which include
both real and fictitious horizontal loads, are used to obtain the
corresponding incremental sway deflections. The derivation can
therefore, be based entirely on linear elastic analysis to obtain
simplified expressions. However, it must be noted that the total
vertical loads are‘used to determine the reduction in column

stiffness at each increment of load.

For an elastic intermediate sub-frame, the analysis under
vertical loading is based on the limited frame shown in figure
(5.11 (a)). The bending moments resulting from the central vertical

load, AV, are given by slope~deflection,

My (V) = AVL [1 -k ] = =M (V) (5.14)
8 K

My, (V) = AVL[}}_Z] = -M__(V) (5.15)
8 | K

My (V) = )\VL[&] = M (V) (5.16)
8 | K |

Mep(V) = AVL/4 - M, (V) | (5.17)

where K = (3k; + 3k2 + k),
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k] = I1 /h] ’ kz = Iz/hz ' k = II)/L

and the suffices 'l' and '2' refers to the upper and lower column

respectively.

the limited frame shown in figure (5.1l1 (b)) with

6, and 6,

Bending moments due to horizontal loads are determined from

evaluated in advance from an analysis of the Grinter frame at the

corresponding 16ad level. The wind moments at each level are

similarly evaluated independently for the joint concerned,

M

DC(

H) 6Ek6B = MBC(H)

Mga (H) = 2Bk, [265 + 8, = 36, /h, | = My (H)

M

where

Hl

H2

BF(

H) = = [ My (H) + Mg, (H) | = My (H)

2k, (6,/h,) + 2k, (6,/h,) + [(AHL.h; + AH2.h, )/6E]

7k, + 2k, + 6K

26, - 63 - AH2.h, ,

12Ek,

N

|

=
~N

sum of the real wind shear plus allowance for 'P- A"
effect of the upper storey

AZH + A2V (6i/hy ) ,
sum of the real wind shear plus allowance for 'P- A'
effect of the lower storey

AZH + A3V (63/h, )
total horizontal shear in a storey,

sum of the column axial forces in a storey.

(5.18)
(5.19)

(5.20)

’

As in the single storey frame, the first plastic hinge is found

when the largest total moment due to combined vertical and
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horizontal loading equals the full plastic moment of resistance of
the beam. The value of the load factor is A,. Further increments
of loading are denoted by AA such that A, = A, + AA . In

general,
Ai+l = A+ BA (5.21)

Analysis of the frame commences at the top and proceed downwards to
the base sub-frame by considering each floor level at a time. The
Hbending moments given by the intermediate sub-frame from equations

(5.14) to (5.20) are applicable to the top sub-frame by ignoring

the terms corresponding to the upper storey (i.e. k, ,h, ,Hl etc.).

1
As the assumption of a point of contraflexure at mid-height
for the ground storey is grossly inaccurate, further expressions
are derived. This makes use of the same principle as the
intermediate sub-frame. With reference to the base sub-frame shown

in fiqure (5.11 (a)), the analysis under vertical loading alone is

given by, -
M (V) = AVL [1 - k_] = =M (V) (5.22)
8 K'
M (V) = AVL [Q,_] = =M (V) (5.23)
8 K'
M (V) = M (V) /2 = =My (V) (5.24)

where K'

]
-
W
~
S+
N
~

~N
+

k).

The moment given by MKL(V) is similar to equation (5.17) while

M;p (V) is obtained by considering equilibrium at joint (J).
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The wind moments are similarly obtained for the base sub-frame

shown in figure (5.11 (b)),

M ((H) = 6Ek®; = My, (H) . (5.25)
M; (H) = 2Ek,[26; - 36,/h, ] = M \(H) (5.26)
M), (H) = 2Bk, [ ©; - 36,/h, 1 = My (H) (5.27)

where ©; = 2k, (6,/h;) + 6k,(6,/h,) + (AHl.h, /6E)

2k; + 4k, + 6k

and M 4 (H) is obtained from equilibrium at joint (L).

Iteration is necessary to determine the load level at which the
first plastic hinge forms, but convergence is rapid. Derivations
for pinned bases can similarly be obtained by slope-deflection but
it was felt unnecessary because fixed bases are more usual for

multi-storey frames, as discussed in Chapter (4).

Under an increment of load, equations (5.14) to (5.27) may be
used. For an elastic sub-frame, the load factor, A is replaced by
-~
the incremental load, AA . An allowance for the previous
deflection is included in the calculation of the incremental storey
shears, AAHL and AAH2. When a piastic hinge forms, several

alternative positions need examining to derive expressions for the

subsequent incremental analysis.

5.6.1 Hinge at leeward end of the beam

Under an increment of vertical load, AAV, the intermediate

storey is represented by the limited frame shown in figure
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(5.12 (a)). The column length is now assumed to equal the storey
height with thé far ends pinned. However, if the adjacent top or
bottom sub-frames continue to remain elastic, then the earlier
analysis given by equations (5.14) to (5.17) is applicable to those
sub-frames. A system of distributing column end moments is assumed,

to compensate for overlapping of the column legs.

As the unsymmetrical sub-frame is prevented from swaying by
the action of the forces Rl and R2, the analysis procedure is
similar to a propped cantilever given by equation (5.7). The fixed
end moment at joint (B) on member B-C is ( AAVL/8 ) and the

bending moments are given by slope-deflection as,

AMge(V) = 3AAVL | k =~ 1 (5.28)
16 K"
AMga (V) = 3 AAVL k2 (5.29)
16 K"
AMcp(V) = AAVL + AMg (V) (5.30)
4 2
-
where K" = k3 + k, + k

The ficti;ious forces, Rl and R2, are obtained by dividing the
appropriate column moments at joint (B) by their storey height. The
total fictitious shear is assumed to be the sum of Rl and R2. An
a?erage value is then used in the substitute frame analysis to
allow for the increment of sway due to the unsymmetrical nature of
the sub-frame. Thus to determine this sway in the sub-frame shown
in figure (5.12), a force (Rl1+R2)/2 is applied at (F) acting to the

right, together with (R1+R2)/2 at (A) acting to the left.
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The average value of R has been adopted so that the
approximate diétribution of shear is confined to the particular
sub-frame under consideration., If this is not done, an unbalanced
quantity is transmitted to the lower sub-frames, giving rise to
overestimates of sway. When consecutive sub-frames have a hinge,
then the net value.at the common joint is incorporated into the
cumulative storey shearé. Values of R are given for each of the

cases as,

R(intermediate) = 3AAVL [ ky o+ ﬁ]
16K" h, T,
R(base) = 3 AAVL [_gﬂ + iﬁ;]
16(3ky + 4k, + 3k) h, h, (5.31)
R(double hinges)int. = AAVL [_k_, + .'5_2_:|
2(ky + kp )| Iy h,
R(double hinges)base = AAVL [ 3k + 352]
2(3ky + 4k, ) h, h,
Bending moments due to the incremental wind shears are
evaluated by considering the limited frame shown in figure
(5.12 (b)). The member end moments are given by the usual
slope-deflection equations,
AM, o (H) = 2Ek,[20, + O - 346,/h,] (5.32)
AMg,(H) = 2Ek,[ @, + 205 - 3A6,/h, ] (5.33)
. AMcg(H) = 2Ek,[26 + 84 - 346,/h,] (5.34)
AMgp(H) = 3Ekeg (5.35)
AM o (H) = 2Ek,(28¢ + ©p - 346,/h,] (5.36)
AMy (H) = 2Bk, [285 + ©g - 346 /hy | (5.37)

AMgo(H) = 2Ek, [ ©¢ + 28; - 346,/h;] (5.38)
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where A6, and A6, are the sways due to the increment of

horizontal loads from an analysis of the Grinter substitute frame.

To determine the joint rotations, it is necessary to estimate
the distribution of shear for each column length. Figure (5.12 (c}))
and (5.12 (d)) depicts a limited frame, separated at the position
of the hinge. The far ends of the columns are assumed fixed against
rotation but free to displace horizontally and subjected to the
shears S and S . The letter 'W' and 'L' denotes the windward and

leeward columns respectively.

Exact computer analyses have shown that the distribution of
shear can be approximated by considering such a modelvto represent
the behaviour in a real frame., The two assemblies are analysed
separately such that the superimposed sub-frames satisfy
equilibrium and compatibility. In the derivation, it will first be
assumed that shear is constant over the two storey height of the
sub-frame., With reference to figure (5.12 (d)), equilibrium at

joint (D) gives, -

Substituting the relevant slope-deflection equations and solving

for the displacements gives,

2 ky + kj
vD = S .hpjhy +h, + hy

4E ki + ks 3k, (5.39)
vG =

|
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ay over the two storeys is given by,

vD + vG
S| (hy +hy o+ b+ n (5.40)
1E | k, + k, 3k, 3k,

analysis of figure (5.12 (c)), the above expressions
but with an extra stiffness term for the beam

joint (B). This is given by,

Sw hy + h,
2E | ky + k; + 3k

Sw. h2 h] + hz + hz
k1

4E + k, + 3k 3k, (5.41)
Sy hy hy + hy + hy
4E ky + k, + 3k 3k,
ay is the sum of vB and vF,
vB + vF ‘ |
2 2 2 |
Sw | (hy + hy ) + hy + hy (5.42)
4E ky + k,+ 3k 3k, 3k, -

total sways given by (5.40) and (5.42) gives,

ratio of the bracket term given by equation (5.40) and

2 2 2

(hy + hy ) + hy + h,
ky + k, K, 3k,
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For compatibility of shear,

S5 =Syt S

= SL (1 + m)
Hence,
SL = ST (5.43)
(1 + m)
and Sy = Sy
1 + (1/m)

where S; is assumed to be the total shear for the upper and lower

storeys.

However, in practice it was decided that an alternative form
to equation (5.43) be adopted. The reason is due to the fact that
the wind shears are generally higher for the lower storey and
therefore the values of Sy and S_ at joints (A) and (E) should be

proportioned appropriately.

Let S, and S be the shears for the upper stéiey and Sy and
S! represent the shears for the lower storey. Accurate computer
analyses showed that the shear distribution can be estimated based
on the relative stiffnesses of each assembly shown in figures
(5.12 (c)) and (5.12 (d)). It is proposed that the distribution of

shear for the upper storey be given by,

Sy = (ky + k, + 3k) . S7(U) (5.44)
(k, + k, + 3k) + (k, + Kg )

S = 5;(U) - Sy

For the bottom storey, it is assumed that the sway displacements at
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joints (B) and (D) are equal rather than considering sway
compatibility over the two storeys. Therefore, equating the
displacements, vB and vD, and redefining the parameter 'm' above

gives,

m = [(h1 + hz )/(k1 + kz—)] + (h2 /3k2 ) (5.45)
[¢(hy + hy, })/(ky + k, + 3k) + (h; /3k,; )

In a similar form as equation (5.43), the shear distribution for

the lower storey is given by,

S/ = S51(B) (5.46)
(1L + m)

Sy = St(B)
1 + (1/m)

where S;(U)

Sum of real and fictitious shears for the

upper storey,

S71(B) Sum of real and fictitious shears for the

lower storey.
The values of S;(U) and S;(B) are of the same form as the single
storey pinned base portals described in Part (1) of this Chapter.

The total shear comprises,

‘a) real horizontal wind shear, AAH,

b) H3 fictitious shear to allow for the increment of vertical
loading acting on the sway, 6(previous), existing-in

the frame at the previous load,

AAIV [ O(prev.)/h],

c) H4 fictitious shear to allow for the 'P- A' effect due to
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vertical loading acting on the total sway existing in

the frame at the current load,

i

A(total) 2V Ab/h.

The value of H4 is not included in the calculation of deflections
in the Grinter substitute frame analysis because the reduction in
column stiffness due to axial forces has been taken into account.
These values are determined for all increments of ;oad and

substituted into the appropriate wind shear term given in Section

" (5.6).

In addition, the average value of R is included with the real
incremental wind shear to evaluate the incremental sway deflections
from the Grinter substitute frame analysis. It will be recalled
that this force permits account to be taken of sway due to lack of
symmetry under vertical loading. Accurate computer analyses
indicated this to be a necessary step in order to obtain close
estimates of sway deflections. However, after the incremental sway
has been determined, R is excluded when calculating the membe;
forces because the force H4 allows for tﬁe 'P- A' effect of the

total vertical load on the incremental sway.

The analysis for the joint rotations can now be determined
from figure (5.12 (b)). It is noted that the expressions for the
rotations are similar to those of the elastic sub-frame given in
Section (5.6). The incremental joint rotations required for use in

equations (5.32) to (5.38) are given by,

8g = 2ky (A6y/hy) + 2k (B8;/hy) + [(Sy.by + Sy .hy )/3E)
2k, + 2k, + 3k (5.47)
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O = 206, - 8 - Sw.h (5.48)
oy 6EK,
“h, ~6Ek,
8y = 2k, (A6, /hy) + 2k, (A6,/h,) + [(S_.hy + S! .h, )/3E]
7K, ¥ 2K, (5.50)
@ = 206, - ©p - S, .h, (5.51)
, 6EK,
@ = 245, - 65 - S .h, (5.52)
R 6EK,

where the incremental sways, A6, and A6, are obtained from the
Grinter substitute frame analysis; the appropriate beam stiffness

being reduced from 3k, to 0.75k,.

The base sub-frame is similar to the above calculations. Under
an increment of vertical loading, the bending moment is obtained,
with due account of the base fixity, in a form similar to equations

(5.28) to (5.30),

AMy (V) = 3 AAVL 3k -1 (5.53)
16 3k, + 4k, + 3k -
AMj; (V) = 3AAVL 4k, (5.54)
16 3k, + 4k, + 3K
AMg (V) =AAVL + AMjg (V) (5.55)
: 4 2

The incremental moments due to horizontal loads for the base

sub-frame are giben for the windward assembly as,

n

AM;, (H) = 3EK6 (5.56)

AM;[ (H) = 2Ek, (26, = 346,/h, ] (5.57)




AMp (H)

where 95
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2Ek, [20; + ©p - 346 /h, ] (5.58)

2k, (A8, /hy) + 6k, (A6,/h,) + (Sy.hy/3E)
2k, + 4k, + 3k

286, - 8; - Sy-.h,
h, 6EK,

For the leeward column, the bending moments are given by,

AM | q(H)
AM \(H)

AMy (H)

where @,

"

2Ek,[26, + ©4 - 3A6,/h, ) : (5.59)
2Ek,[ ©_ - 3A6,/h; ] (5.61)

2k, (A6, /hy) + 6k, (A6, /hy) + (S .hy/3E) ,
2k] + 4k2

When the above calculations were performed, it was found that

the bending moments at the ends of adjacent beams, such as member

F-G and a-E
Members F-G
clarity. It

not have an

in figure (5.12 (b)), were lower than computer results.

and A-E have been omitted in figure (5.12 (b)) for

is recognised that the members F-G and A-E may or may

existing pin. Therefore, it is proposed that the

incremental moments at the column ends for the sub-frame under

consideration be distributed to adjacent members in relation to

their stiffnesses.

The distribution of moment is performed for horizontal loading

only. This is because the far ends of the columns (&), (E), (F),
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(G) were assumed pinned under vertical loading, but capable of
resisting momeAt under horizontal loading. Incremental end moments
given by equations (5.32), (5.34), (5.36) and (5.38) are
transferred to the beam and column members at joints (A), (F), (E)
and (G) respectively. An identical distribution process applies to

the base sub-frame when a leeward hinge is present.

Consider a sub-frame such as that shown in figure (5.12 (b)).
If the adjacent upper sub-frame has a leeward hinge, i.e. a hinge
“at (G) on member F-G, then the windward moment distributed to beam

F-G at (F) will be,

AMpg = OMgg. 0.75 k (5.62)
ki + 0.75 k

the incremental moment at the far end of the

where AMgg
windward column given by equation (5.34),
k,y = adjacent column stiffness (I./h) immediately
above member F-B,

k = stiffness (I,/L) of beam F-G.

It follows that the additional mid-span moment of member F-G is
half the value of AM;, The distributed moment to the leeward column
immediately above member G-D at joint (D) is taken to equal in

mégnitude to ANhoéiven by equation (5.38) but opposite in sign.

The distribution of moments to an adjacent elastic upper

sub-frame (i.e. no hinge at (G) on member F-G), is given by,
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MM = AMg . k = AMgg (5.63)
‘ ky + Kk

The above distribution procedure is repeated for the adjacent lower
sub—-frame. Consequently, incremental moments are added or
subtracted for each adjacent sub-frame as the calculations proceed

from the top to the base level.

5.6.2 Double beam hinges

When double hinges are present, the procedure for determining
the incremental bending moments are based on figure (5.13). A
cantilever is assumed under an increment of vertical load alone.

The anti-clockwise moment at joint (B) of member B-C is given by,
AMge (V) = = AAVL/2 (5.64)

The analysis under horizontal loading takes the form shown in
figure (5.13 (b)). The principle is the same as that described for
figure (5.12 (d)) of a single column length extended over two

storeys.

The beam B-D is regarded as a pin-ended strut and therefore
the storey shears may be assumed to be shared equally between the
windwafd and leeward columns for both the upper and lower storeys,

thus,

= §7(U)/2 | (5.65)

wn
z
1
i
-
1

wn

-
1}
[47]

—-
1]

S1(B)/2
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Furthermore, the joint rotation at (F), (B) and (A) are assumed to
be the same as the rotations at joints (G), (D) and (E). Therefore,
equations (5.50), (5.51) and (5.52) are applicable with the

condition given by equation (5.65).

When double hinges occur on the beam for the base sub-frame,
the procedure is identical to the above. Equation (5.60) and (5.61)

may be used in this case to determine the incremental wind moments.
It is unnecessary to evaluate the windward column moments for

all the sub-frames because the combined bending moments are not

critical for design,

5.6.3 Hinge at mid-span of the beam

When a central hinge forms, the rotational stiffness of the
beam subjected to horizontal 'loading is unchanged. The analysis
under an increment of vertical load alone is similar to the pinned
base portal given in Section (5.3) in Part (1) of(;his Chapter. The.
expression, however, include the contribution of the upper column
to the total stiffness at the joint. From slope-deflection, the

beam moment is given by equation (5.4) while the cqlumn moments

are,

AMge (V) = —A)\VL[ k; ] = - AMga (V) (5.66)
1 |k

If the stiffness of the columns are identical, then the bending

moments are shared equally at the joint.
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Figure (5.14 {b)) shows the sub-frame subjected to an
increment of horizontal load, where Sy and S, are defined by
equation (5.65). It is assumed that the joint rotations at (B) and
(D) are equal and may be treated in the same way as an elastic

limited frame.

As the magnitude of shear is the same on each column,
equations (5.18) and (5.20) derived for figure (5.11 (b)) may be
used in this case, the terms Hl and H2 being replaced by S;(U) and

S7(B) respectively,

AMpg(H) = 2Ekp (28, + ©g - 3462/h; 1 = AMgp (H) (5.67)

AMga(H) = 2Ek,[ ©, + 205 - 34863/h; | = AMpg (H) (5.68)

AMgg (H) = ZEK] [29;: + ©g - 3A61/h1 ] = AMgp(H) (5.69)

AMgc (H) = 6EkE, = AM . (H) ‘ (5.70)
where

©g = 2k (ASy/hy) + 2ky (A62/hp) + {[Sy(U).hy + S{(B).h, 1/6E} ,
2k, + 2k, + 6k

-
-

=eDl
OF = 2881 - @5 -  Sy(U).hy = ey ,
hy 12Ek;
@, = 2862 - 63 - Sy(B).h, = o .
h, 12Ek,

Equation (5.66) can similarly be used for the base sub-frame,
provided the base fixity is taken into account. Under an increment
of vertical load alone, the bending moments for the base sub-frame

can be shown as,
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AMy (V) = AAVL 4k, = - AM, (V) (5.71)
4 |3k, + 4k
AMp( (V) =AMy (V)/2 (5.72)

Similarly, equations (5.25) to (5.27) may be utilised for the
base sub-frame under an increment of horizontal load. However, the

joint rotations are given by,

©; = 2k; (A61/hy) + 6k,(A6y/hy) + [S7(U).hy/6E]
2ky + 4k, + 6k
= eL
ep = 2A61 - GJ - ST(U).hy = eQ
h1 lZEkl

The member end moments are given by equations (5.59) to (5.61).
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5.7 Six storey single bay frame

The frame shown in figure (5.15) has been designed by Anderson
and Islam(72) to satisfy permissible sways of 1/200th of each
storey. The loads shown on the frame are at unit load factor

(A=1).

It was specified that plastic hinges should not form in the
éblumns below the minimum design load factor of 1.36 under combined

loading. The load factor was chosen in accordance with present-day

practice in plastic design. This criterion is adopted here.

It is required to trace the formation of plastic hinges and
the load level at which they occur. Initially, a load factor is
assumed for the elastic frame and storey deflections calculated
from the Grinter spbstitute frame analysis. It is proposed that a
plastic hinge be inserted when the estimated bending moment is

within 20.5% of the plastic moment of resistance of/ény member.
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Values shown in the fourth column are calculated from the sway

deflections obtained by an analysis of the Grinter substitute

frame. The sway deflections are calculated with an allowance for

the

and

are

the

reduction of column stiffness due to compressive axial forces

therefore the terms in each storey listed in the fourth column

excluded in the Grinter frame analysis. It is however used in

manual calculation for member forces.

The total shears are

shown in the last column from the top to the base.

level 6
(cm)
i 0.697
ii 1.585
iii 1.789
iv 2.154
v 1.946
vi 1,302

v
(KN)

192
472
752
1032
1312

1592

(a) AZV(6/h)
(KN)

0.474
2.648
4.762
7.869
9.038

7.338

(b)AZH
(KN)

13.010
39.029
65.048
91.067
117.086

143.105

“(a) + (b)
(KN)

13.484
41.677
69.810
98.936
126.124

150.443

-

The bending moments are calculated for the whole frame using the

appropriate expressions at the given load of 1.239 from the top to

the base sub~-frame as follows,
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Vertical load, M(V) Horizontal load, M(H) M(V) + M(H)

Level (i)

6= 0 ,6,= 0.697 M= 9644
(5.14) Mcg= 8196 ©p = 9.439 x 107" Mgc= 12620
(5.17) Mg.= 12160 (5.18) M= 1448 Mag= ~6748

Level (ii)

6= 0.697, 6,= 1.585
8p = 1.798 x 107} Mee= 17229
(5.14) M= 12164 8, = 3.410 x 107  Mpg= -7099
(5.17) M= 18191 (5.18) Mpg= 5065 Mgg= 18191
(5.15) M. = -6082 (5.19) Mgy= -4156 M j=-10238
Mc= -6082 Mpc= =909 Moo= -6991

Level (iii)

6 = 1.585, 6= 1.789
8 = 3.395 x 107 My, = 22682
(5.14) M, = 13120 6 = 3.844 x 107° Mg = -3558
(5.17) M, = 17236 (5.18) M, = 9562 M, ;=-17236
(5.15) My = -8966 (5.19) Myy= -6414 M, =-15380

M;p= -4154 Mjp= -3148 Mye= -7302

The procedures for levels (iv) and (v) are identical to that shown
by levels (ii) and (iii) applicable to an elastic intermediate
sub-frame. The calculations as set out above give the overall

bending moments for the top and intermediate sub-frames.
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The last set of calculations are for the base sub—-frame as follows,

Vertical load, M(V) Horizontal load, M(H) M(V) + M(H)

61= 1.946, 6,= 1.302  Myr= 32529

(5.22) M,;= 13616 Qg = 4.126 x 107 Mgr= 5297
(5.17) My,= 16739 (5.25) Myr= 18913 My= 16739
(5.23) Myy= -5446 (5.26) Myy= -7739 M x=-13185

Myg= -8170 Myg=-11174 Myg=-19344
(5.24) My,= -2723 (5.27) My -18733 Myy=-21456

The bending moment distribution at a load factor of 1.239 is shown
in figure (5.17 (a)). Three plastic hinges were located on the
leeward end of beams G-J, K-N and P-R. As the leeward column
moments are more critical for design than the windward columns, the

bending moments of the former only are shown.

Values shown in brackets are those from an accurate
elasto-plastic computer analysis. It can be seen that both the load
factor and position of the plastic hinges are in good agreement

with computer results.

To ensure that the moment capacities of the columns are not
violated at this load level, the reduced plastic moment capacity of
the columns were defermined. As the lower of the two column length
is subjected to higher combined axial force, only these columns are

shown,
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column axial force Mp(reduced) at A= 1.239
F-J ; 308.666 13317 > 10238 ’
N-R 7?0.633 19877 > 15490
U-X ' 1184.639 28900 > 21456

ii) Let AA = 0.005

Under an increment of load, it is required to incorporate the
fictitious shears due to the increment of the mid-span load. In
éddition, the 'P-A "' effect due to the previous sway existing at
the load level of 1.239 must also be included. The values of Rl and
R2 will be determined first followed by the latter fictitious

force.

For each of the limited frames with a leeward hinge, the
values of Rl and R2 are given by half the value of R in the first
of equation (5.31) applicable to an intermediate sub-frame. These

are obtained as follows,

sub-frame 0.5 x R [ equation (5.31) ]
DFKN 0.5x3x0.005x140x700 15.037 + 32.457 = 0.0892
16 x 69.847 350 350
GJPR 0.5%x3x0.005x140x700 -32.457 + 32.457- = 0.0893
16 x 95.407 | 350 350
KNSU 0.5x3x0.005x140x700 32.457 + 63.434 | = 0.0952
16 x 132.268 350 350
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Values of Rl and R2 are shown in figure (5.16 (a)). The cumulative
incremental storey shears have also been calculated and are shown

in the figure.

The fictitious forces due to the previous sway existing at the

previous load level (i.e. Ay = 1.239) are calculated as follows,

level 8 (previous) A)\ZV‘[ 6(prev)/h )
i 0.697 0.0019
) ii 1.585 0.0107
iii 1.789 0.0192
iv 2.154 0.0317
v 1.946 0.0365
vi 1.302 0.0296

Therefore, the total applied shear needed to determine the
incremental deflection is the sum of the real wind shear and the

values calculated above,

level 3 Incremental shears
i 0 + 0.0019 + 0.0525 = 0.0544
ii 0.0892 + 0.0107 + 0.1575 = 0.2574
iii 0.1785 + 0.0192 + 0.2625 = 0.4602
iv 0.1845 + 0.0317 + 0.3675 = 0.5837
1 0.0952.+ 0.0365 + 0.4725 = 0.6042

- vi 0 + 0.0296 + 0.5775 = 0.6071
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The resulting incremental deflections obtained from the Grinter

substitute frame analysis and the associated values of storey

shears can be tabulated as follows,

level 46 AATH SH3 5 Ha S7(*)
i 0.0049 0.0525 0.0019 0.0033 0.0578
ii 0.0226 0.1575 0.0107 0.0379 0.2061
iii 0.0354 0.2625 0.0192 0.0946 0.3763
iv 0.0343 0.3675 0.0317 0.1258 0.5251
Y 0.0204 0.4725 0.0365 0.0951 0.6041
vi 0.0077 0.5775 - - -
where H3 = AAIV [ O(previous)/h |

H4 A(total) 2V [ 46/h ]

It is noted that the fictitious force H4 is not included in the
Grinter frame analysis because stability functions have been
incorporated to take account of the reduction in column stiffness

due to compressive axial forces. —
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It is noticed that the two uppermost sub-frames and the base
sub-frame remain elastic, and therefore the procedure for
calculating the incremental moments are identical to the one shown
at‘the previous load factor except that incremental values of
deflections and loadings are used instead. The procedure is as

follows,

Vertical, AM(V) Horizontal, AM(H) AM(V) + AM(H)

Level (i)

861 = 0, Ab,= 0.0049 AMcg= 42
(5.14) AMcg= 33 85 = 5.637 x 107° AMgc= 51
(5.17) AMge= 51 (5.18) AMg= 9 AM,g= -24
Level (ii)

AS, = 0.0049,A5,= 0.0226

e, = 1.594 x 107° AMpg= 94
(5.14) AMpg= 49 8¢ = 9.417 x 107> AMp= -4
(5.17) AM_ .= 73 (5.18) AMpg= 45 AMg = 73
(5.15) AMg;= =25 (5.19) AM_ = =43 AMZ ;= -68

AM. = -24 AMgc = =2 AMec= =26
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As the next sub-frame has a leeward hinge, the expressions required
for determining. the shear distribution and incremental moments are

described in Section (5.6.1).

Vertical, AM(V) Horizontal, AM(H) AM(V) + AM(H)

Level (iii)
A8y = 0.0226, AS,= 0.0354

St(U)= 0.2061, S;(B)= 0.3763

(5.44) Sy = 0.1457, S_ = 0.0604
(5.45) m = 1.8890
(5.46) Sy = 0.2461, S| = 0.1303

(5.47) €4 = 6.593 x 107°

-5

(5.48) 6y = 3.630 x 10 AMg,= 31
(5.49) 8¢ = 1.153 x 107" AM = 137
(5.50) @, = 1.007 x 107° AMye= 16
(5.51) ©, = 1.727 x 10°° AM = -16
(5.28) AMg,= =62 (5.52) ©y = 9.042 x 107 DISTRIBUTION
(5.30) AMH;= 91  (5.32) AMyg= -9 (5.63) AMpc= 21
(5.34) aM = =35 ~AMgg= 22
(5.35) aMgy= 93 AMce= 0
(5.36) AM;= -30 (5.62) MM, = 4
(5.37) AM; .= 16 AM = 2
(5.38) aMg,= -37 AMyg= 30

" The distribution of moments to adjacent member ends is as described
in Section (5.6.1l) shown at the bottom right-hand corner in the
above calculations. Equation (5.63) is used for distributing the
end moments to the top members, while equation (5.62) is used for

the bottom members.
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In a similar manner to the above, the calculations for the next two

sub-frames are illustrated as,

Vertical, AM(V) Horizontal, AM(H) AM(V) + AM(H)

Level (iv)
Ay = O.O354,A62= 0.0343

S;(U)= 0.3763, S;(B)= 0.5251

(5.44) Sy = 0.2660, S_ = 0.1104
(5.45) m = 1.7816
(5.46) Sj = 0.3363, S! = 0.1888
(5.47) ©¢ = 7.353 x 1073
(5.48) 65 = 1.060 x 107" AM = 78
(5.49) ©p = 9.369 x 107° AM, = 162
(5.50) ©y = 1.124 x 107" AMy = 2
(5.51) ©; = 8.046 x 107° AMyp= =2
(5.28) AM,, = -63  (5.52) ©j = 6.747 x 107° DISTRIBUTION
(5.30) AM y= 91  (5.32) AMy,= 45 (5.62) AMgy= 13
(5.34) AM;, = -24 AM;= 41
(5.35) AMy = 141 ~AMyy= 6
(5.36) AMgy= ~64 (5.62) AMpg= 14
(5.37) AMyy= 2 AMgp= 7
(5.38) AM;, = -41 AMg = 64

It is noted that equation (5.62) alone is used for the distribution
of moments to adjacent members. This is due to the top and bottom

beam having a leeward hinge each at (J) and (R) respectively.
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In a similar manner to the above calculations, the next sub-frame

gives,

Vertical, AM(V) Horizontal, AM(H) AM(V) + AM(H)

Level (v)
Adlz 0.0343,A62= 0.0204
St(U)= 0.5251, S;(B)= 0.6041

(5.44) Sy

0.3577, S, = 0.1673
(5.45) m = 1.7396
(5.46) Sy = 0.3836, S| = 0.2205

(5.47) ©p = 5.940 x 107 °

(5.48) ©¢ = 1.060 x 107" AMpg= 69
(5.49) ©g = 4.037 x 107° AMgp= 157
(5.50) 8 = 8.296 x 107> AMgy= -40
(5.51) @y = 9.872 x 107° AMg,= 40
(5.28) AMpg= -67  (5.52) ©, = 2.395 x 107° DISTRIBUTION
(5.30) AMgg= 89  (5.32) AMgp= -92 (5.62) AM, = 13
(5.34) AMgp= =31 AMy 1= 19
(5.35) AMpg= 136 AM = 6
(5.36) AMyR=-117 (5.63) AM= 34
(5.37) AMgy= -40 AMyr= 43
(5.38) AMyg= -19 AMpy= =5
AMyy= 74

In the distribution process, the top beam has a hinge while the
bottom beam is elastic and therefore equations (5.62) and (5.63)

are used as appropriate.



The final set of calculations for the incremental load is for the

elastic base sub-frame,
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Vertical, AM(V) Horizontal, AM(H) AM(V) + AM(H)
86y=0.0204,462=0.0077 AM 7= 189

(5.22)AM ;= 55 Oy = 2.913 x 107° AMgr= 79
(5.17) AM;,= 68 (5.25)AM ;= 134 AMq,= 68
(5.23) AMy,= -22 (5.265AMUX= -21 AMyy=  -43
AM = =33 AMyz= -113 AMp= -146

(5.24) AMyy= -11 (5.27)aMy = =98 AM, = =109

The total incremental moments at each joint are obtained by summing
the calculated moments at that level and moments distributed to

that member if any.

As an illustration, consider joint (F). The total incremental
moment at (F) on member E-F is (94+22)=116 KNcm. The value of 94 is
the incremental moment calculated at level (ii) while the value of
22 is the moment distributed from level (iii). Similarly, the total

incremental moment at joint (U) of member T-U is (189+43)=232.

The overall bending moment is obtained by summing existing
moments at 1.239 to the incremental moments just calculated. This
is shown in figqure (5.17 (b)). The féurth plastic hinge is located
at the leeward end of beam S-U. Again, none of the moment
cépacities of the leeward columns were violated at a total locad of

(1.239+0.005)=1.244.
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iii) Let AA = 0.166

The total load is (1.239 + 0.005 + 0.166) = 1.410. Fictitious
horizontal shears due to the mid-span vertical load are shown in

fiqure (5.16 (b)).

The shears for the base sub-frame are calculated from the
second expression given in equation (5.31). Further, the previous
load is taken as 1.244 with the total sways at this stage being the

sum of the storey sways at A;= 1.239 and AA= 0.005.

When the above procedures were repeated, it was found that the
column moment capacities were exceeded at (F) in column F~J and at
the foot of the leeward column at (X). It is noted that the
calculations for the base sub-frame in this iteration is dependant

on equations (5.53) to (5.56).

The total bending moment distribution is shown in figure
(5.17 (c)). The calculated leeward column capacities at this load

of 1.410 can be shown as follows,

column axial load Mp(reduced) at A = 1.410
C-F 139.1 14249
- F-J 351.3 12972

J-N 578.3 21495

N-R 820.1 18737

R-U 1076.7 30419

U-X 1348.1 26583
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The load level of 1.410 exceeds the minimum design load for which
column hinges aﬁe permitted. The calculated moment at (F) exceeds
the allowable moment capacity by about 8%. A plastic hinge was not
detected at this position by the accurate elasto-plastic computer
analysis. This error is not critical because it is usual for the

choice of sections of the top few storeys to be governed by the

higher load factor applicable to vertical loading alone (a factor

not considered in the design being analysed).

In figure (5.17 (c)), the values that Qould be critical for
design under combined loading are in good agreement with computer
results. The maximum error occurring at joint (F) is +20% of the
accurate results which are shown in brackets. A similar error of

about +18% was also detected at joints (U) and (J).

To investigate the criterion placed on the minimum load factor
permitted for column hinges, an increment of load of 0.116 was used
to recalculate the overall bending moment distribution at A =1.36.

The fictitious shears are evaluated and shown in figqure (5.16 (c)).

In an identical procedure as describeq above, the overall
bending moment distribution at a load level of 1.36 is shown in
figure (5.17 (d)). Accurate values are shown in brackets and are
given in (KN.m) units for direct comparison with published results
in reference (72). Comparison with computer results for the column
moments showed a maximum error of +16%., This error occurred at the
top storey as shown in the figure. It was found that none of the
column moment capacities were exceeded and the estimated moment at

(F) in member F-J was 1.5% below the allowable value.
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As an alternative, an approximation of the total moments at
1.36 can be obtained by interpolation. For example, the bending

moment at joint (F) in member F-J is,

M

fy = -10343 - [ 0.116 x (14015 - 10343)]

0.166

-12909 KNcm.

The plastic moment of resistance of column F-J at a load factor of
-1.360 was 13078 KNcm. Hence, no column hinges were present and the

design is adequate

5.8 Four storey single bay frame

A further example is shown in figure (5.18). The frame was
taken from reference (42). Calculation procedure is similar to the
previous example with the exception of a sub~frame having double
hinges as shown in figure (5.18 (d)). Such a sub-frame was analysed

in Section (5.6.2). -

The example differs from the six storey frame analysed
previously by attaining the proposed criterion for collapse. At
this stage, the minimum design load was exceeded and column moment

capacities were checked,

It was specified that column hinges are not permitted to form
below the design load factor of 1.40. The sequences of plastic
hinge development and the estimated bending moment distribution are

shown in figure (5.18). Accurate computer results are shown in
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brackets. The proposed technique has located accurately the
position of the plastic hinges with an average deviation of the

load factor of +0.5% from the accurate computer solution.

At all incremental stages, the beam'moments were found to
provide good agreement with computer results. However, the final
leeward column moment in the thirdvstorey was overestimated by 29%.
As in the previous example, it is arqued that the design of such
columns are governed by the higher load factor applicable to

vertical loading alone.

In all the columns, the maximum moments calculated by the
proposed method are still below the plastic moments of resistance
at a load factor of 1.413. Calculated moment capacities are given

from the top to the base as follows,

floor axial load M (reduced) at A = 1.413
(Tons) (Tons inch.)
top 19.4 1128.9 > 989.4
-
third 40.1 1080.1 > 915.3
second 62.7 990.0 > 883.9
ground 87.1 1556.1 > 1342.3

Tﬁe assumed criterion for collapse is attained at this load factor
ané the manual calculations are terminated. In comparison with
computer analysis (in which failure occurred at a load factor of
1.494), the proposed meéhod is shown to provide good agreement for

the bending moments that would be critical for design.
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5.9 Application to multi-storey, multi-bay frames

Multi—bay‘frames are treated as an equivalent single bay frame
for the determination of the failure load. The equivalent section
properties of beams and columns at each storey are assumed to be
the sum of‘the real frame properties. These assumptions are

applicable only to regqular and rectangular frameworks.
The following proposal summarises the equivalent
-characteristics that are adopted as the basis for both computer

analysis and manual calculations of an equivalent single bay frame,

Equivalent loading

i)vertical load is taken as the sum of the total
vertical loads.
ii)horizontal loads remain unchanged and are applied as

on the real frame.

Equivalent section property

a)beam sections

i)cross-sectional area is taken as the sum of the
areas of all the beams,
ii)moment of inertia is taken as the sum of the
moment ofvinertias of all the beans,
iii)plastic modulus is taken as the sum of the plastic

moduli of all the beams.

b)column sections

At each storey, the equivalent properties are calculated as

for the beam sections above. The values are then halved to obtain
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the properties of the two external columns at each storey.

The modulus of elasficity and the yield stress remain
unaltered. Furthermore, the storey height is the same as the real
frame but the single bay width is assumed to be the average bay

width of the multi-bay frame.

Computer fesults of the failure load for the equivalent single
bay frame provide very good agreement in comparison with the real
—frame. A typical result of a four storey three bay rectangular
frame is shown in figure (5.19). The formation of plastic hinges in

the columns have been deliberately suppressed in both figures to

obtain comparison with beam hinges only.

The overall pattern of plastic hinges at collapse of the
equivalent frame has a striking similarity to the real frame. The
order of plastic hinge formation, however, differs considerably.
The sequences of formation of plastic hinges are shown by the
ringed numerical values in the figures. Under combined loading,
formation of plastic hinges in the real frame tends to occur at the
leeward ends of the beams first. In the equivalent frame, the

plastic hinges appear to form initially at mid-span of the beams.

The failure load of the equivalent frame, however, is
estimated to within 1% of the real value. Therefore, preliminary
designs can be checked for ultimate strength under combined loading
without the need for a rigorous compufer analysis of the full-size
framework, The demand on storage and computing time is reduced to

that of the analysis of a single bay frame.
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The design would be adequate provided the load level at
failure is abové the minimum specified. A check on the real frame
at the corresponding load level can then be carried out to ensure
that the columns are adequate. When analysis as a single bay frame
shows a design to be unacceptable, re-analysis with revised beam

sections is a rapid process.

5.9.1 Seven storey two bay frame

A frame that satisfies the minimum design collapse load of
unity under factored combined loading is shown in figqure
(5.20 (a)). The equivalent frame is shown alongside with the
calculated values of applied loads. Equivalent section properties

are tabulated below the figures for each member as shown.

It is anticipated that plastic hinges would not form in the
columns and such members weré assumed to have very high values of
the plastic moment of resistance. The proposed apgfoximate method
for evaluating the failure load is illustrated for the equivalent

single bay frame.

The procedures for locating the plastic hinges and the
cofresponding loads at which they form are identical to the
previous multi-storey examples. The final result of the proposed
approximate method for the equivalent frame is shown in figure

(5.21 (¢)).

For comparison, the equivalent single bay frame was analysed

‘using an accurate computer program and the result is shown in
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figure (5.21 (b)), while figure (5.21 (a)) shows the sequence of
plastic hinge formation in the real frame. The results of the
equivalent frames showed excellent agreement in terms of the
position and load level at which plastic hinges formed. It is noted
that the formation of plastic hinges in the columns have been

deliberately suppressed in all of figure (5.21).

The two mid-span plastic hinges at the top floor levels as
shown in figure (5.21 (c¢)) indicate the significant influence of
vertical loads on the behaviour of the equivalent frame. Further
down the frame, the wind loads are beginning to affect the bending
moment distribution. The first plastic hinge was located on the
leeward end of the third floor beam. After repeated load
increments, the proposed criterion for collapse was reached by the
development of the eighth plastic hinge. The collapse load was

taken as 1.005.

The order of plastic hinge formation is shown ringed. Only the
first plastic hinge appears to form in sequence with the real frame
while others were unpredictable. As expected, the pattern of
plastic hinges in the equivalent frames shown in figures (5.21 (b))
and (5.21 (c)) are closely comparable to the computer result of the

real frame.

The proposed method was shown to provide good agreement for
the bending moments in the beams. It was found that the bending
moments on the fifth floor beam were within an average of -3% of
the plastic moment capacity at this load level. The final bending

moment distribution is shown in figure (5.22). Accurate computer

Ve
-
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results are shown in brackets corresponding to the pattern of

hinges in figure (5.21 (c)).

It is convenient at this stage to assume that the next
increment of load would have plastic hinges forming on the fifth
floor beam marked in figure (5.21 (c)). However, the error in the
failure load is insignificant. The‘designer has now to show that
the column capacities of the real frame are not exceeded at the
corresponding load.

It is proposed that if no column hinges are found in the
equivalent frame, then it may be assumed that the sum of the column
moment capacities of the real frame are adequate. To investigate
this proposal, the column moment capacities were calculated under

(factored) combined loading for the real frame at a load level of

1.005. The results are shown for each column in figure (5.23 (b)).

Values listed to the right of figure (5.23 (b)) summarises the
proposed treatment of column moments in the real frame. The values
are obtained by summing the moment capacity of the right-hand
column(MR) and half the moment capacity of the internal
column(MC/2). It can be seen that these values exceeded some of the
column moments calculated in the equivalent frame in figure (5.22).
In such cases, it is assumed that no column hinges are present in

the real frame.

When the equivalent column moments exceed these summed values,
then column hinges are assumed to be present in the real frame.

Comparison of these values indicates plastic hinges at the
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positions marked by an asterisk in figure (5.22). The proposed
method has predicted the existence of such hinges in the real
frame. Except for the hinge at the sixth storey, the hinge
positions are confirmed by the accurate computer result shown in
figure (5.23 (a)) with the columns given real yield stresses. The
hinge located at the top of the leeward column on the sixth floor

can be neglected due to the reason discussed earlier.

When comparisons are also made of computer results shown in
—figures (5.22) and (5.23 (a)), the plastic hinge positions are in
excellent agreement. The bracket values shown in figure (5.22)
indicate column hinges at positions corresponding to that shown in

figure (5.23 (a)). This validates the proposed criterion for the

existence of column hinges in the real frame.

For frames with an even number of columns across the width,
such as the three bay frame shown in figure (5.19 (a)), it is
proposed that the total real column moment capacities be taken as
the sum of the column moments to the right of the~line of vertical

symmetry.

5.10 Conclusion

An approximate incremental elastic-plastic method has been
shown to evaluate accurately the failure loads of plane pinned base
steel portals. Expressions have been derived. Only one trial
analysis is necessary to obtain a load factor for the critical
bending moment to converge onto the plastic moment capacity of the

member.
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Several examples were illustrated to include the possible
occurrence of discrete plastic hinges when the frame is subjected
to combined loading. The likelihood bf portals collapsing without a
complete mechanism was demonstrated by an inability to converge

onto the second plastic hinge.

Calculations for the collapse loads of pinned base portals by
the rigid-plastic theory were demonstrated to be unsafe. The
»proposed method, however, is able to deal with such frames in a
;atisfactory manner. In addition, the eaves deflections are
assessed accurately when the portal is elastic and at collapse. The

results have been compared with accurate computer analysis.

The proposal has been extended to multi-storey frameworks.
Expressions for the bending moments were derived by considering
only an intermediate and a base sub-frame. Each sub-frame is
independent from adjacent sub-frames while it remains elastic. A
system of distributing moments was shown to be necessary to obtain

good agreement of the beam moments with computer results.

Two examples were shown. It was found that the column moments
were overestimated by between 20% and 29%. This does not cause
undue concern because the conservative values tend to occur at the
top few storeys of the frame where design is likely to be governed
by vertical load alone. The bending moments that would be critical
for design were found to be in good agreement with computer

results.
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Multi-bay frames are treated as an equivalent single bay
structure. Failure loads of the equivalent single bay frame were
shown to provide excellent agreement with the real structure. The
patterns of plastic hinges at collapse were almost identical in the
actual and equivalent frame when both were given by acéurate

computer analysis.

The manual method is able to trace the development of the
‘plastic hinges in the beams with good accuracy. An example was
shown to confirm the proposal. The method may be used as a
preliminary assessment for strength under combined loading before a

rigorous computer analysis is undertaken on the complete

multi-storey multi-bay structure,
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CHAPTER 6

EFFECTS OF SEMI-RIGID JOINTS ON SWAY DEFLECTION

AND EFFECTIVE LENGTH

6.1 Introduction

Traditional methods of analysis and design of structural steel
frames depend on the simplified assumption that the end connections
of members behave>as either fuily-rigid or pinned. Despite the fact
that neither is true of real bolted connections, engineers continue
to adopt such assumed jdint behaviour in the analysis and design of

structural frameworks.

It is well known that some degree of restraint can provide
savings in column sizes whiéh had been assumed 'éinned' previously.
Although the British(2,5) and American(l4) codesrpf practice permit
semi-rigid construction, it has been rarely adopted, particularly
in medium-rise buildings because of the difficulty in establishing
an analytical model to'predict the éomplex behaviour of bolted
connections. Even the British Draft Standard Specification for the
Structural use of Steelwork in Buildings(55) has defined types of

construction as ‘'continuous' or 'simple’.

With the exception of certain types of rigid moment
connections, all joints are semi-rigid in practice. Additional sway
displacements caused by flexible joints in tall buildings cannot be

ignored, even at working load. Furthermore, even if the frame may
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be satisfactory with respect to stiffness, a complete
redistribution of internal forces can also arise, resulting in

overstressed members.

For practical connections, the most useful characteristic is
moment resistance to rotational stiffness behaviour. 'Rigid' and
*simple’ connections are ideal théoretical assumptions that can
never be attained and almost all practical bolted connections
exhibit marked non-linear moment-rotation behaviouf. Several types
of common building connections are shown in figure (6.1). An ideal
rigid joint is given by the vertical axis while a perfectly pinned
connection is represented by the abscissa. Most connections fall in
between these assumed characteristics. The connection rotation is
being defined here as the tensile deformation of the bolted
assembly under increasing bending after the initial joint rotation
has taken place. Compressive deformation of the connection is
ignored.

. «

The use of computers enables systematic procedures to be
incorporated to simulate actual connection behaviour. Standardised
moment-rotation characteristics, applicable to a range of common
bolted connections, have been proposed by Frye and Morris(69). A
computer program which incorporates the non-linear expressions was
suggested but this necessitates the storage of the connection
stiffness terms as additional elements in the overall stiffness

matrix, thus increasing the size of the latter.

The main purpose of the present Chapter has been to extend a

non-linear (i.e. second-order) elastic computer program, based on
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the matrix displacement method of analysis, to study the influence
of semi-rigid_connections on the sway deflection of multi-storey
frameworks. The program is capable of analysing any combination of
pinned connections, fully-rigid joints and connections with any
specified moment-rotation relationship. Indeed, any of those
connections shown in figure (6.1) ma§ be used on any part of a
member and at any position in the structure. It is therefore
suitable for éimulating the contribution of cladding to overcome
the joint flexibility, otherwise assumed rigid in conventional
analysis. In addition, second-order analysis enables column
strengths to be evaluated with respect to elastic instability, for
any given degree of end restraint. Examples of semi-rigid
multi-storey frames are shown for comparison with assumed
fully-rigid analysis. It is also intended to demonstrate the
effective length of a column by a series of curves representing

various end restraints.

A feature of the analysis makes use of the nature of the
overall stiffness matrix to modify iteratively tﬁ; load vector.
This is done, instead of incorporating connection details into the
stiffness matrix. Unlike previous computer methods, the overall

stiffness matrix remained unchanged, thus reducing computer time

and storage.

6.2 The stiffness matrix

The development of the analysis program is basically similar
to the one described by Majid(23) and Anderson(24). Compact storage

of the overall stiffness matrix, K , is due to the technique of
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Jennings(10). The unknown joint displacements of a structure, X ,

are solved by an inverse of the stiffness equations,
X= KL (6.1)

where L 1is the externally applied load vector { H, V, M }

and K 1is the overall stiffness matrix of the structure.

Figure (6.2) represents the contribution of a member with
semi-rigid end connections to the overall stiffness matrix. Joints
'i' and 'j' are the first and second end of the member
respectively. This is indicated by the direction of the arrow on
the member. The member is displaced from its original position with
reference to the overall coordinate system of direction as shown.

The symbols are defined as,

a=EA/L
b = 12 EIps / L’
d = -6 EIp, / L? (6.2)
e = 4 EI§; / L
f =2EI®, /L
s,c = direction sine and cosine of the angle of
inclination of the member measured clockwise

positive from the first end 'i' respectively.

and E, I, A and L are Young's modulus of elasticity, second moment
of area, cross sectional area and length of the member i-j. The
reductions of bending stiffness due to compressive axial forces for

second-order analysis are taken into account by the usual stability
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'@ ' functions. Extra rows and columns shown hatched represent the
connections at both ends of the member. The joint rotations are
represented by 6; and 8; and the connection deformations are

denoted by 6% and 6.

The contribution of other members connected to joints 'i' and

K K.. and K

'j' are similarly obtained, Each sub-matrix, K; . Kijr Ky K,

contain a 4x4 element matrix when both ends of the member have a
semi-rigid connection. When the rows and columns corresponding to
these connections are deleted in figure (6.2), the stiffness
equations are identical to a rigid-jointed member. Consequently,
extra rows and columns in the stiffness matrix are not required to
be stored. Initially, the assembly of K will be described
irrespective of whether the joints are semi-rigidly or rigidly

connected.

Each numbered joint is considered in ascending order for the
construction of the overall stiffness matrix. The total stiffness
of the joint is the sum of the individual member“gtiffnesses
connected to that joint. Therefore, non-zero sub-matrices, K
etc., will populate the overall stiffness matrix only at locations
corresponding to joint interconnections. Hence, with reference to
figure (6.3), the éverall stiffness matrix is seen to contain many
zero sub-matrices, and the non-zero sub-matrices are directly

related to the joint connection list. Further, K is symmetric along

the leading diagonal.

The method of Jennings makes use of the symmetric feature of

the overall stiffness matrix for the storage and rapid solution of
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the stiffness équations. This method stores only thetfirst non-zero
sub-matrix and the elements on the leading diagonal, inclusive, on
one side of tﬂe overall stiffness matrix. Null sub-matrices, such
as 59‘7 , occurring in between these non-zero elements are also

stored. Only the irregular half band-width outlined in figure (6.3)

is stored and operated on by the compact elimination technique.

Initially, the analysis proceeds by assuming all joints are
rigid, except where real pins exist. Once the displacements are
known, member end forces are calculated by the slope-deflection

equations,

Mij = e(® + 85 ) + E(8; + 84 ) +dlvy;) (6.3)
Mji = f(Gi + eii) + e(ej + e'j) + d(vi.J ) (6.4)
Sij = - (M + M) /L : (6.5)

Here Vi is the vertical joint displacement of the second end 'j'
relative to the first end 'i' in the overall coordinate system.

Values of e, £ and d are defined in equation (6.231

As the first iteration assumes all cqﬁnection movements to be
zero, values of ©' are obtained only after the member forces have
been calculated. Using the current values of end moments from
equations (6.3) and (6.4), each connection deformation is

determined in the form,
' = f(M) , ’ (6.6)

where M is the bending moment at a specified joint corresponding to



-217-

a semi-rigid connection,

fhe load vector is then suitably modified for the joint concerned.
This is dependant on whether one or both ends of the member are
flexibly connected. A new vector of loads, L , which corresponds to
the number of elements of the original load vector is then used to
obtain a new set of displacements and member forces. In figure

(6.2), the new vector of loads for member i-j is given by,

r 1 B A
H. = H. - ds6' - dse'
] | i }
v v, + dceu - dceu

M| Pq| - ee.l - fe'j (6.7)

[} [}
Hj Hj + dse' + dsej
Vj VJ - dce.i - dce'j
- ' - '

L J 4

Thus, the overall stiffness matrix remains unchanged in subsequent
cycles of analysis. Iteration is necessary both for linear

. -
(first-order) and non-linear (second-order) elastic analysis. The
results tend to converge in a few iterations to a state which
satisfies equilibrium, compatibility and connection moment-~rotation

characteristics. Steps needed for the procedure is summarised by

the flow chart shown in figure (6.4).

In a linear elastic analysis (first-order), all '@*' functions
are set to unity which indicates no reduction in member stiffnesses
due to compressive axial forces. Iteration is continued until all
the connection rotations are within a suitable tolerance. A

non-linear elastic analysis (second-order) performs the same
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process but after each iteration, the calculated member forces are
used for an improved solution of the stiffness equations by
evaluating new 'Q' values. The member forces in the current cycle
are then calculated with reduced flexural stiffness, in addition to

the connection deformation of the joint.

During each solution, the determinant of K is tested. When
this is non-positive, the procedure is terminated. The procedure
also terminates when very large displacements are encountered to

maintain equilibrium in equation (6.1}).

In the analysis of large plane frames, considerable economy of
storage and computer time is achieved by modifying the load vector
alone, Thus, by reference to fiqure (6.5), the simple fixed base
portal requires 45 locations in the compact storage of K, instead
of 61 if terms relating to the connection rotations were retained
in K. In figure (6.5), Mk and Mhl are the zero hinge moments
corresponding to the hinge rotations 8, and 8, respectively.
These are included to show a typical structure for K when rigid,

_semi-rigid and pinned connections are present in the same frame.

For the beam i-k, the rotations of the semi-rigid connections
at ends 'i' and 'k' may be in the same or opposite directions,
depending on the loading condition. This may be visualised for
simplé frames but a clearer indication of the connection
deformation is given by observing the overall bending moment

distribution diagram.
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6.3 Sign of the bending moment diagram

With reference to figure (6.2), the overall stiffness matrix
has been constructed by triple multiplication of 5755, where A and
k are the displacement transformation and member stiffness matrices
respectively. The joint displacements are therefore referred to the
overall coordinate system. Member forces given by equations (6.3)
to (6.5) are calculated based on these transformed displacements,
but their signs are based on the local member coordinate system.
Clockwise end moments acting on the members are considered
positive. The effect of such actions will be to cause a deformed

shape with reverse curvature, as shown in fiqure (6.2).

It is assumed thatball bolted assemblies are symmetrically
identical in tension and compression, as shown in figure (6.1)
e#cept for the welded top plate. The. single member shown in figure
(6.2) will tend to 'relax' and straighten out as a result of end
connection deformation. Thué, the rotations of the connections will
be anti-clockwise. It follows that the sign of th connection

rotation is opposite to the sign of the bending moment diagram.

It is assumed in the subsequent examples that all external
loads are applied proportionally under static conditions. Loading
patterns which may cause incremental or shakedown collapse
éhenomena are not considered. These assumptions are generally
applied in practice for the plastic analysis and design of
structures and would be appropriate for the loadings sustained by
typical building structures with semi-rigid joints. It is aléo
assumed that connection displacements due to axial and shear forces

are negligible.



-220-

6.4 Numerical work example

Consider the simplified structure shown in figure (6.6) with a
semi-rigid connection at joint (B) on member B-C, In the interest
of simplicity, axial deformations of all the members are neglected
and it is assumed that the moment-rotation characteristic of the

connection is linear and given bf the form,

8' = 2.06 x 107° (M) (6.8)
where M (KNm., unit) is the end moment at the semi-rigid connection.
A linear elastic (first-order) analysis is required to determine
the vertical deflection at (C). The overall stiffness matrix is

assembled for the structure by assuming joint (B) to be

fully-rigid. This is given by a 2x2 matrix,

L=KX
-
200 = 45 SYMMETRIC /4500 Ye
0 -45000 90x10° //;0x10 0y (6.9)

7/ g 7777 77 ”’ 7 A
p&BC /// 450004///EOX10 60x10 Q'g
L1/ / VA L LL 4//__ vy

The imaginary row and column which represents the semi-rigid

connections are shown hatched for illustration and identification.
Initial analysis assumes 8'y = 0. Solving for the displacements

gives,
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v, | = | 8-889

e 4.444 x 1073 (6.10)

where the vertical deflection at joint (C) is given in millimetres

and the rigid-joint rotation at (B) in radians.

Next, member forces are calculatea using equations (6.3) to (6.5)
with all the stability functions equal to 1.0 and all connection
rotations equal zero.

With e, =60000 KNm., £, =e; /2, e, =€, /2, f, =e; /2 and d;

=-45000 KN., the bending moment distribution is,

FMBC- = [ -133.3 ]
Mcg -266.7 (6.11)
Mg, +133.3
Mg +66.7

where the moments are in KNm. units.

As the connection rotation is opposite in sign to the bending
moment diagram, the clockwise rotation at joint (B) on member B-C

is given by,

)
1]

L =2.06 x 10° x (133.3)

2.746 x 10°? radians (6.12)

A new load vector can be formulated by using equation (6.9) with

this value of the connection deformation giving,
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L =|200] +| 45000 8% = | 323.6 (6.13)

0 | +|-60x10° o' -164.8

The previous load vector is replaced by this new load vector to

solve for a new set of displacements in equation (6.9),

yo | = | 10.720

. 3.529 k 107 (6.14)

The new displacements (equation (6.14)) are significantly
different to those given by equation (6.10) but when the procedure
is repeated a few times, all the displacements and member forces
converge to satisfy equilibrium, compatibility and connection
deformation characteristics., The results are summarised in figure
(6.6) for the required number of iterations. The final bending
moment distribution indicates a 17% reduction at the semi-rigid
joint (B), while the sagging moment at (C) was increased by only
half this amount. This suggests that economy in églumn design may
be achieved if realistic representation of the end restraint is

properly taken into account rather than the assumed fixed

connections currently employed in practice.

The vertical displacement at joint (C) was increased by 17% in
comparison with fully-rigid analysis. This is as expected since the
connection has contributed deformation, in addition to the

rigid-joint rotation.

When compressive axial forces in the columns are significant,
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a non-linear (second-order) analysis would be more appropriate. In
multi-storey frames the sway deflection can be alarmingly high when
secondary effects are included. The proposed method has been shown

to analyse such frames conveniently and economically.

6.5 Eleven storey two bay frame

A realistic unbraced office building shown in figure (6.7) has
been analysed by Frye and Morris(69) using American wide flange
sections. Non-linear standardised moment-rotation expressions
applicable to T-stub connections were adopted at all beam-column
junctions. Total sway deflections, as a result of incorporating the
T-stub connection, was reported to be over 20% higher than the
deflections calculated assuming fully-rigid joints., However, no
details of the size parameters for each of the connections were
given and it was not certain whether these deflections were the
result of a linear (first—ofder) or non-linear (second-order)
analysis. More importantly, no information was given of the
individual storey sway values. Furthermore, some of the wide flange
sections have been discontinued in the current version of the
International Structural Steelwork Handbook(1983) published by

BCSA.

To investigate the sway behaviour and for comparison with the
published results, the frame was analysed using sections chosen
from the BCSA publication mentioned above. A section one siie
larger was adopted to replace those sections that have been
discontinued. Their properties necessary for the analysis are shown

in table (6.1).



-224-

To determine the size parameters required in the non-linear
moment~rotation equations, values of 'd' and 'l' for all the
beam-column connections were kept constant. The variable 't' was
taken as the sum of the flange thickness for the lower column at a
splice and the thickness of the stub flange. The bolt diameter 'f'
was assumed to increase from 16 to 24 millimetre from the roof to
the first floor beam. These values are given in the connection list
in table (6.2). A schematic drawing of the connections used is
shown alongside the tables for ease of identification. Metric units
have been’used thrdughout and Young's modulus was taken as 205

KN/mm?2 .,

Three curves are shown in figure (6.7) for the sway
deflections when the frame is subjected to combined loading. Values
of lateral deflection from a linear elastic (first-order) analysis
for each storey height indicate unsatisfactory limits according to
current Design Recommendations, even when the joints were assumed
fully-rigid. The worst storey sway was 1/223 in comparison with the

-~

maximum allowable of 1/300. Nevertheless, the total deflection of

curve (1) was about 1/290th of the overall height.

Curve (2) represents the same analysis but incorporating the
contribution of connection deformation. The total sway deflection
is approximately 10% above the rigid-jointed case. The worst storey
sway has been increased to 1/210. As the connections are relatively
rigid in comparison with those connections shown in figure (6.1},
~ this additional sway is not of particular concern. However, when
compressive axial forces are taken into account in a non-linear

(second-order) analysis, the deflections were significantly higher
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than the ones assuming rigid connections. As a result of the
secondary effect, the total sway was over 25% of the value from
rigid-jointed analysis. This is shown by curve (3). In fact, a
number of storey sways exceeded 1/200th of the column height. These

values confirmed the published results,

The effect of incorporating fhe connection deformation into
the analysis is to reduce the bending moments in the beam-column
connections near the top of the structure.and to increase those
near the bottom. The mid-span sagging moment was generally

increased by a small amount at all levels of the structure. .

6.6 Effects of claddings in semi-rigid construction

It is well known that partitions, infilling the frame and
cladding for a multi-storey structure all have a great effect on
the lateral stiffness of thévframe and the elastic critical load.
References (50) and (60) showed that such effects(pan be
incorporated into an qnalysis by the use of '§' values. If the
infill panels in a given storey have a total stiffness , 'S' (force
per unit displacement), the non-dimensional panel stiffness in any
storey is given by,

S = Sh?/EK (6.15)

where E = Young's modulus of elasticity,

=~
n

sum of column stiffness of that storey,

jo gl
"

storey height under consideration.
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Wood(50,60) has proposed that values of 'S' should be included
in calculations for the elastic critical load, and for sway
déflections. However, the énalysis used in both cases was based on
a limited substitute frame with fully-rigid beam-column joints. It
is not the intention of this section to criticise such simplified
assumptions for use in rapid manual design. The point to remember,
though, is that all bolted connecﬁions are flexible, apart from a
few exceptional cases. Indeed, semi-rigid unbraced frames cannot be
modelled in the same way as rigid-jointed frames are by the use of
the Grinter frame. The difficulty arises from the uncertainty in
determining the degree of connection restraint and its effect on
the overall joint behaviour. Further, the principle of
superposition is not valid for semi-rigid joints. Connection
rotation is unpredictable for an unbraced frame subject to combined
loads. A wrong assumption of the direction in which the connection

deform would be unsafe.

For deflections at working lcoad, the non-linear (second-order)
sway displacements shown in figure (6.7) are unaczéptable. It was
decided to observe the effects of claddings by incorporating
pin-ended struts at the leeward joints. These members may be
considered as 'elastic springs' of total axial stiffness 'S‘', to
represent the cladding that would, in practice, contribute certain
resistance to the overall sway deflection. The axial stiffness is

given by,
S, =EA /L (6.16)

where A and L are the cross sectional area  and length of the strut
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respectively, and E is Young's modulus of elasticity.

The eleven storey semi-rigid framé shown in figure (6.8) has been
analysed with several values of spring stiffness in an attempt to
restore the sway deflections to the usual limits. It was assumed
that all 'S' values are identical, as would be the case of a

fully-clad structure.

As compressive axial forces are sign;ficant in this case, all
the values shown are based on a non-linear (second-order) analysis.
The results showed that a nominal value of 'S' is sufficient to
overcome the additional sway deflections of the original framework
arising from connection deformation. When 'S'=0.3075 KN/mm was used
in the non-linear (second-order) analysis, all the storey sways
were found to satisfy the limit of 1/300th of each storey height.
Increasing the spring stiffness reduces the overall sway

dramatically as shown for the case with 'S'=2.050 KN/mm.

The most severe storey deflections are those/bf the second and
third floors. Two values of storey sway have been calculated for
'S$'=0,2050 and 'S'=0,3075 KN/mm, as shown in figure (6.8). These
figures of storey deflections suggest that cladding stiffness is

unnecessary in the upper storeys.

T§ investigate this matter, five of the springs were removed
from the roof downwards. A non-linear (second-order) analysis was
carried out with 'S'=0.820 KN/mm for the remaining springs. The
results indicated by 'S(partial)' on the figure showed the storey

deflections to be adequate. The laterally unsupported upper parts
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of the frame behaved in approximately the same manner as the
totally unbraced semi-rigid structure. The result of 'S(partial)’

is plotted as dashed lines in figure (6.8).

The example has shown that the proposed procedure is able to
deal with any type of partially or fully-clad plane frame with a
range of semi-rigid connections either of the same type or a
combination oE different types of assemblies. It can be used to
simulate actual construction when the cladding is being installed

progressively, as well as to analyse the completed structure.

6.7 Seven storey two bay frame

The seven storey frame designed to sway deflection limitations
in Chapter (2) is illustrated in figure (6.9). Permissible sway
liﬁitskof 1/300th of each storey height was specified when subject
to unfactored’horizontal loads. The design, however, was based on
fully-rigid joints. An analysis was carried out of the frame by
assuming the beam-column joints to be end-plate connections with
horizontal column stiffeners. Standardised moment-rotation
characteristics have been adopted for the purpose of demonstrating
the contribution of,cohnection deformation. The parameters

necessary for evaluating the relationships have been calculated by,

=D+ 6T (6.17)

[}

where D total depth of beam section,

thickness of beam flange,

=
i
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d = vertical distance between centres of the

furthermost line of bolts.

The end-plate thickness, t, was taken as 20mm throughout.
Expressions relating the moment to the connection deformation is
also shown in fiqure (6.9) together with a schematic drawing of the
end-plate connection. Member sections apd applied loads are given

in Chapter (2).

Values of the storey deflection have been calculated for each
of the analysis given by the curves. It is appa;ent ﬁhat under
linear elastic (first-order) rigid-jointed analysis, the design is
adequate but not in the case incorporating semi-rigid connections.
However, the sway deflections are not as severe as the previous
example because the initial specified sway limit was constrained to
1/300th of each storey height. The non-linear (second-order)
analysis exhibits a maximum deflection of h/224 when subjected to

total working loads.

As in the previous example, the critiqal sways were located at
the bottom few storeys with the exception of the ground floor. In
contrast, the value of the TOTAL deflection to the height'in all
cases was still within the maximum allowed. It was thought that
only a nominal value of 'S' would be sufficient at all storey
levels to reduce the semi-rigid sways to tolerable limits. It was

found that 'S'=0.0742 KN/mm, about one quarter of the axial

stiffness of the previous example, was sufficient to reduce the
sways to the usual limit. When the effects of axial forces are

neglected in the semi-rigid analysis, a value of 'S'=0.0309 KN/mm
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was adequate to restore the sway deflections to the usual limits.

The effect of using a stiffe? connection such as a T-stub has
~also been studied. When such a connection was used to replace the
end-plate connection in a linéar elastic (first-order) analysis,
the sway deflections were found to be 1/1078, 1/559, 1/408, 1/304,
1/313, 1/304 and 1/420.from top ;o bottom storeys. These values are
still within tolerable limits. However, when the axial forces were
taken into account using the T-stub connection, tse limit on storey
deflection was violated in the same locations as indicated by curve
(3) in figure (6.9), although the maximum value of storey sway was

now reduced to 1/262.

6.8 Non-convergence of connection deformation

For the realistic types of connections that were utilised in
the examples, connection defbrmations were found to be small. This
is not unusual since the proportionally appliedvygads were at the
serviceability level. Previous examples have indicated that a
minimum of foﬁr to five iterations is needed to converge
satisfactorily onto‘the desired connection tolerance. The
possibility of gross distortion of the connection, however, cannot

be ignored in a general analysis program.

Consider thé simple fixed base portal shown in figure (6.10).
A top and seat angle connection type is assumed. Two load cases
have been drawn in figure (6.10), i.e. vertical load alone and
combined loading. The analysis for the vertical load alone is

denoted by a circle while the combined case is represented by a
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triangular symbol. For each load case, two curves are shown. For
example, consider the portal subjected to the mid-span vertical
load alone. Curve (1) represent thé initial total rotation and
curve (2) represent the converged total rotations at joint (A).
Each point on the curve represents an increasing value of A . The
curves for the vertical load alone starts at A =5 and terminates
at a value of 10 inclusive, while the combined case starts at A=5
and terminating at A =8. The vertical axis represents the ratio of
the total rotation (©+0') to the hinge rotation (8y) if the joint
at (A) and (C) was assumed pinned. Curves (3) and (4) are similarly
plotted. Curve (5) is plotted to illustrate the ratio of the
connection to joint rotation subject to vertical load alone. A
tolerance of 0.001 was used in all cases. Linear elastic
(first-order) analysis has been used because the intention was to
illustrate the extent of connection deformation on the joint

behaviour.

The non-linear moment-rotation expression was calculated from

-

reference (69) as,

8' = 1.539x10°(M) + 6.083x10 (M) + 2.472x1022 (M} (6.18)

where the bending moment is in KNcm. units.

As the end moment increases, the total rotation tend towards a
pinned condition. The number of iterations increases dramatically
and tends to infinity as indicated by a flat plateau in figure

(6.10).
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When high rotations are predicted which exceed those of pinned
ends, the ﬁign of the bending moment changes. In order to preserve
equilibrium of the stiffness equations, the acting moments become
restraining moments. At this stage, the solution diverges and the

analysis is terminated.

6.9 Effective lengths of end-restrained struts

The effective lengths of no-sway columns specified in
traditional elastic design methods are based on the realization
that full restraint cannot be achieved in practice. It willlbe
shown that the commonly used values for effective lengths are
justified but slight inaccuracies arise when a range of column
lengths are examined for the same type of end connections. In the
studies, the non-linear (second-order) elastic program has been
used to determine the bifurcation load of the column. This is
indicated by the singularity of the determinant of the overall

stiffness matrix. .

The effective length, or sometimes referred to as the
equivalent slenderness, is defined here as that length which gives
the same strength as for a pin-ended column on the actual column
’with end restraint. Wood(50) has described this concept by
réference to the elastic critical load of columns in sway and

no-sway cases given by,

L= [p,/p, (6.19)
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where P, Euler load, ﬂZEI/ﬁ '

P elastic critical load, ﬂZEI/l2

o
1]

Values of effective lengths are tabulated in the form of charts but
the joints were assumed fully-rigid. In contrast, Jones et. al(67)
adopted an accurate step-by-step load-displacement finite element
computer technique to calculate fhe maximum load capacity of a
column. Various destabilising effects are also included in their

computer program.

The procedure adopted in this section is believed to be more
efficient, less time-consuming and provide results which are
sufficiently accurate for use in design. Jones assumed beams of
infinite stiffness attached to the model column via semi-rigid
connection, while the proposed procedure can simulate any given
beam stiffness. The results of an analysis on a column length of
4.00 metres is shown in figure (6.1l1). A top and seat angle
connection was assumed using the expressions developed by Frye and
Morris. The connection characteristics have been calculated for a
range of rigidity by altering values of the size parameters, where

the (M~0') relationship is given in the form,

8' = a.(C;M) + b.(C;M)P+ c.(C, M) (6.20)

where a = 8.46 x 10" ,
- -4

b =1.01 x 10 '
-8

c =1.24 x 10 '

C(i) = t'0‘5 d-1.5 £-1.1 1-0,7 ,

and M is given in KNcm. units,
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Values of 't', 'd', 'f' and 'l1' are defined in the schematic
drawing of the connection shown in figqure (6.11). The value of C(1i)
is calculated for each curve, where (i) refers to the integer shown
on the curves in figqure (6.11). The dimensions for 't', 'd‘, 'f£‘
and 'l' are selected randomly to provide the appropriate curve and
as a demonstration of the effect of end restraint only. These
values ranged from 100-380mm, 60;80mm, 12-20mm and 40-60mm

respectively. The values of C(i) are as follows,

c(2) = 1.081x10" c(3) = 2.453x10"
C(4) = 3.581x10™ C(5) = 4.199x10"
C(6) = 4.780x10" c(7) = 5.508x10"
C(8) = 6.380x10 c(9) = 7.367x10° (6.21)
C(10) = 8.641x10"  C(11) = 1.028x107°

C(12) = 1.256x10°  C(13) = 1.819x10°

C(14) = 3.045x10°  C(15) = 4.003x10°

C(16) = 5.983x10°

In determining the effective length, the column {s assumed to have‘
an initial bow of L/1000 at mid-height in accordance with Design
Recommendations(54,55).‘Axial deformation of all the members are
suppressed, as are usual in critical load analysis of columns. The
vertical axial load is applied in terms of a commom load multiplier
of the Euler load. Therefore, the effective length is determined

by,

L = (1/;\C (6.22)

In all subsequent analysis, Young's modulus of elasticity was taken
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as 210 KN/mm2 unless indicated and both column and beam members

have the same section.

Curves indicated by (1) and (17) rgpresent fully-rigid and
pinned end conditions with an effective length of 0.7 and 1.0
respectively. In this simple demonstration, a decrease of end
restraint stiffness produces a cérresponding increase in column
deformation and effective length. It is therefore to be expected
that curve (16) gives a value approaching pin-ended conditions. It
is emphasised that these values are applicable only to the type of

connections used in this exercise.

The effects of different column lengths for a given type of
connection have also been examined. Realistic values of 3.0, 4.0
and 5.0 metre columns are subject to the same assumptions and
loading criteria mentioned earlier. A 'flexible' header-plate
connection, commonly assumed pinned in practice, has been adopted

and the results are shown in figure (6.12). A stiffer end-plate

-
-

connection with column stiffeners is shown in Eigure (6.13).

Connection characteristics are also given for each of the
curves in both figures. It was decided to replace the initial bow
of L/1000 by a small disturbing force at mid-height. The reason for
adopting such a model is to reduce the number of iterations
required to converge. The initial bow of L/1000 was used in the
previous example because the connection there was stiffer than
either of the two shown in figures (6.12) and (6.13). Due to the
comparatively 'flexible' connections large end moments are

developed as the compressive axial load is increased. This give
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rise to large connection rotations causing the direction of the
rotations to change in order to preserve equilibrium. This is

. illustrated by curve (2) or (3) in figure (6.14).

Figures (6.12) and (6.135 justify the commonly assumed
effective lengths for such connections in braced frameworks.
However, the values shown suggest the possibility of economy in
column design if semi-rigid end restraint is properly taken into
account. It is interesting to note that as the column lengths
increase, the effective length decreases for any given end
restraint. The reason is due to the significant effect of
connection deformation being utilised on slender columns in
bending. This causes a slight increase in the critical load for

such columns.

6.10 Conclusion

A procedure has been presented for incorporating semi-rigid
connections into the matrix stiffness method of analysis. A simple
technique is proposed by which the load vector is revised
iteratively to allow for deformation bf the connections. This was
shown to provide a convenient and rapid solution, with each

iteration taking no longer than an ordinary fully-rigid analysis.

Economy of storage of over 25% has been illustrated for a
simple portal by excluding the connection details from the overall
stiffness matrix. Substantial savings in total storage of larger
frames can be anticipated. The proposal has been programmed to
account for any combination of fixed, semi-rigid and pinned
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connections. The reduction in member stiffness due to compressive
axial forces is also taken into account. This requires an iterative
analysis in the same manner as for the connection behaviour.

Therefore, no significant computing time is lost in comparison with

a fully-rigid non-linear (second-order) analysis. The member forces
converge rapidly and the structure satisfies equilibrium,

compatibility and connection characteristic behaviour.

Examples on unbraced multi-storey frames have shown that
connection deformation contributes substantially to the overall
sway displacements in comparison to fully-rigid assumptions.
Internal redistributioﬁ of member forces is significant with the
possibility of overstressing some sections. This may lead directly
to the early onset of plasticity at a load factor much lower than
that predicted by an analysis assuming rigid joints. This could
result in a significant decrease in the ultimate load carrying

capacity of the structure.

—
For the examples studied, it was found that provision of

nominal cladding stiffness was sufficient to offset the additional
sway resulting from deformation of connections. However, each
structure will be unique in the value of claddihg stiffness
required. It was found that a uniform provision of such cladding at
all levels give satisfactory results. Further, the program enables
simulation to be made of construction phases. Another benefit of
the proposed method is that poor connections are automatically

recognised by the analysis not converging due to excessive

deformation.
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The influence of semi-rigid end restraint on the effective
length of no4swéy columns suggests possible economy in column
" design. It has been shown that forvseveral types of connections,
the traditional specifications of effective lengths are justified,
However, the detailed results apply only to the limited cases
examined above. Such results indicate the usefulness of studying
the behaviour of each type of coﬁmoﬁly-used connection., The
tendency for effective iengths to decrease with increasing
slenderness has been confirmed. This implies a corresponding
increase in the elastic critical load as a result of the semi-rigid

connection being fully utilised in flexure.
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

The thesis has examined the behaviour and some design problems
of rigid-jointed multi-storey unbraced steel frames. The results of
the parametric study presented in Chapter (2) enable the designer
to predict the likely governing criterion (serviceability limit on
sway or ultimate load) for the design of these frames subjected to
combined loading. The studies have shown that the original
Merchant-Rankine formula is conservative for estimating the failure
load and that the modified version due to Wood(50), which is
strictly applicable to clad structures, can overestimate the
failure load. The studies, however; were based on bare frameworks
and ignores the beneficial effects of strain-hardening and stray
composite action. A semi-empirical expression has been presented in
Chapter (3). Significantly better estimates of gﬁe failure load has
been achieved in comparison with both forms of the Merchant-Rankine
approach. The frames that were examined had equal storey height and
equal bay width. However, most building structures have a ground
floor which is taller than the storeys above. Furthermore,
Structures with irregular configurations, particularly with
inclined members, and uneven floor loading patterns have not been
considered in the design studies. Although limited cases of
irregular-bay frames have been examined, further studies should be
conducted on frames with the above characterisfics. Design guidance

charts, similar to those presented in Chapter (2), could be drawn
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to include the variable of the average ratio of bay width to storey
height. The application of the Merchant-Rankine formula to such
frames could then be validated and the accuracy of the improved
relationship developed in Chapter (3) examined for irregular

frames.

The expression developed in Chapter (3) was based on the study
of bare frames. it was suggested that the formulae could be used
for frames subjected to vertical load alone by altering the value
of the coefficient. It could alsc be extended to provide an
estimate of the failure load of clad frames with certain values of
cladding stiffness., This could then be compared with the
Merchant-Rankine-Wood approach which is strictly applicable to clad

frames.

The optimization procedure described in Chapter (4) is
suitable only to regular and rectangular frameworks. Irregular
frames with inclined members require sophisticated routines and the
use of an accurate elasto-plastic computer progE;m is the only
solution to such a problem. However, several improvements can be
made to the proposed approximate optimization procedure. In the
proposed method, only those sections with the most economical full
plastic modulus (or inertia) to weight ratio ére included in the
list of preferred sections. If it is required to restrict the depth
of a member, it may be necessary to select a section that is not
one of the 'economical' sections. Furthermore, certain sections
that are unsuitable for plastic action may be more 'economical'

than the one selected and could be used provided they are not

stressed beyond the elastic limit. In addition, use of Universal
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beam sections as column members may lead to more 'economical'
designs. A routine could be added so that the selection procedure
is based on the most 'efficient' section in all cases. A more

sophisticated assessment of cost could also be included.

The manual method presented in Chapter (5) is able to estimate
accurately the failure load of single storey and multi-storey
frames. It was shown in Part (1) that significant overall stability
problems can arise for single storey frames subjected to high
concentrated loads at or near the eaves level. Part (2) examines
multi-storey frames and examples have been shown. The calculations
were performed manually but tends to be lengthy. In order to avoid
iteration, charts could be produced for use with the method
prOposed in Chapter (5). This would enable the failure load to be
determined swiftly for single storey or multi-storey frames. Aas
nggested above, it would be worthwhile to examine cases with
irregular bay width and storey height. Furthermore, a separate
study of the top and bottom two storeys would enable more accurate
assessment be made to overcome the error in colﬁ;n moments. An
investigation should be carried out on the applicability of the
method for single storey low-pitch portals. For low pitched frames,
it may be possible to treat them as flat-roofed frames.
Furthermore, an investigation into fixed base single storey frames
should be made. Finally, a computer program suitable for use on
micro-computers should be developed, particularly for multi-storey

frames.

Finally, a computer program has been proposed which is capable

of analysing any combination of pinned, semi-rigid and



-242-

rigidly-connected plane frames. This program enables the
determination of effective lengths of braced columns with any
degree of end restraints. It is possible to extend the technique
described in Chapter (6) to determine the ultimate load-carrying
capacity of semi-rigidly connected plane steel frames. The program
could be used to investigate the behaviour of frames designed to
the 'simple' methods of BS449 and BS5950. By including semi-rigid
joint behaviour, a better assessment could be made of the real
behaviour of such frames, both at the serviceability and ultimate
limit states. A more extensive study of effective lengths with
semi-rigid joints would enable more detailed recommendations to be
made concerning these values, to replace the very crude values

given in present day design codes.
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APPENDIX

ANALYSIS OF PINNED BASE SINGLE STOREY FRAME

BA

From symmetry of figure above,

M
BD
Hence,

"Bp

(VERTICAL LOAD)

AlRV) AV A{RV)
BJ‘_‘_ C& — D
! I, "7 \
I b \
| |
| |
| | h
‘ g3,.C ’l
i ,
A i oy ———+
f ! j

E.Ic [s.GB + sc.OA]

h

] - A2
Ek .GB s(1 c?)

Mos

where k" = Ic/h

and OB = -OD

- AV.L where k' = Ib/L

Equilibrium at joint (B)

E.O
B

AV.L

1

8

Substituting (Al

MDB

AV.L

8

MV

2x' + s(1 - c*) k"

s
.4) into (Al1.3) gives,
1 - 2k

2x' + s(1 - )k

(a1.1)

(A1.2)

(a1.3)

(Al1.4)

(n1.5)
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A2 ANALYSIS OF PINNED BASE SINGLE STOREY PORTAL -

(WIND PLUS FICTITIOUS HORIZONTAL LOAD)

c b
A(2FV) + AH —> === _q N —f
B 1
| I
| ]
| |
I s.¢ ’l h
1
i “|!
! 6 !
1
A"X” "&E N
g L }
) MAB =0
.e s(l +¢).0 = sOA + scG)B . (A2.1)
h
= 1] -
MBA EX [sGB + sc.G)A s(1 + c)%]
= EK" s{(1 - ¢) [(3B - GA] (a2.2)
MBD = MDB and OB = OD
* = Y- "
.. MBD 6Ek GB (A2.3)
-

Equilibrium at joint (B)
6, =0 1 (A2.4)
B A |'_1 ¥ ex'/s(1 - Ok ]

Sway equation

M+ AHh + A(FV).8 = O 6
BA 3 AFvis, an T 1o )
h 2
MBA
h
» A - — J
AH
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Substituting for MBA from above gives

0. = 0_ + AH.h + A(FV) 6
2Ek"s(1 - ¢) Ek"s(1 - ¢c)

Solving equation (A2.4) and (A2.5) gives the rotations

%

AH.h + X(FV)§
12Ek’ 6Ek '

+

(A2.5)

(A2.6)

1

OA AH.h 1 + 1 + A(FV)$ 1
2E 6k’ k"s(1 - ¢c) E 6k’

k"s(1 - ¢)

|

Substituting the rotations into equation (A2.1) and rearranging gives,

. «
5 = AH.he
- 12Ek"/h - 2A(FV) =

where « = 1 + 6k’
s(1 - c*)k"*

k'= Ib/L and k" =1 /h
c

A(FV) = A(RV) + AV/2

Finally the bending moments are obtained by substituting

the rotationsinto (A2.2) and (A2.3).

-
BA -[méh +)\(FV)¢S]

M [)\H.h + A(FV)G]
BD 2

Jc 4
[}

(a2.7)

(A2.8)

(A2.9)
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A3 FIRST HINGE AT LEEWARD END OF THE BEAM

(MID-SPAN VERTICAL LOAD)

LAAV
B ~= S R
] T e —— - H3
I
|
|
! h
!
111
\
\
244,
L
- Mg =0
2 .
M = "
- 2Ek IZOB + OA]
= "
3Ek OB (A3.1)
M _ = 2Ek'(20_ + Q) + MF =0 F
DB b * G DB where M, = A%YE
S B, = -AA\VL -0
P 3mk - B
2
MBD = 2Ek'(20B + OD) ~ AAVL -
8
Substituting OD into above gives,
MBD = 3Ek'0B - 3AAVL ‘ {A3.2)
16
Eguilibrium at joint (B)
EO_ = 3A\MVL 1 (A3.3)
B 16 3k* + 3k"
Substituting (A3.3) into (A3.1) and (A3.2) glves,
MBA = 3AAVL (A3.4)
16 1 + k*/x"

My = 3AMVL 1 -1 ' (A3.5)
B 16 1 + k"/k!
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Hence,

H3

"
=

/h

3AAVL 1 - (A3.6)
16h 1 + k'/k"
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A4 FIRST HINGE AT LEEWARD END OF THE BEAM

(WIND AND FICTITIOUS LOADS)

»* C
l" —— I\ ~~~~~~~~~~ __—o [
/ Ip
/ va
) h
lIc
!
)
Al
L
MAB = 2Ek [2OA + OB - 3:2 ] =0
3}:2 = 20A + OB (A4.1)
| MBA = 2Ek [OA + ZOB - 3v,. 1]
h,
= 2Ek [OB - GA] (n4.2)
Similarly,
= ' . i ' = -
MBD 3Ek OB since OD _(?E (A4.3)
2
Equilibrium at joint (B) i
0. =0 1 (24.4)
. B P A, .
A [1 n 3k'/2k"] '
V2
Sway equation B8
H* - -
*
MBA + Hh =20 MBA
h
A <« H¥ |
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Substituting for MBA from above gives,

0 =0_+Hh (34.5)

A B oEe

Put (A4.5) into (A4.4) and rearringing gives,

*

GB = Hh (Ad4.6)
3Ek!
and
* *
OA =Hh +Hh (rd.7)
3Ek! 2Ek"

Bquation (A4.1) therefore gives,

- x* 2
v, = H hie, (34.8)
3EK
where «, = (1 + k'/k")
H = AN + (H1 + H2 + H3)
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AS ANALYSIS OF INTERMEDIATE LIMITED FRAME

(MID-SPAN VERTICAL LOAD)

G -
F o T
\ I hy
f T h
\ 2
Al $E g
L
M =0
AB
GA = _% (AS.I)
2
M = +
A EI, (4OB ZOA)
h2/2
Substituting for GA gives,
M, = GERzOB ) where k, = I,/h, (A5.2)
Similarly for the upper leg, _
Mop = 6Ek10B where k, = Il/hl (A5.3)
M = -M = -
5D OB and OB OD
= 2 EIb (26B + GD) - kgL
L
= 2EkOB - AVL where k = Ib/l_ (A5.4)

8

Equilibrium at joint (B)

EOB = AVL 1 (A5.5)
. 8 6ky + 6k, + 2k
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Substituting (A5.5) into slope-deflection equations give,

MDC ) A%E' :1 i 6ky + 2:2 + 2k]
) 2%_1: E - %] where K = 3k1 + 3k2‘ +k (A5.6)
= MDC(V)
M = AL [352_] (35.7)
8 K -
) —-MDE(V)
Mo = %I" [3_1;1] (25.8)
= -MDG(V)
and MCD(V) -’-}%L_ - MDC (V)
where K = [3k; + 3k, + k]
‘ ky = 1,/h1, k, = I;/h, and k = I /L
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A6  ANALYSIS OF INTERMEDIATE LIMITED FRAME

(WIND LOAD)

M. = 2 EL [203 + 6, - 38 ]

h, b,

MBD = 2 EIb (ZGB + QD) but OD = GB
L
L

Equilibrium at joint (B)

-~

4EK10 + 4Ek, 0  + 2EK10 + 2Ek,0, - 6Ek81/hy - 6Ek, 6, /h,

+ 6Ek0B = 0

Sway equation of upper leg

+M__ + Ajlh; =
B AH1h, 0

MBF
2

6Ek103 + 6Ek10,, - 12Ek181/hy + Mithy = 0
. 2

NN O, = 28;/h; -~ O_ - AHihy
F B 12Ek,

Sway equation of lower leg gives,

12Ek

2

(a6.1)°

(26.2)

(n6.3)

(26.4)

(R6.5)

(A6.6)
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.

Substituting (A6.5) and (A6.6) into (A6.4) and rearranging gives,

0. = 2k1(8;/hy) + 2k, (8,/h,) + [(AH1.h; + AH2h,)/6E] (A6.7)
B , 2k, + 2k, + 6k

The bending moments are obtained by backsubstitution of (A6.5)

to (A6.7) into the appropriate slope-deflection equations.



PJ

JP

JI

JL
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A7 ANALYSIS OF BASE LIMITED FRAME
(MID-SPAN VERTICAL LOAD)
P
i 77 f
1
20 AV { 2
. Ky _1L
e —————
! Iy \
| h
\|'2 l 2
\ [
o L }
0
s
2
2 EX (20 + 0O_]
=4
hi/2 J P
6Ek 10
2 EI; (20,) = 4Ek,0 Also, M__ = -M
n, J J LI
2 EIb (20J + GL) = AgL and OL = -eJ
L (/
2Ek0J - AXL

Equilibrium at joint (J)

M
JP

.. N EGJ

+

MJI + MJL =0
[
AVL 1
8 6ky + 4k, + 2k

Substituting (A7.4) into above gives,

M
LJ

M
JI

AVL

Fl_%]

¥

~

]

(a7.1)

(A7.2)

(A7.3)

(a7.4)

(A7.5)

(a7.6)



I1J

where K'

MJI/2

(3k; + 2k, + k)
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(A7.7)
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AB  ANALYSIS OF BASE LIMITED FRAME

(WIND LOAD)
P AHI Q AHI

\ L |

e

Proceeding in exactly the same way as shown in Appendix (A6)

but ignoring the rotation at (I) of the base gives the

equilibrium at joint (J) as,
4EK 0. + 4Ek,eJ + 2Ek19P - 6Ek381/hy - 6Ek,8,/h, + 6EKO, = 0
Substituting (A6.5) for OP gives,

2k; + 4k, + 6k

Substituting (A8.2) into the relevant slope-deflection

-

equation giVes the appropriate bending wmoments.

(a8.1)

(AB.2)
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A9  HINGE AT LEEWARD END OF THE BEAM

(MID-SPAN VERTICAL LOAD)

F o<—Ry |G
‘ :
i1 lAA.\/ 5 M
C 1D
B T e e s - - - - — — - —-"'—?
Iy i
| ! h,
(' !
\
ra-t LR
t L ]
AMAB =0
Ly OA - --O—E (Agnl)
2
MM, = 2 EL (20, +0,)
h,
= 3Ek,OB (A9.2)
éimilarly,
AM = IEK 0, (A9.3)

In a similar manner to the derivation given in Appendix (A3), the rotation

at D is given by,

-AAVL - 0 o -~

O =
D vt _E
32Ek 2
M =

5D 2Ek'(20B + OD) - AAVL/8

Substituting for GD gives,

My, = 3Ek0, - 3 AxZL (r9.4)
1

Equilibrium at joint (B)

EO = 3 A\VL 1
B 16 [3)(1 + 3k, + 3):] (A9.5)

Substituting (A9.5) into (A9.2) and (A9.3) gives,

AMBA =3 %‘é}: [.‘.(it.] . where K" = k1 + k2 + k (nA9.6)

sy
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AM_ = 3 AML [Q ] (A9.7)
16 K"

The forces R1 and R2 are given by

R2 =AM /h, and RI =AM__/h
. R = Rl + R2
= 3 A\AVL ki + k, ) (a9.8)
16K" h h,

R (Intermediate)

The average value of R is taken as half its values given by
equation (A9.8).
For a fixed base limited frame (9A = 0) and equilibrium of

joint B gives,

EOB = 3 AML 1 (A9.9)
16 3k + 4k, + 3k
similarly,
! AMBA = 3 AL 4k, (A9.10)
‘ 16 3ky + 4k, + 3k
AM . 3 AMVL 3k, (A9.11)
B 16 3k: + 4k, + 3k
and the average value of R is in the same way obtained as,
R = 3 AMWL 3Ky + 4k, (A9.12)
16[3k, + 4k, + 3k] hy h,

R (base)

For double beam hinges the force, R, is similarly obtained.
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Al10  DISTRIBUTION OF SHEAR

Equilibrium of joint (D)

AMDE +AMDG =0

4k10) + 4k, 0, = 6k1(vG/h) + 6k, (vD/h,) (A10.1)

Sway equation (upper legq)

+ Y =
AMDG AMGD + SL h, 0]

6Ek19D ~ 12Ek3{(vG/hy) + Sﬁ'hl = 0

© S
—
L
hy -
1L———§L<—' b6
. - 2 D
s VG = 10 + S hy (A10.2)
2 12Ek
Similarly for the lower leg,
= 2 A10.3
vD | h, OD + sLh2 ( )

N

12Ek,
Substituting (A10.2) and (A10.3) into (A10.1) and rearranging

gives,

0. =5 | hy +h (A10.4)
D Pl LA
_.E [kl + kz] .
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Hence from (A10.2) and (A10.3),

vp = SLhz hy +h, + h,
5 |kt k 3k, (A10.5)
and
VG = SLh' hy +h, + hy (A10.6)
"4—E— ky + k2 3k1
The total sway is given by the sum of vD and vG
vL(T) =S hi + 2hy h, + h3 + hi + hi
iE ky + k, 3k, 3k,
=S, |thith)® + hi +hi (310.7)
AE I ki + k, 3k, 3k, :
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WINDWARD ASSEMBLY

Analysis of the windward assembly is similar to the leeward column
except for the inclusion of the beam member,

Equilibrium of joint (B)

AMBA +AMBF +AMBD =0 !

4k10, + 4k, 0, + '3koB = 6ky (VF/h1) + 6k, (vB/h,;) (A10.8)

Sway equation (upper leg)

+ =
AMBF AMFB +sw h, 0

6Ek10, - 12Ek) (vg/hy) + Syhy = 0

- VE = -ElpB + swh1 ] (A10.9)
2 12Ek,
Similarly for the lower leg,
- A
vB = %LGB + swbg (A10.10)
I 12Ek; |

On substituting (A10.9) and (A10.10) into (A10.8), the rotation

of joint B is obtained,

GB = Sw * hy + h, ' (A10.11)
2E ki +k, + 3k '
and the diéplacements are similarly given as, -
VF = S hy [ hy +h, +hy | (A10.12)
+ + 3k 3k
15 | ki + k, 3 1‘
VB = Swh2 hy + h, + h, (A10.13)
'4—E—- ki + kz + 3k 3kz-
The total sway is,
VW(T) = VF + VB
=SLV1_ g+ h)? +hl +nd (A10.14)
4E ki + k; + 3k 3ky - 3k,
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All INCREMENTAL ANALYSIS

(WIND LOAD)
SW G SL —_—
hy
c D —}
Ip
h2
li__Sk_ —
L n
M. =2EL [20) + O - 388 ] (a11.1)
h, h; .
AM_, = 2E Ip [20, + 6, - 348,] (A11.2)
hz h3
AMDB = Q o OD = -EE
2
e AMBD = 3E EE GB (a11.3)
L
Equilibrium at joint (B)
4Ek10B + 4Bk, 0 + 2Ek10p + 2Bk, 0, - 6Ek)(A81/hy) P
- 6EK, (A8, /h,) + 3EKG = O (A11.4)
Sway equation of upper leg
Mgp + MMy + Sha =0
6E - he =
#IGB + 6Ek10F 12Ek1(A61/h1).+ Swhl 0
. o = 2ﬁ6] - 95 - sy (A11.5)
‘ ! 6Ek
Sway equation of lower leg gives,
0, = 288, -6 - Sih, (A11.6)

6Ek,
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Substituting (A11.5) and (Al11.6) into (All.4) and rearranging

gives,

Og = 2k1(A81/hy) + 2Kk, (A8;/h,) v [S hy + S'h,;)/3E] (r11.7)
2k; + 2k, + 3k

In a similar manner, the joint rotations at D, E and G are

obtained by ignoring the beam stiffness,

0, = 2K, (A81/hy) + 2k, (A8,/h,) + [(S hy + S b,)/3E] (A11.8)
2](1 + 2k2
] OG = 2 ﬁﬁl - OD - Sth : (A11.9)
1 6Ek1
OE = 2 ﬁﬁz - GD - SLh2 (A11.10)
2 6EK,
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Al2 INCREMENTAL ANALYSIS OF BASE LIMITED FRAME

(MID-SPAN VERTICAL LOAD)

Py 99
|
Re ANV
Ny — K ¥ __ﬂ_éﬂL
| Iy
1,
I
1y N
nrr mry
- | L }
AMPJ =0
o GP = - EE
2
AM = 2E Y, (20 + O]
h;
= 3Ek10J
MM = 2E I [20,]
hz
= 4Ek,GJ'
Similarly,
AMJK = 3Ek0J T 3AAVL .

16

Equilibrium at joint (J)

EO, = 3AML 1
16 3k; + 4k, + 3k

Substituting (A12.4) into the slope-deflection equation above

gives,

AMJK = 3JA\VL 3k
~ 16 3k; + 4k, + 3k

=AMJK(V)

-1

(aA12.1)

(A12.2)

(a12.3)

(A12.4)

(a12.5) .
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&

31 3A\VL 4k,
16 3ky + 4k, + 3k

= Mg, (V)

and
AMKL = AAMAVL +
AAVL AMJK(V)

4
2

(al12.6)
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Al3 INCREMENTAL ANALYSIS OF BASE LIMITED FRAME

Aby, (WIND LOAD)
Q
P, Sy -5 —
J K L —
Iy
I h2
1 N _____i
L L ¥
o oAM= 2Ek,[2@J - 3A8,/n,]
AMJP = 2Ek1[20J + GP - 3A81/h;]
aMo = 3EKO

Equilibrium of joint(J)

AMJP + AMJI + AMJL =0

4k10; + 4k,oJ + 3k0, = 6k1(a81/hy) + Gka(A§,/h,) - 2k10p

Sway equation of upper leg

+ + =
AMPJ AMJP Swhl 0

o GP = 2A61/h1‘- GJ - Swhl
6Ek,
Substitute (A13.5) into (A13.4) to solve for Od,

0 [2k1 + 4k, + 3k] = 2ki(A61/h1) + 6k, (A8, /n,) + 5.1y
3E

. eJ = 2k1(A§1/hy) + 6k, (AS,/h;) +_(swh1/3E)
(2k; + 4k, + 3k)

The rotation.at joint L of the extended leeward column is

similarly obtained by ignoring the beam stiffness, k, and sub-

sti i .
ituting SL for Sw

(al13.1)

(A13.2)

(A13.3)

(A13.4)

(A13.5)

(A13.6)
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Equilibrium of joint (L)

=0
AMLN + AM‘LQ

4Ek10L + 4EK, 0 + 2Ek10Q = &Ek1(A81/h1) + 6Ek, (A§, /h;) (A13.7)

Sway equation'for member NOQ

. + S h; =0
AMLQ + AMQL L 1

0. = 248;/hy - OL - S

0 h, ‘A13.8)

6Ek1
Substituting (A13.8) into (Al13.7) and rearranging gives,

O, = 2k1(A81/h;) + 6k, (A8,/h,) + (S by /3E) (A13.9)
2k, + 4k,
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Al4 INCREMENTAL ANALYSIS OF BASE LIMITED FRAME

(VERTICAL LOAD)

Pq} Qo —l
\
}1, iAv hy
/ K
J/T9"-===:::::TC -
|’ e
‘\\ Iz hy
1 N )
mrr Vraasd a——7
| L }
) -0
AMPJ
LY OP = -—O—q-
2
AM_ = 3EK,0_
oM - = 4Ek, 0,
and
Mk = -mwr
4 .

Equilibrium of joint (J)

EOJ = AXVE -1
4 3k1 ¥ 4k3

Hence from above equation,

aM_ = AWL 4k, -
4 3k1 + 4kz

"

and

3

13 AMII/2

(a14.1)

(A14.2)

(a14.3)

(a14.4)

(al14.5)

(A14.6)
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