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ABSTRACT

In preparation for the upcoming all-sky data releases of the Gaia mission we compiled a catalog of known hot subdwarf stars and
candidates drawn from the literature and yet unpublished databases. The catalog contains 5613 unique sources and provides multi-
band photometry from the ultraviolet to the far infrared, ground based proper motions, classifications based on spectroscopy and
colors, published atmospheric parameters, radial velocities and light curve variability information. Using several different techniques
we removed outliers and misclassified objects. By matching this catalog with astrometric and photometric data from the Gaia mission,
we will develop selection criteria to construct a homogeneous, magnitude-limited all-sky catalog of hot subdwarf stars based on Gaia
data.

Key words. subdwarfs – stars: horizontal-branch

1. Introduction

Hot subdwarf stars (sdO/Bs) have spectra similar to main se-
quence O/B stars, but are subluminous and more compact. The
formation and evolution of those objects is still unclear. In the
Hertzsprung-Russell diagram those stars are located at the blue-
ward extension of the horizontal branch (HB), the so called
extreme or extended horizontal branch (EHB, Heber et al. 1986)
and are therefore considered to be core helium-burning stars.

To end up on the EHB, stars have to lose almost their entire
hydrogen envelopes in the red-giant phase most likely via binary
mass transfer. Hot subdwarfs turned out to be important objects
to study close binary interactions and their companions can be
planets, brown dwarfs, all kinds of main sequence stars, white
dwarfs, and maybe even neutron stars or black holes. Hot subd-
warf binaries with massive white dwarf companions are candi-
dates for the progenitors of type Ia supernovae. They are possi-
bly ejected by such supernovae as hypervelocity stars (see Geier
2015). Hot subdwarfs dominate old stellar populations in blue
and ultraviolet bands. Their atmospheres are peculiar and can
be used to study diffusion processes, such as gravitational set-
tling or radiative levitation. Furthermore, several types of pul-
sating sdO/Bs have been found and turn out to be well suited
for asteroseismic analyses. For a comprehensive review of the
state-of-the-art hot subdwarf research see Heber (2016).
? The catalog is only available at the CDS via anonymous ftp to
cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A50

SdO/B stars were initially found in surveys looking for
faint blue stars at high Galactic latitudes (Humason & Zwicky
1947). The first larger-area surveys for such objects were the
Tonantzintla survey (TON, Iriarte & Chavira 1957; Chavira
1958, 1959), the Palomar Haro Luyten survey (PHL, Haro &
Luyten 1962), and the Palomar-Green (PG) survey (Green et al.
1986). The Kitt Peak-Downes (KPD) survey covered a substan-
tial area in the Galactic plane for the first time (Downes 1986).
Collecting these early discoveries Kilkenny et al. (1988) pub-
lished the first catalog of spectroscopically identified hot subd-
warf stars. This catalog contained photometry, spectral types and
some atmospheric parameters for the 1225 sdO/Bs known at that
time.

Many more hot subdwarfs have been detected subsequently
in the Hamburg Quasar Survey (HS, Hagen et al. 1995), the
Hamburg ESO survey (HE, Wisotzki et al. 1996), the Edinburgh-
Cape Survey (EC, Stobie et al. 1997) and the Byurakan sur-
veys (FBS, SBS, Mickaelian et al. 2007, 2008). Østensen (2006)
did an extensive literature search and created the hot subdwarf
database with state-of-art interface linking essentially all the in-
formation available in the archives for more than 2300 stars. This
database is still widely used in the field.

However, since 2006 the number of known hot subdwarfs
again increased by a factor of more than two. The Sloan Digi-
tal Sky Survey (SDSS) provided spectra of almost 2000 sdO/Bs
(Geier et al. 2015b; Kepler et al. 2015, 2016), reaching down
to much fainter magnitudes than previous surveys. On the bright
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end of the magnitude distribution, new samples of hot subdwarfs
have been selected from the EC survey and the GALEX all-sky
survey photometry in the UV (e.g. Vennes et al. 2011). Further-
more, new large-area photometric and astrometric surveys have
been and are currently conducted in multiple bands from the UV
to the far infrared. Given this wealth of new high quality data, we
consider it timely to compile a new catalog of hot subdwarf stars.

This catalog will be used as input and a calibration dataset to
select a magnitude-limited, homogeneous, all-sky catalog of hot
subdwarf stars using astrometry and photometry from the Gaia
mission, which will allow us to study the properties of the hot
subdwarf population with unprecedented accuracy.

2. Constructing the catalog

2.1. Input data

The basic data source for the catalog was the sample of hot subd-
warfs classified as sdO/B from the database of Østensen (2006),
which we consider fairly complete up to the date of publica-
tion. We added the subdwarf candidates from the FBS survey
(Mickaelian et al. 2008), the sample of hot subdwarfs identi-
fied in the course of the Kepler mission (Østensen et al. 2010b),
the large sample of sdO/Bs spectroscopically identified from
the SDSS DR7 during the Massive Unseen Companions to Hot
Faint Underluminous Stars from SDSS project (MUCHFUSS,
Geier et al. 2015b), a yet unpublished sample of spectroscop-
ically classified sdO/Bs selected from SDSS DR8-10, and the
most recently published sdO/B candidates from SDSS DR12
(Kepler et al. 2016). We also included the candidate sample from
SDSS DR10 classified as narrow-line hydrogen stars (NLHS)
by Gentile Fusillo et al. (2015). The recently published large
sample of sdO/Bs from the complete EC survey was included
as well and is important because of its location in the other-
wise under-represented Southern hemisphere (Stobie et al. 1997;
O’Donoghue et al. 2013; Kilkenny et al. 2015, 2016).

An important part of our catalog consists of a sample of
several hundred yet unpublished sdO/Bs selected from GALEX,
GSC, and 2MASS photometry by R. H. Østensen and E. M.
Green, which have been classified based on follow-up spec-
troscopy taken with the INT/IDS, NOT/ALFOSC, WHT/ISIS,
CAHA/TWIN, ESO-NTT/EFOSC2, and 4m-KPNO/RC
spectrographs.

In addition, we added the sample of sdO/Bs selected from the
Guide Star and the Galaxy Evolution Explorer (GALEX) cata-
logs by Vennes et al. (2011), the samples of Oreiro et al. (2011)
and Perez-Fernandez et al. (2016) selected using Virtual obser-
vatory tools and multiband photometry, and the first sample of
sdO/Bs discovered by the Large Sky Area Multi-Object Fibre
Spectroscopic Telescope (LAMOST) survey (Luo et al. 2016).
Those samples are considered the most important ones to date
and should cover more than 90% of the currently known sdO/Bs
in the field. The growing number of hot subdwarf stars found
in globular clusters has not been included in this release of the
catalog.

2.2. Multi-band photometry

Using TOPCAT’s (Taylor 2005) internal cross-match with a ra-
dius of 10 arcsec, we identified several hundred duplications and
constructed a catalog of unique sources. To obtain homogeneous
multi-band photometry, we cross-matched those objects again
using a radius of 10 arcsec with well calibrated, large-area survey
catalogs. Near-UV (NUV) and far-UV (FUV) photometry were

Fig. 1. Magnitude distribution of a representative catalog subset in the
g-band. Photometry has been taken from SDSS if available, or otherwise
from APASS, which also covers the brighter objects.

taken from the GALEX DR5 All-sky Imaging Survey (AIS,
Bianchi et al. 2011). To account for the known systematic shifts
of the GALEX magnitudes of bright targets we applied the cor-
rections suggested by Camarota & Holberg (2014).

Optical photometry was obtained from the Guide Star cat-
alog (GSC 2.3.2, Lasker et al. 2008) in the RFBJVINB-bands,
the AAVSO Photometric All Sky Survey (APASS DR9, Henden
et al. 2016) in the VBgri-bands, the SDSS DR12 (Alam et al.
2015) in the ugriz-bands, the VST-ATLAS (DR2, Shanks et al.
2015) and the Kilo-Degree (KiDS DR2, de Jong et al. 2015) ESO
public surveys in the ugriz-bands. For the optical magnitude dis-
tribution of the catalog see Fig. 1.

Near Infrared photometry was obtained from the 2MASS
All-Sky Catalog of Point Sources (Skrutskie et al. 2006) in the
JHK-bands, the UKIRT Infrared Deep Sky Survey (UKIDSS
Large Area Survey DR9, Lawrence et al. 2007) in the Y JHK-
bands, the VISTA Hemisphere (VHS DR2, McMahon et al.
in prep.), and the VISTA Kilo-degree Infrared Galaxy (VIKING
DR4, Edge et al. 2013) ESO public surveys in the ZY JHKS-
bands. Far infrared photometry was obtained from the AllWISE
data release (Cutri et al. 2014) in the four WISE-bands.

The Galactic reddening E(B − V) and the Galactic dust ex-
tinction AV from the maps of Schlafly & Finkbeiner (2011) are
also provided. However, correcting for reddening and extinc-
tion only works properly for stars situated significantly above
the Galactic plane. Bright hot subdwarfs or stars at low Galactic
latitudes are usually foreground objects.

The extended wavelength coverage of the multi-band pho-
tometry allows us to construct full spectral energy distributions
of both single sdO/Bs and sdO/Bs in binaries with cool com-
panions. SEDs are a powerful tool to determine their parameters
(e.g., Girven et al. 2012). The results of the SED fitting of all
the stars in the catalog will be published in another paper of this
series (see Fig. 2 for some examples).

2.3. Ground-based proper motions

Ground-based proper motions were obtained from SDSS (DR9,
Ahn et al. 2012), the Fourth US Naval Observatory CCD
Astrograph Catalog (UCAC4, Zacharias et al. 2013), the
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Fig. 2. Preliminary spectral energy distributions (SEDs) and residuals
for an sdB star with Teff ' 29 500 K (upper panel), an sdO star with
Teff ' 39 700 K (middle panel) and a composite binary system consist-
ing of an sdB star with Teff ' 29 100 K and a K-type main sequence
star with Teff ' 4500 K (lower panel). Photometry is taken from the
catalog. The u-band is especially important for determining reliable ef-
fective temperatures for sdO/Bs. The fitting procedure with synthetic
models is described in Irrgang (2014).

PPMXL catalog of positions and proper motions on the ICRS
(Roeser et al. 2010), the Whole-Sky USNO-B1.0 Catalog
(Monet et al. 2003), the Absolute Proper motions Outside the
Plane catalog (APOP, Qi et al. 2015), and the Yale/San Juan
Southern Proper Motion Catalog 4 (SPM4, Girard et al. 2011).

2.4. Light-curve data

To search for variability likely caused by close binarity (e.g.
eclipses, reflection effects, ellipsoidal modulations) or pulsa-
tions, available light curves of all the stars in the SuperWASP
archive (DR1, Butters et al. 2010) and the Catalina Real-Time
Transient Survey (CRTS DR2, Drake et al. 2012) were visu-
ally inspected. The SuperWASP DR1 only covers a small frac-
tion of the objects in the catalog and is restricted to bright stars
(<15 mag). The light curves usually have several thousand single
epochs. The CRTS DR2 has a significant overlap with our cat-
alog and covers the magnitude range ∼13–20 mag. The number
of epochs varies from a few tens to a few hundred.

Due to the limited quality of the light curves and strong
aliasing effects, we refrained from performing a rigorous statis-
tical analysis of the light curves. Instead the implemented pe-
riodogram functions of the Catalina and the NASA Exoplanet
Archive web pages were used to search for significant periodic-
ities (keyword var). In addition, all light curves were visually
checked for irregular variations (var irregular). It has to be
pointed out that only relatively strong variations can be seen in
these data and that objects marked as constant in the catalog can
still show lower amplitude variations.

The catalog contains comments about the availability and the
properties of the light curves for all stars. Candidates for peri-
odic variabilities come with the tentative period in days (e.g.,
var 0.123). However, only variabilities that are marked with
the keyword strong should be treated as reliable. The other can-
didates might well be marginal and require a more sophisticated
analysis. We found a variety of new close binary and pulsator
candidates, which will be published by Kupfer et al. (in prep.).

2.5. Cleaning the catalog

The data collected were used to identify and remove objects
misclassified as hot subdwarf stars. Likely candidates are hot
white dwarfs of DA, DB and DO type, peculiar objects such
as PG 1159 stars and central stars of planetary nebula, but also
cooler DAs, which show weaker hydrogen lines and can resem-
ble helium-poor sdBs (especially if spectra are normalized to a
flat continuum). Main sequence stars of O and B type as well
as blue HB (BHB) stars are possible bright contaminants. Cool
subdwarfs of A and F type as well as cataclysmic variables can
mimic sdO/B+MS binaries. Extragalactic objects such as blue
galaxies and QSOs also appear in color-selected samples. To
separate all kinds of cool objects, color indices were used. Ap-
proximately 300 objects with SDSS colors u − g > 0.6 and
g − r > 0.1, as well as NUVGALEX − gAPASS > 2.0, have been
excluded.

A powerful tool to separate nearby white dwarfs from the
more luminous and distant sdO/Bs is the reduced proper mo-
tion. We followed the approach outlined in Gentile Fusillo et al.
(2015) and calculated the reduced proper motion H = x +
5 log µ+5. The full proper motion µwas averaged from all avail-
able proper motions of each star. Since not all stars have photom-
etry in all bands, we defined the magnitude x as the average of
all the blue and visual bands in the catalog (B jGSC, VGSC, BGSC,
VAPASS, BAPASS, gAPASS, uSDSS, gSDSS, uVST, gVST). It has to be
pointed out that this is not a physically meaningful quantity, but
an empirically determined filter parameter only. For the subset of
stars with SDSS photometry, we compared H with the reduced
proper motion in the g-band Hg = g + 5 log µ + 5. The mean de-
viation is ±0.12, which can become much higher (>0.5) for stars
with incomplete photometry.
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Fig. 3. Reduced proper motion H as defined in Sect. 2.5 for a subset
of stars with u − g colors. Outliers with inconsistent proper motions
between the different proper motion catalogs have been included in our
catalog, but are not shown here.

We constructed the reduced proper motion diagram and also
included previously misclassified white dwarfs (WDs) to find the
most reasonable exclusion criterion (see Fig. 3). We found that
stars with H > 15 are very likely to be WDs (see also Gentile
Fusillo et al. 2015) and excluded them. Exceptions have been
made for stars with highly inconsistent proper motions.

The light curves also turned out to be useful to identify mis-
classifications. Strong irregular variations led to the exclusion of
some cataclysmic variables (CVs) and the characteristic pulsa-
tions of RR Lyr variables are easy to recognize and allowed us to
exclude a few tens of those stars.

The catalog was also cross-matched with SIMBAD and mis-
classified objects known from the literature (mostly B-stars,
WDs, CVs, and central stars of planetary nebula) were also ex-
cluded. Another benefit of the various cross-matching exercises
was the identification of a few tens of stars (some of them very
bright) with incorrect coordinates in SIMBAD. We corrected
those coordinates in the catalog by adopting either SDSS or
2MASS positions.

Finally, we inspected the distribution of values in the single
catalog columns as well as the two color diagrams with TOP-
CAT to find and eliminate obvious outliers. However, the large
amount of heterogeneous archive data has not been systemati-
cally checked for quality (e.g. by inspecting quality flags). The
final catalog contains 5613 unique objects, most of which are lo-
cated in the northern hemisphere and at relatively high Galactic
latitudes, because most surveys cover those regions (see Fig. 4).
Besides some WDs and MS-B stars we expect BHB stars to be
the most important class of contaminant objects remaining in the
catalog, because they are very hard to separate from sdO/Bs with
the methods used here.

The first preliminary data from the Gaia mission has been
published recently (Gaia collaboration 2016). However, due to
yet uncorrected chromatic effects, the bluest objects have been
excluded from Gaia Data Release 1. Only approximately 60 stars
of our catalog are part of the bright TGAS sample (Tycho-Gaia
astrometric solution, Michalik et al. 2015) with preliminary par-
allaxes and proper motions, almost all of them composite sdB
binaries. The much larger Gaia DR1 catalog of positions and
Gaia magnitudes only covers approximately half of our sample.

Due to this severe selection bias we decided not to include Gaia
DR1 data in this version of our catalog.

2.6. Classification of hot subdwarfs

Most of the stars in the catalog have been visually classified by
looking at some kind of optical spectrum (objective prism, long-
slit, echelle). It is almost impossible to homogenize the classi-
fications attributed by different people at different times based
on very different types of data. Furthermore, quite diverse clas-
sification schemes have emerged in the last few decades, from
the quite detailed classifications in the PG catalog (Green et al.
1986) and the more general classes introduced (and widely used
today) by Moehler et al. (1990) to the sophisticated MK-like
classification system developed by Drilling et al. (2013).

The spectroscopic classifications provided for 5055 stars
in the catalog (see Table 1) follow the scheme outlined in
Moehler et al. (1990). Classifications from the literature have
been adapted to this scheme. The reason is that statistical ana-
lyses of population properties require a meaningful definition of
the sub-populations rather than overly detailed classifications.
The exact spectroscopic class might still be interesting to study
single objects. In this case, the catalog links to the literature can
be used to find out more.

It has to be pointed out that some subclasses are relatively
difficult to distinguish spectroscopically. The only difference be-
tween the sdBs and sdOBs is often the presence or absence of
only one He ii line at 4686 Å, which can be easily overlooked
in low-quality spectra. The helium-rich subclasses (He-sdB, es-
pecially He-sdOB and He-sdO) can often only be distinguished
with a proper quantitative spectral analysis. Stars classified as
sdO in the catalog can be both hydrogen- or helium-rich, be-
cause they are often not clearly separated in the literature.

Assuming that the spectroscopic classifications are, on aver-
age, correct, we used them to define a purely empirical scheme
for the photometric classifications by inspecting the locations
of the subclasses in two-color diagrams (see Table 2). Using
the SDSS u − g versus g − r diagram (Fig. 5, see also Geier
et al. 2011), sdOs of all types are well separated from the sdBs.
sd+MS stars, on the other hand, form a distinct sequence and are
clearly separated from the cooler stars of A and F-type, which
have been excluded. The sd+MS sequence is also well defined in
the NUVGALEX − gAPASS versus gAPASS − rAPASS diagram (Fig. 6,
upper panel), whereas the hotter sdOs cannot be separated. To
provide at least an approximate photometric class of the remain-
ing objects, we also used the less well defined color criterium
VGSC − J2MASS (Fig. 6, lower panel) to distinguish between sin-
gle sdO/Bs and composite sd+MS systems. The SDSS-based
color class should be regarded the most trustworthy, followed
by the GALEX/APASS class and eventually the GSC/2MASS
class. Following this ranking, we defined a comprehensive color
class and classified 4888 stars in the catalog in this way.

The color classes can also be used as a sanity check for the
spectroscopic classifications, e.g. to find yet undetected main se-
quence companions, and of course are very useful for a tentative
classification of stars without spectroscopy.

2.7. Spectroscopic parameters and radial velocities

The catalog contains spectroscopic parameters such as effec-
tive temperatures, surface gravities, and helium abundances for
924 stars from the literature. This fraction is not complete,
because only papers containing larger samples of sdO/B stars
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Fig. 4. Coordinates of the objects in the hot subdwarf catalog.

Table 1. Spectral classification scheme.

sdB H, (He i)
sdOB H, He i, He ii
sdO H, He ii (H-rich) or He ii, (H) (He-rich)
He-sdB He i, (H)
He-sdOB He i, He ii, (H)
He-sdO He ii, (He i, H)
sdO/B+K/G/F/A sdO/B with visible MS companion

sdO/BV Pulsator
sdO/B+WD/dM/BD sdO/B with close invisible companion

Notes. For each class the species with observed lines in the spectrum are
given in a sequence of relative strength. The strongest lines are always
coming first. Species in parentheses can be present, but do not have
to be.

have been taken into account (Heber et al. 1984; Bixler et al.
1991; Saffer et al. 1994, 1997; Maxted et al. 2001; Edelmann
et al. 2003; Lisker et al. 2005; Ströer et al. 2007; Hirsch
2009; Østensen et al. 2010a; Nemeth et al. 2012; Geier et al.
2013, 2015b; Kupfer et al. 2015; Luo et al. 2016; Kepler et al.
2016).

Radial velocities (RVs) are provided for the 2122 stars with
spectra in the SDSS data archive. Those RVs have been mea-
sured automatically by cross-correlation with template spectra

Table 2. Color-classification schemes.

Color class 1
SDSS

sdO −0.55 < uSDSS − gSDSS < −0.35
−0.65 < gSDSS − rSDSS < −0.45

sdB −0.5 < uSDSS − gSDSS < 0.7
gSDSS − rSDSS > 0.208(uSDSS − gSDSS) − 0.516
gSDSS − rSDSS < 0.208(uSDSS − gSDSS) − 0.376

sd+MS −0.5 < uSDSS − gSDSS < 0.7
gSDSS − rSDSS > 0.208(uSDSS − gSDSS) − 0.376

Color class 2
GALEX/APASS

sdO/B NUVGALEX − gAPASS < 2.0
gAPASS − rAPASS < −0.15

sd+MS NUVGALEX − gAPASS < 2.0
gAPASS − rAPASS ≥ −0.15

Color class 3
GSC/2MASS

sdO/B VGSC − J2MASS < 0.1
sd+MS VGSC − J2MASS ≥ 0.1

in the course of the SDSS. Since the template library does not
include very helium-rich stars such as He-sdOs, the RVs of such
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Fig. 5. Two-color diagram for the stars with SDSS color classifications.
The color indices have been corrected for reddening as described in
Schlafly & Finkbeiner (2011). Stars classified in this way as sdOs are
marked in blue, sdBs in green and composite sd+MS systems in red.
Upper panel: stars with spectroscopic classifications. The color cuts in
the lower panel are determined from this plot. It can be clearly seen that
composite systems are easier to identify from their colors than from
their spectra.

stars can be incorrect by up to ∼100 km s−1. The reason for this
is that the Pickering series of single ionized helium can easily
be confused with the hydrogen Balmer series. However, the rest
wavelengths of the Pickering lines are blueshifted with respect to
the Balmer lines. Fitting a He-sdO with a normal O star template
can therefore lead to an apparently good match, but result in the
wrong RV. For He-sdOs with pure helium atmospheres this ef-
fect is strongest and must be taken into account (see Geier et al.
2015a).

The RVs are obtained from SDSS spectra, which are usually
co-added from three consecutive individual exposures of 15 min
duration. Since especially sdB stars are often found in close bina-
ries with sometimes very short orbital periods, orbital smearing

Fig. 6. Two-color diagrams for the stars with GALEX/APASS (upper
panel) and GSC/2MASS (lower panel) color classifications. Because
those stars are on average brighter and closer, no reddening correction
has been applied. Stars classified in this way as sdO/Bs are marked in
green and composite sd+MS systems in red.

can lead to systematic shifts (e.g. Geier et al. 2011). More impor-
tantly, the SDSS RVs in this catalog are only obtained from one
co-added spectrum and contain no information about RV vari-
ability (as provided for sdO/Bs up to SDSS DR7 in Geier et al.
2015b).

2.8. Catalog statistics and data access

Table A.1 summarizes the content of the catalog. Since the sam-
ple is heterogeneously selected, those numbers only contain very
limited information about the quantitative properties of the un-
derlying Galactic hot subdwarf population. The most striking
difference between the spectroscopic and the color selection is
the much higher number of composite sd+MS systems found by
colors. Part of this mismatch can very likely be attributed to the
quality of the photometry and the selection of the color cuts.

However, considering that most spectral classifications are
based on blue and visual spectra, where the cool companion is
quite often outshone by the sdO/B component, infrared excesses
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Table 3. Catalog statistics.

Total 5613

Spectroscopic class

sdB 2866
sdOB 530
sdO 477
He-sdB/OB/O 540
sd+MS 642

Unclassified sd 558

Color class

sdB 1666
sdO 548
sdO/B 1448
sd+MS 1226

Unclassified sd 725

are a much better indication for a cool companion than the some-
times quite shallow spectral lines (e.g. Nemeth et al. 2016), we
conclude that the color selection should be better suited to find
such binaries, especially if the companions are of late type, and
that the fraction of those systems might have been underesti-
mated so far.

The catalog will be available via the VizieR service as well
as the German Virtual Observatory (GAVO). A detailed descrip-
tion of the catalog columns is provided in Table A.1. It will be
linked to all relevant databases to allow easy access to data for
individual objects. The catalog is by no means complete and het-
erogeneously selected, which has to be taken into account when
using it for statistical analyses. People who are interested in in-
dividual objects should carefully check the relevant quality flags
in the specific catalogs.

If an object is in the catalog, there is a high chance that it
will indeed be a hot subdwarf star. However, some misclassified
objects are certainly still there. If a hot subdwarf candidate from
one of the input samples is not in the catalog, it is extremely
likely, that it is not a hot subdwarf star, because it did not pass
our selection criteria. Combining the color classes with the spec-
troscopic classification it is possible to select purer subsamples.

3. Conclusions

The new catalog of hot subdwarfs presented here contains a
significant fraction of the total sdO/B population with apparent
visual magnitudes between ∼9 mag and ∼20 mag, which trans-
lates into distances from a few tens pc to more than 20 kpc and
therefore includes stars from the thin disk, thick disk, and halo
population. This reasonably well characterized sample will be
cross-matched with the Gaia catalog and used to define the cri-
teria (reduced proper motions, distances, color cuts in the Gaia
bands, etc.) for the selection of a homogeneous all-sky catalog
of sdO/B stars.

It will become an important input catalog for ground-based
light curve transient and transit surveys such as the Palomar
Transient Factory (PTF), the BlackGEM and Gravitational-wave
Optical Transient Observer (GoTo) surveys for optical coun-
terparts of gravitational wave transients, the Next Generation
Transit Survey for exoplanets (NGTS), or the Large Synop-
tic Survey Telescope (LSST), but also space missions such as

the ongoing K2 mission, the PLAnetary Transits and Oscilla-
tions of stars (PLATO) mission, the Transiting Exoplanet Sur-
vey Satellite (TESS), the Wide Field Infrared Survey Telescope
(WFIRST), and the Euclid mission. Due to the high fraction of
close binaries in the hot subdwarf population, we expect to find
many of those based on their characteristic light curve variations.

We are also planning to use the catalog as input for wide-
area spectroscopic surveys such as LAMOST, the WEAVE sur-
vey at La Palma, the 4-m Multi-Object Spectroscopic Telescope
(4MOST) survey in Chile, and the Dark Energy Spectroscopic
Instrument (DESI) survey and obtain spectroscopy for a large
fraction of the stars. With a density of less than one object per
square degree on average, only very few fibres would be neces-
sary to carry out a fairly complete survey as a side project to the
main surveys.

Besides the extension of the catalog and the inclusion of the
Gaia data, other important datasets such as the multi-band, wide-
area surveys PanSTARRS and SkyMapper will be included in
future releases.
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Appendix A: Additional table

Table A.1. Catalog columns.

Column Format Description Unit

NAME A30 Target name
RA F10.6 Right ascension (J2000) deg
DEC F10.6 Declination (J2000) deg
SPEC_CLASS A15 Spectroscopic classification
COLOR_CLASS1 A10 Color classification SDSS
COLOR_CLASS2 A10 Color classification GALEX/APASS
COLOR_CLASS3 A10 Color classification GSC/2MASS
COLOR_CLASS A10 Color classification
RV_SDSS F5.1 Radial velocity SDSS km s−1

e_RV_SDSS F5.1 Error on RV_SDSS km s−1

T_EFF F8.1 Effective temperature K
e_T_EFF F8.1 Error on T_EFF K
LOG_G F4.2 Log surface gravity (gravity in cm s−2) dex
e_LOG_G F.4.2 Error on LOG_G dex
LOG_Y F5.2 Log helium abundance n(He)/n(H) dex
e_LOG_Y F5.2 Error on LOG_Y dex
PARAMS_REF A20 Reference for atmospheric parameters (Bibcode)
EB-V F6.4 Instellar reddening E(B − V) mag
e_EB-V F6.4 Error on EB − V mag
AV F6.4 Instellar extinction AV mag
FUV_GALEX F6.3 GALEX FUV-band magnitude mag
e_FUV_GALEX F6.3 Error on FUV_GALEX mag
NUV_GALEX F6.3 GALEX NUV-band magnitude mag
e_NUV_GALEX F6.3 Error on NUV_GALEX mag
FUV_GALEX_CORR F6.3 GALEX FUV-band magnitude corrected (Camarota & Holberg 2014) mag
NUV_GALEX_CORR F6.3 GALEX NUV-band magnitude corrected (Camarota & Holberg 2014) mag
F_GSC F6.3 Guide Star Catalog RF-band magnitude mag
e_F_GSC F6.3 Error on F_GSC mag
Bj_GSC F6.3 Guide Star Catalog B j-band magnitude mag
e_Bj_GSC F6.3 Error on Bj_GSC mag
V_GSC F6.3 Guide Star Catalog V-band magnitude mag
e_V_GSC F6.3 Error on V_GSC mag
N_GSC F6.3 Guide Star Catalog IN-band magnitude mag
e_N_GSC F6.3 Error on N_GSC mag
B_GSC F6.3 Guide Star Catalog B-band magnitude mag
e_B_GSC F6.3 Error on B_GSC mag
V_APASS F6.3 APASS V-band magnitude mag
e_V_APASS F6.3 Error on V_APASS mag
B_APASS F6.3 APASS B-band magnitude mag
e_B_APASS F6.3 Error on V_APASS mag
g_APASS F6.3 APASS g-band magnitude mag
e_g_APASS F6.3 Error on g_APASS mag
r_APASS F6.3 APASS r-band magnitude mag
e_r_APASS F6.3 Error on r_APASS mag
i_APASS F6.3 APASS i-band magnitude mag
e_i_APASS F6.3 Error on i_APASS mag
u_SDSS F6.3 SDSS u-band magnitude mag
e_u_SDSS F6.3 Error on u_SDSS mag
g_SDSS F6.3 SDSS g-band magnitude mag
e_g_SDSS F6.3 Error on g_SDSS mag
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Table A.1. continued.

Column Format Description Unit

r_SDSS F6.3 SDSS r-band magnitude mag
e_r_SDSS F6.3 Error on r_SDSS mag
i_SDSS F6.3 SDSS i-band magnitude mag
e_i_SDSS F6.3 Error on i_SDSS mag
z_SDSS F6.3 SDSS z-band magnitude mag
e_z_SDSS F6.3 Error on z_SDSS mag
u_VST F6.3 VST surveys (ATLAS, KiDS) u-band magnitude mag
e_u_VST F6.3 Error on u_VST mag
g_VST F6.3 VST surveys (ATLAS, KiDS) g-band magnitude mag
e_g_VST F6.3 Error on g_VST mag
r_VST F6.3 VST surveys (ATLAS, KiDS) r-band magnitude mag
e_r_VST F6.3 Error on r_VST mag
i_VST F6.3 VST surveys (ATLAS, KiDS) i-band magnitude mag
e_i_VST F6.3 Error on i_VST mag
z_VST F6.3 VST surveys (ATLAS, KiDS) z-band magnitude mag
e_z_VST F6.3 Error on z_VST mag
J_2MASS F6.3 2MASS J-band magnitude mag
e_J_2MASS F6.3 Error on J_2MASS mag
H_2MASS F6.3 2MASS H-band magnitude mag
e_H_2MASS F6.3 Error on H_2MASS mag
K_2MASS F6.3 2MASS K-band magnitude mag
e_K_2MASS F6.3 Error on K_2MASS mag
Y_UKIDSS F6.3 UKIDSS Y-band magnitude mag
e_Y_UKIDSS F6.3 Error on Y_UKIDSS mag
J_UKIDSS F6.3 UKIDSS J-band magnitude mag
e_J_UKIDSS F6.3 Error on J_UKIDSS mag
H_UKIDSS F6.3 UKIDSS H-band magnitude mag
e_H_UKIDSS F6.3 Error on H_UKIDSS mag
K_UKIDSS F6.3 UKIDSS K-band magnitude mag
e_K_UKIDSS F6.3 Error on K_UKIDSS mag
Z_VISTA F6.3 VISTA surveys (VHS, VIKING) Z-band magnitude mag
e_Z_VISTA F6.3 Error on Z_VISTA mag
Y_VISTA F6.3 VISTA surveys (VHS, VIKING) Y-band magnitude mag
e_Y_VISTA F6.3 Error on Y_VISTA mag
J_VISTA F6.3 VISTA surveys (VHS, VIKING) J-band magnitude mag
e_J_VISTA F6.3 Error on J_VISTA mag
H_VISTA F6.3 VISTA surveys (VHS, VIKING) H-band magnitude mag
e_H_VISTA F6.3 Error on H_VISTA mag
Ks_VISTA F6.3 VISTA surveys (VHS, VIKING) Ks-band magnitude mag
e_Ks_VISTA F6.3 Error on Ks_VISTA mag
W1 F6.3 WISE W1-band magnitude mag
e_W1 F6.3 Error on W1 mag
W2 F6.3 WISE W2-band magnitude mag
e_W2 F6.3 Error on W2 mag
W3 F6.3 WISE W3-band magnitude mag
e_W3 F6.3 Error on W3 mag
W4 F6.3 WISE W4-band magnitude mag
e_W4 F6.3 Error on W4 mag
PM_RA_SDSS F6.1 SDSS proper motion µα cos δ mas yr−1

e_PM_RA_SDSS F6.1 Error on PM_RA_SDSS mas yr−1

PM_DEC_SDSS F6.1 SDSS proper motion µδ mas yr−1

e_PM_DEC_SDSS F6.1 Error on PM_DEC_SDSS mas yr−1
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Table A.1. continued.

Column Format Description Unit

PM_RA_UCAC4 F6.1 UCAC4 proper motion µα cos δ mas yr−1

e_PM_RA_UCAC4 F6.1 Error on PM_RA_UCAC4 mas yr−1

PM_DEC_UCAC4 F6.1 UCAC4 proper motion µδ mas yr−1

e_PM_DEC_UCAC4 F6.1 Error on PM_DEC_UCAC4 mas yr−1

PM_RA_PPMXL F6.1 PPMXL proper motion µα cos δ mas yr−1

e_PM_RA_PPMXL F6.1 Error on PM_RA_PPMXL mas yr−1

PM_DEC_PPMXL F6.1 PPMXL proper motion µδ mas yr−1

e_PM_DEC_PPMXL F6.1 Error on PM_DEC_PPMXL mas yr−1

PM_RA_USNO F6.1 USNO B1.0 proper motion µα cos δ mas yr−1

e_PM_RA_USNO F6.1 Error on PM_RA_USNO mas yr−1

PM_DEC_USNO F6.1 USNO B1.0 proper motion µδ mas yr−1

e_PM_DEC_USNO F6.1 Error on PM_DEC_USNO mas yr−1

PM_RA_APOP F6.1 APOP proper motion µα cos δ mas yr−1

e_PM_RA_APOP F6.1 Error on PM_RA_APOP mas yr−1

PM_DEC_APOP F6.1 APOP proper motion µδ mas yr−1

e_PM_DEC_APOP F6.1 Error on PM_DEC_APOP mas yr−1

PM_RA_SPM4 F6.1 SPM4 proper motion µα cos δ mas yr−1

e_PM_RA_SPM4 F6.1 Error on PM_RA_SPM4 mas yr−1

PM_DEC_SPM4 F6.1 SPM4 proper motion µδ mas yr−1

e_PM_DEC_SPM4 F6.1 Error on PM_DEC_SPM4 mas yr−1

LC_CRTS A30 CRTS light curve properties
LC_SWASP A30 SWASP light curve properties
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