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Abstract

In this thesis we study low-dimensional stochastic volatility interest rate mod-
els for pricing and hedging exotic derivatives. In particular we develop a stochastic
volatility Markov-functional model. In order to implement the model numerically,
we further propose a general algorithm by working with basis functions and condi-
tional moments of the driving Markov process. Motivated by a data driven study,
we choose a SABR type model as a driving process. With this choice we specify
a pre-model and develop an approximation to evaluate conditional moments of the
SABR driver which serve as building blocks for the practical algorithm.

Having discussed how to set up a stochastic volatility Markov-functional
model next we study the calibration of a LIBOR based version of the model with
the SABR type driving process. We consider a link between separable SABR LIBOR
market models and stochastic volatility LIBOR Markov-functional models. Based on
the link we propose a calibration routine to feed in SABR marginals by calibrating
to the market vanilla options. Moreover we choose the parameters of the SABR
driver by fitting to the market correlation structure.

We compare the stochastic volatility Markov-functional model developed in
the thesis with one-dimensional (non-stochastic-volatility) swap Markov-functional
models in terms of pricing and hedging Bermudan type products. By doing so we
investigate effects of correlation structure, implied volatility smiles and the intro-
duction of stochastic volatility on Bermudan type products.

Finally we compare Quasi-Gaussian models with Markov-functional models
in terms of specification and calibration. In particular we study Quasi-Gaussian
models formulated in the Markov-functional model framework to make clear the
relationship between the two models.

ix



Chapter 1

Introduction

In this thesis we work in the area of interest rate models. There are three popular

categories of term structure models for pricing and hedging interest rate derivatives

in practice. They are short rate models, market models and Markov-functional

models. Among them, short rate models (1970s) are the earliest term structure

models. They were very popular and are still used nowadays in practice because of

their tractability. In a short rate model the dynamics of the short rate, which is an

instantaneous spot rate and not observable in the market, is specified. So they are

low-dimensional models. In LIBOR (swap) market models (1997), the dynamics of

a set of contiguous market observable forward rates - LIBORs (swap rates) - are

specified. Market models are high-dimensional models even when driven by a single

Brownian motion. An advantage for market models is that they allow for calibration

to the well-known Black’s formula for vanilla options. A Markov-functional model

(2000) is specified via the dynamics of a Markov process. In a Markov-functional

model the zero coupon bonds, which are underlying assets in the interest rate mar-

kets, are a function of the Markov process. Besides the above interest rate models,

Heath-Jarrow-Morton framework (1992) models the entire forward rate curve di-

rectly and, without appropriate conditions being imposed on the volatility of the

instantaneous forward rates, this framework can be non-Markovian and infinite di-

mensional.

In this thesis we focus on Markov-functional models. Markov-functional mod-

els were introduced by Hunt et al. [37]. Usually in a Markov-functional model, the

economy is driven by a low-dimensional Markov process which is referred to as the

driving process, and the zero coupon bonds are a function of the driving process. In

that sense Markov-functional models are similar to short rate models. However in a

short rate model, the pricing formula for zero-coupon bonds is given to us. In con-
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trast, in a Markov-functional model, the functional forms for zero-coupon bonds can

be determined numerically by feeding in marginal distributions of a set of contiguous

LIBORs or swap rates. In principle given a driving process, any marginal distribu-

tions can be fed into the model. As a result Markov-functional models have more

calibration advantage than market models since in addition to the Black’s formula

Markov-functional models allow for calibration to implied volatility smiles/skews of

vanilla options by feeding in appropriate marginal distributions of LIBORs (swap

rates). In fact there is a link between Markov-functional models and market models.

Bennett and Kennedy [7] compared a one-factor separable LIBOR Market model to

a one-dimensional Markov-functional model driven by a Gaussian process calibrated

to the Black’s formula for caplets, and the two models turned out to be very similar

numerically.

The vast majority of the research on all these term structure models is in

the non-stochastic volatility setting, and this is especially true for Markov-functional

models where we have not found any article in the literature on the stochastic volatil-

ity extensions. One main contribution we make in this thesis is the development of

a stochastic volatility Markov-functional model.

Typically in a valuation model, the evolution of the underlying asset prices is

described via a diffusion process. In a non-stochastic volatility model the volatility

of the underlying asset, i.e. the coefficient of the diffusion term, is a deterministic

function of the current asset level and time. For example the volatility function of the

Black-Scholes [8] model is a constant. In contrast, in a stochastic volatility model,

the volatility function is driven by its own SDE and at least one extra (correlated)

Brownian motion. There are a number of empirical studies showing that volatility is

stochastic in reality in the interest rate markets; see [15], [49] and references therein.

But does this justify adding the extra complexity to a model for derivative pricing

and hedging? Without stochastic volatility the set of distributions we can get for

the underlying asset is constrained and does not match reality. In particular it does

not have heavy enough tails. Dupire [19] introduced a local volatility model and

pointed out that a suitable choice of the local volatility function allows one to fit

the marginal distribution of the underlying asset derived from the market prices of

European options. However as Hagan et al. [31] pointed out, without stochastic

volatility the joint distributions of the underlying asset are not a good reflection

of reality. The joint distributions of the underlying assets are very important for

pricing and hedging path dependent derivatives such as Bermudan swaptions in

practice.

In the literature, we have found many short rate models with stochastic
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volatility. See, for example, [24], [49], [18], [12], [5] and references therein. After

that, over the last two decades, many studies about stochastic volatility extensions

to LIBOR market models have been developed. See, for example, [65], [55], [61],

[23] and references therein. But market models are high dimensional so that it

is difficult to implement their stochastic volatility version. These articles about

stochastic volatility extensions focused on the development and calibration of the

models.

In this thesis we study stochastic volatility Markov-functional models. We

provide a background introduction in Chapter 2. The basic interest rate products

and derivatives are introduced briefly. We also give an outline of the popular term

structure models appearing in the literature.

In Chapter 3, we begin with a review of Markov-functional models with

a Gaussian driving process introduced by Hunt, Kennedy and Pelsser [37]. We

introduce an algorithm for implementation of Markov-functional models with a

Gaussian driver. We then develop a stochastic volatility Markov-functional model.

Kaisajuntti and Kennedy [44] identified a two-dimensional SABR type model as an

appropriate choice for the level of rates by investigating market data. This moti-

vates us to choose a SABR type model as the driving process. The two-dimensional

algorithm for the specification of a Markov-functional model with a Gaussian driver

and additive pre-model discussed in [38] relies heavily on the Gaussian assump-

tion. This algorithm can not be used for the stochastic volatility Markov-functional

model since we do not have explicit knowledge of the transition density function

of the SABR driving process. To implement the model numerically, we propose an

algorithm which works with conditional moments of the driver distribution based

on an approximation introduced by Kennedy et al. [47]. By working with basis

functions and conditional moments of the driving Markov process, we calculate and

store three (conditional) expectations which can be seen as building blocks. The

model can be implemented based on these building blocks. The algorithm we de-

velop is not specific to a Gaussian driving process and could be modified to apply

to all one- and multi-dimensional Markov-functional models.

In Chapter 4, we study the calibration of the stochastic volatility LIBOR

Markov-functional model developed in Chapter 3. As we discussed earlier, the

specification of a driving process is separated from the marginal distribution of

LIBORs at their setting dates in the associated forward measure, which can be

seen as an unusual feature for interest rate models. Thus the calibration issue

for the stochastic volatility LIBOR Markov-functional model involves choosing the

parameters for the SABR driving process and the marginals of LIBORs implied by

3



the input prices of the set of digital caplets which will be fed into the model.

The separation of a driver and marginals provides more flexibility for a

Markov-functional model. But this may also cause an issue. A mismatch of a

driving process and marginals could potentially lead to nontransparent dynamics of

forward LIBORs and could result in an unstable evolution of the implied volatility

surface. This potential issue has been pointed out by Andersen and Piterbarg [5]

who argue that a non-parametric formulation of the marginal distribution for LI-

BORs may result in unrealistic evolution of the volatility smile through time. On

the other hand, Bennett and Kennedy [7] showed that a LIBOR Markov-functional

model with a Gaussian driver together with the Black’s formula for (digital) caplets

is numerically similar to the one-factor separable LIBOR market model. Gogala

and Kennedy [29] extended the above link to a more general local-volatility case.

Based on this link, the authors propose an approach for choosing an appropriate

combination of a driving process and (digital) caplet prices, and such a combination

leads to desirable dynamics of future implied volatilities. In Chapter 4 we con-

sider a separable SABR-LIBOR market model and expect that it is similar to the

stochastic volatility Markov-functional model with a SABR driver together with a

SABR marginals. Based on this link the intuition behind the SDEs of the separable

SABR-LIBOR market model can be applied to the corresponding stochastic volatil-

ity LIBOR Markov-functional model. This gives us an appropriate combination of

the driver and marginals. Based on this link we develop a calibration routine to

feed in SABR marginals by calibrating to market prices of caplets or swaptions.

Moreover the parameters for the SABR driving process can be chosen by calibrat-

ing to the market implied correlations. A numerical investigation of the calibration

performance is also given.

In Chapter 5, we compare the stochastic volatility Markov-functional model

developed in Chapter 3 with one-dimensional swap Markov-functional models in

terms of pricing and hedging a Bermudan swaption and a new Bermudan product,

which has similar features but simpler payouts than callable range accruals. We

consider different combinations of the specifications of driving process and marginals.

By comparing their Bermudan prices and vega profiles, we investigate impacts of

smiles, correlation structure and stochastic volatility on Bermudan products.

The numerical results show that the mean reversion parameter of the mean

reversion and Hull-White drivers, which determines the auto-correlations of the

driver, has a large effect on prices of Bermudan products. By comparing the Hull-

White Markov-functional model together with log-Normal marginals to the local

volatility Markov-functional model with Hull-White driver together with SABR

4



marginals, it turns out that the smile impact on the price of Bermudan products

is very small. In order to study the impact of stochastic volatility on the prices

of Bermudan products, we compare the one step covariance swap (non-stochastic-

volatility) Markov-functional model with the stochastic volatility swap Markov-

functional model. The results show that the introduction of stochastic volatility

has a small influence on a Bermudan swaption but has a significant impact on the

new Bermudan product. This suggests using a stochastic volatility model for pric-

ing the new Bermudan product. No other papers we have found have identified a

product for which stochastic volatility should be added to a term structure model.

The vega profiles of Bermudan products indicate a fundamental difference

between the mean reversion driver, which is “parameterized by expiry”, and the

other driving processes “parameterized by time”. By “parametrization by expiry”

we mean that the auto-correlations of the driver are fully determined by input pa-

rameters. This implies that once input parameters have been fixed, any change in

market implied volatility has no effect on the auto-correlations of the driver and

therefore the swap rates at their setting dates, which is inconsistent with what we

observed in the market. In contrast, for parametrization by time, the correlations

of the driver are sensitive to market implied volatilities. Thus any change in market

implied volatilities will result in a change in the correlations of the driver. This leads

to a fundamental difference in the vega profiles between parametrizations by expiry

and by time. For non-stochastic volatility models this behaviour is well-known to

practitioners and is analysed in [48] for one dimensional Markov-functional models

with the Black’s formula. We find by introducing stochastic volatility, the row sum

of vegas is decreased in comparison to the one step covariance Markov-functional

model but vega profiles of the two models are still very similar. This means that the

introduction of stochastic volatility does not materially alter the hedging behaviour.

This finding is significant for practitioners wanting to use stochastic volatility mod-

els.

Chapter 6 compares Quasi-Gaussian models and Markov-functional models

in terms of specification and calibration. These classes of models are two of the

most popular low-dimensional term structure models in practical use but there are

no studies in the literature which compare them theoretically or numerically. A

Quasi-Gaussian model can be seen as a separable Heath-Jarrow-Morton model while

a Markov-functional model with a Gaussian driver and log-Normal marginals is

found to be numerically similar to the separable LIBOR market model. In order to

gain insight into the relationship between these models we study a Quasi-Gaussian

model in the Markov functional model framework. By doing so we can see that the

5



essential difference between the non-stochastic volatility versions of the models lies

in the copula of the driving processes and that the Markov-functional framework

offers much flexibility in matching the choice of copula for the driver to reality.

These two models both allow for stochastic volatility versions and we also consider

the relationship between these versions.
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Chapter 2

Interest rate markets and

models

In this chapter we provide an overview of the interest rate markets and models. We

will introduce notation and set up a foundation for the thesis. In Section 2.1 we

introduce the main interest rate products. In Section 2.2 we give a brief outline of

the popular term structure models. We will assume that the reader has knowledge

of pricing via an equivalent martingale measure and application of the fundamental

pricing formula for various choices of numeraires. This background can be found in

[38] and [46].

2.1 Interest rate markets

In this section we introduce briefly the interest rate products in the market. We

first introduce some basic instruments that are liquid in the interest rate markets.

We then proceed to some common interest rate options which are relevant to the

thesis. The material in this section is from [38].

2.1.1 Basic instruments

In this subsection we will introduce zero-coupon bonds (ZCBs), forward rate agree-

ments (FRAs) and interest rate swaps. Throughout this thesis we assume that the

tenor structure is given by

0 = T0 < T1 < ... < Tn+1 (2.1)

where αi = Ti+1 − Ti, i = 0, ..., n, are the accrual factors.
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We start with underlying assets in the interest rate markets - zero coupon

bonds. A zero-coupon bond with maturity time T is a contract that guarantees its

holder to be paid one unit of currency at time T. The contract value at time t ≤ T
is denoted by DtT . The dependence of DtT on the maturity date T is known as the

term structure of ZCBs at time t.

LIBOR stands for London Interbank Offered Rate. We can define a forward

LIBOR through a forward rate agreement. A forward rate agreement is an agree-

ment between two counterparties to exchange cash payments at some specified date

in the future. At the maturity Ti+1, i = 1, ..., n, a fixed payment NαiK, where K

is the fixed rate and N is notional amount, is exchanged against a floating payment

NαiL
i
Ti

, where LiTi is the spot LIBOR with expiration date Ti and maturity date

Ti+1 defined by

LiTi =
1−DTiTi+1

αiDTiTi+1

.

Following a replicating portfolio argument, we have that the time-t value of this

FRA is given by

Vt = NDtTi −N(1 + αiK)DtTi+1 .

The forward LIBOR Lit, at time t, is defined as the fixed rate K such that the time-t

value of the FRA is zero. By letting Vt = 0, the forward LIBOR Lit at time t that

expires at Ti and matures at Ti+1 is given by

Lit =
DtTi −DtTi+1

αiDtTi+1

, t ≤ Ti, (2.2)

for i = 1, ..., n.

Remark 1. The value of the forward LIBOR Li0, i = 1, ..., n, seen today is assumed

to be given in the market. But the value of the forward LIBOR Lit, i = 1, ..., n, at

some future time t is a random variable. Later we will introduce interest rate models

for the forward LIBOR processes Li for i = 1, ..., n. The same remark also applies

to the forward swap rate below.

An interest rate swap, or swap for short, is an agreement between two coun-

terparties to exchange a series of cashflows on pre-agreed dates in the future. There

are two kinds of swaps: payers swap and receivers swap. Let us consider a payers in-

terest rate swap with strike K, exercise dates Ti, Ti+1, ..., Ti+j−1 and payment dates

Ti+1, Ti+2, ..., Ti+j . The fixed rate payer pays the fixed leg NαsK in return for the

8



floating leg NαsL
s
Ts

at each payment date for s = i, ..., i+ j−1. A receivers interest

rate swap has a reversed cashflows. The time-t value of the above fixed leg is given

by

V i,j
FXD(t) = NKP i,jt , (2.3)

where

P i,jt :=

i+j−1∑
k=i

αkDtTk+1
.

The expression P i,j is referred to as the present value of a basis point or PVBP

for short. Following a replicating portfolio argument, the time-t value of the above

floating leg is given by

V i,j
FLT (t) = N(DtTi −DtTi+j ).

It follows that the time-t value of the above interest rate swap is given by

V i,j
Swap(t) = τ [V i,j

FLT (t)− V i,j
FXD(t)]

= τN [DtTi −DtTi+j −KP
i,j
t ], (2.4)

where τ = −1 leads to a receivers swap and τ = 1 leads to a payers swap. The

forward swap rate yi,jt is defined as the value of K such that the time-t value V i,j
Swap(t)

of the swap is zero. Thus we have that

yi,jt =
DtTi −DtTi+j

P i,jt
, t ≤ Ti. (2.5)

If we substitute equation (2.5) back into (2.4), we have the more usual expression

for the value of an interest rate swap:

V i,j
Swap(t) = τN [P i,jt (yi,jt −K)].

2.1.2 Interest rate options

In this subsection we introduce some interest rate options that are relevant to the

thesis. These options are caplets (floorlets), vanilla swaptions1, digital caplets (floor-

lets) and PVBP-digital swaptions.

1Also known as European swaptions
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A caplet and floorlet can be seen as an option on an FRA with the payoffs

V i
caplet(Ti+1;K) = Nαi max(LiTi −K, 0)

and

V i
floorlet(Ti+1;K) = Nαi max(K − LiTi , 0)

respectively at time Ti+1 where N is the notional and K is the strike. In order to

price such an option in a complete arbitrage-free model, we apply the fundamental

pricing formula. In particular given some equivalent martingale measure M corre-

sponding to the numeraire M , today’s value of the caplet with strike K is given

by

V i
caplet(0;K) = M0EM[

Nαi(L
i
Ti
−K)+

MTi+1

].

In order to calculate this price we have to choose a numeraire M and a model

for the LIBOR Li in the measure M. Suppose we work with the forward measure

Fi+1 associated with the numeraire D.,Ti+1 . It follows from equation (2.2) that the

LIBOR Li is a martingale in the forward measure Fi+1. Suppose we model Li by a

driftless log-Normal process under the forward measure Fi+1

dLit = σitL
i
tdW

i+1
t ,

for some deterministic function σi and a Brownian motion W i+1 under the forward

measure. This yields the following well-known Black’s formula introduced by Black

[9]

V i
caplet(0;K) = D0Ti+1EFi+1 [Nαi(L

i
Ti −K)+] (2.6)

= αiND0Ti+1(Li0Φ(d1)−KΦ(d2)) (2.7)

where

d1 =
ln(Li0/K)

σ̃
√
Ti

+
1

2
σ̃
√
Ti, (2.8)

d2 = d1 − σ̃
√
Ti (2.9)

σ̃2 =
1

Ti

∫ Ti

0
(σiu)2du
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and Φ(·) is the cumulative normal distribution function. Similarly, we have the

following Black’s formula for a floorlet with strike K:

V i
floorlet(0;K) = αiND0Ti+1(KΦ(−d2)− Li0Φ(−d1)).

We now define the implied volatility of a caplet. Given the market price

Ṽ i
caplet(0;K) of the caplet struck at the strike K, the implied volatility of this caplet

is defined as the volatility σ̃ such that

Ṽ i
caplet(0;K) = αiND0Ti+1(Li0Φ(d1)−KΦ(d2))

where d1 and d2 are given by equations (2.8) and (2.9) respectively. In financial mar-

kets the market prices of vanilla options are quoted in terms of implied volatilities.

In the interest rate markets implied volatilities are commonly observed to represent

a shape of skew or smile as a function of strike. However the above log-Normal

assumption of Li implies that the implied volatilities show a flat line with respect

to strike i.e. the function σ̃(K) is always a constant. In order to capture implied

volatility skews or smiles, a number of models have been developed. We will return

to this topic in the later chapters.

We now consider vanilla swaptions. A vanilla swaption is an option on an

interest rate swap. It gives its holder the right, without any obligation, to enter

into an interest rate swap. According to the underlying interest rate swap there are

two types of swaptions: receivers swaption and payers swaption. For the receivers

swaptions, upon exercise the option holder enters a swap in which he receives a

fixed strike rate K and pays the floating rate; a payers is the reverse. So the

payoff of a payers swaption with strike K on an interest rate swap with expiry dates

Ti, Ti+1, ..., Ti+j−1 and maturity dates Ti+1, Ti+2, ..., Ti+j is given by

V i,j
sption(Ti;K) = max{NP i,jTi (yi,jTi −K), 0},

where N is the notional and K is the strike.

Following a similar explanation and assuming a driftless log-Normal process

for yi,j under the swaption measure Si,j associated with the numeraire P i,j , we can

obtain the following Black’s formula for a vanilla swaption

V i,j
sption(0;K) = P i,j0 ESi,j [N(yi,jTi −K)+]

= NP i,j0 (yi,j0 Φ(d1)−KΦ(d2)) (2.10)
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where

d1 =
ln(yi,j0 /K)

σ̃
√
Ti

+
1

2
σ̃
√
Ti,

d2 = d1 − σ̃
√
Ti, (2.11)

σ̃2 =
1

Ti

∫ Ti

0
(σiu)2du.

The explanation for implied volatilities of caplets also applies to vanilla swaptions.

The caplets (floorlets) and vanilla swaptions we introduced here are liquidly

traded in the interest rate markets. These options are referred to as vanilla options.

The prices of vanilla options are observable in the market. In practice a valua-

tion model for some complex derivatives needs to be calibrated to their relevant

underlying vanilla options.

In what follows, we introduce some less liquid interest rate options traded

in the market - digital options. In particular, we introduce two examples that are

most relevant to the thesis: digital caplets (floorlets) and PVBP-digital swaptions.

A digital caplet on the LIBOR Li is an option paying a unit amount at time

Ti+1 if the LIBOR LiTi is above some strike level K. The payoff at time Ti+1 is given

by

V i
digcap(Ti+1;K) = NI{LiTi>K}

,

where I is indicator function and N is the notional. Taking the Ti+1-maturity ZCB

D.,Ti+1 as numeraire and using the same log-Normal model, as we did for caplet,

yields

V i
digcap(0;K) = ND0Ti+1Φ(d2),

where d2 is as defined in (2.9).

Remark 2. The payoffs of a caplet and digital caplet are related via the following

equation

d

dK
(x−K)+ = −I{x>K}.

In particular differentiate both sides of (2.6) with respect to the strike K, and we

have that

dV i
caplet(0;K)

dK
= −αiV i

digcap(0;K).
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The implication of the relationship is that knowing the prices of caplet

V i
caplet(0;K) for all strike K is equivalent to knowing the prices of digital caplet

V i
digcap(0;K) for all K. This remark also applies to vanilla swaptions and the corre-

sponding PVBP-digital swaptions below.

Remark 3. Given the prices V i
digcap(0;K) of a digital caplet as a function of the

strike K ≥ 0, from the fundamental pricing formula we have that

V i
digcap(0;K) = D0,Ti+1EFi+1 [NI{LiTi>K}

]

= D0,Ti+1NFi+1[LiTi > K],

under the forward measure Fi+1 associated with the numeraire D.,Ti+1. Therefore

the prices V i
digcap(0;K) implies the distribution of the LIBOR LiTi in the associated

forward measure.

From the above two remarks one can see that the prices V i
caplet(0;K) can

also determine the distribution of the LIBOR LiTi in the associated forward measure

Fi+1. This also applies to a vanilla swaption and PVBP-digital swaption where the

distribution of the swap rate at its setting date can be determined in the associated

swaption measure.

A PVBP-digital swaption on the swap rate yi,j with strikeK has the following

payoff at time Ti

V i,j
digsption(Ti;K) = NP i,jTi I{yi,jTi >K}

,

where N is the notional. By assuming a driftless log-Normal process for yi,j under

the swaption measure Si,j associated with the numeraire P i,j , we can also obtain

the following Black’s formula for a vanilla swaption

V i,j
digsption(0;K) = P i,j0 ESi,j [NI{yi,jTi >K}

]

= NP i,j0 Φ(d2), (2.12)

where d2 is as defined in (2.11).

2.2 Interest rate models

In this section we first discuss the role of valuation models. We then give a brief

overview of interest rate models.
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2.2.1 The role of models

In this thesis we use interest rate models to price and hedge exotic interest rate

derivatives. By an exotic derivative we mean one which is not vanilla. Exotic op-

tions are commonly traded over-the-counter so that one needs to find their prices

based on interest rate models. To do so a valuation model needs to be calibrated

to other underlying instruments and market information, such as vanilla options,

which are relevant to the exotic option under consideration. By calibration, we

mean that the valuation model can reproduce the market prices of the chosen un-

derlying instruments. In this sense valuation models are served as a sophisticated

extrapolation from underlying instruments to produce a model price of an exotic

option.

2.2.2 Short rate models

Short rate models are the earliest term structure models. The short rate rt at time

t is defined by

rt := −
∂lnDt,T

∂T
|T=t.

The short rate r is a hypothetical interest rate which is not observable in the market.

Short rate models are specified by describing the evolution of the short rate

drt = µ(rt, t)dt+ σ(rt, t)dW
Q
t , (2.13)

where WQ is a Brownian motion in the risk-neutral measure Q associated with the

numeraire the bank account B which satisfies

dBt = rtBtdt.

The drift and diffusion functions µ and σ need to be chosen carefully to give the

model particular behaviour. Some common examples in the literature are given in

Table 2.1. The parameters of the short rate model (2.13) are chosen by calibrating

the model to the initial term structure and the market prices of vanilla options.

The time-t value DtT of a ZCB with maturity T is given by

DtT = EQ[e−
∫ T
t rsds|Ft], (2.14)

where {Ft} is the natural filtration generated by the Brownian motion WQ. From

equation (2.14), the prices of all ZCBs, which are underlying assets in the interest
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Model Specification

Merton [53] drt = adt+ σdWQ
t

Vasicek [64] drt = k(θ − rt)dt+ σdWQ
t

Dothan [20] drt = artdt+ σrtdW
Q
t

CIR [17] drt = k(θ − rt)dt+ σ
√
rtdW

Q
t

Hull-White [36] drt = k(θt − rt)dt+ σdWQ
t

Table 2.1: Examples of short rate models

rate markets, can be obtained once we have specified the dynamics of the short rate

r in the risk-neutral measure. Consequently the term structure of ZCBs are specified

via the dynamics of the Markov process r. This allows one to price a derivative using

an efficient algorithm such as numerical integration or finite-difference method. For

details, the reader is referred to [5]. Since the short rate is not observable in the

market, it may result in difficulty of calibrating to the initial term structure and the

market vanilla options.

2.2.3 Heath-Jarrow-Morton models

In a Heath-Jarrow-Morton (HJM) framework [30], the instantaneous forward rate

f(t, T ) satisfies the following SDE

df(t, T ) = σ(t, T ) · (
∫ T

t
σ(t, u)du)dt+ σ(t, T ) · dWQ

t , (2.15)

where WQ is an d-dimensional Brownian motion in the risk-neutral measure Q
associated with the numeraire the bank account B. The instantaneous forward rate

f(., T ) and the short rate r which can be viewed as an instantaneous spot rate are

related via the following equation

f(t, t) = rt.

A short rate model models the dynamics of the short rate r while a HJM model

specifies the dynamics of the term structure of instantaneous forward rates f(., T )

for all maturities T .

The time-t value DtT of a ZCB with maturity T is given by

DtT = e−
∫ T
t f(t,u)du.

From (2.15), one can see that the instantaneous forward rate is specified via the

volatility function σ(t, T ). With a specific choice for the volatility σ(t, T ), the HJM
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model may lead to a known short rate model. We will return to this topic later in

Chapter 6.

2.2.4 Market models

Market models can be divided into two versions: LIBOR market models (LMMs)

and swap market models (SMMs). In a LMM the dynamics of a set of contiguous

forward LIBORs Li, i = 1, ..., n, are specified. LMMs were first introduced by Brace

et al. [10], where the dynamics of forward LIBORs Li, i = 1, ..., n, is given by

dLit = −
n∑

j=i+1

(
σjtαjL

j
t

1 + αjL
j
t

)σitρijL
i
tdt+ σitL

i
tdW

n+1
i (t), i = 1, ..., n− 1 (2.16)

dLnt = σnt L
n
t dW

n+1
n (t).

where Wn+1 is a (correlated) Brownian motion with dWn+1
i (t)dWn+1

j (t) = ρijdt

under the terminal measure Fn+1 associated with the numeraire the Tn+1-maturity

ZCB D.,Tn+1, and σit is a deterministic function. For more details about the spec-

ification of the volatility function σit, the reader is referred to [11]. The drift term

in the SDE (2.16) is determined by maintaining the arbitrage-free property of the

model.

Following the change of measure technique, we obtain the dynamics of Li

under the forward measure Fi+1 corresponding to the numeraire D.,T i+1 which is

given by

dLit = σitL
i
tdW

i+1
i (t), (2.17)

whereW i+1 is a (correlated) Brownian motion under the forward measure Fi+1. This

is the case since we can see from the definition of LIBORs that Li is a martingale

in the measure Fi+1 so that Li should be a driftless process. Note that the SDE

(2.17) yields the Black’s formula (2.7) for the prices of caplets. Thus LMMs allow

for calibration to the Black’s formula for caplets and floorlets, which is an advantage

for LMMs.

The swap market model is specified by describing the dynamics of a set of

contiguous forward (co-terminal) swap rates under the terminal measure Fn+1

dyi,n+1−i
t = µit(yt)y

i,n+1−i
t dt+ σity

i,n+1−i
t dWn+1

i (t) i = 1, ..., n− 1, (2.18)

dyn,1t = σnt y
n,1
t dWn+1

n (t),
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where

µit(yt) = −
n∑

j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
αj−1y

j,n+1−j
t

1 + αj−1y
j,n+1−j
t

)σitσ
j
t ρij

Ψi
t :=

i∏
j=1

(1 + αjy
j+1,n−j
t )

P̂ i,n+1−i
t :=

P i,n+1−i
t

Dt,Tn+1

.

By moving to the swaption measure Si,n+1−i associated with the numeraire P i,n+1−i,

the forward swap rate yi,n+1−i is given by the following driftless process

dyi,n+1−i
t = σity

i,n+1−i
t dW i,n+1−i

i (t),

where W i,n+1−i is a (correlated) Brownian motion under the measure Si,n+1−i. This

leads to the Black’s formula (2.10) for the prices of vanilla swaptions.

We can see that the drift terms of the SDEs (2.16) and (2.18) are dependent

on forward rates. Consequently a market model, though it is Markovian with respect

to all its forward rates, is a high-dimensional model even when driven by only

one Brownian motion. In practice a simulation, such as Monte Carlo methods, is

required for an accurate implementation which is computationally expensive. For

more details about the specification, calibration, implementation and applications

of market models, the reader is referred to [58] and [59].

2.2.5 Markov-functional models

Markov-functional models (MFMs) were introduced by Hunt et al. [37]. MFMs

can fit any arbitrage-free formula for caplet or swaption prices which includes the

Black’s formula. A MFM is specified via the SDE for a Markov process under some

equivalent martingale measure which is referred to as the driving process or the

driver for short. The driving process can be viewed as modelling the overall level

of interest rates in the economy. The defining characteristic of MFMs is that the

underlying assets in the interest rate market - ZCBs prices - are a function of a

Markov process so that the term structure of ZCBs can be specified by describing

the dynamics of the Markov process and the functional forms. Recall that in a short

rate model, the prices of ZCBs can be computed via the formula (2.14). In a MFM

the functional forms of ZCBs can be obtained numerically by calibrating to vanilla

options prices. The use of a low-dimensional Markov process makes it possible to
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implement the model efficiently because one only needs to track the low-dimensional

Markov process. We will return to this topic later in the next chapter.

Let us conclude this section with a remark. Short rate models and market

models allow for stochastic volatility extensions. See for example [24] and [62].

However there is no research in the literature about stochastic volatility extensions

of MFMs. The purpose of this thesis is to study stochastic volatility interest rate

models, and one main contribution we make is the development, calibration and

implementation of a stochastic volatility MFM.
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Chapter 3

Stochastic volatility

Markov-functional models

3.1 Introduction

In this chapter we consider Markov-functional models introduced by Hunt, Kennedy

and Pelsser [37]. Markov-functional models are interest rate models that allow

for calibrating to any arbitrage-free formula for caplet or swaption prices. The

defining characteristic of Markov-functional models is that the underlying assets -

Zero Coupon Bonds - are a function of a Markov process so that the term structure of

zero coupon bonds can be specified by describing the dynamics of the Markov process

and the functional form. If the Markov process is chosen to be low dimensional, it is

possible to implement the model efficiently because one only needs to track the low-

dimensional Markov process. The functional form can be determined to fit the prices

of a set of caplets or swaptions by numerical integration. Hunt and Kennedy [38]

applied a low-dimensional Gaussian process as the Markov process and calibrated the

Markov-functional model to the Black’s formula for caplets or swaptions. They also

proposed an efficient algorithm to specify the Markov-functional model. Caspers [13]

considered the numerical implementation of a one-dimensional Markov-functional

model with a Gaussian driver. Kaisajuntti and Kennedy [45] studied the case when

the Markov process is N -dimensional. Gogala and Kennedy [29] developed a one-

dimensional Markov-functional model driven by a non-Gaussian Markov process

and proposed an efficient algorithm to implement the model numerically. Fries and

Eckstaedt [27] studied hybrid Markov-functional models; see also [26] and [28].

In Markov-functional models the functional forms of zero coupon bonds can

be obtained by numerical integration so that SDEs of forward rates or zero coupon
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bonds are not given explicitly. This makes Markov-functional models less transpar-

ent in terms of the dynamics of forward rates. Bennett and Kennedy [7] partially

tackled this problem. The authors compared a one-factor separable LIBOR market

model with a one-dimensional Markov-functional model driven by a Gaussian pro-

cess together with a log-Normal marginal distributions of LIBORs at their setting

dates. The numerical results showed that under a wide range of market conditions

these two models have similar dynamics and Bermudan swaption prices for short

maturities (10 years). For long maturities and high volatilities the similarity begins

to break down. This link gives us more understanding and intuition of a Markov-

functional model from the corresponding one-factor separable LIBOR market model.

Gogala and Kennedy [29] extended the above link by concluding that the one-factor

separable local volatility LIBOR market model has similar dynamics to the Markov-

functional model with the same local volatility type driver and pricing formula for

caplets.

Over the last two decades many stochastic volatility term structure models

have been proposed e.g. [4], [65], [55], [62], [61], [60], [34] and [33]. The introduc-

tion of stochastic volatility is motivated by the empirical evidence (see [4]) that the

volatilities in interest rate option markets possess a random component and Hagan

et al’s [31] argument that the smile dynamics in stochastic volatility models behave

more realistically than local volatiliy models. The stochastic volatility interest rate

models mentioned above are all high-dimensional models and need to be imple-

mented by simulation. Thus in practice it is infeasible, from the point of view of

banks, to use such models for pricing and especially hedging exotic derivatives.

Andersen and Piterbarg [5] developed a stochastic volatility Quasi-Gaussian

model which is a low-dimensional stochastic volatility term structure model. In

this chapter we will develop another low-dimensional stochastic volatility interest

rate model - the stochastic volatility Markov-functional model. As Kaisajuntti and

Kennedy [44] pointed out, a one-factor stochastic process is not enough to cap-

ture the overall level of interest rates. The authors identified a SABR type model

as an appropriate choice for the level of rates by investigating market data. This

finding motivates us to develop a stochastic volatility Markov-functional model by

taking a SABR model as the driving process to capture the overall level of interest

rates and drive the whole economy. The main challenge for the specification of the

model is that it is hard to obtain the transition density function of the driver. To

implement the model numerically, we propose an algorithm which works with con-

ditional moments of the driver distribution based on an approximation introduced

by Kennedy et al. [47]. Unlike the two-dimensional algorithm that appears in [38]
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for the additive pre-model, which relies heavily on the Gaussian assumption, the

algorithm we developed is not specific and could be modified to apply to all one-

and multi-dimensional Markov-functional models.

The chapter is organized as follows. In Section 3.2 we revisit the LIBOR and

Swap Markov-functional models with a Gaussian driving process and introduce the

numeraire approach to specify the model under the terminal measure. In Section 3.3

we develop a stochastic volatility Markov-functional model and discuss the numerical

implementation by developing a general algorithm which works with basis functions

and conditional moments of the driving Markov process. Moreover the specification

of the driving process as well as the pre-model for the stochastic volatility Markov-

functional model is given. We conclude in Section 3.4.

3.2 Markov-functional models

In this section we review Markov-functional models (MFMs) proposed by Hunt,

Kennedy and Pelsser [37]. First we give a definition of a MFM from Hunt and

Kennedy [38] (see also [29] for a generalized definition). We will know some general

properties of a MFM from the following definition but it will not tell us the spec-

ification of a MFM in practice. We will introduce an algorithm to specify a MFM

later in the section.

Definition 1. An interest rate model is said to be Markov-functional if there exists

some numeraire pair (N,N) and some process x such that:

(P.1) the process x is a Markov process under the measure N.

(P.2) the zero coupon bond prices are of the form

DtT = DtT (xt) 0 ≤ t ≤ T ≤ T ∗,

for a finite time horizon T ∗ <∞.

(P.3) the numeraire N is of the form

Nt = Nt(xt) 0 ≤ t ≤ T ∗.

A MFM is said to be of d-dimension if x is a d-dimensional Markov process.

We can see from the above definition that the prices of zero coupon bonds (ZCBs),

which are the underlying assets of the economy, are a function of a Markov process

x, which is referred to as the driving process or driver for short. This allows us to

track the driving process x only in order to implement a MFM. If we choose a low-

dimensional driving process, the model can be implemented efficiently. Otherwise
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it needs to be implemented by simulation. Moreover the existence of a numeraire

pair ensures that all the numeraire-rebased ZCBs are martingales in the equivalent

martingale measure N. In particular the prices of ZCBs can be obtained by the

martingale property

DtT = NtEN[
1

NT
|Ft],

where {Ft} is the natural filtration generated by the Markov process x in the measure

N and EN(·) denotes an expectation under N. This ensures that a MFM is arbitrage-

free. We will present the numeraire approach to specify a MFM under the terminal

measure, which is an equivalent martingale measure, later in the section.

The above definition is very general. In fact most interest rate models are

included in the category of MFMs according to the above definition. For example

in a short rate model the short rate is taken as the Markov process and ZCBs are

some function of it. In a LIBOR market model (LMM) however, the evolution of

a set of contiguous forward LIBORs with different maturities are specified. The

high-dimensional LIBORs process can be seen as the Markov process.

For efficient implementation we commonly use a low-dimensional Markov

process with dimension d 6 3. A high-dimensional MFM needs to be implemented

by simulation such as Monte-Carlo methods which is much slower (see [45] for high-

dimensional MFMs). In this thesis we restrict our attention to low-dimensional

MFMs. Similar to Market models, there are two common versions of MFMs: LIBOR

MFMs and Swap MFMs. The LIBOR version is set up by feeding in digital caplets

prices whereas the swap MFM is specified by fitting PVBP-digital swaptions prices.

In the next two subsections we will introduce the specification of both versions of

MFMs under the terminal measure Fn+1 corresponding to the numeraire D.,Tn+1 .

MFMs can also be developed under the spot measure and details can be found in

[28] and [29].

3.2.1 One-dimensional Markov-functional models: LIBOR version

Before discussing multi-dimensional MFMs, it will be helpful to review the speci-

fication of a one-dimensional LIBOR MFM under the terminal measure using the

numeraire approach. We will specify the model on a grid, which is sufficient for

most applications in practice and we can see it later when we use a MFM to price

and hedge Bermudan swaptions. In what follows we first specify the driving Markov

process x and then we determine functional forms of the numeraire DTiTn+1(xTi) by

calibrating to the input prices of a set of digital caplets.
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Suppose we are given the following Gaussian process x:

dxt = σtdW
n+1
t , (3.1)

where Wn+1 is a one-dimensional Brownian motion in the terminal measure Fn+1

and σt is a deterministic function. Note that theoretically any diffusion process can

be used as a driver. We choose a Gaussian process as the driving Markov process

here for efficient implementation. More details about one-dimensional MFMs driven

by non-Gaussian Markov processes can be found in [29].

Having specified the Markov process x, we now consider the problem of how

to find the functional forms DTiTn+1(xTi) for i = 1, ..., n. We proceed by backwards

induction on time Ti. At time Tn+1 by definition we have that

DTn+1Tn+1(xTn+1) = 1.

Assume that we have determined DTkTn+1(xTk) for k = i+ 1, ..., n+ 1. At time Ti,

by definition, the LIBOR LiTi is given by

LiTi =
1−DTiTi+1

αiDTiTi+1

. (3.2)

It follows from equation (3.2) that the numeraire at time Ti can be expressed as

DTiTn+1(xTi) =
1

D̂TiTi+1(xTi)(1 + αiLiTi(xTi))
, (3.3)

where the numeraire-rebased ZCB D̂TiTi+1 is defined as

D̂TiTi+1(xTi) :=
DTiTi+1(xTi)

DTiTn+1(xTi)
.

It follows from the martingale property that

D̂TiTi+1(xTi) = EFn+1 [
1

DTi+1Tn+1(xTi+1)
|FTi ] (3.4)

= EFn+1 [
1

DTi+1Tn+1(xTi+1)
|xTi ],

where the last equation follows from the Markov property and the expectation con-

ditional on xTi is a short notation for the expectation conditional on the σ-field
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σ(xTi) generated by xTi . Since the Markov process

xt =

∫ t

0
σudW

n+1
u

is a Gaussian process, numerical integration for (conditional) expectation is calcu-

lated via

EFn+1 [f j(xTj )|xTi ] =

∫ ∞
−∞

f j(u)φxTj |xTi
(u)du (3.5)

for continuous function f j(·). The function φxTj |xTi
(·) is the Gaussian density func-

tion with mean xTi and variance
∫ Tj
Ti
σ2
udu for 0 ≤ i < j ≤ n + 1. Thus by ap-

proximating 1
DTi+1Tn+1

(xTi+1
) in (3.4) by piecewise polynomials, the functional forms

D̂TiTi+1(xTi) can be obtained by numerical integration (3.5). Having specified the

numeraire-rebased ZCBs D̂TiTi+1(xTi), we see from equation (3.3) that if we can

determine the functional form of LiTi(xTi), the functional form of DTiTn+1(xTi) is

immediate.

We now fix the functional form LiTi(xTi) by calibrating to the input prices of

digital caplets (see Section 2.1.2) corresponding to the ith LIBOR Li. In the market

the prices V i
0 (K) of digital caplets on the ith LIBOR Li are available for only a few

strikes K. However in practice a continuous function V i
0 (K) w.r.t strike K can

be achieved by interpolation or using e.g. the SABR model to generate the whole

implied volatility smile. The technical details will be covered in the next chapter.

For now we just assume that the input prices V i
0 : [0,∞] → R of digital caplets at

strikes K ≥ 0 are given for i = 1, ..., n. Following the fundamental pricing formula

in Fn+1 we have that

V i
0 (K) = D0Tn+1EFn+1 [

1

DTi+1Tn+1

I{LiTi>K}
]

= D0Tn+1EFn+1 [D̂TiTi+1I{LiTi>K}
], (3.6)

where the last equation is obtained by the tower property and equation (3.4). So

the input prices V i
0 (K) are a decreasing function of the strike K.

In order to find the functional forms of LIBORs we still need one more

assumption:

(A.1) In the model, LiTi is a monotonic increasing function of xTi for i = 1, ..., n.

This assumption is not restrictive since the Markov process represents the level of

LIBORs.

Now we determine the functional form LiTi(xTi). We choose a value x∗ of xTi
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and for each x∗ we evaluate

J i0(x∗) = D0Tn+1EFn+1 [D̂TiTi+1(xTi)I{xTi>x
∗}], (3.7)

which can be computed by means of numerical integration. Compare equation (3.7)

with (3.6), and it turns out that functions J i0 and V i
0 are the same except for the

indicator function. By assumption (A.1) for any value x∗, we can always find a

unique strike K such that

{xTi > x∗} = {LiTi > K}. (3.8)

Thus for any value of J i0(x∗), we can always find a unique strike K such that

J i0(x∗) = V i
0 (K),

where the function K(x∗) can be solved as

K(x∗) = (V i
0 )−1(J i0(x∗)).

It follows from (3.8) that

LiTi(x
∗) = K(x∗).

We have found the functional form LiTi(xTi), and therefore the functional

form DTiTn+1(xTi) is immediate by equation (3.3). Finally the functional forms of

ZCBs DTiTj (xTi) can be obtained by the martingale property

DTiTj (xTi) = DTiTn+1(xTi)EFn+1 [
1

DTjTn+1(xTj )
|xTi ]. (3.9)

for i < j ≤ n.

Let us finish the specification of the model by a remark. The Markov driving

process affects the model only by means of the transition density function φxTj |xTi
(·)

with mean xTi and variance
∫ Tj
Ti
σ2
udu for 0 ≤ i < j ≤ n+1. In the model the driving

process x is taken as a Gaussian process, but theoretically the Markov process can

be moved away from Gaussian. Gogala and Kennedy [29] developed one-dimensional

MFMs with non-Gaussian Markov processes. However using a non-Gaussian Markov

process could cause challenges for the numerical implementation. In general it is

more difficult to find the transition density function for a non-Gaussian driving

process. In many cases we have to resort to approximation which will be discussed

later in this chapter.
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3.2.2 One-dimensional Markov-functional models: Swap rate ver-

sion

In this subsection we consider one-dimensional swap MFMs. The specification of

one-dimensional swap MFMs is similar to the LIBOR version but we find functional

forms of swap rates by feeding in input prices of PVBP-digital swaptions. Suppose

we are given a Gaussian process (3.1) which will be taken as the driving process.

The algorithm for swap based model specification is similar to the LIBOR

version. In particular we find the functional forms DTiTn+1(xTi) from time Tn+1 to

time T1. At time Tn+1 by definition we have

DTn+1Tn+1(xTn+1) = 1.

Assume that we have determined functional forms DTjTk(xTj ) for j = i+ 1, ..., n+ 1

and k = j, ..., n+ 1 and therefore the functional form of the PVBP P i,n+1−i
Ti+1

(xTi+1)

is also determined. At time Ti, by definition, the swap rate yi,n+1−i
Ti

is given by

yi,n+1−i
Ti

=
1−DTiTn+1

P i,n+1−i
Ti

, (3.10)

so that the numeraire at time Ti can be expressed as

DTiTn+1 =
1

P̂ i,n+1−i
Ti

yi,n+1−i
Ti

+ 1
. (3.11)

where the numeraire-rebased PVBP is defined as

P̂ i,n+1−i
Ti

:=
P i,n+1−i
Ti

DTiTn+1

.

We can see from equation (3.11) that finding the functional form of DTiTn+1(xTi) is

equivalent to finding the functional forms of P̂ i,n+1−i
Ti

(xTi) and yi,n+1−i
Ti

(xTi).

We first consider the functional form of P̂ i,n+1−i
Ti

(xTi). It follows from the

martingale property that

P̂ i,n+1−i
Ti

(xTi) = EFn+1 [
P i,n+1−i
Ti+1

(xTi+1)

DTi+1Tn+1(xTi+1)
|xTi ],

which can be evaluated using numerical integration (3.5).

Then we consider the functional form yi,n+1−i
Ti

(xTi). To do so we calibrate

to the input prices of PVBP-digital swaptions. Suppose the input prices of PVBP-
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digital swaptions V i
0 (K) on the ith forward swap rate yi,n+1−i ,i = 1, ..., n, is a

continuous function of the strike K i.e. V i
0 : [0,∞] → R and are given to us. The

PVBP-digital swaptions on yi,n+1−i at strike K has the following payoff at time Ti

V i
Ti = P i,n+1−i

Ti
I{yi,n+1−i

Ti
>K}.

Following the fundamental pricing formula, we have that

V i
0 (K) = D0Tn+1EFn+1 [P̂ i,n+1−i

Ti
(xTi)I{yi,n+1−i

Ti
>K}]. (3.12)

We can see that the input prices V i
0 (K) is a decreasing function of the strike K.

To determine the functional forms yi,n+1−i
Ti

(xTi) we still need one more as-

sumption:

(A.2) In the model, yi,n+1−i
Ti

is a monotonic increasing function of xTi for i = 1, ..., n.

We now find the functional form yi,n+1−i
Ti

(xTi). Choose a value x∗ of xTi and

for each x∗ we calculate

J i0(x∗) = D0Tn+1EFn+1 [P̂ i,n+1−i
Ti

(xTi)I{xTi>x
∗}], (3.13)

which can be obtained by numerical integration. Compare equation (3.12) with

(3.13), and it turns out that functions J i0 and V i
0 are the same except for the indicator

function. By assumption (A.2) for any value of x∗ we can always find a unique strike

K such that

{xTi > x∗} = {yi,n+1−i
Ti

> K}. (3.14)

So for any value of J i0(x∗), we can always find a unique strike K such that

J i0(x∗) = V i
0 (K), (3.15)

where the function K(x∗) can be solved as

K(x∗) = (V i
0 )−1(J i0(x∗)).

It follows from equation (3.14) that

yi,n+1−i
Ti

(x∗) = K(x∗).

So far we have found the functional forms of P̂ i,n+1−i
Ti

(xTi) and yi,n+1−i
Ti

(xTi),

and the functional forms of the numeraire DTiTn+1(xTi) is immediate by equation

(3.11). Finally the functional forms of ZCBs DTiTj (xTi) can be obtained by the
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martingale property

DTiTj (xTi) = DTiTn+1(xTi)EFn+1 [
1

DTjTn+1(xTj )
|xTi ].

for i < j ≤ n.

So far we have introduced the one-dimensional LIBOR and swap rate based

MFMs. One may ask which version would be preferable. Bennett and Kennedy [7]

investigated both LIBOR and swap one-dimensional MFMs with Gaussian driver

numerically, and it turned out that the forward LIBORs may become negative in

some cases for long maturities under the swap MFM. But to our knowledge there is

no consensus yet as to which version is better. A rule of thumb is that the LIBOR

MFM is more suitable for pricing LIBOR-based derivatives whereas the swap version

is much more used to price swap-based derivatives.

3.2.3 Multi-dimensional Markov-functional models

One-dimensional MFMs are suitable for pricing and hedging level dependent deriva-

tives such as Bermudan swaptions but not sufficient for all products. One product

which needs a multidimensional model is spread options whose payoff can be seen as

the difference between two different forward rates. In order to price such a product

accurately the relative level of the two forward rates i.e. the skew of the forward

rates curve has to be captured. So two-dimensional MFMs are needed where the

two-dimensional Markov process can be viewed as capturing the level and skew of

interest rates. For more details about level and skew, the reader is referred to [1]

and [21].

Hunt and Kennedy [38] proposed a multi-dimensional MFM and presented

an example for the two-dimensional MFM with a two-dimensional Gaussian driving

process. Kaisajuntti and Kennedy [45] developed an d-dimensional MFM. Now we

specify an d-dimensional LIBOR MFM briefly, and we will later adapt the ideas

for stochastic volatility MFM. The swap version can also be generalized. An d-

dimensional MFM is just a generalization of the one-dimensional case so that the

numeraire approach can also be applied.

Suppose we are given the following d-dimensional Markov process in Fn+1:

x = (x1, x2, ..., xd).

Recall from the one-dimensional LIBOR MFM that the monotonic assumption (A.1)

is necessary to determine the functional forms of LIBORs at their setting dates.
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However the univariate and monotonicity properties are lost here due to the multi-

dimensionality of x. To deal with this issue we introduce a pre-model L̂iTi : Rd → R
which is a function of the d-dimensional driver:

L̂iTi(xTi) = f i(x1
Ti , x

2
Ti , ...x

d
Ti). (3.16)

We will see an example for the choice of the function f i later. Once a pre-model is

chosen we make the following assumption:

(A.3): In the model, LiTi is a monotonic increasing function of the pre-model L̂iTi
for i = 1, ..., n.

The remaining step is almost the same as the one-dimensional MFM, but all the

required integrals become d-dimensional.

Hunt and Kennedy [38] considered the case where x is a two-dimensional

Gaussian process. In this case we have the following two-dimensional Markov process

dx1
t = σ1

t dW
1
t , (3.17)

dx2
t = σ2

t dW
2
t ,

dW 1
t dW

2
t = ρdt,

where σ1 and σ2 are deterministic functions, and W 1 and W 2 are correlated Brow-

nian motions in Fn+1. Note that the two-dimensional Markov process x in (3.17)

can be viewed as representing the level as well as skew of interest rates. In this case

a pre-model is commonly taken as some strictly increasing function of the linear

combination of the components of the driver:

L̂iTi(xTi) = gi(γ1
i x

1
Ti + γ2

i x
2
Ti), (3.18)

where γ1
i and γ2

i are positive constants and gi is some strictly increasing function.

Note that the pre-model can be chosen to capture some desired covariance structure

in mind. More details about the choices of pre-model for the Gaussian driver (3.17)

can be found in [38] and [43].

Note that the multi-dimensional driving Markov process is not forced to be

Gaussian. But to our knowledge there is no paper developing multi-dimensional

MFMs with non-Gaussian drivers. Gogala and Kennedy [29] developed MFMs with

non-Gaussian Markov processes in the one-dimensional case. They also showed

that, under some conditions, one-dimensional MFMs driven by two distinct driving

processes are equivalent by using copula theory. We extend this equivalence of

MFMs to the multi-dimensional case in Appendix 3.A. In the next section we
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will develop a stochastic volatility MFM. We will take a two-dimensional stochastic

volatility model, which is specified in a multiplicative way, as the driving process,

and we will choose a pre-model different from the choice (3.18).

3.3 Stochastic volatility Markov-functional models

We have discussed the specification of MFMs without stochastic volatility in the

previous section. However there is much empirical evidence supporting the stochas-

tic volatility for interest rates; see [15], [49] and references therein. Furthermore

as Hagan et al. [31] pointed out, incorporating an extra stochastic volatility factor

into a model could give a more realistic evolution for the implied volatility smile. In

addition Kaisajuntti and Kennedy [44] used market data to indicate that a stochas-

tic volatility Markov process rather than a one-dimensional Markov process should

be used for the level of rates. These motivate us to develop a stochastic volatility

MFM by taking a stochastic volatility process as a driver.

So far our focus is on the theoretical specification of MFMs rather than the

details of the numerical implementation. In Section 3.3.1 we consider the numerical

implementation of a two-dimensional (stochastic volatility) LIBOR MFM by devel-

oping a practical algorithm, where we work with basis functions and conditional

moments of the driving Markov process. Note that a two-dimensional algorithm

that appears in [38] for the additive pre-model has been discussed earlier but this

algorithm relies heavily on the Gaussian assumption. The practical algorithm pro-

posed in this section is not specific and could be modified to apply to all one- and

multi-dimensional MFMs. This general algorithm for the corresponding swap ver-

sion MFM is also straightforward to develop in a similar way. In Section 3.3.2 we

consider the specification of the driving process for the stochastic volatility MFM.

3.3.1 Numerical implementation

Let us develop a practical algorithm to implement a two-dimensional LIBOR MFM

numerically. This algorithm is very general and does not rely on the Gaussian

assumption of the driving process. Suppose we are given a two-dimensional diffusion

process (y, q) and we take it as a driving Markov process. The specification of the

driver for a stochastic volatility MFM will be discussed later in this section.

Grid Points

We now present the numerical implementation of the model on a grid. We construct

grid points for the Markov process on the date structure Ti , i = 1, ..., n. we
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construct m equidistant grid points −∞ < yi,1 < yi,2 < ... < yi,m < ∞ and

−∞ < qi,1 < qi,2 < ... < qi,m < ∞ for (yTi , qTi) at time Ti for i = 1, ..., n. The

grid points are chosen such that the intervals [yi,1, yi,m] and [qi,1, qi,m] cover most of

probability mass of yTi and qTi respectively i.e.

Fn+1(yi,1 ≤ yTi ≤ yi,m) ≥ 1− εy
Fn+1(qi,1 ≤ qTi ≤ qi,m) ≥ 1− εq

where positive constants εy and εq are small enough e.g. 0.001%.

Basis Function

Since MFMs are implemented on a grid, any smooth function of the state variable

(yTi , qTi) is valued and discretized on the grid points. In order to approximate and

interpolate these functions we introduce the idea of basis function.

The one-dimensional basis function bi,j : R → R for i = 1, ..., n and j =

1, ...,m with respect to the partition of [yi,1, yi,m] can be written in the form of

bi,j(y) :=
m−1∑
j′=1

M∑
d=0

byi,j,j′,dy
dI{y∈[yi,j′ ,yi,j′+1)}

satisfying

bi,j(yi,u) = δj,u

for some coefficients byi,j,j′,d ∈ R, where δj,u is Kronecker delta function. The details

of a basis function construction and the calculation of its coefficients can be found

in Appendix 3.B.

The two-dimensional basis functions w.r.t the partition of [yi,1, yi,m]×[qi,1, qi,m]

can be expressed as the product of the two corresponding one-dimensional basis

functions

bi,j,k(y, q) := bi,j(y)× bi,k(q)

=
m−1∑
j′k′=1

M∑
d,l=0

byi,j,j′,db
q
i,k,k′,ly

dqlI{y∈[yi,j′ ,yi,j′+1)}∩{q∈[qi,k′ ,qi,k′+1)} (3.19)

satisfying

bi,j,k(yi,u, qi,v) = δj,u × δk,v
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for coefficients (byi,j,j′,d, b
q
i,k,k′,l) ∈ R2, i = 1, ..., n and j, k = 1, ...,m.

Notice that the basis functions above are just piecewise polynominal, and

they are used to approximate a smooth function. In particular, any smooth function

f : R → R defined on the interval [yi,1, yi,m] can be approximated by a piecewise

polynomial function f̃ in terms of basis functions:

f̃(y) :=
m∑
j=1

f(yi,j)bi,j(y). (3.20)

Similarly, any two-dimensional smooth function g : R2 → R defined on the interval

[yi,1, yi,m]× [qi,1, qi,m] can be approximated by a piecewise polynomial function g̃ in

terms of two-dimensional basis functions:

g̃(y, q) :=
m∑

j,k=1

g(yi,j , qi,k)bi,j,k(y, q). (3.21)

Building Blocks

Now we define and evaluate three (conditional) expectations which will be taken

as building blocks. We will show that MFMs can be implemented by using these

building blocks. In practice we will store these building blocks for efficient imple-

mentation. Let us first consider the following one step conditional moments:

Θi
j,k,d,l(yi−1,u, qi−1,v) (3.22)

:= EFn+1 [ydTiq
l
TiI{yTi∈[yi,j ,yi,j+1)}∩{qTi∈[qi,k,qi,k+1)}|yTi−1 = yi−1,u, qTi−1 = qi−1,v]

for i = 1, ..., n; j, k = 1, ...,m − 1; d, l = 0, ...,M and u, v = 1, ...,m. Note that the

information on the transition density function of the driving process is given to us

via the above one step conditional moments. We will present the evaluation of the

above one step conditional moments later in this section after we choose and discuss

the driving process. For now we assume that the functions Θi
j,k,d,l : R2 → R are

given at each grid point. Suppose we have a specific driving process and pre-model in

mind, which will be discussed later, and we define the following three (conditional)

expectations:

∆i
j,k(yi−1,u, qi−1,v) := EFn+1 [bi,j,k(yTi , qTi)|yTi−1 = yi−1,u, qTi−1 = qi−1,v],

Ei,j,k := EFn+1 [bi,j,k(yTi , qTi)],

Γij,k,u := EFn+1 [bi,j,k(yTi , qTi)I{yTi∈[yi,u,yi,u+1)}].
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for i = 1, ..., n; j, k = 1, ...,m and u = 1, ...,m. Note that the third building blocks

Γ may differ for a different choice of driving process and pre-model and we will see

this later.

Remark 4. The building blocks ∆i
j,k(yi−1,u, qi−1,v) and Γij,k,u will be needed to deter-

mine the functional forms of ZCBs. We use the building block Ei,j,k in applications

such as pricing options.

Now we can show that the three (conditional) expectations can be evaluated

via the function Θi
j,k,d,l.

Proposition 1. The three (conditional) expectations can be expressed as

∆i
j,k(yi−1,u, qi−1,v) =

m−1∑
j′=1

M∑
d=0

byi,j,j′,d

m−1∑
k′=1

M∑
l=0

bqi,k,k′,lΘ
i
j′,k′,d,l(yi−1,u, qi−1,v)

Ei,j,k =
m∑

u,v=1

∆i
j,k(yi−1,u, qi−1,v)Ei−1,u,v

Γij,k,u =
M∑
d=0

byi,j,u,d

m−1∑
k′=1

M∑
l=0

bqi,k,k′,l

m∑
u′,v=1

Θi
u,k′,d,l(yi−1,u′ , qi−1,v)Ei−1,u′v

where by’s and bq’s are coefficients for basis functions (3.19).

Proof. See Appendix 3.C.

Having calculated the building blocks one can store and use them in the nu-

merical implementation.

Practical Algorithm

We now present the numerical implementation of the stochastic volatility LIBOR

MFM by developing a practical algorithm based on the building blocks. We deter-

mine functional forms of ZCBs by backwards induction on time Ti. At time Tn+1

by definition we have

DTn+1Tn+1(yTn+1 , qTn+1) = 1.

Assume that we have determined DTjTk(yTj , qTj ) for j = i + 1, ..., n + 1 and k =

j, ..., n+ 1. At time Ti, by definition, the LIBOR LiTi is given by

LiTi =
1−DTiTi+1

αiDTiTi+1
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that the numeraire at time Ti can be expressed as

DTiTn+1 =
1

D̂TiTi+1(1 + αiLiTi)
, (3.23)

where the numeraire-rebased ZCBs is defined as

D̂TiTi+1 :=
DTiTi+1

DTiTn+1

.

We can observe from equation (3.23) that once we have determined functional

forms of D̂TiTi+1(yTi , qTi) and LiTi(yTi , qTi), the functional form of the numeraire

DTiTn+1(yTi , qTi) at time Ti is immediate.

We first find functional forms of D̂TiTi+1(yTi , qTi). It follows from the mar-

tingale property and equation (3.21) that

D̂TiTi+1(yTi , qTi) = EFn+1 [
1

DTi+1Tn+1(yTi+1 , qTi+1)
|yTi , qTi ]

≈ EFn+1 [

m∑
j,k=1

1

DTi+1Tn+1(yi+1,j , qi+1,k)
bi+1,j,k(yTi+1 , qTi+1)|yTi , qTi ]

=
m∑

j,k=1

1

DTi+1Tn+1(yi+1,j , qi+1,k)
∆i+1
j,k (yTi , qTi),

where DTi+1Tn+1(yi+1,j , qi+1,k) has already been determined at time Ti+1.

Now we determine the functional form LiTi(yTi , qTi) by feeding in the input

prices of digital caplets corresponding to the ith LIBOR Li. We assume that the

input prices V i
0 : [0,∞] → R of digital caplets at strikes K ≥ 0 are given for

i = 1, ..., n. Recall that following the fundamental pricing formula in Fn+1 we have

equation (3.6).

In order to find the functional forms of LIBORs we still need one more

assumption:

(A.4): In the model, LiTi is a monotonic increasing function of yTi .

Note that one can think of the variable yTi itself as a pre-model at time Ti

for i = 1, ..., n. For a different specification of the driving process, the form of the

pre-model may differ. An explanation of this assumption will be given later after

we specify the driving process (y, q).

Now we determine the functional form LiTi(yTi). For each grid point yi,j ,
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from j = m to j = 1, we evaluate

J i0(yi,j) = D0Tn+1EFn+1 [D̂TiTi+1(yTi , qTi)I{yTi>yi,j}
] (3.24)

≈ D0Tn+1EFn+1 [
m∑

u,v=1

D̂TiTi+1(yi,u, qi,v)bi,u,v(yTi , qTi)I{yTi>yi,j}
]

= D0Tn+1

m∑
u,v=1

D̂TiTi+1(yi,u, qi,v)EFn+1 [bi,u,v(yTi , qTi)I{yTi>yi,j}
]

= J i0(yi,j+1) +D0Tn+1

m∑
u,v=1

D̂TiTi+1(yi,u, qi,v)Γ
i
u,v,j .

Compare equation (??) with (3.24), and it turns out that functions J i0 and V i
0 are

the same except for the indicator function. By assumption (A.4) for each value yi,j

we can always find a unique strike K such that

{yTi > yi,j} = {LiTi > K} (3.25)

holds. Thus for each value of J i0(yi,j), we can always find a unique strike K such

that

J i0(yi,j) = V i
0 (K),

where the function K(yi,j) can be solved as

K(yi,j) = (V i
0 )−1(J i0(yi,j)).

It follows from (3.25) that

LiTi(yi,j) = K(yi,j).

Note that LiTi is just a function of random variable yTi so that LiTi(yTi , qTi) =

LiTi(yTi).

We have found the functional form LiTi(yTi), and therefore the functional

form DTiTn+1(yTi , qTi) is immediate from equation (3.23). Finally the functional

forms of ZCBs DTiTj (yTi , qTi), i < j < n+ 1, can be determined by the martingale

property:

DTiTj (yTi , qTi) = DTiTn+1(yTi , qTi)EFn+1 [
DTi+1Tj (yTi+1 , qTi+1)

DTi+1Tn+1(yTi+1 , qTi+1)
|yTi , qTi ]

≈ DTiTn+1(yTi , qTi)
m∑

u,v=1

DTi+1Tj (yi+1,u, qi+1,v)

DTi+1Tn+1(yi+1,u, qi+1,v)
∆i+1
u,v (yTi , qTi).
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In pricing applications we will need to take expectations of payoff functions.

If the expectation of a smooth function f i of the bivariate random variable (yTi , qTi)

is finite, we can approximate it as

EFn+1 [f i(yTi , qTi)] ≈ EFn+1 [
m∑

u,v=1

f i(yi,u, qi,v)bi,u,v(yTi , qTi)]

=
m∑

u,v=1

f i(yi,u, qi,v)Ei,u,v.

3.3.2 Specification of the driving process

So far we have discussed the numerical implementation of a two-dimensional LIBOR

MFM without giving details about the specification of the driving process (y, q).

In this subsection we will focus on the specification of a diving process (y, q) by

considering a SABR model. Then the evaluation of the one step conditional moments

(3.22) for this particular driving process (y, q) will be given and the monotonic

increasing assumption (A.4) will be discussed.

Kaisajuntti and Kennedy [44] used market data to identify a SABR type

model as an appropriate choice for the level of rates. It means that a SABR model

is an appropriate choice to start with. Suppose we are given the following SABR

model

dFt = σtF
β
t dW

n+1
t β ∈ [0, 1], (3.26)

dσt = µtσtdt+ vσtdB
n+1
t v > 0,

dBn+1
t dWn+1

t = ρdt ρ ∈ [−1, 1]

where Bn+1 and Wn+1 are correlated Brownian motions in Fn+1, and µt is assumed

to be piecewise constant

µt =
n−1∑
j=0

µjI{t∈[Tj ,Tj+1)}.

Note that (3.26) is a modified SABR model. The volatility process σ is driftless in

the original SABR model [31]. The purpose of adding the drift µj ’s to the stochastic

volatility σ will be explained later in the next chapter where we will see that the drift

controls the auto-correlation of the driver. One may take the above SABR process

(F, σ) as the driving process of the stochastic volatility LIBOR MFM. But we note

that it is hard to find the transition density of the two-dimensional process (F, σ) so
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that the one step conditional moments for (F, σ) is difficult to obtain. Although Islah

[40] proved an exact analytical formula for the joint density function of (F, σ) when

correlation is zero, this closed-form formula involves an integral which is inefficient

to calculate in practice. Thus we will take an approximation of the SABR process

(F, σ) as the driving process which allows for an efficient calculation of the one step

conditional moments (3.22) for such driver.

As justified by Kennedy et. al [47], the displaced diffusion (DD) SABR model

can be used as a close approximation to the SABR model, and DD SABR model

admits a closed-form solution. In particular consider the DD-SABR model which

satisfies the following SDEs

dFt = σ̂t(Ft + θ)dWn+1
t (3.27)

dσt = µtσtdt+ vσtdB
n+1
t v > 0

dBn+1
t dWn+1

t = ρdt.

The distribution (FT , σT |Fs, σs), s < T , of the SABR model (3.26) and the DD-

SABR model (3.27) become comparable via the following mapping

σ̂t = σtβF
β−1
s (3.28)

θ = Fs
1− β
β

, (3.29)

where β ∈ (0, 1]. The two models are matched exactly when β = 1. Kennedy et. al

[47] justified this mapping numerically. This mapping was also dicussed by [51] and

[63] in the non-stochastic volatility case.

For ease of explanation, from now on, the model (3.26) is referred to as

the Normal-SABR model for β = 0 and the CEV-SABR model for β ∈ (0, 1]. In

order to evaluate the one step conditional moments from time Ti to Ti+1, instead of

considering the CEV-SABR model (3.26), we approximate the model (3.26) by the

DD-SABR model (3.27) via the mappings (3.28) and (3.29) with s = Ti, as in this

case the DD-SABR model gives a similar distribution of (FTi+1 , σTi+1 |FTi , σTi) as the

CEV-SABR model. Now we reformulate the model (3.27) in a form that will help

us calculate the one step conditional moments. We write down the Normal-SABR

model and DD-SABR model as follows, where F satisfies (3.27), and define (y, q) to

be the driver for our stochastic volatility MFM.
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Normal SABR:

yTi+1 := FTi+1

= yTi +
ρ

v
(σTi+1 − σTi)−

ρ

ν

∫ Ti+1

Ti

µtσtdt+
√

1− ρ2

∫ Ti+1

Ti

σtdŴ
n+1
t (3.30)

qTi+1 := lnσTi+1

= qTi +

∫ Ti+1

Ti

µtdt−
1

2
v2αi + v(Bn+1

Ti+1
−Bn+1

Ti
)

DD-SABR:

yTi+1 := ln(FTi+1 + θ)

= yTi + ωi
ρ

v
[(σTi+1 − σTi)−

∫ Ti+1

Ti

µtσtdt] (3.31)

− 1

2
ω2
i (

∫ Ti+1

Ti

σ2
t dt) + ωi

√
1− ρ2

∫ Ti+1

Ti

σtdŴ
n+1
t

qTi+1 := lnσTi+1

= qTi +

∫ Ti+1

Ti

µtdt−
1

2
v2αi + v(Bn+1

Ti+1
−Bn+1

Ti
)

with

αi = Ti+1 − Ti
ωi = βe(β−1)yTi ,

where Bn+1 and Ŵn+1 are independent Brownian motions in Fn+1. The proof is a

slight generalization of that found in the Appendix of [47].

Calculation of the one step conditional moments

From the form of the driving process (y, q) given above, we now consider the problem

of how to calculate the one step conditional moments (3.22). We note that it is

still hard to find the transition density function of the driver (y, q). As a result

using numerical integration to solve the one step conditional moments directly seems

difficult to achieve. To solve this problem we apply the tower property to the one step

conditional moments (3.22), conditioning on (yTi , qTi , qTi+1), which can be rewritten
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as

Θi+1
j,k,d,l(yTi , qTi)

:= EFn+1 [ydTi+1
qlTi+1

I{yTi+1
∈[yi+1,j ,yi+1,j+1)}∩{qTi+1

∈[qi+1,k,qi+1,k+1)}|yTi , qTi ]

= EFn+1 [qlTi+1
I{qTi+1

∈[qi+1,k,qi+1,k+1)}Ξ
i+1
j,d (yTi , qTi , qTi+1)|yTi , qTi ], (3.32)

where the function Ξi+1
j,d (yTi , qTi , qTi+1) is defined by

Ξi+1
j,d (yTi , qTi , qTi+1) (3.33)

:= EFn+1 [ydTi+1
I{yTi+1

∈[yi+1,j ,yi+1,j+1)}|yTi , qTi , qTi+1 ].

We know from equation (3.20) that the smooth function Ξi+1
j,d (yTi , qTi , qTi+1) with

respect to qTi+1 can be approximated by a piecewise polynomial function in terms

of the basis functions:

Ξi+1
j,d (yTi , qTi , qTi+1)

≈
m∑
j′=1

Ξi+1
j,d (yTi , qTi , qi+1,j′)bi+1,j′(qTi+1). (3.34)

Inserting equation (3.34) into equation (3.32), we have that

Θi+1
j,k,d,l(yTi , qTi) (3.35)

≈
m∑
j′=1

Ξi+1
j,d (yTi , qTi , qi+1,j′)EFn+1 [qlTi+1

I{qTi+1
∈[qi+1,k,qi+1,k+1)}bi+1,j′(qTi+1)|yTi , qTi ].

Therefore finding the one step conditional moments Θi+1
j,k,d,l is equivalent to finding

the function Ξi+1
j,d and

EFn+1 [qlTi+1
I{qTi+1

∈[qi+1,k,qi+1,k+1)}bi+1,j′(qTi+1)|yTi , qTi ].

In what follows we calculate these two functions.

We first evaluate the function Ξi+1
j,d by introducing an approximation. Note

that to evaluate the function Ξi+1
j,d we need to find the distribution (yTi+1 |yTi , qTi , qTi+1),

which is again hard to achieve. However Kennedy et. al [47] found that the condi-

tional distribution (yTi+1 |yTi , qTi , qTi+1) can be approximated by a Gaussian distri-
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bution with the the following conditional mean and variance:

µ(yTi , qTi , qTi+1) = EFn+1(yTi+1 |yTi , qTi , qTi+1),

η2(yTi , qTi , qTi+1) = V ar(yTi+1 |yTi , qTi , qTi+1).

Based on this approximation we can evaluate the function Ξi+1
j,d by numerical inte-

gration as long as we can find the conditional mean µ and variance η2.

Proposition 2. Consider expressions (3.30) and (3.31). The conditional mean and

variance of yTi+1 |yTi , qTi , qTi+1 are given by the following closed-form expressions:

Normal SABR:

µ(yTi , qTi , qTi+1) = yTi +
ρ

v
(eqTi+1 − eqTi )− ρµi

ν
EFn+1 [∆ṼTi |qTi , qTi+1 ]

η2(qTi , qTi+1) = (
ρµi
ν

)2(EFn+1 [(∆ṼTi)
2|qTi , qTi+1 ]− (EFn+1 [∆ṼTi |qTi , qTi+1 ])2)

+ (1− ρ2)EFn+1 [∆VTi |qTi , qTi+1 ]

DD-SABR:

µ(yTi , qTi , qTi+1) = yTi +
ωiρ

v
(eqTi+1 − eqTi )− ωiρµi

ν
EFn+1 [∆ṼTi |qTi , qTi+1 ]

− ω2
i

2
EFn+1 [∆VTi |qTi , qTi+1 ]

η2(yTi , qTi , qTi+1) = (
ωiρµi
ν

)2(EFn+1 [(∆ṼTi)
2|qTi , qTi+1 ]− (EFn+1 [∆ṼTi |qTi , qTi+1 ])2)

+
ω4
i

4
(EFn+1 [(∆VTi)

2|qTi , qTi+1 ]− (EFn+1 [∆VTi |qTi , qTi+1 ])2)

+ ω2
i (1− ρ2)EFn+1 [∆VTi |qTi , qTi+1 ]

+
ω3
i ρµi
ν

(EFn+1 [∆VTi∆ṼTi |qTi , qTi+1 ]

− EFn+1 [∆VTi |qTi , qTi+1 ]EFn+1 [∆ṼTi |qTi , qTi+1 ])

40



with

EFn+1 [∆VTi |qTi , qTi+1 ] =
e2qTi
√
αi

2v

[Φ(
qTi+1

−qTi
v
√
αi

+ v
√
αi)− Φ(

qTi+1
−qTi

v
√
αi

− v√αi)]

φ(
qTi+1

−qTi
v
√
αi

+ v
√
αi)

EFn+1 [(∆VTi)
2|qTi , qTi+1 ] = −

e4qTi
√
αi

4v3
(1 + e2(qTi+1

−qTi ))

×
[Φ(

qTi+1
−qTi

v
√
αi

+ v
√
αi)− Φ(

qTi+1
−qTi

v
√
αi

− v√αi)]

φ(
qTi+1

−qTi
v
√
αi

+ v
√
αi)

+
e4qTi
√
αi

4v3

[Φ(
qTi+1

−qTi
v
√
αi

+ 2v
√
αi)− Φ(

qTi+1
−qTi

v
√
αi

− 2v
√
αi)]

φ(
qTi+1

−qTi
v
√
αi

+ 2v
√
αi)

EFn+1 [∆ṼTi |qTi , qTi+1 ] =
eqTi
√
αi

ν

[Φ(
qTi+1

−qTi
v
√
αi

+ 1
2ν
√
αi)− Φ(

qTi+1
−qTi

v
√
αi

− 1
2ν
√
αi)]

φ(
qTi+1

−qTi
v
√
αi

+ 1
2ν
√
αi)

EFn+1 [(∆ṼTi)
2|qTi , qTi+1 ] = −

2e2qTi
√
αi

ν3
(1 + e(qTi+1

−qTi ))

×
[Φ(

qTi+1
−qTi

v
√
αi

+ 1
2ν
√
αi)− Φ(

qTi+1
−qTi

v
√
αi

− 1
2ν
√
αi)]

φ(
qTi+1

−qTi
v
√
αi

+ 1
2ν
√
αi)

+
2e2qTi

√
αi

ν3

[Φ(
qTi+1

−qTi
v
√
αi

+ ν
√
αi)− Φ(

qTi+1
−qTi

v
√
αi

− ν√αi)]

φ(
qTi+1

−qTi
v
√
αi

+ ν
√
αi)

,

and

EFn+1 [∆VTi∆ṼTi |qTi , qTi+1 ] = −
e3qTi
√
αi

3v3
[e−3v2αi

Φ(
∆qTi
v
√
αi

+ 3
2ν
√
αi)− Φ(

∆qTi
v
√
αi
− 1

2ν
√
αi)

φ(
∆qTi
v
√
αi

+ 5
2ν
√
αi)

−
Φ(

∆qTi
v
√
αi

+ 2ν
√
αi)− Φ(

∆qTi
v
√
αi
− ν√αi)

φ(
∆qTi
v
√
αi

+ 3
2ν
√
αi)

+
Φ(

∆qTi
v
√
αi

+ ν
√
αi)− Φ(

∆qTi
v
√
αi

)

φ(
∆qTi
v
√
αi

+ ν
√
αi)

+ e−
3
2
v2αi

Φ(
∆qTi
v
√
αi

+ ν
√
αi)− Φ(

∆qTi
v
√
αi
− ν√αi)

φ(
∆qTi
v
√
αi

+ 2ν
√
αi)

−
Φ(

∆qTi
v
√
αi

+ 3
2ν
√
αi)− Φ(

∆qTi
v
√
αi
− 3

2ν
√
αi)

φ(
∆qTi
v
√
αi

+ 3
2ν
√
αi)

+
Φ(

∆qTi
v
√
αi

+ 1
2ν
√
αi)− Φ(

∆qTi
v
√
αi
− 1

2ν
√
αi)

φ(
∆qTi
v
√
αi

+ 1
2ν
√
αi)

],

where ∆VTi :=
∫ Ti+1

Ti
σ2
t dt, ∆ṼTi :=

∫ Ti+1

Ti
σtdt and ∆qTi := qTi+1 − qTi. φ(·) is

the standard Normal density function and Φ(·) is the standard Normal cumulative

distribution function.
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Proof. See Appendix 3.D.

Having found the function Ξi+1
j,d , we know from equation (3.35) that finding

the one step conditional moments Θi+1
j,k,d,l is equivalent to finding the conditional

expectation

EFn+1 [qlTi+1
I{qTi+1

∈[qi+1,k,qi+1,k+1)}bi+1,j′(qTi+1)|yTi , qTi ]. (3.36)

To calculate it we note that the basis function bi+1,j′(·) is a piecewise polynomial

function in the form of

bi+1,j′(q) :=
m−1∑
u=1

M∑
r=0

bqi+1,j′,u,rq
rI{q∈[qi,u,qi,u+1)} (3.37)

Then we insert the expression (3.37) of basis function bi+1,j′(qTi+1) into equation

(3.36), and we have that

EFn+1 [qlTi+1
I{qTi+1

∈[qi+1,k,qi+1,k+1)}bi+1,j′(qTi+1)|yTi , qTi ]

=
M∑
r=0

bqi+1,j′,u,rEFn+1 [ql+rTi+1
I{qTi+1

∈[qi+1,k,qi+1,k+1)}|yTi , qTi ]

=
M∑
r=0

bqi+1,j′,u,rEFn+1 [ql+rTi+1
I{qTi+1

∈[qi+1,k,qi+1,k+1)}|qTi ], (3.38)

where the last equation follows from the observation that the increment Bn+1
Ti+1
−Bn+1

Ti

is independent of the filtration FTi generated by the Brownian motion (Bn+1, Ŵn+1).

As a result the conditional expectation equation (3.36) can be evaluated by numeri-

cal integration since qTi+1 |qTi is a Gaussian distribution with mean qTi+µiαi− 1
2v

2αi

and variance v2αi.

Finally we combine equation (3.38) and function Ξi+1
j,d into the expression

(3.35) for the one step conditional moments Θi+1
j,k,d,l, and we have that

Θi+1
j,k,d,l(yTi , qTi) (3.39)

≈
m∑
j′=1

Ξi+1
j,d (yTi , qTi , qi+1,j′)

M∑
r=0

bqi+1,j′,u,rEFn+1 [ql+rTi+1
I{qTi+1

∈[qi+1,k,qi+1,k+1)}|qTi ].

Note that the approximation approach we used above for the calculation of the one

step conditional moments was specific to the SABR style driver. We will discuss a

general driving process case later in this section.
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Pre-model Specification

Having specified the stochastic volatility driving process (y, q), now we discuss the

assumption (A.4). Remember that in order to specify a one-dimensional LIBOR

MFM, we need to assume that the LIBORs at their setting dates are a monotonic

increasing function of the one-dimensional driving process. When it comes to a

multi-dimensional MFM, the univariate and monotonicity properties are lost. This

is why we introduce a pre-model (3.16). The choice of a pre-model depends on the

specification of the driver. In particular, as we dicussed, when a two-dimensional

driving process is specified in the form of (3.17), the pre-model is chosen to be some

strictly increasing function of the linear combination of the components of the driver;

see (3.18). In this case the two-dimensional driver can be viewed as representing

the level and skew of interest rates.

Now we return to the stochastic volatility MFM. From the specification of

the stochastic volatility driving process (y, q) we can see that the driver is specified

in a multiplicative way. The process y represents the level of rates while carrying

the stochastic volatility process q with it. By doing so we achieve a more realistic

and desirable dynamics of the model than a one-dimensional MFM where the driver

is also used for capturing the level of rates but without stochastic volatility. As a

result it is natural to make the assumption (A.4). In this case one can think of the

variable yTi itself as a pre-model at time Ti for i = 1, ..., n.

We conclude this subsection with some remarks. We note that the one step

conditional moments are evaluated by applying some specific approximation to the

SABR model. In principle the SABR model is not the only choice for a driv-

ing Markov process. For example one could add mean reversion to the stochastic

volatility process; see [35] and [25]. But the approximation discussed is specific to

the SABR type model and it may not apply to other stochastic volatility models.

In this case we need to find another way to evaluate the one step conditional mo-

ments. There may exist a solution or some specific approximation to the stochastic

volatility model we choose so that the one step conditional moments can be solved or

approximated. Otherwise we can resort to discretising the driving Markov process

in time. In particular consider the following driving Markov process

dxt = µx(t, xt)dt+ ztσx(t, xt)dW
n+1
t

dzt = µz(t, zt)dt+ σz(t, zt)dB
n+1
t

dBn+1
t dWn+1

t = ρdt ρ ∈ [−1, 1].
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For simplicity we present the Euler scheme of the driving process

xti+1 = xti + µx(ti, xti)∆t+ ztiσx(ti, xti)∆W
n+1
ti

zti+1 = zti + µz(ti, zti)∆t+ σz(ti, zti)∆B
n+1
ti

EFn+1 [∆Bn+1
ti

∆Wn+1
ti

] = ρ∆t ρ ∈ [−1, 1],

where ∆t := ti+1 − ti, ∆Wn+1
ti

:= Wn+1
ti+1
− Wn+1

ti
and ∆Bn+1

ti
:= Bn+1

ti+1
− Bn+1

ti
.

Other discretization schemes (e.g. Predictor-corrector Scheme) could also be ap-

plied if necessary. In this case the joint distribution (xti+1 , zti+1 |xti , zti) is Gaussian

so that the one step conditional moments can be evaluated. However we have to

be aware that the discretization gives an inaccurate approximation to the distribu-

tion (xti+1 , zti+1 |xti , zti). In order to improve the approximation we can make the

discretization smoother by using more time steps between Ti and Ti+1 on the date

structure. In particular we let ∆t = 1
δ (Ti+1 − Ti). This means that we have δ time

steps between each time [Ti, Ti+1] on the date structure. Now if we take δ to be, for

example, 50 the approximation should be very accurate. However the price to pay

for the accuracy is the computational cost, which is the main reason why we did

not use this method to approximate the one step conditional moments.

3.4 Conclusion

In this chapter we reviewed the algorithm to specify a MFM with a Gaussian driver.

This algorithm relies heavily on the Gaussian assumption so that it cannot apply to

a MFM with a driving process away from Gaussian. There is substantial empirical

evidence supporting the introduction of a stochastic volatility model. This motivates

us to develop a stochastic volatility MFM. In order to implement this model, which

has a non-Gaussian driver, we developed a general algorithm by working with basis

functions and conditional moments of the driving Markov process. This algorithm

is not specific and could be modified to apply to all one- and multi-dimensional

MFMs with various types of driving process. From a data driven study which used

market data to identify a SABR type model as an appropriate choice for the level of

interest rates, we chose a SABR type model as the driver of our stochastic volatility

MFM. With this choice we specified a pre-model and developed an approximation

to evaluate conditional moments of the SABR driver which served as building blocks

for the algorithm.
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3.A Appendix: Equivalence of Markov-functional mod-

els

In this appendix we will show that under some conditions two distinct driving

Markov processes could lead to the same MFM. Let us first make clear what we

mean by saying that two MFMs are the same. Let us consider two MFMs with

two distinct driving processes x = (x1, x2, ..., xd) and y = (y1, y2, ..., yd), which are

both assumed to be continuous diffusion processes, under the terminal measure on

the tenor structure (2.1). Let {Ft}0≤t≤T ∗ be the natural filtration generated by

Brownian motions under the terminal measure. The above two MFMs are said to

be the same if for any continuous and bounded function gi we have that

EFn+1 [gi(Dx
TiTi+1

(xTi), D
x
TiTi+2

(xTi), ..., D
x
TiTn+1

(xTi))|FTi−1 ] (3.40)

= EFn+1 [gi(Dy
TiTi+1

(yTi), D
y
TiTi+2

(yTi), ..., D
y
TiTn+1

(yTi))|FTi−1 ],

where Dx
TiTj

(·) and Dy
TiTj

(·), 1 ≤ i < j ≤ n+ 1, are functional forms of ZCBs under

the two MFMs respectively.

Let us provide insight into equation (3.40). Since interest rates, such as

LIBORs and swap rates, can be expressed in terms of ZCBs, equation (3.40) implies

that, conditional on the σ-algebra FTi−1 , the distributions of interest rates at time

Ti are the same for the two MFMs for i = 1, ..., n. Furthermore equation (3.40)

also implies that the value of vanilla options, such as caplets and swaptions, are the

same for the two MFMs. In what follows we show the equivalence of MFMs.

Proposition 3. Consider two LIBOR MFMs where we take the following two dis-

tinct d-dimensional diffusion processes with continuous marginal distributions

x = (x1, x2, ..., xd)

and

y = (y1, y2, ..., yd)

as driving Markov processes under the terminal measure. These two MFMs are the

same if they satisfy:

1. Any component of y is a strictly increasing function of the corresponding compo-

nent of x i.e. yit = fi(t, x
i
t) for some strictly increasing function fi : [0,∞)×R→ R

with respect to x for t ≥ 0 and i = 1, ..., d.

2. The pre-model L̂i,yTi (yTi) of y is a monotonic increasing function of the pre-model
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L̂i,xTi (xTi) i.e. L̂i,yTi (yTi) = hi(Ti, L̂
i,x
Ti

(xTi)) for some monotonic increasing function

hi : [0,∞)× R→ R for i = 1, ..., n.

3. The two MFMs are calibrated to the same input prices of digital caplets.

Proof. To prove the two MFMs are the same we need to show (3.40). The result of

this proof is stronger than two MFMs being the same in the distributional sense as

we have an actual functional relationship between them.

Note that for any 1 ≤ i < j ≤ n+ 1, from the first condition we obtain that

D̃x
TiTj (xTi) := Dy

TiTj
(yTi)

= Dy
TiTj

(f1(Ti, x
1
Ti), ..., fd(Ti, x

d
Ti)).

We will prove that

D̃x
TiTj (·) = Dx

TiTj (·).

That is the model we get from working with the process y and then writing it in

terms of x, D̃x
TiTj

(·) is the same model we would get if we started by setting up the

MFM using x, Dx
TiTj

(·). The proof follows the construction of the MFM, so proceeds

by backwards induction on time Ti. Note that in the proof we will just focus on

some key steps and a complete procedure of construction can be found in Section

3.2.3.

To begin, at time Tn+1 by definition we have that

D̃x
Tn+1Tn+1

(xTn+1) = Dx
Tn+1Tn+1

(xTn+1) = 1.

Suppose the result is true for all time Ti+1, ..., Tn+1. We complete the proof by

showing that the result is also true at time Ti.

At time Ti let us first consider the numeraire-rebased ZCB
DTiTi+1

DTiTn+1
. It follows
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from the martingale property that

D̃x
TiTi+1

(xTi)

D̃x
TiTn+1

(xTi)
:=

Dy
TiTi+1

(yTi)

Dy
TiTn+1

(yTi)

= EFn+1 [
1

Dy
Ti+1Tn+1

(yTi+1)
|yTi ]

= EFn+1 [
1

D̃x
Ti+1Tn+1

(xTi+1)
|yTi ]

= EFn+1 [
1

Dx
Ti+1Tn+1

(xTi+1)
|xTi ] (3.41)

=
Dx
TiTi+1

(xTi)

Dx
TiTn+1

(xTi)
(3.42)

where equation (3.41) is true since the component of y is a strictly increasing function

of the corresponding component of x so that knowing yTi is equivalent to knowing

xTi .

The second condition tells us that the pre-models L̂i,xTi (xTi) and L̂i,yTi (yTi) are

chosen such that

L̂i,yTi (yTi) = L̂i,yTi (f1(Ti, x
1
Ti), ..., fd(Ti, x

d
Ti)) = hi(Ti, L̂

i,x
Ti

(xTi)) (3.43)

for some monotonic increasing function hi : [0,∞) × R → R. We choose values

x∗ = (x∗,1, x∗,2, ..., x∗,d) of xTi and the corresponding

y∗ = (f1(Ti, x
∗,1), f2(Ti, x

∗,2), ..., fd(Ti, x
∗,d))

of yTi . From (3.42) and (3.43) we have that

J i,y0 (y∗) := D0Tn+1EFn+1 [
Dy
TiTi+1

(yTi)

Dy
TiTn+1

(yTi)
I{L̂i,yTi (yTi )>L̂

i,y
Ti

(y∗)}]

= D0Tn+1EFn+1 [
Dx
TiTi+1

(xTi)

Dx
TiTn+1

(xTi)
I{L̂i,xTi (xTi )>L̂

i,x
Ti

(x∗)}]

=: J i,x0 (x∗)

Furthermore since we feed in the same input prices of digital caplets (see condition

3), we have that

Li,xTi (xTi) = Li,yTi (yTi),
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and therefore

D̃x
TiTn+1

(xTi) := Dy
TiTn+1

(yTi) = Dx
TiTn+1

(xTi).

Finally ZCBs are obtained by the martingale property

D̃x
TiTj (xTi) := Dy

TiTj
(yTi)

= Dy
TiTn+1

(yTi)EFn+1 [
1

Dy
TjTn+1

(yTj )
|yTi ]

= Dx
TiTn+1

(xTi)EFn+1 [
1

Dx
TjTn+1

(xTj )
|xTi ]

= Dx
TiTj (xTi)

for i < j ≤ n. Once we have proved that D̃x
TiTj

(·) = Dx
TiTj

(·) for any 1 ≤ i < j ≤
n+ 1, equation (3.40) is immediate.

Note that we are not aiming for the best result possibly. There could exist

some weaker assumptions to show that two MFMs with different drivers are the

same. We also note that the above proposition applies to the one-dimensional case.

In particular for the one-dimensional case a pre-model can be chosen to be the

driver itself. As a result if two MFMs satisfy the above condition 1 they will satisfy

condition 2 automatically for a one-dimensional MFM.
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3.B Appendix: Basis functions

Before we discuss basis functions we introduce polynomial interpolation. Given

M + 1 distinct data points (xi)
M+1
i=1 and corresponding M + 1 values (yi)

M+1
i=1 , we

can find a unique interpolation polynomial p up to degree M :

p(x) =

M+1∑
i=1

yili(x), (3.44)

where the Lagrange Basis Polynomials li(x) are defined by

li(x) :=
M+1∏

k=1;k 6=i

x− xk
xi − xk

.

The construction of the above polynomial implies that li(xj) = δi,j so that

p(xi) = yi.

Next we will make use of the interpolation polynomial to construct basis functions.

Let x1 < x2 < ... < xm be a partition of the interval [x1, xm]. The one-

dimensional basis function bj : [x1, xm]→ R, j = 1, ...,m, is defined as a continuous

function with repect to the partition of the interval [x1, xm] such that

bj(xk) = δj,k

for k = 1, ...,m. For the sake of efficiency, in our numerical implementation we take

the basis function as a piecewise polynomial up to degree M ≥ 1

bj(x) =

m−1∑
k=1

M∑
d=0

bj,k,dx
dI{x∈[xk,xk+1)}

satisfying

bj(xk) = δj,k.

Note that the basis function can be chosen in other forms such as a Fourier basis.

Next we present the construction of the basis function and determine the

coefficients bj,k,d of the piecewise polynomial. It is well known that given M +

1 distinct points, there exists a unique polynomial function up to degree M and

therefore we have that m ≥ M + 1. To calculate the coefficient bj,k,d of the basis
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function bj for the interval [xk, xk+1) uniquely, we make use of M + 1 grid nodes

surrounding the interval i.e.

xk−[M
2
−1], ..., xk+[M+1

2
], (3.45)

where [·] is the round function. Now we are given M + 1 distinct points

xk−[M
2
−1], ..., xk+[M+1

2
]

and the corresponding M + 1 values

bj(xk−[M
2
−1]), ..., bj(xk+[M+1

2
]).

It follows from equation (3.44) that we determine a polynomial function p up to

degree M uniquely:

p(x) =

k+[M+1
2

]∑
i=k−[M

2
−1]

bj(xi)li(x) (3.46)

where li(x) is defined by

li(x) =

k+[M+1
2

]∏
s=k−[M

2
−1]

s 6=i

x− xs
xi − xs

.

The coefficients bj,k,d for the interval [xk, xk+1) are therefore chosen such that

p(x) =
M∑
d=0

bj,k,dx
d.

Following the above procedure we can fix the coefficients bj,k,d of the basis function

bj for k = 1, ...,m−1 and d = 0, ...,M so that the basis function bj can be specified.

Note that there is an issue about the construction of the basis function. We

find the coefficients of polynomial for the interval [xk, xk+1) by using M + 1 grid

points surrounding the interval (see (3.45)). However some of these points could be

out of the defined interval [x1, xm] i.e. k − [M2 − 1] < 1 or k + [M+1
2 ] > m. This

means that we do not have enough nodes to determine a polynomial function up to

degree M . In this case we can achieve a polynomial function up to a lower degree.

In the numerical implementation it is efficient to construct the basis function.
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To show this let us see equation (3.46) that bj(xi) is non-zero only when i = j. Based

on this observation we conclude that the coefficient bj,k,d = 0 for interval [xk, xk+1)

when grid point xj is outside the interval [xk−[M
2
−1], xk+[M+1

2
]]. This means that it is

sufficient to fix the coefficient within the interval [xj−[M+1
2

], xj+[M
2

]] since coefficients

are all zero outside. Therefore the basis function can be simplified as

bj(x) =

j+[M
2
−1]∑

k=j−[M+1
2

]

M∑
d=0

bj,k,dx
dI{x∈[xk,xk+1)}.

In particular in the numerical implementation of MFMs we usually set M = 5 so

that

bj(x) =

j+2∑
k=j−3

5∑
d=0

bj,k,dx
dI{x∈[xk,xk+1)}.

The multi-dimensional basis function is a straightforward extension. Let

bjn : [xn1 , x
n
m] → R, jn = 1, ...,m, n = 1, ..., d, be one-dimensional basis function

with respect to the partition (xnj )mj=1 of the interval [xn1 , x
n
m]. The d-dimensional

basis function bj1,...,jd : [x1
1, x

1
m] × ... × [xd1, x

d
m] → R, j1, ..., jd = 1, ...,m, is defined

as a continuous function with repect to the partition of the interval product such

that

bj1,...,jd(x
1
k1 , ..., x

d
kd) =

d∏
n=1

δjn,kn

for kn = 1, ...,m and n = 1, ..., d. The d-dimensional basis function can be rep-

resented as the product of the corresponding d individual one-dimensional basis

functions:

bj1,...,jd(x
1, ..., xd) =

d∏
n=1

bjn(xn).

In particular when d = 2, the two-dimensional basis function bj,k : [x1, xm]×
[y1, ym]→ R, j, k = 1, ...,m w.r.t the two-dimensional partition (xi, yi)

m
i=1 can be ex-

pressed in the form of the product of their corresponding individual one-dimensional

basis functions bj and bk:

bj,k(x, y) = bj(x)× bk(y)

=

m−1∑
j′k′=1

M∑
d,l=0

bxj,j′,db
y
k,k′,lx

dylI{x∈[xj′ ,xj′+1)}∩{y∈[yk′ ,yk′+1)}
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satisfying

bj,k(xu, yv) = δj,u × δk,v.
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3.C Appendix: Proof of Proposition 1

Let yi,1 < ... < yi,m and qi,1 < ... < qi,m be partition of the driving Markov process

(yTi , qTi) at time Ti for i = 1, ..., n. The initial value of the process (y, q) at time

T0 is given by constants (y0, q0). Suppose we are given the two-dimensional basis

function bi,j,k with respect to the above partition:

bi,j,k(y, q) =

m−1∑
j′k′=1

M∑
d,l=0

byi,j,j′,db
q
i,k,k′,ly

dqlI{y∈[yi,j′ ,yi,j′+1)}∩{q∈[qi,k′ ,qi,k′+1)} (3.47)

for j, k = 1, ...,m. Suppose that the one step conditional moments

Θi
j,k,d,l(yi−1,u, qi−1,v)

:= EFn+1 [ydTiq
l
TiI{yTi∈[yi,j ,yi,j+1)}∩{qTi∈[qi,k,qi,k+1)}|yTi−1 = yi−1,u, qTi−1 = qi−1,v]

are given for i = 1, ..., n; j, k = 1, ...,m− 1; d, l = 0, ...,M and u, v = 1, ...,m.

We now evaluate the following three (conditional) expectations:

∆i
j,k(yi−1,u, qi−1,v) := EFn+1 [bi,j,k(yTi , qTi)|yTi−1 = yi−1,u, qTi−1 = qi−1,v], (3.48)

Ei,j,k := EFn+1 [bi,j,k(yTi , qTi)], (3.49)

Γij,k,u := EFn+1 [bi,j,k(yTi , qTi)I{yTi∈[yi,u,yi,u+1)}]. (3.50)

for i = 1, ..., n and j, k, u, v = 1, ...,m.

1. Calculate ∆i
j,k : Inserting equation (3.47) into equation (3.48) leads to

∆i
j,k(yi−1,u, qi−1,v) =

m−1∑
j′=1

M∑
d=0

byi,j,j′,d

m−1∑
k′=1

M∑
l=0

bqi,k,k′,lΘ
i
j′,k′,d,l(yi−1,u, qi−1,v),

for i = 1, ..., n and j, k, u, v = 1, ...,m.

2. Calculate Ei,j,k : The algorithm for finding Ei,j,k works forward iteratively

from time T1. At time T1 we have that

E1,j,k := EFn+1 [b1,j,k(yT1 , qT1)]

= EFn+1 [b1,j,k(yT1 , qT1)|y0, q0]

= ∆1
j,k(y0, q0),

for j, k = 1, ...,m.
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Suppose we reach time Ti now, having already found Ei−1,j,k for j, k = 1, ...,m.

Ei,j,k can be found by applying the tower property:

Ei,j,k := EFn+1 [bi,j,k(yTi , qTi)]

= EFn+1 [EFn+1(bi,j,k(yTi , qTi)|yTi−1 , qTi−1)]

= EFn+1 [∆i
j,k(yTi−1 , qTi−1)]. (3.51)

We note that the smooth function ∆i
j,k(yTi−1 , qTi−1) can be approximated by

a piecewise polynomial in terms of the basis function:

∆i
j,k(yTi−1 , qTi−1) ≈

m∑
u,v

∆i
j,k(yi−1,u, qi−1,v)bi−1,u,v(yTi−1 , qTi−1). (3.52)

Inserting equation (3.52) into equation (3.51) we have that

Ei,j,k ≈ EFn+1 [
m∑
u,v

∆i
j,k(yi−1,u, qi−1,v)bi−1,u,v(yTi−1 , qTi−1)]

=
m∑
u,v

∆i
j,k(yi−1,u, qi−1,v)Ei−1,u,v,

for j, k = 1, ...,m.

3. Calculate Γi
j,k,u : It follows from equation (3.47) of basis function that

Γij,k,u := EFn+1 [bi,j,k(yTi , qTi)I{yTi∈[yi,u,yi,u+1)}]

= EFn+1 [

m−1∑
k′=1

M∑
d,l=0

byi,j,u,db
q
i,k,k′,ly

d
Tiq

l
TiI{yTi∈[yi,u,yi,u+1)}∩{qTi∈[qi,k′ ,qi,k′+1)}]

=
m−1∑
k′=1

M∑
d,l=0

byi,j,u,db
q
i,k,k′,lEFn+1 [ydTiq

l
TiI{yTi∈[yi,u,yi,u+1)}∩{qTi∈[qi,k′ ,qi,k′+1)}].

(3.53)

Apply the tower property to the expectation in equation (3.53) and we have
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that

EFn+1 [ydTiq
l
TiI{yTi∈[yi,u,yi,u+1)}∩{qTi∈[qi,k′ ,qi,k′+1)}]

= EFn+1 [EFn+1(ydTiq
l
TiI{yTi∈[yi,u,yi,u+1)}∩{qTi∈[qi,k′ ,qi,k′+1)}|yTi−1 , qTi−1 ]

= EFn+1 [Θi
u,k′,d,l(yTi−1 , qTi−1)]

=

m∑
u′,v=1

Θi
u,k′,d,l(yi−1,u′ , qi−1,v)Ei−1,u′,v. (3.54)

Insert equation (3.54) into equation (3.53) and we obtain the result

Γij,k,u =
m−1∑
k′=1

M∑
d,l=0

byi,j,u,db
q
i,k,k′,l

m∑
u′,v=1

Θi
u,k′,d,l(yi−1,u′ , qi−1,v)Ei−1,u′,v

=

M∑
d=0

byi,j,u,d

m−1∑
k′=1

M∑
l=0

bqi,k,k′,l

m∑
u′,v=1

Θi
u,k′,d,l(yi−1,u′ , qi−1,v)Ei−1,u′,v,

for i = 1, ..., n and j, k, u = 1, ...,m.

55



3.D Appendix: Proof of Proposition 2

To calculate the conditional mean and variance of yTi+1 |yTi , qTi , qTi+1 , we first find

the following conditional expectations:

1. EFn+1 [∆VTi |qTi , qTi+1 ]

2. EFn+1 [(∆VTi)
2|qTi , qTi+1 ]

3. EFn+1 [∆ṼTi |qTi , qTi+1 ]

4. EFn+1 [(∆ṼTi)
2|qTi , qTi+1 ]

5. EFn+1 [∆VTi∆ṼTi |qTi , qTi+1 ].

The SDE of the stochastic volatility is given by

dσt = µtσtdt+ vσtdB
n+1
t v > 0.

Conditional on Bn+1
Ti

and Bn+1
Ti+1

, the Brownian bridge Bn+1
t |Bn+1

Ti
, Bn+1

Ti+1
, Ti ≤ t ≤

Ti+1, is Gaussian with mean

Bn+1
Ti

+
t− Ti

Ti+1 − Ti
(Bn+1

Ti+1
−Bn+1

Ti
)

and covariance between Bn+1
t |Bn+1

Ti
, Bn+1

Ti+1
and Bn+1

s |Bn+1
Ti

, Bn+1
Ti+1

with s < t

(Ti+1 − t)(s− Ti)
Ti+1 − Ti

.

Moreover by Itô’s lemma, we have that:

Bn+1
t =

qt − q0 −
∫ t

0 µsds+ 1
2v

2t

v
,

where qt := ln(σt). Thus knowing Bn+1
t is equivalent to knowing qt so that

(Bn+1
t |qTi , qTi+1) ≡ (Bn+1

t |Bn+1
Ti

, Bn+1
Ti+1

)

is a Gaussian distribution.
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Next we can calculate the conditional expectations. In particular we have

that

EFn+1 [∆VTi |qTi , qTi+1 ] := EFn+1 [

∫ Ti+1

Ti

σ2
t dt|qTi , qTi+1 ]

= σ2
Ti

∫ Ti+1

Ti

EFn+1 [e(2µi−v2)(t−Ti)+2v(Bt−BTi )|qTi , qTi+1 ]dt,

which can be evaluated since the Gaussian distribution of (Bn+1
t |qTi , qTi+1), Ti ≤

t ≤ Ti+1, is known. After some transformation and calculation we can obtain the

result. We can also obtain the conditional expectation EFn+1 [∆ṼTi |qTi , qTi+1 ] by a

similar calculation.

The conditional expectation EFn+1 [(∆VTi)
2|qTi , qTi+1 ] involves more calcula-

tion. We have that

EFn+1 [(∆VTi)
2|qTi , qTi+1 ]

:=EFn+1 [(

∫ Ti+1

Ti

σ2
t dt)

2|qTi , qTi+1 ]

=EFn+1 [2

∫ Ti+1

Ti

∫ t

Ti

σ2
t σ

2
sdsdt|qTi , qTi+1 ]

=2σ4
Ti

∫ Ti+1

Ti

∫ t

Ti

EFn+1 [e
(2µi−v2)(t+s−2Ti)+2v(Bn+1

t +Bn+1
s −2Bn+1

Ti
)|qTi , qTi+1 ]dsdt,

where (Bn+1
t +Bn+1

s |qTi , qTi+1), Ti ≤ s ≤ t ≤ Ti+1, is Gaussian with mean

2Bn+1
Ti

+
t+ s− 2Ti
Ti+1 − Ti

(Bn+1
Ti+1
−Bn+1

Ti
)

and variance

(Ti+1 − t)(t− Ti) + (Ti+1 − s)(s− Ti) + 2(Ti+1 − t)(s− Ti)
Ti+1 − Ti

.

Thus the conditional expectation EFn+1 [(∆VTi)
2|qTi , qTi+1 ] can be evaluated by some

transformation. A similar calculation also applies to the conditional expectation

EFn+1 [(∆ṼTi)
2|qTi , qTi+1 ].
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Finally we calculate EFn+1 [∆VTi∆ṼTi |qTi , qTi+1 ] which can be written as

EFn+1 [∆VTi∆ṼTi |qTi , qTi+1 ]

:=EFn+1 [

∫ Ti+1

Ti

σ2
t dt

∫ Ti+1

Ti

σtdt|qTi , qTi+1 ]

=EFn+1 [

∫ Ti+1

Ti

∫ t

Ti

(σ2
t σs + σtσ

2
s)dsdt|qTi , qTi+1 ]

=σ3
Ti

∫ Ti+1

Ti

∫ t

Ti

EFn+1 [e
(µi− 1

2
v2)(2t+s−3Ti)+v(2Bn+1

t +Bn+1
s −3Bn+1

Ti
)|qTi , qTi+1 ]dsdt

+σ3
Ti

∫ Ti+1

Ti

∫ t

Ti

EFn+1 [e
(µi− 1

2
v2)(2s+t−3Ti)+v(2Bn+1

s +Bn+1
t −3Bn+1

Ti
)|qTi , qTi+1 ]dsdt,

We note that (2Bn+1
t +Bn+1

s |qTi , qTi+1), Ti ≤ s ≤ t ≤ Ti+1, is Gaussian with mean

3Bn+1
Ti

+
2t+ s− 3Ti
Ti+1 − Ti

(Bn+1
Ti+1
−Bn+1

Ti
)

and variance

4(Ti+1 − t)(t− Ti) + (Ti+1 − s)(s− Ti) + 4(Ti+1 − t)(s− Ti)
Ti+1 − Ti

.

Similarly (Bn+1
t + 2Bn+1

s |qTi , qTi+1), Ti ≤ s ≤ t ≤ Ti+1, is Gaussian with mean

3Bn+1
Ti

+
t+ 2s− 3Ti
Ti+1 − Ti

(Bn+1
Ti+1
−Bn+1

Ti
)

and variance

(Ti+1 − t)(t− Ti) + 4(Ti+1 − s)(s− Ti) + 4(Ti+1 − t)(s− Ti)
Ti+1 − Ti

.

Thus the conditional expectation EFn+1 [∆VTi∆ṼTi |qTi , qTi+1 ] can be evaluated.

Next we calculate the conditional mean and variance of yTi+1 |yTi , qTi , qTi+1

for the DD-SABR model and similar calculations apply to the Normal-SABR case.
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It follows from the solution of the DD-SABR model that the conditional mean is

µ(yTi , qTi , qTi+1) = yTi +
ωiρ

v
(eqTi+1 − eqTi )− ωiρµi

ν
EFn+1 [

∫ Ti+1

Ti

σtdt|qTi , qTi+1 ]

− ω2
i

2
EFn+1 [

∫ Ti+1

Ti

σ2
t dt|qTi , qTi+1 ]

− ωi
√

1− ρ2EFn+1 [

∫ Ti+1

Ti

σtdŴ
n+1
t |qTi , qTi+1 ],

where

EFn+1 [

∫ Ti+1

Ti

σtdŴ
n+1
t |qTi , qTi+1 ] = 0.

Hence the conditional mean µ(yTi , qTi , qTi+1) is given by

µ(yTi , qTi , qTi+1) = yTi +
ωiρ

v
(eqTi+1 − eqTi )− ωiρµi

ν
EFn+1 [∆ṼTi |qTi , qTi+1 ]

− ω2
i

2
EFn+1 [∆VTi |qTi , qTi+1 ].

The conditional variance η2(yTi , qTi , qTi+1) is given by

η2(yTi , qTi , qTi+1) = (
ωiρµi
ν

)2V ar(

∫ Ti+1

Ti

σtdt|qTi , qTi+1)

+
1

4
ω4
i V ar(

∫ Ti+1

Ti

σ2
t dt|qTi , qTi+1)

+ ω2
i (1− ρ2)V ar(

∫ Ti+1

Ti

σtdŴ
n+1
t |qTi , qTi+1)

+
ω3
i ρµi
ν

Cov(

∫ Ti+1

Ti

σtdt,

∫ Ti+1

Ti

σ2
t dt|qTi , qTi+1)

− 2
ω2
i ρµi
ν

√
1− ρ2Cov(

∫ Ti+1

Ti

σtdt,

∫ Ti+1

Ti

σtdŴ
n+1
t |qTi , qTi+1)

− ω3
i

√
1− ρ2Cov(

∫ Ti+1

Ti

σ2
t dt,

∫ Ti+1

Ti

σtdŴ
n+1
t |qTi , qTi+1).
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The covariance term can be written as

Cov(

∫ Ti+1

Ti

σtdt,

∫ Ti+1

Ti

σ2
t dt|qTi , qTi+1)

=EFn+1 [

∫ Ti+1

Ti

σtdt

∫ Ti+1

Ti

σ2
t dt|qTi , qTi+1 ]

−EFn+1 [

∫ Ti+1

Ti

σtdt|qTi , qTi+1 ]EFn+1 [

∫ Ti+1

Ti

σ2
t dt|qTi , qTi+1 ]

=EFn+1 [∆VTi∆ṼTi |qTi , qTi+1 ]− EFn+1 [∆VTi |qTi , qTi+1 ]EFn+1 [∆ṼTi |qTi , qTi+1 ],

and

Cov(

∫ Ti+1

Ti

σtdt,

∫ Ti+1

Ti

σtdŴ
n+1
t |qTi , qTi+1)

=EFn+1 [

∫ Ti+1

Ti

σtdt

∫ Ti+1

Ti

σtdŴ
n+1
t |qTi , qTi+1 ]

−EFn+1 [

∫ Ti+1

Ti

σtdt|qTi , qTi+1 ]EFn+1 [

∫ Ti+1

Ti

σtdŴ
n+1
t |qTi , qTi+1 ]

=0.

Similarly,

Cov(

∫ Ti+1

Ti

σ2
t dt,

∫ Ti+1

Ti

σtdŴ
n+1
t |qTi , qTi+1) = 0.

By Itô isometry the variance part V ar(
∫ Ti+1

Ti
σtdŴ

n+1
t |qTi , qTi+1) can be expressed

as

V ar(

∫ Ti+1

Ti

σtdŴ
n+1
t |qTi , qTi+1) = EFn+1 [∆VTi |qTi , qTi+1 ].

Hence the conditional variance η2(yTi , qTi , qTi+1) is given by

η2(yTi , qTi , qTi+1) = (
ωiρµi
ν

)2(EFn+1 [(∆ṼTi)
2|qTi , qTi+1 ]− (EFn+1 [∆ṼTi |qTi , qTi+1 ])2)

+
ω4
i

4
(EFn+1 [(∆VTi)

2|qTi , qTi+1 ]− (EFn+1 [∆VTi |qTi , qTi+1 ])2)

+ ω2
i (1− ρ2)EFn+1 [∆VTi |qTi , qTi+1 ]

+
ω3
i ρµi
ν

(EFn+1 [∆VTi∆ṼTi |qTi , qTi+1 ]

− EFn+1 [∆VTi |qTi , qTi+1 ]EFn+1 [∆ṼTi |qTi , qTi+1 ]).

60



Chapter 4

Stochastic volatility

Markov-functional models:

calibration

4.1 Introduction

In the previous chapter, we have specified a stochastic volatility LIBOR Markov-

functional model by choosing a SABR driving process and proposed an algorithm

to implement the model numerically. But we have not considered the problem of

how to choose the parameters of the SABR driving process and the input prices

of the set of digital caplets which will be fed into the model. In this chapter we

will consider this by calibrating to the market correlation structure and the market

prices of vanilla options.

Let us first consider the input prices of digital caplets. As we discussed in

Chapter 2 the input prices of a set of digital caplets as functions of strikes deter-

mine the marginal distributions of the corresponding LIBORs at their setting dates

in their associated forward measure. Feeding in the input prices of digital caplets is

equivalent to feeding in marginals together with the initial term structure. From the

specification of a LIBOR Markov-functional model one can see that given a driving

process theoretically any marginal distribution of LIBORs at their setting dates can

be fed into the model. This separates the specification of a driving process from the

marginals. This is a very unusual feature for an interest rate model. In contrast

to, for example, LIBOR market models and short rate models the marginal distri-

bution of LIBORs at their setting dates are fully determined by the dynamics of

the corresponding state process. This separation in a Markov-functional model pro-
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vides flexibility but this may also potentially cause an unstable dynamics of forward

rates. Andersen and Piterbarg [5] made a remark on Markov-functional models that

a non-parametric formulation of the marginal distribution for LIBORs may result

in unrealistic evolution of the volatility smile through time. To avoid these issues

the authors suggested to feed in an arbitrage-free formula for digital caplet prices,

where the formula can be derived from e.g. a log-Normal, displaced-diffusion or a

CEV model. Bennett and Kennedy [7] showed that a LIBOR Markov-functional

model with a Gaussian driver together with the Black’s formula for (digital) caplets

is numerically similar to the one-factor separable LIBOR market model. Recently

Gogala and Kennedy [29] extended the above link to a more general local-volatility

case. Based on this link, the authors proposed an approach for choosing an ap-

propriate combination of driving process and (digital) caplet prices, and such a

combination leads to desirable dynamics of future implied volatilities. In this chap-

ter we consider the link between LIBOR Markov-functional models and separable

LIBOR market models in the stochastic volatility case. We expect that a stochas-

tic volatility Markov-functional model with a SABR driver together with a SABR

marginal distribution of LIBORs should be numerically similar to the corresponding

separable SABR LIBOR market model. Based on this link the intuition behind the

SDEs of the separable SABR-LIBOR market model can be transferred to the cor-

responding stochastic volatility LIBOR Markov-functional model. This gives us a

guide as to how to calibrate a stochastic volatility Markov-functional model. Based

on this link we develop a calibration routine to feed in the prices of digital caplets

by calibrating to the market caplets or swaptions prices. A numerical investigation

of the performance of this calibration routine is also given.

In a Markov-functional model, the specification of a driving process deter-

mines the dynamics of the model. In a one-dimensional LIBOR Markov-functional

model, Hunt and Kennedy [37] showed that a particular choice of Gaussian driving

process leads to mean reversion of spot LIBOR. However this particular choice of

the driver results in an unsatisfactory hedging performance. Furthermore Kennedy

and Pham [48] showed that the specification of a Gaussian driving process has an

effect on a Bermudan swaption in terms of hedging behaviour. The authors pro-

posed a particular specification of a Gaussian driver, which is referred to as the one

step covariance driver, by calibrating to the market correlation structure of swap

rates in a one-dimensional swap Markov-functional model, and this choice leads to

a desirable hedging behaviour. This motivates us to choose a modification of the

SABR model as the driving Markov process in the stochastic volatility Markov-

functional model which has been specified in the previous chapter. Recall that in
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this modified SABR model, we have a drift function which is piecewise constant

in the stochastic volatility process. We will show that this drift function can be

chosen by calibrating to the market correlations. A numerical investigation of this

calibration performance will be given. We will see in Chapter 5 that this calibration

approach retains the desirable hedging behaviour which is similar to the one step

covariance Markov-functional model.

The rest of the chapter is organized as follows. In Section 4.2 we describe

the calibration problem. In Section 4.3 we propose an approach for choosing an

appropriate combination of driving process and (digital) caplet prices by introducing

a separable LIBOR market model. In Sections 4.4 and 4.5, we discuss the problem

of how to calibrate a stochastic volatility LIBOR Markov-functional model to the

market prices of caplets and swaptions respectively. In Section 4.6 we consider

calibrating to the market correlation structure. We conclude in Section 4.7.

4.2 Calibration problem description

Consider the tenor structure (2.1). For ease of reference we present again the target

SABR driving process of the stochastic volatility LIBOR Markov-functional model

(MFM) discussed in the previous chapter:

dFt = σtF
β
t dW

n+1
t β ∈ [0, 1], (4.1)

dσt = µtσtdt+ νσtdB
n+1
t ν > 0,

dBn+1
t dWn+1

t = ρdt ρ ∈ [−1, 1]

where Bn+1 and Wn+1 are correlated Brownian motions under the terminal measure

Fn+1 associated with the numeraire the Tn+1-maturity zero-coupon bond (ZCB)

D.,Tn+1, and µt is assumed to be piecewise constant

µt =

n−1∑
j=0

µjI{t∈[Tj ,Tj+1)}. (4.2)

Remember that this is our target driving process, and we in fact take a transforma-

tion of it as the driving process for the sake of efficient implementation. See Section

3.3.2 for details. Recall that we set up the model by feeding in the prices V i
0 (K),

V i
0 : [0,∞] → R, of a set of digital caplets on the ith LIBOR Li with strike K for

i = 1, ..., n. Thus the stochastic volatility LIBOR MFM is fully determined by

1. the input prices of digital caplets V i
0 (K) as a function of the strike K ≥ 0 for
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i = 1, ..., n.

2. the parameters of our stochastic volatility MFM i.e. the parameters of the

target driving process (4.1) which includs σ0, β, F0, ρ, ν and µj , j = 0, ..., n−1.

In the previous chapter, we focused on the numerical implementation of this model

by assuming that the above two sets of information are given to us. In this chapter

we consider the problem of how to choose them by calibrating to the market prices

of vanilla options and the market correlation structure.

Remark 5. In the original SABR model [31], the stochastic volatility process is

driftless. But in the driving process (4.1), we use a modified SABR model where we

have a drift function µj, j = 0, ..., n − 1, for the volatility σ. We do so since we

need µj’s to capture the correlation structure. More importantly, this will lead to a

desirable hedging behaviour which will be seen in Chapter 5.

Before we proceed to the calibration of the stochastic volatility LIBOR MFM,

we make an assumption. Kaisajuntti and Kennedy [44] identified a SABR style

model as an appropriate choice for the level of interest rates by investigating market

data. In that sense the target SABR driving process (4.1) can be determined by

investigating historical market data or by traders based on their market judgement

or beliefs. In particular throughout this chapter let us assume that for the target

SABR driving process (4.1), the parameters β, F0, ρ, σ0 and ν have been determined

exogenously. Consequently the remaining parameters for the target driver (4.1) are

µj for j = 0, ..., n− 1.

Note that the input prices of the digital caplets V i
0 (K) with respect to strike

K contain information on the market initial term structure and the distribution of

the LIBOR LiTi under the associated forward measure Fi+1 for i = 1, ..., n. Thus

given the market initial term structure, choosing the input prices V i
0 (K) is equivalent

to choosing the distribution of the random variable LiTi under Fi+1 for i = 1, ..., n.

In Section 4.3 we will consider the problem of what marginal distributions of the

LIBORs {LiTi ; i = 1, ..., n} should be fed in. We will see that given the target SABR

driver (4.1), the SABR type, as opposed to, for example, the CEV or log-Normal

marginal distribution is an appropriate choice. In Sections 4.4 and 4.5 we will

determine the input prices V i
0 (K), i = 1, ..., n, of digital caplets at strike K ≥ 0 by

calibrating to the market prices of caplets and swaptions respectively. In Section 4.6

we will choose the parameters µj , j = 0, ..., n − 1, of the target SABR driver (4.1)

by calibrating to the market correlation structure of LIBORs. In this chapter we

focus on the LIBOR version MFM, but all the discussion also applies to the swap
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version MFM. In Appendix 4.B we will briefly discuss the calibration issue in the

stochastic volatility swap MFM.

4.3 Choice of marginals

In a MFM, given a driving process, theoretically any marginal distributions of the

LIBORs {LiTi ; i = 1, ..., n} can be fed into the model. This leads to more flexibility

but one needs to be careful since an inconsistent combination of driving process and

marginals could potentially result in unstable dynamics of the forward rates. In

this section we will find a reasonable combination by considering the link between

LIBOR MFMs and separable LIBOR market models (LMMs). This link will also

give us a guide as to how to perform the calibration.

In Section 4.3.1 we introduce the idea of separability and one-factor separable

LMMs. We review the link between LIBOR MFMs and separable LMMs in the

one-factor case. Based on this link, an appropriate combination of driver and prices

of digital caplets is found. In Section 4.3.2 we consider the link between LIBOR

MFMs and separable LMMs in the stochastic volatility case by considering separable

SABR-LMMs. Based on this link, given the target SABR driving process (4.1) we

find a consistent marginals to feed into the stochastic volatility LIBOR MFM.

4.3.1 Separable LIBOR market models with local volatility

Let us consider the following LMMs with local volatility under the terminal measure

Fn+1:

dLit = −
n∑

j=i+1

(
σjtαjφ(Lit)

1 + αjL
j
t

)σitφ(Lit)dt+ σitφ(Lit)dW
n+1
t , i = 1, ..., n− 1 (4.3)

dLnt = σnt φ(Lnt )dWn+1
t ,

where φ(·) is a deterministic function of the rate satisfying appropriate regularity

conditions where more details can be found in [29]. One can choose the local volatil-

ity function φ(·) as, for instance, φ(x) = x, φ(x) = xβ, 0 < β < 1, and φ(x) = x+ θ,

θ ∈ R, which are corresponding to the log-Normal LMM, CEV LMM and displaced-

diffusion LMM. For more choices for the local volatility function φ(·), the reader is

referred to [11].

We can see that the drift term of SDE (4.3) is dependent on forward LIBORs

except for the drift of the nth LIBOR Ln which is zero. Consequently a LMM is a

high-dimensional model and it is Markovian with respect to its all forward rates even
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when it is driven by only one factor. In practice a simulation method is required for

an accurate implementation of a LMM. However Pelsser et al. [56] demonstrated

that a numerical approximation to a separable LMM allows for representation by a

low-dimensional Markov process. Moreover they found that such an approximation

is very accurate for LMMs up to 10 years. This in turn would give an efficient

implementation by, for example, a finite difference method. We give the definition

of separability under LMMs from [7].

Definition 2. The one-factor LMM (4.3) is said to be separable if the volatility

functions σi, i = 1, ..., n, satisfy

σit = γiσt

for some constants γi, for 0 ≤ t ≤ Ti, i = 1, ..., n.

Separability provides a link between Market models and MFMs. As Pelsser

et al. [56] pointed out, under a one-factor separable log-Normal LMM, the drift-

approximated forward LIBORs is an increasing function of a one-dimensional Markov

process. It was noted by Bennett and Kennedy [7] that if we take this one-dimensional

Markov process as the driving process then the corresponding MFM is numerically

very similar to the one-factor separable LMM as long as we fit the Black’s formula

for caplets. Recently Gogala and Kennedy [29] extended the above link to a more

general local-volatility case. In particular consider the following one-factor separable

LMM with local volatility function

dLit = −
n∑

j=i+1

(
γjαjφ(Ljt )

1 + αjL
j
t

)γiσ2
t φ(Lit)dt+ γiσtφ(Lit)dW

n+1
t , i = 1, ..., n− 1 (4.4)

dLnt = γnσtφ(Lnt )dWn+1
t ,

where φ(·) is a deterministic function of the rate satisfying appropriate regularity

conditions and Wn+1 is a one-dimensional Brownian motion under the terminal

measure. This one-factor separable local volatility LMM is found to have a similar

dynamics to a LIBOR MFM with the following driving process

dxt = σtφ(xt)dW
n+1
t (4.5)

feeding in the prices V i
0 (K), i = 1, ..., n, of digital caplets on the ith LIBOR Li

derived from the SDEs (4.4). The link between MFMs and separable LMMs implies

that a high-dimensional separable LMM can be approximated by a low-dimensional

arbitrage-free model which allows for a more efficient implementation.
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Thanks to the above link, the intuition behind the well-understood SDE

formulation of a LMM can be applied to the corresponding LIBOR MFM. This

gives us a guide as to how to calibrate a MFM. In particular, given the driving

process (4.5), it is reasonable to feed in the prices V i
0 (K), i = 1, ..., n, of digital

caples derived from the SDEs (4.4). This means that given a local volatility driving

process, the marginal distributions of the LIBORs {LiTi ; i = 1, ..., n} derived from the

consistent local volatility style model is an appropriate choice to feed in. By doing

so the resulting MFM is similar to the one-factor separable LMM (4.4). Otherwise a

mismatch of a driving process and marginals of {LiTi ; i = 1, ..., n} might potentially

lead to a non-transparent dynamics of forward LIBORs and therefore result in an

unstable evolution of the implied volatility surface.

4.3.2 Separable LIBOR market models with stochastic volatility

We have discussed an approach for choosing an appropriate combination of driving

process and caplet prices for a one-dimensional LIBOR MFM by considering the link

between one-factor separable local volatility LMMs and one-dimensional LIBOR

MFMs. Now we extend the intuition to the stochastic volatility version.

Following a similar explanation for the local volatility case, in a stochastic

volatility LIBOR MFM, given a SABR driving process (4.1) it would be sensible

to feed in a SABR marginal distribution of the LIBORs {LiTi ; i = 1, ..., n}. To see

this let us recall the link between the one-dimensional MFM and the one-factor

separable LMM that we discussed. Let us take the local volatility in the form of

φ(x) = xβ in the SDE (4.4) and this leads to the one-factor separable CEV LMM

which is found to have similar dynamics to a one-dimensional LIBOR MFM with

the following CEV driving process

dxt = σtx
β
t dW

n+1
t

together with the prices V i
0 (K), i = 1, ..., n, of digital caplet prices derived from

the corresponding CEV model. We expect that the link is retained if we introduce

stochastic volatility. In particular consider the following separable SABR-LMM in
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the terminal measure Fn+1:

dLit = −
n∑

j=i+1

(
γjαj(L

j
t )
β

1 + αjL
j
t

)γiσ2
t (L

i
t)
βdt+ γiσt(L

i
t)
βdWn+1

t i = 1, ..., n− 1,

(4.6)

dLnt = γnσt(L
n
t )βdWn+1

t β ∈ [0, 1],

dσt = µtσtdt+ vσtdB
n+1
t v > 0,

dWn+1
t dBn+1

t = ρdt ρ ∈ [−1, 1],

where µt is given by (4.2). This model is expected to be numerically similar to

the stochastic volatility LIBOR MFM with the target SABR driving process (4.1)

together with the prices V i
0 (K), i = 1, ..., n, for digital caplets derived from the

model (4.6).

Note that the separable SABR-LMM (4.6) we discussed here is a restrictive

stochastic volatility LMM. In order to obtain more flexibility, in the literature com-

monly we have a different stochastic volatility for each LIBOR Li. See [33], [62]

and references therein. But when we impose separability on the stochastic volatil-

ity, a common stochastic volatility σ is associated to all forward LIBORs. The

cost we have to pay is the loss of flexibility, but in return the resulting separable

SABR-LMM, which is a high-dimensional model, can be approximated by a low-

dimensional stochastic volatility MFM which can be implemented for pricing and

hedging in practice.

Based on the above link, given the target SABR driving process (4.1), one

can feed in the prices V i
0 (K), i = 1, ..., n, of digital caplets with strike K ≥ 0

produced by the SDEs (4.6). This leads to a stochastic volatility LIBOR MFM

which is expected to be similar to the separable SABR-LMM (4.6). The link also

gives us a guide as to how to calibrate the stochastic volatility LIBOR MFM. We

will develop a calibration routine for our stochastic volatility MFM based on the

above link in the next sections. Note that we have not established the above link

numerically, but we find that the calibration routine developed based on it works

well which will be seen later. Thus even though the above link may not be as tight

as in the non-stochastic case, it will not have an influence on the calibration routine

since we just take it as a guide for calibration and test its effectiveness directly.
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4.4 Calibration to caplets

Throughout this section let us assume that the parameters µj , j = 0, ..., n − 1, for

the target driver (4.1) are given. We will explain the details of how to determine

these parameters later in this chapter. So far we have decided to feed the prices

V i
0 (K), i = 1, ..., n, of digital caplets with strike K ≥ 0 produced by the model (4.6)

into our stochastic volatility LIBOR MFM with the target SABR driver (4.1). But

when we find the prices V i
0 (K), we have free parameters γi, i = 1, ..., n, for the SDE

(4.6) that need to be determined. In this section we will choose the parameters

γi’s by calibrating to the market prices of caplets, and then find the input prices

V i
0 (K) of digital caplets produced by the calibrated model (4.6). By feeding input

prices V i
0 (K) into our stochastic volatility LIBOR MFM, the resulting model will

reproduce the market prices of caplets. To do so we develop a calibration routine

in this section. The calibration routine involves the SABR formula for implied

volatility smiles introduced by Hagan et al. [31]. Thus in Section 4.4.1 we review

the SABR model and introduce the SABR formula. In Section 4.4.2 we develop the

calibration routine to obtain the prices V i
0 (K), i = 1, ..., n, of digital caplets.

4.4.1 SABR model

In this subsection let us step out of term structure models and focus on an interest

rate model for a single forward rate. In particular we review the SABR model

introduced by Hagan et al. [31]. The material in this subsection is from [31]. Let

us consider the following dynamics of the forward rate

dF̂t = α̂tF̂
β
t dW

1
t F̂0 = f, β ∈ [0, 1] (4.7)

dα̂t = να̂tdW
2
t α̂0 = α

dW 1
t dW

2
t = ρdt ρ ∈ [−1, 1]

where W 1 and W 2 are correlated Brownian motions under some equivalent martin-

gale measure. We note that the SABR model only treats one rate and the underlying

asset F̂ can be taken as a forward swap rate or LIBOR.

Hagan et al. [31] proposed an analytical approximation for the implied

volatility of a vanilla call option as a function σB(K, f ;α, β, ν, ρ) of today’s for-

ward price f and the strike K by using singular perturbation techniques, which is
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given by

σB(K, f ;α, β, ν, ρ) =
σ0

(fK)
1−β
2 [1 + (1−β)2

24 ln2( fK ) + (1−β)4

1920 ln4( fK ) + · · · ]
· ( z

x(z)
)

· {1 + [
(1− β)2α2

24(fK)1−β +
ρβνα

4(fK)
1−β
2

+ ν2 2− 3ρ2

24
]Ti + · · · }, (4.8)

with

z :=
ν

α
(fK)

1−β
2 ln(

f

K
)

and

x(z) := ln(

√
1− 2ρz + z2 + z − ρ

1− ρ
).

The above formula for implied volatilities is also called the SABR formula,

and it is widely used in practice for implied volatility smile interpolation and ex-

trapolation. Among the parameters of the SABR formula, the parameter α mainly

controls the overall level of the implied volatility curve, the parameter ρ controls

the skew of the curve and ν determines the curvature of the curve or equivalently

how much smile the curve can represent. The parameter β has a similar role to the

parameter ρ, but it is often determined upfront from historical data. Since these

parameters play separate roles to control an implied volatility curve, the calibration

of the SABR formula is accurate.

Note that in financial markets vanilla options are quoted in terms of implied

volatilities. The corresponding prices can be obtained by inserting the implied

volatility σB(K, f) (4.8) into the corresponding Black’s formula.

4.4.2 Calibration routine

In this subsection we develop a calibration routine. We choose the parameters γi’s

by calibrating the separable SABR-LMM (4.6) to the market prices of a set of

caplets. Then we find the prices V i
0 (K), i = 1, ..., n, of the set of digital caplets

produced by the calibrated model (4.6). Finally we feed the input prices V i
0 (K)

into the stochastic volatility LIBOR MFM which will reproduce the market prices

of caplets.

Let us first determine the parameters γi’s in the separable SABR-LMM (4.6).

To do so we consider the separable SABR-LMM (4.6) under the associated forward

measure. In particular the ith forward LIBOR Li is a (local) martingale in the
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associated forward measure Fi+1 corresponding to the numeraire D.,Ti+1 so that

the forward LIBOR process Li should be driftless. However a change of measure

also changes the drift term in the volatility because of the non-zero correlation

between the two Brownian motions that drive forward rates and stochastic volatility

respectively.

Remark 6. We will assume that in addition to modelling the LIBORs there is at

least one option in the economy which means that we are in a complete setting. In

this case when moving to another equivalent martingale measure associated with a

different numeraire the Radon-Nikodým derivative is the ratio of numeraires. This

assumption also applies to the other incomplete models when we need to change

measure.

Lemma 1. Let Li satisfies SDEs (4.6). Under the Ti+1-forward measure Fi+1 the

dynamics of Li satisfies

dLit = σit(L
i
t)
βdW i+1

t β ∈ [0, 1], (4.9)

dσit = µi(t, σt, Lt)σ
i
tdt+ vσitdB

i+1
t σit = γiσt, v > 0

dW i+1
t dBi+1

t = ρdt ρ ∈ [−1, 1],

with

µi(t, σt, Lt) := µt + ρv
n∑

j=i+1

σjtαj(L
j
t )
β

1 + αjL
j
t

, (4.10)

where W i+1 and Bi+1 are correlated Brownian motions in the forward measure Fi+1.

Proof. The Brownian motion Bn+1 in the terminal Fn+1 can be expressed as

dBn+1
t = ρdWn+1

t +
√

1− ρ2dZn+1
t , (4.11)

where Zn+1 and Wn+1 are independent Brownian motions. Define ςt by

ςt :=
dFi+1

dFn+1

∣∣∣∣
Ft

=
DtTi+1/D0Ti+1

DtTn+1/D0Tn+1

,

where {Ft} is the filtration generated by Zn+1 and Wn+1. After calculation, we

have that

dςt = ςt

n∑
j=i+1

(
γjαj(L

j
t )
β

1 + αjL
j
t

)σtdW
n+1
t .
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From the Girsanov theorem we have that the processes

dW i+1
t := dWn+1

t − dςt
ςt
· dWn+1

t

= dWn+1
t −

n∑
j=i+1

(
γjαj(L

j
t )
β

1 + αjL
j
t

)σtdt (4.12)

and

dZi+1
t := dZn+1

t − dςt
ςt
· dZn+1

t

= dZn+1
t (4.13)

are independent Brownian motions in the forward measure Fi+1 corresponding to

the numeraire D.,Ti+1 . It follows from equations (4.11), (4.12) and (4.13) that

dBn+1
t = ρdW i+1

t +
√

1− ρ2dZi+1
t + ρ

n∑
j=i+1

(
γjαj(L

j
t )
β

1 + αjL
j
t

)σtdt,

= dBi+1
t + ρ

n∑
j=i+1

(
γjαj(L

j
t )
β

1 + αjL
j
t

)σtdt,

where Bi+1 is a Brownian motion in Fi+1 defined as

dBi+1
t = ρdW i+1

t +
√

1− ρ2dZi+1
t .

The result then follows from the SDE (4.6).

The dynamics (4.9) of the forward LIBOR Li under the associated foward

measure Fi+1 is in the form similar to the SABR model (4.7) except for the drift of

the volatility. The drift function in the volatility in the model (4.9) is dependent on

the forward LIBORs and also a function of the common volatility σ as well as its

square. This complex form of drift term prevents us from achieving the SABR for-

mula for implied volatility of caplets. Thus we will derive an approximate dynamics

in the form of (4.7). To this end we apply the following two-step approximation

proposed by Morini and Mercurio [54].

1. First step: volatility drift approximation. We first deal with the

drift term of the volatility. We note that the drift function µi(t, σt, Lt) depends

on forward LIBORs Lj , j ≥ i + 1, as well as volatility σ itself. Our first step

is to approximate it by its initial value. In particular we approximate the forward

LIBORs and volatility σt that appear in the drift function µi(t, σt, Lt) by their initial
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values

µi(t, σ0, L0) := µt + ρv
n∑

j=i+1

σj0αj(L
j
0)β

1 + αjL
j
0

≈ µi(t, σt, Lt). (4.14)

Morini and Mercurio [54] has justified this freezing approximation. It found that

the approximation is accurate for short maturities and the accuracy begins to be

lost for long maturities (30Y). Note that there also exists some more sophisticated

approximations. See, for example, predictor-corrector schemes [39] and Brownian

bridge approximations [56]. In our work we simply choose constant approximation

since it performs well in our numerical study which will be seen later. The freezing

approximation leads to the following model in Fi+1 where the stochastic volatility

becomes log-Normal:

dLit = σit(L
i
t)
βdW i+1

t β ∈ [0, 1], (4.15)

dσit = µi(t, σ0, L0)σitdt+ vσitdB
i+1
t σit = γiσt, v > 0

dW i+1
t dBi+1

t = ρdt ρ ∈ [−1, 1],

2. Second step: SABR formula for non-zero drift. Note that the

SABR formula is derived from the SABR model of the form (4.7) where the volatility

is driftless. Although we have obtained a more tractable model (4.15), there still

exists a deterministic drift function. In this step we approximate the model (4.15)

by the following SDEs where the volatility process is driftless

dLit = σ̃it(L
i
t)
βdW i+1

t β ∈ [0, 1], (4.16)

dσ̃it = vσ̃itdB
i+1
t v > 0

dW i+1
t dBi+1

t = ρdt ρ ∈ [−1, 1],

such that the caplet prices given by the two models are the same. We note that

the caplet price depends on the distribution of the volatility σiTi at expiration time

Ti, but it also depends on the path of the volatility from current time to time Ti.

As justified by Morini and Mercurio [54], it is a reasonable approximation that the

caplet price depends on the average volatility from now to time Ti. Thus we choose

the initial value σ̃i0 such that

EFi+1 [

∫ Ti

0
σitdt] = EFi+1 [

∫ Ti

0
σ̃itdt].
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This leads to the value of σ̃i0 which is given by

σ̃i0 =
γiσ0

∫ Ti
0 e

∫ t
0 µ

i(s,σ0,L0)dsdt

Ti
. (4.17)

Finally, for the SABR-LMM (4.9), we obtain an approximate SABR formula

σB(K,Li0; σ̃i0, β, ν, ρ)

given by (4.8) for the caplet on the ith LIBOR Li with strike K, where σ̃i0 is given

by equation (4.17).

So far we have obtained an approximate SABR formula for the SABR-LMM

(4.9). We can choose the parameters γi’s such that the approximate SABR formula

σB(K,Li0; σ̃i0, β, ν, ρ) matches the market implied volatilities of the set of caplets.

However we note that the only free parameters we have for the model (4.9) are

parameters γi for i = 1, ..., n. Consequently we cannot match the market implied

volatilities of the set of caplets for all strikes. Our choice is to match the market

implied volatilities of caplets struck at some particular strike Ki for each i = 1, ..., n.

For example one can calibrate to the ATM implied volatilities i.e. Ki = Li0 for

i = 1, ..., n.

Suppose we are given the market implied volatilities σmkt(Ki, Li0) of the

caplet on the ith LIBOR Li struck at some particular strike Ki for each i = 1, ..., n.

We can choose γi’s such that the SABR formula for the SABR-LMM (4.9) matches

the market implied volatilities σmkt(Ki, Li0):

σB(Ki, Li0; σ̃i0, β, ν, ρ) = σmkt(Ki, Li0), (4.18)

for each i = 1, ..., n.

Having fixed the parameters γi, i = 1, ..., n, we can find the input prices

V i
0 (K), i = 1, ..., n, of the set of digital caplets as a function of the strike K produced

by the separable SABR-LMM (4.9). To do so, for this study we apply Monte

Carlo methods. Finally we can feed the input prices V i
0 (K), i = 1, ..., n, into our

stochastic volatility LIBOR MFM, and the resulting model should reproduce the

market implied volatilities σmkt(Ki, Li0), i = 1, ..., n, of the set of caplets.

4.4.3 Numerical study

In this subsection, we investigate the accuracy of the calibration routine developed

in Section 4.4.2. We note that the calibration routine involves some approximations
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which include the one intrinsic to the SABR formula. In order to distinguish the

effect of the different approximations, we give caplet prices produced at each ap-

proximation step. In particular following the calibration routine, given the market

implied volatilities of the caplets, we can determine the parameters γi, i = 1, ..., n,

by using the SABR formula and following (4.18). Therefore the implied volatilities

of the caplets produced by the approximate SABR-LMM (4.16) using the SABR

formula are exactly the same as the market implied volatilities. By comparing these

implied volatilities to those produced by the approximate SABR-LMM (4.16) using

Monte Carlo methods, one can investigate the accuracy of the SABR formula. We

then compare the implied volatilities given by the model (4.16) to those produced

by the SABR-LMM (4.9), where both models are using Monte Carlo methods, and

we can distinguish the effect of the “two-step approximation”. Finally we set up the

stochastic volatility LIBOR MFM and produce the MFM model implied volatilities

of the caplets. By comparing the MFM model implied volatilities with those given

by the model (4.9), we can investigate the calibration performance of the stochastic

volatility LIBOR MFM.

In our numerical study, we consider the calibration of the SV MFM with

different parameters. We calibrate to the market implied volatilities σmkt(Li0, L
i
0)

of the ATM caplets on 17 October 2007. The numerical result is given in Table

4.1. The column “Market” is the market implied volatilities σmkt(Li0, L
i
0) of the

ATM caplets on 17 October 2007. The columns “Approx SABR-LMM (MC)” and

“SABR-LMM (MC)” are implied volatilities of the ATM caplets produced by the ap-

proximate SABR-LMM (4.16) and the SABR-LMM (4.9) respectively using Monte

Carlo (MC) methods. The last column “MFM” is the ATM implied volatilities

produced by the stochastic volatility LIBOR MFM. We can see from the “Market”

and “MFM” columns in Table 4.1 that the resulting MFM is able to reproduce the

market implied volatilities. For all scenarios, the calibration is accurate for short

maturities but the performance is getting worse for longer maturities. Let us investi-

gate the source of the calibration error. By comparing the market implied volatilities

with those produced by the approximate SABR-LMM (4.16), we can see that most

calibration error is coming from the SABR formula. The SABR formula starts losing

accuracy for longer maturities. Then we compare the implied volatilities produced

by the models (4.16) and (4.9), and it turns out that the “two-step approximation”

developed in the previous subsection performs well for short maturities but loses

some precision for T > 15 years. We can see from the data in the last two columns

that the calibration of the stochastic volatility LIBOR MFM performs quite well for

all scenarios. The MFM is able to reproduce the implied volatilities produced by
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the SABR-LMM (4.9). Overall the accuracy of the calibration routine developed in

this section is satisfactory for short maturities and the calibration error is mainly

from the SABR formula.

Remark 7. From the numerical results, one can see that the “MFM” implied volatil-

ities are systematically lower than the “Market” ones for longer maturities. More-

over the change in the parameter γi will only affect the model implied volatility of

the caplet with maturity Ti for i = 1, ..., n. One can develop an “iterative procedure”

which adjusts the value of γi, i = 1, ..., n, until achieving precise calibration of the

MFM to the market. We use this technique for the calibration of the swap rate based

stochastic volatility MFM in Chapter 5.

4.5 Calibration to swaptions

In the previous section we determined the parameters γi, i = 1, ..., n, in the LI-

BOR based model (4.6) by calibrating to the market implied volatilities of caplets.

In this section we consider the problem of how to determine γi’s by calibrating to

the market implied volatilities of co-terminal vanilla swaptions on the swap rates

{yi,n+1−i; i = 1, ..., n}. By “co-terminal” we mean that they have the same ter-

mination date, i.e. the same final payment date. Note that we are not forced to

calibrate the parameters γi’s to the co-terminal type swaptions. The calibration to

the vanilla swaptions on the general swap rates {yi,j ; i = 1, ..., n, j = 1, ..., n+ 1− i}
is straightforward to extend. But in this chapter we focus on the co-terminal swap

rates (swaptions) because they are the underlyings of the corresponding co-terminal

Bermudan swaption which is the exotic option we are most interested in and will be

studied in Chapter 5.

To perform the calibration we first derive an approximate formula for the

vanilla swaptions prices within the model (4.6). Then we choose the parameters γi,

i = 1, ..., n, in the model (4.6) by calibrating to the market prices of co-terminal

vanilla swaptions using the approximate pricing formula. Finally we can find the

input prices V i
0 (K), i = 1, ..., n, of the set of digital caplets as a function of the

strike K produced by the calibrated model (4.6). By feeding in the prices V i
0 (K),

we arrive at the stochastic volatility LIBOR MFM with the target driver (4.1) which

recovers the market prices of co-terminal vanilla swaptions. Throughout this section

we assume that the parameters µj , j = 0, ..., n − 1, for the target driver (4.1) are

given.
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4.5.1 Calibration routine

Let us first derive a pricing formula for vanilla swaptions in the model (4.6). To do

so we consider the dynamics of the forward swap rate yi,n+1−i for i = 1, ..., n. The

forward swap rate yi,n+1−i can be expressed in terms of forward LIBORs:

yi,n+1−i
t =

n∑
k=i

wik(t)L
k
t

with the LIBOR dependent weights

wik(t) =
αkDtTk+1∑n
s=i αsDtTs+1

.

Notice that the weights wik’s depend on the forward LIBORs so that it is not straight-

forward to derive the dynamics of swap rates. Jackel and Rebonato [41] showed that

the variation of the weights wik’s is insignificant compared to the variation of LI-

BORs. This leads to an approximation of the weights wik’s by their initial values

and therefore we have that

yi,n+1−i
t ≈

n∑
k=i

wik(0)Lkt . (4.19)

with

wik(0) =
αkD0Tk+1∑n
s=i αsD0Ts+1

.

Note that this freezing approximation is familiar to practitioners and used often in

the context of LMMs in the literature (see [2], [54] and [66]). From the SDE of the

forward LIBORs (4.6), we apply Itô’s lemma to (4.19) and derive the dynamics of

the forward swap rate yi,n+1−i under the swaption measure Si,n+1−i corresponding

to the numeraire PVBP P i,n+1−i.

Lemma 2. Let Li satisfies SDEs (4.6). In the swaption measure Si,n+1−i, we have

that

dyi,n+1−i
t ≈

n∑
k=i

wik(0)σkt (Lkt )
βdW i,n+1−i

t (4.20)

dσt = µ̃i(t, σt, yt)σtdt+ vσtdB
i,n+1−i
t v > 0 (4.21)

dW i,n+1−i
t dBi,n+1−i

t = ρdt ρ ∈ [−1, 1],
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with

µ̃i(t, σt, yt) := µt + vρ
n∑

j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
γjαj−1(yj,n+1−j

t )β

1 + αj−1y
j,n+1−j
t

)σt, (4.22)

Ψi
t :=

i∏
j=1

(1 + αjy
j+1,n−j
t ), (4.23)

P̂ i,n+1−i
t :=

P i,n+1−i
t

Dt,Tn+1

. (4.24)

where W i,n+1−i and Bi,n+1−i are correlated Brownian motions in the swaption mea-

sure Si,n+1−i.

Proof. Let us first derive the dynamics of the stochastic volatility σ in the swaption

measure Si,n+1−i. The Brownian motion Bn+1 in the terminal measure can be

expressed as

dBn+1
t = ρdWn+1

t +
√

1− ρ2dZn+1
t ,

where Zn+1 and Wn+1 are independent Brownian motions in the terminal measure

Fn+1. Define ςt by

ςt :=
dSi,n+1−i

dFn+1

∣∣∣∣
Ft

=
P i,n+1−i
t /P i,n+1−i

0

DtTn+1/D0Tn+1

,

where {Ft} is the filtration generated by Zn+1 and Wn+1. After calculation, we

have that

dςt = ςt

n∑
j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
γjαj−1(yj,n+1−j

t )β

1 + αj−1y
j,n+1−j
t

)σtdW
n+1
t .

From the Girsanov theorem we have that the processes

dW i,n+1−i
t := dWn+1

t − dςt
ςt
· dWn+1

t

= dWn+1
t −

n∑
j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
γjαj−1(yj,n+1−j

t )β

1 + αj−1y
j,n+1−j
t

)σtdt
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and

dZi,n+1−i
t := dZn+1

t − dςt
ςt
· dZn+1

t

= dZn+1
t

are independent Brownian motions in Si,n+1−i. Thus we have that

dBn+1
t = ρdW i,n+1−i

t +
√

1− ρ2dZi,n+1−i
t (4.25)

+ ρ
n∑

j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
γjαj−1(yj,n+1−j

t )β

1 + αj−1y
j,n+1−j
t

)σtdt,

= dBi,n+1−i
t + ρ

n∑
j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
γjαj−1(yj,n+1−j

t )β

1 + αj−1y
j,n+1−j
t

)σtdt, (4.26)

where Bi,n+1−i is a Brownian motion in Si,n+1−i defined as

dBi,n+1−i
t = ρdW i,n+1−i

t +
√

1− ρ2dZi,n+1−i
t .

Following equation (4.26), we have the dynamics of σ in the swaption measure

Si,n+1−i:

dσt = [µt + vρ
n∑

j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
γjαj−1(yj,n+1−j

t )β

1 + αj−1y
j,n+1−j
t

)σt]σtdt+ vσtdB
i,n+1−i
t v > 0.

On the other hand, since yi,n+1−i is a martingale in the swaption measure Si,n+1−i,

by applying Itô’s lemma to (4.19), the dynamics of yi,n+1−i approximately follows

the following driftless SDE

dyi,n+1−i
t ≈

n∑
k=i

wik(0)σkt (Lkt )
βdW i,n+1−i

t .

The result then follows.

The SDE (4.20) shows that the volatility term of swap rates depends on

forward LIBORs. We now introduce an approximation to write a SDE for the swap

rate where the volatility is just a function of the swap rate itself. Following (4.20)
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we have that

dyi,n+1−i
t ≈

n∑
k=i

wik(0)σkt (Lkt )
βdW i,n+1−i

t

=
n∑
k=i

wik(0)(
Lkt

yi,n+1−i
t

)βσkt (yi,n+1−i
t )βdW i,n+1−i

t

≈
n∑
k=i

W i
k(0)γkσt(y

i,n+1−i
t )βdW i,n+1−i

t (4.27)

= ξiσt(y
i,n+1−i
t )βdW i,n+1−i

t (4.28)

with

W i
k(0) = wik(0)(

Lk0

yi,n+1−i
0

)β

ξi =
n∑
k=i

W i
k(0)γk. (4.29)

where (4.27) is obtained by approximating the time-dependent ratio (Lkt /y
i,n+1−i
t )β

by a constant ratio (Lk0/y
i,n+1−i
0 )β. This approximation is justified by an observation

made by Andersen and Andreasen [2] that the time-dependent ratio (Lkt /y
i,n+1−i
t )β

has a very low variability and is close to a constant. Thus the SDE for a swap rate

can be rewritten in the form of the SABR Swap Market model (SMM).

Lemma 3. Let Li satisfies SDEs (4.6). Under the swaption measure Si,n+1−i the

dynamics of yi,n+1−i
t can be approximated by

dyi,n+1−i
t ≈ σit(y

i,n+1−i
t )βdW i,n+1−i

t (4.30)

dσit = µ̃i(t, σt, yt)σ
i
tdt+ vσitdB

i,n+1−i
t σit = ξiσt, v > 0

dW i,n+1−i
t dBi,n+1−i

t = ρdt ρ ∈ [−1, 1],

where µ̃i(t, σt, yt) is given by equation (4.22), and ξi is given by equation (4.29).

Proof. The result follows from SDEs (4.28) and (4.21) by letting σit := ξiσt.

We can see from the above lemma that the SDEs (4.30) for the swap rates

are in the form similar to the SABR model (4.7) except for the drift of the volatility,

which is a function of the forward swap rates and the volatility itself. In order to

derive an approximate SABR formula for the model (4.30), we derive an approx-

imate dynamics in the form of (4.7). To do so we apply the following two-step
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approximation which is similar to that used in Section 4.4.2.

1. First step: volatility drift approximation. We first apply the follow-

ing freezing approximation to the drift function µ̃i(t, σt, yt):

µ̃i(t, σ0, y0) := µt + vρ
n∑

j=i+1

Ψj−1
0 P̂ j,n+1−j

0

Ψi−1
0 P̂ i,n+1−i

0

(
γjαj−1(yj,n+1−j

0 )β

1 + αj−1y
j,n+1−j
0

)σ0 ≈ µ̃i(t, σt, yt).

(4.31)

Hence we obtain the following SABR-SMM with the log-Normal dynamics of the

volatility under the associated swaption measure

dyi,n+1−i
t ≈ σit(y

i,n+1−i
t )βdW i,n+1−i

t (4.32)

dσit ≈ µ̃i(t, σ0, y0)σitdt+ vσitdB
i,n+1−i
t σit = ξiσt, v > 0

dW i,n+1−i
t dBi,n+1−i

t = ρdt ρ ∈ [−1, 1].

2. Second step: SABR formula for non-zero drift. The SABR formula

is derived for the SABR model of the form (4.7) where the volatility process is

driftless. In this step we approximate the model (4.32) by the following model

where the volatility process is driftless

dyi,n+1−i
t ≈ σ̃it(y

i,n+1−i
t )βdW i,n+1−i

t (4.33)

dσ̃it = vσ̃itdB
i,n+1−i
t v > 0

dW i,n+1−i
t dBi,n+1−i

t = ρdt ρ ∈ [−1, 1].

such that the co-terminal swaption prices given by the two models are approximately

matched. Note that the distribution of the swap rate yi,n+1−i
Ti

depends on the dis-

tribution of the volatility σiTi at expiration time Ti, but it also depends on the path

of the volatility from current time to time Ti. As justified by Morini and Mercurio

[54], it is accurate to assume that the distribution of the swap rate yi,n+1−i
Ti

depends

on the average volatility from now to time Ti. Thus we choose the initial value σ̃i0
such that

ESi,n+1−i [

∫ Ti

0
σitdt] = ESi,n+1−i [

∫ Ti

0
σ̃itdt].

This leads to the value of σ̃i0 which is given by

σ̃i0 =
ξiσ0

∫ Ti
0 e

∫ t
0 µ̃

i(s,σ0,y0)dsdt

Ti
. (4.34)
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Finally we obtain the SABR formula σB(K, yi,n+1−i
0 ; σ̃i0, β, ν, ρ) given by (4.8) for

the co-terminal swaption on the swap rate yi,n+1−i with strike K.

Note that we only have free parameters ξi or equivalently σ̃i0 and this just

allows us to calibrate to market implied volatilities with respect to one strike Ki of

the swaption for i = 1, ..., n. As we discussed one common choice is to calibrate to

the ATM implied volatilities, i.e. Ki = yi,n+1−i
0 . One may also choose the strike

Ki according to the product we price. For instance, when we price a Bermudan

swaption, which will be discussed in Chapter 5, with strike KBem it is natural to

calibrate to the market implied volatilities of the corresponding swaptions struck

at the strike KBem since this is the most relevant to the price of the Bermudan

swaption. In this case we have that Ki = KBem for i = 1, ..., n.

Suppose we are given a set of market implied volatilities σmkt(Ki, yi,n+1−i
0 )

with respect to the strike Ki of the swaption on the swap rate yi,n+1−i. We choose

value of ξi such that

σB(Ki, yi,n+1−i
0 ; σ̃i0, β, ν, ρ) = σmkt(Ki, yi,n+1−i

0 ), (4.35)

where σ̃i0 is given by equation (4.34). Once we have determined parameters ξi’s,

parameters γi’s are immediate by equation (4.29).

Having determined the parameters γi’s, we end up with a SABR-LMM (4.6)

or equivalently (4.9) that can recover the market prices of a set of European swap-

tions. Finally we can find the prices of digital caplets produced by the model (4.9)

and feed them into the stochastic volatility LIBOR MFM. As we discussed in the

previous section, we do so by using Monte Carlo methods.

4.5.2 Numerical study

In this subsection, we investigate the accuracy of the calibration routine developed

in Section 4.5.1. The numerical study we perform here is similar to the one we did

in Section 4.4.3. In particular given a set of market implied volatilities of the ATM

swaptions on 17 October 2007, we determine the parameters ξi for i = 1, ..., n via

(4.35) by using the SABR formula. We then give the implied volatilities of the co-

terminal swaptions produced by the approximate SABR-SMM (4.33), using Monte

Carlo methods, and compare them with those produced by the SABR formula within

the model (4.33) which is the same as the market. By doing so we can investigate

the accuracy of the SABR formula. By comparing the implied volatilities given

by the model (4.33) to those produced by the SABR-SMM (4.30), where we use

Monte Carlo methods for both models, we can distinguish the effect of the “two-
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step approximation”. Finally we set up the stochastic volatility LIBOR MFM and

produce the MFM model implied volatilities of the co-terminal swaptions.

In our numerical study, we consider the swaption calibration performance

of the SV MFM with five different sets of parameters. We provide the numeri-

cal result in Table 4.2. The column “Market” is the market implied volatilities

σmkt(yi,n+1−i
0 , yi,n+1−i

0 ) of the ATM co-terminal swaption on 17 October 2007. The

columns “Approx SABR-SMM (MC)” and “SABR-SMM (MC)” are implied volatil-

ities of the ATM co-terminal swaptions produced by the approximate SABR-SMM

(4.33) and the SABR-SMM (4.30) respectively using Monte Carlo methods. The

last column “MFM” is the implied volatilities produced by the stochastic volatility

LIBOR MFM. We draw the following conclusions from the numerical results.

1. The implied volatilities given by the MFM are close to the market implied

volatilities for short maturities. The calibration routine loses accuracy for

longer maturities.

2. By comparing the market implied volatilities with those produced by the ap-

proximate SABR-SMM (4.33), we can see that most calibration error is coming

from the SABR formula. The SABR formula starts losing accuracy for longer

maturities.

3. We compare the implied volatilities produced by the models (4.33) and (4.30),

and it turns out that the “two-step approximation” developed in the previous

subsection performs well for short maturities but loses some precision for T >

20 years.

4. We can see from the data in the last two columns that the calibration of the

stochastic volatility LIBOR MFM performs well for all scenarios.

Overall the accuracy of the calibration routine developed in this section is satisfac-

tory for short maturities and the calibration error is mainly from the SABR formula.

4.6 Calibration to market correlations

In this section we discuss what to do with the remaining model parameters µj ,

j = 0, ..., n − 1, of the target SABR driving process (4.1). We will choose µj ’s by

calibrating to the market correlation structure of the LIBORs {LiTi ; i = 1, ..., n}. By

doing so, the model will have a desirable hedging behaviour which will be discussed

in Chapter 5. Note that here we focus on a LIBOR MFM, but it is straightforward

to adapt the approach for the swap version of stochastic volatility MFMs where
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we determine the model parameters µj ’s by calibrating to the market correlations

of swap rates. In Section 4.6.1 we develop a calibration routine to determine the

parameters µj ’s. In Section 4.6.2 we will investigate the accuracy of this calibration

routine numerically.

4.6.1 Calibration routine

In this subsection we develop a calibration routine to choose the model parameters

µj , j = 0, ..., n − 1, of the target SABR driving process (4.1) by calibrating to the

market correlation structure of the LIBORs {LiTi ; i = 1, ..., n}. To do so we derive

an approximate formula for the correlations of the LIBORs {LiTi ; i = 1, ..., n} in

the stochastic volatility LIBOR MFM. In our approach we take the link between

the separable LMMs and LIBOR MFMs as a guide. In particular we remember

that the separable SABR-LMM (4.6) is expected to be numerically similar to the

stochastic volatility LIBOR MFM with the SABR driving process (4.1) together

with the input prices of digital caplets derived from the SDE (4.6). Thus we first

derive an approximate formula for the correlation of LIBORs at their setting dates in

the separable SABR-LMM (4.6), and then we borrow this formula for our stochastic

volatility LIBOR MFM because of the link.

Now we derive an approximate formula for the correlations of the LIBORs

{LiTi ; i = 1, ..., n} under the separable SABR-LMM (4.6). The derivation involves

some rough approximation. We will investigate the accuracy of the approximate

formula numerically later in this section. We will see that the performance of this

approximate formula is satisfactory.

The first approximation we adopt here is freezing the drift in the LIBORs

Li, i = 1, ..., n− 1, of the separable SABR-LMM (4.6) under the terminal measure:

−
n∑

j=i+1

(
γjαj(L

j
t )
β

1 + αjL
j
t

)γiσ2
t ≈ −

n∑
j=i+1

(
γjαj(L

j
0)β

1 + αjL
j
0

)γiσ2
0 =: µ̄i0.

This approximation leads to the following forward LIBORs dynamics under the

terminal measure

dLit = µ̄i0(Lit)
βdt+ γiσt(L

i
t)
βdWn+1

t i = 1, ..., n− 1, (4.36)

dLnt = γnσt(L
n
t )βdWn+1

t β ∈ [0, 1],

dσt = µtσtdt+ vσtdB
n+1
t v > 0,

dWn+1
t dBn+1

t = ρdt ρ ∈ [−1, 1].
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Note that the above drift approximation introduces arbitrage.

The second approximation we apply here is to approximate the model (4.36)

by a stochastic volatility displaced-diffusion (DD) model. In particular applying a

Taylor expansion to (Lit)
β:

(Lit)
β ≈ (Li0)β + β(Li0)β−1(Lit − Li0)

= δi(L
i
t + θi), (4.37)

and inserting (4.37) into (4.36), we arrive at the following stochastic volatility

displaced-diffusion model

dLit = δiµ̄
i
0(Lit + θi)dt+ δiγ

iσt(L
i
t + θi)dW

n+1
t (4.38)

dLnt = δnγ
nσt(L

n
t + θn)dWn+1

t

dσt = µtσtdt+ vσtdB
n+1
t v > 0,

dWn+1
t dBn+1

t = ρdt ρ ∈ [−1, 1]

with the mapping

δi = β(Li0)β−1

θi = Li0
1− β
β

.

Note that the similarity between the CEV SABR model and the corresponding DD

SABR model has been justified numerically by [47]. It follows from SDE (4.38) that

ln(LiTi + θi) = ln(Li0 + θi) + δiµ̄
i
0Ti −

1

2
δ2
i (γ

i)2

∫ Ti

0
σ2
t dt+ δiγ

i

∫ Ti

0
σtdW

n+1
t .

When the variability of the term
∫ Ti

0 σ2
t dt is negligible compared to the variability

of the random variable
∫ Ti

0 σtdW
n+1
t , it is safe to approximate the term

∫ Ti
0 σ2

t dt by

its expectation so that we have the following approximation

ln(LiTi + θi) ≈ biTi + δiγ
i

∫ Ti

0
σtdW

n+1
t , (4.39)

where

biTi := ln(Li0 + θi) + δiµ̄
i
0Ti −

1

2
δ2
i (γ

i)2EFn+1(

∫ Ti

0
σ2
t dt)

is a deterministic function. Since correlation is unchanged by a linear transforma-
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tion, we have the following approximate formula for the correlation of LIBORs

Corr(ln(LiTi + θi), ln(LjTj + θj)) ≈ Corr(
∫ Ti

0
σtdW

n+1
t ,

∫ Tj

0
σtdW

n+1
t ). (4.40)

Note that the derivation of this formula involves some rough approximation. But

we will see later in a numerical investigation that the performance of this formula

is satisfactory when the parameter Volvol ν is not too big. Furthermore we can find

a formula for the correlation

Corr(

∫ Ti

0
σtdW

n+1
t ,

∫ Tj

0
σtdW

n+1
t )

under the separable SABR-LMM (4.6) in terms of the parameters µs for s = 0, ..., n−
1.

Proposition 4. Consider the separable SABR-LMM (4.6). The correlation between∫ Ti
0 σtdW

n+1
t and

∫ Tj
0 σtdW

n+1
t , 1 ≤ i < j ≤ n, satisfies

Corr(

∫ Ti

0
σtdW

n+1
t ,

∫ Tj

0
σtdW

n+1
t ) =

√
ζTi
ζTj

where

ζTi :=V ar(

∫ Ti

0
σtdW

n+1
t )

=
i−1∑
j=0

σ2
0

2µj + ν2
[exp(2

∫ Tj+1

0
µsds+ ν2Tj+1)− exp(2

∫ Tj

0
µsds+ ν2Tj)]. (4.41)

Proof. See Appendix 4.A.

So far we have achieved the following approximate formula for the correla-

tions of LIBORs at their setting dates under the separable SABR-LMM (4.6):

Corr(ln(LiTi + θi), ln(LjTj + θj)) ≈

√
ζTi
ζTj

. (4.42)

where ζTi is given by equation (4.41). Based on the link between the separable

SABR-LMM and the stochastic volatility LIBOR MFM, we borrow the approx-

imate formula (4.42) for our stochastic volatility LIBOR MFM with the target

SABR driving process (4.1). Now we can choose the remaining parameters µj ,

j = 0, ..., n − 1, in the target SABR driving process (4.1) by calibrating to the
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market correlation of LIBORs at their setting dates. We note that in a low factor

model we cannot capture the whole correlation matrix. In particular the piecewise

constant drift µj , j = 0, ..., n − 1, can fully determine up to n correlations of the

LIBORs {LiTi ; i = 1, ..., n} so that we cannot capture all the market correlations

Corr(ln(LiTi + θi), ln(LjTj + θj)) for 1 ≤ i < j ≤ n. In our approach we calibrate

to the one-step correlation of the LIBORs Corr(ln(LiTi + θi), ln(Li+1
Ti+1

+ θi+1)) for

1 ≤ i ≤ n− 1.

Suppose we are given a set of market one-step correlations of LIBORs

Corrmkt(ln(LiTi + θi), ln(Li+1
Ti+1

+ θi+1))

for i = 1, ..., n− 1. Note that the market correlations are not observable directly in

the market. We have to estimate them using the swaption matrix from the market.

For details the reader is referred to [48]. The parameters µj , j = 0, ..., n− 1, can be

chosen as follows.

1. The algorithm for fixing ζTi ’s works back iteratively from Tn. Without loss of

generality, we set

ζTn =
σ2

0

ν2
(eν

2Tn − 1).

2. Suppose we now reach Ti, having fixed ζTj for j = i + 1, ..., n. Given the

market one-step correlation of LIBORs we can fix ζTi by the approximate

formula (4.40)

Corrmkt(ln(LiTi + θi), ln(Li+1
Ti+1

+ θi+1)) ≈

√
ζTi
ζTi+1

so that

ζTi = ζTi+1 [Corrmkt(ln(LiTi + θi), ln(Li+1
Ti+1

+ θi+1))]2.

3. Once we have determined ζTi for i = 1, ..., n, we can fix µj ’s by working forward

iteratively from T1. At T1, with knowledge of ζT1 we choose µ0 such that

ζT1 =
σ2

0

2µ0 + ν2
[exp(2µ0T1 + ν2T1)− 1],

where µ0 can be found by using, for instance, the bisection method.

4. Suppose we have now reached Ti, having fixed µj for j = 0, ..., i−1. We choose
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µi such that

ζTi+1 − ζTi =
σ2

0

2µi + ν2
[exp(2

∫ Ti+1

0
µsds+ ν2Ti+1)− exp(2

∫ Ti

0
µsds+ ν2Ti)].

Remark 8. The correlation formula (4.42) is independent of the parameters γi’s.

This means that the correlation calibration of choosing µj’s can precede the calibra-

tion routines developed in Sections 4.4 and 4.5. This benefit is due to the separation

of the specification of driver and marginals.

We have introduced an algorithm for calibrating to the market one-step cor-

relation of LIBORs by choosing piecewise constants µj ’s. The calibration procedure

also applies to the swap rate version of stochastic volatility MFM where we can cal-

ibrate to the market one-step correlations of swap rates. The details can be found

in Appendix 4.B.

4.6.2 Numerical study

Having obtained the calibration formulas for LIBORs correlation in the SV LIBOR

MFM, we investigate the calibration performance in this subsection. In our numeri-

cal study, we consider five sets of parameters which are shown in Table 4.3. Suppose

we calibrate to the correlations

Corrmkt(ln(LiTi + θi), ln(Li+1
Ti+1

+ θi+1))

where

θi = Li0
1− β
β

for i = 1, 2, ..., 29. We generate them in the column “Market” in Table 4.4. Following

the calibration routine developed in the previous subsection, we will see whether

the one-step correlation of LIBORs at their setting dates produced by stochastic

volatility LIBOR MFMs can match the target correlation in the column “Market”.

The numerical result is given in Table 4.4. The columns “MFM (I)” - “MFM (V)”

are model implied correlations

Corrmod(ln(LiTi + θi), ln(Li+1
Ti+1

+ θi+1)).

produced by the stochastic volatility LIBOR MFMs with the set of parameters

corresponding to the scenarios in Table 4.3.
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We can see from Table 4.4 that for the first scenario where the parameter

ν = 0.1, the one-step correlation of LIBORs produced by the stochastic volatility

LIBOR MFM is very close to the target so that the calibration performs quite well.

For the second and third scenarios where the parameter ν increases to 0.3, the

calibration performance is good for maturities T < 15 but getting worse for longer

maturities. In the stress test when ν = 0.5, we can see that the calibration routine

loses accuracy. This is because as the parameter ν increases, the linear relationship

(4.39) starts breaking down.

4.7 Conclusion

In this chapter we have addressed calibration issues of the SV LIBOR MFM devel-

oped in Chapter 3. Due to the nature of MFMs where the driver is separated from

the marginals, given a SABR driver any marginal distributions of LIBORs at their

setting dates can be fed into the model. The separation of the driver and marginals

provides flexibility in terms of calibration.

We considered a separable SABR-LMM which combines a SABR model and

a separable LMM. We expected this model could be numerically similar to the

stochastic volatility LIBOR MFM. Based on this link, given the SABR driving

process, we chose an appropriate SABR type marginals to feed in the MFM which

could lead to a desirable dynamics of future implied volatilities.

The link between separable SABR-LMMs and SV LIBOR MFMs also gives

us a guide as to how to calibrate a stochastic volatility MFM. Based on the link,

we developed a calibration routine to feed in the marginals by calibrating to market

vanilla options. The resulting stochastic volatility LIBOR MFM can reproduce the

market vanilla options. The numerical results indicate that the calibration perfor-

mance is satisfactory for short maturities. By adopting an “iterative procedure”, a

precise calibration can be achieved.

Finally we considered the problem of how to determine the parameters of

the driving process which is a modified SABR model. By modified SABR model

we mean that there exists a drift function in the stochastic volatility process. The

drift function which is assumed to be piecewise constant can capture the correlation

structure of LIBORs. The other parameters of the driver can be determined exoge-

nously by investigating historical market data or by traders based on their market

judgment or beliefs. Based on the link between separable SABR-LMMs and SV

LIBOR MFMs, we derived an approximate formula for the correlation of LIBORs

which is an analytical formula. We chose the drift parameters of the SABR driving
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process by calibrating to the market one step correlation of LIBORs at their setting

dates via this formula. The numerical results indicate that when the vol of volatility

is small, the calibration performance is very good. As the vol of volatility increases

the calibration performance gets worse. For the stress test where the vol of volatility

is very large, the calibration routine loses accuracy.
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4.A Appendix: Proof of Proposition 4

Consider the separable SABR-LMM (4.6). The Brownian motion Wn+1 can be

expressed as

Wn+1
t = ρBn+1

t +
√

1− ρ2Ŵn+1
t

where Bn+1 and Ŵn+1 are independent Brownian motions under the terminal mea-

sure Fn+1.

By definition we have that

Corr(

∫ Ti

0
σtdW

n+1
t ,

∫ Tj

0
σtdW

n+1
t ) =

Cov(
∫ Ti

0 σtdW
n+1
t ,

∫ Tj
0 σtdW

n+1
t )√

V ar(
∫ Ti

0 σtdW
n+1
t )V ar(

∫ Tj
0 σtdW

n+1
t )

,

where

Cov(

∫ Ti

0
σtdW

n+1
t ,

∫ Tj

0
σtdW

n+1
t )

=V ar(

∫ Ti

0
σtdW

n+1
t ) + Cov(

∫ Ti

0
σtdW

n+1
t ,

∫ Tj

Ti

σtdW
n+1
t ). (4.43)

Denote FT = σ(Bu : 0 ≤ u ≤ T ) and VT =
∫ Ti

0 σ2
t dt. We have that

V ar(

∫ Ti

0
σtdW

n+1
t ) = EFn+1 [(

∫ Ti

0
σtdW

n+1
t )2]− [EFn+1(

∫ Ti

0
σtdW

n+1
t )]2,

where by Itô isometry

EFn+1 [(

∫ Ti

0
σtdW

n+1
t )2] =

∫ Ti

0
EFn+1(σ2

t )dt

= σ2
0

∫ Ti

0
exp(2

∫ t

0
µsds+ ν2t)dt

=

i−1∑
j=0

∫ Tj+1

Tj

σ2
0

2µt + ν2
d exp(2

∫ t

0
µsds+ ν2t)

=

i−1∑
j=0

σ2
0

2µj + ν2
[exp(2

∫ Tj+1

0
µsds+ ν2Tj+1)

− exp(2

∫ Tj

0
µsds+ ν2Tj)]
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and

EFn+1(

∫ Ti

0
σtdW

n+1
t ) = 0.

Thus the first term in (4.43) is given by

V ar(

∫ Ti

0
σtdW

n+1
t ) =

i−1∑
j=0

σ2
0

2µj + ν2
[exp(2

∫ Tj+1

0
µsds+ ν2Tj+1)

− exp(2

∫ Tj

0
µsds+ ν2Tj)],

while the second term can be obtained by

Cov(

∫ Ti

0
σtdW

n+1
t ,

∫ Tj

Ti

σtdW
n+1
t )

=EFn+1(

∫ Ti

0
σtdW

n+1
t

∫ Tj

Ti

σtdW
n+1
t )− 0

=EFn+1 [(ρ

∫ Ti

0
σtdB

n+1
t +

√
1− ρ2

∫ Ti

0
σtdŴ

n+1
t )

× (ρ

∫ Tj

Ti

σtdB
n+1
t +

√
1− ρ2

∫ Tj

Ti

σtdŴ
n+1
t )],

where

EFn+1 [

∫ Ti

0
σtdB

n+1
t

∫ Tj

Ti

σtdŴ
n+1
t ]

= EFn+1 [

∫ Ti

0
σtdB

n+1
t EFn+1(

∫ Tj

Ti

σtdŴ
n+1
t |FTj )]

= EFn+1 [

∫ Ti

0
σtdB

n+1
t × 0]

= 0,

and similarly

EFn+1 [

∫ Ti

0
σtdŴ

n+1
t

∫ Tj

Ti

σtdB
n+1
t ] = 0,
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and by Itô isometry

EFn+1 [

∫ Ti

0
σtdB

n+1
t

∫ Tj

Ti

σtdB
n+1
t ]

= EFn+1 [

∫ Ti

0
σtdB

n+1
t EFn+1(

∫ Tj

Ti

σtdB
n+1
t |FTj )]

= 0,

and

EFn+1 [

∫ Ti

0
σtdŴ

n+1
t

∫ Tj

Ti

σtdŴ
n+1
t ]

= EFn+1 [EFn+1(

∫ Ti

0
σtdŴ

n+1
t

∫ Tj

Ti

σtdŴ
n+1
t |FTj )]

= EFn+1 [EFn+1(

∫ Ti

0
σtdŴ

n+1
t |FTj )EFn+1(

∫ Tj

Ti

σtdŴ
n+1
t |FTj )]

= 0.

Therefore we have that

Cov(

∫ Ti

0
σtdW

n+1
t ,

∫ Tj

0
σtdW

n+1
t )

=V ar(

∫ Ti

0
σtdW

n+1
t )

=
i−1∑
j=0

σ2
0

2µj + ν2
[exp(2

∫ Tj+1

0
µsds+ ν2Tj+1)− exp(2

∫ Tj

0
µsds+ ν2Tj)]

so that

Corr(

∫ Ti

0
σtdW

n+1
t ,

∫ Tj

0
σtdW

n+1
t ) =

√
ζTi
ζTj

where

ζTi =
i−1∑
j=0

σ2
0

2µj + ν2
[exp(2

∫ Tj+1

0
µsds+ ν2Tj+1)− exp(2

∫ Tj

0
µsds+ ν2Tj)].
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4.B Appendix: Swap rate based stochastic volatility

Markov-functional models: calibration

We have discussed the calibration of the LIBOR based stochastic volatility MFM.

In this appendix we discuss briefly the calibration of the swap rate based stochastic

volatility MFM. We will just present some main results without too much expla-

nation since the discussion for the LIBOR version earlier also applies to the swap

version.

The target (modified) SABR driving process for the stochastic volatility swap

MFM is given by (4.1). Given a driver, a swap MFM can be set up by feeding in the

input prices V i
0 (K), V i

0 : [0,∞]→ R, of a set of PVBP-digital swaptions on the ith

swap rate yi,n+1−i with strike K ≥ 0 for i = 1, ..., n. Thus the stochastic volatility

swap MFM with the target driver (4.1) is fully determined by

1. the input prices of PVBP-digital swaptions V i
0 (K) as a function of the strike

K for i = 1, ..., n.

2. the parameters of the target driver (4.1) which include σ0, F0, β, ρ, ν and µj

for j = 0, ..., n− 1.

Suppose the parameters σ0, F0, β, ρ and ν for (4.1) have been determined exoge-

nously by investigating historical market data or by traders based on their market

judgement or beliefs. Consequently the remaining parameters we have for the target

driver are µj for j = 0, ..., n− 1.

In Appendix 4.B.1 we decide on the marginal distributions of the swap rates

{yi,n+1−i
Ti

; i = 1, ..., n} which will be fed into the stochastic volatility swap MFM. We

do so based on a link between the stochastic volatility swap MFM and the separable

SABR-swap market model (SABR-SMM). We will use this link to find the input

prices V i
0 (K), i = 1, ..., n, by calibrating to the market prices of vanilla swaptions

in Appendix 4.B.2. This link also provides us a guide as to how to determine the

parameters µj , j = 0, ..., n− 1, by calibrating to the market correlation structure of

swap rates, which will be discussed in Appendix 4.B.3.
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4.B.1 Choice of marginals

Consider the following separable SABR-SMM in the terminal measure Fn+1:

dyi,n+1−i
t = −

n∑
j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
γjαj−1(yj,n+1−j

t )β

1 + αj−1y
j,n+1−j
t

)γiσ2
t (y

i,n+1−i
t )βdt

(4.44)

+ γiσt(y
i,n+1−i
t )βdWn+1

t i = 1, ..., n− 1,

dyn,1t = γnσt(y
n,1
t )βdWn+1

t β ∈ [0, 1],

dσt = µtσtdt+ vσtdB
n+1
t v > 0,

dWn+1
t dBn+1

t = ρdt ρ ∈ [−1, 1].

where µt, Ψi
t and P̂ i,n+1−i

t are given by (4.2), (4.23) and (4.24) respectively. This

model is expected to be numerically similar to the stochastic volatility swap MFM

with the target SABR driving process (4.1) together with the prices V i
0 (K), i =

1, ..., n, for PVBP-digital swaptions produced by the model (4.44).

Following the explanations in Section 4.3.2, we feed in the prices V i
0 (K),

i = 1, ..., n, of PVBP-digital swaptions with strike K ≥ 0 produced by the model

(4.44). By doing so we arrive at a stochastic volatility swap MFM which is expected

to be similar to the separable SABR-SMM (4.44). More importantly, it will provide

us a guide as to how to calibrate the stochastic volatility swap MFM, and in what

follows we will develop a calibration routine.

4.B.2 Calibration to swaptions

So far we have decided to feed the input prices V i
0 (K), i = 1, ..., n, of PVBP-digital

swaptions with strike K ≥ 0 produced by the model (4.44) into our stochastic

volatility swap MFM with the target SABR driver (4.1). But when we calculate the

prices V i
0 (K), we still have free parameters γi’s for the SDE (4.44) that need to be

determined. We will determine the parameters γi’s by fitting co-terminal swaption

volatilities. Once we have fixed the parameters γi’s, we can find the input prices

V i
0 (K), i = 1, ..., n, produced by the model (4.44). Finally we feed these input

prices into our stochastic volatility swap MFM, and we can obtain a MFM which

will recover co-terminal swaption volatilities . Before we proceed to the calibration

routine, let us assume that the parameters µj , j = 0, ..., n− 1, for the target driver

(4.1) are given. We will give the details of how to determine µj ’s later in the next

subsection.

In order to choose the parameters γi’s by calibrating to the market prices of
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swaptions, let us derive an approximate formula for the swaption prices within the

model (4.44). To do so we derive the SABR-SMM under the associated swaption

measure.

Lemma 4. Let yi,n+1−i satisfies SDEs (4.44). Under the swaption measure Si,n+1−i

the dynamics of yi,n+1−i satisfies

dyi,n+1−i
t = σit(y

i,n+1−i
t )βdW i,n+1−i

t β ∈ [0, 1], (4.45)

dσit = µ̂i(t, σt, yt)σ
i
tdt+ vσitdB

i,n+1−i
t σit = γiσt

dW i,n+1−i
t dBi,n+1−i

t = ρdt ρ ∈ [−1, 1],

with

µ̂i(t, σt, yt) := µt + vρ

n∑
j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
γjαj−1(yj,n+1−j

t )β

1 + αj−1y
j,n+1−j
t

)σt (4.46)

where W i,n+1−i and Bi,n+1−i are correlated Brownian motions in the swaption mea-

sure Si,n+1−i.

Proof. The Brownian motion Bn+1 in the terminal measure can be expressed as

dBn+1
t = ρdWn+1

t +
√

1− ρ2dZn+1
t ,

where Zn+1 and Wn+1 are independent Brownian motions in the terminal measure

Fn+1. Define ςt by

ςt :=
dSi,n+1−i

dFn+1

∣∣∣∣
Ft

=
P i,n+1−i
t /P i,n+1−i

0

DtTn+1/D0Tn+1

,

where {Ft} is the filtration generated by Zn+1 and Wn+1. After calculation, we

have that

dςt = ςt

n∑
j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
γjαj−1(yj,n+1−j

t )β

1 + αj−1y
j,n+1−j
t

)σtdW
n+1
t .

From the Girsanov theorem we have that the processes

dW i,n+1−i
t := dWn+1

t − dςt
ςt
· dWn+1

t

= dWn+1
t −

n∑
j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
γjαj−1(yj,n+1−j

t )β

1 + αj−1y
j,n+1−j
t

)σtdt
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and

dZi,n+1−i
t := dZn+1

t − dςt
ςt
· dZn+1

t

= dZn+1
t

are independent Brownian motions in Si,n+1−i. Thus we have that

dBn+1
t = ρdW i,n+1−i

t +
√

1− ρ2dZi,n+1−i
t

+ ρ
n∑

j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
γjαj−1(yj,n+1−j

t )β

1 + αj−1y
j,n+1−j
t

)σtdt,

= dBi,n+1−i
t + ρ

n∑
j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
γjαj−1(yj,n+1−j

t )β

1 + αj−1y
j,n+1−j
t

)σtdt,

where Bi,n+1−i is a Brownian motion in Si,n+1−i defined as

dBi,n+1−i
t = ρdW i,n+1−i

t +
√

1− ρ2dZi,n+1−i
t .

The result then follows from the SDE (4.44).

Following the two-step approximation introduced in Section 4.4.2, we derive

an approximate SABR formula σB(K, yi,n+1−i
0 ; σ̂i0, β, ν, ρ) given by (4.8) for the co-

terminal swaption on the ith swap rate yi,n+1−i with strike K based on the model

(4.45) where σ̃i0 is given by

σ̂i0 :=
γiσ0

∫ Ti
0 e

∫ t
0 µ̂

i(s,σ0,y0)dsdt

Ti
, (4.47)

µ̂i(t, σ0, y0) := µt + vρ
n∑

j=i+1

Ψj−1
0 P̂ j,n+1−j

0

Ψi−1
0 P̂ i,n+1−i

0

(
γjαj−1(yj,n+1−j

0 )β

1 + αj−1y
j,n+1−j
0

)σ0. (4.48)

So far we have obtained an approximate SABR formula for the SABR-SMM

(4.44) or equivalently (4.45). We can choose the parameters γi’s such that the

approximate SABR formula σB(K, yi,n+1−i
0 ; σ̂i0, β, ν, ρ) matches the market implied

volatilities of the set of vanilla swaptions. Suppose we are given the market im-

plied volatilities σmkt(Ki, yi,n+1−i
0 ) of the co-terminal swaption on the ith swap rate

yi,n+1−i struck at some particular strike Ki for each i = 1, ..., n. We can choose γi

such that the approximate SABR formula for the SABR-LMM (4.44) matches the
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market implied volatility σmkt(Ki, yi,n+1−i
0 ):

σB(Ki, yi,n+1−i
0 ; σ̂i0, β, ν, ρ) = σmkt(Ki, yi,n+1−i

0 ),

for each i = 1, ..., n.

Having fixed the parameters γi, i = 1, ..., n, in the separable SABR-SMM

(4.45), we can find the model implied prices V i
0 (K), i = 1, ..., n, of the set of PVBP-

digital swaptions as a function of the strike K. To do so, for this study we apply

Monte Carlo methods. Finally we can feed the prices V i
0 (K), i = 1, ..., n, into our

stochastic volatility swap MFM, and the resulting model can recover the market im-

plied volatilities σmkt(Ki, yi,n+1−i
0 ), i = 1, ..., n, of the set of co-terminal swaptions.

4.B.3 Calibration to market correlations

In this subsection we choose parameters µj , j = 0, ..., n − 1, for the target SABR

driving process (4.1) by calibrating to the market one step correlation of the swap

rates {yi,n+1−i
Ti

; i = 1, ..., n}. The calibration routine here is the same as the calibra-

tion routine developed in Section 4.6.1 with the correlation

Corr(ln(yi,n+1−i
Ti

+ θi), ln(yi+1,n−i
Ti+1

+ θi+1))

substituted for

Corr(ln(LiTi + Li0
1− β
β

), ln(Li+1
Ti+1

+ Li+1
0

1− β
β

))

where

θi := yi,n+1−i
0

1− β
β

.

Since the calibration routines for the LIBOR based and swap rate based stochastic

volatility MFMs are very similar, we will not provide the details here.
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Expiry Market Approx SABR-LMM (MC) SABR-LMM (MC) MFM

ν = 0.1, β = 0.9, ρ = −0.8, σ0 = 0.02 and µj = 0

5Y 12.76 12.75 12.74 12.74
10Y 11.19 11.12 11.10 11.10
15Y 10.28 10.12 10.07 10.07
20Y 9.97 9.70 9.63 9.63
25Y 9.69 9.29 9.18 9.18
30Y 9.30 8.79 8.65 8.65

ν = 0.2, β = 0.7, ρ = −0.4, σ0 = 0.04 and µj = 0.01

5Y 12.76 12.75 12.74 12.74
10Y 11.19 11.08 11.05 11.05
15Y 10.28 10.04 9.98 9.98
20Y 9.97 9.58 9.47 9.47
25Y 9.69 9.14 9.00 9.00
30Y 9.30 8.57 8.40 8.40

ν = 0.3, β = 0.5, ρ = 0, σ0 = 0.06 and µj = 0.03

5Y 12.76 12.75 12.74 12.74
10Y 11.19 11.03 11.00 11.00
15Y 10.28 9.95 9.88 9.88
20Y 9.97 9.43 9.31 9.31
25Y 9.69 8.97 8.81 8.81
30Y 9.30 8.40 8.19 8.18

ν = 0.4, β = 0.3, ρ = 0.4, σ0 = 0.08 and µj = 0.01× j
5Y 12.76 12.74 12.72 12.72
10Y 11.19 10.96 10.91 10.91
15Y 10.28 9.87 9.78 9.78
20Y 9.97 9.33 9.16 9.15
25Y 9.69 8.82 8.61 8.60
30Y 9.30 8.19 7.93 7.91

ν = 0.5, β = 0.1, ρ = 0.8, σ0 = 0.1 and µj = 0.3− 0.01× j
5Y 12.76 12.73 12.71 12.71
10Y 11.19 10.91 10.84 10.83
15Y 10.28 9.76 9.66 9.66
20Y 9.97 9.24 9.05 9.03
25Y 9.69 8.72 8.47 8.42
30Y 9.30 8.03 7.69 7.62

Table 4.1: Calibration performance for implied volatilities (%) of the ATM caplets
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Expiry Market Approx SABR-SMM (MC) SABR-SMM (MC) MFM

ν = 0.1, β = 0.9, ρ = −0.8, σ0 = 0.02 and µj = 0

5Y 10.64 10.64 10.64 10.63
10Y 10.06 10.01 9.99 9.99
15Y 9.92 9.79 9.74 9.73
20Y 9.82 9.59 9.53 9.52
25Y 9.61 9.24 9.14 9.13
30Y 9.30 8.79 8.65 8.65

ν = 0.2, β = 0.7, ρ = −0.4, σ0 = 0.04 and µj = 0.01

5Y 10.64 10.63 10.62 10.61
10Y 10.06 9.98 9.95 9.94
15Y 9.92 9.71 9.67 9.63
20Y 9.82 9.44 9.34 9.32
25Y 9.61 9.06 8.93 8.92
30Y 9.30 8.57 8.40 8.40

ν = 0.3, β = 0.5, ρ = 0, σ0 = 0.06 and µj = 0.03

5Y 10.64 10.63 10.62 10.60
10Y 10.06 9.91 9.88 9.85
15Y 9.92 9.63 9.57 9.50
20Y 9.82 9.31 9.19 9.15
25Y 9.61 8.90 8.75 8.73
30Y 9.30 8.40 8.19 8.18

ν = 0.4, β = 0.3, ρ = 0.4, σ0 = 0.08 and µj = 0.01× j
5Y 10.64 10.62 10.60 10.58
10Y 10.06 9.85 9.81 9.74
15Y 9.92 9.53 9.43 9.35
20Y 9.82 9.19 9.02 8.98
25Y 9.61 8.74 8.55 8.51
30Y 9.30 8.19 7.93 7.91

ν = 0.5, β = 0.1, ρ = 0.8, σ0 = 0.1 and µj = 0.3− 0.01× j
5Y 10.64 10.61 10.59 10.55
10Y 10.06 9.81 9.75 9.65
15Y 9.92 9.42 9.34 9.21
20Y 9.82 9.09 8.90 8.78
25Y 9.61 8.65 8.39 8.29
30Y 9.30 8.03 7.69 7.62

Table 4.2: Calibration performance for implied volatilities (%) of the ATM co-
terminal swaptions
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Scenario ν σ0 β ρ

I 0.1 0.02 0.9 -0.8
II 0.2 0.04 0.7 -0.4
III 0.3 0.06 0.5 0
IV 0.4 0.08 0.3 0.4
V 0.5 0.1 0.1 0.8

Table 4.3: Scenarios for the SV MFM.

i Market MFM (I) MFM (II) MFM (III) MFM (IV) MFM (V)

1 0.689 0.693 0.696 0.700 0.701 0.703
2 0.796 0.797 0.799 0.801 0.802 0.805
3 0.843 0.843 0.844 0.846 0.847 0.849
4 0.871 0.871 0.871 0.872 0.873 0.874
5 0.888 0.888 0.888 0.888 0.888 0.889
6 0.901 0.901 0.901 0.900 0.900 0.896
7 0.909 0.909 0.909 0.907 0.906 0.902
8 0.916 0.916 0.915 0.913 0.911 0.905
9 0.922 0.922 0.920 0.918 0.915 0.905
10 0.926 0.926 0.923 0.921 0.916 0.905
11 0.929 0.929 0.926 0.925 0.916 0.906
12 0.932 0.932 0.928 0.927 0.917 0.906
13 0.935 0.935 0.932 0.929 0.918 0.907
14 0.937 0.937 0.933 0.929 0.917 0.907
15 0.938 0.937 0.933 0.929 0.915 0.906
16 0.940 0.939 0.935 0.930 0.914 0.906
17 0.941 0.939 0.936 0.930 0.913 0.904
18 0.942 0.940 0.937 0.930 0.912 0.902
19 0.943 0.941 0.937 0.930 0.912 0.900
20 0.944 0.941 0.937 0.930 0.911 0.899
21 0.945 0.942 0.938 0.930 0.912 0.898
22 0.946 0.942 0.939 0.931 0.912 0.896
23 0.946 0.942 0.939 0.930 0.911 0.894
24 0.947 0.942 0.939 0.930 0.910 0.891
25 0.947 0.942 0.938 0.929 0.908 0.888
26 0.948 0.943 0.938 0.929 0.907 0.884
27 0.948 0.943 0.938 0.928 0.906 0.879
28 0.954 0.946 0.939 0.928 0.906 0.879
29 0.961 0.953 0.942 0.930 0.906 0.868

Table 4.4: Calibration performance for one-step correlation of LIBORs
Corr(ln(LiTi + θi), ln(Li+1

Ti+1
+ θi+1)) under SV MFMs with different scenarios
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Chapter 5

Comparison of stochastic

volatility Markov-functional

model and one-factor

Markov-functional models

5.1 Introduction

In the interest rate markets, Bermudan swaptions are one of the most popular exotic

derivatives which are traded over-the-counter. A Bermudan swaption is a derivative

that allows its holder to enter into an interest rate swap on any of a set of pre-

arranged exercise dates. The term “Bermudan” means that the option allows for a

discrete set of exercise dates. But the option can only be exercised once. We will

consider pricing and hedging Bermudan swaptions in this chapter. The other exotic

option we will study in this chapter is a new Bermudan product. The new Bermudan

product has more complicated payoffs, and its underlying is a structured interest

rate swap, where a regular fixing leg is swapped against structured coupons. The

new Bermudan product studied here is motivated by a callable range accrual which

is a popular exotic option in the interest rate markets. Callable range accruals are

very involved products to price whose payoff depends on the accrual of days that

a LIBOR falls within a pre-arranged range. For details, the reader is referred to

[32] and [6] and references therein. The new Bermudan product studied here is also

traded in the markets, and has similar features but is much simpler than callable

range accruals. The simplification means that we can focus on understanding the

effect of stochastic volatility without introducing further approximations needed to
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handle a more involved product.

There are many interest rate models that are capable of pricing and hedging

the above two Bermudan products which include short rate models, LIBOR market

models and Markov-functional models. We focus on Markov-functional models in

this chapter. In the literature there has been substantial debate between single-

factor models and multi-factor models. See [50], [3] and [22]. Pietersz and Pelsser

[57] compared a one-factor Markov-functional model and multi-factor market models

in terms of hedging performance for a Bermudan swaption. The numerical results

showed that the performance of the two models is comparable which is consistent

with the recent consensus post crisis. Thus in this chapter we focus on the low-factor

Markov-functional models.

Pietersz and Pelsser [57] also studied the effect of implied volatility smiles/skews

on the price of a Bermudan swaption in a one-dimensional Markov-functional model

with a Gaussian driver. The authors compared the following two models: a Markov-

functional model feeding in the Black’s formula and a Markov-functional model

feeding in the displaced diffusion formula which is able to capture implied volatility

skews. The displaced diffusion Markov-functional model is calibrated to the mar-

ket implied volatility smiles using the least squares method which can be seen as

a “global fit” approach. In this case the numerical results indicated that the smile

effect is very large in terms of pricing a Bermudan swaption. In this chapter we

perform a similar numerical study. But the difference from [57] is that we adopt

a “local fit” calibration approach where we fit the implied volatility at the strike

of the Bermudan exactly. In this case our results show that the effect of smile is

insignificant on the price of a Bermudan swaption.

Another numerical study for Markov-functional models was performed by

Kennedy and Pham [48] where they investigated the effect of the specification of

a Gaussian driver on a Bermudan swaption in terms of hedging performance in

a one-dimensional Markov-functional model feeding in the Black’s formula. Their

numerical results indicated that the driver “parameterized by time” outperforms the

driver “parameterized by expiry”. In this chapter we make a further development. In

addition to the specifications of a Gaussian driver proposed in [48], we also consider

a SABR driver and take implied volatility smiles into account. Our results show

that the introduction of stochastic volatility does not materially alter the hedging

behaviour of parametrization by time. This finding is significant for practitioners

wanting to use stochastic volatility models.

An important observation made by Pietersz and Pelsser [57] is that the price

of a co-terminal Bermudan swaption is mainly determined by the joint distribution
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of the underlying co-terminal swap rates at their setting dates. This motivates

us to calibrate to the co-terminal vanilla swaptions as well as the market implied

correlation structure of the co-terminal swap rates because they can fully determine

the joint distribution of the co-terminal swap rates at their setting dates (in the

case of Normal or log-Normal distribution). However due to the complex nature

of Bermudan products, stochastic volatility may also influence prices and hedges of

Bermudan type products. In fact empirical evidence (see [15] and [49]) supports

the use of stochastic volatility for interest rates. Furthermore as Hagan et al. [31]

pointed out, incorporating an extra stochastic volatility factor into a model could

give a more realistic evolution for the implied volatility smile. Kaisajuntti and

Kennedy [44] used market data to identify a SABR type model as an appropriate

choice for the level of interest rates. These observations motivate us to investigate

the stochastic volatility impact on Bermudan type products in terms of pricing

and hedging. Although many stochastic volatility term structure models have been

proposed in the literature, see e.g. [4], [65], [55], [62], [60], [34], [33] and [5], little

is known in the literature about investigating the effect of introducing stochastic

volatility on pricing and hedging Bermudan style products.

In this chapter we compare a stochastic volatility Markov-functional model

with a one-dimensional Markov-functional model in terms of pricing and vega hedg-

ing performance for a Bermudan swaption and the new Bermudan product. In our

numerical comparison, we calibrate a stochastic volatility swap Markov-functional

model and one-dimensional swap Markov-functional models with different combina-

tions of driver and marginals to the real market. Then we compare the prices and

vega profiles of Bermudan products produced by the above Markov-functional mod-

els. The numerical results show a very big difference in vega profiles of Bermudan

products produced by models parameterized by time and by expiry, and the result

is consistent with the results of [48]. Furthermore we find that this big difference is

not changed when implied volatility smiles and stochastic volatility are taken into

account. The introduction of stochastic volatility has an insignificant effect on the

price of a Bermudan swaption but the impact is significant on the new Bermudan

product.

The rest of the chapter is organised as follows. In Section 5.2, we introduce

the methodology for comparison of the Markov-functional models. In Section 5.3 we

describe the market data for the comparison. In Sections 5.4 and 5.5 we compare

Markov-functional models in terms of pricing and hedging a Bermudan swaption

and a new Bermudan product. Section 5.6 concludes.
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5.2 Methodology

In this section we describe the framework for a comparison between one-dimensional

swap Markov-functional models (MFMs) and a stochastic volatility swap MFM in

terms of pricing and hedging a Bermudan swaption and a new Bermudan product.

In Sections 5.2.1 and 5.2.2 we introduce Bermudan swaptions and new Bermudan

products, and discuss their features that need to be captured for an accurate pricing.

In the numerical study we consider the following five swap MFMs for comparison:

(a) one-dimensional swap MFM with a mean reversion (MR) driver fitting the

Black’s formula for swaptions

(b) one-dimensional swap MFM with a Hull-White (HW) driver fitting the Black’s

formula for swaptions

(c) one-dimensional swap MFM with a one-step covariance driver fitting the Black’s

formula for swaptions

(d) one-dimensional swap MFM with a Hull-White driver feeding in SABR marginal

distributions of swap rates at their setting dates

(e) stochastic volatility swap MFM with a SABR driver feeding in SABR marginal

distributions of swap rates at their setting dates.

A discussion of these MFMs and an explanation of why we choose these MFMs for

the comparison will be given in Sections 5.2.3 and 5.2.4. To perform a comparison

we calibrate the above five MFMs to the market data. Then we compute model

prices and produce vega profiles of a Bermudan swaption and a new Bermudan

product within these five calibrated MFMs. By comparing the model prices and

vegas, we investigate the correlation, smile and stochastic volatility impacts on the

pricing and hedging performance of Bermudan products. The analytical expressions

for the vegas of a Bermudan swaption in the above five MFMs are studied in Section

5.2.5. The numerical results are given in Sections 5.4 and 5.5.

5.2.1 Bermudan swaptions

In the numerical study we consider a co-terminal style Bermudan swaption where

its holder has the right to enter into the remaining underlying co-terminal interest

rate swap at a number of pre-arranged exercise dates. At each exercise date the

holder can decide on exercising the right or waiting for the next exercise date, but

only one exercising opportunity is given.
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Let us first discuss how to price a co-terminal Bermudan swaption. For the

tenor structure (2.1), let us consider a pay fixed co-terminal Bermudan swaption

with strike K and exercise dates T1, T2, ..., Tn on an interest rate swap with payment

dates T2, T3, ..., Tn+1. The value VBerm(0) of this Bermudan swaption at time 0 can

be found recursively. At exercise date Ti, i = 1, ..., n, the holder can decide on

exercising or waiting so that the payoff Ṽ i
Berm(Ti) is given by

Ṽ i
Berm(Ti) := max(V i

Berm(Ti), V
i,n+1−i
Swap (Ti)), (5.1)

where V i,n+1−i
Swap (Ti) denotes the time Ti value of a pay fixed interest rate swap with

setting dates Ti, Ti+1, ..., Tn and settlement dates Ti+1, Ti+2, ..., Tn+1, which is given

by

V i,n+1−i
Swap (Ti) = N [P i,n+1−i

Ti
(yi,n+1−i
Ti

−K)],

where N is the notional amount, P i,n+1−i is PVBP and yi,n+1−i is swap rate; see

Section 2.1.1. We note that at the last exercise date Tn the above Bermudan swap-

tion is simply a vanilla swaption so that the payoff Ṽ n
Berm(Tn) at time Tn is given

by

Ṽ n
Berm(Tn) := max(0, V n,1

Swap(Tn)).

We can see that the payoff function (5.1) is a maximum between the value V i,n+1−i
Swap (Ti)

of exercising the option and the value V i
Berm(Ti) of waiting at time Ti. In an

arbitrage-free model under some equivalent martingale measure Q corresponding

to the numeraire M , the value V i
Berm(Ti) of the Bermudan swaption at time Ti,

i = 0, ..., n− 1, is given by

V i
Berm(Ti) = MTiEQ[

Ṽ i+1
Berm(Ti+1)

MTi+1

|FTi ],

where Ṽ i+1
Berm(Ti+1) is the payoff at time Ti+1. In our context we price a Bermudan

swaption using a MFM under the terminal measure Fn+1 with the corresponding

numeraire D.,Tn+1 .

We now consider the problem of what instruments and features one needs to

calibrate to in order to give an accurate Bermudan price in a low-factor model. As

pointed out by Pietersz and Pelsser [57], the joint distribution of the co-terminal

swap rates {yj,n+1−j
Ti

; j = i, ..., n, i = 1, ..., n} can determine the price of a Bermu-

dan swaption, but the main contribution is the joint distribution of the swap rates
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{yi,n+1−i
Ti

; i = 1, ..., n}. As a result a valuation model for the Bermudan swaption

needs to be calibrated to the co-terminal vanilla swaptions so that the market im-

plied marginal distributions of the swap rates {yi,n+1−i
Ti

; i = 1, ..., n} in the associated

swaption measure Si,n+1−i, i = 1, ..., n, corresponding to the numeraire P i,n+1−i can

be captured. Note that in financial markets the prices of vanilla swaptions are given

to us in the form of implied volatilities which usually are a function of strike display-

ing a shape of smile or skew. Ideally we would like to calibrate to the whole implied

volatility smile or skew of the vanilla swaptions which is equivalent to capturing

the marginal distributions. But this is not always possible. For example Black’s

formula for the vanilla swaption assumes that the implied volatility is a constant

w.r.t strike so that it can only capture implied volatility at one strike. In this case

we need to decide on which implied volatility the model should be calibrated to. A

rule of thumb is to choose the implied volatility of the co-terminal vanilla swaptions

struck at the strike K of the Bermudan swaption since this is the most relevant to

the Bermudan swaption.

Another key feature one needs to capture is the correlation (covariance) struc-

ture of the underlying swap rates {yi,n+1−i
Ti

; i = 1, ..., n}. The correlation structure is

not observable directly from the markets. One has to extract them from the market

implied volatilities of vanilla swaptions. For details, the reader is referred to [48].

Therefore in order to price the Bermudan swaption properly, a low-factor

valuation model needs to be calibrated to the co-terminal vanilla swaptions and the

correlation structure of the underlying swap rates. We will discuss the problem of

how to achieve this under swap MFMs later in this section.

5.2.2 New Bermudan product

The definition of a new Bermudan product is similar to a co-terminal Bermudan

swaption except for the underlying interest rate swap. In particular, we recall that

the underlying interest rate swap of the co-terminal Bermudan swaption, considered

in Section 5.2.1, with strike K admits a fixed leg NαiK and floating leg NαiL
i
Ti

at

each settlement date Ti+1 for i = 1, ..., n. For the new Bermudan product however

the underlying is a structured interest rate swap with a fixed leg NαiK and a floating

leg NαiL
i
Ti
I{l≤LiTi<m}

at each settlement date Ti+1, i = 1, ..., n, for lower barrier l

and upper barrier m.

Let us now consider a pay fixed new Bermudan product with strike K, no-

tional amount N and exercise dates T1, T2, ..., Tn on a structured interest rate swap

with payment dates T2, T3, ..., Tn+1. The procedure for finding the value VProd(0)

of such a Bermudan product at time 0 is similar to the Bermudan swaption that is
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discussed earlier except that the time Ti value V i,n+1−i
Swap (Ti) of the interest rate swap

in the payoff function (5.1) is replaced by the value V i,n+1−i
Strut (Ti) of the structured

interest rate swap at each exercise date Ti, i = 1, ..., n, which is given by

V i,n+1−i
Strut (Ti) = [V i

F lt(Ti)− V i
F ix(Ti)],

where V i
F ix(Ti) and V i

F lt(Ti) denote the time Ti values of the fixed leg and the

floating leg respectively. The fixed leg consists of a series of payments on dates

Ti+1,Ti+2,...,Tn+1 so that its value at time Ti is given by

V i
F ix(Ti) = NK

n∑
j=i

αjDTiTj+1

= NKP i,n+1−i
Ti

.

The floating leg is more difficult to value. To do so we apply the fundamental pricing

formula. In particular under some equivalent martingale measure Q corresponding

to the numeraire M , the value V i
F lt(Ti) of the floating leg at time Ti is given by

V i
F lt(Ti) = MTiNEQ[

n∑
j=i

αjL
j
Tj
I{l≤LjTj<m}

MTj+1

|FTi ]. (5.2)

In the context of MFMs we choose the terminal measure Fn+1 as the equivalent

martingale measure corresponding to the numeraire D.,Tn+1 .

Having discussed the valuation of the Bermudan product we now consider

the calibration problem in a low-factor valuation model. The complication of the

Bermudan product makes it difficult to identify the calibrating instruments. How-

ever we notice that as the lower barrier l decreases and upper barrier m gets bigger,

this Bermudan product should reduce to a Bermudan swaption. It is noted in Hagan

[32] that one can hedge the new product by using a Bermudan swaption, and this

requires using the same valuation model and calibration method for the new Bermu-

dan product as would be used for Bermudan swaptions. As a result it is necessary

to calibrate to the co-terminal vanilla swaptions and the correlation structure of

the swap rates {yi,n+1−i
Ti

; i = 1, ..., n}. Furthermore we note that a floating coupon

NαiL
i
Ti
I{l≤LiTi<m}

at settlement dates Ti+1, i = 1, ..., n, of the underlying structured
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interest rate swap can be expressed as a combination of caplets and digital caplets:

NαiL
i
TiI{l≤LiTi<m}

= Nαi([L
i
Ti − l]

+ + lI{LiTi≥l}
− [LiTi −m]+ −mI{LiTi≥m}

),

(5.3)

so that equation (5.2) can be rewritten as

V i
F lt(Ti) = MTiN

n∑
j=i

EQ[
αj([L

i
Ti
− l]+ + lI{LiTi≥l}

− [LiTi −m]+ −mI{LiTi≥m}
)

MTj+1

|FTi ].

(5.4)

As a result in order to price the value of floating leg (5.2) properly, calibrating a

valuation model to the market prices of the caplets and digital caplets indicated on

the right hand side of (5.4) is required.

We note that theoretically knowing the prices of caplet V i
caplet(0;K) for all

strikes K is equivalent to knowing the price of the digital caplet V i
digcap(0;K) for

all K. In practice however the prices of digital caplets are not always quoted in

the market. But they can be replicated by a bull spread of caplets; See [52]. In

particular consider the bull spread consisting of 1
εαi

caplets with strike K − 1
2ε and

− 1
εαi

caplets struck at K + 1
2ε, which yields the payoff

1

εαi
[αi(L

i
Ti −K +

1

2
ε)+ − αi(LiTi −K −

1

2
ε)+]

=


0, if LiTi ≤ K −

1
2ε

1
ε (LiTi −K + 1

2ε), if K − 1
2ε < LiTi < K + 1

2ε

1, if LiTi ≥ K + 1
2ε.

The payoff of this bullish spread of caplets reduces to the payoff of a digital caplet

on the ith LIBOR Li struck at K as ε→ 0. Thus a digital caplet can be replicated

by the corresponding bullish spread of caplets so that

V i
digcap,ma(0;K) =

1

εαi
[V i
caplet,ma(0;K − 1

2
ε)− V i

caplet,ma(0;K +
1

2
ε)]

as ε → 0, where the subscript “ma” stands for a market value. In practice ε is

usually set to be 5bps or 10bps. In our numerical study we use this method to

obtain digital caplets prices from caplets prices.

In summary, one needs to calibrate a valuation model to the market prices of

a set of (digital) caplets, co-terminal vanilla swaptions and the correlation structure

of swap rates. However we still have the following two calibration problems.
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Effective Strikes

Firstly, we remember that in the case of non-smile valuation models for a Bermudan

swaption, the implied volatility of the vanilla swaptions struck at the strike K of

the Bermudan swaption, as opposed to other strikes, is the best choice to calibrate

to. But the new Bermudan product has a more sophisticated underlying structured

interest rate swap. In this case it is not obvious which implied volatility to calibrate

to. Following standard practice we will calibrate to the implied volatility of the

swaptions struck at the “effective strike”. For details the reader is referred to [32].

The effective strike Keff
i for each co-terminal vanilla swaption with expiry date Ti,

i = 1, ..., n, are chosen such that

fixed leg time-0 value of swap(Keff
i )

floating leg time-0 value of swap
=

fixed leg time-0 value of structured swap(K)

floating leg time-0 value of structured swap
,

and therefore

Keff
i =

NK(D0Ti −D0Tn+1)

V i
F lt(0)

. (5.5)

It follows from equation (5.3) that V i
F lt(0) is given by

V i
F lt(0) = D0Tn+1N

n∑
j=i

EFn+1(

αjL
j
Tj
I{l≤LjTj<m}

DTj+1Tn+1

)

=
n∑
j=i

[V j
caplet(0; l)− V j

caplet(0;m) + αjlV
j
digcap(0; l)− αjmV j

digcap(0;m)],

where V j
caplet(0;K) and V j

digcap(0;K) are prices of a caplet and digital caplet on the

jth LIBOR Lj struck at the strike K. In our numerical comparison we assume that

once we have determined the effective strike via the formula (5.5), it will not change

in the calculation of the vegas.

Internal Adjusters

The second calibration issue is that, in general, the market prices of co-terminal

swaptions and (digital) caplets can not be reproduced by a valuation model simul-

taneously. To solve this problem we will introduce the idea of “internal adjusters”.

In particular suppose we are given a valuation model under some equivalent mar-

tingale measure Q corresponding to the numeraire M , and the model has been

calibrated to the prices of vanilla swaptions. In general this model will not repro-
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duce the market prices of the caplet and digital caplet with some strike K on the

ith LIBOR Li:

V i
digcap,mo(0;K) = M0EQ[NI{LiTi≥K}

M−1
Ti+1

] 6= V i
digcap,ma(0;K)

V i
caplet,mo(0;K) = M0EQ[Nαi[L

i
Ti −K]+M−1

Ti+1
] 6= V i

caplet,ma(0;K),

where “mo” stands for a model value. Consequently the valuation model is incapable

of pricing the floating leg (5.4) properly. To fix this problem we adjust the payoff

functions for caplets and change the strike for digital caplets in the model. In

particular we choose strikes K̃i and constants κi, i = 1, ..., n, such that

V i
digcap,mo(0; K̃) = M0EQ[NI{LiTi≥K̃i}

M−1
Ti+1

] = V i
digcap,ma(0;K) (5.6)

Ṽ i
caplet,mo(0;K) = M0EQ[Nαi[κiL

i
Ti −K]+M−1

Ti+1
] = V i

caplet,ma(0;K). (5.7)

The above strikes K̃i and κi, i = 1, ..., n, are referred to as the internal strikes

and internal coefficients. When we price the floating leg (5.4) and therefore the new

Bermudan product, we use internal strikes and internal coefficients rather than using

the true payoff functions. Essentially we get the prices of what we’re interested in

right by changing their payoff functions but not changing the model.

5.2.3 One-dimensional swap Markov-functional models: driver spec-

ification and calibration

We now discuss the one-dimensional swap MFMs that will be considered in the nu-

merical comparison. We have discussed the specification of a one-dimensional swap

MFM by assuming that a Gaussian driving process is given in Section 3.2.2. In this

subsection we explore the specification of the Gaussian driving process. Kennedy

and Pham [48] investigated the effect of the specification of a Gaussian driver on

a Bermudan swaption in terms of hedging performance. The authors studied the

mean reversion (MR) driver, which is “parameterized by expiry”, Hull-White (HW)

and one-step covariance drivers which are “parameterized by time”. Their numeri-

cal results indicated that the driver parameterized by time outperforms the driver

parameterized by expiry. In this subsection we review these specifications of the

Gaussian driver and explain the ideas of parametrizations by time and by expiry.

We also consider the calibration issue in one-dimensional swap MFMs. The material

in this subsection is from [48].
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In a one-dimensional swap MFM, we consider the following driving process

xt :=

∫ t

0
σudW

n+1
u ,

where Wn+1 is a one-dimensional Brownian motion under the terminal measure

Fn+1 corresponding to the numeraire D.,Tn+1 and σt is a deterministic function.

Recall that we implement a MFM on a grid so that it is only necessary to specify

the variance

ξTi := V ar(xTi) =

∫ Ti

0
σ2
udu

of x at time Ti for i = 1, ..., n. This is the case since x is a Gaussian process and

the mean of it at time Ti is 0 for i = 1, ..., n. We will discuss different specifications

of the variance ξTi ’s later. Given a driving process, in order to specify the model we

need to feed in the input prices of PVBP-digital swaptions as a function of strike

which implies the marginal distributions of the swap rates {yi,n+1−i
Ti

; i = 1, ..., n} in

their associated swaption measures. In our numerical study we feed in log-Normal

marginal distributions and SABR marginals of the swap rates {yi,n+1−i
Ti

; i = 1, ..., n}
in their associated swaption measures.

Let us first consider the log-Normal marginals, and we will consider feeding in

SABR marginals later. Suppose that the input prices of the PVBP-digital swaptions

are obtained by the Black’s formula (2.12) with some implied volatilities σ̃i,n+1−i

for i = 1, ..., n. Note that the choice of σ̃i,n+1−i’s depends on the product we wish

to price. In our numerical comparison, it can be chosen to be implied volatilities

σ̃Bermi,n+1−i of the co-terminal swaptions struck at the strike of the Bermudan swaption

or σ̃effi,n+1−i struck at the effective strike depending on whether we are pricing a

Bermudan swaption or the new Bermudan product.

As the correlation structure of swap rates is an important feature for pricing

a Bermudan product, before we proceed to the specification of the Gaussian driver

we discuss the problem of how to capture the correlation structure in a swap MFM.

Bennett and Kennedy [7] indicated that under the swap MFM with a Gaussian

driving process x calibrated to the Black’s formula with implied volatility σ̃i,n+1−i for

the prices of the co-terminal swaptions, there is an approximate linear relationship:

ln yi,n+1−i
t ≈ ηit + γixt, (5.8)

for deterministic function ηit and constant γi. Thus the correlation of co-terminal
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swap rates implied by the above swap MFM can be captured by the variance of x:

Corr(xTi , xTj ) =

√
ξTi
ξTj
≈ Corrmo(ln yi,n+1−i

Ti
, ln yj,n+1−j

Tj
). (5.9)

for i < j, where “mo” stands for a model value. Furthermore we have an approxi-

mation in Fn+1

V armo(ln yi,n+1−i
Ti

) ≈ σ̃2
i,n+1−iTi. (5.10)

It follows from (5.8) and (5.10) that

(γi)2ξTi ≈ σ̃2
i,n+1−iTi. (5.11)

The approximation (5.11) will help us understand the ideas of parametrizations by

time and by expiry which will be explained later. In what follows we review the

three specifications of the Gaussian driving process.

Mean reversion driving process

The mean reversion driving process was first introduced by Hunt, Kennedy and

Pelsser [37]. The mean reversion driving process is specified by choosing the deter-

ministic function σt = eat, where the constant a > 0 is the mean reversion parameter.

The variance ξTi of the MR driving process x at each time Ti, i = 1, ..., n is given

by

ξTi =

∫ Ti

0
e2atdt =

1

2a
(e2aTi − 1).

In this case the terminal correlation of swap rates in the model is determined by the

mean reversion parameter a:

Corrmo(ln yi,n+1−i
Ti

, ln yj,n+1−j
Tj

) ≈

√
e2aTi − 1

e2aTj − 1
(5.12)

for i < j.

We now explain the idea of parametrization by expiry. We can see that once

the MR parameter a is fixed, as market implied volatilities change, the variance

of x remains unchanged and therefore, from (5.12), the model implied terminal

correlation of swap rates will not change. Moreover we can see from (5.11) that

a change in the market implied volatilities leads to a change in expiry-dependent

113



parameters γi’s. In this case, we say the mean reversion process is “parameterized

by expiry” which was first introduced by Kennedy and Pham [48]. However it

is observed in the market that a change in the market implied volatilities of the

swaptions commonly leads to a change in the terminal correlation of swap rates. In

that sense, the mean reversion process cannot reflect reality. To partially capture

this market observation, we introduce a Hull-White driving process.

Hull-White driving process

The variance of the Hull-White driving process x at each time Ti, i = 1, ..., n, is

given by

ξTi = (
(Tn+1 − Ti)σ̃ATMi,n+1−i

(1 + αiy
i,n+1−i
0 )(ψTn+1 − ψTi)

)2Ti, (5.13)

where ψTi = 1
a(1 − e−aTi), a > 0, and where σ̃ATMi,n+1−i is the market ATM implied

volatility of the co-terminal swaption. Thus the Hull-White driving process is linked

to the co-terminal swaptions of the swaption matrix; see Table 5.1. For details about

the derivation of the above variance, the reader is referred to [7].

Tenor 1 2 3 ... n− 2 n− 1 n

Expiry 1 ... ... ... ... ... ... σ̃ATM1,n

2 ... ... ... ... ... σ̃ATM2,n−1 ...

3 ... ... ... ... σ̃ATM3,n−2 ... ...
...

...
...

...
...

...
...

...
n− 2 ... ... σ̃ATMn−2,3 ... ... ... ...

n− 1 ... σ̃ATMn−1,2 ... ... ... ... ...

n σ̃ATMn,1 ... ... ... ... ... ...

Table 5.1: ATM implied volatilities in the swaption matrix linked to the Hull-White
driver.

We now explain the idea of parametrization by time. We can see from equa-

tion (5.13) that the variance ξTi of x at time Ti depends on the market implied

volatility σ̃ATMi,n+1−i of the co-terminal swaption. As a result as the market implied

volatility σ̃ATMi,n+1−i change, the variance of x and therefore the terminal correlation

of swap rates will be changed. Moreover we insert (5.13) into (5.11), and we can

see that as the market implied volatilities change, the expiry-dependent parameters

γi’s will almost stay the same (exactly the same when σ̃i,n+1−i = σ̃ATMi,n+1−i). Such a

driving process is said to be “parameterized by time” which was first proposed by

Kennedy and Pham [48].
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So far we have explained parametrizations by expiry and by time. Another

way to gain an insight into this idea is by considering the responses of the LIBORs

to a change in the implied volatilities. For details, the reader is referred to [48]. Note

that the difference in parametrizations by expiry and by time has a strong impact

on the hedging behaviour of the model. For non-stochastic volatility models this

behaviour is well-known to practitioners and is analysed in [48] for one dimensional

Markov-functional models with the Black’s formula.

We note that in the MR and HW models, we only have one free parameter

a for the driving process x, which is insufficient to capture the whole correlation

structure. This problem is partially solved by the introduction of the one-step

covariance driving process.

One step covariance driving process

The one step covariance driving process was introduced by Kennedy and Pham [48].

For this driving process the variance ξTi of x at time Ti, i = 1, ..., n, is chosen

by calibrating to the market correlation structure of swap rates. Note that it is

impossible to calibrate a one-factor model to the whole correlation matrix. Thus

we only consider the one step covariances (correlations) between ln yi,n+1−i
Ti

and

ln yi+1,n−i
Ti+1

for i = 1, ..., n − 1. In particular suppose we are given the one step

covariances Covma(ln yi,n+1−i
Ti

, ln yi+1,n−i
Ti+1

), i = 1, ..., n − 1, from the market. Note

that the market one step covariance can be estimated by using the swaption matrix

{σ̃ATMi,j ; i = 1, ..., n, j = 1, ..., n+ 1− i}, where σ̃ATMi,j is the ATM implied volatility

of the vanilla swaption on the swap rate yi,j ; see Table 5.2. The estimation involves

Tenor 1 2 3 ... n− 2 n− 1 n

Expiry 1 σ̃ATM1,1 σ̃ATM1,2 σ̃ATM1,3 ... σ̃ATM1,n−2 σ̃ATM1,n−1 σ̃ATM1,n

2 σ̃ATM2,1 σ̃ATM2,2 σ̃ATM2,3 ... σ̃ATM2,n−2 σ̃ATM2,n−1 ...

3 σ̃ATM3,1 σ̃ATM3,2 σ̃ATM3,3 ... σ̃ATM3,n−2 ... ...
...

...
...

...
...

...
...

...
n− 2 σ̃ATMn−2,1 σ̃ATMn−2,2 σ̃ATMn−2,3 ... ... ... ...

n− 1 σ̃ATMn−1,1 σ̃ATMn−1,2 ... ... ... ... ...

n σ̃ATMn,1 ... ... ... ... ... ...

Table 5.2: ATM implied volatilities in the swaption matrix linked to the one step
covariance driver and the SABR driver.

a two-step procedure. For details the reader is referred to [48]. Now we specify the

one step covariance driving process as follows.

• The algorithm for fixing the variance ξTi of x at time Ti, i = 1, ..., n, works
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back iteratively from Tn. At time Tn, without loss of generality, we set

ξTn = (σ̃ATMn,1 )2Tn.

• Suppose we have reached time Ti, having determined variance ξTj of x for

j = i+ 1, ..., n. We have that

Corrma(ln yi,n+1−i
Ti

, ln yi+1,n−i
Ti+1

) =
Covma(ln yi,n+1−i

Ti
, ln yi+1,n−i

Ti+1
)√

V arma(ln yi,n+1−i
Ti

)V arma(ln yi+1,n−i
Ti+1

)

≈
Covma(ln yi,n+1−i

Ti
, ln yi+1,n−i

Ti+1
)

σ̃ATMi,n+1−i
√
Tiσ̃ATMi+1,n−i

√
Ti+1

,

where V arma(ln yi,n+1−i
Ti

) is given by√
V arma(ln yi,n+1−i

Ti
) ≈ σ̃ATMi,n+1−i

√
Ti.

It follows from equation (5.9) that we should get

ξTi = [Corrma(ln yi,n+1−i
Ti

, ln yi+1,n−i
Ti+1

)]2ξTi+1 . (5.14)

As the specification of the one step covariance driving process depends on the swap-

tion matrix {σ̃ATMi,j ; i = 1, ..., n, j = 1, ..., n+1−i} any changes in the market implied

volatilities in the swaption matrix will influence the correlation structure. Therefore

the one step covariance driver is also parameterized by time.

So far we have discussed the one-dimensional swap MFMs with three differ-

ent specifications of the Gaussian driving process feeding in log-Normal marginal

distributions of the swap rates {yi,n+1−i
Ti

; i = 1, ..., n} in their associated swaption

measures. Note that we choose these three specifications of the driver for compar-

ison because they are examples of parametrizations by time and by expiry. We

wish to investigate their hedging behaviour for a Bermudan swaption as well as a

new Bermudan product. Moreover we wish to make clear if implied volatility smiles

have an influence on their hedging behaviour. This motivates us to consider the

one-dimensional swap MFM with the Gaussian driving process together with SABR

marginals, which can be seen as a local volatility MFM. The SABR marginals that

will be fed in are the same as the ones for the stochastic volatility swap MFM be-

low. We will choose the Hull-White specification for the Gaussian driving process

so that the local volatility MFM is also an example of parametrization by time.
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Note that the reason why we choose the Hull-White specification as opposed to the

mean reversion style is because the Hull-White driver is parameterized by time and

it is expected to retain good hedging behaviour even though we feed in the SABR

marginal distributions. The one-step covariance driver is not chosen because it is

hard to calibrate to the market correlation in a local volatility MFM. By comparing

the local volatility MFM to the Hull-White MFM, we can investigate the effect of

implied volatility smiles on pricing and hedging a Bermudan swaption and a new

Bermudan product.

5.2.4 Stochastic volatility Markov-functional model

In this subsection we discuss the stochastic volatility swap MFM that will be con-

sidered in the numerical study. We consider this model in the numerical comparison

because we wish to investigate the effect of stochastic volatility on the pricing and

hedging performance for Bermudan products. In what follows we focus on the cali-

bration of the model.

We have discussed the specification and calibration of a stochastic volatility

MFM in the previous chapters. In this subsection we review it briefly. Let us

consider the target SABR driving process

dFt = σtF
β
t dW

n+1
t β ∈ [0, 1] (5.15)

dσt = µtσtdt+ vσtdB
n+1
t v > 0,

where Bn+1 and Wn+1 are correlated Brownian motions under the terminal measure

such that dBn+1
t dWn+1

t = ρdt with ρ ∈ [−1, 1], and the drift function µt is assumed

to be piecewise constant

µt =
n−1∑
j=0

µjI{t∈[Tj ,Tj+1)}. (5.16)

In our numerical comparison we will assume that the parameters β, F0, ρ, σ0 and ν

have been determined exogenously from historical data. The remaining parameters

µj , j = 0, ..., n− 1, can be chosen by calibrating to the market one step correlation

(covariance) of the swap rates {yi,n+1−i
Ti

; i = 1, ..., n}. From the calibration proce-

dure we note that the drift parameters µj ’s and the model correlation structure of

swap rates will be changed when we change the market implied volatilities in the

swaption matrix (see Table 5.2), which is consistent with the behaviour of a driver

parameterized by time. In fact as we can see from (5.15), as the parameter v is going
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to 0 the model is reduced to the one-dimensional one-step covariance MFM which

is parameterized by time. This also motivates us to determine µi’s by calibrating

to the market one step correlation (covariance) of swap rates since we expect that

the hedging property of the one step covariance MFM will be retained even though

stochastic volatility is incorporated and we will justify this numerically later.

Following the calibration routine proposed in Chapter 4, in order to set the

stochastic volatility MFM up, we feed in SABR marginal distributions of the swap

rates {yi,n+1−i
Ti

; i = 1, ..., n} implied from the following separable SABR swap market

model in the swaption measure Si,n+1−i

dyi,n+1−i
t = σit(y

i,n+1−i
t )βdW i,n+1−i

t β ∈ [0, 1], (5.17)

dσit = µ̂i(t, σt, yt)σ
i
tdt+ vσitdB

i,n+1−i
t σit = γiσt

dW i,n+1−i
t dBi,n+1−i

t = ρdt ρ ∈ [−1, 1],

with

µ̂i(t, σt, yt) := µt + vρ

n∑
j=i+1

Ψj−1
t P̂ j,n+1−j

t

Ψi−1
t P̂ i,n+1−i

t

(
γjαj−1(yj,n+1−j

t )β

1 + αj−1y
j,n+1−j
t

)σt

Ψi
t :=

i∏
j=1

(1 + αjy
j+1,n−j
t ),

P̂ i,n+1−i
t :=

P i,n+1−i
t

Dt,Tn+1

,

where W i,n+1−i and Bi,n+1−i are correlated Brownian motions in the swaption mea-

sure Si,n+1−i, and µt is given by (5.16). We notice that the model parameters β, ρ,

σ0, ν and µj ’s have been determined. Consequently the only free parameters we left

are expiry-dependent parameters γi for i = 1, ..., n. These parameters can be cho-

sen by calibrating to the implied volatilities {σ̃i,n+1−i; i = 1, ..., n} of the co-terminal

vanilla swaptions struck at one particular strike. In our numerical comparison, the

implied volatilities σ̃i,n+1−i can be chosen to be the implied volatility σ̃Bermi,n+1−i struck

at the strike of the Bermudan swaption or σ̃effi,n+1−i struck at the effective strike de-

pending on whether we are pricing a Bermudan swaption or the new Bermudan

product.

5.2.5 Expressions for vegas in Markov-functional models

Before we proceed to the numerical investigation of the vegas, let us study the

analytical expressions for the vegas of a Bermudan swaption in the swap MFMs
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discussed earlier. This enables us to gain more insight into the difference in vegas

produced by the models parameterized by time and by expiry. In this subsection

we only consider a Bermudan swaption since it is a relatively simple product while

the new Bermudan product is too complicated. The simplification means that we

can focus on understanding the difference between parametrizations by time and by

expiry in vega profiles without handling internal adjusters of a more involved new

Bermudan product.

The expressions for the vegas in the one-dimensional swap MFMs have been

studied by Kennedy and Pham [48]. Here we will first review their work. Then we

make further development and consider the vegas in the stochastic volatility swap

MFM.

We can see from Section 5.2.3 that the one-dimensional swap MFM is fully

determined by the variances ξTi , i = 1, ..., n, of the driving process and the input

prices of the PVBP-digital swaptions. Furthermore the input prices are obtained

from the initial term structure and some implied volatilities σ̃i,n+1−i, i = 1, ..., n.

As we discussed the choice of σ̃i,n+1−i’s depends on the derivative we price. In

this context we choose the implied volatilities σ̃Bermi,n+1−i of the co-terminal swaptions

struck at the strike of the Bermudan swaption. Since we focus on the vegas here, the

initial yield curve will not be taken into account. Thus for the model we can express

the value of a Bermudan swaption as a function V Berm
0 (ξ, σ̃Berm) of the variances

ξ = (ξT1 , ξT2 , ..., ξTn) and the (reverse diagonal) input implied volatilities σ̃Berm =

(σ̃Berm1,n , σ̃Berm2,n−1, ..., σ̃
Berm
n,1 ). The vega vi,k for i = 1, ..., n and k = 1, ..., n + 1 − i is

defined to be the following derivative:

vi,k :=
dV Berm

0

dσ̃ATMi,k

,

where σ̃ATMi,k is the ATM implied volailities of swaptions. In practice the vegas

can be evaluated by means of the bump and revalue method: each ATM implied

volatility is perturbed by a basis point shift and then the derivative is valued again.

We now consider the analytical expressions for vegas in MFMs. For a par-

ticular i = 1, ..., n, we give the expressions for vegas vi,k in Table 5.3. The notations

“mr”, “hw”, “co”, “loc” and “sv” in Table 5.3 stand for mean reversion, Hull-White,

one step covariance, local volatility and stochastic volatility MFMs respectively.

Note that in the local volatility MFM we adopt the HW driver.

We can see from Table 5.3 that when k = 1, ..., n − i, the vegas vi,k of MR,

HW and local volatility MFMs are all zero because the variances ξ of their drivers

are independent of these implied volatilities {σ̃ATMi,k ; k = 1, ..., n − i}. However we
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k (Tenor) 1, ..., n− i n+ 1− i
mr 0

∂V Berm0

∂σ̃Bermi,n+1−i
× θi

hw 0
∂V Berm0

∂σ̃Bermi,n+1−i
× θi +

∂V Berm0
∂ξTi

× dξTi
dσ̃ATMi,n+1−i

co
∑i

s=1
∂V Berm0
∂ξTs

× dξTs
dσ̃ATMi,k

∂V Berm0

∂σ̃Bermi,n+1−i
× θi +

∑i
s=1

∂V Berm0
∂ξTs

× dξTs
dσ̃ATMi,n+1−i

loc 0
∂V Berm0

∂σ̃Bermi,n+1−i
× θi +

∂V Berm0
∂ξTi

× dξTi
dσ̃ATMi,n+1−i

sv
∑n−1

s=0
∂Ṽ Berm0
∂µs

× dµs
dσ̃ATMi,k

∂Ṽ Berm0

∂σ̃Bermi,n+1−i
× θi +

∑n−1
s=0

∂Ṽ Berm0
∂µs

× dµs
dσ̃ATMi,n+1−i

Table 5.3: The expressions for vegas vi,k for a particular i of a Bermudan swaption

under swap MFMs where θi :=
dσ̃Bermi,n+1−i
dσ̃ATMi,n+1−i

.

can see from Table 5.2 that these implied volatilities {σ̃ATMi,k ; k = 1, ..., n − i} are

linked to the variances ξ of the one step covariance driver. In particular following

the estimation procedure for the market one step covariance in [48] one can see that

any change in implied volatility σ̃ATMi,k will lead to a change in ξTi and therefore ξTj
for all j = 1, ..., i− 1 due to equation (5.14). Therefore following the chain rule we

obtain the result in Table 5.3.

When k = n + 1 − i, the vegas become more complicated. In this case all

models are linked to the co-terminal ATM implied volatility σ̃ATMi,n+1−i via the input

implied volatility σ̃Bermi,n+1−i of the function V Berm
0 (ξ, σ̃Berm). Therefore as we can see

in Table 5.3, there is a term
∂V Berm0

∂σ̃Bermi,n+1−i
×θi where θi :=

dσ̃Bermi,n+1−i
dσ̃ATMi,n+1−i

in all models. We will

discuss this ratio θi later. In addition, we can see from (5.13) that a change in the

implied volatility σ̃ATMi,n+1−i will also result in a change in ξTi of the HW driver and

therefore this gives the result in Table 5.3. Similarly it will also result in a change

in ξTi and therefore ξTj for j = 1, ..., i− 1 for the one step covariance driver.

We can see that the expressions for the vegas in the above models are very

different. However we will see in the numerical study later that the row sums of

vegas for the models parameterized by time are similar.

Remark 9. When the implied volatility σ̃Bermi,n+1−i is chosen to be the ATM one

σ̃ATMi,n+1−i, it is trivial to have that θi :=
dσ̃Bermi,n+1−i
dσ̃ATMi,n+1−i

= 1. In practice the market implied

volatilities always display a shape of smile or skew as a function of strike. The

implied volatilities with different strikes are always moving simultaneously. This

means that the change in the ATM implied volatility σ̃ATMi,n+1−i will result in a change

in the implied volatility σ̃Bermi,n+1−i with other strike. In order to find their relation-

ship, one can calibrate a SABR model to the market implied volatility smile/skew,

and then find the derivative
dσ̃Bermi,n+1−i
dσ̃ATMi,n+1−i

within the calibrated SABR model using the
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SABR formula since the SABR formula provides a parametric formula for σ̃Bermi,n+1−i
which depends on the ATM implied volatility σ̃ATMi,n+1−i. Alternatively one can use a

simpler approximation for the derivative
dσ̃Bermi,n+1−i
dσ̃ATMi,n+1−i

. There are numerical studies in

the literature showing that the moving of implied volatility smiles/skews can be de-

composed into three principal factors which account for 98% of the variance. Among

them, the first factor which can explain around 80% of the variance can be viewed

as a level effect. For more details about the study, the reader is referred to [16] and

references therein. Therefore it is reasonable to assume that smiles/skews move in

a parallel way. As a result we have an approximation θi :=
dσ̃Bermi,n+1−i
dσ̃ATMi,n+1−i

≈ 1.

Having discussed the expressions for the vegas of a Bermudan swaption in

a one-dimensional swap MFM, we now consider the vegas in a stochastic volatility

swap MFM. Note that a stochastic volatility swap MFM is fully determined by the

market prices of co-terminal vanilla swaptions and the SABR driver (5.15). As the

parameters β, F0, ρ, σ0 and ν are assumed to be determined exogenously from histor-

ical data, the remaining piecewise constant function µi’s can be chosen by fitting the

market one step correlation (covariance). Consequently one can express the value of

a Bermudan swaption as a function Ṽ Berm
0 (µ, σ̃Berm) of µ = (µ0, µ1, ..., µn−1) and

implied volatilities σ̃Berm = (σ̃Berm1,n , σ̃Berm2,n−1, ..., σ̃
Berm
n,1 ).

In line with the notation introduced in proposition 4 of Chapter 4, one can

write

ζTi = gi(ζTi+1 , ..., ζTn ; {σ̃ATMi,k }k=i,...,n+1−i; {σ̃ATMs,n+1−s}s=i+1,...,n), (5.18)

µj = f j(µ0, ..., µj−1; ζT1 , ..., ζTj+1). (5.19)

for i = 1, ..., n and j = 0, ..., n− 1 where f j and gi are some deterministic functions.

Since the stochastic volatility MFM is calibrated to the market one step correlation

(covariance), its vegas’ expressions are similar to the one step covariance MFM. The

only difference lies in µ. In particular from (5.18) and (5.19) we can see that as the

ATM implied volatility σ̃ATMi,k changes, all µj for j = 0, ..., n−1 will be changed. This

gives the expressions for vegas in Table 5.3 under the stochastic volatility MFM.

5.3 Market data

In this section we give the market data used in the numerical study. In particular we

consider the market data on 11 March 2015. In our numerical study we consider 31

years annual co-terminal Bermudan products. The initial ZCBs with maturity up

to 31 years are bootstrapped from the market data and displayed in Table 5.4. The
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co-terminal (with maturity 31 years) swaption volatilities and caplets volatilities

w.r.t expiry and strike are given in Tables 5.5 and 5.6. The implied volatilities of

the ATM swaptions w.r.t expiry and tenor are displayed in Tables 5.7, 5.8 and 5.9,

which will be used to extract market correlation structure of swap rates.

Maturity 1Y 2Y 3Y 4Y 5Y 6Y 7Y
Price 0.9951 0.9820 0.9650 0.9440 0.9207 0.8970 0.8711

Maturity 8Y 9Y 10Y 11Y 12Y 13Y 14Y
Price 0.8478 0.8235 0.7983 0.7788 0.7593 0.7400 0.7208

Maturity 15Y 16Y 17Y 18Y 19Y 20Y 21Y
Price 0.7018 0.6828 0.6640 0.6454 0.6269 0.6087 0.5905

Maturity 22Y 23Y 24Y 25Y 26Y 27Y 28Y
Price 0.5726 0.5549 0.5374 0.5200 0.5029 0.4860 0.4694

Maturity 29Y 30Y 31Y
Price 0.4529 0.4367 0.4208

Table 5.4: Initial zero-coupon bonds on 11 March 2015.

5.4 Bermudan swaption comparison

In this section we investigate the pricing and hedging performance for a Bermudan

swaption under different MFMs. For the hedging comparison we will only consider

the vegas, and we will explain why we do this later. The example we consider here

is a 31 years pay fixed Bermudan swaption with notional N = 100 million. There

are 30 annual exercise dates and the first exercise date of the option is in 1 year

relative to today.

In Section 5.4.1 we compare the prices of the Bermudan swaption produced

by different MFMs. We then compare the different MFMs in terms of the vegas in

Section 5.4.2.

5.4.1 Pricing comparison results

We consider the Bermudan swaption struck at three different strikes: 2%, 3% and

4%. We display the prices in Table 5.11. In this table, the terms “MR”, “HW”,

“1-step Cov”, “Local vol” and “SV” denote the MFMs (a) - (e) that are introduced

at the beginning of Section 5.2, where we use a HW driving process with a = 0.05 for

the local volatility MFM. We set the parameter a to be 1%, 5% and 10% respectively

for the MR and HW MFMs. By doing so we can investigate the impact of the

correlation structure on the prices of the Bermudan swaption. In the numerical

study we consider three scenarios for the SV MFM which are shown in Table 5.10.
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Relative strike -200 -150 -100 -50 0 50 100 150 200

Expiry 1Y 34.92 28.64 24.32 21.89 19.71 19.56 19.43 19.31 19.21
2Y 33.72 28.08 23.83 21.52 19.60 19.37 19.19 19.03 18.89
3Y 32.84 27.65 23.44 21.19 19.40 19.12 18.90 18.71 18.54
4Y 32.22 27.28 23.06 20.86 19.17 18.85 18.60 18.38 18.20
5Y 31.69 26.89 22.69 20.54 18.93 18.59 18.31 18.07 17.87
6Y 31.23 26.60 22.36 20.21 18.70 18.34 18.04 17.79 17.58
7Y 30.78 26.37 21.98 19.98 18.45 18.06 17.74 17.47 17.24
8Y 30.27 26.18 21.61 19.73 18.17 17.75 17.41 17.12 16.88
9Y 29.85 25.96 21.34 19.51 18.05 17.60 17.23 16.93 16.67
10Y 29.45 25.71 21.00 19.23 17.72 17.24 16.86 16.55 16.28
11Y 29.02 25.57 20.74 19.01 17.57 17.07 16.68 16.35 16.07
12Y 28.62 25.35 20.51 18.98 17.51 17.00 16.59 16.25 15.97
13Y 28.23 24.77 20.35 18.63 17.49 16.96 16.54 16.19 15.89
14Y 27.84 24.42 20.16 18.34 17.46 16.92 16.48 16.12 15.82
15Y 27.47 23.91 19.98 18.27 17.43 16.87 16.42 16.05 15.74
16Y 27.10 23.71 19.80 18.12 17.37 16.80 16.34 15.96 15.64
17Y 26.73 23.54 19.62 18.08 17.32 16.73 16.25 15.86 15.54
18Y 26.37 23.26 19.41 18.07 17.28 16.67 16.19 15.79 15.45
19Y 26.01 22.96 19.33 18.07 17.25 16.62 16.12 15.71 15.36
20Y 25.70 22.69 19.32 18.05 17.23 16.58 16.06 15.64 15.28
21Y 25.42 22.35 19.31 18.01 17.23 16.55 16.02 15.58 15.21
22Y 25.19 22.02 19.18 17.97 17.09 16.42 15.89 15.46 15.09
23Y 24.97 21.98 19.11 17.88 17.00 16.33 15.79 15.36 15.00
24Y 24.77 21.75 19.05 17.76 16.86 16.19 15.65 15.22 14.86
25Y 24.59 21.60 19.03 17.72 16.79 16.09 15.55 15.10 14.74
26Y 24.45 21.56 19.02 17.71 16.78 16.07 15.52 15.08 14.72
27Y 24.33 21.46 18.93 17.61 16.62 15.88 15.31 14.86 14.50
28Y 24.23 21.42 18.87 17.58 16.51 15.64 15.01 14.51 14.12
29Y 24.13 21.23 18.73 17.28 16.44 15.29 14.83 14.37 14.03
30Y 24.03 21.14 18.65 17.03 16.14 15.08 14.71 14.21 13.89

Table 5.5: Implied volatilities (%) of the co-terminal (31Y) swaptions against expiry
and relative strike (bp) to the ATM on 11 March 2015

In the first two scenarios (I and II) the parameters ν and σ0 are not too big as usually

expected in practice. Scenario III has a high Volvol ν and σ0 which can be seen as

an extreme case. We also produce the “total” vega for each model which stands for

the difference in Bermudan price when all implied volatilities in the swaption matrix

have a parallel shift of 1%. This total vega can be used to judge how significant the

difference in Bermudan prices is. Table 5.12 gives the difference in Bermudan prices

produced by different MFMs and the SV MFM (I) corresponding to the scenario I

measured by the total vega. In particular the ratios in the table are produced by

using the following formula

ratio =
SV MFM (I) price - MFM price

SV MFM (I) total vega
. (5.20)
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Relative strike -200 -150 -100 -50 0 50 100 150 200

Expiry 1Y 39.27 33.72 30.12 28.42 26.96 28.26 29.58 30.91 32.26
2Y 38.12 33.21 29.70 28.12 26.93 28.17 29.45 30.76 32.09
3Y 37.19 32.72 29.23 27.71 26.64 27.81 29.03 30.29 31.57
4Y 36.51 32.29 28.78 27.30 26.32 27.43 28.61 29.83 31.07
5Y 35.83 31.72 28.21 26.75 25.82 26.86 27.96 29.11 30.29
6Y 34.96 30.96 27.34 25.81 24.93 25.81 26.76 27.75 28.78
7Y 34.25 30.42 26.61 25.19 24.24 25.00 25.84 26.73 27.65
8Y 33.35 29.77 25.71 24.34 23.29 23.90 24.58 25.32 26.11
9Y 32.68 29.27 25.12 23.76 22.77 23.26 23.84 24.48 25.17
10Y 32.05 28.75 24.48 23.14 22.06 22.46 22.95 23.50 24.10
11Y 31.34 28.28 23.83 22.49 21.43 21.71 22.09 22.53 23.03
12Y 30.60 27.65 23.14 21.94 20.80 20.95 21.20 21.52 21.89
13Y 30.00 26.83 22.70 21.28 20.43 20.49 20.65 20.89 21.19
14Y 29.40 26.23 22.23 20.67 20.05 20.06 20.11 20.27 20.48
15Y 28.82 25.48 21.78 20.29 19.68 19.63 19.57 19.52 19.44
16Y 28.35 25.17 21.47 19.99 19.45 19.30 19.25 19.13 19.03
17Y 27.88 24.88 21.15 19.80 19.23 19.02 18.93 18.72 18.68
18Y 27.40 24.46 20.78 19.62 19.00 18.74 18.59 18.54 18.34
19Y 26.93 24.03 20.55 19.44 18.77 18.45 18.26 18.15 18.01
20Y 26.49 23.61 20.37 19.24 18.55 18.16 17.91 17.75 17.55
21Y 26.08 23.12 20.19 19.00 18.33 17.87 17.56 17.34 17.19
22Y 25.80 22.73 20.00 18.88 18.11 17.64 17.31 17.08 16.92
23Y 25.51 22.60 19.82 18.68 17.89 17.40 17.04 16.79 16.60
24Y 25.25 22.31 19.69 18.48 17.67 17.15 16.78 16.51 16.31
25Y 24.98 22.07 19.56 18.31 17.45 16.89 16.47 16.17 15.93
26Y 24.69 21.84 19.35 18.08 17.19 16.56 16.10 15.74 15.46
27Y 24.52 21.68 19.18 17.89 16.93 16.25 15.75 15.36 15.06
28Y 24.32 21.53 19.00 17.72 16.67 15.83 15.22 14.76 14.40
29Y 24.28 21.34 18.81 17.37 16.51 15.37 14.93 14.48 14.15
30Y 24.03 21.14 18.65 17.03 16.14 15.08 14.71 14.21 13.89

Table 5.6: Implied volatilities (%) of the caplets against expiry and relative strike
(bp) to the ATM on 11 March 2015

From Tables 5.11 and 5.12 we draw the following conclusions.

1. The parameter a for the MR MFM and HW MFM has a significant impact

on the price of the Bermudan swaption for all strikes. A 5% change in the pa-

rameter a can result in a change in value equal to a parallel implied volatilities

shift of about 4%. The correlation of the swap rates {yi,n+1−i
Ti

; i = 1, ..., n} is

controlled by the parameter a in the MR and HW MFMs. In particular as

the parameter a increases, the correlation decreases. It is well known that a

lower correlation of swap rates gives a bigger Bermudan price. Intuitively a

Bermudan swaption can be seen as a combination of the corresponding vanilla

swaptions and their optionality. The “optionality value” depends on the cor-

relation of swap rates. In particular the lower the correlations become, the

higher the optionality value obtained.
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Tenor 1Y 2Y 3Y 4Y 5Y 6Y 7Y 8Y 9Y 10Y

Expiry 1Y 26.96 27.01 26.95 26.84 26.77 26.22 25.66 25.14 24.64 24.10
2Y 26.93 26.85 26.59 26.39 26.05 25.53 25.00 24.49 24.00 23.63
3Y 26.64 26.35 26.13 25.83 25.41 24.81 24.24 23.80 23.44 23.04
4Y 26.32 25.94 25.63 25.09 24.60 24.13 23.59 23.22 22.83 22.52
5Y 25.82 25.33 24.94 24.43 23.91 23.47 23.01 22.61 22.36 22.03
6Y 24.93 24.43 24.18 23.62 23.13 22.73 22.34 22.00 21.68 21.44
7Y 24.24 23.72 23.37 22.90 22.56 22.14 21.81 21.50 21.22 21.00
8Y 23.29 22.93 22.63 22.20 21.89 21.58 21.34 21.07 20.87 20.68
9Y 22.77 22.32 22.00 21.65 21.34 21.02 20.86 20.67 20.50 20.33
10Y 22.06 21.61 21.37 21.08 20.82 20.58 20.45 20.28 20.13 19.98
11Y 21.43 21.08 20.88 20.64 20.41 20.20 20.09 19.96 19.81 19.67
12Y 20.80 20.55 20.40 20.21 19.99 19.83 19.74 19.63 19.49 19.36
13Y 20.43 20.22 20.09 19.92 19.72 19.57 19.49 19.39 19.25 19.12
14Y 20.05 19.90 19.77 19.63 19.45 19.31 19.23 19.15 19.02 18.88
15Y 19.68 19.57 19.46 19.35 19.18 19.05 18.98 18.91 18.78 18.65
16Y 19.45 19.34 19.22 19.10 18.95 18.82 18.74 18.66 18.55 18.41
17Y 19.23 19.11 18.97 18.86 18.72 18.59 18.50 18.42 18.31 18.17
18Y 19.00 18.87 18.73 18.61 18.49 18.36 18.26 18.18 18.07 17.94
19Y 18.77 18.64 18.48 18.36 18.26 18.14 18.02 17.94 17.84 17.70
20Y 18.55 18.40 18.24 18.12 18.04 17.91 17.78 17.70 17.60 17.46
21Y 18.33 18.19 18.05 17.92 17.83 17.68 17.55 17.46 17.35 17.23
22Y 18.11 17.97 17.86 17.72 17.62 17.46 17.32 17.23 17.09
23Y 17.89 17.75 17.67 17.53 17.41 17.24 17.09 17.00
24Y 17.67 17.53 17.48 17.33 17.20 17.01 16.86
25Y 17.45 17.32 17.29 17.13 16.99 16.79
26Y 17.19 17.10 17.03 16.87 16.78
27Y 16.93 16.88 16.77 16.62
28Y 16.67 16.66 16.51
29Y 16.51 16.44
30Y 16.14

Table 5.7: Implied volatilities (%) of the ATM swaptions against expiry and tenor
(1Y - 10Y) on 11 March 2015

2. In order to study the implied volatility smiles effect, we compare the Bermudan

price produced by the local volatility MFM, where we captured the volatility

smile, with the price given by the HW (5%) MFM. We observe that the two

models give very similar Bermudan prices. This implies that the impact of

smile on the Bermudan price is small. Note that this conclusion depends very

much on the calibration approach. In particular the local volatility MFM is

set up by using the HW driving process with the parameter a = 5% together

with SABR marginal distributions of the swap rates {yi,n+1−i
Ti

; i = 1, ..., n}
implied from the separable SABR swap market model (5.17) corresponding to

the parameters of scenario I shown in Table 5.10. Recall that the model (5.17)

only has free parameters γi, i = 1, ..., n, while the other parameters have al-

ready been determined. Commonly there are two calibration approaches to
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Tenor 11Y 12Y 13Y 14Y 15Y 16Y 17Y 18Y 19Y 20Y

Expiry 1Y 23.72 23.33 23.00 22.67 22.34 22.12 21.89 21.67 21.45 21.22
2Y 23.23 22.84 22.50 22.16 21.82 21.62 21.42 21.22 21.03 20.83
3Y 22.69 22.35 22.05 21.76 21.46 21.26 21.05 20.85 20.64 20.44
4Y 22.21 21.91 21.65 21.39 21.13 20.92 20.72 20.52 20.32 20.11
5Y 21.75 21.46 21.21 20.97 20.72 20.53 20.33 20.14 19.95 19.76
6Y 21.22 21.00 20.77 20.53 20.29 20.09 19.90 19.71 19.52 19.33
7Y 20.80 20.60 20.42 20.23 20.05 19.84 19.62 19.41 19.20 18.98
8Y 20.44 20.21 20.06 19.91 19.76 19.53 19.30 19.07 18.85 18.62
9Y 20.10 19.87 19.75 19.63 19.51 19.28 19.05 18.81 18.58 18.35
10Y 19.78 19.59 19.39 19.19 19.00 18.77 18.54 18.31 18.08 17.84
11Y 19.48 19.28 19.09 18.89 18.70 18.47 18.25 18.02 17.79 17.57
12Y 19.17 18.98 18.79 18.59 18.40 18.18 17.96 17.73 17.51
13Y 18.93 18.74 18.54 18.35 18.15 17.93 17.71 17.49
14Y 18.69 18.50 18.30 18.10 17.90 17.68 17.46
15Y 18.45 18.26 18.05 17.85 17.65 17.43
16Y 18.21 18.01 17.79 17.58 17.37
17Y 17.96 17.75 17.53 17.32
18Y 17.72 17.50 17.28
19Y 17.47 17.25
20Y 17.23

Table 5.8: Implied volatilities (%) of the ATM swaptions against expiry and tenor
(11Y - 20Y) on 11 March 2015

determine the parameters γi’s. The first choice is to fix γi’s by fitting the im-

plied volatilities of the co-terminal vanilla swaptions struck at the strike of the

Bermudan swaption. This calibration approach can ensure that the most rel-

evant vanilla swaptions to the Bermudan swaption can be reproduced exactly

by the model. The second choice however is to determine the parameters γi’s

by calibrating to the whole implied volatility smile of the co-terminal vanilla

swaptions as much as we can by using the least square method. Note that the

free parameters γi, i = 1, ..., n, are not sufficient to fit the whole smile. In this

sense the second calibration approach is like a “global fit”, where we try to

match everything, while the first approach is more like a “local fit”, where we

just make the most important thing right. In our numerical comparison we

choose the first calibration approach. So the local volatility MFM and the HW

MFM are both calibrated to the implied volatilities of the vanilla swaptions

struck at the strike of the Bermudan swaption, and therefore these two models

give very similar Bermudan prices. Pietersz and Pelsser [57] also investigated

the smile impact on the Bermudan price by comparing a mean reversion MFM

to a local volatility MFM with a mean reversion driver together with displaced

diffusion marginals. In the comparison the “global fit” is used and therefore

this leads to a very different result which indicates that the smile impact is
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Tenor 21Y 22Y 23Y 24Y 25Y 26Y 27Y 28Y 29Y 30Y

Expiry 1Y 21.06 20.91 20.75 20.59 20.44 20.29 20.15 20.00 19.85 19.71
2Y 20.68 20.53 20.38 20.23 20.08 19.96 19.84 19.72 19.60
3Y 20.30 20.17 20.04 19.91 19.78 19.65 19.52 19.40
4Y 19.98 19.84 19.70 19.57 19.43 19.30 19.17
5Y 19.62 19.48 19.34 19.20 19.06 18.93
6Y 19.20 19.08 18.95 18.83 18.70
7Y 18.85 18.72 18.59 18.45
8Y 18.47 18.32 18.17
9Y 18.20 18.05
10Y 17.72

Table 5.9: Implied volatilities (%) of the ATM swaptions against expiry and tenor
(21Y - 30Y) on 11 March 2015

large.

3. The one step covariance MFM gives a systematically and higher Bermudan

price than the SV MFM for all the three scenarios. But the difference is

very small. This means that the introduction of stochastic volatility has an

insignificant influence on the price of the Bermudan swaption. For most cases

the one-dimensional MFM is sufficient for pricing a Bermudan swaption as long

as the correlation of the underlying swap rates can be captured appropriately

by the valuation model.

In summary the numerical results indicate that the correlation impact on the

Bermudan price is very large. The effect of smile is very small if we fit the “right”

implied volatilities of swaptions. The introduction of stochastic volatility has an

insignificant influence on the Bermudan price.

Scenario ν σ0 β ρ

I 0.3 0.05 0.5 -0.7
II 0.1 0.03 -0.7 0.8
III 0.5 0.1 0 -0.2

Table 5.10: Scenarios for the SV MFM.

5.4.2 Vega comparison results

In this subsection we perform a similar numerical comparison in terms of vegas to

Kennedy and Pham [48]. In particular we consider the sum of the vegas
∑n+1−i

k=1 vi,k

for i = 1, ..., n of the Bermudan swaption struck at the strike K = 3% under the

different MFMs. But in addition to the one-dimensional MFMs with Gaussian

drivers together with log-Normal marginals in [48], we make a further development
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Strike K=2% K=3% K=4%

MR (1%) MFM 21,861,477 13,440,036 8,837,719
Vega 395,023 614,416 656,073

MR (5%) MFM 24,073,433 15,814,235 10,877,533
Vega 569,952 794,238 846,667

MR (10%) MFM 26,264,916 19,031,754 13,659,641
Vega 829,426 1,050,090 1,110,018

HW (1%) MFM 21,133,705 12,755,708 8,335,399
Vega 385,009 605,845 636,633

HW (5%) MFM 23,295,892 15,017,123 10,200,357
Vega 548,153 766,518 807,385

HW (10%) MFM 25,418,062 18,020,595 12,678,291
Vega 779,854 993,464 1,039,620

1-step Cov MFM 24,070,296 15,808,558 10,870,143
Vega 520,947 733,306 760,078

Local vol MFM 23,237,083 15,001,473 10,211,473
Vega 551,233 772,472 812,312

SV MFM (I) 23,896,450 15,610,384 10,651,394
Vega 496,492 712,003 737,127

SV MFM (II) 23,953,742 15,739,932 10,791,403
Vega 509,193 720,932 749,830

SV MFM (III) 23,684,720 15,341,035 10,381,394
Vega 473,105 692,027 719,093

Table 5.11: The prices of the Bermudan swaption under different MFMs with no-
tional N = 100 million.

in our numerical study and also take the local volatility MFM and the stochastic

volatility MFM into account. Another difference is that we consider a 31Y annual

Bermudan swaption here as opposed to 11Y in [48]. It is more challenging to price

and hedge a longer maturity Bermudan swaption in practice and the difference

between models is more significant.

We provide the results under the different MFMs in Figure 5.1. We set the

parameter a = 5% for the mean reversion MFM and a = 6% for the Hull-White

MFM and local volatility MFM so that these MFMs produce comparable Bermudan

prices to the one step covariance MFM.

We draw the following conclusions from Figure 5.1.

1. We can see that the mean reversion MFM gives a very different vega profile

from the other MFMs. We recall Section 5.2.5 that the different parametriza-

tion of the driving process yields a very different vega profile for a Bermudan

swaption. This makes the vegas produced by the mean reversion MFM, which

is parameterized by expiry, very different from the other MFMs, which are
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Strike K=2% K=3% K=4%

MR (1%) MFM 4.10 3.05 2.46
MR (5%) MFM -0.36 -0.29 -0.31
MR (10%) MFM -4.77 -4.81 -4.08
HW (1%) MFM 5.56 4.01 3.14
HW (5%) MFM 1.21 0.83 0.61
HW (10%) MFM -3.06 -3.39 -2.75
1-step Cov MFM -0.35 -0.28 -0.30
Local vol MFM 1.33 0.86 0.60

SV MFM (I) 0 0 0
SV MFM (II) -0.12 -0.18 -0.19
SV MFM (III) 0.43 0.38 0.37

Table 5.12: The difference between the price for the Bermudan swaption produced
by different MFMs and the SV MFM (I) measured by total vega.

examples of parametrizations by time. This result is consistent with the ob-

servation made in [48]. Note that although the stochastic volatility MFM is

parameterized by time, it is not obvious this would override any effect coming

from the addition of stochastic volatility. But we can see from the numerical

result that although the stochastic volatility MFM produces a systematically

lower row sum of vegas than the other three models of parametrizations by

time, their vega profiles are still very similar.

2. The vegas produced by the Hull-White and local volatility MFMs are very

close. This means that the impact of smile on the vegas of the Bermudan

swaption is insignificant. The stochastic volatility MFM however gives a lower

vega than the one-step covariance MFM. But the difference is insignificant in

comparison to the effect of the different parametrizations.

In summary the vega profile produced by the MFM parameterized by expiry is

very different from the models parameterized by time, and this is consistent with

the conclusion made in [48]. The introduction of stochastic volatility makes the row

sum of vegas slightly lower than the one step covariance MFM but their vega profiles

are still very similar. Moreover the smile effect on the vega profile of the Bermudan

swaption is insignificant.

It was noted by Kennedy and Pham [48] that the driving processes param-

eterized by time lead to the similar vega profiles which will control the sum of all

gammas and therefore give a similar total gamma for a Bermudan swaption. Fur-

thermore the fundamental difference in parametrizations by time and by expiry will

result in the difference in vega profiles which has an effect on total gamma. The
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authors concluded that the parametrization by time outperforms the driver param-

eterized by expiry in terms of the total gamma. In our numerical comparison we

only consider the vegas. We have found that the stochastic volatility MFM has a

very similar vega profile to the other MFMs parameterized by time. From the con-

clusions made in [48], the total gamma produced by the stochastic volatility MFM

should be very similar to the other MFMs parameterized by time, and very different

from the mean reversion MFM which is an example of parametrization by expiry.

So far we have compared the prices and the vegas of a Bermudan swaption

under MFMs. It turns out that stochastic volatility has an insignificant effect. In the

next section we will do a similar numerical comparison based on the new Bermudan

product which is a more complicated Bermudan product than Bermudan swaption.

For such an option, the stochastic volatility dynamics could play a more important

role and we will see this in the next section.

5.5 New Bermudan product comparison

In this section we consider the above numerical comparison for the new Bermudan

product. The example we are interested in here is a 31 years pay fixed new Bermudan

product with notional N = 100 million. The lower and upper barriers for this new

Bermudan product are 0 and 5%. The option has 30 annual exercise dates and the

first exercise date is in 1 year relative to today.

In what follows, we first investigate the prices of the new Bermudan product

based on the different MFMs. Then we compare the vegas of the new Bermudan

product.

5.5.1 Pricing comparison results

In Table 5.13 we give the prices of the new Bermudan product struck at three

different strikes under the different MFMs. Again we consider three scenarios for

the SV MFM as shown in Table 5.10. As before in Section 5.4.1, in Table 5.14, we

give the difference in the prices of the new Bermudan product produced by different

MFMs and the SV MFM (I) measured in terms of the total vega by following the

formula (5.20). From Tables 5.13 and 5.14 we draw the following conclusions.

1. Similar to the Bermudan swaption, the parameter a of the mean reversion

MFM and Hull-White MFM has a large influence on the price of the new

Bermudan product. In particular, a 5% change in the parameter a can result in

a difference in price of about a parallel change of 5% of all implied volatilities in

130



the swaption matrix. As the parameter a becomes bigger, the price of the new

Bermudan product gets higher. This numerical observation can be explained

by following a similar discussion to that for the Bermudan swaption in the

previous section. In particular a higher value of the parameter a gives a lower

correlation structure and therefore yields a higher price of the new Bermudan

product. Therefore we can conclude that the correlation structure has a large

effect on the price of the new Bermudan product.

2. The price of the new Bermudan product produced by the local volatility MFM

is close to the one produced by the Hull-White MFM. This means that the

volatility smile has little effect on the price of the new Bermudan product.

3. To study the influence of stochastic volatility on the price of the new Bermudan

product, we consider the prices given by the one-step covariance MFM and the

stochastic volatility MFM. We can see that the stochastic volatility effect can

be as large as a 1.55% of the total vega which can be seen as a significant effect.

The effect becomes as large as a 2% of the total vega for extreme scenario III.

Recall that for the Bermudan swaption the effect of the stochastic volatility is

insignificant, but the impact is large here for the new Bermudan product. This

is because the new Bermudan product is more complicated and its floating leg

involves more information on the stochastic volatility dynamics. This could

make the stochastic volatility factor more important for the new Bermudan

product.

In summary the numerical results indicate that the correlation and stochastic

volatility have large effects on the new Bermudan product price while the smile effect

is very small. Note that stochastic volatility has a small effect on pricing a relatively

simple Bermudan product such as a Bermudan swaption. But when the Bermudan

product becomes more complex such as the new Bermudan product considered here,

the floating leg coupon involves more information of model dynamics. In this case

the stochastic volatility factor becomes more important for the product. We expect

that the effect of stochastic volatility factor could be more significant for callable

range accruals.

5.5.2 Vega comparison results

In this subsection we investigate the vegas of the pay fixed new Bermudan product

struck at the strike K = 3% under the different MFMs. We perform a similar

numerical study to Section 5.4.2. In particular we consider the sum of the vegas

131



Strike K=2% K=3% K=4%

MR (1%) MFM 14,016,903 5,598,461 1,258,882
Vega -1,070,703 -788,070 -558,876

MR (5%) MFM 16,230,628 7,981,468 3,272,713
Vega -896,069 -617,335 -463,760

MR (10%) MFM 19,423,641 11,219,197 6,055,144
Vega -709,409 -394,736 -348,397

HW (1%) MFM 13,290,844 4,915,105 1,025,339
Vega -1,081,358 -801,991 -495,006

HW (5%) MFM 15,453,023 7,177,814 2,598,037
Vega -918,114 -635,499 -481,800

HW (10%) MFM 18,575,322 10,191,007 5,254,696
Vega -683,367 -424,656 -362,022

1-step Cov MFM 16,227,478 7,974,543 3,264,231
Vega -969,372 -682,934 -533,382

Local vol MFM 15,428,372 7,150,118 2,544,429
Vega -920,027 -634,008 -478,273

SV MFM (I) 15,248,392 7,004,218 2,310,376
Vega -1,034,092 -746,404 -613,735

SV MFM (II) 15,800,743 7,537,331 2,829,170
Vega -990,015 -702,701 -563,093

SV MFM (III) 14,754,820 6,601,083 1,908,403
Vega -1,070,472 -772,038 -659,482

Table 5.13: The prices of the new Bermudan product under different MFMs with
notional N = 100 million.

∑n+1−i
k=1 vi,k for i = 1, ..., n of the new Bermudan product under the different MFMs.

The numerical result is given in Figure 5.2. In this numerical comparison we set

the parameter a = 5% for the mean reversion MFM and a = 6% for the HW MFM

and local volatility MFM so that these MFMs produce a comparable new Bermudan

product prices to the one step covariance MFM.

We draw the following conclusions from the numerical results.

1. The vegas for all the MFMs become negative for maturities longer than 10

years. This is the case since we can see from the pricing formula (5.4) of the

new Bermudan product that the value of the floating coupon decreases as the

implied volatilities of caplets increase, and therefore decreases the value of the

pay fixed new Bermudan product. The bump of the implied volatility in the

swaption matrix also leads to the change in the correlation structure and the

underlying swaptions, and therefore the value of the new Bermudan product.

The combination of these effects leads to the result.
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Strike K=2% K=3% K=4%

MR (1%) MFM -1.19 -1.88 -1.71
MR (5%) MFM 0.95 1.31 1.57
MR (10%) MFM 4.04 5.65 6.10
HW (1%) MFM -1.89 -2.80 -2.09
HW (5%) MFM 0.20 0.23 0.47
HW (10%) MFM 3.22 4.27 4.80
1-step Cov MFM 0.95 1.30 1.55
Local vol MFM 0.17 0.20 0.38

SV MFM (I) 0 0 0
SV MFM (II) 0.53 0.71 0.85
SV MFM (III) -0.48 -0.54 -0.65

Table 5.14: The difference between the price for the new Bermudan product pro-
duced by different MFMs and the SV MFM (I) measured by total vega.

2. The vega profile produced by the mean reversion MFM, which is an example

of parametrizations by expiry, is very different from the vega profile given by

MFMs parameterized by time.

3. In order to investigate the impact of smile on the vegas, we compare the

vegas produced by the Hull-White MFM with the vegas produced by the local

volatility MFM. The vega profiles given by these two models turn out to be

very similar. Therefore the smile effect is very small.

4. By introducing stochastic volatility, the row sum of vegas decreases in com-

parison to the one step covariance MFM but vega profiles of the two models

are still very similar. This means that the introduction of stochastic volatility

does not materially alter the hedging behaviour.

In summary the numerical results show that the MFM parameterized by expiry

gives a big different vega profiles from the MFMs parameterized by time. The smile

impact is still very small on vega profiles. The introduction of stochastic volatility

decreases the row sum of vegas in comparison to the one step covariance MFM,

but the vega profile remains quite similar. This means that the introduction of

stochastic volatility does not materially alter the hedging behaviour.

5.6 Conclusion

In this chapter we investigated the impact of correlation, implied volatility smiles

and stochastic volatility on Bermudan type products. In particular, we compared a
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stochastic volatility MFM to one-dimensional swap MFMs with different combina-

tions of the driver and marginals in terms of pricing and hedging Bermudan type

products. We focused on Bermudan swaptions and new Bermudan products. This

new Bermudan product is motivated by callable range accruals. The new Bermudan

product has similar features but is much simpler than callable range accruals. In

order to price these two Bermudan type products accurately, we studied the fea-

tures and structures which includes “effective strikes” and “internal adjusters” for

the new Bermudan product. The expressions for the vegas of a Bermudan swaption

in different MFMs are also given.

To perform the numerical comparison we calibrated the stochastic volatility

swap MFM and one-dimensional swap MFMs with different combinations of driver

and marginals to the market data. Then we compared the prices and vega profiles

produced by the above MFMs.

The numerical results indicated that, for a Bermudan swaption, the correla-

tion impact on the price and vega profiles is very large while the effects of implied

volatility smiles and stochastic volatility is insignificant. For the new Bermudan

product, the stochastic volatility impact on the price and vega profiles becomes

larger and significant. The correlation effect is very large but the impact of implied

volatility smiles is still insignificant. One important observation is that the vega

profiles produced by the MFM parameterized by expiry is very different from the

models parameterized by time, but this fundamental difference is not altered when

the stochastic volatility is added.
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Figure 5.1: The sum of the vegas
∑n+1−i

k=1 vi,k for i = 1, ..., 30 of the Bermudan
swaption under the different MFMs.
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Chapter 6

Quasi-Gaussian models and

Markov-functional models

6.1 Introduction

In this chapter we compare Markov-functional models to Quasi-Gaussian models in

terms of the model specification and calibration. We try to make clear the link and

difference between these two low-dimensional term structure models as well as their

stochastic volatility versions.

Quasi-Gaussian models1 were introduced by Jamshidian [42] and Cheyette

[14]. They were further developed by Andersen and Piterbarg [5]. Quasi-Gaussian

models belong to the class of short rate models and are obtained by imposing sepa-

rability condition on Heath-Jarrow-Morton models. In a one-factor Quasi-Gaussian

model, the economy is driven by a two-dimensional Markov process. This means

that one can implement one-factor Quasi-Gaussian models efficiently since one only

needs to keep track of the two-dimensional Markov process. By choosing an ap-

propriate volatility function, one-factor Quasi-Gaussian models allow for analytical

approximate pricing formulas for vanilla options and are capable of capturing im-

plied volatility skews of vanilla options. They can also calibrate to the market

correlation structure which is very important for pricing and hedging Bermudan

type products. Furthermore Quasi-Gaussian models allow for stochastic volatility

extensions.

Due to these calibration and implementation advantages, Quasi-Gaussian

models have become one of the most popular low-dimensional term structure mod-

els. Another class of low-dimensional term structure models that have similar ad-

1Also known as Cheyette models
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vantages and are widely used in the City are Markov-functional models. In this

chapter we compare these two models in terms of model specification and cali-

bration. By considering a (stochastic volatility) Quasi-Gaussian model using the

Markov-functional approach, we make clear the link and difference between the two

models. By the general definition of a Markov-functional model given in Section 3.2,

Quasi-Gaussian models belong to the class of Markov-functional models. However

the Quasi-Gaussian model is set up in a different way from the Markov-functional

approach we discussed earlier. This difference stems from the way the functional

forms of zero-coupon bonds are determined. In particular in a Quasi-Gaussian model

the functional forms of zero-coupon bonds are given analytically while the functional

forms are determined numerically by feeding in marginals for the Markov-functional

approach. This difference also leads to more flexibility for the Markov-functional

approach. In particular, given a driving process for a Markov-functional model, one

can feed in any marginal distributions of LIBORs (swap rates). However once a

driving process is given in a Quasi-Gaussian model, the marginal distributions of

LIBORs and swap rates are determined via the explicit formula for zero-coupon

bonds. This separation of the driver and marginals gives Markov-functional models

more flexibility.

Another flexibility for a Markov-functional model is the freedom to choose

its driving process. Quasi-Gaussian models are obtained from the separable Heath-

Jarrow-Morton models. As a result the form of the driver is forced upon us as this

is required to rule out arbitrage in the separable Heath-Jarrow-Morton framework.

In that sense we do not truly choose a driving process and it is the mathematics

that drives us to take it as the driving process. In a Markov-functional model, in

principle, we are free to choose any diffusion process as the driving process to capture

the level of rates. For example one can choose a Gaussian process as the driver for

the sake of efficient implementation. Alternatively one can take a SABR process

as the driver according to the data driven study [44] where the authors identified a

SABR style model as an appropriate choice for the level of interest rates.

Quasi-Gaussian models and Markov-functional models are both capable of

capturing correlation structure of swap rates, which is important for pricing and

hedging Bermudan type products. In particular, in both models, the parameters

of drivers can be chosen by calibrating to the market correlation of swap rates. In

that sense they are both examples of “parametrizations by time” according to the

explanation in Chapter 5.

The rest of the chapter is organized as follows. In Section 6.2 we review

briefly one-factor Quasi-Gaussian models and their stochastic volatility extensions.
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The calibration to vanilla options and correlation structure is also discussed. In

Section 6.3 we compare Quasi-Gaussian models to Markov-functional models in

terms of model specification and calibration. We specify a Quasi-Gaussian model

using the Markov-functional approach.

6.2 Quasi-Gaussian model

In this section we review briefly Quasi-Gaussian (QG) models. The material in this

section comes from Andersen and Piterbarg [5]. We begin with the specification of

a general one-factor Quasi-Gaussian model. We then focus on a special case when

the volatility is chosen to be of displaced diffusion form. With such a choice we

derive approximate formulas for vanilla swaptions prices and correlations of swap

rates. The stochastic volatility version is also discussed. We just provide some main

results of Quasi-Gaussian models without proof. For details the reader is referred

to [5].

6.2.1 General one-factor Quasi-Gaussian model

A Quasi-Gaussian model can be seen as a separable Heath-Jarrow-Morton (HJM)

model. We have introduced HJM models in Section 2.2.3. For ease of reference we

present here the SDE of an instantaneous forward rate f(., T ) in a HJM model:

df(t, T ) = σf (t, T )(

∫ T

t
σf (t, u)du)dt+ σf (t, T )dWQ

t , 0 ≤ t ≤ T, (6.1)

where WQ is a Brownian motion in the risk-neutral measure Q associated with the

numeraire the bank account. Note that the volatility function σf (t, T ), 0 ≤ t ≤ T ,

in (6.1) can be stochastic, in which case we use the notation σf (t, T, ω). We now

give the definition of separability under HJM models.

Definition 3. The instantaneous volatility function σf (t, T, ω), 0 ≤ t ≤ T , is sepa-

rable if there exists a function g such that

σf (t, T, ω) = g(t, ω)h(T ) (6.2)

for some deterministic function h(·).

A HJM model is said to be separable if separability is imposed on the volatil-

ity function. Following some transformations, one can obtain a one-factor Quasi-
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Gaussian model from a one-factor separable HJM model which is given by

dxt = (qt − κtxt)dt+ σr(t, ω)dWQ
t , x0 = 0 (6.3)

dqt = (σr(t, ω)2 − 2κtqt)dt, q0 = 0

where

κ(t) = −h
′(t)

h(t)
,

σr(t, ω) = σf (t, t, ω) = g(t, ω)h(t). (6.4)

The instantaneous forward rates can be expressed in terms of x and q:

f(t, T ) = f(0, T ) +
h(T )

h(t)
(xt +G(t, T )qt),

where

G(t, T ) =

∫ T
t h(s)ds

h(t)
.

Furthermore the short rate r is given by

rt = f(t, t) = f(0, t) + xt.

Note that Quasi-Gaussian models can be viewed as short rate models. Recall that

in a short rate model, the pricing formula for zero-coupon bonds (ZCBs) is given to

us though we may not have an analytic expression for it.

Proposition 5. In the one-factor Quasi-Gaussian model (6.3). Zero-coupon bonds

prices are deterministic functions of the processes xt and qt,

Dt,T = Dt,T (xt, qt)

where

Dt,T (x, q) =
D0,T

D0,t
exp(−G(t, T )x− 1

2
G(t, T )2q). (6.5)

Proof. See Proposition 13.1.1 in [5].

The proposition demonstrates that the evolution of the whole interest rate

curve in the model can be described by the evolution of a two-dimensional Markov
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process (x, q) which is given by (6.3). Observe that in general, the finite variation

process q is not deterministic.

Remark 10. The general one-factor Quasi-Gaussian model (separable HJM model)

is a low-dimensional Markov-functional model (MFM) according to the general defi-

nition of a MFM given in Chapter 3. However the Quasi-Gaussian model is not set

up according to the Markov-functional approach discussed earlier in Section 3.2.3 as

the functional forms of ZCBs here are given analytically in (6.5) while the functional

forms need to be determined numerically for the Markov-functional approach.

6.2.2 Displaced diffusion type local volatility

Having defined a general Quasi-Gaussian model (6.3), in this section we focus on a

special case when the volatility function σr(t, ω) is taken to be of displaced diffusion

type:

σr(t, ω) = λr(t)(αr(t) + br(t)xt), (6.6)

where λr(t) and br(t) are assumed to be piecewise constant:

λr(t) =
n−1∑
i=0

λiI{t∈(Ti,Ti+1]}, (6.7)

br(t) =
n−1∑
i=0

biI{t∈(Ti,Ti+1]}. (6.8)

The parameter αr(t) is redundant and can be chosen exogenously. Then we arrive

at the following local volatility Quasi-Gaussian model

dxt = (qt − κtxt)dt+ λr(t)(αr(t) + br(t)xt)dW
Q
t , x0 = 0 (6.9)

dqt = (λ2
r(t)(αr(t) + br(t)xt)

2 − 2κtqt)dt, q0 = 0.

Note that we choose displaced diffusion type local volatility for tractability, and also

it is capable of producing implied volatility skews of vanilla swaptions which will be

seen later. Alternative choices for local volatility are, for example,

σr(t, ω) = λr(t)xt

and

σr(t, ω) = λr(t)x
βr(t)
t

which give rise to models with log-Normal dynamics and CEV dynamics respectively.
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6.2.3 Calibration to swaptions

In this subsection we consider the problem of how to calibrate the displaced diffusion

Quasi-Gaussian model (6.9) to the market prices of vanilla swaptions. To do so we

derive an approximate pricing formula for vanilla swaptions.

Swap rate dynamics

Let us first derive the dynamics of the co-terminal swap rate yi,n+1−i, i = 1, ..., n,

within the model (6.9). Since the swap rate yi,n+1−i is a martingale in the associated

swaption measure Si,n+1−i corresponding to the numeraire P i,n+1−i, the swap rate

yi,n+1−i should be a driftless process. From (6.9) we have that

dyi,n+1−i
t = (

∂yi,n+1−i
t

∂x
(xt, qt))λr(t)(αr(t) + br(t)xt)dW

i,n+1−i
t (6.10)

where W i,n+1−i is a Brownian motion in the swaption measure Si,n+1−i. By the

definition of swap rates, we have that

yi,n+1−i
t (xt, qt) =

DtTi(xt, qt)−DtTn+1(xt, qt)

P i,n+1−i
t (xt, qt)

, t ≤ Ti, (6.11)

where DtT (xt, qt) is given by (6.5). Apply Itô’s lemma to (6.11) and we have that

∂yi,n+1−i
t

∂x
(x, q) =− 1

P i,n+1−i
t (x, q)

(DtTi(x, q)G(t, Ti)−DtTn+1(x, q)G(t, Tn+1))

(6.12)

+
yi,n+1−i
t (x, q)

P i,n+1−i
t (x, q)

n∑
j=i

αjDtTj+1(x, q)G(t, Tj+1).

Swap rate dynamics approximation

From SDE (6.10) we can see that the co-terminal swap rates have a local volatility

which is a function of (x, q). This dynamics prevents us from deriving a pricing

formula for co-terminal swaptions. Therefore we approximate (6.10) by replacing

the diffusion term which is a function of (x, q) with a local volatility which is a

function of the swap rate itself. The approximations applied here are quite involved

so we will not provide complete technical details. For details, the reader is referred

to [5].

We first apply the Markovian projection (see Appendix 6.A) to the dynamics

of the co-terminal swap rates (6.10), and we have the following lemma.
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Lemma 5. The marginal distributions of the swap rate yi,n+1−i in the model (6.10)

are the same as the marginal distributions of yi,n+1−i implied from the following

dynamics in the associated swaption measure Si,n+1−i:

dyi,n+1−i
t = ϕi(t, yi,n+1−i

t )dW i,n+1−i
t , (6.13)

where

ϕi(t, y)2 = ESi,n+1−i [((
∂yi,n+1−i

t

∂x
(xt, qt))λr(t)(αr(t) + br(t)xt))

2|yi,n+1−i
t = y].

(6.14)

Remark 11. Note that (6.10) and (6.13) admit the same marginal distributions of

the swap rates yi,n+1−i for i = 1, ..., n rather than the joint distributions. The same

marginals implies that the co-terminal vanilla swaption prices produced by models

(6.10) and (6.13) are identical.

So far we have obtained the dynamics (6.13) of swap rates where the local

volatility is a function of the swap rate itself. However it is still difficult to calculate

the conditional expectation (6.14). To solve this problem we approximate qt by

a deterministic function q̄t. By doing so the swap rate yi,n+1−i
t would just be a

deterministic function of xt and time t. Similarly xt would also be a deterministic

function of the co-terminal swap rate yi,n+1−i
t and time t, i.e. xt = x(t, yi,n+1−i

t ).

Now the conditional expectation (6.14) is given by

ϕi(t, y) =
∂yi,n+1−i

t

∂x
(x(t, y), q̄t)λr(t)(αr(t) + br(t)x(t, y)),

where ∂yi,n+1−i/∂x is given by (6.12).

We now give a simple approximation for qt and functions ϕi for i = 1, ..., n.

We let q̄t = 0, and apply Taylor expansion to yi,n+1−i
t (xt, q̄t):

yi,n+1−i
t (x, 0) ≈ yi,n+1−i

t (0, 0) +
∂yi,n+1−i

t

∂x
(0, 0)x.

This gives the following approximation for x(t, yi,n+1−i
t )

x(t, y) ≈ y − yi,n+1−i
t (0, 0)

∂yi,n+1−i
t /∂x(0, 0)

.
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Then we make the following rough approximation

∂yi,n+1−i
t

∂x
(x, 0) ≈ ∂yi,n+1−i

t

∂x
(0, 0),

and we obtain the approximation for functions ϕi, i = 1, ..., n,

ϕi(t, y) ≈ ∂yi,n+1−i
t

∂x
(0, 0)λr(t)(αr(t) + br(t)

y − yi,n+1−i
t (0, 0)

∂yi,n+1−i
t /∂x(0, 0)

).

Finally we apply Taylor expansion to the function ϕi, and we have that

ϕi(t, yi,n+1−i
t ) ≈ ϕi(t, yi,n+1−i

0 ) +
∂ϕi

∂y
(t, yi,n+1−i

0 )(yi,n+1−i
t − yi,n+1−i

0 ), (6.15)

where

ϕi(t, yi,n+1−i
0 ) =

∂yi,n+1−i
t

∂x
(0, 0)λr(t)(αr(t) + br(t)

yi,n+1−i
0 − yi,n+1−i

t (0, 0)

∂yi,n+1−i
t /∂x(0, 0)

),

∂ϕi

∂y
(t, yi,n+1−i

0 ) =
∂yi,n+1−i

t

∂x
(0, 0)(

λr(t)br(t)

∂yi,n+1−i
t /∂x(0, 0)

).

Note that the approximation introduced here is rather rough. A more accurate

approximation can be found in [5].

Proposition 6. In the one-factor displaced diffusion Quasi-Gaussian model (6.9),

the dynamics of the swap rate yi,n+1−i in the associated swaption measure Si,n+1−i

can be approximated by

dyi,n+1−i
t ≈ λiy(t)(biy(t)y

i,n+1−i
t + (1− biy(t))y

i,n+1−i
0 )dW i,n+1−i

t , (6.16)

where

λiy(t) :=
ϕi(t, yi,n+1−i

0 )

yi,n+1−i
0

, (6.17)

biy(t) :=
yi,n+1−i

0

ϕi(t, yi,n+1−i
0 )

∂ϕi

∂y
(t, yi,n+1−i

0 ). (6.18)

Proof. The result follows from (6.13) and (6.15).

Note that (6.16) is a displaced diffusion model with time-dependent parame-

ters λiy(t) and biy(t). We approximate (6.16) by replacing time-dependent parameters

λiy(t) and biy(t) with parameters λ
i
y and b

i
y using the parameter averaging technique
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which is introduced by Andersen and Piterbarg [5]. Therefore we arrive at the

following approximate dynamics:

dyi,n+1−i
t ≈ λiy[b

i
yy
i,n+1−i
t + (1− biy)y

i,n+1−i
0 ]dW i,n+1−i

t , (6.19)

where

λ
i
y := (

1

Ti

∫ Ti

0
λiy(t)

2dt)1/2, (6.20)

b
i
y :=

∫ Ti

0
biy(t)w

i
y(t)dt, (6.21)

wiy(t) :=
λiy(t)

2
∫ t

0 λ
i
y(s)

2ds∫ Ti
0 (λiy(u)2

∫ u
0 λ

i
y(s)

2ds)du
.

Note that by using the parameter averaging technique, the resulting model (6.19)

has very similar marginal distributions for the swap rates {yi,n+1−i
Ti

; i = 1, ..., n} to

the model (6.16). This gives the following approximate swaption pricing formula.

Proposition 7. In the one-factor displaced diffusion Quasi-Gaussian model (6.9),

an approximate pricing formula for a payer swaption with strike K and expiry Ti

on the swap rate yi,n+1−i is given by

V i,n+1−i(0;K) ≈ P i,n+1−i
0 [(yi,n+1−i

0 + yi,n+1−i
0 (1− biy)/b

i
y)Φ(d+) (6.22)

− (K + yi,n+1−i
0 (1− biy)/b

i
y)Φ(d−)],

d± =

ln(
yi,n+1−i
0 +yi,n+1−i

0 (1−biy)/b
i
y

K+yi,n+1−i
0 (1−biy)/b

i
y

)± 1
2(b

i
yλ

i
y)

2Ti

b
i
yλ

i
y

√
Ti

,

where λ
i
y and b

i
y are given by (6.20) and (6.21).

From the pricing formula (6.22), one can see that the model (6.9) is capable

of capturing implied volatility skews of vanilla swaptions. The parameters λi’s and

bi’s of (6.7) and (6.8) can be chosen by calibrating to the market implied volatility

smiles/skews of swaptions via the pricing formula (6.22).

6.2.4 Calibration to the market correlation structure

We now consider the problem of how to determine the parameters κ(t) by calibrating

to the market correlation of swap rates. Let us consider the following formula for

the correlation between co-terminal swap rates (see [5]).
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Proposition 8. The correlation between the swap rates yi,n+1−i
Ti

and yj,n+1−j
Tj

, i < j,

in the Quasi-Gaussian model (6.9) can be approximated by

Corr(yi,n+1−i
Ti

, yj,n+1−j
Tj

) ≈
∫ Ti

0
(
∂yi,n+1−i

t

∂x
(0, 0))(

∂yj,n+1−j
t

∂x
(0, 0))dt

×(

∫ Ti

0
(
∂yi,n+1−i

t

∂x
(0, 0))2dt)−1/2(

∫ Tj

0
(
∂yj,n+1−j

t

∂x
(0, 0))2dt)−1/2. (6.23)

From the above formula, we can capture the correlation structure of swap

rates. However note that in a low-factor model we cannot capture the whole corre-

lation matrix. By letting

κ(t) =

n−1∑
i=0

κiI{t∈(Ti,Ti+1]}

one can choose parameters κi by calibrating to the market one step correlation of

swap rates:

Corr(yi,n+1−i
Ti

, yi+1,n−i
Ti+1

)

for i = 1, ..., n− 1.

We conclude this subsection with a remark. Note that the formula (6.23)

is independent of the volatility parameters λi’s and bi’s. This means that we can

carry out the correlation calibration before the swaption calibration discussed in

Section 6.2.3. This feature is very similar to the Markov-functional approach where

the market one step correlation (covariance) calibration precede the calibration to

vanilla options.

6.2.5 Stochastic volatility Quasi-Gaussian model

Before we proceed to the comparison between Quasi-Gaussian models and MFMs,

we review the stochastic volatility version of Quasi-Gaussian models.

The stochastic volatility version of a Quasi-Gaussian model is straightforward

to extend. Consider the volatility function g(t, ω) (6.4) of the one-factor Quasi-

Gaussian model (6.3). The stochastic volatility version can be obtained by adding

a stochastic volatility process z into the volatility function g(t, ω). In particular we

have

g(t, ω) =
√
z(t)g(t, xt, qt),

145



and

σr(t, x, q) = g(t, x, q)h(t).

The stochastic volatility Quasi-Gaussian model is defined by the following SDEs:

dxt = (qt − κtxt)dt+
√
ztσr(t, xt, qt)dW

Q
t , x0 = 0, (6.24)

dqt = (ztσr(t, xt, qt)
2 − 2κtqt)dt, q0 = 0,

dzt = θ(z0 − zt)dt+ ηt
√
ztdZ

Q
t , z0 = 1, (6.25)

dZQ
t dW

Q
t = 0,

where WQ and ZQ are independent Brownian motions in the risk neutral measure

and the function ηt is piecewise constant of the form

ηt =
n−1∑
i=0

ηiI{t∈(Ti,Ti+1]}.

We will assume that in addition to ZCBs there is at least one option in the economy

which means that the model (6.24) has been chosen and we are in a complete setting.

In this case when moving to another equivalent martingale measure associated with

a different numeraire the Radon-Nikodým derivative is the ratio of numeraires.

Remark 12. Note that we make the assumption of zero correlation dZQ
t dW

Q
t = 0

for tractability. It is helpful when we change measure, as we will see later. This

assumption is not a restriction for capturing implied volatility smiles since the cor-

relation is not the only parameter that can control the slope of the smile. However

it does cause a restriction of the dynamics and it could have an effect on the use

of the model for a Bermudan type product, especially, in terms of hedging. In con-

trast, in the stochastic volatility MFM developed in Chapter 3, we do not have this

restriction.

The pricing formulas for ZCBs in the model (6.24) are given in Proposition 5

which are the same as the local volatility version. Thus the formulas for ZCBs are not

dependent on the stochastic volatility z and this leads to an unspanned stochastic

volatility model in which case the stochastic volatility risk cannot be completely

hedged by ZCBs. For more details about (un)spanned stochastic volatility models,

the reader is referred to [15].

In what follows we focus on a special case when the volatility function

σr(t, xt, qt) in (6.24) is of displaced diffusion type which is given by (6.6). This
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leads to the following stochastic volatility Quasi-Gaussian model:

dxt = (qt − κtxt)dt+
√
ztλr(t)(αr(t) + br(t)xt)dW

Q
t , x0 = 0 (6.26)

dqt = (ztλ
2
r(t)(αr(t) + br(t)xt)

2 − 2κtqt)dt, q0 = 0.

dzt = θ(z0 − zt)dt+ ηt
√
ztdZ

Q
t , z0 = 1,

dZQ
t dW

Q
t = 0.

We now review the calibration in the stochastic volatility Quasi-Gaussian model

(6.26). Most approximations and techniques we used for the local volatility version

in Section 6.2.3 can also apply to the stochastic volatility version here. So we will

not provide complete details which can be found in [5].

Proposition 9. In the stochastic volatility Quasi-Gaussian model (6.26), the dy-

namics of the swap rate yi,n+1−i in the associated swaption measure Si,n+1−i can be

approximated by

dyi,n+1−i
t =

√
ztλ

i
y(t)(b

i
y(t)y

i,n+1−i
t + (1− biy(t))y

i,n+1−i
0 )dW i,n+1−i

t ,

(6.27)

dzt = θ(z0 − zt)dt+ ηt
√
ztdZ

i,n+1−i
t , z0 = 1,

dZi,n+1−i
t dW i,n+1−i

t = 0,

where λiy(t) and biy(t) are given by (6.17) and (6.18).

Note that due to the assumption of zero correlation dZQ
t dW

Q
t = 0 and com-

pleteness, the drift term of the stochastic volatility process z is not altered when

the measure is changed from the risk-neutral measure Q to the swaption measure

Si,n+1−i.

Applying the parameter averaging technique, the time-dependent stochas-

tic volatility model (6.27) can be approximated by a time-independent stochastic

volatility model which allows for a closed-form pricing formula for vanilla swaptions.

The parameters λi’s, bi’s and ηi’s in the stochastic volatility Quasi-Gaussian model

(6.26) can be chosen by calibrating to the market implied volatility smiles/skews of

vanilla swaptions. The remaining parameters κi’s can be determined by calibrating

to the market correlation structure. We can still use formulas introduced for the

local volatility Quasi-Gaussian model in spite of effects of the stochastic volatility.

But the calibration performance is not expected to be very precise.
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6.3 Comparison between Quasi-Gaussian models and

Markov-functional models

6.3.1 Review of Quasi-Gaussian model under Markov-functional

model framework

We now consider the Quasi-Gaussian model (6.9) using the Markov-functional ap-

proach to make clear the relationship between the Quasi-Gaussian models and

MFMs. In particular we specify a swap MFM under the terminal measure Fn+1

corresponding to the numeraire D.,Tn+1 . By choosing a particular combination of

driving process, pre-model and marginals, the resulting swap MFM is expected to

be close to the Quasi-Gaussian model (6.9).

Driving process

In order to specify a MFM, we first consider the choice of driving process. In Section

3.2, we specified a MFM by taking a Gaussian process as the driver for the sake of

efficient implementation. Note that we are not forced to choose a Gaussian driving

process. In order to match the Quasi-Gaussian model (6.9), we take the process

(x, q) of the model (6.9) as the driver. However we will specify the MFM under the

terminal measure while the process (x, q) is given under the risk-neutral measure.

Thus following the change of numeraire technique we write down SDEs of (x, q)

under the terminal measure.

Proposition 10. Under the terminal measure Fn+1 the process (x, q) in the Quasi-

Gaussian model (6.9) satisfies

dxt = (qt − κtxt −G(t, Tn+1)λ2
r(t)(αr(t) + br(t)xt)

2)dt (6.28)

+ λr(t)(αr(t) + br(t)xt)dW
n+1
t

dqt = (λ2
r(t)(αr(t) + br(t)xt)

2 − 2κ(t)qt)dt,

where the Brownian motion Wn+1 under the terminal measure is defined by

dWn+1
t := dWQ

t +G(t, Tn+1)λr(t)(αr(t) + br(t)xt)dt.

Proof. Define ρt by

ρt :=
dFn+1

dQ

∣∣∣∣
Ft

=
DtTn+1/D0Tn+1

Bt/B0
,

where B is bank account and {Ft} is the filtration generated by WQ. After calcu-
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lation, we have that

dρt = −ρtG(t, Tn+1)λr(t)(αr(t) + br(t)xt)dW
Q
t .

From the Girsanov theorem we have that the process

dWn+1
t := dWQ

t −
dρt
ρt
· dWQ

t

= dWQ
t +G(t, Tn+1)λr(t)(αr(t) + br(t)xt)dt.

is a Brownian motion in the terminal measure Fn+1 corresponding to the numeraire

D.,Tn+1 . The result then follows from SDE (6.9).

Usually when using the Markov-functional approach for a low-dimensional

MFM, the driving process is chosen to model the level of rates. For instance for

the stochastic volatility MFM we developed in Chapter 3, we choose a SABR type

model as the driver because Kaisajuntti and Kennedy [44] identified a SABR style

model as an appropriate choice for the level of interest rates by investigating an

extensive set of market data. The process x of (6.28) can be seen as modelling the

level of interest rates while carrying the process q with it.

We note that the process x itself is not Markovian but (x, q) is a two-

dimensional Markov process. Thus we have to set up a two-dimensional MFM

although there is only one factor (Brownian motion) driving the whole economy.

From the modelling perspective, this does not look a likely choice for a driver. In

particular, in the Quasi-Gaussian model the form of the driver (6.3) and the neces-

sity to carry around the finite variation process q is forced upon us as this is required

to avoid arbitrage in the separable HJM framework. In that sense we do not truly

choose a driver and we are just stuck with it. Though the driver (6.3) leads to a non-

Gaussian copula, there are other choices of non-Gaussian copula, e.g. CEV driver,

which would not require a two-dimensional process for a one-factor model and which

maybe better from a modelling point of view. Thus the Markov-functional approach

allows for more flexibility in the choice of driver.

The Markov-functional approach is closer in spirit to market models. In par-

ticular the Quasi-Gaussian model is obtained from the separable HJM model while

the MFM with particular choices of driver and marginals is found to be very similar

to the corresponding separable market model. The HJM model models the instan-

taneous forward rate which is not observable in the market while market models

model the market interest rate directly which is more transparent.
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Pre-model

Remember that under multi-dimensional MFMs we retain the univariate and mono-

tonicity properties by introducing the idea of pre-model. Here we apply the same

technique and choose a pre-model. Recall that a pre-model ŷi,n+1−i
Ti

: R2 → R is a

function of (xTi , qTi):

ŷi,n+1−i
Ti

(xTi , qTi) = f i(xTi , qTi).

In order to match the Quasi-Gaussian model (6.9), we choose the pre-model to be

the function yi,n+1−i
Ti

(xTi , qTi) which is given in the Quasi-Gaussian model.

Since ZCBs are deterministic functions (6.5) of the process (x, q) in the Quasi-

Gaussian model (6.9), the co-terminal swap rates can be expressed in the form of

yi,n+1−i
t (xt, qt) =

DtTi(xt, qt)−DtTn+1(xt, qt)∑n
j=i αjDtTj+1(xt, qt)

, (6.29)

where the functional form DtT (xt, qt) is given by (6.5). We choose the pre-model

ŷi,n+1−i
Ti

(xTi , qTi) as

ŷi,n+1−i
Ti

(xTi , qTi) := yi,n+1−i
Ti

(xTi , qTi). (6.30)

Marginal distribution

Having chosen the driving process and the pre-model for our MFM, we now con-

sider the problem of how to choose the marginal distribution of the swap rates

{yi,n+1−i
Ti

; i = 1, ..., n}. In order to specify a MFM which is similar to the Quasi-

Gaussian model (6.9), we choose the marginals implied from the Quasi-Gaussian

model. As we discussed in the Quasi-Gaussian model (6.9), the marginal distribu-

tions of {yi,n+1−i
Ti

; i = 1, ..., n} are approximately given by the displaced diffusion

model (6.19). Therefore we feed the displaced diffusion marginal distribution im-

plied from (6.19) into our MFM.

Remark 13. Given a driving process for a MFM, one can feed in any exact marginal

distributions of swap rates. This separation of the driver and marginals gives a

MFM more flexibility. In contrast, in Quasi-Gaussian models, in order to fit the

marginal distributions of swap rates we applied complicated approximations (see

Section 6.2.3). Once the driving process of a Quasi-Gaussian model is given, the

marginal distributions of swap rates are determined via the explicit formula for ZCBs

(6.5).

In this subsection we have chosen a particular combination of the driver,
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pre-model and marginal distributions and we arrive at a MFM which is expected to

be similar to the Quasi-Gaussian model (6.9). However we have flexibility to choose

another combination and this will lead to a MFM different from the Quasi-Gaussian

model (6.9). In this sense the Quasi-Gaussian model can be viewed as a special case

of the MFM class.

In similar way, the stochastic volatility Quasi-Gaussian model (6.26) can

also be viewed from the Markov-functional approach perspective by choosing an

appropriate driver ((x, q) process (6.28) together with stochastic volatility process

z (6.25)), pre-model (6.30) and the marginals implied from the stochastic volatility

model (6.27).

Remark 14. In the stochastic volatility Quasi-Gaussian model, one has to keep

track of three processes. In the stochastic volatility MFM introduced in Chapter 3

however we only need to deal with a two-dimensional Markov process.

6.3.2 Calibration comparison

In this subsection we compare the Quasi-Gaussian model (6.9) to a swap MFM

in terms of the calibration. In particular we consider the one-dimensional swap

MFM with a Gaussian driving process together with a displaced diffusion marginal

distributions of the swap rates {yi,n+1−i
Ti

; i = 1, ..., n}.
The Quasi-Gaussian model can be calibrated in a similar way to the swap

MFM. They can be both calibrated to the displaced diffusion type implied volatility

skews of the co-terminal swaptions and the market correlations of swap rates. Recall

that in MFMs, we discussed the one-step covariance type driving process which can

be specified by calibrating to the market one-step covariance (correlation) of swap

rates {yi,n+1−i
Ti

; i = 1, ..., n}, and this is an example of parametrizations by time.

Therefore the Quasi-Gaussian model is also parameterized by time.

When the Quasi-Gaussian model and the swap MFM are calibrated to the

same market prices of swaptions and market correlation structure, we are interested

in the problem of whether or not the two models produce the same prices and

hedges of, for example, a Bermudan swaption. We expect that the results could be

different because the two models have different copulas for the driving processes. In

particular the MFM has a Gaussian copula while the Quasi-Gaussian model has a

non-Gaussian copula. Although they have the same marginal distributions of the

swap rates {yi,n+1−i
Ti

; i = 1, ..., n}, different copulas for the drivers result in different

joint distributions of the swap rates {yi,n+1−i
Ti

; i = 1, ..., n} which determines the

prices of the corresponding Bermudan swaption. Therefore the prices and hedges
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for a Bermudan swaption produced by the two models could be different. But

we need to investigate if this leads to a significant difference in practice. Similar

questions arise for the stochastic volatility versions of these models.

In this chapter we have studied the Quasi-Gaussian models via the Markov-

functional model framework. This enables us to gain insight into how the mod-

els are similar and how they are different. The Quasi-Gaussian model without

stochastic volatility can be calibrated to the one-step correlation (covariance) of

swap rates and its marginal distributions are approximately that of a displaced

diffusion. The main difference from the standard Markov-functional model (with

displaced diffusion marginal) is the driver which is non-Gaussian and requires us to

track a two-dimensional process. Similarly the stochastic volatility Quasi-Gaussian

model requires a three-dimensional driver whereas the stochastic volatility Markov-

functional model developed in this thesis requires a two-dimensional driver and the

choice of driver is motivated by empirical data rather than tractability considera-

tions. Further numerical work is required to study the differences between these two

models in terms of pricing and hedging path dependent derivatives.
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6.A Appendix: Markovian projection

We give the following Markovian projection from [5] and the proof can also be found

there. Let us consider the following SDE

dXt = λtdWt, (6.31)

where W is a one-dimensional Brownian motion under some probability measure

P and the process λ is adapted and bounded such that (6.31) has a unique strong

solution. Define b(t, x) by

b(t, x)2 = EP(λ2
t |Xt = x).

Then the SDE

dYt = b(t, Yt)dWt, Y0 = X0,

admits a weak solution Y that has the same marginal distributions as X.
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