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Learning-based Spectrum Sharing and Spatial Reuse
in mm-Wave Ultra Dense Networks

Chaoqiong Fan, Bin Li, Chenglin Zhao, Weisi Guo, Ying-Chang Liang, Fellow, IEEE

Abstract—In this paper, the throughput maximization of

millimeter-wave (mm-Wave) ultra-dense networks (UDN) using

dynamic spectrum sharing (DSS) is considered. Most of the

existing works only allow temporal-domain access and admit at

most one user at each time slot, resulting in significant under-

utilization of spectrum resource, which will be less attractive to

mm-wave UDN applications. A generalized temporal-spatial shar-

ing scheme is proposed in this paper for UDN by exploiting the

location information of incumbent devices, where multiple users

are allowed to access each channel simultaneously via spatial

separations. For distributed applications, the global information

exchange among secondary users (SU) tends to be impractical,

given the unaffordable signaling overhead and latency. Thus, a

non-cooperative game with fine-grained two-dimensional reuse

is formulated, which leads to a more efficient access strategy.

It is then proved to be an exact potential game (EPG), which

has at least one pure strategy Nash equilibrium (NE). Finally,

an improved decentralized reinforcement learning algorithm is

designed, with which SUs can learn from wireless environments

and adapt towards to a NE point, relying on the individual

observation and the historical action-reward (rather than the

global information exchanging). The convergence efficiency of the

new scheme is also rigorously proved. Numerical simulations are

provided to validate the performances of the proposed schemes.

Index Terms—Ultra-dense networks, millimeter-wave,

temporal-spatial reuse, Nash equilibrium, decentralized learning

I. INTRODUCTION

A

TTRIBUTED to the explosive development of wireless
communications, the data traffic has been growing in an

exponential manner [1]. As one of the core features in the
emerging 5G communications, ultra-dense networks (UDN)
has attached extensive investigations [2]. In such a circum-
stance, a larger number of small cells with outnumbering
users will be deployed crowdedly [2]–[4], which offers new
features to wireless coverage, i.e., any given user would be in
a very close distance to many small cells [5]. As a result,
UDN remains strikingly different from traditional wireless
networks. One major advantage of UDN is that, its coverage
area becomes small enough to have a high probability of
line-of-sight (LoS) transmission [6], [7] and, therefore, the
low-power small-cell will gain prominence [5]. On the other
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hand, in such a context traditional techniques suffer from the
poor quality of service (QoS), and new network paradigms
to accommodate massive wireless devices will be critically
needed [3].

Despite the potential of admitting the ever-growing devices,
how to effectively control the network interference is of
significance to UDN [8]. First, serious cross-link interference
is inevitable among neighboring cells in the UDN proximity
scenarios, which greatly degrades the performance [9]. To
this end, deploying UDN in millimeter-wave (mm-Wave) band
seems to be extremely attractive [10], due to a low risk of
interference (i.e. the significant path-loss) and plenty of spec-
trum resources, as far as the low-power nature of small cell is
further concerned. Second, the low spectrum efficiency limits
the number of active devices and the overall network capacity
[5]. It is recognized that dynamic spectrum sharing (DSS)
is one effective approach to cope with the aforementioned
challenges [11], [12]. By promoting the spectrum utilization
via opportunistic spectrum access [13] and coordinating inter-
ference via listen-before-talk (LBT) techniques [14], DSS is
of great promise to mitigating the interference [15], [16] and
maximizing the network throughput [17]–[19].

There are plenty of studies on interference-aware dynamic
access in the context of cognitive radio networks (CRN) [17]–
[25]. In general, the shared users, or secondary users (SUs),
are assumed to be capable of exchanging information of
available spectrum resources, and can negotiate with each
other according to various requirements. In [17], the resource
allocation scheme for cognitive small-cell networks (C-SCNs)
based on the cooperative bargaining game (CBG) is proposed.
With the purpose of maximizing throughput and minimizing
collisions, opportunistic spectrum access (OSA) premised on
a local interaction game, which includes local altruistic game
(LAG) and local congestion game (LCG), is studied [18].
A non-cooperative dynamic game for DSS is presented in
[19]. In [20], the authors investigate a problem of aggregated
interference from multiple SUs to primary user (PU). Other
distributed schemes for sharing the sensing results are studied
by [21]. In [22], self-organized spectrum access is used to
mitigate the interference of SCN; while in [23], a stochastic
learning approach based on the potential games is formulated
to maximize the throughput of dynamic environments. In
[24], a competition versus cooperation game on multiple-
input single-output (MISO) interference channel is designed.
A method of coordinated multi-users spectrum sharing in
distributed antenna based CR system is presented in [25].

For UDN small-cells, existing schemes become less attrac-
tive. First, most schemes rely on an ideal assumption that SUs
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have the full/global knowledge on: (1) the wireless environ-
ment, and (2) the complete (or semi-complete) information on
actions taken by other partakers. Such assumptions will be
unfortunately infeasible for UDN applications, as acquiring
and exchanging such information will be resource-demanding
(in terms of consumed time, power or bandwidth) and may
lead to heavy signaling overheads as well as unaffordable
latency. Second, probably due to the absence of PU’s location
information, most studies deal with the temporal-domain inter-
ference avoidance, i.e. only one SU is allowed to access vacant
spectrum at one time slot. As far as the UDN is concerned,
such DSS schemes with the simple sharing strategies will
become inadequate, and more importantly, both the accom-
modated devices and the network capacity will be restricted.
To the best of our knowledge, there are few works reported
on the multiple-dimensional spectrum reuse (i.e. temporal and
spatial) in the context of UDN.

In this study, we focus on the spectrum access and in-
terference coordination in UDN, where there arises some
new formidable challenges that most existing schemes fail
to cope with. To be specific, how to realize the distributed
spectrum access in UDN, and simultaneously, coordinate the
intensive mutual interference via the affordable signaling over-
head remains still as a key obstacle. In contrast to previous
studies on overlay/underlay sharing, in this paper, we suggest
a fine-grained and multiple-dimensional access scheme for
UDN applications. We assume the partial information on PUs’
locations will be available at SU, e.g., owing to the recently
proposed deep sensing (DS) framework [26], [27], whilst
the information of other SUs remains unknown. We are in
particular interested in shared access with spatial reuse, where
each SU can only be aware of its own channel selections
and access reward. That is to say, each single SU link only
perceives the signal-to-interference-and-noise ratio (SINR) of
its receiver via some limited feedback. We then introduce
a game-theoretic approach to identify the optimal accessing
strategy. We employ the expectation of accumulated capacity
as a utility function [25], and prove it is an exact potential
game (EPG) which thereby has at least one pure strategy
Nash equilibrium (NE) point. For the formulated game with
only partial information, we further suggest a decentralized Q-
learning algorithm, with which SUs learn from the individual
action-reward history and adapt their behaviors towards to a
NE point. To sum up, the main contributions are listed as
follows:

1) For mm-Wave UDN, we established a new DSS model
enabling temporal-spatial spectrum reuse, where multi-
ple shared links are allowed to access the same chan-
nel at the same slot. An SINR temperature limit is
specified to characterize the interference tolerance of
shared receivers (i.e. a SU link below this limit will
not access the channel at current slot). By configuring
spatial beams flexibly, SUs aim to maximize its own
transmission efficiency whilst restricting the interference
to other receivers. Thus, this scheme achieves two-
dimensional (i.e. temporal and spatial) spectrum sharing,
which, by coordinating the cross-link interference, can

accommodate more devices and further improve the
network capacity.

2) Due to the more complicated problems and the higher
performance requirements of the considered UDN sce-
nario, directly applying existing game methods seem
to be a profitless exercise. To combat this, it is urgent
to redesign and reformulate the game model for UDN
application. In this paper, we present a unified non-
cooperative game framework for the DSS problem in
distributed UDN scenarios. To make it more suitable
for our considered complex scenario, we employ the
expectation of SUs’ reward as a utility function and
the accumulated throughput as the potential function.
With the spatial uncoupling and the carefully designed
potential function, the formulated game is shown to be
an EPG. On the basis, the existence of NE solution of
the considered game, which is locally optimal for the
channel selection problems, is proved analytically.

3) To accomplish the self-learning during shared access, a
reinforcement learning (RL) scheme is used, by design-
ing a new decentralized Q-learning algorithm. Relying
on the partial feedback information and the interaction
with wireless environments, our scheme can achieve the
NE points, by effectively excluding the frequent infor-
mation exchanging among different links. Meanwhile, a
rigorous proof of the convergence performance of this
decentralized Q-learning algorithm is provided, which is
shown to be more efficient than classical schemes.

4) The performances of our temporal-spatial reuse scheme
are evaluated in mm-Wave UDN scenarios. First, in
comparison with other schemes, the convergence perfor-
mance of the new algorithm can be promoted effectively,
in terms of both speed and stability, which leads also
to a small latency. Second, by reusing spectrum via
the spatial separation, the network throughput can be
improved significantly. Meanwhile, the maximum ac-
commodated devices in a local area are increased, which
hence provides a great potential to 5G communications
with dramatically increasing devices.

The rest of the article is organized as follows. In Section
II, a new DSS model and its problem formulation are pre-
sented. In Section III, by designing the utility function, we
formulate the DSS procedure as a non-cooperative game, and
furthermore, investigate the properties of NE. In Section IV, we
propose the decentralized Q-learning algorithm, and provide
a rigorous proof of its convergence. Numerical simulations
and performance evaluations are provided in Section V. The
conclusions are made in Section VI.

II. SYSTEM MODEL

A. System Model

We consider a UDN scenario with temporal-spatial reuse,
which consists of K incumbent transmitter-receiver (TR) pairs
and N shared TR pairs. There are M orthogonal channels
available for use. For simplicity, we refer to each TR pair
as one user. The licensed channels are possessed by inc-
umebents/PUs and can be opportunistically used by SUs,
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subject to no harmful interference. As shown in Fig. 1,
multiple PU/SU links of UDN share the spectrum, which
are randomly located in an area (e.g., an indoor office). In
particular, the mm-Wave UDN is considered in which, (1)
the strong path-loss reduces the risk of interferences [28],
and (2) each user equipment (UE) is equipped with multiple
antennas enabling spatial beam-forming [29], [30]. Denote the
set of PU as K, i.e., K = {1, 2, ...,K}, the set of the SU
as N , i.e., N = {1, 2, ..., N}, and the set of the licensed
channels as M, i.e., M = {1, 2, ...,M}. In order to support
the data transmission of PUs and reflect the spectrum resource
competition among SUs, we assume K 6 M 6 N .

With the involvement of access point (AP), both spectrum
occupancy status and locations of the PU will be available,
for example, with the help of DS techniques. We consider
that multiple competitive links are located on a 2-D grid, and
the coordinate vector of the kth PU link is t

P
k = (xk, yk)

(transmitter end), and r

P
k = (xk, yk) (receiver end), k =

1, 2, ...,K. The coordinate vector of the nth SU link is given
by t

S
n = (xn, yn) (transmitter point), and r

S
n = (xn, yn)

(receiver point), n = 1, 2, ..., N . Each SU transmitter will steer
its beams based on a predefined beam codebook [31], [32],
which will be aligned to a target receiver to enhance its SINR
and sententiously avoid the exclusive regions PUs’ receivers
located. The width of main-lobes, or the beam resolution, is
denoted by ✓n.

Given the above formulation, a state vector is used to
characterize the nth SU:

sn =

⇣

t

S
n , r

S
n , ✓n,D,A,G

⌘

. (1)

Next, we elaborate on the later three parameters, which are
used to describe co-interference relationships.

(1) Euclidean distance matrix (EDM), i.e.,

D =

2

6

6

6

6

6

6

6

6

4

d1,1 d1,2 · · · d1,K · · · d1,K+N

d2,1 d2,2 · · · d2,K · · · d2,K+N

...
...

...
...

...
...

dK,1 dK,2 · · · dK,K · · · dK,K+N

...
...

...
...

...
...

dK+N,1 dK+N,2 · · · dK+N,K · · · dK+N,K+N

3

7

7

7

7

7

7

7

7

5

(2)

which specifies the distance between the transmitter
and receiver (or both PU and SU), i.e., di,j =

q

(xi � xj)
2
+ (yi � yj)2, i, j 2 K [N . It is noted that this

EDM will be only required in mathematically defining the link
SINR, which in implementations needs not to be estimated.

(2) Angle matrix (AM), i.e.,

A =

2

6

6

6

6

6

6

6

6

4

↵1,1 ↵1,2 · · · ↵1,K · · · ↵1,K+N

↵2,1 ↵2,2 · · · ↵2,K · · · ↵2,K+N

...
...

...
...

...
...

↵K,1 ↵K,2 · · · ↵K,K · · · ↵K,K+N

...
...

...
...

...
...

↵K+N,1 ↵K+N,2 · · · ↵K+N,K · · · ↵K+N,K+N

3

7

7

7

7

7

7

7

7

5

(3)

which gives the direction of the line between transmitters
and receivers. As mentioned, as the partial information, the

                       

Fig. 1: The system model of mm-Wave UDN, here the
few links are plotted for an illustrative purpose.

direction of PU’s receivers can be available at each SU
transmitter. While the direction of other SUs, similar to the
above EDM, will not be explicitly required, as the SINR
will be estimated at each receiver and reported to the aligned
transmitter.

(3) Beam Gains matrix (BGM), i.e.,

G =

2

6

6

6

6

6

6

6

6

4

g1,1 g1,2 · · · g1,K · · · g1,K+N

g2,1 g2,2 · · · g2,K · · · g2,K+N

...
...

...
...

...
...

gK,1 gK,2 · · · gK,K · · · gK,K+N

...
...

...
...

...
...

gK+N,1 gK+N,2 · · · gK+N,K · · · gK+N,K+N

3

7

7

7

7

7

7

7

7

5

(4)

which gives the beam gains of different spatial angles with
regards to its aligned direction (steering to its receiver). As
specified in mm-Wave communications, the beam gain can
be modeled as a circularly symmetric Gaussian function [33],
with its maximum gain located at the target direction ↵ii, i.e.,

gi,j = exp
⇢

� (↵ij � ↵ii)
2

(✓i/30)2 ⇥ 50

�

, i, j 2 K [N .

Given the coordination signaling and the unaffordable la-
tency, a full information exchanging among shared users will
be infeasible in UDN. As mentioned, the local feedback
scheme is thereby used, as in [34], which will facilitate the
decision making of SUs by reducing the overhead signaling.
To be specific, each SU receiver will measure its SINR and
report it to the aligned SU transmitter, so that the transmitter
can be aware of channel qualities. On the basis, SU will
optimize its access strategy, and make reasonable adaption to
channel selections in the next time slot.

A schematic structure is given by Fig. 2. Assume each SU
is able to sense only one channel during a sensing period, and
then select one channel for transmission in a slot [23]. At the
beginning of each slot, each SU will choose a channel to sense,
according to its selection strategy. If the selected channel is
sensed by more than one SU, the mutual contention may occur.
The channel access is successful in the case that the SINR is
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Channel selection and sensing

Competition and feedback

Data transmission

Learning the environment

Fig. 2: Transmission structure of the SUs

not less than the predefined threshold, and otherwise, the SU
has to keep silence in this slot and wait for the next slot.

Owing to the spatial separation, one channel can be now
accessed by more than one SU, rendering the access process
more complicated. To cope with it, we divide the competition
procedure into two stages. In the first stage, SUs with the SINR
above a predefined threshold are considered to be successful in
the contention. As expected, there may be several successful
SUs at this stage. The remaining SUs, with their SINR below
this predefined threshold, will continue competing in the 2nd
stage. In the following competition, only one SU can succeed.
Then, successful SUs will transmit in the remaining slot. At
the end of each slot, SUs will receive their rewards, and further
learn wireless environments and update their access strategies.

After finite iterations, a whole network achieves its con-
vergent state. For example, as in Fig. 1, the SU link 1 and
link 3 are allowed to share spectrum with PU, as they cause
no interference to PUs. In contrast, the SU link 2 and link
4 are denied to emitting. This is because, the SU link 2 will
cause co-channel interference and thereby deteriorate network
capacity, while the SU link 4 will cause intolerable interference
to incumbent receiver.

B. Propagation Model

For mm-Wave communications, the propagation path-loss
will be related to both distance and frequency [35], [36]. For
simplicity, here we focus on the distance-dependent path-loss
model (i.e., neglecting the effect from frequency), which is
expressed as:

PL(d)[dB] = PL(d0)[dB] + 10log10(d/d0)

⇥
⇣

1�Hlog2(Br)

⌘

+X◆, (5)

where d0 = 1m is the reference distance,  2 [2.2, 2.5] (e.g.
LoS scenarios of 60GHz band) is the path loss exponent (PLE)
for the strongest beam, H = 0.06 is the weighting factor,
Br is the number of unique pointing beams combined, and
X◆ 2 [8.2, 10.6] is the typical log-normal random shadowing
variable. PL(d0)[dB] represents the path loss at a reference
distance d0, i.e.,

PL(d0)[dB] = 20log10
4⇡d0
�

= 32.4 + 20log10(fGHz). (6)

Let st(n) denote the transmitted signal of SU n in the mth
channel. The received signal of SU n follows:

sr(n) =
p

PK+nst(n) +
X

i2K[N\n

p

Pist(i) + wm, (7)

where Pi is the received power subject to channel propagations
and beam gains, i 2 K [ N , and wm is the additive white
Gaussian noise (AWGN) with the zero mean and a variance
of �2

m, i.e. wm s N (0,�2
m) and m 2 M.

C. Problem Formulation

With the predefined angle matrix A and the beam gain
matrix G, we denote the spatial region interfered by the nth
SU as Bn, i.e.,

Bn ,
⇢

� : � 2


↵K+n,K+n � ✓n
2

,↵K+n,K+n +

✓n
2

��

,

8n 2 N . (8)

Accordingly, denote these PUs suffering from the interfer-
ence of nth SU with In, i.e.,

In ,
n

i 2 K : ↵K+n,i 2 BK+n

o

,

=

n

i 2 K : gK+n,i > g0

o

, (9)

where g0 is the threshold of the beam gain and configured to
g0 = 0.001, which means the interference of user i to user j is
trivial, if the beam gain gi,j is no greater than 0.001. Similarly,
those SUs that will interfere to the nth SU is denoted as Jn,
i.e.,

Jn ,
n

j 2 (N \ n) : ↵K+j,K+n 2 BK+j

o

,

=

n

j 2 (N \ n) : gK+j,K+n > g0

o

. (10)

In the considered UDN scenario, the interference accumula-
tion from multiple SUs can be hardly controlled, and the null
interference constraint becomes an alternative solution. Let
Ak denote the channel occupied by PU k, hence the channel
selection set for SU n is denoted by An, i.e.,

An ,
n

m 2 M : m 6= Ak, k 2 In
o

[?, (11)

and the channel selection of SU n is denoted by an, an 2
An. Further, the interference of SU n choosing the channel
an, which is aroused by other users who belong to the set Jn

and select the same channel an, is denoted by Inan
, i.e.,

Inan
=

X

j2Jn

Pj�(an, aj), (12)

where �(an, aj) is the indicator function, i.e.,

�(an, aj) =

(

1, an = aj ,

0, an 6= aj .

Accordingly, the received SINR of the nth SU choosing the
channel m can be denoted by:

�n,m =

PK+n

Inm + �2
m

. (13)

As we stated, the SINR value �n,m of SU n determines the
channel competition result. Let bn(�n,m) indicate whether SU
n successfully accesses the channel m or not after contention.
Clearly, bn(�n,m) is a Bernoulli random variable, i.e.,

bn(�n,m) =

(

1, �n,m > �0,

0, �n,m < �0,
(14)
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where �0 is the predefined SINR threshold.
It is assumed that all channels supply the same bandwidth

W to each user, whilst different users may experience various
channel qualities due to complex co-interferences. The achiev-
able shared capacity is determined by the Shannon’s formula,
i.e., the capacity rn,m of the SU n achieved by accessing
channel m is given by:

rn,m =

(

W log2(1 + �n,m), bn(�n,m) = 1,

0, bn(�n,m) = 0.
(15)

Moving on, the expected reward, i.e., the effective capacity
achieved by SU n (n 2 N ) accessing channel an is

r̄n,an = E
⇣

rn,anbn(�n,an)

⌘

= W log2(1 + �n,an)E
⇣

bn(�n,an)

⌘

. (16)

The network throughput, or the aggregate channel capacities
obtained by all shared SUs, is then given by:

U(a) =

N
X

n=1

r̄n,an , (17)

where a = {a1, a2, a3, ..., aN} is a channel selection pattern
for all SUs, with an 2 An.

When two or more SUs choose the same channel, then
the mutual interference may occur even if the spatial beams
are adopted. Therefore, in order to mitigate such co-channel
interference among SUs, it is desirable to optimize the channel
allocation for SUs, with the objective of maximizing the
accumulated throughput. Thus, the channel access in UDN
will be formulated as:

P : maxU(a). (18)

It is seen that solving the above eq. (18) is challenging,
as there is no centralized coordinator, and the complete or
global information is unavailable (e.g. the positions of other
SUs remain unknown). Thus, a distributed approach with a
self-learning ability and low-complexity implementation will
be of great importance.

III. NONCOOPERATIVE GAME MODEL FOR DYNAMIC
SPECTRUM SHARING

Since there is no centralized coordinator, the channel selec-
tion has to be realized by each SUs independently premised
on the uncompleted information. As a powerful tool for
distributed decision making, where the individual decision
will mutually influences each other, the game theory has been
widely applied [17]–[19], which is suitable for traditional CR
networks [37], [38]. One can refer to ref. [39] for various
game-approach methods. The justification of applying a game-
theoretic approach to the formulated problem are two-folds.
First, SUs are both rational and selfish, which will make
decision independently. Second, the objectives of multiple SUs
may become conflicting while their decisions are achieved
interactively.

In this section, an effective strategy for the game approach
is designed in UDN scenarios, in which the global information

(e.g. of other SUs) remains unknown. Note that, the main
objective of this new scheme is to maximize the profits of
SUs, relying on the concept of equilibrium.

A. Strategy Form Game

Some fundamental definitions are presented in the follow-
ing. First, we establish the interference relationship as a graph.

Definition 1 (Interference Graph): We define G = (N , E)
as an interference graph, where

• N is the set of players (SUs), N = {1, 2, ..., N};
• E is the set of edges, which is defined as E =

�

(ri, tj)|i 2
N , j 2 Ji

 

. Note that, here we describe it from a
perspective of receivers.

Given the interference graph, the game strategy can be then
formulated as follows. For the notational convenience, the set
of actions of all SUs, except the nth SU, is denoted as A�n,
with its element a�n.

Definition 2 (Strategy Form Game): A strategy form game
is described as F = (G,A, u), in which

• G is interference graph, as we have defined previously;
• For each player n 2 N , an 2 An is one action, and

An is the set of feasible actions (channel selection) of
the player n. Then, a pure strategy selection pattern is a
n-tuple a = {a1, a2, a3, ..., aN}, and the set of actions is
A = ⌦An, where ⌦ is the Cartesian product;

• u = {u1, u2, u3, ..., uN} is the set of utility functions for
the players, where un(an, a�n) is the utility function of
SU n, an 2 An, a�n 2 A�n.

To summarize, the proposed strategy is a kind of game,
in which the utility of a player is not only dependent of the
actions of itself, but also the actions of other players.

Then, we define the NE as follows, which accounts for the
steady state of a non-cooperative game.

Definition 3 (Nash Equilibrium): An action pattern a

NE
=

{aNE
1 , aNE

2 , aNE
3 , ..., aNE

N } is a pure strategy NE, if and only
if no player can improve its utility by deviating unilaterally,
i.e.,

un(a
NE
n , aNE

�n ) >un(an, a
NE
�n ),

8n 2 N , 8an 2 An, an 6= aNE
n . (19)

Finally, we present the definition of EPG which guarantees
the existence of NE.

Definition 4 (Exact Potential Game): A game is an EPG if
there exists an ordinal potential function � : A = A1 ⇥A2 ⇥
... ⇥ An such that for all n 2 N , an 2 An, a

⇤
n 2 An, a�n 2

A�n, the following relation holds:

un(an, a�n)� un(a
⇤
n, a�n) = �(an, a�n)� �(a⇤n, a�n). (20)

The change in a utility function caused by the unilateral
action change of an arbitrary player is exactly the same with
that in the potential function. Thus, EPG belongs to the
potential games, which have been applied widely to wireless
communications. Potential game exhibits several attractive
properties and two most important of them are:

• Every potential game has at least one pure strategy NE;
• any global or local maxima of the potential function will

constitute a pure strategy NE.
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B. Utility Function

In existing works, the utility functions are commonly se-
lected as a group of indicator functions, suggesting if a player
competes successfully with its current action, then it will
acquire a unit reward 1 and, otherwise, it will obtain a reward
of 0. In the context of shared access in UDN, we alternatively
formulate the utility function of player n as its attained channel
capacity in the strategy-form game, i.e.,

un(an, a�n) , E
⇣

rn,an |a�n

⌘

= r̄n,an , (21)

where rn,an is the random reward received by player n when
taking the action an.

Based on the above analysis and the rational and selfish
nature of players, we formulate the problem of maximizing
network throughput in eq. (18) as a distributed strategy-form
game, which can be further expressed as:

F : max

an2An

un(an, a�n), 8n 2 N , (22)

where An is the action set (i.e., the available channel set) of
player n specified by eq. (11).

In the following, we first prove the formulation optimization
problem in eq. (22) is an EPG. Thus, the NE will correspond
to its optimal solution. On this basis, we design a decentralized
Q-learning algorithm to obtain the NE solution.

C. Analysis of Nash Equilibrium

We firstly investigate the properties of the above strategy-
form game, with which the existence and convergence of NE
can be demonstrated.

Theorem 1: The considered game F in eq. (22) is an EPG,
which has at least one pure strategy NE. In addition, the
optimal solution to the problem P in eq. (18), i.e., maximizing
the throughput of UDN, constitutes a pure strategy NE of F .
Before proceeding, we define the potential function as:

�(an, a�n) =

XM

m=1

X|Cm|

c=1
'm

⇣

Cm(c)
⌘

, (23)

where |Cm| denote the number of SUs who select channel m
for sense and competition, i.e., Cm = {n 2 N : an = m}
(m 2 M), and

'm

⇣

Cm(c)
⌘

, W log2(1 + �Cm(c),m)E
⇣

bCm(c)(�Cm(c),m)

⌘

,

c =
n

1, 2, ..., |Cm|
o

,m 2 M. (24)

The proof procedure will be divided into two parts. First,
we consider a simple yet fundamental instance, in which the
SU n will not suffer from interference of other SUs. Second,
we will generalize it to a common situation, where the SU n
suffers from mutual interference.

Assume that the casual SU n changes unilaterally its se-
lected channel from an to a⇤n, and the resulting variation in
individual utility function caused by this one-sided adaption
is written as:

un(an, a�n)� un(a
⇤
n, a�n) = r̄n,an � r̄n,a⇤

n
,

= W log2(1 + �n,an)E
⇣

bn(�n,an)

⌘

�W log2(1 + �n,a⇤
n
)E
⇣

bn(�n,a⇤
n
)

⌘

,

= 'an(n)� 'a⇤
n
(n). (25)

For the simple situation, as the player n is free from
interferences of other players, the situation is simple and
intuitive, i.e., the change in the potential function caused by

�(an, a�n)� �(a⇤n, a�n)

=

XM

m=1

X|Cm|

c=1
'm

h

Cm(c)|(an, a�n)

i

�
XM

m=1

X|Cm|

c=1
'm

h

Cm(c)|(a⇤n, a�n)

i

,

=

2

4

X

m2M\(an[a⇤
n)

|Cm|
X

c=1

'm

⇣

Cm(c)
⌘

+

|Can |
X

c=1

'an

⇣

Can(c)
⌘

+

|Ca⇤
n
|

X

c=1

'a⇤
n

⇣

Ca⇤
n
(c)

⌘

3

5

�

2

4

X

m2M\(an[a⇤
n)

|Cm|
X

c=1

'm

⇣

Cm(c)
⌘

+

|Can |�1
X

c=1

'an

⇣

Can(c)
⌘

+

|Ca⇤
n
|+1

X

c=1

'a⇤
n

⇣

Ca⇤
n
(c)

⌘

3

5 ,

=

2

4

|Can |
X

c=1

'an

⇣

Can(c)
⌘

�
|Can |�1
X

c=1

'an

⇣

Can(c)
⌘

3

5

+

2

4

|Ca⇤
n
|

X

c=1

'a⇤
n

⇣

Ca⇤
n
(c)

⌘

�
|Ca⇤

n
|+1

X

c=1

'a⇤
n

⇣

Ca⇤
n
(c)

⌘

3

5 ,

(a)
===

2

4

0

@

X

i2Can\n

'an(i) + 'an(n)

1

A�
|Can |�1
X

c=1

'an

⇣

Can(c)
⌘

3

5

+

2

4

|Ca⇤
n
|

X

c=1

'a⇤
n

⇣

Ca⇤
n
(c)

⌘

�

0

@

X

i2Ca⇤
n

'a⇤
n
(i) + 'a⇤

n
(n)

1

A

3

5 ,

(b)
=== 'an(n)� 'a⇤

n
(n). (27)
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this unilateral change is given by:

�(an, a�n)� �(a⇤n, a�n)

=

XM

m=1

X|Cm|

c=1
'm

h

Cm(c)|(an, a�n)

i

�
XM

m=1

X|Cm|

c=1
'm

h

Cm(c)|(a⇤n, a�n)

i

,

=

N
X

n=1

h

r̄n,an |(an, a�n)

i

�
N
X

n=1

h

r̄n,an |(a⇤n, a�n)

i

,

=



X

i2N\n
r̄i,ai + r̄n,an

�

�


X

i2N\n
r̄i,ai + r̄n,a⇤

n

�

,

= r̄n,an � r̄n,a⇤
n
= 'an(n)� 'a⇤

n
(n). (26)

Then, we focus on the common case. The resulting change
in potential function caused by this unilateral change is given
by eq. (27). From the sharing point of view, the change of the
player n’s channel selections only influences the users within
channels an and a⇤n. Based on this consideration, we divide the
channel set into three types, i.e., m 2 M\ (an[a⇤n), m = an
and m = a⇤n. On the other hand, due to the spatial separation,
multiple users accessing the same channel successfully means
there is no interference or the interference is insignificant
among these SUs., which indicates the following equations
hold.

X

i2Can\n

'an(i) =

|Can |�1
X

c=1

'an

⇣

Can(c)
⌘

,

|Ca⇤
n
|

X

c=1

'a⇤
n

⇣

Ca⇤
n
(c)

⌘

=

X

i2Ca⇤
n

'a⇤
n
(i).

Therefore the eq. (27) from (a) to (b) can be guaranteed. Note
that, the eq. (26) is a special case of eq. (27).

From eqs. (25)-(27), we immediately reach the following
equation:

�(an, a�n)� �(a⇤n, a�n) = un(an, a�n)� un(a
⇤
n, a�n). (28)

From eq. (28), we note that the change in individual utility
function, caused by an arbitrary player’s unilateral declination,
is identical with the change in the potential function, which
confines to the definition of EPG, as in eq. (20). Therefore,
the formulated shared game F is an EPG, employing the
aggregated network throughput as a potential function, which
hence has at least one pure strategy NE. Thus, according to
the relationship between the potential function eq. (23) and
the objective function eq. (18), Theorem 1 can be proved.

IV. DECENTRALIZED LEARNING

In order to achieve the optimal NE points of the above
strategy-form game, a new distributed adaption algorithm
is designed, premised on the RL concept [40]. Due to the
consideration of complexity, we cannot make the assumption
on channel selection probabilities of SUs. We solve this
problem by way of multiple self-learning processes, which
aim at independently adapting each SU’s access strategy.
It is noteworthy that, rather than the global and complete
information of wireless environments, only partial information

can be available, i.e., the individual history of each user’s
decisions and rewards as well as PU’s exclusive region. Thus,
we suggest a decentralized Q-learning algorithm, which can
maximize the aggregated channel capacity of UDN. In this
regards, each SU will learn environments from the individual
action-reward experience and adjust their selection strategies
that will finally converge to a NE point.

A. Decentralized Q-learning

To facilitate the elaboration on the scheme, we expand the
game F of shared access into a mixed strategy form game.
Let P denote the mixed strategy probability of the formulated
game, i.e.,

P =

2

6

6

6

4

p1,1 p1,2 · · · p1,M
p2,1 p2,2 · · · p2,M

...
... pn,m

...
pN,1 pN,2 · · · pN,M

3

7

7

7

5

, (29)

where pn,m denotes the probability of nth SU selecting chan-
nel m. Let pn = (pn,1, pn,2, ..., pn,M ) denote the probability
vector of nth SU selecting actions, and intuitively, we have
PM

m=1 pn,m = 1.
We define the Q-function as the expected reward of each

SU under different actions, That is, for SU n, the Q-value of
choosing channel an in k slot is:

Qn,an(k) = rn,m|
�

m = an(k)
�

, (30)

where rn,m is the reward of SU n, which is dependent on
actions taken both by player n and other players, as well as
the PUs’ status.

In the Q-learning procedure, Q-values of time k will be
updated on that of previous time (k-1):

Qn,m(k + 1) =

(

Qn,m(k), if m 6= an(k), (31a)
h

1� ⇠n,m(k)
i

Qn,m(k) + ⇠n,m(k) · rn,m(k), else, (31b)

where ⇠n,m(k) = 1
k+2 is the step factor, which are expected

to meeting:

• 0 6 ⇠n,m(k) < 1, that is 0 6 1

k + 2

< 1, i.e., k > 0.

•
1
P

k=0
⇠n,m(k) = 1, 8n 2 N ,m 2 M.

In contrast to the fictitious play that will be deterministic,
the action in Q-learning algorithm is randomly taken, such
that all actions will be tested. Here, we are interested in the
Boltzmann distribution for random explorations, and the ex-
pression of the element pn,m of the mixed strategy probability
P is given by:

pn,m =

eQn,m(k)/⇢

M
P

i=1
eQn,i(k)/⇢

, (32)

where ⇢ is referred to a virtual temperature, which controls
the frequency of exploration. Obviously, the smaller ⇢ is (the
colder), the more focused the actions are. When ⇢ ! 0, each
user tends only to choose the channel with the largest Q-value.



8

Algorithm 1 Decentralized Q-learning algorithm for player n
Step 1: Set k = 0 and the initial channel selection probabil-
ity vector pn,m = 1/M , Qn,m(k) = 0, 8n 2 N , 8m 2 M.
Step 2: At the beginning of the k slot, each SU n chooses
a channel an(k) according to its current channel selection
probability vector pn(k). In each slot, the SUs perform
channel sensing and contention which contains two stage. In
the first stage, the SUs those SINR above the threshold are
perceived as successes and complete their contention, and
the remaining SUs continue competing with those SINR
below the threshold in the second stage.
Step 3: Calculate the reward of each SU according to eq.
(15).
Step 4: All the SUs update their Q-value according to the
rules that described as eqs. (31).
Step 5: Then update their channel selection probability
pn,m(k) according to the expression that given by eq. (32).
Step 6: 8n 2 N , if there exists a component pn,m of
pn(k) which is approaching one, e.g., larger than 0.99, stop;
Otherwise, go to step 2.

The decentralized Q-learning algorithm, suggested for two-
dimension sharing access in UDN, is summarized in Algo-

rithm 1. Note that, two points are worth highlighting to our
new sharing scheme. First, the complete information about
actions taken by other players can be excluded at each shared
link, and therefore, the channel selection probability vector pn

will be updated on its own reward from the competitive envi-
ronments. Specifically, if a channel is selected and the reported
SINR surpasses the predefined threshold, i.e. �n,m > �0,
the probability of selecting this channel in the next slot will
increase. Reversely, if the SINR is below the threshold, i.e.
�n,m < �0, the probability of selecting this channel in the
next slot remains unchanged. Second, the reward of SU of
each iteration is equivalent to the achieved channel capacity
(rather than binary indicator values 1 and 0), which conforms
more to the reality and can facilitate the convergence to some
extents.

For each player n (n 2 N ), once a component pn,m in the
channel selection probability vector pn is sufficiently larger,
for example surpassing 0.99, then the self-adaption algorithm
will be terminated, and a group of actions be derived.

B. Convergence Analysis

It is understood that the faster the convergence of iterative
algorithms, the higher the efficiency of both time and spec-
trum. Thus, the convergence speed of the learning scheme is of
promise to shared access, especially in dynamic environments.
Then, we will discuss the convergence of the decentralized
Q-learning algorithm in UDN scenarios with the temporal-
spatial reuse. First, the existence of convergence state of the
algorithm is proved, by resorting to the concept of stochastic
approximations [41]. Second, we will study the convergence
performance in terms of speed and stability.

1) Existence of Convergence: The Q-values for different
interfered SUs are mutually coupled, thus all Q-values will

change once a single Q-value is changed. We will refer to Q-
values meeting the following condition as a stationary point.

Qn,an(k) = rn,an(k)⇥ Pr

2

4

Y

j2Jn

⇣

aj(k) 6= an(k)
⌘

3

5 ,

= rn,an(k)⇥
Y

j2Jn

0

B

B

@

1� eQj,an (k)/⇢

M
P

m=1
eQn,m(k)/⇢

1

C

C

A

. (33)

Note that, the stationarity point holds only in a statistical
sense, as the Q-values can undulate around because of the
randomness of channel selections. It is shown that, with ⇢ ! 0,
the stationary point will converge to a NE point. Unfortunately,
we are still not sure about the existence of such a stationary
point. Hereinafter, we provide a theorem guaranteeing the
existence of stationary points and quote three lemmas to prove
it.

Theorem 2: The Q-learning converges to a stationary point
with the probability 1.
To prove this theorem, we recommend the following lemmas.

Lemma 1: For an adequately small ⇢, there exists at least
one stationary point satisfying eq. (33).

For analytical convenience, we define:

q ,
⇣

Q11, ..., Q1M , Q21, ..., Q2M , ..., QN1, ..., QNM

⌘T

, (34)

r ,
⇣

r11, ..., r1M , r21, ..., r2M , ..., rN1, ..., rNM

⌘T

, (35)

and

h(q) =
Y

j2Jn

0

B

B

@

1� eQj,an (k)/⇢

M
P

m=1
eQn,m(k)/⇢

1

C

C

A

, (36)

thus, the above eq. (33) can be rewritten as:

f(q) = q � rh(q) = 0. (37)

Then, the updating rule in eq. (31b) is equivalent to solving
the equation eq. (33) using the Robbins-Monro algorithm [42],
i.e.,

q(k + 1) =

h

1� ⇠(k)
i

⇥ q(k) + ⇠(k)r(k),

= q(k) + ⇠(k)⇥
h

r(k)� q(k)
i

,

= q(k) + ⇠(k)⇥
h

¯

r(k)� q(k) + r(k)� ¯

r(k)
i

,

= q(k) + ⇠(k)⇥
h

¯

r(k)� q(k) + ⌘m(k)
i

, (38)

where ¯

r(k) = E[r(k)], and ⌘m(k) = r(k) � ¯

r(k). Obviously,
we have E{⌘m(k)} = 0. Therefore, the term ⌘m(k) is a
Martingale difference.

After checking eq. (31) and eq. (38), it is seen that the
updating processing of Q-values is the exact stochastic ap-
proximation of the solution to eq. (38). It is well known that
the convergence of such a procedure will be related with an
ordinary differential equation (ODE). As ⌘m(k) in eq. (38)
is a Martingale difference, it is easy to obtain the following
lemma:
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Lemma 2: With probability 1, the sequence q will converge
to some limit set of the ODE:

q = f(q). (39)

What remains to do, equivalently, is to analyze the con-
vergence property of the ODE in eq. (39). We then obtain
the following lemma by applying the Lyapunov function [43],
[44].

Lemma 3: The solution of ODE eq. (39) converges to the
stationary point determined by eq. (37).

Finally, combining Lemmas 1, 2, and 3, Theorem 2 can be
proved.

2) Performance of Convergence : After the proof of the
existence of stationary point, we now investigate the mixed
strategy probability P to analyze the convergence speed and
stability of our decentralized Q-learning algorithm in UDN.

Intuitively, the convergence speed depends on two factors.
First, from a system level, the different mechanisms of shared
access determine the number of accessible SUs in each time
slot. In general, the more accommodated SUs in one slot, the
faster convergence of the system can achieve. Second, at the
user level, as in eq. (32) the changing rate of Q-value in each
iteration, which is influenced by the reward function rn,m,
has also effects on the number of required iterations. In this
regards, a large gradient decent will lead to a fast convergence
rate.

In view of the above considerations, we present a rigorous
proof of the convergence speed as follows. First, we make the
following proposition of the channel stable selection state.

Proposition 1 (Stable Selection State):
If there is a component pn,an(k) 2 pn(k) sufficiently

approaching 1 while other components pn,m(k),m 2 M,m 6=
an sufficiently small (i.e., approaching 0), we can say that the
SU’s channel selection will remain invariant.

Second, as an innovative concept introduced by this work
to analyze the convergence, we introduce the domain of
attraction.

Definition 5 (Domain of Attraction): We define the channel
selection probability vector pn of the SU n entering the
domain of attraction, if the probability of choosing the channel
m in the current iteration k is not less than the probability of
choosing the same channel in the previous iteration (k � 1),
i.e.,

pn,m(k) > pn,m(k � 1),m = an(k). (40)

The channel selection probability vector pn of SU n, after
entering the domain of attraction, will be quickly increased.
And after some finite iterations, the probability pn,an would
approximate 1, and at the same time, the other probability
pn,m(m 6= an) may approach 0. Once the probability pn,an

surpass the threshold (e.g. 0.99), then we consider that the
convergence condition is satisfied. During this region, the
stability and convergency speed can be promoted jointly via
a positive reinforcement mechanism. That is to say, if the
channel selection is preferable to the more stable action, the
convergence can be speeded up and the required iteration will
be reduced. In order words, the higher stability comes also
with the faster convergence.

Then, we introduce the sufficient condition about the chan-
nel selection probability vector pn in a domain of attraction.

Theorem 3: The probability vector pn satisfies the domain of
attraction, if pn is a channel stable selection state meanwhile
the SU has a positive reward with this channel selection
probability vector pn in k time slot, i.e., rn,an(k) > 0, an =

arg max

an2An

pn.

We investigate the relationships of channel selection probabil-
ity of two adjacent slots, i.e., pn,an(k � 1) and pn,an(k), as

pn,an(k)

pn,an(k � 1)

=

eQn,an (k)/⇢
. M

P

m=1
eQn,m(k)/⇢

eQn,an (k�1)/⇢
. M

P

m=1
eQn,m(k�1)/⇢

=

eQn,an (k)/⇢

M
P

m=1
eQn,m(k)/⇢

⇥

M
P

m=1
eQn,m(k�1)/⇢

eQn,an (k�1)/⇢
,

=

eQn,an (k)/⇢ ⇥
"

eQn,an (k�1)/⇢
+

P

m2M\an

eQn,m(k�1)/⇢

#

"

eQn,an (k)/⇢
+

P

m2M\an

eQn,m(k)/⇢

#

⇥ eQn,an (k�1)/⇢

,

=

eQn,an (k)/⇢ ⇥ eQn,an (k�1)/⇢
+ eQn,an (k)/⇢ ⇥

P

m2M\an

eQn,m(k�1)/⇢

eQn,an (k)/⇢ ⇥ eQn,an (k�1)/⇢
+ eQn,an (k�1)/⇢ ⇥

P

m2M\an

eQn,m(k)/⇢
. (41)

eQn,an (k)/⇢ ⇥ eQn,an (k�1)/⇢
+ eQn,an (k)/⇢ ⇥

P

m2M\an

eQn,m(k�1)/⇢

eQn,an (k)/⇢ ⇥ eQn,an (k�1)/⇢
+ eQn,an (k�1)/⇢ ⇥

P

m2M\an

eQn,m(k)/⇢
> 1. (42)
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shown in eq. (41). For the sake of achieving eq. (40), Eq. (41)
needs to meet the condition given by eq. (42). That is:

eQn,an (k)/⇢ ⇥
X

m2M\an

eQn,m(k�1)/⇢

> eQn,an (k�1)/⇢ ⇥
X

m2M\an

eQn,m(k)/⇢. (43)

Furthermore, the situations indicating by eq. (43) can be
categorized into two cases:

1) Case I: The SU n chooses the same channel at two
adjacent slots, i.e. an(k) = an(k � 1), and obtains a
positive reward, i.e.,

eQn,an (k)/⇢ > eQn,an (k�1)/⇢, (44a)
X

m2M\an

eQn,m(k�1)/⇢
=

X

m2M\an

eQn,m(k)/⇢. (44b)

2) Case II: The SU n chooses channel m,m 2 M,m 6=
an(k � 1) in the current iteration k, and obtains a zero
reward, i.e.,

eQn,an (k)/⇢
= eQn,an (k�1)/⇢, (45a)

X

m2M\an

eQn,m(k�1)/⇢ >
X

m2M\an

eQn,m(k)/⇢. (45b)

After the solutions have entered into the domain of attrac-
tion, which is monotonically increased, there will always exist
another better solution in the domain of attraction at the kth
iteration, compared with that of the (k� 1)th iteration. In this
situation, owing to the rational and selfish nature of players,
they will take the action that makes the most advantage to their
own and maximizes their rewards. Consequently, the Case II
tends to be unstable, which does not fulfill the circumscription
of the domain of attraction. Stated thus, Theorem 3 can be
proved.

Premised on Theorem 3, we draw the conclusion that, for
the UDN scenarios with temporal-spatial reuse, the channel
selection probability P meets Proposition 1 and enters into a
domain of attraction after few iterations, due to the spatial
separation and the reduced mutual influences. By conducting
the parallel adaption with little coupling in multiple links,
the iterations to archive NE will be significantly reduced.
In contrast, in order to satisfy Proposition 1, other existing
works, with strong coupling among different links, need a large
number of iterations and probably obtain instable strategies. As
demonstrated by subsequent simulations, the new scheme will
be more attractive, in terms of convergence, to the emerging
UDN involving many devices and requiring low latency.

V. NUMERICAL SIMULATIONS AND DISCUSSIONS

In the section, numerical results are provided to evaluate the
performance of the new scheme in the context of mm-Wave
UDN. In the simulations, all SUs are randomly located in a
local area. Without loss of generality, we assume |M| = 5

licensed channels are available. The main-lobe width ✓n and
the predefined SINR threshold �0 can be adjusted, depending
on specific applications.

In the following, we firstly illustrate the convergence
performance of our new scheme (i.e., the fine-grained
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Fig. 3: The channel selection probabilities evolution of one
SU with our proposed access scheme.

two-dimensional reuse) and other existing spectrum access
schemes. Then, we will evaluate the system performances (i.e.,
the network throughput and the maximum accommodated SUs
number) of our new scheme in a context of UDN.

A. Convergence Performance

In the first simulation, the influence of different numbers of
SU links on the UDN are evaluated. Here, the main-lobe beam
width ✓n of user n and the predefined SINR threshold �0 are
configured respectively to ✓n = ✓ = 30

�, and �0 = 10dB.
A counterpart scheme is simulated [23], where the mutual
interference between SUs is intolerable and each channel may
at most accommodate one SU.

First, the evolution curves of channel selection probabilities
with our proposed access scheme is plotted in Fig. 3. From
the results, it is seen that, after about 4 iterations, the domain
of attraction will be attained, i.e. one of the channel selection
probability p1,2 2 p1 has exceeded 0.99, whilst the other com-
ponents in p1 have already approached 0. So, the convergence
can be achieved after 4 iterations. Thus, owing to the spatial
separation and effective learning mechanisms, our new scheme
requires only little iterations to enter domain of attraction and
thereby attains its convergence in UDN applications.

The cumulative distribution function (CDF) of the required
iterations for convergence is shown in Fig. 4. In numerical
derivations, 20 different network topologies are randomly gen-
erated, and for each network topology 500 independent trials
are implemented. Together with the previous analysis, we can
conclude that the proposed Algorithm 1 shows the favorable
converge performance in UDN applications. From Fig.4, given
both 4 configurations (e.g. N = 5 for non-dense network
and N = 20 for dense network), the iterations required for
convergence of the new scheme will be dramatically less than
that of other schemes, as also indicated our previous theoretical
analysis, e.g. Theorem 3. More importantly, as the number of
SU links increases from N = 5 to N = 20, the expected
iterations is only increased from 4 to 28 in our new scheme,
indicating a good scalability if applied to UDN. However, the
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Fig. 4: The convergence speed comparison between the DSS
with spatial reuse and the conventional DSS
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Fig. 5: Throughput comparison with the same main-lobe angle
of transmitters while different threshold of SINR

required iterations of conventional schemes will be increased
significantly from 40 to 200. Thus, our new scheme would
incur the significantly reduced complexity in implementations.
As far as the short-term spectrum opportunity and the access
latency are concerned, the new access scheme with fine-
grained reuse will be more attractive to UDN applications.

B. System Performance

In the following, we will evaluate the system throughput of
the proposed two dimensional spectrum reuse scheme. To this
end, the realistic influences on performance from three key
parameters are comprehensively considered: (1) the main-lobe
width ✓n, (2) the predefined SINR threshold �0, and (3) with
the PUs emission status. Similarity, 20 randomly deployed
network topologies are used with 500 independent trials in
each topology.

1) The SINR Threshold: We firstly evaluate the effects of
SINR threshold �0 on the network throughput. In order to
illustrate the property of our two dimensional sharing mecha-
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Fig. 6: Throughput comparison between the centralized and
distributed algorithms

nism with the distributed algorithm thoroughly, we divide the
simulations into two parts, in which the comparison of our
scheme with the single dimensional DSS is shown firstly, and
then we present the performance of the centralized algorithm
as a benchmark of our considered distributed algorithm.

For the first part, the main-lobe width ✓n = ✓ = 30

�, and the
number of total SU links varies from N=4 to N=50 for both
temporal reuse method and two dimensional reuse scheme.
Two typical configurations on the predefined SINR threshold
are considered, i.e. �0 = 5dB and �0 = 10dB.

From Fig. 5, with the fine-grained sharing and the temporal-
spatial reuse, it is found that the throughput of our new scheme
will dramatically outperform the conventional schemes, under
various predefined SINR thresholds �0. Meanwhile, as the
number of SUs increasing in UDN, the performance gap
between the new access scheme and conventional methods
will also be increased gradually. This is easy to follow. In
a conventional scheme, one channel admits only one SU in
each slot and, otherwise, the collision among shared links
will occur. In the new scheme, owing to the spatial separation
and the lower coupling among shared links, one channel will
be occupied harmoniously by more than one SU in each
slot. Therefore, the network throughput will further grow, as
the SUs number increases. For conventional access methods,
however, the saturation will occur after the number of SUs
surpasses the available vacant channels, by seriously restricting
the UDN network throughput.

Besides, it is observed that the network throughput of a
low SINR threshold (�0 = 5dB) may surpass that of a high
one (�0 = 10dB). The main reason is that the number of
accommodated SUs will be relatively different in the two
cases. In general, the smaller of the predefined SINR threshold
�0 is, the more SUs will be held. Note that, here will be a
compromise between the network throughput and the quality
of experience (QoE) in shared links. I.e. the lower SINR
threshold indicates the lower transmission quality.

For the second part, the main-lobe width ✓n = ✓ = 60

�,
and the number of total SU links varies from N=4 to N=30
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Fig. 7: Throughput comparison with the same threshold of
SINR while different main-lobe angle of transmitters

for both centralized algorithm and distributed algorithm. Two
typical configurations on the predefined SINR threshold are
considered, i.e. �0 = 5dB and �0 = 10dB.

The comparison results of centralized and distributed
method are shown in Fig. 6. It is noted that the centralized
scheme indeed has some advantage over a distributed one in
terms of the accumulated capacity in various SINR require-
ments. This is easy to understand. A centralized algorithm
possesses a control center to manage the information of all SUs
and allocate the spectrum resource according to the complete
information. In this case, all SUs are required not only to
exchange information between their transmitter and receiver,
but also to report their information to a control center, which,
in turns, aggravates the coordination overhead. In other words,
the centralized algorithm gains more system throughput, at the
cost of higher resource consumptions and signaling overheads.
In comparison, for a distributed algorithm, the information
exchange only exists in the shared pair (i.e. two SUs). Thus,
the resource demanding and signaling overhead can be re-
duced significantly. Despite the reduced system throughput,
a distributed algorithm enables the practical balance between
performance and cost.

2) The Main-Lobe Width: We then investigate the effects
of the main-lobe width ✓n. In the simulations, the predefined
SINR threshold is �0 = 10dB, and three configurations main-
lobe width are considered, i.e., ✓n = ✓ = 30

�, ✓n = ✓ = 60

�,
and ✓n = ✓ = 90

� respectively. The number of SUs in UDN
will increase from 4 to 35.

We note from Fig. 7 that, in various main-lobe width
settings, the network throughput of the new scheme will sig-
nificantly outperform conventional methods. By providing the
more precise spatial separation and the even reduced crosstalk,
the number of accommodated SUs will be increased, whilst
the mutual interference will be controlled effectively by the
distributed learning scheme. Thus, the achievable maximum
throughput will be increased as a main-lobe width deceases.
Taking ✓ = 60

� for example, its achievable throughput is
roughly three times of the conventional method. Besides, the
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Fig. 8: Throughput comparison with the state of PUs

rationale behind the saturation effect in this figure is explained
as follows. Under the given parameter settings, the number of
maximum accommodated shared links exists, which is further
demonstrated in the following C part. Similarly, a compromise
between the achievable throughput and the implementation
complexity should be made. As expected, a smaller main-lobe
width requires more antennas and more complicated steering
scheme.

3) The PUs’ Status: In the above simulations, we assume
there will be no active incumbent/PU. Once active incumbents
are detected, the harmful interference to them should be
avoided. In this case, it is understood that, due to the exclusive
regions introduced by PUs, the performance spatial reuse will
be compromised, and therefore, the network throughput of
shared access will be reduced. In numerical analysis we as-
sume there are 5 PUs, and each of them occupied one licensed
channel. The predefined SINR threshold is �0 = 10dB, and
the main-lobe width is ✓n = ✓ = 30

�. Simulation results
are plotted in Fig. 8. For the temporal-spatial reuse scheme,
relying on the partial information of PU, SUs are allowed to
share channels via properly adapted beams. Although there
is performance degradation aroused by exclusive regions,
the network throughput via shared access seems still to be
appealing for UDN.

C. Maximum Accommodated Users

Besides the system throughput, the number of maximum
accommodated SUs is another important metric for UDN.
Therefore, we present the performance of maximum accom-
modated SUs in UDN scenario.

As noted by previous analysis, there exists a maximum
number of accommodated SUs, given the main-lobe width
and the SINR threshold. That is, if the accommodated SU
is further increased, the network throughput will become
saturated, while the link quality of each shared links will
be deceased. In the last simulation, we further investigate
the maximum number of accommodated SUs in the shared
access. It should be noted that, for UDN application, the main
purposes are to maximize the network aggregate throughput
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and accommodate as many as possible shared links, yet with
SINR of each link higher than a tolerable threshold, rather than
the achievable data rate of one single SUs. As shown by Fig. 9,
the maximum number is associated with the main-lobe width
as well as the predefined SINR threshold. From the numerical
analysis, we find that: (i) the smaller of the main-lobe width
and the SINR threshold, the more SUs will be accommodated;
and (ii) the new access scheme will accommodate sufficiently
larger number of users, by properly configuring the main-lobe
width and the SINR threshold, while the conventional methods
unfortunately will be inadequate in UDN scenarios.

VI. CONCLUSION

In this paper, dynamic spectrum access schemes for mm-
Wave UDN have been studied. First, we established a new
channel access model which enables the temporal-spatial reuse
of spectrum, where flexible beams are assumed to provide
the spatial separations and reduce the co-link interferences
among SUs. Then, we formulated the channel access problem
as one non-cooperative game, where the accumulated capacity
of multiple SUs is served as its utility function, instead of
a simple Kronecker delta function. Then, the existence of
this pure NE is rigorously proved. A decentralized Q-learning
algorithm with the self-adaption and low-complexity is pro-
posed. A strict proof of the algorithm convergence and stability
is also provided. Finally, it is demonstrated via numerical
simulations that the fine-grained multi-dimensional shared ac-
cess can significantly enhance the network throughput and the
accommodated shared users with little access latency. Thus,
our new shared access scheme will be of great promise to the
emerging UDN. Future works will focus on the exclusion of
some partial information in the distributed access.
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[4] D. López-Pérez, M. Ding, H. Claussen, and A. H. Jafari, “Towards
1 gbps/ue in cellular systems: Understanding ultra-dense small cell
deployments,” IEEE Communications Surveys & Tutorials, vol. 17,
no. 4, pp. 2078–2101, 2015.

[5] M. Kamel, W. Hamouda, and A. Youssef, “Ultra-dense networks: A
survey.”
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