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Abstract: This study proposes a direct parameter estimation approach from observed input–output data of a stochastic single-
input–single-output fractional-order continuous-time Hammerstein–Wiener model by extending a well known iterative simplified
refined instrumental variable method. The method is an extension of the simplified refined instrumental variable method
developed for the linear fractional-order continuous-time system, denoted. The advantage of this novel extension, compared
with published methods, is that the static output non-linearity of the Wiener model part does not need to be invertible. The input
and output static non-linear functions are represented by a sum of the known basis functions. The proposed approach estimates
the parameters of the linear fractional-order continuous-time subsystem and the input and output static non-linear functions from
the sampled input–output data by considering the system to be a multi-input–single-output linear fractional-order continuous-
time model. These extra inputs represent the basis functions of the static input and output non-linearity, where the output basis
functions are simulated according to the previous estimates of the fractional-order linear subsystem and the static input non-
linear function at every iteration. It is also possible to estimate the classical integer-order model counterparts as a special case.
Subsequently, the proposed extension to the simplified refined instrumental variable method is considered in the classical
integer-order continuous-time Hammerstein–Wiener case. In this paper, a Monte Carlo simulation analysis is applied for
demonstrating the performance of the proposed approach to estimate the parameters of a fractional-order Hammerstein–Wiener
output model.

1 Introduction
With ever decreasing product time-to-market and increasing cost of
exhaustive testing, the modelling of complex systems has become
an integral part of the product design cycle. Although in
exceptional cases, a physical system exhibits linear behaviour,
most physical systems exhibit non-linear characteristics [1].
Experimental and simulation studies have shown that the dynamic
behaviour of non-linear systems can be significantly different from
their linear counterparts [2–4]. As such, the development of
techniques that facilitate the modelling of non-linear systems is
paramount. In this regard, the vast body of current research in the
field of non-linear dynamical systems has focused on non-linear
systems identification and predicting non-linear system behaviour.

One class of such modelling systems is fractional-order systems
[5–9] which employ fractional derivatives and integrals. Although
fractional-order systems were introduced in the 18th century [10],
research in this area has largely been restricted to the integer-order
case due to insufficient computational resources [11]. Since the
1980s, as computing technology matured, the necessary tools to
implement fractional-order systems for modelling, estimation and
control were developed. Fractional-order systems have
subsequently found wider applications in engineering, [12] physics
[13, 14] and control [15, 16]. For example, the battery system is
employed in energy storage applications and described by a
fractional-order model, known as Randle's equivalent circuit (REC)
[17]. It can be found that both branches of REC contain a constant
phase element which is a different expression of the fractional-
order integral. Furthermore, the Warburg element is also
characterised by a fractional-order integral [17]. Fractional-order
controllers are widely used for providing a robust control, for
instance the fractional-order proportional integral derivative

controller was shown to exhibit over the classical proportional
integral derivative controller in an electro-hydraulic servo
application [18], better response, better minimum performance
indices values, better disturbance rejection, and better sinusoidal
trajectory [19]. In the case of system identification, fractional
calculus appears in the fractional least mean squares method which
provides efficient performance in the pretense of active Box–
Jenkins noise when estimating the parameters of linear and non-
linear systems [20, 21]. Generally, there are advantages of applying
the fractional-order representation over the integer-order
representation, namely the ability for more robust control [22] and
a wider performance range in aspects of modelling [11].

Another class of non-linear dynamical models is the so-called
block-oriented models that consist of various configurations of
linear dynamic blocks and non-linear memoryless blocks. The
simplest examples in this class are cascaded systems with the non-
linear block either preceding (Hammerstein model) or following
(Wiener model) the linear block. There are several practical
applications of the Hammerstein and Wiener formulations which
are used to model systems with significant non-linearity in
different fields. The Hammerstein model, for example, is employed
in robotic therapy for describing the isometric recruitment curve,
that is, the static gain relation between the stimulus activation level
and steady-state output torque [23]. In the automotive industry, the
battery impedance model is enhanced by introducing a Wiener
static non-linearity to the ordinary equivalent circuit model [24].
Hammerstein models have also been employed to address bilinear
models to represent the air handling unit of large heating
ventilation and air conditioning systems [25], where it is
principally used to describe the non-linearity introduced by the
valves.
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The model where a non-linear block both precedes and follows
a linear dynamic system is called a Hammerstein–Wiener model
[26, 27]. The advantages of the Hammerstein–Wiener class of
models are (i) that the dynamics of systems are mainly generated
by the linear subsystem, so that algorithms and techniques
developed for the linear systems might be adopted for the
Hammerstein–Wiener model case and (ii) if the static non-linearity
has an inverse function, such that it allows for a cancellation with
the static non-linearity, then linear control algorithms can be
applied. In the context of real applications, this class of models
have been exploited for modelling in various physical systems, for
example, for radio frequency transmitters and power amplifiers
[28], electrical muscle stimulation applications [29],
magnetospheric and ionospheric systems [30], and agriculture [31],
where Hammerstein–Wiener models assist in predicting the core
temperature of silage stack-bales using wireless sensor networks.

The estimation approach of the Hammerstein–Wiener models
can be either categorised as iterative or non-iterative. This work
has primarily focused on the iterative methods. In the discrete-time
domain, the iterative algorithm proposed in [32] is based on
accessing the internal signals by using the key term separation
principle as a decomposition technique. This algorithm was
extended for the case of multi-inputs by Vörös in [33]. The
approach adopted in [32, 33] expresses the Hammerstein and
Wiener models linearly in parameters. The key term separation
principle and estimated linear outputs, adopted in [32, 33], are also
used in the case of the Wiener model in [34]. The principle
drawbacks of this approach are namely that it is not a direct
identification method and the convergence is not guaranteed. Other
approaches for discrete iterative methods can be found in [35, 36].
In recent studies in the discrete domain, the kernel, Volterra, and
fractional least mean square algorithms have been applied for
estimating the parameters of the Hammerstein models associated
with coloured noise process [37]. These approaches managed to
estimate the parameters but it required a large number of iterations.
The iteration number is shown to be reduced by employing the
sliding-window approximation-based fractional least mean squares
in [21] but still the iteration number is considerably large. All the
aforementioned approaches are in the discrete-time domain and are
employed for obtaining the continuous-time transfer function of the
linear subsystem. A further step is required to convert from the
discrete time to the continuous-time domain and this class of
estimation approaches is termed indirect.

Garnier and Young summarised the advantages of the direct
approaches over the indirect approaches in modelling as follows:
(i) the continuous-time model identification offers a differential
equation which is how most physical systems are mathematically
represented, (ii) the continuous-time model parameter values often
have physical meaning, (iii) these values are not a function of the
sampling interval, hence eliminating the need for the conversion
from discrete to continuous time that is an essential element of
indirect approaches for estimating based on discrete-time models,
(iv) direct continuous-time model estimation methods provide
more efficient results in case of stiff systems, where a non-fixed
sampling interval is required, and (v) the direct methods have
proven successful in many practical applications. For the
continuous-time domain, the refined instrumental variable method
is a direct approach and is used to identify the Hammerstein–
Wiener continuous-time model with the assumption of an invertible
static non-linear function for the Wiener part. The parameters are
obtained by applying singular value decomposition to the estimated
multiple-inputs– single-output linear model which represents the
whole non-linear model [38].

Advantages of both the Hammerstein–Wiener continuous-time
models and the fractional-order continuous-time system models led
to the introduction of the fractional-order continuous-time
Hammerstein, Wiener, and Hammerstein–Wiener (HFC, WFC, and
HWFC) models. In these formulations, the static non-linear
functions are assumed to be described by a sum of the known basis
functions. Parameter estimation is required when dealing with real-
life practical applications, thus there have been proposals for
iterative methods, termed simplified refined instrumental variable
(SRIV), for HFC, WFC, and HWFC models which are abbreviated

as HSRIVCF, WSRIVCF, and HWSRIVCF, respectively. The
refined instrumental variable method for linear continuous-time
systems was first proposed by Young and Jakeman [39] and
extended for the fractional-order systems in [40]. It has also been
successfully extended to estimate the parameters of the
Hammerstein and Wiener models [38, 41] in which the static
output non-linear function is assumed to be invertible [38].

In this paper, a direct parameter estimation approach from
observed input–output data of a stochastic single-input– single-
output fractional-order continuous-time Hammerstein–Wiener
model by extending a well known iterative simplified refined
instrumental variable method is proposed. The derivation of the
proposed method is found to be similar to that of the simplified
refined instrumental variable methods for multi-input– single-
output linear fractional-order continuous-time systems. The
approach proposed in this paper reformulates the non-linear HFC,
WFC, and HWFC models to be described by multi-input, single-
output linear fractional-order continuous-time models. The multi-
input signals are the outputs of basis functions of the static non-
linear functions whose inputs are the actual input of the static input
non-linear function and the output of the estimated fractional-order
continuous-time linear subsystem. The novelty of this paper stems
from the use of the simulated linear subsystem output for obtaining
the basis functions of the static output non-linear and extension to
the case of fractional-order models.

This paper is organised as follows: the problem description for a
fractional Hammerstein–Wiener model is introduced in Section 2.
In Section 3, there is an illustration of the problem reformulation
based on an HFC model. Section 4 shows the problem
reformulation based on a WFC model. Both the HFC and WFC
models are coupled in one model in the problem reformulation
based on an HWFC model in Section 5 and identified by applying
HWSRIVCF in Section 6. A numerical study on HWFC model
identification is presented in Section 7. Finally, this paper
concludes in Section 8.

2 Background to fractional-order systems
This section introduces the fundamental theory on which this paper
is based, namely the theory of fractional-order derivatives,
integrals, and their Laplace transform.

2.1 Fractional-order calculus

Fractional-order integral and derivative terms are generalised by
fractional-order calculus. The term denoted a𝒟t

α is defined as:

a𝒟t
α =

dα

dtα α > 0

1 α = 0

a
t ℐ−α = ∫

a

t
dt−α α < 0

(1)

The operator 𝒟 and the real number order α together represent
the fractional-order term whether it is a derivative or integral.
When the real number α is positive, it represents fractional-order
derivative and when α is negative, it represents a fractional-order
integral. In this paper, for retaining moderate complexity, the order
α is considered to be a real number and always positive α ∈ ℝ+.
Thus, in this paper, the terms for describing the fractional-order
derivative and integral are 𝒟α and ℐα, respectively.

2.1.1 Fractional-order integral.: The focus of this section is on
Riemann–Liouville's conception which will later be used for the
Laplace transform derivation. More detailed definitions are
presented in [42]. The Riemann–Liouville definition is based on a
consequence of Cauchy's formula for iterated integrals [43]

a
t ℐα f t = 1

Γ α ∫
a

t
t − τ α − 1 f τ dτ, α ∈ ℝ+ (2)
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where the Euler function is defined as

Γ x = ∫
0

∞
tx − 1e−t dt x ∈ ℝ . (3)

If a = 0, it can be noted that the integral in (2) is a convolution of
two signals tα − 1 and f (t). Therefore, (2) can be expressed as

Iα f t = 1
Γ α tα − 1 ∗ f t (4)

2.1.2 Fractional-order derivative.: This section focuses on the
Grünwald–Letnikov definition. A more detailed derivation of
fractional-orders can be found in [42]. A discrete-time definition of
the concept of fractional-order differentiation was defined by
Grünwald–Letnikov based on the generalisation of the backward
difference [44]

𝒟α f t t = KTs
= lim

Ts → 0
1

Ts
α ∑

k = 0

K
−1 k α

k
f K − k Ts (5)

where 
α
k

 is the Newton's binomial function and Ts is the sampling

interval. It is generalised using Euler's Gamma function and
extended to fractional-order as

α
k

= Γ α + 1
Γ k + 1 Γ α − k + 1 (6)

It can be noted from (6) that the fractional-order derivative depends
on all past data unless α ∈ ℤ. This is why the fractional-order
derivative is known as long memory.

2.1.3 Laplace transform.: One of the most significant theories in
control engineering is the Laplace transform of the linear
fractional-order model. The Laplace transform of the fractional-
order integral term can be derived from Riemann–Liouville's
theory. The Laplace transform of the convolution in (4) can be
expressed as

ℒ Iα f t = ℒ tα − 1

Γ α ℒ f t

= F s
sα

(7)

where ℒ tα − 1/Γ α = sα and α > 0, see [45].
The Laplace transform of the fractional-order derivative of f t

can be obtained by [46]

ℒ Dα f t = sαF s − ∑
k = 0

n − 1
sk dα − 1 − k f t

dtα − 1 − k
t = 0

(8)

where α ≥ 0 and n ≤ α < n + 1. For simplicity, zero initial
conditions are considered.

3 Problem description
A fractional-order continuous-time Hammerstein–Wiener model
has static input and output (memoryless) non-linear functions, with
an intermediate fractional-order continuous-time subsystem as
illustrated in Fig. 1. The HWFC model can be described by the
input–output relationship as follows:

ū(t) = f u(u(t))

x(t) = B(𝒟β)
A(𝒟α)

ū(t)

x̄(t) = gx(x(t))
y(tk) = x̄(tk) + e(k)

(9)

where u(t) and ū(t) are the input and output of the static input non-
linear function f u(u). The output of the static input non-linear
function ū t  is the input of the fractional-order continuous-time
linear subsystem whose output is x(t) which becomes the input to
the static output non-linear function, denoted gx(x) which generates
x̄(t). The sampled form of x̄(t) at time instance k is denoted x̄(tk),
where t = k × Ts and Ts is the sampling interval. Moreover, the last
equation in (9) shows y(tk) is produced by corrupting x̄(tk), with a
discrete white (zero mean) noise denoted e(k). The fractional-order
continuous-time linear subsystem is described by a fractional-order
differential equation in a form of the input and output polynomials,
denoted B 𝒟β  and A 𝒟α , respectively, and expressed as

A(𝒟α) = a0𝒟
αn + a1𝒟

αn − 1 + ⋯ + an − 1𝒟
α1 + an

B(𝒟β) = b0𝒟
βm + b1𝒟

βm − 1 + ⋯ + bm − 1𝒟
β1 + bm

(10)

where the coefficients a j j = 0, 1, …n  and b j j = 0, 1, …m  are
real constants, 𝒟αx t = dαx t /dtα, αk k = n, n − 1, …1 ∈ ℝ+,
βq q = m, m − 1, …1 ∈ ℝ+, αn > αn − 1, … > α1 > 0,

βm > βm − 1… > β1 > 0 and αn > βm for physical feasibility. It is
assumed that a0 = 1 and the system is commensurate with base
order, denoted α; therefore, αi = α × i and β j = α × j. Finally, it is
assumed that the static non-linear functions are described by a sum
of the basis functions and expressed as

ū(t) = ∑
j = 1

r
b̄ j f j(u)

x̄(t) = ∑
i = 1

l
āigi(x)

(11)

where the coefficients āi, b̄ j ∈ ℝ, (i = 1, …, l), j = 1, …, r . 

4 Problem reformulation based on HFC model
In this paper, the static non-linear functions are individually treated
as two different sub-models with a common linear subsystem for
deriving the HSRIVCF and WSRIVCF methods. The HSRIVCF

Fig. 1  Block diagram of the Hammerstein–Wiener model processes
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and WSRIVCF methods are then combined in an HWSRIVCF
approach to identify the HWFC model.

If the HFC subsystem in (9) is separately treated, it is implied
that the HFC model is formed of a cascade of the static input non-
linear function and the linear fractional-time continuous-time
subsystem, as shown in the left-hand dotted box in Fig. 1,
corresponding to the first two equations in (9). It is assumed that
the first parameter of the static input non-linear function is unity
(b̄1 = 1). Since the basis function f i(u) is assumed to be a priori
known and u(t) is measurable, the basis functions can be time-
dependent signals and denoted by, for simplicity, f̄ i(t). Under these
conditions, the HFC subsystem can be described as a multi-input–
single-output system

x(t) = B(𝒟β)
A(𝒟α)

f̄ 1(t) + ∑
i = 2

r
b̄i f̄ i(t) (12)

where

f̄ i(t) = f i(u) (13)

Both the polynomial B(𝒟β) and the parameters of the static input
non-linear function can be coupled to yield a vector of the over-
parameterised input polynomial B̄i(𝒟β), where B̄i(𝒟β) = b̄iB(𝒟β)
and B̄1(𝒟β) = B(𝒟β). Consequently (12) can be re-expressed in
vector form as

x(t) = 1
A(𝒟α)

B̄(𝒟β)F̄(t) (14)

where the multi-input polynomial vector B̄(𝒟β) and input vector F̄
are given by

B̄(𝒟β) = B̄1(𝒟β), B̄2(𝒟β), …, B̄r(𝒟β) (15)

F̄(t) = f̄ 1(t), …, f̄ r(t)
T (16)

5 Problem reformulation based on WFC model
This section illustrates how the WFC subsystem of the HWFC
system in (9) is rearranged, so that any linear estimator can be
employed. If the WFC subsystem of (9) is separately considered, it
is realised as a cascade of the linear fractional-order continuous-
time model and the static output non-linear function as shown in
the right-hand bold dashed box in Fig. 1.

The parameter estimation is based on the collected input–output
data.The input of the linear fractional-order continuous-time model
is considered to be accessible in this section but its output is not
accessible. It is assumed that the first basis function of the static
output non-linear function in (11) is linear thus the static output
non-linear function in (11) can be re-described as

x̄(t) = x(t) + ∑
i = 2

l
āigi(x) (17)

where ā1 is normalised to unity and the basis functions of the static
output non-linear functions gi(x), in the last term of (17), are
considered to be known a priori. Therefore, they can be described
by a function of time ḡi(t) = gi(x(t)) if x(t) is known. Thus, the ḡi(t)
functions are considered as inputs to the system. According to (9),
(11), and (17), it is possible to characterise the WFC subsystem as
a linear fractional-order continuous-time model with multi-input
(ū(t), ḡi(t)) and single-output x̄(t) as

x̄(t) = B(𝒟β)
A(𝒟α)

ū(t) + ∑
i = 2

l
āiḡi(t) (18)

6 Problem reformulation based on HWFC model
Both the reformulated HFC model in (15) and the WFC model in
(18) are coupled by a linear fractional-order continuous-time
subsystem in one equation, representing the noise-free HWFC
model, given by

x̄(t) = 1
A(𝒟α)

B̄(𝒟β)F̄(t) + ∑
i = 2

l
āiḡi(t) (19)

where the over-parametrised polynomial B̄(𝒟β) and vector F̄(t) are
given in (15) and (16), with ḡi(t) = gi(x). Since measured data is
used for parameter estimation, the output of the model in (19) is
considered to be corrupted by a noise process. Thus, the HWFC
model in (19) can be re-expressed as

y(t) = x̄(t) + ξ(t) (20)

where y(t) is the noisy output and ξ(t) represents the noise process.

7 HWSRIVCF method
Considering ḡi(t) and F̄(t) to be inputs to the HWFC model, the
model may thus be described by a multi-input, single-output linear
fractional-order continuous-time model. The error functions of (19)
and (20) are combined and expressed as

εHW(t) = y(t) − 1
A(𝒟α)

B̄(𝒟β)F̄(t) + ∑
i = 2

l
āiḡi(t) (21)

where the subscript HW refers to Hammerstein–Wiener.
Considering zero initial conditions, the Laplace transform of

(21) is expressed as

EHW(s) = Y(s) − 1
A(sα)

B̄(sβ)F̄(s) + ∑
i = 2

l
āiḠi(s) (22)

which is reformulated such that the polynomial A(sα) is associated
with the noisy output Y(s). This leads to the introduction of a filter
1/A sα  in the first and second terms on the right-hand side of (22)
for generating the filtered input–output data without filtering the
error EHW(s).

Therefore, (22) can be re-expressed as

EHW(s) = A sα 1
A sα Y(s) − B̄(sβ) 1

A sα F̄(s) + ∑
i = 2

l
āiḠi(s) (23)

Taking the inverse Laplace of (23) leads to

εHW(t) = A(𝒟α) 1
A(𝒟α)

y(t)

− B̄(𝒟β) 1
A(𝒟α)

F̄(t) + ∑
i = 2

l
āiḡi(t)

(24)

(24) can be then described in a filtered form by a model of the
multi-input (ḡi, filtered F̄), single filtered output form. Therefore,
the error function (24) is rearranged and expressed as

εHW(t) = A(𝒟α)yF(t) − B̄(𝒟β)F̄F(t) + ∑
i = 2

l
āiḡi(t) (25)

where the filtered output and the vector of the filtered input are
denoted yF(t) and F̄F, B(t), respectively, and the subscript F indicates
the signal is filtered by 1/A(𝒟α). The filtered data can be obtained
from
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F̄F(t) = 1
A 𝒟α F̄(tk)

yF t = 1
A 𝒟α y tk

(26)

Thus, the pseudo-regression form can be deduced based on
sampled data of (25) and expressed as

𝒟αnyF(tk) = φF
T(tk)θ + ε(tk) (27)

where θ and φF
T(tk) are given in [see (28), (29)], respectively

θ = [a1, ⋯, an, b̄1b0, ⋯, b̄1bm, ⋯, b̄rb0, ⋯,
b̄rbm − 1, b̄rbm, ā2, ⋯, āl

(28)

(see (29)) 
All filtered terms in (29) can be readily obtained by

implementing the equivalent block diagram of the state variable
filter, as shown in Fig. 2, as a Simulink diagram. 

There is an issue that ḡi tk  is not accessible; however, ḡi tk  can
be simulated. Simulating ḡi tk  requires the B^(𝒟β), A^ (𝒟α)
polynomials and the estimated parameters of the static input non-
linear function (b̄

^

s) to be available. In this paper, the initial B^(𝒟β),
A^ (𝒟α) polynomials are selected according to three main factors
which are (i) considering the output steady state of the linear
system, (ii) considering whether the linear subsystem is under-
damped or over-damped and (iii) the cut-off frequency which can
be selected according to the fractional-order state variable filter
design [47]. The selection of b̄

^

s does not have a large influence on
the estimation. For example, in the numerical example in this paper
b̄
^

s is selected such as b̄
^

1 = b̄
^

2 = b̄
^

3 = 1. An initial estimate of A^ (𝒟α)
is used for designing the filter 1/A^ (𝒟α). The parameters are then
repeatedly estimated at every iteration as indicated by the subscript
l, which represents the present iteration index. The HWSRIVCF
method is iteratively implemented as illustrated in Fig. 3 and
summarised as follows: 

i. Compute the multi-input vector using the input static non-
linear function F̄(tk).

ii. Simulate the noise-free output x^(t) using

x^(t) = 1
A^ (𝒟α, θ

^
l − 1)

B̄
^
(𝒟β, θ

^
l − 1)iF̄(tk) (30)

where x^(t) is used as the input to the static output non-linear
function and as the instrumental variable.

iii. Filters x^(tk), y(tk), and F̄(tk) to generate their filtered forms
with their higher fractional-order derivatives, using

F(𝒟α) = 1
A^ 𝒟α, θ

^
l − 1

(31)

iv. Generate gi¯
^ (tk) in using x^(tk).

v. Obtain the estimated parameters using the instrumental
variable least-square algorithm

θ
^
l = ∑

k = 1

N
φ^

F tk φF
T tk

−1

∑
k = 1

N
φ^

F tk 𝒟αnyF tk (32)

where φF
T is obtained from (29) and φ^

F is defined as [see (33)]
(see (33)) 

vi. Repeat steps (i)–(iv) until the sum of the squares of the
differences between θ

^
l − 1and θ

^
l is significantly small such as

10−4 or, for example, five iterations.

Whilst there would appear to be an issue associated with the
estimates of the over-parameterised B̄(𝒟β) in (32), whereby b̄s and
bs are combined within one vector, it was shown in [41] that b̄s can
be directly obtained from Bi(𝒟β) in (32) by using

φF
T(tk) = [ − 𝒟αn − 1yF(tk), ⋯, −yF(tk), 𝒟βm f̄ F, 1(tk), ⋯, f̄ F, 1(tk),

⋯, 𝒟βm f̄ F, r(tk), ⋯, 𝒟β1 f̄ F, r(tk), f̄ F, r(tk), ḡ2(tk), ⋯, ḡl(tk)]
(29)

Fig. 2  Equivalent block diagram of the state space representation of the
filter 1/A 𝒟α  shows how to generate the higher fractional-order derivative
terms of the filtered signal yF(t) where ℐα = ∫ 0

t dtα

 

Fig. 3  Iterative HWSRIVCF method processes
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b̄i = 1
m + 1 ∑

k = 0

m b
^
i, k

b
^

1, k
(34)

where b
^
i, k is the estimated form of bi, k = b̄ibk, given in (28).

7.1 Convergence of the algorithm

The convergence of the refined instrumental variable method was
comprehensively analysed for the linear integer- order model in
[48] and the integer order of Hammerstein–Wiener continuous-
time model in [38], where the SRIV method is a special case of the
refined instrumental variable method corresponding to a noise
process sub-model D(q) = C(q) = 1. The instrumental variable is
the noise-free output, similarly assumed in [38] and the
reformulated structure(multi-input and single-output model) in (20)
is the same structure as presented in [38]. The difference being that
the system here is fractional and multi-input and single-output.
This difference does not affect the proof, derived in [38]; therefore,
those proofs, given in [38], are used here for formulating Theorem
1.
 
Theorem 1: Consider the algorithm (32) given by (28), (29), and,
(33) and suppose the following assumptions exist.
 
Assumption 1: The true linear sub-system is asymptotically stable.
 
Assumption 2: The noise e(k) is white (zero mean) and independent
of the system input u(t).
 
Assumption 3: u(t) is produced such that the data set is sufficiently
informative for the identification.

Then the following results are true.
Result 1: E(φ^

F tk εHW(tk)) = 0 where
E( ⋅ ) = limN → ∞ (1/N)∑k = 1

N ( ⋅ ).
Result 2: E(φ^

F tk φF
T tk ) is non-singular.

 
Proof: Only x^(tk) = x(tk) is considered. In this condition, the

error between the measured and noise free outputs is expressed as

εHW(tk) = e(tk) (35)

Result 1 is realised since all elements of φ^
F(tk) are independent to

the noise and the noise is white. The proof of Result 2 is presented
in [38]. □

Therefore, the estimates in (32) can be obtained as N → ∞.
Further convergence analysis can be found in [38, 48]. The
numerical study in this paper empirically shows that the estimates
converge to the true parameters within the second to fifth iteration.

8 Numerical study
This section presents a numerical example to evaluate and
highlight the performance of the proposed HWSRIVCF method for

parameter estimation of an HWFC model. The static input non-
linear function is described by a static polynomial form, i.e.
f̄ i(t) = ui and the output non-linear function is also represented by
a static polynomial function. Thus, the HWFC model is given by

ū t = u t + b̄2u
2 t + b̄3u

3 t

x(t) = b0𝒟0.5 + b1

a0𝒟1.5 + a1𝒟 + a2𝒟0.5 + a3
ū(t)

x̄(t) = x(t) + ā2x
2(t) + ā3x

3(t)
y(tk) = x̄(tk) + e(tk)

(36)

The sampled input ū(tk) and the sampled noisy output y(tk) are
collected and used for parameter estimation.

The system is simulated for 100 (s) with a fixed sampling
interval of 10−3 (s). The selected Simulink solver is ode4 (Runge–
Kutta). The fractional-order integral block is provided by the
Fractional-Order Modeling and Control (FOMCON) Simulink
library with frequency range [ 0.001 rad s−1; 1000 rad sc−1] and an
order approximation of 25. Details about the FOMCON Simulink
library can be found in [49]. A square wave signal with a random
amplitude is used as an input to the HWFC model, given in Fig. 4. 

To evaluate the statistical performance of the proposed
approach, a Monte Carlo simulation is performed for 50 runs. The
same input signal is used for all runs but the white Gaussian noise
is rearranged for different levels whilst keeping a fixed signal-to-
noise ratio (SNR). The noise variance is selected such that the
SNR = 10 and 20 dB, where SNR is defined in dB as

SNR = 10log
Px̄
Pe

(37)

where Px̄ and Pe are the average power of the signals x̄ and e,
respectively.

It is assumed that the only accessible data is the input u(tk) and
sampled noisy output y(tk), presented in Fig. 4. The system,
considered for estimation using the HWSRIVCF method, is a
multi-input [ f̄ 1(tk), f̄ 2(tk), f̄ 3(tk), ḡ2(tk), ḡ3(tk)] and single-output y(t)
model and expressed as

y(t) = ∑
i = 1

3 b̄iB 𝒟β

A 𝒟α f̄ i(tk) + ā2ḡ
^

2(t) + ā3ḡ
^

3(t) + ε(t) (38)

where ḡ^ i(t) = x^i(t) but here x^(t) = ∑i = 1
3 ((b̄

^

iB
^(𝒟β, θ

^))/
(A^ (𝒟α, θ

^)) f̄ i(tk) and f̄ i(tk) = ui(tk), and ε(t) is the error due to the
noise.

The initial input and output fractional-order linear polynomials
are selected such that all roots si

0.5 are located at 1, hence
B^(𝒟β, θ

^
0) = 𝒟0.5 + 1 and A^ (𝒟α, θ

^
0) = 𝒟1.5 + 3𝒟 + 3𝒟0.5 + 1. The

parameters of the static input non-linear function are selected to be
unity, so that b̄1 = b̄2 = b̄3 = 1.

The results obtained from the Monte Carlo simulation analysis
are presented in mean and standard deviations in Table 1. Table 1
demonstrates that the obtained results match the theory beyond the
HWSRIVCF algorithm, where it gives unbiased estimates of the
HWFC model parameters. Although the noise is relatively high, at
the level of 10 dB, the proposed method converges. The standard
deviations and the mean values obtained by HWSRIVCF are
always correlated to the level of the measured noise. This means, in
the case of the lower noise level (higher SNR), the mean value of
the estimates converge more toward the true values and the

φ^
F
T(tk) = [ − 𝒟αn − 1x^F(tk), ⋯, −x^F(tk) 𝒟βm f̄ F, 1(tk), ⋯, 𝒟β0 f̄ F, 1(tk)

⋯𝒟βm f̄ F, r(tk), ⋯, 𝒟β1 f̄ F, r(tk), 𝒟β0 f̄ F, r(tk), ḡ^ 2(tk), ⋯, ḡ^ l(tk)]
(33)

Fig. 4  Random square wave input signal u(t) and output signal y(t) are
presented in black and grey lines, respectively, when the SNR = 20
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standard deviations also decrease. Thus, the SNR significantly
affects the convergence of the parameters to their true values. 

The obtained results indicate that the parameter estimation
errors associated with the static non-linear functions are lower
when compared with the parameter estimation errors associated
with the dynamic process. It should be emphasised that the
parameter estimation errors of the static and dynamic sub-models
of the overall Hammerstein–Wiener model are related via the error
covariance matrix of the estimator (32). Nevertheless, the
simulation results do indicate that the presented HWSRIVCF is

statistically more efficient when estimating the static part of the
overall Hammerstein–Wiener model. This observation is expected
since the demand on having persistently exciting system input is
somewhat more relaxed when estimating static functions as
opposed to dynamical processes. The error between the estimated
and the actual outputs of the input and output static non-linear
functions is small despite the existence of standard deviations of
the estimates.

The empirical study of HWSRIVCF convergence is evaluated
using the frequency response of the estimated HWFC models at
each iteration for five iterations. Figs. 5a, b, 6a, b, and 7a, b show
that the HWSRIVCF algorithm provides an almost perfect match to
the true Bode plots for lower -noise level (higher SNR) in all
iterations. These results agree with the results obtained using the
ordinary simplified refined instrumental variable method, derived
for estimating the parameters of a multi-input– single-output linear
integer-order model and the integer-order Hammerstein–Wiener
model, presented in [38, 50], respectively. In terms of the required
number of iterations, the estimates are found to converge much
quicker than the fractional-order least mean square-based
techniques proposed, for example, in [21, 37] which considered the
coloured noise processes. 

9 Conclusions
The wide applicability of fractional-order models to replicate the
non-linear phenomena exhibited in many practical systems is
acknowledged. In this, motivated by historical applications of
integer-order Hammerstein–Wiener models, stochastic single-
input– single-output fractional-order continuous-time Wiener and
Hammerstein–Wiener (WFC and HWFC, respectively) model
structures are introduced. The HWFC model structure is
characterised by a cascade connection of non-linear static functions
transforming the input and output signals of a fractional-order
continuous-time dynamic model. The static non-linear functions
are represented by a combination of basis functions.

Table 1 Monte Carlo simulation results of parameter estimation of the HWCF system where a3 = ā1 = b̄1

SNR, dB a0 = 1 a1 = 3 a2 = 2 b0 = 1 b1 = 0.5 ā2 = 0.2 ā3 = 0.6 b̄2 = 0.02 b̄3 = 0.25
10 mean 1.1189 3.1563 2.1421 1.0927 0.4973 0.1988 0.6158 0.0219 0.2494

standard 0.4083 0.5940 0.4760 0.3260 0.0129 0.0179 0.0854 0.0100 0.0165
20 mean 1.0096 3.0078 2.0101 1.0059 0.4999 0.1994 0.6015 0.0203 0.2499

standard 0.1025 0.1530 0.1198 0.0824 0.0034 0.0045 0.0140 0.0027 0.0049
 

Fig. 5  Magnitude Bode plots of actual and estimated linear submodel
(a) For an SNR = 20 dB, (b) For an SNR = 10 dB

 

Fig. 6  Input versus output of the actual and estimated static input non-
linear function, given in the first equation in (9)
(a) For an SNR = 20 dB, (b) For an SNR = 10 dB and ubar is ū

 

Fig. 7  Input versus output of the actual and estimated static output non-
linear function, given in the third equation in (9)
(a) For an SNR = 20 dB, (b) For an SNR = 10 dB and xbar is x̄
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Prompted by the advantages WFC and HWFC models, this
paper has proposed a new algorithm specifically developed for
estimating the parameters of fractional-order non-linear models in
the form of the HWFC model. The new algorithm is an extension
of the simplified refined instrumental variable approach developed
for continuous-time integer-order linear models parameter
estimation. It has shown how the algorithm is formulated and
developed within the context of Hammerstein–Wiener model. This
is achieved by describing the fractional-order continuous-time
Hammerstein–Wiener model with a multi-input– single-output
fractional-order system. The major advantage of the proposed
approach is that the output static non-linear function does not need
to be invertible.

Following the instrumental variable approach, the initialisation
process does not have a large impact on the parameters
convergence and the number of iterations required for
convergence. The effectiveness of the proposed approach has been
evaluated when applied to an arbitrary non-linear system in the
presence of noisy output data via a Monte Carlo simulation study.

For future work, an extension of the proposed approach can be
done to cope with a Box–Jenkins model. Furthermore, given that in
most dynamical applications, model parameters vary with time,
there is a requirement to update model parameters to cope with
change in the dynamics. It is of benefit, therefore, to study the
online formulation of the HWSRIVCF model.
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