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Abstract

Mathematical models are a fundamental component of many epidemiological studies.
While models of infectious disease are well established, there are evident methodolog-
ical gaps when attempting to provide realistic descriptions of particular biological
systems. In this thesis we probe questions related to two global public health prob-
lems, zoonotic influenza and depression, requiring innovative modelling approaches
to be developed, analysed and fitted to data. We give particular consideration to
parameter inference schemes to gain insights into the dynamics of these illnesses,
and model simulation for validation and prediction purposes, including assessing
intervention impact.

First, we investigate zoonotic influenza transmission at a local scale, our example
being H5N1 in Bangladesh. It is vital to devise new models incorporating zoonotic
transmission, and establish the factors enabling both continued transmission within
poultry and spillover across the poultry-human divide. We outline a set of candidate
transmission models, with a zoonotic transmission component, parameterised with a
Bayesian inference scheme using data from two H5N1 outbreaks in the Dhaka region.
Applied at two distinct spatial scales, we elucidate the model considerations that
best capture the size and spatial distribution of reported cases. Simulations then il-
lustrate the predicted impact of interventions designed to reduce H5N1 transmission.

Second, the emergence of influenza strains with pandemic potential is considered
from a global viewpoint. Using a Bayesian model selection approach we compare
plausible model hypotheses regarding the mechanisms driving influenza pandemic
occurrences. Analysing the time periods between putative influenza pandemics since
1700, it is shown the weight of evidence favours influenza pandemic emergence being
history-dependent, rather than a memoryless process. Predictive distributions are
then presented for the expected number of pandemic events from 2010 to 2110.

Third, spread of behaviour-linked health problems are amenable to being represented
with methodological approaches typically used to model infectious diseases. We
explore this with regards to depression, using a longitudinal dataset comprising
information on both the in-school friendships and mood status of US adolescents.
A novel model is described that exploits the dynamical behaviour of mood over
time to ascertain which mood states spread on social networks, via a contagion-like
mechanism, and which do not.
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Chapter 1
Introduction

Diseases have been a great affliction on animals and humans alike throughout the

course of history. These can be classified as to whether they are infectious, with the

disease-causing pathogen spreading from host to host, or non-infectious, where the

medical condition or disease is not caused by infectious agents.

While there are notorious examples of the grave impact of infectious disease epi-

demics, such as the Black Death in Europe (1347-50 and subsequent recurrences)

amongst humans and the UK Foot-and-mouth disease (FMD) outbreak amongst

commercial livestock (2001), there are significant on-going control costs attributed

to combating infectious diseases that are endemic, such as bovine tuberculosis in

the UK.

Non-infectious diseases encompass conditions such as cardiovascular diseases (e.g.

heart attacks, strokes), cancers, chronic respiratory diseases (such as asthma) and

mental disorders. They tend to be of long duration and are the result of a com-

bination of genetic, physiological, environmental and behavioural factors. There is

burgeoning interest in whether conditions in humans that are typically viewed as

non-communicable, but whose risk of occurrence are influenced by behaviours that

are modifiable, exhibit spread from person to person in a manner analogous to in-

fectious pathogens.

In light of these challenges, and the hope of averting the prospect of future epidemic

and illness outbreaks where possible, the field of epidemiology endeavours to study

and analyse the distribution and determinants of health and disease conditions, with

the application of findings acquired from such investigative work to the control of

1
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disease and other health problems.

A significant component of epidemiological work is analytical studies involving the

use of mathematical models. This arose in the early twentieth century through

the seminal works of Ross [1], and Kermack and McKendrick [2], who outlined a

mechanistic interpretation for infectious pathogen dynamics and how they progress

through time. The influence of opinion and/or behavioural factors on infectious dis-

ease dynamics has since been approached in such a manner [3–6], while the possible

spread of behavioural-linked health problems is amenable to being represented and

analysed with this methodological approach [7, 8].

In each of these cases a real-world epidemiological problem is being observed and

studied via the application of the mathematical modelling cycle (figure 1.1). Follow-

ing the recognition of the issue, the next step is to make the problem as precise as

possible. One important aspect of this step is to identify and select those concepts

to be considered as basic in the study and to define them carefully. This involves

simplifying the information as much as possible and eliminating what is deemed un-

necessary, typically through making certain idealisations and approximations. Hav-

ing established a qualitative description of the problem of interest, the formulation

of a mathematical model can then take place whose solution, or analysis in the case

of theory construction, enables us to better understand the original situation. To

complete the cycle, as a form of verification we must check whether the model can

capably produce outputs that have reasonable correspondence with what has been

observed. As an additional option, if the models are considered satisfactory then

they may be used to make outbreak projections and assess the impact of proposed

control initiatives. The process usually proceeds through several iterations, with

multiple models and/or scenarios being evaluated (and undergoing refinement) to

determine which provides the best correspondence with the empirical data available.

This thesis concerns the application of the above mathematical modelling cycle pro-

cedure to analyse two prominent public health issues, namely zoonotic influenza and

depression. The following chapters present our extensions to pre-existing mathemat-

ical models, complemented by the development of novel model frameworks, that are

subsequently fitted to data and utilised to yield biological insights into these dis-

eases/medical conditions that are of great epidemiological concern.

In chapter 2 we provide background information relevant to this thesis. This
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Figure 1.1: Schematic diagram of the mathematical modelling cycle used
throughout the thesis. The procedure used to analyse the real-world epidemi-
ological problems we are concerned with can be broken down into five constituent
parts. Stage one - Following recognition of the issue, a precise, qualitative descrip-
tion of the problem is made through simplifying information and eliminating what is
deemed unnecessary. Stage two - Formulation of a mathematical model to describe
the simplified problem. Stage three - Obtain solutions to the mathematical problem
by fitting the model to applicable data and inferring model parameter values. Stage
four - Verify through computer simulation that the model can capably produce out-
puts that have reasonable correspondence with what has been observed. Stage five
- If the models are considered satisfactory, then a second simulation application is
to use the models to make outbreak predictions and assess the impact of proposed
control initiatives. Following the completion of one cycle outputs can be interpreted,
with proposed models undergoing refinement if required.

covers influenza A and depression in a global context, and introduces relevant tech-

nical background and methodological approaches. We show how theoretical and

data-driven studies alike have so far been used to study the emergence of novel

pathogens and social contagion. We then describe the particular statistical methods

used in fitting our models to data through parameter inference, and the variety of

simulation techniques employed to generate stochastic realisations of these models

for verification and prediction purposes, these both being pertinent features of the

mathematical modelling cycle (figure 1.1) and the work described in the ensuring

chapters.

Few dynamic models of zoonotic disease currently incorporate the transmission from

the animal reservoir to humans. It is of the utmost importance that a new gener-

ation of modelling approaches is devised for zoonotic pathogens that incorporate

transmission at the human-animal interface. These can subsequently be connected
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to real-life epidemics through data fitting. One particular case where the inclusion

of this aspect should be encouraged is within model frameworks for H5N1 avian

influenza, as mathematical modelling thus far has generally only quantified poultry

transmission parameters. In chapter 3 we present a modelling framework that in-

corporates zoonotic transmission of avian influenza at the human-poultry interface,

in addition to within-poultry disease dynamics. We fit our set of candidate models

to two H5N1 epidemic outbreaks in the Dhaka region of Bangladesh (in 2008 and

2011 respectively), focusing on two distinct administration levels to elucidate the

crucial modelling considerations that are necessary to best capture the size and spa-

tial distribution of reported cases at different spatial scales. We find that identifying

a suitable within-poultry transmission model of minimal complexity is dependent on

the administration level being analysed. For the zoonotic transmission component,

we reveal that the main contributor to spillover transmission of H5N1 from poultry

to humans in Bangladesh differed from one poultry epidemic to another. Across

spatial scales, a consistent outcome of non-optimal reporting of infected premises

indicates we should seek procedural improvements that will reduce the notifica-

tion time. These results promote further development of mathematical models for

zoonotic transmission to potentially yield important insights into influenza trans-

mission dynamics at the human-animal interface.

Identifying the optimal control policy in response to an emerging disease outbreak

is a key challenge for policy-makers. A common approach is to perform simula-

tion studies comparing plausible strategies, while accounting for known capacity

restrictions. In chapter 4, we utilise the model framework developed in the previ-

ous chapter to assess the predicted impact of a variety of interventions in limiting

the spread of H5N1 between poultry farms in the Dhaka division of Bangladesh

and curbing the risk of zoonotic transmission. We explore how the targeting and

implementation of these interventions alters if it is believed transmission is predom-

inately premises-to-premises, versus the scenario where external factors should also

be taken into account. While we find that reactive culling and vaccination control

policies should pay close attention to this factor to ensure intervention targeting

is optimised, targeted proactive active surveillance schemes appear to significantly

outperform reactive surveillance procedures in both cases. Our findings may advise

the type of control measure, plus its severity, that should be applied in the event of

a re-emergent outbreak of H5N1 amongst poultry in Bangladesh.

A perpetual risk to global public health is the emergence of influenza strains with
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pandemic potential. Our understanding of the mechanisms driving the appearance

of such strains is typically informed by indirect measurements from expensive and

sometime dangerous laboratory and field surveillance efforts. In chapter 5, we

present a mathematical modelling approach analysing the waiting times between

proposed historic influenza pandemics, which could potentially provide safe and di-

rect validation of proposed assumptions regarding pandemic emergence. We show

there is strong support for influenza pandemic emergence being history-dependent,

rather than a memoryless process. Our findings may subsequently help inform the

type of interventions that would have the greatest impact in reducing the risk of

pandemic emergence.

While standard epidemic models are well established in the mathematical modelling

of infectious disease, the application of these techniques into other complex spread-

ing processes that occur among society (e.g. opinions, behaviours) is becoming more

routine. Improving our understanding of the social processes that drive the epidemi-

ology of mood disorders, such as depression, has the potential to bring about highly

significant public health benefits. However, to date, studies investigating whether

such disorders spread from person-to-person via a kind of social contagion have

been hampered by being unable to distinguish this mechanism from other possible

phenomena that could confound any positive findings. In chapter 6, we analyse a

longitudinal dataset comprising information on both the in-school friendships and

mood status of adolescents in the USA to ascertain whether there is evidence for

healthy mood and/or depressive symptoms spreading via a contagion-like mecha-

nism. By using the dynamical behaviour of mood over time, our approach allows us

to distinguish directly whether transmission of this kind occurs. We reveal statis-

tically significant evidence for spreading of healthy mood, but not for spreading of

depressive symptoms. This outcome suggests the hypothesis of enabling networks

of friendship between adolescents has the potential to reduce both incidence and

prevalence of depression.



Chapter 2
Background

Within this chapter we describe the significant global health burden created by

influenza A and depressive disorders (sections 2.1 and 2.2), as well as reviewing

the modelling methodological challenges faced thus far in analysing these problems

(section 2.3). To permit the completion of each aspect of the mathematical mod-

elling cycle (figure 1.1), we go on to detail the parameter inference schemes used for

fitting the models we develop to data (see section 2.4), and the variety of simula-

tion techniques drawn on throughout this work to subsequently generate stochastic

realisations of these models for verification and prediction purposes (see section 2.5).

2.1 Influenza A - A persistent pandemic threat

Influenza is a respiratory infection of mammals and birds caused by an RNA virus

in the family of Orthomyxoviridae [9]. It incorporates four virus types: types A,

B, C, and D. It should be noted that the Influenza D virus is a recently identified

genus within the family Orthomyxoviridae [10]. Type A influenza is a zoonotic dis-

ease with the ability to inhabit many host species, in addition to having multiple

strains. In contrast, types B and C normally infect only humans, thus limiting the

opportunity for cross-species transfer [11]. Finally, type D has been confirmed to

affect only bovine hosts thus far [10], meaning it is not currently a prominent human

epidemiological issue.

The zoonotic capability of influenza A makes it the most significant of the four

types in an epidemiological and public health context, associated with most of the

widespread seasonal influenza epidemics and the type capable of causing occasional

6
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global pandemics. The natural host of influenza A viruses are an assortment of

aquatic bird species. These viruses occasionally spillover into other animal hosts,

including domestic poultry, pigs, horses, a variety of carnivores and marine mam-

mals [12]. Sporadically, the viruses adapt to their new animal hosts, leading to

enzootic virus circulation for sustained periods. However, apart from a few cases

of reputed direct zoonotic transmission of influenza A viruses to humans from wild

birds, due to close contact and de-feathering activities [13, 14], humans have been

primarily infected with zoonotic influenza viruses via intermediate species to which

human exposure is more frequent. Domestic livestock such as pigs and poultry have

a key role in this regard (figure 2.1). Influenza A is therefore not considered an

eradicable disease, with prevention and control the only realistic goals [15].

For classification purposes, influenza A is further divided into subtypes based on

differences in the two most abundant surface proteins, hemagglutinin (HA) and

neuraminidase (NA). The ability of influenza A to adapt to a disparate range of

species is a consequence of these two surface proteins exhibiting a great extent of

variability, with the virus as a whole undergoing two types of immunologically sig-

nificant evolution: antigenic drift and antigenic shift.

Antigenic drift is a rapid minor genetic variation in currently circulating subtypes,

with the viral genes undergoing subtle changes in structure almost annually. These

small genetic changes can accumulate over time and result in viruses that are anti-

genically different. As a result, antibodies created by the body’s immune system

against older viruses may no longer recognise the ‘newer’ variant, meaning those

individuals are susceptible to infection. This process drives the occurrence of re-

current seasonal influenza epidemics, with the additional outcome of there being a

large number of strains in circulation within a population at any given time [9, 11].

Very occasionally, humans become infected with a virus bearing HA and/or NA

antigens derived from non-human sources that are essentially novel to humans (i.e.

the HA and/or NA surface antigens of such viruses are not initially recognised by

the specific human host defence mechanisms). These abrupt, major immunological

changes are known as antigenic shift [9, 11, 12]. The usual cause of an antigenic shift

event is two or more strains infecting a host at the same time, with reassortment

generating a new strain that is a mixture of genetic material from the contributing

strains. Due to the viruses meeting with little or no established resistance, they can,

following mutation and adaptation to their new host, spread relatively easily in the
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Figure 2.1: Pictorial representation of potential routes of transmission
for emergence of pandemic influenza A strains in humans from the ani-
mal reservoir. Many scenarios could support the transmission of influenza viruses
from their original reservoir to humans and subsequent adaption to transmit via
the airborne route. (Top) Spillover transmission occurs from the avian reservoir
directly to humans. (Middle) Crossover from the aquatic bird reservoir to inter-
mediate hosts (such as domestic livestock), followed by adaption in these hosts and
subsequent transmission to humans. (Bottom) Reassortment in intermediate hosts
of influenza viruses originating from diverse animals species and transmission to hu-
mans. Two or more strains can infect a host at the same time, with reassortment
generating a new strain that is a mixture of genetic material from the contributing
strains. Such a process results in abrupt, major immunological changes in the virus.
Reproduced from [16].

human species. This can give rise to a localised outbreak that may develop into a

worldwide influenza pandemic [12].

Previous influenza pandemics have had a grave impact on humanity. The most

recent pandemic (as of writing), caused by H1N1 and commonly referred to as ‘swine

flu’, began in April 2009. Shortly before the end of the pandemic (as of 1st August

2010), more than 214 countries and overseas territories worldwide had reported

laboratory confirmed cases of H1N1, including over 18,449 deaths [17] (figure 2.2).
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Figure 2.2: Global map of 2009 H1N1 pandemic laboratory confirmed
cases and number of deaths as reported to WHO. Shaded regions corre-
spond to countries/territories with confirmed cases. Filled circles signify confirmed
deaths in that country/territory, with larger filled circles corresponding to higher
cumulative deaths. More than 214 countries and overseas territories or communities
had reported laboratory confirmed cases of H1N1, with cumulative deaths of over
18,449. Figure reproduced from the World Health Organisation [18].

It remains of critical importance to understand the pandemic potential of strains

widely circulating in the animal reservoir that would be novel to humans, or for

which there is already evidence of transmission from animal hosts to humans taking

place.

2.1.1 Candidate subtypes with possible pandemic potential

A key cross-species transmission pathway for influenza A viruses is at the poultry-

human interface. The threat of a strain with pandemic potential emerging via this

route is greater due to the broad diversity and global coverage of influenza viruses

within the avian population. In the period January 2014 to November 2016, avian

influenza was identified in 77 countries and a total of 13 strains were detected [19].

H5N1

Particularly noteworthy is the H5N1 subtype, which was first observed in southern

China during 1996 [20]. This causes a highly infectious, severe respiratory disease
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Figure 2.3: Epidemiological curve of avian influenza A(H5N1) cases in
humans by month of onset, up to 21 September 2016. Bar heights correspond
to case count per month, with the bar segment colour denoting the country reporting
the case. In total, there have been over 850 laboratory-confirmed cases reported to
WHO. Figure reproduced from the World Health Organisation [25].

in birds (avian influenza). Additionally, if an outbreak occurs, many healthy birds

risk being culled to prevent spread of the disease. This has had devastating conse-

quences globally. From 2003 to 2012, the H5N1 virus has killed or forced the culling

of more than 400 million domestic poultry and caused an estimated US$20 billion in

economic damage, with 63 countries infected at its peak in 2006 [21]. Zoonotic trans-

mission events of H5N1 avian influenza to humans have occurred sporadically (over

850 laboratory-confirmed cases, figure 2.3), with almost all cases to date associated

with close contact with infected live or dead birds, or H5N1-contaminated environ-

ments [22]. For now, spread from person to person is unusual. The concern, however,

is that the overall case-fatality risk is high, at approximately 50-60% [23, 24]. With

influenza viruses evolving frequently, the H5N1 virus may become more easily trans-

missible from human-to-human, posing a serious risk to public health.

As a consequence, H5N1 has been scrutinised in numerous experimental and an-
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alytical studies. This encompasses evolutionary analysis [26, 27], shedding exper-

iments [27, 28], national and international spatio-temporal analysis [29–33], and

determining risk factors through exploration of data from past epidemics [34–39].

A prominent example of work in the latter category was carried out by Gilbert and

Pfeiffer [39], who identified three types of variables with similar statistical associ-

ation with H5N1 presence across studies and regions: domestic waterfowl, several

anthropogenic variables (human population density, distance to roads) and indi-

cators of water presence. Modelling studies to infer transmission rates have also

been carried out, using both past epidemic data [40] and data obtained from ex-

perimental set ups [41]. We specifically discuss the H5N1 subtype in more depth

in chapters 3 and 4, where we focus on developing a mathematical framework for

modelling historical H5N1 outbreaks and optimal control policy in Bangladesh.

H7N9

An example of a newly emerging viral strain at the poultry-human interface is H7N9,

which arose in China in 2013 through the antigenic shift evolutionary process (fig-

ure 2.4). Typically circulating among birds, although some H7 viruses (H7N2, H7N3

and H7N7) have occasionally been found to infect humans, no human infections with

H7N9 viruses had been reported previously. Similar to H5N1, this influenza virus

subtype is also of considerable concern because most patients have been severely ill,

with many suffering from severe pneumonia [42]. Although all cases were sporadic

and there was no evidence of an epidemiological link between them [43], it is sug-

gested the pandemic potential of novel H7N9 viruses may be greater than that of

highly pathogenic H5N1 viruses, with a further worry being the emergence of H7N9

viruses with resistance against anti-viral treatments [44].

Since being first notified of cases in China on 31st March 2013, over 1300 laboratory-

confirmed cases of human infection with avian influenza A(H7N9) viruses have been

reported to WHO, with more than 500 deaths (figure 2.5) [45]. According to reports

received by the Food and Agriculture Organization (FAO) on surveillance activities

for avian influenza A(H7N9) viruses in China, positives among virological samples

continue to be detected mainly from live bird markets (LBMs), vendors and some

commercial or breeding farms [46]. This ties in with recent exposure to LBMs being

linked to a number of cases, while their closure has been found to be highly effective

in reducing human risk for H7N9 infection [47].
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Figure 2.4: Schematic of the genetic evolution of H7N9 virus in China,
2013. The eight genes of the H7N9 virus are closely related to avian influenza
viruses found in domestic ducks, wild birds and domestic poultry in Asia. Experts
think multiple reassortment events led to the creation of the H7N9 virus, likely
obtaining its HA gene from domestic ducks, its NA gene from wild birds, and its six
remaining genes from multiple related H9N2 influenza viruses in domestic poultry.
Figure reproduced from the Centers for Disease Control and Prevention (CDC) [48].

Figure 2.5: Epidemiological curve of avian influenza A(H7N9) cases and
deaths in humans by week of onset, up to 20 April 2017. Bar heights
correspond to case count per week, with red blocks corresponding to a confirmed
human death due to H7N9. There have been over 1300 laboratory-confirmed cases
of human infection with avian influenza A(H7N9) virus reported, causing in excess
of 500 deaths. Figure reproduced from the World Health Organisation [45].
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Other candidate subtypes

A prominent area of ongoing research is determining the risk of spillover transmission

into humans of influenza subtypes that have so far remained confined to the animal

reservoir. For instance, H9N2 subtype strains have been isolated worldwide from

wild and domestic avian species for several decades, but their low pathogenic nature

to poultry has made them a low priority for animal disease control [49]. This has

allowed them to continue to evolve and spread, with potential to pose a risk to

public health as these viruses have been shown to preferentially bind to the human-

type receptor, plus be capable of causing disease and transmit between ferrets by

respiratory droplet [49, 50]. Gathering interest for similar experimental analysis are

newly emerging HPAI H5 viruses (such as H5N8), following widespread incursions

in poultry and wild birds. Up to January 2017, over 30 countries had confirmed

cases of H5N8, with the majority of European nations affected [51].

2.1.2 Influenza preparedness - planning for the next pandemic

As discussed above, influenza A has garnered substantial attention from the inter-

national community due to its ability to cause considerable morbidity and mortality

in both humans and livestock. This, in tandem with other zoonotic disease threats

emerging in the last few years like Ebola, has motivated a growing literature em-

phasising the need for improved collaborations between the human and veterinary

sciences to address these pandemic threats [52–56].

Specifically, McCloskey et al. [52] discuss how action against pandemics is focused

on detection and response, not prevention. The authors believe the focus of pan-

demic preparedness should include upstream prevention through better collabora-

tion between human and animal health sciences to enhance capacity to identify

potential pathogens before they become serious human threats, and to prevent their

emergence where possible. This is complemented by Al-Tawfiq et al. [53] stating

that “more effective national, regional, and international surveillance systems are

required to enable rapid identification of emerging respiratory epidemics, diseases

with epidemic potential, their specific microbial cause, origin, mode of acquisition,

and transmission dynamics.” This push towards cross-sectoral collaborations to

combat infectious disease encourages the adoption of a One Health approach, which

aims to improve health and well-being through the prevention of risks and the mit-

igation of effects of crises that originate at the interface between humans, animals

and their various environments [55].
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Utilising a One Health approach may help inform strategies to mitigate the impact

of the next pandemic. The objective would be to use genetic sequence and/or bio-

logical assays of viral traits to identify those non-human influenza viruses with the

greatest risk of evolving into pandemic threats, and/or to understand drivers of such

evolution, to prioritize pandemic prevention or response measures. Yet, Russell et al.

[57] summarise four areas requiring improvement: (i) experimental approaches, (ii)

computational predictions; (iii) evolutionary theory and modelling, (iv) surveillance

methodology. Integrating these approaches would increase the power of tools for

more objectively assessing pandemic risk and decrease the time required for assess-

ing the pandemic threat posed by extant non-human influenza A viruses. We make

our own contribution to elucidating the mechanism behind historic pandemic emer-

gence in chapter 5.

As well this, there is an urgent need for new tools to assess the pandemic risk posed

by a detected virus. A current example of a risk assessment framework is the In-

fluenza Risk Assessment Tool (IRAT), giving a systematic approach for assessing

and comparing threats posed primarily by avian and swine influenza viruses [58].

Although the IRAT was not developed to predict the next pandemic influenza virus,

it can be used to determine those viruses that are deemed, on the basis of current

knowledge, to have the greatest potential to cause a serious pandemic. Once identi-

fied, pandemic preparedness resources can then be directed towards those particular

strains.

Although it is imperative that preventative measures are worked on and put in

place, ensuring they are effective at all times is a considerable challenge. Emergent

outbreak events may therefore still occur (albeit less frequently), and other polices

must be ready to be enacted when they arise. These actions aim to restrict circula-

tion of viruses in livestock populations, and/or minimise the risk of a cross-species

transmission event. See chapter 4, our analysis of H5N1 avian influenza control

policy effectiveness in Bangladesh, for further discussion on this topic.

2.2 Social contagion - Global burden of behaviourally-

linked conditions

A major contributor to global mortality and morbidity are non-communicable dis-

eases that are linked to modifiable behaviours. The four main types of the aforemen-



15 2.2. Social contagion

tioned afflictions, accounting for over 30 million deaths a year worldwide, are cardio-

vascular diseases (like heart attacks and stroke), cancers, chronic respiratory diseases

(such as chronic obstructive pulmonary disease and asthma), and diabetes [59]. Two

of the leading causes of these conditions are attributed to tobacco use and obesity,

which arise through smoking and dietary and physical activity behaviours respec-

tively [60]. Specifically, tobacco accounts for around 6 million deaths every year

(including from the effects of exposure to second-hand smoke), and is projected

to increase to 8 million by 2030 [59]. In the case of obesity, a particular striking

fact is that global prevalence has more than doubled between 1980 and 2014, with

worldwide estimates from 2014 stating 13% of adults aged 18 years and over were

obese [61].

2.2.1 Depressive disorders - A universal affliction

Another class of conditions that may be influenced by modifiable behaviours are

mental disorders such as depression, which are a growing affliction upon the health

of modern society [62]. Estimates from 2015 put the proportion of the global pop-

ulation living with depression at 4.4% (figure 2.6), corresponding to 322 million

people, while the total number of people living with the condition is believed to

have increased by approximately 18.4% between 2005 and 2015 (reflecting the over-

all growth of the global population) [63, 64]. This leads to considerable loses in

health and functioning. Depressive disorders are ranked as the single largest con-

tributor to non-fatal health loss worldwide, with a predicted total of over 50 million

years lived with disability in 2015 [63, 64].

Adding to these economic costs and human health issues depressive disorders can,

in the worst cases, result in attempted suicide. As a result, depression is the ma-

jor contributor towards suicide deaths, which number close to 800,000 people every

year, with further consequences of many millions of people being affected or expe-

riencing suicide bereavement. Of particular concern is that suicide is the second

leading cause of death among individuals aged 15 to 29 globally [65].

Therefore, there is a particular focus on the burden of depression among adolescents.

In England, the Office of National Statistics Child and Adolescent Mental Health

Survey, carried out in 2004, found 1.4% of 11-16 year-olds (approximately 62,000

people) were seriously depressed [66]. In certain instances the prevalence of depres-

sive disorders among young people has been found to exceed the global average.

For example, the National Survey on Drug Use and Health in the United States



Chapter 2. Background 16

Figure 2.6: Bar plots displaying prevalence of depressive disorders strat-
ified by World Health Organisation regions and gender. Bar heights corre-
spond to the percentage of the population estimated to be living with a depressive
disorder. Uncertainty intervals are represented by the error bars. Figure reproduced
from the World Health Organisation [64].

estimated three million adolescents aged 12 to 17 had at least one major depres-

sive episode in 2015, representing 12.5% of the population within that age group [67].

Health systems have not yet adequately responded to this global, medical issue, with

there being a stark gap between the need for treatment and its provision. In low-

and middle-income countries, where more than 80% of the depressive disorder bur-

den occurs [63, 64], between 76% and 85% of people with mental disorders receive

no treatment. In high-income countries, between 35% and 50% of individuals living

with mental disorders are in the same situation [68].

Attempts to elucidate the mechanisms that generate observed behaviours in social

networks that are associated with the diseases, illnesses and disorders described

above may provide insights into what would be effective prevention and intervention

schemes. This would support efforts to reduce the overall strain of these medical

conditions upon public health.

2.3 Mathematical modelling of spreading processes

A major component of epidemiological research is to garner information from math-

ematical models, which is the approach we also adopt here to probe epidemiological
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questions related to zoonotic influenza and depressive disorders. Recalling the de-

scription of the mathematical modelling cycle (figure 1.1), such models are a math-

ematical description of the system of interest, using a set of underlying assumptions

to allow us to infer parameters. Following any model refinements being imple-

mented, if required, and verification of model outputs, we can go on to use those

findings to project how an outbreak may spread and calculate the effects of possible

interventions, thus helping inform public health policy. Details of the approaches

used to fit and verify our models are summarised in sections 2.4 and 2.5 respectively.

In the context of generating mathematical descriptions of the spread of disease, pi-

oneers of the initial couple of stages of the modelling cycle included Kermack and

McKendrick [2], who introduced a compartmental model for epidemics and the cor-

responding system of ordinary differential equations (ODEs). Now known as the

susceptible-infected-recovered (SIR) model of disease, this model and its variants

have been central in the mathematical study of infectious disease [2, 69–71], with

compartmental models ubiquitously used. For the interested reader, a numbers of

examples of host and pathogen heterogeneities, with appropriate model extensions,

are summarised in Keeling and Rohani [72].

In detail, individuals are placed in a compartment corresponding to their disease

status and they progress through the compartments according to some rates. The

numbers in each class are then treated as continuously varying quantities. In the

specific case of the SIR model without the demographic processes of birth and

death, each individual can be in one of three states: susceptible to the disease (with

individuals in this class labelled S), infectious (labelled I) when they can spread the

disease to susceptibles, and recovered (labelled R) when they have been infectious

but can no longer spread or catch the disease. The system of ODEs can then be

written as:
d

dt
S(t) = − β

N
S(t)I(t) ,

d

dt
I(t) =

β

N
S(t)I(t)− γI(t) ,

d

dt
R(t) = γI(t) .

(2.1)

N denotes the population size, while β and γ are the transmission rate and recovery

rate respectively. Due to the absence of demographic processes, we effectively con-

serve the total number of individuals in the system, corresponding to S+I+R = N .

Such an assumption is valid if the time-scale of the epidemic is much less than that
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of the natural lifespan of the host. Under other conditions, in the case of modelling

endemic diseases for example, population size may alter over time meaning demog-

raphy should be incorporated.

Inspecting equation (2.1) we observe the number of infectious individuals is increas-

ing at time t (i.e. dI
dt > 0) if, and only if,

S(t = 0)

N
>
γ

β
=

1

R0
. (2.2)

This gives a condition for the epidemic to be growing in terms of R0, a fundamental

quantity in epidemiology known as the basic reproductive ratio [73, 74]. Defined

as the average number of secondary cases produced by an infectious individual in a

totally susceptible population, it is a measure for both the biological infectiousness

and persistence of the infectious disease and the underlying mixing between infec-

tious and susceptible individuals. If R0 < 1, the infectious disease cannot invade a

naive population (one in which every individual, aside from those individuals ini-

tially infected, is initially susceptible to the infectious disease under consideration).

In contrast, for R0 > 1 the number infected will increase until the susceptibles are

sufficiently depleted, leading to a large epidemic. We revisit this concept in chap-

ter 3.

A further result of equation (2.2) is that an infectious disease can only spread if its

reproductive ratio is greater than the inverse density of susceptibles in the popula-

tion. This simple observation is crucial since it gives the threshold proportion of the

population that must be removed in order for the entire population to be effectively

protected, V ∗ = 1− 1
R0

. Vaccination programmes are one possibility to achieve such

a goal. In short, the entire population can be effectively protected from an infectious

disease by directly protecting just a fraction of the population. This phenomenon

is known as herd immunity, with a review of its standing in the literature provided

by Fine [75].

The classical SIR model (equation (2.1)) has several limitations. Among them are

assuming all host individuals are identical and mix homogeneously. By relaxing

these assumptions, in conjunction with assumptions and arguments on the mixing

pattern of the population, the hope is the spatial spread of infectious diseases and

behaviours can be accurately captured. Infectious disease transmission between in-

dividuals often occurs at close proximity, with long range spreading in a population
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due to individual movement. Realistically representing individual movement in a

model can be challenging. Transmission kernels are one method of capturing the

spatial spread of infection, specifying the relative risk of infection with distance, be-

ing prominently used in the spatial modelling of disease epidemics in livestock (the

2001 UK foot-and-mouth disease outbreak for example [76]). Alternatively, it is now

common to model infectious diseases as spreading processes on networks [77]. This

approach is increasingly applied to behaviours, both related to infectious risk [3]) and

non-infectious diseases that are linked to behaviours that can spread socially [78, 79].

In this context, networks depict the social contact structure; whom each individual

interacts with and thus the possible routes over which behaviours could be transmit-

ted. This approach is, however, reliant on sufficiently detailed data being available

to construct the network.

Furthermore, the ODE model is deterministic; given the same starting conditions,

exactly the same trajectory is always observed. Naturally, we would not expect

this to apply to the dynamics of contagion spreading processes, especially in a spa-

tial and/or heterogeneous mixing context. An alternative, stochastic, formulation

implicitly recognizes that the population is made up of individuals, and that tran-

sitions between classes are random events [69, 80, 81]. The rates at which various

transitions occur within a deterministic framework can be reinterpreted to calculate

the probabilities of each event occurring in an infinitesimal time interval. An added

key distinguishing feature of the stochastic formulation versus their deterministic

counterparts is that they can exhibit behaviours such as disease fadeout. In other

words, while in a stochastic model you may go from I(t) > 0 to I(t + δt) = 0 for

finite t, this can not occur in a deterministic model.

Studying real-life epidemic examples highlights the necessity of modifying epidemic

models in order to explain and predict observed outcomes. Understanding the im-

pact of spatial structure and contact structure is also of practical importance. Of

particular concern is the effect it has on the expected impact of control measures

and preventing epidemic outbreaks [82, 83], an outcome of interest in the ensuring

chapters. The models presented throughout this work will therefore, in general, be

stochastic and incorporate elements of spatial heterogeneity where appropriate. For

specific modelling challenges related to the epidemiological problems of concern in

this thesis, we refer the reader to sections 2.3.1 and 2.3.2.
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2.3.1 Challenges in modelling zoonotic diseases

Although wildlife species are a major source of new human pathogens (such as

zoonotic influenza strains) [84], Lloyd-Smith et al. [85] highlighted a dearth of math-

ematical models incorporating spillover transmission from animals to humans. At

that time, only six dynamical studies were found that included a mechanistic model

of animal-to-human spillover for directly transmitted zoonoses (which includes a

number of diseases, not just influenza A).

There are, however, exceptions to the trend of excluding the zoonotic transmission

process from modelling frameworks. Hsieh et al. [86] presented a novel determinis-

tic compartmental modelling framework for transmissions of H7N9 in China among

(wild and domestic) birds as well as from birds to human, to infer epidemiological

quantifiers (such as bird-to-human infection rate). This claimed to be the first study

where both the avian and human components of an avian influenza epidemic could

be quantified using only the human case data. In a similar vain, a subsequent study

of H7N9 influenza in southern and eastern regions of China by Li et al. [87] used only

human case data and a combined framework of mathematical model and Bayesian

inference to demonstrate that transmission dynamics within an avian reservoir can

be estimated, and that the real-time forecast of spillover avian influenza in humans

is possible. However, a limitation of both studies is the assumption of homogeneous

mixing of chicken and human populations. This corresponds to spillover transmis-

sion from poultry to humans being constant through time. In addition, the risk

of poultry infection having no dependency on environmental and/or other external

factors means the human case data is effectively a proxy for infection among poultry,

which may be an overly strict presumption.

The array of questions in this area warranting further scrutiny is so expansive that

an outline of challenges in modelling the emergence of novel pathogens has been

produced, spanning reservoir dynamics, cross-species spillover, and outbreak dy-

namics [88]. The work contained within chapters 3 and 4 of this thesis aims to

contribute towards addressing a couple of these challenges, namely: (i) better cap-

turing the disease dynamics in proximal non-human species, and (ii) expanding

models for cross-species spillover transmission from general principles to specific,

mechanistic frameworks integrating all relevant data types.

An additional modelling consideration is the limitation of lack of sufficient data to

parametrise multi-host models. Studies focusing on zoonoses in their animal reser-
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voir have relied largely on individual-level parameters, owing to the relative rarity of

collated population data for animal diseases [85, 88]. Further, there is little known

about the intensity and type of contact patterns between livestock and humans that

result in micro-organism transmission, with a better understanding needed to pro-

vide options for prevention [89]. Until such collated population data sets can be

obtained, potentially at great cost and personal risk via field surveillance efforts,

modelling studies on zoonotic diseases will continue to be reliant on individual-level

parameters. Motivated by this, chapter 5 describes our attempt to provide direct

validation of proposed assumptions regarding pandemic emergence by using math-

ematical models to analyse the spacing between historic influenza pandemics.

2.3.2 Challenges in modelling social contagion

There is a growing literature on modelling behaviours and non-infectious diseases

that are linked to behaviours as spreading processes on networks [3, 7, 90]. Out-

comes from recent studies applying such an approach suggest a variety of behaviours

and behaviour-based illnesses may spread socially from person to person, akin to

transmission of infectious diseases. Examples include obesity [78, 91], smoking [79],

loneliness [92], fertility behaviour [93] and happiness [94].

However, such work has come under criticism for being unable to distinguish causal

effects from other possible phenomena that produce non-causal associations, namely

homophily and shared context [95–98]. Homophily is the tendency for individuals

to associate with one another due to sharing the same behaviour. While evidence

of assortative mixing and temporal clustering of behaviours among linked nodes is

used to support claims of social contagion in networks, homophily may also explain

such evidence [96, 97].

Shared context is where individuals tend towards the same behaviour due to exter-

nal factors. Cohen-Cole and Fletcher [95] demonstrated how the standard methods

by Christakis and Fowler [78, 79] may fail to differentiate a causal spreading mech-

anism from shared context when applied to three health outcomes that are unlikely

to be subject to network phenomena: acne, headaches, and height. The authors

observed ‘network effects’ in all three cases. However, this finding no longer held

after controlling for environmental confounders.

Consequently, we should be cautious in attributing correlations in health outcomes

of social associates to social network effects. This highlights that novel modelling
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approaches are required that are capable of distinguishing between transmission and

non-transmission mechanisms. To see the first steps we took towards realising this

target we refer the reader to chapter 6.

2.4 Parameter inference

Following the development of a dynamic mathematical model to represent the sys-

tem of interest, the next stage of the mathematical modelling cycle is obtaining a

solution to the mathematical problem (stage three of figure 1.1). Throughout the

thesis, this corresponds to fitting our models to the available data in order to infer

parameter values. These may then be interpreted in a biological context, providing

insights on the dynamical behaviour of the system. To ensure that the inferred

parameters and model outputs can be interpreted robustly, it is vital to account for

parameter uncertainty, as well as stochasticity, arising from the model dynamics.

The approaches used here to achieve this are likelihood-based, namely maximum-

likelihood estimation (MLE) and Markov chain Monte Carlo (MCMC), with the

outputs from these fitting methods having subtle differences.

2.4.1 Maximum-likelihood estimation

If the primary interest is in obtaining point estimates for the parameters of a sta-

tistical model given observations, then a suitable statistical approach is the MLE

method, which was first introduced by R.A. Fisher in 1922 [99, 100].

For an independent and identically distributed sample of observations, x1, x2, . . . , xn,

and underlying statistical model with parameters θ, the joint density function is

given by

f(x1, x2, . . . , xn|θ) =

n∏
i=1

f(xi|θ)

Considering the observed values to be fixed ‘parameters’ of the function, whereas θ

is now a variable of the function, we obtain the likelihood L for the sample data, the

probability of obtaining that particular set of data given the proposed probability

distribution model:

L(θ|x1, x2, . . . , xn) = f(x1, x2, . . . , xn|θ) =

n∏
i=1

f(xi|θ)

The values of θ that maximize the sample likelihood are known as the maximum-
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likelihood estimators, θ̂(D). Mathematically,

θ̂(D) = arg max
θ
L(θ|x1, x2, . . . , xn)

When no closed-form solution to the maximization problem is known or available,

an MLE is instead found numerically using optimization methods.

To quantify parameter uncertainty, asymptotic confidence intervals can be ascer-

tained through calculation of the Hessian matrix at the MLE parameters and use

of standard asymptotic formulae. More specifically, by using a local approximation

of the likelihood surface to estimate the covariance matrix, and by assuming errors

are normally distributed, the covariance matrix can be used to compute a confi-

dence interval around each parameter. We implement this method in chapter 5 to

compare candidate models fitted to historic influenza pandemic waiting time data,

and in chapter 6 to infer parameter values for a dynamic model of mood applied to

adolescent school friendship networks.

2.4.2 Bayesian inference

If instead the required outputs are predictions of model parameter distributions,

a Bayesian approach to parameter inference can provide a continuous estimation

of this without specific assumptions and is therefore particularly suitable for fit-

ting nonlinear epidemiological models to data [101–105]. Specifically, adopting a

Bayesian framework means we treat the parameters, θ, as random variables that

come from some probabilistic distribution given the observed data, D, known as the

posterior distribution f(θ|D).

Central to the Bayesian inference concept is the use of Bayes’ theorem to establish a

relationship between the prior π(θ), the probability distribution that expresses one’s

beliefs about the parameters before taking into account any evidence, and posterior,

f(θ|D) ∝ L(D|θ)π(θ). (2.3)

Hence, an estimate of the posterior distribution is attainable using only the prior

π(θ) and likelihood function L(D|θ). The prior can incorporate previous findings and

knowledge provided by biological experts, though if there is no informed prior belief

an objective prior is typically used, corresponding to ‘neutral’ knowledge. When it is

difficult to compute the posterior distribution analytically, meaning direct sampling

is not possible, we resort to numerical estimation methods such as MCMC [106].
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2.4.3 Markov chain Monte Carlo

MCMC methods are rooted in Bayesian statistics. Assuming the likelihood func-

tion for the particular problem is tractable, the objective of MCMC is to use equa-

tion (2.3) to construct a Markov chain with f(θ|D) as its stationary distribution.

This chain can then be sampled from, with the sequence of random samples subse-

quently generated being used to estimate the target posterior distribution f(θ|D).

A number of algorithms have been developed to construct Markov chains that will

eventually converge on the target posterior. One of the first was the Metropolis-

Hastings algorithm [107, 108] outlined below (algorithm 1). It is still widely used

at the time of writing and we make use of it ourselves in chapter 5. This method

generates a random walk using a proposal distribution q and a method for rejecting

some of the proposed moves. Specifically, in each iteration a move from the current

parameter state θ to a new parameter state θ′ is proposed, with the move accepted

with probability

α = min

{
1,
L(D|θ′)q(θ|θ′)π(θ′)

L(D|θ)q(θ′|θ)π(θ)

}
.

The possibility of accepting the move even if there is a decrease in the likelihood of

the proposed parameters given the data (relative to the previous parameter state)

allows the chain to explore parameter space and is necessary to sample effectively

from multi-modal distributions.

Algorithm 1 Single iteration of the Metropolis-Hastings algorithm

1: Input: θt−1, q, π,D
. Last state, proposal and prior distributions, observed data

2: Output: θt . Next state
3: θ′ ∼ q(θ′|θt−1) . Propose new parameters

4: α = min
{

1, L(D|θ′)q(θt−1|θ′)π(θ′)
L(D|θt−1)q(θ′|θt−1)π(θt−1)

}
. Calculate the acceptance probability

5: u ∼ Unif[0, 1]
6: if u < α then . Accept θ′ with probability given by α
7: θt = θ′

8: else
9: θt = θt−1

10: end if

The computational time for this inference procedure may be lengthened due to the

following issues. First, initial samples may be very far from the target distribution,

particularly if a poor choice of prior is used, meaning a number of the initial sam-
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ples must be discarded (commonly referred to as a ‘burn-in’ period). Second, nearby

samples will be highly correlated, so if there is slow decorrelation of the sampled

chain it must be ‘thinned’ (generally by selecting every nth sample) to obtain (ap-

proximately) independent samples. Finally, if the step size in parameter space is too

large there will be great inefficiency due to a high rejection rate of proposed samples.

Therefore, more efficient Markov chain methods have since been constructed that

adapt to characteristics of the distribution being sampled. One such example is slice

sampling [109] (algorithm 2). This is based on the principle that one can sample

from a distribution by sampling uniformly from the region under the plot of its

density function. In contrast to Metropolis-Hastings, slice sampling automatically

adjusts the step size to match the local shape of the density function, enabling

simpler and more efficient implementation. A second is the Adaptive Metropolis

algorithm [110] (algorithm 3), in which a Gaussian proposal distribution is updated

along the process using the full information cumulated so far. Adapting continu-

ously to the target distribution enhances algorithm efficiency by diminishing the

number of function evaluations needed. We utilise both algorithms in chapter 3 to

fit a series of nested disease transmission models to two H5N1 epidemic outbreaks

in the Dhaka region of Bangladesh.

Despite not being utilised in this thesis, another set of sophisticated MCMC meth-

ods to reduce the correlation between successive samples (and thus the number of

samples required for the chain to converge) is to use a non-random walk MCMC

method. One such algorithm is Hybrid Monte Carlo (also commonly known as

Hamiltonian Monte Carlo) [111], which tries to avoid random walk behaviour by in-

troducing an auxiliary momentum vector and implementing Hamiltonian dynamics,

so the potential energy function is the target density. Consequently, proposals move

across the sample space in larger steps, are therefore less correlated and converge

to the target distribution more rapidly. However, HMC performance is highly sen-

sitive to two user-specified parameters: a step size ε and a desired number of steps

L. In particular, if L is too small then the algorithm exhibits undesirable random

walk behaviour, while if L is too large the algorithm wastes computation. Recent

research efforts to address these limitations include the No-U-Turn Sampler (NUTS)

by Homan and Gelman [112]. This is an extension to HMC that eliminates the need

to set a number of steps L, while the authors also derive a method for adapting the

step size parameter on the fly.
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Algorithm 2 Single iteration of the Slice Sampling algorithm

1: Input: θt−1, D, π, w,dim
. Last state, prior distribution, observed data, step-size parameter, parameter

no.
2: Output: θt . Next state
3: u ∼ Unif[0,L(D|θt−1)π(θt−1)] . Set the threshold for the next state
4: u′ ∼ Unif[0, 1]
5: θmin = θt−1 − u′w . Initialise the upper and lower bounds of the slice
6: θmax = θmin + w
7: while u < L(D|θmin)π(θmin) do
8: for i = 1 to dim do
9: θmin(i) = θmin(i)− w(i)

10: end for
11: end while
12: while u < L(D|θmax)π(θmax) do
13: for i = 1 to dim do
14: θmax(i) = θmax(i) + w(i)
15: end for
16: end while
17: repeat
18: for i = 1 to dim do
19: u′ ∼ Unif[0, 1]
20: θ′(i) = θmin(i) + u′(θmax(i)− θmin(i)) . Draw a new state uniformly
21: end for
22: if u < L(D|θ′)π(θ′) then . Check for the threshold
23: θt = θ′

24: break . Return θ′ as next state if u < L(D|θ′)π(θ′)
25: end if
26: for i = 1 to dim do
27: if θ′(i) < θt−1(i) then . Adjust either the lower or upper bound
28: θmin(i) = θ′(i)
29: else
30: θmax(i) = θ′(i)
31: end if
32: end for
33: until θ′ is accepted
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Algorithm 3 Adaptive Metropolis algorithm

1: Input: π, dim,N,D . Prior distribution, parameter no., required sample
number, , observed data

2: Output: S . Accepted samples
3: S = ∅
4: θ0 ∼ π(θ) . Set θ0 from the prior

5: σ = 2.42

dim . Compute covariance matrix scale factor
6: for t = 1 : N do
7: θ′ ∼ N (θt−1, σΣt−1) . Propose new parameters

8: α = min
{

1, L(D|θ′)π(θ′)
L(D|θt−1)π(θt−1)

}
. Calculate the acceptance probability

9: u ∼ Unif[0, 1]
10: if u < α then . Accept θ′ with probability given by α
11: θt = θ′

12: else
13: θt = θt−1
14: end if
15: S = S ∪ {θt} . Add updated state to sample set
16: µt = µt−1 + 1

t (θt − µt−1) . Update mean and covariance matrix
17: Σt = Σt−1 + 1

t {(θt − µt−1)(θt − µt−1)
T − Σt−1}

18: end for

Standard MCMC methodology can be extended to allow simulation of the poste-

rior distribution on spaces of varying dimensions, specifically using reversible jump

Markov chain Monte Carlo (RJMCMC) methods [113]. Thus, simulation is possible

even if the number of parameters in the model is not known, and model selection can

be performed. Neal and Roberts [102] used this technique to carry out statistical

inference and model selection for the 1861 Hagelloch measles epidemic by comparing

a ‘full’ model to a set of nested models, with each nested model being the same as

the full model but with one parameter removed. Further details of this technique

are given within chapter 5, where we apply this methodology to compare candidate

models fitted to historic influenza pandemic waiting time data.

2.5 Simulations for model verification and intervention

analysis

Having constructed a model framework and then fitted it to data via parameter

inference, we must make use of a verification tool to discern whether the model can

capably produce outputs that have reasonable correspondence with the observed

data (stage four of the modelling cycle as given in figure 1.1).
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To achieve this we use stochastic simulations, which allow us to approximate the

chance element in the spreading processes of interest, with multiple simulations de-

termining the expected range of behaviour. In particular, a prevalent theme within

this thesis is the simulation of stochastic models (particularly individual-based mod-

els) using event-driven approaches, which capture the fluctuations in population pro-

cesses that arise because of the random nature of events at the level of the individual.

The increased availability of computer power has led to modelling approaches that

incorporate this demographic stochasticity becoming increasing popular. This is

largely due to their highly mechanistic approach in the individual nature of their

formulation and including randomness at the level of the individual [80].

If the models are considered satisfactory, a second simulation application is to make

predictions and assess impact of proposed control initiatives (stage five of the mod-

elling cycle as given in figure 1.1). This complements previous extensive uses of

computer simulations as a key tool in assessing the epidemiology and possible con-

trol strategy options for a number of specific diseases, including foot-and-mouth

disease [83, 114] and pertussis [115].

Realisations of stochastic models can be generated by computer using standard

Monte-Carlo techniques [69, 116, 117]. We now briefly discuss the development

of algorithms for carrying out stochastic simulations. An efficient and accurate

implementation of the event-driven framework, that is routinely used, is the Direct

Gillespie Algorithm [118, 119] (see algorithm 4 for pseudocode). The scheme first

estimates the time until the next event, based on the cumulative rates of all possible

events. Then, by converting event rates into probabilities, it randomly selects one of

these events. The times and host statuses are then updated according to which event

is chosen. Repetitions of this process iterate the model through time. To clarify,

randomness only affects the probabilities associated with the epidemiological unit

of interest, with no assumption made concerning environmental stochasticity [72].

We use a scheme with similarities to the Gillespie algorithm in chapter 5.

A selection of models introduced in the following chapters are individual-based

(chapters 3, 4 and 6), with a defined epidemiological unit of interest (such as an

individual or premises), so we may account for spatial interactions and heterogene-

ity in contacts. A serious drawback of the Gillespie algorithm is that as population

size increases, the number of interaction terms that must be considered becomes
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Algorithm 4 Direct Gillespie algorithm

1: Specify model run end-time tmax.
2: Initialise model with initial conditions, time t = t0, state x(t0).
3: Label all possible events E1, . . . , En.
4: while t < tmax do
5: Compute rates at which events occur, R1(x(t)), . . . , Rn(x(t)).

6: Rtotal(t) =
n∑

m=1
Rm(x(t)) . Rate at which any event occurs

7: δt ∼ exp(Rtotal(t)) . Time to next event
8: RAND1 ∼ Unif[0, 1]
9: P = RAND1 ×Rtotal(t)

10: Event p occurs if
p−1∑
m=1

Rm(x(t)) < P ≤
p∑

m=1
Rm(x(t)).

11: Update state vector x(t).
12: t = t+ δt . Update time
13: end while

prohibitively large. Additionally, the time interval between events decreases, which

in turn increases the number of iterations that must be performed to advance the

model by a given time period. For individual-based models, a solution to counter-

act this and obtain gains in simulation speed is to discretise time, allowing multiple

events to occur each time-step. An algorithm to improve computational efficiency

in such as a way was proposed by Gillespie [120], known as the τ -leap method. This

results in a great improvement in speed, and is justifiable as long as the chance

of an epidemiological unit undergoing multiple events in a short time-step is small

(meaning all events occurring in one time-step are likely to be independent). For

discrete-time individual-based models, the τ -leap procedure requires minor modifi-

cations as it is necessary to convert the event rates into probabilities, as outlined in

algorithm 5. This discrete-time construct is repeatedly employed throughout this

work.

As an alternative choice to the previously mentioned algorithms, the final simu-

lation technique employed within this thesis makes use of the Sellke construction,

first introduced as an analytic tool to investigate the distribution of final sizes of

a stochastic epidemic [121]. As well as being a probabilistically equivalent to the

Gillespie algorithm, a desirable characteristic of this framework is that the inher-

ent randomness of a epidemic realisation can be encoded at the beginning of the

simulation, in our case a random vector Z of Exp(1) distributed resistances. Once

calculated, the resultant epidemic can be constructed from the deterministic solu-

tion of the infection process and removal (i.e. culling) times. Therefore, this method
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Algorithm 5 τ -leap algorithm for individual based models

1: Choose time-step τ
2: Specify model run end-time tmax.
3: Initialise model with initial conditions, time t = t0, state x(t0).
4: Label all possible events E1, . . . , En. . One event for each epidemiological unit
5: while t < tmax do
6: Compute rates at which events occur, R1(x(t)), . . . , Rn(x(t)).
7: for j = 1 : n do
8: P(Ej) = 1− exp(−Ratejτ). . Prob. of event j in time interval [t, t+ τ ]
9: RAND1 ∼ Unif[0, 1]

10: Check if RAND1 < P(Ej).
11: end for
12: Update state vector x.
13: t = t+ τ . Update time
14: end while

may be utilised to provide improved comparisons of interventions, with direct com-

parison of a collection of control measures achieved by matching values of Z at the

epidemic outset. Such a scheme is used in chapter 4 for these reasons, with an ex-

ample application of the procedure for the SIR model (with no demography) shown

in algorithm 6.

Algorithm 6 Sellke Construction Algorithm for the SIR model

1: Initialise model with initial conditions, time t = t0, state x(t0).
2: For each initially susceptible unit generate the epidemic resistances Zi ∼ Exp(1).
3: For each unit i generate the infectiousness duration Di ∼ Exp(γ).
4: For each initially infectious unit i store the recovery time TRi = Di.
5: while Infected units present do
6: For each susceptible unit i calculate the force of infection against it, λi(t).
7: For each susceptible unit i compute possible time until infection, δtIi = Zi

λi(t)
.

8: Construct list of times until next event, {{δtIi }i:Si(t)=1, {TRi − t}i:Ii(t)=1}.
9: Set δt∗ = min{{δtIi }i:Si(t)=1, {TRi − t}i:Ii(t)=1}.

10: Let E denote the event corresponding to δt∗.
11: Deplete resistances for remaining susceptible populations, Zi = Zi−λi(t)δt∗.
12: If E is an infection event, generate the recovery time TRi = t+ δt∗ +Di.
13: Update time, t = t+ δt∗.
14: Update state vector x(t) by carrying out event E.
15: end while



Chapter 3
Modelling H5N1 in Bangladesh across

spatial scales

3.1 Introduction

The H5N1 subtype of highly pathogenic avian influenza (HPAI) has caused consid-

erable concern since the initial observation of the virus in southern China during

1996 [20]. From the time of the first large-scale epizootic that took place in the

winter of 2003/2004 in East and Southeast Asia [122], H5N1 has killed or forced

the culling of more than 400 million domestic poultry and resulted in an estimated

US$20 billion in economic damage, with 63 countries infected at its peak in 2006 [21].

Being a zoonotic disease H5N1 HPAI remains a persistent public health threat, ca-

pable of causing infection in humans with a high mortality rate. Since 2003 it has

caused over 850 laboratory-confirmed human cases across 16 countries, leading to

subsequent deaths in 14 of these nations, with the cumulative death total exceeding

450 [23].

With a number of countries in South and Southeast Asia, including China, Vietnam

and Bangladesh, being gravely affected, a number of studies have predominately fo-

cused on either spatio-temporal analysis of outbreaks [29, 31, 33, 123, 124], or on de-

termining ecological/environmental risk factors for H5N1 avian influenza emergence

and spread at region-wide [35], national [30, 34, 38] and sub-national levels [36]. For

example, H5N1 poultry epidemics in Thailand have been associated with the follow-

ing risk factors: rice crop intensity, free grazing ducks and water presence [34, 38].

Across studies and regions three types of variables with similar statistical associa-

31
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tion with H5N1 were identified: domestic waterfowl, human related variables (e.g.

human population density) and indicators of water presence [39].

Bangladesh is one of the most densely populated countries in the world, with a

human population exceeding 160 million [125]. In combination with an intensi-

fying farming system and substantial poultry population (1194 birds/km2) [126],

these conditions make Bangladesh a prime candidate for being the source of newly

emerging influenza strains with pandemic causing potential. Therefore, it is vital to

enhance our understanding of the factors in Bangladesh that enable currently cir-

culating influenza subtypes (e.g. H5N1) to be both continually transmitted between

poultry and occasionally spillover across the human-animal interface. Bangladesh

specific risk analyses have determined a number of biosecurity related risk factors

associated with H5N1 infection in commercial poultry [127, 128], while identifying

free grazing duck and duck-rice cultivation interacted ecology as not being signifi-

cant determinants [129, 130]. Risk factors specific to backyard chickens have also

been investigated [131]. Osmani et al. [132] found the spread of H5N1 in Bangladesh

to be characterised by reported long-distance translocation events, with the relative

contribution of trade and the market chain versus wild birds in spreading the disease

still to be resolved. Loth et al. [30] investigated temporal and spatial patterns of

H5N1 poultry outbreaks in Bangladesh, occurring between March 2007 and July

2009, and their relationship with several spatial risk factors at a sub-district level.

Human population density, commercial poultry population density and number of

roads per sub-district were found to be significantly associated with H5N1 virus

outbreaks. However, they emphasise that research on the roles of wildlife, migra-

tory birds and ducks in the epidemiology of H5N1 in Bangladesh is urgently needed.

How the risk of H5N1 infection varies at different spatial resolutions must also be

determined, from local administrative units (in Bangladesh referred to as districts),

to province-level (referred to as divisions), up to the country-level. This work fo-

cuses on the district-level and division-level.

To date, very few zoonotic disease dynamic models incorporate zoonotic transmis-

sion from the animal reservoir to humans [85]. In particular, mathematical mod-

elling of H5N1 thus far has generally only quantified poultry transmission param-

eters [40, 41]. Whilst recent seroprevalence and seroconversion studies have been

undertaken in poultry workers in Thailand [133] and Bangladesh [134], the work

outlined has predominately considered H5N1 infection in livestock only. Devising a

new generation of approaches to model cross-species spillover transmission is one of
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the several challenges related to modelling the emergence of novel pathogens that

requires attention [88].

The purpose of this study is to outline a modelling framework that incorporates

zoonotic transmission at the human-poultry interface, in addition to within-poultry

disease dynamics. The model will be utilised to ascertain whether the size and spa-

tial distribution of commercial poultry H5N1 cases in specified regions of Bangladesh

can be predicted accurately at different administration levels and, if so, the crucial

modelling considerations that are necessary for this to be achieved. Furthermore,

we analyse whether the main contributor to the spillover of H5N1 influenza from

poultry to humans in Bangladesh, between H5N1 prevalence in the commercial poul-

try population or other factors (such as interactions at live bird markets (LBMs)),

can be distinguished. The findings that arise motivate further studies examining

the effectiveness of intervention measures aiming to minimise the risk of zoonotic

transmission of H5N1 influenza, which we explore in more depth in chapter 4.

3.2 Methods

3.2.1 The data

The data utilised were comprised of four main components: (i) a commercial poultry

premises census, (ii) poultry case data, (iii) external risk factors (live bird markets,

free-grazing ducks, presence of water, rice cropping), (iv) human case data.

Commercial poultry premises census

In 2010, the Bangladesh office of the Food and Agriculture Organisation of the

United Nations (FAO/UN) undertook a census of all commercial poultry premises,

listing 65,451 premises in total, of which 2,187 were LBMs. Each premises was

visited once, with the premises location recorded along with the number of the

following types of avian livestock present during the visit: layer chickens, broiler

chickens, ducks, others (e.g. turkeys, quails). Within the census data there were

instances of multiple premises having the same location (i.e. identical latitude and

longitude co-ordinates). For these occurrences the avian livestock populations were

amalgamated, giving a single population for each category at each location.

Of the non-market locations, 23,412 premises had blank entries for all avian types. It

has been confirmed this did correspond to no poultry being present on these premises
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when the census visit occurred, due to the premises either being between poultry

stocks or being temporary closed by the farmer due to an ownership transfer taking

place, rather than data entry errors (M.G. Osmani, personal communication). We

made a simplifying assumption that at any given time an equivalent proportion of

premises would not have any avian livestock at the premises. Therefore, we did not

make use of these locations in our analysis. While not discussed here the sensitivity

of model outputs to this assumption requires further consideration.

Poultry case data

From 2007 to 2012 inclusive there have been 554 poultry premises with reported

H5N1 infection in Bangladesh. These were predominately commercial premises

(497 cases), with 57 cases reported from backyard flocks. The Bangladesh office

of FAO/UN provided a dataset of confirmed infected premises up to June 2011.

Cases occurring after June 2011 were obtained from the OIE World Animal Health

Information Database (WAHID) Interface [135]. For the case data provided by the

latter source we were informed that the Department of Livestock Services reported

regularly to WAHID regarding HPAI outbreaks in Bangladesh, with this usually oc-

curring within 24 hours according to the code of the World Organisation for Animal

Health (M.G. Osmani, personal communication). We therefore presumed WAHID

contained all reported Bangladesh HPAI event information.

For each infected premises the data documented its spatial location, the date that

infection was reported, the date of culling, and the total number of poultry infected

and culled. We divided the infected premises data into distinct epidemic waves.

These were estimated by looking for significant gaps between premises infection

dates, with a gap of two months or more used to signify the end of one wave and

the start of a new one. The dates and number of cases for each wave are displayed

in table 3.1.

There were 52 poultry premises recorded as being infected that were not part of the

2010 premises census. When analysing a specific wave all additional entries that

occurred during that wave were considered, including the reported backyard farm

cases when applicable. In addition, for premises infected during a specific wave we

modified the poultry populations to match the flock sizes reported in the poultry

case dataset (rather than using the reported values from the 2010 census).
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Table 3.1: Breakdown of H5N1 HPAI poultry epidemic waves in
Bangladesh. Start month, end month and number of reported infected premises
in each of the H5N1 poultry epidemic waves in Bangladesh.

Start month End month Reported cases

Wave 1 March 2007 July 2007 55

Wave 2 September 2007 May 2008 232

Wave 3 November 2008 June 2009 37

Wave 4 January 2010 June 2010 31

Wave 5 January 2011 May 2011 161

Wave 6 November 2011 April 2012 26
In addition to the cases within each wave listed above, the following reported cases
occurred between waves: one case in September 2008; two cases in August 2009;
one case in June 2011; four cases in August-September 2011; four cases in October
2012 - March 2013.

External risk factors

In addition to LBMs [134], presence of free grazing ducks, water and rice paddy fields

have been determined as H5N1 avian influenza risk factors for poultry in other areas

of south-east Asia [34, 38]. Thus, to investigate the importance of these ecological

covariates our most complex models included information on these factors. Duck

density at a 1km resolution was obtained from the Gridded Livestock of the World

(GLW 2.0) dataset [136]. Presence of water bodies was determined from global land

cover maps produced by GlobCover at a 300m spatial resolution [137]. Rice paddy

agriculture and cropping intensity in Asia can be routinely mapped and monitored

using images from the moderate resolution imaging spectroradiometer (MODIS)

sensor onboard the NASA Terra satellite [138–140]. The satellite-based algorithms

permit the production of maps and monitoring of cropping intensity and the crop

calendar (planting and harvesting dates). This source provided rice paddy coverage

in Bangladesh at a 500m spatial resolution for the years 2008 and 2011.

Human case data

There have been eight reported human cases of H5N1 infection, causing one death [23].

Latitude and longitude co-ordinates for these cases were obtained using the FAOs

Global Animal Disease Information System (EMPRES-i) database [141]. Seven of

the eight human cases occurred within the poultry epidemic waves outlined above.

Of these, six were located in the Dhaka division and five within the Dhaka district,

with the following distribution of cases across the poultry epidemic waves: one in

wave 2, two in wave 5, three in wave 6 (the timing of these human cases in relation
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Figure 3.1: Epidemiological curve of reported H5N1 cases in Bangladesh.
Black curves correspond to counts of newly reported infected poultry premises per
day in Bangladesh during epidemic waves 2, 5 and 6 respectively. Vertical red bars
correspond to a day where clinical signs in a confirmed human case (within the
Dhaka division) were first observed. The distribution of human cases, within the
Dhaka division, across the poultry epidemic waves was as follows: one in wave 2,
two in wave 5, three in wave 6.

to the number of premises reporting infection is shown in figure 3.1).

3.2.2 Poultry model

Selection of spatial scales and epidemic waves

With the majority of human cases being located within the Dhaka district (area:

1,464 km2) and Dhaka division (in 2010, total area 41,761.8 km2), our model was

focused on these two differing administration (spatial) levels. Further, Dhaka dis-

trict was of notable interest due to being only one of two districts (out of 18 districts

in the Dhaka division) that reported presence of H5N1 infection in all six epidemic

waves. For applying our poultry model framework (performing parameter infer-

ence) we focused on the epidemic waves containing both human cases and over 100

premises reporting H5N1 infection in poultry. These were wave 2 (September 2007–

May 2008) and wave 5 (January 2011–May 2011), with reported case epidemiological
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curves for these waves presented in figure 3.1.

Specifically for the Dhaka district our analysis of waves 2 and 5 considered 1,271

and 1,270 premises, with H5N1 infection in poultry confirmed at 22 and 25 premises

respectively. In particular, four out of the six sub-districts comprising the Dhaka

district had presence of infection in both waves (figure 3.2).

For the Dhaka division, our wave 2 dataset contained 13,369 premises while the

wave 5 dataset contained 13,359 premises. There were 109 and 75 reported cases

in waves 2 and 5 respectively, with specific sub-districts having a notably higher

proportion of total infection (see figure 3.3). Overall, 18 sub-districts (out of 113

contained within the Dhaka division) had confirmed cases during both waves of in-

terest, with 41 and 25 individual sub-districts having infection present during waves

2 and 5 respectively. Note that owing to the small number of premises recorded

as having ducks or other poultry types present, with only two such premises in the

Dhaka district and roughly 20 premises in the Dhaka division, we focused on layer

and broiler chickens in our poultry models.

The candidate models described below were fitted at the district and division ad-

ministration levels. However, it is possible that a poultry epidemic had begun

in Bangladesh outside the specified region, and/or continued in another region of

Bangladesh after the final case was culled in the specified region. To address this,

for each spatial level and wave of interest we considered two different sets of dates.

The first was a region-specific epidemic time period. This began on the day poultry

cases initially occurred in the region of interest, ending on the day the final infected

premises was culled. If required, a second epidemic wave time period took the

country-wide dates for that epidemic wave. First reporting and final culling dates

for each combination of administration level and wave are provided in table 3.2.

Finally, for each reported premises the time delay between notification and culling

was recorded in the data.

Model structure

We formulated our candidate models as discrete-time compartmental models. At

any given point in time a premises i could be in one of four states, S, I, Rep or C:

i ∈ S implies premises i was susceptible to the disease; i ∈ I implies premises i was

infectious and not yet reported; i ∈ Rep implies premises i was still infectious, but

had been reported; i ∈ C implies that premises i had been culled.
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(a)

(b) (c)

(d) (e)

Figure 3.2: Spatial locations of premises infected during the wave 2 and
wave 5 poultry epidemic waves, located within the Dhaka district. (a)
Locator map depicting the location of Dhaka district, shaded in magenta, within
Bangladesh, shaded in cyan. (b-e) The left column shows infection status of each
premises, with red squares depicting premises that were infected and green circles
those that remained susceptible. The right column shows the proportion of infection
aggregated at a sub-district level. (b, c) Wave 2 district; (d, e) wave 5 district.
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(a)

(b) (c)

(d) (e)

Figure 3.3: Spatial locations of premises infected during the wave 2 and
wave 5 poultry epidemic waves, located within the Dhaka division. (a)
Locator map depicting the location of Dhaka division, shaded in magenta, within
Bangladesh, shaded in cyan. (b-e) The left column shows infection status of each
premises, with red squares depicting premises that were infected and green circles
those that remained susceptible. The right column shows the proportion of infection
aggregated at a sub-district level. In (c, e) Dhaka district is outlined in red to
highlight its location within the Dhaka division. (b, c) Wave 2 division; (d, e)
wave 5 division.



Chapter 3. Modelling H5N1 in Bangladesh 40

Table 3.2: List of region specific and country-wide epidemic wave dates.
We use — to denote country-wide epidemic dates that were not required as they
matched the region-specific epidemic dates for that particular combination of ad-
ministration level and wave.

Epidemic First Final
Wave date type report date cull date

District 2 Region specific 28 Dec 2007 31 Mar 2008
Country-wide 21 Sep 2007 19 May 2008

5 Region specific 1 Jan 2011 15 Mar 2011
Country-wide 1 Jan 2011 9 May 2011

Division 2 Region specific 26 Nov 2007 19 May 2008
Country-wide 21 Sep 2007 19 May 2008

5 Region specific 1 Jan 2011 9 May 2011
Country-wide — —

We considered an overall poultry population at each premises (i.e. layer and broiler

chickens were not treated as distinct poultry types). This is based on a conceptual-

isation where the individual poultry premises is the epidemiological unit of interest.

In other words, all poultry types within a premises become rapidly infected such

that the entire premises can be classified as Susceptible (S), Infected (I), Reported

(Rep) or Culled (C). We define a premises i in one of these four states at time t as

being in the sets S(t), I(t), Rep(t) or C(t) respectively. While the poultry epidemic

was ongoing we assumed a premises was not repopulated once culled.

Notification delays

Our modelling framework incorporated a reporting delay to take into account a

premises being infectious before clinical signs of H5N1 infection are observed, which

may not be immediate [142], followed by the time taken for premises owners to notify

the relevant authorities [143]. We treated the delay time as an integer and found that

the distributions of other model parameters were quite sensitive to it. This made

it natural to treat different plausible values for the delay as different models, and

to select between them (as was done, for example, in the context of selection from

discrete outbreak source locations by Hancock et al. [144]). We chose three fixed

infection notification times of two, four and seven days, corresponding to the 50%,

75% and 90% percentiles of the reporting delay distribution for 2009 H5N1 HPAI

reports of domestic poultry infection [145]. We systematically compared model fit

and predictions under these different values.
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Force of infection

The force of infection towards a susceptible premises could be dependent on a variety

of factors. Therefore, we proposed a series of nested models of increasing complexity.

The base model used is an adaptation of a foot-and-mouth disease model developed

by Keeling et al. [76]. The rate at which an infectious premises j infects a susceptible

premises i is given by

ηij = scNc,i × tcNc,j ×K(dij), (3.1)

where Nc,i is the total number of chickens recorded as being on premises i; sc and tc

measure the individual chicken susceptibility and transmissibility; dij is the distance

between premises i and j in kilometres; and K is the transmission kernel to capture

how the relative likelihood of infection varies with distance.

We extended the model by including a ‘spark’ term parameter εi to allow for spon-

taneous, non-distance dependent infections that were unexplained by the suscepti-

bility, transmissibility and kernel components of the model [103]. In combination

with the distance-dependent transmission kernel, K, this allows our model frame-

work to capture premises contacts that are both dependent on, and independent

of, distance. In the absence of empirical poultry movement data, such an approach

(including separate distance-dependent and distance-independent terms) has been

found to be preferred for modelling animal movement contact data compared to a

solely distance dependent process [146]. Further, despite the absence of explicit data

on backyard poultry its contribution to the force of infection could be incorporated

into εi.

Overall, the force of infection against a susceptible premises i on day t (RateM (i, t)

for model label M) was comprised of two terms: (i) the force of infection generated

by an infectious premises j (ηij,M ), (ii) the spark term (εi,M ). As a result, the total

force of infection has the following general form for model M :

RateM (i, t) =

 ∑
j∈I(t)∪Rep(t)

ηij,M

+ εi,M .

We now outline the key constituents of our proposed nested models for the force of

infection, labelled A to E, with the models building upon one another through the

inclusion of additional parameters.
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Baseline model (A)

For the baseline model (model A) the infected premises contribution to the force of

infection matched the Keeling et al. [76] model (equation (3.1)),

ηij,A = scNc,i × tcNc,j ×K(dij).

In this case K was derived from the Dhaka division poultry case data. For each

infected premises we found the nearest premises that was infected within the pre-

vious two days before that farm was reported. The distance between the infecting

premises and the newly infected premises was calculated, with the process repeated

for each infected premises. Kernel density estimation (KDE) was applied, via the

Matlab function kde(), to the distances obtained from this process. This approxi-

mated a smooth functional form for K (figure A.1).

The spark term was the same fixed value for every premises, εi,A = ε. Subsequently,

the total rate of infection against a susceptible premises i on day t satisfied

RateA(i, t) =

 ∑
j∈I(t)∪Rep(t)

ηij,A

+ ε. (3.2)

To make the model identifiable we set sc = 1. This is carried forward in all subse-

quent models. Note that although this changes the interpretation of the parameters,

it does not have any epidemiological implications.

This left two parameters in equation (3.2) requiring estimation, tc and ε.

Parametric kernel model (B)

For the parametric kernel model (model B) we fit a parametric transmission kernel

in place of the kernel derived from the poultry case data. Our chosen transmission

kernel was pareto distributed:

K(dij) =


1 if 0 ≤ dij < xmin,(
xmin
dij

)α+1
if xmin ≤ dij ,

0 otherwise.

(3.3)

xmin is the minimum possible value of the function (in our case set to 0.1, corre-

sponding to 100 metres, with all between location distances less than 100 metres

taking the 100 metre kernel value) and α ≥ −1. This kernel form could provide
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insights into how transmission risk varied with respect to the distance between the

infected premises and target susceptible location. Values of α close to −1 would

give a relatively constant kernel over all distances, with α = −1 corresponding to

transmission risk being independent of distance. As α increases away from −1 lo-

calised transmission is favoured, with long-range transmission diminished.

The infected premises contribution to the force of infection ηij,B has the same form

as ηij,A,

ηij,B = scNc,i × tcNc,j ×K(dij),

but with the kernel described above used in place of the data derived kernel.

Thus, for model B the total rate of infection against a susceptible premises i on day

t satisfies

RateB(i, t) =

 ∑
j∈I(t)∪Rep(t)

ηij,B

+ ε.

With this set up the following three parameters were fitted: tc, α, ε.

Nonlinear farm size model (C)

Previous modelling work on foot-and-mouth disease in the UK suggests including

parameters that account for a non-linear increase in susceptibility and transmissi-

bility as animal numbers on a premises increase provide a closer fit to historical

epidemic data than when these powers are set to unity [103, 147]. We explored

whether this behaviour applied to H5N1 avian influenza by adding power law expo-

nents to the susceptible population, pc, and infected population, qc.

The updated infected premises contribution to the force of infection was,

ηij,C = Npc
c,i × tcN

qc
c,j ×K(dij).

Note that the transmission kernel K used here was the pareto distributed form as

described in model B, the parametric kernel model (equation (3.3)). As before, the

spark term was the same fixed value for every premises, εi,C = ε. Therefore, the

total rate of infection against a susceptible premises i on day t satisfies

RateC(i, t) =

 ∑
j∈I(t)∪Rep(t) t

ηij,C

+ ε,
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with five parameters to be estimated (tc, α, ε, pc, qc).

Full ecological model (D)

For each spatial level and epidemic wave, the preferred model out of models A-C was

ascertained by comparing deviance information criterion (DIC) values (see model

comparison methodology). The preferred model was carried forward with the single

premises-independent spark term ε replaced by four biologically motivated spark

term covariates to form model D. In detail, these were the presence or absence of

the following in the neighbourhood of the given premises, with the resolution used

for each covariate stated in brackets: (i) water bodies (300m grid); (ii) paddy fields

(500m grid); (iii) LBMs (within 5km); (iv) local ducks (1km grid). The rice paddy

data was taken from the same year the epidemic wave of interest took place (i.e.

from 2008 if considering a wave 2 model and from 2011 if considering a wave 5

model).

Mathematically, the spark term was now premises-dependent,

εi,D = εwaterwateri + εricericei + εLBMLBMi + εducksducksi,

where wateri is an indicator function for the presence of water in the neighbourhood

of premises i (1 if present, 0 if absent), with similar definitions for the remaining

factors.

For model D, we obtained the following expression for the total rate of infection

against a susceptible premises i on day t,

RateD(i, t) =

 ∑
j∈I(t)∪Rep(t) t

ηij,m

+ εi,D,

where m ∈ {A,B,C} corresponds to the use of one of model A, B or C as required.

Simple ecological model (E)

Despite a number of studies identifying domestic waterfowl and rice crop intensity

having a strong association with HPAI H5N1 presence [34, 38, 39], previous work has

determined these factors as not being significant within Bangladesh [129, 130]. Due

to this, we considered a simplified ecological model that contained only the presence

or absence of water bodies and LBMs (in the same manner outlined above for the

full ecological model) in the neighbourhood of the given premises as ecological spark
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term covariates.

Once more, for each spatial level and epidemic wave we carried forward the preferred

model out of models A-C and added the additional spark term covariates to form

model E. In this case, we defined

εi,E = εwaterwateri + εLBMLBMi.

Consequently, the total rate of infection against a susceptible premises i on day t

for model E was

RateE(i, t) =

 ∑
j∈I(t)∪Rep(t) t

ηij,m

+ εi,E ,

where m ∈ {A,B,C} corresponds to the use of one of model A, B or C as required.

3.2.3 Likelihood function

Parameter estimation was carried out within a Bayesian framework. For construct-

ing the likelihood function we follow the description provided by Deardon et al.

[103]. Given a record of infection events at discrete time points t = 0, . . . , T during

the epidemic, the likelihood is a product over those time points. We define p(i, t) as

the probability of premises i becoming infected on day t. In particular,

p(i, t) = 1− e−Rate(i,t)t̂

where t̂ = 1. Note the form of Rate(i, t) is model dependent. The general form for

the likelihood of our models is given by

L(S, I,Rep,C|θ) =
T∏
t=0

ft(S, I,Rep,C|θ)

where

ft(S, I,Rep,C|θ) =
∏

i∈I(t+1)\I(t)

p(i, t)
∏

i∈S(t+1)

(1− p(i, t)),

S = {S(t)}Tt=0, I = {I(t)}Tt=0, Rep = {Rep(t)}Tt=0, C = {C(t)}Tt=0. θ is the vector of

unknown parameters. In detail, ft(S, I,Rep,C|θ) is the probability of all observed

infections in time interval [t, t + 1) being infected, and all observed non-infected

individuals in time interval [t, t+ 1) not being infected.
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Our objective was to minimise the negative log posterior, which by equation (2.3)

is proportional to - log (L(S, I,Rep,C|θ)π(θ)), where π(θ) denotes the parameter

prior distributions. We define L as the log likelihood, where

L =

T∑
t=0

log(ft(S, I,Rep,C|θ) (3.4)

=
T∑
t=0

 ∑
i∈I(t+1)\I(t)

log(p(i, t))

+

 ∑
i∈S(t+1)

log((1− p(i, t))

 . (3.5)

We used a uniform prior for each parameter that, except for a belief that the pos-

terior distribution resided within the given bounds, corresponded to having no ini-

tial preference towards specific values: tc ∼ Uniform(0, 0.1); α ∼ Uniform(−1, 10);

pc ∼ Uniform(0, 2); qc ∼ Uniform(0, 2); ε ∼ Uniform(0, 1); εwater ∼ Uniform(0, 1);

εrice ∼ Uniform(0, 1); εLBM ∼ Uniform(0, 1); εducks ∼ Uniform(0, 1). The posterior

distribution was explored via Markov chain Monte Carlo (MCMC) using the slice

sampling method [109] (algorithm 2) or adaptive Metropolis parameter updates [110]

(algorithm 3), acquiring 104 samples for district level models and 103 samples for

division level models. Across all models we used a minimum burn-in period of 104

steps, with a variable thinning factor applied to ensure reasonable decorrelation of

the parameter chains. A selection of MCMC diagnostic checks are presented in

appendix A.3.

Model comparison methodology

To compare models of the same type, differing only by the value of the reporting

delay, we used deviance information criterion (DIC) [148, 149], calculated using the

samples generated from our MCMC simulations. We chose to predict the reporting

delay based on the DIC in order to account for differences in the effective number of

parameters of the fitted models, with the fixed time that gave the lowest DIC being

preferred.

Further, after selecting the reporting delay that should be used for each of our mod-

els, DIC was used again to compare our set of nested models (at a given spatial level

for a specific poultry epidemic wave). This was due to its capability of accounting

for additional parameters increasing model complexity. While models with smaller

DIC were preferred over models with larger DIC, note that models with a DIC value

within two of the model with the lowest DIC value still deserved consideration, while
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being at least three greater meant there was considerably less support for that model

given the data [148].

Defining the deviance as D(θ) = −2 log(p(y|θ)), where y are the data and θ are the

unknown parameters of the model, the deviance information criterion is calculated

as

DIC = pD + D̄.

D̄ = E[D(θ)] is a measure of how well the model fits the data and pD is a measure

of the effective number of parameters (favouring models with a smaller number of

parameters). For the effective number of parameters we use the form suggested by

Gelman et al. [149], where pD = 1
2 v̂ar(D(θ)).

3.2.4 Zoonotic transmission model

A simple zoonotic transmission model was constructed to fit to the temporal human

case data. We focused solely on the within-region epidemic time period. The rate

of spillover transmission on a given day t, λ(t), was chosen to have the following

dependencies,

λ(t) = βIb(t) + εh, (3.6)

where β is the poultry to human transmission rate, Ib(t) is the number of infected

poultry within the region of interest and εh is a constant human spark term.

With previous work finding the Poisson distribution provided an adequate goodness

of fit to daily human H5N1 case data in Egypt [150], we assumed the occurrence

of human cases followed a Poisson process. As a result, the waiting time until the

next human case occurrence followed an exponential distribution. The probability

of a human infection event occurring in the next day (i.e. δt = 1) was given by

ht = 1− e−λ(t).

Over the entire poultry epidemic a likelihood function for human case occurrence,

Lh, could be constructed,

Lh =

 ∏
i∈Dinf

(hi)

 ∏
j∈Dsus

(1− hj)

 , (3.7)

withDinf the set of days a human case occurred andDsus the set of days there were no
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human cases. In detail, the first term corresponds to the probability of a human case

occurring on days where the human case data reported at least one person becoming

infected, with the second term giving the probability that no human cases occurred

on all other days. Subsequently, the log-likelihood log(Lh) could be derived:

log(Lh) =

 ∑
i∈Dinf

log(hi)

+

 ∑
j∈Dsus

log(1− hj)

 , (3.8)

With human cases only occurring in epidemic waves 2, 5 and 6, we applied our model

to these waves only. Relationships between β and εh were analysed by producing log-

likelihood surfaces using equation (3.8). Parameter summary statistics were inferred

using 4×104 samples generated via MCMC with adaptive Metropolis updates [110],

thinning by a factor of 40 samples with a burn-in period of 105 steps. The following

uniform prior distributions were used, to again capture our initial belief of the

distribution of plausible values residing within the given bounds (but for any value

in the range, assigning no extra weight of support for that specific value over any

other): β ∼ Uniform(0, 1), εh ∼ Uniform(0, 1). A selection of MCMC diagnostic

checks are presented in appendix A.3.

3.2.5 Model verification

To verify the validity of our model fitting we performed stochastic simulations,

checking the correspondence of temporal and spatial summary statistics with the

observed data. Our simulated poultry model was a spatial individual-based model

at the premises level. It incorporated both the Tau-leap algorithm [120], allowing

multiple events to occur each time step, and a grid-based approach outlined by

Keeling and Rohani [72]. In addition, we accounted for zoonotic transmission over

the entire poultry epidemic in each simulation.

We carried out 1000 simulation runs for each model. Both model components used

distinct sampled parameter values, obtained previously via MCMC, in each run.

The number of time steps matched the length of the epidemic wave the particular

model had been fitted to. For the models fitted using region-specific epidemic dates

we initialised the simulation with a single infected premises, corresponding to the

location first reporting infection for that respective epidemic wave and spatial level.

For the models fitted using country-wide epidemic dates all premises were initialised

as susceptible. For infected premises the time between reporting and culling was

randomly sampled from the observed reporting to culling time empirical probability
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mass function.

For both premises and human cases our first goodness-of-fit check was to compare

the distribution of simulated final epidemic sizes to the observed data. For the

poultry model we also inspected reported case temporal profiles to ensure our sim-

ulations produced similar behaviour.

A separate class of goodness-of-fit tests focused on spatial aspects. First order spa-

tial patterns were compared by computing the difference between a density surface

of the observed case locations and a density surface of the predicted case locations

averaged over 1% of simulations with the largest aggregate two-dimensional corre-

lation with the data (when aggregated by sub-district). Further, we used Ripley’s

K function [151, 152] to ascertain whether the measure of clustering in the spatial

pattern of observed infected premises could be plausibly generated by our fitted

models. The K function has the following theoretical description,

K(v) = λ−1E[number of extra events within distance v of a randomly chosen event]

where λ is the density of events. We seeked an estimator K̂(v). As edge effects

can arise, biasing ˆK(v) (especially at large values of v), we used an edge-corrected

estimator proposed by Ripley [151],

K̂(v) = ˆλ−1
∑
i

∑
j 6=i

w(li, lj)
−1 I(dij < v)

N
.

The density of events is estimated as λ̂ = N/A, where N is the observed number

of points and A the area of the study region. dij is the distance between the ith

and jth premises, and I(x) is the indicator function with value 1 if x is true and

0 otherwise. The edge correction weighting function w(li, lj) has value 1 when the

circle centred at li and with a radius dij (so it passes through the point lj) is com-

pletely inside the study area. For the case where part of the circle falls outside the

study area, the weighting value equals the proportion of the circle that lies inside

the study area. Although K̂(v) can be determined for any v, it is common to only

consider v < (A/2)1/2. Therefore, we used v < 28 and v < 125 for the district and

division models respectively.

To assess whether premises-to-premises transmission could be sustained without the

need for importations or infections derived from external sources, one further test
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was to compute premises-level basic reproductive ratios. This determined the ex-

pected number of other premises the given premises would infect if infected itself.

Those premises with the greatest transmission potential would therefore be high-

lighted. Following Tildesley and Keeling [153], we calculated the premises-level basic

reproductive ratio Ri as:

Ri =
∑
j 6=i

Probij =
∑
j 6=i

1− e−RateijP

where P is the length of the infectious period and Probij is the probability that

premises i infects premises j over its entire infectious period. As clarification, spark

terms were not considered in this analysis to ensure we were purely dealing with the

force of infection generated from the premises. We averaged Ri over 1000 simulation

runs for these tests. In each simulation we used distinct sampled parameter values

obtained via MCMC, in addition to a reporting to culling time weighted by the

corresponding empirical probability mass function.

We also assessed how accurately model parameters could be inferred from the data.

To do this we performed simulations using sample outputs from the MCMC model

fitting procedure, with each set of simulated data then fitted to the same model it

had been generated from using MCMC methods. The estimated posterior parame-

ter densities were then compared to the ‘true’ value.

All calculations and simulations were performed with Matlab R©.
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3.3 Results

3.3.1 Poultry model selection

In our comparison of DIC values for models of the same type, differing only by

the value of the reporting delay, a fixed reporting delay of seven days was common

across both waves and spatial levels (figures 3.4 and 3.5, see tables A.1 and A.2 for

a complete listing of model DIC values).

Consistency in the complexity of the best fit models varied for the two different

administration levels of interest (see table 3.3 for a listing of preferred models). At

the division level the added complexity in the nonlinear farm size model (model C)

was preferred, though adding in additional spark terms that were risk factor specific

seemingly brought no additional benefits. On the other hand, across both waves and

sets of epidemic dates the chosen models for our district datasets covered a wider

array of the possible model options (table 3.3). This implied that differing modelling

characteristics were required based on the spatial scale of interest. Fitting to the

wave 5 district datasets the parametric kernel model (model B) was preferred. For

the wave 2 data, considering only models A-C, the nonlinear farm size model (model

C) was chosen. Whilst carrying forward the nonlinear farm size model framework

we determined the simple ecological model (model E) as being preferred relative to

all candidate models (figure 3.6, see table A.3 for a complete listing of model DIC

values).

Though the simple ecological model (model E) was only found to be preferred for

the wave 2 district datasets, the majority of the remaining datasets found that this

model had a DIC value within two of the DIC value for the best-fit model, meaning

such a model was still plausible given the data. In addition, for the majority of our

datasets the full ecological model (model D) was found to have considerably less

support relative to the simple ecological model (see table A.3).
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Figure 3.4: Bar plots comparing ∆DIC values for the district datasets
fitted to our models with various fixed reporting delay times. For each
model a reporting delay of seven days gave the minimum DIC value. The depicted
∆DIC is with respect to the version of the model using a seven day reporting delay.
(a) Wave 2, region-specific epidemic dates; (b) wave 5, region-specific epidemic
dates; (c) wave 2, country-wide epidemic dates; (d) wave 5, country-wide epidemic
dates.
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Figure 3.5: Bar plots comparing ∆DIC values for the division datasets
fitted to our models with various fixed reporting delay times. For each
model a reporting delay of seven days gave the minimum DIC value. The depicted
∆DIC is with respect to the version of the model using a seven day reporting delay.
(a) Wave 2, region-specific epidemic dates; (b) wave 2, country-wide epidemic dates;
(c) wave 5.

Table 3.3: Model fitting summary Preferred models and fixed reporting delay
time for each wave and spatial level.

Epidemic dates District Division

Wave 2
Region Model E / 7 days Model C / 7 days
Country Model E / 7 days Model C / 7 days

Wave 5
Region Model B / 7 days Model C / 7 days
Country Model B / 7 days -
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Figure 3.6: Bar plots comparing ∆DIC values for the different datasets
fitted to our nested models. For each model the fixed reporting delay time that
minimised the DIC was used (see tables A.1 to A.2). The preferred model had a
∆DIC= 0. Models with ∆DIC≥ 3 have considerably less support and lie above
the red, dashed line. Full DIC values are given in table A.3. (a) Wave 2 district,
region-specific epidemic dates; (b) wave 5 district, region-specific epidemic dates;
(c) wave 2 division, region-specific epidemic dates; (d) wave 2 district, country-
wide epidemic dates; (e) wave 5 district, country-wide epidemic dates; (f) wave 2
division, country-wide epidemic dates; (g) wave 5 division.
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3.3.2 Poultry model parameter distributions

When comparing parameter summary statistics for our best fit models at the divi-

sion level (table 3.6) and district level (see tables 3.4 to 3.6), a spatial level specific

feature was the apparent greater contribution of importations and transmission from

other sources (characterised by the ε parameters) to the force of infection at the dis-

trict level versus the division level. On the other hand, the relationship between

increasing flock size and premises-level susceptibility was approximately linear (i.e.

p ≈ 1) in both model types (tables 3.4 to 3.6). A reasonable level of identifiability

was observed for model parameters, giving extra confidence to our results (figures 3.7

and 3.8).

Comparing the estimated parameter distributions for our wave 2 and wave 5 division-

level models highlights noticeable differences in the factors driving disease spread

across the two waves. Of particular interest were discrepancies in α, the transmission

kernel parameter, and q, the infected premises population exponent (see table 3.6).

While for wave 2 α was typically below 0, for wave 5 α was approximately zero,

giving a stronger preference towards short-range transmission (figure A.3). For q,

fitting to the wave 2 epidemic found approximately equal contributions to the force

of infection from each infected premises against a susceptible premises, irrespective

of the infected premises population size. In stark contrast, fitting to the wave 5

epidemic we inferred the median value of q to be greater than one, implying poultry

premises with the largest populations had a significant role in H5N1 transmission.
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Table 3.4: Parameter summary statistics for preferred district models us-
ing region-specific epidemic dates. Parameter mean, median and 95% credible
intervals from 104 samples obtained from MCMC. Examples of MCMC diagnos-
tic realisations acquired when fitting to these datasets are presented in figures A.4
and A.5.

Wave 2 Wave 5

Model E B

Inf. to
Rep. time
(days)

7 7

tc Mean 2.44× 10−6 5.29× 10−10

Median 4.65× 10−7 4.51× 10−10

(95% CI) (1.81× 10−8, 1.92× 10−5) (1.00× 10−10, 1.38× 10−11)

ε Mean — 7.53× 10−5

Median — 7.00× 10−5

(95% CI) — (2.18× 10−5, 1.59× 10−4)

α Mean -0.0617 -0.193
Median -0.0642 -0.189
(95% CI) (-0.384, 0.270) (-0.528, 0.126)

p Mean 1.07 —
Median 1.07 —
(95% CI) (0.610, 1.45) —

q Mean 0.0926 —
Median 0.0699 —
(95% CI) (0.00244, 0.298) —

εwater Mean 2.72× 10−5 —
Median 1.94× 10−5 —
(95% CI) (6.20× 10−7, 8.95× 10−5) —

εLBM Mean 6.88× 10−5 —
Median 6.23× 10−5 —
(95% CI) (7.14× 10−6, 1.60× 10−4) —
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Table 3.5: Parameter summary statistics for preferred district models
using country-wide epidemic dates. Parameter mean, median and 95% credible
intervals from 104 samples obtained from MCMC. Transmission kernels using the
median inferred α values are depicted in figure A.2.

Wave 2 Wave 5

Model E B

Inf. to Rep. time
(days)

7 7

tc Mean 2.67× 10−6 4.96× 10−10

Median 4.19× 10−7 4.29× 10−10

(95% CI) (6.67 × 10−9, 2.23 ×
10−5)

(9.61 × 10−11, 1.28 ×
10−9)

ε Mean — 3.37× 10−5

Median — 3.10× 10−5

(95% CI) — (9.11 × 10−6, 7.37 ×
10−5)

α Mean -0.142 -0.236
Median -0.136 -0.232
(95% CI) (-0.464, 0.144) (-0.555, 0.0509)

p Mean 1.06 —
Median 1.07 —
(95% CI) (0.617, 1.46) —

q Mean 0.110 —
Median 0.0856 —
(95% CI) (0.00390, 0.343) —

εwater Mean 1.02× 10−5 —
Median 8.15× 10−5 —
(95% CI) (3.32 × 10−7, 3.07 ×

10−5)
—

εLBM Mean 1.59× 10−5 —
Median 1.38× 10−5 —
(95% CI) (8.27 × 10−7, 4.21 ×

10−5)
—



Chapter 3. Modelling H5N1 in Bangladesh 58

Table 3.6: Parameter summary statistics for preferred division models.
Parameter mean, median and 95% credible intervals (CI) from 103 samples obtained
from MCMC. Transmission kernels using the median inferred α values are depicted
in figure A.3. Examples of MCMC diagnostic realisations acquired when fitting to
these datasets are presented in figures A.6 to A.8.

Wave 2 Wave 5
Region-
specific

Country-wide Region-
specific

Model C C C

Inf. to Rep.
time (days)

7 7 7

tc Mean 1.06× 10−7 9.63× 10−8 1.71× 10−10

Median 7.70× 10−8 7.03× 10−8 1.56× 10−10

(95% CI) (7.29 × 10−9,
3.78× 10−7)

(3.71 × 10−9,
3.42× 10−7)

(5.86 × 10−11,
3.63× 10−10)

ε Mean 4.11× 10−6 2.49× 10−6 1.04× 10−5

Median 3.98× 10−6 2.35× 10−6 1.02× 10−5

(95% CI) (1.42 × 10−6,
7.91× 10−6)

(8.80 × 10−7,
4.80× 10−6)

(5.02 × 10−6,
1.72× 10−5)

α Mean -0.358 -0.394 0.0136
Median -0.345 -0.377 0.0136
(95% CI) (-0.666, -0.159) (-0.713, -0.172) (-0.122, 0.143)

p Mean 1.06 1.05 1.05
Median 1.06 1.06 1.05
(95% CI) (0.923, 1.19) (0.916, 1.18) (0.826, 1.26)

q Mean 0.0574 0.0732 1.06
Median 0.0427 0.0458 1.06
(95% CI) (0.00175, 0.189) (0.00243, 0.300) (0.844, 1.28)
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Figure 3.7: Inferred probability densities for poultry transmission model
parameters from three simulated samples, using parameter values ob-
tained when fitting to the wave 5 district data with region-specific epi-
demic dates. True parameter values are depicted by vertical grey bars. Estimated
probability densities are given by the solid blue lines. First column: tc. Second
column: ε. Third column: α. We found that true values for all parameters could
generally be reliably recovered, although there were instances where reasonable un-
certainty remained in the posterior distribution for α (as shown in row 3).
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Figure 3.8: Inferred probability densities for poultry transmission model
parameters, using parameter values obtained when fitting to division-
level data with region-specific epidemic dates. True parameter values are
depicted by vertical grey bars. Estimated probability densities are given by the
solid blue lines. The true parameter values could be reliably recovered for both (a)
wave 2 and (b) wave 5 datasets.
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3.3.3 Zoonotic transmission model

Log-likelihood surfaces were produced for waves 2, 5, and 6 using equation (3.8).

Two preferred regions of parameter space were found in general, though there is ev-

idence of parameter dependent threshold values (figures 3.9(a) and 3.9(b)). Below

these threshold values the other parameter dominates the dynamics of the system.

When fitting to the wave 5 data there was little dependence upon the spark term εh,

with β playing a much more significant role. In other words, the number of infected

birds has some significance in the likelihood of zoonotic transmission occurring. The

opposite was found to be true for wave 2, with more importance placed on the hu-

man case spark term.

Within wave 6 there were three human H5N1 case occurrences. All three were

situated inside the Dhaka division, while two of the three were contained within

the Dhaka district. At both spatial levels there was very little dependence on the

number of infected poultry, with the spark term εh being dominant (figures 3.9(c)

and 3.9(d)).

Parameter summary statistics inferred from 4× 104 samples generated via MCMC

are stated in table A.4. Premises infection dates were computed from the observed

reporting dates using the fixed reporting delay time in the preferred model for the

respective wave and spatial level. Acceptance rates were between 20 and 25%. As

for the poultry transmission component, we were able to recover unbiased estimates

of the zoonotic transmission model parameters from simulated data (figures 3.10

and 3.11).
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(a) (b)

(c) (d)

Figure 3.9: 2D likelihood surface of temporal zoonotic transmission
model parameters. Lighter colours signify a higher likelihood. The preferred
regions of parameter space when fitting to the following datasets were: (a) Wave 2
district - the dynamics were dominated by εh; (b) wave 5 district - little dependence
upon the spark term εh, with β playing a much more significant role; (c,d) wave 6
district and division - the spark term εh was dominant at both spatial levels.
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Figure 3.10: Inferred probability densities for zoonotic transmission
model parameters from three simulated samples, using parameter val-
ues obtained when fitting to the wave 6 district data with region-specific
epidemic dates. True parameter values are depicted by vertical grey bars. Esti-
mated probability densities are given by the solid blue lines. We found that true
values for both parameters could be reliably recovered. First column: β. Second
column: εh.
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Figure 3.11: Inferred probability densities for zoonotic transmission
model parameters, using parameter values obtained when fitting to
division-level data with region-specific epidemic dates. True parameter val-
ues are depicted by vertical grey bars. Estimated probability densities are given by
the solid blue lines. First column gives estimated densities for β; second column
gives estimated densities for εh. We found that true values for both parameters
could be reliably recovered. (a, b) Wave 2; (c, d) wave 5; (e, f) wave 6.
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3.3.4 District-level model verification

Simulation output from our district-level models were found to agree favourably with

the observed data. Using region-specific epidemic dates the simulated final premises

and human epidemic sizes captured the observed data for both waves (figure 3.12).

This was maintained when considering country-wide epidemic dates, though the dis-

tributions for both waves became heavy-tailed (figures 3.12(c) and 3.12(g)). Further,

the observed spatial distribution of infected premises could be plausibly generated

by our fitted models (figure 3.13). The simulated models exhibited a much broader

range of possibilities for spatial structure, but the observed data was predominately

within the 95% prediction interval (figure 3.14). Lastly, the fitted district-level mod-

els were capable of generating plausible reported case temporal profiles, which were

dominated by single daily cases (figures 3.15(a) and 3.15(b)).

Across the majority of the district models the number of premises with premises-

level reproductive ratios estimated to be greater than one was limited. Therefore,

infections seeded in a random premises by importations or other ecological factors

would more than likely fail to spread (figure 3.16). On the other hand, for both

waves small clusters of premises, all with Ri > 1, were present in the centre third of

the district (and in the south-west and north-west for wave 5). Our results indicate

that localised outbreaks would be possible here, corresponding well with the true

locations of the wave 5 observed cases in particular (see figure 3.2).
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Figure 3.12: Simulated premises epidemic size and human case occur-
rence versus observed data at the district level. Left column shows the
premises epidemic size versus the observed data for each of our district datasets.
Similarly, the right column shows simulated human case occurrence verses the ob-
served data. (a, b) Wave 2, region-specific epidemic dates; (e, f) wave 5, region-
specific epidemic dates; (c, d) wave 2, country-wide epidemic dates; (g, h) wave
5, country-wide epidemic dates. The normalised frequency at 100 also includes all
epidemic sizes 100 or greater.
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Figure 3.13: Simulated infected premises numbers aggregated at the sub-
district level versus observed data for all district model datasets. For each
district model dataset the first column shows the empirical data, with the second
column showing the mean number of infected premises per sub-district obtained
from ten simulations. The third column gives the absolute difference between these
two values. In all panels lighter colours correspond to greater values. We see a
reasonable spatial fit between the observed and simulated data, with the general
spatial pattern captured by the model simulations.
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Figure 3.14: Observed Ripley’s K function versus simulated Ripley’s K
function distribution for district-level models. The Ripley’s K function for
the observed infected premises data is given by the solid blue line. Median Ripley’s
K function estimated from simulated data is represented by the red dotted line, with
the black dashed lines giving the 95% prediction interval bounds. The observed data
lay predominately within the 95% prediction interval for all district-level models.
(a) Wave 2, region-specific epidemic dates; (b) wave 5, region-specific epidemic
dates; (c) wave 2, country-wide epidemic dates; (d) wave 5, country-wide epidemic
dates.
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Figure 3.15: Observed and example simulated reported premises tempo-
ral profiles. Black dots denote the actual reported cases. Dashed lines are typical
examples arising from simulations. Simulation results are from fitted models using
region-specific epidemic dates. Note we display the number of reported cases per
day unless stated otherwise. (a) Wave 2 district; (b) wave 5 district; (c) wave 2
division, with number of reported cases every two days; (d) wave 5 division, with
number of reported cases grouped into three day intervals.
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(a) (b)

(c) (d)

Figure 3.16: Binary indicator of premises-level reproductive ratios Ri

being greater than one for the district-level models. Red crosses denote
premises with a Ri < 1, cyan diamonds premises with Ri ≥ 1. Across the models
only a limited number of premises obtained premises-level reproductive ratios greater
than one. However, small clusters of premises with Ri > 1 were present in the centre
third of the district for both waves, and in the south-west and north-west for wave
5. (a) Wave 2, region-specific epidemic dates; (b) wave 2, country-wide epidemic
dates; (c) wave 5, region-specific epidemic dates; (d) wave 5, country-wide epidemic
dates.
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3.3.5 Division-level model verification

For our division-level models the amount of agreement between the simulated out-

put and the observed data was more variable. Although predictions from the models

fitted to the wave 2 data generally underestimated the observed premises epidemic

size (figures 3.17(a) and 3.17(c)), they did generate infection spatial distributions

with comparable measures of spatial homogeneity (figures 3.19(a) and 3.19(b)). In

contrast, for wave 5 we obtained a bimodal distribution, with the observed premises

epidemic size lying just above the lower valued peak (figure 3.17(e)). The knock-on

effect of this is a widely spanning human case distribution (figure 3.17(f)). Although

first order spatial correspondence with the case data was not as strong for our fitted

division-level models (compared to the district models), a subset of simulation runs

could capture the prominent outbreak regions located centrally and on the eastern

edge of the division (figure 3.18). Further, measures of spatial homogeneity in the

spatial pattern of the observed infected premises data could be plausibly generated

(figure 3.19(c)). Temporally, both waves exhibited two typical behaviours. These

were either a single large outbreak, or a small outbreak with intermittent spikes in

cases that mirrored the true temporal profiles (figures 3.15(c) and 3.15(d)).

Spatially, of particular interest was the wave 5 division model. The observed cases

mainly lie in the centre third of the division, spanning the entire width of the region.

However, model simulations found the regions infected most often lay further north

of this band (figure 3.20). Analysis of premises-level reproductive ratios revealed the

extent to which a number of premises are theoretically able to transmit infection.

Both wave 2 division models gave the highest Ri values in a similar area, though

these were only just above one and smaller in scale when compared to the wave 5

division model (figure 3.21). Furthermore, the wave 2 division-level models predict

that the areas capable of continuing a transmission chain are concentrated in a single

central region. In contrast, the wave 5 division-level model gave a smaller central

region with Ri > 1, but indicated extra sporadic areas in the north and south-west

with the capability of continuing the chain of transmission if infection arose in those

localities (figures 3.21(g) to 3.21(i)).
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Figure 3.17: Simulated epidemic size versus observed data at the division
level. (a,c,e) Poultry epidemic size. (b,d,f) Human epidemic size. First row (a,b)
used wave 2 region-specific epidemic dates, second row (c,d) used wave 2 country-
wide epidemic dates, final row (e,f) used wave 5 epidemic dates.
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Figure 3.18: Simulated infected premises numbers aggregated at the sub-
district level versus observed data for all division model datasets. For each
division model dataset, the first column shows the empirical data, with the second
column showing the mean number of infected premises per sub-district obtained
from ten simulations. The third column gives the absolute difference between these
two values. In all panels lighter colours correspond to greater values.
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Figure 3.19: Observed Ripley’s K function versus simulated Ripley’s K
function distribution for division-level models. The Ripley’s K function for
the observed infected premises data is given by the solid blue line. Median Ripley’s K
function estimated from simulated data is represented by the red dotted line, with
the black dashed lines giving the 95% prediction interval bounds. The observed
data lay within the 95% prediction interval for all division-level models. (a) Wave
2, region-specific epidemic dates; (b) wave 2, country-wide epidemic dates; (c) wave
5.

Figure 3.20: Premises relative risk of infection aggregated at the sub-
district level for the wave 5 division model. Aggregated probabilities were
evaluated by taking the mean value over all individual premises situated in the
sub-district. Lighter colours indicate a higher probability of infection.
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Figure 3.21: Aggregated premises-level reproductive ratios Ri for the
division-level models. Aggregated values were evaluated by taking the mean Ri
over all individual premises situated in the region of interest, with lighter colours
indicating a higher average premises-level reproductive ratio. First column used the
wave 2 model fitted to region-specific epidemic dates; second column used the wave
2 model fitted to country-wide epidemic dates; final column used the wave 5 model.
(a-c) Ri aggregated by sub-district; (d-f) Ri aggregated into 5km × 5km regions.
In (f) red denotes regions with an aggregated Ri above 1.3; (g-i) binary indicator
of 5×5km aggregated premises-level reproductive ratios Ri being greater than one,
red denoting regions with Ri < 1, cyan regions with Ri ≥ 1. For wave 2, the areas
capable of continuing a transmission chain (where Ri ≥ 1) were concentrated in a
single central region. The wave 5 model had a smaller central region with Ri ≥ 1,
but indicated extra sporadic areas in the north and south-west with the capability
of continuing the chain of transmission if infection arose there.
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3.4 Discussion

This analysis illustrates how altering the spatial scale of interest can revise the fac-

tors meriting inclusion in mathematical models of H5N1 HPAI influenza transmis-

sion among poultry. For Bangladesh, a preferred model framework was identifiable

at the division level, with the nonlinear farm size model (model C) chosen. This

implies that fitting a transmission kernel, rather than using a kernel estimated from

case data, and allowing for non-linear dependencies in both infecting and susceptible

premises population sizes are important inclusions. In contrast, at the district level

a preferred model could not be established, suggesting the data were not sufficient

to determine the key aspects of a district-level model for general use.

Finding that the simple ecological model (model E) was strongly preferred to the

full ecological model (model D) for the majority of our wave and spatial level combi-

nations corroborates previous studies, which found ducks and rice cropping systems

were not strongly associated with H5N1 HPAI infection risk in Bangladesh [129, 130].

However, the inclusion of extra parameters (relative to models A-C) was penalised

in the DIC calculation, resulting in the simple ecological model (model E) not be-

ing considered as the ‘best-fitting’ of our candidate models for the majority of our

datasets. Nonetheless, other ecological covariate dependencies besides linear could

have been chosen. Modified conclusions may be drawn with these alternative choices.

By fitting models at both district and division levels we could uncover model char-

acteristics that were independent of spatial scale. Demonstrated by a reporting

delay of seven days being persistently selected across the entire nested model range,

this is noteworthy in indicating non-optimal reporting of infected premises during

these poultry epidemics. Furthermore, finding an approximately linear relationship

between increasing flock size and premises-level susceptibility highlights a poten-

tial detection bias (as an alternative to the natural interpretation of larger flock

sizes having increased risk of exposure), with outbreaks more likely to be reported

by large premises. This is in agreement with Osmani et al. [128], who hypothe-

sised poor disease detection and reporting within endemically infected regions of

Bangladesh as plausible reasons for genetically identical viruses seemingly causing

independent outbreaks over moderate time periods (< 14 days). Such behaviour is

conceivable due to the mortality rate within a flock in the early course of HPAI H5N1

infection being low, meaning detection of such clinical events may be delayed [142].
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Detection delays are further compounded by many producers being wary following

past experiences with government veterinary services, especially those that carried

out mass culling or offered poor compensation for poultry destroyed, further ex-

tending the time from initial premises infection to reporting [143]. This hinders

intervention efforts, with pre-existing strategies to combat H5N1 infection of poul-

try having a limited impact. For example, a recent H5N1 surveillance study in

Bangladesh poultry found no significant difference in anti-H5 seropositivity between

vaccinated and unvaccinated chickens, indicating a failure of the vaccination pro-

gram and a need for updated poultry vaccines [154]. Moreover, a practice of weekly

rest days at LBMs that started in April 2012 and the introduction of improved

hygienic measures from FAO did not seemingly impact the relative risk of H5N1

circulation in LBMs [155]. To ensure future policy recommendations are well in-

formed, the quantitative evaluation of proposed intervention strategies to reduce

the zoonotic transmission risk of influenza warrants further study. This can en-

compass both traditional methods (culling, vaccination, targeted surveillance) and

innovative direct interruption strategies, such as intermittent government purchase

plans (so that farms can be poultry-free for a short time and undergo disinfection)

or restrictions on species composition (to synchronise flocks to the same birth-to-

market schedule and allow for disinfection between flocks). We refer the reader to

chapter 4 for our own analysis of the impact of interventions carried out within the

Dhaka division on prohibiting widespread outbreaks of H5N1.

Inspecting the inferred parameter distributions for our division-level models revealed

an apparent contrast in transmission dynamics across epidemic waves. For wave 2,

the fitted transmission kernel exhibited similar values regardless of the distance be-

tween premises involved in an infection event (with α < 0). On the other hand, the

wave 5 data-informed model gave a stronger preference towards short-range trans-

mission (α ≈ 0). Further, the force of infection was amplified by increasing the

infected premises population size (q > 1), providing the rationale for our simula-

tions with this fitted model determining that the regions with the greatest infection

risk lay to the north of the observed cases (figure 3.20).

These differing transmission characteristics between epidemic waves may have been

the result of either a combination of, or solely, a change in disease dynamics and

surveillance sensitivity. During the wave 5 poultry epidemic in 2011 a new clade

of H5, 2.3.2.1, was identified in Bangladesh [156, 157]. The introduction of this

virus could have altered transmission patterns compared to the viruses circulating
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during 2008, including how the force of infection scaled with the premises flock size.

Additionally, spatial and temporal changes in surveillance between the two poul-

try epidemics of interest may have altered the proportion of infected cases actually

reported. With the surveillance system mainly relying on passive surveillance, sub-

stantial under-reporting of poultry cases may have occurred [143]. However, due

to experiencing a number of previous epidemics by 2011 there may have been a

reduction in this factor since 2008. A greater proportion of subsequent infections

occurring in the local neighbourhood of an already infected premises may therefore

have been found in the wave 5 epidemic of 2011, giving extra weight to short-range

transmission events relative to the wave 2 fitted model.

Our preferred wave 5 division model revealed the presence of premises with ‘super-

spreader’ potential, where premises-level productive ratios Ri were much larger than

one. In total, 25 premises obtained an Ri > 10. These had large poultry popula-

tions (at least 25,000, with only 33 premises in the entire Dhaka division having

populations at or above this level) and were situated in areas with a high concen-

tration of poultry farms. We speculate these conditions enhance the ability of a

premises to transmit infection, with epidemics of greater magnitude compared to

when these premises do not become infected. A bimodal distribution for infected

premises epidemic size would subsequently be expected, in agreement with our simu-

lations (figure 3.17(e)). Crucially, these regions were very localised and the observed

cases were predominately absent from them, with Ri < 1 for the majority of the

division (figure 3.21(i)). The small scale of the wave 5 epidemic may have been a di-

rect result of this. Such behaviour may have occurred as a result of heterogeneity in

biosecurity compliance. Industrial premises with larger flock sizes implement clearly

defined standard operating procedures for biosecurity [158]. In contrast, smaller

scale commercial operations may suffer from having less strict measures, such as

village farms frequently being built side by side with little separation, which may

promote the spread of H5N1 [126]. This emphasises the importance of maintaining

compliance of biosecurity regulations, preventing premises with super-spreader po-

tential becoming infected, echoing conclusions drawn by the FAO who stated there

was a strong need to improve biosecurity in commercial and government poultry

farms in Bangladesh [158].

At the district level, premises-level reproductive ratios suggested that, in principle,

chains of transmission from premises-to-premises would not be sustained. Thus,

importations and transmission from other sources appeared to be vital contributors
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to the poultry outbreak size. Ultimately, this culminates in a low risk of infection

across the entire region. This may be a consequence of the poultry value chain,

with commercial poultry farms sourcing day-old chicks from a limited set of parent

stock farms and grand parent farms [158]. In other words, there is a risk of disease

transfer from grand parent or parent farms to the producers, rather than via a chain

of transmission occurring between-premises within the district itself. An issue to

highlight is the potential for cases caused by premises that lay outside the district

(so effectively imported in). While these may in fact have been a short-range trans-

mission event from premises just outside the district, if there were infected premises

in the district that were further away the fitting procedure could give a misleading

level of support for long-range transmission. This leads to a further knock-on effect

with the spark term value, as true infection importation events should be solely

captured by that term.

The zoonotic transmission element of our modelling framework discerned differing

causal mechanisms for the reported zoonotic spillover events across waves. Infected

poultry is no doubt a baseline causal factor, but such event occurrences may also

be influenced by LBM specific risk factors like poor biosecurity and slaughter prac-

tices [158]. Due to wave 2 only containing a single human case there was a higher

chance it was caused by the latter, with εh encapsulating such determinants. On

the other hand, the human cases within wave 5 had a greater association with the

number of infected poultry, a consequence of the reduced chances of them both

being caused by alternative determinants. Fitting to the wave 6 human case data,

ascertaining that the εh term dominated the zoonotic transmission dynamics is in

agreement with the World Health Organisation reporting LBMs as the source of

infection for these specific cases [159].

In terms of minimising human risk, the study presented here suggests merely limit-

ing the size of the poultry outbreak may not in isolation reduce the risk of spillover

transmission, while reducing contact between humans and poultry would be pru-

dent. Yet, we note that due to the low number of confirmed human cases we cannot

attain strong evidence for these conclusions as they are supported by very few events.

Furthermore, there are likely to be inherent biases in the reporting of human cases.

Intensive community surveillance efforts only happen in a few communities, mean-

ing many cases may have been missed [134]. Additional human cases correlating

temporally with peaks in poultry infection would strengthen the models preference

for human case occurrence being linked to H5N1 prevalence in poultry. In light of
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these conditions, further study is required to verify these findings and ascertain their

sensitivity to differing levels of under-reporting. Such analysis is becoming feasible

through the development of novel methods for fitting models to an unknown number

of infections, including fully Bayesian approaches [160, 161].

The quality of data used had some limitations. Firstly, the following inherent re-

porting biases could exist and have been discussed above: under-reporting can result

in the true extent of both poultry and human cases not being known; the likelihood

of an infected premises reporting the outbreak may increase the larger the flock size.

Second, in the absence of information on the premises notification time for reporting

disease we assumed all premises had the same fixed value reporting delay, treating

it as an unknown parameter with a set of different plausible values tested. In real-

ity, there is likely to be variability in this value across premises that may influence

the estimated transmission parameters. Third, we chose not to include premises

locations that had no poultry populations present in the poultry census database.

While this should portray the proportion of premises that are between-flocks at any

one time, the impact of alternative sets of poultry farms being populated at a given

moment, with the effect on risk of zoonotic H5N1 transmission that follows, requires

further study. Further, our assumption of culled premises not being restocked while

a poultry epidemic was still in progress may not hold for all our datasets, as in real-

ity the restocking period following a cull is three months [162]. Fourth, due to not

having data on movements of poultry we were unable to include highly preferential

trading links between premises and LBMs explicitly in our analysis. However, previ-

ous work concluded that when proposing models for animal movement contact data

between holdings, those that included separate distance-dependent and distance-

independent terms were preferred to purely distance dependent models [146]. This

therefore motivated our model framework including both a fitted distance-dependent

transmission kernel and a spark term to seed infections from other sources indepen-

dent of distance. Finally, factors that have been previously determined to increase

risk of H5N1 infection in poultry, such as the number of roads per sub-district and

human population density [30], were not incorporated here. Further work focused

specifically on these factors should be able to enhance understanding of public ac-

cessibility as a H5N1 poultry infection risk.

To address this the modelling framework outlined can be extended in numerous

ways. The first would be to treat layer and broiler chickens as distinct types, rather

than considering the total poultry population per premises. It could then be as-
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certained whether there are type-specific risk factors or, for a specific risk factor,

differing levels of risk against each poultry type. Next, as previously discussed,

while we have focused on a linear dependence on the presence/absence of a number

of covariates and the resulting contribution to overall risk of infection, many other

choices for the spark term dependence could be made. For example, if the necessary

data were available, a non-distance dependency on LBMs could be used based on

total LBM visits from personnel working on the premises of interest. The impact

of varying these dependencies merits further investigation. Thirdly, restocking of

previously culled premises can be integrated into the poultry transmission model

component, while modifications can be made to the zoonotic transmission compo-

nent to produce a complete spatially dependent model. Implementing these changes

would allow information such as human population density and LBM locations to

be explicitly incorporated. Another direction for further work is to relax the as-

sumption of every premises having the same delay-time for reporting disease, and to

determine the robustness of the modelling framework by applying it to other regions

that have recorded H5N1 cases in both poultry and humans.

Overall, with the data available, our findings suggest the key components that should

be incorporated within a general division-level framework for H5N1 poultry infec-

tion in Bangladesh were identifiable (despite apparent differences in behaviour for

each poultry epidemic of interest), while this was not achievable at the district ad-

ministration level. Across spatial scales we saw a consistent outcome of non-optimal

reporting of infected premises, suggesting we should seek procedural improvements

that will reduce the notification time of infected poultry premises. Furthermore,

our simple zoonotic transmission model capably identified differing significant con-

tributors to spillover transmission from poultry to humans across epidemics. Yet,

for H5N1 influenza the dynamic interplay between animal health, environmental

factors and the immune system of the human host must be resolved to ensure pol-

icy decisions result in the minimisation of zoonotic transmission occurrence. Given

these complexities, it is imperative that further work to enhance understanding of

influenza transmission dynamics at the human-animal interface is pursued.



Chapter 4
Optimal control strategies for H5N1

outbreaks in Bangladesh

4.1 Introduction

In the previous chapter we outlined and parameterised a H5N1 highly pathogenic

avian influenza (HPAI) modelling framework incorporating zoonotic transmission at

the poultry-human interface. Resolving the key transmission-dynamic mechanisms

and risk factors behind historical disease epidemics can help inform the actions that

should be enacted in a future outbreak, with the successful determination of the op-

timal control response being a key challenge for policy-makers. With this in mind,

we will now utilise our previously fitted H5N1 models to perform a simulation study

comparing plausible H5N1 HPAI prevention and control strategies.

For the prevention and control of HPAI, the specific intervention actions to be taken

with regards to regulating marketing, imposing movement restrictions or quarantine

measures, culling and vaccinating vary according to local circumstances and from

country to country. There is no one solution for all situations, and a balance must be

established among effective, feasible and socially acceptable control measures that

safeguard the short-term and long-term livelihoods of farmers and the health of the

population.

In general, however, a number of basic measures are common to all circumstances.

One such measure is that infected birds and those in contact with them must be

humanely and safely culled to halt spread of the disease. This limits spread by

82
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decreasing the amount of virus released from any one site. However, usually this

alone cannot completely prevent further spread because some virus will have been

released before culling commences, and often before the disease is detected. As a re-

sult, pre-emptive culling (the culling of animals before they are found to be infected)

can be used to attempt to make this a more proactive measure. Use of widespread

pre-emptive culling based on defined areas around an outbreak has been a standard

implementation of this protocol [163]. In Bangladesh, case detection and stamping

out remain the key platforms of HPAI control programmes [143].

Disease control programs may also aim to create impediments to spread. An essen-

tial part of this is to create an environment in which there are relatively few locations

that may become easily infected, with vaccination one of the main methods available

for achieving such a goal [163]. Vaccination against HPAI aims to reduce levels of

virus shed into the environment and stop infection spreading, as well as prevent-

ing clinical disease. It has been implemented and encouraged as part of a control

program in poultry in parts of Asia, including China and Vietnam. It was found

that H5N1 infected premises in Vietnam reported during an outbreak period when

only depopulation-based population control was used had higher within-flock repro-

ductive numbers than infected premises reported during an outbreak period where

the control policy in place was depopulation plus nationwide systematic vaccination

campaigns [164]. Recent positive developments have seen vaccines against H5N1 and

H7N9 prevent birds from shedding the virus through their mouths and droppings,

thus stopping transmission from one bird to another [165]. Of particular importance

is ensuring the vaccines used have high efficacy. A recent H5N1 surveillance study

in Bangladesh poultry found no significant difference in anti-H5 seropositivity be-

tween vaccinated and unvaccinated chickens, indicating a failure of the vaccination

program and a need for updated poultry vaccines [154].

Naturally, policy effectiveness will depend critically on how swiftly clinical cases are

diagnosed and the speed with which the chosen control measure can be administered.

By employing active surveillance of premises (i.e. activities which are frequent, in-

tensive and aim at establishing the presence or absence of a specific disease) the

notification time for identifying clinical symptoms of infection within a flock may

reduce.

Although active surveillance activities can be expensive and time-consuming, there

are notable examples of the benefits of strengthening influenza surveillance pro-
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grams. Improved influenza virus surveillance in pigs revealed that influenza virus

transmission from humans to swine is far more frequent than swine-to-human zoono-

sis [166]. A follow-up study went on to identify multiple previously uncharacterised

influenza viruses of human seasonal H1N2 and H3N2 virus origin that have circulated

undetected in swine in Brazil for more than a decade [167]. The public availability

of genetic sequence data from databases such as GenBank have allowed pioneering

studies to come into fruition, setting out to characterise the cross-species nature and

the migration of influenza A viruses on a global scale [168]. On top of that, there

are probable long-term advantages to be gained from active surveillance to outweigh

the costs. In the first instance there are trade benefits, with eventual proof of dis-

ease absence allowing the opening-up of hitherto untapped markets. Secondly, for

diseases such as rinderpest beginning active surveillance means vaccination could

cease, saving sizeable amounts of money that otherwise would have been spent on

blanket vaccination campaigns [169].

In the case of these measures successfully reducing the infection level among poul-

try, an expected knock-on effect should be a lessened chance of humans becoming

infected through spillover transmission. Alongside this, a separate group of con-

trol actions may aim to further reduce the threat of zoonotic transmission at the

poultry-human interface through other means. This may include reducing dangerous

contacts through public awareness campaigns, improving (and enforcing) biosecu-

rity regulations (such as introducing periodic rest days for LBMs [155]) and revising

slaughter practices.

In this chapter we assess the predicted impact of these assortment of interventions

in mitigating the emergence and spread of H5N1 in poultry premises in the Dhaka

division of Bangladesh, and in reducing the risk of zoonotic transmission. This

exploratory analysis was done via simulations of our fitted H5N1 influenza trans-

mission models (from chapter 3), optimising specific objectives to control the burden

and/or duration of H5N1 outbreaks. Our three primary focuses were as follows: (i)

how the targeting and implementation of these interventions alters if it is believed

transmission is predominately premises-to-premises, versus the scenario where im-

portations and other external factors are also considered; (ii) how the interventions

should be prioritised and implemented when having to account for resource availabil-

ity; (iii) determining the sensitivity of the management actions under consideration

to outbreaks with disparate transmission dynamics.
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4.2 Methods

4.2.1 Mathematical model for H5N1 transmission

To assess effectiveness of H5N1 HPAI prevention and control actions in the Dhaka

division of Bangladesh, via model simulation, we applied an amended version of our

previously developed modelling framework for H5N1 influenza transmission. We

carried forward our preferred division-level models fitted to region-specific epidemic

dates for the wave 2 and wave 5 Bangladesh poultry epidemics. The selected model

in both cases was the nonlinear farm size model (model C), with the contribution

by infected premises j to the force of infection against a susceptible premises i given

by

ηij = Npc
c,i × tcN

qc
c,j ×K(dij).

Following the notation defined in chapter 3, Nc,i is the total number of chickens

recorded as being on premises i, tc measures the individual chicken transmissibility,

dij is the distance between premises i and j in kilometres, and K is the transmission

kernel to capture how the relative likelihood of infection varies with distance. This

model also incorporated power law exponents on the susceptible population, pc, and

infected population, qc.

The transmission kernel K was the pareto distributed form as described for the

parametric kernel model in section 3.2.2 (see equation (3.3)). The spark term was

the same fixed value for every premises, ε, with the total rate of infection against a

susceptible premises i on day t satisfying

Rate(i, t) =

 ∑
j∈I(t)∪Rep(t) t

ηij

+ ε,

Recall that the wave 5 division-level model, compared to the wave 2 fitted model,

had a stronger preference for short-range transmission with infecting premises pop-

ulation size also having a more prominent role (see chapter 3). This allowed us to

explore the sensitivity of the management actions under consideration to epidemics

with disparate transmission dynamics.

With regards to modelling human case occurrence the rate of spillover transmission

was unaltered from equation (3.6), taking the following form,

λ(t) = βIb(t) + εh.
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As before, β is the poultry to human transmission rate, Ib(t) is the number of

infected poultry within the region of interest and εh is a constant human case spark

term.

4.2.2 Poultry control policies of interest

The poultry-targeted policy actions compared were ring culling, ring vaccination

and active surveillance. There are typically restrictions on the resources available

for enforcing such interventions, limiting the number of poultry and/or premises that

can be targeted on any given day. As a consequence, we imposed daily capacities on

the maximum number of poultry and/or the maximum number of premises targeted

by each control action, with three differing levels of severity related to the availability

of resources. In each case a baseline control measure of only culling reported premises

was performed, with premises being culled on the same day they were reported if

possible (with respect to the resource constraints in place). Note that culling of

premises reporting infection was carried out in all subsequent control strategies

outlined below.

Ring culling

For this choice of action, in addition to the culling of premises reporting infection,

all premises within a specified distance of each location with confirmed infection

were marked for culling. The distances evaluated here ranged from 1-10km (in 1km

increments). The following three settings were considered for comparing the effect

of differing resource constraints:

• Low: 20,000 daily bird limit, 20 premises limit.

• Medium: 50,000 daily bird limit, 50 premises limit.

• High: 100,000 daily bird limit, 100 premises limit.

To clarify, those premises reporting infection would be prioritised above all others

for culling, ordered by the date of reporting. For those premises designated for

ring culling that had not reported infection, the order of priority was determined

using a distance-based approach, with resources allocated from the outer edge and

moving inwards to the centre (an “outside-to-centre” approach). In other words,

following the determination of premises situated within the ring established around

a premises reporting infection, distances between all such premises and the infected

premises were computed with the premises then culled in descending distance order.
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Note that all premises in the ring established around the initially reported infected

premises had to be treated before moving on to locations that were contained within

rings established around the next set of subsequently reported infected premises.

Ring vaccination

For this choice of action all those premises within a specified distance of each

premises reporting infection were listed for vaccination. As for ring culling, the

ring radii sizes evaluated ranged from 1-10km (in 1km increments). Vaccine efficacy

was set to 70%, with a seven day effectiveness delay to account for the time re-

quired for suitable immune protection to develop after the vaccine is administered.

With the epidemiological unit of interest being the individual poultry premises, we

assumed poultry within the same flock had the same vaccination status (i.e. post-

vaccination the vaccine either successfully induced immunity for all birds within the

flock, or the flock remained unprotected).

As the vaccination strategies considered here also involved the culling of reported

premises, we had to make an assumption regarding how these two aspects should

be factored into the resource limits. We were informed that while culling would

be carried out by DLS (Department of Livestock Services) staff, vaccines would be

administered by the farms themselves in supervision by DLS staff (personal commu-

nication from Madhur S. Dhingra). Therefore, we treated these activities as being

independent of each other, assigning separate resource limitations to each control

action.

The capacity levels that were considered, with culling and vaccination treated inde-

pendently, were:

• Low: 20,000 daily bird limit, 20 premises limit.

• Medium: 50,000 daily bird limit, 50 premises limit.

• High: 100,000 daily bird limit, 100 premises limit.

There was no limit on the cumulative number of vaccine doses available. An

outside-to-centre resource allocation prioritisation approach was used for vaccina-

tion, matching the ring culling prioritisation procedure.
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Active Surveillance

A total of four active surveillance strategies were compared. These could be grouped

into two distinct types of implementation. For all model simulations of these ini-

tiatives those premises designated as undergoing active surveillance had their noti-

fication delay time reduced from seven days to two days. A reduction to two days

was chosen, and not a larger reduction to a single day or the complete removal of

the reporting delay, to account for the fact a flock can be infectious before clinical

signs of H5N1 infection are observed, which may not be immediate even when ac-

tive surveillance procedures are in place [142]. Note that there were no other control

actions in place beyond this and the culling of flocks at premises reporting infection

(which abided by the previously discussed capacity limitations).

The first two surveillance strategies we consider are reactive in nature. This involved

premises within a given distance of premises reporting infection undergoing active

surveillance. We imposed a limit on the number of premises that could be moni-

tored. When resource thresholds were exceeded only those premises deemed to be of

higher priority underwent active surveillance, with the following two prioritisation

strategies studied: (i) “reactive by distance”, with premises ordered by distance to

the focal premises, nearest first (i.e. inside-to-out approach); (ii) “reactive by pop-

ulation”, with premises ordered in descending flock size. For these schemes the ring

size for active surveillance was set to be 500m, under the following coverage levels:

• Low: 25 premises per outbreak

• Medium: 50 premises per outbreak

• High: 100 premises per outbreak

The next two surveillance strategies are proactive approaches, with a specified pro-

portion of premises within the Dhaka division selected by some designated criteria

to undergo constant active surveillance. The two criteria evaluated here were: (i)

“proactive by population”, ranking all premises in descending flock size order, (ii)

“proactive by density”, for each premises we computed the total number of other

premises within a distance of 500m, with all premises then ranked in descending

order. The coverage levels considered were:

• Low: 5% coverage

• Medium: 10% coverage

• High: 25% coverage
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4.2.3 Targeting zoonotic spillover

The actions described in section 4.2.2 intend to minimise poultry infection. While

this should cause a reduction in human risk of infection through spillover trans-

mission from the poultry reservoir, a separate group of control actions may aim

to reduce the risk of zoonotic transmission at the poultry-human interface through

other means (e.g. periodic rest days for LBMs to reduce number of dangerous con-

tacts). With our modelling framework this could be incorporated through modifying

the human case spark term εh. The proportional reductions of the complete εh val-

ues tested were 50%, 75% and 100%, which were considered in the absence of any

controls applied directly to poultry. We assessed how these alterations of various

magnitudes impacted the expected number of days with human case occurrences.

4.2.4 Simulation outline

As in chapter 3, we utilised commercial poultry premises location and flock size in-

formation gathered via a census undertaken by the Bangladesh office of the Food and

Agriculture Organisation of the United Nations (FAO/UN) in 2010 (see section 3.2.1

for further details on the dataset). We ran simulations of our transmission models

using premises located within the Dhaka division that had chickens (layer or broiler)

recorded as being present in the poultry census, giving 13,330 premises in total.

In contrast to the simulation procedure employed in chapter 3, here we used the

Sellke construction (algorithm 6). This method allows for improved comparison

of interventions, as in this framework the inherent randomness of an epidemic re-

alisation can be encoded at the beginning of the simulation. Once calculated, the

resultant epidemic can be constructed from the deterministic solution of the infection

process and removal (i.e. culling) times (for additional information see section 2.5).

Dependency of optimal control policy on outbreak origin

For this series of simulations we were interested in elucidating the severity of control

actions necessary to minimise epidemic severity based on the district an outbreak

originated in, plus how this differed between the two fitted models with their con-

trasting poultry-to-poultry transmission dynamics. To be able to ascertain the true

impact of outbreak origin on the epidemic outcomes of interest we assumed premises

infection was predominately driven by premises-to-premises transmission, with no

cases arising due to external factors. As a consequence, in all runs the background

spark term ε was set to zero, while an initial cluster of three infected premises was
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14 - Rajbari (east)
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17 - Madaripur

18 - Shariatpur

Figure 4.1: Locator map naming each district that is contained within
the Dhaka division.

seeded in one of the 18 districts situated within the division (figure 4.1).

For each culling, vaccination and active surveillance management action we per-

formed 1,000 simulation runs using the wave 2 fitted transmission model and at

least 300 simulation runs with the wave 5 fitted transmission model. A consistent

set of distinct sampled parameter values (obtained previously via MCMC) and initial

seed infection locations were used across these runs to aid intervention comparisons.

The particular control objectives of interest here were focused on either reducing

the expected length of an outbreak, or minimising the likelihood of an outbreak

becoming widespread. To this end, the summary outputs analysed for this scenario

were as follows: (i) mean outbreak duration, (ii) probability of an epidemic (where

we subjectively define an outbreak as an epidemic if there are cases in five or more

districts, with the total number of cases exceeding 15).

Optimal control policy in presence of external factors

Our second scenario of interest was determining the optimal control strategy when

an outbreak is ongoing and infection may arise anywhere within the division, in

addition to premises-to-premises transmission dynamics. With regards to this ob-

jective these simulations did incorporate the background spark term ε, with a single

initial infected premises placed anywhere in the division.
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Figure 4.2: ECDF for epidemic duration from simulations of the specified
transmission model, with the given number of consecutive infection-free
days required for an outbreak to be deemed as completed. All simulations
used infected premises culling only (no additional controls were in place), with
reporting to culling times weighted by the empirical probability mass function. The
following ECDFs were constructed using 1,000 simulated realisations: (a) Wave 2,
28 day threshold value; (b) wave 5, 14 day threshold value; (c) wave 5, 28 day
threshold value. The threshold values for number of infection-free days signifying
the end of an outbreak were subsequently set to 28 days and 14 days for runs with
the wave 2 and 5 fitted models respectively.

We stipulated a simulated outbreak to be complete once a specified number of con-

secutive infection-free days had occurred. For the wave 2 fitted model, 28 days gave a

simulated median epidemic length (using infected premises culling only, with culling

times weighted by the empirical probability mass function) that corresponded well

with the data (figure 4.2(a)). On the other hand, a 14 day case-free period was

more suitable for the wave 5 fitted model (figure 4.2(b)), with runs using the 28 day

infection-free condition giving, in general, longer outbreak periods than the observed

data (figure 4.2(c)). As a consequence, the infection-free condition values were set

to 28 days and 14 days for runs with the wave 2 and 5 fitted models respectively.

For each poultry-targeted management action we performed 1,000 simulation runs

with the wave 2 fitted transmission model and at least 300 simulation runs with the

wave 5 fitted transmission model. For the zoonotic spillover tests 1,000 simulation

runs were performed with both transmission models. To aid intervention compar-

isons across the runs we again used a consistent set of sampled parameter values

and initial seed infection locations. The control objectives of interest in this scenario

were again focused on outbreak length and size. In particular, either increasing the

chance of an outbreak being short, maximising the likelihood of an outbreak re-



Chapter 4. Control of H5N1 in Bangladesh 92

maining below a specified size, or minimising the number of poultry destroyed as a

result of culling. The particular summary statistics that we therefore chose for these

control objectives were as follows: (i) outbreak duration t being 90 days or less, (ii)

outbreak size I not exceeding 25 premises, (iii) mean number of poultry culled.

4.3 Results

4.3.1 Dependency of optimal control policy on outbreak origin

Culling and vaccination

To tackle outbreaks with wave 2 type transmission dynamics, the broad relationship

seen for outbreaks originating in any district was an increase in the suggested size

of the ring culling zone as capacity limitations were eased (figure 4.3). This held

when the intervention of concern was ring vaccination (figure 4.4), while also hav-

ing dissimilar outcomes compared to the ring culling findings. For example, when

the control objective was to reduce the expected outbreak duration the suggested

radius size for vaccination exceeded that for culling (figures 4.3(a) and 4.4(a)). Fur-

ther, for minimising the probability of an epidemic the most suitable action, under

certain capacity conditions, against outbreaks whose source districts were Gazipur

(low capacity) or Gopalgonj (low and medium capacities) was to carry out culling of

infected premises only, with no vaccination of surrounding premises (figure 4.4(b),

for a district locator map see figure 4.1). This opposes conclusions drawn when an

additional ring cull around infected premises was investigated, with culling confined

to infected premises alone never considered to be the optimum approach in those

circumstances (figure 4.3). As a cautionary note, variations in these control metric

outputs across the suite of ring sizes tested were relatively minor (see appendix B.2).

These trends continued using the wave 5 transmission model. Large disparities

between recommended ring culling and vaccination sizes were seen, even if the con-

trol objective and capacity setting were the same. Focusing on a specific example,

we compared culling against vaccination in a high capacity setting with the intent

of minimising epidemic risk. For ring culling, outbreaks emerging in central and

northern districts typically required upper radius values of 7km or 8km, while the

western district of Rajbari (east) required the 10km upper limit of the range of

values explored here. In the event of an outbreak beginning in one of the remaining

districts only localised ring culling of 1km or 2km was suggested, though we observe

a ring cull of some form was always found to be preferred to only culling infected
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premises (figure 4.5(a)). On the other hand, ring vaccination did not improve on

merely culling infected premises for outbreaks beginning in northern and southern

districts, while central districts typically only required a coverage radius of 5km

or less (figure 4.5(b)). However, sensitivity analysis of the variations in epidemic

probability against intervention severity (for outbreaks beginning in a given district)

revealed these to be small, especially under vaccination measures (figure 4.5(c)).

(a)

(b)

Figure 4.3: Maps displaying the ring culling range to optimise specified
control objectives with respect to district of outbreak origin and control
capacity level. All runs were with the wave 2 transmission model. For each com-
bination of control capacity level, district of outbreak origin and control objective
1,000 simulation runs were performed. Hatching of a district indicates the preferred
strategy was culling infected premises only, while solid shading corresponds to the
ring culling size determined as the optimal response against outbreaks that origi-
nally emerged in that district. Lighter shading corresponds to a larger ring culling
region. The control objectives were (a) minimising average outbreak duration, and
(b) minimising the probability of an epidemic. For full results see table B.1, with
sensitivity of these control metrics to intervention severity for outbreaks beginning
within particular districts presented in figures B.1 and B.2.
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(a)

(b)

Figure 4.4: Maps displaying the ring vaccination range that optimises
the specified control objective with respect to district of outbreak origin
and control capacity level. All runs were with the wave 2 transmission model.
For each combination of control capacity level, district of outbreak origin and con-
trol objective 1,000 simulation runs were performed. Hatching of a district indicates
the preferred strategy was culling infected premises only, while solid shading cor-
responds to the ring vaccination size determined as the optimal response against
outbreaks that originally emerged in that district. Lighter shading corresponds to a
larger ring culling region. The control objectives were (a) minimising average out-
break duration, and (b) minimising the probability of an epidemic. For full results
see table B.2, with sensitivity of these control metrics to intervention severity for
outbreaks beginning within particular districts presented in figures B.1 and B.3.
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Figure 4.5: Maps displaying optimal ring size to minimise probability of
a widespread outbreak for the wave 5 transmission model with a high
control capacity. For each combination of intervention method and district of
outbreak origin 1,000 simulation runs were performed. Hatching of a district indi-
cates the preferred strategy was culling infected premises only, while solid shading
corresponds to the ring size determined as the optimal response against outbreaks
that originally emerged in that district. Lighter shading corresponds to a larger
intervention region. (a) Ring culling; (b) ring vaccination. For full results see
table B.3. (c) Predicted epidemic probabilities against intervention ring size for
outbreaks originating in the Gazipur and Gopalgonj districts (for a district locator
map see figure 4.1), exposing the minor variations in this control metric across the
suite of ring sizes tested. Analogous outcomes were found for outbreaks seeded in
the remaining districts.
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Active surveillance

In response to outbreaks with either type of transmission dynamics the proactive

active surveillance schemes were the top performers across all capacity scenarios and

objectives being optimised. Additionally, independent of the source district for the

outbreak, higher capacity thresholds usually led to greater reductions in outbreak

length and size relative to the scenario where no active surveillance scheme was

utilised (figures 4.6 and 4.7).

Concentrating on an outbreak scenario with wave 2 type transmission in conjunction

with a control objective targeted at minimising the expected outbreak duration, the

chosen active surveillance action differed based on the district of outbreak origin

and control capacity conditions. Explicitly, ‘proactive by population’ was the typ-

ical preferred selection, though in a high capacity setting if an outbreak began in

the district of Narshingdi then the chosen strategy was ‘proactive by density’ (fig-

ure 4.6(a), for a district locator map see figure 4.1). Switching to a control objective

of minimising the spatial spread of the outbreak, the ‘proactive by population’ strat-

egy was consistently selected as the best choice and reduced tremendously the risk

of an epidemic across all capacity settings (figure 4.6(b)).

Similar outcomes were obtained for outbreaks with wave 5 type transmission dynam-

ics where, irrespective of the district where the outbreak originated, the ‘proactive

by population’ strategy was always selected as the optimal action (figure 4.7).
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(a)

(b)

Figure 4.6: Maps displaying the preferred active surveillance strategy to
optimise control objectives with respect to district of outbreak origin and
capacity setting, for outbreaks with wave 2 type transmission dynamics.
For each combination of active surveillance method and district of outbreak origin
1,000 simulation runs were performed. District colour corresponds to the active
surveillance strategy determined to be optimal for countering outbreaks originating
from that district (grey - ‘reactive by distance’, yellow - ‘reactive by population’,
red - ‘proactive by population’, blue - ‘proactive by density’). Transparency co-
incides with the reduction in the objective metric relative to the scenario where
no active surveillance was utilised, with completely transparent corresponding to a
0% reduction (no improvement) and completely opaque corresponding to a 100%
reduction. (a) Minimising average outbreak duration control objective - ‘proactive
by population’ scheme was generally preferred, although we found discrepancies in
the best scheme dependent upon the control capacity setting. (b) Minimising the
probability of an epidemic control objective - ‘proactive by population’ scheme was
found to be preferred in all cases when optimising for this aim. For full results see
tables B.4 and B.5.
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(a)

(b)

Figure 4.7: Maps displaying the preferred active surveillance strategy to
optimise control objectives with respect to district of outbreak origin and
capacity setting, for outbreaks with wave 5 type transmission dynamics.
For each combination of active surveillance method and district of outbreak origin
a minimum of 300 simulation runs were performed. District colour corresponds to
the active surveillance strategy determined to be optimal for countering outbreaks
originating from that district (grey - ‘reactive by distance’, yellow - ‘reactive by
population’, red - ‘proactive by population’, blue - ‘proactive by density’). Trans-
parency coincides with the reduction in the objective metric relative to the scenario
where no active surveillance was utilised, with completely transparent correspond-
ing to a 0% reduction (no improvement) and completely opaque corresponding to
a 100% reduction. The ‘proactive by population’ scheme was found to be preferred
in all cases when optimising either control objective. (a) Minimising average out-
break duration, (b) minimising the probability of an epidemic. For full results see
tables B.6 and B.7.
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4.3.2 Optimal control policy in presence of external factors

Culling and vaccination

Recall that we assumed vaccination efficacy was only 70%, in combination with it

taking seven days post-administration to become effective. With pre-emptive culling

at a premises definitely preventing future infection at that site, we would expect ring

culling to bring about slightly greater benefits than ring vaccination with regards to

outbreak duration and size. This is indeed what we observed across both transmis-

sion models and all three control capacity scenarios (figures 4.8 and 4.9). Likewise,

when the goal was linked to minimising the number of poultry culled, the pref-

erential strategy would be vaccination with no additional culling beyond infected

premises (figure 4.10).

Considering next the three capacity levels studied we found, perhaps unsurpris-

ingly, evidence of a performance hierarchy. For any given ring size a high capacity

allowance generally outperformed a medium capacity allowance, which in turn out-

performed a low capacity allowance. As a notable exception to this, for the wave 5

transmission model together with the outbreak duration control aim of t ≤ 90 we

found that using a 1km ring culling intervention caused the standard performance

ranking to be reversed (figure 4.8(c)). Furthermore, wanting to minimise the mean

number of poultry culled in a wave 2 type outbreak with a ring culling intervention

also caused the standard performance ranking to be flipped (figure 4.10(a)).

Focusing on the control objectives associated with outbreak length and magnitude,

we note that the conclusions drawn between our models with differing transmission

behaviour were qualitatively similar. Under high control capacity resource availabil-

ity each incremental increase in the radius size generally led to modest improvements

in the summary output of interest, at least up to the 10km upper limit in place here.

A similar effect was also seen for a medium capacity setting in conjunction with the

case size I ≤ 25 summary statistic (figure 4.9). However, this was generally not

the case under both low and medium capacity thresholds. For these situations the

optimal radius size varied, depending on the control objective to be optimised and

on whether the intervention implemented was ring culling or ring vaccination (fig-

ures 4.8 and 4.9).

Optimising the expected number of poultry culled control objective led to contrast-

ing findings being identified between the culling and vaccination measures. Under a
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ring vaccination management action, incremental increases in radius size under each

set of control capacity conditions were again found to cause modest improvements

with regards to the objective, with a 9km or 10km ring selected across all capaci-

ties and both transmission models. However, if pursuing a ring culling strategy in

combination with this control objective, either no culling beyond infected premises

or a ring cull of 1km were deemed optimal. Furthermore, in this case the capacity

thresholds deemed most effective were greatly influenced by the disease transmission

dynamics (figure 4.10).

Active surveillance

A collection of common trends were obtained across the three control objectives

(outbreak duration being 90 days or less, outbreak size not exceeding 25 premises,

minimising mean number of poultry culled) and two disease transmission models

analysed.

Irrespective of the objective being scrutinised, for each transmission model the

‘proactive by population’ scheme was found to be the best performing of the strate-

gies under consideration. It was the most effective in increasing the probability of

an outbreak not lasting above 90 days (figure 4.11(a)), maximising the probability

of an outbreak not consisting of more than 25 infected premises (figure 4.11(b)),

and minimising the number of poultry culled (figure 4.11(c)). In addition, increased

availability of resources for control led to greater gains. For example, under the wave

2 transmission model the probability of the outbreak duration t ≤ 90 rose from 0.55

(low capacity) to 0.61 (high capacity), whereas with no active surveillance in use

the probability was only 0.51. For case size I ≤ 25, while with no active surveillance

this probability was 0.69, it rose from 0.79 (low capacity) to 0.87 (high capacity).

In terms of minimising the mean number of poultry culled in an outbreak, with

no active surveillance the average was 3.0 × 105 birds, which dropped to 1.8 × 105

for low capacity conditions, and then to 1.1 × 105 with high capacity conditions

enforced. This represented approximate 33% and 66% improvements respectively in

minimising the total number of poultry culled. Such effects were even more stark

for the wave 5 transmission model, with outbreaks being more likely to take off

and having superior longevity under these dynamics. This is highlighted by the

outbreak duration t ≤ 90 being 0.38 when no active surveillance was used, rising to

0.46 for low capacity levels, and reaching 0.58 under high capacity conditions (an

improvement of approximately 50% over having no control, and roughly 25% over

the low control capacity setting).
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Although the ‘proactive by density’ strategy also had notable improvements with

increasing coverage, it was not as effective as a population-based targeting mea-

sure. This is exemplified by the discrepancy between the two typically growing with

enlarged capacity thresholds. For example, the difference grew from 0.02 (at low

capacity) to 0.04 (at high capacity) for t ≤ 90 using the wave 2 transmission model,

and from 0.07 (at low capacity) to 0.11 (at high capacity) for I ≤ 25 using the wave

5 transmission model. Furthermore, a further drawback of the ‘proactive by den-

sity’ strategy was that under low control capacity levels it struggled to beat either

reactive surveillance policy (figure 4.11).

Switching our attention to the two reactive strategies we found there was little to

choose between them. Although offering marginal benefits over having no active

surveillance at all, they did not bring about noticeable improvements towards the

desired goal as the resources utilised increased (figure 4.11). For a full listing of

values related to the features raised see tables B.8 to B.10.

The observation of ‘proactive by population’ outperforming ‘proactive by density’,

and the two reactive strategies only being a slight improvement compared to having

no active surveillance, may also be seen when analysing the complete premises case

size distributions (figure 4.12).
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Figure 4.8: Predicted probability of outbreak duration (t) being 90 days
or less for different ring culling and vaccination radii. For each transmission
model and control method combination, the three capacity settings of interest, low
(solid blue line, crosses), medium (dashed red line, circles), and high (dotted green
line, squares) displayed disparate behaviour. (a) Wave 2 - culling; (b) wave 2 -
vaccination; (c) wave 5 - culling; (d) wave 5 - vaccination.
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Figure 4.9: Predicted probability of outbreak size (I) not exceeding 25
premises for different ring culling and vaccination radii. For each transmis-
sion model and control method combination, the three capacity settings of interest,
low (solid blue line, crosses), medium (dashed red line, circles), and high (dotted
green line, squares) displayed disparate behaviour. (a) Wave 2 - culling; (b) wave
2 - vaccination; (c) wave 5 - culling; (d) wave 5 - vaccination.
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Figure 4.10: Mean number of poultry culled for different ring culling and
vaccination radii. The three capacity settings of interest were low (solid blue line,
crosses), medium (dashed red line, circles), and high (dotted green line, squares).
If pursuing a ring culling strategy, either no culling beyond infected premises or a
ring cull of 1km were deemed optimal. For a ring vaccination strategy, a 9km or
10km ring was selected across all capacities. (a) Wave 2 - culling; (b) wave 2 -
vaccination; (c) wave 5 - culling; (d) wave 5 - vaccination.
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Figure 4.11: Bar plots comparing the impact of different active surveil-
lance strategies on specific control objectives. For each combination of trans-
mission model, resource restrictions and active surveillance strategy we performed
a minimum of 300 simulation runs. The control objectives were: (a) predicted
probability for outbreak duration t being 90 days or less; (b) predicted probability
for outbreak size I not exceeding 25 premises; (c) mean number of poultry culled.
For both wave 2 and wave 5 transmission dynamics the ‘proactive by population’
surveillance strategy was found to be optimal for all control objectives considered,
irrespective of the capacity limitations. Full values are given in tables B.8 to B.10.
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Figure 4.12: Impact on premises epidemic size using different ac-
tive surveillance strategies with the specified capacity restriction. Four
premises targeting strategies were tested and compared to the case where no active
surveillance was in place (solid blue line, crosses); reactive by distance (dash-dot
green line, inverted triangles), reactive by population (dotted black line, triangles),
proactive by population (dashed red line, circles), proactive by density (dashed ma-
genta line, squares). The proactive strategies lead to a decreased chance of an
outbreak reaching more than 100 premises, while the reactive strategies offer minor
gains compared to having no active surveillance. (a–c) Wave 2 transmission model,
where the normalised frequency at 100 also includes all epidemic sizes 100 or greater.
(d–f) Wave 5 transmission model.
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Targeting zoonotic spillover

Quantitatively similar results for the proportion of runs with at least one spillover

transmission event were obtained regardless of the culling capacity limits in place

(figure 4.13(a)). A decrease in this statistic was observed with percentage reduction

in εh (ranging from 50-100%). This was more severe for the wave 2 transmission

model, which we previously found to have greater dependence on factors encap-

sulated by the εh parameter (see section 3.3.3). More specifically, while a 50%

reduction in εh reduced the number of runs with at least one human case occurrence

event by a fifth, the drop became substantial when εh was fully eradicated (i.e. set

to zero), to just 40% of the total compared to the no targeted control of zoonotic

spillover scenario (when εh was left unscaled).

The strength of transmission dependence on factors encapsulated by the εh parame-

ter was further shown when analysing the average number of days with human cases

reported. Once more, quantitatively similar results were obtained regardless of the

culling capacity limits in place (figure 4.13(b)), while under wave 2 type transmission

we again see a drastic decrease in the objective measure with percentage reduction

in εh. Yet, for wave 5 type transmission dynamics there was no discernible pattern

between the two, with predicted values in the range of 90-100% of the estimates

obtained when εh was left unscaled.

4.4 Discussion

This study emphasises how knowledge of both disease transmission dynamics and

potential resource limitations for implementing an intervention can alter what are

deemed the most effective actions for optimising specific H5N1 HPAI influenza con-

trol objectives among poultry within the Dhaka division of Bangladesh. Likewise,

we saw differences in policy recommendations when comparing alternative control

objectives to one another, corroborating previous work that showed establishing the

objective to be optimised is pivotal in discerning the management action that should

be enacted [170].

If it is believed transmission is exclusively premises-to-premises, we found consider-

able variation in the preferred control strategy dependent upon the spatial location

of the source of the outbreak, the relationship between risk of transmission and

between premises distance (examined here by comparing the wave 2 and wave 5

transmission models), and the capacity restrictions that are in place. This was
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Figure 4.13: Bar plots of the likelihood of spillover transmission occur-
rence with respect to scaled values of the human case spark term. Bars
were obtained by computing normalised proportions when scaled values of the hu-
man case spark term εh are used, relative to the scenario with unaltered εh values.
Outcomes using the wave 2 transmission model are represented by the black bars,
and those for wave 5 transmission model in white bars. (a) Normalised proportion
of runs with at least one human case; (b) normalised mean number of days with hu-
man cases. Results were averaged over 1,000 simulation runs, with full values given
in tables B.11 and B.12. Quantitatively similar results were obtained regardless of
the culling capacity thresholds in place.

epitomised for ring culling and ring vaccination. Although there was a common

trend of increasing the suggested radius of an intervention ring zone for less strin-

gent capacity settings, solely culling infected premises was sometimes expected to

be the best course of action. Given insight into the exact outbreak circumstances,

this shows the potential benefits of having flexibility to adapt the intervention that

is ratified. Nonetheless, this is under the strong presumption that all required in-

formation related to the above three dependencies is known. We also note that

increasing intervention measure severity may lead to marginal benefits with regards
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to the control metric of interest, but the additional costs in enacting such schemes

warrants consideration to enable an informed decision to be made on the scale of

ring culling and/or vaccination that should be put into practice.

When it was assumed that external factors had a meaningful impact on the transmis-

sion dynamics, capacity considerations became key in ensuring the measure selected

was the best suited for the task, while conclusions drawn between our models with

differing transmission behaviour were, in general, qualitatively similar. This may

be due to the fact that although the relative likelihood of premises-to-premises dis-

ease transmission (with respect to distance) was well understood, the threat of any

premises within the division becoming infected at any time resulted in this factor

becoming less influential. A notable exception to this typical outcome were situa-

tions that involved pursuing a ring culling intervention action in conjunction with

control objectives linked to number of poultry culled, highlighting once more the

great importance attributed to establishing the control objective to be optimised to

ensure the action pursued is in fact the most suitable.

It is vital that the area covered by ring based control methods is selected to only

be as large as necessary. If set too small then other cases may emerge just outside

the intervention zone that would have been dealt with had tougher measures been

imposed. However, the use of widespread pre-emptive culling based on defined areas

around an outbreak has been shown to be very difficult to implement effectively in

developing countries. Enforcing wide area culling can alienate farmers if healthy

birds are destroyed, or inadequate compensation is provided or is provided too late.

This loss of poultry owner cooperation can be counter-productive, leading to resent-

ment and resistance to further control measures [143]. Additionally, if instead the

decision was to invoke a particular ring size for the control measure, then whilst for

the three capacity levels considered here there was a general performance hierarchy

(high capacity allowance outperforming a medium capacity allowance, which in turn

outperformed a low capacity allowance), there were a couple of exceptions to this

general rule that require further investigation.

In terms of active surveillance procedures, a consistent outcome over all scenarios

was the superior performance of proactive schemes, that constantly monitor a prede-

termined set of premises based on selective criteria, over reactive schemes, which are

only enforced once an outbreak has begun. In particular, proactive schemes focused

on monitoring the premises with the largest flocks were the most successful, with
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larger coverage levels strengthening performance outcomes. As a cautionary note,

the reactive active surveillance strategies tested here assumed a maximum cover-

age radius of 500m around each premises reporting infection, with the sensitivity of

the performance of these schemes to this coverage distance warranting further study.

Surveillance methodology is a discipline requiring greater attention. Only a fraction

of studies on animal influenza surveillance have been specifically aimed at detect-

ing influenza viruses with pandemic potential in animals, with calls for increased

surveillance globally targeting potentially zoonotic influenza viruses in relevant an-

imal species [54]. An additional hurdle to overcome is a need to standardise sam-

pling, testing, and reporting methods, including full-genome sequencing and sharing

of isolates with the scientific community [171]. Improvements in the coverage and

regularity of sampling, alongside the standardisation of reporting methods, should

help surmount these concerns.

In situations where disease transmission between premises is weak, enforcement of

control measures not directly applied to the poultry flocks themselves (e.g. pub-

lic awareness campaigns) can dramatically cut the risk of spillover transmission

of zoonotic influenza at the poultry-human interface, leading to a reduction in

H5N1 human case occurrence. Nonetheless, there are certain aspects of controlling

spillover transmission that have yet to be considered, including analysing collab-

orative control policies across both animals and humans. When considering the

human-animal interface as a whole, it is possible alternative species-specific strate-

gies become preferable to reduce the risk of spillover transmission in the first place,

or further human cases if an outbreak is in progress. This area may be investigated

further through additional forms of treatment being built into the model that in-

fluence population-level susceptibility to emerging influenza strains. Antivirals that

intend to shorten the infectious period are one such option, with an exploratory

mathematical study suggesting they are generally a more cost-effective control mea-

sure than non-pharmacologic methods [172]. Another possible treatment strategy to

dampen the effect of an emerging pandemic is utilising pre-pandemic immunological

priming. This involves prior immunisation with a different, immunologically distinct

vaccine of the same HA subtype that offers the potential to ‘prime’ recipients for

subsequent protection with a single booster dose of a manufactured vaccine match-

ing the newly emergent pandemic strain [173–178]. Naturally, policy effectiveness

will depend critically on how swiftly clinical cases are diagnosed and the speed with

which antiviral drugs and vaccines can be distributed.
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There are a couple of model framework facets to be addressed that would help

support the instruction of H5N1 HPAI control policy. The zoonotic transmission

component of our modelling framework is non-spatial. Bearing in mind that indi-

vidual flocks may have differential infection risk, and differential contact rates with

humans, the impact of various control strategies at the poultry level may well have

a non-linear effect on human exposure. The presence of such an effect may alter our

choice of optimal control strategy might well change. However, there is currently

a dearth of knowledge about the intensity and type of contact patterns between

livestock and humans that result in micro-organism transmission [89]. Therefore,

data collection at the human-animal interface, in particular analysing contact habits

with poultry, should be strongly encouraged. This can help quantify the proportion

of the human population that has contact with poultry, and how the frequency and

length of contacts varies across gender, age and occupation. These findings can then

be used to predict the exposure of the human population to H5N1 in poultry flocks,

aiding the accuracy of model simulations forecasting the effects of a particular con-

trol policy.

Another focal point for control, not explicitly included here, is LBMs. The high

density and variety of avian hosts in LBMs supports the maintenance, amplification

and dissemination of avian influenza viruses, while providing frequent opportunities

for inter-species transmission events. In a meta-analysis of before-after studies, to

assess the impact of LBM interventions on circulation of avian influenza viruses in

LBMs and transmission potential to humans, Offeddu et al. [179] determined that

periodic rest days, overnight depopulation and sale bans of certain bird species sig-

nificantly reduced the circulation of avian influenza viruses in LBMs. Furthermore,

prolonged LBM closure reduced bird-to-human transmission risk. Developing a the-

oretical model with LBMs included would allow us to validate these findings.

This initial analysis can be extended naturally in a number of additional ways to

those already mentioned. In this chapter we considered conventional control strate-

gies used to combat avian influenza outbreaks among poultry, namely culling, vac-

cination and active surveillance. One could compare these traditional schemes with

innovative direct interruption strategies that modify the poultry production sys-

tem [180]. An example would be intermittent government purchase plans, so that

farms can be poultry-free for a short time and undergo disinfection. Another is

to model restrictions on species composition. This aims to synchronise all flocks
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on a premises to the same birth-to-market schedule, allowing for disinfection of

the premises between flocks. A separate direction for further study is to under-

stand whether the intensification of farming systems, which can alter the spatial

configuration of flock locations, requires the severity of previously established con-

trol protocols to be amended to prevent a small-scale outbreak developing into a

widespread epidemic.

In situations where the daily control resource thresholds would be exceeded, the

extent to which other premises prioritisation schemes for administering the inter-

vention of interest influences the results merits further examination. For the culling

and vaccination controls deliberated here we assumed premises were prioritised by

distance, from the outer edge of the designated ring control size inwards. Alterna-

tive prioritisation strategies that may be considered include ordering by flock size,

in either ascending or descending order. Ultimately, public-health decision mak-

ing generally necessitates the real-time synthesis and evaluation of incoming data.

Optimal decision making for management of epidemiological systems is often ham-

pered by considerable uncertainty, with epidemic management practices generally

not incorporating real-time information into ongoing decision making in any for-

mal, objective way. An adaptive management approach could be implemented to

account for the value of resolving uncertainty via real-time evaluation of alternative

models [170, 181].

To conclude, the results of this exploratory analysis illustrate some general principles

of how disease control strategies of H5N1 in Bangladesh should be prioritised and

implemented when having to account for resource availability. We have highlighted

how targeting of interventions varies if it is believed transmission is predominately

premises-to-premises, versus the scenario where importations and other external

factors are included. Most importantly, based on this consideration, targeted active

surveillance can significantly reduce the scale of an epidemic as long as the appro-

priate choice between reactive and proactive strategies is made. They also indicate

that reactive culling and vaccination control policies should pay close attention to

this factor, thus ensuring intervention targeting is optimised. Consequently, we ad-

vocate that much more attention is directed at identifying ways in which control

efforts can be targeted for maximum effect.



Chapter 5
Evidence for history-dependence of

influenza pandemic emergence

5.1 Introduction

In the previous two chapters we focused on developing, fitting and simulating math-

ematical models for H5N1 transmission, at a local scale, among poultry and across

the poultry-human interface. In this chapter we take a broader viewpoint, aiming to

instruct the type of intervention actions to be employed on an international scale to

reduce the risk of influenza A strains with pandemic potential emerging and crossing

into the human population.

Influenza A is a cause of considerable morbidity and mortality in humans, in partic-

ular being the class of influenza that is capable of causing global pandemics. Occa-

sionally, humans become infected with a strain of influenza derived from non-human

sources, which are essentially novel to humans. This can give rise to a localised out-

break that may develop into a worldwide influenza pandemic [12]. Though efforts

are being made to improve pandemic influenza risk assessment, it is currently not

possible to predict which non-human influenza A virus will cause the next pandemic

or when it will emerge [57, 58].

Identifying possible causal (biological) mechanisms for emergence of strains with

pandemic potential often relies on indirect measurements from laboratory and field

surveillance studies, such as viral sequencing of archaic pathogens [182, 183] and

seroprevalence analysis [134], which are undertaken at great risk and cost. Further-

113
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more, recent experimental studies setting out to determine the necessary mutations

for specific influenza strains to become transmissible among mammals [184–186]

have been controversial [187]. Thus, we argue that adopting a mathematical mod-

elling approach can potentially provide cheap, safe and direct validation of proposed

assumptions regarding pandemic emergence. This may subsequently help inform the

type of interventions that would have the greatest impact in reducing the risk of

further influenza pandemic occurrences.

When referring to influenza, a pandemic signifies a world-wide epidemic caused by

an emergent influenza A strain that transmits among humans, was not previously

circulating among humans and to which most people do not have immunity [188].

Therefore, only virological techniques allow recognition of a pandemic with certainty.

Nevertheless, work on early influenza outbreaks has argued that if the epidemic orig-

inated in one place, and from there spread world-wide with high morbidity, it was

likely to have been a pandemic [189–192]. This allows a history of presumptive

influenza pandemics since 1700 to be constructed, along with the waiting times be-

tween pandemic outbreaks.

From this, we can analyse statistically which of two opposing mechanisms can plau-

sibly generate the waiting time data; a memoryless process or a history-dependent

process. For the memoryless process, the time to the next pandemic is not influenced

by how much time has passed since the previous pandemic. Outbreaks of Ebola are

thought to follow such a process and are typically modelled under this assump-

tion [193]. On the other hand, in a history-dependent process, the probability of an

event occurring is influenced by the elapsed time since the last such event. Such a

process may feasibly arise through a combination of contributing mechanisms. First,

a currently circulating strain may need to undergo a required accumulation of mu-

tations to develop pandemic potential, as found for specific H5N1 influenza strains

requiring only a small number of mutations to become transmissible among mam-

mals such as ferrets [184, 185]. Second, as a result of population immunity to prior

strains, as suggested by the recycling theory for pandemic emergence [194, 195].

The recycling theory hypothesises that influenza A viruses with similar or identical

hemagglutinins can re-emerge over time, with only a significant proportion of then-

living individuals aged above a particular threshold age immunologically protected

from the emergent virus. In effect, the spacing between pandemics is caused by wan-

ing population-level immunity to a previous pandemic strain, with the proportion of

the population immunologically protected diminished by both age-related mortality
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and the influx of immunologically naive newborns.

In this chapter, we utilise waiting times between presumptive influenza pandemics

since 1700 and ascertain via a Bayesian analysis whether they are better modelled by

a memoryless or history-dependent process. Using prior information gathered from

hypotheses related to the emergence of flu strains, we demonstrate from this small

but informative dataset evidence that spillover of strains with pandemic potential is

likely to be a history-dependent process. With a weaker assumption of uninformed

priors, conclusions may only be inferred if we are sure about the legitimacy of

the contested pandemics. Forward simulations using the preferred models are then

performed to obtain predictions for the number of influenza pandemics we are likely

to see in the 100 years following the last pandemic.

5.2 Methods

5.2.1 Historic pandemic influenza data

We considered possible pandemics from 1700 to the present. Three historic pan-

demic timelines were constructed based on the number of supporting sources for

each epidemic being a pandemic. Between-pandemic waiting times were obtained

for each timeline.

All historic pandemic timelines proposed here contained at least four post-1900 pan-

demics, beginning in 1918, 1957, 1968 and 2009 respectively. In addition, seroarche-

ological observations have compellingly linked the emergence of an H3 influenza

virus to a pandemic beginning in 1889 [195]. Thus, we included 1889 in all three

timelines. Note there is a reputed influenza pandemic stated to have begun around

1900 [189, 191]. However, this epidemic was thought to have occasioned the emer-

gence of the H3 pandemic virus, which was later found to have emerged in the

preceding 1889 pandemic as just described [195]. In light of these findings this out-

break is not universally considered a genuine pandemic, hence we did not include it

within our analysis.

For the period 1700 up to 1889, recorded influenza epidemics that may have sat-

isfied the criteria to be classed as a pandemic were obtained from Patterson [189],

Beveridge [190] or Taubenberger and Morens [192]. These particular data sources

were selected due to each providing a varied account of putative influenza pandemics

since 1700, while collectively representing a range of possible occurrences.
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‘Timeline A’ had the most stringent inclusion criteria. Along with the pandemics

that have occurred from 1889 onwards, it only included additional epidemics dur-

ing 1700-1888 agreed on across the multiple sources as being pandemics. However,

we had no waiting time information for the pandemic in 1729, which left us with

seven waiting times. For ‘Timeline B’, an additional five possible pandemics were

included that were given in either Beveridge [190] or Taubenberger and Morens

[192]. Our most inclusive case, labelled ‘Timeline C’, included 1732 as a sepa-

rate pandemic as it is given as being distinct from the 1729 pandemic by some

of the earlier sources [189, 190], though it is not known whether these were two

pandemics separated by a very short interval or one pandemic with a long-delayed

recurrence [192]. Furthermore, this timeline also included the 1977 re-emergence

of H1N1, which is widely believed to have occurred due to human factors rather

than the biological processes that are the main interest here [196, 197]. Note that

although only the post-1900 pandemics have been virologically confirmed, efforts to

draw useful conclusions would be hindered by the size of a dataset comprising only

those pandemics, primarily due to the penalisation of the additional complexity in

the history-dependent model when there are few observations. As a consequence,

we did not analyse such a scenario here. Complete lists of each pandemic timeline

are provided in table 5.1.

5.2.2 Pandemic influenza emergence - model fitting, comparison

and suitability

Our investigation into the plausibility of the observed waiting time data being gen-

erated via a memoryless or history-dependent process was formulated as a model

selection problem between exponential and gamma distributions. Strictly speak-

ing, if we believe that history dependence is generated by a combination of several

memoryless events, then we should use a very general class of distributions called

phase-type, which in fact can provide an arbitrarily good approximation to almost

any probability distribution [198, 199]. In practice, however, any phase-type dis-

tribution that arises from a realistic combination of events will be very close to a

gamma distribution and we therefore consider only gamma distributions as repre-

sentations of history dependence, while noting that these may not be adequate if an

unexpectedly complex set of individually memoryless events drives pandemic emer-

gence.

While visual comparison of the three influenza pandemic timelines versus candidate
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Table 5.1: Complete lists of the pandemics included in each of our pro-
posed pandemic influenza timelines.

Timeline

Date Popular Name Subtype A B C

1729
1732 — — 3 years†

1761 — 32 years* 29 years*

1781 52 years 20 years 20 years

1788 — 7 years* 7 years*

1800 — 12 years† 12 years†

1830 49 years 30 years 30 years
1847 — 17 years† 17 years†

1857 — 10 years† 10 years†

1889 Russian Flu H3N? 59 years 32 years 32 years
1918 Spanish Flu H1N1 29 years 29 years 29 years
1957 Asian Flu H2N2 39 years 39 years 39 years
1968 Hong Kong Flu H3N2 11 years 11 years 11 years

1977 Russian Flu H1N1 — — 9 years‖

2009 Swine Flu H1N1 41 years 41 years 32 years

Start date (assumed point of new strain) is given, as well as popular name and
most likely subtype. The delay dates for each timeline are given, and pandemics
assumed not to have happened in the timeline are denoted —.
*Only listed as a probable pandemic by Taubenberger and Morens [192].
†Not listed as a separate and/or probable pandemic by Taubenberger and Morens
[192].
‖Widely believed to have occurred due to human factors, thus only considered
within the most inclusive timeline.

history-dependent and memoryless model simulation outputs suggest that the mem-

oryless realisations have more clusters and long gaps than the real data (figure 5.1),

human assessment of randomness is notoriously poor [200]. We therefore note the

importance of performing a formal statistical analysis on the available data to allow

us to quantify the level of support for each model.

Both competing distributions were fitted to each timeline using two different tech-

niques.

Maximum likelihood estimation and Akaike information criterion

Firstly, parameter values were obtained using maximum likelihood estimation (MLE).

Competing models were assessed using an extension of the Akaike information crite-
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Figure 5.1: Visualisation of the observed timeline data and models. Time-
line data is shown as a coloured series at the top of each plot, above five replicates
for the fitted history-dependent (top row) and memoryless (bottom row) models.

rion (AIC) [201], namely corrected Akaike information criterion (AICc) [202]. These

provide a measure of the relative quality of a collection of models for a given set of

data, thus giving a means for model selection.

In detail, the AIC value of a model is given by

AIC = 2k − 2ln(L̂), (5.1)

where k denotes the number of model parameters and L̂ is the maximised value of

the likelihood function for the model (obtained using MLE). This measure rewards

goodness of fit, assessed by the likelihood function, but also includes a penalty that

is an increasing function of the number of model parameters to discourage over-

fitting. Given a set of candidate models for the data, the preferred model is the

one with the minimum AIC value. Further, the difference in AIC values between

models, ∆AICi = AICi − AICmin, can indicate the level of empirical support for

model i relative to the model giving the minimum AIC value, AICmin. As a general

rule, the larger ∆AICi is, the less plausible it is that model i is the best model given

the data, with ∆AICi < 2 corresponding to model i still having substantial support,
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while models giving a ∆AICi > 10 have no support and can be omitted from further

consideration [203].

AICc is AIC with a correction for finite sample sizes, which for small sets of data

essentially increases the relative penalty for including additional model complexity.

Given the size of the datasets being analysed we use AICc, rather than AIC, for

model selection purposes in this case. Explicitly,

AICc = AIC +
2k(k + 1)

n− k − 1
, (5.2)

with n denoting the sample size. The criteria for selecting the preferred model match

those described for AIC.

Reversible Jump MCMC

Second, owing to the small size of the data, we performed a Bayesian analysis using

reversible jump Markov chain Monte Carlo (RJMCMC) [113].

In this framework the strength of evidence for each hypothesis is given by a proba-

bility. While a typical convention in Bayesian model selection is to use Bayes factors

to qualitatively categorise the evidence against a null hypothesis [204], we instead

deal directly with the marginal likelihoods due to the small nature of the datasets

considered. These marginal likelihoods correspond to the rational subjective prob-

abilities for each hypothesis. Such an approach is more appropriate than simply

selecting one model over another when faced with small but informative data set.

Formally, let k denote the model / hypothesis, and D our observed data (the time

periods between pandemics). When k = 1, the data follows an exponential distribu-

tion (parameterised by the rate parameter) so thatDi ∼ Exp(λ1), for i = 1, 2, . . . , N .

For k = 2, the data follows a gamma distribution (parameterised by shape and rate

parameters) so that Di ∼ Gamma(κ,λ2). Note that the shape parameter κ can

be interpreted as a proxy for a specified number of events needing to occur before

the next pandemic outbreak can begin. For the rate parameter, an uninformative

Uniform(10−3, 1) prior was selected, representing a prior belief that pandemics are

neither annual nor extremely infrequent. For κ, we considered three different priors

containing different amounts of information about the mechanism behind pandemic

emergence. The first of these assumed that the timing of pandemics was not very

regularly spaced, or equivalently that the number of mutations required to cause a
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pandemic was not particularly large. To describe this, an uninformed ‘not clock-

work’ κ prior of Uniform(0, 25) was used. This captures a prior belief that new

pandemics are not very regular (the level of regularity for different values of κ is

visualised in figure 5.2), while assuming no prior preference for specific values in

the range over others. However, findings from experimental studies allow us to sug-

gest alternatives for the prior informed from hypotheses relating to emergence of

influenza strains (e.g. only four or five mutation steps are needed for specific H5N1

influenza strains to become transmissible between ferrets [184, 185]). Two differing

informed priors for κ were selected to incorporate this additional mechanistic infor-

mation, which had the same mean (four) but dissimilar variability to account for

contrasting levels of certainty. The first was a ‘weakly mechanistic’ Exp(1/4) prior,

which gives lower prior credibility to large values of κ than the uniform prior. The

second was a ‘strongly mechanistic’ Gamma(κ̃, λ̃) prior, with shape parameter κ̃ = 2

and rate parameter λ̃ = 1/2, which gave little credibility both for one influenza pan-

demic being able to immediately follow another (i.e. small values of κ) as well as

low credibility to very large, regular spacing between pandemics (large values of κ,

see figure 5.2). For each of the three choices of prior for κ we fit the data for each

of the three timelines separately, giving nine different sets of modelling assumptions.

For each dataset the RJMCMC sampler was run until we obtained 105 samples, thin-

ning by a factor of twenty sweeps with a burn-in period of 104 sweeps. Within each

sweep within-model moves for each parameter were tried, before a trans-dimensional

move was attempted. In the within-model moves, each of the relevant parameters

λ1, λ2, κ were updated using the Metropolis-Hastings algorithm [107, 108] (algo-

rithm 1), with a Gaussian proposal distribution q; for example, λ′1 ∼ N(λ1, σ
′), with

σ′ ‘tuned’ to give an adequate acceptance rate.

Here we describe how the reversible jump moves were implemented. Firstly, con-

sider the move from model 1 (exponentially distributed model) to model 2 (gamma

distributed model). This move requires an auxiliary random variable U , in or-

der to ‘match dimensions’ between the two model states. We generated u from a

Gamma(α, β) distribution (parameterised by shape and scale parameters). For the

uninformed ‘not clockwork’ and ‘weakly mechanistic’ κ prior cases, we fixed α = 2

and β = 2. These were altered for the ‘strongly mechanistic’ κ prior case, with

α = 4 and β = 1. These were chosen so as to optimise mixing between the two

models. Then set κ = u and leave the parameter λ as it is. Note that the reverse

move, from model 2 to model 1, requires no auxiliary random variable as model
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Figure 5.2: (Top) Visualisation of the implications of different gamma-distributed
times (each with mean 25) between pandemics. (Bottom) Credibility given by the
three κ priors to differing levels of regularity.

1 has fewer parameters than model 2. Instead, we simply maintain the value of

the parameter λ. The Jacobian factor for these model transformations is 1. The

acceptance probability for the proposed move from model 1 to 2 is min {1,A1,2},
where

A1,2 =
L(D|λ, κ)p(λ, κ|k = 2)p(k = 2)

L(D|λ)p(λ|k = 1)p(k = 1)

(
uα−1e

−u
β

βαΓ(α)

)−1
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and from model 2 to 1 is min{1,A2,1}, where

A2,1 =
L(D|λ)p(λ|k = 1)p(k = 1)

L(D|λ, κ)p(λ, κ|k = 2)p(k = 2)

(
κα−1e

−κ
β

βαΓ(α)

)

with p(k = i) corresponding to the prior assigned to model i. Our priors on each

model were p(k = 1) = p(k = 2) = 0.5. Note that A1,2 and A2,1 are reciprocals

after change of notation. For the interested reader, a generalised description of the

RJMCMC algorithm from Green [113] is outlined below (algorithm 7).

The acceptance rates for these cross-model moves were recorded to track sampler

performance. Higher acceptance rates lead to lower autocorrelation in the k chain,

while near-zero acceptance rates would indicate the sampler was not performing

adequately due to being highly inefficient in exploring the parameter space.

Testing model adequacy

To assess goodness-of-fit Monte Carlo simulations were performed for each of our

fitted memoryless and history-dependent models, using 104 samples generated from

the RJMCMC procedure. A simulation duration equivalent to 300 years was chosen

to approximately match the timespan of our historic pandemic lists. Empirical cu-

mulative distribution functions (ECDF) of the inter-event time between pandemics

were computed for each simulation run. These were compared to the observed data

through survival functions (1 - ECDF).

5.2.3 Validation - Ebola outbreak analysis

The validity of the RJMCMC method was checked by performing a similar analysis

on the waiting time data for Ebola outbreaks (the month and year of each outbreak

obtained from sources listed by the CDC [205]), with the expectation being the

memoryless model would be strongly preferred since Ebola is too virulent in hu-

mans to expect to see phenomena such as population-level immunity or long-term

evolution. Parameter priors used in this case were Uniform(10−3, 1) for λ1, λ2 and

Uniform(0, 25) for κ.

5.2.4 Forward simulation outline

For each pandemic influenza timeline and prior type combination, 104 samples gen-

erated from the RJMCMC procedure were used to simulate forward 100 years (from

2010 to 2110). The number of samples drawn from each model was weighted by
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Algorithm 7 Single iteration of the Reversible Jump MCMC

1: Input: mt−1, θ̃, D, π, p
. Last model state, current parameter state following within-model move,

observed data,parameter prior, model prior
2: Output: mt, θt . Next model and parameter states
3: m′ ∼ j(m′|mt−1) . Sample move-type

Sample auxiliary random variable to ‘match dimensions’
4: u ∼ gmt−1→m′(u)

Propose new model parameters using mapping h
5: (θ′, u′) = hmt−1→m′(θ̃, u)

Sample auxiliary random variables to ‘match dimensions’ for the reverse move
6: u′ ∼ gm′→mt−1(u′)

Calculate the acceptance probability
7: αmt−1→m′ = min

{
1, Amt−1,m′

}
,

where Amt−1,m′ = min

{
1,

L(D|m′,θ′)π(θ′|m′)p(m′)j(mt−1|m′)gm′→mt−1
(u′)

L(D|mt−1,θ̃)π(θ̃|mt−1)p(mt−1)j(m′|mt−1)gmt−1→m′
(u)
J

}
,

with J =
∣∣∣ ∂
∂(θ̃,u)

hmt−1→m′(θ̃, u)
∣∣∣.

8: u ∼ Unif[0, 1]
9: if u < αmt−1→m′ then . Accept proposed states with probability αmt−1→m′

10: mt = m′

11: θt = θ′

12: else
13: mt = mt−1
14: θt = θ̃
15: end if
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Table 5.2: Fitted parameter values, 95% confidence intervals and AICc
values for each timeline. Exponential distribution was parameterised by rate
parameter λ1, Gamma distribution was parameterised by shape parameter α and
scale parameter β.

Model Param. Value (95% CI) AICc

1. Timeline A
Exponential λ1 0.0250 (0.0101, 0.0466) 68.4

Gamma
α 4.77 (1.73, 13.14)

66.5
β 8.39 (2.88, 24.4)

2. Timeline B
Exponential λ1 0.0429 (0.0221, 0.0703) 102.0

Gamma
α 3.56 (1.66, 7.67)

97.3
β 6.55 (2.88, 14.9)

3. Timeline C
Exponential λ1 0.0500 (0.0273, 0.0794) 114.2

Gamma
α 2.52 (1.26, 5.07)

111.7
β 7.92 (3.66, 17.1)

the posterior model probabilities for the given timeline. Distributions of the pro-

portion of simulations giving a specified number of influenza pandemic events in

this time period were constructed, allowing for between-timeline comparisons. All

calculations and simulations were performed with Matlab R©.

5.3 Results

5.3.1 AICc results

We conclude from the AICc values (equation (5.2)) that the gamma distributed

model was modestly preferred across all three timelines, suggesting influenza pan-

demic inter-event times could be plausibly generated by a history-dependent process.

We do note, however, that for each timeline the data was insufficient to categorically

support selecting one model over the other, with differences in AICc values between

the two model hypothesis being less than five (see table 5.2).

5.3.2 Pandemic influenza emergence - RJMCMC model fitting,

comparison and suitability

Running our RJMCMC sampler on each timeline assuming an uninformed ‘not

clockwork’ κ prior gave good levels of between-model mixing, with cross-model jump

acceptance rates between 30% and 60%. In contrast, the informed ‘mechanistic’ κ

prior cases had cross-model jump acceptance rates between 15% and 40%, though

the thinning used reduced autocorrelation in the k chain to ensure the samples

drawn could be considered as independent.
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Table 5.3: Posterior probabilities given to the history-dependent hypoth-
esis for each timeline and choice of κ prior.

κ prior
Timeline Not clockwork Weakly mechanistic Strongly mechanistic

A 0.70 0.82 0.86

B 0.77 0.89 0.92

C 0.45 0.73 0.77

When using the ‘not clockwork’ κ prior, the gamma distributed model (history-

dependent hypothesis) had higher posterior probabilities for Timelines A and B

(0.70 and 0.77 respectively). Nevertheless, for Timeline C the history-dependent

hypothesis had less support than the memoryless hypothesis (0.45 vs 0.55). Con-

sequently, this prior assumption only lets us infer something if we are sure which

pandemic timeline is correct. On the other hand, using ‘mechanistic’ priors informed

by studies related to emergence of flu strains resulted in model probabilities between

0.70 and 0.92 for the history-dependent hypothesis across our range of exclusive to

inclusive histories of pandemic influenza (table 5.3).

Comparing across the different κ priors, the median and 95% credible intervals for

each model parameter are quantitatively similar. Unsurprisingly, the main excep-

tions to this were the ‘weakly mechanistic’ and ‘strongly mechanistic’ prior resulting

in tighter posterior distributions for κ compared to when the ‘not clockwork’ prior

was used (figure 5.3 and table 5.4). Timeline A exhibits the widest posterior distri-

butions for κ, along with a greater median value for κ and lower λ median values

(figure 5.3 and table 5.4). This coincided with a broader distribution for the standard

deviation σ (table 5.5), implying longer and greater variability in spacing between

influenza pandemics relative to Timelines B and C.

For each of our nine sets of modelling assumptions the posterior simulated sur-

vival function distributions for pandemic event waiting times indicated a reasonable

model fit to the data when a history-dependent hypothesis for influenza pandemic

emergence was assumed. A good level of agreement was observed in particular un-

der this hypothesis in combination with the ‘strongly mechanistic’ prior assumption

for κ, with the predicted median waiting time survival function closely tracking the

empirical data. On the other hand, the memoryless model exhibited greater inter-

event time variability, with the predicted survival function distributions generally

declining sooner and having a longer tail relative to the data (figure 5.4). This



Chapter 5. Analysis of influenza pandemic waiting times 126

reaffirms the fact that such an assumption lends greater credibility for both long

interludes between pandemics (exceeding 100 years) and for one influenza pandemic

being able to immediately follow another relative to what truly occurred. Simi-

lar outcomes were obtained using the alternative κ prior distributions (figures 5.5

and 5.6).
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Figure 5.3: Parameter probability distribution functions estimated from
RJMCMC output when using the specified prior for κ: (a-c) Not clock-
work; (d-f) weakly mechanistic; (g-i) strongly mechanistic. (a,d,g) Density
estimate for λ1 where k = 1; (b,e,h) density estimate for λ2 where k = 2; and (c,f,i)
density estimate for κ where k = 2.



127 5.3. Results

Table 5.4: Model Fitting I for each κ prior and timeline.

κ prior Timeline Model Param. Value (95% CI) π

Not A Exp. λ1 0.0273 (0.0122, 0.0515) 0.30
clockwork Gamma λ2 0.0255 (0.0175, 0.0362) 0.70

κ 5.03 (1.61, 11.8)
B Exp. λ1 0.0453 (0.0247, 0.0751) 0.23

Gamma λ2 0.0435 (0.0315, 0.0588) 0.77
κ 3.68 (1.58, 7.19)

C Exp. λ1 0.0522 (0.0300, 0.0837) 0.55
Gamma λ2 0.0510 (0.0357, 0.0707) 0.45

κ 2.59 (1.21, 4.80)

Weakly A Exp. λ1 0.0275 (0.0123, 0.0512) 0.18
mechanistic Gamma λ2 0.0256 (0.0166, 0.0383) 0.82

κ 3.81 (1.24, 8.84)
B Exp. λ1 0.0452 (0.0248, 0.0753) 0.11

Gamma λ2 0.0436 (0.0308, 0.0600) 0.89
κ 3.23 (1.40, 6.32)

C Exp. λ1 0.0523 (0.0299, 0.0832) 0.27
Gamma λ2 0.0510 (0.0353, 0.0714) 0.73

κ 2.40 (1.12, 4.46)

Strongly A Exp. λ1 0.0274 (0.0124, 0.0520) 0.14
mechanistic Gamma λ2 0.0257 (0.0168, 0.0379) 0.86

κ 3.85 (1.41, 8.30)
B Exp. λ1 0.0451 (0.0245, 0.0747) 0.082

Gamma λ2 0.0436 (0.0311, 0.0596) 0.92
κ 3.31 (1.52, 6.22)

C Exp. λ1 0.0524 (0.0301, 0.0835) 0.23
Gamma λ2 0.0511 (0.0356, 0.0708) 0.77

κ 2.50 (1.22, 4.50)

Fitted parameter values and 95% credible intervals for each parameter in the rate
/ shape parameterisation (to 3 s.f.) and marginal posterior π for each model (to 2
s.f.) in the three timelines considered.
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Table 5.5: Model Fitting II for each κ prior and timeline.

κ prior Timeline Model Param. Value (95% CI) π

Not A Exp. µ1 36.6 (19.4, 81.8) 0.30
clockwork Gamma µ2 39.3 (27.6, 57.1) 0.70

σ 17.4 (10.8, 35.7)
B Exp. µ1 22.1 (13.3, 40.5) 0.23

Gamma µ2 23.0 (17.0, 31.8) 0.77
σ 11.9 (7.99, 20.9)

C Exp. µ1 19.1 (12.0, 33.4) 0.55
Gamma µ2 19.6 (14.1, 28.0) 0.45

σ 12.1 (8.18, 21.2)

Weakly A Exp. µ1 36.3 (19.5, 81.3) 0.18
mechanistic Gamma µ2 39.0 (26.1, 60.2) 0.82

σ 19.7 (12.2, 41.8)
B Exp. µ1 22.1 (13.3, 40.4) 0.11

Gamma µ2 22.9 (16.7, 32.4) 0.89
σ 12.7 (8.44, 22.5)

C Exp. µ1 19.1 (12.0, 33.4) 0.27
Gamma µ2 19.6 (14.0,28.3) 0.73

σ 12.6 (8.40, 22.1)

Strongly A Exp. µ1 36.5 (19.2, 80.8) 0.14
mechanistic Gamma µ2 39.0 (26.4, 59.4) 0.86

σ 19.6 (12.4, 39.5)
B Exp. µ1 22.2 (13.4, 40.8) 0.082

Gamma µ2 22.9 (16.8, 32.2) 0.92
σ 12.5 (8.48, 21.6)

C Exp. µ1 19.1 (12.0, 33.2) 0.23
Gamma µ2 19.6 (14.1, 28.1) 0.77

σ 12.3 (8.36, 21.1)

Fitted parameter values and 95% credible intervals for each parameter in the mean
/ standard deviation parameterisation (to 3 s.f.) and marginal posterior π for each
model (to 2 s.f.) in the three timelines considered.
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Figure 5.4: Predicted posterior influenza pandemic inter-event time sur-
vival functions versus the empirical survival function, under the ‘strongly
mechanistic’ prior assumption. Waiting time model fits relative to the ob-
served data (magenta dotted line) under the following hypothesis: (left) history-
dependent; (right) memoryless. Across all proposed historic pandemic lists the
history-dependent hypothesis corresponds adequately with the observed data. (a,b)
Timeline A; (c,d) timeline B; (e,f) timeline C. Median posterior survival functions
are given by the green dashed lines, with prediction intervals of 50%, 75% and 95%
represented by shaded blue regions (moving from darkest to lightest).
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Figure 5.5: Predicted posterior influenza pandemic inter-event time sur-
vival functions versus the empirical survival function, under the ‘not
clockwork’ prior assumption. Waiting time model fits relative to the ob-
served data (magenta dotted line) under the following hypothesis: (left) history-
dependent; (right) memoryless. Across all proposed historic pandemic lists the
history-dependent hypothesis corresponds adequately with the observed data. (a,b)
Timeline A; (c,d) timeline B; (e,f) timeline C. Median posterior survival functions
are given by the green dashed lines, with prediction intervals of 50%, 75% and 95%
represented by shaded blue regions (moving from darkest to lightest).
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Figure 5.6: Predicted posterior influenza pandemic inter-event time sur-
vival functions versus the empirical survival function, under the ‘weakly
mechanistic’ prior assumption. Waiting time model fits relative to the ob-
served data (magenta dotted line) under the following hypothesis: (left) history-
dependent; (right) memoryless. Across all proposed historic pandemic lists the
history-dependent hypothesis corresponds adequately with the observed data. (a,b)
Timeline A; (c,d) timeline B; (e,f) timeline C. Median posterior survival functions
are given by the green dashed lines, with prediction intervals of 50%, 75% and 95%
represented by shaded blue regions (moving from darkest to lightest).
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Figure 5.7: Predicted posterior Ebola outbreak inter-event time survival
functions versus the empirical survival function. Waiting time model fits
relative to the observed data (magenta dotted line) under the following hypothesis:
(a) history-dependent; (b) memoryless. The model hypothesis generated similar
waiting time survival function profiles, both being heavier tailed than the observed
data. Median posterior survival functions are given by the green dashed lines, with
prediction intervals of 50%, 75% and 95% represented by shaded blue regions (mov-
ing from darkest to lightest).

5.3.3 Validation - Ebola outbreak analysis

When fitting our models to the Ebola outbreak waiting times we obtained 105 sam-

ples, thinning by a factor of 100 sweeps with a burn-in period of 104 sweeps. As

expected, the memoryless model was strongly favoured compared to the history-

dependent model, with posterior model probabilities of 0.95 and 0.05 respectively.

Furthermore, this weight of evidence was supplemented by the inferred gamma

model being exponential-like in nature, with the following parameter median and

95% credible intervals obtained: κ = 0.719 (0.429,1.15); λ2 = 0.618 (0.366,0.925).

Similar values were found for the exponential model rate parameter, λ1 = 0.619

(0.403,0.890). As a result, the model-specific simulated survival function distribu-

tions for Ebola outbreak waiting times strongly resembled one another, both being

heavier tailed than the empirical survival function (figure 5.7).

5.3.4 Forward simulation analysis

Across our range of inclusivity criteria for proposed pandemics, the lowest mode

for the number of predicted pandemics during 2010-2110 was obtained by Timeline

A (two). In contrast, Timelines B and C gave modes of four or five (figure 5.8).

Further, Timeline A displayed less variability in the predicted number of pandemic
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Figure 5.8: Posterior predictive distributions for the number of pan-
demics between 2010-2110, for each timeline and choice of κ prior. (a)
‘Not clockwork’ κ prior case; (b) ‘weakly mechanistic’ κ prior case; (c) ‘strongly
mechanistic’ κ prior case.

events, with the majority of simulations predicting two or fewer pandemics between

2010-2110. When the ‘not clockwork’ κ prior was used, the proportion of simula-

tions predicting two or fewer pandemics was 62% for Timeline A, compared to just

13% and 11% for Timelines B and C respectively. Quantitatively similar results

were obtained using either ‘mechanistic’ κ prior (for the ‘weakly mechanistic’ prior

in particular, Timeline A: 62%, Timeline B: 13%, Timeline C: 8.9%).

Timeline C had a more diffuse distribution than Timeline B, despite including only

a couple of additional waiting times. Explicitly, Timeline C attributed a greater

weight of support to there being 10 or more pandemics between 2010 and 2110

(4.6% versus 1.1% of simulations). This discrepancy between the predictive pan-

demic event distributions remained using the ‘mechanistic’ κ priors, although these

choices of prior did result in reduced absolute probabilities of an extreme number

of pandemics (10 or more) occurring in the time period of interest (for the ‘weakly

mechanistic’ prior, Timeline B: 0.63%, Timeline C: 3.2%).

5.4 Discussion

Assessing influenza pandemic emergence risk is an ongoing public health concern [57,

58]. This study was motivated by the view that mathematical approaches could pro-

vide cheap ground-truthing and validation of expensive and sometimes hazardous

laboratory and field surveillance efforts to understand pandemic emergence. Our

findings suggest evidence for the emergence of influenza pandemics being plausibly

generated by a history-dependent process, although this does depend on the prior as-

sumptions made. Even with the data being limited, utilising a RJMCMC approach
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to model selection (rather than solely relying on AICc) indicates in a mathematically

rigorous sense the strength of evidence for each hypothesis, improving upon merely

selecting one model over another. Our analysis of the Ebola outbreak waiting time

data, finding the memoryless hypothesis to be strongly preferred, provides confir-

mation that the RJMCMC model selection method works as expected for another

real system.

An additional advantage of using RJMCMC as a tool for model selection is the

ability to compare inferred model probabilities under various prior assumptions.

For our particular model selection problem, under an uninformed ‘not clockwork’

prior assumption the preferred model mechanism depended on the strictness of the

proposed pandemic inclusion criteria, only letting us infer model preference if we

are sure which pandemic timeline is correct. We note, however, that advances in

the recovery and sequencing of genetic information has led to analyses of ancient

specimens, meaning genomic data from archaic pathogens (obtained from corpses)

can be gathered. Recent examples include characterisation of the 1918 pandemic

influenza virus [182, 183] and reconstruction of the bubonic plague genome from vic-

tims of the Black Death [206]. Further discovery and sequencing of past influenza

viruses may weaken or strengthen the claims of the contested pre-20th century pan-

demics, culminating in the accuracy of the list of historic influenza pandemics being

enhanced.

Nevertheless, using a ‘mechanistic’ prior informed by experimental studies suggests

much stronger evidence for predictability of pandemics, with the spillover of strains

with pandemic potential from the animal reservoir to humans likely to be a history-

dependent process. This would be consistent with strains needing to accumulate

specific mutations and predictions of, for example, the recycling theory [194, 195],

with the history-dependent process arising as a result of population immunity to

prior strains. Further support is given by previous studies determining that all the

emergent viruses that caused the post-1900 influenza pandemics resembled those

that had circulated previously within the lifespan of then-living people [207]. Specif-

ically, the 1968 pandemic virus was similar to the one that caused the 1889 pan-

demic [194, 195], while the H1 2009 pandemic virus was most similar to viruses that

circulated before 1947 [208]. Such an immunity argument could also explain why

there was very strong support for Ebola outbreak inter-event times being memory-

less, with each of these outbreaks not being capable of establishing population-wide

immunity due to being relatively small and having a high mortality rate [205]. With
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the majority of the population remaining susceptible, we would expect the likeli-

hood of the next outbreak occurring within a given time (originating from zoonotic

transmission events from animal hosts) to be unaffected by the time passed since

the preceding outbreak.

In the case of influenza, this suggests there would be significant merits in having

active surveillance in humans and zoonotic hosts to reveal the diversity of influenza

strains in circulation and the immunological profile of the population. Current im-

mune landscape studies, such as Fluscape [209, 210] and seroprevalence analyses of

live bird market workers [134], provide example frameworks that could be extended

to investigate the immune profiles of the population to strains widely circulating in

livestock populations. Such knowledge would aid classification of currently circulat-

ing strains with respect to their pandemic potential, determining those that pose

a considerable threat. Going a step further, earlier detection of strains with pan-

demic causing capability could allow the containment of the strain to a localised area

through, for example, more aggressive culling controls and movement restrictions

in farmed poultry. Additionally, active surveillance outputs may inform the com-

position of influenza virus vaccines to be developed and administered to the at-risk

human population as part of pandemic preparedness procedures. However, current

influenza virus vaccines have limitations, requiring frequent updates to reflect the

antigenic changes that occur in the pool of circulating virus strains. Circumventing

this drawback is a key area of ongoing research through the development of ‘univer-

sal’ influenza vaccines that are less sensitive to the antigenic evolution of the virus,

therefore giving broader protection against emergent strains [211, 212].

For all three suggested pandemic influenza histories, forward simulations implied

a wide variability in the possible number of expected pandemics in the next 100

years following the last pandemic. Although Timeline A offers greater support for

there being two or fewer pandemics between 2010-2110 compared to either Timeline

B or C, additional virological information is required to determine which of these

timelines is representative of the actual history of pandemic influenza. If this is

achieved, the relevant timeline findings can be used to quantify the risk of a set

number of pandemic events occurring in the next 100 years. Note that these predic-

tions could be viewed as a worst case scenario, due to not accounting for the impact

of future intervention measures. We anticipate however that the implementation of

interventions that successfully determine and prevent the spread of strains posing

the largest pandemic risk, possibly through the strategies discussed above, will di-
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minish the likelihood of them realising their full pandemic potential. The number

of influenza pandemics would drop as a result.

Our modelling framework posed the following potential issues. First, there was data

uncertainty as a result of conflicting accounts of what were true historic influenza

pandemics within the literature. As a consequence, to account for a range of pos-

sible pandemic histories, we constructed our three distinct pandemic timelines with

strict, moderate and relaxed inclusion criteria based on the amount of corroboration

across sources for an outbreak being a pandemic. Second, result robustness is likely

weakened due to the small nature of the dataset and sensitivity with respect to the

timeline used. We argue, however, that the observed dates of influenza pandemics

are the ultimate test of our understanding of novel strain emergence, and with this

data the more complex hypothesis was still found to be preferred when including a

varied number of pre-20th century pandemics. Third, for the modelling framework

a number of subjective decisions had to made. For our history-dependent model, al-

ternative distributions could have been selected (e.g. Weibull distribution), though

due to any phase-type distribution arising from a realistic combination of events

being very close to a gamma distribution we only considered gamma distributions

as representations of history dependence here. Additionally, other priors for κ could

be used since, as expected, our prior specification for κ impacts on the posterior

support for the history-dependent model. Although our ‘strongly mechanistic’ prior

may be overly restrictive in assuming low credibility for one influenza pandemic be-

ing able to immediately follow another, such assumptions were not made with the

‘weakly mechanistic’ prior. Further, it is noteworthy that the weakly informed prior

had no qualitative impact on the findings when compared to the findings using the

‘strongly mechanistic’ κ prior.

In summary, our analysis of influenza pandemic waiting times found support for the

hypothesis of influenza pandemic emergence being history-dependent, rather than a

memoryless process, under eight out of nine sets of modelling assumptions. Although

the approach utilised here is reliant on limited and uncertain data, it corroborates

findings from indirect measurements gathered via expensive and sometimes danger-

ous laboratory and field surveillance efforts that aim to further our understanding

of pandemic emergence.



Chapter 6
Modelling the spread of mood in

adolescent friendship networks

6.1 Introduction

In chapters 3 to 5 we used both pre-existing and novel infectious disease mathe-

matical models to answer epidemiological questions concerning influenza A. While

standard epidemic models are well established in the mathematical modelling of in-

fectious disease, there is an increasing usage of these techniques for modelling other

complex spreading processes that occur among society. One particular application

is to investigate the possible spread of behavioural-linked health problems, with this

chapter focusing on addressing this question with regards to depressive disorders.

Depression and other mood disorders are major and growing contributors to mor-

tality and morbidity worldwide [62]. These mood disorders are widespread, with

the World Health Organisation estimating that, globally, there are currently more

than 300 million people affected by depression [63, 64, 213]. There is evidence that

social support is important for the mental well-being of adolescents [214] and that

befriending can have a positive effect on mental health [215]. Recent experiments

suggest that peoples expression of negative or positive emotions is influenced by

the level of negative or positive news from their friends and associates [216]. An

improved understanding of the social processes that drive the epidemiology of these

disorders therefore has the potential to bring highly significant public health benefits.

It is now very common to model infectious diseases as spreading processes on net-

137
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works [77]. This approach is increasingly applied to behaviours, for example those

related to infectious risk [3], and non-infectious diseases that are linked to behaviours

that can spread socially (e.g. obesity and smoking [78, 79]).

Previous work relating to spread of depression on friendship networks has generally

made at least one of the following key assumptions: (i) low mood and / or depression

spreads like an infectious agent; (ii) healthy mood (non-depression) does not spread

like an infectious agent; (iii) the information to distinguish between transmission

and no-transmission models can be found in differences in static network measures

such as clustering of disease [7, 8, 217], or in coarse population-level measures such

as web-search over time [218]. Here we allow more flexibility in our model by making

no prior assumption as to whether it is low mood or healthy mood that spreads.

In addition, we use the dynamical behaviour of mood over time, allowing us to

distinguish directly between transmission and no transmission.

6.2 Methods

6.2.1 The data

We consider data from the in-home interview survey of the Add Health study [219],

which recorded adolescents in-school friends in addition to their CES-D (Center for

Epidemiologic Studies Depression Scale) scores [220]. The CES-D scale is a 20-item

measure that asks the respondent to rate how often over the past week they ex-

perienced symptoms associated with depression, with the in-home interview survey

including 18 of these 20 questions. Four possible response options are given for each

item, worth a score of 0, 1, 2 or 3, with a higher score indicating more severe de-

pressive symptoms. The total score across all items was used to classify individuals

as either having depressive symptoms (low mood) or not being depressed (healthy

mood) according to the score cut-off associated with a clinical diagnosis of depres-

sion [221]. For the complete 20-item measure the thresholds found were 24 and 22

for females and males respectively. To compensate for the in-home interview survey

including only 18 of the 20 items, we used modified thresholds of 22 for females and

20 for males.

We took data from two time points (waves), 6 to 12 months apart, from students

in saturated schools (in a saturated school all students were selected to have an in-

home interview, eliminating selection bias). In each wave, respondents were asked

to either nominate up to five male and five female friends, or up to one male and one
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Wave 1 

Wave 1 study population 
size:

20745

Wave 2 study population 
size:

14738

Inclusion criteria satisfied by:

3084
Inclusion criteria satisfied by:

2707

Inclusion criteria in both 
waves satisfied by:

2194

“Not depressed” in 
both waves:

1749

“Depressive symptoms” 
in both waves:

123

Wave 1 –
“not depressed”,
Wave 2 -
“depressive symptoms”:

168

Wave 1 -
“depressive symptoms”,
Wave 2 –
“not depressed”:

154

Wave 2 

Figure 6.1: Sampling flow diagram for our study sample. At the top is the
whole study population for wave 1 and wave 2, with the hexagon boxes giving the
sample from the whole population that we used.

female friend. To be included in our study sample, for both time points the student

must have provided complete answers to all the CES-D survey related questions and

be the least restricted in the number of school friends they were allowed to give (i.e.

allowed to list up to five male and five female friends). These respondents could be

split into four groupings that cover all possible mood state combinations across the

two waves (figure 6.1).

6.2.2 Model construction, fitting and selection

Throughout, we write N for healthy mood and D depressive symptoms. Letters

A,B, · · · ∈ {N,D} and overlining is used as follows:

A =

N if A = D,

D if A = N.
(6.1)
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We let individuals be labelled with indices i, j, · · · ∈ {1, . . . , n}. At (discrete) time t

individual i has state Xt
i ∈ {N,D}. From the friendship data, the respondents were

connected in a network with adjacency matrix G with elements

Gij =

1 if individual i named j as a friend,

0 otherwise.
(6.2)

We modelled depression status as a discrete-time Markov chain. This model is spec-

ified by two probabilities: the probability p = Pr[Xi(t+1) = D|Xi(t) = N ] of devel-

oping depressive symptoms, and the probability q = Pr[Xi(t + 1) = N |Xi(t) = D]

of recovering from depression. Following Centola and Macy [90, 222], we consid-

ered a model in which these probabilities depend on the number of friends of an

individual who have value N or D, with this dependence taking the form of an

S-shaped function. These models are referred to as N-transmits and D-transmits

respectively. Formally, our general N-transmits model was a discrete-time Markov

chain Xt = (Xt
i ) with transition probabilities

P[Xt+1
i = D|Xt

i = N ] = p∑
j GijI{Xt

j=N},

P[Xt+1
i = N |Xt

i = D] = q∑
j GijI{Xt

j=N},
(6.3)

where I is an indicator function

I {ω} =

1 if ω is true,

0 otherwise.
(6.4)

In the D-transmits model we exchange D for N on the right-hand side of (6.3).

We fit the above models to the Add Health data moving from wave 1 to wave 2,

and compare to the no-transmission model where the probabilities do not depend

on the mood states of an individual’s friends (i.e. pk and qk are independent of k).

Parameter values for our transmission and no-transmission models were found using

Maximum Likelihood Estimation (MLE) by minimising the negative log-likelihood

log(L) with respect to p and q using the MATLAB fmincon() function. The following

likelihood function was constructed for the development of depressive symptoms

scenario, with respect to either the number of N or D friends,

L(y|p,N) =
∏
k

(
Nk

yk

)
pykk (1− pk)Nk−yk ,
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where yk was the number of respondents with k not depressed friends (friends with

depressive symptoms) who were classified as not depressed at the first time point

and having depressive symptoms at the second time point. Nk was the total number

of respondents classified as not depressed at the first time point with k not depressed

friends (friends with depressive symptoms). An equivalent likelihood function was

constructed for the recovery from depressive symptoms scenario,

L(y|q,N) =
∏
k

(
Dk

yk

)
qykk (1− qk)Dk−yk ,

with yk corresponding to the number of respondents with k not depressed friends

(friends with depressive symptoms) who were classified as having depressive symp-

toms at the first time point and not depressed at the second time point. Dk was the

total number of respondents classified as having depressive symptoms at the first

time point with k not depressed friends (friends with depressive symptoms).

Confidence intervals were obtained through calculation of the Hessian matrix at the

MLE parameters and use of standard asymptotic formulas. Competing models were

assessed using Akaike information criterion (AIC) [201], with a description of this

measure outlined in section 5.2.2.

6.2.3 Simulation outline

The Markov chains defining each of our candidate models could be simulated using

Monte Carlo methods. Since we consider a situation where

0 < pk, qk < 1,∀k, (6.5)

we can get from any state to any other in a finite number of steps (the chain is

irreducible) and the expected time to return to any state will be finite (all state are

positive recurrent). Hence by e.g. Theorems (6.4.3) and (6.4.17) of Grimmett and

Stirzaker [223], there will be a unique stationary distribution π that describes the

behaviour of the chain at large times.

We performed discrete-time Monte Carlo simulations of the no-transmission and

N-transmits models on a directed network of named friends constructed from the

3084 individuals in the dataset satisfying our inclusion criteria at the first time

point (wave 1). Depending on the simulated output required, we either took 105

time-separated samples of node-level values at a single time point or 104 temporally
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adjacent node-level state transitions from the stationary distribution for each model.

6.2.4 Goodness-of-fit

Static summary statistics

Performing simulations as detailed above (section 6.2.3), we took 105 independent

samples from the stationary distribution for each model to calculate static sum-

mary statistics of interest (prevalence of D individuals, prevalence of various network

pairs, stratification by contacts). We assessed uncertainty in the observed quantities

through bootstrapping. The Bonferroni method was used to account for multiple

testing of statistically significant differences between models and observed data [224].

Calculating p-values required comparison of Monte Carlo simulation output with

uncertain data. We used the expression

p =
∑
x

2πx ×min(Ex, 1− Ex),

where πx is the density of the value x in the bootstrap sample from data and Ex is

the empirical cumulative distribution function of the simulation output.

Residual errors

For logistic regression a standard approach to assess goodness-of-fit is the Hosmer-

Lemeshow (HL) test, which is based on the distribution of residual errors [225] -

i.e. the differences between the observed and the model values. Our model was not

a standard regression, and so we tested goodness-of-fit in a similar manner to the

HL test but with assumptions more appropriate for our model. In particular, we

defined a residual error function stratified by number of friends,

εA =

(
10∑
k=0

(
Y A→A
k −XA→A

k (θ)
)2)1/2

, (6.6)

where Y A→A
k is the observed number of state transitions from A to A of individuals

with k friends in state N or D, and XA→A
k (θ) is the modelled number of such events

given parameters θ; explicitly

Y A→B
k =

∑
i

I{
∑

j Gij = k}I
{
Y t+1
i = B

}
I
{
Y t
i = A

}
, (6.7)
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and

XN→D
k = pk ×

∑
i

I{
∑

j Gij = k}I
{
Xt
i = N

}
,

XD→N
k = qk ×

∑
i

I{
∑

j Gij = k}I
{
Xt
i = D

}
.

(6.8)

The quantity εA is positive definite and will tend to zero for a model that perfectly

captures the data.

The distribution for εA was not analytically available. Thus, a parametric bootstrap

approach was used, simulating from the model once it had been fitted to observed

data by maximum-likelihood estimation (MLE), giving MLE parameter estimates θ̂.

We performed simulations as detailed in section 6.2.3. We took 104 temporally adja-

cent node-level state transitions from the stationary distribution for each model, ex-

tracting the proportion of individuals who recover from depressive symptoms/develop

depressive symptoms within a year dependent on the number of friends they had of

state N or D at the initial time point (as appropriate for the calculation of interest).

This sampling process was repeated many times as for other bootstrap methods to

obtain an accurate estimate of the distributions of εD and εN .

6.2.5 Parameter identifiability

We now turn to the question of how accurately model parameters can be inferred

from data. To analyse this we performed model simulations as described in sec-

tion 6.2.3, taking 104 temporally adjacent node-level state transitions from the sta-

tionary distribution. Each set of simulated data was then fitted to the same model

that it had been generated from using MLE.

6.3 Results

6.3.1 Fitted parameter values

No-transmission models

We obtained the following no-transmission deterioration model for transitioning

from healthy mood to low mood within a year (figures 6.2(a) and 6.2(c)),

pk = 0.088[0.075, 0.10],
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and no-transmission recovery model for transitioning from low mood to healthy

mood within a year (figures 6.2(b) and 6.2(d)),

qk = 0.56[0.50, 0.61].

N-transmits models

We obtained the following N-transmits deterioration model for transitioning from

healthy mood to low mood within a year,

pk = α+ β
k∑
l=0

(
10

l

)
γl(1− γ)10−l,

with α = 0.13[0.088, 0.16], β = −0.064[−0.10,−0.025] and γ = 0.25[0.070, 0.44]

(figure 6.2(c)). Note that here and elsewhere numbers such as 10 appear as the limits

in the data on number of friends; k is the number of friends in the transmitting state,

and the parameters estimated are a simple way to parameterise a discrete sigmoidal

function as suggested by a complex contagion model. The N-transmits recovery

model, for transitioning from low mood to healthy mood within a year, was

qk = α+ β

k∑
l=0

(
10

l

)
γl(1− γ)10−l,

with α = 0.53[0.46, 0.59], β = 0.46[0.099, 0.83] and γ = 0.71[0.45, 0.98] (figure 6.2(d)).

D-transmits models

We obtained the following D-transmits deterioration model for transitioning from

healthy mood to low mood within a year,

pk = α+ β
k∑
l=0

(
4

l

)
γl(1− γ)4−l,

with α = 0.087[0.074, 0.10], β = 0.021[−0.27, 0.31] and γ = 0.84[−0.62, 2.3] (fig-

ure 6.2(a)). The D-transmits recovery model was

qk = α+ β

k∑
l=0

(
4

l

)
γl(1− γ)4−l,

with α = 4.1 × 10−5[−5.0, 5.0], β = 0.64[−4.6, 5.9] and γ = 0.050[−0.42, 0.52] (fig-

ure 6.2(b)).
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6.3.2 Model comparisons

We fit our proposed models to the n = 2194 data points given by our inclusion

criteria. For the dependence of probabilities p and q on the number of friends

with depressive symptoms (no-transmission model against D-transmits model), AIC

values (computed using equation (5.1)) showed the no-transmission model was the

preferred choice (figures 6.2(a) and 6.2(b)). When considering the no-transmission

model against the N-transmits model, the N-transmits model was the preferred

choice in both cases (figures 6.2(c) and 6.2(d)).

6.3.3 Goodness-of-fit

Static summary statistics

Comparing D prevalence and edge type summary statistics to those obtained for the

observed data there were significant differences between the no-transmission model

and data, while the N-transmits model had no statistically significant differences

(figure 6.3). In particular, the N → N , N → D and D → N edge statistics

(where A → B denotes an individual in state A naming an individual in state B

as a friend) were found to be statistically significantly different between the no-

transmission model and the data (figure 6.3(b-d)). The observed stratification by

contacts could be plausibly generated by both the no-transmission and N-transmits

models (figure 6.4).

Residual errors

For the following comparisons between the observed data residual error values and

the parametric bootstrap residual error distributions special attention should not be

paid to any particular threshold of p value; rather, a larger p value simply denotes

a better fit. The calculated observed data residual error values could be plausibly

generated by the N-transmits recovery model, p = 0.944 (figure 6.5(a)), and N-

transmits deterioration model, p = 0.942 (figure 6.5(b)). In contrast, while the

no-transmission recovery model could plausibly generate the calculated observed

data residual error values, p = 0.816 (figure 6.5(c)), there was less support for the

no-transmission deterioration model, p = 0.153 (figure 6.5(d)). The analysis of

this simple summary statistic, while not intended to provide a criterion for model

selection in the way that AIC does, supports our broad conclusion that N-transmits

should be preferred to no transmission.
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Figure 6.2: Dynamical behaviour of depression status between samples
as a function of N friends or D friends for observed data (and 50% CI),
transmission and no-transmission models. Uncertainty in the observed val-
ues was quantified using Jeffreys intervals [226]. The ∆AIC value is calculated by
subtracting the no-transmission AIC value from the transmission AIC value. (a)
Probability of transitioning from healthy mood to low mood against number of D
friends - transmission is not preferred to no transmission (∆AIC ≈ -4); (b) proba-
bility of recovering from low mood against number of D friends - transmission is not
preferred to no transmission (∆AIC ≈ -0.9); (c) probability of transitioning from
healthy mood to low mood against number of N friends - transmission is preferred to
no transmission (∆AIC ≈ 8.4); (d) probability of recovering from low mood against
number of N friends - transmission is preferred to no transmission (∆AIC ≈ 4.5).



147 6.3. Results

(a)

320 360 400 440 480 520

  Number of D individuals

0

0.05

0.10

0.15

N
o

rm
a

lis
e

d
 F

re
q

u
e

n
c
y

Observed

Bootstrap

No transmission

N-transmits

(b)

5500 5750 6000 6250 6500

  Number of N   N edges

0

0.05

0.10

0.15

0.20

N
o

rm
a

lis
e

d
 F

re
q

u
e

n
c
y

(c)

600 700 800 900 1000 1100

  Number of D   N edges

0

0.05

0.10

0.15

N
o

rm
a

lis
e

d
 F

re
q

u
e

n
c
y

(d)

650 750 850 950 1050 1150

  Number of N   D edges

0

0.05

0.10

0.15

N
o

rm
a

lis
e

d
 F

re
q

u
e

n
c
y

Figure 6.3: Static summary statistics for the stationary distributions
of the models versus real data. Asterisks above a plot denote a significant
statistical difference at the 5% level, corresponding to p < 0.01 using the Bonferroni
method to account for multiple testing. (a) Prevalence of individuals with depressive
symptoms - observed data could be plausibly generated by both N-transmits (p =
0.058) and no-transmission (p = 0.41) models. (b) Number of N → N edges -
observed data could be plausibly generated by the N-transmits model (p = 0.15)
but not by the no-transmission model (p = 0.0014). (c) Number of D → N edges
- observed data could be plausibly generated by the N-transmits model (p = 0.54)
but not by the no-transmission model (p = 0.0035). (d) Number of N → D edges
- observed data could be plausibly generated by the N-transmits model (p = 0.027)
but not by the no-transmission model (p = 0.0067). The fifth test and plot is for
D → D edges (figure C.1). See section 6.2.4 for the p-value calculation method.
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Figure 6.4: Stratification by contacts for the N-transmits and no-
transmission models as compared to empirical degree distributions. Grey
bars correspond to observed values, with black line segments giving bootstrapped
95% confidence intervals. Blue and red line segments give the 95% prediction inter-
vals for the no-transmission model (median value represented by the upside down
triangle) and N-transmits model (median value represented by the diamond) respec-
tively. The observed stratification by contacts could be plausibly generated by both
the no-transmission and N-transmits models. (a) Out-degree of individuals with
depressive symptoms. (b) In-degree of individuals with depressive symptoms. (c)
Out-degree of not depressed individuals. (d) In-degree of not depressed individuals.
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Figure 6.5: Cumulative distribution functions for residual errors, ob-
tained via parametric bootstrapping versus the observed data residual
error. (a) N-transmits recovery model residual error function cumulative distri-
bution (p = 0.944). (b) N-transmits deterioration model residual error function
cumulative distribution (p = 0.942). (c) No-transmission recovery model residual
error function cumulative distribution (p = 0.816). (d) No-transmission deteriora-
tion model residual error function cumulative distribution (p = 0.153).
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Figure 6.6: Normalised frequency of inferred no-transmission model pa-
rameters from 104 simulated samples. (a) Transition from N to D (p), and
(b) transition from D to N (q) parameters inferred (by MLE) from simulated data
versus chosen model values when fitted to the observed data. A high level of iden-
tifiability was observed for each parameter.

6.3.4 Parameter identifiability

Inferred parameter distributions for our three models refitted to simulated data

were compared to the parameter values inferred when fitting to the observed data.

A high level of parameter identifiability was observed for both the no-transmission

(figure 6.6) and N-transmits models (figure 6.7), giving extra confidence to our

results. Additionally, the majority of parameters for our D-transmits model could

be reliably recovered (figure C.2).

6.4 Discussion

A major benefit of the dynamical approach that we have taken is that it avoids

the problems of confounding that have been controversial in other studies of social

contagion [8]. Figure 6.8 shows the model schematically, to provide intuitive insight

into why this is the case.

In this model, there is transmission of D if the probability of event (3) happening

(given the initial state) is bigger than the probability of event (1) happening (given

the initial state): Pr(event (3)) > Pr(event (1)). There is also transmission of D if

Pr(event (6)) < Pr(event (4)). We did not find evidence for transmission of D based

on this criterion, as shown in figures 6.2(a) and 6.2(b). Such transmission would

also be expected to lead to more D → D pairs and fewer D → N and N → D pairs
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Figure 6.7: Normalised frequency of inferred N-transmits model param-
eters from 104 simulated samples. (a,b,c) Transition from N to D and (d,e,f)
transition from D to N parameters inferred (by MLE) from simulated data versus
chosen model values when fitted to the observed data. (a,d) α; (b,e) β; (c,f) γ. A
high level of identifiability was observed for each parameter.

than a null model. This pattern was not observed (see figure 6.3 and figure C.1).

There is transmission of N in our model if Pr(event (2)) < Pr(event (1)) and also if

Pr(event (5)) > Pr(event (4)). We found statistically significant evidence for trans-

mission of N on the basis of this criterion as seen in figures 6.2(c) and 6.2(d). Such

transmission would also be expected to lead to more N → N pairs and fewer D → N

and N → D pairs than a null model. This pattern was observed (see figure 6.3).

Suppose that there is homophily (similar individuals naming each other as friends)

at work in the friendship network, either in terms of depressive symptoms, or a la-

tent variable that is correlated with depressive symptoms. This will tend to increase

the number of D → D or N → N pairs in the absence of any transmission effect,

meaning that these tests (shown in figure 6.3) can be confounded by homophily.

When working with two waves of data, however, such homophily will simply lead to

fewer individuals in the initial states associated with events (3) and (5) than events
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Figure 6.8: Pictorial representation of the possible events in our model.
Developing or recovering from depressive symptoms; in the absence of friends, with
friends with healthy mood, or with depressed friends. The changes in pairs produced
are also shown.

(2) and (6), but in our approach we fit to the probability of moving to a final state

given an initial state. This means that since there is still sufficient data to find a

statistically significant effect, homophily cannot confound the results presented in

figure 6.2. Our verbal argument here can be made in a more mathematically precise

manner as shown in appendix C.1.

In summary, we have shown the epidemiological impact of such mood transmission in

a large adolescent population, giving statistically significant evidence for spreading

of healthy mood, but not for spreading of depressive symptoms. Once discovered,

this behaviour is in fact plausible through a number of mechanisms. Depression has
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been associated with social withdrawal [227], and so depressed individuals would be

expected to exert less social influence than adolescents with healthy mood. However,

each individual may need sufficient exposure to others with a healthy mood in order

to stay well, or become well if depressed. In support of this, there is evidence from

psychology of mechanisms by which mood is transmitted between people. Auto-

matic transmission of mood between people has been demonstrated [228]. Further,

unconscious mimicry enhances social rapport [229], while those feeling positive to-

wards the person with whom they are interacting socially are more likely to mimic

and so build rapport [230], thus giving the opportunity for transmission of healthy

mood. People who are (or have a tendency to be) depressed are less able to maintain

a positive outlook from moment to moment [231], a deficit potentially compensated

by interaction with healthy friends.

The static network measures provide indirect evidence of spreading of healthy mood

through analysis of clustering. It shows that the no-transmission model is signifi-

cantly different from the observed data, while the data and N-transmits model are

in agreement. Such clustering, while supportive of a transmission effect, can have

other causes and so we recommend that future empirical work measures changes in

mood over time where possible.

Our results offer implications for improving adolescent mood. In particular, they

suggest the hypothesis that enabling networks of friendship between adolescents has

the potential to reduce both incidence and prevalence of depression. Our complex

contagion model suggests that adolescents with five or more healthy friends have

half the probability of becoming depressed over a 6-12 month period compared with

adolescents with no healthy friends, and that adolescents with 10 healthy friends

have double the probability of recovering from depressive symptoms over a 6-12

month period compared with adolescents with three healthy friends. If such an

effect were demonstrated in an intervention study it would massively outperform

existing interventions.
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Conclusion and Outlook

In this thesis we have outlined our extensions to pre-existing epidemiological mod-

els, in addition to our development of novel mathematical modelling frameworks to

be utilised in this field. These were applied to two epidemiological problems that

greatly afflict public health; zoonotic influenza and depression. Our goal was to in-

crease understanding of the mechanistic processes and determinants that drive these

diseases and disorders, in addition to providing insights into how best to prevent

and/or treat them.

In chapter 2, we stressed the need for building upon pre-existing mathematical

modelling frameworks, in addition to developing new ones, to better capture the

dynamics of the epidemiological problems of interest in this work. In particular,

for zoonotic influenza there is a lack of specific, mechanistic frameworks with cross-

species spillover transmission included, while studies of possible social contagion

mechanisms require model concepts capable of distinguishing between transmission

and non-transmission mechanisms. We also outlined here the array of parameter

inference and simulation techniques that would be used to parameterise our mod-

els, verify their compatibility with the information available and, where appropri-

ate, make predictions on the likely repercussions of imposing particular prevention

and/or intervention strategies for the health-related event of interest, thus fulfilling

each part of the mathematical modelling cycle (figure 1.1).

A question of ongoing concern is determining the regions that are likely sources

of newly emerging influenza strains with pandemic causing potential. A suitable

candidate is Bangladesh, due to being one of the most densely populated countries

in the world and having an intensifying farming system. One particular subtype of

154
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HPAI that is poses a persistent public health threat with the capability of causing

infection in humans with a high mortality rate, in addition to negatively impacting

the livestock industry, is H5N1. It is therefore vital to establish the key factors for

this subtype, specific to Bangladesh, that enable both continued transmission within

poultry and spillover across the human-animal interface. In chapter 3 we developed

and statistically fitted using a Bayesian inference scheme a modelling framework,

consisting of a poultry transmission component and a zoonotic transmission com-

ponent, to two H5N1 epidemics in the Dhaka region of Bangladesh (occurring from

2007 onwards). Analysis of our fitted models revealed a consistent outcome of non-

optimal reporting of infected premises in each poultry epidemic of interest, while the

zoonotic transmission component found the main contributor to spillover transmis-

sion differed from one poultry epidemic to another. This indicated that shortening

delays in reporting infected poultry premises, alongside reducing contact between

humans and poultry, may help reduce risk to human health.

Furthermore, simulation-based goodness-of-fit assessments unveiled that the success-

ful identification of a poultry-to-poultry transmission model of minimal complexity

to capture the size and spatial distribution of the outbreaks depended on the ad-

ministration level being analysed.

Resolving the key transmission-dynamic mechanisms and risk factors behind histor-

ical disease epidemics can then inform what should be done in a future outbreak.

We applied, in chapter 4, our previously fitted H5N1 influenza transmission mod-

els to examine how H5N1 disease management actions within the Dhaka division

of Bangladesh should be prioritised and implemented when having to account for

resource availability. In this exploratory analysis we highlighted how intervention

selection may be influenced based on whether it is believed transmission is predomi-

nately premises-to-premises, allowing other factors to be omitted, or if importations

and other external factors should be taken into account. Crucially, proactive active

surveillance can seemingly reduce the scale and duration of an outbreak in either

case. For the latter, in situations where transmission between premises is weak the

enforcement of control measures not directly applied to poultry flocks themselves

(e.g. public awareness campaigns) can dramatically cut the risk of spillover transmis-

sion of zoonotic influenza at the poultry-human interface taking place, leading to a

reduction in H5N1 human case occurrence. To enhance control policy impactfulness,

the suggestion is that much more attention should be directed towards identifying

ways in which intervention efforts can be targeted and tailored to combat the trans-
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mission dynamics specific to the outbreak, while also accounting for the availability

of resources to ensure the chosen intervention measure can be capably implemented.

While the spillover of influenza strains with pandemic potential at the human-animal

interface initially arises at a localised scale, such events pose a great risk to the health

of the public at a global level. Understanding the biological mechanisms behind the

appearance of strains that successfully cause global pandemics may subsequently

help inform the type of interventions that would have the greatest impact in reduc-

ing the risk of pandemic emergence. To this end, we analysed in chapter 5 the

time periods between influenza pandemics since 1700 under different assumptions

to determine whether the emergence of new pandemic strains is a memoryless or

history-dependent process. Under a Bayesian model selection approach, eight out

of nine sets of modelling assumptions gave support to the hypothesis of history-

dependence. Although the approach we took relies on limited data, so is uncertain,

it provides cheap, safe and direct evidence relating to pandemic emergence, a field

where indirect measurements are often made at great risk and cost. In addition,

we performed forward simulations using our fitted models and showed a high level

of variability in the predicted number of pandemics from 2010-2110 across all mod-

elling assumptions. Reductions in this uncertainty may occur as the legitimacy of

disputed historic influenza pandemics is clarified.

In addition to infectious diseases, a growing affliction upon the health of modern so-

ciety are non-communicable diseases that are linked to modifiable behaviours. This

encompasses mental disorders such as depression, which is a major public health

concern worldwide. There is evidence that social support and befriending influence

mental health, and an improved understanding of the social processes that drive

depression has the potential to bring significant public health benefits. The possible

spread of behavioural-linked health problems, such as depression, are amenable to

being represented and analysed with methodological approaches typically used to

model infectious disease epidemics. Thus, in chapter 6 we investigated whether

there was evidence for transmission of mood on a school friendship network of ado-

lescents, constructing a model framework with the flexibility of making no prior

assumption as to whether it is low mood or healthy mood that spreads. We ad-

ditionally utilised the dynamical behaviour of mood over time, with such an ap-

proach letting us distinguish directly between transmission and no transmission.

We showed that while depression does not spread, healthy mood among friends is

associated with significantly reduced risk of developing and increased chance of re-
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covering from depression. In particular, the spreading of healthy mood could be

captured using a non-linear complex contagion model. These findings suggest that

promotion of friendship between adolescents can reduce both incidence and preva-

lence of depression.

The future directions we could take this research are wide-ranging, with a limited

selection outlined here. We can extend our H5N1 model framework by incorporat-

ing additional complexity. Specific goals include treating layer and broiler poultry

separately, explicitly incorporating live bird markets into the model framework, and

the development of a spatially dependent zoonotic transmission component. We can

then study whether proposed models incorporating these additional factors provide

an improved fit to historical outbreaks. Our H5N1 influenza model framework may

also be adapted and applied to other regions and/or strains, with H7N9 in China

being a possible example. Furthermore, such additions to the model framework

would let use explore the benefits and drawbacks of novel schemes for optimal in-

tervention. Directions to pursue include accounting specifically for the role of live

bird markets, the impact of intensification in farming practices, and exploring the

relationship between control compliance and intervention effectiveness through the

incorporation of opinion dynamics.

On the analysis of waiting times between influenza pandemics, as a definitive his-

tory of historic influenza pandemics is established we can refit our models to the

available data. Subsequently, we may attempt to make quantitative predictions of

the likelihood of a pandemic outbreak occurring within a specified period of time.

Research into mathematical modelling of social contagion may be taken forward in a

couple of ways. The first is using the model framework to investigate whether there

is evidence for other behaviour-linked health problems spreading in a contagion-like

manner. We note that undertaking such analyses requires the availability of a suit-

able longitudinal dataset tracking the trait of interest, plus information on the social

network. The second direction is further development of the mathematical tools to

study such questions. While our work focused on a binary variable, a natural ex-

tension would be considering cases where more than two states are possible.

While there is still much to be done we have made contributory steps in a broad

range of epidemiological topics, and we will endeavour to continue to help inform

these goals going forward.
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Appendix to chapter 3

A.1 Additional tables

Table A.1: Comparison of DIC values for the district datasets fitted to
our models with various fixed infected to reporting times. For each model,
the minimum DIC value across all possible infected to reporting times is highlighted
in bold.

Epidemic Inf. to rep. Model Model Model

dates time A B C

Wave 2 Region 2 days 421.5 418.7 433.5

4 days 419.5 419.1 439.1

7 days 413.8 410.8 409.3

Country 2 days 446.7 436.6 429.2

4 days 444.1 437.3 434.9

7 days 430.0 423.3 413.0

Wave 5 Region 2 days 451.9 452.6 470.4

4 days 450.1 448.2 466.4

7 days 444.6 438.7 452.8

Country 2 days 462.9 461.6 473.6

4 days 458.6 455.9 466.1

7 days 449.7 443.4 452.9
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Table A.2: Comparison of DIC values for the division datasets fitted to
our models with various fixed infected to reporting times. For each model,
the minimum DIC value across all possible infected to reporting times is highlighted
in bold.

Epidemic Inf. to rep. Model Model Model

dates time A B C

Wave 2 Region 2 days 2156.2 2149.6 2105.2

4 days 2150.3 2144.2 2104.6

7 days 2148.9 2142.1 2100.5

Country 2 days 2167.3 2158.3 2115.4

4 days 2159.9 2152.7 2110.6

7 days 2157.2 2149.1 2104.9

Wave 5 Region 2 days 1574.5 1543.5 1538.9

4 days 1566.8 1521.1 1511.5

7 days 1557.5 1503.5 1499.9

Table A.3: DIC values for the different data sets fitted to our nested
models. For each model, the fixed infected to reporting time that minimised the
DIC was used (see tables A.1 to A.2). The DIC value of the preferred model is
highlighted in bold. Out of the two ecological models (D,E), if one is strongly
preferred over the other (having a DIC value at least 3 lower) it is highlighted in
italics.

Epidemic Model Model Model Model Model

dates A B C D E

Wave 2 district
Region 413.8 410.8 409.3 411.1 408.0

Country 430.0 423.3 413.0 414.4 412.0

Wave 2 division
Region 2148.9 2142.1 2100.5 2107.7 2102.2

Country 2157.2 2149.1 2104.9 2109.1 2106.3

Wave 5 district
Region 444.6 438.7 452.8 443.8 440.2

Country 449.7 443.4 452.9 448.5 444.9

Wave 5 division Region 1557.5 1503.5 1499.9 1506.0 1502.9
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Table A.4: Zoonotic transmission model parameter mean, median and
95% credible intervals (CI) fitted to both Dhaka district and division data
using region specific epidemic dates. Distributions calculated using 4 × 104

samples obtained from MCMC, thinning by a factor of 40 samples with a burn-in
period of 105 steps. Examples of MCMC diagnostic realisations when fitting to the
wave 6 division data are presented in figures A.9 and A.10.

Param. Wave 2 Wave 5 Wave 6

District β Mean 2.56× 10−6 9.15× 10−6 3.58× 10−6

Median 1.92× 10−6 7.72× 10−6 2.52× 10−6

(95% CI) (7.97 ×
10−8,8.64 ×
10−6)

(5.38 ×
10−7,2.61 ×
10−5)

(9.99 ×
10−8,1.30 ×
10−5)

εh Mean 0.0161 0.0229 0.0340

Median 0.0124 0.0176 0.0300

(95% CI) (6.11 ×
10−4,0.0749)

(7.16 ×
10−4,0.0707)

(0.0043,0.0871)

Division β Mean 2.27× 10−7 1.12× 10−6 3.42× 10−7

Median 1.69× 10−7 9.31× 10−7 2.38× 10−7

(95% CI) (6.96 ×
10−9,7.79 ×
10−7)

(5.19 ×
10−8,3.23 ×
10−6)

(9.27 ×
10−9,1.26 ×
10−6)

εh Mean 0.00889 0.0132 0.00780

Median 0.00703 0.0103 0.00710

(95% CI) (3.48 ×
10−4,0.0279)

(4.35 ×
10−4,0.0425)

(0.0019,0.0176)
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A.2 Transmission kernel figures
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Figure A.1: Baseline model (model A) transmission kernel. The transmis-
sion kernel K as a function of distance (d), derived from the Dhaka division poultry
case data using the following procedure. For each infected premises we found the
nearest premises that was infected within the previous two days before that farm
was reported. The distance between the infecting premises and the newly infected
premises was calculated, with the process repeated for each infected premises.
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Figure A.2: Preferred district level model transmission kernels when fit-
ting to country-wide epidemic dates. The transmission kernel K as a function
of distance (d) for each of the district level models, using the median α parameter
values inferred when performing the MCMC fitting procedure using country-wide
epidemic dates (see table 3.5). The transmission kernel profiles exhibit similar char-
acteristics across both epidemics waves. Comparable kernels were obtained when
fitting to the district level data using region-specific epidemic dates.
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Figure A.3: Preferred division level dataset transmission kernels. The
transmission kernel K as a function of distance (d) for each of the division level
datasets, using the inferred median α parameter values (see table 3.6). The es-
timated transmission kernel for the wave 5 division dataset (blue dashed line)
strongly preferred short-range transmission, while the kernels for both wave 2 divi-
sion datasets attributed a higher relative likelihood to transmission events between
premises separated by distances in excess of 10km (region-specific epidemic dates
denoted by the red solid line, country-wide epidemic dates denoted by the red dotted
line).
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A.3 MCMC diagnostics
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Figure A.4: MCMC scheme parameter trace and autocorrelation plots
for poultry transmission model B fitted to the wave 5 district dataset
using region-specific dates. Run for 106 iterations (ignoring a burn-in period of
105 steps), with these replicates thinned by a factor of 100 (to lower autocorrelation
in the parameter chains) giving 104 samples. Top row: log posterior trace plot.
Rows two-four: Trace plots (left column) and autocorrelation plots (right column)
for the model parameters tc (second row), ε (third row) and α (fourth row).
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Figure A.5: Cloud plot for inferred parameter distributions when fitting
poultry transmission model B to the wave 5 district dataset using region-
specific dates. Histograms along the main diagonal panels give the proportion of
parameter samples (generated via the MCMC scheme) within the specific bins. Off
diagonal panels give two-dimensional histograms showing the density distribution
of the data when plotted against one another, with lighter colours corresponding to
higher densities.
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Figure A.6: MCMC scheme parameter trace plots for poultry transmis-
sion model C fitted to the wave 5 division dataset. Run for 4×105 iterations
(ignoring a burn-in period of 105 steps), with these replicates thinned by a factor
of 100 (to lower autocorrelation in the parameter chains) giving 4 × 103 samples.
Trace plots are as follows: log posterior, tc, ε, α, p and q.
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Figure A.7: MCMC scheme parameter autocorrelation plots for poultry
transmission model C fitted to the wave 5 division dataset. Run for 4×105

iterations (ignoring a burn-in period of 105 steps), with these replicates thinned by
a factor of 100 (to lower autocorrelation in the parameter chains) giving 4 × 103

samples. Plots are as follows: log posterior trace plot, autocorrelation plots for
model parameters tc, ε, α, p and q.



167 A.3. MCMC diagnostics

10
-11

10
-10

10
-9

0

0.05

0.1

t c

0 1 2

10
-5

0

2

4
10

-10

-0.2 0 0.2
0

2

4
10

-10

0.5 1 1.5
0

2

4
10

-10

1 1.5
0

2

4
10

-10

0 2 4

10
-10

0

1

2
10

-5

0 1 2

10
-5

0

0.05

0.1

-0.2 0 0.2
0

1

2
10

-5

0.5 1 1.5
0

1

2
10

-5

1 1.5
0

1

2
10

-5

0 2 4

10
-10

-0.2

0

0.2

0 1 2

10
-5

-0.2

0

0.2

-0.2 0 0.2
0

0.05

0.1

0.5 1 1.5

-0.2

0

0.2

1 1.5

-0.2

0

0.2

0 2 4

10
-10

0.5

1

1.5

p

0 1 2

10
-5

0.5

1

1.5

-0.2 0 0.2
0.5

1

1.5

0.5 1 1.5
0

0.05

0.1

1 1.5
0.5

1

1.5

0 2 4

t
c

10
-10

1

1.5

q

0 1 2

10
-5

1

1.5

-0.2 0 0.2

1

1.5

0.5 1 1.5

p

1

1.5

1 1.5

q

0

0.05

0.1

Figure A.8: Cloud plot for inferred parameter distributions when fitting
poultry transmission model C to the wave 5 division dataset. Histograms
along the main diagonal panels give the proportion of parameter samples (generated
via the MCMC scheme) within the specific bins. Off diagonal panels give two-
dimensional histograms showing the density distribution of the data when plotted
against one another, with lighter colours corresponding to higher densities.
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Figure A.9: MCMC scheme parameter trace and autocorrelation plots for
the zoonotic transmission model fitted to the wave 6 division dataset. Run
for 1.6×106 iterations (ignoring a burn-in period of 105 steps), with these replicates
thinned by a factor of 40 (to lower autocorrelation in the parameter chains) giving
4×104 samples. Top row: log posterior trace plot. Rows two-three: Trace plots
(left column) and autocorrelation plots (right column) for the model parameters β
(second row) and εh (third row).
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Figure A.10: Cloud plot for the zoonotic transmission model parameters
inferred when fitting to the wave 6 division dataset. Histograms along the
main diagonal panels give the proportion of parameter samples (generated via the
MCMC scheme) within the specified bins. Off diagonal panels give two-dimensional
histograms showing the density distribution of the data when plotted against one
another, with lighter colours corresponding to higher densities.
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B.1 Additional tables

Table B.1: Ring culling range to optimise control objectives with respect
to district of outbreak origin (seed district) and capacity setting, under
wave 2 type transmission dynamics. For each combination of control capacity
level, district of outbreak origin and control objective 1,000 simulation runs were
performed. The two control objectives were minimising average outbreak duration
and minimising the probability of an epidemic. Infected premises culling only (with
no additional ring culling) being selected as the optimal strategy is denoted by —.

Seed district Capacity setting

Objective ID Name Low Medium High

Average 1 Jamalpur 2 km 3 km 7 km

duration 2 Sherpur 1 km 6 km 7 km

3 Nasirabad 2 km 7 km 8 km

4 Netrakona 1 km 7 km 4 km

5 Tangail 2 km 2 km 4 km

6 Gazipur 8 km 3 km 4 km

7 Kishoreganj 1 km 3 km 3 km

8 Narshingdi 2 km 3 km 4 km

9 Manikgonj 1 km 1 km 5 km

10 Dhaka 3 km 4 km 5 km

11 Naray Angonj 1 km 4 km 5 km

12 Munshigonj 1 km 7 km 6 km

13 Rajbari (west) 2 km 1 km 6 km

Continued on next page
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Table B.1: Continued from previous page

Seed district Capacity setting

Objective ID Name Low Medium High

14 Rajbari (east) 1 km 4 km 7 km

15 Faridpur 1 km 3 km 7 km

16 Gopalgonj 1 km 1 km 4 km

17 Madaripur 1 km 2 km 6 km

18 Shariatpur 2 km 3 km 5 km

Epidemic 1 Jamalpur 1 km 2 km 2 km

probability 2 Sherpur 1 km 1 km 2 km

3 Nasirabad 2 km 7 km 8 km

4 Netrakona 1 km 1 km 3 km

5 Tangail 1 km 5 km 5 km

6 Gazipur 1 km 3 km 5 km

7 Kishoreganj 1 km 3 km 5 km

8 Narshingdi 2 km 3 km 5 km

9 Manikgonj 1 km 1 km 6 km

10 Dhaka 3 km 5 km 7 km

11 Naray Angonj 6 km 4 km 7 km

12 Munshigonj 2 km 1 km 7 km

13 Rajbari (west) 1 km 2 km 2 km

14 Rajbari (east) 1 km 2 km 10 km

15 Faridpur 1 km 2 km 2 km

16 Gopalgonj 1 km 1 km 3 km

17 Madaripur 1 km 2 km 2 km

18 Shariatpur 2 km 2 km 3 km
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Table B.2: Ring vaccination range to optimise control objectives with
respect to district of outbreak origin (seed district) and capacity setting,
under wave 2 type transmission dynamics. For each combination of control
capacity level, district of outbreak origin and control objective 1,000 simulation
runs were performed. The two control objectives were minimising average outbreak
duration and minimising the probability of an epidemic. Infected premises culling
only (with no ring vaccination) being selected as the optimal strategy is denoted by
—.

Seed district Capacity setting

Objective ID Name Low Medium High

Average 1 Jamalpur 8 km 10 km 9 km

duration 2 Sherpur 3 km 4 km 9 km

3 Nasirabad 7 km 10 km 9 km

4 Netrakona 10 km 10 km 9 km

5 Tangail 8 km 8 km 10 km

6 Gazipur 4 km 3 km 4 km

7 Kishoreganj 9 km 8 km 9 km

8 Narshingdi 9 km 10 km 6 km

9 Manikgonj 8 km 4 km 9 km

10 Dhaka 3 km 8 km 9 km

11 Naray Angonj 3 km 4 km 10 km

12 Munshigonj 10 km 5 km 8 km

13 Rajbari (west) 9 km 10 km 10 km

14 Rajbari (east) 3 km 6 km 10 km

15 Faridpur 8 km 6 km 9 km

16 Gopalgonj 8 km 9 km 9 km

17 Madaripur 3 km 3 km 9 km

18 Shariatpur 3 km 9 km 10 km

Epidemic 1 Jamalpur 2 km 8 km 8 km

probability 2 Sherpur 3 km 8 km 9 km

3 Nasirabad 6 km 6 km 9 km

4 Netrakona 2 km 4 km 9 km

5 Tangail 9 km 10 km 5 km

6 Gazipur — 3 km 5 km

7 Kishoreganj 10 km 8 km 9 km

8 Narshingdi 8 km 8 km 10 km

9 Manikgonj 3 km 3 km 3 km

Continued on next page
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Table B.2: Continued from previous page

Seed district Capacity setting

Objective ID Name Low Medium High

10 Dhaka 1 km 10 km 8 km

11 Naray Angonj 2 km 3 km 8 km

12 Munshigonj 2 km 9 km 5 km

13 Rajbari (west) 6 km 7 km 7 km

14 Rajbari (east) 7 km 7 km 10 km

15 Faridpur 2 km 4 km 9 km

16 Gopalgonj — — 8 km

17 Madaripur 7 km 3 km 8 km

18 Shariatpur 2 km 3 km 7 km

Table B.3: Culling and vaccination ring ranges to minimise probability
of a widespread outbreak, for wave 5 transmission model with a high
control capacity. For each combination of intervention method and district of
outbreak origin (seed district) 1,000 simulation runs were performed. We use —
to denote when solely culling infected premises was determined to be the optimal
strategy.

Seed district Control method

ID Name Culling Vacc.

1 Jamalpur 8 km —

2 Sherpur 8 km —

3 Nasirabad 8 km —

4 Netrakona 8 km —

5 Tangail 1 km 3 km

6 Gazipur 5 km 7 km

7 Kishoreganj 1 km 8 km

8 Narshingdi 2 km 3 km

9 Manikgonj 1 km —

10 Dhaka 8 km 1 km

11 Naray Angonj 3 km 2 km

12 Munshigonj 8 km 5 km

13 Rajbari (west) 2 km —

14 Rajbari (east) 10 km —

15 Faridpur 8 km —

Continued on next page
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Table B.3: Continued from previous page

Seed district Control method

ID Name Culling Vacc.

16 Gopalgonj 7 km —

17 Madaripur 1 km —

18 Shariatpur 2 km —

Table B.4: Average outbreak duration for wave 2 type transmission dy-
namics under different active surveillance strategies, stratified by the dis-
trict where the outbreak originated. For each combination of capacity setting,
district of outbreak origin (seed district) and active surveillance strategy the value
displayed was obtained by averaging over 1,000 simulation runs. The strategy that
optimises the objective (minisming the expected outbreak duration) is highlighted
in bold. All duration values are given to 1 d.p in units of days, with percentages
given to 2 s.f.

Seed district Active surveillance strategy

Capacity ID Name None A B C D Red.

Low 1 Jamalpur 14.9 14.8 14.7 11.4 14.5 24%

2 Sherpur 14.5 14.4 14.3 11.3 13.5 22%

3 Nasirabad 17.0 16.8 16.8 12.3 16.3 28%

4 Netrakona 14.6 14.4 14.4 11.5 14.2 22%

5 Tangail 16.8 16.4 16.4 12.4 15.7 26%

6 Gazipur 19.5 19.3 19.3 13.4 18.2 31%

7 Kishoreganj 17.1 16.7 16.7 12.5 16.4 27%

8 Narshingdi 18.7 18.2 18.2 13.8 16.4 27%

9 Manikgonj 16.7 16.3 16.2 11.8 15.9 29%

10 Dhaka 17.6 17.0 16.8 12.7 15.7 28%

11 Naray Angonj 18.1 17.4 17.2 13.5 14.1 26%

12 Munshigonj 16.0 15.6 15.5 12.0 15.0 25%

13 Rajbari (west) 14.3 14.3 14.3 11.0 13.9 23%

14 Rajbari (east) 14.9 14.7 14.7 11.4 14.4 24%

15 Faridpur 14.4 14.2 14.2 10.9 13.8 24%

16 Gopalgonj 13.6 13.5 13.5 10.6 13.1 22%

17 Madaripur 14.3 14.0 14.0 10.5 13.7 26%

18 Shariatpur 14.3 14.1 14.1 11.1 13.7 22%

Medium 1 Jamalpur 14.9 14.7 14.7 10.2 13.9 32%

2 Sherpur 14.5 14.3 14.3 10.5 12.1 28%

Continued on next page
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Table B.4: Continued from previous page

Seed district Active surveillance strategy

Capacity ID Name None A B C D Red.

3 Nasirabad 17.0 16.7 16.7 11.4 15.3 33%

4 Netrakona 14.6 14.4 14.4 10.6 13.7 28%

5 Tangail 16.8 16.4 16.4 11.4 15.1 32%

6 Gazipur 19.4 19.1 19.1 12.2 16.6 37%

7 Kishoreganj 17.0 16.6 16.6 11.1 15.5 35%

8 Narshingdi 18.7 18.2 18.2 12.9 14.0 31%

9 Manikgonj 16.7 16.2 16.2 10.5 14.9 37%

10 Dhaka 17.5 16.8 16.8 11.6 14.5 34%

11 Naray Angonj 18.0 17.3 17.2 12.0 13.2 33%

12 Munshigonj 15.9 15.6 15.5 10.3 14.4 35%

13 Rajbari (west) 14.3 14.2 14.2 10.2 13.4 29%

14 Rajbari (east) 14.9 14.6 14.6 10.3 13.8 31%

15 Faridpur 14.4 14.1 14.1 10.2 13.4 29%

16 Gopalgonj 13.6 13.4 13.4 9.9 12.7 27%

17 Madaripur 14.2 14.0 14.0 9.8 13.3 31%

18 Shariatpur 14.3 14.1 14.0 10.3 13.3 28%

High 1 Jamalpur 14.9 14.7 14.7 8.4 11.9 44%

2 Sherpur 14.5 14.3 14.3 9.2 10.4 36%

3 Nasirabad 16.9 16.6 16.6 9.9 12.9 42%

4 Netrakona 14.6 14.3 14.3 9.1 12.4 37%

5 Tangail 16.8 16.4 16.4 9.5 12.9 44%

6 Gazipur 19.4 19.1 19.1 9.9 13.0 49%

7 Kishoreganj 17.0 16.6 16.6 8.8 13.4 48%

8 Narshingdi 18.7 18.1 18.1 10.5 10.0 46%

9 Manikgonj 16.7 16.2 16.2 8.2 12.5 51%

10 Dhaka 17.5 16.8 16.8 9.2 11.8 47%

11 Naray Angonj 18.0 17.2 17.2 9.8 10.7 46%

12 Munshigonj 15.9 15.5 15.5 8.1 13.1 49%

13 Rajbari (west) 14.3 14.1 14.1 9.1 11.9 37%

14 Rajbari (east) 14.8 14.6 14.6 9.1 12.6 39%

15 Faridpur 14.4 14.1 14.1 9.0 12.1 37%

16 Gopalgonj 13.6 13.4 13.4 8.8 11.6 35%

17 Madaripur 14.2 13.9 13.9 8.5 12.0 40%

Continued on next page
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Table B.4: Continued from previous page

Seed district Active surveillance strategy

Capacity ID Name None A B C D Red.

18 Shariatpur 14.2 14.0 14.0 9.2 11.3 35%

Active surveillance strategy legend:

A - reactive by distance,

B - reactive by population,

C - proactive by population,

D - proactive by density,

Red. - Percentage decrease in average outbreak duration using preferred active

surveillance scheme compared to when no active surveillance is imposed.

Table B.5: Epidemic probabilites for wave 2 type transmission dynam-
ics under different active surveillance strategies, stratified by the district
where the outbreak originated. For each combination of capacity setting, dis-
trict of outbreak origin (seed district) and active surveillance strategy the value
displayed was obtained by averaging over 1,000 simulation runs. The strategy that
optimises the objective (minisming the probability of an epidemic) is highlighted in
bold. All probabilities are given to 3 d.p., with percentages given to 2 s.f.

Seed district Active surveillance strategy

Capacity ID Name None A B C D Red.

Low 1 Jamalpur 0.065 0.062 0.060 0.012 0.056 82%

2 Sherpur 0.055 0.050 0.050 0.010 0.046 82%

3 Nasirabad 0.103 0.098 0.098 0.023 0.092 78%

4 Netrakona 0.065 0.059 0.059 0.012 0.060 82%

5 Tangail 0.099 0.091 0.091 0.024 0.081 76%

6 Gazipur 0.155 0.152 0.151 0.039 0.130 75%

7 Kishoreganj 0.110 0.105 0.104 0.022 0.096 80%

8 Narshingdi 0.138 0.130 0.130 0.040 0.108 71%

9 Manikgonj 0.096 0.086 0.085 0.018 0.078 81%

10 Dhaka 0.111 0.104 0.102 0.030 0.082 73%

11 Naray Angonj 0.122 0.115 0.112 0.041 0.073 66%

12 Munshigonj 0.077 0.072 0.070 0.018 0.066 77%

13 Rajbari (west) 0.058 0.056 0.054 0.011 0.051 81%

14 Rajbari (east) 0.063 0.059 0.057 0.013 0.056 79%

15 Faridpur 0.058 0.054 0.053 0.009 0.051 84%

Continued on next page
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Table B.5: Continued from previous page

Seed district Active surveillance strategy

Capacity ID Name None A B C D Red.

16 Gopalgonj 0.047 0.044 0.045 0.008 0.041 83%

17 Madaripur 0.056 0.050 0.050 0.005 0.048 91%

18 Shariatpur 0.056 0.052 0.052 0.009 0.051 84%

Medium 1 Jamalpur 0.065 0.059 0.060 0.007 0.047 89%

2 Sherpur 0.055 0.050 0.050 0.006 0.035 89%

3 Nasirabad 0.102 0.096 0.096 0.011 0.075 89%

4 Netrakona 0.065 0.058 0.059 0.006 0.049 91%

5 Tangail 0.099 0.091 0.091 0.014 0.067 86%

6 Gazipur 0.155 0.150 0.150 0.024 0.100 85%

7 Kishoreganj 0.110 0.103 0.103 0.013 0.079 88%

8 Narshingdi 0.138 0.130 0.130 0.025 0.080 82%

9 Manikgonj 0.096 0.085 0.085 0.011 0.066 89%

10 Dhaka 0.110 0.101 0.101 0.019 0.066 83%

11 Naray Angonj 0.122 0.114 0.112 0.021 0.058 83%

12 Munshigonj 0.076 0.069 0.069 0.008 0.054 89%

13 Rajbari (west) 0.058 0.054 0.054 0.006 0.043 90%

14 Rajbari (east) 0.063 0.057 0.057 0.005 0.047 92%

15 Faridpur 0.058 0.052 0.053 0.005 0.044 91%

16 Gopalgonj 0.047 0.043 0.044 0.003 0.036 94%

17 Madaripur 0.056 0.049 0.050 0.003 0.040 95%

18 Shariatpur 0.056 0.052 0.052 0.004 0.042 93%

High 1 Jamalpur 0.065 0.059 0.059 0.001 0.024 98%

2 Sherpur 0.055 0.050 0.050 0.002 0.018 96%

3 Nasirabad 0.102 0.094 0.094 0.002 0.044 98%

4 Netrakona 0.065 0.058 0.058 0.001 0.028 98%

5 Tangail 0.099 0.091 0.091 0.002 0.036 98%

6 Gazipur 0.154 0.149 0.149 0.005 0.047 97%

7 Kishoreganj 0.109 0.103 0.103 0.004 0.047 96%

8 Narshingdi 0.137 0.129 0.129 0.008 0.035 94%

9 Manikgonj 0.096 0.085 0.085 0.001 0.038 99%

10 Dhaka 0.110 0.101 0.101 0.002 0.037 98%

11 Naray Angonj 0.121 0.112 0.112 0.003 0.026 98%

12 Munshigonj 0.076 0.069 0.069 0.001 0.034 99%

Continued on next page
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Table B.5: Continued from previous page

Seed district Active surveillance strategy

Capacity ID Name None A B C D Red.

13 Rajbari (west) 0.058 0.053 0.053 0.001 0.031 98%

14 Rajbari (east) 0.063 0.057 0.057 0.001 0.032 98%

15 Faridpur 0.058 0.052 0.052 0.001 0.029 98%

16 Gopalgonj 0.047 0.043 0.043 0.001 0.024 98%

17 Madaripur 0.056 0.049 0.050 0.001 0.026 98%

18 Shariatpur 0.056 0.052 0.052 0.001 0.025 98%

Active surveillance strategy legend:

A - reactive by distance,

B - reactive by population,

C - proactive by population,

D - proactive by density,

Red. - Percentage decrease in epidemic probability using preferred active

surveillance scheme compared to when no active surveillance is imposed.

Table B.6: Average outbreak duration for wave 5 type transmission dy-
namics under different active surveillance strategies, stratified by the
district where the outbreak originated. For each combination of capacity set-
ting, district of outbreak origin (seed district) and active surveillance strategy the
value displayed was obtained by averaging over a minimum of 300 simulation runs.
The strategy that optimises the objective (minisming the expected outbreak dura-
tion) is highlighted in bold. All duration values are given to 1 d.p. in units of days,
with percentages given to 2 s.f.

Seed district Active surveillance strategy

Capacity ID Name None A B C D Red.

Low 1 Jamalpur 98.6 95.5 95.4 61.6 96.5 37%

2 Sherpur 51.8 51.6 51.6 36.2 49.4 30%

3 Nasirabad 159.1 156.1 156.1 99.5 157.0 37%

4 Netrakona 59.6 59.5 59.5 40.1 58.6 33%

5 Tangail 138.4 132.5 132.5 87.2 131.4 45%

6 Gazipur 304.1 282.5 282.4 168.6 282.2 45%

7 Kishoreganj 158.9 156.8 156.7 87.6 152.8 45%

8 Narshingdi 135.7 129.7 129.7 76.9 121.4 43%

9 Manikgonj 185.2 177.2 177.2 77.3 177.3 58%

Continued on next page
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Table B.6: Continued from previous page

Seed district Active surveillance strategy

Capacity ID Name None A B C D Red.

10 Dhaka 177.2 165.0 165.1 77.3 149.5 56%

11 Naray Angonj 166.0 138.3 136.4 83.3 106.0 50%

12 Munshigonj 87.1 84.1 84.1 50.4 84.1 42%

13 Rajbari (west) 53.9 52.9 52.9 28.5 53.9 47%

14 Rajbari (east) 51.0 50.1 50.0 32.4 48.0 37%

15 Faridpur 62.5 61.6 61.6 30.4 61.5 51%

16 Gopalgonj 23.6 23.5 23.5 15.8 23.6 33%

17 Madaripur 63.6 61.5 61.5 28.5 62.5 55%

18 Shariatpur 26.6 25.6 25.6 17.8 26.6 33%

Medium 1 Jamalpur 43.4 41.9 41.9 20.7 41.9 52%

2 Sherpur 24.6 24.3 24.3 16.0 22.4 35%

3 Nasirabad 66.8 64.9 65.9 38.0 64.7 43%

4 Netrakona 28.0 28.0 27.8 15.6 27.3 44%

5 Tangail 58.9 56.3 56.3 31.2 54.5 47%

6 Gazipur 118.9 118.7 117.7 57.7 113.5 52%

7 Kishoreganj 66.6 67.6 67.1 29.5 61.0 56%

8 Narshingdi 58.1 55.4 55.4 28.8 42.3 50%

9 Manikgonj 78.0 74.0 73.7 25.6 69.4 67%

10 Dhaka 74.6 70.9 71.3 29.5 58.3 60%

11 Naray Angonj 70.3 57.6 57.5 31.3 43.0 55%

12 Munshigonj 39.0 37.5 37.5 18.3 35.9 53%

13 Rajbari (west) 25.8 25.4 25.3 12.4 25.6 52%

14 Rajbari (east) 24.7 24.2 24.2 13.4 23.4 46%

15 Faridpur 29.4 28.8 28.8 15.1 28.7 49%

16 Gopalgonj 13.6 13.5 13.5 9.7 13.5 28%

17 Madaripur 29.8 28.8 28.8 13.5 29.2 55%

18 Shariatpur 14.9 14.4 14.4 9.9 14.7 34%

High 1 Jamalpur 21.8 20.8 20.8 9.0 16.4 59%

2 Sherpur 14.1 13.8 13.8 8.8 11.2 38%

3 Nasirabad 29.8 28.4 28.4 12.1 23.6 59%

4 Netrakona 15.4 15.1 15.1 8.5 14.0 45%

5 Tangail 27.3 25.8 25.8 10.9 20.6 60%

6 Gazipur 50.5 47.1 46.7 15.8 34.2 69%

Continued on next page
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Table B.6: Continued from previous page

Seed district Active surveillance strategy

Capacity ID Name None A B C D Red.

7 Kishoreganj 30.8 29.5 29.5 10.0 24.7 68%

8 Narshingdi 27.7 26.1 26.1 10.8 14.4 61%

9 Manikgonj 35.3 33.0 33.1 8.8 27.5 75%

10 Dhaka 34.2 31.3 31.3 10.4 21.9 70%

11 Naray Angonj 33.2 27.1 27.1 10.3 16.2 69%

12 Munshigonj 20.1 19.2 19.2 7.9 17.1 61%

13 Rajbari (west) 14.7 14.3 14.3 8.1 12.7 45%

14 Rajbari (east) 14.3 13.9 13.9 8.1 12.9 43%

15 Faridpur 16.2 15.7 15.7 8.3 14.6 49%

16 Gopalgonj 9.5 9.4 9.4 7.4 9.1 22%

17 Madaripur 16.3 15.7 15.7 8.1 14.6 50%

18 Shariatpur 10.2 9.9 9.9 7.6 8.9 25%

Active surveillance strategy legend:

A - reactive by distance,

B - reactive by population,

C - proactive by population,

D - proactive by density,

Red. - Percentage decrease in average outbreak duration using preferred active

surveillance scheme compared to when no active surveillance is imposed.

Table B.7: Epidemic probabilites for wave 5 type transmission dynam-
ics under different active surveillance strategies, stratified by the district
where the outbreak originated. For each combination of capacity setting, dis-
trict of outbreak origin (seed district) and active surveillance strategy the value
displayed was obtained by averaging over a minimum of 300 simulation runs. The
strategy that optimises the objective (minisming the probability of an epidemic) is
highlighted in bold. All probabilities are given to 3 d.p., with percentages given to
2 s.f.

Seed district Active surveillance strategy

Capacity ID Name None A B C D Red.

Low 1 Jamalpur 0.095 0.093 0.093 0.058 0.093 39%

2 Sherpur 0.046 0.046 0.046 0.030 0.044 35%

3 Nasirabad 0.161 0.157 0.157 0.100 0.159 38%

Continued on next page
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Table B.7: Continued from previous page

Seed district Active surveillance strategy

Capacity ID Name None A B C D Red.

4 Netrakona 0.055 0.055 0.055 0.035 0.054 36%

5 Tangail 0.138 0.133 0.133 0.088 0.131 36%

6 Gazipur 0.317 0.304 0.295 0.176 0.291 44%

7 Kishoreganj 0.162 0.159 0.159 0.090 0.156 44%

8 Narshingdi 0.135 0.129 0.129 0.076 0.121 44%

9 Manikgonj 0.192 0.181 0.182 0.080 0.183 58%

10 Dhaka 0.179 0.168 0.168 0.075 0.151 58%

11 Naray Angonj 0.172 0.140 0.138 0.091 0.107 47%

12 Munshigonj 0.083 0.081 0.081 0.047 0.080 43%

13 Rajbari (west) 0.049 0.048 0.048 0.022 0.049 55%

14 Rajbari (east) 0.045 0.044 0.044 0.026 0.042 42%

15 Faridpur 0.059 0.058 0.058 0.025 0.058 58%

16 Gopalgonj 0.017 0.017 0.017 0.009 0.017 47%

17 Madaripur 0.059 0.057 0.057 0.023 0.058 61%

18 Shariatpur 0.020 0.019 0.019 0.011 0.020 45%

Medium 1 Jamalpur 0.094 0.093 0.093 0.040 0.092 58%

2 Sherpur 0.046 0.046 0.046 0.026 0.043 43%

3 Nasirabad 0.161 0.157 0.159 0.095 0.158 41%

4 Netrakona 0.055 0.055 0.055 0.026 0.054 53%

5 Tangail 0.138 0.133 0.133 0.073 0.129 47%

6 Gazipur 0.305 0.311 0.309 0.156 0.291 49%

7 Kishoreganj 0.162 0.165 0.163 0.068 0.150 58%

8 Narshingdi 0.135 0.129 0.129 0.061 0.098 55%

9 Manikgonj 0.192 0.182 0.181 0.054 0.171 72%

10 Dhaka 0.179 0.173 0.174 0.065 0.142 64%

11 Naray Angonj 0.172 0.137 0.137 0.073 0.102 58%

12 Munshigonj 0.083 0.081 0.081 0.033 0.077 60%

13 Rajbari (west) 0.049 0.048 0.048 0.015 0.049 69%

14 Rajbari (east) 0.045 0.044 0.044 0.019 0.042 58%

15 Faridpur 0.059 0.058 0.058 0.023 0.058 61%

16 Gopalgonj 0.017 0.017 0.017 0.008 0.017 53%

17 Madaripur 0.059 0.057 0.057 0.020 0.058 66%

18 Shariatpur 0.020 0.019 0.019 0.080 0.020 60%

Continued on next page
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Table B.7: Continued from previous page

Seed district Active surveillance strategy

Capacity ID Name None A B C D Red.

High 1 Jamalpur 0.095 0.093 0.093 0.029 0.072 69%

2 Sherpur 0.046 0.046 0.046 0.022 0.039 52%

3 Nasirabad 0.161 0.157 0.157 0.069 0.135 57%

4 Netrakona 0.055 0.055 0.055 0.022 0.052 60%

5 Tangail 0.138 0.133 0.133 0.052 0.107 62%

6 Gazipur 0.304 0.298 0.292 0.119 0.220 61%

7 Kishoreganj 0.162 0.159 0.159 0.044 0.139 73%

8 Narshingdi 0.135 0.129 0.129 0.042 0.070 69%

9 Manikgonj 0.192 0.180 0.182 0.031 0.158 84%

10 Dhaka 0.179 0.168 0.168 0.045 0.120 75%

11 Naray Angonj 0.172 0.137 0.137 0.039 0.078 77%

12 Munshigonj 0.083 0.081 0.081 0.024 0.072 71%

13 Rajbari (west) 0.049 0.048 0.048 0.014 0.042 71%

14 Rajbari (east) 0.045 0.044 0.044 0.016 0.040 64%

15 Faridpur 0.059 0.058 0.058 0.017 0.054 71%

16 Gopalgonj 0.017 0.017 0.017 0.007 0.016 59%

17 Madaripur 0.059 0.057 0.057 0.014 0.053 76%

18 Shariatpur 0.020 0.019 0.019 0.007 0.016 65%

Active surveillance strategy legend:

A - reactive by distance,

B - reactive by population,

C - proactive by population,

D - proactive by density,

Red. - Percentage decrease in epidemic probability using preferred active

surveillance scheme compared to when no active surveillance is imposed.
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Table B.8: Predicted probability of outbreak duration t being 90 days
or less for different active surveillance strategies. For each combination of
transmission model, capacity restriction and active surveillance strategy the value
displayed was obtained by averaging over a minimum of 300 simulation runs. For
each model and control capacity combination the strategy that optimises the objec-
tive, having an outbreak duration below 90 days, is highlighted in bold. All values
are given to 2 s.f.

Active surveillance strategy

Transmission model Control capacity None A B C D

Wave 2 Low 0.51 0.50 0.50 0.55 0.53

Medium 0.51 0.50 0.50 0.57 0.55

High 0.51 0.50 0.50 0.61 0.57

Wave 5 Low 0.38 0.40 0.40 0.46 0.38

Medium 0.38 0.40 0.39 0.48 0.41

High 0.38 0.39 0.39 0.58 0.47

Active surveillance strategy legend:

A - reactive by distance,

B - reactive by population,

C - proactive by population,

D - proactive by density.
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Table B.9: Predicted probability of outbreak size I not exceeding 25
premises for different active surveillance strategies. For each combination of
transmission model, capacity restriction and active surveillance strategy the value
displayed was obtained by averaging over a minimum of 300 simulation runs. For
each model and control capacity combination the strategy that optimises the ob-
jective, maximising the likelihood of having an outbreak with 25 premises or less
infected, is highlighted in bold. All values are given to 2 s.f.

Active surveillance strategy

Transmission model Control capacity None A B C D

Wave 2 Low 0.69 0.70 0.70 0.79 0.72

Medium 0.69 0.70 0.70 0.82 0.74

High 0.69 0.70 0.70 0.87 0.81

Wave 5 Low 0.44 0.47 0.47 0.52 0.45

Medium 0.44 0.46 0.46 0.55 0.48

High 0.44 0.45 0.45 0.64 0.53

Active surveillance strategy legend:

A - reactive by distance,

B - reactive by population,

C - proactive by population,

D - proactive by density.
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Table B.10: Mean number of poultry culled under different active surveil-
lance strategies. For each combination of transmission model, capacity restriction
and active surveillance strategy the value displayed was obtained by averaging over a
minimum of 300 simulation runs. For each model and control capacity combination
the strategy that optimises the objective, minimising the mean number of poultry
culled, is highlighted in bold. All values are given to 2 s.f.

Active surveillance strategy

Capacity None A B C D

Wave 2 Low 3.0× 105 2.8× 105 2.7× 105 1.8× 105 2.6× 105

Medium 3.0× 105 2.8× 105 2.7× 105 1.5× 105 2.3× 105

High 3.0× 105 2.7× 105 2.7× 105 1.1× 105 1.7× 105

Wave 5 Low 1.1× 107 1.1× 107 1.1× 107 0.8× 107 1.1× 107

Medium 1.0× 107 1.0× 107 1.0× 107 0.6× 107 0.9× 107

High 6.6× 106 6.2× 106 6.2× 106 1.7× 106 4.8× 106

Active surveillance strategy legend:

A - reactive by distance,

B - reactive by population,

C - proactive by population,

D - proactive by density.

Table B.11: Normalised proportion of runs with at least one human case,
relative to the scenario with unaltered εh values. For each combination of
resource restrictions, transmission model and εh scaling factor the value displayed
was obtained by averaging over 1,000 simulation runs. All values are given to 2 s.f.

% reduction in εh

Control capacity Transmission model 50 75 100

Low Wave 2 0.81 0.68 0.40

Wave 5 0.96 0.87 0.75

Medium Wave 2 0.80 0.67 0.40

Wave 5 0.94 0.84 0.80

High Wave 2 0.81 0.67 0.39

Wave 5 0.95 0.89 0.77
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Table B.12: Normalised mean total of days with human cases, relative
to the scenario with unaltered εh values. For each combination of resource re-
strictions, transmission model and εh scaling factor the value displayed was obtained
by averaging over 1,000 simulation runs. All values are given to 2 s.f.

% reduction in εh

Control capacity Transmission model 50 75 100

Low Wave 2 0.63 0.47 0.27

Wave 5 1.01 0.96 0.95

Medium Wave 2 0.63 0.46 0.27

Wave 5 0.96 0.90 0.98

High Wave 2 0.63 0.45 0.26

Wave 5 0.92 0.99 0.90



187 B.2. Additional figures

B.2 Additional figures

(a)

0 5 10
0.11

0.12

0.13

0.14

0.15

0.16

E
p
id

e
m

ic
 p

ro
b
.

Low capacity

0 5 10
0.11

0.12

0.13

0.14

0.15

0.16
Medium capacity

0 5 10
0.11

0.12

0.13

0.14

0.15

0.16
High capacity

0 5 10

Ring cull size (km)

0.03

0.035

0.04

0.045

0.05

E
p
id

e
m

ic
 p

ro
b
.

0 5 10

Ring cull size (km)

0.03

0.035

0.04

0.045

0.05

0 5 10

Ring cull size (km)

0.03

0.035

0.04

0.045

0.05

Gazipur

Gopalgonj

(b)

0 5 10
0.145

0.15

0.155

0.16

E
p
id

e
m

ic
 p

ro
b
.

Low capacity

0 5 10
0.145

0.15

0.155

0.16
Medium capacity

0 5 10
0.145

0.15

0.155

0.16
High capacity

0 5 10

Ring vacc. size (km)

0.04

0.042

0.044

0.046

0.048

0.05

E
p
id

e
m

ic
 p

ro
b
.

0 5 10

Ring vacc. size (km)

0.04

0.042

0.044

0.046

0.048

0.05

0 5 10

Ring vacc. size (km)

0.04

0.042

0.044

0.046

0.048

0.05

Gazipur

Gopalgonj

Figure B.1: Sensitivity of epidemic probability to intervention ring size
and capacity restrictions, under wave 2 transmission dynamics. For out-
breaks originating in the Gazipur and Gopalgonj districts (for a district locator map
see figure 4.1), the panels show predicted epidemic probability with the following
intervention measure utilised: (a) ring culling; (b) ring vaccination. Larger varia-
tions in this control metric are observed across the range of ring culling sizes tested
compared to ring vaccination. Analogous outcomes were found for outbreaks seeded
in the remaining districts.
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Figure B.2: Sensitivity of outbreak duration to culling ring size and ca-
pacity restrictions, under wave 2 transmission dynamics. For outbreaks
originating in the Gazipur and Gopalgonj districts (for a district locator map see
figure 4.1), the panels are as follows: (a) Average outbreak duration against culling
ring size under each capacity level, with larger variations evident under less restric-
tive capacity levels; (b) 95% prediction intervals (black bars) for outbreak duration
against culling ring size under each capacity level, with median values depicted
by the blue markers and dashed line. Similar ranges are obtained, independent of
capacity level and culling severity. Analogous outcomes were found for outbreaks
seeded in the remaining districts. For each combination of intervention method and
district of outbreak origin 1,000 simulation runs were performed.
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Figure B.3: Sensitivity of outbreak duration to vaccination ring size and
capacity restrictions, under wave 2 transmission dynamics. For outbreaks
originating in the Gazipur and Gopalgonj districts (for a district locator map see
figure 4.1), the panels are as follows: (a) Average outbreak duration against vacci-
nation ring size under each capacity level, with larger variations evident under less
restrictive capacity levels; (b) 95% prediction intervals (black bars) for outbreak
duration against vaccination ring size under each capacity level, with median values
depicted by the blue markers and dashed line. Similar ranges are obtained, indepen-
dent of capacity level and vaccination severity. Analogous outcomes were found for
outbreaks seeded in the remaining districts. For each combination of intervention
method and district of outbreak origin 1,000 simulation runs were performed.
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C.1 Analysis of confounding

C.1.1 Setup

Our aim here is to state in mathematical language what is meant by transmission of

mood, how confounding is possible and not possible. We will do this using pairwise

model notation, and will write [A] for the number of nodes of state [A], [A → B]

for the number of individuals in state A naming an individual in state B, at a given

time point that we will normally omit; formally

[A] =
∑
i

I
{
Xt
i = A

}
, [A→ B] =

∑
i,j

I
{
Xt
i = A

}
I {Gij = 1} I

{
Xt
j = B

}
(C.1)

We are going to consider how to calculate relevant quantities for both a transmission

model and a model with homophily relating to some unobserved property ξ.

C.1.2 Homophily model

Suppose we have a property (or vector of properties) that individuals have, for ex-

ample age, socio-economic status, or spatial location. We label these properties with

ξ and write [ξ] for the number of nodes that are of ξ etc.

Now consider a relatively general model in which the probability of changing state

if in state A and with property ξ is ρAξ . We can then write down equilibrium values
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for the expected number of pairs under the stationary distribution π, which are

Eπ[A→ B] =
∑
ξ,ξ′

Eπ[ξ → ξ′]
ρAξ

ρAξ + ρAξ

ρBξ′

ρBξ′ + ρBξ′
. (C.2)

It is clear that by tuning the propensity of different property types to name each

other as friends, and the transition probabilities, arbitrary pair structures can be

created. However, for the transitions we have at equilibrium

Eπ[XA→A
k ] =

∑
ξ

Eπ[Aξ](1− ρAξ ), Eπ[XA→A
k ] =

∑
ξ

Eπ[Aξ]ρ
A
ξ . (C.3)

These do not depend on k. Overall, therefore, this model cannot be falsified from

observations of numbers of pairs [A→ B], but can be falsified from observations of

transitions stratified by k, Y A→B
k .

C.1.3 Transmission model

Our model for transmitting state S (taking the value D or N), with k being the

number of friends in the transmitting state, took the form

XN→D
k ∼ Bin

(
pk,

∑
i

I
{
Xt
i = N

}
I
{(∑

j GijI
{
Xt
j = S

})
= k

})
,

XD→N
k ∼ Bin

(
qk,
∑
i

I
{
Xt
i = D

}
I
{(∑

j GijI
{
Xt
j = S

})
= k

})
.

(C.4)

This means that given the freedom to choose pk and qk for a given network configura-

tion, it is possible to tune the expected values of these transitions to whatever value

is required. The probabilities assigned to different network configurations under the

invariant distribution π do not in general have an analytic closed form solution. In

the event where pk and qk do not depend on k, then equations of the form (C.3) will

hold where every individual has the same property ξ.

In the event where the population has size n and there are on average m friends per

individual, note that basic combinatorial considerations give that

m[N ] = [N → N ] + [N → D], m[D] = [D → N ] + [D → D], n = [N ] + [D],

(C.5)

meaning that there are only three independent parameters: [N ]; [N → D]; and

[D → N ]. Now suppose that pk is monotone decreasing with k and if qk is monotone
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increasing with k, this will lead to fewer [D → N ] pairs than equations of the form

(C.3) would suggest due to transmission of N .

C.1.4 Other models

It is possible to combine elements of the transmission and homophily models in

various ways. We take the philosophical position that anything more complex than

the homophily model above will constitute a mechanism for the phenomenon of

social contagion rather an alternative to it.
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C.2 Additional figures
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Figure C.1: Number of D→ D edges for the stationary distributions
of the models versus real data. Asterisks above a plot denote a significant
statistical difference at the 5% level, corresponding to p < 0.01 using the Bonferroni
method to account for multiple testing. Observed data could be plausibly generated
by both N-transmits (p = 0.59) and no-transmission (p = 0.60) models.
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Figure C.2: Normalised frequency of inferred N-transmits model param-
eters from 104 simulated samples. (a,b,c) Transition from N to D and (d,e,f)
transition from D to N parameters inferred (by MLE) from simulated data versus
chosen model values when fitted to the observed data. (a,d) α; (b,e) β; (c,f) γ.
The majority of parameter were reliably recovered.
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[146] Lindström T, Sisson SA, Nöremark M, Jonsson A, Wennergren U. Estimation

of distance related probability of animal movements between holdings and im-

plications for disease spread modeling. Prev. Vet. Med. 91(2-4):85–94 (2009).

doi:10.1016/j.prevetmed.2009.05.022.

[147] Tildesley MJ, Deardon R, Savill NJ, Bessell PR, Brooks SP, et al. Accuracy of

models for the 2001 foot-and-mouth epidemic. Proc. R. Soc. London B Biol.

Sci. 275(1641):1459–1468 (2008). doi:10.1098/rspb.2008.0006.

[148] Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A. Bayesian measures

http://empres-i.fao.org/eipws3g/


207 Bibliography

of model complexity and fit. J. R. Stat. Soc. Ser. B (Statistical Methodol.)

64(4):583–639 (2002). doi:10.1111/1467-9868.00353.

[149] Gelman A, Carlin J, Stern H, Rubin D. Bayesian Data Analysis, Second

Edition. Chapman and Hall/CRC (2003).

[150] Rabinowitz PM, Galusha D, Vegso S, Michalove J, Rinne S, et al. Compari-

son of Human and Animal Surveillance Data for H5N1 Influenza A in Egypt

20062011. PLoS One 7(9):e43851 (2012). doi:10.1371/journal.pone.0043851.

[151] Ripley BD. The Second-Order Analysis of Stationary Point Processes. J.

Appl. Probab. 13(2):255–266 (1976). doi:10.2307/3212829.

[152] Ripley BD. Modelling Spatial Patterns. J. R. Stat. Soc. Ser. B 39(2):172–212

(1977).

[153] Tildesley MJ, Keeling MJ. Is $R 0$ a good predictor of final epidemic size:

Foot-and-Mouth Disease in the UK. J. Theor. Biol. 258(4):623–629 (2009).

doi:10.1016/j.jtbi.2009.02.019.

[154] Ansari WK, Parvej MS, El Zowalaty ME, Jackson S, Bustin SA, et al. Surveil-

lance, epidemiological, and virological detection of highly pathogenic H5N1

avian influenza viruses in duck and poultry from Bangladesh. Vet. Microbiol.

193:49–59 (2016). doi:10.1016/j.vetmic.2016.07.025.

[155] Biswas PK, Giasuddin M, Nath BK, Islam MZ, Debnath NC, et al. Biose-

curity and Circulation of Influenza A (H5N1) Virus in Live-Bird Markets

in Bangladesh, 2012. Transbound. Emerg. Dis. 64(3):883–891 (2017). doi:

10.1111/tbed.12454.

[156] Islam MR, Haque ME, Giasuddin M, Chowdhury EH, Samad MA, et al. New

Introduction of Clade 2.3.2.1 Avian Influenza Virus (H5N1) into Bangladesh.

Transbound. Emerg. Dis. 59(5):460–463 (2012). doi:10.1111/j.1865-1682.2011.

01297.x.

[157] World Health Organization/World Organisation for Animal Health/Food and

Agriculture Organization (WHO/OIE/FAO) H5N1 Evolution Working Group.

Revised and updated nomenclature for highly pathogenic avian influenza A

(H5N1) viruses. Influenza Other Respi. Viruses 8(3):384–388 (2014). doi:

10.1111/irv.12230.

[158] Food and Agriculture Organization of the United Nations. Poultry Sector

Country Review Bangladesh. FAO Anim. Prod. Heal. Livest. Ctry. Rev.

(2008).

[159] World Health Organisation. Influenza at the Human-Animal Inter-

face: Summary and assessment as of 5 March 2012. (2012). URL

http://www.who.int/influenza/human_animal_interface/Influenza_

http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_05March12.pdf?ua=1
http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_05March12.pdf?ua=1


Bibliography 208

Summary_IRA_HA_interface_05March12.pdf?ua=1. [Online] (Accessed: 23

Jan 2017).

[160] Jewell CP, Kypraios T, Neal P, Roberts GO. Bayesian analysis for emerging in-

fectious diseases. Bayesian Anal. 4(3):465–496 (2009). doi:10.1214/09-BA417.

[161] Jewell C, Kypraios T, Christley R, Roberts G. A novel approach to real-

time risk prediction for emerging infectious diseases: A case study in Avian

Influenza H5N1. Prev. Vet. Med. 91(1):19–28 (2009). doi:10.1016/j.prevetmed.

2009.05.019.

[162] World Organisation for Animal Health (OIE). Terrestrial Animal

Health Code, 24th Ed. OIE, Paris. (2015). URL http://www.oie.int/

international-standard-setting/terrestrial-code/access-online/.

[Online] (Accessed: 23 Jan 2017).

[163] Food and Agriculture Organization of the United Nations. Biosecurity for

Highly Pathogenic Avian Influenza. FAO Anim. Prod. Heal. Pap. (No. 165)

(2008).

[164] Soares Magalhaes RJ, Pfeiffer DU, Otte J. Evaluating the control of

HPAIV H5N1 in Vietnam: virus transmission within infected flocks re-

ported before and after vaccination. BMC Vet. Res. 6:31 (2010). doi:

10.1186/1746-6148-6-31.

[165] Liu Q, Mena I, Ma J, Bawa B, Krammer F, et al. Newcastle Disease Virus-

Vectored H7 and H5 Live Vaccines Protect Chickens from Challenge with

H7N9 or H5N1 Avian Influenza Viruses. J. Virol. 89(14):7401–7408 (2015).

doi:10.1128/JVI.00031-15.

[166] Nelson MI, Vincent AL. Reverse zoonosis of influenza to swine: new perspec-

tives on the humananimal interface. Trends Microbiol. 23(3):142–153 (2015).

doi:10.1016/j.tim.2014.12.002.

[167] Nelson MI, Schaefer R, Gava D, Cantão ME, Ciacci-Zanella JR. Influenza A

Viruses of Human Origin in Swine, Brazil. Emerg. Infect. Dis. 21(8):1339–

1347 (2015). doi:10.3201/eid2108.141891.

[168] Ren H, Jin Y, Hu M, Zhou J, Song T, et al. Ecological dynamics of influenza

A viruses: cross-species transmission and global migration. Sci. Rep. 6:36839

(2016). doi:10.1038/srep36839.

[169] Food and Agriculture Organization of the United Nations. Manual on livestock

disease surveillance and information systems. FAO animal health manual.

Food and Agriculture Organization of the United Nations (1999).

[170] Probert WJ, Shea K, Fonnesbeck CJ, Runge MC, Carpenter TE, et al.

Decision-making for foot-and-mouth disease control: Objectives matter. Epi-

http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_05March12.pdf?ua=1
http://www.who.int/influenza/human_animal_interface/Influenza_Summary_IRA_HA_interface_05March12.pdf?ua=1
http://www.oie.int/international-standard-setting/terrestrial-code/access-online/
http://www.oie.int/international-standard-setting/terrestrial-code/access-online/


209 Bibliography

demics 15:10–19 (2016). doi:10.1016/j.epidem.2015.11.002.

[171] Machalaba CC, Elwood SE, Forcella S, Smith KM, Hamilton K, et al. Global

Avian Influenza Surveillance in Wild Birds: A Strategy to Capture Viral

Diversity. Emerg. Infect. Dis. 21(4) (2015). doi:10.3201/eid2104.141415.

[172] Zhang WD, Zu ZH, Xu Q, Xu ZJ, Liu JJ, et al. Optimized Strategy for the

Control and Prevention of Newly Emerging Influenza Revealed by the Spread

Dynamics Model. PLoS One 9(1):e84694 (2014). doi:10.1371/journal.pone.

0084694.

[173] Stephenson I, Nicholson KG, Colegate A, Podda A, Wood J, et al.

Boosting immunity to influenza H5N1 with MF59-adjuvanted H5N3

A/Duck/Singapore/97 vaccine in a primed human population. Vaccine

21(15):1687–1693 (2003). doi:10.1016/S0264-410X(02)00632-1.

[174] Goji NA, Nolan C, Hill H, Wolff M, Noah DL, et al. Immune Responses

of Healthy Subjects to a Single Dose of Intramuscular Inactivated Influenza

A/Vietnam/1203/2004 (H5N1) Vaccine after Priming with an Antigenic Vari-

ant. J. Infect. Dis. 198(5):635–641 (2008). doi:10.1086/590916.

[175] Ledgerwood JE, Zephir K, Hu Z, Wei CJ, Chang L, et al. Prime-Boost Interval

Matters: A Randomized Phase 1 Study to Identify the Minimum Interval

Necessary to Observe the H5 DNA Influenza Vaccine Priming Effect. J. Infect.

Dis. 208(3):418–422 (2013). doi:10.1093/infdis/jit180.

[176] Babu TM, Levine M, Fitzgerald T, Luke C, Sangster MY, et al. Live at-

tenuated H7N7 influenza vaccine primes for a vigorous antibody response to

inactivated H7N7 influenza vaccine. Vaccine 32(50):6798–6804 (2014). doi:

10.1016/j.vaccine.2014.09.070.

[177] Talaat KR, Luke CJ, Khurana S, Manischewitz J, King LR, et al. A Live

Attenuated Influenza A(H5N1) Vaccine Induces Long-Term Immunity in the

Absence of a Primary Antibody Response. J. Infect. Dis. 209(12):1860–1869

(2014). doi:10.1093/infdis/jiu123.

[178] Ledgerwood JE, Wei CJ, Hu Z, Gordon IJ, Enama ME, et al. DNA prim-

ing and influenza vaccine immunogenicity: two phase 1 open label ran-

domised clinical trials. Lancet Infect. Dis. 11(12):916–924 (2015). doi:

10.1016/S1473-3099(11)70240-7.

[179] Offeddu V, Cowling BJ, Peiris JM. Interventions in live poultry markets for

the control of avian influenza: A systematic review. One Heal. (2016). doi:

10.1016/j.onehlt.2016.03.002.

[180] Hosseini PR, Fuller T, Harrigan R, Zhao D, Arriola CS, et al. Metapopulation

Dynamics Enable Persistence of Influenza A, Including A/H5N1, in Poultry.



Bibliography 210

PLoS One 8(12):e80091 (2013). doi:10.1371/journal.pone.0080091.

[181] Shea K, Tildesley MJ, Runge MC, Fonnesbeck CJ, Ferrari MJ. Adaptive Man-

agement and the Value of Information: Learning Via Intervention in Epidemi-

ology. PLoS Biol. 12(10):e1001970 (2014). doi:10.1371/journal.pbio.1001970.

[182] Reid AH, Fanning TG, Hultin JV, Taubenberger JK. Origin and evolution

of the 1918 ”Spanish” influenza virus hemagglutinin gene. Proc. Natl. Acad.

Sci. 96(4):1651–1656 (1999). doi:10.1073/pnas.96.4.1651.

[183] Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, et al. Characteriza-

tion of the 1918 influenza virus polymerase genes. Nature 437(7060):889–893

(2005). doi:10.1038/nature04230.

[184] Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, et al. Experimental

adaptation of an influenza H5 HA confers respiratory droplet transmission to

a reassortant H5 HA/H1N1 virus in ferrets. Nature 486(7403):420–428 (2012).

doi:10.1038/nature10831.

[185] Herfst S, Schrauwen EJA, Linster M, Chutinimitkul S, de Wit E, et al.

Airborne transmission of influenza A/H5N1 virus between ferrets. Science

336(6088):1534–1541 (2012). doi:10.1126/science.1213362.

[186] Buhnerkempe MG, Gostic K, Park M, Ahsan P, Belser JA, et al. Mapping

influenza transmission in the ferret model to transmission in humans. Elife

4:e07969 (2015). doi:10.7554/eLife.07969.

[187] Lipsitch M. Can Limited Scientific Value of Potential Pandemic Pathogen

Experiments Justify the Risks? MBio 5(5):e02008–14 (2014). doi:10.1128/

mBio.02008-14.

[188] World Health Organisation. Influenza virus infections in humans (February

2014). (2014). URL http://www.who.int/influenza/human_animal_

interface/virology_laboratories_and_vaccines/influenza_virus_

infections_humans_feb14.pdf. [Online] (Accessed: 20 Mar 2017).

[189] Patterson KD. Pandemic Influenza 1700-1900. Rowman and Littlefield, New

Jersey (1986).

[190] Beveridge W. The chronicle of influenza epidemics. Hist. Philos. Life Sci.

13(2):223–234 (1991).

[191] Potter CW. A history of influenza. J. Appl. Microbiol. 91(4):572–579 (2001).

doi:10.1046/j.1365-2672.2001.01492.x.

[192] Taubenberger JK, Morens DM. Pandemic influenza including a risk assess-

ment of H5N1. Rev. Sci. Tech. 28(1):187–202 (2009).

[193] House T. Epidemiological dynamics of Ebola outbreaks. Elife 3:e03908 (2014).

doi:10.7554/eLife.03908.

http://www.who.int/influenza/human_animal_interface/virology_laboratories_and_vaccines/influenza_virus_infections_humans_feb14.pdf
http://www.who.int/influenza/human_animal_interface/virology_laboratories_and_vaccines/influenza_virus_infections_humans_feb14.pdf
http://www.who.int/influenza/human_animal_interface/virology_laboratories_and_vaccines/influenza_virus_infections_humans_feb14.pdf


211 Bibliography

[194] Schoenbaum SC, Coleman MT, Dowdle WR, Mostow SR. Epidemiology

of influenza in the elderly: evidence of virus recycling. Am. J. Epidemiol.

103(2):166–173 (1976).

[195] Dowdle WR. Influenza A virus recycling revisited. Bull. World Health Organ.

77(10):820–828 (1999).

[196] Nakajima K, Desselberger U, Palese P. Recent human influenza A (H1N1)

viruses are closely related genetically to strains isolated in 1950. Nature

274(5669):334–339 (1978). doi:10.1038/274334a0.

[197] Kilbourne ED. Influenza Pandemics of the 20th Century. Emerg. Infect. Dis.

J. 12(1):9 (2006). doi:10.3201/eid1201.051254.

[198] Neuts MF. Probability distributions of phase type. Purdue University. Depart-

ment of Statistics (1974).

[199] Asmussen S. Applied Probability and Queues. Stochastic Modelling and Ap-

plied Probability. Springer New York, New York, NY (2003). doi:10.1007/

b97236.

[200] Bar-Hillel M, Wagenaar WA. The perception of randomness. Adv. Appl. Math.

12(4):428–454 (1991). doi:10.1016/0196-8858(91)90029-I.

[201] Akaike H. A new look at the statistical model identification. IEEE Trans.

Automat. Contr. 19(6):716–723 (1974). doi:10.1109/TAC.1974.1100705.

[202] Hurvich CM, Tsai CL. Regression and Time Series Model Selection in Small

Samples. Biometrika 76(2):297–307 (1989). doi:10.2307/2336663.

[203] Burnham KP, Anderson DR, editors. Model Selection and Multimodel Infer-

ence: A Practical Information-Theoretic Approach. Springer New York, New

York, NY (2004). doi:10.1007/b97636.

[204] Kass RE, Raftery AE. Bayes Factors. J. Am. Stat. Assoc. 90(430):773–795

(1995). doi:10.1080/01621459.1995.10476572.

[205] Centers for Disease Control and Prevention. Outbreaks Chronology: Ebola

Virus Disease. (2016). URL http://www.cdc.gov/vhf/ebola/outbreaks/

history/chronology.html. [Online] (Accessed: 23 Jan 2017).

[206] Bos KI, Schuenemann VJ, Golding GB, Burbano HA, Waglechner N, et al.

A draft genome of Yersinia pestis from victims of the Black Death. Nature

478(7370):506–510 (2011). doi:10.1038/nature10549.

[207] Reichert T, Chowell G, McCullers JA. The age distribution of mortality due

to influenza: pandemic and peri-pandemic. BMC Med. 10(1):162 (2012). doi:

10.1186/1741-7015-10-162.

[208] Reichert T, Chowell G, Nishiura H, Christensen RA, McCullers JA. Does

Glycosylation as a modifier of Original Antigenic Sin explain the case age

http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html
http://www.cdc.gov/vhf/ebola/outbreaks/history/chronology.html


Bibliography 212

distribution and unusual toxicity in pandemic novel H1N1 influenza? BMC

Infect. Dis. 10(1):5 (2010). doi:10.1186/1471-2334-10-5.

[209] Lessler J, Cummings DA, Read JM, Wang S, Zhu H, et al. Location-specific

patterns of exposure to recent pre-pandemic strains of influenza A in southern

China. Nat. Commun. 2:423 (2011). doi:10.1038/ncomms1432.

[210] Lessler J, Riley S, Read JM, Wang S, Zhu H, et al. Evidence for Antigenic

Seniority in Influenza A (H3N2) Antibody Responses in Southern China. PLoS

Pathog. 8(7):e1002802 (2012). doi:10.1371/journal.ppat.1002802.

[211] Gerhard W, Mozdzanowska K, Zharikova D. Prospects for Universal Influenza

Virus Vaccine. Emerg. Infect. Dis. 12(4):569–574 (2006). doi:10.3201/eid1204.

051020.

[212] Kanekiyo M, Wei CJ, Yassine HM, McTamney PM, Boyington JC, et al. Self-

assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1

antibodies. Nature 499(7456):102–106 (2013). doi:10.1038/nature12202.

[213] World Health Organisation. Depression Fact Sheet No.369. (2012). URL

http://www.who.int/mediacentre/factsheets/fs369/en/. [Online] (Ac-

cessed: 27 Jan 2017).

[214] Rueger SY, Malecki CK, Demaray MK. Relationship Between Multiple

Sources of Perceived Social Support and Psychological and Academic Adjust-

ment in Early Adolescence: Comparisons Across Gender. J. Youth Adolesc.

39(1):47–61 (2010). doi:10.1007/s10964-008-9368-6.

[215] Mead N, Lester H, Chew-Graham C, Gask L, Bower P. Effects of befriending

on depressive symptoms and distress: systematic review and meta-analysis.

Br. J. Psychiatry 196(2):96–101 (2010). doi:10.1192/bjp.bp.109.064089.

[216] Kramer ADI, Guillory JE, Hancock JT. Experimental evidence of massive-

scale emotional contagion through social networks. Proc. Natl. Acad. Sci.

111(24):8788–8790 (2014). doi:10.1073/pnas.1320040111.

[217] Joiner TE, Katz J. Contagion of Depressive Symptoms and Mood: Meta-

analytic Review and Explanations From Cognitive, Behavioral, and Inter-

personal Viewpoints. Clin. Psychol. Sci. Pract. 6(2):149–164 (1999). doi:

10.1093/clipsy.6.2.149.

[218] Bentley RA, Ormerod P. A rapid method for assessing social versus indepen-

dent interest in health issues: A case study of ‘bird flu’ and ‘swine flu’. Soc.

Sci. Med. 71(3):482–485 (2010). doi:10.1016/j.socscimed.2010.03.042.

[219] Harris K, Halpern C, Whitsel E, Hussey J, Tabor J, et al. The National

Longitudinal Study of Adolescent to Adult Health: Research Design. (2009).

URL http://www.cpc.unc.edu/projects/addhealth/design. [Online] (Ac-

http://www.who.int/mediacentre/factsheets/fs369/en/
http://www.cpc.unc.edu/projects/addhealth/design


213 Bibliography

cessed: 23 Jan 2017).

[220] Radloff LS. The CES-D Scale: A Self-Report Depression Scale for Research

in the General Population. Appl. Psychol. Meas. 1(3):385–401 (1977). doi:

10.1177/014662167700100306.

[221] Roberts RE, Lewinsohn PM, Seeley JR. Screening for Adolescent Depression:

A Comparison of Depression Scales. J. Am. Acad. Child Adolesc. Psychiatry

30(1):58–66 (1991). doi:10.1097/00004583-199101000-00009.

[222] Centola D, Macy M. Complex Contagions and the Weakness of Long Ties.

Am. J. Sociol. 113(3):702–734 (2007). doi:10.1086/521848.

[223] Grimmett G, Stirzaker D. Probability and Random Processes. OUP, Oxford

(2001).

[224] Bland JM, Altman DG. Multiple significance tests: the Bonferroni method.

BMJ 310(6973):170 (1995). doi:10.1136/bmj.310.6973.170.

[225] Hosmer DW, Lemeshow S. Applied Logistic Regression. Wiley series in prob-

ability and statistics. John Wiley \& Sons, Inc., New York, Chichester, Wein-

heim (2005).

[226] Brown LD, Cai TT, DasGupta A. Confidence Intervals for a binomial pro-

portion and asymptotic expansions. Ann. Stat. 30(1):160–201 (2002). doi:

10.1214/aos/1015362189.

[227] Schaefer DR, Kornienko O, Fox AM. Misery Does Not Love Company: Net-

work Selection Mechanisms and Depression Homophily. Am. Sociol. Rev.

76(5):764–785 (2011). doi:10.1177/0003122411420813.

[228] Neumann R, Strack F. “Mood contagion”: The automatic transfer of mood

between persons. J. Pers. Soc. Psychol. 79(2):211–223 (2000). doi:10.1037/

0022-3514.79.2.211.

[229] Lakin JL, Chartrand TL. Using Nonconscious Behavioral Mimicry to Create

Affiliation and Rapport. Psychol. Sci. 14(4):334–339 (2003). doi:10.1111/

1467-9280.14481.

[230] Leighton J, Bird G, Orsini C, Heyes C. Social attitudes modulate automatic

imitation. J. Exp. Soc. Psychol. 46(6):905–910 (2010). doi:10.1016/j.jesp.

2010.07.001.
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