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SUMMARY 

The thesis examines the behaviour and design of unbraced 

rigid-jointed multi-storey steel frameworks subjected to combined 

vertical and horizontal loading. 

Design charts are presented which enable guidance to be given 

on whether the serviceability limit on sway or ultimate limit state 

under combined loading will be critical for the choice of sections 

in preliminary design. Parametric studies on forty-three 

multi-storey, multi-bay rectangular frameworks provide the 

verification of the Merchant-Rankine formula for the design of such 

frames. 

An alternative semi-empirical expression based on the study of 

the deterioration of overall frame stiffness has been developed. 

Comparison with the parametric study indicated a significant 

improvement on the Merchant-Rankine approach to estimate the 

failure load of frameworks. The expression has then been used as 

the basis of an approximate optimization procedure for the design 

of frames to satisfy ultimate strength under combined loading. 

An approximate hand method to trace the formation of plastic 

hinges has been developed. The method is applicable to single bay 

frames, and has also been extended to multi-bay frames. The latter 

are transformed into equivalent single bay frames. 
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A computer analysis program for semi-rigid connections has 

been presented using the matrix displacement method. The technique 

is reduced to an analysis of a rigid-jointed framework by repeated 

modification of the load vector alone. The analysis program has 

been used to investigate the sway deflection of unbraced frames and 

the determination of the effective length of braced columns. 
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CHAPTER 1 

INTRODUCTION 

The purpose of methods for structural analysis is to enable an 

engineer to design safe and economical structures. Despite the 

complexity and variety of present-day structures, the design 

techniques in current use are generally sufficient to provide 

adequate safety. Improving knowledge of structural behaviour is 

mainly used to increase economy and reduce design time. 

Many investigators have examined the various problems of 

analysis and design, particularly of steel framed buildings. The 

result is that today's engineer has at his disposal several 

well-tried methods by which he can design a specific structure. 

With the aid of computers, there is no doubt that analysis and 

design methods have become more sophisticated. The tendency has 

been to develop suitable computational methods to assess more 

accurately the overall behaviour of the structure from the onset of 

loading to collapse. 

Nowadays, it is not only necessary for an engineer to be able 

to design a safe structure. He must also make use of available 

resources in the most economical manner. Optimum design techniques 

have been developed and used extensively in building structures, in 

an attempt to reduce cost and increase efficiency. With increasing 

competition, small savings in material and weight can influence the 

result of a tender. 
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This thesis presents some developments in design methods for 

plane unbraced multi-storey frames. To justify this research, 

previous papers that are relevant to the research are first 

discussed. 

1.1 Elastic design of steel frameworks 

The majority of present-day design methods for analysis and 

design are based on the early observations of Hooke regarding the 

properties of an elastic material. Since that time, a number of 

important contributions incorporating the principles of elasticity 

have been published. They include such analysis techniques as 

moment distribution by Cross(l) and the slope-deflection method. 

The moment distribution method in particular, enables the analysis 

and design of some redundant frameworks to be carried out with 

relative ease by hand. Due to the redundancy of the structure, 

though, the distribution of moments depends on the stiffness of 

each member in the structure, and initial estimates of member sizes 

must be made. Strictly, therefore, an iterative procedure is 

necessary. Further difficulty arises when a highly redundant 

structure such as a multi-storey unbraced frame has to be analysed. 

To avoid such problems, BS.449(l969) permits what is known as 

the 'simple' method of design. Two approaches are available, for 

braced and unbraced structural steel frameworks respectively. The 

former approach assumes the beams to be simply-supported; these 

members are designed against failure from excessive bending and 

shear. The columns are designed to carry the reactions from the 

beams and moments due to eccentricities arising from the nominally 
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pinned connections. The combined stresses in the columns must not 

exceed certain permissible stresses. These are dependant on the 

yield stress of the steel and the susceptibility of the member to 

buckling. Sway loads are resisted by walls or bracings and 

transmitted by them to the foundations. 

For unbraced frames, rigid joints are required to provide 

lateral stability. To avoid analysis of a redundant structure, the 

traditional procedure is to carry out a preliminary design based on 

the method described above for vertical loads and then to determine 

the additional forces and moments resulting from wind, using 

approximate analyses(3). The commonly-used procedure is the 

'portal' method, in which the frame is rendered statically 

determinate by assuming points of contraflexure at mid-length of 

all members. At this stage of design, the connections are assumed 

rigid. As the frame is rendered statically-determinate, iteration 

is avoided. The total member forces under combined loading are 

obtained by using the principle of superposition. 

An important criticism arising from this method is the 

contradictory assumptions of pinned and rigid joints used to obtain 

the combined stresses. Such assumptions are incompatible with the 

actual behaviour of a frame. Although the method has not found 

favour amongst some engineers, recent-arguments have contested that 

the method provides sound economic construction. Certainly, the 

'simple' method is still widely accepted as a suitable method for 

design. 
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The aim of the pre-war Steel Structures Research 

Committee(SSRC) was to evolve a rational method for the design of 

no-sway frames. It was recognised that"the stresses developed in 

actual building frames have little or no relation to those 

calculated in the 'simple' method. The 'Recommendations for 

Design'(4,5) allowed the engineer to make use of the rigidity of 

the connection when selecting beam sizes, provided certain standard 

connections were used. This formed the basis for a 'semi-rigid' 

design method. The column design was based on a single chart. This 

relates the permissible major end-bending stress, for the worst 

conditions, to the axial stress and the slenderness ratio. The 

resulting designs showed reductions of beam sizes, but with 

corresponding increases in the column sizes due to the additional 

end moment. Although this is a more rational method for design, 

engineers failed to adopt this approach. Comparisons between 

'simple' and 'semi-rigid' designs indicated no appreciable savings 

in weight. The design time was also increased due to the inherent 

complexities of 'semi-rigid' design. 

Since the advent of computers, development in linear elastic 

structural analysis has accelerated. The computer is able to 

perform lengthy arithmetic and store hugh amounts of data with 

great speed and accuracy. Therefore, the slope-deflection method is 

no longer a tedious operation although it involves the solution of 

simultaneous equations. The matrix displacement method has been 

developed from this method. It utilizes matrix algebra, thus 

permitting a systematic procedure for analysis to be programmed. 

The unknown joint displacements can be obtained by solving the 
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simultaneous equations using standard Gaussian elimination 

techniques. This can be expressed as, 

(1.1 ) 

where ~ and 1 are the vectors of joint displacements and external 

applied loads respectively and K is the overall stiffness matrix. 

computer methods have enabled engineers to extend their design 

capability to larger and more innovative structures which would not 

have been possible previously. It must be realised though that 

early computer programs did not design structures. This still had 

to be carried out manually. The main function was to provide a 

rapid analysis of a given frame at a specific loading level, 

usually working load. Results from this analysis had to be checked 

to ensure that all stresses and displacements were satisfactory. 

Early programs were usually based on small deflection, linear 

elastic theory, although Livesley(7) developed a program with the 

option of including secondary effects due to axial load. These are 

included by using stability functions. These functions depend on 

the ratio of axial force to the Euler load of a member, and the 

particular functions used by Livesley have the value unity for zero 

load. Repeated analysis is necessary because the axial forces in 

the members are initially unknown. The axial forces from the 

previous solution are therefore used to calculate the stability 

functions for the current iteration. 
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It is instructive at this stage to clarify the general 

load-deflection behaviour of the different methods of analyses. 

This is shown in figure (1.1). Curve(l) represents the linear 

elastic behaviour of an initially undeformed frame. Such behaviour 

is given by the slope-deflection or moment distribution methods of 

analysis. However, when the reduction in frame stiffness due to the 

compressive axial forces is considered, then the non-linear elastic 

response given by curve(2) is obtained. At any given load factor, A 

the difference between this curve and the linear elastic curve(l) 

is a measure of the reduction in stiffness due to the compressive 

axial forces at A . For the non-linear elastic response, the 

lateral deflection tends to infinity as the applied load approaches 

a value of Ae. It is at this load level, known as the elastic 

failure load, that the frame stiffness becomes zero. This should 

not be confused with the lowest elastic critical load, Ac. The 

elastic critical load is the load at which bifurcation of 

equilibrium occurs with the frame subjected to the loading shown in 

figure (1.1 (b». The distinction is a fine one because Ae and Ac 

are virtually identical in value. 

The main disadvantage of early computer programs was the size 

of the overall stiffness matrix. There are, however, certain 

special features of the stiffness matrix which can be used to 

reduce the storage of the actual number of elements. These are 

symmetry and the existence of many zero sub-matrices outside the 

irregular half band-width. Jennings(lO) suggested a highly 

economical storage scheme which makes use of these properties. In 

this approach, only the elements which lie between the first 
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non-zero one and that on the leading diagonal, inclusive, for each 

row of the stiffness matrix are stored. Once this is completed, a 

rapid solution can be obtained by the method due to Jennings(lO). 

This is based on the Gaussian elimination technique for the direct 

solution of linear simultaneous equations. A rapid solution is 

obtained as the method operates only on the economically-stored 

elements. Majid and Anderson(4l) adopted such an approach for 

elastic analysis of very large frames. 

The analysis and design methods outlined above do not consider 

economical distribution of building materials. This is in contrast 

to optimum design methods which attempt to produce structures which 

are not only safe but also economical. In such methods, the aim is 

often to maximise or minimise the value of a specified function 

(the 'objective function') by means of mathematical programming. 

Material weight is usually adopted as the objective function 

because it is easily quantified. Although cost is of more practical 

importance, it is often difficult to obtain a cost objective 

function. One such method for minimising the cost of a structure to 

sway deflection limitation has been proposed by Anderson and 

Islam(59). This is discussed in Section (1.5). The specific 

requirements to be satisfied in order for the design to be 

acceptable are known as constraints. Optimization is usually an 

iterative procedure because of the non-linearity of the objective 

function or constraints, and computer methods are often employed. 

In optimum elastic design, the constraints are usually 

limitations on stress and deflection. In a method due to Moses(9), 

equilibrium equations are obtained, which relate the member 
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deformations to the bending moments and axial forces. The required 

constraints are then obtained by joint compatibility. These 

constraints, together with the function to be optimised are 

subsequently expanded in a linear first-order Taylor series about 

an initial trial design. A solution is found by the simplex method 

of linear programming operating on the linearised equations. The 

process is repeated in the region of the new design point until no 

reduction in weight is possible. 

The optimum design program of Anderson(24) automatically 

formulates the design problem for pinned and rigid-jointed frames, 

with constraints obtained by the matrix force method of structural 

analysis. The optimization includes both strength and deflection 

constraints, and produces an optimum solution using piecewise 

linearisation in conjunction with the simplex algorithm. The method 

is restricted to relatively small frames due to the excessive 

demand on computer time and storage. 

1.2 Plastic design 

It was recognised through the work of the SSRC(4) that 

continuity in rigid-jointed steel frames results in a higher 

load-carrying capacity and should offer greater economy than 

'simple' design. After extensive research, first at Bristol 

University and later at Cambridge, the rigid-plastic method was 

proposed by Baker(ll) and Baker et al(l2). The rigid-plastic design 

method is based on the state of the frame at collapse. A factor of 

safety is introduced by using factored loads in the design 

calculations. The fundamental conditions of rigid-plastic analysis 
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which must be satisfied are, 

a)Equilibrium - The bending moment distribution must be in 

equilibrium with the externally applied 

loads. 

b)Yield -

c)Mechanism -

The bending moment at any point must not 

exceed the plastic moment capacity of the 

member. 

A state of collapse due to a sufficient 

number of plastic hinges must be obtained. 

Referring to figure (1.1), rigid-plastic analysis is represented by 

the vertical axis from zero to Ap • The deflection is assumed to 

be negligible until Ap is reached. It is assumed that all members 

remain fully elastic except at the discrete points at which plastic 

hinges occur. Once such a hinge has formed, it is assumed that 

indefinite plastic deformation can take place at that point. The 

stiffness of the frame reduces when each hinge forms, and becomes 

zero when the mechanism is complete. Collapse then occurs, as 

indicated by the horizontal line at Ap (curve 3) in figure (1.1). 

The principal assumptions upon which the rigid-plastic theory 

is based are, 

i)Changes in geometry are neglected. 

ii)Buckling out-of-plane and local instability do not occur. 

iii)Yielding is confined to the discrete plastic hinges. 

iv)Strain hardening is neglected. 
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Separate column checks are necessary for condition (ii), while 

conditions (iii) and (iv) lead to reasonably accurate and safe 

results. Assumption (i), however, can be applied only to simple 

portal-type structures and structures not exceeding two storeys, 

where changes in geometry is minimal. 

Iffland and Birnstiel(l3) conducted an extensive survey of 

design methods on realistic frames up to a maximum of two storeys. 

This provides justification for the rigid-plastic method to be used 

for such frames. This fact is emphasised by the AISC code(14) which 

allows rigid-plastic design up to two storeys provided the frame 

can be shown to be sufficiently stiff. However, the effects of 

changes of geometry especially in tall unbraced slender structures 

are significant. They cause instability in the structure and cannot 

be neglected. 

Several techniques can be employed to determine the 

rigid-plastic collapse load. Neal and Symmonds(15) developed a 

rapid upper bound method of analysis utilising 'combination' of 

mechanisms. However, the method is usually restricted to relatively 

small frames due to the excessive number of mechanisms to be 

investigated, particularly in non-rectangular frames. 

Horne(16,17) proposed a direct method of plastic moment 

distribution which is akin to elastic moment distribution. The 

distribution of moment is arbitrary and checks are necessary to 

ensure that the yield condition is not violated. 
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A design in which the weak-beam, strong-column approach(18) 

was adopted showed significant savings in the weight of steel when 

applied to a four storey frame. The unbraced frame was designed for 

vertical loads only because wind loading was not critical. This is 

not surprising because for a relatively low unbraced framework, it 

is usual for the choice of sections to be governed by vertical 

loading rather than combined loading. The beams were designed 

plastically for simple beam collapse while the columns were 

designed elastically(19). 

If instability effects in the frame are neglected, it is 

possible to determine Ap by a succession of elastic analyses under 

increments of loading. The formation of plastic hinges is 

represented by inserting pins into the model of the structure. This 

method permits the designer to trace the linear elastic-plastic 

behaviour of the structure up to collapse, and is represented by 

curve(4) in figure (1.1). If necessary, the reduction in plastic 

moment capacity due to shear force and axial force can be included. 

As the above procedure requires iteration, it is not used in 

present-day manual design. 

In one of earliest attempts on optimum plastic design, 

Heyman(64) 'applied the method of random steps to simple examples. 

It was assumed that the weight of a member is proportional to the 

product of its length and full plastic moment. The minimum weight 

was obtained by linear programming by considering all the possible 

rigid-plastic collapse mechanisms of the structure. The method was 

approximate and was suitable only for simple beams and portals. 
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Indeed, all the methods described so far require considerable 

expertise if used in hand calculation, particularly when larger 

frames are involved. For this reason, computer methods have been 

developed. 

Methods of rigid-plastic analysis and design by computers have 

been proposed by Livesley(8) and Ridha and Wright(2l). Both methods 

include an element of optimization. In design, Livesley utilised a 

search technique to proportion the members such that the frame 

satisfies the conditions (a) to (c) for rigid-plastic collapse. The 

frame is assumed to be subjected to concentrated loads only and 

hence there is a fixed number of points at which plastic hinges can 

occur. The moments at these hinge positions are expressed in terms 

of the applied loads and 'redundants'. The values of the redundants 

are determined by satisfying conditions (a) to (c). The unknown 

terms to be solved are the redundant forces. 

The method due to Ridha and Wright makes use of the method of 

combination of mechanisms to generate a feasible design. To prevent 

collapse by specific mechanisms, virtual work equations are changed 

to an inequality. The set of inequalities is obtained by 

considering all possible mechanisms for the structure. Both 

computer methods appear to give economical designs but the 

computing time becomes excessively high for large or 

non-rectangular frames. 
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1.3 Elastic-Plastic design 

A close approximation to the true behaviour of an unbraced 

frame is illustrated by curve(5) in figure (1.1). Throughout the 

range of loading, reduction in frame stiffness occurs due to the 

compressive axial forces in the columns. In addition, as the load 

gradually increases, parts of the structure are stressed beyond the 

elastic limit into the plastic range. In figure (1.1), it is 

assumed that plasticity is confined to discrete points at which 

plastic hinges occur. Spread of yield and the beneficial effects of 

strain hardening under increasing load are assumed to be 

negligible. 

Whenever a hinge forms, the overall stiffness of the frame 

deteriorates which in turn results in a faster rate of increase of 

deflection than hitherto. The frame reaches collapse when the 

stiffness is reduced to zero due to the combined effects of 

compressive axial forces and plasticity. This is expressed 

mathematically by the determinant of the overall stiffness matrix 

becoming singular i.e. non-positive. Further, lateral deflection 

has to be balanced by a corresponding decrease in load if 

equilibrium is to be maintained. The peak load, which is lower than 

the rigid-plastic collapse load, is given by At ' and is known as 

the elastic-plastic failure load. To distinguish the 'collapse 

load' given by rigid-plastic theory, the 'failure load' is used in 

the text to indicate 'collapse' given by elastic-plastic theory. 

Wood(26) illustrated this behaviour by reference to the 

'deteriorated critical load'. This is obtained by studying the 
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non-linear elastic response [curve(2) in figure (1.1)], but with 

the plastic hinges replaced by real pins at the corresponding 

locations. Thus, the effect of progressive formation of plastic 

hinges in reducing the overall frame stiffness is illustrated by 

figure (1.2) Each horizontal line corresponds to a value of the 

'deteriorated' critical load calculated from the pattern of plastic 

hinges that are currently present in the frame. At some load level, 

the 'deteriorated critical load' coincides with or falls below the 

rising load factor. The frame then has zero or negative stiffness 

and therefore collapses. 

The concept of the 'deteriorated critical load' makes it clear 

that failure can occur long before a complete mechanism of hinges 

has formed. Indeed, the positions and load levels at which the 

plastic hinges form do not necessarily correspond to those obtained 

from a rigid-plastic analysis. The rigid-plastic collapse load 

provides an upper bound to the failure load and will be 

particularly unsafe for unbraced multi-storey frames with 

relatively high compressive axial loads. The design of such 

structures is usually governed by overall stability. 

Several methods have been proposed with the aim of obtaining 

safe and economic designs for multi-storey unbraced frames. 

Heyman(27) adopted a weak-beam, strong-column ultimate load 

approach by assuming a pattern of plastic hinges which involved 

collapse in both beams and columns. As a safeguard against 

instability, it was suggested that up to working load, a frame 

should remain elastic and deflections should be limited. An 

approximate method was proposed to calculate the sway deflections. 



-15-

Stevens(28) proposed a design method based on the collapse 

state of the structure. Maximum overload deformations are specified 

and used in formulating virtual work equations corresponding to 

collapse mechanism in the deformed frame. Member sections are then 

selected and the resulting design analysed by an approximate 

method. If the specified deformations are exceeded, then the 

procedure is repeated until a satisfactory design is obtained. 

Holmes and Gandhi(31) and later Holmes and Sinclair-Jones(32) 

proposed a hand method for modifying the rigid-plastic method with 

an allowance for frame instability. The effects of compressive 

axial loads, point of contraflexure not occurring at mid-height of 

columns and the reduction of member stiffness due to the formation 

of plastic hinges are incorporated into the design method. Collapse 

is assumed to occur by beam, combined and sway mechanisms in the 

upper, middle and lower regions of the frame respectively. In the 

second paper, modified boundary conditions are included and the 

design calculations speeded up by reducing the number of iterations 

to determine the necessary magnification factors. Attempts to 

further reduce design time by using graphs were proposed. The 

results of the numerous designs were checked against a non-linear 

elasto-plastic design program of Majid and Anderson(42). 

The methods described above depend on a predetermined pattern 

of plastic hinges which may not occur and there is no guarantee 

that deflections are within reasonable limits. When deflections 

were found excessive, no guidance was suggested to correct beam or 

column members. Securing elasticity at working load does not 

necessarily prevent early collapse. The application is restricted 
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to regular and rectangular frames and considerable experience is 

needed to design a specific structure. 

A manual design method developed at Lehigh University(33) 

makes use of sway sub-assemblages to obtain lateral deflections 

under combined loads. The details of these sub-assemblages are also 

discussed in relation to preliminary design of unbraced frames by 

computer by Driscoll, Armacost and Hansell(43). Initial member 

sizes are obtained by considering vertical loads only. The 

appropriate sway sub-assemblage is then used to formulate 

equilibrium equations for each storey. These equations enable the 

bending moments due to the wind forces and the deformed shape to be 

estimated. Beam-type members are designed so that the combined 

collapse mechanism would only form when a specified level of 

combined loading was exceeded. A moment redistribution procedure is 

used to estimate the bending moments in the columns and sections 

for these members are then selected. Sway deflections are estimated 

by a slope-deflection method and the frame redesigned if necessary. 

Provisions which enable an engineer to obtain a safe design are 

given when insufficient restraints are provided about both axes of 

the columns. Collapse before a complete plastic mechanism has 

formed was recognised but the method involves the extensive use of 

charts. 

Moy(74) proposed the storey stiffness concept for the design 

of multi-storey frames to satisfy strength and stiffness. The 

fundamental problem is the determination of the stiffness of each 

storey. Once this is determined, strength design follows by 

modifying the member stiffnessess in a sub-assemblage. 
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Sub-assemblages are used by assuming points of contraflexure at 

mid-length of all members except for the roof and ground floor 

region. The storey stiffness is taken as the sum of the stiffnesses 

of its sub-assemblages. For example, when column axial forces are 

less than half the Euler load in the intermediate sub-assemblages 

of an intermediate storey, consisting of 'm' columns, the total 

storey stiffness at a given load factor is, 

l2.E 
h3 l[ le ]-

1 1 + U.q 

where E = Young's modulus, le = column inertia, 

P = column axial load, h = storey height. 

U = ratio of beams' restraining moment to column 

moment taking the value as follows, 

a)All storeys except for the top and bottom storey 

b)TOp storey 

c)Bottom storey (pinned base) 

d)Bottom storey (fixed base) 

and q = le 
h [ l~(ai .l~i /Lbi ) ] 

n = number of beams in a joint (~2) 

ai = beam stiffness modifying factor taking the value 

corresponding to the conditions as follows, 

e)Both ends rigid 

f)Near end rigid, far end pinned 

g)Near end pinned 

2 

1 

1.5 

1 

0.5 

o 

and lbi and Lbi are the beam inertia and length respectively. 

Sway deflections and bending moments are determined from the 
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results of the storey stiffness. The effects of plastic hinges on 

the beam stiffness are accounted by the modifying factor 'aj '. The 

column stiffness was assumed to be zero when a plastic hinge 

develops at the top end. When such hinges are found, reduction in 

storey stiffness is observed in the above equation. Under 

increments of load, the total bending moments and sway 

displacements are obtained by summing the moments and displacements 

existing at the previous load level and the incremental values. 

Maximum strength is assumed when any storey stiffness becomes zero 

or non-positive. 

In a method due to Anderson and Islam(72), initial estimates 

of the secant stiffness of beams are made in a substitute Grinter 

frame analysis to determine the sway deflections. These 

displacements are used in conjunction with expressions developed 

from slope-deflection for the bending moments and joint rotations 

based on a limited frame. Several cases of plastic hinges occurring 

at prescribed positions in the limited frame were derived. These 

hinges usually occur at the leeward end of-beams for frames under 

combined loading. A pattern of plastic hinges is initially assumed. 

The method proceeds from one limited frame to the next; the results 

obtained in the former being used in the latter limited frame. When 

the last limited frame has been analysed, the joint rotations are 

used to modify the secant stiffness of the beams in the substitute 

Grinter frame. The procedure is repeated until satisfactory 

convergence is achieved. Sway deflections are determined with 

allowance for the reduction in column stiffness due to compressive 

axial forces. Only one plastic hinge per beam is permitted in the 

method unless a satisfactory design load level has been attained. 
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Plastic hinges are not allowed in the columns below the design load 

level for combined loading. 

More recently, Scholz(68) proposed an approximate method which 

relies on iteration between the rigid-plastic collapse load AP and 

the elastic critical load, Ac • The basis of the method is the 

equivalent 'limiting frame'. Each group of 'limiting frames' is 

identified by a common curve which relates the rigid-plastic 

collapse load, Ap and the elastic critical load, AC to the 

failure load, Af • Consequently, a family of curves for different 

groups of frames can be related to the two parameters, AC and Ap • 

. The technique was compared with the results obtained from a 

non-linear elasto-plastic computer analysis program. Scholz also 

conducted model frame tests to further validate the approximate 

approach. The method may be modified for frames with semi-rigid 

connections, partially-braced frames, or for frames subjected to 

vertical loading alone. 

The claim of the above methods as suitable for 'manual' 

application is unjustified, particularly in the design of multi-bay 

frames. Moy's method requires the determination of each 

sub-assemblage stiffness, which correspond in number to the number 

of columns in a storey. The method of Anderson and Islam involves 

the use of numerous expressions for each limited frame with a 

plastic hinge, and a separate analysis is required to determine the 

sway deflections. Furthermore, double hinges on the beams are not 

permitted, and several iterations are required to locate the 

position at which plastic hinges form. Scholz's method is 

significantly more complex due to the need to evaluate 'limiting 
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frame' parameters, apart from the rigid-plastic collapse load and 

the elastic critical load. However, they can all be programmed for 

use on desk-top computers. 

computer methods to assess the elastic-plastic behaviour of a 

frame are well documented, although necessarily complex. Jennings 

and Majid(36) used the matrix displacement method of Livesley(7) 

and developed a general program to analyse elastic-plastic 

frameworks subject to proportional loading. The method traces the 

history of plastic hinge formation from initial yielding to 

ultimate collapse. The formation of each plastic hinge causes a 

reduction in the frame stiffness. The 'modified' frame is 

reanalysed with a small increase in load, assuming the plastic 

hinges to be real pins sustaining the plastic moment capacity of 

the appropriate members. Failure occurs when the determinant is 

non-positive. 

A similar program developed by Parikh(37) includes the effects 

of axial shortening and residual stresses by a modified 

slope-deflection method. Instead of tracing and inserting plastic 

hinges under increasing load, the plastic hinge pattern itself is 

taken as the variable. Several examples were shown and verified by 

comparison with frames designed by other investigators. 

Davies(39,40) extended the elastic-plastic analysis method of 

Jennings and Majid to include hinge reversal and unloading, 

shakedown effects and the beneficial phenomenon of strain 

hardening. 
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Horne and Majid(38) proposed a complete elastic-plastic design 

method for general plane frames. Commencing with an initial set of 

sections, repeated cycles of elastic-plastic analysis and redesign 

are carried out until the frame satisfies the design criteria, 

a)Beams must remain elastic at working load. 

b)Plastic hinges are not allowed in columns until a certain 

load factor is reached. 

c)A satisfactory collapse load factor must be attained. 

In the course of the iterations, material is redistributed to those 

regions where it is most beneficial, thereby leading to economy in 

the final design. 

The computer methods described above suffer as a result of the 

large amounts of storage and computer time demanded by repeated 

cycles of analysis and redesign. Majid and Anderson(41,42) took 

advantage of the symmetry of the overall stiffness matrix and the 

compact techniques of storage and solution-proposed by 

Jennings(10), in order to analyse large frames more rapidly. They 

also proposed measures to ensure that the initial design was 

realistic, in order to avoid an excessive number of iterations. 

Even so, the computing time becomes extremely high for large 

frames. Further, no attempt was made to restrict deflection which 

may be the critical factor in design. 

As a result, Horne and Morris(7) suggested an alternative 

method of design based on the rigid-plastic theory, but with 

allowance for changes in geometry of the structure. When such 
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effects are taken into account in an analysis, the behaviour is 

represented by the rigid-plastic 'drooping' curve(6) shown in 

figure (1.1). To preserve equilibrium, the applied loads must be 

reduced. The method depend on the assumption that the displacement 

of a point on the 'drooping' rigid-plastic curve(6) intersecting 

the elastic-plastic failure load can be established. It was assumed 

that the ratio of the sway deflection at such a point, to the 

intersection of curve(l) with the rigid-plastic collapse load 

curve(3) shown in figure (1.1), is some function of the number of 

storeys in a frame. A factor of 2.5 was proposed based on the study 

of a number of frames. This factor, which must be multiplied by the 

rigid-plastic collapse design load, is used as a common multiple 

applied to the linear elastic working load deflection of the trial 

frame. Sway deflections are obtained using the 'portal' method 

described in Section (1.1). In this way, instability effects are 

included in the design. The method is necessarily approximate due 

to the assumption of the empirical displacement amplification 

factor, derived from the studies of regular and rectangular frames 

only. -' 

1.4 Merchant-Rankine formula 

Computer-based methods discussed in the previous Section for 

the evaluation of the failure load of unbraced multi-storey steel 

frames are most appropriate. However, if suitable computational 

facilities and software are not available, then the intuitive 

Merchant-Rankine tormula is an attractive alternative for the 

design of such frames. Such an approach may also be required to 

provide a check on a computer method and to satisfy the engineer 
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who wishes to maintain full control of the design process. 

The formula relates the failure loads, denoted here by Amr to 

the lowest elastic critical load factor, AC and the rigid-plastic 

collapse load, Ap , 

(1. 2) 

Merchant's proposal is the result of the early work of 

Rankine(l866) on the failure load of isolated struts. In either of 

the extreme cases when Aeor Ap is large, equation (1.2) tends to 

the correct estimate of the failure load, namely Ap or Ac. In the 

practical range, frames collapse by an interaction of the effects 

of plasticity and elastic instability and therefore reasonable 

approximations to the failure load can be expected from equation 

(1.2). 

Salem(45) conducted a series of experimental tests on a large 

number of single and two storey, one bay model frames. The bases 

were fixed and the joints were rigidly-connected by gusset plates. 

These models were fabricated from hollow tubular sections and in 

all cases the Merchant-Rankine load provided a safe estimate of the 

experimental failure load. Extreme care was taken to ensure that 

the sections used were properly heat-treated to relieve all the 

induced internal stresses. 

Low(48) performed further model tests on three, five and seven 

storey miniature frames. The frames were fabricated entirely from 

rectangular sections, with some models subject to vertical loads 
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only, while others were tested under combined horizontal and 

vertical loads. For frames with low horizontal loads in relation to 

the vertical loads, equation (1.2) was very conservative, whilst 

for those with significant side loads, the formula gave close 

estimates of the failure load. 

Ariaratnam(49) conducted a series of tests on four and six 

storey, single bay models with rectangular sections while the three 

and seven storey, single bay frames were fabricated from tubular 

sections. Attempts to reduce the effects of strain hardening and 

residual stresses on the specimens by annealing were reported. 

Ariaratnam demonstrated that the Merchant-Rankine formula can 

become unsafe when the frame is subject to side loads which are 

high in relation to the vertical loads. It was recognised, though, 

that these conditions are unlikely to be experienced in real 

structures. 

In contrast, Adam's investigation(46) suggests that the 

Merchant-Rankine formula is unsafe when the ratio of the horizontal 

load to the simultaneously applied vertical load is low. The six 

storey, single bay frame examined by Adam in the studies was very 

slender indeed, with the storey height twice the single bay width. 

For such unusual and slender frames, the Merchant-Rankine failure 

load overestimated the accurate failure load obtained from a 

non-linear elasto-plastic analysis by as much as 22\. 

It should be noted that all the experimental models and the 

evidence produced relate to single bay rectangular frames. None of 

the tests was conducted on a multi-bay or non-rectangular frame, 
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and no proposals for the evaluation of the two parameters Ae and Ap 

were given to assist practical design using the Merchant-Rankine 

formula. 

Theoretical justification of the Merchant-Rankine formula was 

provided by Horne(25). It was shown that the expression gives a 

close approximation of the actual failure load on condition that 

the rigid-plastic mechanism and the lowest elastic critical mode 

were the same. Using a similar approach to Horne, Majid(47) showed 

that the formula can be derived by considering the linear and 

non-linear elastic behaviour, and the rigid-plastic failure load, 

as shown in figure (1.3). The basis of the derivation is the 

geometrical relationship indicated by curve(l) and curve(2). 

From geometry, Majid assumed that a particular point (J) on 

the non-linear curve(2) could be obtained which is numerically 

equal to the rigid-plastic collapse load factor. From similar 

triangles, BDE and GOE, 

~ = lip + lie = 1 + ~ (1. 3) 

Amr lie lie 

Similarly, by considering AOC and BOO 

(1. 4) 

Combining equations (1.3) and (1.4) results in the expression given 

by equation (1.2). An important development arising from this 

method is the estimation of the elastic critical load by a similar 

process utilising the geometrical layout given in figure (1.3). 
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Examples published by Majid appear to indicate a reasonable 

estimate of the failure load and the lowest elastic critical load. 

An interaction formula similar to equation (1.2) was 

recommended by Lu(S7), 

3. 4Ac 

+ 3 AC 

Au 

(1. 5) 

where Ac has been defined previously and AU is the ultimate load 

corresponding to failure of the columns with the frame prevented 

from swaying. This value is obtained from tables which relate the 

axial force to the larger column end-moment and the column 

slenderness ratio. The verification of the formula rests on 

extensive tests on models and full-scale pinned base portals. The 

design using such an expression is, however, suggested for frames 

not exceeding three storeys. Further, equation (1.5) does not 

consider the effects of horizontal loading and is therefore 

restricted to structures designed to support heavy vertical loads 

only. .~ 

In Section (1.2), mention was made of the recent extensive 

review of available design methods carried out by Iffland and 

Birnstiel(13). As a result of the interest expressed by the above 

authors in the Merchant-Rank)ne formula, further design studies 

were conducted. These consisted of 34 representative two storey, 

two bay frames with a wide range of parameters. The frames examined 

have such features as, 

a)Fixed base, 
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b)Pinned base, 

c)Symmetrical configuration (16 number in all), 

d)Unsymmetrical configuration (18 number in all), 

e)Vertical load acting alone, 

f)High and low ratios of vertical to horizontal loading, 

g)Horizontal loads applied from any of the two directions 

for the unsymmetrical frames, 

h)Erection tolerance for symmetrical frames. 

The results of the study showed that the Merchant-Rankine formula 

underestimated the failure loads obtained from a non-linear 

elasto-plastic analysis program in all the symmetrical frames. 

Unsafe cases arose in 4 out of the 18 unsymmetrical frames: three 

frames by 5% and only one by 10%. Based on the limited numerical 

studies above, the Merchant-Rankine formula has been proposed by 

Iffland and Birnstiel for inclusion in a revised American 

Spec if ica t ion. 

Wood(50) recognised the generally conservative results given 

by the Merchant-Rankine formula for bare frames and has suggested a 

modified version, to account for the beneficial effects of strain 

hardening and minimal composite action, 

1 = 1 + 0.9 (1. 6) 

Amrw 

The expression has since been included in European 

Recommendations(54) and in a draft British Code of Practice(55). In 

these documents, frames can be designed by equation (1.6) if 

4 ~ Ac/Ap < 10. For Ac/Ap ~ 10, the failure load is taken as Ap. 
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whilst if Ac/Ap < 4, a more accurate method than equation (1.6) 

should be used. Plastic hinges developing in the columns below the 

specified load level applicable to frames under combined loading 

are not permitted. An exception is the comprehensive combined 

collapse mechanism where plastic hinges are allowed only at the 

base. 

Early attempts to design frames using the Merchant-Rankine 

formula were somewhat hindered because of the difficulty involved 

in the calculation of the elastic critical load. Several 

approximate methods have since been published. Horne(Sl) and 

Bolton{S2) adopt similar approaches. It is necessary in both these 

methods to obtain values of linear elastic deflection. The minimum 

storey deflection is used to determine the lowest elastic critical 

load. However, Bolton's method is potentially dangerous as it 

considers frame instability as a local phenomenon. The calculation 

is based on a single joint from a 'no-shear' frame and therefore 

the lowest elastic critical load can be missed, while Horne's 

approach will be conservative by no more than 20%. 

Wood(SO) introduced the method of stiffness distribution based 

on an equivalent substitute Grinter frame, to calculate Ac. The 

basis of the Grinter frame is that for horizontal loads acting on 

the real frame, the rotations of all the joints at any level are 

approximately equal, and that each beam restrains a column at both 

ends. Beams are therefore bent into approximate double-curvature. 

Charts have been published which enables the engineer to speed up 

the design process with little loss in accuracy. 
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Williams(S3) proposed a simplified design procedure which 

takes full account of Ac without actually calculating Ac in a 

trial design. It was shown by Williams that in a design situation 

(as opposed to an analysis), a lower bound on Ac is all that is 

required to check the adequacy of the trial frame. Due to the 

condition that must be observed for use of the modified 

Merchant-Rankine formula, designs are permitted if the following 

are satisfied, 

AC ~ 4 Ap 

Amrw ~ Ap ~ 1.15 Amrw (1. 7) 

The factor of 1.15 is obtained by substituting the 

ratio AC/Ap=4 into equation (1.6). With Amrw as the required 

load factor for collapse and Ap being the rigid-plastic collapse 

load for the trial design, equation (1.6) can be rearranged to 

express AC in terms of Amrw and Ap • A trial design is 

therefore adequate providing a lower bound value of the elastic 

critical load exceeds the minimum required value. 

Williams suggested modifying the substitute Grinter frame into 

'cells' to obtain a lower bound on AC. Each 'cell' is divided 

longitudinally at the beam level except at the top and the ground 

beam (if any). The beam stiffness is proportioned in the .--~ form 

of (XiRbi and (1- (Xi) .Rbi , where (Xi is any coefficient between 0 

and 1 and Rbi is the stiffness of the beam. The two portions of 

each beam are rigidly connected to a common roller at the far ends. 

By this arrangement, each 'cell' buckles independantly and 

therefore has its own critical load. The elastic critical load for 
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each 'cell' may be obtained very rapidly using the critical load 

charts due to Wood(50). If the lower bound value of AC is 

inadequate, then the engineer may be able to avoid altering his 

design simply by refining his choice of a values to obtain a 

closer lower bound value of Ac for the actual frame. 

Williams's design procedure in which only a lower bound may be 

required for Ac has much mer it as long as it is AC' rather than Ap 

that is the more difficult to calculate. The evaluation of the 

rigid-plastic collapse load has been discussed above, in 

particular, the method of combining mechanisms due to Neal and 

Symmonds(l5). In addition, standard textbooks(l2,l7,22) provide 

alternative procedures for calculating Ap. 

When one tries to calculate the rigid-plastic collapse load 

exactly, it is found that for relatively large frames, it is by no 

means an easy task. For this reason, it is convenient to alter 

Williams's procedure to avoid the need to calculate an exact value 

of Ap. Using equation (1.6) under factored load conditions, the 

required value of Amrw is unity and the expression becomes, 

Ap = 0.9 [ 1 - 1/ Ac 1 (1. 8) 

where Ap is now the MINIMUM required value of the load level for 

rigid-plastic collapse. 

The designer has now to prove that the minimum value of the 

rigid-plastic collapse load factor is at least reached. A lower 

bound equilibrium approach can therefore be used, thus avoiding the 
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need for an 'exact' value of Ap. This contrasts with the original 

proposal of Williams(53) in which the rigid-plastic collapse load 

was initially specified. As a result of the developments described 

above, the lowest elastic critical load can be obtained accurately 

and swiftly for a trial design. 

The procedure given by equation (1.8) is therefore usually 

more convenient. This form of equation is particularly useful for 

tall unbraced frames, in which lateral stiffness, rather than 

strength is often the dominant criterion in design. If such frames 

are designed first to have adequate stiffness, then it will only be 

necessary to demonstrate that the factored load level for the 

ultimate limit state can at least be attained. 

1.5 Deflection control 

Relatively high-load factors apply at the ultimate limit 

state, and these prevent significant plasticity at the working 
~ 

load. As a result, deflection calculations are usually based on 

elastic behaviour. While beam deflections can readily be determined 

by analysis of a limited frame(35), the problem has been horizontal 

deflection in multi-storey frames. 

Design Recommendations(54,55) forbid excessive horizontal 

movement. The 'reasons for such action are to avoid discomfort and 

alarm to occupants, and cracking of plaster, glazing and end-wall 

panels. Restriction of sway also limits secondary 'p- ~' effects 

which cause instability of the structure (28,29). 
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While the British code BS.449(1969) gives no recommendation 

for limiting deflection in multi-storey frames, recent design 

recommendations(54,55) have settled on a value of 1/300th of each 

storey height based on calculations of the bare frame. 

Design studies on multi-storey frames have been carried out by 

Batten(34). The studies showed the sensitivity of frame weight to 

alternative design methods and forms of construction. The following 

parameters were also varied, 

a)Building height, 

b)Storey height, 

c)Bay widths, 

d)Location of braced bay, 

e)Column splices, 

f)Ratio of vertical to horizontal loading, 

g)Deflection constraints, 

h)Use of beam sections for columns and vice-versa. 

Results from the studies provide guidance to designers on the 

choice of methods for designing a specific structure. 

A number of approximate methods for the calculation of sway 

deflections are available for medium-rise frames. These methods are 

suitable for hand calculation, while some enable direct design to 

specified limits. Moy(58) proposed a satisfactory procedure which 

enables the engineer to alter the sections in a trial design if the 

need arose. This has the advantage that it provides guidance on 

what member section changes will be required if deflections in a 
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trial design are found to be excessive. 

When the control of sway is likely to govern the choice of 

sections in a design, then the method of Anderson and Islam(59) is 

more appropriate. This direct method of design enables suitable 

sections to be selected to satisfy limits on sway. The method makes 

use of equations derived by considering sub-assemblages for the 

top, intermediate and lower regions of the frame. These 

sub-assemblages are shown for a 'regular' multi-storey frame in 

figure (1.4). The design equations were based on the following 

assumptions, 

i)Vertical loads have a negligible effect on the 

horizontal displacements. 

ii)A point of contraflexure occurs at the mid-height of 

each column, except in the bottom storey, and at the 

mid-length of each beam. 

iii)The total horizontal shear is divided between the 

bays in proportion to their relative widths. 

These assumptions render a frame statically determinate, except in 

the bottom storey, and enables each storey to be considered in 

isolation. The sub-assemblages, therefore, consists of an upper 

beam, lower beam and an internal column. Equations relating the 

sway deflection over a storey height to the inertias of the column 

and surrounding beams were then derived. Using equilibrium and 

compatibility, the inertias of the beams and external columns were 

expressed in terms of the inertia of an internal column. The need 

to select trial values was avoided by introducing an element of 
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optimization into the design. The cost function for a typical 

intermediate storey is assumed to be in the form, 

c = m.r.h(k, I, + k2 I 2 ) + (m-l)h.k3I3 + 2h.kt.It. 
2 

where m = number of bays, 

r = ratio of bay width to storey height, 

h = storey height, 

(1. 9) 

I" I 2 , I3 and It. are the inertias for the upper beam, lower beam, 

internal column and external column respectively. 

k" k 2 , k3 and kl. are the cost factors corresponding to I" I 2 , I3 

Once the optimum value for the inertia of an internal column is 

calculated, the inertias for other members are obtained by 

back-substitution. The weakness of the method lies in the 

difficulty of achieving in practice the ideal relationships between 

the inertias of the internal columns and those of the other members 

which are assumed in the derivation of the method. Selected 

inertias are often higher than those calculated because of the 

discontinuous range of available sections. 

The charts of Wood and Roberts(60) are most convenient as a 

check for sway of a trial design. The analysis was based on a 

limited substitute frame which represents an individual storey of a 

multi-storey frame. This consists of a column with beams attached 

at the top and bottom ends. The far end of the lower beam was 

rigidly fixed while the far end of the top beam was fixed against 

rotation but free to sway. The single storey substitute frame is 
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shown in figure (1.5). Using the method of slope-deflection, a 

non-dimensional expression relating the sway angle to the joint 

stiffnesses was then obtained, given by, 

<p = l'!. /h 
F.h/12E.Kc 

where k t = Kc 
Kc + Kbt 

Kc = Ic /h ., 

<p = sway angle, l'!./h, 

F = total wind shear, 

Si = cladding stiffness, 

= s. h2 

E.Kc , 

S = spring stiffness (force per unit displacement), 

E = Young's modulus of elasticity, 

l'!. = sway deflection, 

M = 12/(12 + s) , 

L = length of beam, 

h = height of column~ 

Ib = second moment of area of the attached beam, 

and the suffices 't' and 'b' refers to the top and bottom beams 

attached to the column respectively. 

To assist designers, Wood and Roberts presented their analysis in 

the form of charts. The charts are constructed by selecting values 

for <p , Si and ktand solving tqe above equation for kb. For unclad 

and unbraced frames, Si = O. No guidance was given, however, to the 
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preferred choice of beam or column sections to be replaced when 

sway limits are unsatisfactory. 

In the above methods, differential axial shortening of columns 

which can lead to significant additional sway is neglected. Such 

effects have been considered in multi-storey frames by Moy(62). He 

considered a frame subject to uniform horizontal loading with the 

floors assumed to be rigid and the cross-sections of columns 

varying linearly from the roof to the base level. At any level, 'z' 

measured above the foundation, the sway deflection is given by, 

V 

2E.Tl 
C2z 3 + Dz 

2 3 

The expression was simplified in the form of a chart relating all 

the terms in the square bracket in the equation above to storey 

height measured from the ground. Each storey is considered at a 

time by selecting the corresponding coordinate at the top and 

bottom end of a column measured from the base. From these two 
/ 

values of 'z', the deflection coefficients pz are obtained on the 

appropriate curve on the chart. These two values of pz are 

substituted into the following equation to give 6 Z1 and 6Z 2, 

where generally, 

where V = uniformly distributed wind load, 

H = total height of frame, 

E = Young's modulus of elasticity, 
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2 
T, = lAc.d (at the lower column level), 

Ac = cross-sectional area of column, 

d = distance from the column under consideration 

to the centre of gravity of the columns at 

roof level. 

The storey deflection due to axial shortening is the difference 

between these two values of 6z, and 6Z2 • 

When axial shortening is significant, then computer-based 

methods are most appropriate. Majid and Elliott(6) proposed a 

method for limiting deflection in frames using non-linear 

programming techniques. Design charts for limiting deflection of 

single bay fixed-base portal frames were shown. Their general 

computer method, however, was restrictive because of the excessive 

computer time and storage space required for the solution. 

More recently, Majid and Okdeh(63) proposed a 'deflection 

profile' technique for the design of multi-storey unbraced frames. 

To limit deflection, an initial value is specified. The method 

assumes a 'linear deflection profile' corresponding to the 

specified sway limit of the frame. This is expressed by a 

deflection function of the form, 

The constants a, to a3 are obtained from the boundary conditions 

defining the geometry of the frame. The deflection, x, is the 

horizontal sway corresponding to the position Y and the variable 
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'i' is the 'economy power'. As the value of 'i' tends to a large 

value, the deflection profile also tends to be linear. The 

iterative procedure reduces the frame stiffness to satisfy the 

deflection limit. It follows that 'i' takes a different value for 

each frame. Initial design procedures are identical to that 

proposed by Majid and Anderson(42) described in Section (1.3). 

A method of incorporating the effects of compressive axial 

forces in reducing the overall frame stiffness for direct design to 

deflection limitation has been suggested by Anderson and 

Salter(61). The method utilises the matrix displacement method and 

linear programming techniques for redesign to obtain a feasible 

solution. Examples were shown and verified by comparing the 

solution of frames designed by other methods. 

1.6 Semi-rigid connections 

In many locations, climatic conditions, safety regulations or 
~ 

shortage of skilled labour limit the scope for site welding, and 

bolted connections are therefore preferred. Bolted connections 

reduce labour costs because the parts can be prepared in the 

workshop and transported easily and provide flexibility for on-site 

erection procedures. All the analysis and design methods described 

so far, with the exception of that proposed by the SSRC, assume 

such joints to be either pinned or fully-rigid. 

Fully-rigid joints are assumed to provide full rotational 

continuity between connecting members. Pinned joints are assumed to 

act as shear pins. This is done despite the fact that experimental 
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investigations of bolted connections show that 'fully-rigid' 

connections have some flexibility while 'pinned' connections have 

some rotational stiffness. Fully-rigid or pinned connections are 

idealisations which enable engineers to design structures using 

existing theories and knowledge. 

When joint flexibility is taken into account in analysis, 

redistribution of member forces throughout the structure occurs. 

Furthermore, in an unbraced frame, sway deflections that were 

obtained previously by assuming rigid joints, can now become 

unacceptable. For bolted connections, the most useful 

characteristic to define is the moment-rotation stiffness 

behaviour. 

A method incorporating semi-rigid end restraint for the 

analysis and design of beams was proposed by Batho and Rowan(75), 

which formed the basis of design for 'semi-rigid' frames proposed 

by the SSRC(5). This was described in Section (1.1). As it is usual 

in steel structures for the columns to be~continuous, the 

semi-rigid connections were taken to occur at the ends of beams 

only. End-restraint moments in the beams were determined for 

certain types of connections and presented as charts in terms of 

the length and total depth of the beam. The connection type varied 

from relatively flexible top and seat angle cleats to stiff T-stub 

connectors. The approach is applicable to simple beams and to 

low-rise frames that are significantly stiff. The treatment of 

semi-rigid connections in unbraced frames was examined by Baker(4). 

The slope-deflection equations were modified by assuming a linear 

relationship between the relative rotation of the member at a 
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connection and the bending moment. The method was unsuitable for 

manual application except for simple frames. For highly redundant 

structures, therefore, computer methods are necessary, 

Monforton and Wu(66) devised a computer program based on the 

matrix stiffness method for the analysis of frames with semi-rigid 

end-restraint. A semi-rigid connection could be located at any 

position in the frame. A linear moment-rotation relationship was 

assumed and fixed-end coefficients derived. The fixed-end moments 

were then modified in terms of these coefficients. A number of 

modified fixed-end moments for different loading cases were given. 

Non-linear standardised moment-rotation expressions for 

several types of connections have been proposed by Frye and 

Morris(69). These relationships have been incorporated into a 

matrix stiffness computer program. The standardised moment-rotation 

expressions were based on experimental and theoretical studies on 

standard connections. These expressions are applicable to a given 

type of connection with any variation of the size parameters. The 

standardised expression was assumed to be represented by a single 

function for all connections of a given type by, 

e' = 

where e' = 

C = 

K = 

M = 

00 . 
I 

~ Cj • (KM) 
i=1 

rotational deformation of connection, 

constant, 

dimensionless factor whose value depends on 

size parameters for a particular connection, 

moment applied to the connection. 

the 
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The factor 'K' was obtained experimentally and only odd powers in 

'i' were considered for the first three terms in the above 

expression. Generally, the moment-rotation characteristic for each 

type of connection is of the form, 

e' = a. (KM) + b. (KM)3 + c. (KM)5 

where 'a', 'b' and 'c' are coefficients applicable to a given type 

of connection. 

The effects of semi-rigid connections on sway deflection and 

redistribution of member forces were shown by a number of examples. 

As much as 20% additional sway was reported in comparison with the 

assumed rigid joint analysis. 

Full scale experiments to obtain suitable behaviour 

characteristics are time-consuming and rather expensive. As a 

result, Krishnamurty et al(66) developed a three-dimensional finite 

element computer model for the numerical solution of 

moment-rotation characteristics. A number of types of connections, 

mainly end-plate connections, have been successfully and accurately 

modelled. 

More recently, the influence of standard semi-rigid 

connections on the strength and behaviour of steel columns was 

investigated by Jones et al(67). The strength of no-sway columns 

including the effects of residual stress, spread of yield, initial 

curvature, and non-linear end restraints was illustrated. 

Comparison with a method of column design(50) suggest possible 
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savings when end restraints are properly taken into account. 

Experimental evidence was given for three types of end restraints 

but no recommendations were proposed for rapid assessment of the 

column strength. 

1.7 The scope for the present work 

To reduce time spent on calculations, it is helpful to know, 

at an early stage, whether ultimate strength or the serviceability 

limit on sway will dominate the choice of sections in the design of 

multi-storey unbraced steel frames. Batten(34) has reported that 

strength under combined loading will govern the design only if the 

deflection limit is relaxed to 1/250th of the total structure 

height. This contrasts with Design Recommendations(54,55) where 

sway deflections are restricted to each storey height. However, the 

critical limit will in fact be influenced by the configuration of 

the frame and the relative values of vertical to horizontal load 

and of bay width to storey height. 

For multi-storey unbraced frames, combined loading is usually 

the critical load case in design but little in the way of definite 

guidance is available to designers. Part of the work described in 

Chapter (2) attempts to distinguish at an early stage whether the 

serviceability limit on sway or ultimate strength governs the 

design under this loading case. 

When def~ection is found to be the governing criterion, then a 

check is all that is required for ultimate strength. Rapid methods 

for the calculation of the elastic critical load are available, 
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thus avoiding the need for an 'exact' value of the rigid-plastic 

collapse load. Such an approach makes the Merchant-Rankine formula 

attractive. 

The Merchant-Rankine formula and the modified version due to 

Wood are subject to criticisms because they are empirical and 

intuitive. Further, Wood's version is strictly applicable to clad 

frames. Recent Design Recommendations(54,55) permit the use of the 

modified Merchant-Rankine formula as an alternative to accurate 

computer methods for elastic-plastic analysis and design. This is 

despite the fact that the basis of the validation of the 

Merchant-Rankine formula rests on model frame tests, or theoretical 

analyses on frames consisting of a few members only. This apparent 

weakness was also recognised in an extensive survey(l3) and so 

further comparisons with computer analyses were made. However, 

these were regarded as a pilot study and were restricted to frames 

that were only two bays in width and two storeys high. 

Recently, Adam(46) demonstrated, by means of an unrealistic 

slender frame, that the Merchant-Rankine formula is unsafe, but 

because of the interest now being shown in the Merchant-Rankine 

formula it is desirable that a study be made of its accuracy when 

applied to realistic building frames. 

One of the restrictions that must be observed when using the 

modified Merchant-Rankine approach is that frames must show a 

combined rigid-plastic collapse, and other restrictions are also 

imposed by the Design Recommendations. The accuracy of the formula 

and the need for the restrictions are investigated in a parametric 
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design study of medium-rise unbraced oare frames in the remaining 

part of Chapter (2). Combinations of realistic horizontal and 

vertical loads are adopted. The study provides an opportunity to 

verify the Merchant-Rankine formula as a sound basis for the design 

of such frames. Examples of designs are shown. 

Chapter (3) attempts to seek an alternative form of expression 

which provides closer agreement with non-linear elasto-plastic 

computer results. A suitable semi-empirical expression is presented 

from the study of the 'deterioration' of critical loads of unbraced 

frames. The accuracy of the expression is also compared with 

published experimental results and a detailed design example is 

provided. The estimated results are compared with the accurate 

elasto-plastic analysis program of Majid and Anderson(4l). 

Studies reported in Chapter (2) show that frames designed to 

satisfactory sway limits cannot be guaranteed to satisfy overall 

ultimate strength. Therefore, the need arises for a method to 

satisfy adequate strength under combined l6ading. This should 

provide information to the designer concerning the required changes 

of member sections to strengthen a trial design. 

An optimum design method is proposed in Chapter (4) which 

makes use of the new expression developed in Chapter (3). It has 

been mentioned,that there is difficulty in determining an 'exact' 

value of the rigid-plastic collapse load, but studies in Chapter 

(2) have revealed a number of likely mechanisms under combined 

loading. As a result, use is made of a finite number of 

rigid-plastic collapse mechanisms as a basis for an approximate 
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optimization design procedure. This contrasts with accurate 

elasto-plastic analysis, where plastic hinges are traced until 

collapse occurs, which tends to be lengthy with high consumption of 

computing time. 

The proposed procedure relates the change in the approximate 

failure load to increase in the overall weight in a particular 

cycle of iteration. Examples of approximate and accurate 

rigid-plastic analyses are compared for several rectangular and 

non-rectangular frames. 

The elastic-plastic design method due to Anderson and Islam 

discussed in Section (1.3) is not appropriate as a manual method, 

but was found to be convenient on desk-top computers. The method 

assumes an incomplete pattern of plastic hinges for the design of 

multi-storey unbraced frames in recognition of the drastic effects 

of frame instability. Comparison with the design studies reported 

in Chapter (2) shows that the restriction of plastic hinges to the 

leeward ends of beams is unnecessarily restrictive. Plastic hinges 

tend to occur at mid-span as well before collapse occurs. 

For single storey buildings, it is recognised that the use of 

valley beams results in some frames being subjected at the eaves to 

high concentrated forces due to vertical and wind loading. The 

design of such frames by rigid-plastic theory may be unsafe due to 

overall instability. 

An approximate semi-analytical method to trace the development 

of plastic hinges is described in Chapter (5). The proposal adopts 
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an incremental step-by-step method of analysis. Suitable 

expressions are derived using the slope-deflection equations to 

evaluate the load level at which these hinges form. An appropriate 

failure criterion based on a limited number of plastic hinges 

occurring on two consecutive floor beams is proposed for 

multi-storey frames. It is shown that a multi-bay frame can be 

treated as an equivalent single bay frame, and the procedure is 

equally applicable to such structures. Initially, the problem is 

demonstrated for a simple pinned base portal in which the 

inadequacies of the plastic theory are illustrated for certain 

types of single storey frames. Several design examples are shown 

both for simple pinned base portals and multi-storey frames. 

Beam-column connections are usually assumed as 'fully-rigid' 

or 'pinned'. However neither is true of bolted connections. Lateral 

stiffness of unbraced frames depends on joint rigidity, and 

excessive sway deflection may occur due to inaccurate assumptions 

of connection behaviour. Chapter (6) proposes a non-linear elastic 

computer program for the analysis of frames with any combination of 

pinned, rigid or semi-rigid connections. Non-linear moment-rotation 

characteristics for any types of connection may be incorporated. 

The effects of such connections on the sway deflection of frames 

are shown. The influence of semi-rigid connections on the strength 

of no-sway columns is examined and comparisons are made with 

commonly-assumed values for effective length. 
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CHAPTER 2 

DESIGN STUDIES OF UNBRACED MULTI-STOREY FRAMES 

2.1 Introduction 

As shown in Chapter (1), the plastic design of plane unbraced 

multi-storey steel frames is a relatively complicated task, because 

of the need to consider instability effects. For this reason, 

computer-based methods are often the most appropriate. However, if 

suitable computational facilities and software are not readily 

available, then the Merchant-Rankine formula(44) provides an 

attractive alternative for the design of such frames. 

This formula has been discussed in Chapter (1), but for 

convenience its form is repeated here. The load level at 

failure, Amr , is given by, 

1 = 1 + 1 (2.1 ) 
Amr AC Ap 

where Ap is the load level for rigid-plastic collapse and AC 

denotes the lowest elastic critical load. 

To allow for strain-hardening and stray composite action, Wood(SO) 

proposed that the formula be expressed as, 

1 = 1 + 0.9 (2.2) 
Amrw AC Ap 
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In this form, the formula has been included in a British draft Code 

of Practice(55) and in European Recommendations(54). 

It has long been recognised that although equation (2.1) is 

generally conservative, cases can arise in which this is not so. 

These cases have not caused concern, however, because they arose 

under unrealistically high ratios of side load to vertical load. 

The main aim of this work is to assist the designer in 

deciding whether ultimate strength or the serviceability limit on 

sway will be the major influence on choice of sections in an 

unbraced multi-storey frame. This has been accomplished by a 

parametric study on a wide range of realistic frames. 

Whereas Batten(34) conducted sensitivity studies on medium 

rise steel frames using 'load factor' design, it is desirable that 

the parametric studies be based on 'limit state' design philosophy. 

The study also provides the opportunity for an evaluation of 

the accuracy of the Merchant-Rankine formula, in both its forms. 

2.2 Design parameters 

A total of forty three frames were examined in the studies. 

The frames were rectangular in elevation, of four, seven and ten 

storeys in height. The number of bays varied from two to four or 

five bays. Typical elevations are shown in figure (2.1).·The storey 

height was constant at 3.75 m but two bay widths of 7.50 m and 5.00 

m were considered. The frames were taken to be spaced evenly at 
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4.00 m longitudinally and all bases were fixed. Although unbraced 

construction provides freedom of layout in a building, it will 

usually result in a higher weight of steel sections compared with 

braced alternatives. The study was therefore restricted to ten 

storeys because it is believed that unbraced construction would be 

unlikely for structures of greater height. The variation in the 

number of bays together with changes in wind speed were adopted to 

enable a wide variation in wind shear per leg to be considered. 

Details of the unfactored floor and roof loadings and the 

basic wind speeds are given in table (2.1). Horizontal forces were 

calculated from the basic wind speeds by use of CP3: Chapter V: 

Part 2(70). These forces were based on the total height of the 

frame and were therefore of equal value at each floor level. The 

force at roof level was taken as half that at an intermediate floor 

level. The basic wind speed varied from 38 m/s to 50 m/s with the 

appropriate S2 factor corresponding to the height of each frame 

shown in figure (2.1). S2 factors were obtained from CP3: Chapter 

V: Part 2, Table 3 assuming Category 3 and/Class B. The values 

therefore correspond to a fairly exposed small town or the 

outskirts of a large city.S, and S3 factors were taken as 1.0. 

Force coefficients are tabulated in Table 10 of CP3: Chapter V: 

Part 2. The values used in the studies ranged between 1.2 and 1.4. 

The wind code permits the designer, if he wishes, to use a 

reduced wind speed below roof level, based on the actual height of 

the storey considered. In the interest of simplicity, no advantage 

was taken of this situation. On the other hand, no allowance was 

made for eccentricity of vertical loading arising from fabrication 
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and erection tolerances given in Design Recommendations(54,55). 

Also, no account was taken of the reduction in live loading 

permitted in CP3: Chapter V: Part 1(71), for the design of columns. 

The partial safety factors, ~, were taken from the 1977 

British draft steelwork Code(55). For loading at the ultimate limit 

state, these are, 

a)Dead load 

b)Imposed load (in absence of wind) 

c)Imposed load (in combination with wind) 

d)Wind load (in combination with imposed load) 

1.4 

1.6 

1.2 

1.2 

The design strength of structural steel was taken throughout 

as 240 N/mm2 , to correspond to the appropriate grade 43 hot-rolled 

sections. Young's modulus of elasticity was taken as 206 KN/mm2 • 

Sway deflections due to unfactored horizontal wind load were to be 

restricted to 1/300th of each storey height for the bare frame, in 

accordance with recent Design Recommendat~ons(54,55). 

The maximum value of floor loading was combined with minimum 

values of wind loading and vice-versa. The results are shown in 

tables (2.2) to (2.4). Several more frames with intermediate values 

of wind loading were also examined. The results are presented in 

table (2.5). The procedure followed in the studies is described in 

Section (2.3) and (2.4) below. Typical calculations are 

demonstrated by means of an example in Section (2.6). 
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2.3 Minimum design sections 

Design Recommendations(54,55) require a frame to withstand a 

higher level of vertical loading when full wind load is not 

included in the loading combinations. Minimum sections were 

determined, therefore, by designing against failure by beam-type 

plastic hinge mechanisms or by squashing of the columns, under the 

higher load factor appropriate to vertical loading only. Thus, 

Design vertical load = ( 1.4 Gk +1.6 Ok ) 

where Gk and Ok are the characteristic dead and imposed loads 

respectively. 

(2.3) 

Universal beams were chosen for horizontal members, and Universal 

columns for the vertical members. 

2.4 Design under combined loading 

To satisfy the limit on sway deflection at working load, the 

minimum sections were increased as appropriate, using the method of 

Anderson and Islam(59) described in Chapter (1). Column sections 

were made continuous over at least two storeys, but the beam 

sections were changed at each floor level when the need arose. The 

designs were then subjected to second-order elasto-plastic 

analysis(41) under the appropriately factored combined vertical and 

wind loads as follows, i.e., 
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Combined design load = ( 1.4 Gk + 1.2 Ok + 1.2 Wk ) (2.4) 

where Gk and Ok are defined above and Wk is the characteristic wind 

load. 

In the computer analyses, one half of the uniformly distributed 

load is applied as a concentrated load at mid-span, and one half of 

the remaining load is applied as a concentrated load at each end of 

the beam. The verification of the accuracy of this program has been 

given by Anderson(24), who made extensive comparison with 

previously established work. 

The failure loads, resulting from the elasto-plastic analysis, 

denoted by Af , are shown in tables (2.2) to (2.5). As the factored 

loads were taken as the reference loads for the analysis, a value 

of Af ~ 1.0 indicates that the factored load level for the 

ultimate limit state under combined loading has been achieved. Such 

a result therefore shows that ultimate strength under combined 

loading was not the governing factor for she design of that 

particular frame. 

In order to make comparisons with the Merchant-Rankine 

formula, the rigid-plastic collapse load, Ap , and the lowest 

elastic critical load, Ac ' were also determined. For convenience, Ap 

was calculated by rerunning the elasto-plastic analysis program(41) 

with Young's modulus of elasticity given a very high value. Ap can 

also be obtained by the same analysis program with all the 

stability '~' functions given unit value. 
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The accuracy of the values for Ap was checked by the present 

writer by analysing some frames using a well-established program 

for rigid-plastic analysis owned by the University of Warwick. This 

program is based on the work of Livesley(8), described in Chapter 

( 1 ) . 

The lowest elastic critical load, Ac , was determined by using 

a non-linear elastic analysis program(4l) in conjunction with a 

modified Southwell plot. It should be noted that Ac was 

extrapolated from several positions on the plot which were very 

close to the critical load. These positions were characterised by 

large horizontal deflections. The dead and imposed vertical loads 

used as the basis for calculating Ac , corresponded to the 

relative values for combined loading, i.e. , 

vertical load for AC = ( 1.4 Gk + 1.2 Ok ) (2.5) 

These were coupled with a small horizontal disturbing force applied 

at roof level. The accuracy of the results~for AC was checked by 

the present writer by recalculating some values using the charts 

due to Wood(50). 

Finally, the failure loads were calculated from equations 

(2.1) and (2.2). Values obtained are given in tables (2.2) to (2.5) 

denoted by Amr and Amrw respectively. 
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2.5 Governing design criterion under combined loading 

The failure loads, At are plotted in figures (2.2), (2.3) and 

(2.4) against the ratio of the sum of the column axial forces, V, 

to the corresponding total column wind shear, H, in a storey. The 

ratio of V/H are averaged over all storeys of the frame. The values 

of V and H were calculated using the factored combined loads, 

V = 

H = 

Le 1.4 Gk + 1.2 Qk ) 

ll. 2 WI( 

(2.6) 

(2.7) 

The results correspond to the two values of the ratio of bay width 

to storey height. 

For the ten storey frames, figure (2.4), the tendency is 

clear. With high values of V/H, one should design first for 

ultimate strength. Two curves have been drawn to show this tendency 

and they can be used to predict the likely governing criterion for 

a particular frame. However, some pairs of/results, taken in 

isolation, would indicate a reverse tendency and these need to be 

examined separately. 

Consider the cases indicated by (a) and (b) in figure (2.4). 

They both correspond to two bay frames, with a bay width of 7.50 m. 

and were subject to the maximum values of imposed load. The frames 

are indicated in table (2.5). Intermediate wind speeds were chosen, 

the wind loading on (a) being 10% lower than that on (b). However, 

because of the limited number of sections available, the two 

designs were very similar: Ac for (a) was only 5% lower than that 
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for (b). It is not surprising, therefore, that frame (a) showed a 

slightly higher failure load even though the ratio of V/H was 

greater than that for (b). The higher failure load of frame (c) 

compared to frame (d) arises in a similar manner. These frames are 

indicated in tables (2.5) and (2.4) respectively. 

The results for the seven storey frames shown in figure (2.3) 

are of a form similar to those described above, but those for 

points (e) and (f) should be examined further. The frames are 

indicated in table (2.3). Both these cases correspond to maximum 

imposed load combined with minimum wind speed, frame (e) having 

four bays while frame (f) had five bays. In both cases, the wind 

shears per bay were very low, therefore, the minimum sections were 

identical. The sections chosen to withstand vertical loading were 

also sufficient to satisfy the limit on sway. Due to the lower 

column shear in the five bay frame, this showed a slightly higher 

value of Af • As the curves on figure (2.3) are to show the 

influence of sway deflection on a design under combined loading, 

the design curves have not been extended to cover such frames whose 

sections are uninfluenced by this criterion. 

If the bay width is 5.0 m (r = 1.33), the four storey frames 

given in figure (2.2) shows the same general behaviour as the 

larger structures. However, except for two cases, the frames with 

the wider bays showed only a small variation in Af , despite 

large variations in the ratio of V/H. This is due to the strong 

influence of vertical loading on such relatively low frames. Only 

in case (g) in figure (2.2) which was two bays wide and subjected 

to minimum vertical loading, was the wind loading sufficiently high 
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to require an increase above the minimum sections in order to 

satisfy the limit on sway. The curve showing the influence of sway 

deflection as a design criterion under combined loading is 

therefore applicable only to frames with low ratio of V/H and has 

been drawn accordingly in figure (2.2). However, it is interesting 

to note that for higher values of V/H, Af exceeds unity, showing 

that the minimum sections provide adequate strength under combined 

loading. For such cases, strength is the governing criterion in 

design. 

2.6 Design examples 

Two examples are shown to demonstrate the earlier results 

referred to in the design charts. The first example is a seven 

storey frame and the results have been used to draw the curve in 

figure (2.3). The second example is a six storey, two bay frame 

with similar loads and properties to those examined in the 

parametric studies. This is shown to illustrate the application of 
~ 

the charts given in figures (2.2)-(2.4) to other frames similar to 

the ones examined here. 

2.6.1 Seven storey two bay frame 

The frame shown in figure (2.5 (a» is subjected to the 

unfactored maximum vertical dead plus imposed floor loads given in 

table (2.1). The ba_ic wind speed was taken as 38 m/s with a force 

coefficient, Cf=1.2. The dynamic wind pressure, q, was found to be 

0.782 KN/m2 and therefore the applied characteristic wind load at 
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each floor level is given by, 

H = et • q • longitudinal spacing. storey height 

= (1.2 x 0.782) x 4.0 x 3.75 

= 14.076 KN. (2.8) 

The sums of the factored combined loads using equations (2.6) and 

(2.7) for vertical and horizontal loads respectively are shown 

alongside those of the characteristic dead plus imposed plus wind 

loads. The average ratio of V/H, calculated in advance was equal to 

46.54. With this value, figure (2.3) indicates that the frame will 

not be governed by strength under combined loading. 

The initial procedure is to calculate the minimum beam and 

column sections required to sustain the factored values applicable 

to dead plus imposed vertical load only, as given by equation 

(2.3). These minimum sections have been obtained using simple 

plastic theory with checks made against squashing and are chosen 

from the range of British universal sections, with a design 

strength of 240 N/mm2 . 

a)Roof beam 

Zpb = Mpb/fy 

= 30.6 x ( 7 • 5 )2 x 1000 
16 x 240 

448.2 
J = cm 

Propose 305 x 102 x 33 UB (Mp = 115.2 KN.m) 

w = 30 6 KN/m 
~ 

I~Pb -;;;b MP:I 
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b)External roof column 

Mpc + 3Mpb = wL2 /4 

Mpc = 30.6 x (7.5)2 (3 x 115.2) 
4 

= 84.7 KN.m 

Z pc = 353. 0 cm3 

Propose 203 x 203 x 52 UC (Mp = 136.3 KN.m) 

c)Floor beams 

Zpb = 58.8 x (7.5? x 1000 
16 x 240 

=861. 3 cm3 

Propose 406 x 140 x 46 US (Mp = 213.2 KN.m) 

d)External floor column 

2Mpc + 3Mpb = wL
2 

/4 

M pc = 1 [ 5 8 • 8 ~ (7. 5 )2 - (3 x 213.2)] 

= 93.6 KN.m 

Z pc = 390.2 cm3 

~ 

Propose 203 x 203 x 52 UC (Mp = 136.3 KN.m) 

w = 30 6 KN/ m 
~ 

Mpc r=--==Mr~1 Mpb 

w = 58.B KN/m 

Mpb 
Mpb 

Mpb 

w 58.8 KN/m 

The columns are taken to be continuous over at least two storeys to 

reduce fabrication costs. Checks are therefore required for the 

lower length only to resist squashing in the internal columns and 

combined bending and axial load in the external columns. As 

patterned loading has not been considered, it was decided that in 

the top two storey the internal columns should not have a section 

less than that of the external columns. 
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External column 

storey axial load section 
(RN. ) 

6 335.4 203 x 203 x 52 UC 

4 776.6 203 x 203 x 60 UC 

1 1438.3 254 x 254 x 73 UC 

Internal column 

storey axial load section 
(RN.) 

6 670.7 203 x 203 x 52 UC 

4 1553.0 203 x 203 x 60 UC 

1 2876.6 254 x 254 x 107 UC 

The initial minimum sections are shown in figure (2.5 (b». The 

method of Anderson and Islam(59) is then employed to increase the 

preliminary sections as necessary in order to limit sway at working 

load. It is recalled that the method of Anderson and Islam provides 

a minimum cost design. Strictly, this requires iteration for 

calculation of the cost factor, 'k'. It is-assumed that all cost 

factors take the value of unity. 

As column sections are spliced at every two storeys, it is 

only necessary to consider three different sub-assemblages. These 

are for the top(n=O), n=2 and n=4 sub-assemblages as indicated in 

figure (2.5 (a». Calculation was carried out using the following 

data, 

s = H/m = 14.076/2 • 

= 7.038 KN. 
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All k' s = 1. 0 • 

r = Bay width / storey height = 2.0 • 

Maximum deflection = 1/300th of each storey height • 

... l!. = 12.5 mm. 

Young's modulus of elasticity, E = 206 KN/mm2 • 

where H = characteristic wind load at floor level, 

m = number of bays, 
• 

k = cost factors, 

n = integer shown in figure (2.5 (a». 

For the intermediate sub-assemblage, the theoretical inertias are 

given by, 

Internal column 

I3 = 600.6 [2n + 3 + 2 J (n+1.5) (4n+6) (2.9) 

It is noted that a typographical error exist in one of the 

equations given by Anderson and Islam(59)~for an intermediate 

storey of a regular frame. Equation (20) in Reference (59) should 

read, 

I3 = s. h
3 

[2n + 3 + r 
24E.l!. 

2m(n+1.5).[k, (n+1.0) + k2(n+2)] 1 
k3 (m-I) + k~ 

Equation (2.9) given above is correct. 

Lower beam 

I2 = 2402.2 (n+2) I3 
I3 - [1201.1 (n+l.5) 

(2.10) 
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Upper beam 

I, = (n+1) I2 /(n+2) (2.11) 

For the bottom sub-assemblage, the expressions for the required 

inertias, with all k's = 1, are, 

Internal column 

I3 = 1201.1 [n + 1.5 + 1.2 J (n+1.5) (3n+5) 

Lower beam 

I2 = [( 15614 • 5 n) + 30628. 4 - I3] 
6 [ I3 - 1201. 1 (n + 1. 5 ) ] 

Upper beam 

I, = [(n+1) (n+2)] 

(2.12) 

(2.13) 

(2.l4) 

It can be shown that strength under vertical loading only usually 

controls the design for the top sub-assemblage and the design for 

this storey is therefore not required. 

Design of the bottom two storeys is governed by the storey 

next to the bottom to avoid reverse column taper which would 

otherwise result from the stiffness of a fixed base. Separate 

expressions for pinned bases are also given in reference (59). 

Ideally'- the external column inertia should be taken as I 3/2, 

but owing to the discontinuous range of available sections, the 

selected member is unlikely to observe this. criterion. The same 

kind of difficulty also arises when selecting sections for other 

members. This apparent weakness in the method is recognised but 
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should not decrease greatly the specified sway limit. This is 

because increased column stiffness can be offset to some extent by 

reduced beam stiffness and vice-versa. 

For example, the value of I3 used to calculate the beam 

inertias I, and 12 can be based on the column section selected, 

rather than on the theoretically required value for 13 • The 

reverse procedure, in which a beam section is selected and then 

used as the basis of the column design, can be seen by examining 

the detailed design of the lower (n=2 and n=4) sub-assemblages. 

4 In the fourth storey (n=2), equation (2.9) gives I) =12613 cm 

This is greater than the minimum section (I=6088 cm4 ). Initially, 

a 254 x 254 x 89Ue (I=14307 cm 4 is adopted. Using equation 

(2.10) for the lower beam gives I2 =13607 cm 4 which is less than 

the inertia of the minimum beam section provided (I~15647 cm 4 ). 

The minimum beam section (I=15647 cm4 ) is retained. Using equation 

(2.10), a reduced column section can be obtained by solving for I 3 • 

With I2 =15647 cm4 4 
, equation (2.10) gives 13 =10894 cm • 

Therefore, a 254 x 254 x 73Ue (1=11360 cm 4 ) is adopted for the 

internal column. 

Using equation (2.12) for the bottom sub-assemblage (n=4), the 

internal column, 13 =19329 cm 4 , which exceeds the minimum section 

inertia (1=17510 cm 4 
). Adopting a 254 x 254 x 132Ue (1=22416 cm 4 

results in the lower beam, I2 =16700 cm 4 using equation (2.13). 

4 
This value exceed the minimum of 15647 cm • Instead of altering 

two different sections, it was decided to increase the beam section 

only from a 406 x 140 x 46UB (I=15647 cm 4 
) to a 457 x 152 x 52UB 
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(I=21345 cm 4 
). Using the effective stiffness of I2 =21345 cm 4 and 

solving equation (2.13) gives I) =16449 cm 4 ,which is less than 

the value (I=17510 cm 4 
) provided by the initial minimum section. 

This column section is therefore retained. With I) =17510 cm4 and 

I 2=21345 cm 4 , the required stiffness for the upper beam is found 

to be I1=20219 cm 4 , using equation (2.14). The same section as the 

lower beam (I=21345 cm 4 ) was adopted. 

The final sections are shown in figure (2.5 (c». It is 

noticed that some of the minimum sections have been retained. The 

minimum sections were sufficient to provide the required stiffness 

against sway deflection. This is not surprising, because with such 

relatively heavy vertical load, strength under vertical loading 

only would be the major influence in design but is not necessarily 

the most critical. This is shown by the stiffer internal columns in 

the fourth and fifth storeys and the beam sections for the lower 

two floors. The sum of the horizontal shears at these levels is 

significant in and is beginning to affect the choice of sections. 

Finally, to confirm figure (2.3), the frame is now subject to a 

non-linear elasto-plastic analysis(41). The failure load was found 

to be 1.01. 

2.6.2 Six storey two bay frame 

In order to demonstrate the application of the proposed design 

charts to other frames, a six storey two bay structure has been 

designed and shown in figure (2.6 (a». The frame is spaced 

longitudinally at 4.50 m and the average ratio of V/H is 31.5. The 
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following values have been adopted for this design, 

Gk (roof) = 3.75 KN/m2. 

Ok (roof) = 1.50 KN/m2 . 

Gk (floor) = 4.80 KN/m 2 . 

Ok (floor) = 3.50 KN/m 2 . 

Wk = 1.005 KN/m2. 

All k's = 1.0 . 
r = 6000/375 = 1.6 • 

Maximum deflection = 1/300th of each storey height • 

. '. 4 = 12.5 mm. 

Young's modulus of elasticity, E= 205 KN/mm2 • 

Steel design strength = 240 N/mm2 • 

It should be noted that as the frame is six storeys high with a 

value of the ratio of bay width to storey height that is different 

from the two values plotted in figure (2.2) to (2.4), strictly none 

of these diagrams apply. However, they can be used as a guide by 

allowing interpolation. 

Figures (2.2) and (2.3) suggests that ultimate strength will 

not be the governing criterion in the choice of sections under 

combined loading for this frame. The reason is due to the 

relatively high horizontal loads in comparison to the 

simultaneously applied vertical loads. Proceeding in a similar 

manner as the first example, the final design was obtained and 

shown in figure (2.6 (b». It should be noted though that after 

design using the method of Anderson and Islam(59), the sections 

were adjusted to achieve greater economy by using the analysis 
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method of Wood and Roberts(60), with the cladding stiffness 

parameter, s, taken as zero. 

The latter method can be usefully adopted in this way because 

it does not rely on fixed relationships, such as equations (2.9) to 

(2.11), between the inertias of beams and columns. Sway 

deflections, predicted by the method of Wood and Roberts, at the 

working load are shown alongside figure (2.6 (b». Comparison of 

sway deflection with computer analysis showed good agreement and 

the design was also found to possess adequate strength under 

combined loading. The failure load obtained by computer analysis 

was 1.09. This confirms the initial prediction from the proposed 

design chart that ultimate strength under combined loading would 

not be critical for design. 

2.7 Verification of the Merchant-Rankine formula 

The failure load from equations (2.1) and (2.2) are given in 

tables (2.2) to (2.5) under the heading Amr and Amrw 

respectively. The ratio of ACIAp varied from 3.2 to 16.2, thereby 

covering the range 4 ~ AclAp ~ 10 proposed(50,54,55) for use of 

the Merchant-Rankine formula. In all cases, Amr was below the 

failure load obtained by second-order elasto-plastic computer 

analysis. 

The tables also indicate the rigid-plastic collapse 

mechanisms, denoted by, 
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B Simple beam-type collapse mechanism. 

S Column sway mechanism. 

C Combined mechanism. 

It has been stated(54,55) that the Merchant-Rankine formula should 

be used only when the rigid-plastic collapse mode is mechanism C, 

in order to prevent the deliberate choice of a strong-beam, 

weak-column design with its attendant stability problems(50). A 

combined mechanism cannot, however, be guaranteed when analysing a 

trial design and the requirements for such a mechanism will 

restrict the application of the Merchant-Rankine approach. The 

results shown in tables (2.2) to (2.5) indicate that Amr provides 

a safe result, irrespective of the shape of the rigid-plastic 

collapse mechanism. This represent a significant departure from the 

theoretical justification proposed by Horne(25). It is the opinion 

that the limitations on sway of each storey, already included in 

Design Recommendations(54,55), together with the need to achieve 

. economy in steel weight and structure height, will be sufficient to 

cause engineers to avoid strong-beam, weak-column designs. 

For several frames, equation (2.1) provides a result that is 

not unduly conservative. However, the Merchant-Rankine failure load 

can be as low as 86% of the accurate computer result. From the 

elasto-plastic computer analyses, one can tabulate the load 

factor, At , at which the first plastic hinge formed. Tables (2.2) 

to (2.5) show that for a number of cases in which column sway 

formed the rigid-plastic collapse mechanism, Amr is so 

conservative that it lies below Al • This occurr~d particularly in 

the four storey frames and frames with the maximum number of bays 
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where strength under vertical load only controlled the design. It 

was the possibility of unduly conservative results that led 

Wood(50) to propose the modified formula given by equation (2.2). 

The values of Amrw tabulated in tables (2.2) to (2.5) show 

that equation (2.2) provides good agreement with the accurate 

computer result. It tends to overestimate the accurate failure load 

when collapse is by a local beam-type plastic hinge mechanism, but 

by no more than 7%. It must also be noted that when the collapse 

mode took this form, the failure load, Af ' was always greater 

than the required value of 1.0. This resulted from the higher 

partial safety factors specified for vertical dead plus imposed 

load only which were used in the initial design of individual beams 

and columns. As this loading case provided a lower bound on section 

size, an error in Amrw will not lead the designer to reduce such 

sections in an unsafe manner. 

The same error of about 7% was shown by a ten storey, two bay 

frame in table (2.4), for which the rigid~plastic mechanism was 

bottom storey column sway. In all other cases, the agreement 

obtained from equation (2.2) and the accurate computer analyses was 

very good, the maximum error being only 4%. 

2.8 Slender-bay frames and irregular-bay frames 

As described in Chapter (1), early studies by Salem(45) and 

Low(48) showed that equation (2.1) was particularly conservative 

when side loads were small compared with the simultaneous applied 

vertical loads. On the other hand, Ariaratnam(49) demonstrated that 
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the formula can become unsafe when the side load is substantially 

higher than those normally encountered in practice. 

More recently, Adam(46) found that the Merchant-Rankine load 

can overestimate the accurate failure load when the side loads are 

small compared with the vertical loads. The frame examined by 

Adam(46) was a fixed base, six storey, single bay frame shown in 

figure (2.7). It was composed of European steel sections and 

designed using an overall load factor rather than the partial 

safety factors of limit state design. 

It will be noticed that the bay width is only half the height 

of one storey. Despite the extremely unusual nature of the frame, 

Adam used it to argue that the Merchant-Rankine formula is 

unreliable and, by implication, that it should not be included in 

Design Recommendations. It should be noted that Adam took care to 

ensure that rigid-plastic collapse occurred by a combined mechanism 

and that the ratio of AC lAp were between the limits of 4 and 10 

required for use of the formula. No plastic hinges were present in 

the frame at working load and at this load level the overall sway 

deflection did not exceed l/300th of the total height. 

To investigate this matter further, the frame shown in figure 

(2.7) was redesigned using British steel sections in grade 43 

steel. The reason for selecting such sections was the absence of 

the coefficients required for calculation of the reduced plastic 

moment capacity in European section tables. These coefficients are 

necessary for the evaluation of collapse loads by the second-order 

elasto-plastic analysis program(4l). Young's modulus of elasticity 
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was taken as 206 KN/mm2 and the design strength was 240 N/mm2 • 

At unit load factor, the linear elastic sway deflection was 

not to exceed l/300th of each storey height(55). To compare 

directly with the results obtained by Adam and to obtain a 

satisfactory design, the following design criteria were adopted, 

a)Under combined dead plus live plus wind load, the frame 

should not collapse until the load factor exceeded 1.40. 

blUnder vertical dead plus live load only, collapse 

should not occur until the load factor exceeded 1.75. 

In order to achieve this, the following restrictions were 

imposed(42), 

c)Plastic hinges should not form in beams until the load 

factor reached 1.00. 

d)Under combined loading, plastic hinges should not form 

in columns until the load factor reached 1.~0. 

e)Under vertical loading, plastic hinges should not form 

in columns until the load factor exceeded 1.75. 

The preceding criteria were satisfied by successive analysis and 

redesign(42) using the computer. The final sections are shown in 

figure (2.8 (a» along with the resulting sway deflections at unit 

load factor, given by linear elastic computer analysis under 

combined loading. For comparison, the values in square brackets 

were those obtained when the reduction in frame stiffness due to 

compressive axial forces were considered in a non-linear elastic 
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analysis(4l). It is interesting to note that the difference between 

the linear and non-linear deflections is significant, even at 

working load. In fact, some of the non-linear values exceed the 

limit of l/300th of storey height. However, the overall non-linear 

elastic deflection is less than l/300th of the total height. 

The results of the non-linear elasto-plastic computer analysis 

of the final design are shown in figure (2.8 (b». The 

rigid-plastic behaviour with reduction in the plastic moment 

capacity due to axial forces (but neglecting the effect of such 

forces on the overall stiffness of the frame) is shown in figure 

(2.8 (c». 

In order to determine the Merchant-Rankine failure load, the 

lowest elastic critical load factor was obtained using non-linear 

elastic analysis under the loading shown in figure (2.8 (d». The 

frame was excited at the roof level by a horizontal force of A KN, 

and a modified Southwell plot used to calculate AC. It was found 

that Amr and Amrw was respectively 8\ and'l8\ higher than the 

accurate failure load given by second-order elasto-plastic 

analysis. These values are similar to those obtained by Adam. 

The relative dimensions and loadings chosen by Adam, however, 

are likely to be approached only in the design of sheltered racking 

systems for use in large storage warehouses. Indeed, bracing would 

usually be provided across the single-bay depth of the structure. 

To guard against the possibility of a designer attempting to use 

the Merchant-Rankine formula on such unusual structures, it is 

proposed that the formula be used only when the bay width is not 
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less than the maximum height of one storey • 

.-l 
To examine this proposal, the bay width for the structure 

shown in figure (2.7) was increased to 5.00 m, to equal the storey 

height. The frame was then designed to satisfy the sway deflection 

limit of l/300th of each storey and also to meet the requirements 

(a) to (e) described above. The frame was then subjected to the 

computer analysis procedures in exactly the same manner as for 

figure (2.8). The results of the final design and values of sway 

deflection at unit load factor utilising linear elastic analysis 

are shown in figure (2.9 (a». The computer analyses for Af ' Ap 

and AC are indicated in figures (2.9 (b», (2.9 (c» and (2.9 (d» 

respectively. It was found that Amr now underestimated At by 

5% while Amrw overest imated At by 3%. 

For multi-bay frames, it is proposed that the formula be 

allowed, providing the average bay width is not less than the 

maximum value of any storey height. A frame that just satisfies 

this requirement is shown in figure (2.10~: Once again, it was 

specified that the sway at each storey due to the unfactored 

horizontal loads should not exceed 1/300th of each storey height 

and the conditions listed from (a) to (e) be observed. However, a 

combined mechanism for rigid-plastic collapse was not insisted on, 

and the design selected exhibited a sway mode in the bottom storey. 

The results of their respective analyses are shown in figure 

(2.10), the ratio of Ac/Ap being 4.18. The sway deflections at 

working load were found to be well within the limit specified. The 

first column hinge developed at a load factor of Acol=1.44. 

Comparisons with accurate elasto-plastic analysis showed that Amr 
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underestimated Af by 5\ and Amrw overestimated Af by 4\. 

2.9 Conclusion 

Studies carried out on practical multi-storey, unbraced frames 

have enabled guidance to be given on the relative influences of 

sway deflection and ultimate strength as design criteria under 

combined loading. These frames have been subjected to realistic 

values of vertical and horizontal loads that are normally 

encountered in practice. 

The procedure followed in the studies has been illustrated by 

the design of a seven storey frame. The design charts which 

resulted from the study have also been applied to a six storey 

frame. Interpolation was necessary, but the example showed that the 

correct guidance had been given to the designer. 

The studies have also shown that the Merchant-Rankine formula, 

--given by equation (2.1), provides a safe estimate of the non-linear 

elasto-plastic failure load, At ' for frames of realistic 

dimensions which satisfy a serviceability limit on sway of l/300th 

of storey height, and are designed against premature collapse by 

simple beam-type plastic mechanisms. The modified formula given by 

equation (2.2) generally provides better agreement, but in some 

cases, the predicted load exceeds Af • However, the excess load 

capacity is relatively small with a maximum error not greater than 

7\. 

The computer program(4l) used to calculate the failure load 
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ignores the beneficial effects of strain hardening and stray 

composite action. The accuracy of the formula is not significantly 

affected by the form of the rigid-plastic collapse mechanism, and 

the present insistence on a combined mode of collapse is 

restrictive and difficult to observe. It is proposed that this 

requirement be removed from Design Recommendations, providing it is 

stated that each storey should satisfy a serviceability limit on 

sway of 1/300th of storey height. Furthermore, the studies 

presented are limited to structures not greater than ten storeys as 

larger buildings are likely to be braced. 

It has been confirmed that even the original Merchant-Rankine 

formula can overestimate the accurate failure load for very tall 

slender frames. Such unusual frames, in which the bay width is less 

than the height of one storey and the wind loading is exceptionally 

low in relation to the simultaneously applied vertical load, would 

be braced and usually erected in large sheltered or enclosed 

storage warehouses. In addition, the lower columns are normally 

reinforced or stiffened to prevent accidental impact by mechanical 

lifting devices. However, to guard against the possible use of the 

Merchant-Rankine formula on such exceptionally slender frames, it 

is proposed that the formula should not be used when the bay width 

is less than the greatest height of one storey. 

For multi-bay frames with unequal bays, the average bay width 

should be compared with the storey height. Two examples that 

satisfy this requirement showed that the Merchant-Rankine approach 

continues to provide close estimates of the failure load obtained 

by accurate computer analyses. 
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Loading Haxirnurn Minimum 

Dead on roof 3.75 kN/rn 
2 

3.75 kN/m 
2 

Super on roof 1.50 1.50 

Dead on floor 4.79 4.79 

Super on floor 5.00 2.50 

Basic wind speed 50 m/sec 38 m/sec 

Table 2.1 Loading Values 



Mino vertical : max. wind Max. vertical : min. wind 

1---' 

1.1 Af 
A 

A A Me ch 1.1 Af 
A A A Mech 

4 storey frames c c 
A mr mrw A mr mrw 
p p 

~ 2 bay 0.87 1.07 9.15 1.03 1.14 B 0.87 1.04 5.75 0.95 1.04 C 
0 
0 (g) 

'" 3 bay 0.93 1.04 5.25 0.95 1.04 S " 
..c:: ., 

4 bay 0.96 4.93 0.95 1.04 "" 1.05 S 
.~ 

~ 

>. 5 bay 0.88 1.04 5.34 0.93 1.01 C 1.00 1.05 4.78 0.95 1.03 S 
tU 

r::!:l 

~ 
2 bay 1.00 1.30 11. 38 1.23 1.34 B 0.94 1.20 6.56 1.07 1.17 B 

0 3- bay 0.90 1.08 5.37 1.01 1.10 C 
0 
0 

'" 4 bay \ 0.86 0.92 3.34 0.81 0.88 S 
..c:: ., 
"" 5 bay 0.91 1.13 5.34 1.07 1.16 0.89 0.96 3.19 0.83 0.89 S .~ C 
~ 

>. 
!1l 
~ 

_. 

Table 2.2 Four Storey Fran~s 



I }nn u vertical : max. wind Max. vertical : min. wind 
I -, 

7 storey frames \ >"f 
A 

>.. A Me ch >"1 >"f 
A 

>.. >.. Mech c c 
>.. 

mr mrw A 
r,lr mrw 

p p 

~ 
0 2 bay 0.87 1.10 12.82 1.07 1.15 B 0.82 1.01 5.66 0.94 1.02 C 
0 
lr\ 

" 3 bay 0.78 0.89 4.74 0.82 0.89 C 

.!! 
,j.J 

"0 4 bay 0.87 0.97 4.48 0.89 0.96 S 
.~ 

( e?) 

:J 

f;' 5 bay 0.81 0.95 5.06 0.88 0.96 C 0.92 0.99 4.36 0.89 0.96 S ( f ) 

~ 

~ 
2 bay 1.09 1.39 16.59 1.34 1. 42 n 0.88 1.15 7.98 1.09 1.20 B 

0 3 bay 0.91 1.04 5.30 0.98 1.07 S 
0 
0 
lr\ ~ 

4 bay 
\ 0.83 0.99 4.11 0.90 0.98 S 

.!! 
,j.J 

"0 
.~ 5 bay 1.04 1. 26 5.78 1.14 1.24 B 0.88 1.03 3.98 0.92 1.00 S 
:J 

f;' 
~ 

Tab le 2.3 Seven Storey Frames 



Mino vertical : max. wind Max. vertical : min. wind 

A A Me ch Al Af 
A 

A A Mech 10 storey frames Al Af c A c 
A rnr rnrw -r- mr mrw 

I p P I 

~ 
0 2 bay 0.88 1.11 15.33 1.08 1.15 B 0.84 1.01 6.02 0.96 1.05 C 
0 
lI"'\ 
r--

3 bay 0.81 0.96 4.67 0.88 0.96 C I 

.c ..... 
-0 
-..I 
~ 4 bay 0.91 1.04 6.57 0.97 1.06 C 0.78 0.91 3.87 0.82 0.89 S 
>-
C1I 

!:Cl 

~ 2 bay 1.15 1.40 14.90 1. 33 1.42 B 0.93 1.10 8.07 1.07 1.18 S 

8 
0 3 bay 0.93 1.02 6.19 0.95 1. ot. S 
lI"'\ ~ 

(d) 
\ .c ..... 

-0 4 bay 1.03 1. 24 8.23 1.19 1.31 B 0.90 1.02 4.56 0.92 1.00 S 
-..I 
~ 

~ 
~ 

Table 2.4 Ten Storey Frau'es 



). 

).1 }.f 
c 

). }. Mech 
Frame Bay Vert . Wind load ). mr mrw 

width load p 

(mm) 

4 storey 2 bay 7500 Max. Intermediate 0.86 1.03 5.82 0.95 1.03 C 

4 storey 3 bay 7500 Max. Max. 0.81 0.94 5.72 0.89 0.97 S 

4 storey 5 bay 7500 Max. Max. 0.96 1.03 4.88 0.93 1.02 S 

7 storey 2 bay 7500 Max. Intermediate 0.79 1.00 6.15 0.94 1.03 C 

7 storey 5 bay 7500 Max. Max. 0.79 0.89 4.63 0.83 0.91 S 

10 storey 2 bay 7500 Max. Intermediate 0.87 1.05 8.07 1.02 1.12 B ( b) 

10 storey 2 bay 7500 Max. Intermediate 0.89 1.08 7.64 1.02 1.12 B (a) 

10 storey 3 bay 7500 Max. Hax. 0.89 1.04 6.41 0.99 1.08 B 
1 

10 storey 2 bay 5000 Max. Intermediate 0.94 1.06 5.78 0.99 1.08 S 
(e) 

Table 2.5 Various Frames 
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CHAPTER 3 

SEMI-EMPIRICAL METHOD OF DESIGN 

3.1 Introduction 

The parametric study presented in Chapter (2) confirmed the 

conservative nature of the Merchant-Rankine formula when realistic 

combinations of horizontal and vertical load were applied. In some 

cases, though, the formula is so conservative that the 

Merchant-Rankine failure load could be below the load level at 

which the first plastic hinge forms in a computer analysis. 

Wood(50) proposed a modified relationship to make some 

allowance for strain-hardening and stray composite action. This 

form of the equation will also offset the tendency to underestimate 

the load level at failure. It has been stated in Design 

Recommendations(54,55) that the modified formula should be used 

only when rigid-plastic collapse is by a combined mechanism, and 

the parametric studies given in Chapter (2) showed that failure 

using this formula varied between 97\ and 104\ of computer result 

when this restriction was observed. 

In practice, the designer will frequently wish to analyse a 

trial set of sections which already satisfy criteria such as 

adequate stiffness at working load, and a combined mechanism cannot 

therefore be guaranteed. When the rigid-plastic collapse mode was 

unrestricted, the study showed that the modified failure load could 
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now exceed the computer result by as much as 7\. This overestimate 

was accepted because the modified form strictly applies only to 

clad buildings, whilst the computer analyses were on bare frames 

and strain-hardening was neglected. 

It is recognised, though, that some engineers will prefer not 

to rely on strain-hardening and cladding to ensure adequate 

strength, and also that certain kinds of structure have minimal 

composite action. Therefore, the need arises for the development of 

an empirical method for estimating the failure load. 

This Chapter attempts to seek an alternative expression for 

the failure load which will retain the simplicity of the 

Merchant-Rankine approach, but will provide closer agreement with 

computer analyses on bare frames, irrespective of the shape of the 

rigid-plastic collapse mechanism. Whereas Wood(50) used a single 

factor of 0.9 to allow for the beneficial effects of 

strain-hardening and composite action (as well as the conservative 

,r-' 

tendency of the original Merchant-Rankine formula), such effects 

may best be included as optional items to enhance the basic 

strength of the frame at the designer's discretion. 

3.2 Deteriorated critical loads of frames 

Wood(50) demonstrated that the tangential rotational 

stiffness, of beams bending in symmetrical double curvature, 

reduces from 3kb to' O. 75kb when a pin is inserted at one end of the 

beam (kb being defined as the nominal beam stiffness Ib/Lb). A pin 

inserted at mid-span, coinciding with a point of contraflexure in 
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the original buckling mode, does not affect the rotational 

stiffness of the same beam. When a second pin is inserted, the 

rotational stiffness becomes zero. 

An analogy can be made with a full plastic hinge rotating in 

the same direction at constant moment. The contribution of a beam 

with two such hinges towards the overall frame stiffness is 

similarly zero. When such beams are present at consecutive floors 

of a multi-storey frame, the effect on stiffness can be visualized; 

the columns are converted to free-standing 'poles' of length 

greater than the original column length. 

Frame instability is not confined to any individual member but 

concerns the overall behaviour of a frame. Wood(26) proposed the 

term 'deteriorated' critical load, Adet which controls and defines 

frame instability, and is the critical load at which the overall 

stiffness of the remaining elastic parts of the structure becomes 

zero. It follows that the 'deteriorated' critical load of a 

structure with a mechanism of hinges is ~ero. However, it was 

recognised that because of instability effects, it may not be 

necessary for there to be a complete mechanism of hinges in the 

frame for the stiffness to be reduced to zero. 

As an example, consider the well-designed four storey 

rigid-jointed single bay frame of Wood(26) shown in figure (3.1). 

The frame is subjected to combined horizontal and vertical loading. 

The sway deflections at working load ranged between h/503 to 

h/1134, well within the usual limits for a bare frame. 

'Deteriorated' critical loads were calculated by Wood(26) for 
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various possible combinations of plastic hinge locations as shown 

in figures (3.1 (a» to (3.1 (f». They have been recalculated by 

the present author during a study of the deterioration of frame 

stiffness. The minimum design load factor for rigid-plastic 

collapse of the frame was also given by Wood as 2.15. It is noted 

that the loads used in this example are based on an overall load 

factor. Therefore, a load factor of unity corresponds to the 

working load. 

To calculate the 'deteriorated' critical load, the plastic 

hinges were replaced by inserting idealised pins at the 

corresponding positions in the frame. In each case, the system of 

loads acting on the frame was identical to that shown by figure 

(3.1 (a». The frame was excited at the roof level by a small 

disturbing force. A non-linear elastic computer program was used 

under increasing load to obtain the load/displacement curves. At a 

certain multiple of the load factor, loss of equilibrium occurs 

when the external disturbing force, however small, will give rise 

to theoretically infinite displacement. The stiffness of the frame 

has been reduced to zero and the 'deteriorated' critical 

load, ~det , has therefore been found. 

The original elastic critical load was found to be 12.9. This 

value indicates that instability effects at the working load were 

insignificant. When a pin is inserted at mid-span of the third 

floor beam, the 'deteriorated' critical load, ~det' remains 

unchanged from the original critical load. This validates the 

comment made above that a pin occurring at a point of contraflexure 

will not affect the tangential rotational stiffness of a member. 
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The elastic buckling mode for unbraced frames inevitably involves 

sidesway. The corresponding load/displacement curve(a) is shown 

which tends to infinity at the elastic critical load. A number of 

curves for different combinations of pin patterns can therefore be 

obtained. 

For example, the pattern of pins shown in figure (3.1 (e» 

causes Adet to drop to approximately one-fifth of the original 

critical load. This is not surprising because the three lower 

column lengths, with no intermediate restraints from beams, have 

been converted to a single length of three times the storey height. 

Finally, the last pattern of pins gave a value of the 

'deteriorated' critical load of 2.0. The corresponding 

load/displacement curve(f) is plotted as shown. Other combinations 

of pin patterns lead to values of Adet that may be higher or 

lower than those shown. From the pattern of pins shown in figure 

(3.1 (f», it becomes clear that a collapse mechanism is unlikely 

to occur, thus preventing the rigid-plastic collapse design load of 

2.15 being reached. 

To verify the concept of 'deterioration' of frame stiffness, a 

non-linear elasto-plastic analysis was carried out on the frame of 

Wood. The complete load/displacement behaviour is shown in figure 

(3.2). Each point on the curve corresponds to the order of plastic 

hinge formation shown by the frame in the figure. The sequence is 

shown ringed in the upper diagram and the load levels at which 

these plastic hinges formed are shown on the curve. 

Failure occurred at a load level of 1.91 corresponding to the 
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pattern of pins shown in figure (3.1 (f». At this stage, the 

residual stiffness is represented by its 'deteriorated' critical 

load of 2.0, which is very close to the current value of the rising 

load factor, A , on the applied loads. Above a load level of 1.91, 

the non-linear elasto-plastic analysis program was unable to locate 

any further hinges whilst still maintaining equilibrium, and 

collapse was assumed to have been reached. 

At this load level of 1.91, several partially-plastic zones 

were observed in the computer analysis. The location of these zones 

correspond to those indicated by Wood(26). Ratios of the 

appropriate moments at these zones are shown as follows, 

Location M/M(yield) M/Mp 

a)Roof beam - mid span 1.09 0.95 

b )Third floor beam - leeward end 1.04 0.91 

c)Second floor leeward column 

i)Top end 1.22 0.89 

r' 

ii)Lower end 1.17 0.86 

where M = bending moment, 

M(yield) = yield moment = (l-n),Ze.fy 

Mp = reduced plastic moment of member, 

n = ratio of axial force to squash load, 

. Ze = Elastic modulus, 

fy = yield stress. 

It is noted that the values for Mp/M(yield) for the column are 

unusually high. This is because both Mp and M(yield) have been 
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reduced due to axial load. Assuming these zones in turn as 

idealised pins, in addition to those shown in figure (3.1 (f», and 

following the procedure described above, the 'deteriorated' 

critical loads were determined. It was found that all the values of Adet 

were less than 1.60. This confirms the above elasto-plastic 

computer analysis and the non attainment of the rigid-plastic 

collapse mechanism discussed earlier. 

The foregoing study has been adopted as a basis for obtaining 

a deterioration function to predict the failure load of 

elastic-plastic plane frames. A close approximation of the failure 

load can be obtained from Adet if the positions of plastic 

hinges, such as those indicated in figure (3.2) by elasto-plastic 

analysis, are reproduced. The opportunity to examine such a 

proposal is given by the results presented in Chapter (2). The 

previous Chapter provides the necessary infQrmation on the position 

and load factor at which each plastic hinge forms in a non-linear 

elasto-plastic analysis. Accurate values of the rigid-plastic 

collapse load are also available. 

In order to calculate the 'deteriorated' critical load 

corresponding to the sequence of plastic hinge formation, the 

existing non-linear elastic computer program(4l) has been modified. 

In its unmodified form, the computer program was used in Chapter 

(2) to calculat~ the elastic critical load only. This becomes 

time-consuming because several non-linear analyses are required to 

determine an initial value close to the critical load. As there 

were many frames to be examined, a rapid procedure was desirable to 

estimate close bounds to the elastic critical load and successive 
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'deteriorated' critical loads. 

The procedure adopted takes the form given by the flow-chart 

shown in figure (3.3). Majid(23) suggested an approximate method 

for evaluating AC by considering the load-displacement behaviour 

of the linear and non-linear response of a fully-rigid frame. In 

the following derivation, it can be shown that a close 

approximation of the elastic critical load and successive 

'deteriorated' critical loads can be obtained by one linear and 

non-linear analysis of the frame. 

The well-known displacement amplification factor is given by, 

fonon-linear = folinear 
1 - A / AC 

Let the load factor, A = 1.0. Therefore, 

t:.. non-l inear = t:..linear 
1 - 1/ AC 

t:..linear = 1 - 1 
t:.. non-linear AC 

_1_ = 1 -
AC 

t:..linear 
t:..non-linear 

Rearranging gives the elastic critical load as, 

6non-linear 
t:..non-linear - t:..linear 

(3.1 ) 

(3.2) 
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It is proposed to adopt equation (3.2) to estimate an initial value 

of Ac. Equation (3.2) can similarly be used to estimate close 

bounds of Adet ' s imply by replacing AC by Adet in equat ion 

(3.1), and proceeding in the manner described above. 

It follows that there are as many critical loads as the number 

of storeys in a frame because each joint displaces relatively in a 

storey. In all examples, the frames were excited by a single 

hor izontal force at roof level. The value of Ac or Adet was taken 

as the lowest value of all the individual critical loads for each 

storey and the frame reanalysed to the required degree of accuracy 

as indicated by the flow-chart in figure (3.3). It is noted that 

the critical loads were taken as the value characterised by large 

deflections in Chapter (2). This criterion has been adopted, in 

addition to calculating the value of the determinant at the 

corresponding load level in the program. This provide an additional 

check on the lowest critical load in case it is missed. For 

convenience, figure (3.3) is shown for the latter criterion only. 

As an example on the use of equation (3.2), consider Wood's 

four storey frame shown in figure (3.1). The 'deteriorated' 

critical loads for each storey were calculated at working load from 

the relative linear and non-linear sway displacements. In all 

cases, the relative linear and non-linear elastic displacements 

were taken at the windward joint at each floor level. The values 

of Adet for each storey are shown in figure (3.4) for a range of 

possible pin combinations. The non-linear elastic computer program 

was used in each case with the loading given in figure (3.1 (a». 

The lowest value of Adet is a good estimate of the accurate 
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result. The accurate results were obtained iteratively using the 

proposed computer program. These values were calculated to an 

accuracy of one decimal place. For comparison, Wood's results are 

also shown. It can be seen that the values of Adet calculated 

from the deflections at unit load factor provide good bounds to the 

accurate results. 

3.3 Deterioration of stiffness 

As real pins are inserted in a frame at discrete positions 

corresponding to the sequence of plastic hinge formation in an 

accurate elasto-plastic analysis, the deterioration of stiffness 

can be expressed non-dimensionally as an interaction between 

elastic instability and plasticity as shown by the axes in figure 

(3.5). Failure is taken to occur when the reducing value of Adet 

equals the rising load, A. 

To illustrate the interaction of th~~loss of stiffness under 

increasing plasticity, two typical results are shown in figure 

(3.5). The order and load level at which plastic hinges formed are 

indicated. Values of 'deteriorated' critical loads are shown 

alongside corresponding to the hinge patterns. The four storey 

frame of Wood(26) shown in figure (3.1) is also included in the 

plot. The vertical axis of Adet and Ac were obtained by the 

computer program described earlier while the non-dimensional 

abscissa of A and Ap were obtained by the non-linear 

elasto-plastic analysis program. The 'deteriorated' critical load, Adet 

only changes when a new plastic hinge forms but these points have 

been joined by a continuous line to represent a gradual reduction 
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in frame stiffness. It should be noted though that cases can arise 

in which Acl~t remains constant. This is shown by the frame of 

Wood. The first plastic hinge formed at mid-span, and as explained 

earlier this does not cause a reduction in the elastic critical 

load. 

It can be seen from figures (3.2) and (3.5) that the three 

frames failed before the rising load reached the rigid-plastic 

collapse load. An expression for the failure load has been obtained 

by seeking a smooth curve to fit these results. It is proposed that 

the following expression be adopted, 

(3.3) 

When this is plotted for the four storey frame given at the top of 

figure (3.5), the bold line shown in the diagram is obtained. It 

can be seen that this is a reasonable representation of the 

deterioration of stiffness, particularly after the first two hinges 

.-/ 

have formed. As collapse occurs when the rising load factor, A 

equals the 'deteriorated' critical load, Adet , the failure load 

is found by solving the quadratic for A , 

A 

AP 
(3.4) 

where A so calculated is the failure load and AC and Ap are the 

lowest elastic critical load and rigid-plastic collapse load 

respectively. 

The significant difference between the Merchant-Rankine approach 
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and the proposed expression is that the curve is able to adjust its 

position to any ratio of Ac/Ap, as shown in figure (3.6). Thus, 

each frame has its own unique failure curve which is related to its 

ratio of Ac/Ap. A high value of Ac/Ap implies a stiff design, and 

the proposed expression permits the curve to move to the right, as 

appropriate to such design. With a low value of Ac/Ap, the frame 

would be susceptible to early collapse due to the rapid 

deterioration of frame stiffness. The proposed expression allows 

for this by shifting the curve to the left. This movement is 

achieved by the term (1 - 0.4 Ap/Ac ) in the expression. 

It can be seen from figure (3.5) that there is a rapid 

deterioration in the actual behaviour as Adet approaches the 

rising load factor, A. Examples of such behaviour are shown for 

the three frames in figure (3.5). In Wood's example, it was evident 

that soon after the third plastic hinge was developed, Adet 

dropped rapidly for a small rise in the load factor as shown in 

figure (3.5) and figure (3.2) respectively. Figure (3.5) also shows 

the plunging steep slope for the last few'remaining plastic hinges 

in all the frames. Such behaviour is obtained from the proposed 

formula by the term [l - (A lAc )2 ] • 

Finally, the coefficient of 0.4 has been chosen to give close 

agreement between A given by equation (3.4) and failure 

loads, Af , given by computer, but it can be seen from figure 

(3.5) that the proposal also gives an approximate representation of 

the deterioration of stiffness once hinges begin to form. Wood's 

frame is an exception because the first hinge leads to no reduction 

in the 'deteriorated' critical load. However, as most frames 
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collapse in the vicinity of the bottom right hand corner of figure 

(3.5), it is not necessary to consider the initial portion of the 

curve unless the ratio of AC/Ap is small. 

Studies carried out in Chapter (2) have shown that the 

original Merchant-Rankine formula consistently tends to provide a 

better estimate of the accurate failure load for frames with high 

ratios of AC/Ap > 9) and the modified version tends to 

overestimate the failure load. In contrast, the original formula 

was very conservative for frames with low ratios of Ac/Ap ( < 6) 

while the modified version provides a better estimate of the 

failure load. The results showed that the failure loads of 

approximately 60\ of the frames were overestimated by the use of 

the modified formula. The reason can be seen by examining the 

area formed by a square at the bottom right hand corner of figure 

(3.6 (a» and bounded by the values of Ac I Ap equal to 4.0 and 

10.0; the failure loads of most of the frames examined in Chapter 

(2) fall within this region. 

Various ratios of AC/Ap have been drawn in figure (3.6 (a» 

radiating from the origin (0,0). Several of the proposed curves 

corresponding to various ratios of Ac / Ap are also shown. These 

curves and the Merchant-Rankine relationships are failure lines 

obtained by letting A equalled to Adet The behaviour of the 

Merchant-Rankine approach can therefore be described as a 

continuous linear descending function, for which the loss of 

elastic stiffness is directly proportional to stages of increasing 

plasticity. The modified formula deteriorates in a similar manner 

but the magnitude of plasticity differs from the original formula 
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because of the introduction by Wood of a factor of 0.9. 

Consider the positions (A) and (B) with Ac/Ap=4.0 on the 

original Merchant-Rankine formula and the modified version 

respectively. To counteract the conservative tendency of the 

original formula, the failure load should be given by a point such 

as (C), close to the modified formula. A similar situation arises 

for high values of Ac/Ap and a point such as (F) is required, 

further away from the modified formula to provide an accurate 

result. A compromise factor of 0.95 in the modified formula, 

instead of the present value of 0.9, would be unsatisfactory 

because this would cause an approximate percentage reduction, no 

matter what the value of Ac/Ap. 

The proposed expression for the failure load has been plotted 

for ratios of Ac/Ap equal to 4, 10 and infinity to illustrate its 

flexibility. The positions of the proposed curves vary with the 

ratio of Ac/Ap, thus offsetting the inclination to overestimate or 
~r 

underestimate the failure load in comparison to the 

Merchant-Rankine formula. This is exhibited by positions (C) and 

(F) for low and high ratios of Ac/Ap respectively in figure 

(3.6 (a». 

3.4 Comparison with model experiments 

Experiments on model structures have been conducted by 

Low(48), Salem(45) and A~iaratnam(49). These provide an opportunity 

to compare the results of the proposed semi-empirical expression to 

those obtained experimentally. Unfortunately, only the results of 
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the tests by Low(48) were published and these alone will be 

considered. 

The miniature models were three, five and seven storey, single 

bay frames of rectangular configuration. All the frames were of 

equal storey height and the bay width was twice the height of one 

storey. Most of the frames were subjected to combined horizontal 

and vertical loads, although some were subjected to vertical loads 

only. Vertical loads were applied at the quarter points on all the 

beams for both combined loading and the case of vertical load 

alone. Horizontal loads were applied as appropriate at each of the 

floor levels for frames under combined loading. 

The results of these frames are shown in tables (3.1 (a» and 

(3.1 (b» for the combined loading and vertical load alone 

respectively. The failure loads calculated from equation (3.4) are 

denoted by Aprop.and the experimental results by Aexpt. A 

histogram has been constructed for all the frames as shown in 
~ 

figure (3.7). This relates the number of frames to the error in the 

predicted failure load, expressed as a percentage of the 

experimental failure loads. Except for a few cases, almost all the 

results obtained by the three expressions, namely Merchant-Rankine, 

Merchant-Rankine-Wood and the proposed expression, underestimated 

the experimental values. The histogram in general displayed similar 

predictions of the failure load using the proposed expression and 

the modified Merchant-Rankine formula. 

As the experiments were conducted primarily to verify the 

original Merchant-Rankine formula and to demonstrate the phenomenon 
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of frame instability, it is instructive to examine the relative 

comparison of the failure loads given in tables (3.1 (a» and 

(3.1 (b». Low(4B) reported that only one, Frame (31), out of a 

total of thirty-four frames tested was unsafe using the 

Merchant-Rankine formula but by no more than 1\. This is clearly 

shown in the figure (3.7). Frame (31) was reported to have a 

maximum out-of-plumb of 1/160th of the ground storey prior to the 

loading test. 

Frame (24) was also reported to have an initial distortion of 

1/120th of a storey height but the predicted failure load using the 

Merchant-Rankine formula was marginally safe. Such initial 

distortion is considered excessive but it can be seen that the 

Merchant-Rankine formula provides safe estimates throughout. 

However, the figures in table (3.1 (b» suggest that the 

Merchant-Rankine formula can be very conservative when no side load 

is present, irrespective of the ratio of Ac/Ap. For such frames, 

both the proposed expression and the modified formula also 
~ 

underestimated the experimental results in all cases. 

With reference to both tables (3.1 (a» and (3.1 (b», it is 

noticed that the ratios of Ac/Apfor all the frames, particularly 

the taller models, are small in an attempt to highlight frame 

instability. In Design Recommendation(54), the modified 

Merchant-Rankine formula is not valid for such low ratios of AC/Ap. 

However, despite this, Amrw is included for comparison. In all 

cases where the ratio of Ac/Apexceeds 1.6, the proposed expression 

provides better agreement than the original formula. At the same 

time, it also maintains close agreement with the modified 
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Merchant-Rankine formula, which in general is very successful in 

predicting the experimental failure loads. 

Two frames, numbers (20) and (31), were overestimated using 

equation (3.4) by 1\ and 7\ respectively. The unsafe estimate of 

Frame (31) arises for the reason discussed above. The 1\ unsafe 

estimate exhibited by frame (20) is insignificant. These features 

are clearly indicated in the histogram given in figure (3.7). 

For frames in which Ac/Ap< 1.6, the original Merchant-Rankine 

formula and the proposed expression provide extremely good 

estimates of the experimental results under combined loading, 

whilst the modified version tends to exceed the latter results. 

When the ratio of Ac/Ap is less than 1.2, the failure load given by 

the proposed expression falls below the Merchant-Rankine load 

irrespective of whether the frames were subjected to combined 

loading or vertical.load alone. The reason is that the proposed 

expression 'crosses' over the linear Merchant-Rankine line for very 

low values of Ac/Ap as shown in figure (3.6 (b». These cases have 

been drawn accordingly. The shaded wedge shows the area bounded by 

the two relationships. Two wedges are shown to indicate the 

proposed failure load falling below the Merchant-Rankine failure 

load. It can be seen that for a small increase in the ratio of Ac/Ap 

such as the curve shown equal to 1.6, estimates of the failure load 

using equation (3.4) are above the Merchant-Rankine failure line. 
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3.5 Parametric studies and other comparisons 

The parametric study presented in Chapter (2) and used to 

examine the Merchant-Rankine formula will also demonstrate the 

accuracy of the proposed equation (3.4). It is worth reiterating 

that the frames all satisfied a limit of 1/300th of each storey due 

to unfactored wind load. Loading generally consisted of extreme 

values of the ratio of vertical to horizontal load, although some 

intermediate values were also considered. 

The results are summarised in tables (3.2) and (3.3). The 

failure loads given by the proposal are denoted by Aprop. and the 

computer results by Af • The rigid-plastic collapse mode is 

designated by B, Sand C indicating simple beam mechanism, column 

sway and combined mechanism respectively. As two bay widths were 

considered in the parametric studies, the symbol Wand N refers to 

wide (7500 mm) and narrow (5000 mm) bay widths. 

Comparisons show that the proposed expression exceeds the 

computer results by a maximum of only 3\ compared to 7\ by the 

modified Merchant-Rankine approach. Both values are indicated by a 

ten-storey frame in table (3.2) by an asterisk. A similar situation 

ar ises for a four-storey frame where Amrw and Aprop. overest imated Af 

by 7\ and 1\ respectively. In contrast, both Amrw and Aprop. 

underestimated Af by a maximum of 7\ but this was a frame for 

which ~/Ap was just 3.19, indicated by a square symbol. It has 

been proposed in Design Recommendations(54,55) that Amrw should 

not be used when Ac.lAp is less than 4.0. Observing this 

restriction, Amrw and Aprop. give a maximum underestimate of 3\ 
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and 5% respectively. These cases are indicated by a triangle in 

table (3.2). 

Although extreme errors have been compared, a closer 

examination of the total of 43 results indicates that the proposal 

is able consistently to estimate more accurately the computer 

results than Amrw • Take for example, the frames indicated by a 

spot in tables (3.2) and (3.3). They all collapse by simple beam 

mechanism with Ac/Ap between 6.4 and 15.3. Equation (3.4) provides 

better and more uniform estimates of the computer result. 

Similarly, for lower ratios of AC lAp' indicated by a circle, 

consistently good estimates of the computer results are shown. 

A histogram has been constructed to show the variation of the 

estimates using the three approaches. This is shown in figure 

(3.8). The histogram displays the conservative tendencies inherent 

in the original Merchant-Rankine formula. It can be seen that none 

of the forty-three results examined were overestimated using such 

~ 

an approach. In contrast, the modified version which is strictly 

applicable to clad buildings showed that the failure load was 

overestimated for a number of frames. 

The results shown by the proposed expression were consistently 

good throughout with most of the frames falling between 95% and 

103% of the accurate failure load. The frequency distribution of 

the frames appeared to be closer to computer results than the 

results of the two versions of the Merchant-Rankine approach. It is 

noted that in all cases examined, Aprop > AI , where AI is the load 

factor at which the first plastic hinge forms in an accurate 
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elasto-plastic computer analysis. 

Other frames from the literature provide further comparison 

between Amrw, Aprop. and the results of non-linear elasto-plastic 

computer analysis. The results are shown in table (3.4), the load 

factors now being multiples of the working loads. Equation (3.4) 

showed a maximum deviation of +4% from the computer results, 

while Amrw overestimated Af by 9%. 

The cases in which the 9% error occurred are indicated by 

double asterisk. In defence of the Merchant-Rankine-Wood formula, 

it should be noted that both frames had sway deflections at working 

load which exceeded the usual limit of 1/300th of each storey 

height. Indeed, the roof beam of the second example in table (3.4) 

was simply supported to enable small column sections to be used. 

However, it can be seen that equation (3.4) was able to deal with 

these difficult cases in a significantly more satisfactory manner. 

It was found that in the majority of these cases, the error 

resulting from the use of equation (3.4) was approximately half the 

error generated by the modified Merchant-Rankine formula. 

3.6 Effect of the value of the coefficient on the 

proposed formula 

As the coefficient of 0.4 is increased in equation (3.4), a 

corresponding reduction in the predicted value of the failure load 

is observed. It has been mentioned previously that the proposed 
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value was selected to give close estimates of computer results. A 

total of 85 frames were compared which showed good agreement with 

both computer and experimental results. 

To investigate the sensitivity of the value of the 

coefficient, two values of 0.30 and 0.35 were substituted in turn 

to estimate the failure load given by equation (3.4). These will 

increase the value of the failure load estimated by the proposed 

formula. They could be of use if a designer wished to take account 

of cladding stiffness or strain-hardening by deliberately 

underdesigning the bare frame. 

The results are given in tables (3.5) to (3.8). Two columns 

representing the coefficient of 0.30 and 0.35 are designated by ~30 

and A035 • Each table has the exact format corresponding to 

tables (3.1) to (3.4). 

Tables (3.5 (a» and (3.5 (b» shows the comparison of model 

frames subject to combined loading and vertical load alone to 

experimental results respectively. It can be seen in table 

(3.5 (a» that the proposed expression has now overestimated a 

number of cases compared to Low's experimental results for frames 

under combined loading, even when 0.35 was used. It was also 

observed that the estimate is not very sensitive to changes in the 

coefficient. 

In contrast, the frames subjected to vertical loads alone 

indicated that the estimated failure loads were still very 

conservative using a coefficient of 0.3, as shown in table 
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(3.5 (b». However, when the coefficient of 0.1 was substituted 

into equation (3.4), the predicted failure load was in good 

agreement with experimental results. This is shown by the third 

column in table (3.5 (b». 

It is proposed that the coefficient of 0.1 be adopted to 

estimate the failure load of frames subject to vertical loading 

only. A histogram using such a factor on the 14 model frames is 

shown in figure (3.9 (a». The results obtained by both versions of 

the Merchant-Rankine approach is also shown for comparison. It can 

be seen that only one frame was overestimated by 1%. The results 

showed that by using a coefficient of 0.1, the failure loads for 

three-quarters of the frames were estimated to within 95% of 

experimental results. It should be noted that the estimated failure 

loads were in good agreement with experimental results irrespective 

of the value of AC/Ap' 

The parametric studies under combined loading given in tables 

(3.6) and (3.7) showed that A035 < Amr';:; in all cases when frames 

with 4 < Ac/Ap are ignored. However, when A030 was compared, a 

number of values exceeded Amrw • These cases are indicated by a 

circle in table (3.6) but the difference is insignificant. A 

histogram showing the two coefficients of 0.30 and 0.35 has been 

constructed and shown in figure (3.9 (b». The bottom diagram in 

figure (3.9 (b» was redrawn from figure (3.8 (c» for direct 

comparison. It can be seen that the estimates are not very 

sensitive to variations in the coefficient. 

Similarly, table (3.8) exhibits the same behaviour when the 



-96-

frame with the low ratio of ActAI' was ignored. As a result, the 

extreme errors quoted previously in section (3.5) remain 

unaffected. 

In conclusion, these studies show that the use of a factor of 

0.30 overestimate the failure load of the experimental bare frames 

subject to combined loading by a maximum of 12.0\. With 0.35, the 

overestimate falls to 9.0\ for the same frame. For realistic 

frames, the errors were S.6\ and 4.9\ corresponding to the above 

coefficients respectively. For frames subjected to vertical load 

alone, a factor of 0.1 was proposed, with only one experimental 

frame overestimated by 1%. 

3.7 Application in practice 

The comparisons given above have shown the proposed expression 

being used as an analysis tool with A determined by solution of 

equation (3.4), once ~ and AI' are known. As accurate comparisons 
,-' 

were required to validate the expression, Ac and Ap were 

determined from suitable computer programs. Such programs may not 

be readily available to the designer and therefore alternative 

manual methods are needed for the rapid evaluation of Ac and Ap • 

Several methods for calculating both Ac(50-S3) and AI' (12,17,22) 

are available. The following procedure is believed to be the most 

satisfactory for manual design, and is adopted for an example to be 

shown in the next section. 

The most convenient procedure is to take the minimum required 

design load, A , as the specified load level for collapse. Using 



-97-

factored loads as the basis for design, A will therefore be unity. 

The elastic critical load, AC , for a trial frame can be easily 

determined to good accuracy from charts given in Design 

Recommendations(54,55) and by Williams(73). For the required design 

loads, the rigid-plastic collapse load can then be found by solving 

equation (3.4) for Ap. In this manner, an exact calculation of the 

rigid-plastic collapse load of a trial design can often be avoided. 

With A =1.0, equation (3.4) can be rearranged to express Ap in 

terms of AC' 

Ap = 1. 25 Ad 1 - E ) 

where 
E = J 1 - (1. 6 AC 

( A2 - 1 c 

(3.5) 

Equation (3.5) is shown graphically in figure (3.10), safe designs 

being above the solid line. The Merchant-Rankine formula and its 

modified version are also plotted. It can be seen that the proposed 

method gives results which are very similar to Amrw for low 

values of AC / Ap , where Amrw has been found to be particularly 

successful from the parametric studies described in Chapter (2) and 

shown in tables (3.2) and (3.3). For higher values of AC/Ap' the 

modified formula is too optimistic. 

Figure (3.10) illustrates that the proposed method 

successfully caters for this, by requiring higher minimum values of Ap 

in order to attain the design load. Two values of AC / Ap have been 

included to indicate the extent to which Amrw is applicable. It 

can be seen that when the value of Ac/Apis greater than 10, Amrw 

is taken as Ap • A cut-off point is shown as a horizontal line 
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while the proposed expression continues as an asymptote. 

3.8 Design example 

This design example is presented in detail to demonstrate the 

manual process using the proposed expression and design criteria 

outlined in Chapter (2) and in this Chapter. 

Consider the six storey two bay frame shown in figure 

(2.6 (b» which satisfies the deflection limit of 1/300th of each 

storey height. Following the preliminary guidance provided by the 

proposed design charts presented in Chapter (2), the design shown 

in figure (2.6 (b» was obtained using the methods of Anderson and 

Islam(59) and Wood and Roberts(50). This design will now be checked 

for adequate strength. 

Design Recommendations(54,55) permit the calculation of the 

elastic critical load using a substitute ~Grinter frame. This is 

shown in figure (3.11). As discussed in Chapter (1), the basis of 

the substitute Grinter frame is to assume all joint rotations to be 

approximately equal at any floor level when the real frame is 

subject to horizontal loads, and each beam restrains a column at 

both ends. Beams are therefore bent into approximate double 

curvature and at any storey, the effective stiffness of the beam in 

the substitute frame is, 

(3.6) 

where Ib and Lb are respectively the moment of inertia and span of 
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a beam in the real frame and the summation is over all the bays at 

that storey level. 

The equivalent stiffness of the column in the Grinter frame is the 

sum of the stiffnesses of the individual columns in the real frame 

for the storey under consideration, 

ke = ~ le / storey height ( 3.7) 

where le is the moment of inertia of the column. 

These values have been calculated for the six storey frame as 

follows, 

storey kb (cm3 ) ke (cm 3 ) 

6 3x(2x4439)/600 = 44.4 3x4564/375 = 36.5 

5 3x(2x7162)/600 = 71.6 " " = 36.5 

4 " " = 71.6 (2x6088 + 14307)/375 = 70.6 
,/ 

3 3x(2x12091)/600 = 120.9 " " = 70.6 

2 3x(2x18626)/600 = 186.3 (2x7647 + 14307)/375 = 78.9 

1 " " = 186.3 " " = 78.9 

(3.8) 

Values of kb and ke are shown in figure (3.11). A first estimate is 

made of Aer with allowance for cont inui ty of columns. The 

following calculations were obtained from the procedure detailed in 

the European Recommendation(54), 
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storey 71u 711 v= Ip. h2 
/ I le 1k/1 Acr 

6 0.45 0.50 0.39 1.41 26.1 

5 0.50 0.60 1.00 1. 56 8.31 

4 0.60 0.54 0.83 1. 59 9.64 ( 3.9) 

3 0.54 0.45 1.14 1. 46 8.33 

2 0.45 0.46 1.30 1. 38 8.17 

1 0.46 0.00 1. 58 1.19 9.04 

where 

71 u = distribution factor for the upper joint 

= (ke + keu ) / (k e + keu + kbu ) , 

711 = distribut ion factor for the lower joint 

Ip = Total vertical load at any storey in KN., 

h = storey height in metres, 

Ile = Total column inertia of storey considered in cm~ 

lk/l =values read off chart with cladding stiffness, s = 0, 

The values of lk/l are the effective length ratios 
,/ 

using the modified degrees of restraint given above 

by 71u and 711 to allow for continuity in the 

substitute Grinter frame (or J PC! /Pe where PC! 

and Pc are the Euler and critical loads respectively), 

Acr = 20.23/[ v • (lk/l) 1. 

Note that Aer was calculated based on the value of Young's modulus 

of elasticity, E = 20500 KN/cm2 for this example only. 

The factor of 20.7 used in European Recommendation(54) assumed 

E = 21000 KN/cm 2 • 



-101-

It can be seen that the second storey is most critical 

with Acr =8.17. An improved estimate of Acr may be obtained by 

considering the upper and lower storeys adjacent to the critical 

storey, 

17~ = 17u [( kcu + kc ) / (2 kc ) ] 

I 

171 

= 0.45 x (70.6 + 78.9) = 0.43 
(2 x 78.9) 

= 171 [ (kcl + kc ) / (2 k c) ] 

= 0.46 x (78.9 + 78.9) = 0.46 
(2 x 78.9) 

I I 

AC= Acr [ 
1 + 17u + 171 

17~ Acr 17\ Acr 

Acru Acrl 

(3.10) 

1 
= 8.40 AC= 8.17 x [ 1 + 0.43 + 0.46 1 = 1 + 0.43(8.17/8.33) + 0.46(8.17/9.04) 

where kcu ' kc and kcl are indicated in figure (3.11) 

and Acru, Acr and Acrl are the critical loads for the upper, 

middle and lower storeys given by the above calculations. 

This improved value is greater than 8.31 given for the fifth storey 

and therefore the lowest elastic critical load is taken as 8.31. 

Alternatively, a rapid calculation for AC may be obtained by 

the method of Williams(53). The procedure was outlined in Chapter 

(1) but at this stage, it would be useful to illustrate the 

swiftness of the method and compare the result with the one already 
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calculated above. The individual 'cells' are divided as shown in 

figure (3.13). The beam stiffnesses are proportioned randomly and 

individual jOint stiffnesses calculated. Values of v are taken 

from equation (3.9). In a similar approach to the procedure above, 

the effective length ratios (lk/l) for each 'cell' was read off the 

appropriate chart(54). The resulting critical loads for each 'cell' 

was then evaluated. It can be seen from figure (3.13) that the 

lowest elastic critical load is located on the second storey with a 

value of 8.17. This compares very well with that shown by equation 

(3.9) which allowed for continuity of columns. 

Irrespective of whichever value of Ac used (i.e 8.31 or 

8.17), equation (3.5) gives, 

Ap = 1.07 

A lower bound plastic analysis is required to show that this value 

of Ap is not exceeded. Such an approach avoids the need for an 

'exact' calculation of Ap • 

Normal practice(3,17) assumes points of contraflexure to exist 

at mid-height of all columns for the purpose of calculating the 

windward and leeward column axial forces due to wind loading. 

Starting at tne roof with factored loads (1.2Wk ), 
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storey 

6 

5 

4 

3 

column axial load (RN.) 

(10.2x3.75/2)/12 = 1.6 

(10.2x5.625)+(20.4x3.75/2)]/12 = 8.0 

(10.2x9.375)+20.4(5.625+1.875)]/12 = 20.7 

[(10.2x13.125)+20.4(9.375+5.625+1.875)]/12 = 39.8 (3.11) 

2 [(10.2x16.875)+20.4(13.125+9.375+5.625+1.875)]/12 

= 65.3 

1 [(10.2x20.625)+20.4(16.875+13.125+9.375+5.625+ 

1.875)]/12 = 97.2 

The results are shown in figure (3.12 (a». These forces are added 

onto the combined factored vertical loads (1.4Gk+l.20k). The total 

axial forces in the columns are shown in figure (3.12 (b». For 

convenience and to ensure adequate out-of-plane member stability, 

the moment capacity of a column is taken as the yield moment, 

calculated as, 

M(yield) = (1 - n) . fy . Ze 

where n = ratio of axial load to squash load, 

fy = yield stress, 

Ze = elastic section modulus, 

It is emphasised that the value of 'n' is calculated for the 

required value of Ap = 1.07 

i.e. n = Ap . axial load 1 squash load 

Axial forces shown in figure (3.12 (b» have to be multiplied 

by Ap and moment capacities are then calculated as follows, 

(3.12) 
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storey nl MI ne Me nr ~ 

6 0.071 100 0.144 92 0.073 100 

5 0.178 89 0.368 68 0.190 87 

4 0.217 109 0.305 183 0.241 106 (3.13) 

3 0.292 99 0.420 153 0.339 92 

2 0.303 119 0.535 123 0.367 108 

1 0.359 109 0.650 92 0.455 93 

where nl ' ne and nr refer to, the values of n for the left, centre 

and right hand columns with corresponding moment capacities MI' Me 

and Mr (KN.m. units) respectively. 

The moment capacities are shown in figure (3.12 (c». Axial forces 

in the beams are small in comparison to the columns, and the full 

plastic moment capacity of the beam has been assumed. Under 

combined loading, plastic hinges tend to develop on the leeward end 

and at mid-span of the beam. Referring to the lower diagram in 

figure (3.14), the windward end moment for a plastic beam is ML • 

By equilibrium, 

M(free) = Mp + 0.5(Mp - ML 

ML = 3M p - 2M(free) 

where M(free) = ApwL2 /8. 

For the roof beam, 

M(free) = (1.07 x 31.7 x 6 x 6) / 8 = 152.6 KNm. 

For the floor beams, 

M(free) = (1.07 x 49.1 x 6 x 6) / 8 = 236.4 KNm. 

(3.14) 

(3.15) 
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For convenience, equivalent point loads are used for calculating 

bending moments. Using the lower bound approach, the overall 

bending moment distribution shown in figure (3.14) at a load factor 

of 1.07 can be obtained. It can be seen that the bending moments 

nowhere exceed the moment capacities given in figure (3.12 (c». 

Therefore Ap ~ 1.07 and the design is satisfactory. 

For comparison, the lower bound elastic critical load for each 

storey was calculated from equation (3.2) using the computer 

program described in Section (3.2). The linear and non-linear 

displacements under factored (design) loads were taken at the 

windward joint, 

storey lower bound on AC 

6 10.33 

5 8.98 

4 8.54 

3 8.35 (3.16) 

2 8.30 

1 8.30 

After performing further iterations, the determinant of the overall 

stiffness matrix was non-positive at Ac =8.60. The values for AC 

obtained manually were 8.31 and 8.17. These results are in 

excellent agreement. 

Accurate computer analysis showed that failure occurred at a 

load level of 1.09 and a rigid-plastic analysis exhibited a simple 

beam collapse of the fourth and fifth floor beams with Ap=1.17. 
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With the accurate results for Ac and Ap , equation (3.4) 

gave Aprop =1.09 while Amr =1.03 and Amrw =1.13. The latter two 

results are 94\ and 104\ of the accurate failure load respectively. 

The design has so far neglected initial eccentricity. The 

British Design Recommendation(55) specify that eccentricity shall 

not exceed 1/1000 of the total vertical height, while European 

Recommendation(56) require such out-of-plumb to be represented by 

fictitious horizontal loads, 

o = N T 

where N = total vertical design load at each floor level, 

T = To r 1 r 2 

To = 1/200, 

r 1 = J 5/ each storey height in metres < 1.0, 

r 2 = 0.5 [1 +l/(number of loaded columns per storey»). 

(3.17) 

As the European specification is more severe, the values of the 

fictitious horizontal loads are calculated for this example, 

r1 = 15/3.75' = 1.155 > 1.0 

~ is therefore taken as 1.0, 

~ = 0.5(1 + 1/3) =0.667, 

T = 1.0 x 0.667/200 = 1/300. 

At the roof and at all the floor levels, the fictitious horizontal 
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loads are given by, 

O(roof) = 380.4/300 = 1.27 KN. (3.18) 

O(floor) = 589.2/300 = 1.96 KN. 

When these additional loads are added onto the wind forces shown in 

figure (3.12 (a», a small increase of column axial forces was 

observed. However, the fictitious loads are small and have a 

negligible effect on the moment capacities shown in figure 

(3.12 (c». In fact, the moment capacities are almost identical to 

that shown in figure (3.12 (c» when these fictitious loads are 

incorporated. It can be similarly demonstrated that the lower bound 

plastic analysis is satisfactory when such fictitious loads are 

included in the horizontal loading. 

3.9 Conclusion 

A simple expression has been presen~~d for estimating the 

ultimate load capacity of plane unbraced bare frames under combined 

loading and vertical load alone. The expression have been compired 

both with published experimental model tests and accurate computer 

analysis on realistic frames, and it has provided consistently 

accurate estimates throughout. 

Comparisons with 20 experimental miniature models of three, 

five and seven storeys under combined loading have shown the 

calculated values to vary between 90% and 107% of the values given 

by experimental results. The single unsafe estimate of 7% was not 

significant because the model was grossly out-of-plumb. 
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Although the proposed expression is intended for collapse 

under combined loading, a further 14 model frames subjected to 

vertical loads only were also compared. The predicted failure loads 

using a coefficient of 0.4 varied between 71% and 90% of 

experimental results. A coefficient of 0.1 was proposed for 

estimating the failure loads of such frames. The studies showed 

that the use of a factor of 0.1 resulted in the predicted failure 

loads varying between 84% and 101\ of the experimental results. 

Only a single frame for each of the extreme errors was found. The 

models used in the studies represent the lower scale for the ratio 

of AC/Ap with values ranging from as low as 1.1 to 4.0. 

Studies on 43 realistic frames under combined loading with 

ratios of Ac/Ap between 3.19 and 16.6 have shown the proposed 

failure load to lie between 93% and 103% of the figures given by 

second-order elasto-plastic computer analysis. The lower limit 

rises to 95% if frames for which AC/Ap is less than 4.0 are 

neglected. These realistic frames have been designed to practical 

levels of loading and to deflection limitation at the working load. 

Further comparisons of 8 other frames from the literature have 

also shown the consistency of the proposed method in estimating the 

failure loads. The maximum error was 4% but this was for a frame 

that does not satisfy the usual deflection limit and with the 

presence of real pins on the uppermost columns. 

The proposed method will therefore prove acceptable to 

designers who do not wish to rely on strain-hardening and stray 

composite action to offset the higher collapse loads that can be 
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predicted by the modified Merchant-Rankine formula. The proposal 

should always be used instead of the latter whenever cladding is 

minimal, especially as the expression is just as easy to apply as 

the modified approach. This is demonstrated by an example of a 

rectangular six storey frame. The detailed manual procedure was 

shown. Several rapid methods for determining the lowest elastic 

critical load were shown. Comparisons with accurate computer 

analysis gave excellent agreement. 
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Frame A A A A A c expt mr prop. mrw 

No. A (lbs) r A r--p expt. expt. expt 

5 3.6 448.8 0.90 0.96 0.98 

6 4.0 428.9 0.87 0.94 0.95 

7 4.0 442.5 0.85 0.91 0.92 

8 3.8 645.4 0.85 0.92 0.93 

10 3.5 530.8 0.84 0.90 0.91 

11 3.5 505.7 0.88 0.95 0.96 
tIl 
>. 12 3.5 492.4 0.90 0.97 0.98 QJ ,... 
0 
+.J 13 2.7 458.6 0.86 0.92 0.92 tIl 

M 

14 2.7 423.8 0.92 0.99 1.00 

15 2.7 434.2 0.92 0.98 0.99 

16 3.0 487.7 0.85 0.91 0.91 

18 2.9 489.8 0.86 0.92 0.93 

19 3.0 458.6 0.90 0.96 0.97 

20 2.9 434.7 0.94 1.01 1.02 

23 1.4 577.7 0.93 0.94 0.99 
~ 

tIl 24 1.4 530.1 0.99 1.00 1.05 
>. 
QJ ,... 

25 1.4 599.7 0.90 0.90 0.95 0 
+.J 
tIl 

11) 29 1.6 609.0 0.95 0.97 1.01 . 

31 2.3 666.2 1.01 1.07 1.08 

tIl 
>. 
QJ 

37 1.2 680.2 0.99 0.97 1.05 ,... 
0 
+.J 
tIl 

" 
Table 3.1(a) Comparison with Low's results 

for frames under combined loading. 



Frame 
A A expt A A A c mr prop mrw - (lbs) r-

No. A A A p expt expt expt 

4 3.6 495.8 0.82 0.88 0.89 

III 9 3.6 657.1 0.81 0.87 0.88 
~ 
OJ 
1-1 17 3.0 534.1 0.77 0.83 0.83 0 
+J 
III 

M 26 2.7 523.3 0.75 0.80 0.81 

27 3.0 539.8 0.76 0.82 0.82 

21 1.3 768.6 0.71 0.71 0.75 
III 
~ 22 1.4 672.2 0.80 0.80 0.84 OJ 
1-1 
0 
+J 

28 1.6 756.4 0.75 0.77 0.80 III 

L11 

30 2.3 781.1 0.85 0.90 0.91 

32 1.3 799.4 0.81 0.81 0.86 

33 1.1 778.9 0.82 0.78 0.86 
III 
~ 34 1.1 730.5 0.78 0.74 0.82 OJ 
1-1 
0 
+J 
III 35 1.1 707.5 0.80 0.76 0.85 

" 36 1.1 821.5 0.77 0.74 0.81 

Table 3.1(b) Comparison with Low's results 

for frames with vertical loads only. 



• 

• 

A 

o 

• 

o 

• 

o 

• 

Min. vertical . Nax. wind . 
Frame A c 

A storey X- mrw p 
x bay 

4 :< 2W 9.15 1.14 

4 x 2N 11.38 1.34 

4 x 3W 

4 x 3N 

4 x 4W 

4 x 4N 

4 x SW S.34 1.01 

4 x SN S.34 1.16 

7 x 2W 12.83 1.15 

7 x2N 16.59 1.42 

7 x 3W 

7 x 3N 

7 x 4W 

7 x 4N 

7 x SW 5.06 0.96 

7 x SN 5.78 1.24 

10 x 2W 15.33 1.15 

10 x 2N 14.90 1.42 

10 x 3W 

10 x 3N 

10 x 4W 6.S7 1.06 

10 x 4N 8.23 1.31 

Notation 

W - Bay width 7500 

N = Bay width 5000 

A Af Me ch prop. 

1.08 1.07 B 

1.28 1.30 B 

0.99 1.04 C 

1.14 1.13 c 

1.11 1.10 B 

1. 38 1. 39 B 

0.94 0.95 C 

1.21 1.26 B 

1.11 loll B 

1.37 1.40 B 

1.03 1.04 C 

1.25 1.24 B 

Hax • vertical . min. wind. . 
A c A A Af Mech. A mrw prop. p 

5.75 1.04 1.02 1.04 C 

6.S6 1.17 1.14 1.20 B 

5.25 1.04 1.02 1.04 S 

5.37 1.10 1.08 1.08 C 

4.93 1.04 1.02 1.05 S 

3.34 0.88 0.87 0.92 S 

4.78 1.03 1.01 LOS S 

3.19 0.89 0.89 0.96 S 

S.66 1.02 1.00 1.01 C 

7.98 1.20 1.15 1.15 B 

4.74 0.89 0.88 0.89 C 

5.30 1.07 1.05 1.04 S 

4.48 0.96 0.95 0.97 S 

4.11 0.98 0.97 0.99 S 
c 

4.36 0.96 0.95 0.99 S 

3.98 1.00 0.99 1.03 S 

6.02 LOS 1.02 1.01 C 

8.07 1.18 1.13 1.10 S 

4.67 0.96 0.94 0.96 C 

6.19 1.04 1.01 1.02 S 

3.87 0.89 0.88 0.91 S 

4.56 1.00 0.99 1.02 S 

Table 3.2. Parametric studies under extreme loading 

1 

o 

D 

o 

• 
o 

o 

o 

• 



Frame Vertical A 
Wind load 

c A A Af 'f"" Mech. 
storey x bay load 

mrw prop. 
p 

4 x 2W Max Inter 5.82 1.03 1.01 1.03 C 

4 x 3W Max Max 5.72 0.97 0.94 0.94 S o 

4 x 5W Max Max 4.88 1.02 1.00 1.03 S o 

7 x 2W Max Inter 6.15 1.03 1.00 1.00 C 

7 x 5W l>lax Max 4.63 0.91 0.89 0.89 S o 

10 x 2W Max Inter 8.07 1.12 1.08 1.05 B • 
10 x 3W Max Hax 6.41 1.08 1.05 1.04 B • 
10 x 2N Max Inter 5.78 1.08 1.05 1.06 S 

10 x 2W Max Inter 7.64 1.12 1.08 1.08 B • 

W = Bay width 7500, N = Bay width 5000 

Table 3.3 Parametric studies under various loadings 

Reference Frame A c A A Af 
x bay A mrw prop. 

storey p 

/ 
~ 

Majid & Anderson (Proc.ICE) 4 x 1 13.88 1.56 1.51 1.49 

Anderson (Ph.D. Thesis) 4 x 1 7.71 1.55 1.49 1.43 •• 

Anderson (Ph.D. Thesis) 8 x 2 5.06 1.51 1.48 1.48 

Wood (Proc. ICE) 4 x 1 6.01 2.01 1.96 1.91 

Chapter 2 of this thesis 6 x 1 5.02 1.59 1.56 1.54 

Anderson & Islam (Proc. ICE) 6 x 1 10.32 1.63 1.55 1. 49 •• 
Anderson & Islam (Proc. ICE) 15 x 3 3.49 1.37 1.37 1.38 

Chapter 2 of this thesis 6 x 3 4.18 1. 70 1.67 1.64 

Table 3.4 Other comparisons 



AO.30 AO.35 

A expt. A expt. 

0.99 0.98 

0.96 0.95 

0.93 0.92 

0.94 0.93 

0.92 0.91 

0.98 0.96 

0.99 0.98 

0.95 0.93 

1.03 1.01 

1.02 1.00 

0.94 0.92 

0.95 0.94 

0.99 0.98 

1.05 1. 03 

1.00 0.97 

1.06 1.03 

0.97 0.93 

1.03 1.00 

1.12 1.09 

1.05 1.01 

Table 3.5(a)Low'sexperimental results 

(combined load in/) only) 



AO.30 AO.35 AO.10 

A expt. A A expt. expt. 

0.90 0.89 0.95 

0.90 0.88 0.94 

0.85 0.84 0.91 

0.83 0.82 0.89 

0.85 0.83 0.90 

0.76 0.73 0.84 

0.85 0.83 0.95 

0.81 0.79 0.90 

0.94 0.92 1.01 

0.86 0.84 0.96 

0.85 0.81 0.96 

0.81 0.78 0.92 

0.83 0.80 
/ 

0.95 
~ 

0.80 0.77 0.91 
. 

Table 3.5(b) Low's experimental results 
(vertical only loading) 



A AO.30 AO.35 Af A AO.30 AO.35 Af mrw mrw 

1.14 1.10 1.09 1.07 1.04 1.03 1.02 1.04 

1. 34 1.29 1. 29 1.30 1.17 1.15 1.14 1.20 

1.04 1.04 1.03 1.04 

1.10 1.10 1.09 1.08 

1.04 1.04 1.03 1.05 

0.88 0.90 0.89 0.92 

1. 01 1.01 1.00 1.04 1.03 1.04 1.03 1.05 o 

1.16 1.16 1.15 1.13 0.89 0.91 0.90 0.96 

1.15 1.12 1.11 1.10 1.02 1.02 1.01 1.01 

1.42 1.39 1. 38 1. 39 1.20 1.17 1.16 1.15 

0.89 0.89 0.89 0.89 

1.07 1.07 1.06 1.04 

0.96 0.97 0.96 0.97 o 

0.98 0.99 0.98 0.99 o 

0.96 0.96 0.95 0.95 0.96 0.97 0.96 0.99 o 

1.24 1. 23 1. 22 1.26 1.00 1.01 1.00 1.03 

1.15 1.12 1.12 1.11 1.05 1.04 1.03 1.01 

1.42 1. 38 1. 38 1.40 1.18 1.15 1.14 1.10 
~' 

0.96 0.96 0.95 0.96 

1.04 1.02 1.02 1.02, 

1.06 1.05 1.04 1.04 0.89 0.90 0.89 0.91 

1.31 1.27 1.26 1.24 1.00 1.01 1.00 1.02 o 

Table 3.6 Parametric studies (1) 



A AO.30 AO.35 Af mrw 

1.03 1.03 1.02 1.03 

0.97 0.96 0.95 0.94 

1.02 1.02 1.01 1.03 

1.03 1.02 1.01 1.00 

0.91 0.91 0.90 0.89 

1.12 1. 09 1.09 1.05 

1.08 1.07 1.06 1.04 

1.08 1.07 1.06 1.06 

1.12 1.09 1. 08 1.08 

Table 3.7 Parametric studies (2) 

A AO.30 AO.35 Af mrw 

1.56 1.52 1.52 1.49 
r 

1.55 1.51 1.50 1.43 

1.51 1.51 1.50 1.48 

2.01 1.99 1.97 1.91 

1.59 1.59 1.58 1.54 

1.63 1.57 1.56 1.49 

1.37 1.41 1.39 1.38 

1.70 1.71 1.69 1.64 

Table 3.8 Other comparisons 
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CHAPTER 4 

OPTIMUM ELASTO-PLASTIC DESIGN OF FRAMES 

4.1 Introduction 

Minimum weight design based on rigid-plastic theory is well 

established, following the work of Livesley(8) described in Chapter 

(1). In such approaches, compressive axial forces are ignored, and 

the problem is usually converted into one of mathematical 

programming and solved using techniques such as the simplex 

algorithm. For all but the simplest frames, solution has to be 

obtained by recourse to a computer. While this method may produce 

economical structures, there is no guarantee that premature 

collapse due to overall frame instability will be prevented. 

For this reason, the methods proposed by Horne and Morris(20) 

and Ridha and Wright(2l) enable instability effects to be 

incorporated in the design routine. However, as explained in 

Chapter (1), both methods are not based on an accurate assessment 

of frame instability effects. While Horne and Morris adopt the 

'portal' method to estimate sway deflections, Ridha and Wright 

neglect the deflection constraint completely. 

It has been argued in this thesis that it is advantageous for 

a trial frame to possess adequate stiffness as this can lead to a 

lower bound design for strength. However, cases can arise where 

designs are controlled by strength. For such cases, it is uncertain 
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as to which members should have their sections increased and by 

what amount in order to achieve a satisfactory design. Therefore, 

the need arises for a structural optimization method, which in turn 

requires the rates of change of the failure load with increase in 

sections of different members. Accurate non-linear elasto-plastic 

analysis is unsuitable in such a procedure because of the excessive 

demand on computer time inherent in such approaches. 

This Chapter describes a simple but approximate method for the 

design of multi-storey frames of rectangular configuration that 

already satisfy criteria such as adequate stiffness. The procedure 

determines the most economical changes in sections following a 

series of trial analyses: the latter are based on the expression 

proposed in Chapter (3) for estimating the ultimate load. Linear 

programming techniques are avoided because there is only one 

constraints in the optimization procedure. 

4.2 Optimization procedure 

Consider the variation of the load factor, A , of a plane 

frame such as that of figure (4.1). For convenience in explanation, 

it will be assumed that all the beams are grouped together so that 

they have the same section, denoted by Sb. Similarly, the columns 

are grouped together, the section being denoted by Se. 

Let an initial trial design which satisfies the usual 

deflection limits at the working load be analysed for the collapse 

load. The resulting load factor is Af ' and the design load level 

is denoted by unity. It is assumed that Af < 1.0. The design 
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problem is therefore to determine the most economical changes in 

section sizes that should be made to increase A from Af to unity. 

The total weight, W, can be taken as representative of the 

cost of a frame. Thus, the objective function can be expressed as, 

( 4.1 ) 

where Wj is the weight per unit length of member 'i', which has a 

length, Ij . 

In practice, costs are still estimated in this way, although 

usually a percentage increase is made to the weight of plain metal 

to account for connections. This may differ from member to member. 

Such differences are ignored in the work below, but could be easily 

included if desired. 

is the rate of change of the load factor with the 

section 3ize of a member, then for the frame shown in figure (4.1) 

the problem can be stated as, 

Minimize W = ( wb + 

subject to 

At + ~Af = At + OAf ~Sb 

oS!> 

(4.2) 

(4.3) 
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where W is the total weight of the beams and columns of 

the frame, 

Sb and Se are the initial section sizes of the 

beams and columns respectively, 

4Sb and 4Se are changes in the sections 

corresponding to Sb and Se in beams and columns 

respectively, 

w\) and Wc are the weight per unit length of a 

member corresponding to Sb and Se respectively, 

4w\) and 4we are changes in the weight per unit 

length corresponding to changes 4Sb and 4Sc 

respectively, 

Land h are the bay width and storey height 

respectively. 

As wb and Wc are constants, the objective function given by 

equation (4.2) can be expressed as, 

(4.4) 

Furthermore, there is only one constraint in equation (4.3). If it 

is assumed that Af varies linearly with change in Sb and change in 

Sc' it follows that for W to be a minimum, only one of 4Sb 

and 4Sc will be non-zero. Hence, the optimization procedure is 

reduced to determining the increase in Af relative to increase in 

total weight given by each group, 

A = OA.f 
oW 
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A = current value Af- initial design value At 
current total weight - initial total weight 

(4.5) 

Values of A can be obtained by repeating the analysis wit~ Mpb and 

Mpc increased in turn, whilst keeping the other value of Mp 

constant at its initial value. Thus, specialized linear programming 

algorithms are not required for the solution of the design problem. 

In fact, At does not vary linearly with change in Sb or Sc' 

because of the following reasons, 

a)Once a section has been increased sufficiently to reduce or 

eliminate plasticity in the corresponding members, further 

increase in section size only lead to increase of stiffness. 

b)The stiffness of the frame, which influences susceptibility 

to instability, is dependant on the 

moment of inertia of a section. 

To take account of non-linearity, iteration is required to 

determine the most economic change of member sections. The 

procedure described above is followed, except that when a change 

in 6S in section size is to be made, it is restricted to an 

increase of just one section from the list of available sections. 

The resulting design is then treated as a new initial design, and 

the optimization procedure is repeated. 

It is usual in structural optimization to assume" a continuous 

range of sections is available, so that a section can be chosen 

with any specified properties. It can be seen that in the present 
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work, real sections are adopted. Within a range of real sections 

tabulated in BCSA aandbook on Safe Loads, an economic section is 

defined as one which equals or exceeds other sections of equal 

weight with respect to the plastic modulus or moment of inertia. 

Fortunately, the choice of economic Universal beam and 

(Universal column sections is not affected if the moment of inertia 

is treated as the governing section property, rather than the 

plastic moment. Tables (4.1) and (4.2) shows the list of economic 

beam and column sections in ascending order of preferred sections. 

A similar list can be tabulated with respect to the total depth of 

the section where restrictions on floor depth are the criterion for 

the choice of sections in design. 

4.3 Overall analysis and design 

The overall procedure will be described first, with the 

details of the calculation methods for Ap and Ac given later. It 
~ 

is assumed that the initial design satisfies adequate stiffness and 

it is first required to determine the ultimate load of the trial 

frame. If Af ' obtained from equation (3.4) in Chapter (3) is less 

than unity, increases in sections are required. The analysis 

procedure determines Ap and Ac for a chosen change in each member 

group as shown in figure (4.2). Values of At and the total weight 

of each cycle are evaluated. The rate of change of At to the 

increment of total weight in each iteration is then determined 

using equation (4.5). 

In this and subsequent Sections, an iteration is defined as 
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one complete process whereby a group with the highest 

coefficient, A , is selected and a modified design obtained. A 

cycle is defined as one group change. Therefore, the number of 

cycles to be performed depends on the number of member groups in a 

design. Each iteration involves the completion of this number of 

cycles. Members may be sub-divided into as many groups as desired. 

The limit of member grouping is therefore equal to the total number 

of members in the structure. For instance, the frame shown in 

figure (4.1) may be arranged to have eighteen groups comprising 

seven beams and eleven columns. A total of eighteen cycles would be 

executed in each iteration. It is, however, usual to provide column 

lengths running through at least two floors and beams of the same 

section on consecutive floors for economy in fabrication and 

erection, and this arrangement presents no problem for the proposed 

procedure. 

At the end of each cycle, values of DAf and aWare 

determined and stored for comparison with the next cycle. When the 

cycle is completed, the group with the highest coefficient aAflDw 

is selected as that to be changed to provide the initial design for 

the next iteration. The final test compares the failure load for 

the new design with the required value, terminating when the design 

load is attained. Otherwise, the whole procedure is repeated until 

the minimum design load is achieved. 

To assist in the calculations, the expression given in the 

previous Chapter is solved for At and is given by, 

Af = j 1 + ( 2 n Ac)2 - 1 
2 

(4.6) 



where n = ACAD- O.4( AD )2 

( AC)3 
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In order that equation (4.6) may be used, both Apand AC must be 

calculated rapidly. 

4.4 Rigid-plastic collapse load factor 

In considering the more significant parameter, Ap , it is 

proposed that the rigid-plastic collapse load be calculated by the 

method of combination of mechanisms. Although it appears more 

advantageous to adopt the static form of rigid-plastic analysis as 

opposed to the mechanism or kinematic approach, it is argued that 

for most realistic frames, the mode of collapse is by one of a 

limited number of mechanisms. These mechanisms have been identified 

for the frames examined in Chapter (2). Therefore, restricting the 

possible collapse modes to a relatively small number of similar 

shape to those shown in the parametric studies in Chapter (2) is 

justified. 

Strictly, the mechanism approach demands that all possible 

collapse modes be found with the result that the lowest calculated 

value of Ap is equal to the true value. As an example, consider 

the seven-storey frame shown in figure (4.3). This is one of a 

series of seven-storey frames used in the parametric studies and 

designed in Chapter (2). Figure (4.3 (a» shows the rigid-plastic 

collapse mechanism obtained from an accurate computer analysis 

while the figure on the right was determined by considering the 

comprehensive combined-type as shown. The value of the collapse 
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load obtained from figure (4.3 (b» is in good agreement with the 

accurate result. A validation exercise will be shown for all ~he 

frames examined in Chapter (2) to demonstrate the accuracy of the 

proposed method based on a finite number of mechanisms. 

By limiting the number of mechanisms, computing time in 

iterative analysis is reduced. The finite number of rigid-plastic 

mechanisms are shown in figures (4.4) to (4.14). The diagram on the 

left represents a form of collapse occurring in the mid-height 

region of the frame, while the one alongside is an identical 

mechanism but drawn to indicate collapse occurring at a different 

location in the frame. The bounds of the mechanism vary from storey 

to storey, to seek the lowest collapse load for each type of 

mechanism. 

Take for example the comprehensive combined-type mechanism 

shown in figure (4.9). In the first mechanism of this type, the 

column hinges are located at the base of the top storey with the 

corresponding beam hinges for the roof members only. Subsequent 2, 

3, 4, 5 and 6 storeys are considered as participating in the 

mechanism. This is achieved by transferring the column hinges 

downwards and placing plastic hinges on all the beams above the 

column hinges. The process terminates when all the storeys have 

been included in the mechanism. 

The mechanism shown in figure (4.11) must not be confused with 

that of figure (4.12). The former allows the column hinges to move 

downwards while the latter has 'stationary' plastic hinges at the 

base. In both cases, sufficient beam hinges are inserted as the 
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process is repeated at the next storey level. An exception to the 

procedure described above is the simple beam collapse mechanism, 

where it is recognised that each beam may have different member 

properties and magnitude of loading. For such a collapse mechanism, 

each beam is analysed by writing down the appropriate work 

equation. 

For each of the mechanism shown in figures (4.4) to (4.14), 

the analysis is executed by setting up the virtual work equation. 

The lowest rigid-plastic collapse load factor is then obtained and 

the specific mechanism identified. 

These collapse modes are associated with frames subject to 

combined loading and most, if not all, are familiar to design 

engineers because they have been applied successfully in practice 

for the design of relatively low-rise frames(17,32). The value of Ap 

obtained in this manner is acceptable for use in the optimization 

procedure although it is concievable that other mechanisms may 

exist with a lower value than those proposed. 

As an example, consider figures (4.4) and (4.9). The 

rigid-plastic collapse load of the sway mechanism for each storey 

from the roof to ground level of figure (4.4) is given by, 

J 

2 n~,Mpc (reduceo)j (4.7) 

[ i Hn] h· n.' I 

The collapse load of the comprehensive combined mechanism of figure 

(4.9) is given by, 



-120-

( 4.8) 

where i = storey level starting at 1 from the top, 

j = number of columns in each storey i, 

k = number of bays in each storey, 

MpC (reduced) = reduced plastic moment capacity of the 

column at Ap , 

Hn = horizontal wind load, 

h = storey height, 

Vn = mid-span vertical load, 

Ln = bay width, 

Mpb = full plastic moment capacity of the beams. 

Other types of collapse modes can similarly be shown as a 

combination or slight modifications of these two equations. 

In order to take into account the effects of axial forces on 

the plastic moment capacities of column members, the analysis of 

each mechanism is iterative. The assumptions for evaluating the 

axial forces in the columns are identical to those described and 

shown in the example in Chapter (3). The reduced plastic moment of 

each column is given by one of the following expressions, 

Mp(reduced) = ( Zp - C.n fy n < F (4.9) 

Mp(reduced) = 0 (1 - n) (E + n) fy n > F (4.10) 

where n = laxial load I /[(cross-sect. area).(yield stress»), 
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Zp = plastic section modulus. 

The expressions apply equally to both tensile and compressive axial 

forces in the columns. The constants C, 0, E and F differ for each 

of the sections listed in the BCSA Handbook. 

The process of iteration terminates for each mechanism when 

the assumed load factor (used to reduce the plastic moment 

capacities of the columns) is within a suitable tolerance of the 

calculated collapse load factor. It was found that oscillation 

occurred between collapse mechanisms when all the work equations 

were set up simultaneously at a given (assumed) load factor. This 

was due to certain mechanisms giving widely different values for 

the collapse load. To overcome this problem, the collapse load was 

calculated by iteration for EACH mechanism in turn. 

The lowest calculated value of the collapse load of each 

mechanism is compared with other mechanisms. Simple beam mechanisms 

are calculated directly for each member, figure (4.13). In this 

manner, the lowest rigid-plastic collapse load is obtained very 

rapidly. 

Four examples are shown in figures (4.1S) to (4.1B) using the 

proposed procedure to estimate the rigid-plastic collapse load 

factor. Accurate computer analyses for the same frames are shown 

alongside for comparison. It can be seen that the proposed collapse 

mechanisms are almost identical to accurate results. A number of 

frames have been shown primarily to demonstrate the application to 

irregular and unusual plane frames. 
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A maximum error of 2.5% was found for the fifteen storey 

rectangular frame. The frame is subjected to variable wind loads 

and has different member yield stresses, and the proposal is 

programmed to deal with such frames. Figure (4.15) is taken from 

figure (2.7) Chapter (2), while figure (4.16) is taken from table 

(3.4), Chapter (3). Although strict accuracy is sacrificed for 

simplicity, the computing time for the fifteen storey building was 

a small proportion of that required for accurate computer analysis. 

In contrast to rectangular frames, figures (4.17) and (4.18) 

illustrate the application of the proposed method to irregular 

frames. This is achieved by introducing 'dummy' members so that the 

mechanisms shown in figure (4.4) to (4.14) are still valid. 'Dummy' 

sections are input as members with zero stiffness and moment 

capacity for the beams and columns. In both examples, the mechanism 

approach showed very good agreement with accurate computer 

analysis. 

As an illustration of the proposed method, consider figure 

(4.17). The reduced plastic moment capacities were calculated at a 

load level of 1.24 and are shown adjacent to the plastic hinges 

given in figure (4.17). From rigid-plastic theory, the work 

equation gives, 

Hinge moments 

Beams 

Columns 

[(493.4 x 15) + (262.6 x 6)] 9 

230.3 + 183.6 + (185.8 x 3) + 

227.9 + 300.9 + 163.1 ] e 

= 8976.6 9 

= 1663.2 e 

Total = 10639.8 9 
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External moments 

Wind load [(75 x 13) + (50 x 9) + (55 x 5)] a = 1700 a 

Vertical load [(320 x 4 x 2) + (180 x 4.5) + 

(340 x 8.5) + (150 x 4)] a = 6860 8 

Ap = 10639.8 a 
8560 a 

Total = 8560 a 

= 1.24 

It can be shown in a similar manner that other mechanisms have 

higher collapse loads and this is therefore the lowest value. 

4.5 Elastic critical load factor 

The determination of the elastic critical load, AC' is a 

relatively simple process but considerable emphasis has been given 

to the dangers of selecting higher buckling modes(50,73). It is 

proposed to adopt the approximate method of Williams(73). Although 

the methods of Wood(50) and Williams(73) are basically similar, the 

latter is most suitable for programming especially on 

micro-computers. A feature which makes this method attractive is 

that it guarantees convergence onto the lowest critical load. A 

brief account only of the work due to Williams is given here but a 

fuller explanation can be found in reference (73). 

Consider the equivalent single storey frame shown in figure 

(4.19 (a». It was shown by Williams that the lowest elastic 

critical load inevitably involves an antisymmetrical sway mode. 

Therefore, AC is given by an analysis of the antisymmetrical 

I 
1 

.1 
1 
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mode. It was assumed that for such mode, the beam rotations at both 

ends are equal and the slope-deflection equations give, 

where kbi = 6E. Ibi 
Lb 

(i = 1,2 ----- N) 

(4.11) 

Using the 'no-shear' stability functions 'n' and '0' for the 'i'th 

column shown in figure (4.19 (a», the column moments are given by, 

= (4.12) 

(4.13) 

where kci = E. Ici (i = 1,2 ----- N) 
--h-· 

I 

are the joint rotations for the upper 

and lower end of the 'i'th column respectively, 

Mci I and Mci2 are the bending moments for the upper 

and lower end of the 'i'th column r~spectively. 

As the calculations neglect the externally applied moment, 

equilibrium of the joints is obtained by summing the appropriate 

equations given from (4.11) to (4.13), and equating the sum to 

zero. As an example, consider the top storey (i=1). Equilibrium of 

the top joint, using equations (4.11) and (4.12) gives, 
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and equilibrium of the lower joint of the top storey, using 

equations (4.11) to (4.13) gives, 

The rotation, 9" for the top joint can be expressed in terms of 92 

• Substituting this into the lower joint gives 92 in terms of 93. 

The procedure can be repeated for the next storey. It has been 

verified by Williams that the above equations can be reduced to a 

general form given by, 

= 0 (i = 1,2 ----- N) (4.14) 

= 0 (4.15) 

where ai1-1 (i = 1,2 ----- N) 

(i = 1,2 ----- N) 

ci = ne i-1 • ke (i-1/ (i = 2,3 ----- N) 

For fixed base frames, kblN1-lI =CD, therefore equation (4.14) gives, 

since 8 N+ 1 = 0 (4.16) 

Equation (4.16) is satisfied only by aN = 0 or eN = o. Since eN * 0 

in the first sway mode, figure (4.19 (a», the condition for 

buckling to occur in this mode is given by aN = O. 



-126-

To avoid repeating all the terms above, the value of 'N' must be 

replaced by 'N-l' in equations (4.14) and (4.15) because the base 

is fixed. 

The procedure is reduced to determining, at a trial value of 

an assumed mul t iple of the loads, A , the signs of a j • These are 

given as, 

if aj > 0 (i = 1,2 N) (4.17) 

(i = 1,2 N) 

where ACl and AC2 are the first and second critical loads 

respectively. 

Equation (4.17) ensures that the lowest elastic critical load is 

found and avoids confusion with higher critical loads. In addition, 

Williams suggested checking the value of the determinant at every 

load level given by, 

(4.18) 

To illustrate the application of the method, consider the irregular 

four storey frame shown in figure (4.17). Using the procedure 

described above, the lowest elastic critical load is calculated as 

follows, 

load.A ~ a2 a3 at. d 

12 170.9 323.3 414.8 49.0 0.468 

13 169.3 312.0 389.0 -560.9 1.038 

12.13 170.7 321.8 411.6 -1.57 -0.03 
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At a load factor of 12, all the 'aj' terms corresponding to the 

number of storeys and 'd' given by equation (4.18) were positive. 

When a load factor of 13 was used, one 'a,' was negative, thus 

satisfying the second of equation (4.17). Further iterations were 

performed with a load factor between 12 and 13 since only one 'aj , 

has been found. The elastic critical load was found to be 12.13. 

A plot of 'd' against the load factor is shown in figure 

(4.19 (b». Using an accurate non-linear elastic program of Majid 

and Anderson(4l), in conjunction with a modified Southwell plot, 

the lowest elastic critical load was found to be 11.91. The 

approximate analysis of Williams(73) is in excellent agreement with 

this value. 

4.6 Comparison with parametric studies and limitations 

The elastic critical loads and the rigid-plastic collapse 

loads given in Chapter (2) were obtained by accurate non-linear 

computer analyses. As the proposed method considers only a finite 

number of rigid-plastic mechanisms based on assumed column axial 

forces, it is necessary to validate such proposals. At the same 

time, the lowest elastic critical load is calculated by the 

approximate method of Williams(73) to confirm its accuracy. 

A total of forty-three frames of varying rectangular 

configuration were examined in the parametric studies described in 

Chapter (2). The results will be compared with those obtained from 

the proposed method of calculating the rigid-plastic collapse load 

and the lowest elastic critical load factors. These results are 



-128-

shown in tables (4.3) and (4.4). Both accurate and approximate 

results are tabulated for Ap and Ac. The layout of the two 

tables are the same as that shown in Chapter (3). It is noted that 

the values are given to two significant figures and therefore the 

ratio of Ac/Ap may differ slightly from the values quoted in 

previous Chapters. 

The majority of values given by Williams' method overestimated 

the accurate answers by an average of 3%. Two results exceeded the 

accurate values by 13% and 7%. In both cases, this occurred for a 

ten storey, narrow bay width frame. This does not influence the 

predicted failure load significantly because Af is not sensitive 

to AC. For instance, in the two examples mentioned above, the 

resulting increases in Af given by equation (4.6), are less than 

one percent. 

The general overestimate of AC is due to the assumptions 

made in the physical approximation of the real structure. The 

results based on the equivalent single bay~~rame of figure 

(4.19 (a» are 'exact' but the behaviour in real terms differs 

somewhat from that of the equivalent frame. It was assumed that 

joint rotations are equal at each floor level and the beams bend in 

symmetrical double curvature. This is approximately true if the 

frame is subjected to horizontal loads only. Joint rotations for 

the real frame vary, particularly at the upper storey levels where 

vertical beam loading is significant in comparison with the 

horizontal loads. As a result, the stiffnesses for the equivalent 

single bay frame has'been overestimated. 
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The majority of results for the rigid-plastic collapse load 

indicate a maximum error of less than 1\. Only in three cases, was Ap 

overestimated by more than 1\, but the error did not exceed 3\. 

These results are indicated by a spot in table (4.3). The frames 

are relatively large and subject to maximum vertical loads. In such 

cases, strength would normally be the governing criterion in design 

under combined loading, so the proposed method is particularly 

suitable. However, the predicted failure load is still below A 

when these estimated values of AC and Ap given in table (4.3) 

are substituted into equation (4.6). Not surprisingly, the accurate 

value of Ap is given by the proposed method when the correct mode 

of collapse was identical or very similar in appearance to one of 

the finite number of selected mechanisms. 

It is emphasised that the axial forces used in the proposed 

method to evaluate the reduced plastic moment capacities of columns 

are approximate. In addition, when the assumed mode of collapse was 

not identical to the computer results, the latter revealed 

partially-plastic zones occurring at positions corresponding to 
~ 

those assumed in the proposed method. It is therefore not 

surprising that when the approximate values of Ap were substituted 

into equation (4.6) to recalculate Af ' the results were in good 

agreement with accurate computer results. 

Certain limitations to the proposed simplified method of 

mechanisms are now discussed. It was assumed that local instability 

such as buckling of flanges does not occur. Therefore, sections 

ihat are unsuitable for plastic hinge action are excluded in the 

list of economic sections. Lateral instability of beams is unlikely 
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to happen due to restraint from floor slabs, and it is also assumed 

that individual columns are not susceptable to lateral torsional 

buckling. These criteria can be satisfied by selecting suitable 

Universal sections. 

The frames examined were rigid-jointed with fixed bases but 

pinned bases can similarly be incorporated, simply by amending the 

work equation relating to each of the proposed mechanisms shown in 

figures (4.4) to (4.14). However, it would be uneconomical for 

realistic frames of this nature to have pinned bases unless soil 

conditions are critical in design. 

Real pins occurring elsewhere cannot be disregarded, 

particularly at the top of roof columns to reduce excessively large 

bending moments caused by heavy loading (for example, due to 

plant). Indeed, real pins can occur anywhere within the structural 

framework. The proposed method is unable to deal with such cases. 

The concept of the sagging mid-span plastic hinge in unbraced 

construction is an idealisation that does not occur for uniformly 

distributed loading. A combination of wind and uniformly 

distributed loads causes the central hinge to form at some 

location, away from mid-span depending on the relative magnitude of 

end moments. However, it was shown by Horne and Morris(17) that 

iterative analysis to locate the exact position of the central 

hinge does not alter the load factor significantly if a mid-span 

hinge was assumed instead, and this assumption was used in the 

proposed method. 
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4.7 Design examples 

Two examples are described using the proposed optimization 

procedure. The first example is a seven storey three bay 

rectangular frame in which the initial design satisfies deflection 

limits at working load. This is one of the seven-storey frames used 

in the design studies in Chapter (2). A second example is given to 

illustrate the application of the method to an irregular frame that 

does not satisfy the usual deflection limit. In the initial design, 

column sections were chosen to resist only squashing, while the 

beam sections were selected without considering the higher design 

load factor applicable to vertical load alone. 

4.7.1 Seven storey three bay frame 

The sections are shown in figure (4.20) and grouped 

accordingly as shown. There are two beam and three column groups. 

Therefore, five cycles of analysis will be performed in each 

iteration. Initial design was such that the~frame was adequate with 

respect to lateral stiffness when subjected to unfactored 

horizontal loads. The frame was required to sustain the applied 

loads as shown. This form of loading corresponds to the ratio of 

maximum vertical to minimum horizontal wind loading as shown in 

table (4.3), and indicated by a triangular symbol. 

Using the proposed method, the initial design of the frame was 

found to have inadequate strength with ~=4.82, Ap=0.99 

and Af=0.88. This initial design is shown in figure (4.21 (b» 

along with the accurate results in figure (4.21 (a». Collapse 
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mechanisms of the accurate and proposed methods are in good 

agreement because the former mode has been identified and 

duplicated in the proposed procedure. The complete optimization 

procedure is summarised in table (4.5). The group numbers shown in 

figure (4.20) also serve as the order in which sections are changed 

in the optimization procedure. 

The roof member was selected from a section not listed in the 

economic section table (4.1) due to restriction on beam depth. 

Therefore, by replacing this group with an economic section of 

similar weight will result in an infinite value of A given by 

equation (4.5). The criterion for selection is however, dependant 

on the highest value of At. Table (4.5) shows that there is no 

significant increase in At because the critical collapse mechanism 

do not involve the roof beam. Similarly sections indicated by group 

"4" did not affect the rigid-plastic collapse load in the first 

iteration. This is apparent from the table where the values 

of Ac ' Ap and At are unchanged in that cycle of analysis. 

Comparing groups "2", "3" and "5" in the fj.rst iteration showed 

that the best action to cause a significant rise in the ultimate 

strength would be to replace group "2". As the resulting value of At 

was less than the minimum design load, a second iteration was 

performed. 

The 'strengthened' design is converted into an initial design 

for the second iteration. Proceeding in a similar manner as the 

first iteration, increasing group "5" gives the highest rate of 

change of the failure load to the total weight. Furthermore, the 

predicted failure load is now greater than 1.00 and the procedure 
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is terminated. This final design similarly gave the highest value 

of Ap. This is some 8.5\ above the initial design in the second 

iteration and a 16\ increase from the inadequate design in the 

first iteration. The predicted failure load was found to have risen 

by the same amount. The total weight of the final design was 

increased by less than 8\ compared with the original unsatisfactory 

design. 

In comparison with accurate non-linear elasto-plastic computer 

analysis(41), the final design was found to possess adequate 

strength with Af =1.00 while the approximate proposal 

gave Af=1.02, an overestimate of only 2\ of the 'exact' result. 

However, the rigid-plastic collapse load was identical even though 

the collapse mode was dissimilar. Both modes of collapse are shown 

in figures (4.21 (c» and (4.21 (d», obtained by an accurate and 

the proposed method of analysis respectively. Values shown in 

figure (4.21 (d» are the reduced plastic moment capacities of the 

appropriate final sections calculated at a load factor of 1.15. 

It is noticed that the accurate collapse mechanism in the final 

design corresponds to the proposed mechanism shown in figure (4.6) 

but the latter was not selected as the critical collapse mode. To 

ensure that a wrong mechanism has not been selected from the finite 

number shown in figures (4.4) to (4.14), it is proposed to 

illustrate the reason by calculating the collapse load of the 

mechanism given by figure (4.6). This is performed as follows, 

a)At unit load factor, the approximate axial force in the 

windward column of the second storey is 1015.9 KN. 
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b)At the same load level, the approximate axial forces in all 

the ground floor columns are, from left to right, 1189.6, 

2498.8, 2498.8 and 1309.2 RN. respectively. 

c)Assume a load factor of 1.15 [corresponding to the collapse 

load shown in figure (4.21 (d»] to evaluate the reduced 

plastic moment capacities of the appropriate columns. 

d)The moment capacity for the second storey windward column is 

4295 RN.cm., while the ground floor columns are shown in 

figure (4.21 (d» as 2301, 11170, 11170 and 904 RN.cm. from 

left to right respectively. 

These values are determined from equations (4.9) and (4.10) 

at a load factor of 1.15. 

e)Full plastic moment capacity of the beams were assumed. 

The values for each section in the group is 26256 RN.cm. 

f)The external work due to the wind and vertical forces is 

determined as follows, 

[8.445 + (6 x 16.89)] x 375.9 + (190.6 x 375).9 

= 112644.4 9 RN.cm. 

g)Hence, 

Ap= sum of plastic hinge moments • hinge rotations 
112644.4 9 

= [(3x26256) + 4295 + 2301 + (2x904) + (4xl1170)}.9 
112644.4 9 

= 1.17 
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This shows that the proposed method calculates the collapse load 

for the mechanism in figure (4.21 (c» as (say an average of) 1.16, 

and therefore it is not regarded as critical. The error arises from 

the assumption in the approximate method used to determine axial 

forces in the columns, but it can be seen that this is 

insignificant. It can similarly be demonstrated that the roof 

member collapses by a beam-type mechanism at a load factor of 1.16. 

Therefore, the collapse mechanism shown in figure (4.21 (d» is the 

most critical according to the proposed method. 

4.7.2 Irregular four storey three bay frame 

An example of the optimization procedure applied to an 

irregular plane frame will now be described. The initial sections 

have been selected randomly and tabulated in table (4.6). It is 

required to sustain the applied vertical and horizontal loads given 

in figure (4.22 (b». There are two beam and four column groups, 

thereby requiring a total of six cycles to be executed in each 
~ 

iteration. 

The member groups are denoted by integers shown on each 

section in figure (4.22 (a». Note that two plots are shown in this 

figure to illustrate the variation of the rigid-plastic collapse 

loads and the predicted failure loads at each cycle of every 

iteration. The vertical axis denotes the load factor and the 

abscissa represents the number of iterations. 

The vertical axis shown in figure (4.22 (b» represents the 

total weight of the frame. It is noted that each circle shown in 
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the figure correspond to the variation of the load factor given in 

figure (4.22 (a». The unknown initial design is indicated in both 

figures (4.22 (a» and (4.22 (b». It is seen that the number of 

iterations on the horizontal axis is shown in ascending order from 

1 onwards to represent that particular iteration. 

As in the first example, the numbers shown by the groups also 

serve as the order of member group changes. Each circle on both 

figures represents a member group change corresponding to the 

numbered sequence shown in figure (4.22 (a». A dark spot indicated 

in each iteration represents the highest coefficient, A , for the 

particular iteration. It follows that this dark spot forms the 

initial design in the next iteration if the design load has not 

been attained. 

The critical collapse mechanisms corresponding to these spots are 

shown in figure (4.22 (b». The circles have been joined to 

represent the variation of Af and Ap as member groups are changed 

and analysed. Their corresponding total weights are similarly 

joined for each cycle. 

Consider the initial iteration. The initial design developed a 

beam-type collapse of the longer middle span as the critical 

mechanism. This corresponds to the highest rate of change of the 

failure load to the total weight of the frame. Consequently, this 

forms the basis for the first iteration. The critical mechanism is 

shown at the top of the plot in figure (4.22 (b». 

In the first 2 iterations, group "2" was increased by as many 

sections because it was most economical. In the first iteration, 
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the mechanism was a simple beam collapse of the same member as the 

initial critical design. The critical collapse mechanism in the 

second iteration is given by figure (4.12). 

In successive iterations, group "3" was increased once and 

group "6" twice. Their respective critical collapse modes are shown 

in figure (4.22 (b». Finally, group "2" was increased again in 

order to satisfy the minimum design load. 

It is noticed that Af was 1.00 when group "2" was increased 

in the fifth iteration. The reason for not selecting group "2" as 

the initial design in the next iteration was due to the criterion 

placed upon A given by equation (4.5). Instead, group "6" was 

chosen because it gave the highest rate of change of the failure 

load to the total weight. Had group "2" been selected in preference 

to group "6", the procedure would have been stopped at the end of 

the fifth iteration. 

Not surprisingly, both the fifth and sixth iteration collapsed 

by beam-type mechanisms since the column group "6", which was 

increased previously, is independant of such collapse. A slight 

increase in Ac was noted in the final design. Increasing the beam 

group "2" in the last iteration caused the roof beam to collapse by 

a beam-type mechanism. 

In such circumstances, it is tempting to ignore the sixth 

design but the total weight was just 1% above the fifth design. The 

total frame weight for these two designs are indicated in figure 

(4.22 (b», and the designer could select either. As the method is 
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approximate and the weights are so close, the writer would choose 

the sixth design. Such designs are likely to be close to the 

optimum. Sections for the sixth design is given in table (4.7). 

An accurate computer result showed a simple plastic roof beam 

collapse at Ap =1.05. The proposed method similarly gave, 

Ap = 8 x 888.4 x 24 
180 x 900 

= 1.05 

The non-linear elasto-plastic failure load was 1.04 while the 

approximate equation gave Af =1.01. The lowest elastic critical 

load factor of this final design was 12.00. 

It is interesting to compare the sway deflections due to 

unfactored horizontal loads only of the initial design and the 

final design. Unfactored wind loads were calculated by dividing the 

values in figure (4.22 (b» by 1.2. Linear elastic analysis showed 

the lateral sway from roof to ground level of 1/369, 1/184, 1/208 

and 1/238 of each storey for the initial design, and 1/587, 1/311, 

1/292 and 1/358 for the final design. This suggests that an 

efficient design can be generated even from an initial design which 

is totally unacceptable in terms of both strength and stiffness. 
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4.8 Conclusion 

An approximate optimization procedure has been shown which 

considers, in a series of iterations, the most economical increases 

in section to achieve a minimum weight design. No specialized 

mathematical programming techniques were required because there is 

only one constraint. The procedure makes use of the rate of change 

of the failure load to the total weight as each member group is 

increased successively. The problem is to determine the highest 

rate of change in an iteration, until the design load is satisfied. 

Each member in the frame may be specified as an individual 

group in the proposed method but this is unusual for the type of 

frames examined. The method is particularly suitable for 

programming on desk-top computers. Examples of the final design 

were compared and shown to be in good agreement with accurate 

computer results. The proposed method can be used on frames that 

are designed by the Merchant-Rankine approach simply by amending 

the expression for the failure load. 

A simple procedure which determines the rigid-plastic collapse 

load .factor by the method of combination of mechanisms was shown to 

estimate very accurately the true plastic collapse load of plane 

rigid-jointed unbraced frameworks. The approximation depends only 

on a limited number of collapse modes to establish the lowest 

value. Several examples of rectangular and non-rectangular frames 

were examined and these showed excellent agreement with accurate 

computer results for the rigid-plastic collapse load. 
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A further validation exercise on forty-three rectangular 

frames also provided generally good agreement in Ap' with only one 

frame exceeding 2\ but less than 3\ of the result from accurate 

analysis. The error was due to an inaccurate assessment of the 

axial forces in the proposed method. In all cases, the error for Ap 

was negligible as a result of close representations of the true 

collapse mechanisms shown by the computer analysis. 

Particular attention was given to the possible occurrence of 

high column axial loads, variable wind loads and member yield 

stresses which are encountered in practice. The proposal has 

included such features in the analysis procedure and has been shown 

to estimate satisfactorily Ap for a fifteen storey rectangular 

building. In comparison with accurate computer analysis, the 

computing time and storage was reduced dramatically. 

The lowest value of Ap obtained by the proposed method of 

finite mechanisms was used in conjunction with the lowest elastic 

critical load to estimate the failure load~The method of 

evaluating AC was based on an equivalent single bay frame. This is 

very similar to the method proposed in Design 

Recommendations(54,55) but has the advantage of guaranteeing 

convergence onto the lowest critical load. The adopted method for 

calculating AC due to Williams(73) provides a convenient 

technique for programming, especially on desk-top computers. The 

method has also been verified in this Chapter but the approximate 

failure load is not sensitive to relatively large changes in AC. 

For the majority of frames examined, an average overestimate of AC 

by about 3\ was found when compared with accurate results. This 
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does not cause any significant variation of the failure load given 

in equation (4.6). 

Two examples were described. In the first example, a seven 

storey frame was shown to have inadequate strength initially but 

satisfied the usual deflection limits. Using the proposed 

procedure, two increases in member groups were sufficient to attain 

the desired load level. The rigid-plastic collapse load was shown 

to provide good agreement with accurate computer results even 

though the mode of collapse was different. Manual calculations 

showed the true collapse mechanism to have a collapse load which 

differed by less than 1\ from the mechanism selected by the 

proposed method. The difference was due to the approximate method 

used to estimate the axial forces in the columns in the proposed 

method. 

The second example of an irregular frame shows that a 

completely unacceptable initial design can be used to generate an 

acceptable minimum weight design. The strength was gradually built 

up by selecting the most economic group to change in each 

iteration. Several iterations were required to obtain a 

satisfactory collapse load. The final design was compared with 

accurate computer analysis and the results showed good agreement in 

both the failure load and the rigid-plastic collapse load. 

Exact elasto-plastic optimum design of frames has never been 

attempted due to excessive computing time but the proposed method 

has shown that an approximate solution can be obtained with little 

loss in accuracy. However, a final check could be made by one 
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accurate non-linear elasto-plastic analysis, in case of concern 

over the accuracy of the proposed method. 
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SECTION 
Zp Ix 

!cm3 ) (cm4 ) 

205 x 102 x 22 261.9 2867 

305 x 102 x 25 337. 8 4387 

305 x 102 x 28 407.2 5421 

356 x 127 x 33 539.8 8200 

406 x 140 x 39 720.8 12452 

406 x 140 x 46 888.4 15647 

457 x 152 x 52 1094 21345 

457 x 152 x 60 1284 25464 

457 x 191 x 67 1471 29401 

457 x 19 I x 74 1657 33388 

533 x 210 x 82 2056 47491 

~/ 

533 X 210 x 92 2366 55353 

610 x 229 x 101 2882 75720 

610 x 229 x 113 3288 87431 

686 x 254 x 125 3996 118003 

686 x 254 x 140 4560 136276 

TABLE 4.1 ECONOMIC BEAM SECTIONS 



SECT ION 
Zp Ix 

(cm3 ) !cm4 ) 

152 x 152 x 30 247.1 1742 

152 x 152 x 37 310.1 2218 

203 x 203 x 52 568. I 5263 

203 x 203 x 60 652.0 6088 

203 x 203 x 71 802.4 7647 

254 x 254 x 73 988.6 11360 

254 x 254 x 89 1228 14307 

254 x 254 x 107 1485 17510 

305 x 305 x 118 1953 27601 

305 x 305 x 137 2298 32838 

356 x 368 x 153 2964 48525 

~ 

356 x 368 x 177 3457 57153 

356 X 368 x 202 3977 66307 

TABLE 4.2 ECONOMIC COLUMN SECTIONS 



Min. vertical 
Fram:: Exact storey 
x bay A A c p 

4 x 2W 10.50 1.15 

4 x 2N 15.21 1.34 

4 x 3W 

4 x 3N 

4 x 4W 

4 x 4N 

4 x SW 5.89 1.10 

4 x 5N 6.77 1. 27 

7 x 2W 14.73 1.15 

7 x 2N 23.52 1.42 

7 x 3W 

7 x 3N 

7 x 4W 

7 x 4N 

7 x SW 5.33 1.05 

7 x 5N 7.70 1. 33 

10 x 2W 17.61 1.15 

10 x 2N 21.13 1.42 

10 x 3W 

10 x 3N 

10 x 4W 7.37 1.12 

10 x 4N 10.98 1.33 

W - Bay width 7500 

N = Bay width 5000 

: Max. wind 

Proposed 

A A c p 

10.54 1.15 

15.38 1.34 

6.20 1.11 

6.95 1.27 

15.01 1.15 

24.27 1.43 

5.26 1.06 

7.73 1.34 

18.40 1.15 

24.01 1.43 

7.43 1.12 

11.33 1.34 

Max. vertical : Min. wind 

Exact Proposed 

A A A A c p c P 

6.43 1.12 6.71 1.13 

8.08 1.23 8.36 1.23 

5.95 1.13 6.14 1.14 

6.43 1.20 6.69 1.21 

5.63 1.14 5.83 1.14 

3.53 1.06 3.57 1.06 

5.48 1.15 5.64 1.15 

3.46 1.09 3.49 1.09 

6.25 1.10 6.33 1.11 

9.81 1.23 10.08 1.23 

4.70 0.99 4.82 0.99 

6.19 1.17 6.23 1.17 

4.85 1.08 4.97 1.10 

4.62 1.12 4.69 1.12 

4.75 1.09 4.87 1.12 

4.58 1.15 4.64 1.16 

6.75 1.12 6.89 1.13 

9.74 1.21 10.08 1.21 

4.98 1.07 5.03 1.09 

6.81 1.10 7.03 1.10 

3.99 1.03 4.02 1.03 

5~13 1.12 5.21 1.12 

Table 4.3 COmparison with parametric studies under extrem:: loading. 

• 
• 

• 



Frame Vertical Wind load Exact Proposed 

storey x bay load A A AC c p 

4 x 2W Max. Inter. 6.46 1.11 6.72 

4 x 3W Max. Max. 5.96 1.04 6.15 

4 x SW Max. Max. 5.47 1.12 5.64 

7 x 2W Max. Inter. 6.75 1.10 6.79 

7 x SW Max. Max. 4.69 1.01 4.79 

lOx 2W Max. Inter. 9.29 1.15 9.60 

10 x 3W Max. Max. 7.33 1.14 7.42 

10 x 2N Max. Inter. 6.72 1.16 7.19 

10 x 2W Max. Inter. 8.81 1.15 9.10 

W = Bay width 7500 

N • Bay width 5000 

TABLE-4.4 COMPARISON WITH PARAMETRIC STUDIES UNDER 
VARIOUS LOADING 

A 
p 

1.11 

1.04 

1.12 

1.10 

1.01 

1.16 

1.15 

1.16 

1.16 

i ' 



TOTAL A A SECTION INERTIA 
CYCLE WEIGHT AC Ap eqn.(4.5) Mech. 

(kn· ) 
cqn.(46) 

x 10-3 PREVIOUS CURRENT 

Initial 
13320 4.82 0.99 0.88 C FIG. (420) desinn - --

I 13320 482 0.99 0.88 0 C 6487 8200 
-

,.....- z 2 14130 5.55 1.06 0.95 0093 S 15647 21345 
0 -
1-
<i 3 er: 13860 4.95 1.02 0.91 0058 C 5263 6088 

w 
I-- 4 13425 4.82 0.99 0.88 0 C 1742 2218 

5 13567.5 5.21 1.00 0.90 0.078 C 17510 27601 

~ In itial 14130 5.55 1.06 0·95 S 
Group -2-

des inn -- - replaced 

C'\J I 14130 555 106 0.95 0 S 6487 8200 

z 
0 2 15210 5.92 1.06 0.96 0.007 S 21345 25464 
-
I-
« 

3 er: 14670 576 1.10 099 0.069 S 5263 6088 
w 
1:: 

4 14235 5.55 106 0.95 0 / S 1742 2218 

5 14377.5 5.82 I. 15 1.02 0.290 C 17510 27601 --

TABLE 4. 5 EXAMPLE I OPTIMIZATION PROCEDURE 

7 STOREY 3 BAY FRAME 



l' 
E 
0 
~ 

.!) 

-
0 
l' '-
~ 

> 
c 
:J 

l' c:: 
E 
::J -
0 
u 

-
0 
l' '-
~ 
> 
c:: 
:J 

l' E 
0 
~ 

.!) 

-
0 
l' '-
~ 

> .-
c:: 
:J 

l' c:: 
E 
::J 

0 
u 

-
0 

"' '-
~ 
> 
c:: 
:J 

Storey Bay 1 Bay 2 Bay 3 

4 406xl4Ox46 

3 457xl52x52 

2 457xl52x52 406xl4Ox46 

1 457xl52x52 457xl52x52 406x14Ox46 

Storey Column l· Column 2 Column 3 Column 4 

4 203x203x71 203x203x7l 

3 203x203x71 203x203x71 

2 254x254x73 254x254x107 254x254x73 

1 254x254x73 305x305xll8 254x254x73 203x203x71 

fy = 240 N/mm2 Total weight"" 6689 Kg. 

TABLE 4.6 Initial sections of 4-storey 3-bay irregular frame 

Storey Bay 1 

4 406xl40x46 

3 533x2l0x82 

2 533x210x82 

1 533x2l0x82 

Storey Column 1 

4 254x254x73 

3 254x254x73 

2 254x254x73 

1 254x254x73 

2 
E "" 206 KN/mm 

Bay 2 Bay 3 

406xl40x46 

533x2l0x82 406xl40x46 

Column 2 Column 3 Column 4 

254x254x73 

254x254x73 

254x254x107 254x254x73 

356x368xl53 254x254x73 254x254x73 

fy "" 240 N/mm2 Total weight"" 7896 Kg. 

TABLE 4.7 Final sections of a 4-storey 3-bay irregular frame 
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CHAPTER 5 (PART 1) 

AN APPROXIMATE DETERMINATION OF THE FAILURE LOAD 

OF SINGLE STOREY FRAMES 

5.1 Introduction 

As the deterioration of stiffness due to plasticity and 

compressive axial forces is a major concern in the design of 

unbraced multi-storey steel frames, computer methods are inevitably 

the most appropriate. Several such methods have been reviewed in 

Chapter (1). However, manual methods may be preferred for the 

reasons given in that Chapter. 

Both the European Recommendations for Steel Construction and 

the draft for BS5950 allow the use of the empirical 

Merchant-Rankine formula as a hand method, but this does not find 

favour with all engineers because of its intuitive nature. In 

addition, there is a certain class of single storey portals that 

are subjected to exceptionally high horizontal wind loads and 

compressive axial forces which render both the simple plastic 

method and the Merchant-Rankine approach unsuitable for design. 

The method described in this Chapter attempts to trace the 

development of plastic hinges under proportional increments of 

loading. The position and load factor at which these plastic hinges 

form are located using a step-by-step incremental analysis. 

Expressions are derived by utilising the slope-deflection method of 
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analysis to obtain the overall bending moment distribution of the 

frame. The analysis, which is necessarily iterative and more 

complicated than the Merchant-Rankine formula, is rendered suitable 

for hand calculation by the use of limited single bay sub-frames. 

Convergence is rapidly attained by interpolation from successive 

iterations. 

Secondary effects are incorporated by a combination of 

stability functions and fictitious horizontal loads. Initially, the 

proposed approach will be explained by reference to a single storey 

pinned base frame. Derivations of the relevant expressions are 

shown in the Appendix. In order to embark on the description, some 

simplified assumptions have to be made. 

5.2 Assumptions 

The basis of the method rests on a detailed examination of the 

simple pinned base portal shown in figure (5.1). For convenient 
~ 

comparison with computer analysis, the distributed beam load has 

been replaced by an equivalent central point load, AV. 

Column end loads are represented by A(RV), where R is a 

positive real value to simulate the applied load. The horizontal 

load is shown as AH, taken as a point load concentrated at the 

eaves level. The frame is proportionally loaded, identified by the 

common load factor, A , but it must be emphasised that real 

structures are subjected to pattern load fluctuations. The 

following assumptions will be used in obtaining the approximate 

failure load, 
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a)the reduction in beam stiffness due to compressive axial 

forces is negligible: 

b)the effect of wind loading on the distribution of axial force 

in the columns can be ignored when calculating the stiffness 

of these members. i.e. the frames are treated with equally 

compressed columns: 

c)sway due to axial shortening is neglected: 

d)the members are originally unstressed and the effects of 

lack-of-fit are neglected: 

e)out-of-plane displacements are prevented and failure occurs 

in the plane of the frame only: 

f)spread of plasticity and the effect of strain-hardening are 

neglected. 

In the last of this list, a member is assumed to possess its 

original stiffness rigidity, (El), except at cross-sections where 

the plastic moment of resistance, Mp, is developed. Plastic 

deformation is limited to hinge rotation, under constant Mp, in the 

same direction once started. Reversal of rotation is assumed not to 

occur under an increase in load. The moment-curvature and 

stress-strain relationships are shown in figures (5.2) and (5.3). 

\ 
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5.3 Analysis of pinned base single storey frame 

While the frame shown in figure (5.1) remains elastic, the 

bending moments at the possible plastic hinge positions may be 

obtained by slope-deflection analysis given by, 

MDC = MH + MV ( 5.1) 

MBC = MH - MV (5.2) 

MCD = MF - MV (5.3) 

where MH = wind moment = A1Hh/2 + Al(FV)6 

MV = vertical moment = A1 VL [1 - 2k' 

1 8 2k' + s (1-c2 ) k" 

MF = free moment = A1VL/4 

6 = horizontal eaves sway = A1Hh c:¥, 

(12Ek'/h) - [2 Ad FV ) c:¥, ] 

(FV) = base reaction = Al(RV) + A1V/ 2 

k' = Ib/L 

k" = Ic/h 

c:¥, = 1 + 6k' 
s (1-c2 ) k" 

Equations (5.1) to (5.3) have been obtained by considering two 

analyses. When the simple portal is subjected to the vertical 

loads, the moment MV is obtained. 

Wind moment, MH, is obtained by considering the portal 

subjected to AH, along with a fictitious load A[V+2(RV) 16/h. The 

latter allows for the 'p- 6' effect which result from the 

horizontal translation of the vertical loads when sway occurs. The 



-147-

analysis assumes the joint rotations at (B) and (D) to be equal. 

The stability functions's' and 'c' are calculated from the total 

value of A(FV). Bending moments are taken as positive when acting 

in a clockwise direction on the end of a member between two loaded 

points. 

The first plastic hinge is found when the larger in magnitude 

of MDC and MCD equals the full plastic moment of resistance, Mpb or 

Mpc(reduced) whichever is the lower. Due to the constraint imposed 

- on the minimum design load factor for plastic hinges to form in 

columns, it is usual to ensure that Mpc(reduced) > Mpb' The value 

of the load factor at this juncture is denoted by A1. Under a 

further increment of proportional loading, denoted by ~A , the 

plastic hinge is replaced by a real pin. As the first plastic hinge 

can occur either at (C), directly under the central point load or 

at the leeward end of the beam at (D), two incremental load cases 

need to be examined. 

5.3.1 First hinge at mid-span of the beam 

Let the second hinge form at a total load factor, A2 , such 

that A2 = A,+ ~A. When the first hinge forms, the frame is 

reduced to a statically determinate structure as shown in figure 

(5.4). Under the increment in mid-span vertical load, the bending 

moments are equal in magnitude but opposite in sign at (B) and (D) 

respectively, and are given by, 

~MDB (V) = - ~MBD (V) 

= ~AVL/4 (5.4) 
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When the frame is subjected to the loads shown by figure (5.4 (b», 

the incremental moment at (D) on member B-D is the same as the 

moment at (B), 

AMBO (H) 

= AA, H + Hl) .h/2 + A,2(FV) .v, (5.5) 

where Hl = fictitious horizontal load to allow for the increment 

of vertical load acting on the sway, 6 , existing in 

the frame at A,\ • 6 is shown in figure (5.4 (b» • 

Thus Hl = AA, ~ V. ( 6/h) 

~V = total vertical load on the frame at A, = 1. 

v, = incremental sway as shown in figure (5.4 (b» 

= ( AA, H + HI). h ex I 
(12Ek'/h) - [2 A,2 (FV) ex, 

A,2(FV) = TOTAL base reaction 

ex, = defined earlier but with the stability functions 

calculated based on the TOTAL load, A,2 • 

5.3.2 First hinge at leeward end of the beam 

Figure (5.5) represents the portal with a leeward hinge on the 

beam. Under incremental loading the leeward column can take no 

shear as it is pinned at both ends. It follows that an increment of 

vertical loading will cause no shear at joint (A). First-order 

analysis therefore gives the same result as for a simply-supported 

beam, 

AMCO (V) = A). VL/4 (5.6) 
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As the frame is now unsymmetrical, the increment of vertical 

loading will cause sway. It can be shown that this sway is equal to 

that due to a horizontal force, H3, applied at the eaves, 

H3 = 3 6.A VL 
l6h [ 1 + ~ k • /k "I ] ( 5.7) 

Thus, the incremental sway v2 can be regarded as due to four 

components of horizontal load, 

a)the increment of true horizontal load, 6.AH, 

b)the fictitious force, HI, as defined in (5.3.1), 

c)the fictitious force, H3, as given by equation (5.7), 

d)a further fictitious horizontal force, H2, which allows for 

the I p- 6. I moment due to the total vert ical load, "i. V, at A2 

acting on the incremental sway v2 ' as shown in figure (5.6), 
~ 

This term was not necessary in the calculation of vI in (5.3.1) 

because there, stability functions were included to allow for this 

effect. Here it is proposed that the deflection be calculated 

without their use. 

The horizontal load, H* , applied to calculate v2 is therefore 

given by, 
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H * = llAH + (Hl + H2 + H3) 

The deflection v2 is then, 

* 2 H .h (X2 
3Ek' 

where (X2 = 1 + (k' /k ") 

The resulting clockwise bending moment at (B) on member B-O is 

given by, 

llMSO(H) - (llAH + Hl + H2).h 

llMCD (H) = llMso (H)/2 

( 5.8 ) 

( 5.9) 

It is noted that a linear elastic analysis has been utilised 

but the fictitious loads provide sufficient influence on the 

bending moments to offset the reduced stiffness of the columns. As 

the frame sways under vertical load alone, H3 is included in the 
~ 

total real plus fictitious load, H* , used to calculate v2' It is, 

however, excluded in equation (5.8) because the bending moment llMco(V) 

calculated from equation (5.6) takes account of the freedom to 

sway that now exists at joint (0). 

The total moments at (B) or (C) are found by summing the 

incremental values to those existing at the first load factor. In 

this manner, the collapse load is found when the total moment with 

the larger magnitude equals Mpb or Mpc(reduced). 



-151-

The solution procedure for both the first and second load 

factor are cle'arly iterative but convergence is rapid as long as 

the frame is still stable as the load level approaches either Al 

or A2. However, cases may arise when the frame collapses after 

only one plastic hinge has formed. This is indicated by an 

inability to converge onto a value for the incremental sway, no 

matter how low the value of 6A. 

5.4 Verification of the method 

Comparison with a second order elasto-plastic computer 

analysis showed very good agreement, no matter whether the frame 

collapsed with one or two plastic hinges present. Four separate 

examples are shown. The two cases of the first, plastic hinge 

occurring at mid-span and at the leeward end of the beam are 

illustrated. The third example illustrates the possibility of a 

simple portal collapsing without having to develop a mechanism. The 

final example shows a frame that is subjected to high wind loads in 
~ 

comparison with the vertical loads. This is necessary before 

proceeding to the next stage of application to multi-storey frames. 

5.4.1 Example 1 

In the following examples, Young's modulus of elasticity is 

taken as 206 KN/mm2 and the yield stress as 240 N/mm 2 , unless 

otherwise stated. Consider the frame 'given by figure (5.1) with the 

following values, 



Beam (356 x 127 x 39 UB) 

I. mm 

Column (203 x 203 x 71 UC) 

Ie = 7647 x 101. 
I. mm 

Applied loads and dimensions 

v = 156 KN R = 0.5 
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Mpb = 156.86 KNm. 

Full Mpe = 192.58 KNm. 

H = 24 KN (FV) = 156 KN 

L = 6.00 metres h = 4.00 metres 

Hence k' = 16811. 7 mm3 and k" = 19117.5 mm3 

i) Let >.., = 0.977 

The stability functions's' and 'c' are determined based on 

equal column forces due to vertical load only. The ratio of axial 

to Euler load is given by, 

p = 0.977 x 156 x (4000)2 
rr2 x 206 x 7647 x 101. 

s(1-c2 ) = 2.9688 

= 0.01568 

Referring to Section (5.3) to evaluate the elastic bending moment 

distribution, 

a) MV = 0.977x156x6 
8 

= 71.78 KNm. 

2x16811.7 ] 
2x16811.7 + 2.9688x19117.5 

b) MF = 0.977 x 156 x 6 I 4 = 228.62 KNm. 
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To determine the wind and (P- ~) moments, two parameters must be 

calculated for· use in the term MH. These are, 

a 1 = 1 + 6 x 16811.7 = 2.777 
2.9688 x 19117.5 

6 = 0.977x24x4000x2.777 
(12x206x16811.7/4000) - (2xO.977x156x2.777) 

= 27.29 mm 

c) MH = (0.977x24x4/2) + (0.977x156x27.29/1000) 

= 51.06 KNm. 

It is found that the first plastic hinge occurs at mid-span as 

shown in figure (5.7 (a». Equations (5.1) to (5.3) give the total 

bending moment distribution at AI' 

MDC = 51.06 + 71.78 = 122.84 KNm. 

MSC = 51.06 - 71.78 = -20.72 KNm. 

MCD = 228.62 - 71.78 = 156.84 KNm. 

ii) Now let the increment of load, ~A = 0.114, resulting in the 

total load of 1.091. The stability functions are calculated based 

on the total load, 

() = 1.091 x 156 x (4000)2 
rr 2 x 206 x 7647 x 10/' 

s(1-c 2 ) = 2.9652 

= 0.0175 

Referring to Section (5.3.1) for the first hinge at mid-span, 
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d) Equation (5.4), 6MOB (V) = 0.114x156x6/4 

= 26.68 KNm. 

Incremental wind plus (P- 6) moments are obtained by calculating 

the necessary parameters, 

HI = 0.114 x (2x156) x 27.29/4000 = 0.243 KN 

Cc'1 = 1 + 6 x 16811.7 = 2.7794 
2.9652 x 19117.5 

VI = (0.114x24 + 0.243)x4000x2.7794 
(12x206x168ll.7/4000) - (2xl.091x156x2.7794) 

= 3.507 mm 

e) Equation (5.5), 6MOB (H) = (0.114x24 + 0.243)x4/2 + 

(1.091x156x3.507/1000) 

= 6.55 KNm. 

Total moments at A2 are determined by summing the existing moments 

at AI and 6A, 

MOC (T) = 122. 84 + 26. 68 + 6. 55 = 156. 07 KNm. = Mpb ) 

Mac(T) = -20.72 - 26.68 + 6.55 = -40.85 KNm. 

The second hinge is located at (D) and a collapse mechanism is now 

present at an ultimate load factor of 1.09. The total horizontal 

eaves sway is 30.80 mm. In comparison, accurate elasto-plastic 

computer analysis indicated failure occurred at At =1.09 with a 

total average sway of 30.88 mm. The manual method is able to trace 
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the development of the plastic hinges corresponding to that shown 

by accurate computer analysis. The final bending moment 

distribution is shown in figure (5.7 (b» with the accurate results 

given in brackets. 

5.4.2 Example 2 

The following values are used in this example, 

Beam (457 x 152 x 52 UB) 

Column (305 x 305 x 137 UC) 

Ie = 32838 x lOt. mmt. 

Ae = 17460 mm 2 

Applied loads and dimensions 

v = 156 KN R = 6.0 

Mpb = 262.56 KNm. 

Full Mpe = 551.52 KNm. 

H = 72 KN ( FV ) = 1014 KN 

L = 6.00 metres h = 4.00 metres 

Hence k' = 35575 mm J and k" = 82095 mm J 

Proceeding in exactly the same way as for the first example, 

i) Le tAl = O. 993 

p = 0.993 x 1014 x (4000{ 
n2 x 206 x 32838 x 104 . 

s(1-c2 ) = 2.9517 

::: 0.02413 



a) MV = 0.993x156x6 
8 

= 89.81 KNm. 
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[ 1 - 2x35575 ] 
2x35575 + 2.9517x82095 

b) MF = 0.993 x 156 x 6 / 4 = 232.36 KNm. 

a l = 1 + 6 x 35575 = 1.8809 
2.9517 x 82095 

6 = 0.993x72x4000x1.8809 
(12x206x35575/4000) - (2xO.993x1014x1.8809) 

= 29.56 mm 

c) MH = (O.993x72x4/2) + (O.993x1014x29.56/1000) 

= 172.75 KNm. 

It can be demonstrated that the first plastic hinge forms at the 

leeward end of the beam as shown in figure (5.8 (a». The total 

bending moment at AI is given by, 

MDC = 172.75 + 89.91 = 262.56 KNm. = Mpb 

MBC = 172.75 - 89.91 = 82.94 KNm. 

MCD = 232.36 - 89.91 = 142.55 KNm. 

The plastic hinge forms on the beam because the reduced plastic 

moment capacity of the column at unit load factor was 474.98 KNm, 

far in excess of the end moment MDC ' 

ii) Let the increment of load 6A = 0.156. Therefore, the total 

load is 1.149. The analysis described in Section (5.3.2) does not 

make use of stability functions to determine any of the parameters. 
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Instead, fictitious loads are evaluated to solve for v2. Referring 

to Section (5.3.2), 

Real wind load increment, l1A.H = 0.156 x 72 = 11.23 KN. 

Fictitious force, Hi = l1A.lv.(6/h) = 0.156x(2xl014)x29.56 
4000 

= 2.34 KN 

Fictitious force, H2 = A.2lV.(V2/h ) = 1.149x(2xl0l4)x v2 
4000 

= 0.5852 (v2 ) 

Fictitious force, H3 = 3xO.156x156x6000 r 1 ] 
16x4000 L 1 + (35575/82095) 

= 4.78 KN 

Total horizontal load, H* = [0.5852 (v2) + 18.35) KN 

where v 2 is given in millimetre units. Further calculations involve 

the expression given for v2' 

where ~2 = 1 + (35575/82095) = 1.4333 

substituting H* into v2 given above, 

2 
v2 = [0.5852 (v2) + 18.35] x (4000) x 1.4333 

3 x 206 x 35575 



-158-

Hence, V2 = 49.13 mm and H2 = 28.75 KN. 

d) Equation (5.6), ~MCO(V) = 0.156x156x6/4 

= 36.50 KNm. 

e) Equation (5.8), ~MBO(H) = (11.23+2.34+28.75)x4 

= 169.28 KNm. 

The total moments at A2 are obtained thus, 

MBO(T) = 82.94 + 169.28 = 252.22 KNm. 

Mco(T) = 142.55 + 36.50 + (169.28/2) 

= 263.69 KNm. 

This second hinge at mid-span transforms the portal into a 

mechanism at A2 =1.15 with a total sway deflection of (29.56 + 

49.13) = 78.69 mm. Accurate computer analysis indicated failure at 

a load factor of 1.15 and a total average sway of 78.30 mm. Values 

of computer bending moments are shown in bracket~'in figure 

(5.8 (b». 

5.4.3 Example 3 

Let the previous member properties be adopted as a third 

example. The dimensions are the same as example (2) but the applied 

loads are given below, 

V = 156 KN 

As example (2), 

R = 22.82 H = 90 KN 

k' = 35575 mm 3 and 

(FV) = 3638 KN 

k" = 82095 mm3 
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i) Let A, = 0.660 

p = 0 . 660 x 3638 x (4000 )2 

n2 x 206 x 32838 x 104 
= 0.0575 

s(l-c2 ) = 2.8845 

a) MV = 0.660x156x6 
8 

= 59.38 KNm. 

2x35575 1 
2x35575 + 2.8845x82095 

b) MF = 0.660 x 156 x 6 / 4 = 154.44 KNm. 

<X, = 1 + 6 x 35575 = 1. 9014 
2.8845 x 82095 

6 = 0.660x90x4000xl.9014 
(12x206x35575/4000) - (2xO.660x3638xl.9014) 

= 35.14 mm 

c) MH = (0.660x90x4/2) + (0.660x3638x35.14/1000) 

= 203.18 KNm. 

The total bending moment at Al is given by equations (5.1) to 

(5.3), 

MOC = 203.18 + 59.38 = 262.56 KNm. 

MBC = 203.18 - 59.38 = 143.80 KNm. 

Mco = 154.44 - 59.38 = 95.06 KNm. 

= Mpc ) 

Due to such high column axial load, the reduced plastic moment of 
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resistance is determined to ensure that the first plastic hinge 

does not form'in the column at this load level, 

n = 0.660 x 3638 = 0.573 > 0.219 
(240 x 174.6 I 10) 

Mpc(reduced) = 0.240 x [247.9(1-n) x (10.29+n») 

= 275.97 KNm > 

This confirms that the first plastic hinge develops on the beam 

rather than on the column. 

ii) Let ~A = 0.001 such that A2 = 0.661. Proceeding in exactly 

the same way as the second example to determine the real and 

fictitious loads, 

Real wind load increment, ~AH = 0.09 KN 

Fictitious force, Hl = 0.064 KN 

Fictitious force, H2 = 1.202 (v2 ) 

Fictitious force, H3 = 0.031 KN 

Total horizontal load, H* = [1.202 (v2) + 0.185) KN 

<X2 = 1.4333 

2 v2 = [1.202 (v2) + 0.185) x (4000) x 1.4333 
3 x 206 x 35575 

i e. v2 = - 0.76 mm 
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The result has shown that the frame is swaying in the opposite 

direction and H2 will therefore be negative for equilibrium to be 

maintained. In fact, for zero increment, v2 cannot be solved. 

computer analysis showed that failure has indeed occurred with 

one plastic hinge at a load factor of 0.66. The average sway at 

this load level was 35.20 mm compared with the manual calculated 

value of 35.14 mm. The total bending moment is shown in figure 

(5.9) along with the computer result given in brackets. 

5.4.4 Example 4 

This example demonstrates the applicability of the proposed 

method in dealing with portals that are subjected to relatively 

high ratios of horizontal to vertical loads in which it is likely 

that all the plastic hinges will form at the beam-column joints. 

European sections are used in this example with the following 

parameters, 

Beam (IPB 260) 

I b = 14920 x 104 mm 4 

2 Ab = 11840 mm 

Column (IPB 200) 

Ie = 5700 x 10
4 

mm 4 

Mpb = 308.00 KNm. 

Full Mpe = 154.00 KNm. 

Squash load, Npl- 1874.4 KN 

Applied loads and dimensions 

v = 102 KN R = 0.5 H = 104.3 KN (FV) = 102 KN 
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L = 10.00 metres 

Hence k' = 1"4920 mm3 

h = 2.70 metres 

and k" = 21111.1 mm3 

Young's modulus of elasticity, E = 210 KN/mm2 

Yield stress, f = 240 N/mm2 

i) Let A1 = 0.667 

European Recommendation(56) allow the calculations to be 

performed neglecting the reduction in plastic moment due to axial 

load when the ratio of applied load to the squash load of a column 

is less than a numerical value of (1/11). In this case, 

N/Npl = (O.667xl02)/1874.4 < 1/11 

where N = column axial force. In addition, because N is relatively 

low, the stability functions will be taken as 's'=4 and 'c'=0.5. 

Following the steps given in example (1), 

a) MV = 57.81 KNm. 

b) MF = 170.09 KNm. 

(X1= 2.4135 

6 = 33.34 mm 

c) MH = 96.19 KNm. 
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The total bending moment at a load factor of 0.667 is given by, 

MOC = 96.19 + 57.81 = 154.0 KNm. 

MBC = 96.19 - 57.81 = 38.38 KNm. 

Mco = 170.09 - 57.81 = 112.28 KNm. 

= M pc ) 

The first plastic hinge occurs at the top of the leeward column. 

With reference to the second example given earlier with an 

increment of ~A = 0.347 (total load = 1.014), 

N/Npl = (1. 014xl02) 11874.4 < 1/11 

Hence, the reduction in Mpc continues to be ignored. 

CC2 = 1.7067 

v2 = 75.82 mm and H2 = 5.81 KN 

~MCO(V) = 88.49 KNm. 

~MBO(H) = (36.19 + 0.87 + 5.81) x 2.7 = 115.75 KNm. 

The total bending moment is obtained.by summation of existing 

values at Al and this increment of 0.347, 

MBO(T) = 38.38 + 115.75 = 154.13 KNm. (= Mpc ) 

Mco(T) = 112.28 + 88.49 + (115.75/2) = 258.65 KNm. 

It can be seen that both plastic hinges developed in the columns. 

The bending moment is shown in figures (5.10 (a» and (5.10 (b». 
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The results were confirmed by accurate computer analysis which 

gave A1 = 0.67 and A2 = Af = 1.01. 

5.5 Design criteria of portals 

It is interesting at this stage to compare the failure loads 

calculated above for all the examples to those obtained by 

rigid-plastic theory. This permits an assessment of the provisions 

of Design Recommendations(55) for the plastic analysis of portal 

frames. 

Consider examples (1) and (2). The reduced plastic moment 

capacities of the columns are such that plastic hinges form in the 

beams, the critical mechanism being the combined mode. Therefore, 

the rigid-plastic collapse loads are obtained as follows, 

Example 1 

Ap = 4 x 156.86 = 1.11 
(24 x 4) + (156 x 3) 

% error = 1.11/1.09 = + 2% 

Example 2 (5.10) 

Ap = 4 x 262.56 = 1.39 
(72 x 4) + (156 x 3) 

% error = 1.39/1.15 = + 21% 

In the third example, the critical rigid-plastic collapse 

mechanism can be shown to be the sway mode [identical to figure 

(5.10 (b»]. The reduced plastic moment capacities of the columns· 
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were calculated at a load factor of 0.876 (ignoring the effect of 

horizontal loading), while the fourth example neglects the effect 

of axial forces in the columns as permitted by European 

Recommendation(56). The rigid-plastic collapse loads are therefore 

given by, 

Example 3 

Mpc(reduced) = 157.45 KNm. 

Ap = 2 x 157.45 
(90 x 4) 

% error = 0.88/0.66 = + 33% 

= 0.875 

Example 4 (5.11) 

2 x 154.00 
104.3 x 2.70 

% error = 1.09/1.01 = + 8% 

= 1.09 

The above comparisons indicate that for some frames the errors are 

unacceptable, and that simple plastic theory should not be used. 

In addition to the comparisons above, it is interesting to 

examine the eaves deflection at working load. This is easily 

determined by ignoring the second term in the denominator given by 6 

in Section (5.3), 

6 ( linear) = A Hh (X] (5.12) 
_ (12Ek I /h) 

In the examples, the linear elastic sway deflection is calculated 

at working load, by dividing the horizontal applied force at the 

eaves by a factor of 1.2. For comparison, accurate linear elastic 
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deflections are also shown below. With A = 1, the calculated and 

accurate eaves deflection are shown as, 

Example H equation( 5 .12) O(computer) o(computer) 
(KN) (mm) (mm) h 

1 20 21.24 21. 31 1/188 

2 60 20.38 20.50 1/195 (5.13) 

3 75 25.47 25.63 1/156 

4 86.92 40.67 40.78 1/66 

It can be seen that the calculated values of the eaves deflection 

is in good agreement with computer results for all the examples. 

The sway in examples (1) and (2) would often be acceptable in 

practice although the minimum eaves deflection is not specified in 

Design Recommendations(55) for single storey frames. 

It is also interesting to point out that the criterion given 

in Design Recommendations(55) for sway stability was derived for a 

multi-bay single storey pinned base portal. The derivation excludes 

concentrated loads at the top or near the top of columns such as 

those due to crane systems or pipework (example, in structures for 

supporting chemical plant). In such cases, the criterion is 

inapplicable. The proposed method is able to estimate the ultimate 

load accurately without recourse to a second-order elasto-plastic 

computer analysis. 

In summary of the work presented above, it can be seen that 

for the examples considered the design of pinned base portals using 

the simple plastic theory can be unsafe by as much as 33%. 

Admittedly, this design is governed by squashing of the columns. 
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Pinned bases are still favoured because of the uncertainty of soil 

conditions in 'made-up' industrial sites. Cases can arise when 

engineers prefer to design intermediate portals at certain 

intervals to resist all the wind loads (figure 5.10 (c». 

Therefore, the last example is a real possibility that can occur 

for shallow, long span portals. The reason for doing this, is so 

that adjacent bays may be designed to sustain vertical loads alone. 

Such designs may lead to greater overall economy. Similarly, the 

stanchions may be omitted in certain frames, support being by 

valley beams. In this case, high axial loads are applied to the 

eaves of certain frames. Extreme cases of this are shown in 

examples (2) and (3). The proposed method is able to deal with such 

frames satisfa~torily without the need for 'exact' computer 

analysis. 
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CHAPTER 5 (PART 2) 

AN APPROXIMATE DETERMINATION OF THE FAILURE LOAD 

OF MULTI-STOREY FRAMES 

5.6 Analysis of limited frame 

The previous analysis has been extended to single bay 

multi-storey frames, making use of sub-frames. The method is 

applicable providing plastic hinges do not form in the columns. 

In earlier methods for elastic-plastic design (for example, 

Majid and Anderson, Anderson and Islam, Merchant-Rankine approach, 

etc.), it has been specified that columns do not develop hinge~ 

until the design load is reached. This is because of the 

deterioration of stiffness that results from such hinges. This 

restriction is retained here, and therefore the proposed analysis 
~' 

can be used in design. 

When plastic hinges form in the beams, it is assumed that 

failure occurs when two plastic hinges have formed in each of two 

consecutive floors. Wood(26) has described such behaviour as a 

tendency towards 'conversion' to chimneys. Failure occurs due to 

loss of restraint to the columns. In addition, the frames examined 

in Chapter (2) confirmed that such an assumption is justified. 

Whilst the frame is elastic, the sub-frames are as shown in 

figure (5.11). Under vertical loading, points of contraflexure are 



-169-

assumed to occur at the mid-height of each column, except those in 

the bottom storey. The analysis of the top storey is based on an 

intermediate sub-frame, but with the upper legs removed. 

The horizontal sways, 61 and 62 at each level are obtained 

from an analysis of a substitute Grinter frame. A program is 

available in Basic for use on desk-top computers. This makes 

allowance for the reduction of column stiffness due to compressive 

axial forces. The assumptions with regard to the Grinter frame has 

already been described. Incremental storey shears, which include 

both real and fictitious horizontal loads, are used to obtain the 

corresponding incremental sway deflections. The derivation can 

therefore, be based entirely on linear elastic analysis to obtain 

simplified expressions. However, it must be noted that the total 

vertical loads are used to determine the reduction in column 

stiffness at each increment of load. 

For an elastic intermediate sub-frame, the analysis under 

vertical loading is based on the limited frame shown in figure 

(5.11 (a». The bending moments resulting from the central vertical 

load, AV, are given by slope-deflection, 

MOC (V) = AVL [ 1 - k 1 = -M ( V ) (5.14) - BC 
8 K 

MSA(V) = A~L[3~2] = -MOE(V) (5.15) 

MSF (V) = A~L [~ ] = -MOG(V) (5.16) 

MCD (V) = A VL/ 4 - M DC ( V ) (5.17) 

where K = (3k1 + 3k 2 + k) , 
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and the suffices '1' and '2' refers to the upper and lower column 

respectively. 

Bending moments due to horizontal loads are determined from 

the limited frame shown in figure (5.11 (b» with 6, and 62 

evaluated in advance from an analysis of the Grinter frame at the 

corresponding load level. The wind moments at each level are 

similarly evaluated independently for the joint concerned, 

(5.18) 

MBA(H) = 2Ek2 [29B + 9A - 362 /h2 ] = MOE(H) (5.19) 

MBF(H) = - [ MBC(H) + MBA(H) J (5.20) 

where 

9 B = 2k,(6,/h,) + 2k2(6~/h2) + [( AHl.h, + A H2. h2 )/6Ej 
2k, + 2k2 + 6k 

9 A = 262 - 9B - A H2. h 2 
h"; l2Ek2 

Hl = sum of the real wind shear plus allowance c(or 'p- {1' 

effect of the upper storey 

= A.l H + AlV ( 6,/h, 

H2 = sum of the real wind shear plus allowance for 'p- {1' 

effect of the lower storey 

= AlH + AlV ( 62/h2 

H = total horizontal shear in a storey, 

V = sum of the column axial forces in a storey. 

As in the single storey frame, the first plastic hinge is found 

when the largest total moment due to combined vertical and 
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horizontal loading equals the full plastic moment of resistance of 

the beam. The value of the load factor is A,. Further increments 

of loading are denoted by 6A such that A2 = A, + 6A • In 

general, 

(5.21) 

Analysis of the frame commences at the top and proceed downwards to 

the base sub-frame by considering each floor level at a time. The 

bending moments given by the intermediate sub-frame from equations 

(5.14) to (5.20) are applicable to the top sub-frame by ignoring 

the terms corresponding to the upper storey (Le. k1 ,h, ,Hl etc.). 

As the assumption of a point of contraflexure at mid-height 

for the ground storey is grossly inaccurate, further expressions 

are derived. This makes use of the same principle as the 

intermediate sub-frame. With reference to the base sub-frame shown 

in figure (5.11 (a», the analysis under vertical loading alone is 

given by, 

MLK(V) = AVL [ 1 - ~ I J = -M JK (V) (5.22) 
8 

MJI (V) = AVL 
[ 2~2, ] 

= -MLN(V) (5.23) 
8 

M1J (V) = MJI (V) / 2 = -M NL (V) (5.24) 

where K I = ( 3k, + 2k2 + k ). 

The moment given by MKL(V) is similar to equation (5.17) while 

MJp(V) is obtained by considering equilibrium at joint (J). 
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The wind moments are similarly obtained for the base sub-frame 

shown in figure (5.11 (b», 

MJI (H) = 2Ek2 [29J - 362 /h2 

M 1J (H) = 2Ek2 [ 8 J - 362/h2 = MNL(H) 

where 8; = 2k, (6, Ih, ) + 6k 2 ( 62/h2) + (AHl.h, 16E) 
2k, + 4k2 + 6k 

and MLQ(H) is obtained from equilibrium at joint (L). 

(5.25) 

(5.26) 

(5.27) 

Iteration is necessary to determine the load level at which the 

first plastic hinge forms, but convergence is rapid. Derivations 

for pinned bases can similarly be obtained by slope-deflection but 

it was felt unnecessary because fixed bases are more usual for 

multi-storey frames, as discussed in Chapter (4). 

Under an increment of load, equations (5.14) to (5.27) may be 

used. For an elastic sub-frame, the load factor, A is replaced by 
~ 

the incremental load, f1A • An allowance for the previous 

deflection is included in the calculation of the incremental storey 

shears, f1AH1 and f1AH2. When a plastic hinge forms, several 

alternative positions need examining to derive expressions for the 

subsequent incremental analysis. 

5.6.1 Hinge at leeward end of the beam 

Under an increment of vertical load, f1AV, the intermediate 

storey is represented by the limited frame shown in figure 
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(5.12 (a». The column length is now assumed to equal the storey 

height with the far ends pinned. However, if the adjacent top or 

bottom sub-frames continue to remain elastic, then the earlier 

analysis given by equations (5.14) to (5.17) is applicable to those 

sub-frames. A system of distributing column end moments is assumed, 

to compensate for overlapping of the column legs. 

As the unsymmetrical sub-frame is prevented from swaying by 

the action of the forces Rl and R2, the analysis procedure is 

similar to a propped cantilever given by equation (5.7). The fixed 

end moment at joint (B) on member B-C is ( 6AVL/8) and the 

bending moments are given by slope-deflection as, 

6M SC (V) = 3 6A VL [ k - 1 ] (5.28) 
16 K" 

6MBA (V) = 36AVL [ k2 ] (5.29) 
16 K" 

6M co (V) = 6 AVL + 6M BC (V) (5.30) 
4 2 

where 

The fictitious forces, Rl and R2, are obtained by dividing the 

appropriate column moments at joint (B) by their storey height. The 

total fictitious shear is assumed to be the sum of Rl and R2. An 

average value is then used in the substitute frame analysis to 

allow for the increment of sway due to the unsymmetrical nature of 

the sub-frame. Thus to determine this sway in the sub-frame shown 

in figure (5.12), a force (Rl+R2)/2 is applied at (F) acting to the 

right, together with (Rl+R2)/2 at (A) acting to the left. 
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The average value of R has been adopted so that the 

approximate distribution of shear is confined to the particular 

sub-frame under consideration. If this is not done, an unbalanced 

quantity is transmitted to the lower sub-frames, giving rise to 

overestimates of sway. When consecutive sub-frames have a hinge, 

then the net value at the common joint is incorporated into the 

cumulative storey shears. Values of R are given for each of the 

cases as, 

R(intermediate) = 3 6 A. VL [ ~ + k2 J 
16K" h, h2 

R(base) = 36A.VL [ 3k, + 4k2] 
16 (3k, + 4k2 + 3k) h, h2 (5.31) 

R(double hinges)int. = 6)...VL [~ + ~J 2 (k, + k2 ) h, h2 

R(double hinges)base = 6A. VL [ ~ + ~J 2 (3k, + 4k2 ) h, h2 

Bending moments due to the incremental wind shears are 

evaluated by considering the limited frame shown in figure 

(5.12 (b». The member end moments are given by the usual 

slope-deflection equations, 

6MAB (H) = 2Ek 2 [2SA + SB - 3tl62/h21 (5.32) 

6M BA (H) = 2Ek 2( SA + 2S B 3662/h2 J (5.33) 

6M FB (H) = 2Ek, [2SF + 8 B 366, /h, I (5.34) 

6M BD (H) = 3EkSB (5.35) 

6M ED (H) = 2Ek 2[28 E + 80 - 3 662/h2 I (5.36) 

6 MOG (H) = 2Ek 1 [2S 0 + Se. - 3661 /h, J (5.37) 

6M Go (H) = 2Ek, [ 8 G + 2S o - 366, /h, J (5.38 ) 

.. 
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where LlO, and Ll0 2 are the sways due to the increment of 

horizontal loads from an analysis of the Grinter substitute frame. 

To determine the joint rotations, it is necessary to estimate 

the distribution of shear for each column length. Figure (5.12 (c» 

and (5.12 (d» depicts a limited frame, separated at the position 

of the hinge. The far ends of the columns are assumed fixed against 

rotation but free to displace horizontally and subjected to the 

shears Sand S The letter 'w' and 'L' denotes the windward and 

leeward columns respectively. 

Exact computer analyses have shown that the distribution of 

shear can be approximated by considering such a model to represent 

the behaviour in a real frame. The two assemblies are analysed 

separately such that the superimposed sub-frames satisfy 

equilibrium and compatibility. In the derivation, it will first be 

assumed that shear is constant over the two storey height of the 

sub-frame. With reference to figure (5.12 (d», equilibrium at 

joint (D) gives, 

MOE + MOG = 0 

Substituting the relevant slope-deflection equations and solving 

for the displacements gives, 

8 0 = ~ [h, + h2] 
2E k, + k2 

vD = SL . h2 [ h, + h2 + ~] 
4E k, + k2 3k 2 (5.39) 

vG = SL . h, [ h, + h2 + ~ J 
4E k, + k2 3k, 



-176-

The total sway over the two storeys is given by, 

VL(T) = vD + vG 

= §_ [( h, + h 2 )2 

U: k, + k2 
+ (5.40) 

In a similar analysis of figure (5.12 (c», the above expressions 

are obtained but with an extra stiffness term for the beam 

connected at joint (B). This is given by, 

SB = Sw [ h, + h2 

1 2E k, + k2 + 3k 

vB = Sw. h2 [ h, + h2 + ~ 
4E kl + k2 + 3k 3k, 

vF = Sw· h, [ h, + h2 + h, 
4E k, + k2 + 3k 3k, 

The total sway is the sum of vB and vF, 

vW(T) = vB + vF 

= Sw [(h, + h2 )2 

4E k, + k2+ 3k 
+ 

] 
J 

Equating the total sways given by (5.40) and (5.42) gives, 

(5.41) 

(5.42) 

where m = ratio of the bracket term given by equation (5.40) and 

(5.42). 

[ (h, + h 2 f 2 h~ 1 + ~ + 
Thus, m = k] + k ~ 3k1 3k 2 

[ (h, + h2 )2 + h~ + h2 

] -.:..:4. 
kl + k2 + 3k 3k, 3k 2 
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For compatibility of shear, 

ST = Sw + SL 

= SL (1 + m) 

Hence, 

Sl. = ST (5.43) 
( 1 + m) 

and Sw = Sr 
1 + (l/m) 

where ST is assumed to be the total shear for the upper and lower 

storeys. 

However, in practice it was decided that an alternative form 

to equation (5.43) be adopted. The reason is due to the fact that 

the wind shears are generally higher for the lower storey and 

therefore the values of Sw and SL at joints (A) and (E) should be 

proportioned appropriately. 

Let Sw and SL be the shears for the upper storey and Sw and 

SL represent the shears for the lower storey. Accurate computer 

analyses showed that the shear distribution can be estimated based 

on the relative stiffnesses of each assembly shown in figures 

(5.12 (c» and (5.12 (d». It is proposed that the distribution of 

shear for the upper storey be given by, 

Sw = (kl + k2 + 3k) S T (U) (5.44) 
(kl + k2 + 3k) + (kl + k z 

For the bottom storey, it is assumed that the sway displacements at 
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joints (B) and (D) are equal rather than considering sway 

compatibility over the two storeys. Therefore, equating the 

displacements, vB and vD, and redefining the parameter 'm' above 

gives, 

(5.45) 

In a similar form as equation (5.43), the shear distribution for 

the lower storey is given by, 

S' L 

S' w 

= ST(B) 
(1 + m) 

= 
1 + (l/m) 

where ST(U) = Sum of real and fictitious shears for the 

upper storey, 

ST(B) = Sum of real and fictitious shears for the 

lower storey. 

(5.46) 

The values of ST(U) and ST(B) are of the same form as the single 

storey pinned base portals described in Part (1) of this Chapter. 

The total shear comprises, 

a) real horizontal wind shear, t.).,H, 

b) H3 = fictitious shear to allow for the increment of vertical 

loading acting on the sway, 6(previous), existing in 

the frame at the previous load, 

= t.A''i.V [ 6(prev. )/h), 

c) H4 = fictitious shear to allow for the 'P- t.' effect due to 
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vertical loading acting on the total sway existing in 

the frame at the current load, 

= )..( total) l. V t.6/h. 

The value of H4 is not included in the calculation of deflections 

in the Grinter substitute frame analysis because the reduction in 

column stiffness due to axial forces has been taken into account. 

These values are determined for all increments of load and 

substituted into the appropriate wind shear term given in Section 

(5.6). 

In addition, the average value of R is included with the real 

incremental wind shear to evaluate the incremental sway deflections 

from the Grinter substitute frame analysis. It will be recalled 

that this force permits account to be taken of sway due to lack of 

symmetry under vertical loading. Accurate computer analyses 

indicated this to be a necessary step in order to obtain close 

estimates of sway deflections. However, after the incremental sway 

has been determined, R is excluded when calculating the member 

forces because the force H4 allows for the 'P- t., effect of the 

total vertical load on the incremental sway. 

The analysis for the joint rotations can now be determined 

from figure (5.12 (b». It is noted that the expressions for the 

rotations are similar to those of the elastic sub-frame given in 

Section (5.6). The incremental joint rotations required for use in 

equations (5.32) to (5.38) are given by, 

Ss = 2kl (t.61/h l ) + 2k2 (t.62 /h2 ) + (Sw.hl + Sw .h2 )/3E) 

2kl + 2~ + 3k (5.47) 
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SF = 2M1 - Ss - SW· h1 (5.48) 

~ 6Ek, 

SA = 2M2 - Ss - S' W . h2 (5.49) 

tG""" 6Ek 2 

So = 2k1 (661 /h1 ) + 2k2 (66 dh2 ) + [(SL .h, + SL • h2 )/3E] 
2k, + 2k2 (5.50) 

SG = 266, - So - SL. h, (5.51) 
~ ~ 

SE = 2M2 - So - S' .h2 (5.52) L 
"""h2 6Ek 2 

, 

where the incremental sways, ~6, and 66 2 are obtained from the 

Grinter substitute frame analysis: the appropriate beam stiffneis 

being reduced from 3kb to 0.75k b • 

The base sub-frame is similar to the above calculations. Under 

an increment of vertical loading, the bending moment is obtained, 

with due accourit of the base fixity, in a form similar to equations 

(5.28) to (5.30), 

~MJK (V) = 3 ~AVL [ 3k - 1 

1 
(5.53) 

16 3k, + 4k2 + 3k 

~MJI (V) = 3 ~AVL [ 4k2 ] (5.54) 
16 3k, + 4k2 + 3k 

~Mt<L(V) = ~AVL + ~MJK (V) (5.55) 
4 2 

The incremental moments due to horizontal loads for the base 

sub-frame are given for the windward assembly as, 

llMJK (H) = 3EkSJ (5.56) 

~MJ[ (H) = 2Ek2 [29J - 3 ~62/h2 ] (5.57) 
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where 9 J = 2kl (M! /hl ) + 6k 2 (M 2/h2 ) + (SW· hl/3E ) 
2k! + 4k2 + 3k 

9 r = 21101 - 9 J - Sw· h, 
h-;- 6Ek, 

For the leeward column, the bending moments are given by, 

llML N(H) = 2Ek 2 [29 L - 3M dh2 

llMNL (H) = 2Ek 2 [ 9 L - 3 M2/h2 'j 

where 9 L = 2kl (llOI /hl ) + 6k 2 (M2 /h2 ) 
2kl + 4k2 

9a = 21101 - 9 L - SL· h1 
hI 6Ek;" 

+ (SL·h,!3E) 

(5.58) 

(5.59) 

(5.60) 

(5.61) 

When the above calculations were performed, it was found that 

the bending moments at the ends of adjacent beams.' such as member 

F-G and A-E in figure (5.12 (b», were lower than computer results. 

Members F-G and A-E have been omitted in figure (5.12 (b» for 

clarity. It is recognised that the members F-G and A-E mayor may 

not have an existing pin. Therefore, it is proposed that the 

incremental moments at the column ends for the sub-frame under 

consideration be distributed to adjacent members in relation to 

their stiffnesses. 

The distribution of moment is performed for horizontal loading 

only. This is because the far ends of the columns (A), (E), (F), 
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(G) were assumed pinned under vertical loading, but capable of 

resisting moment under horizontal loading. Incremental end moments 

given by equations (5.32), (5.34), (5.36) and (5.38) are 

transferred to the beam and column members at joints (A), (F), (E) 

and (G) respectively. An identical distribution process applies to 

the base sub-frame when a leeward hinge is present. 

Consider a sub-frame such as that shown in figure (5.12 (b». 

If the adjacent upper sub-frame has a leeward hinge, i.e. a hinge 

at (G) on member F-G, then the windward moment distributed to beam 

F-G at (F) will be, 

lIMFG = lIM FS • [ 0.75 k ] 
k, + 0.75 k 

(5.62) 

where lIMFB = the incremental moment at the far end of the 

windward column given by equation (5.34), 

k, = adjacent column st iffness (le /h) immediately 

above member F-B, 

k = st iEfness (Ib/L) of beam F-G. 

It follows that the additional mid-span moment of member F-G is 

half the value of lIMFG The distributed moment to the leeward column 

immediately above member G-O at joint (0) is taken to equal in 

magnitude to lI~Dgiven by equation (5.38) but opposite in sign. 

The distribution of moments to an adjacent elastic upper 

sub-frame (i.e. no hinge at (G) on member F-G), is given by, 
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(5.63) 

The above distribution procedure is repeated for the adjacent lower 

sub-frame. Consequently, incremental moments are added or 

subtracted for each adjacent sub-frame as the calculations proceed 

from the top to the base level. 

5.6.2 Double beam hinges 

When double hinges are present, the procedure for determining 

the incremental bending moments are based on figure (5.13). A 

cantilever is assumed under an increment of vertical load alone. 

The anti-clockwise moment at joint (B) of member B-C is given by, 

l>MSC(V) = -l>?l.VL/2 (5.64) 

The analysis under horizontal loading takes the form shown in 

figure (5.13 (b». The principle is the same as that described for 

figure (5.12 (d» of a single column length extended over two 

storeys. 

The beam B-D is regarded as a pin-ended strut and therefore 

the storey shears may be assumed to be shared equally between the 

windward and leeward columns for both the upper and lower storeys, 

thus, 

s· w 

(5.65) 

= Sr(B)/2 
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Furthermore, the joint rotation at (F), (B) and (A) are assumed to 

be the same as ·the rotations at joints (C), (D) and (E). Therefore, 

equations (5.50), (5.51) and (5.52) are applicable with the 

condition given by equation (5.65). 

When double hinges occur on the beam for the base sub-frame, 

the procedure is identical to the above. Equation (5.60) and (5.61) 

may be used in this case to determine the incremental wind moments. 

It is unnecessary to evaluate the windward column moments for 

all the sub-frames because the combined bending moments are not 

critical for design. 

5.6.3 Hinge at mid-span of the beam 

When a central hinge forms, the rotational stiffness of the 

beam subjected to horizontal loading is unchanged. The analysis 

under an increment of vertical load alone is similar to the pinned 

base portal given in Section (5.3) in Part (1) of this Chapter. The. 

expression, however, include the contribution of the upper column 

to the total stiffness at the joint. From slope-deflection, the 

beam moment is given by equation (5.4) while the column moments 

are, 

= - /). A. VL [ k z ] = 
4 kl + k z 

(5.66) 

If the stiffness of the columns are identical, then the bending 

moments are shared equally at the joint. 
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Figure (5.14 (b» shows the sub-frame subjected to an 

increment of horizontal load, where Sw and SL are defined by 

equation (5.65). It is assumed that the joint rotations at (B) and 

(D) are equal and may be treated in the same way as an elastic 

limited frame. 

As the magnitude of shear is the same on each column, 

equations (5.18) and (5.20) derived for figure (5.11 (b» may be 

used in this case, the terms Hl and H2 being replaced by Sr(U) and 

Sr(B) respectively, 

=t.MEO(H) (5.67) 

= t.MOE (H) (5.68) 

= t.Muo(H) (5.69) 

(5.70) 

where 

Ss = 2k, (M, /h, ) + 2 k 2 (M 2 /h 2 ) + ([Sr(U).h, + Sr(B) .h 2 1/6E} , 
2k, + 2k2 + 6k , 

~ 

= 90 , 

9 F = 2t.6, - 9 B - Sr(U) .h, = Se. 
h, l2Ek, 

eA = 2M2 - 9s - SI(B) .h2 = 9E 
h2 l2Ek2 

Equation (5.66) can similarly be used for the base sub-frame, 

provided the base fixity is taken into account. Under an increment 

of vertical load alone, the bending moments for the base sub-frame 

can be shown as, 
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(5.71) 

(5.72) 

Similarly, equations (5.25) to (5.27) may be utilised for the 

base sub-frame under an increment of horizontal load. However, the 

joint rotations are given by, 

6 J = 2k, ( 66, Ih, ) + 6k 2(M2/h 2 ) + [ST(U).h,/6E] 
2k, + 4k2 + 6k 

= 6 L 

6 p = 266, - 6 J - ST (U) • hI = 6 Q 
h, 12Ekl 

The member end moments are given by equations (5.59) to (5.61). 
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5.7 Six storey single bay frame 

The frame shown in figure (5.15) has been designed by Anderson 

and Islam(72) to satisfy permissible sways of 1/200th of each 

storey. The loads shown on the frame are at unit load factor 

( ~ = 1). 

It was specified that plastic hinges should not form in the 

columns below the minimum design load factor of 1.36 under combined 

loading. The load factor was chosen in accordance with present-day 

practice in plastic design. This criterion is adopted here. 

It is required to trace the formation of plastic hinges and 

the load level at which they occur. Initially, a load factor is 

assumed for the elastic frame and storey deflections calculated 

from the Grinter substitute frame analysis. It is proposed that a 

plastic hinge be inserted when the estimated bending moment is 

within to.5% of the plastic moment of resistance of~any member. 
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i) Let A = 1. 239 

Values shown in the fourth column are calculated from the sway 

deflections obtained by an analysis of the Grinter substitute 

frame. The sway deflections are calculated with an allowance for 

the reduction of column stiffness due to compressive axial forces 

and therefore the terms in each storey listed in the fourth column 

are excluded in the Grinter frame analysis. It is however used in 

the manual calculation for member forces. The total shears are 

shown in the last column from the top to the base. 

level {5 'i.V (a) A'i.V({5/h) (b)A'i.H (a) + (b) 
(cm) (RN) (KN) (RN) (RN) 

i 0.697 192 0.474 13.010 13.484 

ii 1. 585 472 2.648 39.029 41.677 

Hi 1. 789 752 4.762 65.048 69.810 

iv 2.154 1032 7.869 91. 067 98.936 

v 1. 946 1312 9.038 117.086 126.124 

vi 1. 302 1592 7.338 143.105 150.443 
,.-/ 

The bending moments are calculated for the whole frame using the 

appropriate expressions at the given load of 1.239 from the top to 

the base sub-frame as follows, 
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Vertical load, M(V) Horizontal load, M(H) M(V) + M(H) 
I 

Level ( i) 

61 = 0 ,62 = 0.697 MCB = 9644 

(5.14) MCB= 8196 9 A = 9.439 x 10- 4 MBC = 12620 

(5.17) MBC = 12160 (5.18) MCB = 1448 MAB= -6748 

Level ( ii) 

61 = 0.697,62= 1. 585 

9 0 = 1.798 x 10- 3 MFE = 17229 

(5.14) MFE = 12164 9G = 3.410 x 10- 3 MOE = -7099 

(5.17) MEF = 18191 (5.18) Mr-E= 5065 MEF = 18191 

(5.15) MFJ= -6082 (5.19) MFJ = -4156 MFJ=-10238 

MFC = -6082 MFC = -909 MFC = -6991 

Level ( i ii) 

6, = 1. 585, 62= 1. 789 

9 G = 3.395 x 10-3 
MJH = 22682 

(5.14) MJH = 13120 9 K = 3.844 x 10- 3 MGH = -3558 

(5.17) MHJ = 17236 (5.18) MJH = 9562 MHJ~17236 

(5.15) MJN = -8966 (5.19) MJ N= -6414 MJN =-15380 

MJF = -4154 MJF = -3148 MJF = -7302 

The procedures for levels (iv) and (v) are identical to that shown 

by levels (ii) and (iii) applicable to an elastic intermediate 

sub-frame. The calculations as set out above give the overall 

bending moments for the top and intermediate sub-frames. 
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The last set of calculations are for the base sub-frame as follows, 

Vertical load, M(V) Horizontal load, M(H) M(V) + M(H) 

01= 1. 946, 02= 1. 302 MUT = 32529 

(5.22) MUT = 13616 9 s = 4.126 x 10-3 MST = 5297 

(5.17) MTU = 16739 (5.25) MUT = 18913 MTU = 16739 

(5.23) Mux= -5446 (5.26) Mux= -7739 Mux =-13185 

MUR = -8170 MUR =-11174 MUR =-19344 

(5.24) Mxu= -2723 (5.27 ) Mxu =-18733 Mxu =-21456 

The bending moment distribution at a load factor of 1.239 is shown 

in figure (5.17 (a». Three plastic hinges were located on the 

leeward end of beams G-J, K-N and P-R. As the leeward column 

moments are more critical for design than the windward columns, the 

bending moments of the former only are shown. 

Values shown in brackets are those from an accurate 

elasto-plastic computer analysis. It can be seen that both the load 

factor and position of the plastic hinges are in good agreement 

with computer results. 

To ensure that the moment capacities of the columns are not 

violated at this load level, the reduced plastic moment capacity of 

the columns were determined. As the lower of the two column length 

is subjected to higher combined axial force, only these columns are 

shown, 
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column axial force Mp(reduced) at A= 1.239 

F-J 308.666 13317 > 10238 

N-R 720.633 19877 > 15490 

u-x 1184.639 28900 > 21456 

ii) Le t t:,. A = O. 005 

Under an increment of load, it is required to incorporate the 

fictitious shears due to the increment of the mid-span load. In 

-
addition, the 'P- t:,., effect due to the previous sway existing at 

the load level of 1.239 must also be included. The values of Rl and 

R2 will be determined first followed by the latter fictitious 

force. 

For each of the limited frames with a leeward hinge, the 

values of Rl and R2 are given by half the value of R in the first 

of equation (5.31) applicable to an intermediate sub-frame. These 

are obtained as follows, 

sub-frame 0.5 x R [ equation (5.31) 

DFKN 0.5x3xO.005x140x700 [15.037 + 32.457J = 
16 x 69.847 350 350 

0.0892 

GJPR O. 5x3xO. 005x140x700 [32.457 + 32. 457J = 
16 x 95.407 350 350 

0.0893 

KNSU 0.5x3xO.005x140x700 [32.457 + 63.434] = 
16 x 132.268 350 350 

0.0952 
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Values of Rl and R2 are shown in figure (5.16 (a». The cumulative 

incremental storey shears have also been calculated and are shown 

in the figure. 

The fictitious forces due to the previous sway existing at the 

previous load level (i.e. Al = 1.239) are calculated as follows, 

level 6(previous) 6 A l.V [ 6(prev)/h 

i 0.697 0.0019 

ii 1. 585 0.0107 

iU 1.789 0.0192 

iv 2.154 0.0317 

v 1. 946 0.0365 

vi 1. 302 0.0296 

Therefore, the total applied shear needed to determine the 

incremental deflection is the sum of the real wind shear and the 

values calculated above, 

level l. Incremental shears 

i 0 + 0.0019 + 0.0525 = 0.0544 

ii 0.0892 + 0.0107 + 0.1575 = 0.2574 

iii 0.1785 + 0.0192 + 0.2625 = 0.4602 

iv 0.1845 + 0.0317 + 0.3675 = 0.5837 

v 0.0952 + 0.0365 + 0.4725 = 0.6042 

vi 0 + 0.0296 + 0.5775 = 0.6071 
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The resulting incremental deflections obtained from the Grinter 

substitute frame analysis and the associated values of storey 

shears can be tabulated as follows, 

level /::"6 /::"AlH lH3 

i 0.0049 0.0525 0.0019 

ii 0.0226 0.1575 0.0107 

iii 0.0354 0.2625 0.0192 

iv 0.0343 0.3675 0.0317 

v 0.0204 0.4725 0.0365 

vi 0.0077 0.5775 

where H3 = /::"A lV [ 6(previous)/h 

H4 = A ( total) l V [ M /h 1 

lH4 Sr(*) 

0.0033 0.0578 

0.0379 0.2061 

0.0946 0.3763 

0.1258 0.5251 

0.0951 0.6041 

It is noted that the fictitious force H4 is not included in the 

Grinter frame analysis because stability functions have been 

incorporated to take account of the reduction in column stiffness 

due to compressive axial forces. 
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It is noticed that the two uppermost sub-frames and the base 

sub-frame remain elastic, and therefore the procedure for 

calculating the incremental moments are identical to the one shown 

at the previous load factor except that incremental values of 

deflections and loadings are used instead. The procedure is as 

follows, 

Vertical, llM(V) Horizontal, llM(H) llM(V) + llM(H) 

Level ( i ) 

1161 = 0 , 116 2 = 0.0049 llMcs= 42 

(5.14) llMcs= 33 eA = 5.637 x 10-Cl II MBC = 51 

(5.17) II MBC = 51 ( 5 • 18) II MCB = 9 llMAB = -24 

Level ( ii) 

1161 = 0.0049,M 2= 0.0226 

eo = 1. 594 x 10-5 llMFE= 94 

(5.14) II MFE = 49 ee;. = 9.417 x 10- 5 
II M OE= -4 

(5.17 ) llMEF = 73 (5.18) llM FE = 45 llMEF = 73 

(5.15) llMFJ = -25 (5.19) II MF J = -43 ll~~J= -68 

II MFC = -24 II MFC = -2 II MFC = -26 
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As the next sub-frame has a leeward hinge, the expressions required 

for determining. the shear distribution and incremental moments are 

described in Section (5.6.1). 

Vertical, ~M(V) Horizontal, 6M(H) 6M(V) + 6M(H) 

Level (iii) 

Sr(U)= 0.2061, Sr(B)= 0.3763 

(5.44) Sw = 0.1457, SL = 0.0604 

(5.45) m = 1. 8890 

(5.46) S' w = 0.2461, S' L = 0.1303 

(5.47) 8e; = 6.593 x 10- 5 

(5.48) 8 D = 3.630 x 10-5 
~MGH= 31 

(5.49) 8 K = 1.153 x 10- 4 
~MHJ = 137 

(5.50) 8 J = 1.007 X 10- 4 
~MJF= 16 

(5.51) 8 F = 1. 727 X 10- 5 
6MJ N = -16 

(5.28 ) ~MGH= -62 (5.52) 8N = 9.042 x 10- 5 DISTRIBUTION 

(5.30) 6MHJ = 91 (5.32) 6M KG = -9 (5.63) ~MDE= 21 

(5.34) 6M DG = -35 .... ·6MFE = 22 

(5.35) ~MGH= 93 ~MEF= 0 

(5.36) 6MNJ = -30 (5.62) 6M KL = 4 

(5.37) 6M JF = 16 ~MLN= 2 

(5.38) ~MFJ= -37 ~MNR= 30 

The distribution of moments to adjacent member ends is as described 

in Section (5.6.1) shown at the bottom right-hand corner in the 

above calculations. Equation (5.63) is used for distributing the 

end moments to the top members, while equation (5.62) is used for 

the bottom members. 



-196-

In a similar manner to the above, the calculations for the next two 

sub-frames are illustrated as, 

Vertical, 6M(V) Horizontal, 6M(H) 6M(V) t 6M(H) 

Level (iv) 

601 = 0.0354,602 = 0.0343 

Sr(U)= 0.3763, ST(B)= 0.5251 

(5.44) Sw = 0.2660, SL = 0.1104 

(5.45) m = 1.7816 

(5.46) S' w = 0.3363, SL = 0.1888 

(5.47) e K = 7.353 x 10- 5 

(5.48) 9 G = 1.060 x 10- 4 6M KL = 78 

(5.49) e p = 9.369 x 10- 5 6M LN= 162 

(5.50 ) eN = 1.124 x 10- 4 
L'lMNJ = 2 

(5.51) e J = 8.046 x 10- 5 L'lM NR = -2 

(5.28) 6M
'
(L = -63 (5.52) 9 R = 6.747 x 10- 5 DISTRIBUTION 

(5.30) L'lM LN = 91 (5.32) L'lM pK = -45 (5.62) L'lMGH = 13 

(5.34 ) L'lMG-K= -24 L'lM JF = 41 

(5.35) 6MKL = 141 ~'L'lMHJ = 6 

(5.36) 6MRN= -64 (5.62) lIMpo = 14 

(5.37) lIMNJ= 2 L'lMOR = 7 

(5.38) L'lMJN= -41 lIMR if 64 

It is noted that equation (5.62) alone is used for the distribution 

of moments to adjacent members. This is due to the top and bottom 

beam having a leeward hinge each at (J) and (R) respectively. 

'.' ~.! • 
',' !. ,. 
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In a similar manner to the above calculations, the next sub-frame 

gives, 

Vertical, ~M(V) Horizontal, ~M(H) ~M(V) + ~M(H) 

Level (v) 

ST(U)= 0.5251, ST(B)= 0.6041 

(5.44) Sw = 0.3577, SL = 0.1673 

(5.45) m = 1.7396 

(5.46) S' -w -: 0.3836, Sl = 0.2205 

(5.47) er = 5.940 x 10- 5 

(5.48) e K = 1. 060 X 10- to 
~MrQ= 69 

(5.49) e s = 4.037 x 10- 5 
~MQR= 157 

(5.50) eR = 8.296 x 10- 5· ~MRN= -40 

(5.51 ) eN = 9.872 x 10- 5 
~MRU= 40 

(5.28) ~MrQ = -67 (5.52) e u = 2.395 x 10-5 DISTRIBUTION 

(5.30) ~MQR = 89 (5.32) ~Msr= -92 (5.62) ~MI<L = 13 

(5.34 ) ~MKr = -31 ~MNJ= 19 

(5.35) ~Mra= 136 ~t.MLN= 6 

(5.36) ~MUR=-1l7 (5.63) ~MST = 34 

(5.37) ~MRN= -40 ~MUT= 43 

(5.38) 6MNR= -19 ~MTU= -5 

f1M ux = 74 

In the distribution process, the top beam has a hinge while the 

bottom beam is elastic and therefore equations (5.62) and (5.63) 

are used as appropriate. 
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The final set of calculations for the incremental load is for the 

elastic base sub-frame, 

Vertical, llM(V) Horizontal, llM(H) llM(V) + llM(H) 

661 =0.0204,662=0.0077 6M uT = 189 

(5.22)6M uT = 55 Ss = 2.913 x 10- 5 6MST = 79 

(5.17) 6M TU = 68 ( 5 .25) 6M UT = 134 6M TU = 68 

(5.23) llMux = -22 (5.26)6M ux = -21 llMux = -43 

6MuR = -33 6M uR = -113 llM uR = -146 

(5.24) 6. MXU= -11 (5.27)6Mxu = -98 6.MXU= -109 

The total incremental moments at each joint are obtained by summing 

the calculated moments at that level and moments distributed to 

that member if any. 

As an illustration, consider joint (F). The total incremental 

moment at (F) on member E-F is (94+22)=116 KNcm. The value of 94 is 

the incremental moment calculated at level (ii) while the value of 

22 is the moment distributed from level (iii). Similarly, the total 

incremental moment at joint (U) of member T-U is (189+43)=232. 

The overall bending moment is obtained by summing existing 

moments at 1.239 to the incremental moments just calculated. This 

is shown in figure (5.17 (b». The fourth plastic hinge is located 

at the leeward end of beam S-U. Again, none of the moment 

capacities of the leeward columns were violated at a total load of 

(1.239+0.005)=1.244. 
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iii) Let 6A. = 0.166 

The total load is (1.239 + 0.005 + 0.166) = 1.410. Fictitious 

horizontal shears due to the mid-span vertical load are shown in 

figure (5.16 (b». 

The shears for the base sub-frame are calculated from the 

second expression given in equation (5.31). Further, the previous 

load is taken as 1.244 with the total sways at this stage being the 

sum of, the storey sways at A.1 = 1.239 and 6A.= 0.005. 

When the above procedures were repeated, it was found that the 

column moment capacities were exceeded at (F) in column F-J and at 

the foot of the leeward column at (X). It is noted that the 

calculations for the base sub-frame in this iteration is dependant 

on equations (5.53) to (5.56). 

The total bending moment distribution is shown in figure 

(5.17 (c». The calculated leeward column capacities at this load 

of 1.410 can be shown as follows, 

column axial load Mp(reduced) at A. = 1. 410 

C-F 139.1 14249 

. F-J 351. 3 12972 

J-N 578.3 21495 

N-R 820.1 18737 

R-U 1076.7 30419 

U-X 1348.1 26583 
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The load level of 1.410 exceeds the minimum design load for which 

column hinges are permitted. The calculated moment at (F) exceeds 

the allowable moment capacity by about 8%. A plastic hinge was not 

detected at this position by the accurate elasto-plastic computer 

analysis. This error is not critical because it is usual for the 

choice of sections of the top few storeys to be governed by the 

higher load factor applicable to vertical loading alone (a factor 

not considered in the design being analysed). 

In figure (5.17 (c», the values that would be critical for 

design under combined loading are in good agreement with computer 

results. The maximum error occurring at joint (F) is +20% of the 

accurate results which are shown in brackets. A similar error of 

about +18% was also detected at joints (U) and (J). 

To investigate the criterion placed on the minimum load factor 

permitted for column hinges, an increment of load of 0.116 was used 

to recalculate the overall bending moment distribution at A =1.36. 

The fictitious shears are evaluated and shown in figure (5.16 (c». 

In an identical procedure as described above, the overall 

bending moment distribution at a load level of 1.36 is shown in 

figure (5.17 (d». Accurate values are shown in brackets and are 

given in (KN.m) units for direct comparison with published results 

in reference (72). Comparison with computer results for the column 

moments showed a maximum error of +16~. This error occurred at the 

top storey as shown in the figure. It was found that none of the 

column moment capacities were exceeded and the estimated moment at 

(F) in member F-J was 1.5% below the allowable value. 
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As an alternative, an approximation of the total moments at 

1.36 can be obtained by interpolation. For example, the bending 

moment at joint (F) in member F-J is, 

MF J = -10343 - [ 0.116 x (14015 - 10343)] 
0.166 

= -12909 l<Ncm. 

The plastic moment of resistance of column F-J at a load factor of 

-1.360 was 13078 KNcm. Hence, no column hinges were present and the 

design is adequate 

5.8 Four storey single bay frame 

A further example is shown in figure (5.18). The frame was 

taken from reference (42). Calculation procedure is similar to the 

previous example with the exception of a sub-frame having double 

hinges as shown in figure (5.18 (d». Such a sub-frame was analysed 

in Section (5.6.2). 

The example differs from the six storey frame analysed 

previously by attaining the proposed criterion for collapse. At 

this stage, the minimum design load was exceeded and column moment 

capacities were checked. 

It was specified that column hinges are not permitted to form 

below the design load factor of 1.40. The sequences of plastic 

hinge development and the estimated bending moment distribution are 

shown in figure (5.18). Accurate computer results are shown in 



-202-

brackets. The proposed technique has located accurately the 

position of the plastic hinges with an average deviation of the 

load factor of +0.5% from the accurate computer solution. 

At all incremental stages, the beam moments were found to 

provide good agreement with computer results. However, the final 

leeward column moment in the third storey was overestimated by 29%. 

As in the previous example, it is argued that the design of such 

columns are governed by the higher load factor applicable to 

vertical loading alone. 

In all the columns, the maximum moments calculated by the 

proposed method are still below the plastic moments of resistance 

at a load factor of 1.413. Calculated moment capacities are given 

from the top to the base as follows, 

floor axial load M (reduced) at A. = 1.413 
(Tons) (Tons inch. ) 

top 19.4 1128.9 > 989.4 
.-' 

third 40.1 1080.1 > 915.3 

second 62.7 990.0 > 883.9 

ground 87.1 1556.1 > 1342.3 

The assumed criterion for collapse is attained at this load factor 

and the manual calculations are terminated. In comparison with 

computer analysis (in which failure occurred at a load factor of 

1.494), the proposed method is shown to provide good agreement for 

the bending moments that would be critical for design. 
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5.9 Application to multi-storey, multi-bay frames 

Multi-bay frames are treated as an equivalent single bay frame 

for the determination of the failure load. The equivalent section 

properties of beams and columns at each storey are assumed to be 

the sum of the real frame properties. These assumptions are 

applicable only to regular and rectangular frameworks. 

The following proposal summarises the equivalent 

-characteristics that are adopted as the basis for both computer 

analysis and manual calculations of an equivalent single bay frame, 

Equivalent loading 

i)vertical load is taken as the sum of the total 

vertical loads. 

ii)horizontal loads remain unchanged and are applied as 

on the real frame. 

Equivalent section property 

a)beam sections 

i)cross-sectional area is taken as the sum of the 

areas of all the beams, 

ii)moment of inertia is taken as the sum of the 

moment of inertias of all the beams, 

iii)plastic modulus is taken as the sum of the plastic 

moduli of all the beams. 

b)column sections 

At each storey, the equivalent properties are calculated as 

for the beam sections above. The values are then halved to obtain 
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the properties of the two external columns at each storey. 

The modulus of elasticity and the yield stress remain 

unaltered. Furthermore, the storey height is the same as the real 

frame but the single bay width is assumed to be the average bay 

width of the multi-bay frame. 

computer results of the failure load for the equivalent single 

bay frame provide very good agreement in comparison with the real 

frame. A typical result of a four storey three bay rectangular 

frame is shown in figure (5.19). The formation of plastic hinges in 

the columns have been deliberately suppressed in both figures to 

obtain comparison with beam hinges only. 

The overall pattern of plastic hinges at collapse of the 

equivalent frame has a striking similarity to the real frame. The 

order of plastic hinge formation, however, differs considerably. 

The sequences of formation of plastic hinges are shown by the 

ringed numerical values in the figures. Under combined loading, 

formation of plastic hinges in the real frame tends to occur at the 

leeward ends of the beams first. In the equivalent frame, the 

plastic hinges appear to form initially at mid-span uf the ~eam9. 

The failure load of the equivalent frame, however, is 

estimated to within 1% of the real value. Therefore, preliminary 

designs can be checked for ultimate strength under combined loading 

without the need for a rigorous computer analysis of the full-size 

framework. The demand on storage and computing time is reduced to 

that of the analysis of a single bay frame. 
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The design would be adequate provided the load level at 

failure is above the minimum specified. A check on the real frame 

at the corresponding load level can then be carried out to ensure 

that the columns are adequate. When analysis as a single bay frame 

shows a design to be unacceptable, re-analysis with revised beam 

sections is a rapid process. 

5.9.1 Seven storey two bay frame 

A frame that satisfies the minimum design collapse load of 

unity under factored combined loading is shown in figure 

(5.20 (a». The equivalent frame is shown alongside with the 

calculated values of applied loads. Equivalent section properties 

are tabulated below the figures for each member as shown. 

It is anticipated that plastic hinges would not form in the 

columns and such members were assumed to have very high values of 

the plastic moment of resistance. The proposed approximate method 
~ 

for evaluating the failure load is illustrated for the equivalent 

single bay frame. 

The procedures for locating the plastic hinges and the 

corresponding loads at which they form are identical to the 

previous multi-storey examples. The final result of the proposed 

approximate method for the equivalent frame is shown in figure 

(5.21 (c». 

For comparison, the equivalent single bay frame was analysed 

using an accurate computer program and the result is shown in 
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figure (5.21 (b», while figure (5.21 (a» shows the sequence of 

plastic hinge formation in the real frame. The results of the 

equivalent frames showed excellent agreement in terms of the 

position and load level at which plastic hinges formed. It is noted 

that the formation of plastic hinges in the columns have been 

deliberately suppressed in all of figure (5.21). 

The two mid-span plastic hinges at the top floor levels as 

shown in figure (5.21 (c» indicate the significant influence of 

vertical loads on the behaviour of the equivalent frame. Further 

down the frame, the wind loads are beginning to affect the bending 

moment distribution. The first plastic hinge was located on the 

leeward end of the third floor beam. After repeated load 

increments, the proposed criterion for collapse was reached by the 

development of the eighth plastic hinge. The collapse load was 

taken as 1.005. 

The order of plastic hinge formation is shown ringed. Only the 

first plastic hinge appears to form in sequence with the real frame 

while others were unpredictable. As expected, the pattern of 

plastic hinges in the equivalent frames shown in figures (5.21 (b» 

and (5.21 (c» are closely comparable to the computer result of the 

real frame. 

The proposed method was shown to provide good agreement for 

the bending moments in the beams. It was found that the bending 

moments on the fifth floor beam were within an average of -3~ of 

the plastic moment capacity at this load level. The final bending 

moment distribution is shown in figure (5.22). Accurate computer 
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results are shown in brackets corresponding to the pattern of 

hinges in figure (5.21 (c». 

It is convenient at this stage to assume that the next 

increment of load would have plastic hinges forming on the fifth 

floor beam marked in figure (5.21 (c». However, the error in the 

failure load is insignificant. The designer has now to show that 

the column capacities of the real frame are not exceeded at the 

corresponding load. 

It is proposed that if no column hinges are found in the 

equivalent frame, then it may be assumed that the sum of the column 

moment capacities of the real frame are adequate. To investigate 

this proposal, the column moment capacities were calculated under 

(factored) combined loading for the real frame at a load level of 

1.005. The results are shown for each column in figure (5.23 (b». 

Values listed to the right of figure (5.23 (b» summarises the 

proposed treatment of column moments in the real frame. The values 

are obtained by summing the moment capacity of the right-hand 

column(MR) and half the moment capacity of the internal 

column(MC/2). It can be seen that these values exceeded some of the 

column moments calculated in the equivalent frame in figure (5.22). 

In such cases, it is assumed that no column hinges are present in 

the real frame. 

When the equivalent column moments exceed these summed values, 

then column hinges are assumed to be present in the real frame. 

Comparison of these values indicates plastic hinges at the 
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positions marked by an asterisk in figure (5.22). The proposed 

method has predicted the existence of such hinges in the real 

frame. Except for the hinge at the sixth storey, the hinge 

positions are confirmed by the accurate computer result shown in 

figure (5.23 (a» with the columns given real yield stresses. The 

hinge located at the top of the leeward column on the sixth floor 

can be neglected due to the reason discussed earlier. 

When comparisons are also made of computer results shown in 

figures (5.22) and (5.23 (a», the plastic hinge positions are in 

excellent agreement. The bracket values shown in figure (5.22) 

indicate column hinges at positions corresponding to that shown in 

figure (5.23 (a». This validates the proposed criterion for the 

existence of column hinges in the real frame. 

For frames with an even number of columns across the width, 

such as the three bay frame shown in figure (5.19 (a», it is 

proposed that the total real column moment capacities be taken as 

the sum of the column moments to the right of the~line of vertical 

symmetry. 

5.10 Conclusion 

An approximate incremental elastic-plastic method has been 

shown to evaluate accurately the failure loads of plane pinned base 

steel portals. Expressions have been derived. Only one trial 

analysis is necessary to obtain a load factor for the critical 

bending moment to converge onto the plastic moment capacity of the 

member. 
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Several examples were illustrated to include the possible 

occurrence of discrete plastic hinges when the frame is subjected 

to combined loading. The likelihood of portals collapsing without a 

complete mechanism was demonstrated by an inability to converge 

onto the second plastic hinge. 

Calculations for the collapse loads of pinned base portals by 

the rigid-plastic theory were demonstrated to be unsafe. The 

proposed method, however, is able to deal with such frames in a 

satisfactory manner. In addition, the eaves deflections are 

assessed accurately when the portal is elastic and at collapse. The 

results have been compared with accurate computer analysis. 

The proposal has been extended to multi-storey frameworks. 

Expressions for the bending moments were derived by considering 

only an intermediate and a base sub-frame. Each sub-frame is 

independent from adjacent sub~frames while it remains elastic. A 

system of distributing moments was shown to be necessary to obtain 

good agreement of the beam moments with computer results. 

Two examples were shown. It was found that the column moments 

were overestimated by between 20% and 29%. This does not cause 

undue concern because the conservative values tend to occur at the 

top few storeys of the frame where design is likely to be governed 

by vertical load alone. The bending moments that would be critical 

for design were found to be in good agreement with computer 

results. 
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Multi-bay"frames are treated as an equivalent single bay 

structure. Failure loads of the equivalent single bay frame were 

shown to provide excellent agreement with the real structure. The 

patterns of plastic hinges at collapse were almost identical in the 

actual and equivalent frame when both were given by accurate 

computer analysis. 

The manual method is able to trace the development of the 

plastic hinges in the beams with good accuracy. An example was 

shown to confirm the proposal. The method may be used as a 

preliminary assessment for strength under combined loading before a 

rigorous computer analysis is undertaken on the complete 

multi-storey multi-bay structure. 
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CHAPTER 6 

EFFECTS OF SEMI-RIGID JOINTS ON SWAY DEFLECTION 

AND EFFECTIVE LENGTH 

6.1 Introduction 

Traditional methods of analysis and design of structural steel 

frames depend on the simplified assumption that the end connections 

of members behave as either fully-rigid or pinned. Despite the fact 

that neither is true of real bolted connections, engineers continue 

to adopt such assumed joint behaviour in the analysis and design of 

structural frameworks. 

It is well known that some degree of restraint can provide 

savings in column sizes which had been assumed 'pinned' previously. 

Although the British(2,5) and American(l4) codes~of practice permit 

semi-rigid construction, it has been rarely adopted, particularly 

in medium-rise buildings because of the difficulty in establishing 

an analytical model to predict the complex behaviour of bolted 

connections. Even the British Draft Standard Specification for the 

Structural use of Steelwork in Buildings(55) has defined types of 

construction as 'continuous' or 'simple'. 

With the exception of certain types of rigid moment 

connections, all joints are semi-rigid in practice. Additional sway 

displacements caused by flexible joints in tall buildings cannot be 

ignored, even at working load. Furthermore, even if the frame may 
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be satisfactory with respect to stiffness, a complete 

redistribution of internal forces can also arise, resulting in 

overstressed members. 

For practical connections, the most useful characteristic is 

moment resistance to rotational stiffness behaviour. 'Rigid' and 

'simple' connections are ideal theoretical assumptions that can 

never be attained and almost all practical bolted connections 

exhibit marked non-linear moment-rotation behaviour. Several types 

of common building connections are shown in figure (G.l). An ideal 

rigid joint is given by the vertical axis while a perfectly pinned 

connection is represented by the abscissa. Most connections fall in 

between these assumed characteristics. The connection rotation is 

being defined here as the tensile deformation of the bolted 

assembly under increasing bending after the initial joint rotation 

has taken place. Compressive deformation of the connection is 

ignored. 

~ 

The use of computers enables systematic procedures to be 

incorporated to simulate actual connection behaviour. Standardised 

moment-rotation characteristics, applicable to a range of common 

bolted connections, have been proposed by Frye and Morris(G9). A 

computer program which incorporates the non-linear expressions was 

suggested but this necessitates the storage of the connection 

stiffness terms as additional elements in the overall stiffness 

matrix, thus increasing the size of the latter. 

The main purpose of the present Chapter has been to extend a 

non-linear (i.e. second-order) elastic computer program, based on 
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the matrix displacement method of analysis, to study the influence 

of semi-rigid connections on the sway deflection of multi-storey 

frameworks. The program is capable of analysing any combination of 

pinned connections, fully-rigid joints and connections with any 

specified moment-rotation relationship. Indeed, any of those 

connections shown in figure (6.1) may be used on any part of a 

member and at any position in the structure. It is therefore 

suitable for simulating the contribution of cladding to overcome 

the joint flexibility, otherwise assumed rigid in conventional 

analysis. In addition, second-order analysis enables column 

strengths to be evaluated with respect to elastic instability, for 

any given degree of end restraint. Examples of semi-rigid 

multi-storey frames are shown for comparison with assumed 

fully-rigid analysis. It is also intended to demonstrate the 

effective length of a column by a series of curves representing 

various end restraints. 

A feature of the analysis makes use of the nature of the 
~ 

overall stiffness matrix to modify iteratively the load vector. 

This is done, instead of incorporating connection details into the 

stiffness matrix. Unlike previous computer methods, the overall 

stiffness matrix remained unchanged, thus reducing computer time 

and storage. 

6.2 The stiffness matrix 

The development of the analysis program is basically similar 

to the one described by Majid(23) and Anderson(24). Compact storage 

of the overall stiffness matrix, ~ , is due to the technique of 
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Jennings(lO). The unknown joint displacements of a structure, ! , 

are solved by an inverse of the stiffness equations, 

x = K-1 L 

where L is the externally applied load vector { H, V, M } 

and K is the overall stiffness matrix of the structure. 

(6.1 ) 

Figure (6.2) represents the contribution of a member with 

semi-rigid end connections to the overall stiffness matrix. Joints 

'i' and 'j' are the first and second end of the member 

respectively. This is indicated by the direction of the arrow on 

the member. The member is displaced from its original position with 

reference to the overall coordinate system of direction as shown. 

The symbols are defined as, 

a = EA I L 

b = 12 EI9'>s I L3 

d = -6 EICP2 I L2 (6.2) 

e = 4 EICP3 I L 

f = 2 EI~1. I L 

s,c = direction sine and cosine of the angle of 

inclination of the member measured clockwise 

positive from the first end 'i' respectively. 

and E, I, A and L are Young's modulus of elasticity, second moment 

of area, cross sectional area and length of the member i-j. The 

reductions of bending stiffness due to compressive axial forces for 

second-order analysis are taken into account by the usual stability 



" 

-215-

, ~ , functions. Extra rows and columns shown hatched represent the 

connections at both ends of the member. The joint rotations are 

represented by Si and Sj and the connection deformations are 

denoted by S~ and e~. 

The contribution of other members connected to joints 'i' and 

'j' are similarly obtained. Each sub-matrix, !iii ' !iij' !iji and K ' 
-)) 

contain a 4x4 element matrix when both ends of the member have a 

semi-rigid connection. When the rows and columns corresponding to 

these connections are deleted in figure (6.2), the stiffness 

equations are identical to a rigid-jointed member. 'Consequently, 

extra rows and columns in the stiffness matrix are not required to 

be stored. Initially, the assembly of K will be described 

irrespective of whether the joints are semi-rigidly or rigidly 

connected. 

Each numbered joint is ,considered in ascending order for the 

construction of the overall stiffness matrix. The total stiffness 

of the joint is the sum of the individual memberstiffnesses 

connected to that joint. Therefore, non-zero sub-matrices, Kii 

etc., will populate the overall stiffness matrix only at locations 

corresponding to joint interconnections. Hence, with reference to 

figure (6.3), the overall stiffness matrix is seen to contain many 

zero sub-matrices, and the non-zero sub-matrices are directly 

related to the joint connection list. Further, K is symmetric along 

the leading diagonal. 

The method of Jennings makes use of the symmetric feature of 

the overall stiffness matrix for the storage and rapid solution of 
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the stiffness equations. This method stores only the first non-zero 

sub-matrix and the elements on the leading diagonal, inclusive, on 

one side of the overall stiffness matrix. Null sub-matrices, such 

as ~9.7 ' occurring in between these non-zero elements are also 

stored. Only the irregular half band-width outlined in figure (6.3) 

is stored and operated on by the compact elimination technique. 

Initially, the analysis proceeds by assuming all joints are 

rigid, except where real pins exist. Once the displacements are 

known, member end forces are calculated by the slope-deflection 

equations, 

M .. = e(8 j + 8'· + f(8. + 8'· + d(v. (6.3) IJ I J J IJ 

M·· = f (8 i + 8'. + e(8 + 8'· + d(v .. (6.4) 
JI 1 J J IJ 

S .. = - (M ij + M· ) I L (6.5) IJ JI 

Here v·· is the vertical jOint displacement of the second end 'j' 
IJ 

relative to the first end 'i' in the overall coordinate system. 

Values of e, f and d are defined in equation (6.21~ 

As the first iteration assumes all connection movements to be 

zero, values of 8' are obtained only after the member forces have 

been calculated. Using the current values of end moments from 

equations (6.3) and (6.4), each connection deformation is 

determined in the form, 

8' = f(M) (6.6) 

where M is the bending moment at a specified joint corresponding to 



-217-

a semi-rigid connection. 

The load vector is then suitably modified for the joint concerned. 

This is dependant on whether one or both ends of the member are 

flexibly connected. A new vector of loads, ~ , which corresponds to 

the number of elements of the original load vector is then used to 

obtain a new set of displacements and member forces. In figure 

(6.2), the new vector of loads for member i-j is given by, 

H· = H· - dsS'· - dsS' 
I I I J 

v. v. + dcS'. - deS'. 
I I I J 

M· M· - eS'j fS'· (6.7) 
I I J 

H· H· + dsS'j + dsS'· 
J J J 

v· v· - dcS'j - dcS'· 
J J J 

i 
M· M· -

J J 
fS'· 

I 
ee'· 

J 

Thus, the overall stiffness matrix remains unchanged in subsequent 

cycles of analysis. Iteration is necessary both for linear 
~ 

(first-order) and non-linear (second-order) elastic analysis. The 

results tend to converge in a few iterations to a state which 

satisfies equilibrium, compatibility and connection moment-rotation 

characteristics. Steps needed for the procedure is summarised by 

the flow chart shown in figure (6.4). 

In a linear elastic analysis (first-order), all '~' functions 

are set to unity which indicates no reduction in member stiffnesses 

due to compressive axial forces. Iteration is continued until all 

the connection rotations are within a suitable tolerance. A 

non-linear elastic analysis (second-order) performs the same 
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process but after each iteration, the calculated member forces are 

used for an improved solution of the stiffness equations by 

evaluating new '~' values. The member forces in the current cycle 

are then calculated with reduced flexural stiffness, in addition to 

the connection deformation of the joint. 

During each solution, the determinant of ~ is tested. When 

this is non-positive, the procedure is terminated. The procedure 

also terminates when very large displacements are encountered to 

maintain equilibrium in equation (6.1). 

In the analysis of large plane frames, considerable economy of 

storage and computer time is achieved by modifying the load vector 

alone. Thus, by reference to figure (6.5), the simple fixed base 

portal requires 45 locations in the compact storage of ~, instead 

of 61 if terms relating to the connection rotations were retained 

in ~. In figure (6.5), Mhk and Mhl are the zero hinge moments 

corresponding to the hinge rotations 9hk and 9hl respectively. 

These are included to show a typical structure fo~ K when rigid, 

semi-rigid and pinned connections are present in the same frame. 

For the beam i-k, the rotations of the semi-rigid connections 

at ends 'i' and 'k' may be in the same or opposite directions, 

depending on the loading condition. This may be visualised for 

simple frames but a clearer indication of the connection 

deformation is given by observing the overall bending moment 

distribution diagram. 
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6.3 Sign of the bending moment diagram 

With reference to figure (6.2), the overall stiffness matrix 

has been constructed by triple multiplication of AT~8, where ~ and 

~ are the displacement transformation and member stiffness matrices 

respectively. The joint displacements are therefore referred to the 

overall coordinate system. Member forces given by equations (6.3) 

to (6.5) are calculated based on these transformed displacements, 

but their signs are based on the local member coordinate system. 

Clockwise end moments acting on the members are considered 

positive. The effect of such actions will be to cause a deformed 

shape with reverse curvature, as shown in figure (6.2). 

It is assumed that all bolted assemblies are symmetrically 

identical in tension and compression, as shown in figure (6.1) 

except for the welded top plate. The. single member shown in figure 

(6.2) will tend to 'relax' and straighten out as a result of end 

connection deformation. Thus, the rotations of the connections will 

be anti-clockwise. It follows that the sign of the connection 

rotation is opposite to the sign of the bending moment diagram. 

It is assumed in the subsequent examples that all external 

loads are applied proportionally under static conditions. Loading 

patterns which may cause incremental or shakedown collapse 

phenomena are not considered. These assumptions are generally 

applied in practice for the plastic analysis and design of 

structures and would be appropriate for the loadings sustained by 

typical building structures with semi-rigid joints. It is also 

assumed that connection displacements due to axial and shear forces 

are n,egligible. 
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6.4 Numerical work example 

Consider the simplified structure shown in figure (6.6) with a 

semi-rigid connection at joint (B) on member B-C. In the interest 

of simplicity, axial deformations of all the members are neglected 

and it is assumed that the moment-rotation characteristic of the 

connection is linear and given by the form, 

S' = 2.06 x 10- 5 (M) (6.8) 

where M (KNm. unit) is the end moment at the semi-rigid connection. 

A linear elastic (first-order) analysis is required to determine 

the vertical deflection at (C). The overall stiffness matrix is 

assembled for the structure by assuming joint (B) to be 

fully-rigid. This is given by a 2x2 matrix, 

200 

o 

= 45 SYMMETRIC YC 

(6.9) 

The imaginary row and column which represents the semi-rigid 

connections are shown hatched for illustration and identification. 

Initial analysis assumes S'B = O. Solving for the displacements 

gives, 
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[ :: 1 = r ::::: x 10-3 
] (6.10) 

where the vertical deflection at joint (C) is given in millimetres 

and the rigid-joint rotation at (B) in radians. 

Next, member forces are calculated using equations (6.3) to (6.5) 

with all the stability functions equal to 1.0 and all connection 

rotations equal zero. 

With e1 =60000 KNm., f1 =e1 /2, e2 =e1 /2, f2 =e2 /2 and d1 

=-45000 KN., the bending moment distribution is, 

MSC = -133.3 

Mcs -266.7 (6.11) 

MSA +133.3 

MAB + 66.7 

where the moments are in KNm. units. 

As the connection rotation is opposite in sign to the bending 

momen~ diagram, the clockwise rotation at joint (B) on member B-C 

is given by, 

9 a = 2.06 x 10- 5 x (133.3) 

= 2.746 x 10- 3 radians (6.12) 

A new load vector can be formulated by using equation (6.9) with 

this value of the connection deformation giving, 
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L = [200] + [ 45000
b 

9'9 1 
o + -60xlO 9'9 

(6.13) 

The previous load vector is replaced by this new load vector to 

solve for a new set of displacements in equation (6.9), 

[
Ye] = [10.720 -3] 
9 9 3.529 x 10 (6.14) 

The new displacements (equation (6.14» are significantly 

different to those given by equation (6.10) but when the procedure 

is repeated a few timesi all the displacements and member forces 

converge to satisfy equilibrium, compatibility and connection 

deformation characteristics. The results are summarised in figure 

(6.6) for the required number of iterations. The final bending 

moment distribution indicates a 17% reduction at the semi-rigid 

joint (B), while the sagging moment at (C) was increased by only 
,/ 

half this amount. This suggests that economy in column design may 

be achieved if realistic representation of the end restraint is 

properly taken into account rather than the assumed fixed 

connections currently employed in practice. 

The vertical displacement at joint (C) was increased by 17% in 

comparison with fully-rigid analysis. This is as expected since the 

connection has contributed deformation, in addition to the 

rigid-joint rotation. 

When compressive axial forces in the columns are significant, 
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a non-linear (second-order) analysis would be more appropriate. In 

multi-storey frames the sway deflection can be alarmingly high when 

secondary effects are included. The proposed method has been shown 

to analyse such frames conveniently and economically. 

6.5 Eleven storey two bay frame 

A realistic unbraced office building shown in figure (6.7) has 

_ been analysed by Frye and MOrris(69) using American wide flange 

sections. Non-linear standardised moment-rotation expressions 

applicable to T-stub connections were adopted at all beam-column 

junctions. Total sway deflections, as a result of incorporating the 

T-stub connection, was reported to be over 20% higher than the 

deflections calculated assuming fully-rigid joints. However, no 

details of the size parameters for each 'of the connections were 

given and it was not certain whether these deflections were the 

result of a linear (first-order) or non-linear (second-order) 

analysis. More importantly, no information was giyen of the 

individual storey sway values. Furthermore, some of the wide flange 

sections have been discontinued in the current version of the 

International Structural Steelwork Handbook(1983) published by 

BCSA. 

To investigate the sway behaviour and for comparison with the 

published results, the frame was analysed using 3ections chosen 

from the BCSA publication mentioned above. A section one size 

larger was adopted to replace those sections that have been 

discontinued. Their properties necessary for the analysis are shown 

in table (6.1). 
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To determine the size parameters required in the non-linear 

moment-rotation equations, values of 'd' and 'I' for all the 

beam-column connections were kept constant. The variable 't' was 

taken as the sum of the flange thickness for the lower column at a 

splice and the thickness of the stub flange. The bolt diameter 'f' 

was assumed to increase from 16 to 24 millimetre from the roof to 

the first floor beam. These values are given in the connection list 

in table (6.2). A schematic drawing of the connections used is 

shown alongside the tables for ease of identification. Metric units 

have been used throughout and Young's modulus was taken as 205 

Three curves are shown in figure (6.7) for the sway 

deflections when the frame is subjected to combined loading. Values 

of lateral deflection from a linear elastic (first-order) analysis 

for each storey height indicate unsatisfactory limits according to 

current Design Recommendations, even when the joints were assumed 

fully-rigid. The worst storey sway was 1/223 in comparison with the 
~ 

maximum allowable of 1/300. Nevertheless, the total deflection of 

curve (1) was about 1/290th of the overall height. 

Curve (2) represents the same analysis but incorporating the 

contribution of connection deformation. The total sway deflection 

is approximately 10~ above the rigid-jointed case. The worst storey 

sway has been increased to 1/210. As the connections are relatively 

rigid in comparison with those connections shown in figure (6.1), 

this additional sway is not of particular concern. However, when 

compressive axial forces are taken into account in a non-linear 

(second-order) analysis, the deflections were significantly higher 
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than the ones assuming rigid connections. As a result of the 

secondary effect, the total sway was over 25% of the value from 

rigid-jointed analysis. This is shown by curve (3). In fact, a 

number of storey sways exceeded 1/200th of the column height. These 

values confirmed the published results. 

The effect of incorporating the connection deformation into 

the analysis is to reduce the bending moments in the beam-column 

connections near the top of the structure and to increase those 

near the bottom. The mid-span sagging moment was generally 

increased by a small amount at all levels of the structure. 

6.6 Effects of claddings in semi-rigid construction 

It is well known that partitions, infilling the frame and 

cladding for a multi-storey structure all have a great effect on 

the lateral stiffness of the frame and the elastic critical load. 

References (50) and (GO) showed that such effects~/can be 

incorporated into an analysis by the use of's' values. If the 

infill panels in a given storey have a total stiffness, 'S' (force 

per unit displacement), the non-dimensional panel stiffness in any 

storey is given by, 

s = Sh2 /EK 

where E = Young's modulus of elasticity, 

K = sum of column stiffness of that storey, 

h = storey height under consideration. 

(G.15) 
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Wood(50,60) has proposed that values of '5' should be included 

in calculations for the elastic critical load, and for sway 

deflections. However, the analysis used in both cases was based on 

a limited substitute frame with fully-rigid beam-column joints. It 

is not the intention of this section to criticise such simplified 

assumptions for use in rapid manual design. The point to remember, 

though, is that all bolted connections are flexible, apart from a 

few exceptional cases. Indeed, semi-rigid unbraced frames cannot be 

modelled in the same way as rigid-jointed frames are by the use of 

the Grinter frame. The difficulty arises from the uncertainty in 

determining the degree of connection restraint and its effect on 

the overall joint behaviour. Further, the principle of 

superposition is not valid for semi-rigid joints. Connection 

rotation is unpredictable for an unbraced frame subject to combined 

loads. A wrong assumption of the direction in which the connection 

deform would be unsafe. 

For deflections at working load, the non-linear (second-order) 

~ 

sway displacements shown in figure (6.7) are unacceptable. It was 

decided to observe the effects of claddings by incorporating 

pin-ended struts at the leeward joints. These members may be 

considered as 'elastic springs' of total axial stiffness'S', to 

represent the cladding that would, in practice, contribute certain 

resistance to the overall sway deflection. The axial stiffness is 

given by, 

Si = EA I L (6.16) 

where A and L are the cross sectional area' and length of the strut 
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respectively, and E is Young's modulus of elasticity. 

The eleven storey semi-rigid frame shown in figure (6.8) has been 

analysed with several values of spring stiffness ,in an attempt to 

restore the sway deflections to the usual limits. It was assumed 

that all'S' values are identical, as would be the case of a 

fully-clad structure. 

As compressive axial forces are significant in this case, all 

the values shown are based on a non-linear (second-order) analysis. 

The results showed that a nominal value of 'S' is sufficient to 

overcome the additional sway deflections of the original framework 

arising from connection deformation. When 'S'=0.3075 KN/mm was used 

in the non-linear (second-order) analysis, all the storey sways 

were found to satisfy the limit of l/300th of each storey height. 

Increasing the spring stiffness reduces the overall sway 

dramatically as shown for the case with 'S'=2.050 KN/mm. 

~ 

The most severe storey deflections are those of the second and 

third floors. Two values of storey sway have been calculated for 

'S'=0.2050 and 'S'=0.3075 KN/mm, as shown in figure (6.8). These 

figures of storey deflections suggest that cladding stiffness is 

unnecessary in the upper storeys. 

To investigate this matter, five of the springs were removed 

from the roof downwards. A non-linear (second-order) analysis was 

carried out with 'S'=0.820 KN/mm for the remaining springs. The 

results indicated by 'S(partial)' on the figure showed the storey 

deflections to be adequate. The laterally unsupported upper parts 
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of the frame behaved in approximately the same manner as the 

totally unbraced semi-rigid structure. The result of 'S(partial)' 

is plotted as dashed lines in figure (6.8). 

The example has shown that the proposed procedure is able to 

deal with any type of partially or fully-clad plane frame with a 

range of semi-rigid connections either of the same type or a 

combination of different types of assemblies. It can be used to 

simulate actual construction when the cladding is being installed 

progressively, as well as to analyse the completed structure. 

6.7 Seven storey two bay frame 

The seven storey frame designed to sway deflection limitations 

in Chapter (2) is illustrated in figure (6.9). Permissible sway 

limits of l/300th of each storey height was specified when subject 

to unfactored horizontal loads. The design, however, was based on 

fully-rigid joints. An analysis was carried out of. the frame by 

assuming the beam-column joints to be end-plate connections with 

horizontal column stiffeners. Standardised moment-rotation 

characteristics have been adopted for the purpose of demonstrating 

the contribution of connection deformation. The parameters 

necessary for evaluating the relationships have been calculated by, 

d = D + 6T 

where D = total depth of beam section, 

T = thickness of beam flange, 

(6.17) 
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d = vertical distance between centres of the 

furthermost line of bolts. 

The end-plate thickness, t, was taken as 20mm throughout. 

Expressions relating the moment to the connection deformation is 

also shown in figure (6.9) together with a schematic drawing of the 

end-plate connection. Member sections and applied loads are given 

in Chapter (2). 

Values of the storey deflection have been calculated for each 

of the analysis given by the curves. It is apparent that under 

linear elastic (first-order) rigid-jointed analysis, the design is 

adequate but not in the case incorporating semi-rigid connections. 

However, the sway deflections are not as severe as the previous 

example because the initial specified sway limit was constrained to 

1/300th of each storey height. The non-linear (second-order) 

analysis exhibits a maximum deflection of h/224 when subjected to 

total working loads. 

As in the previous example, the critical sways were located at 

the bottom few storeys with the exception of the ground floor. In 

contrast, the value of the TOTAL deflection to the height in all 

cases was still within the maximum allowed. It was thought that 

only a nominal value of'S' would be sufficient at all storey 

levels to reduce the semi-rigid sways to tolerable limits. It was 

found that 'S'=O.0742 KN/mm, about one quarter of the axial 

stiffness of the previous example, was sufficient to r~duce the 

sways to the usual limit. When the effects of axial forces are 

neglected in the semi-rigid analysis, a value of 'S'=0.0309 KN/mm 
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was adequate to restore the sway deflections to the usual limits. 

The effect of using a stiffer connection such as a T-stub has 

also been studied. When such a connection was used to replace the 

end-plate connection in a linear elastic (first-order) analysis, 

the sway deflections were found to be 1/1078, 1/559, 1/408, 1/304, 

1/313, 1/304 and 1/420 from top to bottom storeys. These values are 

still within tolerable limits. However, when the axial forces were 

taken into account using the T-stub connection, the limit on storey 

deflection was violated in the same locations as indicated by curve 

(3) in figure (6.9), although the maximum value of storey sway was 

now reduced to 1/262. 

6.8 Non-convergence of connection deformation 

For the realistic types of connections that were utilised in 

the examples, connection deformations were found to be small. This 

is not unusual since the proportionally applied 19ads were at the 

serviceability level. Previous examples have indicated that a 

minimum of four to five iterations is needed to converge 

satisfactorily onto the desired connection tolerance. The 

possibility of gross distortion of the connection, however, cannot 

be ignored in a general analysis program. 

Consider the simple fixed base portal shown in figure (6~10). 

A top and seat angle connection type is assumed. Two load cases 

have been drawn in figure (6.10), i.e. vertical load alone and 

combined loading. The analysis for the vertical load alone is 

denoted by a circle while the combined case is represented by a 
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triangular symbol. For each load case, two curves are shown. For 

example, consider the portal subjected to the mid-span vertical 

load alone. Curve (1) represent the initial total rotation and 

curve (2) represent the converged total rotations at joint (A). 

Each point on the curve represents an increasing value of A . The 

curves for the vertical load alone starts at A =5 and terminates 

at a value of 10 inclusive, while the combined case starts at A=5 

and terminating at A =8. The vertical axis represents the ratio of 

the total rotation (9+9') to the hinge rotation (9h) if the joint 

at (A) and (C) was assumed pinned. Curves (3) and (4) are similarly 

plotted. Curve (5) is plotted to illustrate the ratio of the 

connection to joint rotation subject to vertical load alone. A 

tolerance of 0.001 was used in all cases. Linear elastic 

(first-order) analysis has been used because the intention was to 

illustrate the extent of connection deformation on the joint 

behaviour. 

The non-linear moment-rotation expression was calculated from 

reference (69) as, 

9' = 1.539xlO-G
(M) + 6. 083xlO-13 

(M? + 2. 472xlO-22 
(M)S (6.18) 

where the bending moment is in KNcm. units. 

As the end moment increases, the total rotation tend towards a 

pinned condition. The number of iterations increases dramatically 

and tends to infinity as indicated by a flat plateau in figure 

(6.10). 
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When high rotations are predicted which exceed those of pinned 

ends, the sign of the bending moment changes. In order to preserve 

equilibrium of the stiffness equations, the acting moments become 

restraining moments. At this stage, the solution diverges and the 

analysis is terminated. 

6.9 Effective lengths of end-restrained struts 

The effective lengths of no-sway columns specified in 

traditional elastic design methods are based on the realization 

that full restraint cannot be achieved in practice. It will be 

shown that the commonly used values for effective lengths are 

justified but slight inaccuracies arise when a range of column 

lengths are examined for the same type of end connections. In the 
I 

studies, the non-linear (second-order) elastic program has been 

used to determine the bifurcation load of the column. This is 

indicated by the singularity of the determinant of the overall 

stiffness matrix. 

The effective length, or sometimes referred to as the 

equivalent slenderness, is defined here as that length which gives 

the same strength as for a pin-ended column on the actual column 

with end restraint. Wood(50) has described this concept by 

reference to the elastic critical load of columns in sway and 

no-sway cases given by, 

(6.19) 
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where Pe = Euler load, n2 EI/r;'! 

Pc = elastic critical load, n2EI/12 

Values of effective lengths are tabulated in the form of charts but 

the joints were assumed fully-rigid. In contrast, Jones et. al(67) 

adopted an accurate step-by-step load-displacement finite element 

computer technique to calculate the maximum load capacity of a 

column. Various destabilising effects are also included in their 

computer program. 

'rhe procedure adopted in this section is believed to be more 

efficient, less time-consuming and provide results which are 

sufficiently accurate for use in design. Jones assumed beams of 

infinite stiffness attached to the model column via semi-rigid 

connection, while the proposed procedure can simulate any given 

beam stiffness. The results of an analysis on a column length of 

4.00 metres is shown in figure (6.11). A top and seat angle 

connection was assumed using the expressions developed by Frye and 

Morris. The connection characteristics have been~alculated for a 

range of rigidity by altering values of the size parameters, where 

the (M-s'l relationship is given in the form, 

) 5 S' = a.(CjM) + b,(CjM) + c.(CjM) (6.20) 

where a = 8.46 x l~' 

b = 1. 01 X 10-4 

c = 1. 24 x 10-8 

C(i) = t-0.5 d-1.5 f-1.1 1-07 

and M is given in KNcm. units. 
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Values of 't', 'd', 'f' and '1' are defined in the schematic 

drawing of the connection shown in figure (6.11). The value of C(i) 

is calculated for each curve, where (i) refers to the integer shown 

on the curves in figure (6.11). The dimensions for 't', 'd', 'f' 

and '1' are selected randomly to provide the appropriate curve and 

as a demonstration of the effect of end restraint only. These 

values ranged from lOO-380mm, 60-80mm, 12-20mm and 40-60mm 

respectively. The values of C(i) are as follows, 

C(2) = 
-I, 

1.081xlO C(3) = 2.453xlO-1. 

-4 
C(5) 

-I, 
C(4) = 3.58lxlO = 4.l99xlO 

-I, 
C(7) -I, 

C(6) = 4.780xlO = 5.508xlO 

-I, -I, 
C(8) = 6.380xlO C(9) = 7.367xlO (6.21) 

C(lO) 
-I, 

1.028xlO-3 = 8.641xlO C( 11) = 

C(12) 
-3 -3 = 1. 256xlO C( 13) = 1.819xlO 

-3 -3 
C( 14) = 3.045xlO C(l5 ) = 4.003xlO 

C(16) 
-3 = 5.983xlO 

In determining the effective length, the column is assumed to have 

an initial bow of L/IOOO at mid-height in accordance with Design 

Recommendations(54,55). Axial deformation of all the members are 

suppressed, as are usual in critical load analysis of columns. The 

vertical axial load is applied in terms of a commom load multiplier 

of the Euler load. Therefore, the effective length is determined 

by, 

(6.22) 

In all subsequent analysis, Young's modulus of elasticity was taken 

\ . 
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as 210 KN/mm2 unless indicated and both column and beam members 

have the same section. 

Curves indicated by (1) and (17) represent fully-rigid and 

pinned end conditions with an effective length of 0.7 and 1.0 

respectively. In this simple demonstration, a decrease of end 

restraint stiffness produces a corresponding increase in column 

deformation and effective length. It is therefore to be expected 

that curve (16) gives a value approaching pin-ended conditions. It 

is emphasised that these values are applicable only to the type of 

connections used in this exercise. 

The effects of different column lengths for a given type of 

connection have also been examined. Realistic values of 3.0, 4.0 

and 5.0 metre columns are subject to the same assumptions and 

loading criteria mentioned earlier. A 'flexible' header-plate 

connection, commonly assumed pinned in practice, has been adopted 

and the results are shown in figure (6.12). A stiffer end-plate 

connection with column stiffeners is shown in figure (6.13). 

Connection characteristics are also given for each of the 

curves in both figures. It was decided to replace the initial bow 

of L/IOOO by a small disturbing force at mid-height. The reason for 

adopting such a model is to reduce the number of iterations 

required to converge. The initial bow of L/IOOO was used in the 

previous example because the connection there was stiffer than 

either of the two shown in figures (6.12) and (6.13). Due to the 

comparatively 'flexible' connections large end moments are 

developed as the compressive axial load is increased. This give 
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rise to large connection rotations causing the direction of the 

rotations to change in order to preserve equilibrium. This is 

illustrated by curve (2) or (3) in figure (6.14). 

Figures (6.12) and (6.13) justify the commonly assumed 

effective lengths for such connections in braced frameworks. 

However, the values shown suggest the possibility of economy in 

column design if semi-rigid end restraint is properly taken into 

account. It is interesting to note that as the column lengths 

increase, the effective length decreases for any given end 

restraint. The reason is due to the significant effect of 

connection deformation being utilised on slender columns in 

bending. This causes a slight increase in the critical load for 

such columns. 

6.10 Conclusion 

A procedure has been presented for incorporating semi-rigid 

connections into the matrix stiffness method of analysis. A simple 

technique is proposed by which the load vector is revised 

iteratively to allow for deformation of the connections. This was 

shown to provide a convenient and rapid solution, with each 

iteration taking no longer than an ordinary fully-rigid analysis. 

Economy of storage of over 25% has been illustrated for a 

simple portal by excluding the connection details from the overall 

stiffness matrix. Substantial savings in total storage of larger 

frames can be anticipated. The proposal has been programmed to 

account for any combination of fixed, semi-rigid and pinned 
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connections. The reduction in member stiffness due to compressive 

axial forces is also taken into account. This requires an iterative 

analysis in the same manner as for the connection behaviour. 

Therefore, no significant computing time is lost in comparison with 

a fully-rigid non-linear (second-order) analysis. The member forces 

converge rapidly and the structure satisfies equilibrium, 

compatibility and connection characteristic behaviour. 

Examples on unbraced multi-storey frames have shown that 

connection deformation contributes substantially to the overall 

sway displacements in comparison to fully-rigid assumptions. 

Internal redistribution of member forces is significant with the 

possibility of overstressing some sections. This may lead directly 

to the early onset of plasticity at a load factor much lower than 

that predicted by an analysis assuming rigid joints. This could 

result in a significant decrease in the ultimate load carrying 

capacity of the structure. 

r' 

For the examples studied, it was found that provision of 

nominal cladding stiffness was sufficient to offset the additional 

sway resulting from deformation of connections. However, each 

structure will be unique in the value of cladding stiffness 

required. It was found that a uniform provision of such cladding at 

all levels give satisfactory results. Further, the program enables 

simulation to be made of construction phases. Another benefit of 

the proposed method is that poor connections are automatically 

recognised by the analysis not converging due to excessive 

deformation. 
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The influence of semi-rigid end restraint on the effective 

length of no-sway columns suggests possible economy in column 

design. It has been shown that for several types of connections, 

the traditional specifications of effective lengths are justified. 

However, the detailed results apply only to the limited cases 

examined above. Such results indicate the usefulness of studying 

the behaviour of each type of commonly-used connection. The 

tendency for effective lengths to decrease with increasing 

slenderness has been confirmed. This implies a corresponding 

increase in the elastic critical load as a result of the semi-rigid 

connection being fully utilised in flexure. 
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TABLE 6.2 

CONNECTION LIST 

CONNECTION 
NO. 

1 

2 

3 

4 

5 

6 

7 

8 

SECTION AREA INERTIA 
NO. cm2 cm4 

I 157.0 76100.0 

2 228.0 57500.0 

3 335.0 89400.0 

4 487.0 141000.0 

5 399.0 110000.0 

6 590.0 180000.0 

7 649.0 205000.0 

8 755.0 250000.0 

9 537.0 160000.0 

TABLE 6.1 MEMBER LIST 

d t f l 
cm. cm. cm. cm. 

54.40 4.78 1.6 21.2 

54.40 6.66 1.6 21.2 

54.40 9.60 1.6 21.2 

54.40 7.92 2.0 21.2 

54.40 11.48 2.0 21.2 

54.40 12.54 2.4 21.2 

54.40 14.46 2.4 21.2 

54.40 10.52 2.4 21.-2 
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CHAPTER 7 

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 

The thesis has examined the behaviour and some design problems 

of rigid-jointed multi-storey unbraced steel frames. The results of 

the parametric study presented in Chapter (2) enable the designer 

to predict the likely governing criterion (serviceability limit on 

sway or ultimate load) for the design of these frames subjected to 

combined loading. The studies have shown that the original 

Merchant-Rankine formula is conservative for estimating the failure 

load and that the modified version due to Wood(50), which is 

strictly applicable to clad structures, can overestimate the 

failure load. The studies, however, were based on bare frameworks 

and ignores the beneficial effects of strain-hardening and stray 

composite action. A semi-empirical expression has been presented in 

Chapter (3). Significantly better estimates of the failure load has 

been achieved in comparison with both forms of the Merchant-Rankine 

approach. The frames that were examined had equal storey height and 

equal bay width. However, most building structures have a ground 

floor which is taller than the storeys above. Furthermore, 

structures with irregular configurations, particularly with 

inclined members, and uneven floor loading patterns have not been 

considered in the design studies. Although limited cases of 

irregular-bay frames have been examined, further studies should be 

conducted on frames with the above characteristics. Design guidance 

charts, similar to those presented in Chapter (2), could be drawn 
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to include the variable of the average ratio of bay width to storey 

height. The application of the Merchant-Rankine formula to such 

frames could then be validated and the accuracy of the improved 

relationship developed in Chapter (3) examined for irregular 

frames. 

The expression developed in Chapter (3) was based on the study 

of bare frames. It was suggested that the formulae could be used 

for frames subjected to vertical load alone by altering the value 

of the coefficient. It could also be extended to provide an 

estimate of the failure load of clad frames with certain values of 

cladding stiffness. This could then be compared with the 

Merchant-Rankine-Wood approach which is strictly applicable to clad 

frames. 

/, 

The optimization procedure described in Chapter (4) is 

suitable only to regular and rectangular frameworks. Irregular 

frames with inclined members require sophisticated routines and the 
~ 

use of an accurate elasto-plastic computer program is the only 

solution to such a problem. However, several improvements can be 

made to the proposed approximate optimization procedure. In the 

proposed method, only those sections with the most economical full 

plastic modulus (or inertia) to weight ratio are included in the 

list of preferred sections. If it is required to restrict the depth 

of a member, it may be necessary to select a section that is not 

one of the 'economical' sections. Furthermore, certain sections 

that are unsuitable for plastic action may be more 'economical' 

than the one selected and could be used provided they are not 

stressed beyond the elastic limit. In addition, use of Universal 
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beam sections as column members may lead to more 'economical' 

designs. A routine could be added so that the selection procedure 

is based on the most 'efficient' section in all cases. A more 

sophisticated assessment of cost could also be included. 

The manual method presented in Chapter (5) is able to estimate 

accurately the failure load of single storey and multi-storey 

frames. It was shown in Part (1) that significant overall stability 

problems can arise for single storey frames subjected to high 

concentrated loads at or near the eaves level. Part (2) examines 

multi-storey frames and examples have been shown. The calculations 

were performed manually but tends to be lengthy. In order to avoid 

iteration, charts could be produced for use with the method 

proposed in Chapter (5). This would enable the failure load to be 

determined swiftly for single storey or multi-storey frames. As 

suggested above, it would be worthwhile to examine cases with 

irregular bay width and storey height. Furthermore, a separate 

study of the top and bottom two storeys would enable more accurate 
~ 

assessment be made to overcome the error in column moments. An 

investigation should be carried out on the applicability of the 

method for single storey low-pitch portals. For low pitched frames, 

it may be possible to treat them as flat-roofed frames. 

Furthermore, an investigation into fixed base single storey frames 

should be made. Finally, a computer program suitable for use on 

micro-computers should be developed, particularly for multi-storey 

frames. 

Finally, a computer program has been proposed which is capable 

of analysing any combination of pinned, semi-rigid and 
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rigidly-connected plane frames. This program enables the 

determination of effective lengths of braced columns with any 

degree of end restraints. It is possible to extend the technique 

described in Chapter (6) to determine the ultimate load-carrying 

capacity of semi-rigidly connected plane steel frames. The program 

could be used to investigate the behaviour of frames designed to 

the 'simple' methods of BS449 and BS5950. By including semi-rigid 

joint behaviour, a better assessment could be made of the real 

behaviour of such frames, both at the serviceability and ultimate 

limit states. A more extensive study of effective lengths with 

semi-rigid joints would enable more detailed recommendations to be 

made concerning these values, to replace the very crude values 

given in present day design codes. 
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APPENDIX 

Al ANALYSIS OF PINNED BASE SINGLE STOREY FRAME 

(VERTICAL LOAD) 

",,(RV) 
c ~AV 

B ~ ----------- --
I lb 
I 
I 
I 
I 
, (j. C 

\ le 
\ 

A 

L 
~ 

M = 0 
AB 

0 = -c 0 
A • B 

MBA = E.I [s.0
B 

+ se.0
A

] 
c 

h 

= Ek".0B 
s (l - Cl) 

From symmetry of figure 

MBD = -M DB 
and 

Hence, 

~D = 2Ek,'0 - AV.L B 
8 

Equilibrium at joint (B) 

E.0 
B 

= AV.L 
8 

above, 

0 
B 

L 

= -0 D 

---

Substituting (A1.4) into (A1.3) gives, 

",,(RV) 

tD 
\ 
\ , 
I 
I 
I 
I 
I 

E 

~ ;. 

where k" 

where k' 

MDB = AV.L 
8 

2k' 
2k.' + s(l - cnk" ] 

= MV 

h 

= I Ih 
c 

= IblL 

(ALl) 

(Al. 2) 

(Al. 3) 

(Al.4) 

(Al. 5) 
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A2 ANALYSIS OF PINNED BASE SINGLE STOREY PORTAL 

(WIND PLUS FICTITIOUS HORIZONTAL LOAD) 

D C 
)d2FV)'" AH -+ ---- ---- ... 

B I Ib I 

I I 
I I 
I ",e I h 
I 
I 

6 

A 

\ J L 

MAB = 0 

s(l + c).~ = s0 + sc0 
h A B 

MBA = Elt"[s0B + sc.eA - s(l + c)~] 
h 

= Elt" s(l - c) [0 - 0 ] B A 

M =M 
BD DB 

and 0=0 
B D 

Eguilibrium at joint (B) 

0=0 B A 
[ 1 + 6k O/S:l - elk" J 

Sway equation 

MBA + AHh + A(FV).o = 0 
2 

le I 
I 
I 
lE 

} 

6 
>"(FVJ6 + /\H i ~ f 13 

h 2 M 

(A2.1 ) 

(A2.2) 

(A2.3) 

(A2.4) 

BA 

h 
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substituting for MBA from above gives 

o = 0 + AH.h A B -..:..:.;::..;..;.=---
2Ek"s (1 - c) 

(A2.S) 

Solving equation (A2~4) and (A2.5) gives the rotations 

0 = AH.h + A(FV)IS (A2.6) B 
12Ek' 6Ek' 

0 • lH.h [_1_ + 1 
- cl ] 

+ ),(FV)IS [ 1 • 1 
- cl ] A 2E 6k' k"s(1 E 6k' k"s(1 

substituting the rotations into equation (A2.1) and rearranging gives, 

IS = [ . AH .ha:1 J (A2. 7) 
12Ek'/h 2A(FV)a:

1 

where a: = [1 . 6k' J 1 
s(1-c~)k" 

k'= Ib/ L and k" = I /h 
c 

)..(FV) = )..(RV) + )..V/2 

Finally the bending moments are obtained t¥ substituting 

the rotationsinto (A2.2) and (A2.3). 

MSA = - [lHih • 1(FVl6] 

MBO = [AH;h + A (FV) IS J 

= MH 

(A2.8) . 

(A2.9) 
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A3 FIRST HINGE AT LEEWARD END OF THE BEAM 

(MID-SPAN VERTICAL LOAD) 

C ~ !lAV 

B I - - - ______ -- - _D - H3 
I I I) 
I 
I 
I 
, le 
\ 

1-13 AI 
-+ 

1 

o = -0' 
A B 

2 

M = 2Ek" (20 + 0 ] 
BA B A 

= 3Ek"0 
B 

L 1 

h 

F 
where MDB = A'AVL 

8 

° = -A'AVL - ° 
D 32Ek" ~ 

2 

MBD = 2Ek' (20
B 

+ OD) - A'AVL 
8 

Substituting ° into above gives, 
D 

MBD = 3Ek ' O
B 

- 3A'AVL 
16 

Equilibrium at joint (B) 

EO 
B 

= 3A'AVL 
16 

Substitutinl) (A3.3) into (A3.1) and (A3.2) gives .. 

~A = 3AAVL 
16 

MBD = 3!l'AVL 
16 

. 
[1 + ~'/k·1 
[ 1 -1] 

1 + k"/k' 

(A3.1 ) 

(A3,2) 

(A3.3) 

(A3.4) 

(A3.S) 
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H3 = M /h 
BA 

= 36"VL 
16h 
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(A3.6) 
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A4 FIRST HINGE AT LEEWARD END OF THE BEAM 

(WIND AND FICTITIOUS LOADS) 

H· -+ B.---ro::::-::-__ C ____ -QD_ .D 

---------

h 

1 L 1 
M = 2Ek"[20 + 0 -~ = 0 AB A B 

h 

3V2 = 20 + 0 
h 

A B (A4.1 ) 

M = 2Ek"[0 + 20 - 3v2 ) 
BA A B 

h 

= 2Ek" [0 - o ] 
B A (A4.2) 

Similarly, 

M = 3Ek ' 0 since 0 = -0 BD B 0 B (A4.3) 

2 

ESuilibrium 
~/ 

at joint (B) 

0=0 
B A [1 + 3~' 12k"] (A4.4) 

V2 

.§.way equation 118 H*-
* M BA + H 'h = 0 

h 
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Substituting for MBA from above gives, 

* 0 = 0 + H h (A4.5) 
A B 2Ek" 

Put (A4.5) into (A4.4) and rearringing gives, 

* 0 = H h (A4.6) 
B 3Ek' 

and 

* * 0 = H h + H h (A4.7) A 3Ek' 2Ek" 

Equation (A4.1 ) therefore gives, 

* v2 = H h~ o:~ (A4.8) 

3Ek' 

where O:l = (1 + k'/k") 

* H = AAH + (H1 + H2 + H3) 
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AS ANALYSIS OF INTERMEDIATE LIMITED FRAME 

(MID-SPAN VERTICAL LOAD) 

F G 

\ hI 

JII AV "2 
c+ 

B --- -- 0 
I -------- ----
I I2 

11> , h2 
I 2" 

A lE 

1 L l • 

M ;:: 0 
AB 

0 ;:: -0 (AS. 1 ) A B 
2 

M ;:: ~ (40 + 20 ) 
BA h2/2 B A 

/l 

Substituting for 0
A 

gives, 

M ;:: 6Ek2 0 where kl = I 2 /hl (AS .2) BA B 

Similarly for the upper leg, 
,/ 

M 
BF 

;:: 6Ek10B where k, - I
l
/h

l (AS.3) 

M ;:: -M and o ;::-0 
BD DB B D 

;:: 2 E1b (20 + 0 ) -AVL B D 
8 L 

;:: 2Ek0
B -AVL where k ;:: Ib/ L (A5.4) 

8 

Equilibrium at jOint (B) 

E0 = AVL [6k1 

1 

+ 2k] (AS.5) B 
8 + 6kz 
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substituting (AS.S) into slope-deflection equations give, 

and 

where 

M
DC 

= ),VL 

8 [1 -6k, • ~~, • 2kJ 

= AVL 
8 [ 1 ~ -Kk] 

=AVL[~] 
8 K· 

=-M (V) 
DE 

= -M (V) 
DG 

MCD(V) = AVL - M (V) 
4 DC 

K = [3k l + 3kz + k] 

kl = 1,/hl, k2 = 121hz 

where K 

and k = Ib/L 

(AS .6) 

(AS.7) 

(AS.8) 
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A6 ANALYSIS OF INTERMEDIATE LIMITED FRAME 

(WIND LOAD) 

6
11!-+ AHI 

61H 
I I AHI 

I/F 2 

G -+ -2- ---t' 

Il 
B ___ -~C_---_1 0 

I2 

AH2~d AH2+- E 
2 -'2 

~~:_6_2 _______ L~ ________ ~~62 

MBF = 2 El, [20B + 0 - 30 1 ] F -
h1 h1 

MBA = 2&~0B + o - 302 J A -
h~ h~ 

MBD = 2 EIb (20 + 0 ) but 0=0 B D D B -
L 

MBD = 6 EIb 0B -L 

Equilibrium at joint (B) 

4Ek10B + 4Ekz0B + 2Ekl0F + 2Ek~0A - 6Ek l Ol /hl - 6Ek~o~/hz 

Sway equation of upper leg 

M + M + 1Hlhl = 0 
BF FB 2 

o = 20 l /h l - 0 - 1Hthl 
F . B 12Ekl 

Sway equation of lower leg gives, 

0A = 20~/h~ - 0B - 1H2h2 
12Ek~ 

+ 6Ek0 = 0 
B 

(A6.1) I 

(A6.2) 

(A6.3) 

(A6.4) 

(A6.S) 

(A6.6) 
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substituting (A6.5) and (A6.6) into (A6.4) and rearranging gives, 

OB = 2kd Q dhl) + 2k2 (I'll /h2 ) + [(AH1.hl + AH2h2) /6E) 
2kl + 2k2 + 6k 

The bending moments are obtained by backsubstitution of (A6.5) 

to (A6.7) into the appropriate slope-deflection equations. 

(A6.7) 
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A7 ANALYSIS OF BASE LIMITED FRAME 

(MID-SPAN VERTICAL LOAD) 

p Q 

:1, AV : 
J J-:_~ ________ -.:..:K~ ______ :-:-~ L 

I -- --- ---

o =-0 P J 
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I 11) 
I 12 
I 
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ha 
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\ , 
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J -

8 

Equilibrium at joint(J) 

8 

. E0J = A~L [6k, + 4~, + 2k ] 

Substituting (A7.4) into abOve gives, 

M = AVL 
[ 1 - ~,] LJ 

8 

M = AVL [~J JI 
8 

-M 

(A7.1 ) 

LJ 
(A7.2) 

~/ 

(A7.3) 

(A7.4) 

(A7.S) 

(A7.6) 
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M = M /2 
IJ JI 

where K' = (3k 1 + 2kl + k) 
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(A7.7) 
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AB ANALYSIS OF BASE LIMITED FRAME 

(WIND LOAD) 

P AHI 
-2 

Q AHI 
-+2 

K~_-___ 

I 

L 

Proceeding in exactly the same way as shown in Appendix (A6) 

but ignoring the rotation at (1) of the base gives the 

equilibrium at jOint (J) as, 

Substituting (A6.S) for 0p gives, 

0J = 2kl' (01 /h1 ) + 6k, (6, /h~) + (AHl hi /6E) 
2k, + 4kJ + 6k. 

Substituting (A8.2) into the relevant slope-deflection 

equation gives the appropriate bending moments. 

(AB .2) 



AMAB = 

.. 0 = A 

AMBA = 
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A9 HINGE AT LEEWARD END OF TUE BEAM 

F 

(MID-SPAN VERTICAL LOAD) 

I 
I 
I 
I 

A)..,V I 

G 

C ~ :0 
B ~-=--------~~~. -----_~-~~~ ---ib-----

112 
I 

AI 
R2-

l 
0 

-0 
B 

2 

2 !!z.. (20 ... 0 ) 

h~ 
B A 

L 

I 
I 
!E 

J 

= 3Ek~ 0 
B 

Sinlilarly, 

(A9.1) 

(A9.2) 

(A9. ) 

In a similar manner to the derivation given in Appendix (A3), the rotation 
at D is given by, 

AM = 2Ek' (20 + 0 ) - AAVL/8 
BD B 0 

SUbstituting for 0
0 

gives, 

AM 
BD :: 3Ek0 - 3 A).VL 

B 1G 

~Uilibrium at jo1nt(B) 

E0 = 3 AAVL [ 1 
B ~ 3kl'" 3k~ 

SUbstituting (A9.S) into (A9.2) and (A9.3) gives, 

AM :: 3 A')..VL 
BA ~ where K" = kl ... k2 + k 

(A9.4) 

(A9.5) 

(A9.G) 
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The forces Ri and R2 are given by 

R = Ri + R2 

= 3 /)'"AVL 
16K" 

and 

= R (Intermediate) 

The average value of R is taken as half its values given by 

equa tion (A9. 8) • 

For a fixed base limited frame (eA = 0) and equilibrium of 

joint B gives, 

EO 
B 

:; 3 /)'"AVL 
16 

similarly, 

AMBA = 3 "AVL 
16 

AM = 3 /)'"AVL 
BF 

16 

[ 3k l + 

[ 3kl 

[ 3kl 

and the average value of 

R = 3 /)'"AVL 

4k~ ] + 4kz + 3k 

3kl 
3k ] + 4kz + 

R is in the same way obtained as, 

16 [3k, + 4kz + 3k) [~+~] hl hz 

= R (base) 

For double beam hinges the force, R, is similarly obtained. 

(A9.7) 

(A9.8) 

(A9.9) 

(A9.10) 

(A9.11 ) 

(A9.12) 
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A10 DISTRIBUTION OF SHEAR 

(LEEWARD COLUMN) 

VB 

c 

L 

-
Equilibrium of joint(D) 

lIMDE +lIMDG = 0 

4k10D + 4kz 0D = 6kl(vG/hv + 6ka (vD/hz ) 

Sway equation (upper leg) 

lIMDG +lIMGD + SL,hl = 0 

6E~10D - 12Ekl(vG/hl) + SL.hl = 0 

z 
VG ;: h 10D + SLhl 

2 12Ekl 

Similarly for the lower leg, 

vD ;: h, ° + S hZ 

"2 D L a 
12Ekz 

Substituting (A10.2) and (AIO.3) into (A10.l) and rearranging 

gives, 

(A10.I) 

(AIO.2) 

(AIO.3) 

(AIO.4) 
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Hence from (A10.2) and (A1O.3), 

VD = SLhl [hi + h~ + ~] 
4E kl + kl 3k~ (A1O.S) 

and 

VG = S hI [hl + h~ + h, ] (Ala .6) 
L 

kl + k~ 3kl 4E 

(A10.7) 
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WINDWARD ASSEMBLY 

Analysis of the windward assembly is similar to ~he leeward column 

except for the 1nc~usion of the beam member, 

Equilibrium of joint(B) 

aMBA +aM
BF 

+aMBD = 0 

4kl0B + 4k~0B + 3k0B = 6kl(VF/hl)+ 6k~ (vB/h~) 

Sway equation (upper leg) 

AM F +t.M +~ hl = 0 B FB-W 

6Ek l 0B - l2Ekl(VF/hl) + Swhl = 0 

Vii' = [~0B + 5whl J 
2 12Ek, 

Similarly for the lower leg, 

v.B = [!:2.0B + Swh~ ] 
2 l2Ek2 

On substituting (A10.9) and (AIO.IO) into (AIO.S), the rotation 

of jOint B is obtained, 

° = S ~. hI. h, J B W 
2E kl + kz + 3k. 

and the displacements are similarly given as, 

VF = S hl 
[ kl 

hI + h~ .~] W + kz + 3k 3kl 
4E 

vB = Swhz 
[ kl 

hl + h~ .~J 
4E 

+ kz + 3k 3k~ 

The total sway 1s, 

VW(T) =Vf +VB 

=$w [ (nl.. ha lZ . 
4E kl + k~ + 3k 

(AlO.S) 

(AIO.9) 

(AIO .10) 

(AIO.ll) 

(AIO.12) 

(AIO.l3) 

(AI0.14) 
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All INCREMENTAL ANALYSIS 

(WIND LOAD) 

fl61 n G 

86
2 

11; 

rJI-:------I-b--~C----------, 
A~S'W 

1 L 

aM
BF 

= 2E .!L [20 + 0 - 3Ml 
hl 

B F 
hl 

flM = 2E ..!l. [20
B 

t 0 - 3M 2 } 
BA A 

hl 

. .. o =-0 
D B 

2 

Equilibrium at joint (B) 

Sway equation of upper leg 

o = 2Ml - 0 - S hl 
F h B W 

1 "'::"6E~k-l-

hl 

~way equation of lowe~ leg gives, 

o = 2M - 0 - S'h A ~ B W 2 

h2 6Ek a 

(Al1.l) 

(Al1.2) 

(All.3) . 

(All.4) 

(All. 5) 

(Al1.6) 
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substituting (All.S) and (All.6) into (All.4) and rearranging 

gives, 

0S = 2k l(Ao l/h1 ) + 2ka (Aoa/h~) T tSwh1 + S~hl)/3E] 

2kl + 2kl + 3k 

In a similar manner, the joint rotations at 0, E and G are 

obtained by ignoring the beam stiffness, 

00 = 2k, (8Odhl) + 2k2 (80 2 /h2 ) + [(SLh1 + S~ h l )/3E) 

2kl + 2kz 

o o 

o =2~-0 
E 0 h z 

- SI h 
L 2 

6Ekz 

(Al1.7) 

(Al1.8) 

(Ai 1. 9) 

(Al1.10) 
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A12 INCREMENTAL ANALYSIS OF BASE LIMITED FRAME 

p 

\ 
111 

(MID-SPAN VERTICAL LOAD) 

Q 

6AV , 
J f-::~ __ --!.!.K-.:.~ __ --:~".,.....q L 

J -------------

6MpJ = 

0 = P 

llMJp = 

= 

6M
JI = 

= 

Similarly, 

6MJK = 

I Ib 

0 

- 0 J 
2 

\ I2 
\ \ 

I 

~ 

2E .!L [20 + 0 1 J P 
hl 

3Ek10
J 

2E .!2.. [20
J

1 
ha 

4Ekz0
J 

3Ek0 J - 311A VL '" 
. 16 

L 

~Suilibrium at joint(J) 

E0J = 311AVL r:--__ l __ ~] 
16 L3k 1 + 4ka + 3k 

N 

Substituting (A12.4) into the slope-deflection equation above 

gives, 

6MJK = 3AAVL [ 3k - 1] 
16 3kl + 4ka + 3k 

=llM (V) 
JK 

(A12.1 ) 

(A12.2) 

(A12.3) 

(A12.4) 

(A12.5) . 
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~JI (A12.6) 

:: ~JI(V) 

and 

~MKL :: ~AVL + AM (V) 
4 JK 

2 
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Al3 INCREMENTAL ANALYSIS OF BASE LIMITED FRAME 

A6'Ft 
(WIND LOAD) 

Sw Q_S 
. L 

A62tt 11 hl 

J K 
11) 

12 h2 

I 

} L 

AMJI = 2Ek~ [20
J 

3M l /h l l 

AMJp = 2Ekl[20J + ° - 3Mdhll P 

AMJL = 3Ek0J 

Equilibrium of joint(J) 

t.MJP + t.M JI + l1MJL = 0 

4k10
J 

+ 4k~0J + 3k0
J 

= 6kl(Ml/hl) + 6k~ (Ml/hl ) - 2k10p 

Sway equation of upper leg 

l1MpJ + t.MJP + Swh1 = 0 

0p = 2l16 1/h1 - 0J - SWh1 

6Ekl 

Substitute (A13.5) into (A13.4) to solve for 0J1 

0J[2kl + 4kl + 3k] = 2kl(l161/hl) + 6k l (A6~/hl) + S~l 

3E 

0J = 2kdM dhl) +. 6k:l, (M:l,/h4,) + (Swhd3E) 

(2kl + 4k~ + 3k) 

The rotation.at joint L of the extended leeward column is 

Similarly obtained by ignoring the beam stiffness, k, and sub-

stituting SL for SW. 

(Al3.1) 

(A13.2) 

(Al3.3) 

(Al3.4) 

(A13.5) 

(A13.6) 
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Equilibrium of joint (L) 

W1 +llM =0 
LN r.Q 

4Ek 10
L 

+ 4Eka 0L + 2Ek10Q = 6Ekl(~Ol/hl) + 6Eka (lloa/ha) 

Sway equation for member NQ 

0Q = 2Mdhl - 0L - SLh1 

6Ekl 

Substituting (A13.8) into (A13.7) and rearranging gives, 

0L = 2kl (Mdh 1 ) + 6ka (Ma/ha) + (SLh1/3E) 

2kl + 4ka 

(A13.7) 

~A13.8) 

(A13.9) 
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A14 INCREMENTAL ANALYSIS OF BASE" LIMITED FRAME 

(VERTICAL LOAD) 

P 1\1 
,1 tJ.J\V 

I K~ L 
J ,~--==_~_~--~----------~ 

I I ----
I b 

Q 

\ 12 

N 

l' L 

-llM =0 
PJ 

(A14.1) 

(A14.2) 
/," 

and 

tJ.M 
JK = -tJ.>"VL (A14.3) 

4 

Equilibrium of joint(J) 

EO = l:::.>"VL 
J -

4 
(A14.4) 

Hence from above equation, 

llMJI = l:::.>"VL [ 4k2 ] 
4 3kl + 4k2 

(A14.5) 

and 

llM IJ = I1M3I/2 (A14.6) 
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