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Summary Statement 

Following meiosis, sperm partition unnecessary cellular components into a cellular 

wastebag. In tiny nematode spermatocytes, a bipolar cytoskeletal reorganization process 

has become unipolar and generates the equivalent of female polar bodies. 

Abstract 

Asymmetric partitioning is an essential component of many developmental processes. As 

spermatogenesis concludes, sperm are streamlined by discarding unnecessary cellular into 

cellular wastebags called residual bodies (RBs). During nematode spermatogenesis, this 

asymmetric partitioning event occurs shortly after anaphase II, and both microtubules and 

actin partition into a central RB. Here we use fluorescence and transmission electron 

microscopy to elucidate and compare the intermediate steps of RB formation in C. elegans, 

Rhabditis sp. SB347 (recently named Auanema rhodensis) and related nematodes. In all 

cases, intact microtubules reorganize and move from centrosomal to non-centrosomal sites 

at the RB-sperm boundary while actin reorganizes through cortical ring expansion and 

clearance from the poles. However, in species with tiny spermatocytes, these cytoskeletal 

changes are restricted to one pole. Consequently, partitioning yields one functional sperm 

with the X-bearing chromosome complement and an RB with the other chromosome set. 

Unipolar partitioning may not require an unpaired X, since it also occurs in XX 

spermatocytes. Instead, constraints related to spermatocyte downsizing may have 

contributed to the evolution of a sperm cell equivalent to female polar bodies.   
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INTRODUCTION 

The asymmetric partitioning of cellular components along one or more axes is a 

critical step in the differentiation of most cells (Nance and Zallen, 2011; Campanale et al., 

2017). The resulting cell polarity is essential for proper cell function including the motility in 

diverse cell types and the barrier function of epithelial cells; while disruption of cell polarity is 

a hallmark of epithelial cancers (Halaoui and McCaffrey, 2015).  Furthermore, cells can 

couple the establishment of cellular asymmetries with an oriented cell division to generate 

daughter cells with developmentally distinct cell fates.  

During sperm development, asymmetric partitioning plays yet another role; it 

streamlines sperm for optimal motility. Mature sperm are small and motile, and thus one key 

step in their differentiation is the post-meiotic shedding of organelles and cytoplasmic 

components that are either unnecessary for or detrimental to subsequent sperm function 

(Fig. 1A). This shedding event involves two steps: 1) the differential partitioning of cellular 

components into a cellular wastebag known as a residual body (RB), and 2) the subsequent 

separation of this RB from the sperm (Steinhauer, 2015). In Drosophila and vertebrates, RB 

formation requires both actin and microtubules (Steinhauer, 2015; O’Donnell et al., 2001) 

and occurs as the final step of a post-meiotic cell differentiation process (spermiogenesis) 

that takes days to weeks and requires extensive cytoskeletal remodeling (Fabian and Brill, 

2012; Clermont, 1972; Fig. 1A). In C. elegans, sperm production is accelerated by the 

production and pre-packaging of sperm components prior to the meiotic divisions; as a 

result, the highly reduced post-meiotic phase takes only minutes (Ward et al., 1981; Shakes 

et al., 2009; Chu and Shakes, 2013; Fig. 1B). Key to the brevity of this post-meiotic phase, 

RB formation occurs immediately after anaphase II and involves the replacement rather than 

the remodeling of cytoskeletal components (Fig. 1B; Shakes et al., 2009). Post-anaphase II, 

components required for sperm function, such as the fibrous body-membranous organelles 

(FB-MOs) partition to the haploid sperm while unneeded components are discarded into the 

RB that forms between the two sperm (Ward et al. 1981; Ward, 1986; Fig. 1D). Importantly, 

the discarded material includes the cell’s entire store of actin and microtubules, since 

nematode sperm motility is driven not by a flagellum but by the assembly/disassembly 

dynamics of a nematode-specific cytoskeletal protein, the major sperm protein (MSP) 

(Smith, 2006; Yi et al., 2009).  

It is unclear how the actin and microtubules in C. elegans spermatocytes shift from 

their anaphase II patterns to their final deposition within RBs or how various organelles 

differentially partition between the sperm and RB. In pharmacological studies, actin but not 

microtubule inhibitors block C. elegans sperm formation (Nelson et al., 1982). Genetic 

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 

studies likewise implicate a key role for actin; mutants lacking the actin binding protein SPE-

26 fail to form RBs (Varkey et al., 1995), while loss of the unconventional myosin (myosin VI) 

specifically disrupts stable partitioning of actin, tubulin, mitochondria, and FB-MOs (Kelleher 

et al., 2000). However, microtubules may also play a role since centrioles seem to specify 

the number and position of the sperm-RB boundaries (Peters et al., 2010). The associated 

transition from anaphase II to post-meiotic RB formation (Fig. 1B) is rapid and dramatic. Yet, 

little is known about the intermediate steps. Does nematode RB formation employ cellular 

mechanisms common to other asymmetric partitioning processes? Alternatively, given its 

unusually close juxtaposition to anaphase, has RB formation coopted elements of the normal 

cytokinesis machinery?   

The speed and relative simplicity of these post-meiotic events combined with a 

striking degree of interspecies diversity in sperm size (Viele et al., 2016), sperm morphology 

(Justine, 2002; Yushin and Malakhov, 2014), and patterns of sex chromosome segregation 

(Shakes et al., 2011), makes nematodes a valuable system for comparative studies. We 

recently described spermatogenesis in a nematode, provisionally named Rhabditis sp. 

SB347 and more recently designated Auanema rhodensis (Kanzaki et al., 2017), in which 

the unusually small spermatocytes of XO males do not form traditional RBs (Shakes et al., 

2011; Fig. 1C). Instead, the asymmetric partitioning process yields functional, X-bearing 

sperm containing the essential sperm components and an RB containing the actin, tubulin, 

and the non-X chromosome set. Critical to this sex-biased gamete production, the unpaired 

X chromosome in the XO male spermatocytes of R. sp. SB347 does not lag during 

anaphase I as in C. elegans male spermatocytes (Albertson and Thomson, 1993; Fig. 1B). 

Instead, the X splits into sister chromatids during anaphase I, and the secondary 

spermatocytes always have a lagging X chromatid during anaphase II (Shakes et al., 2011; 

Fig. 1C).   

In this study, we explore the cellular mechanisms of this asymmetric partitioning 

process through a comparative study of spermatogenesis in C. elegans, R. sp. SB347, and 

additional members of the R. sp. SB347 clade. Using a combination of fluorescence and 

transmission electron microscopy, we examine how sequential changes in microtubule and 

microfilament patterns correlate with the timing of anaphase chromosome segregation and 

the differential partitioning of specific organelles. We find that organelle partitioning occurs in 

two phases, with larger organelles partitioning early and ER partitioning only later during the 

final stages of sperm-RB separation. We identify the transition between anaphase II 

chromosome segregation and post-meiotic RB formation as the critical period when 

microtubules begin to reorganize and move from the centrosomes to the RB-sperm 

boundaries, and actin reorganizes to the RB through a combination of cortical ring expansion 
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and clearance from the poles. In R. sp. SB347 and near relatives with similarly small 

spermatocytes, we find that the conversion of a typically bipolar partitioning process 

becomes unipolar, through the selective inactivation of one centrosome and differential 

clearing of actin from that same pole. Although we previously hypothesized that unipolar 

partitioning in R. sp. SB347 required an unpaired X during anaphase II (Shakes et al., 2011), 

we show here that both male (XO) and hermaphrodite (XX) spermatocytes divide in a 

unipolar fashion. The routine production during meiosis of functional and degenerate sperm 

during meiosis has been previously reported in rotifers (Whitney, 1918), aphids (Honda, 

1921), and honeybees (Sharma et al., 1961). However, to our knowledge, this is the first 

example in nematodes of diminutive spermatocytes generating less than four functional 

gametes from meiosis and co-opting the process of RB formation to discard half of their 

genetic material into what appears to be the spermatogenesis equivalent of female polar 

bodies.  

RESULTS 

 

In C. elegans spermatocytes, intact microtubules reorganize and move from the 

centrosomes to the RB-sperm boundaries 

During C. elegans spermatogenesis, the transition from anaphase II to post-meiotic 

RB formation and release includes a dramatic reorganization of the microtubule cytoskeleton 

from an anaphase spindle into non-spindle microtubules within the RB (Ward et al., 1981; 

Ward, 1986; Shakes et al., 2009). Yet the nature of this transition has been unclear. Are pre-

existing microtubules reorganized or are they completely disassembled and newly 

reassembled within the RB? To understand the nature of this reorganization and whether it 

coopts elements of the normal cytokinesis machinery, we imaged both live C. elegans 

spermatocytes using differential interference contrast (DIC) optics and fixed spermatocytes 

that had been co-labeled with DAPI and anti--tubulin antibodies (Fig. 2A). From anaphase I 

until early anaphase II, chromosomes segregated on typical microtubule spindles.  

Anaphase I spermatocytes were distinguished by the presence of a lagging X bivalent (blue 

arrow), which are known to ultimately segregate to one of the two secondary spermatocytes 

(Albertson and Thomson, 1993).  However as the haploid chromosome sets moved further 

apart and the spermatocytes elongated (P), microtubules were no longer anchored at the 

centrosomes, and the DIC images revealed a central region lacking refractive FB-MOs. 

Once constrictions had formed between each sperm and the central RB (separation phase, 

S), microtubules had completely reorganized into two broad bands, one at each RB-sperm 

boundary. As the RB fully separated from the adjacent sperm products (Pr), the cortical ends 

of the microtubules gathered into discrete foci. Newly formed RBs had two or four discrete 

D
ev

el
o

pm
en

t •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 

foci, depending on whether the secondary spermatocytes had fully separated after the first 

meiotic division. 

As microtubules reorganize and move to the RBs, their centrioles remain with the 

sperm (Ward et al., 1981; Peters et al., 2010; Shakes et al., 2009). To understand how 

centrosomal microtubules reorganize into non-centrosomal microtubules, we examined 

microtubule localization and polarity in fixed and living cells. Microtubule minus ends were 

visualized by the localization and movement of TBG-1/-tubulin and GIP-1/GCP3, both 

components of the -tubulin ring complex (-TuRC) (Fig. 2B-D). In fixed preparations, -

TuRC proteins localized to the cell cortex of developing spermatocytes before relocalizing to 

the centrosomes of spermatocytes that were initiating their meiotic divisions (Fig. 2B). 

Following the meiotic divisions, most of the -TuRC proteins relocalized to punctate 

structures in the RBs, although a sub-population remained behind with the inactive 

centrosomes, as has been observed in other differentiated cell types (Feldman and Priess, 

2012; Zhou et al., K., 2009, J.F. unpublished data).  

In live metaphase II spermatocytes, GFP:TBG-1 localized exclusively to the 

centrosome (Fig. 2C, 0 min, Supplemental Movie 1). However as cells progressed beyond 

anaphase II, the centrosomes flattened and GFP:TBG-1 spread along the cortex (Fig. 2C, 

arrowheads). As spermatocytes elongated, some GFP:TBG-1 remained with the inactivated 

centrosome, while the non-centrosomal fraction of GFP:TBG-1 moved toward the RB, 

eventually concentrating at the RB-sperm boundary during the separation phase (40’). To 

directly assess microtubule reorganization, we also observed live spermatocytes co-

expressing GFP:TBG-1 and mCherry:TBA-1 (-tubulin, a core subunit of microtubules) (Fig. 

2D, Supplemental Movie 2). Localization of GFP:TBG-1 to the cortical tips of microtubules 

(arrowheads, 20’) suggests that microtubules remain intact and associated with their -

TuRCs as they move to the RBs, and orient with their minus ends specifically abutting the 

RB-sperm boundaries.    

In R. sp. SB347 male spermatocytes, major shifts in microtubule patterns are confined 

to the single, X-bearing pole.   

In R. sp. SB347 spermatocytes, microtubule organization was initially similar to that 

in C. elegans (Fig. 2E). However, by early anaphase II (AII(e)) when microtubule asters were 

already at the two poles, the spermatocytes were only slightly elongated, and the X 

chromatid was centrally positioned. As long as the X remained centrally positioned, the 

microtubule spindles were symmetric (35/35). However by late anaphase II (AII(l)), when the 

X had physically contacted but not yet fully incorporated into one anaphase plate, the 

spindles were asymmetric (62/68) with long microtubules emanating from the X-bearing 
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pole. Although late anaphase II spermatocytes with symmetric spindles were observed, they 

were not only rare but associated with individual males who had multiple such 

spermatocytes, suggesting that they represented worm-to-worm variation rather than 

standard intermediates. All other late anaphase II spermatocytes exhibited dramatic intra-

spindle size asymmetry. This type of spindle asymmetry, in which the two half-spindles vary 

dramatically in length, has been shown to mechanistically support asymmetric, mitotic cell 

divisions in many other organisms and contexts (Knoblich, 2010; Delaunay et al., 2014).  

After the X chromatid had fully incorporated into one haploid chromosome set (Fig. 

2E) and the cells entered the post-meiotic partitioning (P) and separation (S) phases, 

microtubules reorganization occurred specifically at the X-bearing pole. At this point, the 

chromosomes were farther apart, the cells had elongated, and same-stage DIC images 

showed a clearing of refractive bodies from one pole, which other studies determined to be 

the non-X pole (Shakes et al., 2011). Remarkably, as microtubules from the X-bearing pole 

reorganized and moved to the single RB-sperm boundary (Fig. 2E, green arrows, unipolar), 

microtubule asters at the non-X pole remained relatively unchanged. In summary, a process 

of microtubule reorganization and centrosome inactivation that is bipolar in C. elegans (Fig. 

2A) is unipolar in R. sp. SB347 (Fig. 2E). 

 

In both C. elegans and R. sp. SB347, asymmetric FB-MO partitioning coincides with 

post-meiotic events 

The major sperm protein (MSP) is a cytoskeletal protein that ultimately drives 

nematode sperm motility; however, when MSP is first synthesized, it is packaged in the form 

of paracrystals within discrete fibrous bodies (FBs) (Smith, 2006). To determine whether 

asymmetric FB partitioning coincides with either chromosome segregation or microtubule 

reorganizaton, FB patterns were examined in co-labelled spermatocytes. In fixed C. elegans 

spermatocytes, FBs were uniformly distributed until the completion of anaphase II, at which 

point the FBs began clearing from the cell center (Fig. 2A). In spermatocytes whose 

microtubules were actively reorganizing and moving centrally to the RB-sperm boundaries, 

FBs were already in place within the sperm and no longer in the expanding RB.  

In meiotically dividing R. sp. SB347 spermatocytes, FBs were symmetrically 

distributed, while being specifically excluded from both the metaphase plate and the 

anaphase poles (Fig. 2E). Contrary to our earlier predictions (Shakes et al., 2011), FB 

partitioning did not coincide with either X chromatid segregation or establishment of the 

asymmetric spindle; FBs remained centrally located, regardless of whether the lagging X 

was positioned centrally (11/11) (Fig. 2E, AII(e)) or loosely associated with one pole (32/32) 

(Fig. 2E, AII(l)). Instead, FB partitioning coincided with the X fully incorporating into an 

anaphase plate. In 33/37 spermatocytes in which a distinct X was no longer detectable, the 
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FBs had asymmetrically partitioned to the pole with the larger, X-bearing chromatin mass 

(Fig. 2E, P). The process of FB partitioning is presumably rapid as we failed to identify 

partitioning intermediates. In contrast, microtubules reorganized throughout the partitioning 

phase. The unpaired X in R. sp. SB347 effectively prolongs anaphase II, strongly suggesting 

that FB partitioning in R. sp. SB347 and presumably in C. elegans coincides not with 

anaphase chromosome segregation but with anaphase completion and the movement of 

microtubules away from the X-bearing pole. This model is consistent with earlier proposals 

that RB formation in nematodes should be considered part of post-meiotic sperm 

differentiation (spermiogenesis) rather than part of the meiotic divisions (Shakes et al., 2009; 

Chu and Shakes, 2013).  

 

Unipolar partitioning also occurs during spermatogenesis in XX R. sp. SB347 

hermaphrodites.  

In R. sp. SB347 males, the partitioning of sperm essential components specifically to the X-

bearing sperm suggested that the unpaired X chromatid might physically cue the asymmetry 

(Shakes et al., 2011). If so, the production of functional and non-functional sperm should be 

an exclusive property of XO males, since only XO secondary spermatocytes are predicted to 

have an unpaired X. We hypothesized that, in the absence of an unpaired X, spermatocytes 

from XX hermaphrodites would undergo bipolar partitioning to produce four functional sperm 

and an RB without DNA. Contrary to our expectations, hermaphrodite spermatogenesis 

yielded a mixture of DNA-containing (MSP negative; tubulin positive, white arrow) RBs and 

functional (MSP positive, tubulin negative, red arrow) sperm (Fig. 2F, Pr; 100% of >30 

hermaphrodites scored at this stage). Furthermore, although they were difficult to capture, all 

observed post-meiotic intermediates (8/8 cells) exhibited unipolar partitioning (Fig. 2F, P). 

Thus the unipolar division that generates one functional sperm and one DNA containing RB 

during R. sp. SB347 spermatogenesis, occurs in both XX and XO germlines.  

Post-meiotic, asymmetric partitioning occurs in two discrete phases.  

While FB-MOs and mitochondria partition to the sperm, other organelles such as the 

endoplasmic reticulum partition to the RB (Ward et al., 1981; Fig. 1D). To assess the relative 

timing of ER partitioning, we examined ER in fixed spermatocytes using an antibody against 

the ER-specific cytochrome P450 marker, CYP-33E1 (Hadwiger et al., 2010). In C. elegans 

meiotic spermatocytes, CYP33-E1 labeled both a diffuse cytoplasmic component and 

discrete, elongated tube-like structures that were distributed throughout the cell (Fig. 3A). 

During the post-meiotic stages (P,S), the diffuse cytoplasmic component localized to the 

expanding RB, whereas the tubular structures remained uniformly distributed throughout 

most of the separation phase before ultimately partitioning to the RBs (white arrow). During 
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R. sp. SB347 spermatogenesis, CYP33-E1 exhibited an analogous pattern (Fig. 3B). The 

diffuse component partitioned away from the X-bearing sperm at the beginning of the post-

meiotic stage, whereas the faintly labeled tubular structures partitioned to the RB (white 

arrow) only later. Which molecular forces partition these late segregating components 

remains unclear.   

Transmission electron micrographs of R. sp. SB347 spermatocytes.  

Because the small size of the R. sp. SB347 spermatocytes made it challenging to visualize 

details of the partitioning process, we further investigated the relative timing of these events 

using thin section electron microscopy. In cells whose X chromatid (marked in orange) was 

positioned in between the autosomes, the mitochondria and FB-MO complexes seemed 

equally distributed (Fig. 3C). In cells whose X chromatid had fully incorporated into an 

anaphase plate, FB-MOs and mitochondria were differentially partitioned to the X-bearing 

pole (Fig. 3D). During these early stages, tubular and membranous structures as well as 

ribosomes remained evenly distributed (Fig. 3C-D), and they only differentially partitioned to 

the RB near the end of the separation stage (Fig. 3E).   

In parallel studies, we analyzed serial ‘semi-thick’ (300 nm) sections, which enabled 

us to capture the entire volume of dividing spermatocytes. Analysis of 76 anaphase II and 

partitioning phase cells within six different individuals enabled us to quantify the asymmetric 

partitioning of the mitochondria and FB-MOs relative to the cells’ progression through 

anaphase II (Fig. 3F, G). Within individual secondary spermatocytes, the number of 

organelles per cell was counted and assigned to one of three defined zones: closer to the 

centrosome without the X chromosome (Z1), closer to the centrosome associated with the X 

chromosome (Z3), or in a zone in between (Z2) (Fig. 3F). Because individual cells differed in 

size and shape, we normalized the X chromosome to X-bearing centrosome distance (X-to 

X-pole distance) to the centrosome-to-centrosome distance (pole-to-pole distance). Plotting 

X chromatid position against the fraction of organelles in Z3 revealed that most FB-MOs and 

mitochondria partitioned only once the X approached the relative position of 0.2 and thus 

was mostly or fully incorporated into one of the anaphase plates (Fig. 3G).  

Using electron tomography, we also fully reconstructed two cells, one in early 

anaphase II and one in early partitioning (Fig. 3H,I). When the X chromatid was positioned 

centrally (Fig. 3H), so were the FB-MOs (light gray), mitochondria (dark grey) and, when 

scorable, Golgi complexes (white). When the X segregated to one pole and was nearly or 

fully incorporated into the chromosome cluster (and would have been scored as fully 

incorporated by DAPI staining), the FB-MOs and mitochondria were restricted to the X-

bearing side (Fig. 3I). In contrast, Golgi complexes (white) within this same cell remained 

symmetrically distributed. These same three-dimensional reconstructions enabled us to 
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obtain precise counts of organelle numbers; we counted 27 FB-MOs and 11 mitochondria 

within the anaphase II spermatocyte, and 34 FB-MOs and 14 mitochondria within the 

partitioning stage spermatocyte.  

 

Unipolar partitioning occurs in other trioecious species of the R. sp. SB347 clade but 

not in the male/female species Rhabditella axei.  

To determine whether the unipolar partitioning process that yields one functional sperm and 

one DNA containing RB from each R. sp. SB347 secondary spermatocyte represents an 

evolutionary oddity or a characteristic feature of this clade (Fig. 4A), we investigated male 

spermatogenesis in closely related species that, like R. sp. SB347, are both trioecious 

(males/females/hermaphrodites) and have small sperm. Rhabditis sp. SB372 males have 

sperm (4.6 ± 0.9 m2 cross-sectional area) that are slightly smaller than those of R. sp. 

SB347 males (6.7 ± 1.6 m2) and much smaller than those of C. elegans (15.2 ± 2.5 m2). 

R. sp. SB372 spermatocytes (Fig. 4B-C) shared many similarities with those of R. sp. 

SB347. Primary spermatocytes divided symmetrically, and we found no evidence of lagging 

X chromosomes during anaphase I. Although difficult to see in these smaller spermatocytes, 

we routinely observed a central, lagging X chromatid during meiosis II (Fig. 4B, yellow arrow) 

and were able to distinguish the X-bearing pole at later stages by its larger chromatin mass. 

The meiotic spindle became asymmetric as the X chromatid moved to one pole (Fig. 4B, AII, 

P). Microtubules from the X-bearing pole subsequently shifted to the RB-sperm boundary 

during separation (Fig. 4B, S). FB partitioning began in late anaphase II and continued 

through partitioning (Fig. 4C, P). Ultimately, the microtubules partitioned to the RBs (green 

arrow) while the FBs partitioned to the X-bearing sperm (Fig. 4C, white arrow). We observed 

similar patterns in the even smaller sperm (4.3 ± 0.6 m2) of R. sp. JU1783 males (Fig. 4D-

E). However, the functional sperm of R. sp. JU1783 males often retained small amounts of 

-tubulin, presumably associated with the centrosome (Fig. 4D, Pr), and some males 

produced a mix of tubulin-enriched cytoplasts both with and without chromatin (green 

arrows), suggesting the production of some “traditional” RBs without chromatin.  

 To determine whether unipolar partitioning was characteristic of this entire clade or 

restricted to trioecious relatives, we also examined spermatocyte partitioning in Rhabditella 

axei, the closest known male/female relative of R. sp. SB347 (Kiontke and Fitch, 2005). As 

in other male/female nematodes, R. axei males have much larger sperm (60.1 ± 7.3 m2). 

Furthermore, their spermatocyte divisions yield four functional sperm (Shakes et al., 2011). 

Immunostained preparations of R. axei spermatocytes revealed patterns both similar to and 

distinct from those in either C. elegans or R. sp. SB347 (Fig. 4F). As previously reported 

(Shakes et al., 2011), the male spermatocytes in R. axei exhibit the same X chromosome 
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segregation patterns as in R. sp. SB347 and thus have lagging X chromatids during 

anaphase II (Fig. 4F, yellow arrow and full sized DAPI images on right). Yet unlike those in R 

sp. SB347, R. axei meiotic spindles remained symmetric throughout anaphase II. During the 

meiotic divisions, FBs distributed uniformly throughout the spermatocytes. FBs began 

clearing (purple arrow) from the central region, after the completion of anaphase II (P). By 

the time the chromosome sets had compacted into tight single masses (orange arrow), 

microtubules had fully reorganized and moved to the RB-sperm boundaries. A unique 

feature of R. axei spermatogenesis is that, although we observed pairs of sperm separating 

from a central RB (S**, offset DIC image at the bottom of 4F), the meiosis II cleavage furrow 

often proceeded to completion, generating two large, polarized sperm that each 

subsequently generated their own RB (Fig. 4F, S*, Pr). Despite this altered cleavage pattern, 

the relative timing of polarization events in R. axei spermatocytes is the same as in C. 

elegans and R. sp. SB347. Furthermore, these studies confirm that, despite having an X 

chromosome segregation pattern like R. sp. SB347, microtubule reorganization and FB 

partitioning in these much larger R. axei spermatocytes is bipolar as in C. elegans. 

Actin microfilaments reorganize through a combination of cortical ring broadening 

and clearing from one or both poles.  

In all of these species, FB-MOs asymmetrically partition postmeiotically as the cells elongate 

and the microtubules reorganize and move to the RB-sperm boundary. But what forces 

establish this polarity and direct the movement of these organelles? In R. sp. SB347 male 

spermatocytes, the late anaphase II spindle asymmetry may help establish the initial polarity, 

but FB-MOs partitioning occurs only later as the microtubules are reorganizing at the X-pole. 

Furthermore, when we assessed the proximity of mitochondria and FB-MOs to adjacent 

microtubules in our TEM studies, the distances were too great to be bridged by microtubule 

motors (data not shown). Alternatively, a key role for actin would be consistent with earlier 

pharmacological and genetic studies in C. elegans (Nelson et al., 1982; Kelleher et al., 

2000). However, few details were known about the step-wise changes in the actin 

cytoskeleton as nematode spermatocytes progress from anaphase II and through the early 

post-meiotic partitioning events. 

In fixed C. elegans spermatocytes, microfilaments were present around the entire 

cortex during the meiotic divisions, but an enhanced cortical ring developed during anaphase 

I and II (Fig 5A, white arrows). During anaphase II, a defined ring could only be observed 

when the chromosomes were still quite close together. As the spermatocytes elongated and 

transitioned to the post-meiotic partitioning phase (P), the central ring widened into a band 

(white asterisk). At the same time or shortly thereafter, microfilaments progressively cleared 

from the poles (orange arrows). By the separation phase, microfilaments were completely 
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restricted to the RB, both at the cortex and within the RB cytoplasm. Separated RBs 

exhibited actin patches at what we assume are the former sperm attachment sites (green 

arrows) suggesting a potential role for actin in RB-sperm abscission.   

In the larger R. axei spermatocytes, actin patterns were similar but more exaggerated 

(Fig. 5B). During anaphase II, microfilaments were initially present both at the cortex and in a 

central cortical ring (white arrows). As the spermatocyte elongated, the central actin ring 

expanded in the form of a gradient (P), while microfilaments progressively cleared from the 

poles (orange arrows). As the microfilaments continued to clear from the poles, those within 

the RB were no longer confined to the cortex but broadly distributed throughout. 

 R. sp. SB347 spermatocytes exhibited a unipolar version of these same events (Fig. 

5C). In metaphase spermatocytes, microfilaments distributed uniformly around the cortex 

(data not shown); but during anaphase II, they differentially accumulated in a central cortical 

ring (white arrow). Once the lagging X chromatid fully incorporated into an anaphase plate, 

microfilaments specifically cleared from the cortex of the X-bearing pole (orange arrows). 

Throughout the partitioning phase, microfilaments remained at the RB cortex while 

establishing a concentrated central band (purple arrows) adjacent to the RB-sperm 

boundary. In detached RBs, microfilaments distributed throughout the cytoplasm. Although 

these observations do not directly test whether actin functions in FB partitioning, they are 

consistent with either actin or actomyosin forces functioning to physically exclude larger 

organelles from the RB.   

 

DISCUSSION  

How nematode spermatocytes generate haploid sperm lacking both actin and tubulin 

has always been an intriguing cellular phenomenon, yet little was known about how this 

cellular transformation was actually accomplished. Now, by comparing the sequence of 

cytoskeletal changes that accompany this transformation in diverse nematode 

spermatocytes, we have identified both conserved and divergent aspects of the process 

(Fig. 6).  

One might assume that the cellular processes that enable a spermatocyte to discard 

its microtubule cytoskeleton would be unique to nematode spermatogenesis. However, our 

key finding that microtubules reorganize as they move from the centrosome to the RB-sperm 

boundary suggests a clear and informative parallel to similar centrosomal to non-

centrosomal conversions in a wide range of differentiating cells including epithelial cells, 

neurons, and oocytes (reviewed by Bartolini and Gunderson, 2006; Sanchez and Feldman, 

2016). In these cases, the reassignment of microtubule organizing center (MTOC) function is 

postulated to involve the movement of microtubules directly from the centrosome to non-

centrosomal sites, but direct evidence has been lacking. Our live-imaging studies suggest 
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that intact microtubules move together with -TuRCs. This association would both stabilize 

the pre-existing microtubules and could enable nucleation of new microtubules from a 

repositioned MTOC. In the context of nematode spermatogenesis, this strategy may provide 

an efficient way of clearing tubulin from the sperm.  

With some exceptions such as in plant cells and meiotically dividing oocytes, non-

centrosomal microtubules are typically restricted to differentiated, non-dividing cells since 

they appear to be inhibited by mitotic (and meiotic) kinases. (Sallee and Feldman, 2015). 

Our studies reveal that C. elegans spermatocytes undergo two sequential transitions. During 

meiotic prophase, the microtubules are organized by cortically localized, non-centrosomal 

MTOCs. As spermatocytes initiate the meiotic divisions, MTOC function switches to the 

centrosomes before switching back to a non-centrosomal state at the end of anaphase II. In 

R. sp. SB347, this second switch is restricted to one pole. In male spermatocytes, the loss of 

centrosomal MTOC function occurs specifically at the X-pole as the lagging X incorporates 

into the anaphase plate; yet the same unipolar switch occurs in hermaphrodite 

spermatocytes which presumably lack a lagging X. In both C. elegans and R. sp. SB347, the 

centrosomal to non-centrosomal switch correlates with anaphase completion and a key step 

in sperm differentiation, the remodeling of chromosomes into a single tight chromatin mass. 

In R. axei, where these events occur sequentially, MTOC reassignment correlated with the 

later event of chromatin remodeling. In other developmental contexts, asymmetry in 

centrosome behavior is linked to cell fate. For example, asymmetric MTOC function at the 

centrosome allows for the selective retention of the daughter centrosome in Drosophila 

neuroblasts and of the mother centrosome (or spindle pole body) in Drosophila male 

germline stem cells, mouse radial glial cells, and Saccharomyces cerevisiae bud cells 

(Yamashita et al., 2007; Wang et al., 2009; Conduit et al., 2010; Januschke et al., 2011; 

Pereira and Schiebel, 2001). We have yet to determine whether the non-X pole in R. sp. 

SB347 spermatocytes stereotypically associates with the mother or daughter centrosome, 

but the maintenance of an active centrosome MTOC within the developing RB suggests a 

similar link between centrosome asymmetry and cell fate. 

Our actin results, showing 1) cortical ring broadening throughout anaphase and 2) 

actin clearing from the poles as spermatocytes elongate, also have parallels in other cell 

types. Efficient metaphase spindle assembly requires uniform cortical rigidity (Matthew et al., 

2012) whereas mid-anaphase cell elongation requires relaxation at the poles through the 

localized loss or remodeling of actin microfilaments (Roubinet et al., 2011; Kunda et al., 

2012; Rodrigues et al., 2015). Typically, this remodeling includes a minor reduction in actin 

microfilaments at the poles and localized deactivation of the actin-plasma membrane linker, 

moesin. In nematode spermatocytes, the clearing of actin from one or both poles coincides 
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with spermatocyte elongation and post-anaphase partitioning, but in its exaggerated form, it 

also provides a mechanism for clearing actin from the sperm.  

In other systems, differential clearing of myosin from one pole creates an asymmetry 

in actin forces that shifts the cleavage furrow and generates an asymmetric cell division (Ou 

et al., 2010; Connell et al., 2011). In C. elegans spermatocytes, the combination of clearing 

of actin from both poles and accumulating actin centrally might create asymmetric actin 

forces that bi-directionally shift cleavage furrow activity away from the center and towards 

the two RB-sperm boundaries. Conversely, unipolar clearing in R. sp. SB347 may account 

for the single, displaced cleavage furrow. At the other extreme, stability rather than 

regression of the central cleavage furrow may be favored in the larger R. axei 

spermatocytes, such that they first cleave in two before the individual sperm secondarily 

separate from their RB. Future studies may determine that a two-step process is typical for 

larger spermatocytes. Notably, our results indicate that R. axei spermatocytes still initiate 

partitioning immediately after completing anaphase II; only RB-sperm abscission is delayed.  

Broadening of the actin cortical ring coupled with localized accumulation of non-

cortical microfilaments may also facilitate both RB formation and separation. An expanding 

band of cortical actin could provide counterbalancing rigidity for spermatocyte elongation at 

the softened poles and support rounding up of the RB into a sphere whose shape is largely 

independent of the cytoplasmically linked sperm. Furthermore, since larger organelles (e.g. 

FB-MOs and mitochondria) in R. sp. SB347 and R. axei are not partitioning in association 

with microtubules, perhaps non-cortical microfilaments within the expanding RBs partition 

them through exclusion. During Drosophila spermatogenesis, an actin meshwork functions in 

this manner. During RB formation and separation, often referred to as individualization, an 

actin cone moves down the length of the axoneme while an actin meshwork within excludes 

cytoplasm and organelles from the rest of the sperm (Fabrizio et al., 1998; Noguchi et al., 

2006). Our finding that nematode RB formation is associated with post-anaphase II actin 

remodeling confirms its value as an informative parallel to RB formation in non-nematodes.   

In R. sp. SB347 males, the production of two rather than four functional products from 

spermatocyte meiosis combined with the invariable segregation of the X to the functional 

sperm provides a convenient and evolutionarily useful mechanism for generating a feminine 

biased sex ratio. Yet this study suggests that an unpaired X during anaphase II is neither 

sufficient nor necessary for this pattern of division. Despite having an unpaired X chromatid 

during anaphase II, the large spermatocytes of R. axei males yield four functional sperm with 

Mendelian 50:50 sex ratios. Conversely, the tiny spermatocytes in R. sp. SB347 XX 

hermaphrodites only yield two functional sperm, despite presumably having paired X 

chromosomes in both meiotic divisions. Tiny male spermatocytes in R. sp. SB347 near 

relatives typically yield two functional sperm and two DNA-containing RBs. In R. sp. SB372 
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males, these unipolar divisions also correlate with skewed sex, feminine-biased sex ratios 

(A. Pires da Silva, unpublished), but further studies of the other near relatives are needed to 

assess both their sex ratios and frequency that their RBs lack DNA.  Collectively, our current 

data is consistent with the unpaired X in R. sp. SB347 male spermatocytes merely following 

the RB-sperm asymmetry, and that the critical, shared feature of these modified unipolar 

divisions is not an unpaired X during anaphase II but the diminutive size of the 

spermatocytes.   

What possible evolutionary advantage could be gained by throwing away half of one’s 

potential sperm?  Studies of nematode sperm size in both the genus Caenorhabditis and the 

family Rhabditidae suggest that sperm size is driven by two opposing factors. Larger sperm 

are more competitive (LaMunyon and Ward, 1999), and thus they are favored when sperm 

competition between genetically dissimilar males is high, as typically occurs in male/female 

species. However the costs of producing larger sperm are that sperm production is slower 

and fewer sperm can be stored within the spermatheca for subsequent fertilization events 

(LaMunyon and Ward, 1999; Murray et al., 2011; Vielle et al., 2016). Therefore, small sperm 

are favored in hermaphroditic species where sperm competition is low and smaller sperm 

can be produced more quickly and stored in higher numbers (LaMunyon and Ward, 1999; 

Baldi et al, 2011). Within the family Rhabditidae, the sperm of R. sp. SB347 and its 

trioecious near relatives (this study) are the smallest reported to date (LaMunyon and Ward, 

1999; Vielle et al., 2016; this study). We hypothesize that evolutionary pressures to reduce 

sperm size in R. sp. SB347 may have reached a cellular and developmental threshold. To 

function, the motile spermatozoa require a minimal stock of mitochondria and cytoplasmic 

components. Already, the thin shell of cytoplasm surrounding the DNA of R. sp. SB347 

spermatozoa seems barely enough to support motility. Furthermore, the developmental 

program of spermatogenesis requires throwing away materials that could be detrimental for 

subsequent sperm function. Perhaps in R. sp. SB347 and its trioecious near relatives, the 

advantage of rapid sperm production outweighs the cost of throwing away haploid 

complements of genetic material. If so, these spermatocytes have effectively adopted a 

standard strategy of oocytes; producing functional sperm of the necessary size at the cost of 

discarding meiotic products within RBs, the spermatogenesis equivalent of oocyte polar 

bodies.  
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MATERIALS AND METHODS 

Maintenance and origin of strains 

All nematode strains were maintained on plates of MYOB agar (Church et al., 1995) or NGM 

agar (Brenner, 1974) seeded with the E. coli uracil auxotroph mutant strain OP50. Strains 

were maintained at 20°C. Strains used for live imaging were JJ2330 (ddIs6[pie-1:GFP:TBG-

1]; itIs37[pie-1:his-24:mCherry]; stIs10116[his-72:his-24:mCherry]; ltIs44[pie-

1:mCherry:PH(PLC11)]) and JJ2418 (ddIs6[pie-1:GFP:TBG-1]; zuIs278[pie-1:mCherry:tba-

1]).  The C. elegans strain CB1489 him-8(e1489) and the Rhabditella axei strain (DF5006) 

were obtained from the Caenorhabditis Genetics Center. Rhabditis sp. SB347 and Rhabditis 

sp. JU1783 were kind gifts from Marie-Anne Félix. Rhabditis sp. SB372 was from Karin 

Kiontke. SB347 was isolated from a deer tick used as a bait for nematodes (Felix, 2004). 

SB372 was isolated from a horse dung pile in Freiburg in Germany in August 2003. JU1783 

was sampled in La Réunion, in a star fruit, in Melissa domain, Saint-Benoît, in September 

2009. 

Immunohistochemistry and microscopy  

Isolation and antibody labelling of dissected gonads followed established protocols (Shakes 

et al., 2009). When not otherwise noted, representative images for the figures were selected 

from the analysis of spermatocytes from 20-150 male gonads. Primary antibodies included: 

FITC-conjugated anti--tubulin (mouse monoclonal DM1A, Sigma, used at 1:80 dilution), 

anti-MSP from David Greenstein (4D5 mouse monoclonal, used at 1:300, and G3197 rabbit 

polyclonal, used at 1:15,000), undiluted anti-cyp33-E1 mouse monoclonal (Developmental 

Studies Hybridoma Bank at the University of Iowa) developed by Hadwiger et al. 2010, anti-

GIP-1 (rabbit polyclonal, used at 1:1000, provided by Anthony Hyman (Hannak et al., 2002)), 

and anti-IFA (mouse monoclonal, used at 1:100 (Pruss et al., 1981)). Affinity purified 

secondary antibodies (Jackson Immunoresearch Laboratories) (1:100) included goat anti-

rabbit TRITC-labeled IgG, DyLight 488-labeled goat anti-mouse IgG and Alexa Fluor 488 

anti-goat IgM. Actin microfilaments were labelled with rhodamine phalloidin (Molecular 

Probes). Final slides were mounted with DAPI containing Fluoro Gel II mounting medium 

(Electron Microscopy Sciences). Images were acquired using an Olympus BX60 microscope 

using a QImaging EXi Aqua CCD camera. Photos were taken, merged, and exported for 

analysis using the program iVision. In some cases, the levels adjust function in Adobe 

Photoshop was used to spread the data containing regions of the image across the full 

range of tonalities.  
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Live imaging was performed on a Nikon Ti-E inverted microscope (Nikon 

Instruments) using a 60x Plan Apochromat objective (NA=1.4) and controlled by NIS 

Elements software (Nikon). Images were acquired with an Andor Ixon Ultra back thinned 

EM-CCD camera using 491 nm or 561 nm lasers and a Yokogawa X1 confocal spinning disk 

head equipped with a 1.5x magnifying lens. Images were taken at a z-sampling rate of 0.5 

µm and processed in NIS Elements, ImageJ, or Adobe Photoshop. 

Enhancing the numbers of R. sp. SB347 males  

12-15 dauer larvae, which inevitably develop into hermaphrodites (Chaudhuri et al. 2011), 

were picked to 60 mm worm plates and allowed to produce a male-enriched early brood (first 

12-24 hours of egg laying) before removing the adults. Alternatively, dauers were isolated 

from densely populated but unsynchronized cultures by washing the worms off the plates 

with ddH2O, centrifuging the worms, and then treating the worm pellet with 1% w/v SDS in 

ddH2O for 30 minutes at room temperature to kill all worms except the resistant dauer 

stages. After two washes with ddH2O, the surviving dauers were transferred to a fresh plate 

and then removed after they had produced an early brood.     

High-pressure freezing, electron microscopy and quantitative image analysis 

3-5 males were placed in 1 µl of 20% (w/v) BSA in M9 buffer in a hexadecene (Merck) 

coated aluminum carrier (cavity 0.1 µm, Art. 241 & 242, Wohlwend GmbH, Sennwald, 

Switzerland). Animals were ultra-rapidly frozen under high pressure using a Wohlwend HPF 

Compact 01 (Wohlwend GmbH, Sennwald, Switzerland). Freeze-substitution was performed 

over a period of 3 days at -90°C in anhydrous acetone containing 1% (w/v) OsO4 and 0.1% 

(w/v) uranyl acetate using an automated freeze substitution machine (EM AFS, Leica 

Microsystems, Vienna, Austria). Epon/Araldite infiltrated worms were flat embedded in a thin 

layer of resin, polymerized for 3 days at 60°C and mounted on dummy blocks (Müller-

Reichert et al., 2007). Serial thin (70 nm) and semi-thick (300 nm) sections were cut using a 

Reichert Ultracut S microtome (Leica Microsystems, Vienna, Austria), subsequently 

collected on Formvar-coated copper slot grids and post-stained with 2% (w/v) uranyl acetate 

in 70% ethanol followed by 0.4% (w/v) lead citrate. Both sides of grids with semi-thick 

sections were then covered with 15nm-colloidal gold. The meiotic region within the male 

worms was located and individual meiotic cells within thin sections were recorded with a 

TEM (Morgagni 286, FEI) operated at 80 kV. Next, serial semi-thick sections were recorded 

at a magnification of 2156x with a TEM (EM 906, Zeiss, Germany) operated at 80 kV. 

Consecutive images were registered and stacked with Fiji software (Schindelin et al., 2012). 

Individual cells were cropped out and analyzed section by section with Fiji. For that, the 

coordinate of each centrosome was exported, as well as the center of each X chromosome. 

Then, distances between the two centrosomes and between the X chromosome and the 

future X-bearing pole were calculated. For quantifying organelles, mitochondria and FB-MOs 
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were counted and assigned either to the non-X (zone Z1) pole, the X-pole (Z3), or the region 

between the poles (zone Z2).  

 For electron tomography, dual tilt series of serial semi-thick sections were acquired 

from -65° to 65° with a 1° increment at a magnification of 4700x with a TEM (Tecnai F30, 

FEI) operated at 300 kV. The tilt series were reconstructed using the IMOD software 

package (Kremer, et al., 1996). Structures of interest were modelled within the reconstructed 

volumes using the ZIBAmira software package (Stalling, et al., 2005). Microtubules were 

automatically detected in each section (Weber et al., 2012; Redemann et al., 2014). Next, 

single microtubule models were combined to represent the whole microtubule network within 

a cell (Weber, et al., 2014). Chromosomes, FB-MOs, mitochondria, Golgi and centrioles 

were manually segmented. 
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Figures 

 

 

 

Figure 1. Patterns of cell division and asymmetric partitioning during 

spermatogenesis. (A) In Drosophila and vertebrates, spermatocytes divide meiotically while 

connected by cytoplasmic bridges. After meiosis, the haploid sperm reassemble nuclear 

envelopes and differentiate into mature sperm. In a final step, unneeded cellular components 

partition into residual bodies (gray) as individual sperm separate from their cytoplasmic 

connections. Sperm acquire motility in a subsequent activation step. (B) In C. elegans 

males, the unpaired X chromosome (central bar) in anaphase I (AI) spermatocytes lags 

before segregating to one of the two secondary spermatocytes, which often remain 
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connected by cytoplasmic bridges. Anaphase II (AII) is immediately followed by partitioning 

of unneeded components into a central (gray) residual body (RB) and then separation of the 

sperm from the RB. During this transition, the chromatin compacts and remodels but never 

reassembles a nuclear envelope (Ward et al., 1981; Shakes et al., 2009). Within the C. 

elegans literature, these newly separated, spherical sperm are typically called spermatids 

whereas the activated crawling sperm with their extended pseudopods are called 

spermatozoa. (C) In R. sp. SB347 males, spermatocytes undergo complete cytokinesis, 

generating unlinked secondary spermatocytes. Unpaired X chromosomes segregate as 

sister chromatids in anaphase I, while unpaired X chromatids (bar) lag during anaphase II 

(Shakes et al., 2011). Components required for sperm function then partition to the 

functional X-bearing sperm while unneeded components segregate to the RBs (gray), which 

includes the non-X chromosome set. (D) Schematic showing how cellular components are 

ultimately partitioned between the C. elegans RB and sperm. 
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Figure 2. Microtubule dynamics and organelle partitioning during spermatogenesis in 

C. elegans and R. sp. SB347. Live and/or fixed cells from (A-D) C. elegans males, (E) R. 

sp. SB347 males, (F) R. sp. hermaphrodites. (A, E, F) Fixed cells in which the DNA is 

labelled with DAPI (blue), the microtubules with anti--tubulin antibodies (green), and the 

fibrous-bodies (FB) with anti-MSP antibodies (red). Light blue arrows in DAPI columns show 

an unpaired X chromosome lagging during anaphase I in C. elegans male spermatocytes (A) 

and an unpaired X chromatid lagging during anaphase II in R. sp. SB347 male 

spermatocytes (E). Green arrows show new secondary microtubule foci (green). Left column 

in A and E shows same stage live cells imaged under DIC optics. (B) Fixed male gonad from 

C. elegans. DNA is labeled with DAPI (blue), endogenous GIP-1 with anti-GIP-1 antibodies 

(green), and centrioles with anti-IFA antibodies (red). Top image shows a developmental 

progression of spermatocytes in meiotic prophase on the left (distal) side and intermixed 

RBs (arrows) and sperm on the proximal side. Single channel images of boxed region are 

shown below. (C) Images of a live metaphase II spermatocyte transitioning to the separation 

phase showing the dynamics oftubulin (GFP:TBG-1, green); chromosomes 

(histone:mCherry, red) and the cell membrane (mCherry:PH(PLC11), red). Small arrows 

indicate residual centrosomes. Arrowheads show non-centrosomal -tubulin. (D) Anaphase II 

to separation in a live spermatocyte expressing GFP:-tubulin (TBG-1, green) and 

mCherry:-tubulin (TBA-1, red; time in minutes).  Abbreviations: anaphase I (AI), metaphase 

II (MII), anaphase II (AII) post-meiotic partitioning (P) and separation (S) phases, the 

products (Pr) that include functional sperm (red arrows) and residual bodies (white arrows), 

and crawling spermatozoa (Z). Scale bars: 5 µm. 
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Figure 3. Differential organelle partitioning in R. sp. SB347 spermatocytes. 

(A,B) Fixed and staged male spermatocytes labeled with DAPI (blue) and the anti-ER 

antibody, Cyp-33E1 (green). (A) C. elegans. (B) R. sp. SB347. (A, B). Cell stage labels as in 

Fig. 2. RB product (white arrow) and functional sperm (purple arrow) after separation. In the 

inverted (inv) image, the bright Cyp-33-labeled tubules are now black on a white 

background. Black arrows show late-clearing, Cyp-33-labeled tubules. (C-E) Thin section 

EM images. Cell outlines shown as red dashed line, autosomes in light blue, lagging X 

chromosome in red. Spindle pole (P), mitochondrion (M), fibrous body-membranous 

organelle (FB-MO). The granular structure is due to the ribosomes. (C) Four sections 

through the same cell in early anaphase II. (D) Cell in post-meiotic partitioning phase. (E) 

Two cells in the separation phase. (F) Schematic of the analysis procedure done for 76 cells 

in meiosis II. Organelles represented by different colored dots: FB-MOs (light grey) and 

mitochondria (dark grey). (G) Quantitative analysis of FB-MO and mitochondria partitioning 

in male spermatocytes relative to the position of the X chromatin. (H,I) 3D models from serial 

electron tomographic reconstructions of a cell in early anaphase II (H) and one in early 
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partitioning (I). Images show centrioles (red dots), autosomes (blue) the X chromatid 

(orange), FB-MOs (light grey), mitochondria (dark grey) and Golgi (white). Scale bars: (A-B) 

5 µm (C-E; H-I) 1 µm.  
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Figure 4. Microtubule patterns and FB partitioning in R. sp. SB347 near relatives. (A) 

Molecular phylogeny of near relatives (Kanzaki et al., 2017; personal communication from K. 

Kiontke and D. Fitch). Fixed spermatocytes and sperm from R. sp. SB372 (B, C) R. sp. 

JU1783 (D, E), and R. axei (F) labeled with DAPI (blue) and antibodies against either -

tubulin (T) or MSP(FBs) with same cell (B,C) or same-stage (F) DIC images in the left 

column. Cell stages as in Fig. 2. R. axei sperm that have (S*) or have not (S**) separated 

from each other before secondarily separating from residual body components.  Arrows label 

lagging X chromatid (yellow), X-bearing sperm (white), RBs with or without a chromatin 

mass (green), FB clearing (purple), and chromosomes compacting into a single mass 

(orange). Scale bars: 5 µm. Sperm size measurements calculated from >5 gonads, 20-30 

sperm/gonad.  
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Figure 5. Actin patterns during C. elegans, R. axei, and R. sp. SB347 spermatogenesis. 

Fixed spermatocytes and sperm labeled with DAPI (blue) and rhodamine-phalloidin (red). (A) 

C. elegans (B) R. axei, and R. sp. SB347 males. (C) A physical chromatin connection 

between X chromatid and the autosomes was apparent throughout anaphase II in the 

aldehyde fixed specimens in both these and the TEM studies. (AII-l) Arrows indicate cortical 

actin ring (white), clearing of actin from one or both poles (orange), persistent cortical ring at 

the base of the X-bearing sperm (purple), and actin patches of residual body at former bud 

sites (green). Scale bar: 5 µm.  
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Figure 6. Conserved and divergent aspects of cytoskeletal reorganization in diverse 

nematode spermatocytes. Comparative schematic of the differential partitioning events 

during residual body formation in C. elegans, R. sp. SB347, and R. axei spermatocytes. 

Actin microfilaments (red); centrosomal (c) or non-centrosomal (nc) microtubules 

(green); chromatin (blue); and large organelles (purple). X chromatids have heavy black 

outline.   
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Supplemental Movies 

Movie S1, Related to Figure 2. -tubulin localization during the separation phase 

of spermatogenesis 

Live imaging of a wild-type spermatocyte expressing GFP:-tubulin (green), 

histone:mCherry (red), and a membrane localized mCherry (red). Note the 

apparent movement of GFP:-tubulin from the centrosome to the interface 

between the cell and residual body (RB). Time in minutes indicated in the upper 

right hand corner. 

Development 144: doi:10.1242/dev.153841: Supplementary information
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http://movie.biologists.com/video/10.1242/dev.153841/video-1


Movie S2, Related to Figure 2. -tubulin and -tubulin localization during the 

separation phase of spermatogenesis 

Live imaging of a wild-type spermatocyte expressing GFP:-tubulin (green) and 

mCherry:TBA-1 (-tubulin, red). Microtubules appear to move from the 

centrosome to the residual body with associated GFP:-tubulin. Time in minutes 

indicated in the upper right hand corner. 

Text for Cover Image 

Bipolar and unipolar partitioning in same-scale nematode sperm. Anaphase II 

and partitioning stage spermatocytes of R. axei (large), C. elegans (medium) and 

R. sp. SB347 (small) plus males from each species.   

Development 144: doi:10.1242/dev.153841: Supplementary information
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http://movie.biologists.com/video/10.1242/dev.153841/video-2

	DEV153841SM.pdf
	Live imaging of a wild-type spermatocyte expressing GFP:-tubulin (green), histone:mCherry (red), and a membrane localized mCherry (red). Note the apparent movement of GFP:-tubulin from the centrosome to the interface between the cell and residual bo...
	Live imaging of a wild-type spermatocyte expressing GFP:-tubulin (green) and mCherry:TBA-1 (-tubulin, red). Microtubules appear to move from the centrosome to the residual body with associated GFP:-tubulin. Time in minutes indicated in the upper ri...
	Text for Cover Image
	Blank Page




