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Abstract

Condensation transitions are observed in many physical and social systems,
ranging from Bose-Einstein condensation to traffic jams on the motorway. The un-
derstanding of the critical phenomena prevalent in these systems presents many
interesting mathematical challenges. We are interested in understanding the vari-
ous definitions of condensation which are suitable in the field of stochastic particle
systems and how they are related. Furthermore, we are also interested in dynamic
properties of processes that undergo the condensation transition, such as typical
convergence time scales and monotonicity properties.

Condensation can be defined in many different ways; considering the thermo-
dynamic limit, a weak law of large numbers for the maximum occupation number,
and an infinite particle limit on fixed finite lattices. For the latter definition, and
processes that exhibit a family of stationary product measures, we prove an equiva-
lent characterisation in terms of sub-exponential distributions generalising previous
known results.

All known examples of condensing processes that exhibit homogeneous sta-
tionary product measures are non-monotone, i.e. the dynamics do not preserve a
partial ordering of the state space. This non-monotonicity is typically characterised
by an overshoot of the canonical current, which on a heuristic level is related to
metastability. We prove that these processes with a finite critical density are nec-
essarily non-monotone confirming a previous conjecture. If the critical density is
infinite, condensation can still occur on finite lattices. We present partial evidence
that there also exist monotone condensing processes.

We also study the typical convergence time scales of condensing inhomoge-
neous zero-range processes. Our results represent a first rigours calculation of the
relaxation time of a condensing zero-range process, where we prove a dynamic tran-
sition in the order of the relaxation time as the density crosses a critical value. We
also derive bounds for homogeneous condensing models and obtain results consistent
with known metastable time scales.
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CHAPTER 1

Introduction

Condensation is ubiquitous in nature. In addition to the classical definition of vapour

condensation, it has also been observed in the context of quantum mechanics. For

example, first predicted by Einstein in 1924 [1] and since experimentally observed

in 1995 [2] Bose-Einstein condensation occurs in a dilute gas of bosons cooled to

absolute zero. Condensation can also occur in population models and most notably

in Kingman’s model of the distribution of the fitness of a population undergoing

selection and mutation [3]. When the rate of selection dominates the rate of muta-

tion, a condensation transition occurs since a positive proportion of the population

in later generations takes an optimal fitness [4]. The growth of complex networks

such as the World Wide Web may also exhibit a condensation transition due to a

preferential effect as new nodes (or links) aim to connect to nodes which are already

popular to increase visibility, resulting in the “rich get richer” or “winner takes all”

phenomena [5]. Condensation and the “rich get richer” phenomena have also been

observed in simple economic models of the distribution of wealth in a population

[6]. Simple particle models of traffic dynamics with applications to the transport of

mass in cells and on the road network, known as stochastic particle systems, have

been shown to condense/jam due to local interactions [7] or system defects [8, 9].

In this thesis, we study condensation in stochastic particle systems through system

defects or particle interactions.

Stochastic particle systems, also known as lattice gases, are probabilistic

models describing transport of a conserved quantity on discrete geometries or lat-

tices where the time evolution is normally specified by giving the infinitesimal rates

at which transitions occur. Many well known examples are introduced in [10], in-

cluding zero-range processes and exclusion processes. These are both special cases

of the more general family of misanthrope processes introduced in [11]. Originally

motivated by statistical mechanics to gain a better understanding of critical phenom-

ena such as symmetry breaking and phase transitions, stochastic particle systems
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also represent a natural extension to the theory of Markov processes. Typically, the

global evolution of stochastic particle systems is Markovian, however, the trajecto-

ries of single particles are not. This local non-Markovian behaviour is due to local

interactions and leads to difficulties in calculating typical convergence time scales

of the process and hydrodynamic limits, which describe the large scale dynamics of

the processes [12].

Recent research has focused on understanding the dynamic properties of con-

densing stochastic particle systems. An example of such a system is the zero-range

process, which is a stochastic particle system without restriction on the local oc-

cupation numbers and the jump rate only depends on the number of particles on

the departure site. It is known that condensation occurs if the jump rate decreases

sufficiently slowly with the number of particles, see for example [13, 7]. First results

on the nature of the condensate in zero-range processes are discussed in [14, 15].

In the condensed phase the canonical current typically exhibits a large overshoot

above its value in the thermodynamic limit [16], which leads to a metastable switch-

ing (hysteresis) between a fluid and condensed phase. This switching phenomenon

is related to a separation of time scales and therefore metastability, which has been

rigorously established for a condensing zero-range process in [17] on finite lattices

and in [18] for the thermodynamic limit. Before reaching stationarity the dynamics

of the process in the condensed phase correspond to a coarsening process as increas-

ingly large clusters appear on a decreasing number of sites [19, 20, 21]. Coarsening,

hysteresis, and metastability are not only features of the zero-range process but are

also found in other condensing stochastic particle systems. The inclusion process

is similar to the zero-range process with the addition of an attractive component

where now the jump rates depend on departure and arrival sites. Coarsening and

metastability results for the condensing inclusion process have been established rig-

orously in [22, 23] for finite lattices and heuristically in [24] in the thermodynamic

limit.

A classic and important problem in the theory of Markov processes and

stochastic particle systems is characterising typical convergence times to stationar-

ity. For condensing systems this is heuristically dominated by the motion of the

condensate. In general, two important measures of convergence are the mixing time

and relaxation times, where the mixing time is the time it takes for the processes to

reach the invariant measure and the relaxation time controls the exponential rate

of decay of correlations. In statistical physics, Markov chains arise for example in

Monte Carlo simulations of complex processes, where the mixing time not only con-

trols the number of steps needed to sample from the stationary measure but also has

2



CHAPTER 1. INTRODUCTION

deep connections to the spatial properties spin systems [25, 26, 27, 28]. For stochas-

tic particle systems such as the exclusion and zero-range processes sharp bounds

on the relaxation time are only known in certain cases and results typically rely on

monotonicity and coupling tools. By a simple mapping, the symmetric exclusion

process and the symmetric constant rate zero-range process on the one dimensional

torus can be shown to be equivalent and therefore have the same relaxation time

[29]. Furthermore, the relaxation time for the constant rate zero-range process on

any geometry can be calculated from comparisons of the process on the complete

graph [30], provided the process is reversible. In [31] a recursive method of bound-

ing the relaxation time was found by a decomposition of the state space, a method

which was first introduced for the Kawasaki Ising model [32] and has since been

used to give crude bounds for general Markov chains [33].

The mixing time of a Markov chain characterises how fast a process ap-

proaches stationarity and can exhibit highly non-trivial behaviour. An example of

this is the cutoff phenomenon, where the distance stays close to its maximal value,

then drops suddenly to a small value and then tends to zero exponentially fast,

which is characterised by the relaxation time. The cutoff phenomenon was first

discovered in card shuffling problems [34], which heuristically implies that it takes

roughly 7 riffle shuffles to adequately mix a deck of 52 cards. Cutoff then allows

us to restate the question of convergence from asking “how close to stationarity are

we after say 106 steps?” to asking “will 7 steps suffice?” For an early review of the

cutoff phenomenon in card shuffling and urn models see [35]. For stochastic particle

systems establishing a cutoff is extremely difficult and results are only known for

the exclusion process on various underlying geometries. For the complete graph

exclusion process, a result was first obtained in the case of n particles and 2n sites

by a comparison of the process to the Bernoulli-Laplace diffusion model [36], and

has since been generalised in [37] by restating the problem as a birth-death process.

Cutoff for the symmetric simple exclusion process on the one dimensional torus was

established in the sequence of papers [38, 39, 40] by comparing the process to the

discrete heat equation and coupling the process with dynamics of an interface first

developed in [41].

In this thesis, we calculate the relaxation time of a condensing inhomoge-

neous zero-range process by a decomposition of the state space and give a heuristic

description of the mixing time and cutoff properties. In addition, we study the

monotonicity properties of homogeneous condensing processes and how an over-

shoot of the canonical current can lead to a transition of the relaxation and mixing

times of a projection of the underlying process.

3



This thesis is organised as follows. In Chapter 2 we construct continuous

time Markov processes and the interacting particle systems we study in this thesis.

We also give a brief overview of the coupling techniques and define the relaxation,

mixing, and hitting times. We characterise condensation in the thermodynamic

limit and infinite particle limit in Chapter 3 and discuss the links between the two

definitions. The main result of this chapter is an equivalence between the stationary

measures of condensing processes and measures with sub-exponential tails. In Chap-

ter 4 we prove that all condensing particle systems with stationary product measures

with a finite critical density are necessarily non-monotone by showing non-monotone

behaviour of the expected value of a test function related to the canonical current.

We also discuss the monotonicity properties of misanthrope, long-range misanthrope,

generalised zero-range, and chipping processes. We compute the relaxation time for

a special class of condensing zero-range processes in Chapter 5 and give heuristic

results on the mixing time and cutoff properties. In Chapter 6 we provide sharp

bounds on the mixing and relaxation times for the projection chain of a condensing

homogeneous zero-range process. Finally, in Chapter 7 we give a brief review of

the work done in this thesis followed by a short discussion on possible directions of

future research.

4



CHAPTER 2

Interacting Particle Systems

In this chapter, we construct the interacting particle systems which are studied in

this thesis and summarise the results which are most relevant. We also introduce the

key concepts and results treated in this work, such as couplings and monotonicity,

and relaxation times.

The construction of interacting particle systems presented here closely follows

[42, 43]. To construct couplings of interacting particle systems we follow [42, 44]

and review [45]. Discussions on relaxation, mixing and hitting times largely follow

[44, 46].

2.1 Markov processes, semi-groups, generators and the

master equation

Interacting particle systems are continuous time Markov processes denoted by (η(t))t≥0

with state space Ω = EΛ where Λ is a finite or countable lattice and E is a count-

able set. The dynamics are typically specified by giving the (infinitesimal) rates for

transitions to occur between two states in the state space.

The state space Ω = EΛ of the process is the set of all possible configurations,

for example the set E is given by N for zero-range dynamics or {0, 1} for exclusion

processes, which are discussed in Section 2.3. Configurations are denoted by Greek

letters η = (ηx)x∈Λ ∈ Ω, where ηx ∈ E denotes the occupation of the site x for each

x ∈ Λ. In addition, ηx(t) denotes the occupation of site x ∈ Λ at time t. The state

space Ω is endowed with the product topology which is metrizable, with measurable

structure given by the Borel σ-algebra B.

The time evolution of the processes is given by sample paths from the canon-

ical path space

D[0,∞) = {η(·) : [0,∞)→ Ω | η(·) is right continuous and has left limits} .

5



2.1. MARKOV PROCESSES

Let F be the smallest σ-algebra on D[0,∞) relative to which all functions

η(·) 7→ η(s) for s ≥ 0 are measurable. For t ∈ [0,∞), let Ft be the smallest σ-algebra

relative to which all functions η(·) 7→ η(s) for 0 ≤ s ≤ t are measurable. The filtered

space (D[0,∞),F ,Ft) serves as a generic choice for the probability space of the

process.

Definition 2.1.1. A Markov process on Ω is a collection of {Pη : η ∈ Ω} of proba-

bility measures on D[0,∞) indexed by initial configurations η ∈ Ω with the following

properties;

(i) Pη[ξ(·) ∈ D[0,∞) : ξ(0) = η] = 1 for all η ∈ Ω.

(ii) Eη[ξ(s+ ·) ∈ A | Fs] = Pξ(s)[A] for every η ∈ A and A ∈ F .

(iii) The mapping η 7→ Pη[A] is measurable for every A ∈ F .

For a Markov process the expectation corresponding to Pη will be denoted

by Eη which is given by

Eη[A] =

∫
D[0,∞)

AdPη ,

for any measurable function A on D[0,∞) which is integrable with respect to Pη.
Property (i) states that Pη is normalised on paths with initial configuration

η ∈ Ω. (ii) is the Markov property which ensures that the probability of some future

event, conditioned on the history of the process up to some time s only depends on

the configuration at time s. Property (iii) allows us to consider the process with

arbitrary initial distribution ν on Ω, defined by

Pν =

∫
Ω
Pην(dη) .

The dynamics of the process are specified by the rates at which transitions

from η to η′ ∈ Ω denoted c(η, η′) ≥ 0, called transition rates. Intuitively the

transition rates have the following meaning

Pη[η(dt) = η′] = c(η, η′)dt+ o(dt) as dt↘ 0 for η 6= η′ , (2.1)

i.e. in a small time window dt the process transitions from η to η′ with probability

approximately given by c(η, η′)dt. The transition rate c(·, ·) is assumed to be a non-

negative, uniformly bounded and continuous function of η and η′ in the product

topology on Ω.

In this thesis we study processes which conserve the particle number, on finite

lattices (|Λ| <∞), called driven diffusive systems or lattice gases. On finite lattices

6



CHAPTER 2. INTERACTING PARTICLE SYSTEMS

the state space is not necessarily compact but countable, and therefore the processes

we consider are Markov chains and their constructions can be found in [42, 47]. The

construction of theses processes on infinite lattices must be done on a case-by-case

basis, for example [48, 49] and [50] for a zero-range process. Throughout this work,

we focus on processes defined on finite state spaces with a fixed number of particles

and consider their properties in the thermodynamic limit or as the particle number

diverges.

We now define Markov semigroups and state the main results which show

one-to-one correspondence between Markov semigroups and processes. Let C(Ω)

denote the set of continuous bounded functions f : Ω → R, which is regarded as a

Banach space with ||f || := supη∈Ω |f(η)|.

Definition 2.1.2. For a given process {Pη : η ∈ Ω}, for each t ≥ 0 we define the

operator S(t) : C(Ω)→ C(Ω) by

(S(t)f)(η) := Eη [f(η(t))] . (2.2)

A Markov process is said to be a Feller process if S(t)f ∈ C(Ω) for every t ≥ 0 and

f ∈ C(Ω).

The properties of the linear operators {S(t), t ≥ 0} arising from Feller pro-

cesses {Pη : η ∈ Ω} are given in the following proposition.

Proposition 2.1.3. Suppose {Pη : η ∈ Ω} is a Feller process on Ω. Then the

collection of linear operators {S(t) : t ≥ 0} on C(Ω) has the following properties;

(i) S(0) = I, the identity operator on C(Ω).

(ii) The mapping t 7→ S(t)f from [0,∞) → C(Ω) is right continuous for every

f ∈ C(Ω).

(iii) S(s+ t)f = S(s)S(t)f for every s, t ≥ 0 and f ∈ C(Ω).

(iv) S(t)1 = 1 for all t ≥ 0.

(v) S(t)f ≥ 0 for all non-negative f ∈ C(Ω).

Proof. See, for example, [42, Proposition 1.3].

Definition 2.1.4. A family {S(t) : t ≥ 0} of linear operators on C(Ω) that satisfies

conditions (i)− (v) of Proposition 2.1.3 is called a Markov semigroup.

7



2.1. MARKOV PROCESSES

The operator S(t) determines the time evolution of functions f ∈ C(Ω),

which are interpreted as observables. Markov semigroups are in one-to-one corre-

spondence with Markov processes outlined in Proposition 2.1.3 and the following

theorem.

Theorem 2.1.5. Suppose {S(t) : t ≥ 0} is a Markov semigroup on C(Ω). Then

there exists a unique Feller Markov process {Pη : η ∈ Ω} such that (2.2) holds for

all t ≥ 0.

Proof. See for example [42, 47]

Therefore, the semigroup provides a full representation of the Markov pro-

cess, dual to the path measures {Pη : η ∈ Ω} since C(Ω) is dual to the set P(Ω) of

probability measures on Ω. The expectation of observables at t ≥ 0 with respect to

the initial distribution ν ∈ P(Ω) is given by

Eν [f(η(t))] =

∫
Ω

(S(t)f)(ξ)ν[dξ] =

∫
Ω
S(t)f dν for all f ∈ C(Ω) .

From property (iii) of Proposition 2.1.3 we expect {S(t) : t ≥ 0} has an

exponential form characterised by S′(0), the time derivative of S(t) at zero, in the

sense

S(t) = “eS
′(0)t” = I + S′(0)t+ o(t) with S(0) = I . (2.3)

This is made precise as follows.

Definition 2.1.6. The (infinitesimal) generator L : DL → C(Ω) for the process

{S(t) : t ≥ 0} is given by

Lf = lim
t↘0

S(t)f − f
t

for all f ∈ DL , (2.4)

where the domain DL ⊆ C(Ω) is the set of all functions for which the limit exists.

For finite state spaces, Ω, DL = C(Ω), otherwise one often has to restrict to

bounded cylinder test functions [42].

Proposition 2.1.7. L as defined by (2.4) is a Markov generator, i.e.

(i) 1 ∈ DL and L1 = 1 (Conservation of probability).

(ii) For all f ∈ DL and λ > 0, minξ∈Ω f(ξ) ≥ minξ∈Ω(f − λLf)(ξ) (Positivity).

(iii) DL is dense in C(Ω) and the range R(I−λL) = C(Ω) for λ sufficiently small.

8



CHAPTER 2. INTERACTING PARTICLE SYSTEMS

Proof. See for example [42, Proposition 2.2]

Theorem 2.1.8. (Hille-Yosida) There is a one-to-one correspondence between Markov

generators and semigroups on C(Ω), given by (2.4) and

S(t)f = etLf := lim
n→∞

(
I − t

n
L
)−n

f for f ∈ C(Ω) and t ≥ 0 . (2.5)

Furthermore, if f ∈ DL then S(t)f ∈ DL for all t ≥ 0, and

d

dt
S(t)f = S(t)Lf = LS(t)f , (2.6)

called the forward and backward equations respectively.

Proof. See for example [42, Theorem 2.9]

Finally, for finite systems with a finite state space, the generator can be

computed directly from (2.2) and the heuristic (2.1) as follows

S(dt)f = Eη[f(η(t)] =
∑
η′∈Ω

f(η′)Pη[η(dt) = η′]

=
∑
η′∈Ω

c(η, η′)f(η′)dt+ f(η)

1−
∑
η′ 6=η

c(η, η′)dt

+ o(dt) .

Then (2.4) implies

Lf(η) =
∑
η′ 6=η

c(η, η′)
(
f(η′)− f(η)

)
. (2.7)

Markov processes and semigroups are therefore characterised by the transition rates

c(η, η′) between states η and η′. We use the convention that c(η, η′) = 0 for all

η = η′ ∈ Ω.

From the generator and semigroup definitions of finite state Markov pro-

cesses, we can immediately construct the master equation as follows: Consider the

indicator functions 1η : Ω → {0, 1}, which are bounded and form a basis of C(Ω)

for finite Ω, defined by

1η(ξ) =

1 if ξ = η

0 otherwise
.

9
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Let pt = µS(t) denote the distribution on Ω at time t characterised by

pt[f ] =

∫
Ω
S(t)fdν . (2.8)

Substituting f(η) = 1(η) into the forward equation (2.6) we have

d

dt
pt[η] =

∫
Ω
S(t)L1ηdν =

∑
ξ∈Ω

pt[ξ]
∑
ξ′∈Ω

c(ξ, ξ′)
(
1η(ξ

′)− 1η(ξ)
)

=
∑
ξ∈Ω

pt[ξ]c(ξ, η)− pt[η]
∑
ξ′∈Ω

c(η, ξ′) , (2.9)

which is called the master equation.

2.2 Stationary measures, reversibility and ergodicity

Definition 2.2.1. A probability measure µ ∈ P(Ω) is said to be stationary or in-

variant if it satisfies µ (S(t)f) = µ(f) for all t ≥ 0 and f ∈ C(Ω). The measure is

called reversible if µ (fS(t)g) = µ (gS(t)f) for all f, g ∈ C(Ω).

Here and throughout this thesis we use the notation µ(f) =
∫

Ω f dµ to denote

the expectation of f ∈ C(Ω) with respect to the measure µ on Ω.

It is clear that every reversible measure µ is stationary (taking g ≡ 1). The

probabilistic interpretation of a stationary measure µ is given by a process η(t) with

initial distribution µ has the same distribution as η(t + s) for every s ∈ [0,∞), or

formally

Pµ[η(·) ∈ A] = Pµ[η(t+ ·) ∈ A] for all t ≥ 0, A ∈ F .

Equivalently, using (2.8) if p0 = µ then pt = µ for all t ≥ 0.

Proposition 2.2.2. A measure µ ∈ P(Ω) is stationary if and only if

µ(Lf) = 0 for all f ∈ DL .

Furthermore, the measure µ is reversible if and only if

µ(fLg) = µ(gLf) = 0 for all f, g ∈ DL .

Proof. See for example [42, Propisition 2.13].

By a similar approach to the construction of the master equation, reversible

measures can be characterised via the following proposition.

10
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Proposition 2.2.3. A measure µ on a countable state space Ω is reversible for

the process with transition rates c(·, ·) if and only if it fulfils the detailed balance

conditions

µ[η]c(η, ξ) = µ[ξ]c(ξ, η) for all η, ξ ∈ Ω .

Definition 2.2.4. A Markov process with semigroup {S(t) : t ≥ 0} is ergodic if

there exists a unique stationary measure π ∈ P(Ω) and

lim
t→∞

pt = π for all initial distributions p0 ,

where pt is the distribution of the process at time t given by (2.8).

Definition 2.2.5. A Markov process {Pη : η ∈ Ω} is called irreducible if for all

η, η′ ∈ Ω

Pη[η(t) = η′] > 0 for all t ≥ 0 .

The interpretation of an irreducible Markov process is as follows; an irre-

ducible process can sample the entire state space from any initial condition. Irre-

ducibility implies the uniqueness of the stationary measure and if the state space Ω

is finite then the process is ergodic as outlined in the following theorem.

Theorem 2.2.6. An irreducible Markov process with finite state space Ω is ergodic.

Proof. See for example [47]

2.3 Example processes

2.3.1 The zero-range process

The zero-range process (ZRP), introduced in [10], is a stochastic particle system on

the state space ΩL = NΛ where Λ = {1, . . . , L}. A single particle at site x leaves

at rate gx(ηx) and jumps to site y with probability p(x, y) where the dynamics are

defined by the generator

Lf(η) =
∑
x,y∈Λ

gx(ηx)p(x, y) (f(ηx,y)− f(η)) (2.10)

11
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for f ∈ C(ΩL). Here ηx,y denotes the configuration after a single particle has jumped

from site x to y and is given by

ηx,yz =


ηx − 1 if z = x

ηy + 1 if z = y

ηz otherwise

.

To ensure the process is non-degenerate and irreducible, the jump rates gx(n) satisfy

gx(n) = 0 for all x ∈ Λ if and only if n = 0. The process is called homogeneous if

gx(n) = gy(n) for all x, y ∈ Λ and n ∈ N and inhomogeneous otherwise. Throughout

this thesis we study both homogeneous and inhomogeneous zero-range processes.

Zero-range processes and similar models are often studied in a translation invariant

setting (p(x, y) = q(|y−x|)) on a regular lattice with periodic boundary conditions.

Typical choices in one dimension are symmetric and totally asymmetric transition

probabilities with p(x, y) = 1
2δy,x+1 + 1

2δy,x−1, p(x, y) = δy,x+1, or fully connected

transition probabilities p(x, y) = (1− δy,x) 1
L−1 , respectively.

Well studied zero-range processes include the constant rate zero-range pro-

cess where gx(n) = 1 for all x ∈ Λ and n > 0, which is a system of L server

queues with mean one exponential random service times. The constant rate zero-

range process can be extended to include site defects where gx(n) = r < 1 for some

x ∈ ∆ ⊆ Λ, which are studied in Chapter 5. If g(k) = k then the zero-range process

is a system of independent random walkers on Λ.

Under translation invariant p(x, y), zero-range processes defined by the gen-

erator (2.10) exhibit a family of stationary product measures {νLφ : φ ∈ Dφ} on ΩL,

where φ is called the fugacity and Dφ = [0, φc) or [0, φc] is the domain of the family

of measures [48]. νLφ [·] is given by

νLφ [η] =
∏
x∈Λ

νxφ [ηx] where νxφ [n] =
wx(n)φn

zx(φ)
. (2.11)

The measures exist for all φ ∈ Dφ where φc is the determined by the radii of

convergence of the single site partition function

zx(φ) =

∞∑
k=0

wx(k)φk . (2.12)

Technically, φc = minx∈Λ φ
x
c where φxc is the radius of converge of zx(φ) and is given

12
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by

φxc =

(
lim sup
n→∞

n
√
wx(n)

)−1

. (2.13)

The stationary weights wx(n) are given by

wx(n) =
n∏
k=1

1

gx(k)
for n > 0 and wx(0) = 1 for all x ∈ Λ . (2.14)

The family {νφ[·] : φ ∈ Dφ} is called the grand-canonical ensemble and zx(φ) are

called the grand-canonical partition functions. The (singe site) grand-canonical

densities are functions of the fugacity φ ∈ Dφ and are given by

ρx(φ) := νxφ(ηx) =
1

zx(φ)

∞∑
n=1

nwx(n)φn . (2.15)

Since the zero-range process conserves the particle number the process is

irreducible on the finite state space

ΩL,N :=

{
η ∈ ΩL :

∑
x∈Λ

ηx = N

}
. (2.16)

Therefore, the process restricted to ΩL,N is ergodic with a unique stationary measure

on ΩL,N given by

πL,N [·] := νLφ
[
·
∣∣η ∈ ΩL,N

]
. (2.17)

The family {πL,N : N ∈ N} is called the canonical ensemble and these measures are

independent of the fugacity φ. The measure πL,N [·] can be easily shown to have the

mass function

πL,N [η] =
1

ZL,N

∏
x∈Λ

wx(ηx)1(η ∈ ΩL,N ) , (2.18)

where canonical partition function is given by

ZL,N =
∑

η∈ΩL,N

∏
x∈Λ

wx(ηx) . (2.19)

13
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2.3.2 The misanthrope process

Misanthrope processes are generalisations of zero-range processes, where the jump

rate now depends on the exit and entry sites, and are defined by the generator

Lf(η) =
∑
x,y∈Λ

r(ηx, ηy)p(x, y) (f(ηx,y)− f(η)) , (2.20)

for f ∈ C(ΩL). Again, the configuration ηx,y ∈ ΩL denotes the configuration after a

single particle jumps from site x to y ∈ ΩL. To ensure the process is non-degenerate

the jump rate r(n,m) = 0 for all m ≥ 0 if and only if n = 0, and r(n,m) > 0 for all

n > 0 and m ≥ 0.

Misanthrope processes include many well-known examples of interacting par-

ticle systems, such as zero-range processes [10], the inclusion process [51, 52], and the

explosive condensation model [53]. It is known [11, 54] that misanthrope processes

with translation invariant dynamics p(x, y) = q(x − y) exhibit stationary product

measures of the form (2.11) if and only if the rates fulfil

r(n,m)

r(m+ 1, n− 1)
=

r(n, 0)r(1,m)

r(m+ 1, 0)r(1, n− 1)
for all n ≥ 1,m ≥ 0 , (2.21)

and, in addition, eitherq(z) = q(−z) for all z ∈ Λ or,

r(n,m)− r(m,n) = r(n, 0)− r(m, 0) for all n,m ≥ 0 .
(2.22)

The corresponding stationary weights satisfy

w(k + 1)

w(k)
=
w(1)

w(0)

r(1, k)

r(k + 1, 0)
and w(n) =

n∏
k=1

r(1, k − 1)

r(k, 0)
. (2.23)

In [45] generalised misanthrope processes have been introduced where more

than one particle is allowed to jump simultaneously. They are defined via transi-

tions η → η + n(δy − δx) for n ∈ {0, . . . , ηx} at rate Γnηx,ηy(y − x) and the authors

give necessary and sufficient conditions on the jump rates for the processes to be

monotone.

2.3.3 Generalised zero-range processes

Zero-range processes can also be generalised to allow more than one particle to exit

from site x in a single transition. The generalised zero-range process (gZRP) [45] is

14
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a stochastic particle system on the state space ΩL = NΛ defined by the generator

LgZRP f(η) =
∑
x,y∈Λ

ηx∑
k=1

αk(ηx)p(x, y)
(
f(ηx→(k)y)− f(η)

)
. (2.24)

Here ηx→(k)y ∈ ΩL is the configuration after k particles have jumped from x to

y ∈ Λ. The jump rates αk(n) satisfy αk(n) = 0 if k > n, and we use the convention

that empty summations are zero. We consider translation invariant p(x, y) on a

finite lattice Λ = {1, . . . , L} with periodic boundary conditions and we also note

that the process preserves particle number
∑

x ηx = N .

It is known [55, 54] that these processes exhibit stationary product measures

if and only if the jump rates have the explicit form

αk(n) = g(k)
h(n− k)

h(n)
, (2.25)

where g, h : N→ [0,∞) are arbitrary non-negative functions with h strictly positive.

The stationary weights are then given by w(n) = h(n).

2.4 Monotonicity and couplings

In this section, we will review the relevant results on monotone (attractive) inter-

acting particle systems and give details on how to construct coupling which preserve

a partial order of the state space.

We use the natural partial order on the state space ΩL = NΛ given by η ≤ ζ
if ηx ≤ ζx for all x ∈ Λ. A function f : ΩL → R is said to be increasing if and only

if η ≤ ζ implies f(η) ≤ f(ζ). Two measures µ1, µ2 on Ω are stochastically ordered

(monotone) with µ1 ≤ µ2, if for all increasing functions f : ΩL → R we have for

expectations µ1(f) ≤ µ2(f).

A stochastic particle system on ΩL with generator L and semi-group (S(t) =

etL : t ≥ 0) is called monotone (attractive) if it preserves stochastic order in time,

i.e.

µ1 ≤ µ2 =⇒ µ1S(t) ≤ µ2S(t) for all t ≥ 0 ,

which is equivalent to

S(t)f(η) ≤ S(t)f(ξ) for all η ≤ ξ and all f ∈ C(Ω) increasing and t ≥ 0 . (2.26)
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Utilising the Hille-Yosida Theorem 2.1.8 and the definition of the generator (2.4) we

see that the process is monotone if and only if

Lf(η) ≤ Lf(ξ) , (2.27)

for all η ≤ ξ and all f ∈ C(ΩL) increasing such that f(η) = f(ξ). The condition

f(η) = f(ξ) is necessary since for the following to hold

Lf(η) = lim
t↘0

S(t)f(η)− f(η)

t
≤ lim

t↘0

S(t)f(ξ)− f(ξ)

t
= Lf(ξ) , (2.28)

we need f(η) ≥ f(ξ), however, f is increasing and η ≤ ξ implies the equality.

Coupling techniques for monotone processes are important tools to derive

rigorous results on the large scale dynamics of such systems such as hydrodynamic

limits [45]. Let (η(t))t≥0 be an interacting particle system on ΩL. A Markov coupling

of (η(t))t≥0 with itself is a processes (ξ(t), ζ(t))t≥0 on ΩL × ΩL such that each

marginal ξ(t) and ζ(t) is distributed as the original process (η(t))t≥0, i.e. if we

observe one of the processes without observing the other, the process behaves as it

is originally constructed.

The link between stochastic monotonicity and couplings is given by Strassen’s

theorem [56]:

Theorem 2.4.1. (Strassen) For probability measures µ1, µ2 on a common state

space ΩL, µ1 ≤ µ2 if and only if there exists a coupling µ on the product state space

ΩL × ΩL such that

µ ({η = (η1, η2) : η1 ≤ η2}) = 1 ,

i.e. the probability of observing the partial order is 1.

Strassen’s theorem has the natural extension to couplings of stochastic pro-

cesses and monotone processes.

2.4.1 Constructing a coupling for the zero-range process

In Chapter 5, we rely on known results of monotone zero-range process, therefore,

here we include here a detailed construction of a coupling for the ZRP. Furthermore,

understanding the construction of a coupled process is also necessary for results

obtained in Chapter 4 on generalised zero-range and misanthrope processes.

Let (ξ(t))t≥0 and (ζ(t))t≥0 be two zero-range processes defined via the same

generator (2.10) such that their initial conditions satisfy ξ ∈ ΩL,N and ζ ∈ ΩL,N+1.

It is sufficient, for our applications, to construct a coupling on the joint state space
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Figure 2.1: Example configuration of the coupled dynamics. The ξ process is shown
in red and the second class particle is shown in blue. The jump rates are defined
according to equation (2.29) and it is clear that the coupling can only be constructed
for increasing jump rates gx(·) as we need gx(m)−gx(n) ≥ 0 for all x ∈ Λ and m ≥ n.

(ΩL,N ,ΩL,N+1) between the processes ξ(t) and ζ(t) such that, ξ(t) = η(t) + δy for

some y ∈ Λ, i.e. there is an extra particle in the ζ(t) process at site y, often called

a second class particle. The coupling is constructed via the following rules called a

basic coupling

1. The marginals of the coupled process are two zero-range processes with N and

N + 1 particles respectively and each are defined by the generator (2.10). As

a consequence, when the process has converged to its stationary measure for

the joint process this is a coupling of the measures πL,N and πL,N+1 [48].

2. Particles move together as much as possible.

If gx(n) is non-decreasing for each x ∈ Λ the coupled process behaves via the follow-

ing transition rates, which is illustrated in Figure 2.1; for the site with the second

class particle

ξy = n+ 1

ηy = n

}
gy(ξy)−gy(ηy)−−−−−−−−−→

{ ξy = n

ηy = n

ξy = n+ 1

ηy = n

}
gy(ηy)−−−−−−−−→

{ ξy = n

ηy = n− 1
, (2.29)

and for the remaining sites, both processes jump at rate gx(ηx) = gy(ξx).

In general, the generator for the basic coupling of the zero-range process on
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ΩL × ΩL is given by

Lf(ξ, ζ) =
∑
x,y

ξx≤ζx

gx(ξx)p(x, y) (f(ξx,y, ζx,y)− f(ξ, ζ))

+
∑
x,y

ξx≤ζx

(gx(ζx)− gx(ξx)) p(x, y) (f(ξ, ζx,y)− f(ξ, ζ))

+
∑
x,y

ζx≤ξx

gx(ζx)p(x, y) (f(ξx,y, ζx,y)− f(ξ, ζ))

+
∑
x,y

ζx≤ξx

(gx(ξx)− gx(ζx)) p(x, y) (f(ξx,y, ζ)− f(ξ, ζ)) . (2.30)

For the coupling constructed in (2.29) and (2.30) to exist, the jump rate

gx(n) has to be non-decreasing.

Theorem 2.4.2. The zero-range process on ΩL = NΛ defined by the generator

(2.10) is monotone if and only if the jump rates satisfy gx(m) ≥ gx(n) for all m ≥
n ∈ N and x ∈ Λ.

Proof. ( ⇐= ) The condition gx(m) ≥ gx(n) for all m ≥ n ∈ N and x ∈ Λ implies

(2.30) is a generator of a Markov process with non-negative rates. By substitut-

ing the functions f(ξ, ζ) = f1(ξ) and f(ξ, ζ) = f2(ζ) into (2.30) it is clear that

the marginals are zero-range processes with the generator (2.10). Therefore, by

Strassen’s theorem the ZRP with non-decreasing jump rates is monotone.

( =⇒ ) Consider the increasing test function f(η) = ηy and two config-

urations η = nδx and ξ = mδx such that x 6= y, m ≥ n, and p(x, y) > 0.

Clearly η ≤ ξ and assuming the process is monotone the inequality (2.27) implies

gx(n)p(x, y) ≤ gx(m)p(x, y). Since the choice of x, y were arbitrary and p(x, y) > 0,

we have gx(n) ≤ gx(m) for all m ≥ n and x ∈ Λ, which completes the proof of

Theorem 2.4.2.

2.5 Mixing, hitting, and relaxation times

In this section, we define the relaxation, mixing, and hitting times used to measure

how a stochastic process converges to its stationary measure. We also review the

main results and techniques for calculating such convergence times for interacting

particle systems. Throughout this discussion we only consider finite state spaces Ω.

The following definitions are necessary throughout this section. For a mea-
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sure π on Ω and f, g ∈ C(Ω) the inner product is given by

〈f, g〉π =
∑
η∈Ω

π[η]f(η)g(η) ,

and

||f ||2,π =

∑
η∈Ω

π[η]f(η)2

1/2

.

2.5.1 The relaxation time and the spectral gap

The relaxation time of an ergodic Markov process characterises the exponential rate

of convergence to the stationary measure. For reversible processes on a countable

state space, the relaxation time is given by the reciprocal of the smallest non-zero

eigenvalue of −L, called the spectral gap, where L is the generator of the process.

For a Markov process (η(t))t≥0 with generator L on Ω with stationary mea-

sure π, the Dirichlet form is given by

DL(f) = 〈f,−Lf〉π = −
∑
η∈Ω

π[η]f(η)Lf(η) ,

for f ∈ C(Ω). For a reversible process with generator (2.7) the Dirichlet form can

be rewritten as

DL(f) =
1

2

∑
η,ξ

π[η]c(η, ξ) (f(ξ)− f(η))2 . (2.31)

Furthermore, it is easy to show [46, Lemma 2.1.2]

d

dt
||S(t)f ||22,π = −DL(S(t)f) .

Let Varπ(f) denote the variance of a function f : Ω → R with respect to the

measure π then the spectral gap and relaxation time are defined by the Rayleigh-

Ritz principle as follows.

Definition 2.5.1. The spectral gap λL of the generator L on Ω is given by the

variational principle

λL = inf
f

{
DL(f)

Varπ(f)
: Varπ(f) 6= 0

}
, (2.32)

and the relaxation time is given by the inverse spectral gap T relL := 1
λL

.
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For a reversible process the value λL is then the difference between the small-

est eigenvalues of the generator −L.

Proposition 2.5.2. Let (η(t))t≥0 be an irreducible Markov process with stationary

measure π on the state space Ω then λL is the optimal constant appearing in the

inequality

V arπ(S(t)f) ≤ e−2λLtV arπ(f) (2.33)

Proof. See for example [46, Lemma 2.1.4].

From Proposition 2.5.2, we see that the inverse spectral gap gives the char-

acteristic time scale of the contraction of the variance of the kernel S(t) towards

stationarity, where S(t)f(η)→ π(f) for all η ∈ Ω.

2.5.2 Mixing times

The mixing time of a Markov process is another measure of how far the process is

from the stationary distribution, which are measured by the total variation distance.

The total variation distance between two measures µ and ν on Ω is given by

||µ− ν||TV = max
A∈Ω
|µ[A]− ν[A]| . (2.34)

By Proposition 4.2 of [44] the total variation distance can be rewritten in the form

||µ− ν||TV =
1

2

∑
η∈Ω

|µ[η]− ν[η]| .

For a Markov process with semigroup {S(t) : t ≥ 0} on Ω let the distribution

at time t and initial condition η be given by Pt(η, ·) = δηS(t). Let π be the stationary

measure then the distance from stationarity is given by

d(t) = max
η∈Ω
||Pt(η, ·)− π||TV , (2.35)

and the ε-mixing time is defined as follows.

Definition 2.5.3. The total variation ε-mixing time of a process generated by L on

Ω with stationary measure π is given by

Tmix(ε) = inf{t ≥ 0 : d(t) ≤ ε} .

In practice, mixing times of interacting particle systems are extremely diffi-

cult to calculate however there exists many methods of bounding mixing times by
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quantities which are easier to compute. For example, the total variation distance

||µ− ν||TV can be given in terms of a coupling between the measures µ and ν (see

Proposition 4.7 of [44])

||µ− ν||TV = inf{P(X 6= Y ) : (X,Y ) is a coupling of µ and ν} .

Therefore, the total variation and mixing times of a process can be well approxi-

mated by the coupling time Tcouple of a coupled process (ξ(t), ζ(t))t≥0, which is given

by

Tcouple = inf{t ≥ 0 : ξ(t) = ζ(t)} .

In addition, the relaxation time gives upper and lower bounds for the mixing time

of the form

log

(
1

2ε

)
T relL ≤ Tmix(ε) ≤ log

(
1

επ?

)
T relL ,

where π? = minη∈Ω π[η] (see for example [44]). However, due to the inclusion of

π? in the upper bound this method typically does not give sharp bounds. Sharp

upper and lower bounds can be found via hitting times of large sets [57], which are

introduced in the next section.

2.5.3 Hitting times

For a Markov process (η(t))t≥0 on the state space Ω the hitting time τA of a subset

A ⊆ Ω is given by

τA := inf
t≥0
{t ≥ 0 : η(t) ∈ A} ,

and for simplicity we write τη = τ{η}. The expected hitting time HA(η) of a set

A ⊆ Ω and initial condition η ∈ Ω is given by

HA(η) = Eη[τA] . (2.36)

Theorem 2.5.4. For an irreducible Markov process on a finite state space Ω the

vector of expected hitting times HA = (HA(η) : η ∈ Ω) is the minimal non-negative

solution to the system of linear equations HA(η) = 0 for η ∈ A ,

−
∑

ξ∈Ω c(η, ξ)HA(ξ) = 1 for η /∈ A .

Proof. This proof is a simply application of the Markov property, see for example

Theorem 3.3.3. of [47]
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The following theorem [57, 58] relates the hitting times of large sets with the

1/4-mixing time of the Markov chain.

Theorem 2.5.5. For every irreducible and reversible Markov process on a finite

state space Ω, and for each α < 1/2 there exists constants cα, c
′
α so that

cα max
η∈Ω:π[A]≥α

HA(η) ≤ Tmix
(

1

4

)
≤ c′α max

η∈Ω:π[A]≥α
HA(η) . (2.37)

Whilst this theorem is useful in itself, calculating the upper bound appearing

(6.16) is highly non-trivial. This result, however, allows for a study of the mixing

time via a method of decomposing the state space Ω into disjoint unions of sets

Ωi for i ∈ [n] = {1, . . . , n}, i.e. Ω =
⋃
i∈[n] Ωi and Ωi ∩ Ωj = ∅ for each i 6= j.

Understanding how the process behaves in each set Ωi and how it transitions from

Ωi → Ωj give rise to good bounds of the mixing time via (6.16) [59]. In this thesis,

we use a similar method of decomposing the state space to calculate relaxation times

given in Chapter 5.
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CHAPTER 3

Characterisation of

Condensation

3.1 Introduction

A condensation transition occurs when the particle density exceeds a critical value

and the system phase separates into a fluid phase and a condensate. The fluid phase

is distributed according to the maximal invariant measure at the critical density, and

the excess mass concentrates on a single lattice site, called the condensate. Most

results on condensation so far focus on zero-range or more general misanthrope

processes in thermodynamic limits where the lattice size and the number of particles

diverge simultaneously. Initial results are contained in [13, 60, 7], and for summaries

of recent progress in the probability and theoretical physics literature see e.g. [61,

62, 63]. Condensation has also been shown to occur for processes on finite lattices

in the limit of infinite density, where the tails of the single site marginals of the

stationary product measures behave like a power law [64]. In general, condensation

results from a sub-exponential tail of the maximal invariant measure [65], and so

far most studies focus on power law and stretched exponential tails [65, 66, 67].

As a first result, we generalize the work in [64] and provide a characterization of

condensation on finite lattices in terms of a class of sub-exponential tails that has

been well studied in the probabilistic literature [68, 69, 70, 71].

In this chapter we discuss various definitions of condensation for finite sys-

tems and in the thermodynamic limit for processes that exhibit homogeneous sta-

tionary product measures. We state our main result linking condensation on finite

lattices and sub-exponential distributions in Section 3.3. In Section 3.5, we review

key results for processes which exhibit condensation in the thermodynamic limit and

provide an example where condensation occurs in the thermodynamic limit but not

on finite lattices. We give a short discussion on the links between various definitions
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of condensation on finite lattices in Section 3.6 and provide a proof of our main

result in Section 3.7. In Section 3.8 we review a process that does not exhibit sta-

tionary product measures and discuss further the differences between condensation

on a finite lattice and in the thermodynamic limit.

3.2 Definitions

Condensation appears in the mathematical and physical literature in many different

forms, and therefore, one global definition which encompasses all relevant results is

difficult to come by. In this section, we discuss various definitions of condensation

in the thermodynamic limit and on finite lattices, which are appropriate for the

interacting particle systems discussed in this thesis.

Formally, we consider interacting particle systems on the countable state

space NΛ where |Λ| = L <∞. We assume the interacting particle system conserves

particle density, is translation invariant, and is irreducible on the state space

ΩL,N =

{
η ∈ NΛ :

∑
x∈Λ

ηx = N

}
, (3.1)

which implies that the process exhibits a unique invariant measure πL,N on ΩL,N .

Furthermore, from translation invariance we have πL,N [{ηx ∈ ·}] = πL,N [{ηy ∈ ·}]
for all x, y ∈ Λ.

In the thermodynamic limit, where

N, L→∞ such that
N

L
→ ρ , (3.2)

we define condensation via a local weak limit of the sequence of probability measures

πL,N to a measure µρ (if it exists) on NN. For a sequence of probability measures

πL,N , local weak convergence means that

πL,N (f)→ µρ(f) for all f ∈ C0
b

(
NN
)
, (3.3)

where C0
b

(
NN) is the set of bounded cylinder functions on NN. Note that local weak

convergence is equivalent to convergence in distribution of all finite dimensional

marginals. For a more complete discussion of weak convergence in the context of

interacting particle systems see [12]. Condensation in the thermodynamic limit is

then defined as follows:

Definition 3.2.1. A stochastic particle system with canonical measures πL,N ex-
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CHAPTER 3. CHARACTERISATION OF CONDENSATION

hibits condensation in the thermodynamic limit (3.2) for some ρ if there exists

a measure µρ on NN such that the sequence of measures πL,N converges to µρ in the

sense of (3.3) with

µρ (η0) < ρ .

Heuristically, this definition indicates that mass has been lost in the thermo-

dynamic limit. Large finite systems phase separate into a condensate, where a finite

fraction of particles concentrates in a vanishing volume fraction, and a fluid or bulk

phase where the remaining particles are homogeneously distributed.

This has been established rigorously for interacting particle systems that

exhibit stationary product measures (2.11) with stationary weights w(n) > 0 which

decay sub-exponentially, i.e.

1

n
log (w(n))→ 0 as n→∞ .

For such models, Dφ = [0, φc] and there is an invariant product measure νφc with

density ρc := ρ(φc) <∞. Then for ρ > ρc the limit measure νρ is the grand canonical

measure at a critical density ρc, which satisfies µρ(η0) = νφc(η0) = ρc < ρ. Then

condensation according to Definition 3.2.1 occurs as a continuous phase transition

at ρ = ρc. In [72, 73], heuristic computations and numerical simulations show

a condensation transition for processes that exhibit stationary measures that are

finite range Gibbs measures on ΩL,N .

Condensation has also been established as a discontinuous phase transition

for processes that exhibit stationary product measures with size-dependent station-

ary weights wL(n) [74]. In this case, there exists a transition density, ρtrans, and

critical density, ρc, such that for all ρ > ρtrans the system separates into a condensate

and fluid region distributed according a critical measure with density ρc.

In the infinite particle limit N → ∞ on fixed lattices Λ, i.e. |Λ| = L <

∞, condensation could be defined by the same approach as in the thermodynamic

limit by excluding condensed sites using order statistics or cut-off. This approach,

however, fails to capture examples of condensing systems as we will discuss in Section

3.6. Therefore, for finite systems we outline two definitions of condensation by first

defining the maximum occupation numbers

ML(η) := max
x∈Λ

ηx . (3.4)

First, consider a definition of condensation by using the weak law of large number

for the maximum occupation number.
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Definition 3.2.2. A stochastic particle system with canonical measure πL,N on

ΩL,N with L ≥ 2 exhibits weak condensation (on finite lattices) if

ML

N

πL,N−−−→ 1 as N →∞ ,

where
πL,N−−−→ denotes convergence in probability, i.e.

lim
N→∞

πL,N

[∣∣∣∣ML

N
− 1

∣∣∣∣ > ε

]
= 0 (3.5)

for all ε > 0.

A second definition, which was first used in [64], is given as follows.

Definition 3.2.3. A stochastic particle system with canonical measure πL,N on

ΩL,N with L ≥ 2 exhibits condensation on fixed finite lattices if

lim
K→∞

lim
N→∞

πL,N [ML ≥ N −K] = 1 . (3.6)

In [64] condensation according to Definition 3.2.3 was proved for processes

that exhibit stationary (conditional) product measures on ΩL,N with stationary

weights of the form w(n) ∼ n−b for b > 1. Furthermore, it was proved that the dis-

tribution πL,N with the maximum occupation ML(η) removed converges weakly (or

equivalently in total variation) to the critical grand-canonical measure on L−1 sites.

In Section 3.3 we generalise this result for processes that exhibit stationary (condi-

tional) product measure with stationary weights that have a general sub-exponential

tail. It is immediate that Definition 3.2.3 implies Definition 3.2.2 (condensation im-

plies weak condensation) since (3.6) implies a weak law of large numbers for the

rescaled maximum occupation ML/N . However, the two definitions are not equiv-

alent as we will discuss in Section 3.6.

A law of large numbers analogous to (3.5) has also been proved in the ther-

modynamic limit for particular models with stationary product measures in [65, 66],

which implies that the condensed phase actually concentrates on a single lattice site.

3.3 Results

In this section, we outline our main result on characterising condensation on finite

lattices for processes that exhibit stationary product measures as stated in Definition

3.2.3 (condensation). We also give a brief discussion on this result and state some

common distributions that exhibit condensation.
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Recall the (homogeneous) conditional product measures πL,N on the finite

state space ΩL,N introduced in Section 2.3.1 with mass function

πL,N [η] =
1

ZL,N

∏
x∈Λ

w(ηx)1 (η ∈ ΩL,N ) . (3.7)

Our results hold for systems with general stationary weights, w(n) > 0 for

each n ∈ N, subject to the regularity assumption that

lim
n→∞

w(n− 1)/w(n) ∈ (0,∞] (3.8)

exists. Under this regularity condition, this limit is given by the radius of conver-

gence φc of the grand canonical partition function z(φ) (2.12). If φc < ∞ then

weights that satisfy (3.8) are sometimes called long-tailed [75], which is discussed in

more detail in Section 3.5.

Proposition 3.3.1. Consider a stochastic particle system as defined in Chapter 2

with (conditional) stationary product measures as defined by (3.7) satisfying regular-

ity assumption (3.8). Then the process exhibits condensation according to Definition

3.2.3 (condensation) if and only if φc <∞, Dφ = [0, φc], and

lim
N→∞

ν2
φc

[η1 + η2 = N ]

νφc [η1 = N ]
= lim

N→∞

Z2,N

w(N)z(φc)
∈ (0,∞) exists . (3.9)

In that case, the distribution of particles outside of the maximum converges weakly

(equivalently in total variation) to the critical product measure νL−1
φc

, i.e. for fixed

n1, . . . , nL−1 ≥ 0 we have

πL,N [η1 = n1, . . . , ηL−1 = nL−1|ML = ηL]→
L−1∏
i=1

νφc [ηi = ni] as N →∞ .

(3.10)

Proof. See Section 3.7.

Note that for φc ∈ (0,∞) we may rescale the exponential part of the weights

to get φc = 1 and we can further multiply with a constant, so that in the following

we can assume without loss of generality that

w(0) = 1 and φc = lim
n→∞

w(n− 1)/w(n) = 1 . (3.11)
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The condition (3.9) can also be written as

lim
N→∞

Z2,N

w(N)
= lim

N→∞

(w ∗ w)(N)

w(N)
∈ (0,∞) exists , (3.12)

where (w ∗ w)(N) =
∑N

k=0w(k)w(N − k) is the convolution product. This is a

standard characterization to define a class of distributions with sub-exponential

tail (see e.g. [76, 77]). Implications and simpler necessary conditions on w(n) which

imply (3.12) have been studied in detail, and we provide a short discussion in Section

3.4.

Proposition 3.3.1 provides a generalization of previous results on condensa-

tion on finite lattices [64]. The class of sub-exponential distributions that fulfil (3.9)

and therefore exhibit condensation on finite lattices is large (see e.g. [68, Table 3.7]),

and includes in particular

• power law tails w(n) ∼ n−b where b > 1,

• log-normal distribution

w(n) =
1

n
exp{−(log(n)− µ)2/(2σ2)} , (3.13)

where µ ∈ R and σ > 0, which always has finite mean,

• stretched exponential tails w(n) ∼ exp{−Cnγ} for 0 < γ < 1, C > 0,

• almost exponential tails w(n) ∼ exp
{
− n

log(n)β

}
for β > 0.

For the last two examples, all polynomial moments are finite. This covers all previ-

ously studied models of condensation on fixed finite lattices according to Definition

3.2.3 and in the thermodynamic limit for zero-range processes [7, 64, 67]. It can

also be shown that the limit in (3.12) is necessarily equal to 2z(φc) and that in fact
ZL,N
w(N) → Lz(φc)

L−1 for any fixed L ≥ 2 [71].

Since we consider a fixed lattice Λ, ρc = ρ(φc) < ∞ is not a necessary

condition for condensation as opposed to systems in the thermodynamic limit. Even

if the distribution of particles outside the maximum has infinite mean, condensation

in the sense of Definition 3.2.3 (condensation) can occur. However, if z(φc) =∞ (e.g.

for power law tails with b ≤ 1), the distribution of particles outside the maximum

cannot be normalized, condition (3.9) fails, and there is no condensation in the sense

of Definition 3.2.3 (condensation).

28



CHAPTER 3. CHARACTERISATION OF CONDENSATION

3.4 Sub-exponential distributions

In the previous section, we saw an equivalence between condensation on finite lat-

tices for processes that exhibit stationary product measures and sub-exponential

distributions. In this section, we give an overview of sub-exponential distributions

and their properties.

Sub-exponential distributions are a special class of heavy-tailed distributions,

the following characterization was introduced in [78] with applications to branching

random walks, and has been studied systematically in later work (see e.g. [71, 69,

70, 76]). For a review see for example [68] or [77].

Definition 3.4.1. A non-negative random variable X with distribution function

F (x) = P[X ≤ x] is called heavy tailed if F (0+) = 0, F (x) < 1 for all x > 0, and

eλx(1− F (x))→∞ as x→∞ for all λ > 0 . (3.14)

It is called sub-exponential if F (0+) = 0, F (x) < 1 for all x > 0, and

1− F ?2(x)

1− F (x)
→ 2 as x→∞ . (3.15)

Here F ?2(x) = P[X1 + X2 ≤ x] denotes the convolution product, the distri-

bution function of the sum of two independent copies X1 and X2. It has been shown

[78, 79] that (3.15) is equivalent to either of the following conditions,

lim
x→∞

1− F ?L(x)

1− F (x)
= L for all L ≥ 2 , or (3.16)

lim
x→∞

P
[∑L

i=1Xi > x
]

P
[

max{Xi : i ∈ {1, . . . , L}} > x
] = 1 for all L ≥ 2 . (3.17)

The second characterization shows that a large sum of independent sub-exponential

random variables Xi is typically realized by one of them taking a large value, which

is of course reminiscent of the condensation phenomenon. It was further shown in

[78, 68] that sub-exponential distributions also have the following properties,

lim
x→∞

1− F (x− y)

1− F (x)
= 1 ∀y ∈ R, (3.18)

(1− F (x))eεx →∞ ∀ε > 0 (heavy tailed in the sense of (3.14)) . (3.19)

Most results in the literature are formulated in terms of distribution functions and

tails and apply to discrete as well as continuous random variables. [71] provides a
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valuable connection to discrete random variables in terms of their mass functions

w(n), n ∈ N. Assume the following properties for a sequence {w(n) > 0 : n ∈ N},

(a) w(n−1)
w(n) → 1 as n→∞,

(b) z(1) :=
∑∞

n=0w(n) <∞ (normalizability),

(c) limN→∞
(w∗w)(N)
w(N) = C ∈ (0,∞) exists.

Then [71, Theorem 1] asserts that C = 2z(1) and w(n)/z(1) is the mass function of

a discrete, sub-exponential distribution. The implication

(w?L)(N)

w(N)
→ Lz(1)L−1 as N →∞ for L > 2

is given in [71, Lemma 5]. Sufficient (but not necessary) conditions for assumption

(c) to hold are given in [71, Remark 1]. Provided z(1) <∞, then (c) holds if either

of the following conditions are met:

(i) sup1≤k≤n/2
w(n−k)
w(n) ≤ K

for some constant K > 0, or

(ii) w(n) = e−nψ(n)

where ψ(x) is a smooth function on R with ψ(x)↘ 0 and x2|ψ′(x)| ↗ ∞ as x→∞,

and
∫∞

0 dx e−
1
2
x2|ψ′(x)| <∞.

Case (i) includes distributions with power law tails, w(n) ∼ n−b with b > 1.

The stretched exponential with ψ(x) = xγ−1, γ ∈ (0, 1), and the almost exponential

with ψ(x) = (log(x))−β, β > 0, are covered by case (ii). The class of sub-exponential

distributions includes many more known examples than the list given in Section 3.3

(see e.g. [68, Table 3.7]). Analogous to the characterisation of sub-exponential

distributions, given by (3.17), for discrete distributions the existence of the limit

(w ∗ w)(N)/w(N) is equivalent to the following condition

P[X1 +X2 = N ]

P
[

max{X1, X2} = N
] → 1 as N →∞ . (3.20)

This holds, since we have the following equality of ratios

P[X1 +X2 = N ]

P
[

max{X1, X2} = N
] =

Z2,N

2w(N)
∑N

n=0w(n)
=

(w ∗ w)(N)

2w(N)
∑N

n=0w(n)
.

Specific properties of power law tails w(n) are used in [64] to show condensa-

tion for finite systems in the sense of Definition 3.2.3. In Proposition 3.3.1, proved
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in the Section 3.7, we extend this result to stationary product measures with gen-

eral sub-exponential tails. In this context, condensation is basically characterized

by the property (3.17) which assures emergence of a large maximum when the sum

of independent variables is conditioned on a large sum. As summarized in the in-

troduction, condensation in stochastic particle systems has mostly been studied in

the thermodynamic limit with particle density ρ ≥ 0, where L,N → ∞ such that

N/L → ρ. In that case conditions on the sum of L independent random variables

become large deviation events, which have been studied in detail in [80, 81].

3.5 Connection with the thermodynamic limit

In the thermodynamic limit, we have defined condensation by a weak limit of mea-

sures as given by Definition 3.2.1 (condensation in the thermodynamic limit). Equiv-

alently, the approach presented in [65, 62] follows the classical paradigm for phase

transitions in statistical mechanics via the equivalence of ensembles (see e.g. [82] for

more details). A system with stationary product measures (2.11) exhibits conden-

sation if the critical density (2.15) is finite, i.e. ρc <∞ and the canonical measures

πL,N are equivalent to the critical product measure νφc in the limit L,N →∞ such

that N/L→ ρ for all super-critical densities ρ ≥ ρc. The interpretation is again that

the bulk of the system (any finite set of sites) is distributed as the critical product

measure in the limit. It has been shown in [65] (see also [62] for a more complete

presentation) that the regularity condition (3.8) and ρc <∞ imply the equivalence

of ensembles, which has therefore been used as a definition of condensation in [62,

Definition 2.1]. Condensation on fixed finite lattices in the sense of Definition 3.2.3

implies the regularity condition (3.8) and therefore, if in addition ρc <∞, this im-

plies condensation in the thermodynamic limit. This includes all previously studied

examples [7, 67], however there exist distributions that satisfy (3.8) with ρc <∞ but

do not satisfy the conditions of Proposition 3.3.1 and do not condense for fixed Λ.

This is illustrated by an example given below. It is also discussed in [62, Section 3.2]

that assumption (3.8) is not necessary to show equivalence of ensembles, but weaker

conditions are of a special, less general nature and are not discussed here. Note also

that equivalence of ensembles does not imply that the condensate concentrates on

a single lattice site, the latter has been shown so far only for stretched exponential

and power-law tails with ρc <∞ in [66, 67].

The condensation phenomena can also be studied for continuous random

variables on the local state space [0,∞), see for example [81]. The following contin-
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uous example, taken from [70] is shown to satisfy (3.8) but is not sub-exponential.

We show that the distribution has a finite mean and exhibits condensation in the

thermodynamic limit, as shown in [65], but not on a fixed finite lattice in the sense

of Definition 3.2.3. For a real-valued random variable X with distribution function

F (x) = P[X ≤ x], assume F ′(x) = g′(x)e−g(x). Let (xn)n∈N be an increasing se-

quence with x0 = 0 and g(x) be a continuous and piecewise linear function such

that g(0) = 0 and g′(x) = 1/n for x ∈ (xn−1, xn). The sequence (xn)n∈N is defined

iteratively as follows

xn − xn−1 = 2neg(xn−1) ,

g(xn)− g(xn−1) = 2eg(xn−1) , (3.21)

and g(x) − g(xn−1) = x−xn−1

n for x ∈ [xn−1, xn). The mean can be computed as

follows∫ ∞
0

xF ′(x)dx =
∞∑
n=1

1

n

∫ xn

xn−1

xe−g(x)dx =
∞∑
n=1

e−g(xn−1)

n

∫ xn

xn−1

xe−
x−xn−1

n dx .

Evaluating the integral we find∫ ∞
0

xF ′(x)dx =
∞∑
n=1

e−g(xn−1)
(
n+ xn−1 − (n+ xn)e−

xn−xn−1
n

)
=

∞∑
n=1

ne−g(xn−1) +

∞∑
n=1

xn−1e
−g(xn−1) −

∞∑
n=1

ne−g(xn) −
∞∑
n=1

xne
−g(xn) .

Using (3.21) we can simplify the final term to show∫ ∞
0

xF ′(x)dx =

∞∑
n=0

e−g(xn) <∞ ,

where the final step uses the relation g(xn)− g(xn−1) = 2eg(xn−1) ≥ 2(1 + g(xn−1))

and g(x0) = 0, which implies g(xn) ≥ 2(2n − 1), to bound the series from above.

For all long-tailed but not sub-exponential measures ZL,N/w(N) does not

have a limit in (0,∞) as N →∞ and with Proposition 3.3.1 there is no condensation

on finite lattices according to Definition 3.2.3 (condensation). In the following, we

adapt the example above for discrete random variables on N. First redefine the
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sequences (xn)n∈N and (g(xn))n∈N as follows

xn − xn−1 = n2g(xn−1)

g(xn)− g(xn−1) = 2g(xn−1) ,

with x0 = 0 and g(x0) = 0, which ensures xn ∈ N and g(xn) ∈ N for all n ∈ N. For

k ∈ [xn−1, xn) let the weights be given by

w(k) = 2−g(k) = 2
−g(xn−1)−

(
k−xn−1

n

)
. (3.22)

Following the approach given in [70] we show Z2,N/w(N) → ∞ for N = xn as

n→∞. By dropping the terms k ∈ {0, . . . , xn−1 − 1} we have

Z2,xn

w(xn)
≥

xn∑
k=xn−1

2−g(k)−g(xn−k)+g(xn) .

Since g(·) is linearly increasing and g′(k) = 1
n for k ∈ [xn−1, xn), which is decreasing,

we have

g(xn)− g(xn − k) ≥ kg′(xn) =
k

n
.

Therefore,

−g(k) + g(xn)− g(xn − k) ≥ −g(xn−1)− k − xn−1

n
+
k

n
≥ −g(xn−1) ,

which implies

Z2,xn

w(xn)
≥

xn∑
k=xn−1

2−g(k)−g(xn−k)+g(xn)

≥
xn∑

k=xn−1

2−g(xn−1)

≥ 2−g(xn−1) (xn − xn−1) = n ,

which diverges as n → ∞. For this example, following the proof of Proposition

3.3.1, this implies that π2,N [η1 ∧ η2 ≤ K] → 0 along the subsequence N = xn as

N →∞ (and n→∞) for all K ≥ 0. Therefore, the L = 2 bulk occupation number

η1∧η2 diverges in distribution as N →∞ by receiving a diverging excess mass from

the condensate due to the light tail. Since the distribution is long-tailed the model

does exhibit condensation in the thermodynamic limit according to Definition 3.2.1
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(condensation in the thermodynamic limit) where the excess mass can be distributed

on a diverging number of sites.

3.6 A law of large numbers for the rescaled maximum

occupation number ML(η)/N

In this section, we discuss the links between Definition 3.2.3 (condensation) and

condensation defined by the weak law of large numbers for the rescaled maximum

occupation ML/N in Definition 3.2.2 (weak condensation). As previously discussed,

it is clear that assuming condensation holds according to Definition 3.2.3 (con-

densation) then a weak law of large numbers holds for the rescaled maximum,

i.e. ML/N
πL,N−−−→ 1 as N → ∞, and condensation holds according to Definition

3.2.2 (weak condensation). However, the converse is not true as we will show with

the following example.

Consider a conditional product measure with weights of the form

w(n) =
1

n+ 1
,

then the critical partition function z(φc) = z(1) =
∑∞

n=0
1

n+1 = ∞ and the critical

measure does not exist. Also the ratio
Z2,N

w(N) → ∞ as N → ∞ and, therefore, by

Proposition 3.3.1 condensation does not occur according to Definition 3.2.3 (conden-

sation) on two sites. We now show that the weak law of large numbers is satisfied

for L = 2 and, therefore, condensation occurs according to Definition 3.2.2 (weak

condensation). We have M2(η) ∈ {dN/2e, . . . , N}, and then (3.5) holds if

lim
N→∞

π2,N [dN/2e ≤M2 < N − bεNc] = 0 ,

for all ε > 0 small enough. For simplicity consider the case when N is odd, then we

have

π2,N [dN/2e ≤M2 < N − bεNc] ≤ 1

Z2,N

N−bεNc∑
n=N+1

2

w(n)w(N − n) . (3.23)

To find a lower bound for the partition function we note w(n)w(N−n) is symmetric
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under n↔ N − n, and w(n)w(N − n) is decreasing for n ∈
{

0, . . . bN2 c
}

, so

Z2,N = 2

N−1
2∑

n=0

w(n)w(N − n) ≥ 2

∫ N+1
2

0

1

x+ 1

1

N + 1− x
dx

= 2
log(N + 3)

N + 2
.

The numerator in (3.23) can be bounded above by

1

bεNc+ 1

1

N + 1− bεNc
+

log
(

(N+1)(N−bεNc+1)
(N+3)(bεNc+1)

)
N + 2

,

which implies

π2,N [dN/2e ≤M2 < N − bεNc]→ 0 as N →∞

and the weak law of large numbers holds for the sequence M2/N . Therefore, Defini-

tion 3.2.2 (weak condensation) does not imply Definition 3.2.3 (condensation) and

the two statements are not equivalent. For this example, the minimum occupation

number holds an o(N) number of particles which diverges as N → ∞, in contrast

to processes that condense according to Definition 3.2.3, where a finite number of

particles occupy the minimum in the limit as N →∞.

3.7 Proof of Proposition 3.3.1

Let us first assume that the process exhibits condensation according to Definition

3.2.3 (condensation) and has canonical distributions of the form (2.18) where the

weights fulfil (3.8), i.e. w(n− 1)/w(n)→ φc ∈ (0,∞] as n→∞. In this part of the

proof we establish that;

1. φc <∞,

2.
ZL,N
w(N) has a limit as N →∞,

3. z(φc) <∞, which also implies
ZL,N
w(N) → Lz(φc)

L−1 as N →∞, and

4. convergence of
ZL,N
w(N) → Lz(φc)

L−1 for some L ≥ 2 implies convergence for

L = 2 and therefore (3.9) holds.

Step (1), show φc < ∞. Assume first that w(n − 1)/w(n) → ∞ as n → ∞.
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For all K ∈ N and N > K we have

πL,N [ML ≥ N −K] =
L

ZL,N

K∑
n=0

ZL−1,nw(N − n)

≤ LK + 1

ZL,N
max

0≤n≤K
(ZL−1,n) max

0≤n≤K
(w(N − n)) .

Let n? = argmax0≤n≤K (w(N − n)). The partition function ZL,N is trivially bounded

below by the event that site 1 takes N − n? − 1 particles and the second site takes

the remaining n? + 1 particles, i.e.

ZL,N ≥ w(0)L−2w(n? + 1)w(N − n? − 1) .

Therefore

πL,N [ML ≥ N −K] ≤ L

w(0)L−2

K + 1

w(n? + 1)

w(N − n?)
w(N − n? − 1)

max
0≤n≤K

(ZL−1,n)→ 0

as N →∞, which implies condensation cannot occur in the sense of Definition 3.2.3

(condensation) contradicting the initial assumption, therefore φc <∞.

Step (2), prove ZL,N/w(N) converges as N → ∞. By Definition 3.2.3 the

limit

aK := lim
N→∞

πL,N [ML ≥ N −K] , (3.24)

exists and aK > 0 for K sufficiently large. For N > K we have

πL,N [ML ≥ N −K] = L
w(N)

ZL,N

K∑
n=0

ZL−1,n
w(N − n)

w(N)
. (3.25)

Since w(N −n)/w(N)→ φnc , K is fixed, and aK > 0, (3.25) implies the convergence

of ZL,N/w(N) as N →∞.

Step (3), prove z(φc) < ∞. By (3.6) we have aK → 1 as K → ∞, with the

limit as N →∞ of (3.25) this implies

lim
K→∞

K∑
n=0

ZL−1,nφ
n
c =

∞∑
n=0

ZL−1,nφ
n
c <∞ . (3.26)

Since we also have
∑∞

n=0 ZL−1,nφ
n
c = z(φc)

L−1, this implies z(φc) < ∞. Using

aK → 1, (3.25) then also implies ZL,N/w(N)→ Lz(φc)
L−1 as N →∞.

Step (4). We have seen above that condensation implies φc <∞, z(φc) <∞,
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and ZL,N/w(N)→ Lz(φc)
L−1 as N →∞, then [83, Theorem 2.10] implies

lim
N→∞

Z2,N

w(N)
= 2z(φc) ,

completing this part of the proof.

To prove (3.10), let us consider a stochastic particle system with canonical

distributions of the form (2.18) which fulfil (3.11) and (3.12) with φc = 1 and

z(1) < ∞. We keep the notation for φc = 1 general in the following to clarify the

argument. From [71, Theorem 1 and Lemma 5], we have

ZL,N
w(N)

→ Lz(φc)
L−1 as N →∞ , (3.27)

therefore it is immediate that

πL,N [ML = N ] = Lw(N)/ZL,N → z(φc)
−(L−1) > 0 .

Then we have for all fixed K and N > K

πL,N [ML ≥ N −K] = L
K∑
n=0

w(N − n)ZL−1,n

ZL,N
=

K∑
n=0

ZL−1,n
w(N − n)

w(N)

Lw(N)

ZL,N

→
K∑
n=0

ZL−1,nφ
n
c

z(φc)L−1
= νφc(η1 + . . .+ ηL−1 ≤ K)

as N →∞. Since νφc is a non-degenerate probability distribution, this implies that

νφc(η1 + . . .+ ηL−1 ≤ K)→ 1 as K →∞, which is (3.6).

To compute the distribution outside the maximum we get for fixed n1, . . . , nL−1

and large enough N

πL,N [η1=n1, . . . , ηL−1=nL−1|ML=ηL] =
w(n1) · · ·w(nL−1)w(N − n1− . . .−nL−1)

πL,N [ML=ηL] ZL,N

=
1

LπL,N [ML = ηL]
w(n1) · · ·w(nL−1)

w(N − n1 − . . .− nL−1)

w(N)

Lw(N)

ZL,N

→ w(n1) · · ·w(nL−1)φ
n1+...+nL−1
c /z(φc)

L−1 , (3.28)

as N →∞. Here we have used that spatial homogeneity of the measure and asymp-

totic uniqueness of the maximum according to (3.6) imply πL,N [ML = ηL] → 1/L.

This completes the proof of Proposition 3.3.1.
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3.8 Condensation beyond stationary product measures

We have defined the critical density ρc only for systems with product stationary

measures (see (2.15)). In general, the critical density on a fixed system of size

L ≥ 2, with unique invariant measure πL,N , can be defined as

ρc(L) := lim sup
N→∞

RbgL (N) , (3.29)

where the background density is defined as

RbgL (N) :=
1

L− 1
πL,N (N −ML) . (3.30)

Notice if πL,N are conditional product measures (2.18) then ρc(L) is consistent with

(2.15) and in-particular independent of L, which follows from Proposition 3.3.1 (or

more explicitly (3.10)).

In this section, we introduce the chipping model, which is a process that

does not exhibit stationary product measures. This process has been shown to

exhibit condensation via heuristic computations in the thermodynamic limit [84,

85, 86]. By computing the stationary measure for the process on two sites we show

that the process exhibits condensation according to Definition 3.2.3 (condensation).

We also compute the critical density (3.29), ρc(2), which leads to the suggestion

that the critical density can be dependent on the system size for processes without

stationary product measures. We further demonstrate this claim with numerics from

simulations of the process shown in Figure 3.1.

The chipping model is a stochastic particle system on the state space ΩL,N

introduced in [84, 85]. The dynamics of the chipping model are constructed such

that either all particles at site x ∈ Λ jump collectively at rate 1 or a single particle

jumps at rate w > 0. Once a transition occurs at site x the collection of particles

jump to site y ∈ Λ according to an irreducible random walk p(x, y). The dynamics

are defined by the generator

Lchip
L,Nf(η) =

∑
x,y∈Λ

w1(ηx > 0)p(x, y)
(
f(ηx,y)− f(η)

)
+
∑
x,y∈Λ

1(ηx > 0)p(x, y)
(
f(η + ηx(δy − δx))− f(η)

)
, (3.31)

where η+ ηx(δy − δx) denotes the configuration after all the particles at site x have

jumped to site y.

For the chipping model in the case L = 2 with p(1, 2) = p(2, 1) = 1, the
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process reduces to a 1-dimensional process on {0, . . . , N} defined by the generator

Lchip
2,N f(n) =1(n > 0) (f(0)− f(n)) + w1(n > 0) (f(n− 1)− f(n))

+ 1(n < N) (f(N)− f(n)) + w1(n < N) (f(n+ 1)− f(n)) . (3.32)

The stationary measure of the two site chipping model can be computed exactly

and is given in the following proposition.

Proposition 3.8.1. Let π2,N [·] be the stationary measure of the two site chipping

model defined by the generator (3.32) on Ω2,N . Define µN [n] := π2,N [(n,N − n)]

then

µN [n] =
An+

(
A+ − 1 +AN− −AN+1

−

)
−An−

(
A− − 1 +AN+ −AN+1

+

)
2
(
AN+1

+ −AN+1
−

) , (3.33)

where

A± =
1 + w ±

√
1 + 2w

w
.

Proof. Directly from the master equation (2.9) and since the process is homogeneous

we have that the measure µN [n] is stationary if it satisfies the following conditions;

(i) 2(1 + w)µN [n] = wµN [n− 1] + wµN [n+ 1] for n ∈ {1, . . . , N − 1},
(ii) (1 + w)µN [0] =

∑N
k=1 µN [k] + wµN [1], and

(iii) (1 + w)µN [N ] =
∑N−1

k=0 µN [k] + wµN [N − 1].

To simplify the later parts of this proof we first show that the measure µN [n]

is symmetric. To see this, first note that A+A− = 1, which implies

µN [N − n] =
AN−n+

(
A+ − 1 +AN− −AN+1

−

)
−AN−n−

(
A− − 1 +AN+ −AN+1

+

)
2
(
AN+1

+ −AN+1
−

)
=
A−n+

(
AN+1

+ −AN+ + 1−A−
)
−A−n−

(
AN+1
− −AN− + 1−A+

)
2
(
AN+1

+ −AN+1
−

) .

Multiplying by An+A
n
− = 1 we see that (i) holds for (3.33).

Condition (i) holds since

wµN [n− 1] + wµN [n+ 1] =

An+

(
A+ − 1 +AN− −AN+1

−

)(
w
A+

+ wA+

)
−An−

(
A− − 1 +AN+ −AN+1

+

)(
w
A−

+ wA−

)
2
(
AN+1

+ −AN+1
−

) ,
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and (
w

A±
+ wA±

)
= 2(1 + w) .

By the geometric series formula it is easy to see
∑N

n=0 µN [n] = 1 and con-

dition (ii) holds. Finally, condition (iii) holds by the symmetry condition given

above.

By equation (3.29) and Proposition 3.8.1 the two site critical density ρc(2)

can be computed explicitly to find

ρc(2) = lim
N→∞

2

N/2∑
n=1

nµN [n] =
1

2

(√
1 + 2w − 1

)
. (3.34)

Condensation, according to Definition 3.2.3 (condensation), occurs in the L = 2

chipping model since

lim
N→∞

µ2,N [M2 ≥ N −K] = lim
N→∞

2µ2,N

[
η2 ≥ N −K

∣∣ η1 ≤ η2

]
= lim

N→∞
2

K∑
n=0

µN [n]

=
A+ − (A−)K

A+
.

Where the final term tends to 1 as K →∞ since 0 < A− < 1 for all w > 0.

In [84, 85, 86] the critical density in the thermodynamic limit is defined as

ρc := sup

{
ρ :

µL,N (η2
x)

L
→ 0 as N,L→∞ such that

N

L
→ ρ

}
,

and heuristic computations show that

ρc =
√
w + 1− 1 . (3.35)

This suggests that the critical density can depend on the system size L for distribu-

tions with non-product stationary measures, which is highlighted in Figure 3.1 for

the chipping model on a complete graph.

The
√
w scaling of the critical density can be intuitively understood in the

two site chipping model with N particles. This process can be interpreted as a

symmetric random walk on the state space {0, . . . , N} with jumps i→ i± 1 at rate

w and random jumps to either boundary (resetting, i → 0 or N) at rate 1. After
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Figure 3.1: System size dependence of the background density RbgL (N) (3.30) for
the chipping model on a complete graph with L = 2 N = 200, L = 10 N = 50,
and L = 64 N = 320 as a function of w. The two site critical density ρc(2) (3.34)
and thermodynamic limit critical density ρc (3.35) and are given by black and red
lines. Results show a dependence on the system size L for the critical density ρc(L)
(3.29), which appears to approach ρc as L increases. All simulations of the chipping
model were performed using the algorithm described in Appendix A.3.1.

a reset, the particle diffuses at rate w and reaches a typical distance
√
w from the

boundary until the next reset. This model is a spatially homogeneous process that

heuristically exhibits a condensation transition with finite (size dependent) critical

density, but it does not exhibit stationary product measures. Condensation is also

observed in models where chipping is absent (w = 0) and the dynamics result in

a single block of particles jumping on the lattice {1, . . . , L} corresponding to the

critical density ρc = 0.
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CHAPTER 4

Monotonicity and Condensation

in Stochastic Particle Systems

4.1 Introduction

In this chapter, we focus on spatially homogeneous models with stationary product

measures as discussed in Chapter 2, which can exhibit a condensation transition

that has recently been studied intensively.

Monotone or attractive particle systems preserve the partial order on the

state space in time, which enables the use of powerful coupling techniques to derive

rigorous results on large scale dynamic properties such as hydrodynamic limits (see

[45] and references therein). These techniques have also been used to study the

dynamics of condensation in attractive zero-range processes with spatially inhomo-

geneous rates [9, 87, 88, 89, 90], and more recently [91, 92]. As we discuss in Section

4.5, non-monotonicity in homogeneous systems with finite critical density can be

related on a heuristic level to convexity properties of the canonical entropy. For

condensing systems with zero-range dynamics, it has been shown that this is related

to the presence of metastable states resulting in the non-monotone behaviour of

the canonical stationary current/diffusivity [16]. This corresponds to a first order

correction of a hydrodynamic limit leading to an ill-posed equation with negative

diffusivity in the case of reversible dynamics. Heuristically, this is of course con-

sistent with the concentration of mass in a small, vanishing volume fraction, but

poses great technical difficulties to any rigorous proof of hydrodynamic limits for

such particle systems. First results in this direction only hold for sub-critical sys-

tems under restrictive conditions [93], and due to lack of monotonicity there are no

results for non-reversible dynamics.

Condensing monotone particle systems would, therefore, provide interesting

examples of homogeneous systems for which coupling techniques could be used to
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derive stronger results on hydrodynamic limits. However, our result implies that

this is not possible for condensing models with stationary product measures and a

finite critical density on finite lattices. In the thermodynamic limit condensation

occurs if the critical density is finite, which implies the tail of the stationary mea-

sure is long-tailed. In the previous chapter, we proved that condensation occurs

on fixed finite lattices according to Definition 3.2.3 if and only if the stationary

measure is sub-exponential. However, as discussed in Section 3.5, since there exist

long-tailed measures which are not sub-exponential, condensation can occur in the

thermodynamic limit but not of finite lattices. Therefore, possible monotonicity for

such models remains an open problem, see Sections 3.4 and 3.5, for a more detailed

discussion.

For systems with infinite critical density condensation can still occur on finite

lattices, and since the point at which monotonicity is broken typically occurs above

the critical density such processes can also be monotone. For power law tails of

the stationary measure that decay faster than n−3/2 with the occupation number

n, we prove that such processes are still non-monotone. In Section 4.4 we present

preliminary results for tails that decay slower than n−3/2, for which we present

partial and numerical evidence that a monotone and condensing particle system

exists. The existence of a monotone processes with stationary weights of the form

n−3/2 has recently been proved in [54].

The chapter is organised as follows. In Section 4.2 we state our main result.

In Section 4.3 we prove our main theorem by induction over the size of the lattice,

showing that the family of canonical stationary measures is necessarily not mono-

tonically ordered in the number of particles. In Section 4.4 we review examples of

homogeneous processes that have been shown to exhibit condensation, and present

some explicit computations for misanthrope processes and processes with power law

tails.

4.2 Notation and results

4.2.1 Condensing stochastic particle systems

We consider stochastic particle systems on fixed finite lattices Λ = {1, . . . , L}, which

are continuous-time Markov chains on the countable state space ΩL = NΛ defined
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by the generator (2.7), i.e.

Lf(η) =
∑

{ξ∈ΩL:ξ 6=η}

c(η, ξ)
(
f(ξ)− f(η)

)
, (4.1)

for all continuous functions f : ΩL → R. We assume the process conserves the total

number of particles N =
∑

x∈Λ ηx and is irreducible on the finite state space ΩL,N =

{η ∈ ΩL :
∑

x∈Λ ηx = N}. On ΩL,N the process has a unique stationary distribution

πL,N , and the family
{
πL,N : N ≥ 0

}
is called the canonical ensemble as discussed

in Section 2.3.1. We focus on systems for which the stationary distributions are

spatially homogeneous, i.e. the marginal distributions πL,N [ηx ∈ ·] are identical for

all x ∈ Λ. This typically results from translation invariant dynamics on translation

invariant lattices with periodic boundary conditions, but the actual details of the

dynamics are not needed for our results.

In this chapter, we focus on systems that condense on fixed finite lattices

according to Definition 3.2.3 (condensation), i.e.

lim
K→∞

lim
N→∞

πL,N [ML ≥ N −K] = 1 ,

where ML(·) is the maximum occupation number (3.4).

4.2.2 Monotonicity and product measures

Recall, from Section 2.4, the natural partial order of configurations and the stochas-

tic order of measures on the state space ΩL.

A stochastic particle system on ΩL with generator L and semi-group (S(t) =

etL : t ≥ 0) is called monotone (attractive) if it preserves stochastic order in time,

i.e.

µ ≤ µ′ =⇒ µS(t) ≤ µ′S(t) for all t ≥ 0.

Coupling techniques for monotone processes are an important tool to derive

rigorous results on the large scale dynamics of such systems such as hydrodynamic

limits. There are sufficient conditions on the jump rates (4.1) to ensure monotonicity

for a large class of processes (see e.g. [45] for more details), however for our results

we only need a simple consequence for the stationary measures of the process.

Lemma 4.2.1. If the stochastic particle system as defined in Section 4.2.1 is mono-
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tone, then the canonical distributions πL,N are ordered in N , i.e.

πL,N ≤ πL,N+1 for all N ≥ 0 . (4.2)

The proof is completely standard but short, so we include it for completeness.

Proof. Consider two initial distributions µ and µ′, concentrating on ΩL,N and ΩL,N+1

respectively, given by

µ[η] = 1(η1 = N) and µ′[ξ] = 1(ξ1 = N + 1) ,

for η ∈ ΩL,N and ξ ∈ ΩL,N+1. Clearly µ ≤ µ′, and so by monotonicity of the process

this implies µS(t) ≤ µ′S(t) for all t ≥ 0. Furthermore, by ergodicity we have

πL,N = lim
t→∞

µS(t) ≤ lim
t→∞

µ′S(t) = πL,N+1 .

All rigorous results on condensing particle systems so far have been achieved

for processes for which the measures πL,N take a simple factorized form. In this

case, the process (4.1) has a stationary product measure with un-normalized single-

site weights w(n) > 0, n ∈ N, which we first discussed in Section 2.3.1 for general

zero-range processes. For clarity, we redefine these (homogeneous) measures here.

Due to the conservation of particle number the process exhibits a whole

family of homogeneous product measures

νLφ [η] =
∏
x∈Λ

νφ[ηx] with marginals νφ[ηx] =
w(ηx)

z(φ)
φηx , (4.3)

which are defined whenever the normalization z(φ) =
∑∞

n=0 φ
nw(n) is finite. The

family
{
νφ : φ ∈ Dφ

}
is also called the grand-canonical ensemble. Since the process

is irreducible on ΩL,N for all N ∈ N we have w(n) > 0 for all n ≥ 0. The canonical

distribution can be written as

πL,N [η] = νLφ [η|
∑
x∈Λ

ηx = N ] for all φ ∈ Dφ , (4.4)

which is independent of the choice of φ. Equivalently

πL,N [η] =
1

ZL,N

∏
x∈Λ

w(ηx) where ZL,N =
∑

η∈ΩL,N

∏
x∈Λ

w(ηx) (4.5)
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is the (canonical) partition function. Note that throughout this chapter we charac-

terize all measures by their mass functions since we work only on a countable state

space ΩL and the measures πL,N concentrate on finite state spaces ΩL,N .

4.2.3 Results

In this chapter, our results hold for systems with general stationary weights, w(n) >

0 for each n ∈ N, subject to the regularity assumption that

lim
n→∞

w(n− 1)/w(n) ∈ (0,∞] (4.6)

exists, which is then necessarily equal to φc by (2.13).

Theorem 4.2.2. Consider a spatially homogeneous stochastic particle system as

defined in Section 4.2.1 which exhibits condensation on fixed finite lattices in the

sense of Definition 3.2.3, has stationary product measures that satisfy (4.6), and

has finite critical density

ρc := νφc(η1) =
1

z(φc)

∞∑
n=0

nw(n)φnc <∞ . (4.7)

Then the canonical measures are not stochastically ordered so the process is neces-

sarily not monotone (see Lemma 4.2.1).

The same is true if (4.7) is replaced by the assumption that1 w(n) ∼ n−b as n→∞
with b ∈ (3/2, 2], i.e. stationary weights have a power law tail with infinite first

moment (ρc =∞).

4.2.4 Discussion

We will prove non-monotonicity in the next section by showing that expectations

for a particular monotone decreasing observable f : ΩL → R under πL,N are not

decreasing in N . The chosen function is related to (but not equal to) the number

of particles outside the maximum (condensate), which has been shown previously

to exhibit non-monotone behaviour for a class of condensing zero-range processes

in the thermodynamic limit (3.2) [16, 67]. When the number of particles N > ρcL

just exceeds the critical value, typical configurations still appear homogeneous. Only

when the number of particles is increased further the system switches to a condensed

state that contains almost all of the particles in the system. We present numerical

1For functions g, h : N→ R we use the notation g(n) ∼ h(n) if g(n)
h(n)

→ c ∈ (0,∞) as n→∞.
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(a) (b)

(c)

Figure 4.1: Non-monotone behaviour of the expected background density RbgL (N)
(4.8) for lattice sizes L = 32 and L = 128; (a) (finite mean) power law tails with
b = 5, (b) log-normal tails with µ = 0 and σ = 1/

√
2, and (c) almost exponential

tails with β = 1 (see Section 3.3 for details). The dotted black line shows the limit
as L,N →∞ and N/L→ ρ, which is monotone and non-decreasing.

evidence of this non-monotone switching behaviour for the background density

RbgL (N) :=
1

L− 1
πL,N (N −ML) (4.8)

in Figure 4.1. This is a finite size effect which disappears with increasing L, and

for specific models it has been shown to be related to the existence of super-critical

homogeneous metastable states [16, 74]. For large L, the switching to condensed

states occurs abruptly over a relatively small range of values for N/L. Our result

implies that this behaviour is generic for all condensing systems with finite critical

density. We also discuss a connection to convexity properties of the entropy of the

system in Section 4.5.

There are several examples of homogeneous, monotone particle systems with
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finite critical density that condense in the thermodynamic limit, which have been

studied on a heuristic level as summarized in Section 4.4. Their stationary mea-

sures are not of product form and no explicit formulas are known, so these systems

are therefore hard to analyse rigorously. In models with product measures different

parts of the lattice are uncorrelated and can therefore independently accommodate

fluctuations of occupation numbers beyond the critical value, which intuitively ex-

plains the presence of metastable fluid states with densities higher than ρc around

the critical point. For systems with non-product stationary measures, upward fluc-

tuations in the density which are homogeneously distributed may be suppressed

strongly enough, so that those metastable states do not exist. Such models may

then be also monotone.

We excluded the case φc = 0 in the presentation in Section 4.2.3 for notational

convenience, but it is easy to see that our results also hold in this case. With the

convention 00 = 1 we have z(0) = w(0) = 1 and ρc = 0, and then existence of the

limit Z2,N/w(N) is equivalent to

π2,N [M2 = N ] = 2
w(N)w(0)

Z2,N
→ 2w(0)

2z(0)
= 1 ,

i.e. condensation of all N particles on a single site. This can easily be extended to

all L ≥ 2 with Proposition 4.3.2. Considering only events with all N particles on

one site, or N−1 particles on one site and 1 particle elsewhere, we have convergence

from above

ZL,N
w(N)

− Lw(0)L−1 > L(L− 1)w(0)L−2w(1)
w(N − 1)

w(N)
> 0 .

This includes non-monotonicity of πL,N as we will see in Section 4.3. Examples

of this kind have been studied in [94] for zero-range dynamics with rates which

asymptotically decay to 0 as the occupation number diverges. This leads to super-

exponential stationary weights w(n) with φc = 0. A further example is given by the

condensing inclusion process studied in [22] and [23].

4.3 Proof of Theorem 4.2.2

We assume that the process exhibits condensation in the sense of Definition 3.2.3

and has stationary product measures, so the canonical measures πL,N are of the

form (4.5). Furthermore, we assume the weights satisfy the regularity assumption

(3.11), where without loss of generality φc = 1. We show that the family of canonical
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measures is not stochastically ordered in N , which implies non-monotonicity of the

process by Lemma 4.2.1. To achieve this, we use the test function

f(η) := 1(η1 = η2 = . . . = ηL−1 = 0) , (4.9)

which indicates the event where all particles concentrate in the maximum at site L.

Lemma 4.3.1. The function f : ΩL → R defined in (4.9) is monotonically decreas-

ing, which implies that

ZL,N
w(N)

≤
ZL,N+1

w(N + 1)
for all N ≥ 0 , (4.10)

whenever the canonical measures πL,N are stochastically ordered in N .

Proof. Fix configurations η, ζ ∈ ΩL such that η ≤ ζ. If f(η) = 0 then η has

at least one particle outside of site L, therefore so does ζ which implies f(ζ) =

0. If f(η) = 1 then necessarily f(η) ≥ f(ζ) since f(ζ) ∈ {0, 1}. Therefore f

is a decreasing function. Using (4.5) and the convention (3.11), we find that the

canonical expectation of the function (4.9) is given by

πL,N (f) =
w(0)L−1w(N)

ZL,N
=
w(N)

ZL,N
.

So if the canonical measures are monotone in N , monotonicity of f implies (4.10).

By Proposition 3.3.1 we know that for condensing systems the ratio Z2,N/w(N)

converges and then by [71, Theorem 1 and Lemma 5], which is summarised below in

Proposition 4.3.2, the sequence ZL,N/w(N) in Lemma 4.3.1 converges for all L ≥ 2.

Proposition 4.3.2. Consider conditional product measures (4.5) with weights w(n) >

0 for all n ∈ N, which satisfy

• w(n−1)
w(n) → φc as n→∞, the regularity assumption (3.11),

• z(φc) <∞,

• Z2,N

w(N) → C as N →∞.

Then C = 2z(φc) and furthermore,

ZL,N
w(N)

→ Lz(φc)
L−1 as N →∞ for all L ≥ 2 . (4.11)
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(a) (b)

Figure 4.2: Non-monotone behaviour of HL(N) (4.12), which is the expected value
of the observable (4.9) rescaled by its limit; (A) power law tails w(n) ∼ n−b for
L = 2 with b = 3, 1.75 and 1.35, where the latter is conjectured to be monotone
(see Section 4.4); (B) log-normal tails (3.13) with µ = 0 and σ = 1/

√
2 for L = 2,

L = 32 and L = 128.

Note that the limit in (4.11) states that the probability of observing a large

value of N under the critical product measure is asymptotically equivalent to the

probability of observing a large value of N on any one of the L sites, precisely

lim
N→∞

νLφc [SL(η) = N ]

Lνφc [η1 = N ]
= 1 .

This is further equivalent to the canonical probability of the maximum containing

the total mass converges to the critical probability that L − 1 sites are empty, i.e.

πL,N [ML = N ]→ νL−1
φc

[η ≡ 0].

To complete the proof we show a sub-sequence of ZL,N/w(N) converges from

above, which contradicts the assumption of monotonicity. We present a numerical

illustration for the monotonicity properties of the function

HL(N) :=
1

Lz(1)L−1

ZL,N
w(N)

. (4.12)

in Figure 4.2, which is normalized such that HL(N) → 1 as N → ∞. The proof of

the following Lemma represents the most significant part of the proof of Theorem

4.2.2 and is given in Section 4.3.1 for the case of finite mean and in Section 4.3.2 for

the power law case.

Lemma 4.3.3. Under the conditions of Theorem 4.2.2, and assuming (3.11) without

loss of generality, for each L ≥ 2 there exists a sequence Nm ∈ N with Nm →∞ as
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m→∞ such that

min
n≤Nm

(
ZL,n
w(Nm)

− Lz(1)L−1

)
≥ C/Nm .

Therefore, we know that there exists some N∗ ∈ N such that ZL,N∗/w(N∗) >

Lz(1)L−1, contradicting the monotonicity assumption. By Lemma 4.3.1 this implies

that the canonical measures are not stochastically ordered in N , and thus the process

can not be monotone by Lemma 4.2.1. This completes the proof of Theorem 4.2.2.

4.3.1 Proof of Lemma 4.3.3: The finite mean case

In order to prove Lemma 4.3.3 we first specify a non-decreasing subsequence {Nm :

m ∈ N} on which we can bound the ratio w(Nm−n)
w(Nm) below.

Claim 4.3.4. For weights {w(n) : n ∈ N} with finite and non-zero first moment,

i.e. 0 < ρc < ∞, there exists a sequence Nm ∈ N with Nm → ∞ as m → ∞ such

that for all k ∈ {0, . . . , Nm − 1}

w(Nm − k)

w(Nm)
≥ 1 +

k

Nm
. (4.13)

Proof. For each m ∈ N, define Nm as follows

Nm = max{n ≤ m : nw(n) = min
j≤m

j w(j)} .

By definition Nm is a non-decreasing sequence. Assume for contradiction that Nm

is bounded above, then for all j ∈ N we would have jw(j) ≥ j?w(j?) > 0 for some

j? ∈ N, and therefore
∑

n nw(n) → ∞ contradicting the assumption of finite first

moment. For k ∈ {0, . . . Nm − 1} we have

(Nm − k)w(Nm − k) ≥ Nmw(Nm)

and thus
w(Nm − k)

w(Nm)
≥ Nm

(Nm − k)
≥ 1 +

k

Nm
.

Claim 4.3.5. For weights {w(n) : n ∈ N} with finite first moment, there exists a

subsequence {N` : ` ∈ N} of the sequence defined in Claim 4.3.4 such that
Z2,N`−n
w(N`)

>

2z(1) for all n ∈ {0, . . . , N`} and ` sufficiently large.

Proof. By neglecting at most a single term in the sum defining ZL,N , the ratio
Z2,N

w(N)
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can be bounded below as follows,

Z2,N

w(N)
=

N∑
n=0

w(n)
w(N − n)

w(N)
≥ 2

bN/2c−1∑
n=0

w(n)
w(N − n)

w(N)
. (4.14)

We define

Km := max
{
k∗ ≤ Nm : Z2,k∗ = min

0≤k≤Nm
Z2,k

}
to be the largest index where the ratio

Z2,k

w(Nm) is minimized. In particular

Z2,Nm−n
w(Nm)

≥
Z2,Km

w(Nm)
for all m ≥ 0 and n ∈ {0, . . . , Nm}. (4.15)

By definition Km ≤ Nm, and so r := lim supm→∞Km/Nm ≤ 1. There exists a

subsequence (m` : ` ≥ 0) such that Km`/Nm` → r, with a slight abuse of notation

we denote the subsequences Nm` and Km` simply by N` and K`. Suppose r < 1, by

Claim 4.3.4 we have

Z2,K`

w(N`)
≥

Z2,K`

w(K`)

(
2− K`

N`

)
→ 2z(1)(2− r) > 2z(1) ,

which together with (4.15) contradicts Proposition 4.3.2, therefore K`/N` ↗ 1.

By (4.14) and applying Claim 4.3.4 we then have

Z2,K`

w(N`)
≥ 2

bK`/2c−1∑
k=0

w(k)
w(K` − k)

w(N`)
≥ 2

N`

bK`/2c−1∑
k=0

k w(k) + 2
(

2− K`

N`

) bK`/2c−1∑
k=0

w(k) .

Subtracting 2z(1) we get

Z2,K`

w(N`)
− 2z(1)

≥ 2

N`

bK`/2c−1∑
k=0

k w(k)− 2
∞∑

k=bK`/2c

w(k) + 2
(

1− K`

N`

) bK`/2c−1∑
k=0

w(k) . (4.16)

Neglecting the final term in (4.16) we have

N`

(
Z2,K`

w(N`)
− 2z(1)

)
> 2

bK`/2c−1∑
k=0

k w(k)− 2N`

∞∑
k=bK`/2c

w(k)

> 2

bK`/2c−1∑
k=0

k w(k)− 4N`

K`

∞∑
k=bK`/2c

kw(k)→ 2ρcz(1) > 0 ,
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usingK`/N` → 1 as `→∞, where ρc is the critical density defined in (4.7). Together

with (4.15) this completes the proof of Claim 4.3.5.

To complete the proof of Lemma 4.3.3 we proceed by induction on the system

size, L. We make the following inductive hypothesis;

(H) there exists a sequence {Nm : m ∈ N} such that
ZL,Nm−n
w(Nm) > Lz(1)L−1 for all

n ∈ {0, . . . , Nm} and m sufficiently large.

The case L = 2 is given by Claim 4.3.5. Analogously to the proof of Claim 4.3.5 we

define

Km := max
{
k∗ ≤ Nm : ZL,k∗ = min

0≤k≤Nm
ZL,k

}
. (4.17)

By the same argument as in the proof of Claim 4.3.5 there exists a subsequence

(m` : ` ≥ 0) such that Km`/Nm` ↗ 1, again we denote the respective subsequences

by K` and N`. For ` sufficiently large, we have

ZL+1,K`

w(N`)
=

K∑̀
k=0

w(k)
ZL,K`−k
w(N`)

=

bK`/2c∑
k=0

w(k)
ZL,K`−k
w(N`)

+

bK`/2c−1∑
k=0

ZL,k
w(K` − k)

w(N`)

> Lz(1)L−1

bK`/2c∑
k=0

w(k) +

bK`/2c−1∑
k=0

ZL,k

(
1 +

N` −K` + k

N`

)
,

where the final inequality follows from the inductive hypothesis (H) and Claim 4.3.4.

Subtracting (L+ 1)z(1)L we get

ZL+1,K`

w(N`)
− (L+ 1)z(1)L >− Lz(1)L−1

∞∑
k=bK`/2c+1

w(k)

+
1

N`

bK`/2c−1∑
k=0

k ZL,k +

(
1− K`

N`

) bK`/2c−1∑
k=0

ZL,k

+

bK`/2c−1∑
k=0

ZL,k − z(1)L . (4.18)

Now, following the proof of Claim 4.3.5, multiply (4.18) by N` and neglect the second

term on the second line. Then the first term vanishes, since

0 ≤ N`

∞∑
k=bK`/2c+1

w(k) ≤ 2N`

K`

∞∑
k=bK`/2c+1

k w(k)→ 0 as `→∞ .

In terms of the normalized grand-canonical measure ZL,k = z(1)LνL1 [SL = k], so we

53



4.3. PROOF OF THEOREM 4.2.2

have
∞∑
k=0

k ZL,k = z(1)LνL1 (SL) = ρcLz(1)L ∈ (0,∞) , (4.19)

where ρc is the critical density as defined in (4.7). This implies that the first term in

the second line of (4.18), after multiplication with N`, converges to a strictly positive

constant. Finally, the third line in (4.18) converges to zero after multiplying by N`

since we have
∑∞

n=0 ZL,n = z(1)L, which implies

0 ≥ N`

( bK`/2c−1∑
k=0

ZL,k − z(1)L
)

= −N`

∞∑
k=bK`/2c

ZL,k ≥ −
N`

bK`/2c

∞∑
k=bK`/2c

kZL,k → 0

as ` → ∞, by (4.19) and using that K`/N` converges to 1. Using the definition of

K` in (4.17), this implies that there exists a constant C > 0 such that for all ` large

enough

min
n≤N`

(
ZL+1,n

w(N`)
− (L+ 1)z(1)L

)
≥ C/N` ,

so (H) holds for L+1, completing the induction, which concludes the proof of Lemma

4.3.3 for the case where the critical measure has finite mean.

4.3.2 Proof of Lemma 4.3.3: The infinite mean power law case

We consider stationary weights of the form w(n) = n−bh(n) with w(0) = 1, h(n)→
c ∈ (0,∞), and b ∈ (1, 2). We prove non-monotonicity of ZL,N/w(N) for b ∈ (3/2, 2)

and h(n) = 1 for all n ∈ N via an exact computation. The case b = 2 can be

done completely analogously but involves different expressions with logarithms in

the resulting limits, and is presented in Section 4.3.4. The proof remains valid for

general converging h(n) with only minor differences, which we explain in a remark

at the end of this section. Convergence of Z2,N/w(N)→ 2z(1) from above or below

for the exact power law depends on the parameter b ∈ (1, 2), as summarized in the

next result.

Lemma 4.3.6. For stationary weights of the form w(n) = n−b and w(0) = 1 with

b ∈ (1, 2)

N b−1

(
Z2,N

w(N)
− 2z(1)

)
→ F2(b) as N →∞ , (4.20)
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where

F2(b) = 2
∞∑
i=1

1

i!

i−1∏
j=0

(
j + b

) 2b−1−i

1− b+ i
− 2

2b−1

b− 1

> 0 if b ∈ (3
2 , 2)

< 0 if b ∈ (1, 3
2)

.

For L > 2 we have

lim
N→∞

N b−1

(
ZL,N
w(N)

− Lz(1)L−1

)
= FL(b) := z(1)FL−1(b) + (L− 1)z(1)L−2F2(b) ,

(4.21)

which has the same sign as F2(b) and is given by FL(b) = 1
2L(L− 1)z(1)L−2F2(b).

This result implies that whenever w(n) = n−b for n ≥ 1 and w(0) = 1 with

b ∈ (3/2, 2) Lemma 4.3.3 holds with C = F2(b). This completes the proof of Lemma

4.3.3 in the case h(n) = 1.

Proof of Lemma 4.3.6. To prove this result we make use of the full Taylor series of

(1−x)−b at x = 0 and integral approximations to compute the asymptotic behaviour

of summations. To simplify notation we assume that N is even. For odd N there is

no term with multiplicity one and there exists an obvious modification. First note

that w(n) fulfils the regularity assumption (3.11) and ZL,N/w(N) → Lz(1)L−1 as

N →∞ for all L ≥ 2 [64], so by Proposition 3.3.1 a process with stationary measures

πL,N will exhibit condensation. For L = 2 we subtract 2z(1) from Z2,N/w(N) to

get

Z2,N

w(N)
− 2z(1) = 2

N/2∑
n=0

w(n)
w(N − n)

w(N)
− 2

∞∑
n=0

w(n)− w(N/2)w(N/2)

w(N)

= 2

N/2∑
n=1

n−b
(

1− n

N

)−b
− 2

∞∑
n=1

n−b − 22bN−b . (4.22)

Substituting the Taylor expansion of (1− x)−b we find

Z2,N

w(N)
− 2z(1) = 2

N/2∑
n=1

n−b
∞∑
i=0

1

i!

(
n

N

)i i−1∏
j=0

(j + b)− 2
∞∑
n=1

n−b − 22bN−b

= 2

∞∑
i=1

1

i!

i−1∏
j=0

(
j + b

) 1

N i

N/2∑
n=1

n−b+i − 2

∞∑
n=N/2+1

n−b − 22bN−b .

(4.23)
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In the last line the i = 0 term was combined with the second term, and we adopt

the usual convention that empty products are equal to one. Both summations in n

are over continuous and monotone functions g : R → (0,∞), therefore we can use

the usual integral approximation for decreasing (increasing) functions

∫ d+1

c
g(x) dx ≤ (≥)

d∑
n=c

g(n) ≤ (≥)g(c) +

∫ d

c
g(x) dx (4.24)

for all c ∈ N and d ∈ N ∪ {∞}. Multiplying by N b−1 we find the limit as N → ∞
of (4.23) to be

F2(b) = 2
∞∑
i=1

1

i!

i−1∏
j=0

(
j + b

) 2b−1−i

1− b+ i
− 2

2b−1

b− 1
. (4.25)

It is shown in Section 4.3.3 that this is positive (and finite) in the region b ∈ (3/2, 2)

and negative (and finite) in the region b ∈ (1, 3/2), completing the proof of Lemma

4.3.6 for L = 2. The result holds for general system size, L ≥ 2, and is proved by

induction. The inductive hypothesis states

lim
N→∞

N b−1

(
ZL,N
w(N)

− Lz(1)L−1

)
= FL(b) = z(1)FL−1(b) + (L− 1)z(1)L−2F2(b) .

(4.26)

Similar to the case L = 2 we write

N b−1

(
ZL+1,N

w(N)
− (L+ 1)z(1)L

)

= N b−1

( N/2∑
n=0

ZL,n
w(N − n)

w(N)
− z(1)L

)
︸ ︷︷ ︸

ΞL,N

+N b−1

(N/2−1∑
n=0

w(n)
ZL,N−n
w(N)

− Lz(1)L
)

︸ ︷︷ ︸
ΘL,N

.

(4.27)

We first establish the limit of the function ΘL,N in equation (4.27). The inductive

hypothesis (4.26) can be written as

ZL,n
w(n)

=
FL(b) + on(1)

nb−1
+ Lz(1)L−1 , (4.28)
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which implies ΘL,N can be written as

ΘL,N = N b−1

N/2−1∑
n=0

w(n)
w(N − n)

w(N)

ZL,N−n
w(N − n)

− Lz(1)L


= N b−1

N/2−1∑
n=0

w(n)
w(N − n)

w(N)

[
FL(b) + oN (1)

(N − n)b−1
+ Lz(1)L−1

]
− Lz(1)L

 .

Rearranging terms and noting that w(N−n)
w(N)

Nb−1

(N−n)b−1 =
(
N−n
N

)1−2b
we then have

ΘL,N =(FL(b) + oN (1))

N/2−1∑
n=0

w(n)

(
N − n
N

)1−2b

+ Lz(1)L−1N b−1

(N/2−1∑
n=0

w(n)
w(N − n)

w(N)
− z(1)

)
.

After Taylor expanding (1−x)1−2b appearing in the first line above, and using (4.24)

we see that the limit of the first line is given by FL(b)z(1) as N → ∞. Using the

L = 2 result to calculate the limit of the second line we find

ΘL,N → FL(b)z(1) +
Lz(1)L−1F2(b)

2
as N →∞ . (4.29)

To identify the limit of ΞL,N in (4.27), we again make use of the Taylor expansion

of (1− x)−b similarly to the two site case and we write

ΞL,N = N b−1

(
ZL,0 +

N/2∑
n=1

ZL,n

∞∑
i=0

1

i!

i−1∏
j=0

(
j + b

)( n
N

)i
− z(1)L

)
.

Changing the order of summations, separating the i = 0 term and using
∑∞

n=0 ZL,n =

z(1)L we have

ΞL,N = N b−1

( ∞∑
i=1

1

i!

i−1∏
j=0

(
j + b

) 1

N i

N/2∑
n=1

niZL,n −
∞∑

n=N/2+1

ZL,n

)
. (4.30)

For all i ≥ 1 and b ∈ (1, 2) we have N b−1−i → 0 as N → ∞, which implies that

for any fixed N1 ∈ N we have N b−1−i∑N1−1
n=1 niZL,n → 0. Therefore, the following
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limits are equal

lim
N→∞

ΞL,N = lim
N→∞

N b−1

( ∞∑
i=1

1

i!

i−1∏
j=0

(
j + b

) 1

N i

N/2∑
n=N1

niZL,n −
∞∑

n=N/2+1

ZL,n

)
.

Using the inductive hypothesis (4.28) we have limN→∞ ΞL,N is given by

lim
N→∞

N b−1(FL(b) + oN (1))

( ∞∑
i=1

1

i!

i−1∏
j=0

(
j + b

) 1

N i

N/2∑
n=N1

ni
w(n)

nb−1
−

∞∑
n=N/2+1

w(n)

nb−1

)

+ lim
N→∞

N b−1Lz(1)L−1

( ∞∑
i=1

1

i!

i−1∏
j=0

(
j + b

) 1

N i

N/2∑
n=N1

niw(n)−
∞∑

n=N/2+1

w(n)

)
.

(4.31)

Now applying the L = 2 result, by identifying (4.25) in the second line and proving

that the first line converges to 0, we have

ΞL,N →
Lz(1)L−1F2(b)

2
, (4.32)

where the limit of the first line of (4.31) was 0 by the additional factor 1/nb−1

appearing in the summations. Combining (4.29) and (4.32) we have

N b−1

(
ZL+1,N

w(N)
− (L+ 1)z(1)L

)
→ z(1)FL(b) + Lz(1)L−1F2(b) as N →∞ ,

concluding the induction so the result holds for all L ≥ 2. From the recursion (4.21)

it is obvious that

FL(b) =
1

2
L(L+ 1)z(1)L−2F2(b) ,

which will have the same sign as F2(b), completing the proof of Lemma 4.3.6.

A slightly modified version of Lemma 4.3.6 also holds if the stationary weights

are of the form w(n) = n−bh(n) where limn→∞ h(n) = c ∈ (0,∞). The limit in

(4.20) only depends on the tail behaviour of the weights and is now given by cF2(b).

Briefly, this can be seen as follows, (4.22) becomes

2

N/2∑
n=0

n−bh(n)
h(N − n)

h(N)

(
1− n

N

)−b
− 2

∞∑
n=0

n−bh(n) + 22bN−b
h(N/2)h(N/2)

h(N)
.

Taylor expanding (1 − x)−b and rearranging to find terms of the form
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N1−b−i∑N/2
n=1 h(n)n−b+i and using the same argument to calculate the limit of ΞL,N

we have

lim
N→∞

N b−1−i
N/2∑
n=1

h(n)n−b+i = lim
N→∞

N b−1−i
N/2∑
n=N1

cn−b+i <∞

for all i ≥ 1 and any N1 ∈ N, and the result follows. Similar modifications are

required in the inductive step and the new limit in (4.21) is given by cL−1FL(b) for

all L ≥ 2. This does not change the sign of the limit in (4.21) and therefore Lemma

4.3.3 still holds.

4.3.3 On the sign of F2(b)

In this section, we compute the sign of F2(b) for b ∈ (1, 2), where

F2(b) = 2
∞∑
i=1

1

i!

i−1∏
j=0

(j + b)
2b−1−i

1− b+ i
− 2

2b−1

(b− 1)
.

To compute the sign we first show

F2(b) = −
√
π22b−1Γ(2− b)

(b− 1)Γ
(

3
2 − b

) .

Recall the definition of the Pochhammer symbol

(q)n =

1 if n = 0

(q)(q + 1) . . . (q + i− 2)(q + i− 1) for n ≥ 1
,

and the hypergeometric function

2F1(c, d, e, z) =

∞∑
i=0

zi

i!

(c)i(d)i
(e)i

.

We now show

F2(b) = − 2b

b− 1
2F1

(
1− b, b, 2− b, 1

2

)
. (4.33)

Factorising the term 2b/(b − 1) from F2(b) and rearranging terms inside the sum-
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mation we have

F2(b) =
2b

b− 1

 ∞∑
i=1

1

i!

(
1

2

)i i−1∏
j=0

(j + b)
b− 1

1− b+ i
− 1


=

2b

b− 1

∞∑
i=0

1

i!

(
1

2

)i i−1∏
j=0

(j + b)
b− 1

1− b+ i
.

Now use the following identities to simplify the terms inside the summation

i−1∏
j=0

(j + b) = (b)i and (1− b+ i) = (1− b)(2− b)i
(1− b)i

,

which gives the required result (4.33).

To complete the proof, we use the following two relations for hypergeometric

functions, Euler’s transform [95, 15.3.3]

2F1(c, d, e, z) = (1− z)e−d−c2F1(e− c, e− d, e, z) ,

and Gauss’s second summation theorem [95, 15.1.24]

2F1

(
c, d,

1

2
(1 + c+ d),

1

2

)
=

Γ
(

1
2

)
Γ
(

1
2(1 + c+ d)

)
Γ
(

1
2(1 + c)

)
Γ
(

1
2(1 + d)

) .
Therefore,

F2(b) = − 2b

b− 1
2F1

(
1− b, b, 2− b, 1

2

)
= −22b−1

b− 1
2F1

(
1, 2− 2b, 2− b, 1

2

)
= −
√
π22b−1Γ(2− b)

(b− 1)Γ
(

3
2 − b

) .

To calculate the sign of F2(b) we first note that the gamma function is given

by [95, 6.1.3]

Γ(x) =
e−γx

x

∞∏
n=1

[(
1 +

x

n

)−1
e
x
n

]
for some γ > 0 .
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This implies Γ(x) < 0 for x ∈ (−1, 0) and Γ(x) > 0 for x > 0 and we have

F2(b)

< 0 for b ∈ (1, 3/2)

> 0 for b ∈ (3/2, 2)
.

4.3.4 Proof of Lemma 4.3.3: The infinite mean power law case with

b = 2

Consider stationary weights of the form w(n) = n−2 with w(0) = 1, we prove the

non-monotonicity of ZL,N/w(N) in a similar fashion to the proof of Lemma 4.3.6

summarised in the following lemma.

Lemma 4.3.7. For stationary weights of the form w(n) = n−2 with w(0) = 1 we

have
N

log(N)

(
Z2,N

w(N)
− 2z(1)

)
→ F̂2 = 4 as N →∞ .

For L > 2 we have

N

log(N)

(
ZL,N
w(N)

− Lz(1)L−1

)
→ F̂L := z(1)F̂L−1 + (L− 1)z(1)L−2F̂2 as N →∞ ,

(4.34)

which is positive for all L ≥ 2 since F̂2 > 0.

Proof. First consider the case L = 2. As in the proof of Lemma 4.3.6 we will utilise

the full Taylor expansion of (1 − x)−2, integral bounds on monotone series, and

assume N is even, for N odd there exist obvious modifications to the proof. We

have from (4.22)

Z2,N

w(N)
− 2z(1) = 2

N/2∑
n=1

n−2
(

1− n

N

)−2
− 2

∞∑
n=1

n−2 − 24N−2 .

Where the terms n = 0 in the above summations cancel. Substituting the Taylor

expansion of (1− x)−2 we find from (4.23)

Z2,N

w(N)
− 2z(1) = 2

∞∑
i=1

(i+ 1)N−i
N/2∑
n=1

n−2+i − 2
∞∑

n=N/2+1

n−2 − 24N−2 . (4.35)

Now we are in a position to apply the integral bounds (4.24), first noting that n−2+i

is decreasing for i = 1, constant and equal to 1 for i = 2, and increasing for i ≥ 3.

Multiplying both sides of (4.35) and applying the integral bounds it is easy to show
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N

log(N)

(
Z2,N

w(N)
− 2z(1)

)
→ 4 as N →∞ . (4.36)

Now consider the case L > 2 and make the following inductive hypothesis

lim
N→∞

N

log(N)

(
ZL,N
w(N)

− Lz(1)L−1

)
= F̂L = z(1)F̂L−1 + (L− 1)z(1)L−2F̂2 .

As in the proof of Lemma 4.3.6 write

N

log(N)

(
ZL+1,N

w(N)
− (L+ 1)z(1)L

)

=
N

log(N)

( N/2∑
n=0

ZL,n
w(N − n)

w(N)
− z(1)L

)
︸ ︷︷ ︸

Ξ̂L,N

+
N

log(N)

(N/2−1∑
n=0

w(n)
ZL,N−n
w(N)

− Lz(1)L
)

︸ ︷︷ ︸
Θ̂L,N

.

(4.37)

We first establish the limit of Θ̂L,N in (4.37). The inductive hypothesis can be

rewritten as
ZL,N
w(N)

=
(
F̂L + oN (1)

) log(N)

N
+ Lz(1)L−1 (4.38)

Similar to the proof of Lemma 4.3.6 Θ̂L,N can be written in the form

Θ̂L,N =
N

log(N)

(
F̂L + oN (1)

)N/2−1∑
n=0

w(n)
w(N − n)

w(N)

log(N − n)

N − n


+ Lz(1)L−1 N

log(N)

N/2−1∑
n=0

w(n)
w(N − n)

w(N)
− z(1)

 . (4.39)

Since log(N − n) is decreasing for n ∈ {0, . . . N/2− 1} we can find upper and lower

bounds of the first term, by pulling out the logarithm, of the form

log(N/2− 1)

log(N)

(
F̂L + oN (1)

)N/2−1∑
n=0

w(n)
w(N − n)

w(N)

N

N − n


≤ N

log(N)

(
F̂L + oN (1)

)N/2−1∑
n=0

w(n)
w(N − n)

w(N)

log(N − n)

N − n


≤
(
F̂L + oN (1)

)N/2−1∑
n=0

w(n)
w(N − n)

w(N)

N

N − n

 .
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Applying (4.24) to the upper and lower bounds above, and (4.36) to the second term

in (4.39) we have

lim
N→∞

Θ̂L,N = z(1)F̂L +
1

2
Lz(1)L−1F̂2 . (4.40)

To identify the limit of Ξ̂L,N in (4.37) we again follow the steps given in the

proof of Lemma 4.3.6, which implies

lim
N→∞

Ξ̂L,N =
1

2
Lz(1)L−1F̂2 . (4.41)

Combining this with (4.40), we have

N

log(N)

(
ZL+1,N

w(N)
− (L+ 1)z(1)L

)
→ F̂L+1 = z(1)F̂L + Lz(1)L−1F̂2 as N →∞ .

From the recursion (4.34), it is obvious that F̂L will have the same sign as F̂2,

completing the proof of Lemma 4.3.7.

4.4 Examples of homogeneous condensing processes

In this section, we review several stochastic particle systems that exhibit conden-

sation. By Theorem 4.2.2, if these processes are homogeneous and monotone with

a finite critical density they do not have stationary product measures. To prove

monotonicity for the examples mentioned below, it is sufficient to construct a basic

coupling of the stochastic process on the state space (ΩL,N ,ΩL,N+1) where particles

jump together with maximal rate. For a definition of a coupling see [44] and for the

statement of Strassen’s theorem linking stochastic monotonicity and the coupling

technique see [56]. The steps to construct a basic coupling are outlined in [45].

4.4.1 Misanthrope processes and generalizations

Condensation in homogeneous particle systems has mostly been studied in the frame-

work of misanthrope processes [11, 45]. At most one particle is allowed to jump at

a time and the rate that this occurs depends on the number of particles in the exit

and entry sites. The misanthrope process is a stochastic particle system on the state
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space ΩL = NΛ defined by the generator

Lmisf(η) =
∑
x,y∈Λ

r(ηx, ηy)p(x, y)
(
f(ηx,y)− f(η)

)
. (4.42)

Here ηx,y = η− δx + δy denotes the configuration after a single particle has jumped

from site x to site y, which occurs with rate r(ηx, ηy). The purely spatial part of

the jump rates, p(x, y) ≥ 0, are translation invariant transition probabilities of a

random walk on Λ.

As discussed in Sections 2.3.1 and 2.3.2 misanthrope processes exhibit sta-

tionary product measures (2.11) and we recall that the stationary weights satisfy

w(k + 1)

w(k)
=
w(1)

w(0)

r(1, k)

r(k + 1, 0)
and w(n) =

n∏
k=1

r(1, k − 1)

r(k, 0)
. (4.43)

Misanthrope processes are monotone (attractive) [11] if and only if the jump rates

satisfy

r(n,m) ≤ r(n+ 1,m) i.e. non-decreasing in n,

r(n,m) ≥ r(n,m+ 1) i.e. non-increasing in m . (4.44)

In Theorem 4.2.2, we have proved that processes that exhibit stationary

product measures and condensation with finite mean or power law tails, w(n) ∼
n−b, with b ∈ (3/2, 2] are necessarily not monotone. For power law tails with b ∈
(1, 3/2] convergence of ZL,N/w(N) is from below and our method does not disprove

monotonicity of the measures πL,N or monotonicity of the underlying process. Using

the specific form of the stationary measures (4.43), it is clear that possible examples

of monotone processes with stationary product measures of this form cannot be of

misanthrope type.

Lemma 4.4.1. A misanthrope process defined by the generator (4.42), that has sta-

tionary product measures and exhibits condensation on fixed finite lattices according

to Definition 3.2.3 is not monotone.

Proof. Proposition 3.3.1 implies the existence of the critical measure νφc with φc <

∞ as a necessary condition for condensation. (4.44) gives necessary conditions for

the monotonicity of the misanthrope process and implies with (4.43) that

w(n− 1)

w(n)
=

r(n, 0)

r(1, n− 1)
(4.45)
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is non-decreasing. This implies that the ratio converges to φc and we have

w(n− 1)

w(n)
≤ φc =⇒ w(n) ≥ w(n− 1)φ−1

c (4.46)

for all n ∈ N. Therefore, w(n) ≥ w(0)φ−nc which implies

N∑
n=0

w(n)φnc ≥ w(0)
N∑
n=0

φnc φ
−n
c →∞ as N →∞ . (4.47)

We conclude that the critical partition function diverges, hence Proposition 3.3.1

fails and therefore, condensation does not occur in misanthrope processes with sta-

tionary product measures.

In [45] generalised misanthrope processes have been introduced where more

than one particle is allowed to jump simultaneously. They are defined via transitions

η → η + n(δy − δx) for n ∈ {0, . . . , ηx} at rate Γnηx,ηy(y − x) and conditions on the

jump rates for monotonicity are characterized. This class provides candidates for

possible monotone, condensing processes with product measures as we discuss in

the next subsection.

4.4.2 Generalised zero-range processes

Recall the definition of the generalised zero-range process (gZRP) from Section 2.3.3

on the state space ΩL = NΛ with the generator

LgZRP f(η) =
∑
x,y∈Λ

ηx∑
k=1

αk(ηx)p(x, y)
(
f(ηx→(k)y)− f(η)

)
. (4.48)

Further recall that these processes exhibit stationary product measures if

and only if the jump rates have the explicit form

αk(n) = g(k)
h(n− k)

h(n)
, (4.49)

where g, h : N→ [0,∞) are arbitrary non-negative functions with h strictly positive

and the stationary weights are then given by w(n) = h(n). Monotonicity of the

gZRP can be characterized in terms of

Rk(n) :=
n−k∑
m=0

(αn−m(n)− αn+1−m(n+ 1)) . (4.50)
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The gZRP is monotone if and only if

Rk(n) ≥ 0 for all n ≥ 1 and k ∈ {1, . . . , n}

αk(n+ 1) ≥ Rk(n) for all n ≥ 1 and k ∈ {1, . . . , n} . (4.51)

These conditions on the transition rates arise from a basic coupling of the gZRP,

which is given in Section 4.4.2.1. We note these conditions arise from a special case

of the results in [45, Theorem 2.11] on generalised misanthrope models, since αk(n)

depends only on the occupation of the exit site and not the entry site.

In this class, which is discussed in detail in [54], there exist processes which

condense on fixed finite lattices according to Definition 3.2.3 which are monotone,

homogeneous, and have stationary product measures with a power tail w(n) ∼ n−b

with b ∈ (1, 3/2]. As an example, consider the gZRP with rates given by

αk(n) =


0 if k = 0 or n = 0

k−b(1− k
n)−b if k ∈ {1, . . . , n− 1}

1 otherwise .

(4.52)

Since αk(n) is of the form (4.49), the process exhibits stationary product measures

with weights of the form

w(n) =

1 if n = 0

n−b otherwise
.

For all b > 1 and L ≥ 2 the ratio
ZL,N
w(N) converges to Lz(1)L−1 as N → ∞ [64]

so by Proposition 3.3.1 the process exhibits condensation. To prove the process is

monotone, we must show the rates satisfy the conditions given in equation (4.51). We

first prove Rk(n) ≥ 0 for all k ∈ {1, . . . , n−1} and n > 1. Since αn(n)−αn+1(n) = 0

for all n ≥ 1 we can drop the m = 0 term from the definition of Rk(n). We have

Rk(n) =
n−k∑
m=1

m−b
[(

1− m

n

)−b
−
(

1− m

n+ 1

)−b]
. (4.53)

Since (1− x)−b is increasing in x ∈ (0, 1) and b > 0 we have

Rk(n) > 0 for all k ∈ {1, . . . , n} and n ≥ 1 .

We also need to show αk(n+1) ≥ Rk(n) for all k ∈ {1, . . . , n−1} and n > 1. Taking
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Figure 4.3: Monotonicity condition (4.54) for b = 1.25, b = 1.5 and b = 1.65. For
b = 1.65 the function A(n) falls below zero, implying the process is non-monotone.
For b = 1.25 and b = 1.5 the function A(n) is positive, indicating the process is
monotone.

discrete derivatives in k and using (4.53)

αk+1(n+ 1)−Rk+1(n)− (αk(n+ 1)−Rk(n)) = αk(n)− αk(n+ 1)

= k−b
(

1− k

n

)−b
− k−b

(
1− k

n+ 1

)−b
> 0 ,

so αk(n+ 1)−Rk(n) is an increasing function in k. Therefore,

αk(n+ 1)−Rk(n) ≥ α1(n+ 1)−R1(n) ,

and it suffices to show

A(n) := α1(n+ 1)−R1(n) ≥ 0 for all n ≥ 1 . (4.54)

We present numerical evidence in Figure 4.3 which corroborates our claim that the

process with rates (4.52) is indeed monotone for b ∈ (1, 3/2] and is not for b > 3/2.

Instead, consider the alternative formulation of condensation given by Defini-

tion 3.2.2 (weak condensation) given in Section 3.2, and the gZRP with rates (4.52)

and b = 1. In Section 3.6, we showed that the sequence M2/N → 1 as N → ∞
in probability and, therefore, the process exhibits weak condensation according to

Definition 3.2.2. We claim that this process is monotone. For this example, the

function Rk(n) remains non-negative for all k ∈ {1, . . . , n} and n ≥ 0. Therefore, to

prove the process is monotone we have to show (4.54) holds, which is equivalent to

67



4.4. EXAMPLES OF HOMOGENEOUS CONDENSING PROCESSES

the sequence
∑n−1

k=1 k
−1(n− k)−1 being non-increasing in n. Since

n−1∑
k=1

k−1(n− k)−1 =
2

n

n−1∑
k=1

1

k
,

taking a discrete derivative in n and a simple application of the integral test shows

the sequence is non-increasing. Therefore, A(n) ≥ 0 for all n, which implies the

process is monotone.

4.4.2.1 Coupling the gZRP

In this section, we construct a coupling of the gZRP to establish conditions on the

jump rates for monotonicity. Consider η ∈ ΩL,N and ξ ∈ ΩL,N+1 such that ξ = η+δi

for some i ∈ Λ. In order for the coupled process to preserve the order it is necessary

that when k particles leave site i in the η process we have either k or k+ 1 particles

leave in the ξ process. At sites where ηj = ξj for j ∈ Λ the same number of particles

leave the η and ξ processes. The coupled jump rates are defined hierarchically and

are given below. Let Rk(n) be as (4.50), thenηi = n

ξi = n+ 1
−→

ηi = n

ξi = n
at rate α1(n+ 1)−R1(n)

ηi = n

ξi = n+ 1
−→

ηi = n− 1

ξi = n
at rate R1(n)

ηi = n

ξi = n+ 1
−→

ηi = n− 1

ξi = n− 1
at rate α2(n+ 1)−R2(n)

ηi = n

ξi = n+ 1
−→

ηi = k − 1

ξi = k
at rate Rn+1−k(n)

ηi = n

ξi = n+ 1
−→

ηi = k

ξi = k
at rate αn+1−k(n+ 1)−Rn+1−k(n)

ηi = n

ξi = n+ 1
−→

ηi = k

ξi = k + 1
at rate Rn−k(n)
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ηi = n

ξi = n+ 1
−→

ηi = 1

ξi = 1
at rate αn(n+ 1)−Rn(n)

ηi = n

ξi = n+ 1
−→

ηi = 0

ξi = 1
at rate Rn(n)

ηi = n

ξi = n+ 1
−→

ηi = 0

ξi = 0
at rate αn+1(n+ 1)−Rn+1(n) = αn+1(n+ 1) .

The transition rates are constructed in this hierarchical way to ensure the

marginals of the coupled process correspond to the individual processes η on ΩL,N

and ξ on ΩL,N+1, which are defined by the generator (4.48). This can be seen by

calculating the total rate n− k particles leave site i in the η process, which is given

by

αn+1−k(n+ 1)−Rn+1−k(n) +Rn−k(n) = αn−k(n) ,

and the total rate n+ 1− k particles leave site i in the ξ process, which is given by

Rn+1−k(n) + αn+1−k(n+ 1)−Rn+1−k(n) = αn+1−k(n+ 1) .

Since all transitions in the coupled process must be non-negative we see that this

coupling construction implies the conditions (4.51).

4.4.3 Homogeneous monotone processes without product measures

The chipping model is a stochastic particle system on the state space ΩL = NΛ,

introduced in [84, 85], see Chapter 3 for more details.

It is easy to see that a basic coupling will preserve the partial order on the

state space ΩL as defined in Section 2.4. Therefore, by Strassen’s theorem [56], the

chipping model is a monotone process and Lemma 4.2.1 implies that conditional

stationary measures of the process are ordered in N , with monotonic convergence

of the background density Rbg2 (N) shown explicitly in Figure 4.4. The condensation

transition in the chipping model was established on a heuristic level in [84, 85, 86] in

the thermodynamic limit. In Section 3.8 we showed that the process exhibits con-

densation according to Definition 3.2.3 for the process on two sites. Therefore, this

model is a monotone and spatially homogeneous process that heuristically exhibits

a condensation transition with finite (size dependent) critical density, but it does

not exhibit stationary product measures.
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Figure 4.4: Simulation results calculating the background density Rbg2 (N) (4.8) for

the two site chipping model with w = 1, w = 1.5, and w = 2. Rbg2 (N) converges
monotonically to the critical density ρc(w) = 1

2

(√
1 + 2w − 1

)
given in Section 3.8.

4.4.4 Non-monotonicity of processes beyond misanthrope dynam-

ics

We can further generalise zero-range and misanthrope processes, here called long

range misanthrope processes (LRMP), to stochastic particle system on the state

space ΩL = NΛ defined by the generator

LLRMP f(η) =
∑
x,y∈Λ

rx,y(η)p(x, y) (f(ηx,y)− f(η)) , (4.55)

where the jump rate rx,y : ΩL → R is dependent on the full configuration η ∈ ΩL.

For processes with totally asymmetric dynamics, p(x, x + 1) = 1, then it is

known that they can exhibit pair-factorised or cluster-factorised stationary measures

of the form

πL,N [η] =

∏
x∈Λw(ηAx)

ZL,N
where ηAx = {ηy : y ∈ Ax} and Ax ⊆ Λ ,

provided the jump rate rx,y satisfies certain relations [96]. The sets Ax for each

x ∈ Λ are typically of the form {x, x+ 1} for processes with pair factorised station-

ary measures or {x−d, . . . , x+d}, where d ∈ N, for processes with cluster factorised

stationary measures. Condensation has been observed in totally asymmetric pro-

cesses that exhibit pair-factorised stationary measures [72, 97, 98] where due to the

enhanced correlations the condensate no longer sits on a single site (for numerical

evidence see [99]).

In Lemma 4.4.1, we proved that no monotone misanthrope process with sta-
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Figure 4.5: Three examples of ordered configurations for the three site, L = 3,
totally asymmetric LRMP (4.55). The configuration η = (2, 4, 3) (red particles) is
fixed for each example. The configurations ξ (blue particles) each satisfy η ≤ ξ. A
coupling of the totally asymmetric LRMP must both preserve the partial order of the
state space and each marginal must behave as originally constructed. Looking at the
second and third examples, ξ = (2, 5, 3) and ξ = (2, 4, 4) respectively, the construc-
tion of a basic coupling would imply that the rate r2,3(·) must be non-decreasing in
the exit occupation and non-increasing in the entry occupation. However, if the rate
r2,3(·) is not independent of the occupation of the first site the the basic coupling
cannot preserve the partial order. Since either a blue particle exits site 2 breaking
the order at site 2, or a red particle leaves site 2 breaking the order at site 3.

tionary product measures can exhibit condensation. We now prove that, under

totally asymmetric dynamics, monotone LRMPs are in fact monotone misanthrope

processes, and therefore, the conditions derived in Lemma 4.4.1 hold for these pro-

cesses. In Figure 4.5, we give the intuition for this result, which is based on the

construction of the basic coupling as discussed in Section 2.4.

Lemma 4.4.2. If the totally asymmetric LRMP defined by the generator (4.55) is

monotone then the jump rate rx,y(η) only depends on the occupation numbers of the

exit, x, and entry sites, y, i.e. rx,y(η) = r̃(ηx, ηy).

Proof. Since monotone processes preserve the natural order of the state space, the

evolution of increasing observables must remain ordered under the dynamics of the

process (2.26). Therefore, to prove that monotone totally asymmetric LRMPs are

in fact monotone misanthrope processes it is enough to consider how multiple ob-

servables behave under the dynamics of the process, starting from the same ordered

initial conditions.

Monotonicity implies that for all η ≤ ξ and f : ΩL → R increasing we have

S(t)f(η) ≤ S(t)f(ξ) ,

where (S(t) = etL
LRMP

: t ≥ 0) is the semi-group of the LRMP on C(ΩL).
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Consider f : ΩL → R increasing such that

f(η) = 1(ηa ≥ K) for some a ∈ Λ and K ∈ N .

Fix η and ξ such that ηa = ξa, which implies f(η) = f(ξ). Furthermore, since the

process is monotone we can write the following inequality (see Section 2.4)

LLRMP f(η) = lim
t↓0

S(t)f(η)− f(η)

t
≤ lim

t↓0

S(t)f(ξ)− f(ξ)

t
= LLRMP f(ξ) . (4.56)

Consider the configurations η ≤ ξ which satisfy

ηx =


K if x = a

Q if x = a+ 1

ηx otherwise

and ξx =


K if x = a

Q if x = a+ 1

ξx otherwise

.

Since f(η) = 1(ηa ≥ K) we have

LLRMP f(η) = −ra,a+1(η) and LLRMP f(ξ) = −ra,a+1(ξ) ,

which by (4.56) implies

ra,a+1(η) = ra,a+1(η1, . . . ,K,Q, ηa+1, . . . ηL)

≥ ra,a+1(ξ1, . . . ,K,Q, ξa+1, . . . ξL) = ra,a+1(ξ) . (4.57)

Now consider the function h : ΩL → R increasing such that

h(η) = 1(ηa+1 ≥ Q+ 1) for some a ∈ Λ and Q ∈ N .

Fix η and ξ as before, which implies h(η) = h(ξ). Furthermore, since the process

is monotone we can write the following inequality LLRMPh(η) ≤ LLRMPh(ξ), see

(4.56). Since

LLRMPh(η) = ra,a+1(η) and LLRMPh(ξ) = ra,a+1(ξ) ,

we have

ra,a+1(η) = ra,a+1(η1, . . . ,K,Q, ηa+1, . . . ηL)

≤ ra,a+1(ξ1, . . . ,K,Q, ξa+1, . . . ξL) = ra,a+1(ξ) . (4.58)
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Combining (4.57) and (4.58), we see that the jump rate ra,a+1(η) is both

non-increasing and non-decreasing in each coordinate x ∈ Λ not equal to a and

a+ 1, which implies

ra,a+1(η) = r̃(ηa, ηa+1) for all a ∈ Λ and η ∈ ΩL .

Therefore, the jump rate depends only on the target and exit sites a + 1 and a

respectively.

Whilst Lemma 4.4.2 holds for totally asymmetric misanthrope type processes

it is not immediately clear how this statement can be generalised. For example, the

Kawasaki Ising model can be monotone (attractive) (see for example [42]) even

though transition rates depend on a weighted average of the neighbouring configu-

rations.

4.5 Connection to statistical mechanics

Condensation and non-monotonicity are also related to convexity properties of the

entropy, which we briefly describe in the following in a non-rigorous discussion. In

the thermodynamic limit, the canonical entropy is defined as

s(ρ) := lim
L→∞
N/L→ρ

1

L
logZL,N . (4.59)

For the processes we consider, equivalence of canonical and grand-canonical ensem-

bles has been established in [65] for condensing or non-condensing systems, so s(ρ)

is given by the (logarithmic) Legendre transform of the pressure

p(φ) := log z(φ) . (4.60)

This takes a particularly simple form since the grand-canonical measures are fac-

torisable, and is a strictly convex function for φ < φc. General results then imply

that s(ρ) also has to be strictly convex below the critical density ρc (see e.g. [100]),

which holds for non-condensing systems and condensing systems with ρc =∞. For

condensing systems with finite critical density, s(ρ) is linear for ρ > ρc, consistent

with phase separation phenomena, where in this case the condensed phase formally

exhibits density ∞ (see e.g. [74] for a general discussion).

It is not possible to derive general results for finite L and N , but if we assume
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that the ratio of weights w(n − 1)/w(n) is monotone increasing in n, we can show

that a monotone order of πL,N implies that N 7→ 1
L logZL,N is necessarily convex.

Note that with (4.6), our assumption implies that w(n) has exponential tails with

φc ∈ (0,∞) or decays super-exponentially with φc =∞, and in both cases the system

does not exhibit condensation. We can define w(−1) = 0 so that w(ηx − 1)/w(ηx)

is a monotone increasing test function on ΩL. It is easy to see that for its canonical

expectation we have for all L ≥ 2 and N ≥ 2

πL,N

(w(ηx − 1)

w(ηx)

)
=
ZL,N−1

ZL,N
. (4.61)

Therefore, monotonicity of the canonical measures implies that the ratio of parti-

tion functions (4.61) is increasing and the discrete derivative of logZL,N in N is

decreasing. We expect that in the limit L → ∞, the monotonicity assumption on

w(n−1)/w(n) is not necessary, and 1
L logZL,N is convex in N for all non-condensing

systems, consistent with strict convexity of s(ρ).

For condensing systems, the weights w decay sub-exponentially, and if w(n−
1)/w(n) is monotone then it has to be decreasing in n. Therefore the choice w(−1) =

0 which implies f(η) = w(ηx − 1)/w(ηx) is not a monotone test function, and

the above general arguments cannot be used to relate non-convexity of 1
L logZL,N

to the absence of a monotone order in πL,N . For particular condensing systems,

however, it has been shown that 1
L logZL,N is typically convex for smallN < ρcL and

concave for larger N > ρcL [16, 67]. These results focus on power law and stretched

exponential tails for w(n), and have been derived for zero-range processes where

the ratio ZL,N−1/ZL,N is equal to the canonical current. Non-monotone behaviour

around the critical density has therefore implications for finite-size corrections and

derivations of hydrodynamic limits as mentioned in the introduction.
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CHAPTER 5

The Relaxation Time of a

Condensing Zero-Range Process

with Site Defects

5.1 Introduction

The relaxation time for an ergodic Markov process characterises the exponential rate

of convergence to the stationary measure. For reversible processes on a countable

state space, the relaxation time is given by the reciprocal of the smallest non-zero

eigenvalue of −L where L is the generator of the process, see Section 2.5 for more

details. Typically, sharp bounds for the relaxation time are derived using powerful

coupling tools that require the process to be monotone (attractive) (see [31, 101,

30] for zero-range processes, [38, 39] for exclusion processes and [44] for a general

discussion). Coupling methods typically rely on the coupled process preserving a

partial order of the state space, which does not occur for non-monotone processes. In

Chapter 4, we proved that homogeneous particle systems that exhibit a condensation

transition are necessarily non-monotone, which implies that these coupling tools

cannot be applied to bound the relaxation and mixing times.

For spatially homogeneous (non-condensing) zero-range processes on the

complete graph with jump rate g : N → (0,∞), bounds on the relaxation time

T rel are known only in the following cases1;

• g(k) = 1(k ≥ 1) then T rel � (1 + ρ)2 [30],

• g(k) = kγ for γ ∈ (0, 1) then T rel � (1 + ρ)1−γ [101]2,

1For functions f, g : R → R we say f � g if there exists a positive constant C such that
1
C
f(x) ≤ g(x) ≤ Cf(x) for all x ∈ R.

2The current version of this proof contains a mistake, which has not been corrected at the time
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• g(k) is asymptotically linear in the sense that supk |g(k + 1)− g(k)| <∞ and

there exists k0 ∈ N and a2 > 0 such that g(k)− g(j) ≥ a2 for k ≥ j + k0 then

T rel is a bounded function of the density ρ > 0 [31],

• there exists some M > 0 such that g(k) = 1(1 ≤ k ≤ M) and ηx ≤ M for all

x ∈ Λ, then T rel is a bounded function of the density ρ ∈ (0,M/L) [102].

For each example above with symmetric dynamics a factor L2 appears in the scaling

of T rel due to single particle diffusions associated with the transport of mass.

In contrast to the homogeneous case, inhomogeneous processes that exhibit

stationary product measures can be both monotone and condensing, which allows

the use of coupling arguments to bound important quantities of interest. A simple

example of condensation arising due to system inhomogeneities is the constant rate

ZRP with a single site defect [8, 9, 87, 103]. This process can be interpreted as a

system of server queues each processing jobs at rate 1 with a single defect server

which processes a job at a slower rate. As the density increases jobs (particles)

will accumulate (condense) on the defect server whilst the density of the remaining

servers will remain fixed. Coupling constructions and necessary conditions for such

processes to be monotone are given in [11, 104, 45] and are reviewed in Section 2.4

with an explicit discussion for zero-range processes.

In this chapter, we calculate the relaxation time of two spatially inhomoge-

neous condensing zero-range processes on the complete graph. In both cases, the

relaxation time exhibits a dynamic transition as the density varies on ‘large systems’.

To calculate sharp bounds for the relaxation time of these process, we decompose

the state space into a finite number of disjoint subspaces. Understanding the dy-

namics of the process restricted to each subspace and a projection of the process,

which transitions between the disjoint subspaces under some ‘average dynamics’,

allows for a recursive method of calculating the relaxation time. This is the same

approach used for a non-condensing zero-range process [31] and the Kawasaki Ising

model [32], and for general Markov chains in [33]. In our case, the projection is

a birth-death chain which exhibits different behaviour depending on the density

ρ < ρc or ρ ≥ ρc. The restriction chain, the process restricted to a subspace, is a

constant rate zero-range process previously studied in [30].

This chapter is organised as follows. In Section 5.2, we introduce the pro-

cesses, define the relaxation time in terms of the Dirichlet form and variance, and

state the theorems necessary for our proof. We state our main results in Section 5.4

and in Section 5.5 we construct the projection and restriction chains. The proofs of

of writing this thesis.
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our main results are given in Sections 5.6, 5.7 and 5.8. In Section 5.9, we present

preliminary results on the mixing times of the zero-range processes with one and

two defects.

5.2 Background and notation

Consider a spatially inhomogeneous zero-range process (ZRP) on the lattice Λ =

{1, . . . , L} with N particles, which is irreducible on the finite state space

ΩL,N =
{
η ∈ NΛ :

L∑
x=1

ηx = N
}
. (5.1)

Particles exit a site x ∈ Λ containing ηx particles at rate gx(ηx) and move to a

neighbouring site y according to an irreducible random walk p(x, y). The dynamics

are defined by the generator (2.10) which we recall here

Lf(η) =
∑
x,y∈Λ

gx(ηx)p(x, y) (f(ηx→y)− f(η)) . (5.2)

We consider the case when p(x, y) = 1
L−1 for all x 6= y, here called complete graph

dynamics. In this chapter, we consider the constant rate ZRP with a set of defect

sites ∆ ⊂ Λ, with jump rates given by

gx(n) =

 1(n ≥ 1) if x ∈ Λ \∆

r 1(n ≥ 1) if x ∈ ∆
where 0 < r < 1 . (5.3)

The process exhibits a family of stationary product measures {νφ : φ ∈ [0, r)}
on the state space ΩL = NΛ satisfying

νφ[{η = n}] =
∏
x∈Λ

νxφ [{ηx = nx}] .

The single site marginals are given by

νxφ [{ηx = n}] =
wx(n)φn

zx(φ)
where wx(n) =

 1 if ∈ Λ \∆

r−n if x ∈ ∆
. (5.4)
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(a) (b)

(c) (d)

Figure 5.1: Typical configurations of a condensing zero range processes with multiple
defect sites and the grand canonical density functions with r = 0.75. Figure 5.1a is a
typical configuration below the critical density for systems with defect sites. Figure
5.1b and 5.1c are typical configurations above the critical density for processes with
1 or 2 defects respectively. Figure 5.1d shows the grand canonical densities (5.5)
ρ(φ), the density for a non defect site, and ρd(φ), the density for a defect site.

The grand-canonical partition functions and densities are given by

zx(φ) =

 1
1−φ if x ∈ Λ \∆

r
r−φ if x ∈ ∆

ρx(φ) =


φ

1−φ if x ∈ Λ \∆

φ
r−φ if x ∈ ∆

. (5.5)

As φ↗ φc = r and for each d ∈ ∆ the density ρd(φ) diverges whilst the background

densities ρx(φ) for each x ∈ Λ\∆ tend to r
1−r =: ρc. If N > ρcL the system separates

into a condensed phase on the defect sites and a fluid phase in the background, see

for example [62] and references therein. Typical configurations and grand canonical

densities of a condensing zero range process with multiple defect sites are shown in

Figure 5.1.

The process is irreducible on ΩL,N with a unique stationary measure π∆
Λ,N [·],
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which depends on the set of defect sites ∆ and is given by

π∆
Λ,N [{η = n}] =

1

Z∆
Λ,N

r−
∑
d∈∆ nd1(n ∈ ΩL,N ) , (5.6)

and the partition function (normalisation) is given by

Z∆
Λ,N =

∑
n∈ΩL,N

r−
∑
d∈∆ nd . (5.7)

Since we only consider the process on the complete graph the location of the defects

is not important, therefore with slight abuse of notation we let

π0
L,N [{η = n}] = π∅Λ,N [{η = n}] for no defect sites,

πKL,N [{η = n}] = π
{1,...,K}
Λ,N [{η = n}] for K defect sites,

and similarly ZKL,N denotes the respective partition function. The variance of a

function f : ΩL,N → R with respect to the measure πKL,N is denoted VarKL,N (f) and

the Dirichlet form is given by

DKL,N (f) = −πKL,N (fLf) =
1

2(L− 1)

∑
x,y
x 6=y

πKL,N

(
gx(ηx) (f(ηx,y)− f(η))2

)
. (5.8)

The spectral gap of the generator (5.2) on ΩL,N with K defects is denoted λKL,N and

is given by the variational principle given in Definition 2.5.1, i.e.

λKL,N = inf
f

{
DKL,N (f)

VarKL,N (f)
: VarKL,N (f) 6= 0

}
. (5.9)

The relaxation time is defined by TKL,ρ := 1/λKL,N where ρ := N/L.

5.3 Preliminary results

Calculating an upper bound on the relaxation time of the zero-range process with

defect sites relies on the following theorems for the relaxation time of a constant

rate zero-range process [30, Theorem 1], and birth-death chains [105, Theorem 1]

and [106, Theorem 1.1].

Theorem 5.3.1 (Morris). There exist (universal) constants c1, c2 > 0 such that the

relaxation time for a constant rate zero-range process (∆ = ∅) on the complete graph
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satisfies

c1 (1 + ρ)2 ≤ T 0
L,ρ ≤ c2 (1 + ρ)2 , (5.10)

for all L ≥ 2.

Theorem 5.3.2 (Mufa). Consider a birth-death process on N with death rate ai and

birth rate bi with spectral gap λ. Let v ∈ V = {w = (wi)i∈N : wi > 0 for all i ∈ N}
and define

Ri(v) = ai+1 + bi −
ai
vi−1

− bi+1vi , (5.11)

where a0 = 0. Then

λ = sup
v∈V

inf
i≥0

Ri(v) . (5.12)

Theorem 5.3.3 (Chen and Saloff-Coste). Consider a reversible birth-death process

on N with death rates ai and birth rate bi with spectral gap λ and unique stationary

measure µ. Define

B+(i) = sup
x>i

 x∑
y=i+1

1

µyay

∑
y≥x

µy ,

B−(i) = sup
x<i

(
i−1∑
y=x

1

µyby

)∑
y≤x

µy .

Let m be the median of µ and

B = sup{B+(m), B−(m)} ,

then
1

4B
≤ λ ≤ 2

B
.

5.4 Results

Our main results are stated in the following two theorems.

Theorem 5.4.1. There exist universal constants c1, c
′
1, c2, c

′
2 > 0 such that the

relaxation time of the ZRP with a single defect, on the complete graph, satisfies

c1

(√
r −

√
ρ

ρ+ 1

)−2

≤ T 1
L,ρ ≤ c′1

(√
r −

√
ρ

ρ+ 1

)−2(
1 +

(1 + ρc)
2

L

)
,
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for all ρ < ρc. For all ρ ≥ ρc we have

c2 (1 + ρc)
2 L ≤ T 1

L,ρ ≤ c′2 (1 + ρc)
2 L

(
1 +

Cρ
L

)
, (5.13)

where Cρ = (1 + ρ)2
(

1
(1+ρc)2 + 1

)
.

In the thermodynamic limit (3.2) we have

T 1
L,ρ �


(√

r −
√

ρ
ρ+1

)−2
for all ρ < ρc ,

(1 + ρc)
2L for all ρ ≥ ρc ,

(5.14)

i.e. a transition in the behaviour of the relaxation time of the constant rate zero-

range process with one defect at density ρc.

Theorem 5.4.2. There exist universal constants c1, c
′
1, c2, c

′
2, c3, c

′
3 > 0 such that

the relaxation time of the ZRP with two defect sites, on the complete graph, satisfies

c1

(√
r −

√
ρ

ρ+ 1

)−2

≤ T 2
L,ρ ≤ c′1

(√
r −

√
ρ

ρ+ 1

)−2
(

1 +
T 1
L−1,ρ

L

)
,

for all ρ < ρc. For ρ = ρc we have

c2(1 + ρc)
2L ≤ T 2

L,ρ ≤ c′2(1 + ρc)
2L

(
1 +

T 1
L−1,ρ

L

)
. (5.15)

For all ρ > ρc

c3
1

r
(ρ− ρc)2L2 ≤ T 2

L,ρ ≤ c′3
1

r
(ρ− ρc)2L2

(
1 +

(
1

L
+

1

(ρ− ρc)2L2

)
T 1
L−1,ρ

)
.

(5.16)

In the thermodynamic limit (3.2) we have

T 2
L,ρ �


(√

r −
√

ρ
ρ+1

)−2
for all ρ < ρc ,

(1 + ρc)
2L for all ρ = ρc ,

(ρ− ρc)2L2 for all ρ > ρc ,

(5.17)

i.e. two transitions in the behaviour of the relaxation time of the constant rate

zero-range process with two defect sites at density ρc.

To prove these theorems, we consider a decomposition of the state space

ΩL,N via conditioning the ZRP to have n particles at a defect site. This method
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allows us to compare the relaxation time of the full ZRP with a copy of the ZRP on

ΩL−1,N−n, called the restriction chain, and a projection chain which controls how

the process transitions from one set in the decomposition to another, i.e. n→ n±1.

We see a transition in the relaxation time of the projection chain when ρ crosses

the critical density ρc, which leads to a transition in the relaxation time of the full

ZRP. If the process has one defect site then the projection chain above ρc behaves

like a random walk with drift towards a point n? � (ρ−ρc)L. For the ZRP with two

defect sites, the projection chain above ρc then behaves like a symmetric random

walk, which leads to the relaxation time scaling like L2.

Theorems 5.4.1 and 5.4.2 can be easily extended to zero-range processes with

more defect sites. If K = |∆| is the number of defect sites, then we conjecture that

if K is independent of L the scaling of the relaxation time above the critical density

ρc is 1
K−1

1
r (ρ − ρc)

2L2. We expect this to be the case since the region that the

projection chain behaves like a symmetric random walk decreases with the number

of defects since more mass can be accommodated in defect sites. Alternatively, the

typical number of particles in the background goes from (L − 2)ρc to (L − K)ρc.

If instead we have order L defects, K � L, then we do not expect the relaxation

time to be of order L2. In this case, it is natural to expect that the relaxation time

behaves like the that of a constant rate ZRP since a projection processes that moves

mass between defect and non-defect sites will exhibit bias towards the defect sites.

Heuristically, this projection chain will have a gap independent of the system size L.

Furthermore, the processes restricted to the defect or non-defect sites are constant

rate ZRPs with jump rates r or 1 respectively.

5.5 Decomposition: Projection and restriction chain

In this section, we decompose the state space ΩL,N into a disjoint union of subspaces

and construct the projection and restriction chains used to prove our main results.

This method has previously been used to calculate sharp bounds for the relaxation

time of the zero-range process with asymptotically linear jump rates [31].

Lemma 5.5.1. Consider the complete graph zero-range process (5.2) with K defect

sites on ΩL,N . For all f : ΩL,N → R we have

VarKL,N (f) ≤ sup
0≤n≤N

{
TK−1
L−1,N−n

}
DKL,N (f) + T̃KL,N D̃KL,N (Hf (·)) , (5.18)

where Hf (n) := πKL,N (f |η1 = n) and T̃KL,N is the relaxation time of a birth death
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process on {0, . . . , N} with rates

q̂(i, j) =


πK−1
L−1,N−i (gx(·)) if j = i+ 1 ,

r1(i ≥ 1) if j = i− 1 ,

0 otherwise .

(5.19)

Proof. By the law of total variance, we have

VarKL,N (f) = πKL,N
(
VarKL,N (f | η1)

)
+ VarKL,N

(
πKL,N (f | η1)

)
. (5.20)

Since πKL,N is a product measure conditioned on the total number of particles, if

K ≥ 1, the conditional variance appearing in the first term can be rewritten as

VarKL,N (f | η1) = VarK−1
L−1,N−η1

(f(η1, ·)) . (5.21)

We can now apply a Poincaré inequality for the zero-range process on ΩL−1,N−η1 as

follows

VarK−1
L−1,N−η1

(f(η1, ·)) ≤ TK−1
L−1,N−η1

DK−1
L−1,N−η1

(f(η1, ·)) . (5.22)

Taking the supremum over η1 ∈ {0, . . . N} and the expectation with respect to πKL,N
we have

πKL,N
(
VarKL,N (f |η1)

)
≤ sup

0≤n≤N

{
TK−1
L−1,N−n

}
πKL,N

(
DK−1
L−1,N−η1

(f(η1, ·))
)
. (5.23)

Finally, it is easy to see that (see for example [31])

πKL,N

(
DK−1
L−1,N−η1

(f(η1, ·))
)
≤ DKL,N (f) . (5.24)

We now turn to the second term of (5.20). Defining

Hf (n) = πKL,N (f | η1 = n) , (5.25)

then the second term is the variance of a function of one variable. Applying the

Dirichlet form (5.8) to a function h : {0, . . . , N} → R which depends only on η1 we
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have

DKL,N (h) =
1

2(L− 1)

∑
x 6=1

πKL,N

(
gx(ηx) [h(η1 + 1)− h(η1)]2

)
+

1

2(L− 1)

∑
y 6=1

πKL,N

(
g1(η1) [h(η1 − 1)− h(η1)]2

)
=

1

2
πKL,N

(
πK−1
L−1,N−η1

(gy(ηy)) [h(η1 + 1)− h(η1)]2
)

+
1

2
πKL,N

(
g1(η1) [h(η1 − 1)− h(η1)]2

)
=: D̃KL,N (h) , (5.26)

where we have used πK−1
L−1,M (gy(ηy)) = πK−1

L−1,M (gz(ηz)) for all y, z ∈ Λ. D̃KL,N (h) is

the Dirchlet form of a birth-death chain on {0, . . . N} with stationary measure

πKL,N [{η1 = n}] =: µKL,N [n] , (5.27)

the marginal of the measure πKL,N on site 1. The jump rates of the birth-death chain

(projection chain) are given by

q̂(i, j) =


πK−1
L−1,N−i (gx(·)) if j = i+ 1 ,

r1(i ≥ 1) if j = i− 1 ,

0 otherwise .

(5.28)

By applying a Poincaré inequality of the birth-death process, we have

VarKL,N (h) ≤ T̃KL,N D̃KL,N (h) , (5.29)

where T̃KL,N is the relaxation time of the birth-death chain. Applying this estimate

to the test function (5.25) and combining the estimates (5.23) and (5.24) we have

VarKL,N (f) ≤ sup
0≤n≤N

{
TK−1
L−1,N−n

}
DKL,N (f) + T̃KL,N D̃KL,N (Hf (·)) . (5.30)

84



CHAPTER 5. THE DEFECT SITE ZERO-RANGE PROCESS

(a) (b)

Figure 5.2: Jump rates for the birth-death chain (5.19) for ρ > ρc and ρ < ρc.
Figure 5.2a: rates for the projection chain with one defect site K = 1, the process
exhibits drift towards a point (ρ−ρc)L above the critical density. Figure 5.2b: rates
for the projection chain with two defect sites K = 2, above the critical density the
process behaves like a symmetric random walk in the region {0, . . . , (ρ− ρc)L}.

5.6 Single site defect: Proof of Theorem 5.4.1

In this section, we calculate upper bounds for the relaxation times for the cases

ρ < ρc and ρ ≥ ρc separately. Lower bounds of the same order are given in Section

5.8. For ρ < ρc, the projection chain exhibits a strong drift to the origin giving

rise to a L independent relaxation time. For ρ ≥ ρc, the associated birth-death

chain instead exhibits a drift towards a value n? � (ρ − ρc)L which grows linearly

with the system size and the relaxation time has a linear dependence on L. We

show numerical solutions and the upper bound of T̃ 1
L,N for the relaxation time of

the birth-death chain in Figure 5.3.

In light of Lemma 5.5.1 and Theorem 5.3.1 we only have to bound the relax-

ation time of the projection chain and compare the Dirichlet forms of the projection

chain and the full process. This is contained in the following lemmas, which will be

proved in the following two subsections.

Lemma 5.6.1. There exists (universal) constants c1, c2 > 0 such that for all ρ < ρc

T̃ 1
L,N ≤ c1

(√
r −

√
ρ

1 + ρ

)−2

, (5.31)

and for ρ ≥ ρc we have

T̃ 1
L,N ≤ c2(1 + ρc)

2 L . (5.32)
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Figure 5.3: The relaxation time of the projection chain, a birth-death chain, for the
zero-range process with one defect site. For L = 500, 1000, and 1500 with r = 0.5
we plot the numerical solution for the reciprocal of the smallest non-zero eigenvalue
of the generator (gold, blue, and purple markers) with the scaling form of the upper
bound given in Lemma 5.6.1 (red line). Above the critical density the relaxation
grows linearly with the system size L

Lemma 5.6.2. For all f : ΩL,N → R

D̃1
L,N (Hf (η1)) ≤

(
2 +

c2(1 + ρ)2

2L

)
D1
L,N (f) ,

where c2 is the constant appearing in Theorem 5.3.1.

Therefore, the upper bound in Theorem 5.4.1 follows by combining (5.18),

Lemmas 5.6.1 and 5.6.2, and using the inequality

(1 + ρ)2 ≤
(√

r −
√

ρ

1 + ρ

)−2

for all r ∈ (0, 1) and ρ < ρc, which is used to compare the scaling forms appearing

in Theorem 5.3.1 and Lemma 5.6.1.

5.6.1 Proof of Lemma 5.6.1: The relaxation time of the projection

chain with one defect

Recall that the projection chain (5.19) is a birth death process (Xt)t≥0 on {0, ..., N}
with death rate q̂(n, n−1) = r1(n > 0) and birth rate q̂(n, n+1) = π0

L−1,N−n (gx(·)).
Since π0

L−1,N−n is the uniform measure on ΩL−1,N−n and the partition function is
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given by the size of ΩL,N , i.e.

Z0
L,N = |ΩL,N | =

(
N + L− 1

N

)
,

then the birth rate q̂(n, n+ 1) is given by

q̂(n, n+ 1) = π0
L−1,N−n(gx(·)) =

Z0
L−1,N−n−1

Z0
L−1,N−n

=
N − n

N + L− n− 2
.

We first calculate the spectral gap of the birth death process (Xt)t≥0 for the

case ρ < ρc using Theorem 5.3.2. Define

vi = v =

√
r(1 + ρ)

ρ
(5.33)

for all i ∈ {0, . . . , N}. We note that this is the same function used to calculate a

sharp upper bound for relaxation time of a birth-death process with death rate r

and birth rate ρ
1+ρ in [105]. Then

Ri(v) =
N − i

N + L− i− 2
+ r − r

√
ρ

r(1 + ρ)
− N − i− 1

N + L− i− 3

√
r(1 + ρ)

ρ
,

which is increasing on i ∈ {0, . . . N} and positive for all ρ < ρc, therefore the

minimum is attained at R0(v). Writing ρ = N/L we have

R0(v) =
ρ

1 + ρ− 2/L
+ r − r

√
ρ

r(1 + ρ)
− ρ− 1/L

1 + ρ− 3/L

> r +
ρ

1 + ρ
− 2r

√
ρ

1 + ρ
=

(√
r −

√
ρ

1 + ρ

)2

.

Therefore, the inverse of the relaxation time for the birth-death chain has the lower

bound (
T̃ 1
L,N

)−1
≥ inf

i≥0
Ri(v) = R0(v) >

(√
r −

√
ρ

ρ+ 1

)2

,

which completes the first part of the proof of Lemma 5.6.1 for ρ < ρc.

For ρ = ρc the function vi = 1 for all i gives the required lower bound since

Ri(v) is increasing on {0, . . . , N} and

R0(v) =
N

N + L− 2
− N − 1

N + L− 3
. (5.34)
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Setting N/L = ρc we have

R0(v) =
L− 2

(L(1 + ρc)− 3)(L(1 + ρc)− 2)
>

L− 2

L2(1 + ρc)2
, (5.35)

which implies

T̃ 1
L,N < c(1 + ρc)

2L (5.36)

for some constant c > 0.

For ρ > ρc define n?L,N to be the smallest integer such that the difference

between the birth and death rates is minimised, which leads to

n?L,N =

⌊
N − r (N + L− 2)

1− r

⌋
.

Define

vi =

1− 1
r L if i ∈ {0, . . . , n?L,N − 1} ,

1 if i ∈ {n?L,N , . . . , N} .
(5.37)

then

Ri(v) =


N−i

N+L−i−2 + r − r
1− 1

r L

− N−i−1
N+L−i−3

(
1− 1

r L

)
if i < n?L.N

N−i
N+L−i−2 −

N−i−1
N+L−i−3 if i ≥ n?L,N

.

Ri(v) is decreasing in i on the interval {0, . . . , n?L,N−1} and increasing on {n?L,N , . . . , N},
which implies the the minimum is given by

inf
i≥0

Ri(v) = min
{
Rn?L,N−1 (v) , Rn?L,N (v)

}
.

Therefore, taking the limit L,N →∞ such that N/L→ ρ > ρc we find

L
(
Rn?L,N−1 (v)

)
→ (1− r)2 and L

(
Rn?L,N (v)

)
→ (1− r)2

The critical density is given by ρc = r
1−r , so we have 1 + ρc = 1

1−r , which implies

T̃ 1
L,N < c(1 + ρc)

2 L ,

for some constant c > 0. This completes the proof of Lemma 5.6.1.
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5.6.2 Proof of Lemma 5.6.2: Comparison of the Dirichlet forms

To compare the Dirichlet form of the projection chain and zero-range process we

follow the approach used in [31]. The major differences in this chapter are variance

estimates of the jump rate gx(ηx) with respect to the measure π
|∆|
L,N and comparisons

with the zero-range process on ΩL−1,N−n.

Recall, the Dirichlet forms for the projection chain and the complete graph

zero-range process, see (5.26) and (5.8), with a single site defect are given by

D̃1
L,N (h) =

1

2

N−1∑
n=0

µ1
L,N [n+ 1]r (h(n+ 1)− h(n))2 for h : {0, . . . , N} → R (5.38)

D1
L,N (f) =

1

2(L− 1)

∑
x 6=y

π1
L,N

(
gx(ηx) (f(ηx,y)− f(η))2

)
for f : ΩL,N → R .

(5.39)

Using the same approach as [31], define M : ΩL,N → R as

M(η) =
1

r

π1
L,N [η1]

π1
L,N [η1 + 1]

1

L− 1

L∑
x=2

gx(ηx) . (5.40)

Since

1

r

π1
L,N [η1]

π1
L,N [η1 + 1]

=
1

q̂(η1, η1 + 1)
,

the function M(η) can be interpreted as the ratio of the actual rate into site 1 under

the zero-range dynamics and the rate into site 1 under the projection defined in

Section 5.5. By [31, Lemma 4.4] we can write

π1
L,N (f |η1 = n+ 1)− π1

L,N (f |η1 = n)

=
1

r

1

π1
L,N [{η1 = n+ 1}]

1

L− 1

L∑
x=2

π1
L,N

(
gx(ηx)

(
f(ηx,1)− f(η)

)
1(η1 = n)

)
+ π1

L,N (M ; f |η1 = n) ,

where π1
L,N (M ; f |η1 = n) is the covariance of M and f with respect to π1

L,N [·|η1 =

n].

Therefore, using the Cauchy-Schwarz inequality we have D̃1
L,N (Hf (·)) is
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bounded above by

N−1∑
n=0

1

rπ1
L,N [{η1 = n+ 1}]

[
π1
L,N

(
1

L− 1

L∑
x=2

gx(ηx)
(
f(ηx,1)− f(η)

)
1(η1 = n)

)]2

(5.41)

+

N−1∑
n=0

rπ1
L,N [{η1 = n+ 1}]

[
π1
L,N (M ; f |η1 = n)

]2

.

Define the first line as Af1(L,N) and the second as Af2(L,N). Using the Cauchy-

Schwarz inequality we can show

Af1(L,N) ≤ π1
L,N

(
1

L− 1

L∑
x=2

gx(ηx)
(
f(ηx,1)− f(η)

)2)

≤ 1

L− 1

∑
x,y

π1
L,N

(
gx(ηx) (f(ηx,y)− f(η))2

)
= 2D1

L,N (f) . (5.42)

We now turn to calculating an upper-bound for Af2(L,N). We first rewrite

Af2(L,N) as

Af2(L,N) = π1
L,N

 1

π0
L−1,N−η1

(gx(ηx))

[
π0
L−1,N−η1

(
f ;

1

L− 1

L∑
x=2

gx(ηx)

)]2
 ,

and using the Cauchy-Schwarz inequality we have an upper bound given by

Af2(L,N) ≤ 1

(L− 1)2
π1
L,N

Var0
L−1,N−η1

(∑L
x=2 gx(ηx)

)
π0
L−1,N−η1

(gx(ηx))
Var0

L−1,N−η1
(f)

 .

By Theorem 5.3.1 the first variance can be bounded above by the relaxation time

of the constant rate ZRP on the complete graph and its associated Dirichlet form.

Since gx(n) = 1(n ≥ 1) for x ∈ {2, . . . L} and π0
L−1,N−η1

is the uniform measure

on ΩL−1,N−η1 , we can compute the following upper bound of the second variance
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scaled by expected jump rate of the form

1

(L− 1)2

Var0
L−1,N−η1

(∑L
x=2 gx(ηx)

)
π0
L−1,N−η1

(gx(ηx))
=

(L− 2)(N − η1 − 2)

(L− 1)(N + L− η1 − 3)(N + L− η1 − 2)

(5.43)

≤

c
ρ

(1+ρ)2
1
L if ρ ≤ 1 ,

c 1
4L if ρ > 1 .

. (5.44)

Therefore, combining (5.44) and Theorem 5.3.1 Af2(L,N) is bounded above byc2
ρ
LD

1
L,N (f) if ρ ≤ 1 ,

c2
(1+ρ)2

4L D
1
L,N (f) if ρ > 1 ,

(5.45)

Combining (5.42) and (5.45) we have

D̃1
L,N (Hf (η1)) ≤

(
2 +

c2(1 + ρ)2

4L

)
D1
L,N (f)

for all f : ΩL,N → R, completing the proof of Lemma 5.6.2.

5.7 The complete graph zero-range process with two

defect sites: Proof of Theorem 5.4.2

For the constant rate ZRP on the complete graph with two defect sites the relaxation

time exhibits different behaviour for ρ < ρc, ρ = ρc and ρ > ρc. By the same method

as Section 5.6, we calculate the relaxation time by conditioning the process to have

n particles on one of the defect sites. This allows us to use results on the relaxation

time of the background process, a ZRP with one defect site. For ρ < ρc the birth-

death chain exhibits a strong drift to the origin giving rise to a L independent

relaxation time. Unlike the birth-death process defined in Section 5.6, for ρ > ρc

the birth-death process behaves like a symmetric random walk, which gives rise to

a L2 dependence on the relaxation time.

In light of Lemma 5.5.1 and Theorem 5.4.1 we only have to bound the relax-

ation time of the projection chain and compare the Dirichlet forms of the projection

chain and the full process. This is contained in the following lemmas, which will be

proved in the following two subsections.

Lemma 5.7.1. There exists (universal) constants c1, c2, c3 > 0 such that for all
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ρ < ρc

T̃ 2
L,N ≤ c1

(√
r −

√
ρ

1 + ρ

)−2

, (5.46)

for ρ = ρc

T̃ 2
L,N ≤ c2 (1 + ρc)

2 L , (5.47)

and for ρ ≥ ρc we have

T̃ 2
L,N ≤ c3

1

r
(ρ− ρc)2L2 . (5.48)

Lemma 5.7.2. For all L > 3, N ∈ N, and f : ΩL,N → R

D̃2
L,N (Hf (η)) ≤

(
2 +

2

L
T 1
L−1,ρ

)
D2
L,N (f) .

Since the background process is a constant rate ZRP with a single site defect

on ΩL−1,N−ηd1 , the upper bound in Theorem 5.4.2 follows from (5.18), Theorem

5.4.1, as well as Lemmas 5.7.1 and 5.7.2.

5.7.1 Proof of Lemma 5.7.1: The relaxation time of the projection

chain with two defects

Recall that the projection chain (5.19) is a birth death process (Xt)t≥0 on {0, ..., N}
with death rate q̂(n, n−1) = r1(n > 0) and birth rate q̂(n, n+1) = π1

L−1,N−n (gx(·)).
The birth rate is of the form

q̂(n, n+ 1) = π1
L−1,N−n(gx(·)) =

Z1
L−1,N−n−1

Z1
L−1,N−n

,

where

Z1
L,N =

N∑
n=0

r−n
(
N − n+ L− 2

N − n

)
. (5.49)

By an equivalence of ensembles argument (see for example [62]) we have

lim
L→∞
N/L→ρ

π1
L−1,N (gy(ηy)) =

φ(ρ) = ρ
ρ+1 if ρ < ρc

φ(ρc) = r if ρ ≥ ρc
. (5.50)

Furthermore, for ρ(1− x) < ρc

lim
L→∞

N/L→ρ and n/N→x

π1
L−1,N−n(gy(ηy)) = φ (ρ(1− x)) =

ρ(1− x)

ρ(1− x) + 1
. (5.51)
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As in the proof of Lemma 5.6.1 let vi = v =
√

r(ρ+1)
ρ for all i ∈ {0, . . . , N}.

By (5.51) and assuming ρ < ρc

lim
L→∞

N/L→ρ and i/N→x

Ri(v) =

r(1 + ρ(1− x))
(√

ρ
r(1+ρ) − 1

)
+ (1− x)

(
1−

√
r(1+ρ)
ρ

)
1 + ρ(1− x)

is increasing in x ∈ [0, 1]. Therefore, by Theorem 5.3.2 for all ρ < ρc the relaxation

time of the birth-death chain is bounded above by

T̃ 2
L,N ≤ c1

(√
r −

√
ρ

ρ+ 1

)−2

.

The case N/L→ ρ = ρc follows as before, setting vi = 1 for all i ∈ {0, . . . , N}
we have

T̃ 2
L,N ≤ c2(1 + ρc)

2L (5.52)

Now consider the case ρ > ρc. In this case, for large L and n ≤ (ρ − ρc)L
the birth-death chain behaves like a symmetric random walk, and for n > (ρ− ρc)L
the chain behaves like the random walk with the rates at the critical density ρ = ρc.

Therefore, we partition {0, 1, . . . , N} into two disjoint subsets

{0, 1, . . . , N} = {0, 1, . . . , b(ρ− ρc)Lc}︸ ︷︷ ︸
:=Ω1

∪{b(ρ− ρc)Lc+ 1, . . . , N}︸ ︷︷ ︸
:=Ω2

. (5.53)

A simple change of coordinates shows the birth-death chain restricted to Ω2 is

the same as the chain when ρ = ρc and therefore, the relaxation time scales like

(1 + ρc)
2L. Since πL−1,N−η1(g(·))→ φc = r as N/L→ ρ > ρc the birth-death chain

restricted to Ω1 behaves like a simple-random walk on the lattice {0, 1, . . . , (ρ−ρc)L}
and the relaxation time scales like 1

r (ρ−ρc)2L2. Therefore, we expect the relaxation

time for the birth-death chain to scale like 1
r (ρ−ρc)2L2. This can be shown explicitly

by first noting that in the limit N,L → ∞ such that N/L → ρ and n/N → x we

have

1

L
logZ0

L,N−n → (1 + ρ(1− x)) log (1 + ρ(1− x))− ρ(1− x) log (ρ(1− x)) .
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Via integral approximations of (5.49) we have

Z1
L,N �


(1+ρ)L(1+ρ)

ρLρ

(
1−
(

ρ
r(1+ρ)

)Lρ)
log
(
r(1+ρ)
ρ

) for ρ ≤ ρc
√

2πL√
r
ρL−1
c r−L(ρ+1) for ρ > ρc

. (5.54)

Since the stationary measure for the birth-death chain is given by

µ2
L,N [n] = π2

L,N [{η1 = n}] =
1

Z2
L,N

r−nZ1
L−1,N−n ,

for large L,N such that N/L→ ρ > ρc and n/N → x < 1− ρc
ρ

r−nZ1
L−1,N−n �

√
2πL√
r
ρL−1
c r−L(ρ+1) ,

which is independent of n. For x > 1− ρc
ρ , using the integral approximation (5.54)

r−nZ1
L−1,N−n can be shown to decay with x, and the functions appearing in Theorem

5.3.3 can be easily approximated to give a bound which scales like 1
r (ρ− ρc)2L2.

5.7.2 Proof of Lemma 5.7.2: Comparison of the Dirichlet forms

We now turn to the proof of Lemma 5.7.2. We follow the same approach outlined

in Section 5.6 and here we only note the major differences in the proof.

Again, define

M(η) =
1

r

π2
L,N [η1]

π2
L,N [η1 + 1]

1

L− 1

L∑
x=2

gx(ηx) , (5.55)

which gives the same upper bound for D̃2
L,N (Hf (η1)) as equation (5.41). Splitting

the terms into Af1(L,N) and Af2(L,N) as before, we have the same bound

Af1(L,N) ≤ 2D2
L,N (f) . (5.56)

We again use the Cauchy-Schwarz inequality to bound Af2(L,N) above by

1

(L− 1)2
π2
L,N

(
1

π1
L−1,N−η1

(gx(ηx))
Var1

L−1,N−η1
(f)Var1

L−1,N−η1

(
L∑
x=2

gx(ηx)

))
.

(5.57)

Let J = L− 1 and M = N − η1. For some y /∈ ∆, a simple computation on
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the canonical measure of the constant rate ZRP with single site defect shows

1

π1
J,M (gy(ηy))

Var1
J,M

(
L∑
x=2

gx(ηx)

)

=

J∑
x=1

π1
J,M−1(gx(ηx + 1)) + J(J − 1)π1

L,M−1(gy(ηy))− J2π1
J,M (gy(ηy))

= J − 1 + r + J(J − 1)π1
J,M−1(gy(ηy))− J2π1

J,M (gy(ηy)) ,

where in the final step we have used gx(ηx + 1) is equal to 1 for all x ∈ Λ \∆ and r

for x ∈ ∆. Since gy(n) = 1(n ≥ 1) for y ∈ Λ \∆ we can rewrite the expected jump

rate as

π1
J,M (gy(ηy)) = 1− π1

J,M [{ηy = 0}] ,

which implies

1

π1
J,M (gy(ηy))

Var1
J,M

(
L∑
x=2

gx(ηx)

)

=

L∑
x=2

π1
J,M (gx(ηx + 1)) + J(J − 1)π1

J,M−1 (gy(ηy))− J2π1
J,M (gy(ηy))

= J − 1 + r + J(J − 1)
(
1− π1

J,M−1[{ηy = 0}]
)
− J2

(
1− π1

J,M [{ηy = 0}]
)

= J2
(
π1
J,M [{ηy = 0}]− π1

J,M−1[{ηy = 0}]
)

+ Jπ1
J,M−1[{ηy = 0}] + r − 1 .

The zero-range process with one defect site is monotone (attractive), which implies

π1
J,M (f) ≤ π1

J,M+1(f) for all increasing functions f : NΛ → R .

Fix y ∈ Λ, the test function k(η) = 1(ηy = 0) is decreasing and we have

π1
J,M [{ηy = 0}]− π1

J,M−1[{ηy = 0}] ≤ 0 for all J,M ∈ N , (5.58)

therefore

J2
(
π1
J,M [{ηy = 0}]− π1

J,M−1[{ηy = 0}]
)

+ Jπ1
J,M−1[{ηy = 0}] + r − 1

≤ Jπ1
J,M−1[{ηy = 0}] .
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Now substituting J = L− 1 and M = N − η1 we have

1

π1
L−1,N−η1

(gy(ηy))
Var1

L−1,N−η1

(
L∑
x=2

gx(ηx)

)
≤ (L− 1)π1

L−1,N−η1
[{ηy = 0}] ,

(5.59)

and since π1
L,N is a probability measure we have

π1
L−1,N−η1

[{ηy = 0}] ≤ 1 .

Therefore, we have

1

(L− 1)2

1

π1
L−1,M−η1

(gy(ηy))
Var1

L−1,N−η1

(
L∑
x=2

gx(ηx)

)
≤ 1

L− 1
, (5.60)

which leads to

Af2(L,N) ≤ 2

L
T 1
L−1,ρD2

L,N (f) . (5.61)

where T 1
L−1,ρ is the relaxation time of the complete graph zero-range process with

one defect site. Combining (5.56) and (5.61) we have

D̃2
L,N (Hf (η)) ≤

(
2 +

2

L
T 1
L−1,ρ

)
D2
L,N (f)

completing the proof of Lemma 5.7.2.

5.8 Lower bounds of the relaxation times

To complete the proofs of Theorems 5.4.1 and 5.4.2, we must derive lower bounds

of the relaxation times, which can be achieved by analysing the Dirichlet forms and

variance of appropriate test functions. We consider the sub and super critical cases

separately.

5.8.1 ρ < ρc

Consider the models with one and two defects when ρ < ρc and define F : ΩL,N → R
as follows

F (η) =

(
φ(ρ)

r

)αη1

(5.62)
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where α > −1/2, ρ = N/L, φ(ρ) = ρ
1+ρ and let K = |∆| ∈ {1, 2}. Since F (η) is a

function of the first site only, the Dirichlet form reduces to

DKL,N (F ) =
1

2
πKL,N

(
r1(η1 > 0)

(
F (η1,y)− F (η)

)2)
+

1

2
πKL,N

(
πK−1
L−1,N−η1

(gy(ηy))
(
F (ηy,1)− F (η)

)2)
�1

2
ν1
φ

(
r1(η1 > 0)

(
F (η1,y)− F (η)

)2)
+

1

2
ν1
φ

(
νφ (gy(ηy))

(
F (ηy,1)− F (η)

)2)
=
φ
(

1− φ
r

)(
1−

(
φ
r

)α)2

1−
(
φ
r

)1+2α .

Where we have used [62, Theorem 4.2] to replace the expectation with respect to the

canonical measure with that of the grand canonical measure for sub-critical systems.

The variance of F (η) =
(
φ
r

)αη1

is given by

VarKL,N (F ) =πKL,N

((
φ

r

)2αη1
)
−
(
πKL,N

((
φ

r

)αη1
))2

�ν1
φ

((
φ

r

)2αη1
)
−
(
ν1
φ

((
φ

r

)αη1
))2

= Var1
φ(F ) .

Again, we have replaced the expectation with respect to the canonical measure with

that of the grand canonical measure for sub-critical systems using [62, Theorem

4.2]. Since the measure ν1
φ[·] is geometric with parameter φ/r we can compute the

variance of F exactly to find

Var1
φ(F ) =

φ
(

1− φ
r

)(
1−

(
φ
r

)α)2

r

(
1−

(
φ
r

)1+α
)2(

1−
(
φ
r

)1+2α
) .

Therefore, there exists a constant c > 0 such that the spectral gap is bounded above

by

λKL,N ≤
DKL,N (F )

VarKL,N (F )
≤c inf

α>−1/2
r

(
1−

(
φ

r

)1+α
)2

= c
(√

r −
√
φ
)2

= c

(√
r −

√
ρ

1 + ρ

)2

.
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5.8.2 ρ ≥ ρc

Consider the case ρ ≥ ρc and the zero-range process with one defect site. Define

F : ΩL,N → R as

F (η) = η1 .

It is easy to see that the Dirichlet form is given by

D1
L,N (F ) = π1

L,N (g1(η1)) � φc = r .

The variance is given by

Var1
L,N (F ) = Var1

L,N (η1) =Var1
L,N

(
N −

L∑
x=2

ηx

)

=Var1
L,N

(
L∑
x=2

ηx

)
�LVar1

φc(η2)

=r(1 + ρc)
2L .

Where we have replaced the expectation with respect to the canonical measure with

that of the critical grand canonical measure for super critical systems [62, Theorem

4.3]. Therefore, the spectral gap is bounded above by

λ1
L,N ≤

D1
L,N (η1)

Var1
L,N (η1)

<
c

(1 + ρc)2L

for some constant c > 0.

For the zero-range process with two defect sites, an upper bound for the

spectral gap follows from the variational principle (5.9), Theorem 5.3.3 and the

scaling arguments at the end of Section 5.7.1. By (5.9) the spectral gap of the

full process is bounded above by the spectral gap of the projection chain (5.19) as

constructed in Section 5.5, i.e.

λKL,N = inf
f

{
DKL,N (f)

VarKL,N (f)
: VarKL,N (f) 6= 0

}

≤ inf
h

{
DKL,N (h)

VarKL,N (h)
: VarKL,N (h) 6= 0 and h(η) = h(η1)

}
= λ̃KL,N ,

where λ̃KL,N is the spectral gap of the projection chain (5.19). By Theorem 5.3.3 and
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computations in Section 5.7.1 we have

λ̃2
L,N ≤ c

r

(ρ− ρc)2L2
(5.63)

for some constant c > 0.

5.9 Coupling times and cut-off

In this section, we discuss convergence to the stationary measure in total-variation.

For two measures µ and ν on a countable state space Ω, the total-variation distance

is given by

||ν − µ||TV =
∑
η∈Ω

|ν[η]− µ[η]| .

For the defect site ZRP with stationary measure π∆
L,N (5.6), the total-variation

mixing time is given by

d(t) := sup
η∈ΩL,N

||Pt(η, ·)− π∆
L,N ||TV , (5.64)

where Pt(η,A) = P (η(t) ∈ A | η(0) = η) for some A ∈ ΩL,N .

Consider a coupling of the defect site ZRP (η(t), ζ(t))t≥0 on the state space

ΩL,N × ΩL,N such that ζ(0) ∼ π∆
L,N , i.e. ζ(t) is stationary for all t ≥ 0. Define the

coupling time as

T coup
L,N := inf {t ≥ 0 : η(t) = ζ(t)} .

Since ζ(t) is stationary the total-variation mixing time is bounded above by the

coupling time in the following sense

d(t) ≤ sup
η∈ΩL,N

Pη(T coup
L,N > t) , (5.65)

where Pη,ζ
(
T coup
L,N > t

)
= P

(
T coup
L,N > t | η(0) = η and ζ(0) ∼ π∆

L,N

)
.

In Figures 5.4 and 5.6, we present numerical evidence for the coupling time

of a ZRP with one and two defect sites respectively. We see vastly different types of

behaviour above and below the critical density, and with one and two defect sites.

In Theorems 5.6 and 5.7, we saw that the relaxation time of the full process is given

by the relaxation of the projection chain. In both cases, below the critical density

the projection chain behaves like a biased random walk. Above the critical density,

the projection chains behave differently; with one defect the chain exhibits drift

towards a value which scales like (ρ − ρc)L, and for two defect the chain behaves
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like a symmetric random walk. In the latter case, it is known that the symmetric

random walk does not exhibit total-variation cut-off, and therefore, we expect to

not see total-variation cut-off in the ZRP with two defects.

In Figures 5.5 and 5.7, we present numerical evidence for the coupling time of

the projection chains with one and two defect sites respectively. In both cases, above

the critical density the coupling time of the projection chain behaves remarkably

similar to that of the ZRP. Heuristically, above the critical density the background

has enough time to reach a quasi stationary regime before the maximum occupa-

tion becomes macroscopic. Therefore, the slow site occupation (which is typically

the maximum) really behaves like the projection chain and the mixing time of the

projection chain is the mixing time of the ZRP.

5.10 Conclusion

In this chapter, we have studied a zero-range process that exhibits condensation

due to single site defects under complete graph dynamics. To calculate sharp upper

bounds of the relaxation time, we partition the state space into a disjoint union

of subspaces and analyse the restriction and projection chains. For the zero-range

process with one and two defect sites, the relaxation time exhibits a transition as the

density crosses a critical value as summarised in (5.14) and (5.17). This scaling of

the relaxation time arises from a transition in the relaxation time of the projection

chain. For one defect site, the projection chain below the critical density behaves

like a random walk driven to the left boundary and above the critical density, the

projection chain behaves like a mean reverting process. For two defects above the

critical density the projection chain behaves like a simple symmetric random walk.

We also give initial heuristic results on the mixing time of this process. By

Monte Carlo simulation, we numerically calculate the coupling time, which is known

to give good bounds for the mixing time of the process. We also numerically calculate

the coupling time of the projection chain and show that it exhibits remarkably

similar behaviour to the full process above the critical density. For the one defect

case, the coupling time appears to show a cutoff at L log(L), whilst for the two defect

case the coupling time appears to scale like L2 with no cutoff, which is expected

since the projection chain behaves like a symmetric random walk.
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(a) (b)

Figure 5.4: Coupling time for the complete graph zero-range process with one defect
site. Figure 5.4a: coupling time rescaled by L log(L) suggesting the process exhibits
total-variation cutoff. Figure 5.4b: coupling time rescaled by L log(L) suggesting
the process exhibits total-variation cutoff.

(a) (b)

Figure 5.5: Coupling time for the projection chain (5.19) generated from the com-
plete graph ZRP with one defect site. Figure 5.5a: coupling time rescaled by L.
Comparisons with the biased birth-death chain shows explicitly that the process
exhibits cutoff at cρ,rL with a window of order

√
L, see [44] for more details. Fig-

ure 5.5b: coupling time rescaled by L log(L) suggesting the process exhibits total-
variation cutoff.
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(a) (b)

Figure 5.6: Coupling time for the complete graph zero-range process with two
defect sites. Figure 5.6a: coupling time rescaled by L log(L) for ρ < ρc suggesting
the process exhibits total-variation cutoff. Figure 5.6b: coupling time rescaled by
L2 for ρ > ρc suggesting that the process does not exhibit total-variation cutoff, as
predicted by the dynamics of the projection chain.

Figure 5.7: Coupling time rescaled by L2 for the projection chain (5.19) generated
from the complete graph ZRP with two defect sites above the critical density. As in
the case for one defect site the coupling time of the projection chain is remarkably
similar to the coupling time of the ZRP with the same density ρ and rate r. For this
example, above the critical density the projection chain behaves like a symmetric
random walk leading to a mixing time of O(L2) and exhibits no cutoff.
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CHAPTER 6

Birth-Death Chains:

Relaxation, Hitting and Mixing

Times

6.1 Introduction

In Chapter 5, we have seen that by understanding the dynamics of a zero-range

process under certain projections, we can find sharp bounds for the relaxation time

and heuristically give good estimates on the mixing time. For the defect site zero-

range process, it was natural to project the process onto the coordinate of the

slow site, the typical maximum, since it is natural to expect that the dynamics

of the defect site is the slowest mode in the system, and therefore dominates the

relaxation time. For homogeneous zero-range processes which condense via local

interactions, the location of the condensate is typically uniformly distributed on the

lattice Λ and, heuristically, the slowest time scale is the motion of the condensate

and not the single site dynamics. Intuitively, under homogeneous dynamics, the

stationary measure of a condensing process will contain |Λ| disjoint wells, which are

each associated with the condensate being located at a site x ∈ Λ. The dynamics

within these wells can then be understood by a projection on a single birth-death

chain, which is an important step in estimating metastable time scales of these

processes [107, 18]. In this chapter we calculate the relaxation, hitting, and mixing

times for the birth-death chains which are associated with condensing homogeneous

zero-range processes.

This chapter is organised as follows. In Section 6.2, we introduce general

birth-death processes and state our main results. We also give a brief outline of the

main methods used to prove our results. We calculate relaxation times in Section

103



6.2. NOTATION AND RESULTS

6.3.1 and hitting and mixing times in Section 6.3.2.

6.2 Notation and results

A birth-death chain (Xt)t≥0 is a continuous time Markov processes with at most

two possible transitions called births and deaths. We focus on finite state space

ZN = {0, . . . , N}. The process is defined by the generator

LNf(n) = αn (f(n− 1)− f(n)) + βn (f(n+ 1)− f(n)) . (6.1)

The death rate αn ≥ 0 satisfies αn = 0 if and only if n = 0 and the birth rate βn ≥ 0

satisfies βn = 0 if and only if n = N . This implies the process is irreducible on ZN
and therefore ergodic with unique stationary (reversible) measure µN on ZN which

is given by the mass function

µN [n] =
1

ZN

n∏
k=1

βk−1

αk
where ZN =

N∑
n=0

n∏
k=1

βk−1

αk
. (6.2)

Before stating our main results, we first define the notation for the spectral

gap, relaxation time, and mixing time of birth-death processes. We also give a short

review of the methods and theorems we use in this chapter.

We denote the variance of a function f : ZN → R with respect to the

stationary measure µN as VarN (f) and the Dirichlet form is given by

DN (f) = −µN (fLNf) =
1

2

N∑
n=1

αnµN [n] (f(n− 1)− f(n))2 . (6.3)

The spectral gap of the generator (6.1) on ZN denoted by λN is given by the varia-

tional principle given in Definition 2.5.1, i.e.

λN := inf
f

{
DN (f)

VarN (f)
: VarN (f) 6= 0

}
. (6.4)

The relaxation time is defined as the reciprocal of the spectral gap T rel
N := 1/λN .

The spectral gap λN is then also the optimal constant satisfying

VarN (Ptf) ≤ e−2λN tVarN (f) , (6.5)

where Pt(x, ·) = P (Xt ∈ · |X0 = x), as stated in Proposition 2.5.2. To find a lower

bound for the spectral gap, we construct a coupling of the birth death process
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and utilise the following theorem [105, 101], which reduces the variational problem

appearing in (6.4) to a problem of finding a ‘good’ test function on the coupled state

space.

Theorem 6.2.1 (Chen). Let L be the generator of a Markov process on the (finite)

state space Ω with spectral gap λgap, and L̂ be a Markovian coupling of L on the

state space Ω × Ω. Furthermore, let F : Ω × Ω → R be any positive function such

that F (η, ξ) = 0 if and only if η = ξ then

λgap ≥ min
(η,ξ)∈Ω×Ω

η 6=ξ

−L̂F (η, ξ)

F (η, ξ)
(6.6)

In this chapter, we are also interested in the the mixing time, which is defined

as the maximal distance dN (t) (over initial state x ∈ Ω) between Pt(x, ·) and the

stationary measure µN in total variation as defined in Section 2.5.2, i.e.

dN (t) := sup
x∈ZN

||Pt(x, ·)− µN ||TV . (6.7)

For each ε > 0 the ε-mixing time is given by

Tmix
N (ε) := inf{t ≥ 0 : dN (t) < ε} . (6.8)

Coupling methods can also be used to give good bounds for the mixing time

of a finite Markov process, and for birth death processes this can be further extended

to a calculation of expected hitting times by the following method. Let Zt = (Xt, Yt)

be a coupling of two copies of the same process, such that Xt ≤ Yt for all t ≥ 0, and

define the coupling time as

T coup
N := inf{t ≥ 0 : Xt = Yt} . (6.9)

The distance from the stationary measure µN at time t (6.7) is bounded above by

the probability that the two processes have not coupled in time t, i.e.

dN (t) ≤ sup
x,y∈ZN

Px,y
(
T coup
N > t

)
, (6.10)

where Px,y
(
T coup
N > t

)
= P

(
T coup
N > t : X0 = x and Y0 = y

)
. Since the birth death

process is one dimensional the time, T coup
N is bounded above by the time it takes

for the left most particle to hit N starting at 0 or the right most particle to hit 0
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starting at N , i.e.

sup
x,y∈ZN

Px,y
(
T coup
N > t

)
≤ min {P0 (τN > t) ,PN (τ0 > t)} , (6.11)

where τA = inf{t ≥ 0 : Xt ∈ A} is the hitting time of a set A ⊆ ZN and we write

τ{x} = τx for point sets. Finally, a simple application of Markov’s inequality shows

dN (t) ≤ min

{
E0 (τN )

t
,
EN (τ0)

t

}
, (6.12)

where Ex(τA) = E (τA |X0 = x) is the expected hitting time of the set A with initial

condition X0 = x. Define HA : ZN → R as

HA(x) = Ex (τA) ,

the expected hitting time of the set A with initial condition X0 = x. For a Markov

processes on a finite state space, the expected hitting time is given by the minimal

solution to the system  HA(n) = 0 for n ∈ A ,

−LNHA(n) = 1 for n /∈ A .
(6.13)

See [47] for a simple proof using the total law of expectation and the Markov prop-

erty. The following proposition gives a solution to the system of equations (6.13)

[47], which allows us to calculate sharp bounds for the hitting times and mixing

times of birth death processes.

Proposition 6.2.2. For a birth-death process on ZN given by the generator (6.1)

with death rates αn and birth rates βn, the expected hitting time of a set A =

{kL, kL + 1, . . . , kR − 1, kR} ⊆ ZN is equal to

HA(n) =

kL−1∑
k=n

1

βk

k∑
j=0

µN [j]

µN [k]
(6.14)

for all initial conditions n < kL, and

HA(n) =

kR−1∑
k=0

1

αN−k

N∑
j=N−k

µN [N − j]
µN [k]

(6.15)

for all initial conditions n > kR.
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The proof is completely standard and follows from (6.13) by first writing the

hitting HA(n) as a telescopic series, HA(n) =
∑n

i=1 TA(i) − TA(i − 1), and then

solving for TA(i) with an appropriate boundary condition.

As a first example, we can use Proposition 6.2.2 and (6.12) to derive an N2

bound for the mixing time of a symmetric random walk on ZN . First, note that the

stationary measure µN [n] = 1/(N + 1) is the uniform measure on ZN and due to

the symmetry of the process the hitting times are symmetric, i.e. HN (0) = H0(N).

Therefore,

HN (0) =
N−1∑
n=0

1

βnµN [n]

n∑
k=0

µN [N − k] =
N−1∑
n=0

(n+ 1) =
1

2
N(N + 1) ,

which combined with (6.12) implies that the mixing time of the symmetric random

walk on ZN is of order N2. This bound can be shown to be sharp, in the sense that

there exists a constant c > 0 such that Tmix
N ≥ cN2 which can be shown by use of a

distinguishing statistic and we refer to [44] for more details.

In general, the mixing time can be computed by calculating the maximal

expected hitting time a of a ‘large’ set A ⊂ Ω [57, Theorem 1] [58].

Theorem 6.2.3 (Peres, Sousi). For every irreducible and reversible Markov process

on a finite state space Ω with stationary measure µ, and for each α < 1/2 there

exists constants cα, c
′
α, depending only on α, so that

cα max
x,A:µ[A]>α

HA(x) ≤ Tmix
(

1

4

)
≤ c′α max

x,A:µ[A]>α
HA(x) . (6.16)

Consider the symmetric homogeneous zero-range processes on ΩL = NΛ,

where Λ = {1, . . . , L} with periodic boundary conditions, defined by the generator

LZRPf(η) =
1

2

∑
x∈Λ

g(ηx)
(
f(ηx,x+1) + f(ηx,x−1)− 2f(η)

)
. (6.17)

In this chapter, we consider two zero-range processes, which are known to exhibit

condensation in the thermodynamic limit [7], with rates

g1(n) =

(
n

n+ 1

)−b
for n ∈ {1, 2, . . .} and g1(0) = 0 , (6.18)

for b > 3, and

g2(n) = e−b((n−1)γ−nγ) for n ∈ {1, 2, . . .} and g2(0) = 0 , (6.19)
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for b > 0 and γ ∈ (0, 1). The zero-range dynamics with rates g1(·) and g2(·) exhibits

a family of stationary product measures (2.11) on ΩL = NΛ as given in Section 2.3.1

νLφ [η] =
∏
x∈Λ

νφ[ηx] with νφ[n] =
φnw(n)

z(φ)
, (6.20)

with stationary weights w1(n) = (n + 1)−b and w2(n) = e−b n
γ

respectively. The

process preserves the number of particles and is irreducible on the state space ΩL,N

with unique invariant measure (2.18) with mass function

πL,N [η] =
1

ZL,N

∏
x∈Λ

w(ηx)1 (η ∈ ΩL,N ) . (6.21)

Consider the projection chain generated from the zero-range dynamics by

conditioning on the value η1 as derived for the defect site zero-range process in

Chapter 5 Section 5.5, noting that the projection chain is the same for both sym-

metric and complete graph dynamics. The projection chain is a birth death process

on ZN = {0, . . . , N} with rates

αn = g(n) and βn = πL−1,N−n (g(·)) =: ΦL,N (n) . (6.22)

This projection chain is derived by applying the Dirichlet form to a test function

h(η) : ΩL → R, which is a function of the first site occupation number only and

where the Dirichlet form is given by

DL,N (f) = −πL,N
(
fLZRPf

)
. (6.23)

In this chapter, we also consider the approximation of this projection chain where

the jump rate is replaced by the expected jump rate given by the grand canonical

measure νφc at criticality, i.e. the birth death process with rates

αn = g(n) and βn = νφc (g(·))1(n < N) = φc1(n < N) . (6.24)

Let dN (t), Tmix
N (ε), and T rel

N be the distance from stationarity, ε-mixing

time, and relaxation time of the birth death process with rates (6.24). Let dL,N (t),

Tmix
L,N (ε), and T rel

L,N be the distance from stationarity, ε-mixing time, and relaxation

time of the birth death process with rates (6.22).

Sharp estimates of the quantities T rel
N and Tmix

N are required to calculate

metastable time-scales of condensing interacting particle systems [17, 18, 23]. Zero-

range processes with jump rates given by (6.18) and (6.19) exhibit condensation
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[81], and in the former case are known to be metastable [17, 18]. For these con-

densing zero-range processes the slow time-scale is given by the time it takes for the

condensate to relocate from sites x → y ∈ Λ, and the fast time scale is associated

to the dynamics of the background particles outside of the condensate.

Our main results are summarised in the following theorems.

Theorem 6.2.4. Consider the birth death process with rates (6.24) where φ = 1.

(i) Let the death rate be equal to g1(n) given by (6.18), then there exist

constants c1, c
′
1, c2, c

′
2 > 0 such that the relaxation time satisfies

c1(N + 1)2 ≤ T rel
N ≤ c′1(N + 1)2 , (6.25)

and the ε-mixing time satisfies

c2 log

(
1

2ε

)
(N + 1)2 ≤ Tmix

N (ε) ≤ c′2
⌈

log2

(
1

ε

)⌉
(N + 1)2 . (6.26)

Note that the constants c1, c
′
1, c2, c

′
2 can depend on the model parameter b > 3.

(ii) Let the death rate be equal to g2(n) (6.19), then there exists constants

cγ , c
′
γ , Cγ , C

′
γ > 0 such that the relaxation time satisfies

cγN
2(1−γ) ≤ T rel

N ≤ c′γN2(1−γ) , (6.27)

and the mixing time satisfies

Tmix
N (ε) ≤ C ′γ

⌈
log2

(
1

ε

)⌉
N2−γ . (6.28)

The 1/4-mixing time is bounded below by

Tmix
N (1/4) ≥ CγN2−γ . (6.29)

Theorem 6.2.5. Consider the birth death process with rates (6.22).

(i) Consider the birth death process defined by the projection of the zero-range

process with rates g1(n) (6.18). Then there exist constants cb, c
′
b > 0 such that

Tmix
L,N (ε) ≤ 4c′b

⌈
log2

(
1

ε

)⌉
(N + 1)1+b (1 + oN (1)) . (6.30)

(ii) Consider the birth death process defined by the projection of the zero-range pro-
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(a) (b)

Figure 6.1: Birth and death rates for the processes (6.24) and (6.22). Figure 6.1a:
Rates with g1(n) (6.18) with b = 4 and N = 500. Figure 6.1b: Rates with g2(n)
(6.19) with b = 1, γ = 0.5, and N = 4500. Both processes show non-monotone
behaviour, which gives rise to a change in the scaling of the relaxation and mixing
times when compared with the rates given by (6.24).

cess with rate g2(n) (6.19), then there exists constants cb,γ , c
′
b,γ > 0 such that

Tmix
L,N (ε) ≤ 4c′b,γ

⌈
log2

(
1

ε

)⌉
N exp

{
b
(
21−γ − 1

)
(N + 1)γ

}
. (6.31)

It is known that the birth rates ΦL,N (n)→ φc = 1 as N →∞, and therefore

for large N the processes (6.22) and (6.24) could expect similar behaviour. However,

convergence is only pointwise in n, and from Theorems 6.2.4 and 6.2.5 we see that the

mixing and relaxation times exhibit different scaling forms. In Figure 6.1, we plot the

birth and death rates for the processes (6.22) and (6.24) with rates (6.18) and (6.19).

As discussed in Chapter 4, the canonical current ΦL,N (n) is non-monotone, this gives

rise to and effective potential well and metastable behaviour for the associated birth-

death chain. This is not the case in the birth death processes (6.24), where the birth

rate is constant. In this case, the process is only weakly driven1 towards the right

most boundary.

To calculate the bounds appearing in Theorem 6.2.5, we calculate the ex-

pected time HN (0) of the chain starting in site 0 and hitting site N . Heuristically,

the birth death chain defined by projecting on the occupation of site one under the

measure πL,N [·] exhibits two ‘wells’ at ρcL and (ρ − ρc)L associated with the con-

densate being located on one of the L− 1 sites and the condensate at site 1 (or the

site we project onto) respectively. Then the time scale HN (0) can be thought of as

1A birth death process is weakly driven to the the right most boundary if αn > βn for all n
sufficiently large and an − βn → 0 as n→∞.
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(a) (b)

Figure 6.2: The relaxation time for the projection chain (6.22) with rates (6.18)
with b = 5. Figure 6.2a: Fixed system size L = 32 and L = 256, and the predicted
scaling form N1+b. Figure 6.2b: Fixed density ρ = 1 > ρc and ρ = 2 > ρc, and the
scaling form Lb.

the time it takes for a condensate to transition to site 1 from one of the remaining

sites. However, the well at ρcL should be deeper than the well at site (ρ−ρc)L since

there is a larger probability, by a factor proportional to L, of having the condensate

outside of site 1. The time scale of condensate leaving site 1 and moving into the

background should be smaller then the reverse process. Therefore, we expect that

H0(N) should give rise to the smaller hitting time and better bounds on the relax-

ation and mixing times. In Figure 6.2 we plot the relaxation times of the projection

chain for fixed L varying N and for fixed ρ varying L, which suggests this intuition

on the dynamics of the condensate is correct. However, for fixed L we appear to

have the scaling N1+b appearing in Theorem 6.2.5 correct up to a constant which

depends on L. The correct scaling is expected to be given by N1+b/L, which is

consistent with the thermodynamic scaling showing in Figure 6.2b.

6.3 Proof of Theorem 6.2.4

6.3.1 Relaxation times and the spectral gap

First, consider case (i) of Theorem 6.2.4 where the death rates are given by (6.18).

Define a basic coupling (Zt)t≥0 = (Xt, Yt)t≥0 where particles move independently

until the first hitting time, thereafter particles jump together according to the orig-

111



6.3. PROOF OF THEOREM 6.2.4

inal generator (6.1). The coupled generator is given by

L̂Nf(n,m) =αn (f(n− 1,m)− f(n,m)) + βn (f(n+ 1,m)− f(n,m))

+ αm (f(n,m− 1)− f(n,m)) + βm (f(n,m+ 1)− f(n,m))

for n 6= m and

L̂Nf(n, n) =αn (f(n− 1, n− 1)− f(n, n)) + βn (f(n+ 1, n+ 1)− f(n, n)) .

Let F : ZN × ZN → R be given by

F (n,m) =

(n+ 1)(m+ 1) if n 6= m

0 otherwise
.

With out loss of generality assume n < m, then the ratio (6.6) is given by

−L̂NF (n,m)

F (n,m)
=

1

n+ 1
(αn − βn) +

1

m+ 1
(αm − βm) (6.32)

if |m− n| > 1, and

−L̂NF (n,m)

F (n,m)
=

1

n+ 1
αn + βn + αm −

1

m+ 1
βm (6.33)

if |m− n| = 1. For αn = g1(n), whenever n ≥ 1 we have αn > βn = 1, and since αn

is decreasing for all n > 0 if follows that (6.32) is decreasing in n and m. Moreover,

since αn → 1 as n → ∞, it is easy to see (6.32) tends to 0 as n,m → ∞. In

addition, since 0 < n < m we have 1
n+1αn −

1
m+1βm > 0 which implies, (6.33) is

strictly bounded above by αn+βm > 1. Therefore, the minimum appearing in (6.6)

is obtained when |n − m| > 1. Since αm − βm > 0 for all m 6= 0, we can bound

(6.32) below by

−L̂NF (n,m)

F (n,m)
≥ 1

n+ 1
(αn − βn) for all n,m ∈ ZN ,

which implies

min
(n,m)∈ZN×ZN

n 6=m

−L̂NF (n,m)

F (n,m)
≥ min

n≤N−1

1

n+ 1
(αn − βn) . (6.34)

To complete this part of the proof, we need the following lower bounds on the death
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rate αn = g1(n)

αn = g1(n) =

(
1− 1

n

)−b
> 1 +

b

n
,

and therefore by Theorem 6.2.1

λN ≥
b

N(N − 1)
>

b

N2
.

We need to find a matching upper bound for the spectral gap, which can be found

by substituting a good test function into the variational principle (6.4). Let f(n) =

(n+ 1)b, the variance is given by

VarN (f) =
1

ZN

N∑
n=0

(n+ 1)2b(n+ 1)−b −

(
1

ZN

N∑
n=0

(n+ 1)b(n+ 1)−b

)2

=
1

ZN

N∑
n=0

(n+ 1)b −

(
1

ZN

N∑
n=0

1

)2

.

Since (n+ 1)b is increasing, the variance of f is bounded below by

VarN (f) ≥ 1

ZN

(
1 +

∫ N

0
(1 + x)bdx

)
−
(
N + 1

ZN

)2

=
1

ZN

1

b+ 1

(
b+ (N + 1)b+1

)
−
(
N + 1

ZN

)2

. (6.35)

The Dirichlet form is given by

DN (f) =
1

2

N∑
n=1

g1(n)µN [n]
(
nb − (n+ 1)b

)2

≤ 1

2

N∑
n=1

g1(n)µN [n]
(

2b(n+ 1)b−1
)2

,

where we have bounded the term appearing inside the square as follows

(n+ 1)b − nb = (n+ 1)b

(
1−

(
n

n+ 1

)b)
= (n+ 1)b

(
1−

(
1 +

1

n

)−b)

≤ (n+ 1)b
(

1−
(

1− b

n

))
= b

(n+ 1)b

n
≤ 2b(n+ 1)b−1 .
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Substituting the form of the invariant measure into the mass function (6.2), we have

DN (f) ≤ 4b2

ZN

N∑
n=1

g1(n)(n+ 1)b−2 .

Now since g1(n) =
(

n
n+1

)−b
is decreasing for n ≥ 1 with a maximum of g(1) = 2b,

we get the following upper bound

DN (f) ≤ 2b
4b2

ZN

∫ N+1

1
(x+ 1)b−2dx = 2b

4b2

ZN

1

b− 1

(
(N + 2)b−1 − 2b−1

)
. (6.36)

Combining (6.35), (6.36), and knowing ZN has a finite limit as N →∞, the spectral

gap is bounded above by

λN ≤ cb
1

(N + 1)2
(1 + o(1)) , (6.37)

for some constant cb > 0.

For case (ii) of Theorem 6.2.4, we follow a different approach since the lower

bound (6.34) fails to give the correct scaling form for the spectral gap. Recall the

functions B+(m) and B−(m) appearing in Theorem 5.3.3

B+(m) = sup
x>m

 x∑
y=m+1

1

µN [y]ay

∑
y≥x

µN [y]

 ,

B−(m) = sup
x<m

(
m−1∑
y=x

1

µN [y]by

)∑
y≤x

µN [y]

 ,

where m is the median of the invariant measure µN . First, we approximate the

function B+(m). Define

B+(m,x) :=

 x∑
y=m+1

1

µN [y]ay

∑
y≥x

µN [y]


=

(
x−1∑
y=m

ey
γ

)∑
y≥x

e−y
γ

 ,

where in the last step we simplified the equation by cancelling the partition functions

ZN and used the reversibility of the measure µN . Approximating the series by an
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integral, we have
N∑
y=x

e−y
γ � N

∫ 1

x̂
e−N

γ ŷγdŷ

where x̂ = x/N . Taylor expanding ŷγ about ŷ = 1 we have

N

∫ 1

x̂
e−N

γ ŷγdŷ � N
∫ 1

x̂
e−N

γ(1+γ(ŷ−1))dŷ =
1

γ
N1−γe−N

γ
(
e−γN

γ(x̂−1) − 1
)
.

By the same method, we have

x−1∑
y=m

ey
γ � N

∫ x̂−1/N

m/N
eN

γ(1+γ(ŷ−1))dŷ =
1

γ
N1−γ

(
eN

γ(1+(x−1− 1
N )γ) − eNγ((mN−1)γ−1)

)
.

The function B+(m,x) is then approximated by

B+(m,x) � N2(1−γ)

γ2
e−N

γ
(
eN

γ(1+(x−1− 1
N )γ) − eNγ((mN−1)γ−1)

)(
e−γN

γ(x̂−1) − 1
)
,

which is maximised when x̂ = 1+m+n
2n . Therefore,

B+(m) � N2(1−γ)

γ2
CN,m ,

where

CN,m = e−γN
γ−1
(

1− e
γ
2

(1+m−N)Nγ−1
)2

.

We have that CN,m → 1 as N → ∞ since γ ∈ (0, 1) and m < N , i.e. e−γN
γ−1 → 1

and e
γ
2

(1+m−N)Nγ−1 → 0 as N → ∞. Therefore, the function B+(m) has the

approximate form

B+(m) � N2(1−γ)

γ2
.

To complete the proof, we must show that the scaling form of B−(m) is

not larger than N2(1−γ). Since the measure µN is sub-exponential, the median is

bounded above by a constant Cγ > 0 which depends on the parameter γ. Hence,

the maximum appearing in the definition of B−(m) is over a finite interval and the

function being maximised is independent of the system size N . Therefore, B−(m)

is bounded above by a constant independent of N and by Theorem 5.3.3 there exist

constants cγ , c
′
γ > 0 such that the spectral gap is bounded above and below by

cγN
−2(1−γ) ≤ λN ≤ c′γN−2(1−γ) . (6.38)

115



6.3. PROOF OF THEOREM 6.2.4

This completes the proof of the relaxation time statements in Theorem 6.2.4.

6.3.2 Mixing times via hitting times

Heuristically, since the birth death processes (6.24) with rates (6.18) and (6.19)

exhibit drift towards the left boundary (see Figure 6.1) the expected time to hit site

N from 0 should be larger than the expected time to hit 0 from N . This can be

made rigorous by the coupling argument constructed in Section 6.2

First, consider the process with death rates (6.18), where the stationary

measure µN has power law tails. The expected hitting time of the chain starting in

site N and hitting site 0 is given by

H0(N) =
N−1∑
n=0

1

αN−nµN [N − n]

n∑
k=0

µN [N − k]

=
N−1∑
n=0

1

w(N − n− 1)

n∑
k=0

w(N − k) ,

where in the last step we used detailed balance and simplified the equation by

cancelling the partition functions. Since the stationary weights satisfy w(n) = (n+

1)−b we have

H0(N) =

N−1∑
n=0

(N − n)b
n∑
k=0

(N − k + 1)−b

=
N−1∑
n=0

(N − n)b
N∑

k=N−n
(k + 1)−b .

The term in the second summation is decreasing, so we have the upper bound

H0(N) ≤
N−1∑
n=0

(N − n)b(N − n+ 1)−b(n+ 1)

≤
N−1∑
n=0

(n+ 1) =
1

2
N(N + 1) ≤ 1

2
(N + 1)2 .

Therefore, by (6.12) we have

dN

(
β

2
(N + 1)2

)
≤ 1

β
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for all β > 0, which implies

Tmix
N (ε) ≤ 1

2ε
(N + 1)2 .

The ε dependence can be improved by the inequality

Tmix
N (ε) ≤

⌈
log2

(
1

ε

)⌉
Tmix
N (1/4) (6.39)

as derived in [44, Section 4.5]. This bound is sharp in N since for all ε > 0

Tmix
N (ε) ≥ log

(
1

2ε

)(
T rel
N − 1

)
, (6.40)

see for example [44, Theorem 12.4], where a lower bound for T rel
N is give by (6.37).

Now, consider the process with death rates (6.19), where the stationary mea-

sure µN has stretched exponential tails. The expected hitting time of the chain

starting in site N and hitting 0 is given by

H0(N) =

N−1∑
n=0

e(N−n)γ
n∑
k=0

e−(N−k)γ . (6.41)

Setting x = n/N , we can approximate the first series as the integral

n∑
k=0

e−(N−k)γ � N
∫ x

0
e−N

γ(1−y)γdy .

Expanding −(1− y)γ about y = 0 to first order we have

N

∫ x

0
e−N

γ(1−y)γdy � N
∫ x

0
eN

γ(γy−1)dy =
e−N

γ
N1−γ

γ

(
eγxN

γ − 1
)
.

We can now approximate the expected hitting time as the integral

H0(N) � N e−N
γ
N1−γ

γ

∫ 1−1/N

0
eN

γ(1−x)γ
(
eγxN

γ − 1
)
dx .

Again, expanding (1− x)γ about x = 0 to first order and integrating we have

H0(N) � N2−γ

γ
− N2−2γ

γ2
− N1−γ

γ
+
eN

γ−1(γ−γN+N)−Nγ
N2−2γ

γ2
. (6.42)

For γ ∈ (0, 1) the leading order term is N2−γ , which implies that there exists a
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constant c′γ > 0 such that

H0(N) ≤ c′γN2−γ , (6.43)

and therefore

Tmix
N (ε) ≤

c′γ
ε
N2−γ . (6.44)

The ε dependence can be improved by (6.39). To complete the proof, we must bound

the 1/4-mixing time below by a function which scales like N2−γ . By Theorem 6.2.3,

the 1/4-mixing time is bounded below by

Tmix
N (1/4) ≥ max

x∈ZN
HA(x) (6.45)

for some set A such that µN [A] ≥ 1/2. Since the measure µN is sub-exponential and

we are trying to bound the maximum over sets A ⊆ ZN , we can choose the set A to

be of the form {0, . . . ,mγ} for some mγ ∈ ZN , which depends on the parameter γ.

Clearly, the maximum appearing in (6.45) is given when x = N , so we have

Tmix
N (1/4) ≥ Hmγ (N) . (6.46)

Repeating the same computations as before, it is clear that there exists a constant

Cγ > 0 such that

Tmix
N (1/4) ≥ CγN2−γ

completing the proof of Theorem 6.2.4.

6.4 Proof of Theorem 6.2.5

6.4.1 Upper bounds via hitting times

First, consider the birth death processes (6.22), the single site projection of the

(homogeneous) zero-range process with rates

g(n) =

(
n

n+ 1

)−b
for n ∈ {1, 2, . . .} . (6.47)

The expected hitting time of the birth death process starting in site 0 and

ending at N is given by

HN (0) =
N−1∑
n=0

∑n
k=0 µL,N [k]

ΦL,N (n)µL,N [n]
=

N−1∑
n=0

∑n
k=0w(k)ZL−1,N−k

ΦL,N (n)w(n)ZL−1,N−n
.
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The inner summation can be bounded above by the partition function ZL,N , so we

have

HN (0) ≤
N−1∑
n=0

ZL,N
ΦL,N (n)w(n)ZL−1,N−n

=
N∑
n=1

ZL,N
g(n)w(n)ZL−1,N−n

,

where in the last step we used detailed balance. Since g(n) > 1 for all n ≥ 1, we

find

N∑
n=1

ZL,N
g(n)w(n)ZL−1,N−n

≤ ZL,N
N∑
n=1

1

w(n)ZL−1,N−n
.

Now, taking the maximum in the above summation we get

ZL,N

N∑
n=1

1

w(n)ZL−1,N−n
≤ NZL,N max

1≤n≤N

1

w(n)ZL−1,N−n

≤ NZL,N max
1≤n≤N

1

w(n)
max

1≤n≤N

1

ZL−1,N−n

= NZL,N (N + 1)b max
1≤n≤N

1

ZL−1,N−n
.

Since we know ZL,N/w(N)→ Lz(1)L−1 as N →∞ for each L ≥ 2, see Section 3.4.1

for more details, there exists a constant Cb > 0 such that

NZL,N (N + 1)b max
1≤n≤N

1

ZL−1,N−n
≤CbN(N + 1)bLz(1)L−1(N + 1)−b(1 + oN (1))

×
(

1

(L− 1)z(1)L−2(N + 1)−b(1 + oN (1))

)
,

which is bounded above by

L

L− 1
z(1)Cb(N + 1)1+b(1 + oN (1)) ≤ c′b(N + 1)1+b(1 + oN (1)) .

Therefore, by (6.12) we have

dL,N

(
βc′b(N + 1)1+b(1 + oN (1))

)
≤ 1

β
(6.48)

for all β > 0, which implies

Tmix
L,N (ε) ≤ 1

ε
c′b(N + 1)1+b(1 + oN (1)) . (6.49)
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Following the same approach we have the following bound

Tmix
L,N (ε) ≤ 1

ε
c′b,γN exp

{
b
(
21−γ − 1

)
(N + 1)γ

}
, (6.50)

for the projection chain with rates (6.19).

The ε dependence in both bounds can be improved by (6.39).

6.5 Conclusion

In this chapter, we have calculated the relaxation and mixing times for a class of

projection chains arising from homogeneous condensing zero-range processes. From

Theorem 6.2.5, the mixing times (and therefore relaxation times) of the projection

chain are consistent with the metastable time scales of the motion of the condensate

[17, 18]. Since this metastable motion of the condensate is heuristically the slowest

mode in the system, this time scale is expected to give the scaling form of the

relaxation and mixing times. To find the relaxation time for the full zero-range

process we would need to follow the analysis outlined in Chapter 5. This method is

not expected to work here since it typically relies on having the restriction process

reach a stationary state on a time scale which is faster than the dynamics of the

projection η1(t), which is not necessarily true in this case. Alternatively, one could

consider projections which are more natural to the underlying process. For example,

the decomposition of the state space into a disjoint union of metastable wells given

in [18]. However, this method would require sharp estimates of the relaxation time of

the zero-range process restricted to a metastable well, and current known estimates

are not expected to be sharp.

The replacement of the canonical current with the grand canonical current

(6.24) in Theorem 6.2.4 leads to a different scaling of the relaxation time and mixing

times. Whilst the dynamics of this birth-death chain are not consistent with the full

zero-range process they are used to give crude bounds for the mixing and relaxation

times of the zero-range process restricted to a metastable well [18]. In the metastable

well the location of the condensate is known and the distribution of background sites

is well approximated by the maximal invariant measure νφc .
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CHAPTER 7

Conclusion

In this chapter, we summarise the main results contained in this thesis and give a

short summary of possible future research.

In Chapter 3, we discuss various definitions of condensation in terms of the

stationary measure of the underlying process in both the thermodynamic limit and

on finite lattices. Whilst most rigorous results on condensation require the station-

ary measure to be a (conditional) product measure, the definitions we present are

general, up to spatial homogeneity of the process. In [64] it was shown that conden-

sation can occur on finite lattices if the tails of the single site marginals decay as a

power law. The main result of Chapter 3 is to generalise this to prove the equiv-

alence with a class of measures with a sub-exponential tail, which includes single

site marginals that have a stretched exponential tail, that has been well studied in

the literature on condensing particle systems. One interesting feature of the class of

sub-exponential tails is that they do not require the stationary measure to have a

finite first moment, which is a necessary condition for condensation in the thermo-

dynamic limit. This implies that processes can condense on finite lattices but not in

the thermodynamic limit. Condensation can also occur in the thermodynamic limit

but not on finite lattices if the tails of the single site marginal do not satisfy certain

regularity conditions, and we present such an example in Section 3.5. For processes

that do not exhibit stationary (conditional) product measures, rigours results are

difficult to obtain and what is known is obtained from heuristic methods and sim-

ulation. In Section 3.8, we study the chipping model which was first introduced in

[84]. By mapping the process on two sites to a 1-D random walk with resetting, we

prove that condensation occurs on fixed finite lattices according to Definition 3.2.3,

and furthermore, we calculate the critical density which is different to the predicted

critical density in the thermodynamic limit. This heuristically implies that the crit-

ical density can be dependent on the system size, which is not the case for processes

that exhibit stationary (conditional) product measures.
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In Chapter 4, we study the monotonicity properties of condensing stochas-

tic particle systems. Couplings, which require monotonicity, are powerful tools for

deriving hydrodynamic limits, relaxation times, and mixing times of Markov pro-

cesses. Previous results on condensing zero-range processes show non-monotonicity

by an overshoot of the canonical current, which results in a metastable hysteresis as

the process switches from condensed to non-condensed regimes [67, 16]. We prove

non-monotonicity for all condensing processes that exhibit stationary product mea-

sures with a finite critical density, where we rely on properties of sub-exponential

distributions discussed in Chapter 3. If the critical density is infinite, we are not

able to prove that all processes with stationary weights of the form w(n) � n−b for

b ∈ (1, 3/2) are non-monotone and in fact there exists a monotone example recently

found in [54]. For processes that do not exhibit stationary product measures con-

densing processes can be monotone, and the chipping model introduced in Section

3.8, is such an example.

In Chapter 5, we study a zero-range process that exhibits condensation due

to single site defects under complete graph dynamics. By a decomposition of the

state space first developed in [32] for the Kawasaki Ising model and for a zero-

range process in [87], we calculate the relaxation time for two condensing zero-range

processes. We decompose the state space by conditioning on the value of a defect

site, which allows us to compare the relaxation time of the full zero-range process

with a constant rate zero-range process and a projection chain that jumps between

the disjoint sets in the partition under some average rate of the dynamics. For

the zero-range process with one defect, below the critical density, the projection

chain exhibits drift towards the left most boundary resulting in a size independent

relaxation time. Above the critical density, the projection is driven towards a value

which scales as the system size and we show the relaxation time scales linearly with

the system size. This transition in the relaxation time for the projection chain

leads to a transition in the relaxation time of the full zero-range process. For the

zero-range process with two defects, above the critical density, the process behaves

like a symmetric random walk where the relaxation time scales like the square of

the system size resulting in a different transition in the relaxation time of the full

process. Heuristically, the dynamics of the defect site (the typical maximum) is

the slowest mode in the system and therefore, the mixing time of the projection

chain should be similar to the mixing time of the zero-range process. We validate

this heuristic by numerically calculating by simulation the coupling time of the full

zero-range process and the projection chain. The process with one defect appears

to show a cutoff at cρL log(L) with a window of order L for some constant cρ > 0.
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The process with two defects does not appear to show a cutoff and the mixing time

scales like the relaxation time. A possible approach to prove this claim would be to

follow the method outlined in the sequence of papers [38, 40] by first showing that

before the mixing time the transition kernal of the process can be well approximated

by the kernel of the projection chain.

In Chapter 6, we calculate the mixing and relaxation times for the projection

chain given in Chapter 5 for condensing homogeneous zero-range processes. The

bounds we compute are consistent with the metastable time scales of the motion

of the condensate given in [17, 18], which is heuristically the slowest mode in the

system.

There exist several open and interesting problems which follow from the work

done in this thesis. In Chapter 3, we focus on processes that exhibit stationary

product measures, however, there has been recent work on condensing processes

where the stationary measure is pair-factorised or cluster factorised [72, 97, 99, 98].

It would be interesting to adapt Definition 3.2.3 of condensation for pair and cluster

factorised measures, similar to the equivalence of the definition with sub-exponential

measures for processes with stationary product measures. Difficulties may arise since

the condensate can be spatially extended (see for example [99]), which is typically

not the case for processes with stationary product measures. The sharp bounds

for the relaxation time of the projection chain of a homogeneous zero-range process

we give in Chapter 6 could be used to calculate a sharp bound for the relaxation

time of the full process. However, it is clear that the method outlined in Chapter

5 is not enough and better bounds are required when comparing Dirichlet forms.

An alternative approach is to consider a different partition by conditioning on the

location of the condensate, which is more natural to the process. So far, only

suboptimal bounds on the relaxation time for the zero-range process restricted to

a metastable well are known and given in [18]. Further difficulties may arise when

calculating the relaxation time restricted outside the metastable wells and when

comparing Dirichlet forms.
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APPENDIX A

Numerical methods

A.1 Numerics

In the following, we summarise methods of numerically calculating expectations of

relevant test functions with respect to a conditional product measure with mass

function

πL,N [η] =
1

ZL,N

∏
x∈Λ

w(ηx)1(η ∈ ΩL,N ) , (A.1)

where Λ = {1, . . . , L} and

ΩL,N = {η ∈ NΛ :
∑
x∈Λ

ηx = N} .

In Chapter 4, we provide numerics for the expectations of the test functions

f1(η) = 1 (η1 = . . . = ηL−1 = 0) (A.2)

and the background density

f2(η) =
N −ML(η)

L− 1
, (A.3)

where

ML(η) = max
x∈Λ

ηx

is the maximum occupation number.

A simple computation shows that the expectation of (A.2) with respect to

πL,N is given by

πL,N (f1(η)) =
w(0)L−1w(N)

ZL,N
. (A.4)
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The partition function (normalisation) ZL,N satisfies

ZL,N =

N∑
n=0

w(n)ZL−1,N−n .

Therefore, we can calculate the partition function recursively with an initial condi-

tion Z1,n = w(n) for all n ∈ N. For systems of size L = 2n, for some n ∈ N the

partition function can be written as

ZL,N =

N∑
n=0

ZL/2,nZL/2,N−n ,

which gives rise to an efficient method of numerically calculating the partition func-

tion and (A.4) for large systems.

Recursive methods can also be used to numerically calculate the expectation

of the maximum occupation number and therefore, the background density

Rbg
L (N) := πL,N (f2(η)) =

1

L− 1
πL,N (N −ML(η)) .

First, we consider the cumulative distribution function of the maximum occupation

number

πL,N [ML ≤M ] =
1

ZL,N
QL,N,M .

As for the partition function, the function QL,N,M can be computed recursively since

QL,N,M =

M∑
n=0

w(n)QL−1,N−n,M ,

and again for L = 2n for some n ∈ N we can write

QL,N,M =
M∑
n=0

QL/2,n,MQL/2,N−n,M .

The initial condition of the recursion is given by Q1,n,M = w(n) for n ≤ M and

Q1,n,M = 0 for all n > M . The expectation of ML(η) with respect to πL,N is given
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Λ,N [η]

by

πL,N (ML(η)) =
N∑
n=0

nπL,N [{ML(η) = n}] =
1

ZL,N

N∑
n=0

n [QL,N,n −QL,N,n−1]

= N −
∑N−1

n=0 QL,N,n
ZL,N

.

A.2 Sampling from π∆
Λ,N [η]

Consider (η(t), ζ(t))t≥0 a coupling of the defect site zero-range process introduced

in Chapter 5. To calculate the coupling time, we must initialise ζ according to the

stationary measure π∆
Λ,N . In this section, we review a method of sampling perfectly

from π∆
Λ,N without simulating the zero-range dynamics.

First, consider the case when ∆ = ∅, i.e. no defect sites and π∅Λ,N is the

uniform measure on ΩL,N . To sample from π∅Λ,N , first initialise a configuration

ζ = (0, . . . , 0) the zero vector of length L. Then, whilst the number of particles is

less than N , add a particle to site x ∈ Λ with probability proportional to ζx + 1. It

is easy to show, after N steps the configuration ζ will be uniformly distributed on

ΩL,N . This algorithm can be interpreted as a system of L independent continuous

time pure-birth chains ζ(t) = (ζx(t))x∈Λ, each corresponding to a site x ∈ Λ with

birth rate ζx + 1. Starting from the configuration ζ(0) = (0, . . . , 0) and stopping

when
∑

x∈Λ ζx(t) = N gives a uniform sample from ΩL,N .

Now consider the case when ∆ 6= ∅. Let ζ(t) = (ζx(t))x∈Λ be a sequence of

pure-birth chains time dependent rates

ζx → ζx + 1 at rate

 ζx + 1 where x /∈ ∆

h(t)(ζx + 1) where x ∈ ∆
.

Since we have a sequence of pure-birth chains, the distribution of ζx(t) at time t can

be computed explicitly to find

P[ζx(t) = n] =

 e−t
(
1− e−t

)n
for x /∈ ∆

e−H(t)
(
1− e−H(t)

)n
for x ∈ ∆

(A.5)

whereH(t) =
∫ t

0 h(s)ds. To ensure that we have a sample from π∆
Λ,N when

∑
x∈Λ ζx(t) =

N we can compare (A.5) with the grand-canonical single site marginal given by (5.4),
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i.e.

νxφ [n] =

 (1− φ)φn for x /∈ ∆(
1− φ

r

)(
φ
r

)n
for x ∈ ∆

. (A.6)

This gives the solution

H(t) = − log

(
1− 1− e−t

r

)
=⇒ h(t) =

1

1 + (r − 1)et
. (A.7)

Notice that h(t) and H(t) diverge as t→ − log(1−r), which implies that the number

of particles added to the defect site will diverge whilst the number in the background

will remain finite in the time window [0,− log(1− r)). In Algorithm 1, we describe

how to simulate the sequence of independent pure-birth chains with time dependent

rates. For simplicity, we consider the case when ∆ = {L}, i.e. one defect placed at

the last site.

A.3 Simulation methods

All simulations throughout this thesis are performed with a Gillespie type algorithm

[108], which produces statistically correct trajectories of the Markov process. Here,

we describe how to calculate the background density or the coupling time for the

chipping model and zero-range process respectively.

A.3.1 The chipping model

In Algorithm 2, we describe the Gillespie algorithm for calculating the background

density for the chipping model defined in Section 3.8 with L sites, N particles on

the complete graph, i.e. p(x, y) = 1
L−1 for all n 6= y.

Each update in the algorithm has complexity O(L), since in each time step

we must update the partial sums Cn for n ∈ {min{i, j}, . . . , L} and calculate the

maximum occupation ML(η) = max{η1, . . . , ηL}. The complexity can be reduced

to O(log(L)), at the expense of memory, by storing a binary tree. For simplicity,

consider lattices of length L = 2n for some n ∈ N, then the binary tree is defined

recursively by Ci,j = Ci−1,2j−1 + Ci−1,2j for i ∈ {0, . . . n} and j ∈ {1, . . . , 2n−i} and

initial conditions C0,j = cj for j ∈ {1, . . . , L}. Now the updates to the binary tree

can be performed by retracing the path of the binary search to select the transition

site, which has complexity O(log(L)). Furthermore, the maximum value can be

updated by comparing the prior maximum and the occupation of the entry site
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Algorithm 1 Growth algorithm to sample from π∆
Λ,N the stationary measure of the

defect site zero-range process on the complete graph with L sites, N particles, and
∆ a set of defect sites. The Algorithm outputs a configuration sampled from π∆

Λ,N .

Require: A vector ζ of length L
Require: List of L− 1 jump rates for each site in the current state (ci)

L−1
i=1

Require: List of partial sums Cn =
∑n

i=1 ci with C0 = 0
{Initialise ζ, the jump rates, partial sums, and time}
ζ ← (0, . . . 0)
ci = 1 for all i ∈ {1, . . . , L− 1}
Cn = n for all n ∈ {1, . . . L− 1}
t← 0
{Draw two exponential random variables with distribution Exp(CL−1) and
H−1 (Exp(ζL + 1))}
E1 ← Exponential random variable with mean 1/CL−1

p← Exponential random variable with mean 1/(ζL + 1)
E2 ← H−1(p)
for each i ∈ {1, . . . , N} do

if E1 < E2 then
{Add a particle to a non defect site with probability ci/CL−1}
p← Uniform random number on [0, CL−1)
Perform binary search for i such that Ci−1 ≤ p < Ci
ζi = ζi + 1
{Update birth-rates, partial sums, time, and draw time of next event}
ci ← ci + 1
Update Cn for n ∈ {i, . . . L− 1}
t← E1

{Draw an exponential random variable with distribution Exp(CL−1)}
p←Exponential random variable with mean 1/CL−1

E1 ← t+ p
else
{Add a particle to the defect site}
ζL ← ζL + 1
{Update time and draw time of next event}
t← E2

p← Exponential random variable with mean 1/(ζL + 1)
Ẽ ← H(E2)
Ẽ ← Ẽ + p
E2 ← H−1(Ẽ)

end if
end for
return ζ
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Algorithm 2 Gillespie update algorithm for the chipping model with N particles
on a lattice of L sites. Algorithm calculates the background density RbgL (N) for the
process.

Require: A vector η of length L
Require: List of L jump rates for each site in the current state (ci)

L
i=1 where

ci = (1 + w)δ(ηi > 0)
Require: List of partial sums Cn =

∑n
i=1 ci with C0 = 0

{Sample time increment from Exp(CL)}
dt← Exponential random variable with mean 1/CL
t← t+ dt
{Choose exit site with probability ci/CL}
p← Uniform random number of [0, CL)
Perform binary search for i such that Ci−1 ≤ p < Ci
{Choose entry site uniformly on remaining L− 1 sites}
j ← Uniform integer on {1, . . . L− 1}
if j < i then
j ← j

else
j ← j + 1

end if
{Decide if one particle jumps or all particles jump}
p← Uniform random number on [0, 1 + w]
if p < w then
ηi ← ηi − 1
ηj ← ηj + 1

else
ηi ← 0
ηj ← ηj + ηi

end if
{Update transition rates and partial sums}
Update ci and cj
Update Cn for n ∈ {min{i, j}, . . . , L}
{Calculate the maximum occupation}
ML(η)← max{η1, . . . , ηL}
return N−ML(η)

L−1
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given by the dynamics of the underlying random walk.

A.3.2 The zero-range process

In Algorithm 3, we describe the Gillespie algorithm for calculating the coupling time

of the defect site zero-range process on the complete graph with L sites, N particles,

and a set ∆ of defect sites.

The complexity of the algorithm is O(L), since at each time step we must

update the partial sums Cn for n ∈ {min{i, j}, . . . , L}, which can be reduced to

O(log(L)) by considering the binary tree discussed in Section A.3.1. Furthermore,

the performance of the algorithm can be improved by utilising the simplicity of the

coupled generator. For coupled processes (η(t))t≥0 and (ζ(t))t≥0, the exit rate only

changes when max{ηi, ζi} jumps from 1 → 0 or 0 → 1, since the jump rates gx(n)

are positive and constant for n > 0 and 0 if and only if n = 0.
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Algorithm 3 Gillespie update algorithm for the coupled defect site zero-range
process with N particles on a lattice of L sites with a set ∆ of defect sites. Algorithm
calculates the coupling time for the process.

Require: Vectors η and ζ of length L
Require: List of L jump rates for each site in the current state (ci)

L
i=1

Require: List of partial sums Cn =
∑n

i=1 ci with C0 = 0
{Initialise η with N particles on a non defect site and ζ sampled according to
π∆

Λ,N}
η ← Nδx for some x /∈ ∆
ζ ← Random sample from π∆

Λ,N

{Initialise list of jump rates}
ci = max{gi(ηi), gi(ζi)}
Fill list of partial sums Cn
t← 0
while |{i : ηi 6= ζi}| > 0 do
{Sample time increment from Exp(CL)}
dt← Exponential random variable with mean 1/CL
t← t+ dt
{Choose exit site with probability ci/CL}
p← Uniform random number of [0, CL)
Perform binary search for i such that Ci−1 ≤ p < Ci
{Choose entry site uniformly on remaining L− 1 sites}
j ← Uniform integer on {1, . . . L− 1}
if j < i then
j ← j

else
j ← j + 1

end if
{Update configurations according to coupled dynamics}
if ηi > 0 and ζi > 0 then
ηi ← ηi − 1 and ηj ← ηj + 1
ζi ← ζi − 1 and ζj ← ζj + 1

else if ηi = 0 and ζi > 0 then
ζi ← ζi − 1 and ζj ← ζj + 1

else if ηi > 0 and ζi = 0 then
ηi ← ηi − 1 and ηj ← ηj + 1

end if{Update transition rates and partial sums}
Update ci and cj
Update Cn for n ∈ {min{i, j}, . . . , L}

end while
return t
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