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Abstract

We study the asymptotic limit of some evolving surface partial di↵erential

equations. We first examine the setting of an evolving surface with prescribed veloc-

ity, extending the method of formally matched asymptotic expansions to account for

the movement of the domain. We apply this method to the Cahn-Hilliard equation,

considering various forms for the mobility and potential functions. In particular

looking at di↵erent scalings of the mobility with respect to the interface thickness

parameter. Mullins-Sekerka type problems are derived with additional terms which

are due to the domain evolution.

We then consider the evolving surface finite element method and applying

it to the Cahn-Hilliard equation in an evolving surface setting. We do this so as

to support the theoretical findings as well as to further explore some interesting

behaviour of solutions.

We finally examine the setting of an evolving surface with an unknown surface

velocity, described by a geometric evolution equation coupled to intrinsic fields on the

surface. The method of formally matched asymptotic expansions is further extended

to account for the unknown surface. We apply the technique to a derived model for

focal cell adhesion which aims to extend a known model from the literature. We

finish with simulations of a reduced model of our derived version.
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Chapter 1

Introduction

1.1 Overview

In Section 1.1.1 we introduce the notion of phase field models, discussing some of

their history and appearances in the literature as well as motivating their uses.

In Section 1.1.2 we introduce the method of matched asymptotics and explain its

relation to the phase field methodology. We will give an account of some known

works in the area. In Section 1.2 we give an outline of the structure of this thesis

and highlight the novel results in each chapter.

1.1.1 The Phase Field Methodology

The phase field methodology is a powerful tool for simulating phase separation and

interfacial evolution in a wide variety of applications. Partial di↵erential equations

describing phase separation on evolving surfaces occur, for example, in de-alloying

of binary alloys Eilks and Elliott [2008], in two-phase flow Hohenberg and Halperin

[1977] (potentially with soluble surfactants H. Garcke and Stinner [2013]), in pattern

formation on growing organisms Leung and Berzins [2003], or in phase separation

on biomembranes Elliott and Stinner [2010b,a, 2013].

The types of situation modelled by phase field models typically consist of

large regions, or phases, that are by some measure distinct from each other and

immiscible. For example in binary alloys Eilks and Elliott [2008] the phases are the

distinct regions of pure components of the alloy, or in two-phase flow the phases

Hohenberg and Halperin [1977] are the di↵erent immiscible fluids. Conventional

modelling techniques, those that generate free boundary problems, stipulate that

the interfaces between these di↵erent phases are modelled by moving hypersurfaces

and are thus sharp. They thus decompose the domain into a multi-domain structure

1
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Figure 1.1: Comparison of sharp versus di↵use interface approach for a function �
which describes the regions. In the di↵use interface method � changes continuously
between equilibrium values rather than making a discontinuous jump. The interface
in both exists at x = 0 with the interfacial region existing for |x| < 0.1 in the di↵use
interface approach.

described by the position of the interfacial boundaries. Usually a set of di↵erential

equations is solved in each domain subject to flux conditions and constitutive laws

at the interfaces.

In contrast, using the phase field technique, also known as a di↵use inter-

face approach, a phase field variable is introduced to keep track of the boundaries

between pure phases. Typically the phase field variable will take distinct values in

the di↵erent phases with the phases now separated by a narrow region where the

phase field variable transitions between the values associated to each phase. The

sharp interface is then approximated as some level set of the phase field variable.

See Figure 1.1 for a pictorial representation of the two settings.

When solving free boundary problems the a priori unknown interface must

be computed in addition to the solution of the governing di↵erential equations in

each region. Popular methods include level set methods Xu et al. [2006]; Gross and

Reusken [2011]; Xu et al. [2014], front-tracking methods Muradoglu and Tryggva-

son [2008]; Lai et al. [2008]; Khatri and Tornberg [2011] and arbitrary Lagrangian-

Eulerian methods Yon and Pozrikidis [1998]; Yang and James [2007]; Ganesan and

Tobiska [2009]; Barrett et al. [2015], however these methods can break down when

topological changes occur. The power of the phase field methodology arises from

the implicit description of the interface through the phase field variable. Thus in

modelling time dependent problems there is no need to explicitly track the interface.

The evolution of the interface will usually be described by a set of partial

2



di↵erential equations, possibly derived as a minimiser of some energy Elliott and

Stinner [2013] or through a gradient flow dynamic involving the variation of an

energy Cahn and Hilliard [1958]; Cahn [1961]. As early as 1893, van der Waals used

the idea of continuous variations in density across an interface to model a liquid-gas

system. In 1950 Landau and Ginzburg [1950], Ginzburg and Landau used a complex

valued phase field variable to model superconductivity and in 1958 Cahn and Hilliard

[1958] Cahn and Hilliard published their seminal paper utilising a thermodynamic

formulation to account for the inclusion of gradients in thermodynamic properties.

Phase field models need not be restricted to binary systems, with notable

works by Steinbach et al. Steinbach et al. [1996]; Tiaden et al. [1998] and Garcke

et al. Stinner et al. [2004]; Nestler et al. [2005] considering multiphase systems for

arbitrary numbers of components. These multicomponent models naturally arise in

the setting of material analysis, in particular in the solidification of alloys Cha et al.

[2005].

Central to many phase field models is the use of the Ginzburg-Landau energy

functional, which is an integral over the region under consideration of the following

integrand:

�(�,r�) := "

2
|r�|2 + 1

"
F (�), (1.1)

with � the phase field variable, " the interfacial thickness parameter and F a poten-

tial function. It has been used in the derivation of the Allen-Cahn equation Allen

and Cahn [1979], the Cahn-Hilliard equation Cahn and Hilliard [1958] and for the

modelling of two phase biomembranes Elliott and Stinner [2010a]. At the heart of

this energy functional is the Landau term represented by the potential function, F .

Di↵ering choices of potential function o↵er variations in the dynamics of each

model. In many applications, F , is chosen to be of either double well type Elliott

and Zheng [1986] or double obstacle type Blowey and Elliott [1991a]. As double well

potential, it is standard to assume the form F (�) = 1

4

(1��2)2, with this particular

choice known as the standard double well potential. For a double obstacle type

potential one might choose

F (�) =
1

2
(1� �2) + I

[�1,1](�) (1.2)

with I
[�1,1](�) the indicator function of the interval [�1, 1] which takes value 0 when

� is in the interval, and value 1 otherwise. Common to all potential functions

are the minima, ua and ub, characterising the value of the phase field variable in

the bulk regions. The gradient term of the Ginzburg-Landau energy is the part

penalising large jumps in the gradient and thus generating the narrow interfacial

3
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Figure 1.2: Two choices of potential. In blue the standard double well potential and
in red the double obstacle type potential as in equation (1.2).

regions between the phase values.

The advantage of double-well type potentials are their smoothness properties

but this is also their disadvantage since this can mean that the phase field variable

does not always lie between the minima of the potential. In examples where a phase

field model is used purely for interface tracking, Elliott and Stinner [2010a], this

may not be a problem but in examples where the phase field variable has a physical

interpretation, such as a density or concentration Eilks and Elliott [2008], it may not

make sense for the phase variable to exceed it’s bulk values. The obvious di�culty

of using a double-obstacle type potential is that the governing equations must be

expressed in terms of variational inequalities and can be di�cult to solve. In Elliott

and Garcke [1996], the following logarithmic potential was considered:

F (�) =
✓

2
[(1 + �) log(1 + �) + (1 + �) log(1� �)] +

1

2
(1� �2) (1.3)

which has the advantage of being smooth but in the limit ✓ ! 0 tends to the double

obstacle potential (1.2).

1.1.2 The Method of Matched Asymptotic Expansions

In each of the phase field models that we have discussed the interfacial layer, in which

the phase field variable transitions between bulk values, has a thickness characterised

by some scalar parameter in the model. Often this parameter is denoted ". It is

reasonable to ask under what conditions the phase field model can be related to a

free boundary problem and to ask if in the limit " ! 0, thus sending the interface

width to zero, the solutions of the di↵use interface problems approximate in some

4



way the solutions of a free boundary problem. In some instances this is the case

and the phase field model can be considered purely as an approximation of a free

boundary problem. This limit of sending the interface width parameter to zero is

known as an asymptotic limit or a sharp interface limit.

In the literature there are two types of asymptotic results on limits of phase

field models. In works such as that of Pego Pego [1989] and Cahn et al. Cahn

et al. [2006], the results are formal ones based on the method of formally matched

asymptotics. The other type is of rigorous convergence as in the works of Bates

et al. N. Alikakos and Chen [1994] or Le Le [2008]. In the former a rigorous

justification was made of the asymptotics analysis and in the latter a Gamma-

Convergence approach was used with an energy based argument, exploiting the

gradient flow based structure of the model.

The method of matched asymptotics is formal in that it assumes the existence

of a limiting free boundary problem. That is if �" solves the di↵use interface problem,

it is assumed that there is a sensible limit �0 in the sharp interface limit. The

question becomes then what problem should this sharp interface solution satisfy.

By assuming a possible decomposition of the domain, asymptotic expansions are

made in the interface width variable, for both the bulk or outer regions (areas �

is approximately constant) and the interfacial or inner regions (where � rapidly

transitions). It is an assumption of the method that these expansions exist. These

two expansions are then assumed to agree in some intermediate region and sets of

matching conditions can be derived.

The need for two di↵erent expansions is due to the rapid transitions of the

phase field variable in the inner region. By considering a new set of co-ordinates

and rescaling them appropriately with respect to ", the interface is e↵ectively blown

up to unitary width so that sensible limits of quantities dependent on " can be

established.

The method of matched asymptotics has been carefully detailed in the work

of Fife and Penrose Fife and Penrose [1995] and can also be found in Caginalp

Caginalp [1989]. The method has been used for multi-component systems in Garke

and Stinner [2006a] and has been extended to elliptic problems on stationary sur-

faces Elliott and Stinner [2010a]. Much of the work in this thesis involves further

extensions of the standard technique.

Although we cannot use the method of Gamma-Convergence to identify a

free boundary problem, for reasons explained in Chapter 3, we briefly discuss the

approach here for the sake of completeness. For systems derived using a gradient flow

structure, such as the Cahn-Hilliard equation Cahn and Hilliard [1958] which is the

5



H�1 gradient flow of (1.1), or the Allen-Cahn equation Allen and Cahn [1979] which

is its L2 gradient flow, the convergence of the energy functional used in the gradient

flow structure, in some appropriate manner, can be used to show convergence of

solutions to the underlying gradient flows. The abstract framework can be found in

the work of Serfaty Serfaty [2011].

It is known that the Ginzburg-Landau energy functional converges, in an

appropriate sense, to the perimeter function i.e. the area function on the interface,

and thus the L2 gradient flow of this functional results in mean curvature flow, and

the H�1 gradient flow gives the Mullins-Serkerka flow.

1.2 Outline of the Thesis

We briefly describe the organisation of this thesis with a short summary of the

contents of each chapter.

In Chapter 2 we define the common notation used throughout this work. In

particular we discuss the notion of surface calculus, then introduce the framework

for adding a time dependence to these surfaces and discuss some of the important

identities that can be found in this area’s literature. There is also some discussion on

useful results from di↵erential geometry that we employ to look at curves on evolving

surfaces. The main result that we investigate in this chapter is the e↵ects of a time

dependent surface on the change of variables formulae for use in our asymptotic

analysis.

In Chapter 3 we consider a specific example of a phase field model on an

evolving surface, namely the Evolving Surface Cahn-Hilliard (ESCH) equation. We

use the results of the previous chapter alongside the method of matched asymptotic

expansions to investigate the ESCH equations sharp interface limit. We consider

general forms for its mobility and potential functions, initially restricting to smooth

potentials, before looking at the case of a double obstacle potential. The novelty of

this work comes from the postulation of an evolving surface and its e↵ects on the

asymptotic analysis and limiting models

In Chapter 4 we numerically investigate the evolving surface Cahn-Hilliard

equation under the setting of a constant mobility function and a smooth quartic

potential function. We provide supporting evidence of some of the results in Chapter

3 as well as displaying some examples which exhibit interesting behaviour caused by

the surface movement. We give a general overview of the numerical methods used

and also explain how we have applied it in our setting.

The subject of Chapter 5 is a phase field approach to a model for focal cell

6



adhesion. We extend a known model by Freund and Lin [2004], building on their

observations regarding the process by which fronts propagate, in particular, we apply

the phase field methodology to generate an intrinsic model on a surface. We also

analyse the resultant model in the sharp interface limit to be able to compare it with

the Freund and Lin model as well as other known literature results on two phase

surface flows. This analysis is more complex than that presented in Chapter 3 due to

the surface being an unknown. We also consider a reduced model and simulate it’s

solutions, looking to validate our model by qualitatively recovering some adhesion

growth behaviour from the model of Freund and Lin [2004].

7



Chapter 2

Calculus on Evolving Surfaces

In this Chapter we discuss the elementary geometric analysis required throughout

the remainder of this thesis. We first introduce the notation we have used in the

context of surface calculus, introducing such structures as the surface gradient and

the material derivative. We then look at how we can describe curves on evolving

surfaces, introducing several di↵erent distance functions as well as the Darboux

frame that we later use to reparameterise space locally around a given curve. Finally

we present the result from O’Connor and Stinner [2016] with regards the change of

variable formula for the signed distance function.

2.1 Notation

In this subsection we will discuss the notation and essential concepts of calculus on

evolving surfaces required to describe partial di↵erential equations in moving and

curved space. A more detailed introduction can be found in Dziuk and Elliott [2013]

and Dziuk and Elliott [2007]. Since we have in mind physical systems we present

the following under a setting of two-dimensional hypersurfaces evolving in a three

dimensional ambient space. However some of the facts presented in this section can

be generalised to other dimensions.

More specifically we consider a smooth, closed, compact and connected evolv-

ing two-dimensional submanifold {�(t)}t2[0,T ]

embedded in R3 for t 2 [0, T ]. We

assume that it is orientable and denote by ⌫(·, t) : �(t) ! R3, t 2 [0, T ], a spatial

unit normal vector field. By �(0) we denote the initial hypersurface. The space-time

manifold for the moving surface is denoted by

GT :=
[

t2[0,T ]

�(t)⇥ {t}. (2.1)

8



We have time-dependent material surfaces in mind, thus a material particle

p located at xp(t) 2 �(t) at a time t 2 [0, T ) has an associated velocity ẋp(t) which

determines the evolution of the shape. In addition we assume a smooth velocity

field v(·, t) : �(t) ! R3, t 2 [0, T ), such that ẋp(t) = v(xp(t), t).

For a function f : GT ! R the material derivative at a point (x, t) with

x 2 �(t) and t 2 (0, T ) is defined by

@•t f(x, t) :=
d

dt
f(xp(t), t) =

@f̃

@t
(x, t) + v(x, t) ·rf̃(x, t) (2.2)

where x = xp(t) for a material particle p located at x at time t. Note that for the

expressions on the right hand side to be well-defined a smooth extension f̃ of f to

a neighbourhood of GT is required however the value of @•t f is independent of this

extension Dziuk and Elliott [2013]. The normal time derivative @�t f can be similarly

defined by considering particle paths x

⌫

(t) that move in a direction normal to the

surface at all times. Thus if x = x

⌫

(t) then

@�t f(x, t) :=
d

dt
f(x

⌫

(t), t) =
@f̃

@t
(x, t) + v

⌫

(x, t)⌫(x, t) ·rf̃(x, t) (2.3)

where v
⌫

= v · ⌫ is the normal component of the velocity. The normal time deriva-

tive represents time rate of change due to the normal motion of the surface and is

related to the material derivative by the identity @•t f = @�t f + v⌧ ·rf̃ , with v⌧ the

tangential velocity. The tangential or surface gradient is defined as the projection

of the standard derivative onto the tangent plane of the surface so that

r
�(t)f(x, t) := rf̃(x, t)� (rf̃(x, t) · ⌫(x, t))⌫(x, t).

This quantity again makes use of any extension of f to a neighbourhood of �(t) and

is also independent of this choice of extension. We denote by Di the i’th component

of the surface gradient.

If w = (wi)3i=1

, z = (zi)3i=1

: �(t) ! R

3 are smooth vector fields then

r
�(t)w is the matrix with components (r

�(t)w)ij = Djwi and we write (r
�(t)w)T =

(Diwj)ij for its transpose and use the scalar productr
�(t)w : r

�(t)z =
P

i,j DjwiDjzi.

We will furthermore use the notation w ⌦ z for the matrix with entries wizj . The

surface divergence is defined by r
�(t) · w = tr (r

�(t)w) and the surface curl is

defined with components
�r

�(t) ⇥w

�

i
= ✏ijkDjwk with ✏ the permutation tensor.

At any point x 2 �(t) we define the projection P (x, t) := I � ⌫(x, t) ⌦
⌫(x, t) 2 R3⇥3, with I the identity matrix, to the tangent space T

x

�(t). Observe

that this is a symmetric matrix. With the help of P we can write r
�(t)f = Prf ,

9



r
�(t)w = rwP , r

�(t) · w = P : r
�(t)w. The Laplace-Beltrami operator on

�(t) is defined as the tangential divergence of the tangential gradient, �
�(t)f =

r
�(t) ·r�(t)f .

In contrast with the directional derivatives in planar space, the components

of the gradient operator in curved space do not commute. For the commutation of

derivatives we have the following result Dziuk and Elliott [2013]

DiDjf �DjDif =
�r

�(t)⌫r�(t)f
�

j
⌫i �

�r
�(t)⌫r�(t)f

�

i
⌫j . (2.4)

The symmetric matrix r
�(t)⌫ of the tangential derivatives of the normal field

is known as the Weingarten map or shape operator. And the mean curvature of �(t)

with respect to ⌫ is defined as the negative of the trace of the Weingarten map:

m(x, t) = �r
�(t) · ⌫(x, t). (2.5)

We denote by g the Gaussian curvature. With i the principle curvatures, i = 1, 2,

it is the case that m = 
1

+ 
2

and g = 
1


2

. In addition we may write

g =
1

2
(2m � |r

�

⌫|2) (2.6)

with |r
�

⌫|2 = r
�

⌫ : r
�

⌫. Furthermore, Elliott and Stinner [2010a]

�
�

⌫ = �|r
�

⌫|2⌫ �r
�

m. (2.7)

2.2 Some Important Identities

For an arbitrary open subset V (t) ⇢ �(t) and a function f(t) 2 C1(V (t)) we have

that Dziuk and Elliott [2013]

Z

V (t)
r

�(t)f = �
Z

V (t)
fm⌫ +

Z

@V (t)
fµext. (2.8)

Here, µext is the exterior co-normal on the boundary @V (t) that is tangent to �(t),

pointing away from V (t) and orthogonal to ⌫.

Reynolds Transport Formula, also referred to as the Leibniz Formula, enables

us to compute the time derivative of a time dependent surface integral. For a

material test volume, that is a subset V (t) ⇢ �(t) for which no material enters or

10



leaves and so points x move with speed v(x, t), it reads Dziuk and Elliott [2007]

d

dt

Z

V (t)
f =

Z

V (t)
@•t f + fr

�(t) · v. (2.9)

If V (t) ⇢ �(t) is not a material volume and so material may enter or leave the region

and thus the boundary moves with a speed v@V which may be di↵erent from v, then

Betounes [1986]

d

dt

Z

V (t)
f =

Z

V (t)

�

@�t f � fmv
⌫

�

+

Z

@V (t)
fv@V · µext. (2.10)

Observe that the case (2.10) is a generalisation of (2.9). In the specific setting that

v@V = v an integration by parts argument on the velocity terms shows that (2.9)

can be recovered. The time derivative of the Dirichlet inner product reads Dziuk

and Elliott [2007]:

d

dt

Z

�(t)
r

�(t)f ·r
�(t)g =

Z

�(t)
r

�(t)f ·r
�(t)@

•
t g +r

�(t)@
•
t g ·r�(t)f (2.11)

+

Z

�(t)

�r
�(t) · vI� 2D

�

v

�r
�(t)f ·r

�(t)g

where D
�

v := 1

2

P

�r
�(t)v +r

�(t)v
T
�

P is the tangential deformation tensor or

symmetric gradient.

2.3 Curves on evolving surfaces

2.3.1 Notation

Let {⇤(t)}t2[0,T ]

denote a smooth, closed, and connected evolving curve on {�(t)}t2[0,T ]

.

For all t 2 [0, T ] it splits the surface �(t) into two domains which we denote �b(t)

and �a(t). Using the notion of the intrinsic distance between points x,y 2 �(t) (| · |
2

being the standard Euclidean norm),

d
�

(x,y, t) := inf

⇢

Z

1

0

kg0k
2

�

�

�

�

g 2 C1([0, 1],�(t)), g(0) = x, g(1) = y

�

,

we can define the distance to the curve ⇤(t) for a point x 2 �(t) as

d
⇤(t)(x, t) := inf

y2⇤(t)
d
�

(x,y, t) (2.12)
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and then the signed distance function by

d(x, t) :=

8

<

:

d
⇤(t)(x, t) if x 2 �b(t),

�d
⇤(t)(x, t) if x 2 �a(t).

(2.13)

If we assume that ⇤(t) and �(t) are su�ciently smooth then there is a narrow tubular

region of thickness "̄ > 0 (independent of t) such that for all points in this region

there is a unique geodesic (modulo reparametrisation) which realises the distance.

Define now the unit tangent vector along the geodesic by

µ(x, t) := r
�(t)d(x, t), x 2 �(t)

which is a smooth function close to ⇤(t) (by which we mean in the tubular region).

Its derivative along the geodesic, (r
�(t)µ)µ = r

�(t)(r�(t)d)µ, then is normal to

�(t). We now choose the unique ⌧ (x, t) such that (⌧ ,µ,⌫) is a positively oriented

orthonormal basis of R3 on �(t) close to ⇤(t). Then

µ · (r
�(t)µ)µ = 0, ⌧ · (r

�(t)µ)µ = 0. (2.14)

For the restrictions of ⌧ and µ to ⇤(t) we will write

⌧

⇤

(x, t) := ⌧ (x, t), µ

⇤

(x, t) := µ(x, t), x 2 ⇤(t).

Let now �(s, t) : R
⇤(t)S

1⇥[0, T ] ! R denote a parametrisation of ⇤(t) by arc-

length. Here, R
⇤(t)S

1 is the circle around the origin of radius R
⇤(t) which is such that

2⇡R
⇤(t) is the length of ⇤(t). Assume that the orientation of the parametrisation is

such that �s(s, t) = ⌧ (�(s, t), t). Let us introduce

⌧�(s, t) := ⌧⇤(�(s, t), t), µ�(s, t) := µ

⇤

(�(s, t), t).

The curvature vector of ⇤(t) is given by 
⇤

(s, t) := @s⌧�(s, t) and, as ⌧� · @s⌧� =
1

2

@s|⌧�|2 = 0, can be decomposed up into a portion normal to �(t) with coe�cient


⌫

:= 
⇤

(s, t) ·⌫(�(s, t), t). This coe�cient is called the normal curvature, similarly

we define the tangential coe�cient


⇤

(�(s, t), t) =: �(s, t) := ⇤

(s, t)·µ�(s, t) = @s⌧�(s, t)·µ�(s, t) = �⌧�(s, t)·@sµ�(s, t)
(2.15)

which is known as the geodesic curvature of ⇤(t) with respect to �(t). One can show

that 
⇤

(t) : ⇤(t) ! R is independent of the parametrisation.
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µ

⇤

⌧

⇤

µ

⌧

⇤(t)

d d

�(s, t)

x(s, r, t)

Figure 2.1: Sketch of geometric quantities describe in Section 2.3

2.3.2 Local Surface Reparameterisation

In Chapter 3 when employing the method of matched asymptotic expansions we

will look to parametrise space locally around the interfacial curve so that we have a

variable that scales with the interface width. We will then blow this variable up so

that it scales independently from the interface width so that we can sensibly study

the limit of fields in the sharp interface limit.

We may parametrise �(t) close to ⇤(t) as x
�

(s, r, t) by extending the parametri-

sation �(s, t) where x

�

(s, r, t) is the solution of

x̃(s, 0, t) = �(s, t), x̃r(s, r, t) = µ(x̃(s, r, t), t), r 2 [�"̄, "̄].

For fixed s and t the curve r 7! x

�

(s, r, t) then is a geodesic and

d(x
�

(s, r, t)) = r. (2.16)

With v

⇤

(t) : ⇤(t) ! R3 we denote the (intrinsic) normal velocity of ⇤(t), i.e.,

it can have a portion in direction ⌫(t) and in direction µ

⇤

(t) but v
⇤

(x, t)·⌧
⇤

(x, t) = 0

for all x 2 ⇤(t), t 2 [0, T ]. Note that as ⇤(t) ⇢ �(t) for all t 2 [0, T ] the velocity of

⇤(t) in the direction ⌫(t) normal to the surface coincides with the one of the surface,

v

⇤

(x, t) · ⌫(x, t) = v(x, t) · ⌫(x, t) 8x 2 ⇤(t).

However, the portion of v
⇤

(t) which is tangential to �(t) may be di↵erent from the

tangential portion of v(t). Observe that

�t(s, t) · µ�(s, t) = v

⇤

(�(s, t), t) · µ�(s, t). (2.17)

ss assumptions on �(t), the di↵erentials r
�(t)⌧ , r�(t)µ and r

�(t)⌫ then have limits

when approaching ⇤(t). If we define r
⇤(t) := r

�(t)�µ⌦µr
�(t) to be the projection
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of the surface gradient onto the curve ⇤(t) then on ⇤(t) it holds that:

⌧ ·r
�(t)⌫⌧ = ⌧ ·r

⇤(t)⌫⌧ = �⌫ ·r
⇤(t)⌧⌧ = �⌫ · 

⇤

= �
⌫

(2.18)

where we use that ⌫ · ⌧ = 0 for the interchange of derivative and have used that

the surface gradient on ⇤(t), given by r
⇤(t) coincides with the derivative @s. This

gives us a method by which we may extend the normal curvature of ⇤(t) to the

surrounding tube. Thus in the tubular region surrounding ⇤(t) we define 
⌫

:=

�⌧ ·r
�(t)⌫⌧ . We also define the quantities

p := �µr
�(t)⌫µ, d := �⌧ ·r

�(t)⌫µ (= �µ ·r
�(t)⌫⌧ ). (2.19)

Thus near the interface we can write the Weingarten map as

r
�(t)⌫ = �

⌫

⌧ ⌦ ⌧ � pµ⌦ µ� d⌧ ⌦ µ� dµ⌦ ⌧ . (2.20)

It can easily be shown that

m = 
⌫

+ p, |r
�(t)⌫|2 = 2

⌫

+ 2p + 22d, g = 
⌫

p � 2d. (2.21)

Some other useful formulae are

@�t ⌫ = �r
�(t)(v · ⌫), @•t ⌫ = �(r

�(t)v)
T
⌫ (2.22)

@�t m = �
�(t)(v · ⌫) + |r

�(t)⌫|2r�(t)v · ⌫ (2.23)

Using the reparameterisation of space x 7! (s, r) around a curve ⇤(t), we

can rewrite a function f : �(t) ! R as F : R
⇤

S1⇥ [�"̄, "̄] ! R. Of importance later

on is the time rate of change of the signed distance function (2.13).

Let us consider a piont x 2 �(t) with a distance of order " to ⇤(t) at a

fixed time t, such that, without loss of generality, r(x, t) > 0. Let t̃ 7! xp(t̃) be

the path of a material point p such that x = xp(t). For all t̃ close to t denote by

⇢ 7! gm(⇢, t̃) 2 �(t̃) the geodesic which realises the distance d
⇤(

˜t)(xp(t̃)) defined in

(2.12), and denote by x

⇤

(t̃) 2 ⇤(t̃) the initial point.

Then @•t r(x, t) is the instantaneous change of the length of gm when vary-

ing the time whilst staying on the surface. The length can change by adding (or

subtracting) length at the initial point. This instantaneous change is given by the

velocity of the initial point in the tangential direction of the geodesic, i.e., by

@tx⇤

(t) · (�µ

⇤

(x
⇤

(t), t)) = �v

⇤

(x
⇤

(t), t) · µ
⇤

(x
⇤

(t), t)
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where the minus sign comes from the fact that r(x, t) > 0 so that µ
⇤

(x(t), t) is an

inward oriented unit tangential vector of the geodesic. The length of gm can also

change by adding length at the end point. Analogously, this instantaneous change

is given by

@txp(t) · µ(x, t) = v(x, t) · µ(x, t).

By the " closeness of x to ⇤(t) we can expand the last term in x

⇤

(t) and altogether

obtain

@•t r(x, t) =
�

v(x
⇤

, t)� v

⇤

(x
⇤

, t)
� · µ

⇤

(x
⇤

, t) +O("). (2.24)

Observe that further contributions to the change of the length of the geodesic, gm,

for instance, by movement in the direction of it’s curvature, are of order " thanks

to the closeness of x to ⇤(t).
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Chapter 3

Asymptotics for the Evolving

Surface Cahn-Hilliard Equation

3.1 Introduction to the Cahn-Hilliard Equation

The subject of this chapter is the Evolving Surface Cahn-Hilliard (ESCH) equation

@•t �+ �r
�(t) · v = �r

�(t) · j, (3.1)

j = �M(�)r
�(t)w, w = �"�

�(t)�+
1

"
f(�). (3.2)

Here, {�(t)}t ⇢ Rn is a closed, smoothly evolving surface with a prescribed surface

velocity v : �(t) ! R3, for material points of �(t). The scalar function � : �(t) !
R is the phase field variable, " is the variable representing interfacial width, the

function f(�) = F 0(�) is the derivative of a double-well potential, and M(�) is a

mobility function. The vector j : �(t) ! Rn is the flux and w : �(t) ! R, known as

the chemical potential, is the variation of the Ginzburg-Landau energy

E"(�(t)) =
Z

�(t)

"

2
|r

�(t)�(t)|2 +
1

"
F (�(t))dx (3.3)

and in the case v = 0 the system (3.1), (3.2) is the M(�)-weighted H�1 gradient

flow of (3.3).

As discussed in Chapter 1 with regards to F (�), in most applications a

double-well or double-obstacle type potential is chosen Blowey and Elliott [1991a],

Bates and Fife [1993], we consider potentials with two stable non-degenerate minima

denoted by �a < �b which is twice continuously di↵erentiable on an interval (↵,�)

containing [�a,�b]. We consider second order phase transitions such that F (�a) =
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Figure 3.1: Example of a mobility function, Mdeg as defined in (3.6) with ↵ = �1
and � = 1.

F (�b). Specifically, we have a quartic potential and a logarithmic potential in mind

defined by

Flog(�) =
✓

2k1
((� � �) log (� � �) + (�� ↵) log (�� ↵))

� ✓c
2k2

(� � �)(�� ↵) (logarithmic), (3.4)

Fq(�) =
1

4
(�b � �)2 (�� �a)

2 (quartic), (3.5)

where ✓, ✓c, k1, k2 > 0 are parameters, but we stress that the results are not restricted

to these two cases. Qualitative examples of quartic type potentials can be seen in

Figure 1.2.

We assume that the mobility M(�) is Lipschitz on [↵,�] and positive and

continuously di↵erentiable on (↵,�) (the latter for simplicity, a slightly smaller open

interval comprising [�a,�b] would be su�cient). Qualitative examples can be seen

in Figure 3.1 We have in mind the two specific mobility functions:

Mdeg(�) = |M̄(�� ↵)(� � �)| (degenerate), (3.6)

Mc(�) = M̄ (constant), (3.7)

where M̄ > 0 is a constant. Let us introduce the pairings (Fq,Mc) and (Flog,Mdeg),

the former we refer to as the constant mobility ESCH equation and the later as the

degenerate ESCH equation.

On a stationary, flat domain the Cahn-Hillard equation has been introduced

to model phase separation under a mass constraint in binary alloy systems Cahn

and Hilliard [1958]; Cahn [1961]. As a prototype model for segregation of two

components in a mixture it has been applied in many areas beyond materials science.
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We refer to Novick-Cohen [2008] for a recent review of the equation. The field �

usually stands for the (mass or volume) concentration of one of the components,

sometimes also their di↵erence. Cahn and Hilliard motivated the logarithmic double-

well potential (3.4) in their original works Cahn and Hilliard [1958]; Cahn [1961] by

theories of mixing. The parameter ✓ > 0 is the (constant) temperature of the system

and ✓c > 0 is a critical temperature dependent on the material which determines

the onset of phase separation. In the shallow quench limit (✓ % ✓c), the logarithmic

potential can be well approximated by the quartic potentials of the form (3.5). Non-

constant mobilities were motivated by Cahn and Hilliard in the original derivation,

see also Gurtin [1996]. But also the case of a constant mobility (3.7) has been of

interest Elliott and Zheng [1986]; Bates and Fife [1993]; Novick-Cohen [1985]. In

the limit ✓ ! 0 the logarithmic potentials converges to the double obstacle type

potential

F1(�) =
1

2
(� � �)(↵� �) + I

[↵,�](�). (3.8)

As mentioned in the introduction partial di↵erential equations describing

phase separation on evolving surfaces occur in many examples. In contrast to the

usual notion of the phase variable, �, as a concentration, we here take an abstract

point of view choosing not to physically interpret the phase variable. We only assume

that � is a conserved quantity for which (3.1) is a mass balance on the moving

surface �(t). In Section 3.1.1, we see how this assumption of mass conservation

is used to derive the ESCH equation. By mass conservation we mean global mass

conservation such that,
R

�(t) �(t) =
R

�(0)

�(0) at all times t. This can be seen to

hold by considering the weak form of (3.1) which reads

d

dt

Z

�(t)
�⌘ = �

Z

�(t)
M(�)r

�(t)w ·r
�(t)⌘ for all ⌘ 2 H1(�(t)) a.e. t 2 [0, T ].

Choosing as an admissible test function, ⌘ = 1, gives the result. The essential

di↵erence to the standard Cahn-Hilliard equation is the �r
�

·v term in (3.1) which

accounts for local stretching if r
�

· v > 0 (or compressing in case of the opposite

sign).

After the initial stage of separation, solutions � to the Cahn-Hilliard equation

exhibit large domains (or phases) in which � is almost constant and close to one

of the minima �a, �b of F . These phases are separated by moving layers with a

thickness that scales with ". This behaviour of solutions is a general feature of

phase field models. We refer to Rubinstein and Sternberg [1992] for an analysis

of a phase field model with regards to the di↵erent time scales at which the phase

separation and the movement of the interfacial layers take place. In the latter
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solution regime, by using formally matched asymptotics expansions, limiting free

boundary problems (or sharp interface models) as " ! 0 have been derived. For

the Cahn-Hilliard equation in a stationary, flat domain, the pairing (Fq,Mc) has

been considered by Pego [1989] whilst Cahn et al. [2006] have studied the pairing

(Flog,Mdeg) including the deep quench limit ✓ & 0. The method has also been

applied to elliptic equations on fixed hypersurfaces in Elliott and Stinner [2010a]

where also the underlying surface depends on the solution and, thus, on ". In

some cases such expansions have been rigorously shown to converge, for instance,

see Matthieu et al. [2008]; N. Alikakos and Chen [1994]. In N. Alikakos and Chen

[1994] it is required that the resultant free boundary problem admits a smooth

solution, thus imposing regularity assumptions on the initial condition. In Stoth

[1996] these regularity assumptions are relaxed but with the restriction to radially

symmetric solutions. Regarding other approaches to assess the sharp interface limit,

the H�1-gradient flow (of the Ginzburg-Landau energy (3.3)) structure has been

used in the context of �-convergence to show asymptotic convergence to the Mullins-

Sekerka problem in Le [2008] for the pairing (Fq,Mc). However, when working with

a deformable domain, without some relation coupling the surface velocity to the

solution, the system does not necessarily have a gradient flow structure.

By considering the time derivative of (3.3) we see that

d

dt
E"(�(t)) (2.11)

=

Z

�(t)
"r

�(t)� ·r
�(t)@

•
t �� "D

�

vr
�(t)� ·r

�(t)�+
"

2
|r

�(t)�|2r�(t) · v

+

Z

�(t)

1

"
f(�)@•t �+

1

"
F (�)r

�(t) · v
(2.8)

=

Z

�(t)
�" ��

�(t)�
�

@•t �� "D
�

vr
�(t)� ·r

�(t)�+
"

2
|r

�(t)�|2r�(t) · v

+

Z

�(t)

1

"
f(�)@•t �+

1

"
F (�)r

�(t) · v
(3.2)

=

Z

�(t)
"w@•t �� "D

�

vr
�(t)� ·r

�(t)�+
"

2
|r

�(t)�|2r�(t) · v

+

Z

�(t)

1

"
F (�)r

�(t) · v
(3.1)

=

Z

�(t)
w
�r

�(t) · (M(�)r
�(t)w)� �r

�(t) · v
�� "D

�

vr
�(t)� ·r

�(t)�

+

Z

�(t)

"

2
|r

�(t)�|2r�(t) · v +
1

"
F (�)r

�(t) · v
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(2.8)

=

Z

�(t)
�M(�)|r

�(t)w|2

+

Z

�(t)

✓

"

2
|r

�(t)�|2 +
1

"
F (�)� �w

◆

r
�(t) · v � "D

�

vr
�(t)� ·r

�(t)�

The first term is strictly dissipative, however it should be clear that examples can

be constructed such that the term on the final line increases the energy. See for

example the energy outputs in Section 4.4.3 or Section 4.4.5 for examples where the

energy is increased due to the motion of the surface. Thus the potential for local

compressing/stretching to increase the system energy means that the Cahn-Hilliard

system does not posses a gradient flow structure unless some more assumptions are

made on the velocity.

The general aim of this chapter is to investigate the impact of the motion

of the underlying domain �(t). Via a formal asymptotic analysis (for instance, see

Fife and Penrose [1995]) we investigate the e↵ects of the surface motion on the

limiting problem that is obtained as " ! 0. The methodology has been applied

to surface phase field models in the stationary case where also the surface depends

on " in Elliott and Stinner [2010a]. We have further extended the technique so

that we can deal with moving surfaces and can apply it to the ESCH equation. As

usual, a coordinate change using the signed distance function to the limiting moving

phase interface is performed in the narrow interfacial region which blows up its

thickness to unit length. But since the underlying space, �(t), is time dependent, the

scaled distance function must take account of transport due to the surface velocity.

Technically, the challenge is to expand the material time derivative @•t in the new

coordinates. The analysis is carried out for the case of hypersurfaces in the three-

dimensional space (n = 3) but the ideas should carry through to the case n > 3. The

only di�culty should consist in dealing with several tangential coordinates along the

limiting phase interface rather than one.

The scaling of M(�) (or rather M̄) with respect to " turns out to be cru-

cial when attempting to derive limiting free boundary problems. In the case of a

stationary, flat domain (v = 0) it is equivalent to study the Cahn-Hilliard equation

at di↵erent time scales as in Pego [1989]. Specific scalings have been considered in

Novick-Cohen [2008] where M̄ ⇠ "1 and Elliott and Ranner [2013] where M̄ ⇠ "0.

The former appears as a model for early time phase separation when the inter-

faces form and the latter as a long time model for interface evolution. The scaling

M̄ ⇠ "�1 appears in Cahn et al. [2006] for the degenerate mobility in the regime

of the deep quench limit, ✓ & 0, of the logarithmic potential. Each of these time

scales has been considered in Dai and Du [2014]. Di↵erent scales have also been
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discussed in Caginalp [1989] in the context of a more general phase field model. We

here consider a fixed time scale given by the evolution of the surface, namely one

given by (a) a typical velocity at which the domains evolves and (b) a length scale

given by the typical size of the surface. Di↵erent scalings of M̄ in " then relate to

the speed at which di↵usion e↵ects are taking place in comparison with transport

e↵ects.

Not for all scalings were we able to identify sensible limiting free boundary

problems. If the mobility is too small, i.e., M̄ is of a high order in ", then the

limiting problems do not see the long time behaviour resulting from the evolution of

the phase field variable, whence the dynamics are purely governed by the transport

with the given velocity field v. If the mobility is too high so that M̄ is of a low

(negative) order in " then the asymptotic limits are forced towards equilibrium states

with respect to the phases which are barely a↵ected by the transport.

In the interesting intermediate case in which M̄ is of order "0 we obtain the

following evolving surface Mullins-Sekerka problem:

� = �i

r
�(t) ·

�

M(�)r
�(t)w(t)

�

= �r
�(t) · v(t)

)

in �i(t), i = a, b,

(3.9)

[w(t)] = 0

w(t) = S
⇤

(t)
1

�b��a [M(�)r
�(t)w(t)] · µ⇤

(t) =
�

v(t)� v

⇤

(t)
� · µ

⇤

(t)

9

>

=

>

;

on ⇤(t). (3.10)

With, ⇤(t) the moving boundary separating the bulk phases �b(t) and �a(t), [·]
stands for the jump across ⇤(t) when moving from �a(t) to �b(t), S > 0 is a constant

depending on the double-well potential F , 
⇤

(t) is the geodesic curvature of ⇤(t)

with respect to �(t), v
⇤

(t) is the normal velocity of ⇤(t), and µ

⇤

(t) is the co-normal

of ⇤(t) with respect to �(t) which points into �b(t). A sketch of the physical setup

described by this free boundary problem can be seen in Figure 3.2

Observe that, in general, �r
�

· v is a non-trivial right hand side in the

limiting elliptic equation for the chemical potential. This fact causes problems

when attempting to pass to the deep quench limit ✓ ! 0 for the degenerate ESCH

equation. In that limit, the degenerate mobility switches o↵ the elliptic equation in

the bulk. On a stationary domain a purely geometric equation is obtained in the

sharp interface limit, namely surface di↵usion Cahn et al. [2006]. But in the present

case a nontrivial term persists in the bulk if r
�

· v 6= 0, and there is no mechanism

to account for the mass density changes due to this local stretching or compressing.
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�a(t)

�b(t)

⇤(t)

⌧ (t)

µ(t)

⌫(t)

Figure 3.2: Sketch of physical setting for Mullins-Sekerka type problems with im-
portant quantities identified.

If r
�(t) · v = 0 then the procedure of Cahn et al. [2006] works however.

The remainder of this Chapter is set out as follows. We begin with a deriva-

tion of the ESCH equation and some remarks on the e↵ects of rescaling the double-

well potential. We then present our assumptions for performing an asymptotic

analysis on an evolving surface. In particular we discuss the necessary expansion of

the material derivative, @•t , in the inner co-ordinate system using the results from

the previous chapter. Under the set up described we perform the asymptotic anal-

ysis on the ESCH equation for the slow mobility, when M̄ ⇠ "0, and interpret the

results for specific mobility and potential functions. We then turn our attention to

the fast mobility, when M̄ ⇠ "�1 and compare the result with the slow mobility.

Finally we consider the deep quench limit ✓ ! 0 of the logarithmic potential (3.4)

and analyse the resulting problem.

3.1.1 Motivation of and remarks on the ESCH equation

Following the lines of Elliott and Ranner [2013] we briefly derive the Cahn-Hilliard

equation in the form (3.1), (3.2). Let �(·, t) : �(t) ! R, t 2 [0, T ], be some scalar

conserved quantity which means that for any test volume V (t) ⇢ �(t) with external

co-normal µext:
d

dt

Z

V (t)
� = �

Z

@V (t)
j · µext (3.11)

with a flux j(·, t) : �(t) ! Rm, t 2 [0, T ] which is (spatially) tangential to �(t).

Using (2.8) and the transport formula (2.9) yields

Z

V (t)
@•t �+ �r

�

· v +r
�

· j = 0.

As this must hold for any choice of V (t), we obtain (3.1). One may now postulate

that the flux is driven by the gradient of the chemical potential w given as the first
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variation of the Ginzburg-Landau energy functional (3.3) so that

j = �M(�)r
�

w.

Many results in the literature on the Cahn-Hilliard equation are obtained for

a dimensionless version where the minima of the double well potential are located

at ±1. Our system can be transformed to such a setting as follows. Setting

�̃ =
�� �b
�b � �a

+
�� �a
�b � �a

, � = 1

2

�

(1 + �̃)�b + (1� �̃)�a
�

to be the dimensionless form we define F̃ (�̃) := F (�) and M̃(�̃) := M(�). Then

f(�) = F 0(�) = 2

�b��a F̃
0(�̃) = 2

�b��a f̃(�̃), and a short calculation shows that (3.1),

(3.2) takes the form

@•t �̃+ �̃r
�

· v + c
1

r
�

· v = r
�

·
✓

M̃(�̃)r
�

w̃

c2
2

◆

(3.12)

w̃ = �"c
2

�
�

�̃+
f̃(�̃)

c
2

"
(3.13)

where c
1

= �b+�a
2

, c
2

= �b��a
2

and w̃ is the chemical potential corresponding to the

first variation of the energy Ẽ"(�̃) := E"(�).
We remark that in Elliott and Ranner [2013] the case c

1

= 0, c
2

= 1 is

considered. The essential di↵erence is the source term proportional to the divergence

of the surface velocity in (3.12).

Existence and uniqueness of the ESCH equation with constant mobility and

standard double well potential was shown in Elliott and Ranner [2013] (in which

the surface velocity was assumed C2, for a stationary planar setting with degenerate

mobilities and a double well type potentials in Elliott and Garcke [1996], and for

constant mobilities and double obstacle type potentials in Blowey and Elliott [1991a].

3.2 Assumptions for the asymptotic analysis

The goal is now to identify the sharp interface problem from the di↵use interface

problem by matching appropriate asymptotic "-expansions. The technique has been

carefully detailed in Fife and Penrose [1995]. We can also make use of an extension

to elliptic problems on stationary surfaces Elliott and Stinner [2010a]. A novel

extension to the technique concerns the parabolic case and, in particular, consists in

accounting for the time dependence of the domain and re-writing the material time

derivative @•t in inner coordinates close to the phase interface. Recall the result and
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techniques introduced in Section 2.3.2.

3.2.1 Solution regime

We consider solution regimes to (3.1)-(3.2) where phases have formed, in each of

which � is close to one of the two minima of F and which are separated by layers

with a thickness that scales with ". Let (�", w")">0

denote a family of such solutions

and assume that it converges to some pairing (u
0

, w
0

) such that, at each time t,

the spatial domain �(t) is split up into domains �a(t) = {�
0

(t) = �a} and �b(t) =

{�
0

(t) = �b} which are separated by a smooth, closed, and connected evolving curve

⇤(t) to which the level sets {�"(t) = (�b+�a)/2} converge. The asymptotic analysis

below, in principle, also works for several curves; however note that topological

changes cannot be dealt with as they destroy the validity of the change of co-

ordinates employed in the inner region. The aim is now to identify the equations

that govern the evolution of ⇤(t), �
0

(t), and w
0

(t).

3.2.2 Outer expansions

We assume that away from the interfacial layer around the curve ⇤(t) we can expand

the phase field variable and the chemical potential in the form

�(x, t) =
X

i

�i(x, t)"
i, w(x, t) =

X

i

wi(x, t)"
i (3.14)

in each domain �a,b(t).

3.2.3 Inner coordinates

As the thickness of the interfacial layer scales with " it makes sense to blow it up to

unit length in order to be able to study the limit of fields and functions as "! 0 in

a meaningful way. We therefore introduce the scaled (geodesic) distance on �(t) to

the interface ⇤(t) by

z :=
r

"
. (3.15)

It is with respect to the new coordinates (s, z, t) we choose to work with in the

interfacial layer. But before we state the (inner) expansions of the fields in these

coordinates and state the matching conditions with the outer expansions in the

adjacent domains we need to discuss how the di↵erential operators transform by the

change of coordinates.

With regards to the spatial di↵erential operators we may proceed as in Elliott
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and Stinner [2010a]. For fixed t consider the inversion of the map R
⇤

(t)S1⇥[�"̄, "̄] 3
(s, r) ! x

�(t)(s, r, t) 2 �(t) and let x 2 �(t) be a point with a distance to ⇤(t) which

is O("). The identity (2.16) implies that "r
�(t)z(x, t) = r

�(t)r(x, t) = µ(x, t).

Taylor expanding in x

⇤

:= �(s, t) then yields

r
�(t)z(x, t) =

1

"
µ

⇤

(x
⇤

, t) +r
�(t)µ(x⇤

, t)µ
⇤

(x
⇤

, t)z(x, t) +O(").

Similarly we see that

r
�(t)s(x, t) = ⌧⇤(x⇤

, t) +O(").

For a scalar field  : �(t) ! R and a vector field  : �(t) ! R3 define

 (x, t) =  (s, z, t) and  (x, t) =  (s, z, t) close to ⇤(t). Then we obtain for the

surface gradient and the surface divergence in the new coordinates

r
�(t) (x, t) =  s(s, z, t)r

�(t)s+ z(s, z, t)r
�(t)z

= 1

" z(s, z, t)µ⇤

(x
⇤

, t) (3.16a)

+ s(s, z, t)⌧⇤(x⇤

, t) + z(s, z, t)r
�(t)µ(x⇤

, t)µ
⇤

(x
⇤

, t)z +O("),

r
�(t) · (x, t) =  s(s, z, t) ·r

�(t)s+ z(s, z, t) ·r
�(t)z

= 1

" z(s, z, t) · µ⇤

(x
⇤

, t) (3.16b)

+ s(s, z, t) · ⌧⇤(x⇤

, t) + z(s, z, t) ·r
�(t)µ(x⇤

, t)µ
⇤

(x
⇤

, t)z +O(").

Using these identities, (2.14), and (2.15), a short calculation shows that we

can write for the Laplace-Beltrami operator

�
�(t) (x, t) =

1

"2
 zz(s, z, t)� 1

"

⇤

(x
⇤

, t) z(s, z, t) +O("0). (3.17)

With regards to the operator @•t it will turn out that knowledge of the term

to lowest order in " is su�cient for the asymptotic analysis. As

@•t  (x, t) =  s(s, z, t)@
•
t s(x, t) + z(s, z, t)@

•
t z(x, t)

and @•t z = 1

"@
•
t r we need to focus on computing the leading order term of @•t r. Recall

(2.24)

@•t r(x, t) =
�

v(x
⇤

, t)� v

⇤

(x
⇤

, t)
� · µ

⇤

(x
⇤

, t) +O(")

so that

@•t  (x, t) =
1

"
 z(s, z, t)

�

v(x
⇤

, t)� v

⇤

(x
⇤

, t)
� · µ

⇤

(x
⇤

, t) +O("0). (3.18)
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3.2.4 Inner expansions

In conjunction with the outer region we will employ two "-expansions in the inner

region. However, in contrast with the outer region, we will use the inner variables

discussed in the previous section so that the expansions take the form

 (x, t) =
1
X

i=0

 i(s, z, t)"
i, w(x, t) =

1
X

i=0

Wi(s, z, t)"
i. (3.19)

The use of capitals is to distinguish between inner and outer variables.

3.2.5 Matching conditions

The above two expansions valid in the inner and outer regions should match in some

intermediary region. Given an arbitrary outer field,  , with expansion functions  i

and  i there are a set of matching conditions that these functions should satisfy.

These conditions are related to the spatial coordinates only and, thus, are indepen-

dent of the movement of the domain. Therefore, and because a full derivation can

be found in the literature (for instance, see Garke and Stinner [2006a]), we only

state them here: In the limit as z ! ±1

 
0

(s, z, t) ⇠  ±
0

(x
⇤

, t), (3.20a)

@z 0

(s, z, t) ⇠ 0, (3.20b)

 
1

(s, z, t) ⇠  ±
1

(x
⇤

, t)±r
�(t) 

±
0

(x
⇤

, t) · µ
⇤

(x
⇤

, t)z, (3.20c)

@z 1

(s, z, t) ⇠ ±r
�(t) 

±
0

(x
⇤

, t) · µ
⇤

(x
⇤

, t), (3.20d)

@z 2

(s, z, t) ⇠ ±r
�(t) 

±
1

(x
⇤

, t) · µ
⇤

(x
⇤

, t) +
�

µ

⇤

(x
⇤

, t) ·r
�(t)

�

2

 ±
0

(x
⇤

, t)z.(3.20e)

3.3 Slow Mobility

We begin identifying free boundary problems with the case M̄ ⇠ "0. As we will

briefly discuss below this is the highest scaling of the mobility in " (or the slowest

mobility) for which a sensible free boundary problem occurs.

3.3.1 Outer solutions

Inserting the expansions (3.14) into (3.1) and (3.2), we match orders of ". To order

"�1 (3.2) yields

f(�
0

) = 0, (3.21)
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which has �
0

= �a and �
0

= �b as stable stationary solutions. Motivated by the

assumptions on the setting at the beginning of Section 3.2.1 we can conclude that

�
0

= �a in �a and �
0

= �b in �b which is the first equation of (3.9). To order "0

combining (3.1) with the flux term in (3.2) we obtain a bulk problem for the leading

order term of the chemical potential:

�
0

r
�

· v = r
�

· (M(�
0

)r
�

w
0

) . (3.22)

This is the PDE in (3.9). It remains to derive the interface conditions (3.10). For

being able to apply the matching conditions we need to know whether �
1

is a suitable

field. So we briefly look at the equation to next order of (3.2) which reads

w
0

= f 0(�
0

)�
1

.

3.3.2 Inner solutions

We now insert the expansions (3.19) into (3.1) and (3.2) and employ the change of

variables formula (3.16). To the lowest order, "�2, (3.1) yields

0 = @z (M(�
0

)@zW0

) . (3.23)

Thus there exists a function �(s, t) such that M(�
0

)@zW0

= �(s, t). Using the

matching condition (3.20b) and that M > 0 on (�a,�b) we see that � = 0 and

@zW0

= 0. This implies that w
0

is continuous across the interface ⇤(t) in the

limiting problem which is the first condition of (3.10).

To the order "�1 (3.2) yields

0 = �@zz�0

+ f(�
0

). (3.24)

The matching condition (3.20a) implies that �
0

! �a as z ! �1 and �
0

! �b

as z ! 1. The solution is the phase field profile. Well-posedness of the boundary

value problem is discussed in Fife et al. [1979] and its references.

At the same order "�1 (3.1) gives thanks to the new expansion (3.18)

@z�0

(v � v

⇤

) · µ
⇤

+ �
0

@zv · µ
⇤

= @z (M(�
0

)@zW1

) . (3.25)

Here, v, v
⇤

, µ
⇤

, and @zv are evaluated at (x
⇤

, t) with the usual x
⇤

2 ⇤ introduced

in Section 3.2.3. Using that µ
⇤

and v

⇤

are independent of z the left hand side reads

@z(�0

(v� v

⇤

) ·µ
⇤

). We may integrate with respect to z over the interfacial region,
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i.e., from �1 to +1, to obtain the last condition of (3.10),

(�b � �a)
�

v � v

⇤

� · µ
⇤

= [M(�
0

)r
�

w
0

]. (3.26)

Note that we have applied the matching conditions (3.20a) and (3.20d) to �
0

and

@zW1

, respectively.

To the order "0 (3.2) gives thanks to (3.17)

W
0

= �@zz�1

� @z�0


⇤

+ f 0(�
0

)�
1

(3.27)

where 
⇤

is evaluated at (x
⇤

, t). We multiply by @z�0

and integrate over the

interfacial region. By di↵erentiating (3.24) with respect to z we see that @z�0

lies

in the kernel of the operator @zz � f 0(�
0

). Using this after an integration by parts

argument we obtain the following solvability condition:

w
0

= S(�
0

)
⇤

(3.28)

where

S(�
0

) =
⇣

Z

R
(@z�0

)2
⌘

/(�b � �a)

is a constant depending on the phase profile of �
0

and, thus, on the double-well

potential. This is the last condition of (3.10) so that we have derived the complete

free boundary problem (3.9), (3.10).

3.3.3 Discussion

Let us discuss the limiting problem (3.9), (3.10) for some specific choices of mobilities

and potentials and compare with previous results for a stationary flat domain in the

literature. We shall also briefly discuss the case of an even slower mobility scaling

with "1.
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• Mass conservation: In the limiting problem (3.9), (3.10) the total mass is

preserved (as it is in the ESCH equation):

d

dt

⇣

Z

�

b

�b +

Z

�

a

�a

⌘

(2.10)

=

Z

�

b

�bmv · ⌫ +

Z

⇤

�bv⇤ · (�µ

⇤

) +

Z

�

b

�amv · ⌫ +

Z

⇤

�av⇤ · µ
⇤

(2.8)

=

Z

�

b

�br�

· v +

Z

⇤

�b(v⇤ � v) · (�µ

⇤

) +

Z

�

a

�ar�

· v +

Z

⇤

�a(v⇤ � v) · µ
⇤

(3.9)

=

Z

�

b

r
�

· (M(�b)r�

w) +

Z

�

a

r
�

· (M(�a)r�

w) +

Z

⇤

(�a � �b)(v⇤ � v) · µ
⇤

(2.8),(3.10)
=

Z

⇤

[M(�)r
�

w] · (�µ

⇤

) +

Z

⇤

[M(�)r
�

w] · µ
⇤

= 0. (3.29)

Thus, if �b > �a � 0 there is a bound on the maximal and minimal surface

area where the bounds depend on the initial mass. This implies a restriction

on the surface velocity v or the length of the time interval [0, T ] for which the

solution exists.

Observe that such a restriction also applies to the phase field model if the

logarithmic potential (3.4) is used as then the value of � is bounded from

above by � and from below by ↵ so that the total mass has to remain between
R

�

↵ and
R

�

�. However, there is no such restriction in the case of a smooth,

globally defined potential such as (3.5).

In turn, there is no restriction in either case, that is for the limiting free

boundary problem nor the phase field model, if �a < 0 < �b.

• Constant mobility: For the case of a constant mobility and a smooth double-

well potential such as Fq, Pego [1989] has shown that the sharp interface limit

of the Cahn-Hilliard equation is the Mullins-Sekerka problem Mullins and Sek-

erka [1963]. It corresponds to (3.9), (3.10) with a flat and stationary surface.

One di↵erence is that the curvature, 
⇤

, now is the geodesic curvature of the

interface. Another di↵erence is the addition of the transport term v · µ
⇤

in

the evolution law for the interface given in (3.26). The most important di↵er-

ence to the Mullins-Sekerka problem is the surface divergence of the surface

velocity in (3.22). In general, the chemical potential is no longer harmonic,

and changes over time can occur due to the time dependence of the surface

velocity.

• Non-constant mobility: With a non-constant but positive (on (↵,�)) mo-

bility we obtain a limiting Mullins-Sekerka type problem where the di↵usivities
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of the chemical potential in the bulk can di↵er (see (3.22)) which also impacts

on the jump term in (3.26). This result is independent of the choice of the

double-well potential as long as the smoothness assumptions on (↵,�) are met

and the minima are located at �a and �b. However, the choice of F influences

the leading order profile (solution to (3.24)) and, thus, the values of S(�
0

) in

(3.28). But by appropriate choice of coe�cients such as k
1

and k
2

in Flog (or

a suitable prefactor for Fq) one can ensure that S(�
0

) = 1.

• Slower mobility: Let us briefly consider the case of an even slower mobility

M̄ ⇠ "1. Equation (3.21) still holds true while (3.1) yields to leading order that

�
0

r
�

·v = 0. Within the solution regime defined in Section 3.2.1, which implies

that �
0

is constant in the bulk, we thus obtain the solvability conditionr
�

·v =

0. This is a strong restriction on the motion of the surface as it corresponds

to local incompressibility. In (3.25) then W
0

features instead of W
1

. With

the matching condition (3.20b) we then see that v

⇤

· µ
⇤

= v · µ
⇤

. So the

interface is simply transported with the surface velocity and any subtle front

propogation due to the Cahn-Hilliard dynamics is lost. We remark that this

is no contradiction to the results in Pego [1989] where, for the slow mobility,

a Stefan type problem is shown to emerge because that limit is established at

the next higher order in ".

3.4 Fast mobility

A fast mobility scaling M̄ ⇠ "�1 has been used in Cahn et al. [2006] to derive

surface di↵usion in the deep quench limit ✓ & 0 of the Cahn-Hilliard equation with

(Flog,Mdeg) on a flat and stationary domain. We will discuss this problem below

but first consider the general, non-degenerate case ✓ > 0 or (Fq,Mc).

3.4.1 Asymptotic analysis

As previously we insert the expansions (3.14) and (3.19) into (3.1) and (3.2) and

match orders of ".

From the outer expansion of (3.2) to order "�1 we obtain again that �
0

= �b

or �
0

= �a in �b and �a, respectively. Combining (3.1) with the flux term in (3.2)

we obtain to order "�1

0 = r
�

· (M(�
0

)r
�

w
0

) . (3.30)
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Multiplying by w
0

and integrating over �b(t) [ �a(t) we obtain using (2.8)

0 =

Z

�

b
(t)

w
0

r
�

· �M(�
0

)r
�

w
0

�

+

Z

�

a
(t)

w
0

r
�

· �M(�
0

)r
�

w
0

�

(3.31)

= �
Z

�

b
(t)

M(�
0

)|r
�

w
0

|2 �
Z

�

a
(t)

M(�
0

)|r
�

w
0

|2 �
Z

⇤(t)

⇥

w
0

M(�
0

)r
�

w
0

⇤ · µ
⇤

.

To get an idea of what the jump term is we require information from the inner

solutions.

The inner expansion of equation (3.2) yields the equation (3.24) to order "�1

and that �
0

is again the phase transition profile. From (3.1) we obtain to order

"�3 the equation (3.23) for W
0

again, and as before using the matching conditions

(3.20b) and (3.20a) we can conclude that

@zW0

= 0 and [w
0

] = 0. (3.32)

Using this and the orthogonality of µ

⇤

and ⌧
⇤

, to order "�2 the same equation

yields

0 = @z
�

M(�
0

)@zW1

�

.

Similarly, we can conclude that @zW1

= 0 and, using the matching conditions

(3.20d) and (3.20c),

0 = [M(�
0

)r
�

w
0

] · µ
⇤

and [w
1

] = 0. (3.33)

Together with (3.32) we see that the last term of (3.31) vanishes, and we can con-

clude that r
�

w
0

= 0 in �b(t) and �a(t) so that

w
0

(t) is constant on �b(t) [ �a(t). (3.34)

We have explicitly noted the time dependence to clarify that w
0

can and, in general,

will change over time (see below).

From equation (3.2) to order "0, which is (3.27) again, we can conclude as

before that (3.28) holds true. With (3.34) we obtain that also


⇤

(t) =
1

S(�
0

)
w
0

(t) is constant along ⇤(t) at all times t. (3.35)

Continuing with the outer expansions, (3.2) to order "0 yields w
0

= f 0(�
0

)�
1

so that also �
1

is constant where we recall that F 00(�
0

) = f 0(�
0

) 6= 0 for �
0

2 {�a,�b}
thanks to the assumption that F has non-degenerate minima. Using that r

�

w
0

= 0,
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equation (3.1) to order "0 yields the following elliptic bulk problem for w
1

:

�
0

r
�

· v = r
�

· (M(�
0

)r
�

w
1

) . (3.36)

One boundary condition is given by (3.33). In order to determine a second

one, consider the inner expansion of (3.1) to order "�1. Using (3.18) and that

@zW0

= 0, @sW0

= 0 (thanks to (3.34)), and @zW1

= 0 as well as the orthogonality

of µ
⇤

and ⌧
⇤

, a short calculation shows that it greatly simplifies to

@z�0

(v � v

⇤

) · µ
⇤

+ �
0

@zv · µ
⇤

= @z (M(�
0

)@zW2

) . (3.37)

It reads as (3.26) except that W
1

is replaced by W
2

. Integrating with respect to

z over R, treating the left hand side in the same manner as done for (3.26), and

applying (3.20e) to the right hand side where we use that r
�

w
0

= 0 we arrive at

(�b � �a)
�

v � v

⇤

� · µ
⇤

= [M(�
0

)r
�

w
1

]. (3.38)

Returning to the higher order inner expansions, from equation (3.2) to order

"0, we obtain (3.27) again, and conclude as before that (3.28) holds true. With

(3.34) we obtain that also


⇤

(t) =
1

S(�
0

)
w
0

(t) is constant along ⇤(t) at all times t. (3.39)

Since W
0

= S(�
0

)
⇤

, writing �
1

= �̃
⇤

and substituting into (3.27), then �̃ can be

determined as the unique function solving

� @zz�̃+ f 0(�
0

)�̃ = S(�
0

) + @z�0

(3.40)

subject to the boundary condition limz!±1 @z�̃ = 0 from (3.20b).

Finally at order " we obtain

W
1

= �@zz�2

+ @z�1


⇤

+ f 0(�
0

)�
2

+ f 00(�
0

)
�2

1

2
(3.41)

This gives us a method to determine the interface condition for the first order term

of the chemical potential. Multiplying by @z�0

and integrating as before we can

determine w
1

to be:

w
1

=
2

�b � �a

Z 1

�1
@z�̃@z�0

� �̃2

2
@zf

0(�
0

).
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We may express this in a short from as

w
1

= T (�
0

)2
⇤

,

where T (�
0

) is a constant depending on the leading order phase profile in the inner

region. We have suppressed the dependence on �̃ by noting the dependence of �̃ on

the phase profile �
0

(see (3.40)).

3.4.2 Discussion

To summarise the findings of the preceding section: The phase interface is in spatial

equilibrium in the sense that the geodesic curvature is constant, see (3.39). In the

thus split domain we have the set of equations:

� = �i

r
�

· (M(�)r
�

w̃(t)) = �r
�

· v(t)

)

in �i(t), i = a, b,

(3.42)

[w̃(t)] = 0

w̃(t) = T (t)2
⇤

1

�b��a [M(�)r
�

w̃(t)] · µ
⇤

(t) =
�

v(t)� v

⇤

(t)
� · µ

⇤

(t)

9

>

=

>

;

on ⇤(t). (3.43)

• Restrictions due to compatibility condition: From (3.35) we have a

compatibility condition that the curvature should remain constant, in addition

we assumed a general surface evolution so that v was arbitrary. However, this

causes a problem as a general arbitrary velocity could drive the interface in

di↵erent ways along its length so as to alter the geodesic curvature. Thus for

a solution of the free boundary problem, in the fast mobility regime, to exist

we cannot assume an arbitrary surface velocity but must instead assume that

the evolution is such that the (spatially) constant curvature persists. This

compatibility condition is thus rather restrictive.

• Mass conservation: First, observe that the total mass is still preserved in

the sharp interface limit potentially implying a restrictions on the velocity v.

In the identity (3.29) w has to be replaced by w̃ for this purpose.

• Interface evolution: The solvability condition (3.39) is an equilibrium con-

dition with respect to the phase separation. This restriction seems reasonable

since the fast scaling of the mobility acts to blow up the e↵ects of the Cahn-

Hilliard dynamics. But the equilibrium condition (3.39) alone doesn’t tell us
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much about the evolution of ⇤(t). In fact, at a given time t there may be

several possible curves ⇤(t) of constant geodesic curvature such that the mass

side condition is satisfied. For instance, if �(t) is a sphere one will find an

infinite number. By the assumptions in Section 3.2.1 the interface is approx-

imated by level sets of the phase field solutions. Thus, one may expect it to

evolve smoothly, and one will also expect that a specific curve is picked in the

sharp interface limit. We leave this question open for future studies.

3.5 The Deep Quench Limit

The deep quench limit of (3.1) and (3.2) for the degenerate ESCH equation corre-

sponds to the limit as ✓ & 0. Then �a ! ↵ and �b ! � so that the degenerate

mobility Mdeg(�) is switched o↵ in the bulk. In the case of a stationary, flat domain

the limiting problem is surface di↵usion and has been derived in Cahn et al. [2006].

There, the flux j is expanded in addition to the fields and some matching condi-

tions are replaced by assumptions on the limits of the fluxes when approaching the

boundaries of the interfacial layer. This is due to a lack of equations for the bulk

fields.

Indeed, also in our case, (3.30) does not exist so that we have no equation for w
0

in the bulk. In particular, we cannot conclude any more that r
�

w
0

= 0. Similarly,

there is no bulk equation for w
1

: Equation (3.36) reduces to �
0

r
�

· v = 0. Within

the solution regime defined in Section 3.2.1 this means necessarily that

r
�(t) · v(t) = 0

in the bulk phases, the implication of which has been discussed in the context of a

very slow mobility already (see Section 3.3.3). As we also cannot conclude any more

that @sW0

= 0 another term of the form M(u
0

)@ssW0

appears on the right hand

side of (3.37). Integrating and using suitable assumptions for the flux M(�
0

)@zW2

as in Cahn et al. [2006] we obtain

(�b � �a)
�

v(t)� v

⇤

(t)
� · µ

⇤

(t) = S̃(�
0

)�
⇤(t)⇤(t) (3.44)

instead of (3.38). Here, �
⇤(t) corresponds to @ss after parametrisation and stands

for the Laplace-Beltrami operator on the curve ⇤(t), and S̃(�
0

) = S(�
0

)
R

RM(�
0

).

Equation (3.44) is surface di↵usion for a curve on a moving surface where the

velocity v of the underlying surface manifests by an additional transport term.

It thus seems that surface di↵usion might be a sensible sharp interface limit
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of the deep quench limit problem in an appropriate setting. In this section we will

look to alter the asymptotic analysis to derive surface di↵usion more rigorously.

Since we have in mind recovering something akin to (3.44), and bearing in mind the

compatibility condition resulting from (3.36) we will consider a di↵erent system that

we will call the non-conservative evolving surface Cahn-Hilliard equation (NESCH).

Note that this is not a limit of our previous form for the ESCH. The non-conservative

ESCH equation replaces (3.1) with the following

@•t � = r
�(t) ·

�

M(�)r
�(t)w

�

. (3.45)

The dropping of the term �r
�(t) · v from (3.1) results in a relaxation of the

conservation assumption with regards the phase field variable, inspiring our naming

it the non-conservative ESCH equation. Observe that in weak form (3.45) reads:

d

dt

Z

�(t)
�⌘ =

Z

�(t)
�⌘r

�(t)·v�M(�)r
�(t)wr�(t)⌘ for all ⌘ 2 H1(�(t)) a.e. t 2 [0, T ].

(3.46)

Upon testing with the admissible test function ⌘ = 1 we obtain

d

dt

Z

�(t)
� =

Z

�(t)
�r

�(t) · v. (3.47)

In the case of local incompressibility,r
�(t)·v = 0, we obtain mass conservation again,

however in the case of a non-divergence free velocity the total mass can change.

Although we take the point of view of referring to the nESCH as a non-conservative

form of the ESCH, a possible alternative interpretation is that conservation still

holds, but that there is balancing of mass supply by adding the term �r
�(t) · v to

the right hand side of (3.1) so that mass is added to the system at exactly the rate

with which it would appear to be lost due to local stretching/compression.

Since we wish to study the deep quench limit of the logarithmic potential,

(3.4), we consider the double obstacle type potential, (3.8). Since this is not di↵er-

entiable (3.2) must be expressed in the following form:

w + "�
�(t)�+

1

"
(�� � + ↵

2
) 2 @I

[↵,�](�). (3.48)

In (3.48), @I
[↵,�](·) is the subdi↵erential of the indicator function I

[↵,�] for the in-

terval [↵,�].

Existence of solutions of (3.45) and (3.48) have been considered in Blowey

and Elliott [1991b] in the case of a constant mobility, M(�) = 1 and a planar

setting. It was shown in Elliott and Luckhaus [1991] that under the same setting as
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in Blowey and Elliott [1991b] that (3.45) and (3.48) result as the deep quench limit

when considering the Ginzburg-Landau energy with the logarithmic potential (3.4),

however it must be assumed that this result still holds for the case of a degenerate

mobility and an evolving surface.

3.5.1 Assumptions on the Solution Regime

Solutions, � 2 C0(�(t)), of (3.45) and (3.48) decompose the surface, �(t), in the

following manner �(t) = �↵(t) [ �⇤(t) [ ��(t) such that

� 2 (↵,�), w = �"�
�(t)�� 1

"

✓

�� ↵+ �

2

◆

, x 2 �⇤(t) (3.49)

� = ↵, x 2 �↵(t) (3.50)

� = �, x 2 ��(t). (3.51)

In line with the assumptions made in Section 3.2.1 and following the lines of Cahn

et al. [2006], we assume that our solutions roughly mimic the characteristic features

of minimisers of the Ginzburg-Landau energy (with double obstacle potential) so

that �⇤(t) is an annular subsection of the surface �(t) and that both �↵(t) and

��(t) are of non-zero measure.

Furthermore, since there is no bulk problem the matching conditions (3.20a)

to (3.20e) can no longer be used. Due to the fact that there are no outer expan-

sions the standard practice of describing an intermediary region where inner and

outer expansions match cannot be applied. For this reason we must deal with

the boundary of the interfacial region explicitly. We will denote these bound-

aries by ⇤↵(t) = @�⇤(t) \ �↵(t) and ⇤�(t) = @�⇤(t) \ ��(t), and will assume

they can be expressed as a graph so that the scaled distance function takes values

z 2 [Z�
" (s, t), Z

+

" (s, t)] with

Z±
" (s, t) = Z±

0

(s, t) + "Z±
1

(s, t) +O("2). (3.52)

Since the matching conditions cannot be applied we must make constitutive as-

sumptions on the fluxes at the boundary. Motivated by the natural flux conditions

that are usually associated with the Cahn-Hilliard equation we assume the following
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boundary conditions on the inner region.

lim
x!⇤

i
(t)

r
�(t)� · µ = 0, (3.53)

lim
x!⇤

i
(t)

M(�)r
�(t)w · µ = 0 (3.54)

with i 2 {↵,�} and µ the extension of the co-normal to ⇤(t).

For the ease of the reader we collect the principal equations from the above

for use in the asymptotic analysis.

�(x, t) = ↵
o

x 2 �↵(t) (3.55)

�(x, t) = �
o

x 2 ��(t) (3.56)

@•t � = r
�(t) ·

�

M(�)r
�(t)w

�

w = �"r
�(t)�� 1

"

⇣

�� ↵+�
2

⌘

)

x 2 �⇤(t) (3.57)

0 = r
�(t)� · µ

0 = M(�)r
�(t)w · µ

)

x 2 ⇤i(t), i 2 {↵,�} (3.58)

We will employ the same inner expansions used previously, (3.19). The

upshot of the boundary conditions, (3.58), together with (3.55)-(3.56) implies the

following boundary conditions for the individual terms of the inner expansion.

lim
z!Z+

0

�
0

= � (3.59)

lim
z!Z�

0

�
0

= ↵ (3.60)

lim
z!Z±

0

@z�0

(s, z, t) = 0 (3.61)

lim
z!Z±

0

�
1

(s, z, t) = 0 (3.62)

lim
z!Z±

0

M(�
0

)@zW0

= 0 (3.63)

lim
z!Z±

0

�
1

M 0(�
0

)@zW0

+M(�
0

)@zW1

= 0 (3.64)

3.5.2 Asymptotic Analysis

From the second equation of (3.57), to order "�1, we obtain the equation

0 = �@zz�0

� �
0

. (3.65)
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With the boundary conditions (3.59), (3.60) and (3.65), this equation is solvable if

Z±
0

= ⇡
2

, thus we make this assumption about the relative width of the inner region

and thus conclude that the phase profile takes the form:

�
0

(z, s, t) =
� � ↵

2
sin(z) +

� + ↵

2
. (3.66)

To lowest order, "�3 from (3.57) we see that

0 = @z (M(�
0

)@zW0

) . (3.67)

Arguing as with (3.23), identifying that M(�
0

)@zW0

is a function of s and t only, we

use the boundary condition (3.63) instead of matching conditions to infer that this

constant is in fact zero. Thus noting (3.66), and recalling the assumed positivity of

the mobility function in this region, we may infer that

@zW0

= 0, W
0

= �
1

(s, t) (3.68)

so that W
0

is independent of z and a function of s and t only. To the next order,

"�2, we have

0 = @z
�

M 0(�
0

)�
1

@zW0

+M(�
0

)@zW1

�

. (3.69)

Using the boundary condition (3.64) we can argue as at the previous order to see

that the term in the brackets is independent of z and then use (3.68) to proceed to

the conclusion that

@zW1

= 0, W
1

= �
2

(s, t) (3.70)

and so W
1

is also independent of z and is also a function of s and t only. To order

"�1 from the first equation of (3.57), we obtain the following

@z�0

(v � v

⇤

) · µ
⇤

= @z (M(�
0

)@zW2

) +M(�
0

)�sW0

(3.71)

We will return to the analysis of (3.71) after we consider the next order of expansions.

To order "0 we only need the following equation for identification of the sharp

interface limit.

W
0

= �@zz�1

+ 
⇤

@z�0

� �
1

. (3.72)

We can treat this equation the same as (3.27), multiplying by @z�0

and integrating

over the interfacial region using (3.61) and (3.62). This gives that

W
0

(s, t) = S(�
0

)
⇤

, (3.73)
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with the constant S(U
0

) independent of s and t and given by

S(�
0

) =
⇣

Z ⇡/2

�⇡/2
(@z�0

)2
⌘

/(� � ↵).

We may now analyse (3.71), integrating over the interfacial region we see that

(� � ↵) (v � v

⇤

) · µ
⇤

=

Z ⇡/2

�⇡/2
M(�

0

)�sW0

dz, (3.74)

since the mobility is zero on the boundary. Using (3.73) we can replace W
0

to obtain

(v � v

⇤

) · µ
⇤

= S̃(�
0

)�s⇤, (3.75)

where

S̃(�
0

) = S(�
0

)

Z ⇡/2

�⇡/2
M(�

0

).

39



Chapter 4

Numerics

4.1 Overview

Using numerical simulations, the aims of this section are: (1) to support the the-

oretical findings on the convergence as " ! 0 stated in the previous chapters, and

(2) to illustrate and display some of the possible e↵ects due to the motion of the

surface. The computational method is based on the evolving surface finite element

method presented in Dziuk and Elliott [2007] which has been applied to the ESCH

equation in Elliott and Ranner [2013].

This chapter is laid out as follows, we first describe the evolving surface finite

element method, beginning with mesh generation and finite element spaces before

discussing it’s application to the ESCH equation. We postulate everything under

the guise of an Arbitrary Lagrange Eulerian method (Elliott and Styles [2012]) and

simplify where appropriate. We then test the chosen schemes and provide some

examples of simulations before displaying the interesting results presented in the

paper O’Connor and Stinner [2016].

4.2 The Surface Finite Element Method

4.2.1 Approximation of Geometry and Triangulations

As stated within Section 2.1 under our assumptions for the asymptotic analysis

presented in the previous chapter; we restrict to smooth, connected, evolving com-

pact hypersurfaces �(t) ⇢ R

n+1, where n = 1, 2 is the dimension of the surface

and t 2 [0, T ], with T > 0, and such that @�(t) = ;. We again assume that it is

orientable and denote by ⌫(·, t) : �(t) ! R3, t 2 [0, T ], a spatial unit normal vector

field. Recall the space time graph GT comes with a material velocity v. The evolving
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surface finite element (ESFEM) can, in general, be applied to higher dimensions.

We approximate the evolving surface, {�(t)}t, by an evolving polyhedral

surface, {�h(t)}t. For the purpose of generating such an approximation we use a

triangulation of the given hypersurface �(t) at time t = 0. That is we approximate

�(0) by a polyhedral surface �h(0) which is formed by taking a given number,

Nh < 1, of nodes on the surface �(0) and then using n-simplicies with these nodes

as vertices to interpolate between them. The idea is visually represented in Figure

4.1.

Figure 4.1: Approximation of a torus by a polygonal surface induced by a triangu-
lation.

The discretely triangulated surface �h(0) is thus the union of a finite number

of non-degenerate closed n-simplicies. We denote this set of simplicies Th(0). We

restrict to triangulations such that there is a bijection between �(0) and �h(0), so

that we have a simple covering. That is for T
1

, T
2

2 Th(0) either T
1

\ T
2

= ; or

T
1

\ T
2

is an (n � k)-dimensional side simplex (k 2 {1, ..., n}) common to both

elements.

To obtain a triangulated surface for a given time t > 0, we advect the

nodes used in the initial triangulation �h(0) in the following manner. We denote by

{Xj(t)}j , j = 1, ..., Nh the set of vertices associated with the triangulation at each

time, then the velocity of the nodes is given by Ẋj(t). It is natural to evolve the

vertices with v as this keeps the nodes on the evolving surface �(t) this requires at

all times that

Ẋj(t) = v (Xj(t), t) , Xj(0) = X0

j 8 j = 1, ..., Nh. (4.1)

The ESFEM is based on this procedure. However for the tangential components,
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Figure 4.2: Example of mesh degeneration due to tangential velocity. Initial uniform
triangulation on the left and at later time on right after advecting nodes by the
material velocity which is given by v(X(✓,�)) = sin(✓)X✓, where X(✓,�) is the
standard parameterisation of a sphere.

although advection by the material velocity is natural, it is possible to see mesh

degeneration. An example of this can be seen in Figure 4.2. To overcome this issue

one may only require (4.1) to hold in the normal direction and leave the tangential

motion arbitrary. Note that we will still have the property that Xj(t) 2 �(t) 8j =

1, ..., Nh and t 2 [0, T ]. For our procedure we assume there is some intrinsic material

tangential velocity, v⌧ := Pv, given as the tangential projection of the material

velocity. We then assume in addition an arbitrary velocity, a⌧ , satisfying a⌧ · ⌫ = 0

such that nodes are transported according to

P Ẋj(t) = a⌧ (Xj(t), t) + v⌧ (Xj(t), t) , Xj(0) = X0

j 8 j = 1, ..., Nh. (4.2)

For a surface PDE this leads naturally to an Arbitrary Lagrangian Eulerian (ALE)

method, or in our case ALE-ESFEM. The ALE-ESFEM has been introduced in

Elliott and Styles [2012] and more rigorously studied in Elliott and Venkataraman

[2015]. In most cases we will use a⌧ = 0 and evolve the nodes purely by the surface

tangential velocity. However in some instances the ability to use an arbitrary velocity

will enable us to ensure mesh regularity throughout a simulation and thus we will

be able to avoid any complications due to re-meshing. In particular in the moving

sphere example (Section 4.4.3), since the nodes are all transported towards the south

pole, setting a⌧ = �v⌧ avoids nodes bunching near the south pole and ensures an

even spread of nodes near the north pole.

The subscript h refers to the time free, uniform bound on the maximum
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diameter of an n-simplex’s face. In addition to the above we assume that the

evolution of the mesh is such that the ratio of the maximal simplex diameter and

minimal simplex in-ball radius is uniformly bounded independently of both h and t.

Thus far the procedure for approximating the geometry does not change the

topology of our mesh. Since we are interested in producing phase field simulations,

the thin moving interfacial layers have to be resolved, this motivates the need for

adaptive refinement and coarsening. In this work we only consider ’h’-refinements, as

opposed to ’p’-refinements. In ’p’-refinements the polynomial degree of the simplex

faces is increased, see Heine [2004], and in ’h’-refinements the maximal diameter is

reduced. If we wish to refine the triangulation then we follow the practical point of

view by introducing new nodal points on the current triangulation and project these

points back onto the smooth surface. An example of the process is seen in Figure

4.3 and the details can be found in Dziuk and Elliott [2007] for a general refinement

procedure and Demlow and Dziuk [2007] for adaptive refinement.

Figure 4.3: Example of h-refinement where h is reduced due to the introduction of
the point X̃

3

which is then projected onto the surface �(t) as the point X
3

. The
red line represents �h(t) for one particular h and the green line represents �h(t) for
a smaller h.

4.2.2 Finite Element Spaces

Given an appropriate mesh generated by a triangulation, Th(t), we define the fol-

lowing isoparametric finite element spaces at each time t, see Brenner and Scott

[2007]:

Sh(t) =

⇢

⌘(·, t) 2 C0(�h(t))

�

�

�

�

⌘(·, t)|T (t) 2 P 8T (t) 2 Th(t)
�

(4.3)

where P is the polynomials of degree 1. These finite element spaces are isoparametric

in that the polynomial degree of the faces used in the geometry approximation is
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the same as the polynomial degree used for the approximating functions. We denote

by ⌘
1

(t), ..., ⌘Nh
(t) the nodal basis of Sh(t), which is characterised by the identity:

⌘i(t,Xj(t)) = �ij . (4.4)

4.3 Function Spaces for Continuous Equations

Standard practice for parabolic problems is to use Bochner spaces of the form

Lp(0, T ;X) with X some appropriate Banach space. The di�culty for this ap-

proach when combined with evolving surfaces is the time-dependence of the surface

itself, i.e. we look to work with spaces such that X = H1(�(t)). The natural setting

for our solutions is in fact Sobolev spaces over the space time graph. These type of

function spaces have been studied in some detail in Alphonse et al. [2014].

We can define Sobolev Spaces over the space-time surface as follows. Let

rGT
be the space-time gradient and d�T the associated measure to the space-time

surface.

L2(GT ) :=

⇢

⌘ 2 L1

loc(GT ) :

Z

GT

⌘2d�T < 1
�

,

H1(GT ) :=
�

⌘ 2 L2(GT ) : rGT
⌘ 2 L2(GT )

 

.

The standard norms for the above spaces are

k⌘kL2
(GT )

:=

✓

Z

GT

⌘2d�T

◆

1/2

,

k⌘kH1
(GT )

:=
⇣

k⌘k2L2
(GT )

+ krGT
⌘k2L2

(GT )

⌘

1/2
.

However using the following identity for splitting the integral into it’s space and

time components
Z T

0

Z

�(T )

⌘d�dt =

Z

GT

⌘
p

1 + |v
⌫

|2d�T ,

alongside the characterisation of the space-time gradient

rGT
⌘ =

✓

r
�

⌘ +
@•⌘v

⌫

1 + |v
⌫

|2 ,
@•⌘

1 + |v
⌫

|2
◆

,
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then given a smooth velocity, v, we can use the following equivalent norms

k⌘k0L2
(GT )

:=

 

Z T

0

Z

�(t)
⌘2d�dt

!

1/2

,

k⌘k0H1
(GT )

:=

 

Z T

0

Z

�(t)
⌘2 + |r

�

⌘|2 + (@•⌘)2d�dt

!

1/2

.

These equivalent norms motivate us to define the necessary solution spaces for posing

the ESCH equation in a weak form.

L2

L2 :=

(

⌘ 2 L1

loc :

Z T

0

Z

�(t)
⌘2d�dt < 1

)

L2

H1 :=
�

⌘ : GT ! R : ⌘ 2 L2

L2 and r
�

⌘ 2 (L2

L2)n+1

 

Lq
H1 :=

n

⌘ 2 Lq(GT ) : k⌘kLq

H1
< 1

o

We note that L1
H1 ⇢ L2

H1 and that ⌘ 2 L2

H1 with @•⌘ 2 L2

L2 if and only if ⌘ 2 H1(GT ).

For more details see Elliott and Ranner [2013].

4.3.1 Weak Formulation

Denoting by va := v+a⌧ the sum of the surface velocity and the arbitrary tangential

velocity, and using the notation @•
va

and @•
v

for the material derivatives with respect

to the subscripted velocity, we may relate the two as follows. Let  : GT ! R, and
let  ̃ be any su�ciently smooth extension to a neighbourhood of �(t), then

@•
va
 = @t ̃ + v⌫ ·r ̃ + (a⌧ + v⌧ ) ·r

�(t) = @•
v

 + a⌧ ·r
�(t) . (4.5)

We generate the weak formulation of the ESCH equation through the standard

method, multiplication by a test function in an appropriate test space, and integra-

tion over the whole domain.

Problem 4.3.1. We say that the pair (�, w) : GT ! R2 with � 2 L1
H1 \H1(GT ) and

w 2 L2

H1, are a weak solution of the evolving surface Cahn-Hilliard equation (3.1),

(3.2) if, for almost every t 2 (0, T ),

Z

�(t)
@•t �⌘ + �⌘r

�(t) · v = �
Z

�(t)
M(�)r

�(t)w ·r
�(t)⌘ (4.6)

Z

�(t)
w =

Z

�(t)
"r

�(t) · �r�(t) +

Z

�(t)

1

"
f(�) (4.7)
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for all ⌘, 2 L2

H1 with initial condition �(·, 0) = �
0

with some �
0

: �(0) ! R.

By using the transport formula, (2.9), with v replaced by va, we can remove

the explicit dependence on the surface velocity v to obtain a variational formulation

that we will use as the basis for our finite element approximation. In the varia-

tional formulation (4.6) is replaced by the following which di↵ers from the standard

variational formulation due to the movement of material points by the arbitrary

tangential velocity va.

d

dt

Z

�(t)
�⌘ +

Z

�(t)
M(�)r

�(t)w ·r
�(t)⌘ =

Z

�(t)
�@•

va
⌘ � �a⌧ ·r

�(t)⌘. (4.8)

where again ⌘ 2 L2

H1

4.3.2 Spatial Discretisation

For the discretisation of time we employ the method of lines. Thus we require a

spatial discretisation to exist first from which we then segment time into intervals.

We denote the discrete space time graph by

Gh
T =

[

t

�h(t)⇥ {t}. (4.9)

To define the spatial discretisation we must define several discrete analogues

of quantities appearing in the variational formulation (4.8). First we define the

discrete surface normal. Since �(t) was assumed orientable, �h(t) as a linearly

interpolated approximation is piecewise orientable. That is to say that on the face

of each element, there exists a C1 unit normal to the surface. We denote by ⌫h this

piecewise unit normal. In the case that �(t) (and hence �h(t)) is a boundary we

take the outward pointing unit normal to �h(t). Using this we define the tangential

gradient, r
�h(t), on �h(t) element-wise, let ⌘h : �h(t) ! R:

r
�h(t)⌘h = r⌘̃h � (r⌘̃h · ⌫h)⌫h = Phr⌘̃h (4.10)

where Ph = I � ⌫h ⌦ ⌫h. Given ⌘ 2 H1+�(�(t)), the interpolation operator Ih onto

Sh(t) is given by

Ih(t)⌘(xh) =
Nh
X

i=1

⌘(Xj(t))⌘j(xh, t), xh(t) 2 �h(t). (4.11)

We take functions in H1+� as a minimum so that they are continuous however H2
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would su�ce, since Xj(t) 2 �h(t) we can ensure that Ih is indeed well defined.

In practice we will be applying the interpolation operator to surface velocities and

initial conditions only, and will thus be using smooth functions.

We can characterise the velocity of the surface �h(t) using this interpolation

operator. Material points in �h(t) move with a discrete material velocity va,h such

that va,h(xh, t) := Ihva. The discrete velocity induces a discrete material derivative.

For a scalar quantity, ⌘h, defined on Th, the discrete material derivative is given by

@•
va,h

⌘h = @t⌘̃h +r⌘̃h · va,h (4.12)

Note that ⌘h need not be in our finite element space Sh(t) for this to be defined.

The upshot of the discrete material velocity taking this form, and due to the char-

acterisation of the basis functions in our choice of finite element space, it has been

shown in Dziuk and Elliott [2007] that

@•
va,h

⌘j = 0 for all j 2 {1, ..., Nh}. (4.13)

Furthermore the transport identity 2.9 has also been shown in Dziuk and Elliott

[2007] to hold in a discrete setting so that

d

dt

Z

�h(t)
⌘h =

Z

�h(t)
@•
va,h

⌘h + ⌘hr
�h(t) · va,h. (4.14)

With these discrete analogues we can define the spatially discrete problem.

Problem 4.3.2. We say that the pair (�h, wh) : (�h(t), t) ! R2 with �h(t), wh(t) 2
Sh(t) for all t, are a discrete approximation to the solution of the evolving surface

Cahn-Hilliard equation (3.1), (3.2) if, for almost every t 2 (0, T ),

d

dt

Z

�h(t)
�h⌘h +

Z

�h(t)
M(�h)r

�h(t)wh ·r
�h(t)⌘h =

Z

�h(t)
�h@

•
va,h

⌘h � �hIha⌧ ·r
�h(t)⌘h

Z

�h(t)
wh h =

Z

�h(t)
"r

�h(t)�h ·r�h(t) h +

Z

�h(t)

1

"
f(�h) h

for all ⌘h, h 2 Sh(t) and �h(·, 0) = Ih�(·, 0) point-wise almost everywhere in �h(0).

Observe that ⌘h 2 Sh(t) can be any discrete function and is not necessarily

a basis function and thus the term @•
va,h

⌘h does not necessarily vanish.
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Since �h(t), wh(t) 2 Sh(t) we can write them as

�h(xh, t) =
Nh
X

i=1

�i(t)⌘i(xh, t), wh(xh, t) =
Nh
X

i=1

Wi(t)⌘i(xh, t) xh 2 �h(t).
(4.15)

By restricting to the basis functions as test functions in the discrete problem 4.3.2,

we can generate a matrix form of the problem where we use the basis transport

property (4.13). We denote by �(t) the vector with coe�cients �i : (0, T ) ! R for

i = 1, ..., Nh. Similarly we define W (t). This matrix form reads as:

d

dt
(M(t)�(t)) + SM (t)W (t) +A(t)�(t) = 0 (4.16)

M(t)W (t) = "S(t)�(t) + 1

"
F(�(t)). (4.17)

where

M(t)ij =

Z

�h(t)
⌘i⌘j (4.18)

SM (t)ij =

Z

�h(t)
M(�h)r

�h(t)⌘ir�h(t)⌘j (4.19)

S(t)ij =
Z

�h(t)
r

�h(t)⌘ir�h(t)⌘j (4.20)

A(t)ij =

Z

�h(t)
Ih(a⌧ )⌘i ·r

�h(t)⌘j (4.21)

F(U(t))i =

Z

�h(t)
f(�h)⌘i. (4.22)

4.3.3 Time Discretisations

As stated at the start of the previous section we employ the method of lines for our

time discretisation. Although we could choose intervals of di↵ering length, for the

sake of convenience we choose to restrict to uniform intervals of length �t throughout

our numerical experiments. We define tm = m�t, m = 0, ...,M = T
�t , as the time

nodes and with this discretisation of time we define

Sm
h = Sh(tm) (4.23)

thus obtaining a finite element space at each time step.

We will employ two di↵erent schemes throughout our simulations. The first

is a fully implicit numerical scheme for use in 1D simulations. Letting �m := �(tm)
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our fully implicit scheme reads:

Mm+1�m+1 + �tSm+1

M Wm+1 +Am+1�m+1 = Mm�m (4.24)

Mm+1Wm+1 = "Sm+1�m+1 +
1

"
F(�m+1). (4.25)

We use the Schur Complement method to create an expression involving �m+1 as

the only unknown which is then solved for using a Newton method. The scheme

has been implemented in MATLAB and tested by way of EOC tables which can be

seen in Table 4.4 in Section 4.3.4.

For the 2D simulations we will use the following semi-implicit scheme

Mm+1�m+1 + �tSm+1

M Wm+1 +Am+1�m+1 = Mm�m (4.26)

Mm+1Wm+1 � "Sm+1�m+1 � 1

"
IF (�

m)�m+1 =
1

"
EF (�

m). (4.27)

with IF (�m) a diagonal matrix for the implicit part of the non-linear load vector

and EF a vector for the explicit part so that

IF (�
m)ii =

Z

�h(t)
f 0(�m)⌘i (4.28)

EF (�
m) =

Z

�h(t)

�

f(�m)� �mf 0(�m)
�

⌘i (4.29)

This system is written as a block matrix form and then solved using a conjugate

gradient method. The method has been implemented with two separate software

packages. The first is the Distributed and Unified Numerics Environment (DUNE

Blatt and Bastian [2007]; Bastian et al. [2008a,b]; Dedner et al. [2010] the second is

the Adaptive Multidimensional Simulations package (AMDiS) Vey and Voigt [2007],

which has been used for the example in Section 4.4.3.

The one dimensional problems were solved with MATLAB, however when

working in higher dimensions there is a need for greater e�ciency and functionality,

motivating the use of DUNE. A technical di�culty with the initial surface grid used

together with the bisection refinement implemented in DUNE motivated the use of

AMDiS.

4.3.4 Convergence Tests

We would like to test the implementation of the chosen numerical schemes, which

we do by showing the theoretical orders of convergence. In line with Elliott and

Venkataraman [2015] and Elliott and Ranner [2013] we expect order �t + h2 for
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the L1
L2 norm and �t + h for the L2

H1 norm as the orders of convergence to the

true solution. Since exact solutions for the ESCH equation cannot be written down

analytically for a closed surface we include an additional forcing term in our test

problem.

For the implicit scheme (4.26), we used the domain GT = [0, 1] ⇥ [0, 1] with

surface velocity

v(x) = sin(⇡x). (4.30)

Starting from the known solution

�(x, t) = et cos(2⇡x) + t (4.31)

we solved the problem

�t + (�v)x � wxx = g (4.32)

w = �"�xx + 1

"
f(�) (4.33)

subject to the boundary conditions ‘phix = wx = 0. The forcing term g was found

by substituting the known solution into the di↵erential operator. With F (u) the

standard quartic potential with minima at ±1, g takes the form:

"e�tg(x, t) =
�

⇡2
�

12t2 + 3e2t � 4
�

+ 16⇡4"2 + "
�

cos(2⇡x)

� 1

2
⇡
�

et � 2t
�

" cos(⇡x) +
3

2
⇡et" cos(3⇡x) + 24⇡2e2tt cos(4⇡x)

+ 9⇡2e3t cos(6⇡x) + "

The solution is " independent so we choose for our tests " = 0.1.

To calculate the error in our approximation we have used a 3-point Gaussian

quadrature rule on each element and approximated the error at each time step so

that our L1
L2 error can be calculated from the formula

k�h � �k02L2
(GT )

= max
m2{1,...,M}

X

E2Th

3

X

q=1

|E|!g(q)|�h(q,m�t)� �(q,m�t)|2 (4.34)

where q are the Gaussian quadrature points and !g(q) the corresponding quadrature

weights. The error in L2

H1 norm is approximated using the H1 semi-norm for the
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i = Nh L1(L2) E.O.C. L2(H1) E.O.C
11 0.13489 - 1.73069 -
21 0.03027 2.31079 0.72473 1.34616
45 0.00641 2.03593 0.32363 1.05779
73 0.00242 2.00883 0.19812 1.01432
162 0.00049 2.00256 0.08898 1.00416
321 0.00012 2.00056 0.04487 1.00091

Figure 4.4: Error table for the solution of the forced ESCH equation using the
implicit scheme (4.26), described around (4.32) analysing the spatial convergence
rate. h = 1

i , �t = h2

spatial integral and we thus use

|�h � �|02H1 =
1

T

X

m=1,...,M

X

E2Th

3

X

q=1

|E|!g(q)|@x�h(q,m�t)� @x(q,m�t)|2. (4.35)

Observe that since the problem is posed on �(t) = [0, 1], @x is the appropriate

gradient for both functions.

In Table 4.4 we display the errors between the approximation and the exact

solution as well as showing the experimental orders of convergence in the L1
L2 norm

as well as the L2

H1 semi-norm. The experimental orders of convergence (eoc) are

calculated from the formula

(eoc)i =
log(Ei/Ei�1

)

log(hi/hi�1

)
(4.36)

where Ei is the error associated with mesh size hi =
1

i . In order to see the individual

orders of convergence in our spatial convergence test we have set �t = h2. We can

see from Figure 4.4 that we are obtaining the correct convergence orders of 2 and 1

respectively.

Similarly to be able to see the temporal orders of convergence we set h =

1/321 and vary the time step as �ti = 1/i, so that the h error should be dominated

by the error due to the temporal discretisation. We display these results in Table

4.5 and see that we obtain the order 1 convergence in the L1
L2 norm.

For testing the semi-implicit scheme (4.28) we use the surface GT = S2⇥ [0, 1]

with the surface velocity

v(x, y, z) =
�

xz, yz, z2 � 1
�T

. (4.37)

which is a purely tangential motion allowing us to express v ·r�̃ = v ·r
�(t)�. We
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i L1(L2) E.O.C
10 0.13446 -
39 0.03412 1.00769
159 0.00832 1.00374
620 0.00211 1.00702
1289 0.00101 1.01322

Figure 4.5: Error table for the solution of the forced ESCH equation using the
implicit scheme (4.26), described around (4.32) analysing the temporal convergence
rate. h = 1

321

, �t = 1

i

again start from a known solution, similar in idea to that used in the 1D setting

however this time we use a steady state solution.

�(x, y, z) = z. (4.38)

Observe that in spherical co-ordinates �(X(✓,')) = cos(✓) (note 'isthepolarangleco�
ordinate). We solve the problem

@•t �+r
�(t) · (�v)���(t)w = g (4.39)

w = �"�
�(t)�+

1

"
f(�) (4.40)

where g is again found by substituting the known solution into the di↵erential op-

erator. With F (�) the quartic potential with minima at ±1, (3.5), g takes form

g(x, y, z) = 3z2 � 1 + 4"z � 6z(1� z2)� 6z3 + 2z

"
.

The mesh for this test is generated using an inscribed cube to the unit sphere which is

then refined uniformly the appropriate number of times using the projection method

discussed.

In Table 4.6 we display the errors between the approximation and the exact

solution as well as showing the experimental orders of convergence in the L1
L2 norm

as well as the L2

H1 semi-norm. These quantities were calculated using the in built

expressions functionality of AMDiS. We can see that we do indeed obtain the correct

orders of convergence as predicted by the theory.

4.3.5 Adaptive Refinements

As can be seen in the examples in Figure 4.9, solutions of the ESCH equation do

indeed exhibit large domains where the gradient of the solution is relatively small.
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h L1(L2) E.O.C. L2(H1) E.O.C
0.20853 0.04451 2.05665 0.08604 1.47755
0.10471 0.01101 2.01435 0.03752 1.19719
0.05241 0.00274 2.00439 0.01798 1.06110
0.02621 0.00068 2.00048 0.00889 1.01505

Figure 4.6: Error table for the solution of the forced ESCH equation described
around (4.39).

This lends itself very well to an adaptive mesh refinement strategy, working on a

coarse grid in the outer region and a more refined grid in the inner region so that

we can drastically reduce the number of nodes for very little loss of accuracy. We

discuss here how we have implemented an adaptive mesh strategy. Note a time

adaptive strategy could also have been used as in Ratz [2016], however we used a

uniform time step throughout.

The general strategy for adaptivity with parabolic problems can be sum-

marised as

SOLVE ) ESTIMATE ) MARK ) REFINE

Our strategy is a little more ad-hoc since the most sensible indicator function, for

identifying elements for refinement, is the phase value or its gradient. Traditionally

an estimator is used to test how well the approximate solution solves the problem

on each element and the elements with the largest errors are refined. Our strategy

uses the phase value instead and so we do not require an ’estimation’ stage.

Using an initially uniform grid that is relatively coarse we identify the inner

region as points for which the phase value lies in the interval (�1 + �", 1� �") and

mark such elements for potential refinement. The quantity � is a strict constant. If

the phase value lies outside this interval then these elements are marked for potential

coarsening. We say potential refinement and coarsening as elements may already be

at the maximal/minimal level of refinement that we define at run time. An increase

in level of refinement corresponds to a bisection of elements.

The process of adaptive mesh refinement has been considered for Poisson

type problems on surfaces in Demlow and Dziuk [2007] and for parabolic problems

in Kenneth and Claes [1991]. The di�culty for including adaptivity with evolving

surfaces is in the choice of whether or not to refine and then evolve the mesh in

time, or vice versa, evolving the grid to the next time step and then performing the

refinement. In Figure 4.7 we graphically display the potential di↵erence in the two

strategies. As can be seen in 4.7c, if we evolve the mesh in time first and then refine
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(a) Static Refinement

(b) Refine First (c) Evolve First

Figure 4.7: Graphical display of the potential di↵erence when refining before or after
evolving the mesh. In 4.7a, we display the bisection method without an evolution.
In 4.7b the element is refined by bisecting the longest edge and then evolved in time.
In 4.7c the element is evolved in time and then refined by bisection.

we can maintain some control on the regularity of the mesh as the bisection still

occurs at the midpoint of the longest length. We instead implement the alternative.

We refine elements first, then evolve them, so that although we may lose some

regularity on the mesh, the refinements should better follow the interface. We did

not implement the post update refinement method and so cannot comment on any

di↵erence in any errors.

When using the adaptive method we wished to ensure that the chosen level for

the outer region was su�ciently coarse so as to increase performance but su�ciently

fine so that we were obtaining accurate results. The following tests for the moving

sphere example in Section 4.4.3 were used to ensure this was the case. In Figure 4.8

we see the di↵erence in the energy output for di↵erent levels in the outer region. In

the inner region we used a level that ensured a minimum of 10 grid points across

the interface. For a uniform grid (level 7 in Figure 4.8) there are approximately

1.1 ⇥ 105 degrees of freedom, compared with 3.0 ⇥ 104 for the coarsest outer grid

(level 2). Thus for a reduction in degrees of freedom by a factor of 3 we maintain

accuracy to well within 5⇥ 10�3.
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Figure 4.8: Comparison of energy profiles in Moving Sphere example presented in
Section 4.4.3 for di↵ering levels of refinement in the outer region. " = 0.025, v̄ = 10,
M̄ = 5.

4.4 Numerical Experiments

With regards to the 1D simulations, we have produced results on a bounded interval

with Neumann type boundary conditions, that is �x = wx = 0, which contradicts the

setting of the analysis where we assumed a closed surface in Chapter 3. However,

we can double the (time dependent) interval and reflect the solution to make it

symmetric with respect to the centre. The thus obtained setting can be further

extended periodically to the whole real line so that we may think of a solution on

an object which topologically is a circle.

We only carried out computations with the quartic potential (3.5) and the

constant mobility (3.7). For the Cahn-Hilliard equation on the real line there exists

an equilibrium profile given by

�b + �a
2

+
�b � �a

2
tanh

⇣�b � �a

2
p
2

y

"

⌘

, y 2 R. (4.41)

We use this profile to specify initial conditions �IC(x) = �(x, 0), x 2 �(0), unless
stated otherwise.

4.4.1 Stretching and Compression

We first pick �a = �1 and �b = 1 and consider a phase transition at the centre

of an interval. Then the interval is homogeneously stretched or compressed for a

while, i.e., r
�(t) · v(t) is constant in space. For the solution to (3.9), (3.10) one will

expect that the interface position moves in the direction of the deformation and, in

the long term, ends up in the centre of the deformed interval.

For our di↵use interface simulation we deform the domain as specified in
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Parameter Data for Figure 4.9 Data for Figure 4.10 Data for Figure 4.11
�a, �b; M̄ ;T -1, 1; 1; 10 -1, 1; 1; 10 0.2, 0.8; 1; 2

�(t)

⇢

(0, 1 + t) t  2
(0, 3) t > 2

⇢

(0, 3� t) t  2
(0, 1) t > 2

(0, 1 + t)

v(x, t), x 2 �(t)
⇢ x

(t+1)

t  2

0 t > 2

⇢ � x
(t+1)

t  2

0 t > 2
x

(t+1)

�IC(x) 0.9 tanh(10x� 5) 0.9 tanh(10x� 15) 0.3 tanh(x�0.5
" ) + 0.5

Table 4.1: Simulation data for Section 4.4.1.
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Figure 4.9: Stretching domain example as described in Section 4.4.1. Phase field for
" = 0.4 (red), " = 0.1 (green), and " = 0.025 (blue). Simulation data are in Table
4.1 on the left.
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Figure 4.10: Compressing domain example as described in Section 4.4.1. Phase field
for " = 0.4 (red), " = 0.1 (green), and " = 0.025 (blue). Simulation data are in
Table 4.1 in the middle.
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Figure 4.11: Stretching domain example with positive minima of F as described in
Section 4.4.1. Phase field for " = 0.4 (red), " = 0.1 (green), and " = 0.025 (blue).
Simulation data are in Table 4.1 on the right.
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Table 4.1 on the left and in the middle, respectively. At time t = 2 the interval

has reached the final length and we then further relax the profile of � on the then

stationary domain.

In a first set of simulations we started with equilibrium tanh profiles defined

in (4.41) and shifted them such that they were symmetric with respect to the centre

of the interval. In the short term, the advection leads to stretched or compressed

profiles, respectively, but the e↵ect becomes smaller the smaller " is. In the long

term, the profiles relax back to equilibrium profiles at the expected position which

they do the faster the smaller " is.

In an attempt to investigate the robustness of the convergence behaviour we

picked the profiles specified in Table 4.1 which are independent of " for a second

set of simulations. The results for di↵erent values of " are displayed in Figure 4.9

and Figure 4.10, respectively, and indeed display the same long-term behaviour with

one exception: for the largest " = 0.4 in the compression case the advection e↵ect

(due to the surface evolution) is so strong that we observe mixing of the phases, i.e.,

� = 0, in the long term. We remark that as only the largest " is a↵ected this is a

finite " e↵ect which does not contradict the asymptotic result.

We also examined the stretching example for a potential with minima at

�a = 0.2 and �b = 0.8, see Table 4.1 on the right for the data and Figure 4.11

for the simulation results. In this case the expansion makes the phase transitions

vanish and leads to flat profiles which takes the longer the smaller " is. Note that

at time t = 2.0 the (nearly) constant profiles of � take value around 0.166, which is

slightly lower than the minimum �a = 0.2 of the double-well potential. It thus does

not satisfy the setting for the asymptotic analysis as specified at the beginning of

Section 3.2.1. Indeed, for the related sharp interface model the initial mass is

M(0) =

Z

�

+
(t=0)

�b +

Z

�

�
(t=0)

�a =

Z

0.5

0

�b +

Z

1

0.5
�a = 0.5.

If there was a solution to the sharp interface model which involves a phase transition

its mass would satisfy

M(2) =

Z

�

+
(t=2)

�b +

Z

�

�
(t=2)

�a �
Z

3

0

�a = 0.6 > M(0),

which contradicts the mass conservation discussed around (3.29).
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4.4.2 Bulk E↵ects

In the following examples we report on other e↵ects due to velocity fields which do

not have constant divergences and show some interesting behaviour.

First, recall that constant functions, di↵erent from �a and �b, are unstable

stationary solutions to the Cahn-Hilliard equation which also holds true for the

ESCH equation with v = 0. In our first example we start from a constant initial

condition, �IC = �a+�b
2

, with �a > 0. We pick v � 0 as specified in the left

column of Table 4.2. Since mass is conserved, the advective e↵ect of the velocity is

expected to increase the mass where the domain is compressed and reduce the mass

where the domain is stretched and, thus, is expected to induce a phase separation

by perturbing the system away from the unstable constant solution. Note that the

boundary points of the domain [0, 1] do not move but internal movements take place,

more precisely, stretching in (0, 0.5) and compressing in (0.5, 1).

In Figure 4.12 we see how the flat initial profile is perturbed by the advective

e↵ect of the velocity field such that a phase transition is obtained. Also note that

when comparing with Figure 4.11 the gradient in the interface region appears to

be less, however this is only appears to be the case due to the plotting of di↵erent

length domains at the same physical size. The simulation data are given in Table

4.2 on the left. We remark that, in some cases, the velocity field from this example,

has no destabilising e↵ect. For instance, if �b = ��a and �IC = 0 then the solution

remains constant at � = 0 for all times. This happens since the advective driving

force of r
�(t) ·v is scaled by the phase field value, thus � = 0 as a constant solution

is still unstable however the mechanics by which a perturbation is introduced are

negated.

In another example, initially, a phase interface is located at 0.25 within the

initial domain [0, 1]. We then extend the interval but such that v = 0 in [0, 0.5] and

v(x, t) 6= 0 only if x > 0.5, see Table 4.2 on the right for the details.

Regarding the sharp interface model, (3.9) implies that w is no longer har-

monic. Hence, the jump term [Mr
�

w] · µ
⇤

in (3.10) changes and is expected to

be non-zero. We thus expect a motion of the phase interface, ⇤, in the direction of

the stretching despite the surface velocity, v, being zero in the region containing the

interface.

In Figure 4.13 we can see that there is indeed a motion induced by the non-

trivial bulk problem. In addition, once the phase interface gets beyond the point

0.5, its velocity can be seen to increase. This is in accordance with the last equation

in (3.10) as v � 0 there.
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Parameter Data for Figures 4.12 Data for Figure 4.13
�a, �b; M̄ ;T 0.2, 0.8; 1; 0.2 -1, 1; 1; 2
�(t) [0, 1] [0, cot�1(1.83� t) + 0.5]

v(x, t), x 2 �(t) sin(⇡x)

⇢

sin2(x� 1

2

) x � 1

2

0 x < 1

2

�IC(x) 0.5 tanh(x�0.25
" )

Table 4.2: Simulation data for Section 4.4.2.
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Figure 4.12: Generation of a phase interface by perturbing a flat initial profile as
described in Section 4.4.2. " = 0.025, other simulation data are in Table 4.2 on the
left.
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Figure 4.13: Phase interface motion induced by bulk e↵ects away from the interface
as described in Section 4.4.2. " = 0.01, t = 0.1 (red), t = 1.0 (green), t = 1.8 (blue).
Simulation data are in Table 4.2.
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Figure 4.14: Setup for the example in Section 4.4.3.

4.4.3 A Solution on a Sphere with Tangential Mass Transport

Considering 2D hypersurfaces in 3D allows us to demonstrate the geometric be-

haviours of solutions to the ESCH equation and to discuss e↵ects due to the geodesic

curvature which appears in (3.10).

In this example we consider a sphere with a tangential velocity field v so

that the shape doesn’t change. As in Ratz [2016] we look for solutions to (3.9),

(3.10) which are rotationally symmetric and, thus, are constant in the azimuthal

angle � 2 (0, 2⇡) and only depend on the polar angle ✓ 2 (0,⇡), i.e.,

w(x(✓,�), t) = W (✓, t) where x(✓,�) = (sin ✓ cos�, sin ✓ sin�, cos�)T . (4.42)

The di↵erence to Ratz [2016] is the presence of the velocity field v. We pick a

velocity field which transports mass from the north to the south pole, v(x(✓,�), t) =

v̄ sin(✓)x✓(✓,�) with some v̄ > 0. One can easily show that r
�

· v = 2v̄ cos(✓).

We then consider two distinct regions around the poles, where � = �b, which

are separated by a band where � = �a, see Figure 4.14. We will refer to the inner

region as �a(t) and and the two caps as �b1,2(t). We denote by ✓
1,2(t) the polar

angle of the boundaries between �b1,2(t) and �a(t), respectively.

With the ansatz (4.42) the Laplace-Beltrami operator applied to w becomes

�
�

w =
1

sin ✓

@

@✓

✓

sin ✓
@W

@✓

◆

.
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The general solution W (i)(✓, t) to (3.9) in �i(t), i 2 {b
1

, b
2

, a}, then is

W (i)(✓, t) = c
(i)
1

(t) log



tan

✓

✓

2

◆�

��iv̄
M̄

cos(✓)+c
(i)
2

(t), ✓ 2

8

>

>

>

<

>

>

>

:

(0, ✓
1

(t)), i = b
1

,

(✓
1

(t), ✓
2

(t)), i = a,

(✓
2

(t),⇡), i = b
2

,

(4.43)

with functions c(i)k (t), k = 1, 2, which will be determined by the interface conditions.

Assuming a smooth solution in �b1,2(t) the gradient has to be zero at the poles

which implies that c(b1)
1

(t) = c
(b2)
1

(t) = 0. We now use the second equation of (3.10)

and that the geodesic curvature of the phase interface is equal to (�1)k+1 cot(✓k(t)),

k = 1, 2:

c
(bk)
2

(t) = (�1)k+1S cot(✓k(t)) +
v̄

M̄
�b cos(✓k(t)), k = 1, 2.

We can use the same boundary condition on each boundary of �a(t) in order to

determine c(a)
1

(t) and c
(a)
2

(t). We only include c(a)
1

(t) below as the formula for c(a)
2

(t)

is not needed to progress:

c
(a)
1

(t) =
S [cot ((✓

1

(t)) + cot (✓
2

(t))] + v̄
¯M
�a(cos(✓1(t))� cos(✓

2

(t)))

log [tan(✓
1

(t)/2)]� log [tan(✓
2

(t)/2)]

Having expressed the solution (4.43) in terms of the ✓k(t) we can use the

third equation of (3.10) in order to derive a system of ODEs for the ✓k(t), k=1,2

(note that v
⇤

(✓k(t)) · µ(✓k(t)) = (�1)k✓0k(t)):

✓0
1

(t) =
M̄ c̃

(a)
1

(✓
1

(t), ✓
2

(t))

(�b � �a) sin(✓1(t))
, ✓0

2

(t) =
M̄ c̃

(a)
1

(✓
1

(t), ✓
2

(t))

(�b � �a) sin(✓2(t))
.

where c̃
(a)
1

(✓
1

(t), ✓
2

(t)) = c
(a)
1

(t).

We choose the quartic potential F (�) = 1

4

(�2�1)2, i.e., �a = �1, �b = 1, for

which S =
p
2

3

in (3.10) and for the initial condition of the sharp interface problem

set ✓
1

(0) = 0.8 and ✓
2

(0) = 2.1 so that �b2(0) is slightly bigger than �b1(0).

For the initial condition of the Cahn-Hilliard equation we use

�IC(✓) =

8

<

:

tanh
⇣

0.8�✓
"
p
2

⌘

, ✓ < 1.45,

tanh
⇣

✓�2.1
"
p
2

⌘

, ✓ � 1.45.

In the case v̄ = 0, i.e., without any mass transport, we expect the solution

to coarsen to a two region solution with the area around the southern pole, ✓ = ⇡,
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Figure 4.15: Energy plots for the example in Section 4.4.3 with v̄ = 10, M̄ = 5. We
compare the Ginzburg-Landau energy, (3.3), with the sharp interface energy, (4.44).

taking the phase value �b. This is indeed what we observe, see Figure 4.16. In

turn, if the mass transport towards the south pole with a tangential velocity field

is strong enough we expect that again a two region solution emerges but with the

domain of the phase {� = �b} around the northern pole, ✓ = 0. For v̄ = 10, Figure

4.17 displays that solutions indeed exhibit this behaviour.

We want to compare our solution to the sharp interface model with solu-

tions of the Cahn-Hilliard equation by considering the energy of the system. The

Ginzburg-Landau energy (3.3) is the energy for the di↵use interface model and, as

shown in Le [2008], converges to the energy of the sharp interface model which is

proportional to the length of the phase interface:

E" ! 2S length(⇤) =: E
0

which here amounts to

E
0

(t) =
4
p
2⇡

3
[sin(✓

1

(t)) + sin(✓
2

(t))] . (4.44)

In Figure 4.15 we display the evolution of the energies (3.3) for several values

of " as well as the limiting energy (4.44). Around the time 0.11 the solution to the

sharp interface model becomes singular as then ✓
2

(t) ! ⇡. The asymptotic analysis

is not valid around such events but we see that even then the approximation gets

more accurate as "! 0.

4.4.4 Scaling E↵ects

In our analysis we saw that di↵erent scalings of M̄ lead to di↵erent limiting free

boundary problems, namely (3.9), (3.10) for M̄ ⇠ "0 and (3.42), (3.43) for M̄ ⇠
"�1. In this example we present a pair of simulations to demonstrate the di↵ering
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(a) t = 0 (b) t = 0.05, (c) t = 0.1 (d) t = 0.15

Figure 4.16: Coarsening example on the sphere as described in Section 4.4.3, " = 0.1,
v̄ = 0, M̄ = 5.

(a) t = 0 (b) t = 0.05 (c) t = 0.1 (d) t = 0.15

Figure 4.17: Example with tangential mass transport on the sphere as described in
Section 4.4.3, " = 0.1, v̄ = 10, M̄ = 5.
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Parameter Data for Figure 4.18 Data for Figure 4.20
�a, �b; M̄ ;T -1, 1; 5 or 50; 0.2 -1, 1; 10; 0.5

�IC(x)

8

<

:

tanh
⇣

1�arccos(x)

"
p
2

⌘

arccos(x) < 1.55

tanh
⇣

arccos(x)�2.1

"
p
2

⌘

arccos(x) � 1.55
tanh

⇣

0.7�x1

"
p
2

⌘

Table 4.3: Simulation data for Sections 4.4.4 and 4.4.5.

behaviour of solutions to the ESCH equation in dependence of the scaling of M̄ in

".

We begin with the unit sphere with two regions of phase �b at opposite sides of

the sphere separated by a band of phase �a, as displayed in Figure 4.18a. As with the

previous example, the two regions are of di↵erent size so that we can expect to see the

coarsening of the phase �b if the surface velocity is zero (rotating Figure 4.16 through

90 degrees would produce this solution). We choose a surface velocity to deform the

sphere so as to introduce obstacles by increasing the radius of (y, z)-circles. More

specifically, the surface GT is given as the image of Q : S2 ⇥ [0, 0.2] ! R

3 by

Q(x, y, z, t) = (1� t̃)(x, y, z) + t̃(x, ⇢(x)y, ⇢(x)z), t̃ = min(0.05, t)

where ⇢(x) = 1� 1

2

cos2(2⇡x). For a fixed interfacial thickness parameter " = 0.1 we

use two di↵erent values for the mobility, namely M̄ = 5 and, dividing by ", M̄ = 50.

The other parameters are in Table 4.3 on the left.

Based on the observations in the previous example, the slightly larger domain

of phase �b is expected to attempt to grow at the expense of the smaller domain

until the latter vanishes. This phenomenon is driven by the di↵erent values of the

geodesic curvature of the phase interfaces. By altering the radii of (y, z)-circles over

time as given above the curvature of the underlying surface is varied. If a phase

interface moves into the a↵ected area, then its geodesic curvature is changed in such

a way that further movement towards the equator is damped. In the case M̄ = 5

we observe (see Figure 4.18b) that coarsening indeed is prevented and two domains

of phase b persist. In turn, by scaling the mobility with 1

" we increase the Cahn-

Hilliard dynamics and, thus, the velocity of the phase interface. Indeed, M̄ = 50 is

big enough such that the system can coarsen before the deformation can impact on

the dynamics (see Figure 4.18c).
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(a) t = 0 (b) t = 0.2, M̄ = 5 (c) t = 0.2, M̄ = 50

Figure 4.18: Initial configuration (left) and di↵erent states (middle, right) achieved
by varying the mobility, " = 0.1. See Section 4.4.4 for other parameters and details.

4.4.5 Topological Changes

Topological changes can be particularly di�cult to simulate for free boundary prob-

lems. In this example we display a topological change of the interface induced by

the motion of the surface that would not happen in a stationary setting. Although

our asymptotic analysis from Chapter 3 precludes topological changes, we include

this example to show that the presence of a surface velocity does indeed remove the

gradient flow structure from the ESCH equation.

The surface is a torus which we denote by T(R, r) where R is the major radius

and r is the minor radius. We deform the torus by making R and r time dependent

functions, specifically, R(t) =
p
2 + 1.2 sin(2⇡t) and r(t) = 1 � 0.65 sin(2⇡t), thus

increasing the overall surface area in the interval 0 < t < 0.25, decreasing the surface

area in the interval 0.25 < t < 0.5, and obtaining the same surface at final time

T = 0.5 as at t = 0.

We consider an initial phase distribution which contains a single connected

interface using the profile function as described in Table 4.3 on the right. Note

that this function is only dependent on the spatial co-ordinate x
1

, rather than any

tangential co-ordinate. This creates a relatively large initial energy, however the

interfacial layers quickly relax to energetically more favourable profiles. Thus when

reporting the energy of the system we start shortly after initialisation.

On the stationary torus T(R(0), r(0)) the described phase interface would

evolve only so as to reduce its length but without any topological change as seen

in Figure 4.21 (note that the level of relaxation required is minimal). However, by

changing the ratio of the two radii, the phase interface can be driven to self intersect

and even to induce a topological change. In Figure 4.20 we display the latter solution

at 4 time steps for one specific value of " = 0.71. We observe that the interfacial
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layer self intersects and splits up into two independent interfacial layers through the

hole of the torus. These remain stable when the surface relaxes back to its original

shape and the solution as seen in Figure 4.20d, persists for all times.

In Figure 4.19 we also include a plot showing the energy evolution of solutions

for the two discussed cases. For the stationary surface we see a small drop in the

energy due to relaxation and then it remains constant. In contrast the energy

in the evolving setting increases initially before the rapid transition through the

topological change. Although two interfaces is energetically more favourable at the

time of the topological change, we can see that when the surface returns to its

original proportions the total energy has increased in comparison with that of the

final resting energy in a stationary setting.
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Figure 4.19: Comparison of energy profiles in case of stationary torus and moving
torus as discussed in Section 4.4.5 and displayed in Figures 4.20 and 4.21.

(a) M = 10, t = 0.0 (b) M = 10, t = 0.1 (c) M = 10, t = 0.25 (d) M = 10, t = 0.5

Figure 4.20: Topological change of the interface as discussed in Section 4.4.5. " =
0.71 M̄ = 10.

66



(a) M = 10, t = 0.0 (b) M = 10, t = 0.1 (c) M = 10, t = 0.25 (d) M = 10, t = 0.5

Figure 4.21: Relaxation of singular interface in case of stationary surface as discussed
in Section 4.4.5. " = 0.71 M̄ = 10.
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Chapter 5

Application: Cell Adhesion

5.1 Overview

In this chapter we look at an application of phase field modelling, in particular

we derive a model for focal cell adhesion that aims to extend a previously known

model derived by Freund and Lin [2004]. We study the asymptotic limit of our

newly derived model for the purpose of comparing with free boundary models in the

literature. Note that the surface in this chapter is an unknown and the method of

formally matched asymptotic expansions must be extended to account for this.

This chapter is laid out as follows, we first provide some background to the

physically setting that we wish to model. We wish to use an energetic framework and

use variations of proposed energy functionals. Thus, following the introduction to

the problem we carefully consider the process by which we take variations and carry

out the calculations required for our model. We then complete the model derivation

before analysing it’s sharp interface limit. We conclude the analysis with some

short remarks on comparisons with known literature results. Finally we provide

some simulations of a reduced version of our model produced using a scheme based

on the work of Barrett et al. [2008].

Observe that although in Chapter 3 we predominantly studied the conser-

vative form of the Cahn-Hilliard equation, (3.1)-(3.2), in this chapter we will be

studying a phase field equation that is not conservative and thus will not have a

term of the form �r
�(t) ·v. This is motivated by the type of free boundary problem

that we would like to recover. For similar reasons we will also be studying a phase

field equation corresponding to the fast scaling of the mobility.
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5.2 Introduction

Adhesion of cells to other cellular organism or biological substrata such as colla-

gen plays an important role in a number of processes, for example, embryo growth,

cancer metastasis, tissue regeneration and inflammatory response Bao and Suresh

[2003]; Wolgemuth [2005]. The standard view of cellular adhesion is as a competition

between a reduction in free energy arising from changes in a bonding potential and

an increase in free energy due to elastic deformation required for the membrane to

conform to the extra-cellular surface. Early works Bell et al. [1978, 1984] have devel-

oped quantitative models for cell adhesion based on equilibrium thermodynamics,

demonstrating this competitive nature of adhesion.

In many instances cell adhesion is based on a set of bridging molecules, or

binders, confined to the cell membrane, but mobile within the cell wall, these binders

can attach to specific ligands on the opposite surface. Experimental evidence has

shown that when a surface consists of a large concentration of receptor ligands,

complementary to the binders in the membrane, adhesion results from the formation

of localised regions of tight adhesion. These patches are often called focal adhesion

zones. Examples include spreading of blood platelets Park et al. [1990], vesicles

Boulbitch et al. [2001]; Guttenberg et al. [2001], and di↵erent types of cells including

fibroblasts, melanocytes, osteoblasts, lymphoblasts and red blood cells Dustin et al.

[1996]; Smilenov et al. [1999]; Cuvelier et al. [2003]; Arnold et al. [2004] on substrates

functionalised with receptors.

These focal patches arise due to a relatively low equilibrium density in com-

parison to the numbers required for adhesion. As a result of the low equilibrium

density of binders, after nucleation, local recruitment is necessary for the growth of

an adhesion patch.

The authors of Freund and Lin [2004] proposed a one-dimensional model

of an infinite length membrane adhering to a flat substrate. They restricted to a

single adhesion patch and derived a one sided free boundary problem describing the

propagation of the adhesion patches front. It is our aim to generalize this work to

an intrinsic model on the cell membrane, taking account of the higher dimension

of the cell wall as well as allowing for di↵usion in the adhered region, resulting in

a two sided model. Our model is also representative of the post nucleation regime

but is more robust in that it allows for multiple adhesion patches and is capable of

modelling topological changes.

We represent the cell membrane by an n-dimensional evolving hypersurface,

�(t) ⇢ Rn+1. Associated with this hypersurface is the material velocity, v = v⌧ +
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�(t)

{� = ��}
{� = �+}

"

Figure 5.1: Qualitative sketch of a focal cell adhesion front with individual binders
represented by the vertical bars.

v
⌫

⌫, consisting of a tangential component v⌧ and a normal component v
⌫

, by which

material points belonging to �(t), are transported. We wish to employ the phase

field methodology and will denote by � the phase field variable that will be used to

di↵erentiate between adhered regions, approximated by {� = ��}, and free regions,

approximated by {� = �+}, where �� < �+ are constants. These regions will be

separated by thin layers proportional in width to the length scale ". The phase field

variable changes value smoothly but quickly within these layers. We denote by c

the binder density in the cell membrane and postulate an energetic framework for

the governing system.

For the phase field variable we postulate a standard gradient flow structure

given by

"!@•t � = ���E(�,�, c), (5.1)

where E is some free energy for the system which will be defined below and ��E is

it’s variation with respect to the phase field variable which we will carefully define

in a later section. The constant ! is a scaling coe�cient. For the binder density we

postulate the following balance law which ensures conservation of the total binder

density.

@•t c+ cr
�(t) · v = r

�(t) ·
�

Mc(�, c)r
�(t)�cE(�,�, c)

�

. (5.2)

The quantity �cE is the variation with respect c of the free energy. The phase and

density dependent binder mobility is denoted by Mc and is assumed non-negative

in general and strictly positive whenever � 2 (��,�+).

We account for the visco-elastic properties of the membrane in a similar

fashion to that in Rodrigues et al. [2015]; Rahimi et al. [2013] postulating a virtual

work principle. We propose that the governing equations for the membrane evolution

be the result of balancing applied forces. The motion of the membrane under the

action of surface elastic forces and surface adhesion forces gives the virtual work
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principle as:
Z

�(t)
� : D

�

w = �h�
�

E,wi 8w 2 V. (5.3)

The tensor � represents the tangential stresses and V is a set of admissible virtual

velocities. The operator D
�

w := 1

2

P (r
�

w + r
�

w

T )P is the surface analogue of

the symmetric gradient, with P the projection operator to the tangent space, so

that D
�

w gives the surface virtual strain rate. The quantity �
�

E is the variation of

the proposed free energy with respect to surface deformations. This is also carefully

considered in a later section.

We have assumed in our virtual work principle that fluids adjacent to the

membrane can be neglected. This is valid in the setting of a low Reynolds number

so that the equations of slow viscous motion apply. The authors of Sa↵man and

Delbrück [1975], considered how to define a translational mobility in an anisotropic

setting where the viscosity of the embedding fluid is much lower than that of the

viscosity of the fluid membrane.

When considering the tangential stresses, �, we postulate the same form as

in Rodrigues et al. [2015], assuming the standard Boussinesq-Scriven model so that

� = �⇡P + 2µ(�)D
�

v. (5.4)

The phase dependent coe�cient of the membrane velocity term, µ(�), is the surface

viscosity, and is allowed to di↵er in each phase but should be strictly positive. The

surface pressure, ⇡ is the Lagrange multiplier resulting from an assumption of an

inextensible membrane, expressed by the constraint

r
�(t) · v = 0, (5.5)

which can also be written as trD
�

(v) = 0.

As stated around Equation (5.1) we wish to utilise an energetic framework

for our model. Our postulated surface energy is a combination of several di↵erent

components and can be expressed as follows

E = EMC + EGC + EGL + EAD + EB. (5.6)

The term EGL is a Ginzburg-Landau energy functional and is a phase field form of

a line energy given by

EGL = �

Z

�(t)

"

2
|r

�

�|2 + 1

"
✓(�) = �

Z

�(t)
�(�,r

�

�). (5.7)
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Figure 5.2: Qualitative forms of the adhesion potentials in each phase as used in
(5.8) and simulations in Sections 5.6.2 and 5.6.3.

We choose a double well type potential with minima at � = �± such that ✓(�) =
1

4k✓
(�� � �)2(�+ � �)2. The constant k✓ is chosen so that certain coe�cients scale

to 1 in our asymptotic analysis. We postulate abstract potential functions for the

adhesion energy, EAD, and the binder energy, EB such that

EAD =

Z

�(t)
p(�, c, dS) (5.8)

EB =

Z

�(t)
f(�, c), (5.9)

The adhesion potentials should depend on the distance, dS , between the membrane

and the substrate. Qualitatively we expect them to take forms as seen in Figure

5.2 in each phase so that in the case of a free region the unspecified repulsive forces

dominate and increase exponentially as dS ! 0 and decay to zero as dS ! 1.

Similar behaviour is expected in an adhered region with the exception that there

exists a unique stable minimiser of the energy at some finite distance. We denote

by ⌫S the normal to the substrate.

Biomembrances are bilayers of lipid molecules and established models treat

them as deformable inextensible fluid surfaces of infinitesimal thickness, unable to

sustain shear stress, and governed by bending energy functionals with the membrane

strain energy depending on the curvature of the surface. As an extension of the work

of Freund and Lin [2004] we wish to account for membrane dynamics due to bending,

rather than considering a static adhesion patch. A classical model for the elastic

components of the bending energy is the Canham-Helfrich-Evans energy functional

Canham [1970]; Evans [1974]; Helfrich [1973]. This consists of a mean curvature
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component and a Gaussian curvature component:

EMC + EGC =

Z

�(t)

1

2
bk(�, c)|m � s(�, c)|2 +

Z

�(t)
bg(�, c)g. (5.10)

The mean curvature of the surface is denoted by m and the Gaussian curvature

by g, s represents a preferred curvature of the cell membrane which is called the

spontaneous curvature. The quantities bk and bg are bending rigidities.

Writing our problem in a strong form gives the stress terms as r
�(t) · �(t).

This is related to the surface velocity by way of the di↵erential operator known as

the Boussinesq-Scriven operator, S
�(t)v(t) = 2r

�(t) · D�(t)v(t), via the following

relation.

r
�(t) · �(t) = �µ(�)S

�(t)v(t) +r
�(t)⇡ + ⇡m⌫. (5.11)

Our strong problem, which we derive through the subsequent sections, thus reads

as follows.

Problem 5.2.1. Given an initial hypersurface �(0) ⇢ R3, and initial conditions for

the binder density, c(0) : �(0) ! R and phase field variable, �(0) : �(0) ! R, find
(�(t),⇡(t),�(t), c(t)) such that at each time t 2 [0, T ]:

⌫ · �r
�(t) · �(t)

�

= �
�(t) (bk(�, c)(m � s(�, c))) + |r

�(t)⌫|2bk(�, c)(m � s(�, c))

+r
�(t) ·

�

(mI+r
�(t)⌫)(bg,�(�, c)r�(t)�+ bg,c(�, c)r

�(t)c)
�

+ �
�

m�(�,r�

�) + ⌫r
�

· �"r
�(t)�⌦r

�(t)�
��

+ p,dS⌫S · ⌫
(5.12)

Pr
�(t) · �(t) = bk(�, c)(m � s(�, c))r

�(t)m + gr
�(t)bg(�, c) (5.13)

+ �Pr
�

· �"r
�(t)�⌦r

�(t)�� �(�,r
�

�)I
�

+ p,dSP⌫S

�(t) = �⇡P + 2µ(�)D
�

v (5.14)

r
�(t) · v =0 (5.15)

�"!@•t � =
1

2
bk,�(�, c)|m � s(�, c)|2 � bk(�, c)(m � s(�, c))ks,�(�, c)

+ �

✓

�"�
�(t)�+

1

"
✓0(�)

◆

+ bg,�g + p,� + f,� (5.16)

@•t c = r
�(t) ·

�

Mc(�, c)r
�(t)�

�

(5.17)

� =
1

2
bk,c(�, c)|m � s(�, c)|2 � bk(�, c)(m � s(�, c))ks,c(�, c)

+ bg,cg + f,c + p,c. (5.18)

We have in mind identifying a free boundary problem associated to the sharp
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interface limit of Problem 5.2.1 and are thus searching for a 2-phase surface. To be

able to do this, it is convenient to define certain quantities in each phase. Given a �

dependent function b, which may depend on other variables, we define b± := b(�±)

and denote by [b] = b+ � b�. Using this additional notation the free boundary

problem, in the limit "! 0, reads as follows.

Problem 5.2.2. Given an initial hypersurface �(0) ⇢ R3, decomposed as �(0) =

��(0) [ ⇤(0) [ �+(0) and initial condition for the binder density, c(0) : �(0) ! R,
find (�(t),⇡(t), c(t)) such that at each time t 2 [0, T ]:

r
�(t) · �±(t) = �

�(t)

�

b±k (c)(m � ±s (c))
�

⌫

+
�|r

�(t)⌫|2⌫ +r
�(t)m

�

b±k (c)(m � ±s (c))

+⌫r
�(t) ·

�

(mI+r
�(t)⌫)b

±
g,c(c)r�(t)c)

�

+gr
�(t)b

±
g (c) + p±,dS⌫S

�

±(t) = �⇡P + 2µ±D
�

v

r
�(t) · v = 0

@•t c = r
�(t) ·

�

M±
c (c)r

�(t)�
�

� = 1

2

b±k,c(c)|m � ±s (c)|2 + b±k (c)(m � ±s (c))k
±
s,c(c)

+b±g,c(c)g + f±
,c + p±,c

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

in �±(t)

[�] = 0

[v] = 0

[bk(m � s) + 
⌫

bg] = 0

�(v � v

⇤

) · µ
⇤

[c] = [Mcr
�(t)�] · µ⇤

�! (v � v

⇤

) · µ
⇤

+ [c]� = �
⇤

+
⇥

1

2

bk|m � s|2 + bgg
⇤

� [(bk(m � s) + bg⌫)p] + [p+ f ]

µ

⇤

· [�(t)]µ
⇤

= [bgg] + [(bk(m � s)� bg⌫)p]� �
⇤

9

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

;

on ⇤(t).

The identification of this free boundary problem comes from the method

of matched asymptotics as in Fife and Penrose [1995]. The major di�culty arises

from the underlying dependence on " of the unknown surface velocity. Thus we

have extended the technique, similarly to Elliott and Stinner [2010c], parameterising

over an assumed limiting surface but also accounting for the time dependence of the

surface similarly to the work appearing in the preprint O’Connor and Stinner [2016].

5.3 The Membrane Energy

Following the lines of Elliott and Stinner [2010c], in this section we will discuss

in detail the membrane energy and how we mean to take variations for the model
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derivation.

Definition 5.3.1. An admissible (phase field adhesion) surface is the smooth

boundary � of a bounded simply connected open set ⌦ ⇢ R3 together with a smooth

field � : � ! R which is called the phase field variable and a secondary smooth

field c : �! R which is called the binder density.

Since the phase field variable, � : � ! R, and the binder density, c : � !
R, depend on the underlying surface we must be careful by what we mean when

discussing the variation of the surface energy. We use the following notion of an

admissible deformation to an admissible surface.

Definition 5.3.2. Given an admissible surface (�,�, c), a smooth vector field w :

� ! R3 and smooth functions  , ⇣ : � ! R, the deformed admissible surface
⇣

�̃[⌧ ], �̃[⌧ ], c̃[⌧ ]
⌘

in direction (w, , ⇣) for small ⌧ 2 R is defined by

�̃[⌧ ] := {x̃[⌧ ] := x+ ⌧w(x) | x 2 �} ,
�̃[⌧ ] : �̃[⌧ ] ! R, �̃[⌧, x̃[⌧ ]] := �(x) + ⌧ (x),

c̃[0, ⌧ ] : �̃[⌧ ] ! R satisfies c̃[x̃[0]] = c(x),

and
d

d⌧
c̃[⌧, x̃[⌧ ]] + c̃[⌧, x̃[⌧ ]]r

�

·w(x) = ⇣(x).

Such a triple (w, , ⇣) is called an admissible deformation (field) for an admis-

sible surface.

Remark 5.3.3. The solution to the ODE in this definition exists thanks to the

smoothness of � and w.

To allow us to calculate the variations of the energy it is convenient to define

@•⌧ c̃(0, x) :=
d

d⌧
c̃[⌧, x̃[⌧ ]]

�

�

�

�

⌧=0

, (5.19)

with similar definitions for the other fields. Thus for an admissible surface we have

analogues of (2.9), (2.10) and (2.11) valid with the following replacements t ! ⌧ ,

V (t) ! �̃[⌧ ], v ! w and at the point ⌧ = 0. In addition there is a analogous

decomposition of the material derivative as discussed after (2.3), so that we may

write @•⌧m = @�⌧m +w ·r
�

m.

The definition for an admissible deformation of the binder density may seem

out of line with the definition used for the other fields. However, if we consider the

mass functional E0(c) =
R

�

c, for the binder density, then with the above defini-

tion, in the case of no deformation to the density, ⇣ = 0, mass conservation holds
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regardless of the deformations made to the other components. Observe that mass

conservation of the binder density is implied by the balance law (5.2).

As discussed in the introduction we propose the following system energy

which is defined on the space of admissible surfaces.

E(�,�, c) = EMC(�,�, c) + EGC(�,�, c) + EGL(�,�) + EAD(�,�, c) + EB(�,�, c).

(5.20)

With the notion of an admissible deformation we can properly define a variation of

the energy functional.

Definition 5.3.4. Let E = E(�,�, c) be a functional defined on admissible phase

field adhesion surfaces. Let (�,�, c) be an admissible surface and let (w, , ⇣) be

an admissible deformation. The variation of E in (�,�, c) in direction (w, , ⇣) is

defined by

h�E(�,�, c), (w, , ⇣)i = d

d⌧
E(�̃[⌧ ], �̃[⌧ ], c̃[⌧ ])

�

�

�

�

⌧=0

. (5.21)

Using this definition we consider the variation of each component of the

di↵use interface energy. Observe that in Elliott and Stinner [2013], the variation of

many of these quantities was considered for a purely normal surface velocity field

however since that work was in a stationary setting and was interested in the shape

of the membrane, the tangential variations of the membrane could be determined

via variations in the phase field variable only. In our setting since the binder density

is dependent upon the surface velocity, tangential mass transport can have an e↵ect

and thus must be accounted for.

Lemma 5.3.5. Variation of the Mean Curvature bending Energy. For an

admissible surface (�,�, c) with an admissible deformation (w, , ⇣) we have that:

h�EMC(�,�, c), (w, , ⇣)i

=

Z

�



1

2
bk,�(�, c)|m � s(�, c)|2 � bk(�, c)(m � s(�, c))s,�(�, c)

�

 

+

Z

�



1

2
bk,c(�, c)|m � s(�, c)|2 � bk(�, c)(m � s(�, c))s,c(�, c)

�

⇣

+

Z

�

⇥

�
�

(bk(�, c)(m � s(�, c)))⌫ +
�|r

�

⌫|2⌫ +r
�

m
�

bk(�, c)(m � s(�, c))
⇤ ·w

+

Z

�



1

2
(bk(�, c)� cbk,c(�, c))|m � s(�, c)|2 + bk(�, c)(m � s(�, c))s,c(�, c)c

�

r
�

·w
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Proof. Using (2.10) and then (2.23) and (5.3.2) we obtain

d

d⌧
EMC

�

�̃[⌧ ], �̃[⌧ ], c̃[⌧ ]
�

�

�

�

⌧=0

=

Z

�

1

2
[b,�(�, c)@

•
⌧�+ b,c@

•
⌧ c]
�

�m � s(�, c)
�

�

2

+
1

2
b(�, c)

�

�m � s(�, c)
�

�

2r
�

·w

+

Z

�

b(�, c)
�

m � s(c)
��

@�⌧m +wr
�

m � [s,�(�, c)@
•
⌧�+ s,c(�, c)@

•
⌧ c]
�

=

Z

�



1

2
bk,�(�, c)|m � s(�, c)|2 � bk(�, c)(m � s(�, c))ks,�(�, c)

�

 

+

Z

�



1

2
bk,c(�, c)|m � s(�, c)|2 � bk(�, c)(m � s(�, c))ks,c(�, c)

�

⇣

+

Z

�

bk(�, c)(m � s(�, c))��

(w · ⌫) + ⇥�|r
�

⌫|2⌫ +r
�

m
�

bk(�, c)(m � s(�, c))
⇤ ·w

+

Z

�(t)



1

2
(bk(�, c)� cbk,c(�, c))|m � s(�, c)|2 + bk(�, c)(m � s(�, c))s,c(�, c)c

�

r
�

·w

Twice integrating by parts in the term with �
�

(w · ⌫) yields the assertion.

This is similar to the result obtained in Elliott and Stinner [2013] but has

some additional terms due to allowing for tangential variations as well as quantities

depending on the binder density. The additional term due to tangential variations

is represented by the r
�

m term.

Lemma 5.3.6. Variation of the Gaussian Curvature bending energy. For

an admissible surface (�(t),�, c) with an admissible deformation (w, , ⇣) we have

that:

h�EGC(�,�, c), (w, , ⇣)i

=

Z

�

[bg,�(�, c)] 

+

Z

�

[bg,c(�, c)] ⇣

+

Z

�

[(r
�

· ((mI+r
�

⌫)(bg,�(�, c)r�

�+ bg,c(�, c)r�

c)))⌫ + gr�

bg(�, c)] ·w

�
Z

�

[bg,c(�, c)c]r�

·w

Proof. We use formula (2.6) for the Gaussian curvature. With (5.3.2), (2.9), (2.11),
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(2.22)

d

d⌧

Z

�[⌧ ]

1

2
bg(�̃[⌧ ], c̃[⌧ ])|r˜

�[⌧ ]⌫̃[⌧ ]|2
�

�

�

⌧=0

=

Z

�

1

2
@•⌧
�

bg(�, c)|r�

⌫|2�+ 1

2
bg(�, c)|r�

⌫|2r
�

·w

=
X

i

Z

�

1

2
[bg,�(�, c)@

•
⌧�+ bg,c(�, c)@

•
⌧ c]|r�

⌫i|2 + 1

2
bg(�, c)|r�

⌫i|2r�

·w

+
X

i

Z

�

bg(�, c)r�

⌫i ·r�

@�⌧⌫i � bg(�, c)r�

⌫i ·D�

(w · ⌫⌫)r
�

⌫i

+
X

i

Z

�

1

2
bg(�, c)r�

|r
�

⌫i|2 ·w

=
X

i

Z

�

1

2
[bg,�(�, c) + bg,c(�, c)(⇣ � cr

�

·w)]|r
�

⌫i|2 + 1

2
bg(�, c)|r�

⌫i|2r�

·w

+
X

i

Z

�

bg(�, c)
X

i

r
�

⌫i ·r�

(�Di(w · ⌫))� bg(�, c)
⇣

X

i

r
�

⌫i ⌦r
�

⌫i : r�

⌫

⌘

⌫ ·w

+
X

i

Z

�

1

2
bg(�, c)r�

|r
�

⌫i|2 ·w

Using (2.7) we obtain that

Z

�

bg(�, c)
X

i

r
�

⌫i ·r�

(�Di(w · ⌫))

=

Z

�

X

i

r
�

· �bg(�, c)r�

⌫i

�

Di(w · ⌫)

=

Z

�

X

i

[bg,�(�, c)r�

�+ bg,c(�, c)r�

c] ·r
�

⌫iDi(w · ⌫)

+ bg(�, c)��

⌫iDi(w · ⌫)

=

Z

�

r
�

⌫[bg,�(�, c)r�

�+ bg,c(�, c)r�

c] ·r
�

(w · ⌫)

�
Z

�

bg(�, c)r�

m ·r
�

(w · ⌫)

=

Z

�

r
�

· ��r
�

⌫[bg,�(�, c)r�

�+ bg,c(�, c)r�

c] + bg(�, c)r�

m
�

⌫ ·w.
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Considering Lemma 5.3.5 with b = bg and s = 0 we get

d

d⌧

Z

�(·)

1

2
bg(c̃[⌧ ])

2

m

�

�

�

⌧=0

=

Z

�

1

2
bg,�(�, c)

2

m +
1

2
bg,c(�, c)

2

m⇣

+

Z

�

⇥

�
�

(bg(�, c)m)⌫ +
�|r

�

⌫|2⌫ +r
�

m
�

bg(�, c)m
⇤ ·w

+

Z

�

✓

1

2
(bg(�, c)� cbg,c(�, c))

2

m

◆

r
�

·w

Altogether

d

d⌧

Z

�(·)

1

2
bg(�̃[⌧ ], c̃[⌧ ])

�

2m � |r
˜

�[⌧ ]⌫|2
�

�

�

�

⌧=0

(5.22)

=

Z

�(t)
[bg,�(�, c) + bg,c(�, c)(⇣ � cr

�

·w)]g + bg(�, c)w ·r
�

g + bg(�, c)gr�

·w

+

Z

�

r
�

· (r
�

(bg(�, c)m)� bg(�, c)r�

m +r
�

⌫ [bg,�(�, c)r�

�+ bg,c(�, c)r�

c])⌫ ·w

+

Z

�

bg(�, c)

 

m|r
�

⌫|2 +
X

i

r
�

⌫i ⌦r
�

⌫i : r�

⌫

!

⌫ ·w.

Observe that r
�

(bg(�, c)m) � bg(c)r�

m = m[bg,�r�

� + bg,cr�

c]. Furthermore

we may decompose the term bggr�

·w using integration by parts to �r
�

(bgg) ·
w +w · ⌫mbgg. We can combine the second term of this decomposition with the

last line of (5.22), to obtain a term with the following coe�cient which vanishes.

|r
�

⌫|2m +
X

i

r
�

⌫i ⌦r
�

⌫i : r�

⌫ � gm = 0. (5.23)

To see that this term vanishes, consider an orthogonal matrix Q 2 R3⇥3, such that

Q�1r
�

⌫Q =

0

B

@

�
1

0 0

0 �
2

0

0 0 0

1

C

A

. (5.24)

Recall that 
1

and 
2

are the principal curvatures. Each of the summands in (5.23)

is invariant under such a transformation and so we have the following three identities
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from which the result follows.

|r
�

⌫|2m = (2
1

+ 2
2

)(
1

+ 
2

),
X

i

r
�

⌫i ⌦r
�

⌫i : r�

⌫ = �3
1

� 3
2

,

gm = 
1


2

(
1

+ 
2

).

Finally, expanding r
�

(bgg) ·w as bgw ·r
�

g + gw ·r
�

bg, upon cancelling with

the like term in (5.22) the result follows.

Again there are the additions resulting from allowing quantities to depend

on the binder density and the novelty arising from tangential motion is the term

gr�

bg. This can be further expanded using r
�

bg = bg,�r�

� + bg,cr�

c but is

written in the more concise form for ease of reading. Observe that in the case of

a constant Gaussian bending rigidity then the energy due to Gaussian curvature is

still a topological invariant.

Lemma 5.3.7. Variation of the Ginzburg-Landau energy. For an admissible

surface (�,�, c) with an admissible deformation (w, , ⇣) we have that:

h�EGL(�,�), (w, )i =�
Z

�



�"�
�

�+
1

"
✓0(�)

�

 

+ �

Z

�

⇥

m�(�,r�

�)⌫ +r
�

· �"r
�

�⌦r
�

�� �(�,r
�

�)I
�⇤ ·w

Proof. We use (2.9), (2.11) and (5.3.2) to obtain

d

d⌧
EGL

�

�̃[⌧ ], �̃[⌧ ]
�

�

�

�

⌧=0

=�

Z

�

"r
�

� ·r
�

@•⌧�� "r
�

�⌦r
�

� : D
�

(w) +
1

"
✓0(�)@•⌧�

+ �

Z

�

�(�,r
�

�)r
�

·w

=�

Z

�

�"�
�

� +
1

"
✓0(�) � "r

�

�⌦r
�

� : D
�

(w)

+ �

Z

�

m�(�,r�

�)⌫ ·w �r
�

· ��(�,r
�

�)I
� ·w.
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Observe that:

Z

�

r
�

�⌦r
�

� : DG(w) =
1

2

Z

�

X

i,j

Di�Dj�(Diwj +Djwi)

=
X

i,j

Z

�

Di

�

Di�Dj�wj

��Di

�

Di�Dj�
�

wj

=�
X

i,j

Z

�

Di

�

Di�Dj�
�

wj = �
Z

�

r
�

· (r
�

�⌦r
�

�) ·w

From which the result follows. Note we have used that the projection operators in

D
�

act as the identity on the tangential gradients.

Lemma 5.3.8. Variation of the adhesion energy and binder density en-

ergy. For an admissible surface (�,�, c) with an admissible deformation (w, , ⇣)

we have that:

h�EAD(�,�, c), (w, , ⇣)i =
Z

�

[p,c⇣ + p,� + p,dS⌫S ·w + (p� cp,c)r�

·w]

(5.25)

h�EB(�,�, c), (w, , ⇣)i =
Z

�

[f,c⇣ + f,� + (f � cf,c)r�

·w] (5.26)

Proof. We use (2.9) and (5.3.2) to obtain

d

d⌧
EAD(�̃[⌧ ], �̃[⌧ ], c̃[⌧ ])

�

�

�

�

⌧=0

=

Z

�

@•⌧p+ pr
�

·w

=

Z

�

p,c@
•
⌧ c+ p,dS@

•
⌧dS + p,�@

•
⌧�+ pr

�

·w

=

Z

�

p,c⇣ + (p� cp,c)r�

·w + p,dS⌫S ·w + p,� .

Here we have used that the distance function can be expressed as

dS(x̃[⌧ ]) = kx̃[⌧ ]� x̃S [⌧ ]k2 (5.27)
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where x̃S [⌧ ] is the closest point in the substrate to the point x̃[⌧ ]. Thus we have

@•⌧dS(x̃[⌧ ]) =
d

d⌧
dS(x̃[⌧ ])

�

�

�

�

⌧=0

=
x̃[⌧ ]� x̃S [⌧ ]

kx̃[⌧ ]� x̃S [⌧ ]k2 (x̃
0[⌧ ]� x̃

0
S [⌧ ])

�

�

�

�

⌧=0

We have that x̃0[⌧ ]|⌧=0

= w(t) and upon noting that

x̃[⌧ ]� x̃S [⌧ ]

kx̃[⌧ ]� x̃S [⌧ ]k2

�

�

�

�

⌧=0

= ⌫S(xS(t)) (5.28)

is the normal to the substrate, and that x̃

0
S [⌧ ] is tangential to the substrate the

result for the variation of the adhesion potential follows. The other result, for the

variation of the binder potential, follows by replacing p with f and noting that the

derivative with respect to the distance, dS , is zero.

5.4 Model Derivation

In this section we will use the variations calculated in the previous section to derive a

system of evolving surface partial di↵erential equations to model focal cell adhesion.

Firstly, by setting any two components of an admissible deformation to zero

gives rise to the notion of a variation with respect to an individual component. We

will denote these quantities as follows:

h�
�

E(�,�, c),wi := h�E(�,�, c)(w, 0, 0)i (5.29)

h��E(�,�, c), i := h�E(�,�, c)(0, , 0)i (5.30)

h�cE(�,�, c), ⇣i := h�E(�,�, c)(0, 0, ⇣)i (5.31)

In the previous section we saw that when calculating the variations of the

di↵erent energy functionals, that there were many terms associated with the La-

grange multiplier of the incompressibility constraint, that is coe�cients of the term

r
�

·w. The majority of these terms scaled at an order of "0 or higher. The terms

of importance are those that scale as 1

" . Although we will identify these terms that

scale as 1

" in our model, we do not identify higher order terms. Instead we absorb

the higher order terms back into the pressure and reuse the variable ⇡ .

Associated with the virtual work principle, (5.3), there is a bilinear form

for expressing the virtual power along a virtual velocity field w performed by the

stresses � with associated actual velocity field v and surface pressure ⇡, given by

W((v,⇡),w) =

Z

�(t)
2µ(�)D

�(t)v : D
�(t)w �

Z

�(t)
⇡r

�(t) ·w. (5.32)
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Associated with this bilinear form is a surface di↵erential operator which can be

denoted r
�(t) ·� = �µ(�)S

�(t)v+r
�(t)⇡+⇡m⌫. Here S�(t) is what is often referred

to as the Boussinesq-Scriven operator and in an incompressible planar setting would

be the Laplacian. The di�culty with forming an analogues expression for surfaces

is that there is not a unique form for the Laplacian of a vector field.

For a vector field there is the intuitive definition of the Laplacian, known as

the Bochner or rough Laplacian and denoted �
�(t)v which is defined in terms of

the covariant derivative and its adjoint and is equivalent to the Laplace-Beltrami

operator acting on each component:

�

�
�(t)v

�

i
= �

�(t) (vi) . (5.33)

On the other hand there is the Laplace-de Rham operator (or Hodge-de Rham

Laplacian) which acts on di↵erential forms and is defined as �R = ��d�d� where

d is the exterior derivative and � is the co-di↵erential operator, formally the adjoint

operator of the exterior derivative. This can be extended to act on vector fields

through the process of raising and lower indices. In the notation of surface calculus

we can express the Laplace-de Rham operator, �R
�(t) as:

�R
�(t)v = �r

�(t) ⇥r
�(t) ⇥ v +r

�(t)

�r
�(t) · v

�

. (5.34)

For scalar fields on surfaces the two forms coincide, as they do in a planar setting,

although for vectorial quantities on a surface they di↵er. Using the Bochner formula,

Rosenberg [1997] the two di↵erent Laplacians can be related:

�
�(t)v = �R

�(t)v + gv (5.35)

We quote the following result from Arroyo and DeSimone [2009] which gives the

Boussinesq-Scriven operator in its strong form.

Lemma 5.4.1. The strong form, S
�(t), of the Boussinesq-Scriven operator which is

such that

Z

�(t)
� : D

�(t)w =

Z

�(t)

��µ(�)S
�(t)v +r

�(t)⇡ + ⇡m⌫
� ·w (5.36)
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has explicit form:

S
�(t)v = 2r

�(t) ·D�(t)v

= �r
�(t) ⇥r

�(t) ⇥ v⌧ + 2r
�(t)

�r
�(t) · v

�� 2
�r

�(t)⌫ � mI
�r

�(t)(v⌫) + 2gv⌧

= �R
�(t)v⌧ +r

�(t)

�r
�(t) · v

�� 2
�r

�(t)⌫ � mI
�r

�(t)(v⌫) + 2gv⌧

= �
�(t)v⌧ +r

�(t)

�r
�(t) · v

�� 2
�r

�(t)⌫ � mI
�r

�(t)(v⌫) + gv⌧ .

Using the derived variations in Section 5.3 with the above discussions we

may write the motivated virtual work principle in a strong form. Although we

could express the evolution law in terms of the Boussinesq-Scriven operator, we have

chosen to present the model in the split form using the stress tensor, �, as this makes

the asymptotic analysis easier and is in keeping with common practices of continuum

mechanics. This gives our proposed surface evolution law, which can be written as

a normal component (5.12) and the tangential component (5.13). Combining this

with the postulated evolution laws (5.1) and (5.2) we obtain (5.16)-(5.18).

Note that the dynamics of the di↵use interface model 5.2.1 are dissipative

with respect to the system energy (5.20).

d

dt
E(�(t),�, c) =h�E(�(t),�, c), (w, , ⇣)i

�

�

�

�

w=v, =@•t �, ⇣=@
•
t c+cr�(t)·v

=h�
�

E,vi+ h��E, @•t �i+ h�cE, @•t c+ cr
�(t) · vi

=

Z

�(t)
�
�

E · v +

Z

�(t)
��E@

•
t �+

Z

�(t)
�cE(@•t c+ cr

�(t) · v)

=�
Z

�(t)
� : D

�

v +

Z

�(t)
��E@

•
t �+

Z

�(t)
�cEr

�(t) · (Mcr
�(t)(�cE))

=

Z

�(t)
(⇡P � µ(�)D

�

v) : D
�

v �
Z

�(t)

1

"!
|��E|2

�
Z

�(t)
Mcr

�(t)(�cE) ·r
�(t)(�cE)

=

Z

�(t)
�µ(�)|D

�

v)|2 �
Z

�(t)

1

"!
|��E|2

�
Z

�(t)
Mcr

�(t)(�cE) ·r
�(t)(�cE)  0

In the last line we have used, with 1 the identity matrix, that P : D
�

v = 1 :

PD
�

v = trD
�

v = r
�(t) ·v = 0 to eliminate the term involving the surface pressure.
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5.5 Asymptotic Analysis

The aim of this section is now to analyse the di↵use interface model under the sharp

interface limit " ! 0. We do this by matching appropriate asymptotic expansions

in the interface variable ". The technique has been previously extended to unknown

surfaces in Elliott and Stinner [2013]. Time dependence of the underlying space, in

the case of a given surface, has been discussed in Chapter 3. The major novelty here,

now being that we must take account of time dependence of an unknown underlying

surface. Some of the machinery used here, for example the matching conditions

(5.69a)-(5.69e), are similar to that used in Chapter 3, (3.20a)-(3.20e), however, we

have included them again in their current form so as to clarify certain dependencies,

such as which surface the di↵erential operators are acting over.

5.5.1 Assumptions

We suppose we have a family of solutions �"(t), ⇡", �", c", with velocity field, v",

to the di↵use interface Problem 5.2.1 and assume that there is a piecewise smooth

limiting surface �
0

(t) and limiting fields ⇡
0

, �
0

, c
0

, v
0

to which the surface �"(t)

and solution fields converge to as " ! 0. It is thus our goal to identify equations

that these limiting fields should satisfy as well as limiting equations describing the

evolution of the surface. We will refer to these equations as the sharp interface

problem.

We assume that the level sets

⇤"(t) :=
�

x" 2 �"(t)
�

��"(x") = 0
 

(5.37)

converge to a finite number of smooth time dependent curves ⇤
0

(t) on �
0

(t), which

evolve with a velocity v

⇤0 . This velocity field should coincide with the surface

velocity, v
0

, in the normal direction to ensure that the curve remains within the

surface, however the two velocities can di↵er in a tangential direction to �
0

. Using

the limiting interfacial curve we may decompose the limiting surface as �
0

(t) =

�±
0

(t)[⇤
0

(t) with the domains �±
0

(t) the limits of the sets �±" (t) :=
n

�" ? �++��

2

o

.

Furthermore, we assume that the limiting surface, �
0

(t), is C1 across ⇤
0

(t) with the

normal evolution, v
0

· ⌫
0

, continuous across the limiting interface, ⇤
0

(t).

We suppose that there exists a parameterisation of the surface �"(t) over

�
0

(t) of the form
�

p"(x, t)
�

�

x 2 �
0

(t) , t 2 [0, T ]
 

. We make the assumption that we

may make a Taylor series expansion in " for this parameterisation such that:
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Figure 5.3: Graphical display of setup for asymptotic analysis. The surface �"(t)
is parameterised over �

0

(t) using p". Although the parameterisation maintains
trajectories the two velocities v" and v

0

can di↵er.

p"(x, t) = x+ "p
1

(x, t) +O("2), (5.38)

with p

1

�

�

t
2 C1(�

0

(t)). We further make the simplifying assumption that the para-

materisation preserves the trajectories of material points: given any trajectory

t 7! x

0

(t) 2 �
0

(t), i.e. a solution to x

0
0

(t) = v

0

(x
0

(t), t), then x"(t) := p"(x0

(t), t)

is a trajectory, too, and satisfies x

0
"(t) = v"(x"(t), t). Note that this assumption

defines the map p"(·, t) given some initial map p"(·, 0) : �0(0) ! �"(0).

As a result of the assumptions on the parameterisation over the underlying

unknown surface, the unit normal to �" can be expanded in the form

⌫"(x"(t), t) = ⌫0(x0

(t), t) + "⌫
1

(x
0

(t), t) +O("2) (5.39)

where ⌫
1

is a vector field tangential to �
0

and ⌫
0

is its unit normal. This implies

that the projection operator to the tangent space of �" given by P" also has an

"-series expansion. Furthermore, the velocity v" can be expanded as an "-expansion

over the underlying surface:

v"(x"(t), t) =
d

dt
x"(t) (5.40)

=
d

dt

�

x

0

(t) + "p
1

(x
0

(t), t) +O("2)
�

(5.41)

= v

0

(x
0

(t), t) + "@•
�0(t)

p

1

(x
0

(t), t) +O("2) (5.42)

where @•
�0(t)

is the material derivative on the surface �
0

(t), we denote by @•
�"(t)

the

material derivative on �"(t) and in the following section we show how the two can

be related.
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Observe that in (5.12) and (5.13), the distance dS is the distance from a

point x" 2 �"(t). Denoting by d
�" the distance for points in �"(t) and d

�0 for points

in �
0

(t), we may express the distance in an alternative form from (5.27).

d
�"(x") = inf

y2S
kx" � yk. (5.43)

In this form it should be clearer that for " small enough

|d
�"(x"(t))� d

�0(x0

(t))|  kp"(x0

(t), t)� x

0

(t)k. (5.44)

Thus we may conclude that

d
�"(x") = d

�0(x0

) +O(") (5.45)

We will assume a Taylor series expansion is possible for the following fields

�"(x"(t), t) = �
0

(x
0

(t), t) + "�
1

(x
0

(t), t) + "2�
2

(x
0

(t), t) + ... (5.46)

⇡"(x"(t), t) = ⇡
0

(x
0

(t), t) + "⇡
1

(x
0

(t), t) + "2⇡
2

(x
0

(t), t) + ... (5.47)

c"(x"(t), t) = c
0

(x
0

(t), t) + "c
1

(x
0

(t), t) + "2c
2

(x
0

(t), t) + ... (5.48)

�"(x"(t), t) = �
0

(x
0

(t), t) + "�
1

(x
0

(t), t) + "2�
2

(x
0

(t), t) + ... (5.49)

�"(x"(t), t) = �0

(x
0

(t), t) + "�
1

(x
0

(t), t) + "2�
2

(x
0

(t), t) + ... (5.50)

Similar " expansions of the Weingarten map, r
�"⌫", the mean curvature m,"

and the Gaussian curvature, g,", will follow as a result of expanding the di↵erential

operators.

5.5.2 Expanding Gradient Operators

With the above set up in mind we aim to express the di↵erential operators expressed

on �" in terms of di↵erential operators expressed on �
0

with corrections written to

each order in ". For the spatial operators we have suppressed the t dependence for

ease of reading.

Proposition 5.5.1. For a function f : �"(t) ! R and a vector f : �"(t) ! Rn+1,

with x"(t) = p"(x0

(t), t) and x
0

(t) 2 �
0

(t), we may express the following di↵erential
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operators on �"(t) in terms of operators on �
0

(t).

r
�"f(x") =r

�0(f � p")(x0

)� "r
�0p

T
1

(x
0

)r
�0(f � p")(x0

) +O("2) (5.51)

r
�" · f(x") =r

�0 · (f � p")(x0

)� "r
�0p1

(x
0

) : r
�0(f � p")(x0

) +O("2)

(5.52)

�
�"f(x") =��0(f � p")(x0

)� "�
�0p1

(x
0

) ·r
�0(f � p")(x0

) (5.53)

�2"r
�0p1

(x
0

) : r2

�0
(f � p")(x0

) +O("2) (5.54)

@•
�"(t)

f(x"(t), t) =@
•
�0(t)

(f � p")(x0

(t), t) (5.55)

+"rf̃(x
0

(t), t) ·
⇣

@•
�0(t)

p

1

(x
0

(t), t)�rp̃

T
1

(x
0

(t), t)v
0

(x
0

(t))
⌘

+O("2)

(5.56)

Proof:

1. Let ⌧ 2 T
x0�0 then by the chain rule

r
�0(f � p")(x0

) · ⌧ = r
�"f(x") ·r�0p"(x0

)⌧

since p" : �0 ! �", it is the case thatr�0p" : Tx0�0 ! T
p"(x0)

�". Furthermore

since the parameterisation is a regular map we can conclude that for any

⌧" 2 T
p"(x0)

�" that

r
�"f(x") · ⌧" = r

�0(f � p")(x0

) · (r
�0p"(x0

))�1

⌧"

= ((r
�0p"(x0

))�1)Tr
�0(f � p")(x0

) · ⌧".

Using the identity (I �A)�1 =
P1

i=0

A

i for every matrix A with kAk < 1 we

obtain (5.51).

2. Observing that for any surface, �, that r
�

· f := tr (r
�

f) we may use (5.51)

to see that

r
�" · f(x") = tr (r

�"f(x"))

= tr
�r

�0(f � p")(x0

)� "r
�0p1

(x
0

)Tr
�0(f � p")(x0

) +O("2)
�

It is clear that

tr (r
�0(f � p")(x0

)) = r
�0 · (f � p")(x0

)
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Then using that for any matrix, A, that tr A = 1 : A we see

tr
�r

�0p1

(x
0

)Tr
�0(f � p")(x0

)
�

= 1 : r
�0p1

(x
0

)Tr
�0(f � p")(x0

)

from which the result follows using the cyclic permutation property of the

tensor scalar product.

3. We obtain this result using the identity �
�"f(x") = tr (r

�"r�"f(x")) apply-

ing (5.51) twice and rearranging. In detail

tr (r
�"r�"f(x")) = tr

�r
�"

⇥r
�0(f � p")(x0

)� "r
�0p1

(x
0

)Tr
�0(f � p")(x0

)
⇤�

= tr
�r2

�0
(f � p")(x0

)� "r
�0(r�0p1

(x
0

)Tr
�0(f � p")(x0

))

� "r
�0p1

(x
0

)Tr2

�0
(f � p")(x0

)
�

+O("2)

= �
�0(f � p")(x0

)�r
�0 ·

�r
�0p1

(x
0

)Tr
�0(f � p")(x0

)
�

� " tr
�r

�0p1

(x
0

)Tr2

�0
(f � p")(x0

)
�

+O("2).

Applying the divergence product rule gives the result.

4. We start by expressing the material derivative on �"(t) as the total time deriva-

tive for the trajectory of a material point, so that

@•
�"(t)

f(x", t) =
d

dt
f(x"(t), t) = @tf̃(x"(t), t) +rf̃(x"(t), t)

d

dt
p"(x0

(t), t)

using (5.40)-(5.42) we can expand the term d
dtp"(x(t), t) as a power series in ".

Thus it remains to identify an expansion for the gradient operator. We consider

the natural identity extension of x" and x

0

o↵ �"(t) and �0(t) respectively. We

assume an extension, p̃" of p" o↵ �0 with individual extensions of its expansion

terms, p̃i, that maintains a local bijection between the identity maps. Under

this set up, as an application of the chain rule it can be shown that

r
x"f(x"(t), t) = r

x0(f �p")(x0

, t)�"r
x0 p̃1

(x
0

, t)Tr
x0(f �p")(x0

, t)+O("2).

(5.57)

With the expansion of the gradient identified we have

rf̃(x"(t), t)
d

dt
p"(x0

(t), t) (5.58)

= v

0

(x
0

(t), t)r(f � p")(x0

(t), t) (5.59)

+ "rf̃(x
0

(t), t) ·
⇣

@•
�0(t)

p

1

(x
0

(t), t)�rp̃

1

(x
0

(t), t)Tv
0

(x
0

(t), t)
⌘

+O("2)

(5.60)

89



Adding the partial time derivative and grouping the resulting terms which are

independent of " into the material derivative, @•
�0(t)

(f �p")(x0

(t), t), the result

follows.

⇤

5.5.3 Outer Solutions

Inserting the expansions (5.46)-(5.49), as well as the expansion of the velocity, (5.40)-

(5.42) into equations (5.12)-(5.18) and combined with the gradient expansions of

Prop. 5.5.1 we expand all terms in " and match by powers.

To the lowest order "�1, from equation (5.16) we obtain

✓0(�
0

) = 0. (5.61)

There are 3 solutions to this equation, namely �
0

= �± and �
0

= �++��

2

. The

later is an unstable steady state solution and in line with our assumptions on the

decomposition of the domain we must conclude that in the outer region we have

�
0

= �±. To the next order, "0, we obtain the following set of equations:

r
�0(t) · �0

= �
�0(t) (bk(�0, c0)(m,0 � s(�0, c0)))⌫0+

+
�|r

�0(t)⌫0|2⌫0 +r
�0(t)m,0

�

bk(�0, c0)(m,0 � s(�0, c0))

+ ⌫
0

r
�0(t) ·

�

(m,0I+r
�0(t)⌫0)bg,c(�0, c0)r�0(t)c0)

�

+ p
0,d�0

(�
0

, c
0

, dS)⌫S + g,0r
�0(t)bg(�0, c0)

�

0

= �⇡
0

P

0

+ 2µ(�
0

)D
�0v0

r
�0(t) · v0 = 0

0 = ✓0(�
0

)�
1

@•
�0(t)

c
0

+ c
0

r
�0(t) · v0 = r

�0(t) ·
�

Mc(�0, c0)r
�0(t)�0

�

�
0

=
1

2
bk,c(�0, c0)|m,0 � s(�0, c0)|2

+ bk(�0, c0)(m,0 � s(�0, c0))ks,c(�0, c0)

+ bg,c(�0, c0)g,0 + f
0,c + p

0,c

Using the information derived from (5.61) with the equation ✓0(�
0

)�
1

= 0 we can

first conclude that the first order correction to the phase field variable is zero and

thus that �(�,r
�

�) = O("). Recalling that for an arbitrary � dependent function

that b± := b(�±), we recover the bulk equations from Problem 5.2.1 if we drop the

subscript 0.
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5.5.4 Interface Coordinates

Since the thickness of the layer between phases scales with ", we want to blow it

up to unit length in order to be able to study the limit of fields and functions as

" ! 0 in a sensible manner. We therefore introduce the scaled (geodesic) distance

on �
0

(t) to the interface ⇤
0

(t) by

z :=
r

"
. (5.62)

It is with respect to the new coordinates (s, z, t) we choose to work with in the

interfacial layer. But before we state the (inner) expansions of the fields in these

coordinates and state the matching conditions with the outer expansions in the

adjacent domains we need to discuss how the di↵erential operators transform by the

change of coordinates.

With regards to the spatial di↵erential operators we may proceed as in Elliott

and Stinner [2010a]. For fixed t consider the inversion of the map R
⇤

(t)S1⇥[�"̄, "̄] 3
(s, r) ! x

�0(t)(s, r, t) 2 �(t) and let x 2 �
0

(t) be a point with a distance to ⇤
0

(t)

which is O("). The identity (2.16) implies that "r
�0(t)z(x, t) = r

�0(t)r(x, t) =

µ(x, t). Taylor expanding in x

⇤0 := �(s, t) then yields

r
�0(t)z(x, t) =

1

"
µ

⇤0(x⇤0 , t) +r
�0(t)µ(x⇤0 , t)µ⇤0(x⇤0 , t)z(x, t) +O(").

Similarly we see that

r
�0(t)s(x, t) = ⌧⇤0(x⇤0 , t) +O("), (5.63)

⌫(x, t) = ⌫
⇤0(x⇤0 , t) + "z(x, t)r

�0(t)⌫(x⇤0 , t)µ⇤0(x⇤0 , t) +O("2). (5.64)

For a scalar field f : �
0

(t) ! R and a vector field f : �
0

(t) ! R define

f(x, t) = F (s, z, t) and f(x, t) = F (s, z, t) close to ⇤
0

(t). Then we obtain for the

surface gradient and the surface divergence in the new coordinates

r
�0(t)f(x, t) = Fs(s, z, t)r

�0(t)s+ Fz(s, z, t)r
�0(t)z

= 1

"Fz(s, z, t)µ⇤0(x⇤0 , t) + �s(s, z, t)⌧⇤0(x⇤0 , t)

+ Fz(s, z, t)r
�0(t)µ(x⇤0 , t)µ⇤0(x⇤0 , t)z +O("), (5.65a)

r
�0(t) · f(x, t) = Fs(s, z, t) ·r

�0(t)s+ Fz(s, z, t) ·r
�0(t)z

= 1

"Fz(s, z, t) · µ⇤0(x⇤0 , t)Fs(s, z, t) · ⌧⇤0(x⇤0 , t)

+ Fz(s, z, t) ·r
�0(t)µ(x⇤0 , t)µ⇤0(x⇤0 , t)z +O("). (5.65b)

Using these identities, (2.14), and (2.15), a short calculation shows that we can write
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for the Laplace-Beltrami operator

�
�0(t)f(x, t) =

1

"2
Fzz(s, z, t)� 1

"

⇤0(x⇤0 , t)Fz(s, z, t) +O("0). (5.66)

With regards to the operator @•
�0(t)

, we may follow the procedure as in Chap-

ter 3 to see

@•
�0(t)

f(x, t) = Fs(s, z, t)@
•
�0(t)

s(x, t) + Fz(s, z, t)@
•
�0(t)

z(x, t)

and @•
�0(t)

z = 1

"@
•
�0(t)

r with

@•
�0(t)

r(x, t) = (v(x
⇤0 , t)� v

⇤0(x⇤0 , t)) · µ⇤0(x⇤0 , t) +O(")

so that

@•
�0(t)

f(x, t) =
1

"
Fz(s, z, t)(v(x⇤0 , t)� v

⇤0(x⇤0 , t)) · µ⇤0(x⇤0 , t) +O("0). (5.67)

As with the outer region we then suppose a power series expansion in " for

the inner field such that

F (s, z, t) = F
0

(s, z, t) + "F
1

(s, z, t) +O("2). (5.68)

5.5.5 Matching conditions

In light of the two expansions for a field, f", one valid away from the interface

and the other, expressed in rescaled coordinates, valid close to the interface. There

should be some intermediary region for which the two expansions match. Given

the two sets of expansions functions, {fi} and {Fi}, there are a set of matching

conditions that these functions should satisfy. These conditions are related to the

spatial coordinates only and, thus, are independent of the movement of the domain.

Therefore and because a full derivation can be found in the literature (for instance,

see Garke and Stinner [2006b]) we only state them here: In the limit as z ! ±1

F
0

(s, z, t) ⇠ f±
0

(x
⇤0 , t), (5.69a)

@zF0

(s, z, t) ⇠ 0, (5.69b)

F
1

(s, z, t) ⇠ f±
1

(x
⇤0 , t)±r

�0(t)f
±
0

(x
⇤0 , t) · µ⇤0(x⇤0 , t)z, (5.69c)

@zF1

(s, z, t) ⇠ ±r
�0(t)f

±
0

(x
⇤0 , t) · µ⇤0(x⇤0 , t), (5.69d)

@zF2

(s, z, t) ⇠ ±r
�0(t)f

±
1

(x
⇤0 , t) · µ⇤0(x⇤0 , t) (5.69e)

+
�

µ

⇤0(x⇤0 , t) ·r�0(t)

�

2

f±
0

(x
⇤0 , t)z.
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Recalling (2.21) we assume that in the inner region we have expansions of

the decomposed curvature functions such that


⌫,"(p"(x)) = K

⌫,0(s) + "K
⌫,1(s, z) +O("2) (5.70)

d,"(p"(x)) = Kd,0(s) + "Kd,1(s, z) +O("2) (5.71)

p,"(p"(x)) = Kp,0(s, z) + "Kp,1(s, z) +O("2). (5.72)

Recall our assumption that �
0

(t) be C1 across ⇤
0

(t). Thus the quantities 
⌫

and

d are continuous in the limit. The matching condition (5.69a) motivates the as-

sumption that K
⌫,0 and Kd,0 are independent of z.

5.5.6 Inner Solutions

Employing inner expansions of the form (5.68) for the additional fields, combined

with the change of variable formulae (5.65), (5.66) and (5.67) we insert all of these

expansions into the governing equations (5.12)-(5.18), expand and match powers of

".

We begin our analysis by considering the result of (5.16) at the order "�1.

0 = @zz�0

+ ✓0(�
0

). (5.73)

Using the matching conditions (5.69a) this gives the standard phase profile which is

independent of the interface parametrisation variable, s:

�
0

(z) =
�+ � ��

2
tanh

✓

zp
k✓

◆

+
�+ + ��

2
. (5.74)

Multiplying (5.73) by @z�0

and integrating with respect to z from �1 to z̃ we

obtain the equation often referred to as equipartition of energy

✓(�
0

(z̃)) =
1

2
|@z�0

(z̃)|2. (5.75)

At the same order from (5.15) we have

µ

⇤0 · @zV0

= 0. (5.76)

Integrating this over the interfacial region gives continuity of the surface velocity in

the direction of the co-normal. If we remain at the same order again and consider
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(5.14) we obtain

0 = µ(�
0

)P
0

(@zV0

⌦ µ

⇤0 + µ

⇤0 ⌦ @zV0

)P
0

. (5.77)

Applying this tensor to µ

⇤0 we obtain, using that µ(�
0

) is strictly positive, that

P0@zV0

= 0. (5.78)

From (5.78) we have that the tangential portion of the velocity is continuous. Recall

by assumption the normal component of the surface velocity is continuous across

the interface, thus from (5.78) we may conclude that each component of the velocity

is continuous across the interface, that is

[v
0

] = 0. (5.79)

We now turn to (5.12) and it’s order "�2 terms, from which we see

0 = (bk(�0

, C
0

)(K
⌫,0 +Kp,0 � s(�0

, C
0

)))zz + (Kv,0bg(�0

, C
0

))zz (5.80)

Let us define the zero order term

Q
0

:= bk(�0

, C
0

) (K
⌫,0 +Kp,0 � s(�0

, C
0

)) +Kv,0bg(�0

, C
0

). (5.81)

then (5.80) can be expressed as 0 = @zzQ0

. Thus Q
0

is a degree 1 polynomial in z

and since Q
0

is a composition of zero order terms, the matching conditions (5.69b),

imply that @zQ0

= 0. Hence we may integrate over the interfacial region to conclude

that

0 = [bk(⌫,0 + p,0 � s) + 
⌫,0bg] . (5.82)

Now consider the function

�(p,�, c,⌫ ,d) :=
1

2
bk(�, c)|⌫ + p � s(�, c)|2 + bg(�, c)(⌫p � 2d). (5.83)

We denote the partial derivative of this function with respect to p by

q(p,�,⌫ ,d) := @p�(p,�, c,⌫ ,d) = bk(�, c)(⌫ + p � s(�, c)) + bg(�, c)⌫

(5.84)

and we may invert this relationship and thus write

p = p(q,�, c,⌫ ,d) =
1

bk(�, c)
(q � bg(�, c)⌫)� 

⌫

+ s(�, c).
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The Legendre transform of (5.83) in the variable p is given by

l(q,�, c,
⌫

,d) := �(p(q,�, c,⌫ ,d),�,⌫ ,d)� qp(q,�, c,⌫ ,d) (5.85)

which satisfies @�l = @�� and @cl = @c�. The exact form of the Legendre transform

of � is given as

l(q(p,�, c,⌫ ,d),�,⌫ ,d) =
1

2
bk(�, c)|⌫ + p � s(�, c)|2 + bg(�, c)(⌫p � 2d)

(5.86)

� bk(�, c)(⌫ + p � s(�, c))p � bg(�, c)⌫p.

Observe that Q
0

= q(Kp,0,�0

, C
0

,K
⌫,0,Kd,0) and using that @zQ0

= 0 with the

matching condition (5.69a) we see that

Z 1

�1
@��(Kp,0,�0

,K
⌫,0,Kd,0)@z�0

+ @c�(Kp,0,�0

,K
⌫,0,Kd,0)@zC0

=

Z 1

�1
@�l(Q0

,�
0

,K
⌫,0,Kd,0)@z�0

+ @cl(Kp,0,�0

,K
⌫,0,Kd,0)@zC0

+ @ql(Q0

,�
0

,K
⌫,0,Kd,0)@zQ0

=

Z 1

�1
@zl(Q0

,�
0

,K
⌫,0,Kd,0) = [l(Q

0

,�
0

,
⌫,0,d,0)].

For the third line we have used that K
⌫,0 and Kd,0 are independent of z.

Looking to order "0 from (5.16) we obtain

�!(v
0

� v

⇤0) · µ⇤0@z�0

=
1

2
bk,�(�0

, C
0

)|K
⌫,0 +Kp,0 � s(�0

, C
0

)|2 (5.87)

� bk(�0

, C
0

)(K
⌫,0 +Kp,0 � s(�0

, C
0

))s,�(�0

, C
0

)

(5.88)

� �
�

@zz�1

� 
⇤0@z�0

� 2µ
⇤0 ·r�(t)p1

µ

⇤0@zz�0

� ✓0(�
0

)�
1

�

+ p,�(�0

, C
0

, d
�0) + f,�(�0

, C
0

) + bg,�(�0

, C
0

)(K
⌫,0Kp,0 �K2

d,0).

The right hand side of which is equal to @�l. At the same order from (5.18) we get

X
0

=
1

2
bk,c(�0

, C
0

)|K
⌫,0 +Kp,0 � s(�0

, C
0

)|2 (5.89)

� bk(�0

, C
0

)(K
⌫,0 +Kp,0 � s(�0

, C
0

))s,c(�0

, C
0

)

+ (K
⌫,0Kp,0 �K2

d,0)bg,c(�0

, C
0

) + f,c(�0

, C
0

) + p,c(�0

, C
0

, d
�0).

which has right hand side equal to @cl. Thus if we multiply (5.87) by @z�0

, multiply

(5.89) by @zC0

, add the two resultant expressions and integrate over the interfacial
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region we obtain a Gibbs-Thomson type relation

�! (v
0

� v

⇤0) · µ⇤0 + [c]�
0

= �
⇤0 +



1

2
bk|⌫,0 + p,0 � s|2 + bg(⌫,0p,0 � 2d,0)

�

(5.90)

� [(bk(⌫,0 + p,0 � s) + bg⌫,0)p,0] + [p+ f ] ,

Note also that we have used that @z�0

lies in the kernel of the operator @zz � ✓0(�0

)

to eliminate the terms involving �
1

.

At order "�1, the resultant equation from (5.13) reads:

µ

T
⇤0
@z⌃0

= bk(�0

, C
0

)(K
⌫,0 +Kp,0 � s(�0

, C
0

))µ
⇤0@zKp,0 (5.91)

+ (K
⌫,0Kp,0 �K2

d,0)µ⇤0(bg,�(�0

, C
0

)@z�0

+ bg,c(�0

, C
0

)@zC0

)

+ �µ
⇤0

�

@z�0

@zz�1

+ @z�1

@zz�0

� 
⇤0(@z�0

)2 � ✓0(�
0

)@z�1

+ ✓00(�
0

)�
1

@z�0

�
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Thus if we integrate (5.91) over the interface, using the matching condition (5.69d)

and using a similar argument to that used on the geometric terms of (5.87) we

obtain a force balance for the tangential action of the stresses.

µ

⇤0 · [�(t)]µ⇤0 = [bg(p⌫ � 2d)] + [(bk(⌫ + p � s)� bg⌫)p]� �
⇤0

We now consider (5.17) at order "�2 from which we see

0 = @z (Mc(�0

, C
0

)@zX0

) . (5.92)

By the positivity assumption on the mobility function, using the boundary condition

(5.69b), we can infer that @zX0

= 0 which upon integration over the interfacial region

gives

[�
0

] = 0. (5.93)
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To the next order "�1, again from (5.17), we see that

� (v
0

� v

⇤0) · µ⇤0@zC0

= Mc,0 (@zzX1

) (5.94)

Here we have used the results of (5.92) and (5.74) to reduce the right hand side

to this simple form. We may integrate this over the interfacial region to recover a

Stefan condition.

� (v
0

� v

⇤0) · µ⇤0 [c0] = [Mc,0r
�(t)�0

] · µ
⇤0 . (5.95)

Collecting all of the resulting equations gives rise to the sharp interface model (5.2.2).

5.5.7 Remarks

Planar Settings

If we make the simplifying assumption of solving the sharp interface Problem 5.2.2

in a planar setting then it reduces to the following system which can be thought of

as the limit of an Allen-Cahn type Stokes flow with forcing.

�µ�v +r⇡ = p±,dS
r · v = 0

ct +r · (cv) = r · (M±
c r�)

� = f±
,c + p±,c

9

>

>

>

>

=

>

>

>

>

;

in ⌦±(t) (5.96)

[�] = 0

[v] = 0

� [c] (v � v

⇤

) · µ
⇤

= [Mcr�] · µ⇤

�!(v � v

⇤

) · µ
⇤

+ [c]� = �
⇤

+ [p+ f ]

[⇡] = ��
⇤

+ µ [rvµ

⇤

] · µ
⇤

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

on ⇤(t) (5.97)

Where we have replaced �(t) with its expanded form for comparison with the below

model.

Since we solved Problem 5.2.2 on a surface without boundary we either need

suitable boundary conditions, typically homogeneous Neumann type for the binder

density and no flow for the fluid velocity, or the alternative, solving the system in the

plane, R2. In either case the space, ⌦(t) ✓ R2 is decomposed as ⌦(t) = ⌦±(t)[⇤(t)
in a similar manner to our decomposition of the surface �(t). Furthermore the

surface velocity is now purely tangential, having no normal component.

Some care should be taken over what is meant by the distance dS for a
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flat case, however we leave the forcing due to the adhesion potential in it’s current

format, as there may be some dependence on the binder density.

Ignoring the binder density, c, for the moment, we have a type of binary

fluid flow. In the literature Shen and Yang [2010]; Abels et al. [2012], phase field

equations have been coupled to fluid flows for the modelling of multi-component

fluids. When one phase is preferable, Allen-Cahn type phase field equations have

been used Alt and Alt [2009]; Blesgen [1999] with the sharp interface limit derived for

a compressible Allen-Cahn/Navier-Stokes model in Witterstein [2010]. Whenever

the two phases are of equal preference Cahn-Hilliard type phase field equations have

been used due to the fact that they conserve the order parameter Boyer et al. [2010];

Abels [2009]. The sharp interface limit of an incompressible Cahn-Hilliard/Navier-

Stokes systems was studied in Gal and Grasselli [2010] which derived the limiting

system as

vt + (v ·r)v = �r⇡ + 1

Re�v

r · v = 0

)

in ⌦±(t) (5.98)

[v] = 0

v

⇤

= v

[⇡] = � ⇤
We +

1

Re [rvµ

⇤

] · µ
⇤

[rv
⌧

] · µ
⇤

= 0

9

>

>

>

>

=

>

>

>

>

;

on ⇤(t) (5.99)

Aside from the obvious time derivative and non-linearity present in the limiting

Navier-Stokes equation, the only di↵erence between this limiting problem and that

described by (5.96)-(5.97) ignoring the binder density, arrives from the conservation

of the order parameter in this Cahn-Hilliard type flow, resulting in the interface

being transported with the flow so that v

⇤

= v on ⇤(t). This contrasts the curve

shortening flow from our limit which, when ignoring binder dynamics, reads as

�!(v�v

⇤

) ·µ
⇤

= �
⇤

. Thus the adhered region is shrunk in the absence of binder

dynamics.
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Stationary Setting

Considering a stationary setting so that there is no mass transport, the system

(5.96)-(5.97) further reduces to

ct = r · (M±
c r�)

� = f±
,c + p±,c

)

in ⌦±(t) (5.100)

[�] = 0

[c]v
⇤

· µ
⇤

= [Mcr�] · µ⇤

!v
⇤

· µ
⇤

+ [c]� = �
⇤

+ [p+ f ]

9

>

=

>

;

on ⇤(t) (5.101)

This system has an associated free energy

E =

Z

⌦

+
(t)

f+ + p+
Z

⌦

�
(t)

f� + p� +

Z

⇤(t)
�. (5.102)

Recall that our purpose was to extend the work of Freund and Lin [2004]. The one

sided model it derives can be read as

c = c
0

o

in (�1, a(t))

ct = @x (Mc@x�)

� = �cẼ

)

in (a(t),1)

[�] = 0

[c]v
⇤

= (Mc@x�)+

v

⇤

�
�

Ẽ  0

9

>

=

>

;

at a(t)

where (·)+ is the one sided limit from the free region and c
0

is the minimum binder

density required for adhesion and Ẽ is the Freund and Lin models free energy.

Observe that with our specific form of the systems free energy it is the case

that �cE = f±
,c + p±,c in each region. Furthermore it should be clear that by fixing

the binder density in ⌦1(t) as c
0

and defining the mobility functions M�
c = 0 and

M+

c = Mc that we easily recover all of the model of Freund and Lin [2004] except for

the equation v

⇤

�
�

Ẽ  0. This equation physically implies that the change in energy

due to interfacial motion should be dissipative. By considering the time derivative

of our free energy it can be shown that the last equation of (5.101) ensures this is

the case.
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5.6 Simulating A Reduced Model

As a first step towards producing simulations of the di↵use interface model (5.12)-

(5.18), we consider a simpler reduced model. For this reduced model we suppose that

there is a reduced free energy, ER = ES +EM , which consists of a state component,

ES = EB + EGL, and a membrane component, EM = ESC + EAD, where ESC is a

shape regularisation term given by

ESC =

Z

�(t)
� (5.103)

where � is a constant.

In addition we make the simplifying assumption that the adhesion potential,

p, is independent of the binder density, c. In contrast with (5.2) and (5.1) where we

used variations of the full system energy we postulate the following evolution laws

which only depend on variations of the state energy.

"!@•t � = ���ES(�,�, c) (5.104)

@•t c+ cr
�(t) · v = r

�(t) ·
�

Mc(�, c)r
�(t)�cES(�,�, c)

�

(5.105)

By assumption the membrane energy, EM , is not a↵ected by tangential motions of

the surface and so we assume the surface motion is purely normal. To describe the

evolution of the membrane we discard the complex elastic forces and instead propose

a force balance between viscous forces and membrane forces, more specifically FM +

Fvisc = 0. For the viscous forces, we propose they be given proportional to the

surface velocity, Fvisc = ↵v
⌫

, and the membrane forces are given as FM = ��
�

EM .

This results in the following reduced model.

Problem 5.6.1. Given an initial hypersurface �(0) ⇢ R3, and initial conditions for

the binder density, c(0) : �(0) ! R and phase field variable, �(0) : �(0) ! R, find
(�(t),�(t), c(t)) such that at each time t 2 [0, T ]:

↵v
⌫

= �m � p,dS (�, d)⌫ · ⌫S (5.106)

@•t c+ cr
�(t) · v = �r

�(t) · jc (5.107)

jc = �Mcr
�(t)f,c(�, c) (5.108)

�"!@•t � = �

✓

�"�
�(t)�+

1

"
✓0(�)

◆

+ g,�(�, c) (5.109)

where v = v
⌫

⌫ describes the evolution of �(t).
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The forcing term g = f � cf,c is the grand potential. The sharp interface

limit of this system is given by

↵v
⌫

= �m � @dSp
±(d)⌫ · ⌫S

@•t c+ cr
�

· v = �r
�

· j±c
j± = �M±

c r
�

f±
,c (c)

9

>

=

>

;

in �±(t) (5.110)

[c]v
⇤

· µ
⇤

= [j] · µ
⇤

,

[f,c] = 0,

!v
⇤

· µ
⇤

= �
⇤

+ [g]

9

>

=

>

;

on ⇤(t) (5.111)

For simulating solutions of Problem 5.6.1 we follow the ideas of Barrett et al. [2008]

but using a formulation based on the grand potential. Recall � is the chemical

potential and in this example satisfies � = f,c(c,�). If we assume that the po-

tential function is convex with respect to the binder density then we can write

c = c(�,�) and reformulate using the variables (�, g) instead of (c, f) so that

g(�,�) = f(c(�),�)�c(�)�. Under this set up we have that g,� = f,� and g,� = �c.

We begin with a weak formulation, observe that to increase the regularity

of the solution we have added a Lagrange multiplier type term, �v, to the surface

evolution to enforce a volume constraint on the surface.

Problem 5.6.2. We say that a tuple (�(t),�(t), g(t)) is a weak solution of Problem

5.6.1 if it satisfies

d

dt

Z

�(t)
g,�⌘ +

Z

�(t)
Mcr

�(t)� ·r
�(t)⌘ =

Z

�(t)
g,�@

•
t ⌘, (5.112)

"!

Z

�(t)
@•t � +

Z

�(t)
�"r

�(t)� ·r
�(t) +

�

"
✓0(�) �

Z

�(t)
g,� = 0, (5.113)

Z

�(t)
↵@tx · ⌫⇣ � �m⇣ + p,dS⌫ · ⌫S⇣ =

Z

�(t)
�v⇣, (5.114)

Z

�(t)
m⌫ · ⇠ +r

�(t)x : r
�(t)⇠ = 0. (5.115)

Here x(t) is some parameterisation of the surface, �(t). The principles of

the surface finite element method have been discussed in Chapter 4, however the

basics of approximating the geometry and generating spatial discretisation are the

same, as is the use of the method of lines for the temporal discretisation. The main

di�culty in producing simulations is dealing with the unknown surface velocity,

given an initially triangulated surface how should the nodes be advected and how

do we assemble quantities over a future surface. We will discuss how we overcome

this di�culty later and assume for now that there is some method for generating a
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triangulation for all times so that we may generate our spatial discretisation using

the following finite element space:

Sh(t) =

⇢

⌘ 2 C0(�(t)

�

�

�

�

⌘
�

�

T
2 P1 8T 2 Th

�

. (5.116)

Following the standard practice we have discrete functions ch,�h,xh 2 Sh(t). As

mentioned above the surface velocity is unknown and so at any particular time

step, tm, the approximation of the surface at the next time step, tm+1

, is unknown.

This means that, should we want to take a time derivative, assembling any system

matrices over the surface �(tm+1

) is non-trivial. The method we have employed is

to solve the surface evolution equations over the current surface first and then solve

the state equations using this update information.

In addition we have used an Arbitrary Lagrangian-Eulerian (ALE) method

based on the work of Elliott and Styles [2012]. In our continuous problem we have a

purely normal surface velocity but in practice for the discrete equations, due to the

approximation of geometry, the update velocity given by va =
x

m
h �x

m�1
h

⌧ , can have

a non-zero tangential component. The purpose of the ALE scheme is to account for

this drift in the field equations.

In the framework of Elliott and Venkataraman [2015], this means we have

an arbitrary tangential velocity a⌧ = va � v
⌫

which we use to transport the nodes

of �h(t) and which manifests as an advection term proportional to a⌧ ·r�

⌘ (with

⌘ some test function) in the field equations. However since v
⌫

is purely normal we

may rewrite this advection term as va ·r�

⌘. Thus our fully discrete problem reads
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as below, we have implemented this scheme in MATLAB.
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We have implemented the volume constraint as a penalty method by consid-

ering an additional surface energy contribution of the form

EA(�) =
1

2
pa

✓

1

2

Z

�

x · ⌫ �A
0

◆

2

, (5.117)

which has variation

�EA(�) = pa

✓

1

2

Z

�

x · ⌫ �A
0

◆

=: �v. (5.118)

Here pa is a penalty constant and A
0

is the initial enclosed volume.

In the following examples we use an interpolation method to define � de-

pendent adhesion and grand potentials. More specifically we use an interpolation

function h(�) = �2(3� 2�) and define potentials, g± and p± with

p(�, dS) = p+(dS)h(�) + p�(dS)(1� h(�)) (5.119)

g(�,�) = g+(�)h(�) + g�(�)(1� h(�)) (5.120)

Although we have formulated our numerical scheme in terms of the grand potential

and the chemical potential, when displaying the output we map back to the binder
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Parameter Data for Ex. 5.6.1
��, �+ 0, 1
g+(�) 0.5�2

g�(�) 0.5�2

p+(dS)

8

<

:

25d2S � 10dS dS < 0.2
(5dS � 1)2(5� 10dS)� 1 0.2 < dS < 0.6

0 dS � 0.2

p�(dS)

⇢

25d2S � 10dS + 1 dS < 0.2
0 dS � 0.2

✓(�) �(1� �)(1� 2�)
Mc(c) 0
N 20
⌧ 0.01
! 1
� 0.3
↵ 10
� 0.1
" 0.2
pa 20

Figure 5.4: Simulation data for Section 5.6.1.

Parameter Data for Ex. 5.6.2 Data for Ex. 5.6.3
��, �+ 0, 1 -
g+(�) (0.25�� 0.5)� -
g�(�) (0.25�� 0.1)� -

p+(dS)

8

<

:

25d2S � 10dS dS < 0.2
(5dS � 1)2(5� 10dS)� 1 0.2 < dS < 0.6

0 dS � 0.2
-

p�(dS)

⇢

25d2S � 10dS + 1 dS < 0.2
0 dS � 0.2

-

✓(�) �(1� �)(1� 2�) -
Mc(c) 1 0.25
N 100 -
⌧ 0.01 -
! 1 -
� 0.3 -
↵ 10 0.5
� 0.1 -
" 0.2 -
pa 20 10

Figure 5.5: Simulation data for Sections 5.6.2 and 5.6.3.
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density as this is easier to interpret. This is done by inverting the relation described

above.

5.6.1 Tangential Transport E↵ects

In this example we display the importance of the ALE terms in our numerical

scheme. We consider the unit circle, centred at (0, 1), as the initial surface. However,

we do not distribute our nodal points evenly. Instead beginning with a uniform

distribution of points in the parameterisation space with values si =
i

Nh
, i = 1, ..., Nh

we use parameterisation

�

(x, y) 2 R2 |x = cos(2⇡s3i ), y = sin(2⇡s3i ) + 1
 

. (5.121)

The cubic power of the parameterisation points has the e↵ect of clustering nodes in

the top right quadrant as seen in Figure 5.6a. As initial conditions we use

�(x, y) = 0.5, (5.122)

�(x, y) = 0.5. (5.123)

We remove any substrate from this example so that in a continuous setting, the cell

should not move. We set Mc = 0, and using the forms of g± in the first column of

Table 5.5, there should be no change in the density or the phase field variable.

In Figure 5.6 we display the results of two simulations. In Figure 5.6b we see

that without the ALE terms, due to the approximation of geometry, the nodes are

transported tangentially to create a more even distribution. This tangential motion

has the e↵ect of advecting mass in the binder equation which changes the density.

This does not happen to the phase variable as it is not governed by a conservation

type law. In contrast in Figure 5.6c, we see that with the ALE terms, even though

the nodes are still transported tangentially, the binder density remains constant.

5.6.2 Adhesion Patch Growth

As a proof of concept simulation we have looked to investigate the theoretical growth

rate of an adhesion patch. In Freund and Lin [2004] it was shown for solutions of their

model that the position of the interface should advance proportional to
p
t relative

to it’s initial position. We would like our model, as an attempted generalisation of

the model of Freund and Lin [2004] to exhibit similar behaviour.

To investigate the growth rate of an adhesion patch we use the parameters

in the centre column of Table 5.5. We start from an initial ellipse placed just above
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(a) t = 0.0

(b) t = 1.0, without ALE terms.

(c) t = 1.0, with ALE terms.

Figure 5.6: Di↵erence in solution behaviour due to inclusion of ALE terms as dis-
cussed in Section 5.6.1. Nodal points move tangentially due to approximation of
geometry (b) without ALE terms altering the binder density, (c) with ALE terms
the binder density remains constant.
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the x-axis, given by the parameterisation

�

(x, y) 2 R2 |x = 3 cos(2⇡t), y = 0.8 sin(2⇡t) + 0.99, t 2 [0, 1]
 

(5.124)

then to ensure that nucleation of an adhesion patch has occured, for all points with

y < 0.2, we move them to be such that y = 0.2 and so obtain �(0). As initial

conditions for the phase value and binder density we use

�(x, y) =

(

0.2 y > 0.2,

0.0 y = 0.2.
(5.125)

�(x, y) =

(

1 y > 0.2,

0 y = 0.2.
(5.126)

Observe that with g+ and g� as chosen, the density of binders is su�ciently large

in the free region to allow the adhesion patch (initially given by the set of points for

which y = 0.2) to grow. The substrate is chosen to be the x-axis for this example

so that the normal to the substrate is the vector ⌫S = (0, 1)T .

We expect that the adhesion patch should grow and thus flatten the cell

boundary near to the x-axis. Note it should not be strictly adhered as with the

adhesion potentials we have chosen, the optimum distance between the cell and the

substrate to minimise the energy should be 0.2. In addition since the cell has a finite

size, and thus a finite number of binders, whatever the growth rate of the interface,

it is expected to slow and reach an equilibrium profile in the long term.

As can be seen in Figure 5.7, the cell adheres at the optimal distance at all

times, sitting at a distance of 0.2 away from the substrate described by the x-axis.

In addition the finite size e↵ects that we predicted can be seen from Figure 5.8a

where after a relatively rapid growth the interface can be seen to be settling to

some equilibrium point. By plotting the adhesion front against the square root of

the time in Figure 5.8b we can see the approximately linear relation after an initial

period. This initial period is due to the sharp initial conditions we have used and

is a relaxation period.

Observe that we have plotted the relative distance of the front from it’s

original position so as to be better able to see the relation. We have also calculated

the interface position as the .05 level set of �", during an uphill transition when

traversing the nodes in an incremental manner.
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(a) t = 0.0

(b) t = 40.0

(c) t = 80.0

Figure 5.7: Adhesion patch growth as described in Section 5.6.2. Cell adheres to
substrate as patch grows and then the curvatures relax to a more favourable state.
Note that the small disconnection in the domain, near the right most point, is
merely a limitation of the plotting software used and is not some form of tearing of
the surface.
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(a) (b)

Figure 5.8: Growth of an adhesion experiment as described in Section 5.6.2. Plots
of the relative interface position against (a) time, showing e↵ect of finite binder
recruitment and (b) square root of time, showing approximate front advancement
rate in relation to initial position.

5.6.3 Changing Topology

In this example we would like to justify our use of the phase field methodology by

showing its strength in its ability to model topological changes. To do this we will

look at an initial cell with two adhesion patches separated by a free region and allow

the cell to relax. The parameters used in this example are the same as in the last

example except where indicated by the right column of Table 5.5.

We again start from an initial ellipse placed just above the x-axis, given by

a similar parameterisation as used in Section 5.6.2 but lowered:

�

(x, y) 2 R2 |x = 3 cos(2⇡t), y = 0.8 sin(2⇡t) + 0.79, t 2 [0, 1]
 

. (5.127)

The lowering of the cell is so that we can obtain a large adhesion patch, we again

use the same procedure for all points with y < 0.2, where by we move them to be

such that y = 0.2 and so obtain �(0). As initial conditions for the phase value and

binder density we use

�(x, y) =

(

0.1 y = 0.2 and 0.6  |x|  1.6,

0.0 else.
(5.128)

�(x, y) =

(

0 y = 0.2 and 0.6  |x|  1.6,

1 else.
(5.129)

Note that we still have a surplus of binders but not to the same extent as in the
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previous example. The substrate is again chosen to be the x-axis so that the normal

to the substrate is the vector ⌫S = (0, 1)T .

By reducing ↵ for this simulation the cell dynamics should occur at a faster

rate when compared with the cell evolution in Section 5.6.2, and so we expect

that the cell should move so as to be as circular as possible whilst maintaining its

adhesion patches. The adhesion patches should persist as they are energetically

more favourable than a free region close to the substrate. Due to the surplus of

binders the adhesion patches should grow until they intersect at which point they

should transition to a single adhesion patch.

In Figures 5.9-5.10 we display the resultant simulation. As can be seen, the

cell wall does move so as to be near circular in the free region. Also as expected

when the patches grow and the interfaces meet the patches merge to form a singular

adhesion patch.

To display that the merging of the two interfaces is purely due to growth

of adhesion patches and is not due to the surface geometry in some manner trying

to pull the patches closer together to obtain a more energetically favourable state

we consider a similar example. We use the same parameters as above but with a

slightly di↵erent initial condition for the chemical potential, � = 0.

In this setting there is no longer a surplus of binders for the growth of the

adhesion patches and so the two patches should not grow. Thus we expect the two

patches to persist and remain adhered at their original contact points. Any motion

of the surface should be to relax to the energetically favourable circular shape but

constrained to being pinned at the patches.

In Figure 5.12 we display the resultant simulation for which we see the persis-

tence of the the two separate adhesion patches for all times and may thus conclude

that the topological change seen in Figures 5.9-5.10 is due to the growth of the ad-

hesion patches. In Figure 5.11 we display the energy of the system calculated from

ER for the simulation displayed in Figure 5.12. Although we have not prescribed

a strict gradient flow structure we can see that the total energy constantly reduces

over time.
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(a) t = 0.0

(b) t = 5.0

(c) t = 10.0

Figure 5.9: Twin adhesion patch merging as described in Section 5.6.3 during early
times. Cell is adhered to substrate and merges two adhesion patches to obtain a
more favourable energetic state.
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(a) t = 15.0

(b) t = 30.0

(c) t = 45.0

Figure 5.10: Twin adhesion patch merging as described in Section 5.6.3 during later
times. Cell is adhered to substrate and merges two adhesion patches to obtain a
more favourable energetic state.
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Figure 5.11: Energy profile of twin adhesion patches as described in Section 5.6.3
and displayed in Figure 5.12. Energy can be seen to be constantly decreasing.
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(a) t = 0.0

(b) t = 15.0

(c) t = 30.0

(d) t = 45.0

Figure 5.12: Twin adhesion patch persistant as described in Section 5.6.3. Cell
is adhered to substrate and patches persist due to insu�cient binder density for
recruitment.
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Chapter 6

Conclusion

We will now briefly summarise the results of this thesis’ chapters.

6.1 Chapter 2 - Calculus on Evolving Surfaces

In this chapter the main result from our investigation was the e↵ects of a time

dependent surface on the change of variable formulae used in the inner region during

our asymptotic analysis. In particular we showed that for points within a region

of width O(") that the material derivative of the signed distance function could be

expressed as the di↵erence of the surface velocity v and the interfacial velocity v

⇤

in

the co-normal direction µ

⇤

, plus order " contributions. More specifically the result

reads that when reparameterising a hypersurface locally around a predefined curve,

⇤, as x ! (s, r), with s parameterising ⇤ and r the distance to the curve, then the

time rate of change of r is given by:

@•t r(x, t) =
�

v(x
⇤

, t)� v

⇤

(x
⇤

, t)
� · µ

⇤

(x
⇤

, t) +O(").

We argued formally for this result and thus future work would require that this

argument be made more rigorous.

6.2 Chapter 3 - Asymptotics for the Evolving Surface

Cahn-Hilliard Equation

In this chapter we used the results of the previous chapter alongside the method

of matched asymptotic expansions to analyse the Evolving Surface Cahn-Hiliard

Equation (3.1)-(3.2). We derived and analysed the ESCH equation with various

forms for its mobility and potential functions and derived limiting sharp interface
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problems. We restricted to smooth potentials first, excluding the case of a double

obstacle potential.

Of interest is that for not all scalings of the mobility with respect to the

surface velocity in relation to the parameter " could we derive a free boundary

problem. In the intermediary case that the ratio of the mobility against the velocity

scales as "0 we were able to derive the following evolving surface Mullins-Sekerka

type problem, where the unknowns are w(t) and ⇤(t):

� = �i

r
�(t) ·

�

M(�)r
�(t)w(t)

�

= �r
�(t) · v(t)

)

in �i(t), i = a, b,

(6.1)

[w(t)] = 0

w(t) = S
⇤

(t)
1

�b��a [M(�)r
�(t)w(t)] · µ⇤

(t) =
�

v(t)� v

⇤

(t)
� · µ

⇤

(t)

9

>

=

>

;

on ⇤(t). (6.2)

Here, ⇤(t) is the moving boundary separating the bulk phases �b(t) and �a(t),

[·] = [·]ba = (·)b� (·)a stands for the jump across ⇤(t), S > 0 is a calibration constant

depending on the double-well potential F , 
⇤

(t) is the geodesic curvature of ⇤(t)

with respect to �(t), v
⇤

(t) is the velocity of ⇤(t), and µ

⇤

(t) is the co-normal of ⇤(t)

with respect to �(t) which points into �b(t).

For the case of a faster mobility so that the ratio of the mobility against the

velocity scale as "�1 we derived the following problem, the unknowns are again w(t)

and ⇤(t).

� = �i

r
�

· (M(�)r
�

w(t)) = �r
�

· v(t)

)

in �i(t), i = a, b,

(6.3)

[w(t)] = 0

w(t) = T
⇤

(t)2

1

�b��a [M(�)r
�

w(t)] · µ
⇤

(t) =
�

v(t)� v

⇤

(t)
� · µ

⇤

(t)

9

>

=

>

;

on ⇤(t). (6.4)

together with the compatibility condition that 
⇤

(t) is spatially constant and T is a

di↵erent calibration constant. This compatibility condition is particularly restricting

on the surface velocity v.

Finally in this chapter we considered the case of a double obstacle potential

and the di�culties that brought. Most notably that in the bulk regions we no
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longer have any limiting problem and cannot use a pair of asymptotic expansions

with matching conditions for the two. Instead we worked with the inner region

explicitly and made assumptions on the fluxes on the boundary as in Cahn et al.

[2006]. By altering the arguments used for smooth potentials we were able to recover

that the limiting problem for the velocity of the interface is that of forced surface

di↵usion:

(v(t)� v

⇤

(t)) · µ
⇤

(t) = S̃�s⇤(t). (6.5)

when dropping the term ur
�(t) · v from (3.1) to obtain a non-conservative variant.

Further work would be to consider using more involved asymptotic arguments

to rigorously show the convergence of the slower mobility (M
v

⇠ O("0)). In particular

the numerical example of Section 4.4.3 suggests that this could be done under an

assumption of rotational symmetric as in Stoth [1996].

6.3 Chapter 4 - Numerical Simulations

In this chapter we provided supporting evidence of the results in Chapter 3 and also

displayed some examples which exhibit interesting behaviour. In Section 4.4.3 we

gave a benchmark example where we considered a rotationally symmetric setting on

a sphere with tangential mass transport. By comparing the energies of solutions to

the evolving surface Cahn-Hilliard equation with the energy of the sharp interface

solution, we were able to provide numerical evidence that the derived sharp interface

limit is indeed the correct limiting problem. In the example in Section 4.4.5 we

showed how a surface velocity can lead to an increase in energy for the solution

when the initial and final surface are the same.

Throughout our computations we were restricted to smooth potentials and

constant mobilities. Further work would provide supporting examples for non-

constant mobilities and non-smooth potentials. In particular we would like to look

at simulating solutions for the nESCH equation with logarithmic potential where

the temperature parameter ✓ is scaled with ". We would like to compare this with

simulations of surface di↵usion on a moving surface.

6.4 Chapter 5 - A Phase Field Model For Focal Cell

Adhesion

In this chapter we extended a known model by Freund and Lin [2004] for focal cell

adhesion. Building on the observations of Freund and Lin regarding the process
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by which fronts propagate, we applied the phase field methodology to generate an

intrinsic model on a surface that could account for topological changes of adhesion

patches due to cell migration. Our derived model is based on a conservation law

for binder density with a phase field variable to track the fronts between adhered

and free regions. The surface evolution is derived from a force balance equation

that results in a surface analogue of Stoke’s flow by considering the membrane as

a visco-elastic fluid subject to forcing from an array of potentials. The resultant

model can be thought of as a two-phase Stokes-Allen-Cahn equation with forcing

due to a surface field.

We have also analysed our model in the sharp interface limit to be able to

compare it with the Freund and Lin model as well as comparing it with known

literature results on two phase surface flows.

As a step towards simulating the full model, we considered a reduced model

that is based on a simpler bending energy and also simplifies which components of

the system energy a↵ect the governing equations. We implemented this reduced

model in MATLAB and presented some interesting results. In particular we were

able to recover qualitative behaviour of the Freund and Lin model.

There are many open questions we would like to answer in regards this work,

of great interest would be deriving an appropriate numerical scheme for the full

model. This would allow us to produce simulations and thus compare the behaviour

of solutions of our model with experimental data of the cell adhesion process. Com-

parisons of this nature would allow us to fit parameters to our model as well as

exploring suitable expressions for some of the functions we assumed general forms

of, for example the adhesion potentials pi.
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