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Abstract

Adapting environments to the needs and preferences of their inhabitants is be-

coming increasingly important as the world population continues to grow. One

way in which this can be achieved is through the provision of timely information,

as well as through the personalisation of services. Providing personalisation in

this way requires an understanding of both the historical and future actions

of individuals. Using geospatial trajectories collected from personal location-

aware hardware, e.g. smartphones, as a basis, this thesis explores the extent to

which we can leverage the latent knowledge in such trajectories to understand

the historic and future behaviours of individuals.

In this thesis, several machine learning tools for the task are presented,

including the development of a novel clustering algorithm that can identify

locations where people spend their time while disregarding noise. The knowledge

exposed by such a system is then enhanced with a procedure for identifying

geographic features that the person was interacting with, providing information

on what the user may have been doing at that time. Interactions with these

features are subsequently used as a basis for understanding user actions through

a new contextual clustering approach that identifies periods of time where the

user may have been performing similar activities or have had similar goals.

Combined, the presented techniques provide a basis for learning about the

actions of individuals. To further enhance this knowledge, however, the research

presented in this thesis concludes with the presentation of a new machine learn-

ing model capable of summarising and predicting the future context of indi-

viduals where only geospatial trajectories are required to be collected from the

user. Throughout this work, the potential benefits o↵ered by geospatial trajec-

tories are explored, with thorough explorations and evaluations of the proposed

techniques made alongside comparisons to existing approaches.
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Notation

T Geospatial trajectory: T = {p(1), p(2), p(3), ..., p(n)

p Trajectory point: p(i) = (x(i), y(i), t(i), �(i))

x(i) The x coordinate of point i, typically degrees of longitude

y(i) The y coordinate of point i, typically degrees of latitude

t(i) The time component of point i

�(i) The accuracy value of point i, typically maximum likely deviation

measured in metres

V Set of visits: V = {v(1), v(2), v(3), ..., v(n)}

v Individual visit: v(i) = (p(i), t(i), d(i)); a period of low mobility

extracted solely from geospatial trajectories

�(i) The position of visit i

d(i) The duration of visit i

l Significant location: a cluster of visits based on geographical

proximity.

f Geographic feature: a physical entity in the world that has some

purpose, e.g. a building, road, public amenity

e Element: a representation of a geographical feature from a dataset

i Interaction: a period of time spent interacting with, or within, an

element
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CHAPTER 1
Introduction

Adapting environments to the needs and preferences of their inhabitants is be-

coming increasingly important as the world population continues to grow. With

the majority of people now living in urban environments1, the provision of smart

services and utilities has an unprecedented ability to improve the lives of indi-

viduals and societies. This can be realised through the provision of timely and

useful information, control of automated systems, and even utilities and transit

management at city-scale. In order to provide personalised services, we first

require the ability to model and understand the behaviours, interactions and

patterns of city inhabitants. One way in which this can be achieved is to collect

vast amounts of data from individuals, or the devices they carry. However, the

collection of such data would typically be invasive and require additional sensor

devices to be carried. Instead, we focus our work on geospatial trajectories that

can be collected from smartphones, routinely carried by the majority of the

population2.

1.1 Understanding People from Data

Understanding and modelling the behaviour of individuals can be performed in

various ways, from monitoring how people interact with their devices [LiKamWa

et al., 2011, 2013; Shye et al., 2010; Wang et al., 2014] and the internet [Alhindi

et al., 2015; Ashman et al., 2009; Gossen et al., 2013; Popescu, 2010; Steichen

et al., 2012; Zhang, 2013], through to analysing footage from video cameras

[Brax, 2008; Janoos et al., 2007; Kim et al., 2010; Sillito and Fisher, 2008], or

1data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
2services.google.com/fh/files/blogs/our_mobile_planet_us_en.pdf

1

data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
services.google.com/fh/files/blogs/our_mobile_planet_us_en.pdf
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data from heart-rate monitors and other low-level sensors [Choudhury et al.,

2008; Lee and Mase, 2002; Lester et al., 2005; Morris and Trivedi, 2011; Pirt-

tikangas et al., 2006; Ravi et al., 2005]. In addition to these sources, online pro-

filing has increasingly been used to understand the preferences of individuals,

however, many activities are conducted o↵-line and therefore require additional

data in order to characterise. Such data could come from video and other low-

level sensors, which may be able to identify physical activities the user conducts,

but such data is not always available, and so would cover only limited parts of

a person’s day.

Aiming for more continuous data collection, in a manner that does not sig-

nificantly inconvenience the user, we instead focus our attention on geospatial

trajectories. These trajectories are sequences of data points that link an en-

tity (e.g. a person, device, vehicle, etc.) to a specific geographic location at a

specific time, and can be collected from any manner of sources. Many devices

are now location-aware, being capable of sensing their current location. Such

devices include smartphones, in-car navigation devices, and even watches. The

continuous collection and use of geospatial trajectories is becoming increasingly

possible, with the goal of better personalising the services these devices o↵er to

their users. Furthermore, trajectories can also be collected without any action

required of the user though cell tower connections (i.e. by monitoring the towers

in range of a cellular device), or through credit card usage, amongst many other

methods. These are all minimally invasive to the user, but provide information

on which to better learn and understand the person to whom the device belongs.

1.2 Geospatial Trajectories

Regardless of their source or how they are collected, geospatial trajectories are

sequences of data points associated with a person or other entity. Each data

point relates that entities’ location to a specific time, often with an accuracy

2



1. Introduction

value that represents the uncertainty in the location measurement:

T = {p(1), p(2), p(3), ..., p(n)} p(i) = (x(i), y(i), t(i), �(i)) (1.1)

Where T is a geospatial trajectory consisting of n points. p(i) is the ith tra-

jectory point comprising of location, x(i) and y(i), time t(i) and accuracy �(i),

representing the maximum likely deviation from the recorded location, usually

measured in metres. While it is not strictly necessary for the location to be

recorded as latitude and longitude, this is the most convenient way to repre-

sent a physical location, and so we assume that all geospatial trajectories are

recorded in this manner. A vast amount of latent knowledge is present in such

trajectories; it is the task of the remainder of this thesis to discuss existing

approaches of leveraging such knowledge, as well as presenting new methods.

1.3 Problem Statement and Contributions

This thesis aims to explore the potential o↵ered by geospatial trajectories to

the task of understanding individuals through machine learning. Specifically,

the problem statement is: Can a technique be developed to predict the

future actions, in terms of location and context, of individuals that

makes use of data available after collection, but requires only geospa-

tial trajectories to be collected from the individuals themselves? While

exploring this problem, the following contributions are made by this thesis:

1. Improving on current algorithms for identifying periods of low

mobility (i.e. when little motion is present) in geospatial trajec-

tories for the purpose of identifying locations meaningful to the

individual.

The Gradient-based Visit Extractor (GVE) is an algorithm for iden-

tifying periods of low mobility from geospatial trajectories, for the purpose

of identifying places where people, or other entities, have spent time. The

3
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algorithm is an improvement on existing techniques as it is more resilient

to noise and places fewer limitations on the extracted time periods. This

algorithm is combined with an analysis of the properties of the extracted

visits and the impact these properties have on a sample application, that

of location prediction. Such an evaluation is lacking in previous work. Fur-

thermore, additional techniques to aid in visit extraction and prediction

are proposed, including a method for automatic parameter optimisation

for extraction and prediction.

2. Developing a technique for the identification of geographic fea-

tures with which an entity interacts (e.g. specific buildings).

While extracting locations from geospatial trajectories produce arbitrary

shaped clusters, we propose the Land Usage Identification (LUI) pro-

cedure, as a method for augmenting trajectories with information on geo-

graphic features extracted from a dataset, referred to as land-usage data.

These augmented trajectories are then subjected to a filtering procedure

to identify geographic features with which an individual, or other entity,

interacted, providing a basis for understanding the type of places at which

a person spends their time.

3. Establishing a data structure for identifying and summarising

contexts from augmented geospatial trajectories to identify pe-

riods of time with similar goals, desires and intentions.

The Context Tree is a hierarchical data structure with a generation pro-

cedure that identifies contexts based on the semantics of elements encoun-

tered and properties of the interaction with these elements. The Context

Tree itself provides a summary of the contexts an individual has been

immersed within.

4. Evaluating the data structure as a predictive model for forecast-

ing the future contexts and location interactions of individuals.

Based on the Context Tree, the Predictive Context Tree (PCT) is

4
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a hierarchical classifier which is capable of predicting the future location

of interactions of individuals, achieving competitive accuracies when com-

pared with existing techniques. In addition to this, the PCT is able to

predict the context in which a person will be immersed to a high degree

of accuracy, o↵ering a platform on which to understand the future actions

of people, and thus provide useful and personalised services.

1.4 Code and Algorithms

Throughout this thesis, several tools, techniques and algorithms are developed

and applied to real-world geospatial trajectories. In order to encourage the use

of these techniques, the code used to generate results for this thesis, including

concrete implementations for each contribution, has been released under the

GNU GPL License3 and is located at: github.com/csukai/position.

1.5 Thesis Structure

The remainder of this thesis is structured as follows:

Chapter 2 presents background knowledge relevant to the task of under-

standing people from geospatial trajectories. General machine learning topics

are discussed, and existing applications of geospatial systems are summarised.

Chapter 3 discusses available datasets for this work, including specifics of

the datasets selected for use in this thesis. Additionally, this chapter sets out

data collection methodologies for the Warwick Dataset, which was collected to

overcome drawbacks of existing data available for research purposes.

Chapter 4 explores the potential for improving upon existing visit and

location extraction techniques, where the aim is to identify periods of low mo-

bility in geospatial trajectories and cluster these interactions into locations. The

chapter primarily presents the Gradient-based Visit Extractor (GVE) algorithm

3gnu.org/licenses/gpl-3.0.en.html

5
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that expands on previous algorithms for this task. The algorithm is then evalu-

ated thoroughly with respect to the properties of the identified interactions and

under the sample application of predicting future interactions. This chapter

also includes an exploration of the task of optimising parameters for extracting

locations using GVE, and provides a discussion on how this can be achieved.

Chapter 5 investigates and proposes a method for identifying geographic

features being interacted with from geospatial trajectories augmented with land

usage data. This approach produces interactions that are similar in structure to

those identified by GVE, but map to single geographic features, thus providing

additional information in the form of knowledge about the type and properties of

the feature being interacted with. The interactions are evaluated using existing

machine learning techniques that have been demonstrated to be applicable to

location prediction, with a comparison presented between extracted locations

and identified elements.

Chapter 6 uses identified land usage elements as a basis for identifying

contexts through hierarchical clustering. The proposed Context Tree is a hi-

erarchical data structure and generation procedure that uses semantics and

properties of interactions with land usage elements to summarise user contexts.

This chapter presents the data structure, metrics, and algorithms for construct-

ing Context Trees, along with a technique for reducing the size of a Context

Tree through pruning.

Chapter 7 builds upon the foundation o↵ered by Chapter 6, by presenting

a model for predicting the future interactions and contexts of an individual,

namely the Predictive Context Tree (PCT). This model is then evaluated with

respect to both predictions from extracted locations and predictions from iden-

tified land usage elements (Chapter 5).

Chapter 8 concludes the thesis with a summary of the contributions made,

alongside a discussion of possible future work in this area.
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CHAPTER 2
Background and Related Work

Geospatial trajectories form the backbone of many location-aware systems and

services, and an increasing amount of research has focused on developing tech-

niques to leverage the knowledge latent in such trajectories. When coupled with

the now pervasive nature of location-sensing hardware, such as smartphones,

trajectories are an ideal basis for understanding, modelling, and predicting hu-

man behaviour.

In existing work, trajectories have been collected from dedicated devices

[Ashbrook and Starner, 2003], smartphones [Laurila et al., 2012], WiFi devices

[Burbey and Martin, 2008], social networks [Comito et al., 2016], vehicles [Hu

et al., 2015], smart buildings [Petzold et al., 2006; Roy et al., 2003], and mobile

phone cell networks [Bayir et al., 2009; Farrahi and Gatica-Perez, 2008b, 2009].

Using these trajectories as a basis for knowledge acquisition, research has con-

sidered many possible applications, including identifying locations meaningful

to individuals [Bamis and Savvides, 2011; Montoliu and Gatica-Perez, 2010],

predicting the future location of people [Ashbrook and Starner, 2003; Assam

and Seidl, 2013], determining transport methods [Patterson et al., 2003; Zheng

et al., 2008a], forecasting the destinations of journeys [Karimi and Liu, 2003;

Liao et al., 2007b], and even identifying similarities [Assam and Seidl, 2014;

Xiong and Lin, 2012] and anomalies between users [Chen et al., 2011a; Zhang

et al., 2011].

The remainder of this chapter explores these topics in depth, along with

providing the necessary background information for this thesis.

7
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2.1 Managing and Collecting Data

With various methods of collecting trajectories, ranging from manually writing

locations into a travel diary through to automatic logging from a portable device,

the properties of data available will vary. For this work, we focus primarily on

trajectories collected about individuals, typically from portable devices, but

they could also come from vehicular data recorders or from services such as

credit card or cellular telephone usage. This section discusses some challenges

relating to geospatial data and its collection.

2.1.1 Resource Utilisation

Determining the current location in a portable device can be achieved through

many technologies, such as the Global Positioning System (GPS), Global Nav-

igation Satellite System (GLONASS), WiFi positioning, and cell-tower trian-

gulation. The most accurate of these, GPS and GLONASS, have an accuracy

of approximately 5-10m in perfect conditions [GMV, 2011; Grimes, 2008], but

also requires the most power to determine position, and so existing work has

considered balancing the accuracy of collected data with the available resources

on the collection device.

In order to balance the requirement for accurate measurement with that of

preserving power, research has focused on optimising the data collection process.

Kiukkonen et al. [2010] present a state-based machine that transitions between

di↵erent collection rates and location determination methods based on sensor

readings, using WiFi base stations to indicate locations when available, and

adjusting the collection rate based on accelerometer readings (i.e. if the user is

moving, the collection rate is increased) at other times. Similarly, Chon et al.

[2011] present SmartDC, an application that aims to estimate when a user will

leave a current area and increase collection around this time, using a Markov

predictor, although this system is heavily reliant on the availability of WiFi

networks.

8
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2.1.2 Privacy

Another concern when collecting geospatial data is privacy, the preservation of

which has long been the subject of research [Ackerman et al., 2001; Beresford

and Stajano, 2003; Kaasinen, 2003; Ljungstrand, 2001]. Methods for preserv-

ing privacy in location-aware systems include those focusing on the selective

obfuscation of originating users. An example of this is the application of ‘mix

zones’ where users can only be identified within certain regions, with user data

mixed together at other times [Beresford and Stajano, 2004], or providing the

users with fine control over what data can be shared and using intelligent al-

gorithms to determine how privacy would be reduced by sharing the user’s

location at any time [Boutsis and Kalogeraki, 2016]. Other solutions to the pri-

vacy preservation issue focus on enabling privacy-compromising computation

to be performed on client devices, eliminating the risk of intercept and loca-

tion inference [Marmasse and Schmandt, 2000], or the reduction of accuracy of

data, for example, the truncation of latitude and longitude values in the Nokia

Mobile Data Challenge (MDC) dataset [Laurila et al., 2012], discussed later in

Chapter 3. However, since some services necessitate the transmission of loca-

tion data, are too computationally intensive for client devices, or require the

unambiguous identification of a user, the problem of preserving location privacy

in location-aware systems persists [Kaasinen, 2003].

Focusing on the reverse of these techniques, that of demonstrating the pri-

vacy implications of geospatial data, Rossi et al. [2015a; 2015b] explore tech-

niques for identifying users based on social media check-ins and GPS data. The

authors discover that check-ins to certain types of location reduce privacy more

than others, and that users have high uniqueness, thereby requiring very little

data when attempting to identify a user.

9
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2.1.3 Synthetic Data

With the challenges associated with collecting real-world trajectory data, some

work chooses to generate synthetic data for evaluation instead [Giannotti et al.,

2007; Karimi and Liu, 2003; Lei et al., 2011; Wolfson and Yin, 2003; Zheng et al.,

2010c]. Creating synthetic data does, however, have its own problems. Firstly,

the ability for synthetic data to represent the distribution and patterns of real

data are limited, without a real-world dataset on which to base a probabilistic

model. Additionally, even with such data, creating a model that accurately

represents the movement patterns and characteristics of individuals is a signifi-

cant challenge. Several papers use synthetic data to evaluate location prediction

techniques [Bilurkar et al., 2002; Thanh and Phuong, 2007] and visit extraction

techniques [Bamis and Savvides, 2010], but fail to demonstrate the applicability

of the data they generate.

2.1.4 Ground Truths

For many techniques relating to extracting knowledge from data, collecting a

concrete ground truth is infeasible or dependant upon specific applications. Sig-

nificant location extraction, for example, can extract locations of di↵erent sizes

and scales and so no single ground truth can exist. Existing literature addresses

this by comparing the outputs from such techniques against certain metrics and

expectations. For instance, Guidotti et al. [2015] create synthetic trajectories

with known properties and devise metrics to compare extracted locations with

these properties. Much existing work additionally uses partial ground truths

constructed a posteriori from manually analysing the data and cross-referencing

with other data sources, such as maps and land usage information [Assam and

Seidl, 2014; Comito et al., 2016; Hoh et al., 2010; Lee et al., 2015; Si la-Nowicka

et al., 2015; Yan et al., 2013], or analysing video data about the study par-

ticipants to manually determine activities conducted [Lester et al., 2005]. In

addition to this, analysis has been performed in the absence of a ground truth

10



2. Background and Related Work

by considering expected properties of the procedure with relation to input pa-

rameters [Bao et al., 2011].

2.2 Trajectory Processing

Once geospatial trajectories have been collected, they can be processed and

analysed to better understand people and their actions. This section presents

several existing methods for processing raw geospatial trajectories to provide a

foundation for understanding behaviour.

2.2.1 Reducing Uncertainty

Due to the di↵erent methods of collection of trajectories, each data point typ-

ically carries some amount of uncertainty. Reducing this uncertainty can be

achieved through filtering, outlier detection or tailored approaches such as map-

matching that uses known information about the environment to estimate the

true location of the entity [Qiu et al., 2013; Zheng, 2015]. Typical filtering

approaches include the Kalman filter [Cooper and Durrant-Whyte, 1994; Mo-

hamed and Schwarz, 1999; Zheng and Zhou, 2011], impulse response filter [Ge

et al., 2000], particle filter [Giremus et al., 2004; Wang et al., 2007], and moving

average filters [Tsai et al., 2004] to smooth out noisy data.

While most useful for vehicular trajectories, map-matching techniques aim

to reduce uncertainty by utilising additional information about the world to

determine the likely real location the trajectory point was recorded from. This

can be achieved by simply mapping the recorded point to the closest road [White

et al., 2000], or using more advanced filtering and estimation techniques (e.g.

the Kalman filter mentioned earlier) [Goh et al., 2012; Ochieng et al., 2003; Pink

and Hummel, 2008; Quddus et al., 2003].

11
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2.2.2 Change-point Detection

Change-point detection can be applied to trajectories to identify the point at

which significant change occurs with the goal of partitioning the trajectory into

subtrajectories. Depending on the goal of the process, the criteria for selecting

change-points will vary, but typically includes monitoring for rapid changes in

speed, acceleration, or direction. Subtrajectories segmented in this manner have

been used for travel method identification, where the goal is to determine what

transportation mode (e.g. walking, cycling, driving) was in use for di↵erent

components of a journey [Liao et al., 2007b; Patterson et al., 2003; Zheng et al.,

2008a,b].

2.2.3 Visit Extraction

Visits, also referred to as stops or stays, are periods of a trajectory where the

entity is likely to have remained in a single location, for example a shop or house

for trajectories associated with individuals [Ashbrook and Starner, 2003], or a

parking garage or tra�c queue for trajectories associated with vehicles [Yang

et al., 2013]. The identification of these visits enables applications to reason

about behaviour as a sequence of interactions with the environment [Andrienko

et al., 2011; Ashbrook and Starner, 2002, 2003; Bamis and Savvides, 2011; Mon-

toliu and Gatica-Perez, 2010]. After such interactions have been identified, we

are left with a sequence of visits performed by the entity:

V = {v(1), v(2), v(3), ..., v(n)} v(i) = (�(i), t(i), d(i)) (2.1)

Where V is a set of visits, with v(i) being an an individual visit associated

with a position, time and duration (�(i), t(i), d(i) respectively). For some

applications, the visits themselves can be ignored and only the periods of time

between them are considered. This may be useful in applications such as exercise

trackers where stationary periods are not of interest.

One of the earliest visit extraction techniques is proposed in an investiga-

12
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tion conducted by Ashbrook and Starner [2002; 2003] into identifying locations

meaningful to a user. From the collected data, Ashbrook and Starner observed

that the data loggers used did not function well indoors, as a GPS signal was

rarely available, and therefore treated periods of missing data as visits. This

approach is limited in that it assumes that all missing data is caused by a visit,

and visits cannot occur when data was collected. Indeed, the authors note that

the data logging devices were prone to run out of battery power, also caus-

ing a lack of data. Building on this work, but assuming a constant flow of

data, even when indoors, algorithms have been proposed that aim to identify

periods of low mobility from within trajectories. Relying on time and distance

thresholds, such algorithms typically operate by identifying subtrajectories that

contain points such that the subtrajectory, or visit, is smaller than a specified

radius (or, sometimes, that no consecutive points can be greater than a specified

distance apart) and the duration of the subtrajectory exceeds some threshold

[Andrienko et al., 2011, 2013; Hariharan and Toyama, 2004; Kang et al., 2004; Li

et al., 2008; Zheng et al., 2010b, 2009; Zhou et al., 2014]. Montoliu and Gatica-

Perez [2010] extend this technique, by adding an additional constraint that the

time between consecutive data points in the same visit must be bounded, with

the aim of preventing periods of missing data from being contained within a

visit. If data became unavailable at one time, and became available at a nearby

coordinate some time later, it is not possible to state with certainty that the

user remained stationary for the missing period. Another approach considered

for visit extraction makes use of the speed or velocity of the user, where low

speeds are considered indicative of a visit occurring [Lee et al., 2015; Palma

et al., 2008].

Although these techniques may overcome the issues caused by assuming

that a loss of GPS signal is equivalent to a visit, they all su↵er from a lack of

resilience to noise. In the thresholding approach, a single noise point outside

the visit radius will end a visit prematurely, and when considering velocity, it

is likely that noise points will artificially increase the reported velocity of the

13



2. Background and Related Work

user, thus also causing visits to be ended.

Aiming to overcome the drawbacks of existing approaches, by assuming noise

in the dataset, Bamis and Savvides [2010] present the Spatio-Temporal Activity

(STA) extraction algorithm. While the authors were specifically motivated by

identifying activities that repeat in cycles through extraction and clustering, the

first step of the algorithm, STA extraction, uses a definition of an activity that

is identical to our definition of a visit, and thus performs visit extraction. The

algorithm is similar to existing approaches in that it iterates over the trajectory

points, but uses a weighted averaging filter over the spatial component to reduce

the impact of noise before considering an activity to have ended. This technique,

however, does have several drawbacks and assumptions relating to the data,

for example, requiring evenly time-sliced data and a full data bu↵er before

consideration of a visit can occur, consequently imposing a minimum bound on

visit duration.

The topic of visit extraction is considered again later in Chapter 4, where an

algorithm is proposed that aims to overcome the drawbacks of the approaches

identified here. It is also considered in Chapter 5, where a novel approach to

identifying land usage elements interacted with by users is presented, designed

to replace traditional visit extraction for some domains.

2.3 Significant Locations

Significant, or meaningful, locations form the backbone of many geospatial ser-

vices as they identify locations that have some meaning to the user. These

applications include predicting future visits to locations [Ashbrook and Starner,

2002, 2003; Fukano et al., 2013; Wang and Prabhala, 2012], predicting how long

a user will stay at a given location [Liu et al., 2013], as well as labelling loca-

tions with their likely meaning [Krumm and Rouhana, 2013]. Literature has

also considered the problem of predicting locations in which people will meet

[Yu et al., 2015b], and providing recommendations of places to visit to users
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new to a city based on the locations visited by others [Bao et al., 2015; Zheng

and Xie, 2010].

2.3.1 Extracting Locations

Section 2.2.3 discusses methods of identifying visits from geospatial trajecto-

ries, resulting in a sequence of such visits that each represents a period of time

in which a user remained in one place. The majority of existing work in ex-

tracting significant locations makes use of these identified visits by clustering

them together to determine visits that belong to the same location. This results

in a sequence of visits to locations, where unlike sets of trajectories or visits,

repeated visits to the same location, l(i), are possible, for example:

l(1) ! l(2) ! l(1) ! l(3) ! l(4) ! l(2) ! ... (2.2)

Grouping visits into locations has been performed using unsupervised learn-

ing techniques such as clustering. Such algorithms are categorised into two

main types: Hierarchical and partitional. The aim of a hierarchical algorithm

is to create a tree-like structure of clusters with a single root cluster and di↵er-

ent scales of sub-cluster below. Partitional algorithms, in contrast, cluster the

entire dataset into discrete partitions at a single scale.

These types are further broken down into two categories of algorithms: ag-

glomerative and divisive. Agglomerative algorithms start with each point as a

singleton cluster and continually perform rounds of merging until a termination

condition is met (bottom-up clustering). Divisive clustering, on the other hand,

starts with a single cluster containing all points and repeatedly splits the clus-

ters until some termination criterion is met (top-down clustering) [Jain et al.,

1999].

K-means are a family of iterative relocation algorithms that perform ex-

pectation maximisation to split the dataset into k clusters [MacQueen, 1967].

The algorithms start with a random initial assignment of points to clusters
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and continually make changes until the associated error ceases to change sig-

nificantly [Jain et al., 1999]. There are many di↵erent algorithms that use the

K-means approach, with MacQueen’s [1967] algorithm being the most widely

used. K-means is di↵erentiated from K-medoid algorithms in that the clusters

are described by their centre, while in K-medoid the clusters are described by an

existing point in the dataset that is as close as possible to the centre [Kaufman

and Rousseeuw, 1987]. This technique has been used for clustering visits into

locations in [Ashbrook and Starner, 2002; MacQueen, 1967]. However k-means

requires a value for k, the number of clusters, to be known a priori, which is

typically not the case. Ashbrook and Starner [2003] provided a technique for

selecting a value for k by performing clustering for several values and observing

the results of plotting the number of clusters extracted on a graph.

Without needing the number of clusters to be known a priori, Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) [Ester et al., 1996], a

density-based clustering algorithm that determines clusters according to param-

eters, has also been shown to be e↵ective for visit clustering [Andrienko et al.,

2013; Montoliu and Gatica-Perez, 2010]. DBSCAN does not, however, apply a

maximum cluster size, instead allowing arbitrarily large clusters providing that

a su�cient density of visits exists.

Hierarchical algorithms such as CLARANS [Han, 2002] are also used for

unsupervised learning problems such as this, where some similarity cuto↵ is

typically used to select a level of cluster for a specific application. CLARANS

is based on K-medoid, and builds upon PAM and CLARA [Kaufman and

Rousseeuw, 1987]. Another such hierarchical clustering algorithm is BIRCH

[Zhang et al., 1997]. BIRCH is designed to run on large datasets with limited

memory available, where not all data is available at the start. It operates by

creating a new data structure, a CF-Tree, and summarising clusters by their

centroid, radius and diameter, updating leaf nodes as new points are brought

into the system.

Montoliu and Gatica-Perez [2010] employ the grid-based clustering algorithm
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proposed by Zheng et al. [2010b]. This algorithm works by overlaying a grid

on extracted visits, where the length of each square is a user-specified param-

eter. Squares containing more visits than a threshold are merged with all of

their neighbours that have not already been assigned to a location, under the

constraint of the maximum location size being defined as 3 ⇥ 3 squares. The

clustering stops once no unassigned square exists with greater than the thresh-

old number of visits. While this approach constrains the maximum location size,

unlike DBSCAN, the shapes of the locations extracted are more regular, and

therefore may not represent the shapes of the real-world locations as accurately.

Although having a slightly di↵erent aim, namely that of grouping activities

that occur at the same place and at similar times of day, Bamis and Savvides

propose a clustering algorithm, STA Agglomerator, that clusters based on both

time and location [Bamis and Savvides, 2010]. The STA Agglomerator operates

by summarising visits as their 3-dimensional bounding box (along the latitude,

longitude and time dimensions) and progressively merging visits into clusters

based on a similarity function, with weightings given to longitude, latitude and

time. With a weighting to the time dimension of zero, this has the e↵ect of

performing visit clustering. However, the algorithm has both space and time

complexities of O(n2), far exceeding those of both k-means and DBSCAN.

Location extraction as a topic is revisited in Chapter 4, where locations are

clustered using DBSCAN from visits extraction using both existing and new

approaches.

Alternative Approaches

In contrast to the approach of splitting a temporally ordered dataset into visits,

there are methods of extracting visits and locations using a single algorithm. Lit-

erature that uses a single technique has focused on using existing and modified

clustering algorithms to identify dense groups of points without first performing

visit extraction [Guidotti et al., 2015; Zhou et al., 2014]. This has the draw-

back of identifying dense groups of points that happen to be together through
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chance (e.g. along a road travelled frequently but at which the user did not

stop). While this may o↵er utility to certain applications, several applications

of extracted locations are only interested in places where the individual spent

time, for example, location prediction.

Considering both spatial and temporal proximity, ST-DBSCAN [Birant and

Kut, 2007] and DJ-Cluster [Zhou et al., 2007] are density-based clustering algo-

rithms that are designed to cater for spatio-temporal data by extracting clusters

that are similar in both space and time. While they overcome the problem of

performing only two-dimensional clustering directly to trajectories (that of ex-

tracting dense groups of points without considering time), these approaches are

more computationally intensive than performing visit extraction followed by

clustering, as the number of visits is typically far lower than the number of tra-

jectory points. Furthermore, only locations are identified and not visits through

this technique, so it becomes harder to reason about behaviour.

2.3.2 Labelling and Recommending Locations

Once extracted, locations can be used as a basis for location-aware systems and

services, but they can also be enriched with additional information and used,

for example, to guide individuals around a city or other point of interest. To

this end, research has been conducted into extracting locations from visits and

using them to o↵er suggestions to new users who may be visiting an unfamiliar

area, achieved by matching the interests of users based on the locations they

have visited [Zheng et al., 2010a,b,c]. This idea has been extended by person-

alising the recommendations even more towards the user, where the type of

location a user wishes to visit next is predicted, and a recommendation that fits

this category given [Zhao et al., 2015]. Research has also been conducted into

automatic labelling of locations by treating the labels as a supervised learning

problem, where a dataset is created with manually assigned labels, and classi-

fiers used to label the remaining locations [Andrienko et al., 2011, 2013; Do and

Gatica-Perez, 2013; Farrahi and Gatica-Perez, 2009]. Yan et al. [2013] extend
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this by providing locations with annotations of semantic information extracted

from a land usage dataset. In a related area, Gong et al. [2011] use locations

to characterise user similarity based on how much time people spend at the

same places and, under the assumption that users with similar preferences have

similar movement patterns, use historical information from correlated users to

predict where others are going to visit in the future.

2.4 Location Prediction

Location prediction was initially studied for the purposes of predicting to which

cell tower connections should be handed over while people were moving [Ak-

oush and Sameh, 2007; Bilurkar et al., 2002; Gong et al., 2011]. More recently,

with the increased availability of such data, the task has changed to predicting

the future location of an individual from geospatial trajectories [Ashbrook and

Starner, 2003; Assam and Seidl, 2013; Chon et al., 2012; Hariharan and Toyama,

2004], or rooms in smart buildings [Petzold et al., 2006; Vintan et al., 2004].

This section explores methods to achieve location prediction, and the di↵erent

goals they have.

Although research has previously been conducted into predicting exact lon-

gitude and latitude values for a future time [De Domenico et al., 2013], the vast

majority of predictors work by predicting one of a predefined set of coordinate

clusters, typically called Locations, as discussed in Section 2.3. Predicting the

future location of an individual limited to a discrete set of locations has the

advantage that the predicted output is typically more meaningful, o↵ering the

ability to say when the user will return to somewhere they have been before, or

regularly visit (e.g. their home or place of work).

In addition to the di↵erent aims of predicting from a set of discrete loca-

tions and predicting the exact continuous longitude and latitude values, location

prediction can be split into the categories of next location and future location

prediction. Next location prediction takes a sequence of location transitions,
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for example l(1) ! l(2) ! l(1) ! l(3), or a single current location, and aims

to predict the next location to be visited in the sequence. These transitions are

often extracted using location extraction techniques and represent places where

the individual or other entity remained above some threshold amount of time

(e.g. 10 minutes). Future location prediction, by contrast, aims to predict the

location of an individual or other entity at a given future time by using the

future time as an input parameter.

The techniques discussed in this section, specifically next location prediction,

and to a lesser extent, future location prediction, are used as sample applica-

tions throughout this thesis. Chapter 4 uses the techniques to predict locations

to be visited over locations extracted using a new visit extraction technique as

a basis. Chapter 5 uses the same techniques, but over interactions with geo-

graphic features represented by land usage elements, extracted by a proposed

algorithm. Finally, Chapter 7 proposes a new technique for predicting locations

and contexts, using the approaches discussed here as a basis.

Predicting locations in this manner is typically treated as a supervised learn-

ing problem in existing literature (e.g. [Akoush and Sameh, 2007; Vintan et al.,

2004]). Supervised learning problems are a subclass of machine learning where

training data is provided as a set of input values along with a single output

value, often referred to as the class value. It is the goal of supervised learning

techniques to derive a function that maps from the input values (e.g. sequences

of visits to locations) to the correct output (the next or future location to be

visited).

2.4.1 Cell-tower Handover

Initial research into next cell prediction (predicting the next cell tower to which a

mobile device will connect) started by simply looking at the movement direction

of the user (e.g. north-west) and predicting the next cell tower that the user

would encounter on this path. More recently, however, historical information

about the user’s connections has been considered to provide a higher level of
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predictive accuracy [Lei et al., 2011; Vukovic et al., 2009]. Bilurkar et al. [2002]

propose using neural networks to perform next cell prediction. The neural

networks in this case are trained through backpropagation with output nodes

representing di↵erent possible future cell towers, and input nodes representing

the current tower connected to and properties such as time of day. The issue

with this work is that the authors assume that areas covered by cell towers

are square in shape and evenly distributed, with a transition between towers

occurring at most once every 20 minutes. In reality, however, the cells are not

fixed in shape at all — a stationary device may have several towers to choose

from depending on factors such as the weather — and transitions between cells

may occur more frequently than the authors’ assumption of every 20 minutes.

Also using neural networks for next cell prediction, Akoush and Sameh [2007]

use Bayesian inference to learn the weights in the network, arguing that this

reduces the complexity of training the model, thereby speeding up the process

when compared to backpropogation. The authors conclude that predicting the

specific cell to be connected to is challenging, and so opt for predicting blocks

of 6 cells, achieving 57% predictive accuracy. Although an improvement over

previous work, especially with regards to evaluating the technique, the accuracy

of prediction could still be improved. One technique for this was proposed by

Gong et al. [2011], who propose using data from multiple users to improve

the predictive accuracy for a single user. They achieve this by ranking users

against each other based on a social correlation metric, identifying users who

spend time together, under the assumption that users who are similar will follow

similar patterns. Predictions are then determined by selecting the user with

the highest social correlation to the one for whom the prediction is requested,

achieving 30% accuracy for predicting the specific cell. However, the authors

note that in some cases using a simpler 2nd-order Markov predictor performed

better than their proposed approach.
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2.4.2 Next Location Prediction

In addition to next cell prediction, next location prediction has also been utilised

inside smart homes [Helal et al., 2003; Roy et al., 2003] and o�ce buildings

[Hazas et al., 2004]. Prediction inside buildings aims to detect the room that a

specific person will visit next, typically motivated by the desire to automatically

forward phone calls when an employee leaves their o�ce, or providing electronic

signs on the doors of o�ces to indicate where the usual occupant may be or

when they may return. Inter-o�ce prediction has been performed using neural

networks, achieving accuracies as high as 92% [Vintan et al., 2004]. Continuing

from this work, Petzold et al. [2006] provide a comparison of di↵erent machine

learning techniques and quantify them based on how accurate they are, how

quick they are to build, and how long it takes them to learn a new pattern when

a routine changes. The authors consider neural networks (multilayer perceptron

and Elman network), Dynamic Bayesian Networks (DBNs), Markov models and

state predictors. Concluding, they demonstrate that the highest accuracy (82%)

was achieved by the state predictor, although it only returned predictions in

74% of cases. Of those techniques that always returned a prediction, Elman

networks performed best with 80% accuracy, although they were characterised

by the authors as ‘slow’ to learn and relearn. This work is limited in that it

does not evaluate di↵erent parameters for each approach. In fact, the authors

state that they selected parameters that required similar amounts of memory,

but were not optimised for accuracy.

As with the neural networks described in Section 2.4.1, these classification

techniques, as well as the stochastic Markov model, were trained using certain

properties such as time of day and current location as input parameters, with

the output class representing which room or location a person will visit next.

The models each therefore take an instance representing the current conditions,

and select a class that represents the next location the user will likely visit. Eval-

uation occurs by comparing the output class label against the actual location

visited next in the dataset.
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A major problem with existing works is that of validation. While research

has been published that claims accuracies between 80-90% [Noulas et al., 2012;

Petzold et al., 2006; Vintan et al., 2004], the numbers reported are heavily de-

pendent upon factors such as the amount and properties of training data used.

When dealing with enclosed environments, the possible locations are typically

well defined (e.g. rooms in a building) and any evaluation conducted uses these

known locations. However, when dealing with unbounded environments, the

selection of possible locations plays an extremely important part in providing

meaning to the evaluation conducted. While the extraction of locations is com-

mon [Ashbrook and Starner, 2002, 2003; Kang et al., 2004; Liu et al., 2013;

Zhou et al., 2007] as a precursor step to location prediction, no research that

employs this technique for location prediction provides a thorough analysis of

properties the locations extracted.

Focusing on prediction using extracted locations, Ashbrook and Starner

[2002; 2003] use Markov models to model a user’s transitions between extracted

locations. The approach adopted assigns probabilities to each possible transi-

tion, where a change in routine (e.g. the user changing shifts in their job or a

student having a new schedule) would require an equal number of transitions

to occur in the new routine as in the old before the model would adapt. Ad-

ditionally, the model only contained transition probabilities based on historical

transitions, but did not consider factors such as the time of day. Considering

time as well as current location, Wang and Prabhala [2012] propose using a com-

bined model, where transitions are used alone if their confidence is high, and a

second periodicity-based model is trained and used when transition confidence

is low.

Next location prediction over extracted locations has more recently used

Support Vector Machines (SVMs) [Wang and Prabhala, 2012], blockmodels

[Fukano et al., 2013], Markov models [Assam and Seidl, 2013; Gong et al., 2011;

Hariharan and Toyama, 2004; Mathew et al., 2012], and DBNs [Dash et al.,

2015]. In this case, the SVMs are used in a one-vs-all approach, where an SVM
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is trained for each possible next location and optimised to return an answer

to the question of whether this class or any other class is the correct classifica-

tion. Focusing on these techniques, Assam and Seidl [2013] make use of multiple

users’ data to return a prediction for a single user, by discovering correlations

between user transitions.

2.4.3 Future Location Prediction

Although similar to next location prediction, future location prediction typically

takes a set of historical trajectories along with a future time and reasons about

where the user will be at that specific time. While many of the same machine

learning tools are used for both types of prediction, changes must be made to

account for the temporal nature of future location prediction. In strictly next

location prediction, interactions can be modelled as transitions between states,

where time is not required, or often considered. For future location predic-

tion, time must be accounted for in order to reason about it, achieved using

Hidden Markov Models (HMMs) [Qiu et al., 2013], state predictors [Xiong and

Lin, 2012], and reachability-based approaches [2013]. Other approaches exist

that aim to achieve higher accuracy than using standard machine learning tech-

niques. An example of this is work conducted by Burbey and Martin [2008],

who instantiate multiple Markov models of di↵erent orders, and select the model

that returns a result that uses the most historical information (highest order).

Burbey and Martin’s approach is also capable of estimating the time that the

user will arrive at the location they are going to visit, with demonstrated accu-

racy as high as 91% when allowing for ±20 minutes.

Finally, Gao et al. [2012] investigate the reverse of the standard problem.

Instead of taking a future time and asking where the user will be, they take a

location and ask when the user will next visit. This is achieved by modelling

the probability distribution of a user visiting each location for all possible times

of day using Bayesian inference, and selecting the time calculated to be most

probable from historical information.
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2.4.4 Destination Prediction

In addition to determining the next and future location of a user, specific in-

vestigations have been conducted into determining the end point of a journey

once it has commenced [Chen et al., 2010; Karimi and Liu, 2003; Liao et al.,

2007b]. Although related to the problem of next location prediction, destination

prediction di↵ers in that it can also consider properties such as the route taken

by the driver at the beginning of a journey. With applications in smart vehicles,

this work has received increased focus in recent years and is achieved through

classification techniques [Cho, 2016], by observing matching similar starting tra-

jectories from one or more users [Chen et al., 2011b; Trasarti et al., 2015; Xu

et al., 2016; Xue et al., 2013] and through statistical models [Alvarez-Garcia

et al., 2010; Krumm and Horvitz, 2006].

2.5 Contexts and Activities

Identifying and predicting the locations that people wish to visit goes some way

to understanding human behaviour, but it does not consider what the person

wished to achieve, only where they were. For this, we turn to exploring identi-

fying activities and contexts, where activities are low-level actions performed by

the user, and contexts represent times when a user had a specific goal or task

to achieve. For example, a context could represent periods of time throughout

which a person was exercising, but the activity being performed would specifi-

cally be jogging or playing football.

This topic is revisited later in this thesis, in Chapters 6 and 7, where the

identification and prediction of contexts respectively are considered.

2.5.1 Identifying Activities

Identifying the activities being performed by individuals has been considered

as a hierarchical learning problem that can discover activities at multiple scales

from video data [Kim et al., 2010]. There is little distinction between activity
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extraction and activity labelling in existing work, where a group of sensor read-

ings or part of a video are provided and the task is to classify which activity

from a set is being performed. This includes identifying the current activity

from video [Brand et al., 1997; Messing et al., 2009; Morris and Trivedi, 2011],

accelerometers [Choudhury et al., 2008; Lee and Mase, 2002; Ravi et al., 2005],

accelerometers and heart rate sensors [Lester et al., 2005; Pirttikangas et al.,

2006], accelerometers and GPS devices [Subramanya et al., 2006], and custom

sensor networks [Van Kasteren et al., 2008]. Relating specifically to trajecto-

ries, the existing work is focused on 2D movement trajectories extracted from

video data [Bashir et al., 2006, 2007; Brand et al., 1997]. Once extracted, these

trajectories have been split into subtrajectories, typically based on changing

velocity, where Principal Component Analysis (PCA) and Markov models have

been used to detect the activity being performed [Bashir et al., 2007; Brand

et al., 1997]. Geospatial trajectories have been considered as a source of activ-

ity identification, but this typically entails identifying periods of time spent at

specific locations (e.g. [Huang et al., 2015]), which we consider a di↵erent prob-

lem and discuss in Section 2.3. Using time and features of the locations, Yu et

al. [2015a] propose identifying activities from the types of locations visited, and

Liao et al. [2007a] propose a hierarchical activity model for individuals that de-

scribe the significant locations that a person visits and the activities performed

at each of these locations, where activities are determined by assigning labels to

grid cells on a map based on the speed of travel and proximity to transit routes

in each cell.

Although more broad than activity identification, labelling of individuals

has also been considered by using trajectories to classify students based on the

course they study [Farrahi and Gatica-Perez, 2008a]. Expanding further on

this, Farrahi et al. [2008b] label transitions in data in an attempt to summarise

behaviour by identifying users with similar lifestyles. The labels they add take

a form similar to ‘heading home at 10 p.m.’, however it is limited in that it only

considers three class labels for locations, namely Home, Work or Other.
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2.5.2 Identifying Contexts

Context identification, in contrast, aims to discover periods of time in which a

person is likely to have had similar goals or performed similar actions but the

process is not necessarily concerned with the specific activity being performed.

Identifying contexts has been considered from the locations visited by users,

where properties of the interactions are used to determine whether a location is

likely to have a single purpose (e.g. a restaurant), or multiple purposes (e.g. a

shopping centre with restaurants and shops) [Assam and Seidl, 2014].

Identifying the contexts of the user, rather than the location, has been ex-

plored using entropy-based clustering [Bao et al., 2011], and sequence-based ap-

proaches that consider the transitions between contexts [Lemlouma and Layaida,

2004]. Utilising contexts, research has also focused on developing architectures

and applications that adapt devices based on the current context [Anagnos-

topoulos et al., 2006; Lemlouma and Layaida, 2004]. Situation and intention

awareness are related areas that have a greater focus on developing tools and

techniques to aid a person in conducting a particular task to achieve some goal

[Howard and Cambria, 2013; Vinciarelli et al., 2015], with specific examples in

defence [Howard, 2002] and aviation [Endsley, 1995, 2000].

2.5.3 Predicting Future Contexts

Similarly to location prediction, the task of context prediction has been consid-

ered in the literature, where context and location prediction sometimes overlap.

Using beacons placed around a smart home to identify di↵erent contexts, Seo

and Lim [2016] predict the future context of occupants using classification tech-

niques, aiming to identify what the user wishes to do in the house next. Addi-

tionally, Assam et al. [2014] proposes using identified contexts of locations as a

basis for location prediction. Separating out the context and location prediction

stages, Yu et al. [2015a] and Bhyri et al. [2015] employ two-step approaches that

first aims to predict the context a user will be in and then aims to identify the
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specific location that the user will visit to fulfil the context, achieved through

classification and statistical techniques. Contexts have also formed the basis for

recommender systems, with Le et al. [2015] using the context history of users

to predict a bundle of locations that the user may like to visit.

2.6 Applications of Geospatial Systems

In [Musolesi, 2014], the author delves into the possible applications of big mobile

data, with a specific focus on data associated with location. The article reveals a

wide variety of benefits that such data can, or could, a↵ord to individuals. While

many such applications are currently waiting to be realised, many more have

concrete procedures and applications in place already, including the prediction

of crime locations [Gerber, 2014], the provision of targeted advertisements [Wu

et al., 2016], and the automatic detection of residence changes [Matekenya et al.,

2015]. While these applications have specific goals, there are many more that

aim to instead provide general techniques, such as the grouping of repeating

patterns [Cao et al., 2005, 2007; Eagle and Pentland, 2009; Giannotti et al., 2007;

Gudmundsson et al., 2004], used as a precursor to user similarity identification

[Xiao et al., 2012]. The remainder of this section focuses on other tools and

techniques that are based on geospatial trajectories.

2.6.1 Transport

In addition to transport destination prediction, discussed in Section 2.4, other

applications of trajectories have been considered with transport and transit in

mind. Such applications consider the detection of locations that people park in

[Yang et al., 2013], and the provision of intelligent route guidance and tra�c

anomaly detection [Liu et al., 2011; Yuan et al., 2011].

28



2. Background and Related Work

2.6.2 Trajectory Similarity Identification

Trajectories belonging to entities enable the discovery of similarities between

individuals and routes travelled. Existing work has focused on identifying over-

lapping components of journeys from geospatial trajectories [Cao et al., 2005],

a technique used to inform destination prediction [Liao et al., 2007b]. Similar-

ity between users has also been investigated using pattern discovery in routines

(i.e. finding users who visit similar sequences of locations) [Assam and Seidl,

2014; Shen and Cheng, 2016; Xiong and Lin, 2012], or common behaviours (e.g.

‘user typically leaves the house late on weekends’) [Eagle and Pentland, 2009].

With groups of similar users determined, techniques are able to utilise data

from multiple people to reason about these groups. Examples that utilise such

techniques include the use of historical locations of multiple users to determine

travel times using neural networks [Chen et al., 2009]. Focusing on a much

larger scale, Oliveira et al. [2016] investigate the similarities and di↵erences of

users in di↵erent cities, finding that there are many commonalities between the

patterns of users, regardless of the city.

Calculating the similarity of trajectories is often performed by measuring

the distance between two trajectories or the di↵erence between sequences of lo-

cation interactions. Metrics to achieve this include looking for the closest points

and measuring their distance [Zheng, 2015], using statistical measures such as

the Hausdor↵ distance [Lee et al., 2007], models such as the HMM [Porikli,

2004], and calculating the di↵erences between bounding boxes surrounding two

trajectory components [Zheng and Zhou, 2011]. In addition, Zheng et al. [2016]

propose a technique that looks at the semantic similarity of locations visited as

part of a trajectory, and uses this as a basis for identifying similar trajectories.

On an individual basis, Farrahi et al. [2010] have devised a technique, bag of

multimodal behaviour, that aims to identify when users are performing activities

with other people, a possible precursor step to predicting when people will meet

or perform some activity together again in the future.
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2.6.3 Anomaly Identification

Existing work has also explored the potential that geospatial trajectories from

di↵erent sources o↵er to the task of anomaly detection. This has been achieved

using isolation-based outlier detection to determine anomalous subtrajectories

from vehicle tracking data [Chen et al., 2011a; Zhang et al., 2011], and statis-

tical measures, such as the Hausdor↵ distance, to identify general trajectories

that di↵er from an expected pattern [Laxhammar and Falkman, 2011, 2014;

Rosen and Medvedev, 2012]. In addition to these approaches, which aim to

identify specific anomalies in individual data streams, anomaly detection has

been considered on data from multiple sources in the form of hotspot detection.

Specifically, with vehicular data, Liu et al. [2010; 2011] propose the outlier tree

that stores relationships between outliers at di↵erent scales into a data struc-

ture, and demonstrate its utility to identify heavy tra�c along routes modelled

as a graph. Hotspot detection techniques have also been demonstrated to apply

to crime data for the purpose of identifying high crime areas [Shiode and Shiode,

2014; Shiode et al., 2015], and correlation-based clustering for detecting mass

population movement [Liu et al., 2014].

The previous examples of anomaly identification are specific to geospatial

data, but there are many general approaches that while not necessarily having

been used for this purpose before, may well perform e↵ectively in this context.

Previously considered techniques that have shown to be promising include de-

tecting data points that do not fall within expected clusters [Breunig et al., 2000;

Chandola et al., 2009; Gogoi et al., 2011; He et al., 2003], classification-based ap-

proaches [Abe et al., 2006; Chandola et al., 2009], and distance-based techniques

[Angiulli and Fassetti, 2009; Chandola et al., 2009; Gogoi et al., 2011].

2.7 Summary

This chapter has provided a background for the work in the remainder of this

thesis, and introduced many concepts that are built upon later. Specifically,
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Chapter 4 builds upon the visit extraction and clustering techniques discussed in

Sections 2.2.3 and 2.3.1 respectively. Chapters 5 and 6 again discuss visit extrac-

tion (Section 2.2.3), but also consider identifying contexts, as discussed in Sec-

tion 2.5. Finally, Chapter 7 makes use of classification techniques, as introduced

in Section 2.4, to perform location and context prediction (Sections 2.4 and 2.5.3

respectively). The remaining background material is referenced throughout this

thesis and provides a grounding in the area of understanding individuals and

entities from geospatial data.
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CHAPTER 3
Datasets

This chapter describes the publicly available datasets that are used throughout

this thesis, in addition to presenting the Warwick dataset. Existing datasets

available for research purposes have limitations in the form of both the data

collected, for example not covering continuous spans of time or having locations

obfuscated for privacy reasons, and also with licences that prevent publication

of specifics of the datasets. To overcome these, the Warwick dataset was col-

lected from members of the University of Warwick, and consists of geospatial

trajectories recorded by smartphones.

3.1 Geospatial Trajectories

As discussed in Chapter 1, Section 1.2, geospatial trajectories are sequences of

data points that relate the location of an individual, or other entity, to a spe-

cific time. In order to explore the potential these trajectories o↵er to understand

individuals, we first require the availability of such trajectories for analysis. Sev-

eral trajectory datasets have been collected by institutions and made available

for research. This section presents the available datasets and discusses their

di↵erences and limitations, categorised by the type of entity to which the data

relates.

3.1.1 Individuals

Trajectory datasets about individuals are perhaps the most common, as they af-

ford insight into the movement patterns of people throughout the world. There

are two broad categories of collection methodologies for these trajectories: ac-

tive and passive. Actively collected trajectories are those collected using any
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methodology in which the individual decides to record their location, such as

using a device to track a period of exercise (e.g. a bike ride), or sharing their

location through social media. Conversely, passive trajectory generation can

occur inadvertently and without the user having to perform any specific action.

Examples of passive data collection include carrying a cellular-connected mobile

phone, where the network provider logs the cellular tower to which the phone

is connected, or using a credit card to make purchases, where the credit card

provider records the location of the card each time it is used.

Datasets available for research are typically collected using an active method-

ology, where the participant has control over whether to provide data or not at

any given time. In early literature, such data collection occurred using dedicated

GPS tracking devices (e.g. [Ashbrook and Starner, 2002]), but more recently

the use of smartphones to collect data has become commonplace, with several

datasets made available for research:

Reality Mining [Eagle and Pentland, 2005] is a dataset collected in 2004 from

Nokia 6600 mobile phones carried by 75 students and faculty members of

the MIT Media Laboratory and 25 students of the MIT Sloan Business

School. The data was collected over the course of a year, with approxi-

mately 450,000 hours of total coverage. The goal of the investigation was

to explore real-world behaviour from mobile telephones, and includes in-

formation such as time, call logs, Bluetooth devices in proximity, mobile

phone cell ID, application usage and charge status of devices belonging to

the participants. The inclusion of cell ID provides a mechanism to locate

the individual geospatially, although the accuracy of such a location is

likely to be poor as the range of a connection between a cellular device

and tower can be up to 35km [ETSI, 1996].

GeoLife Trajectories [Zheng et al., 2008a, 2009, 2010c] is a dataset collected

by Microsoft Research Asia, which instead of using cellular ID, uses GPS

to determine location. The dataset includes data from 172 users, totalling
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50,000 hours of coverage, and collected throughout 2007-2012. The goal

of the collection was to record the movement patterns of city inhabitants

through their smartphones and other location-aware devices. However,

the data collection methodology was only interested in periods of time in

which the users were moving, and therefore only requested data collection

be enabled when the person was in motion, resulting in non-continuous

data.

The Yonsei Dataset [Chon and Cha, 2011] is a set of geospatial trajectories

collected in 2011 from 8 students at Yonsei University in Seoul over a

period of 2 months. Location was determined using a combination of cell-

tower triangulation, WiFi fingerprinting and GPS. Specifically, an applica-

tion, SmartDC, was employed to balance location accuracy and collection

frequency against resource utilisation [Chon et al., 2011]. Although some

of the data will, therefore, contain high-accuracy locations determined by

GPS, other parts of trajectories will have locations determined by lower-

accuracy techniques when the system favoured power conservation over

accuracy.

The Nokia Mobile Data Challenge (MDC) Dataset [Kiukkonen et al., 2010;

Laurila et al., 2012] also uses GPS to determine location, and features data

from nearly 200 individuals over the span of 2 years. The full dataset in-

cludes social interaction data (e.g. call and SMS data) and phone applica-

tion usage in addition to geospatial trajectories. This data was collected

with the aim of providing continuous coverage of the participants’ days,

unlike GeoLife. However, in order to protect the anonymity of the par-

ticipants, detail for the geographic regions around their home or work

locations have been removed from the data by truncating latitude and

longitude values, artificially reducing the variance of these periods. The

200 users who participated in the study were each given a Nokia N95

smartphone, and the users range from 18 to 62 (mean 29) years of age,

with approximately 62% of participants being male.
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In addition to data collected from smartphones, social media has also been

used as a source of trajectories. Due to their nature, however, these trajecto-

ries are extremely sparse. Such datasets include Brightkite [SNAP, 2008] and

Gowalla [Cho et al., 2011; SNAP, 2010], along with the Foursquare dataset

[Yang et al., 2016].

3.1.2 Other Entities

While most focus on trajectories considers the movement patterns of individuals,

trajectory datasets exist for other entities, including animals and vehicles:

Movebank [Movebank, 2017] is an online database of tracking data collected

about animals from researchers throughout the world, aiming to archive

animal movement data for future use.

T-Drive [Yuan et al., 2010, 2011] is a subset of a dataset collected by Microsoft

Research that contains one week of trajectories collected from 10,357 taxis

in Beijing in 2008. The data has a collection rate of approximately one

point every 3 minutes.

3.1.3 The Warwick Dataset

For the work in this thesis, we are interested in the behaviour of people and

therefore limit ourselves to datasets concerning human trajectories, collected

using GPS to achieve the highest accuracy. We are also interested in continuous

behaviour, which excludes the GeoLife dataset, leaving the Yonsei and MDC

Datasets as options to support this research. The Yonsei data is limited in that

it only spans 2 months for 8 users, and employs a variety of techniques for de-

termining location. The MDC data, on the other hand, contains a vast amount

of data, but has large periods where latitude and longitude are truncated; the

impact of this on applications is unclear. Due to these considerations, we opt to

employ the MDC dataset, but in order to understand how the truncated periods

impact results, we also opt to collect our own data for comparative purposes.
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The Warwick Dataset was collected from 17 members of the University of

Warwick over a period of 6 months, with a methodology that aimed to replicate

the MDC collection procedure. The dataset contains 627,983 trajectory points

in total. Properties of some of these trajectories are summarised in the following

section, in Table 3.1.

3.1.4 Trajectories Selected for Evaluation

For privacy reasons, we are unable to publish the Warwick dataset, and so for

the remainder of this thesis, we employ both the Warwick and MDC datasets,

discussing the di↵erences between results from each dataset. Using both sources

of data for evaluation provides us with the ability to demonstrate the applica-

bility of the techniques proposed in this thesis over real-world datasets, while

ensuring reproducibility by performing some of our evaluation on a publicly

available dataset. Using our own dataset also provides us with the ability to

interview participants in order to validate results where appropriate, a task that

is not possible with any existing research dataset.

It is important to note, however, that both of the datasets used are collected

from groups of people with similar demographics, although in di↵erent countries.

The users are students and faculty of two universities, primarily of computer

science or related departments. These individuals are therefore likely to have

properties in common that make the results similar across both datasets, and

while we have attempted to mitigate this by using two di↵erent datasets, we

are unable to say how well the results contained in this thesis will generalise to

other demographics and people with vastly di↵erent patterns of life.

Before making use of the datasets, we perform two pre-processing steps:

• With the MDC data, as discussed in Section 3.1.1, the creators opted

to truncate the latitude and longitude values around the locations where

individuals live, typically down to 2 decimal places, reducing the precision

of the location to approximately 1.2km2, and removing all variance for

36



3. Datasets

these time periods. For our analysis we opt to exclude these points, and

treat them as missing data. The algorithms that we discuss in this thesis

assume variance in data and, therefore, testing them on datasets with this

artificial property may produce unexpected results. On the other hand,

the expectation of periods of missing data is natural for all geospatial

datasets recorded through devices carried by the user, and so no loss of

generality should occur by treating such data as missing. As these periods

usually relate to times when a user was at home and work, the impact of

removing such significant places from the data is unknown, and so we

employ the Warwick dataset, which contains coverage of times spent at

home and work, as well. Chapter 7 and Appendix D explore the impact

of using the MDC data with and without these truncated periods.

• The second pre-processing step is applied to both datasets and ensures

that only one trajectory point can occur per time instance. In the case of

both the MDC and Warwick datasets, time is measured to the nearest sec-

ond. This check prevents more than one point from being associated with

the same second, where multiple points were recorded by the measuring

device erroneously. In cases where the points contain di↵erent location

recordings, the one with the best accuracy value is selected for storage

and the remainder discarded.

In total we select 1.2 million trajectory data points, covering 20,965 hours of

human mobility patterns, for our evaluation. These data points come from 20

individuals, 10 from each dataset, selected to ensure a wide variety of trajectory

lengths. A trade-o↵ is made between the number of users whose data is analysed

and the sparsity of the data. While additional users would be desirable, this

work focuses on understanding behaviour at high resolution and thus data from

fewer users but with reduced sparsity is prioritised.

Summaries of the users selected can be found in Table 3.1, where the Cov-

erage is calculated by counting the number of hours covered by each trajectory,
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Table 3.1: Summary of users selected from the Warwick and MDC datasets.

User Points Rate Coverage (Hrs) Accuracy (m)
MDC 5927 93909 1.7 901.7 97.5
MDC 5938 192343 0.9 3427.6 89.2
MDC 5947 108333 1.6 1110.2 85.1
MDC 5948 31438 1.5 350.3 98.7
MDC 5966 90510 2.4 634.8 83.0
MDC 5976 150551 2.4 1067.5 73.1
MDC 5990 49817 1.7 501.0 89.0
MDC 6051 38762 2.0 321.5 99.8
MDC 6104 23448 2.1 184.6 87.4
MDC 6109 117411 1.9 1032.4 100.7
War 08 14471 0.5 456.7 36.9
War 1c 33172 0.4 1483.4 57.4
War 1d 12637 0.3 682.2 34.8
War 24 45199 0.8 906.5 141.2
War 61 41571 0.3 2223.9 112.7
War 6b 24571 0.7 616.6 9.9
War 6c 23993 0.2 1750.2 86.2
War 85 35179 0.5 1133.0 67.4
War 87 12411 0.7 307.2 51.5
War 95 44592 0.4 1873.4 60.0

excluding periods of missing data greater than 1 hour from the totals. In the

table, each user is given an identifier where MDC and War refer to users of the

MDC and Warwick datasets respectively. MDC users are assigned their 4-digit

identifier from the dataset, while Warwick users are given a randomly generated

2-character identifier. Both of these datasets are employed to evaluate the main

contributions of this thesis, and therefore feature in Chapters 4-7.

3.2 Land Usage Data

In addition to geospatial trajectories, the work in Chapters 5-7 also requires data

on real-world entities in order to provide additional meaning to the trajectories.

This section details some of the available datasets for identifying land usage and

individual entities.

LMC2007 [CEH, 2007] is a dataset covering the United Kingdom that has

classified the land in the country using satellite images. Although it has coverage
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of the whole country, the labels applied are broad (e.g. grassland, freshwater,

urban) and individual entities, such as buildings, are not identified.

The OS MasterMap [Ordnance Survey, 2017] is a highly-detailed map of

the United Kingdom that includes all roads, buildings, and other features (e.g.

trees, fences, fields) in the country. Unfortunately, this solution is proprietary

and not freely available for research.

OpenStreetMap (OSM) [OpenStreetMap, 2017a] is an open-source map-

ping solution similar to the OS MasterMap, but covering the entire world. Al-

though the data is provided by users, the framework for submitting changes to

the map ensures that the features labelled are consistent, and the data includes

details on roads, buildings and many other types of feature. Furthermore, each

element in OSM is associated with a set of tags that provide information about

the element in question, often including details such as the purpose of buildings,

or the speed limit of roads.

Due to its global coverage, and goal of mapping each individual feature, we

select a static snapshot of the OSM dataset for this work. This snapshot was

taken on 2nd September 2015, a date after the collection of both the MDC and

Warwick datasets had been completed. The dataset can be queried through the

Overpass API [OpenStreetMap, 2017b]. To reduce the complexity of processing

certain elements, the API limits the types of feature that can be extracted by

using a within query (i.e. when queried with the request “what elements are this

point contained within?”) to those that have been assigned a name manually in

the data. Unfortunately, not everything relevant in the database has been given

a name (most houses, for instance, have a ‘building’ tag of ‘residential’, but not

a specific name). Knowing the user is in a house is extremely useful, even if the

house does not have a name, and so to get around this limitation, we modify

the API to allow the selection of elements that form closed polygons regardless

of whether or not they have an assigned name1. Data from OSM is featured as

part of the evaluation of the contributions presented in Chapters 5-7.

1Details of this modification can be found here: github.com/csukai/osm
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3.3 Summary

This chapter has presented a discussion of existing trajectory and land usage

datasets, along with any limitations they may have. From the available datasets,

we select the MDC dataset for evaluating the techniques proposed in this thesis.

However, the MDC dataset carries some limitations in the form of reduced accu-

racy of data, to protect participants’ privacy, and licensing terms that prevent

publication of maps showing any part of the data. In order to work around these

limitations, we have also collected our own data, the Warwick dataset, and we

make use of trajectories from 10 users of both the MDC and Warwick datasets

for the remainder of the work in this thesis. Additionally, we have selected OSM

as a source of data for land usage, as it is freely available and contains details

on vast numbers of geographic features, such as buildings, roads, and recreation

areas.
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CHAPTER 4
Identifying Visits from Geospatial Trajectories

Harnessing the latent knowledge present in geospatial trajectories allows for the

potential to revolutionise our understanding of behaviour. One part of achiev-

ing this is the identification of periods of time when the user is likely to have

remained in the same region, allowing for the identification of repeated visits to

the same place. Existing work has made much use of extracted locations (as dis-

cussed in Section 2.3), but this is far from a solved problem as these approaches

either fail to handle noisy data, or have practical limitations. This chapter

presents a new algorithm for the identification of periods of low mobility from

geospatial trajectories, the Gradient-based Visit Extractor (GVE) algorithm.

We evaluate the algorithm with respect to existing approaches, demonstrating

its applicability to the task of visit extraction from noisy data, as well as demon-

strating the ability for locations to be extracted from identified visits and for

these locations to be used as a basis for prediction.

4.1 Introduction

Visit extraction is an important part of location-aware research as it allows

us to reason about the behaviour of individuals by identifying places where

they have historically spent their time. Furthermore, the procedures for visit

extraction require only geospatial trajectories, which are becoming increasingly

available due to the rise in prevalence of location-aware hardware. However,

the identification of such visits is not a solved problem as existing approaches

are typically fairly primitive and come with many limitations. Sections 2.3.2

and 2.4 introduced the potential applications of identified visits and the locations

that can be clustered from them. Such applications include location prediction,
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Figure 4.1: Visit extraction is performed over geospatial trajectories (left) to
identify periods of low mobility (right).

typically relying on extracted locations to discretise the set of possible predictive

outcomes, or context-aware services such as recommender systems or digital

assistants that use location to provide a greater level of personalisation.

The remainder of this section discusses the problem of location extraction,

with related work summarised in Section 4.2. Section 4.3 presents the Gradient-

based Visit Extractor (GVE) algorithm for extracting periods of low mobility

from geospatial trajectories. The algorithm is compared to existing approaches

in Section 4.3.2, and used as a basis for prediction in Section 4.5. Finally, the

chapter concludes with Section 4.6.

4.1.1 Visit and Location Identification

The extraction of locations meaningful to users is achieved by analysing the

datapoints found within trajectories and identifying the regions where the user

has spent time. Although a variety of techniques have been used in the lit-

erature to extract locations from data, they are typically used as a precursor

step to performing another activity, such as location prediction, and have not

been investigated or evaluated in depth. While it is possible to perform lo-

42



4. Identifying Visits from Geospatial Trajectories

cation extraction using a single clustering algorithm, the process is typically

performed in two distinct clustering steps [Andrienko et al., 2011, 2013; Ash-

brook and Starner, 2002; Bamis and Savvides, 2011; Montoliu and Gatica-Perez,

2010; Zheng et al., 2010b]. The first step, visit extraction, is responsible for par-

titioning a temporally ordered dataset into periods of low mobility, referred to

as visits, or sometimes stops or stays. During each visit, the individual or other

entity is expected to have remained in one geographic location. Points recorded

while moving (i.e. those not contained in a visit) are classed as noise. Clustering

the extracted visits by their spatial proximity can then be performed to identify

locations repeatedly visited, referred to as visit clustering .

Extracting significant locations by first using visit extraction techniques, as

depicted in Figure 4.1, has several advantages, namely:

• Visit extraction can be performed in linear time (i.e. O(n)), summarising

vast portions of the dataset, thus reducing the input size for the clustering

step (typically O(n2)).

• By considering their temporal nature, individual data points that occur

when an entity is moving are ignored. In traditional clustering, if several

points were to be recorded in close proximity on di↵erent occasions, for

instance along a road, an erroneous location would be identified.

• Extracted visits consist of contiguous points and thus characterise a period

of time in which the user remained at the location, providing a basis for

modelling a user’s time.

The disadvantages of identifying locations through visit extraction relate to the

location clusters extracted at the visit clustering step. In order to reduce the

complexity of this stage, extracted visits are typically summarised into a single

point (e.g. centre of mass or centroid), and consequently the shape of overall

locations (i.e. convex hull of the associated points) extracted are not likely to

be represented. Depending upon the goal of location clustering, this could be

problematic, and is explored as part of this work.
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4.1.2 Use Cases

The uses for extracted locations and visits are varied as they provide a founda-

tion for modelling behaviour. However, for this chapter we consider some repre-

sentative examples as motivation, and refer back to them throughout the chap-

ter, these examples applying equally well to trajectories from various sources.

The first use case, referred to as accurate visits, considers the visits as a source of

context, aiming to accurately summarise periods of time into a single geographic

place. Locations can be optionally used here to tie together the visits that oc-

cur to the same geographic region, but it is the visits themselves that are of

primary interest. An accurate visit is therefore a visit that has been accurately

identified in terms of space and time. The second use case, location properties,

is less focused on visits, but rather considers the accurate identification of the

properties (i.e. shape and position) of locations. Accurately identified locations

are essential to certain services, such as creating geofences, where the visits are

of less importance. It is important to note, however, that although the location

properties use case does not strictly require the accurate extraction of visits,

the runtime of visit clustering algorithms is severely impacted as the number of

visits increases.

In addition to these use cases, which focus on visit extraction, we employ

a sample application, that of location prediction, to demonstrate the utility

of the extracted visits and locations. This application is used throughout this

thesis, specifically in Chapters 5 and 7, in addition to Section 4.5, as a basis for

exploring the utility of di↵erent procedures.

4.2 Related Work

In Chapter 2 we provided background and related work for the topics in this

chapter, with a recap of the most relevant topics included here for ease of un-

derstanding. Specifically, Section 2.2.3 discusses the algorithms used for visit

extraction, Section 2.3 discusses clustering together visits to identify locations,
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and Section 2.4 discusses methods of location prediction. In this chapter we

also present a technique for the automatic selection of parameters for location

extraction and prediction, where relevant approaches and background reading

is discussed in Section 4.2.4.

4.2.1 Visit Extraction

The most common approach for identifying visits uses time and distance thresh-

olds to construct subtrajectories such that each subtrajectory, or visit, is smaller

than a specified radius (or, sometimes, that no consecutive points can be greater

than a specified distance apart) and the duration of the subtrajectory exceeds

some threshold [Andrienko et al., 2011, 2013; Hariharan and Toyama, 2004;

Kang et al., 2004; Li et al., 2008; Zheng et al., 2010b, 2009; Zhou et al., 2014].

Montoliu and Gatica-Perez [2010] extend this technique by adding an additional

constraint that the time between consecutive data points in the same visit must

be bounded, proposed to prevent periods of missing data from being contained

within a visit. This approach does not, however, allow for noise in the dataset

where a single point recorded outside the radius of a visit would cause a visit

to be ended, even if this point was erroneous. Aiming to overcome this is-

sue, by assuming that there may be noise in the dataset, Bamis and Savvides

[2010] present the Spatio-Temporal Activity (STA) extraction algorithm. This

approach is similar to existing approaches in that it iterates over the trajectory

points, but uses a weighted averaging filter to reduce the impact of noise before

considering an activity as having ended. However, this technique does bring

with it several drawbacks and assumptions relating to the data, for example,

requiring evenly time-sliced data and a fixed number of data points before con-

sideration of a visit can occur, consequently imposing a minimum bound on

visit duration.
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4.2.2 Visit Clustering

Clustering visits into locations has been performed using the k-means algorithm

[Ashbrook and Starner, 2002; MacQueen, 1967]. However, k-means requires a

value for k, the number of clusters, to be known a priori, which is typically

not the case. Although approaches exist for selecting an appropriate value of k

[Ashbrook and Starner, 2003], the use of DBSCAN, a density-based clustering

algorithm that determines clusters according to parameters, is more common

[Andrienko et al., 2013; Montoliu and Gatica-Perez, 2010]. The primary draw-

back of DBSCAN is that it does not limit the size of clusters, instead allowing

arbitrarily large clusters providing a su�cient density of visits exists. While

Zheng et al. [2010b] have proposed an approach for location clustering that

limits the size of clusters; it produces clusters that are regular in shape, and

therefore will likely not be applicable for the location properties use case intro-

duced in Section 4.1.2.

4.2.3 Location Prediction

Predicting the locations to be visited by an individual can be split into the cat-

egories of next location and future location prediction, where the former aims

to identify where the user will visit next, upon leaving their current location,

and the latter aims to predict where a person will be at a given future time.

Predicting the next location of a user has applications in smart transit and ad-

vertising, where the possible destination could be automatically selected by a

vehicle’s navigation equipment, or an o↵er for a particular shop or restaurant

could be provided to entice a user to visit a specific location in a shopping centre.

Such prediction has also been considered in cellular networks [Lei et al., 2011;

Vukovic et al., 2009] or for rooms in a smart o�ce building [Hazas et al., 2004;

Petzold et al., 2006]. Next location prediction over extracted locations is typi-

cally performed using Support Vector Machines (SVMs) [Wang and Prabhala,

2012], blockmodels [Fukano et al., 2013], and Markov models [Assam and Seidl,
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2013; Gong et al., 2011; Hariharan and Toyama, 2004; Mathew et al., 2012].

4.2.4 Parameter Optimisation

Algorithms for visit and location extraction, as well as location prediction, re-

quire the selection of appropriate parameters in order to function e↵ectively.

In many cases, this problem is non-trivial as knowing the correct parameters

to produce good results is not possible. In order to reduce this burden on the

application developer, we also explore the potential for automatic parameter se-

lection through optimisation techniques. Existing research has considered cases

in which a metric can be devised to rank two sets of parameters quantitatively,

presenting techniques for locating optimal values. Locating an optimal or near-

optimal solution from an n-dimensional search space can then be achieved using

optimisation algorithms. One such example is hill climbing, which begins at a

random point in the search space and repeatedly moves to adjacent states until

it reaches a maxima [Russell and Norvig, 2009]. There is no guarantee, how-

ever, that such a maxima would be global as hill climbing is prone to detecting

local maxima in non-convex search spaces. To avoid this issue, heuristic-based

approaches have been presented, including simulated annealing [Bertsimas and

Tsitsiklis, 1993; Kirkpatrick et al., 1983] and evolutionary approaches such as

genetic algorithms [Russell and Norvig, 2009] and memetic algorithms [Moscato,

1989]. Given enough time, these algorithms can find the global minima, how-

ever, in most scenarios this is not practical and therefore they can be used to

find an approximation.

Automated selection of parameters has, additionally, been considered for a

few select domains, specialised for each task at hand. This includes optimising

the parameters for SVMs using online Gaussian process models [Frohlich and

Zell, 2005], genetic algorithms [Saini et al., 2010], and heuristic-based approaches

[Rubio et al., 2010]. Also considered for parameter optimisation have been

Hidden Markov Models (HMMs), using length modelling [Zimmermann and

Bunke, 2002], and neural networks, using genetic algorithms [Cook et al., 2000;
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Whitley et al., 1990]. We make use of simulated annealing in this chapter to

perform the task of automatic parameter selection for location extraction and

prediction.

4.3 The Gradient-based Visit Extractor (GVE)

This section presents the Gradient-based Visit Extractor (GVE) algorithm,

which extracts visits from geospatial trajectories and addresses the drawbacks

of existing approaches, making it capable of extracting visits from a wider va-

riety of datasets. Sections 2.2.3 and 4.2.1 discussed existing approaches to visit

extraction, with the STA extraction algorithm identified as the current state-

of-the-art [Bamis and Savvides, 2010]. Although an improvement on previous

techniques, this algorithm has several limitations. Firstly, the algorithm as-

sumes that the data is sampled at regular intervals. While some domains have

regular and predictable data recording, this is not always the case when aiming

to extract visits from data collected from devices carried by users. Indeed, it

is likely that conditions such as signal loss or lack of battery power will result

in periods of time with varying collection rates, and periods with missing data

entirely, thus resulting in non-evenly timesliced data. Secondly, the STA extrac-

tion algorithm requires that a bu↵er of points is filled before consideration of a

visit can occur, both imposing a delay on points being considered and specifying

a minimum bound on visit duration. The result of this is that the minimum visit

length to be extracted must be known a priori and used to select appropriate

parameters.

Aiming to overcome these drawbacks, we propose the GVE algorithm, shown

as Algorithm 1. The remainder of this section discusses the algorithm, as well as

demonstrating its applicability to the task of visit extraction, achieved through

an exploration of the parameter space of the algorithm, and analysis of prop-

erties of the visits extracted. The Gradient-based Visit Extractor identifies

visits from temporally-annotated geospatial trajectories by continually building
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Algorithm 1 Gradient-based Visit Extractor (GVE) algorithm.

1: n

points

,↵,�, t

max

// Input parameters
2: visits  [ ] // Empty array, to be filled with visits
3: visit  [ p0 ] // Array containing the first point in the dataset
4: bu↵er  [ p0 ] // Bu↵er over which to consider trend of motion
5:

6: function Process(point)
7:

8: bu↵er.append(point)
9: if bu↵er.length > n

points

then
10: bu↵er.shift
11: end if
12:

13: // A visit has ended if there is missing data or the user is moving away
14: if TDist(visit.last, point) > t

max

or MovingAway?(visit, bu↵er) then
15: if TDist(visit.first, visit.last) > 0 then
16: visits.append(visit) // If the visit has some duration, store it
17: end if
18: visit  [ point ]
19: bu↵er  [ point ]
20: else
21: visit.append(point) // If the visit hasn’t ended, add the new point
22: end if
23:

24: end function
25:

26: // Is the gradient of the bu↵er greater than the threshold?
27: function MovingAway?(visit, bu↵er)
28:

29: if Gradient(visit, bu↵er) > Threshold(↵, �, bu↵er.length) then
30: return True
31: else
32: return False
33: end if
34:

35: end function

a visit until adding another point would cause the recent trend of motion to be

consistently away from the visit already extracted.

The bu↵er over which the trend of motion of the user is considered has

a maximum size of n
points

, but this bu↵er does not need to be filled for a

comparison to take place. Parameters ↵ and � are used to define a threshold

function on the size of the bu↵er. If the bu↵er contains a small number of

points, for example two points, and a third point were to arrive that is further

away from the first point than the second, it could be an indication that the

user is travelling away from the first point or it could be attributed to noise.

This problem is mitigated by using a negative logarithmic function to ensure

that the threshold for trend of motion is higher when there are fewer points
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in the bu↵er. Trend of motion is defined using a gradient that includes both

spatial and temporal components, therefore allowing for the possibility of points

of varying temporal distances. The gradient of bu↵er b is defined as:
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Where B = {p1, p2, ..., pn} is the current bu↵er, D
t

is the temporal distance

between two points, i.e. D
t

= |t(q) � t(p)|, in minutes, and D
s

is the spatial

distance (in km) between two points. V = {p1, p2, ..., pn} is the current visit,

and C(V) is the visit’s centre of mass (i.e. the mean latitude and longitude value

of all points). A gradient greater than the threshold indicates that the visit has

ended:

� ↵ log

✓
|B|
�

◆
(4.2)

With the gradient summarising the movement trend of the user relative to

the visit, and a threshold function that returns a value dependent upon the

number of points over which the gradient was calculated, we are now able to

determine when a visit has ended: namely, if the gradient is greater than the

threshold for a given set of points then the visit can be marked as having ended.

This ensures resilience to noise by monitoring the movement trend over a set of

points, but still allows for visits with few points.

In addition to trend of motion exceeding the threshold, a visit ends if the

temporal distance (D
t

, in minutes) between the point being considered and

the immediately preceding point is greater than the parameter t
max

(line 14 of

Algorithm 1), which is a similar technique to that used by Montoliu and Gatica-

Perez [2010] to detect periods of missing data. Without this consideration, if

data were to be missing for several hours or days, but by chance the first point

recorded after this period is geographically close to the last point recorded, the
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gradient would be extremely low and is likely to be below the threshold. In

this instance, the point would be considered as part of the previous visit, even

though a significant period of time had elapsed and the user could easily have left

the visit and simply returned to a location nearby. By introducing a maximum

time between consecutive points for them to be part of the same visit, t
max

, we

mitigate this issue. Conversely, two consecutive points that fall on the same time

instance (i.e. there is no time between them) could be erroneously identified as

a visit. This is prevented in line 15 of Algorithm 1, where visits are only stored

if they have a positive duration. A visit that consists of a single point, or a

visit that consists of multiple points that fall on the same time instance would

therefore be considered noise.

While parameter selection is dependent upon the specific application and

dataset, we impose one primary constraint, namely � > n
points

. If we permitted

� to be less than n
points

, it is possible for the threshold function to return a

negative value when the size of the bu↵er exceeds �. Using a negative threshold

would allow a visit to be characterised as having ended when the gradient returns

a negative value, where a negative gradient indicates that the user is moving

towards the centre of the visit, rather than away from it. By requiring � >

n
points

we ensure that any value returned by the threshold function is positive.

In some applications, it is possible for a minimum visit duration to be known.

In these cases, selecting visits of an appropriate length can simply be performed

after visit extracting has completed, by iterating through the set of visits and

selecting those with duration greater than d
min

minutes.

4.3.1 Clustering Visits into Locations

Once visits have been identified, existing applications typically cluster them to

determine which visits belong to the same location. This can be achieved using

DBSCAN, which, as discussed in Section 4.2.2, is a density-based clustering

technique designed to limit the domain knowledge required to specify param-

eters. To this end, the algorithm takes only two parameters: eps and minpts,
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Table 4.1: Parameters considered for the GVE algorithm as part of the param-
eter exploration.

Parameter Constraints Values Considered
↵ � 0 0.1, 0.2, 0.3, . . . , 2.0
� > 1, > n

points

6, 9, 12, . . . , 30
n
points

> 1 2, 5, 8, . . . , 26
t
max

> 1 10, 20, 30, . . . , 120

which together specify the minimum density of points, or in our case, visits, to

identify a location. Visits are summarised into their centre of mass by calcu-

lating the average latitude and longitude of all points belonging to a visit, and

these centres can then be clustered with DBSCAN. While existing approaches

have also considered using the centroid of a visit for this summary, as GVE is

designed to incorporate noisy points into visits without prematurely ending the

visit, such points will have a magnified e↵ect on the centroid, and so the centre

of mass is used instead.

4.3.2 Properties of Extracted Visits

Understanding the GVE algorithm begins with an exploration of the parameter

space, aiming to guide application developers towards appropriate parameter

choices, as well as demonstrating properties of the algorithm itself. GVE takes

4 parameters: ↵, �, n
points

, and t
max

. The parameters ↵ and � alter the

threshold function, where the gradient of a bu↵er of points is calculated, and

a gradient above the threshold for the current number of points in the bu↵er

indicates the end of a visit, with ↵ scaling the threshold function in the abscissa,

and � in the ordinate. The value of x is the number of points over which

the gradient was calculated, and y is the corresponding threshold value. The

n
points

parameter specifies the maximum size of the bu↵er, and t
max

specifies

the maximum amount of time between two consecutive points permitted for the

points to belong to the same visit. Additionally, a constraint is placed on the

parameters that requires � > n
points

. Values of these parameters considered for

this exploration are shown in Table 4.1.

52



4. Identifying Visits from Geospatial Trajectories

Data

As discussed in Chapter 3, we use both the Nokia Mobile Data Challenge (MDC)

and Warwick datasets for evaluation purposes, selecting 10 users from each. In

this section, we perform all experiments on both datasets; however, where trends

from results are the same across both, we focus on the MDC dataset and omit

results from the Warwick dataset, instead presenting them in Appendix A. Both

datasets have had some amount of pre-processing applied, specifically to remove

periods of truncated location measurements from the MDC data, and to remove

duplicate points from both, as discussed in Chapter 3.

Metrics

This exploration is conducted with respect to metrics including the duration

of visits extracted, proportion of data points classed as noise (as noise points

indicate movement, this proportion is analogous to the proportion of time spent

travelling between visits), and the area of locations extracted. In these cases,

while an application developer may not have specific target values, it is feasible

that an acceptable range of values could be determined. As an example, if

an application requires room-size locations, then the average area would be

expected to be small, or if data were to be collected from a vehicle that is in

motion for most of the day, the noise proportion would be expected to be high.

Results

Exploring the parameters for the GVE algorithm, Figure 4.2 shows the e↵ect of

varying ↵ and �, which control the threshold function (a function on the current

number of points in the bu↵er), while holding n
points

= 5 and t
max

= 60 min-

utes. As no optimal parameter values exist for unsupervised clustering, we opt

to constrain parameters such that the resultant plots provide a representative

view of the unconstrained parameters. Figure 4.2 also demonstrates the di↵er-

ence that the parameters have when using the two datasets, namely the MDC

(Figure 4.2a) and Warwick (Figure 4.2b) data, discussed in Chapter 3. Focusing
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Figure 4.2: The relationship between parameters ↵ and � and the number of
visits identified for the GVE algorithm.
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on the MDC data, the number of visits extracted increases when either ↵ or �

are lowered. When ↵ becomes extremely small (< 0.4), this trend changes and

the number of visits begins to decrease again. With low values of ↵, a lower gra-

dient is required to mark a visit as having ended, but as ↵ continues to decrease,

fewer and fewer points are present in each visit as visits become shorter. In the

context of visit extraction, visits consisting of no duration, including those that

contain a single point, are considered noise and disregarded, so rather than the

number of visits increasing, they actually begin to fall as ↵ is lowered further.

This e↵ect is also shown in Figure 4.3a, where the proportion of data points

classed as noise rises as the number of visits decreases. The number of visits

extracted by the algorithm has a direct impact on the accurate visits use case,

in that the correct characterisation of where a user spends their time requires

the identification of the correct number of visits. If too few visits are extracted,

multiple real-world visits will have been merged, causing a loss of information,

thus invalidating the utility a↵orded by the start and end times of each visit.

Figure 4.2b shows the same results, but for the Warwick dataset instead of

the MDC data, and helps to illustrate the di↵erences that can be expected be-

tween di↵erent datasets. While the overall trend of producing a greater number

of visits when lowering either ↵ or � is present, very low values of ↵ do not have

the same e↵ect as they do in Figure 4.2a. In fact, with the Warwick dataset,

the number of visits extracted continues to increase as ↵ is decreased. The cor-

responding noise proportion (Figure 4.3b) shows that although the proportion

of points designated as noise increases as ↵ is lowered, it only reaches a fraction

of the value achieved for MDC (Figure 4.3a), indicating that the di↵erent prop-

erties of the Warwick data make it less susceptible to the e↵ect that caused the

visit counts to increase for low values of ↵ with the MDC data. One possible

reason for this is that the Warwick dataset has a lower collection rate (i.e. more

time between data points on average) than the MDC (as shown in Table 3.1,

Chapter 3), and as ↵ is lowered over the MDC dataset, pairs of temporally close

points become grouped into very short visits, which are then discarded as noise
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Figure 4.3: The e↵ect on proportion of trajectory points designated as noise
when varying ↵ and � for the GVE algorithm.
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later as ↵ is reduced further. In contrast, in the Warwick dataset, these short

visits do not exist to the same extent (as evidenced by the significantly lower

visit counts) and therefore there is nothing to discard, preventing the number

of visits from dropping as ↵ is lowered.

Figure 4.4 shows the e↵ects of the remaining parameters, n
points

and t
max

,

on the number of visits extracted and the proportion of trajectory points des-

ignated as noise when using data from the MDC dataset. In this case, values

of the remaining parameters are selected as ↵ = 0.1, � = 30, which produce

representative results. Figure 4.4a, showing the number of visits identified,

demonstrates that t
max

has minimal impact, while the e↵ect of n
points

is far

more pronounced, where a lower value of n
points

leads to a drastic increase in

the number of visits identified. The maximum time between consecutive points

permitted for them to belong to the same visit, t
max

, has limited impact as it

a↵ects relatively few visits. With small t
max

values, visits are split more fre-

quently as smaller amounts of missing data cause a visit to be ended, slightly

increasing the number of visits identified and also increasing the proportion of

points designated as noise (Figure 4.4b). The maximum size of the bu↵er of

trajectory points over which to calculate the gradient, n
points

, has more of an

impact as a smaller bu↵er leads to the gradient being considerably more sus-

ceptible to noise, prematurely ending visits and causing the number of visits

extracted to increase, along with the proportion of points designated as noise.

The trends depicted here are consistent across both the Warwick and MDC

datasets, so we display only the MDC graphs here, and show graphs for the

Warwick data in Appendix A.

The relationships between the parameters and the number of visits extracted

are corroborated by Figures 4.5c and 4.5d, which show that when the number

of visits extracted decreases, the average length of the extracted visits increases.

While the maximum visit length (Figures 4.5e and 4.5f) also follows this general

trend, it is important to note that low values of ↵ do not have the same e↵ect

as with average visit length because the behaviour only a↵ects very short visits.
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Figure 4.4: The e↵ect of the parameters n
points

and t
max

on the GVE algorithm
when extracting visits over the MDC dataset, with the remaining parameters
fixed at ↵ = 0.1, � = 30.
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Figure 4.5: The e↵ect of parameters on the minimum, average, and maximum
length of extracted visits for the GVE algorithm on the MDC dataset, where
constrained parameters were held at ↵ = 0.1, � = 30, n

points

= 5, t
max

= 60.
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While the relationships between number of visits, average and maximum visit

duration and proportion of noise are strongly correlated, minimum visit duration

(Figures 4.5a and 4.5b) does not follow this trend. In fact, the length of the

minimum visit extracted is not significantly dependent upon any parameter since

GVE does not impose a minimum bound on visit duration. While parameters

may still influence the length of the shortest visit, with a large dataset that

covers a variety of mobility patterns, the e↵ect of the parameters on minimum

visit length is small. The results show that the shortest visit is extracted when

both ↵ and � are low, as this increases the likelihood of a visit being marked

as having ended sooner. Additionally, lower values of n
points

cause the length

of the shortest visit to decrease, as the algorithm is only considering the trend

of motion over a small number of points. Not imposing a minimum bound on

duration is beneficial because it allows arbitrarily short visits to be extracted,

although in some cases this may not be desirable. These figures show that

extremely short visits are identified, but in many applications they may not be

required. In this case, short visits can be removed easily in a single step once

visit clustering has been completed by classifying the points belonging to them

as noise retroactively.

Visit Clustering In existing work, the primary use for identified visits is that

of determining significant locations, and so we explore properties of extracted

locations based on the visits identified through GVE. For this, we select the

parameters ↵ = 0.1, � = 30, n
points

= 5, and t
max

= 60, which produce an

average of 488 (standard deviation: 218) visits across users in the Warwick

dataset, and 3533 (standard deviation: 2469) visits across users in the MDC

dataset. Employing DBSCAN, we investigate the impact of the parameters

eps and minpts when performing clustering over these visits, where the values

considered for these parameters are shown in Table 4.2.

Figure 4.6 shows the e↵ects of eps and minpts on the number of locations

extracted, for both the MDC (Figure 4.6a) and Warwick (Figure 4.6b) datasets.
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Figure 4.6: The e↵ect of DBSCAN’s eps and minpts parameters on the number
of locations clustered from visits identified using GVE.
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Figure 4.7: The e↵ect of DBSCAN’s eps and minpts parameters on the average
size of locations and the average number of visits per location for the MDC
dataset on visits identified using GVE.
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Table 4.2: Parameters considered for DBSCAN as part of the parameter explo-
ration.

Parameter Constraints Values Considered
eps � 0 1, 2, 3, 4, 5, 10, 20, 30, . . . , 100
minpts � 0 0, 1, 2, 3, 4, 5

The trends in both datasets are identical, so we focus on the MDC data. The

largest number of locations are extracted for small values of eps and small

values of minpts, where eps specifies the distance (in metres) to consider as

part of determining density. Small values require a higher density of points

for a group of points to be clustered together, which therefore causes many

smaller groups to be identified, while larger values cause these groups to merge

into one location. Similarly, small values of minpts require fewer points within

such distances to consider a cluster as a location. With minpts = 0 or 1, any

single visit can become a location, resulting in vastly more locations extracted

for these values. Requiring more points within the distance threshold leads to

fewer locations being clustered and more visits considered noise.

Figure 4.7a shows the average area of locations extracted for di↵erent pa-

rameters over the MDC dataset, with results for the Warwick dataset in Ap-

pendix A (Figure A.3a). As eps is increased, locations are larger, but there

are fewer of them. Similarly, increasing minpts also extracts fewer, but larger,

locations. Finally, Figure 4.7b shows the average number of visits contained

within each location, again for the MDC dataset with Warwick shown in Ap-

pendix A, Figure A.3b. For low values of eps and minpts, a single visit can

be considered a location and therefore the average is close to 1. For higher

values of each, the number of visits per location is increased, as the number of

locations is less. Throughout this parameter exploration, we have shown how

the parameters of the algorithms alter properties of the extracted visits and

locations. These e↵ects are summarised in Tables 4.3 and 4.4 for GVE and

DBSCAN, respectively.

1Except for very low values on the MDC dataset.
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Table 4.3: Summarised e↵ects of the GVE algorithm’s parameters as each pa-
rameter is increased.

Parameter Visit Count Noise
Proportion

Minimum
Duration

Avg./Max.
Duration

↵ Decreases1 Decreases Negligible Increases
� Decreases Decreases Negligible Increases
n
points

Decreases Decreases Negligible Increases
t
max

Decreases Decreases Negligible Increases

Table 4.4: Summarised e↵ects of the DBSCAN algorithm’s parameters as each
parameter is increased.

Parameter Location Count Area Visits per Location
eps Decreases Increases Increases
minpts Decreases Increases Increases

4.4 Evaluation: Comparison to Thresholding and

the STA Extraction Algorithm

Towards our goals of demonstrating the applicability of GVE to the task of

visit extraction, this section presents the results observed from performing visit

extraction on real-world data in comparison to existing algorithms. Section 4.2

summarises the techniques for visit extraction discussed in Chapter 2. For the

purpose of comparison, we select both the most widely used approach, thresh-

olding, and the approach designed to improve upon thresholding by handling

noise in data, STA extraction. This section explores the applicability of these

two algorithms, in addition to GVE, in the context of the use cases presented

in Section 4.1.2, through locations clustered with DBSCAN. In order to ensure

consistency between the algorithms, all distances are measured in metres, and

time in minutes. Furthermore, we define the shape of a location to be the convex

hull of the centre of mass of each visit belonging to the location, as mentioned

in Section 4.3.1. Summarising visits in such a way is an important part of ex-

tracting locations from identified visits as it vastly reduces the complexity of the

clustering procedure, and thus is a technique we employ here [Andrienko et al.,

2011, 2013; Ashbrook and Starner, 2002; Bamis and Savvides, 2011; Montoliu
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and Gatica-Perez, 2010; Zheng et al., 2010b].

Thresholding requires parameters r and t, specifying the maximum radius

and minimum time of a visit, along with t
max

, which performs the same purpose

as in GVE, specifying the maximum amount of time between two consecutive

points to consider them part of the same visit. The STA extraction algorithm re-

quires the parameter N
buf

, specifying the size of the bu↵er, and uses a weighted

averaging function of window size N
d

to characterise the trend of motion, with

D
thres

(measured in metres) specifying the threshold for the averaged bu↵ers,

above which the visit is considered to have ended. A relationship between N
d

and N
buf

was proposed by the authors of the STA extraction algorithm, namely

N
d

= N

buf

2 , and we adopt this here [Bamis and Savvides, 2010].

4.4.1 Accurate Visits Use Case

The first use case, accurate visits, is concerned with characterising where a user

spent their time, achieved through the accurate identification of visits. While it

is not possible to state categorically the optimum parameters for achieving this

goal for a given set of trajectories in the absence of a concrete ground truth, we

can use the exploration of the parameter space to reason about suitable ranges

of parameters. Using knowledge about the source and length of trajectories, it

would be reasonable to suggest an expected minimum number of visits, thereby

allowing us to constrain the available parameter space to only combinations

that produce the correct number. Furthermore, the expected ratio of time that

a user spent travelling against time spent at a visit could be estimated, imposing

maximum values for the proportion of noise in the trajectories, as the proportion

of noise is approximately equivalent to the proportion of a user’s time that they

have spent travelling.

In order to consider the applicability of each algorithm to the accurate visits

use case, we investigate the properties of visits that are produced when using

all three algorithms, over the Warwick dataset. Using the Warwick dataset for

this evaluation ensures we have insight into the users who provided data and
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we are therefore able to construct a list of properties about the visits that we

expect to be identified from this data:

• Users make an average of between 2 and 15 visits per day;

• The maximum length of a single visit does not exceed 2 days (2880 min-

utes);

• Each user made at least one short visit, for example to buy co↵ee or pay

for a service, so the minimum visit duration must be less than 10 minutes;

• Each user spent at least 60% of their time at a visit location, and no more

than 40% travelling between them (a noise proportion of 0.4 or less).

The parameter exploration conducted in Section 4.3.2 demonstrated that the

GVE algorithm is capable of extracting visits that last only a few seconds. For

this comparison, we are only interested in visits that have some significance to

the user and so we adopt the procedure proposed in Section 4.3.2, namely that

of removing extremely short visits retroactively, where we define a short visit to

be one of less than 5 minutes in duration (i.e. d
min

= 5). For consistency, this

is applied to all algorithms considered.

While it is true these assumptions may not hold for every individual, for ex-

ample it may be possible for a delivery driver to average more than 9.6 hours per

day travelling (i.e. 40% of 24 hours), we believe that they apply to the majority

of people and, specifically, all of the users who provided data for the Warwick

dataset. Table 4.5 shows the parameter sets considered for this comparison,

where only runs obeying the constraint � > n
points

are performed for GVE. In

total, this results in 375 parameter combinations for GVE, 336 for STA and 324

for thresholding.

Focusing on the three algorithms, and using all combinations of parameters

shown in Table 4.5, Table 4.6 shows details of the visits extracted that match

the assumptions laid out earlier. Specifically, the table shows the percentage

of parameter sets tested that match the assumptions (labelled as % Match),

and the ranges of number of visits extracted, average visit lengths (in minutes)
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Table 4.5: Parameter values used for evaluating visit extraction procedures.

Algorithm Parameter Range Values Considered

GVE

↵ � 0 0.2, 0.6, 1.0, 1.4, 1.8
� > 1 6, 10, 14, 18, 22
n
points

> 1 2, 6, 10, 14, 18
t
max

> 0 15, 30, 45, 60, 75

STA
D

thres

> 0 0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5, 2, . . . , 10
N

buf

> 1 4, 6, 8, . . . , 30
N

d

� 1 N

buf /2

Thresholding
t > 0 2, 6, 8, 10, 15, 20, 30, 45, 60
r > 1 10, 20, 30, 50, 75, 100
t
max

> 0 15, 30, 45, 60, 75, 90

and noise proportions for each user. The results demonstrate that both GVE

and thresholding are capable of extracting visits that match the assumptions

for all users, but STA extracts no matching sets of visits for 3 of the users. This

provides an indication that the STA extraction algorithm is less applicable than

GVE to the accurate visits use case.

Thresholding and GVE both produce sets of visits that adhere to the as-

sumptions; however, there are known shortcomings with thresholding regarding

noise in the dataset, as noise will cause visits to be ended erroneously. Figure 4.8

shows example visits extracted for both GVE and thresholding from the same

user’s data. Visits are extracted in both cases from parameters that produce

visit sets consistent with the assumptions outlined previously. Specifically, we

select parameters by observing the results of plotting visits on a map and se-

lecting only parameters that create visits consistent with the expectation that

visits should not span multiple buildings. From this, the result with the lowest

proportion of points designated as noise is selected for each algorithm. With

visual observation confirming the correctness of visits, the visits with the lowest

proportion of noise provide characterisation for the largest proportion of time.

In the figure, visits are represented by di↵erent colours with the convex hull of

the points belonging to each visit illustrated in the same colour as the points.

The convex hulls have been included for clarity so as to present unambiguously

which points belong to which visit, and a summary of the visits is shown in
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Table 4.6: Summary of parameter sets that match expected values for di↵erent
visit extraction techniques. Match shows the percentage of parameter sets that
match the assumptions listed previously. Values are shown as a range with mean
and standard deviation in brackets, and places where no parameters match are
shown in bold.

Alg. User Match Visits Avg. Length Noise Prop.

GVE

08 6.67 135-235 (172,29) 151-275 (218,35) 0.15-0.18 (0.16,0.01)
1c 14.67 264-621 (390,87) 138-343 (239,54) 0.03-0.07 (0.05,0.01)
1d 41.33 104-364 (220,73) 77-390 (186,86) 0.07-0.37 (0.27,0.09)
24 16.0 284-556 (355,82) 89-180 (149,28) 0.03-0.06 (0.05,0.01)
61 43.73 412-1328 (828,259) 60-321 (153,72) 0.04-0.13 (0.07,0.02)
6b 60.0 48-369 (152,100) 53-748 (321,188) 0.01-0.08 (0.03,0.01)
6c 20.8 645-1135 (781,86) 71-151 (112,13) 0.06-0.2 (0.1,0.03)
85 53.33 138-724 (253,126) 90-499 (316,109) 0.01-0.07 (0.03,0.01)
87 97.33 53-174 (82,24) 101-361 (242,62) 0.03-0.09 (0.05,0.01)
95 1.07 733-819 (766,37) 118-133 (127,7) 0.06-0.07 (0.07,0.0)

STA

08 13.39 44-302 (159,74) 79-534 (242,118) 0.12-0.39 (0.24,0.08)
1c 0.0 - - -
1d 48.51 31-230 (77,34) 126-726 (438,117) 0.16-0.39 (0.28,0.06)
24 0.0 - - -
61 0.0 - - -
6b 42.56 26-273 (59,34) 27-683 (438,201) 0.06-0.37 (0.16,0.08)
6c 3.27 329-677 (528,120) 110-234 (157,41) 0.3-0.4 (0.34,0.03)
85 23.21 145-749 (258,144) 77-431 (296,108) 0.1-0.39 (0.15,0.05)
87 12.2 72-195 (104,30) 75-266 (192,46) 0.13-0.29 (0.16,0.03)
95 11.61 116-972 (322,225) 57-588 (296,136) 0.1-0.39 (0.24,0.09)

Thres.

08 16.67 129-278 (194,45) 126-287 (197,49) 0.07-0.11 (0.09,0.02)
1c 22.22 330-930 (523,186) 89-268 (185,56) 0.05-0.09 (0.06,0.01)
1d 27.47 161-442 (238,70) 61-250 (170,54) 0.13-0.39 (0.26,0.08)
24 11.11 302-449 (379,54) 112-167 (136,20) 0.04-0.05 (0.05,0.0)
61 28.7 594-1471 (897,246) 51-208 (137,47) 0.08-0.22 (0.12,0.03)
6b 31.48 106-390 (202,91) 49-335 (204,96) 0.03-0.09 (0.05,0.02)
6c 19.14 682-1141 (900,125) 70-139 (101,18) 0.11-0.29 (0.2,0.05)
85 11.11 361-546 (448,65) 119-184 (150,22) 0.05-0.06 (0.05,0.0)
87 14.81 115-203 (145,29) 85-156 (126,23) 0.07-0.1 (0.08,0.01)
95 12.65 638-1209 (826,147) 76-162 (126,24) 0.05-0.09 (0.07,0.01)
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(a) GVE (↵ = 0.2, � = 6, n
points

= 2, t
max

= 60)

(b) Thresholding (t = 8, r = 30, t
max

= 90)

Figure 4.8: Example visits extracted for Warwick user 08.
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Table 4.7: Summaries of properties of the visits shown in Figure 4.8.

Visits Avg. Visit (min) Noise Proportion
GVE 215 169 0.179

Thresholding 230 154 0.179

Table 4.7. In this case, GVE has extracted fewer visits, covering the same pro-

portion of points and with a longer average duration, further indicating that

thresholding is prone to splitting visits erroneously.

4.4.2 Location Properties Use Case

In order to understand how well each algorithm performs in the location prop-

erties use case, we construct a partial ground truth of buildings that we expect

to see in the data and compare the extracted locations against these buildings.

To achieve this, we manually identify 5 buildings on the University of Warwick

campus unambiguously visited for each of our 10 test users (from the Warwick

dataset). This is achieved by overlaying all points belonging to each user on

satellite imagery of the university campus, and in combination with knowledge

about the degree courses of each participant, 5 buildings unambiguously vis-

ited are selected and summarised into a minimum set of points, stored for later

comparison. A comparison to the locations clustered through DBSCAN on vis-

its identified by the GVE, STA and thresholding algorithms is then performed

using the set-similarity measure Dice’s coe�cient :

QS =
2|A \B|
|A|+ |B| (4.3)

Where QS is the quotient of similarity in the range [0, 1]. A value of 1 indicates

that the sets (A and B) are identical, while 0 indicates no overlap. Although

Dice’s coe�cient is designed for comparing the contents of two sets, it can be

used over clusters by considering |A \B| to represent the area covered by both

clusters, and |A|+ |B| to be the sum of the areas of the clusters. This methodol-

ogy provides an indication of how well the algorithms perform at extracting the
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Table 4.8: Parameter increments selected for the optimisation procedure.

Algorithm Parameter Range Increments

GVE

↵ � 0 0.2
� > 1 2
n
points

> 1 2
t
max

> 0 10

STA
D

thres

> 0 0.2
N

buf

> 1 1

Thresholding
t > 0 5
r > 1 2
t
max

> 0 10

DBSCAN
eps > 0 5
minpts � 0 1

geographical shape of visited locations as described in the location properties

use case in Section 4.1.2.

With a metric in place to quantify the correctness of locations extracted from

a given set of parameters, we use a mathematical optimisation approach to select

parameters that produce near-optimal scores for Dice’s coe�cient. Specifically,

we employ simulated annealing as an example technique. While several tech-

niques, as discussed in Section 4.2.4, are appropriate, we simply select simulated

annealing for demonstration purposes and therefore select example functions

where required. The algorithm starts at a random location in the state space,

in our case the space of all possible valid parameters for the visit extraction

algorithm and DBSCAN, used for clustering visits together to locations. This

state is evaluated by performing visit extraction and clustering using the param-

eters, assigning a score to each ground truth location (i.e. the Dice’s coe�cient

between the ground truth location and the most representative extracted loca-

tion) and averaging these scores to give the set of locations an overall score. Our

implementation of the simulated annealing algorithm aims to minimise cost, so

we define cost as:

Cost = 1� Score (4.4)

Now the starting position has an associated cost, a random neighbour is

selected, where a neighbour is defined to be a set of parameters where one
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parameter is one increment di↵erent from the current state (with increments

shown in Table 4.8). This neighbour is then evaluated and if the cost is bet-

ter (i.e. lower), the neighbour state is adopted as the current state, and the

algorithm repeats. If the score is not better, it is taken with some probability

dependent upon the temperature, a weighted measure of how much time has

passed, and the probability function, a representation of how much worse the

neighbour state is. For our purpose, we define these two measures by selecting

values that empirically produce useful results:

T (r) = 0.985r⇥500 (4.5)

PF (c, n, r) = e
�(n�c)
T (r) (4.6)

Where r is the proportion of time expanded, c is the existing state’s cost, and

n is the neighbour state’s cost. Regardless of whether the state is selected, the

algorithm continues to repeat unless an optimal cost of 0 is encountered. At the

end of the algorithm, the state observed with the lowest cost is assumed to be

the solution. For this work, we select k
max

= 100 and perform the algorithm

on 10 randomly generated start states for each user, with the best cost selected,

giving us an indication of how well each visit extraction algorithm can perform

when considering the location properties use case.

Figure 4.9 shows the locations identified for an example user’s ground truth,

and Figure 4.10 shows the locations extracted for the best parameters observed

for each of the three algorithms for the same user.

Table 4.9 shows the best score observed for each user and each algorithm,

where the scores represent the average Dice’s coe�cient across all 5 ground truth

locations and, therefore, a higher score is better. The results indicate that the

three algorithms perform fairly consistency when it comes to extracting locations

that match the ground truth locations, with scores of around 17-22%. Although

a higher percentage may be desirable, this is unlikely with any technique due

to the fact that a person may have only visited part of a building, or noise
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Table 4.9: Summary of how well each visit extraction technique performs relative
to a partial ground truth, where higher scores are more representative of the
ground truth locations.

Algorithm User Score Average (Std. Dev.)

GVE

08 0.237

0.218 (0.083)

1c 0.201
1d 0.172
24 0.333
61 0.348
6b 0.132
6c 0.112
85 0.239
87 0.274
95 0.133

STA

08 0.163

0.172 (0.093)

1c 0.129
1d 0.11
24 0.308
61 0.148
6b 0.104
6c 0.114
85 0.216
87 0.354
95 0.074

Thresholding

08 0.15

0.200 (0.084)

1c 0.189
1d 0.146
24 0.314
61 0.231
6b 0.129
6c 0.175
85 0.226
87 0.353
95 0.082
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Figure 4.9: Ground truth locations identified for Warwick user 61.

may cause identified visits, and therefore locations, to fall partly inside and

partly outside the locations. In terms of the di↵erent algorithms, GVE performs

slightly better than the other two. This is likely to be due to its improved

handling of noise in the datasets, although the margin is close. This evaluation

demonstrates that a relationship exists between the identified locations and the

real-world buildings visited by the user, although the relationship is not perfect.

4.5 Predicting Over Extracted Locations

Through the parameter exploration in Section 4.3.2 and the comparisons to

existing techniques in Section 4.4, we have demonstrated the applicability of

the GVE algorithm to the task of identifying visits from trajectories and using

these visits as a basis for extracting locations. We now turn our attention to

a common application of such extracted locations, that of predicting the next

location a user will visit. This section further demonstrates the applicability

of the GVE algorithm through a sample application, alongside presenting a

method of automatic parameter selection for location extraction and prediction
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(a) GVE.

(b) STA.

(c) Thresholding.

Figure 4.10: Extracted clusters that maximise Dice’s coe�cient relative to the
ground truth for Warwick user 61. The di↵erent shapes are explained by the
di↵erent techniques employed.
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applications through a metric that characterises the goal of each of these tasks.

Existing literature, as discussed in Chapter 2 and summarised in Section 4.2,

has explored the task of location prediction from extracted locations, but has

failed to account for properties of the extracted locations when considering the

accuracy of predictions. Although evaluating locations extracted through unsu-

pervised learning techniques is challenging due to the lack of available ground

truth, the properties inherent in the locations have significant impact on the

utility of the predictions. Selecting appropriate parameters for location extrac-

tion is therefore of paramount importance. However, the impact of altering

parameters is typically unknown, as methods of evaluating the applicability of

a set of locations to a particular task (e.g. prediction) are lacking.

The work presented here aims to overcome this problem by providing a

method of parameter optimisation that selects the most appropriate parameters

for both location extraction and the subsequent learning algorithm employed,

in this case location prediction. The need for manual selection of parameters

and review of location properties is therefore removed, and the robustness of

any predications based on the locations is ensured, thereby increasing the utility

a↵orded by such systems. Specifically, we: provide a metric for the evaluation

of both extracted locations and predictions that characterises the goal of each

of these tasks; frame the process of parameter selection as that of mathematical

optimisation through the presented metric; and discuss characteristics of the

metric while demonstrating its applicability over real-world data.

4.5.1 Evaluation Metric

In Section 4.4.2 we introduced the idea of using mathematical optimisation tech-

niques to select parameters for location extraction, where a single metric was

available for the task at hand, that of matching extracted locations against a

ground truth. In this instance, optimisation is an appropriate choice because

there is a clear measure of how good a set of parameters is. When considering

location prediction, it could be considered desirable to achieve high predictive
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accuracies, and therefore a similar procedure could be employed aiming to max-

imise the accuracy of the predictor. Using locations extracted from trajectories

as a basis for prediction, high predictive accuracies can be achieved simply by

increasing the size of the extracted locations, as fewer locations make for simpler

predictive models and are therefore likely to result in higher accuracy. This is

not desirable because although the accuracy increases, the utility of predictions

decreases significantly as locations become larger. For instance, knowing which

building a person will visit is more useful to many applications than knowing in

which city a person will be.

In order to evaluate the combined performance of location extraction and

prediction, it becomes important to understand the true aims behind the pro-

cess. For this work, we consider the aim of location prediction to be that of

identifying the exact future location of an individual with as little uncertainty

as possible. Uncertainty in this context can be considered to encompass both

the size of locations and the accuracy of predictions, where very large locations

can lead to high predictive accuracy with little utility, and very small locations

can lead to very low predictive accuracy due to the increased complexity of the

models required. It is even conceivable that, when aiming to identify the exact

geographic region a user will visit, a prediction for a small, close-by, location

that is incorrect may o↵er greater knowledge than a prediction for a vast loca-

tion that encompasses the correct region, as the former case, although incorrect,

identifies a position close to the correct one.

Evaluating both locations and predictions is di�cult in standard approaches

because of the dependency relationship between the two. The exact locations

extracted will directly impact on the ability for prediction to occur, thus meth-

ods of characterising the locations and predictions independently cannot cater

for this relationship. Therefore, the separate stages of location extraction and

prediction must be evaluated together to get an honest representation of appli-

cability to the given task. Towards this end, and taking the goal of location

prediction to be that previously defined, the idea of aiming to identify as close
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as possible the region to be visited by the user, we consider error to be the is

the distance between the centroid of the predicted location and the centre of

mass of the region actually visited by the user, represented by the next visit in

the data.

Intuitively, this definition of error favours small locations with accurate pre-

dictions, as wherever the actual region visited falls within such a location (i.e.

an accurate prediction), the distance between the region and the centre of the

location will be small. With large locations, which are undesirable for loca-

tion prediction, a correct prediction may still have a high error if the distance

between the location centroid and actual visited region is large. Similarly, for

incorrect predictions (i.e. inaccurate ones), a small predicted location situated

near to the correct region will give a low error as the distance between the

predicted location’s centroid and the actual visit made is small.

Under such a definition of error, while small locations are favoured, locations

that are meaninglessly small (e.g. if every data point were to be classed as its

own location) are prevented by the properties inherent in predictive systems. In

order to predict future movements of individuals, past behaviour is analysed and

patterns determined, but when considering such an extreme case, each location

would have a single transition to another, unique, location, thus no repeating

patterns can exist. This property ensures that accurate predictions from such

training data are unachievable and therefore predictions will be little better

than random, producing a high average error in the system. If the error were

defined to be the distance between the centroid of the predicted location and the

extracted location within which the user’s next visit falls, a correct prediction

would be given an error of 0 regardless of the size of the location. By using the

distance between the centroid of the predicted location and the centre of mass

of the actual visit, unless the location covers only this single visit, the error will

be non-zero even for a correct prediction, with the magnitude dependent upon

the location’s size.

The error of a given set of locations and given predictor, E, can be calculated
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by using the Mean Absolute Error (MAE) metric, with distances calculated by

the Haversine formula in kilometres [Robusto, 1957], formally:

E =
1

|P |
X

l,v2P

D
s

(centroid(l), centreofmass(v)) (4.7)

Where P is the set of all predictions, each prediction having two parts: {l, v} 2

P , l is the expected next location of the user, and v is the actual visit that the

user makes next. Centroid here assumes evenly distributed mass of points within

the convex hull, while the centre of mass considers the distribution and takes the

average latitude and longitude of all of the points.MAE is selected for its linear

weighting of errors. While mean squared error is also a common metric, any

large error would be weighted extremely highly and overshadow the remaining

data (e.g. if the user visited a di↵erent city to the one predicted just once, even if

all other predictions were correct), which is undesirable in this case. With MAE,

a small number of large errors has significantly less impact and thus individual

mistakes are still penalised, but not as highly. With an error metric selected

whose definition, as described previously, is consistent with the expectations

of the problem, comparison of sets of extracted locations and predictions can

occur. Given two sets of locations and an associated prediction model, the more

desirable set is the one which has the lowest associated error, E.

4.5.2 Optimisation Methodology

With an evaluation metric in place, the selection of optimal parameters for a

given set of data would ideally be performed by evaluating all possible combi-

nations of parameters and selecting those which result in the minimum error.

In reality, however, performing location extraction and prediction is computa-

tionally expensive, and so it is infeasible to perform a complete search. Instead,

a near optimal solution can be found using mathematical optimisation algo-

rithms. For this task, we opt to use simulated annealing, as previously used to

select parameters to optimise for a ground truth in Section 4.4.2, as it can over-
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come the problem of local maxima while maintaining a single state space. While

other algorithms, such as evolutionary approaches, are also applicable, they typ-

ically assume that taking two states that individually produce good results and

merging them will produce results at least as good. In this work, the interplay

between parameters is extremely important and thus it is not immediately clear

that this property will hold.

Extracting locations is performed using GVE followed by DBSCAN, as dis-

cussed previously. These locations are then used as a basis for next location

prediction, i.e. aiming to identify the location out of the extracted set of loca-

tions that the user is most likely to visit upon leaving their current location.

Specifically, we employ SVMs to perform the prediction, which have been shown

to be an e↵ective technique for this task [Wang and Prabhala, 2012], and use

them in the same manner as discussed in Section 2.4.2. Once a set of locations

has been extracted for a given user, the history of transitions between them is

split into two with half used to train the predictive models, and the remaining

half used as part of the evaluation procedure. An even test:train split is selected

to ensure both su�cient training data for the predictive models is available and

to evaluate performance. This testing data then becomes the basis for the score

assigned to each set of parameters.

Minimising the error metric is performed using the simulated annealing al-

gorithm and approach, as presented previously in Section 4.4.2. The neighbour,

probability and temperature functions are defined as in Section 4.4.2, and the

parameter increments shown in Table 4.8 are used for GVE and DBSCAN.

In order to understand the applicability of the proposed metric to the task

at hand, multiple runs of the parameter optimisation approach must be per-

formed with data from di↵erent users; in our case 10 users of the MDC and

Warwick datasets. Furthermore, to understand the metric better, it is impor-

tant to investigate the impact of using di↵erent segments of data from the same

users, as di↵erent subsections of a user’s trajectory will have inherently di↵erent

properties. It has been shown that properties of data can impact the predictive
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accuracy attainable, through an exploration that considers sparsity and dura-

tion of data, where the duration is shown to have a greater impact than sparsity

[Thomason et al., 2015c]. To this end, experiments use di↵erent amounts of data

(continuous subsets of between 25% and 100% of the available data per user).

With data selected and a methodology formalised, experiments can be run with

di↵erent values of k
max

, the parameter of simulated annealing that specifies

the maximum number of iterations of the algorithm, where the selection of a

neighbour, evaluation and possible adoption of a new parameter set is a single

iteration. Terminating the algorithm occurs at this point. An alternative ap-

proach would be to use a tolerance of cost with k
max

preventing extremely long

runs, however, as this work is proposing to evaluate the cost metric, we allow

the procedure to continue to find the lowest cost possible within the allowed

time.

4.5.3 Results and Analysis

Figure 4.11 shows two example runs of the simulated annealing algorithm and

how the error of the extracted locations and predictions varies over time. In both

cases, the final error is significantly lower than the initial error (where randomly

selected parameters were used to extract locations and perform predictions). In

Figure 4.11a, the error is monotonically decreasing, so each iteration produces

an error no worse than the one before. Conversely, Fig. 4.11b shows steps that

move to a position of higher error on several occasions. This demonstrates

simulated annealing’s ability to overcome the local maxima problem, taking

worse positions towards the beginning of the run, but converging towards a

minimum as time runs out. After t = 46, no move to a worse position is made,

instead, the error decreases before remaining constant.

Figure 4.12 provides indications of the relationship between the defined met-

ric and the size of locations and accuracy of predictions. Both graphs are

generated by taking all iterations of the runs from all users and placing the

results into bins and averaging. Each bin therefore consists of di↵erent numbers
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Figure 4.11: Example simulated annealing runs showing error against time.

of points, and therefore the lines only show an indication of the relationship

present instead of a rigorous study of it. Specifically, Figure 4.12a shows the

relationship between the proposed error metric and average location area (in

km2), and Figure 4.12b shows the relationship between the error metric and

average predictive accuracy. Figure 4.12a shows that large locations typically

incur a high error, which decreases as the locations get smaller up to a certain

point. Once locations become extremely small in size, they encompass few visits

and thus provide less training data, leading to the error increasing once again.

The variation in standard deviation values shown in this figure can be explained

by Figure 4.13. This shows the number of runs conducted that produce loca-

tions with average sizes that fit into each bin, demonstrating that places with

errors above 10 that have low standard deviations are due to there only being

a small number of runs over which to average error. Some of those with errors
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Figure 4.12: Indication of the relationship between the proposed error metric
and properties of extracted locations and predictions

0

20

40

60

80

100

120

140

0.0001 0.001 0.008 0.073 0.66 5 53

N
u
m
b
er

of
R
u
n
s

Location Size (km2)

Figure 4.13: Number of runs conducted that produce locations with di↵erent
average sizes.
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close to 0 that have low standard deviations have some of the highest num-

bers of runs, demonstrating that locations of between 0.3 and 4km2 consistently

produce small errors.

Figure 4.12b demonstrates that lower errors are also indicative of higher

predictive accuracy, up to a point. As predictive accuracy increases towards 1,

however, the associated error begins to increase. This is due to the situation

where achieving such high predictive accuracy comes at the cost of location

size. Due to the complexity of human mobility, achieving perfect predictions

over small locations is extremely unlikely, so in the cases where predictive ac-

curacy approached 1, the locations became larger and thus were penalised with

a higher error. Combined, these properties demonstrate that the definition of

error as proposed favours a balance between small locations and high predictive

accuracy. These are desirable properties for this purpose as they serve to iden-

tify accurately where a user will be in the future with as little uncertainty as

possible.

Finally, Figure 4.14 shows the e↵ect on cost of the maximum number of

iterations (i.e. k
max

, Figure 4.14a) and percentage of each user’s data used

(Figure 4.14b), again showing results for both datasets. In the case of Figure 4.14a,

the percentage of data used is held constant at 50%, and in Figure 4.14, k
max

is held at 100, with results averaged over all users. As evidenced by the figures,

the metric performs as would be expected. Specifically, as the number of itera-

tions is increased, the average error decreases because the algorithm is allowed

more moves to find the optimal position (Figure 4.14a). While k
max

can be

further extended beyond 100, it was observed that with k
max

= 100, 82% of

runs had converged to a stable error, indicating that the benefits of selecting a

larger value for k
max

would be minimal. However, providing more of the user’s

data for optimisation results in increased errors (Figures 4.14b). More data

means the predictor has more information to model the user’s behaviour, but

it also means the user is likely to have visited additional locations for which

no previous transitions exist, increasing the complexity of the required predic-
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Figure 4.14: The e↵ect of the optimisation procedure’s parameters on minimum
error encountered.

tive model, thus resulting in slightly increased errors as these new locations are

likely to result in incorrect predictions. This combination of factors leads to

the trends shown in the graph, where the increase in information results in a

slightly higher average error.

Summary

This component of the evaluation of the GVE algorithm has considered GVE

as a basis for location prediction through a proposed method for automatic pa-

rameter optimisation for location extraction and prediction that understands

the aims of both tasks. While existing work has assumed the validity of ex-

tracted locations and focused on prediction alone, we argue that predictions are

predicated upon the underlying locations. Therefore, ensuring the representa-

tiveness of such locations is of paramount importance when aiming to produce
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useful predictions. This section has presented a metric that considers both lo-

cations and predictions, and has demonstrated its utility through an evaluation

of properties of extracted locations and predictions it favours. This metric pro-

vides a starting point for other domains that require parameter selection from

a multi-stage procedure such as this.

4.6 Conclusion

This chapter has explored the problem of identifying visits, and subsequently

locations, from geospatial trajectories. To this end, a novel algorithm, the

Gradient-based Visit Extractor (GVE) has been presented that extracts periods

of low mobility from geospatial data while maintaining resilience to noise and

overcoming the drawbacks of existing techniques. Specifically, GVE does not

place a minimum bound on visit duration, has no assumption of evenly spaced

observations, and considers points as they arrive, making it amenable to visit

extraction in real-time from a variety of data sources.

In addition to presenting the algorithm, this chapter has provided a compre-

hensive analysis of the properties of the visits extracted through an exploration

of the parameter space, providing application developers with knowledge to aid

in parameter selection. The applicability of GVE to the task of visit extraction

has been demonstrated by a comparison to existing approaches through metrics

representative of common goals of location extraction. Finally, an investigation

into using extracted locations as a basis for prediction has been presented that

includes a novel method of parameter selection through a metric that charac-

terises the goals of both the extraction and prediction procedures. Through all

of these investigations, results demonstrating the suitability of GVE have been

achieved, with evidence indicating increased accuracy over existing approaches.

This quantitative evaluation, lacking from previous work, demonstrates the ap-

plicability of the Gradient-based Visit Extractor (GVE) algorithm to the task

of visit extraction and, consequently, as a precursor step to location extraction.
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CHAPTER 5
Augmenting Geospatial Trajectories with Land Usage Data

Chapter 4 presented a method of identifying visits using only geospatial trajec-

tories as a basis, and clustering these visits into arbitrary shapes that are likely

to be meaningful to the users. However, as Section 4.4 showed, the extracted

locations are not very representative of the real-world. While this method of

identifying locations from trajectories is well-established in the literature, it does

not take into consideration properties of the physical world.

Recently, the processing, storage, and connectivity capabilities of location-

aware hardware devices have improved, allowing us to consider techniques that

require additional data sources, or the ability to query a remote service for

information. Making use of these developments, this chapter proposes a novel

method of identifying geographical features (e.g. buildings, roads, amenities

and areas) that a user has interacted with, creating a mapping between the

extracted locations and the real-world. Achieved by augmenting trajectories

with land usage data available after trajectory collection has occurred, the Land

Usage Identification (LUI) procedure extracts land usage elements, referred to

simply as elements, that a person has interacted with, and summarises these

interactions in a manner consistent with the visits and locations of previous

work. This chapter demonstrates the applicability of this approach through an

evaluation and characterisation of the extracted elements, and through a sample

application, that of predicting future interactions.

5.1 Introduction

Much existing work has focused on identifying locations from geospatial trajec-

tories as a basis for prediction, aiming to determine the likely regions that an
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individual or other entity will visit in the future. While this is a useful com-

ponent of many services, the identified locations do not necessarily correspond

to actual geographic features, often spanning multiple buildings or areas. In

contrast, this work takes the raw geospatial trajectories and augments them

with information about the real-world to identify exactly which building, point

of interest or geographical feature a person was likely interacting with, while

maintaining compatibility with existing applications.

The Land Usage Identification (LUI) procedure places no additional burden

on the user as no additional data is required to be collected from them; instead,

additional information can be brought into the system in the form of land usage

datasets available after collection has occurred. Through augmentation, filtering

and summarisation techniques, the physical features that a user has interacted

with are identified and their interactions summarised. This results in elements

that replace the locations present in previous work, where each element has

associated information describing its location and purpose. This additional

information not only provides a foundation for understanding what a person may

have been doing, but provides a relationship between the data and the real-world

that can be leveraged by applications. This approach has the added benefit of

considering periods of time, regardless of whether the person was stationary or

moving. Location extraction techniques only consider time when the person

was stationary, but land usage elements can be associated with trajectories

regardless, identifying time spent on, for example, a road, train track, or sports

field.

The utility of the LUI procedure is demonstrated through an exploration of

the extracted elements and interactions, a comparison to extracted locations,

and an exploration that uses the extracted elements as a basis for prediction,

which is a common application of extracted locations. Utilising existing ma-

chine learning approaches, we demonstrate increased predictive accuracy over

identified elements compared with using extracted locations for the purpose of

next location prediction.
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A discussion of relevant related work is presented in Section 5.2, and the LUI

procedure is presented in Section 5.3. Section 5.4 evaluates the procedure and

the utility a↵orded by the identified elements, with a conclusion and summary

in Section 5.5.

5.2 Related Work

Identifying significant locations from geospatial trajectories is an area that has

been covered before in the literature, typically split into two distinct stages.

The first stage, visit extraction, identifies periods of low mobility by iterating

through the trajectory, constructing visits according to some criteria. Once

these visits have been extracted, they are clustered into arbitrary shapes, called

locations [Andrienko et al., 2013; Li et al., 2008; Zheng et al., 2009; Zhou et al.,

2014]. In addition to the techniques to achieve visit extraction and clustering

discussed in Chapter 2 (Sections 2.2.3, and 2.3.1), Chapter 4 presented the

Gradient-based Visit Extractor (GVE) algorithm, which aims to build upon the

current state-of-the-art for visit extraction. The algorithm maintains resilience

to noise lacking in many existing approaches and can handle data from a variety

of sources, but does not consider geographic features when determining visits.

The idea of using land usage data to increase the meaning of extracted loca-

tions has been considered by Yan et al. [2013], who first extract visits (referred

to as episodes) from raw trajectories, and then annotate these visits using data

obtained from a land usage dataset, to create semantic trajectories. While this

approach creates a mapping between extracted visits and geographic features, it

does not consider the properties of the features when identifying visits, instead

performing annotation only once the visits have been extracted.

Finally, the work in this chapter uses a sample application, that of location

prediction, as a motivating example for extracting visits or interactions from

geospatial trajectories. Location prediction has also been discussed previously

in this thesis (in Sections 2.4 and 4.2), so a further discussion here is omitted.
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5.3 Land Usage Identification (LUI) Procedure

This section presents the Land Usage Identification (LUI) procedure for iden-

tifying geographic features, represented by land usage elements, that a per-

son interacted with, and summarising these interactions. The procedure itself

uses geospatial trajectories, typically collected by location-aware devices such

as smartphones or dataloggers, and augments these trajectories with data from

a land usage dataset to identify all possible geographic features (e.g. buildings,

roads, amenities, and areas) that a person could have been interacting with at

any given time. The filtering of these identified elements is then performed to

identify which element the user was likely to have been interacting with for a

period of time. The benefits of this approach, instead of solely using geospatial

trajectories as in existing approaches, is that it better captures the relation-

ship between the identified locations and the real-world, with locations being

representative in terms of shape, location and properties of the places actually

interacted with by the user. These extracted elements and their interactions

are interchangeable with locations and visits found in previous works, replacing

the arbitrary clusters with meaningful elements.

The LUI procedure is split into three stages:

Augmentation — each point in a geospatial trajectory is augmented with all

possible land usage elements that the user could have been interacting

with.

Scoring and Filtering — the augmented trajectory is filtered to determine

which element was likely being interacted with at any given time.

Summarising — the trajectory is summarised into interactions, associated

with each element.

For this work, each point in a geospatial trajectory is assumed to have an ac-

curacy value, measured in metres, that represents the confidence in the recorded

location (i.e. latitude and longitude). Additionally, a land usage dataset is as-

sumed to consist of sets of entities with associated information. Each entity
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Figure 5.1: Example of the trajectory augmentation procedure.

represents a real-world object, feature or area, such as an individual post box,

building or farm. Elements are assumed to have a collection of geographical co-

ordinates that represent their location and shape, along with a set of ‘key:value’

pairs, called tags, that describe their properties. For example, a house may have

the tag ‘building:residential’.

5.3.1 Augmentation

The procedure for trajectory augmentation with relevant land usage elements

is shown in Figure 5.1, where a raw geospatial trajectory (Step 1) enters the

system and is overlaid on the land usage dataset (Step 2). The reported ac-

curacy of each trajectory point is then used as a radius to consider (Step 3),

such that all elements smaller than a specified size, maxradius, that are par-

tially or wholly within the accuracy radius, are stored alongside the original

point (summarised in Table 5.1). This is achieved by processing each trajectory

point in turn automatically until an augmented trajectory is formed. These

augmented trajectories are then subjected to a filtering procedure, as detailed

in the following section.
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Table 5.1: Augmented trajectory.

Point Time Elements
1 0 {1,2,4}
2 1 {1,3,4,6,7}
3 4 {6}
4 7 {6}
5 10 {5,6}
... ... ...

Table 5.2: Summarised trajectory.

Times Elem. Tags
0-1 1 road:residential
2-17 6 landuse:field
... ... ...

5.3.2 Scoring and Filtering

Once augmentation has been completed, identifying which land usage elements

were most likely to have been interacted with is the task of a filtering procedure

as part of a three-step process:

1. A bu↵er of points, and associated land usage data, is selected.

2. The land usage elements in the bu↵er are weighted and scored.

3. The element with the highest score is selected for association with the

point at the centre of the bu↵er, the point under consideration.

Due to the nature of geospatial data collection systems, a continuous and

evenly timesliced trajectory cannot be assumed, so selecting a bu↵er based on a

fixed number of points would be inappropriate. Instead, we use a fixed temporal

window for the bu↵er and consider all points that fall within this period. A

bu↵er therefore consists of a point under consideration and the points falling

within � minutes immediately before and after this point. The pseudocode for

maintaining such a bu↵er is presented in Algorithm 2. Each land usage element

associated with any point within this bu↵er is then scored according to the

number of points the element is associated with, the accuracy of these points,

and the temporal distance from the point under consideration:

Score(e) = |P (e)|
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Where P (e) is the set of all points that are associated with element e, �(p
i

) is

the accuracy value of point p
i

, p
c

is the point under consideration, � is the width
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Algorithm 2 Bu↵er management procedure.

1: points  (p1, p2, ...) // input set
2: �  5 // input parameter specifying width of each half of the bu↵er
3: bu↵er  [ points.shift ]
4: output  [ ]
5: index  null
6:

7: // Build the initial bu↵er
8: while points.length > 0 do
9: // If index has not been set, then we are in the first half

10: if index == null && TimeBetween(bu↵er [0], points[0]) > � then
11: // If the next point is greater than � minutes from the first, this half is full
12: index  bu↵er.length � 1
13: // If index has been set, then we are in the second half
14: else if index ! = null && TimeBetween(bu↵er [index], points[0]) > � then
15: break // Exit the loop as adding the next point would exceed �

16: else
17: bu↵er.append(points.shift)
18: end if
19: end while
20:

21: // Process the current bu↵er, increment index and maintain the new bu↵er
22: while points.length > 0 do
23: output.append(Filter(bu↵er, index)) // Perform the actual filtering
24: index  index + 1
25:

26: // If the point for consideration is not in the bu↵er, then add it now
27: if index == bu↵er.length then
28: bu↵er.append(points.shift)
29: end if
30:

31: // Remove any point from the first part that is not within � minutes of bu↵er [index]
32: while TimeBetween(bu↵er [0], bu↵er [index ]) > � do
33: bu↵er.shift
34: index  index - 1
35: end while
36:

37: // Add points until doing so would exceed � minutes from bu↵er[index]
38: while points.length > 0 && TimeBetween(bu↵er [index], points[0]) <= � do
39: bu↵er.append(points.shift)
40: end while
41: end while
42:

43: return output
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Algorithm 3 Summarisation procedure.

1: trajectory  (p1, p2, ...) // augmented trajectory
2: t

max

 5 // maximum time between consecutive points (minutes)
3: d

min

 10 // minimum visit duration (minutes)
4: elements  ElementStore // store of elements and their interactions
5: interactionStart  p1.timestamp
6: previousPoint  p1
7:

8: while currentPoint  trajectory.shift do
9: // If the elements di↵er or too much time has passed, end the interaction

10: if (currentPoint.element != previousPoint.element or
11: (currentPoint.timestamp - previousPoint.timestamp) > t

max

) then
12:

13: // Only store interactions if they are long enough
14: if (previousPoint.timestamp - interactionStart) > d

min

then
15: interaction  {start: interactionStart, end: previousPoint.timestamp}
16: elements.addInteraction(previousPoint.element, interaction)
17: end if
18:

19: // Mark the start of a new interaction
20: interactionStart  currentPoint.timestamp
21: end if
22:

23: previousPoint  currentPoint
24: end while
25: return elements

of half of the bu↵er (i.e. the number of minutes from p
c

to consider) and D
t

(p, q)

is the temporal distance between p and q (in minutes). This equation gives a

higher score to elements associated with a large number of high accuracy points

(where high accuracy is recorded as a small accuracy radius). The element with

the highest score is then stored alongside the point under consideration. In

rare cases, it is possible for two or more elements to share the same score, and

in these instances, we select the element whose centroid is closest to the point

under consideration.

5.3.3 Summarisation

Summarising the augmented trajectories into interactions is achieved through

one-dimensional clustering that simply identifies neighbouring points that share

the same land usage element, as shown in Algorithm 3. This procedure requires

two parameters: t
max

, which prevents periods of missing data from being in-

cluded in an interaction by specifying the maximum amount of time that can

exist between neighbouring points before the interaction is split, and d
min

, the
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minimum duration required for an interaction to be stored. Upon completion,

the procedure outputs a set of land usage elements that contain information

about the element in the form of tags and coordinates, but also a set of times

during which the user was interacting with the element.

5.4 Application and Evaluation

This section evaluates the utility of the land usage elements extracted through

the augmentation, filtering, and summarisation procedures presented in Sec-

tion 5.3. This evaluation takes the form of an exploration of the identified land

usage elements, and an investigation into using such elements in lieu of extracted

locations for the purpose of predicting future interactions. For consistency, in

the remainder of this chapter, we adopt the following terminology:

Visit: a period of low mobility extracted solely from geospatial trajectories, as

discussed in Chapter 4, indicating time when a person or entity remained

in a single place.

Location: a cluster of visits based on geographical proximity.

Geographical Feature: a physical entity in the world that has some purpose,

e.g. a building, road, public amenity or group of entities such as a univer-

sity campus.

Element: a land usage element from a dataset, corresponding to a single geo-

graphical feature.

Interaction: a period of time spent interacting with, or within, an element.

Existing techniques therefore identify locations and visits to locations, while

the technique proposed in this chapter instead identifies elements and interac-

tions with elements. The output of the procedure is a set of interactions with

elements performed by the user.
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5.4.1 Data

For this work, and as discussed previously in Chapter 3, we use trajectories

from 10 users of the Warwick dataset and 10 users of the Nokia Mobile Data

Challenge (MDC) dataset for evaluation. It is important to note that the MDC

dataset truncates the latitude and longitude values recorded around partici-

pants’ residences and places of work, and we further treat these periods as

missing. This is likely to have an impact on the elements identified through

augmentation, and so we also use the Warwick dataset, which does not have the

limitation. The augmentation procedure presented in this chapter also requires

a dataset of land usage information in order to identify which elements were

being interacted with at any given time. For this purpose, and as discussed

in Chapter 3, we employ the OpenStreetMap (OSM) dataset. OSM spans the

entire world and contains sets of elements with associated tags (e.g. descriptions

of the functions of buildings, names of roads, etc.), and coordinate pairs that

describe the shape and location of a feature, and thus forms the ideal basis for

this work.

5.4.2 Exploring the Augmentation Procedure

Figure 5.2 shows sample data at each stage of the augmentation, filtering, and

summarisation processes. Raw trajectory data, in the form of an ordered array

of points (Step 1), enters the system. Each point has timestamp, longitude,

latitude and accuracy values. Step 2 augments the trajectory with identifiers

for all land usage elements that the user could have been interacting with at

that time (as described in Section 5.3.1). This is achieved by extracting all land

usage elements within the radius of the accuracy of the point and storing the

identifier of each element. Step 3 shows the augmented trajectory once filtered

(Section 5.3.2), with a single element associated with each point, representing

the element likely to have been interacted with. Finally, summarisation occurs,

clustering together contiguous time periods that belong to the same element (as
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( Step 1)
l a t l n g : 52 .3834499 , �1.56026223
timestamp: 2013�11�08 14:09:51 .00 Z
accuracy: 65 .0

( Step 2)
l a t l n g : 52 .3834499 , �1.56026223
timestamp: 2013�11�08 14:09:51 .00 Z
accuracy: 65 .0
data: [ n 312873295 , n 552101208 , n 695942926 , n 1014585845 ,
n 1014585853 , w 92341980 , w 92342116 , w 145179860 ,
w 145179863 , w 145179883 , w 273005393 , w 303748830 ,
w 329376738 , w 329376739 , r 2437023 , . . . ]

( Step 3)
l a t l n g : 52 .3834499 , �1.56026223
timestamp: 2013�11�08 14:09:51 .00 Z
accuracy: 65 .0
data: [ w 145179860 ]

( Step 4)
w 145179860:

tags :
bu i l d i ng : un i v e r s i t y
b u i l d i n g l e v e l s : 3

members: [ n 1586185863 , n 1586185883 , . . . ]
t imes :

- begin : 2013�11�08 13:13:05 .00 Z
end: 2013�11�08 17:16:47 .00 Z

l a t l n g s :
- 52 .3837765 , �1.5601465
- 52 .3838285 , �1.5600527
- . . .

Figure 5.2: Examples of the data at each stage of the augmentation, filtering,
and summarisation processes.
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Figure 5.3: The distribution of normalised element scores before element selec-
tion takes place as part of the filtering procedure, for a sample user (� = 5).

described in Section 5.3.3), which is shown in Step 4.

The remainder of this section explores properties of the elements and inter-

actions identified through the LUI procedure.

Element Filtering

Once trajectory points have been augmented with all possible land usage ele-

ments that the user could have been interacting with, the filtering procedure

selects the element that the user was likely to have been interacting with at that

time, achieved by assigning scores to each element within a bu↵er, and selecting

the element with the highest score. We begin our evaluation by investigating

the distribution of scores assigned to elements.

Element filtering and selection takes the parameter �, which specifies the

temporal distance from the point under consideration to consider as part of the

bu↵er, in minutes. Holding � = 5, Figure 5.3 shows the distribution of scores for

all elements in the filtering process (i.e. the values of Score from Equation 5.1),

normalised, for all 24,571 trajectory points belonging to a sample user. This

figure shows that the majority of elements are given low scores, which is likely to

be due to appearing transiently in the data, while fewer elements achieve high

scores during the procedure. The element with the highest score is selected

and, therefore, this provides an indication that noise elements with low scores
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Figure 5.4: The e↵ect of accuracy on number of elements, pre- and post-filtering,
for di↵erent users’ data, using � = 10, maxradius = 50.

are likely to be ignored.

With such a large proportion of noise elements indicated by Figure 5.3, we

turn our attention to understanding how many elements are associated with

each point in an augmented trajectory. Figure 5.4 shows the relationship be-

tween the accuracy of trajectory points and the number of extracted elements,

where the accuracy value (in metres) determines the radius of land usage data to

consider when creating the augmented trajectory. Specifically, the figure plots

the average accuracy against the average number of elements per point for each

of the 20 evaluation users. The figure demonstrates that a larger accuracy typi-

cally results in a larger number of elements per point and, as expected, filtering

drastically reduces this number. Table 5.3 shows the same data, demonstrating

the extremely large standard deviations present in the data, indicating that the

accuracy and number of points pre-filtering can vary considerably amongst the

data from one user. User War 6b has the lowest average number of elements

post-filtering due to it also having a very small average accuracy, leading to an

increased proportion of points when no land usage elements can be identified,

due to deficits in the dataset. Figure 5.5 shows the e↵ect of � on the number of

unique elements that make it through the filtering process. The figure demon-

strates that as � is increased, the number of elements is reduced as each bu↵er

e↵ectively averages over a longer period of time.
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Table 5.3: Summary of point accuracy for each user of both datasets, with the
average number of elements per point both pre- and post-filtering shown, along
with variances in brackets.

User Accuracy Pre Filtering Post Filtering
War 6b 9.9 (24.9) 30.8 (239.7) 0.8 (0.3)
War 1d 34.8 (139.4) 434.6 (1518.0) 1.0 (0.1)
War 08 36.9 (116.7) 232.6 (554.6) 1.0 (0.2)
War 87 51.5 (251.0) 235.4 (711.0) 1.0 (0.2)
War 1c 57.4 (181.5) 361.2 (1081.1) 1.0 (0.0)
War 95 60.0 (223.3) 798.0 (1489.0) 1.0 (0.1)
War 85 67.4 (1132.0) 196.0 (870.2) 1.0 (0.0)
MDC 5976 73.1 (58.0) 1242.2 (1405.1) 1.0 (0.0)
MDC 5966 83.0 (61.5) 1016.3 (1645.2) 1.0 (0.0)
MDC 5947 85.1 (73.4) 1248.1 (1473.2) 1.0 (0.0)
War 6c 86.2 (261.0) 900.6 (2983.4) 1.0 (0.0)
MDC 6104 87.3 (58.6) 1208.8 (1786.2) 1.0 (0.0)
MDC 5990 89.0 (70.3) 902.8 (1287.0) 1.0 (0.1)
MDC 5938 89.2 (58.4) 354.0 (1034.6) 1.0 (0.1)
MDC 5927 97.5 (70.1) 1136.8 (1914.5) 1.0 (0.0)
MDC 5948 98.7 (66.5) 1476.4 (1901.5) 1.0 (0.0)
MDC 6051 99.8 (61.3) 919.6 (1091.6) 1.0 (0.0)
MDC 6109 100.7 (67.1) 1491.7 (1904.5) 1.0 (0.0)
War 61 112.8 (379.0) 517.2 (2156.7) 0.9 (0.3)
War 24 141.2 (584.3) 334.4 (1542.3) 1.0 (0.0)
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Figure 5.5: The e↵ect of � on the number of unique elements identified through
the LUI procedure (maxradius = 50).
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Summarisation

Once the data has been filtered, it is summarised into continuous periods of

time. Two parameters, t
max

and d
min

, are required for this, specifying the

maximum amount of time (in minutes) between consecutive points for them to

be considered contiguous, and the minimum duration of an interaction for it

to be stored, respectively. Using the same 20 users and the filtering parameter

� = 10, Figure 5.6 shows how t
max

a↵ects the number and duration of inter-

actions extracted (ignoring d
min

by setting it to 0), and Figure 5.7 shows the

e↵ects of d
min

on the same metrics (holding t
max

= 100). The figures show

that increasing either t
max

or d
min

causes fewer, but longer, time periods to

be extracted as interactions that otherwise would have been split can remain

merged. Figure 5.6a shows that this trend is less with t
max

, and also that there

is significant variance between the users, so the trend is less well defined for

this parameter, which is likely to be due to t
max

impacting on fewer visits than

d
min

.

5.4.3 Comparison with Extracted Locations

With an understanding of the elements identified by the LUI procedure, we

now turn our attention to comparing the identified elements against locations

extracted through existing approaches. Specifically, we select thresholding, the

most widely used approach, and GVE, the approach presented in Chapter 4 that

builds upon the existing state-of-the-art, for comparison. Clustering identified

visits into locations is then performed by DBSCAN.

Thresholding takes the parameters radius, time and t
max

, specifying the

maximum width of a visit, minimum duration of a visit and maximum time

between consecutive points for them to be considered as part of the same visit,

respectively. For this comparison we are aiming to identify locations no larger

than a typical building, and so set the radius parameter to 50m; a value for

t
max

of 1 hour allows for short periods of missing data, but will prevent longer
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Figure 5.6: The e↵ect of t
max

on the summarisation procedure (d
min

= 0).
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Figure 5.7: The e↵ect of d
min

on the summarisation procedure (t
max

= 100).
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periods from being included in interactions where the user may have left and

returned some time later. For the MDC dataset, larger periods of missing data

are expected as we have removed periods of data where latitude and longitude

values were truncated (as discussed in Chapter 3, Section 3.1.4), and so we ignore

the t
max

parameter when generating results for the MDC dataset. Finally, the

time parameter, equivalent to the d
min

parameter in land usage extraction, is

left open and its impact explored as part of the evaluation.

The parameters for GVE allow for tuning the algorithm, but do not map

neatly to the real-world properties of the extracted interactions (e.g. size and

duration). To get around this, and produce comparable results, we first extract

locations using thresholding, followed by DBSCAN, and then select parame-

ters for GVE that extract locations of approximately the same size, using the

simulated annealing-based methodology proposed in Chapter 4 (Sections 4.4.2

and 4.5) for this purpose. This process uses a mathematical optimisation pro-

cedure to minimise the di↵erence in average location sizes between the data

clustered with thresholding and that clustered with GVE. DBSCAN is used in

both cases to cluster visits with minpts = 0, i.e. a single interaction can be con-

sidered as a location, and eps = 15m, ensuring visits must be within proximity

to be considered as part of the same location.

The LUI procedure is also performed on the same trajectories for compari-

son. In order to produce a representative comparison, parameters are selected

that aim to mirror the extracted locations as well as possible. To this end, the

maximum element size is constrained to be 50m across; t
max

= 1hr is used for

the Warwick dataset (and ignored for the MDC dataset). The same values of

d
min

as used to extract locations are used for exploring its impact on predictive

accuracy. The only additional parameter required by this procedure is �, speci-

fying the width of the bu↵er to consider during the filtering stage of trajectory

augmentation. Here, we set � = 5min for this task, a value selected empirically

that produces representative results.

Figures 5.8, 5.9 and 5.10 show summaries of di↵erent properties of the ex-

103



5. Augmenting Geospatial Trajectories with Land Usage Data

0

500

1000

1500

2000

2500

0 50 100 150 200 250

C
o
u
n
t

d

min

GVE

Thresholding

Land Usage

(a) Visit/Interaction Count.

0

50

100

150

200

250

0 50 100 150 200 250

C
o
u
n
t

d

min

(b) Element/Location Count.

Figure 5.8: Average numbers of interactions and locations extracted for the LUI
procedure and location extraction techniques.
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Figure 5.9: Average duration of interactions for the LUI procedure and location
extraction techniques.
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Figure 5.10: Average size of elements and locations for the LUI procedure and
location extraction techniques.

tracted locations and elements for di↵erent values of d
min

, averaged over all

users of the Warwick dataset. In all cases, the trends present are the same

between users of the Warwick and MDC datasets, so some of the MDC results

are omitted from this chapter and instead placed in Appendix B. Figure 5.8a

shows the number of interactions and visits identified by each technique, and

Figure 5.8b shows the number of di↵erent extracted locations or identified land

usage elements associated with these interactions. Figure 5.9 shows the total

time contained within these interactions, with results also displayed in Table 5.4.

As d
min

is increased, the total coverage falls, but it is also worth noting that

there is very high variance between users regardless of the technique, indicat-

ing that the coverage is heavily dependent upon properties of the user’s data.

This is as expected, as the users have a wide variety of trajectory durations,

and therefore the variance in time covered by extracted visits and interactions

is also high. Figure 5.10 shows the average area of locations and land usage

elements, demonstrating that higher values of d
min

lead to fewer interactions,

locations or elements. The average area is least impacted by d
min

, but is also

the most varied among the techniques. GVE and thresholding have similar val-

ues, as parameters for GVE were selected specifically to extract locations with

similar sizes to those identified through thresholding, while the land usage ele-

ments are consistently larger. Larger land usage elements are to be expected as
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Table 5.4: Total visit and interaction time in days for the di↵erent techniques,
averaged over the Warwick users. Results are shown for di↵erent values of d

min

,
with standard deviations shown in brackets.

dmin Land Usage Thresholding GVE
2 35.9 (10.6) 45.6 (12.4) 47.0 (12.7)
4 35.1 (10.6) 45.4 (12.3) 47.2 (13.1)
6 34.1 (10.6) 45.1 (12.3) 47.2 (12.9)
8 33.4 (10.5) 44.9 (12.2) 46.9 (12.8)
10 32.4 (10.5) 44.8 (12.2) 46.5 (12.5)
20 29.3 (10.2) 43.9 (12.1) 46.0 (12.5)
40 26.1 (10.0) 42.3 (11.9) 45.9 (12.5)
60 23.4 (9.6) 40.4 (11.8) 46.1 (12.7)
80 21.9 (9.4) 38.7 (11.7) 44.1 (11.9)
100 20.5 (9.1) 37.2 (11.6) 44.1 (11.8)
120 21.0 (9.0) 35.8 (11.5) 44.7 (12.5)
140 22.1 (8.7) 34.5 (11.4) 44.0 (12.2)
160 21.3 (9.0) 33.2 (11.3) 44.1 (12.0)
180 19.6 (8.5) 32.1 (11.1) 44.4 (12.3)
200 14.8 (8.3) 31.1 (10.9) 44.2 (11.7)
220 14.4 (8.2) 30.2 (10.9) 41.5 (10.4)
240 15.0 (8.3) 29.2 (10.9) 41.5 (10.5)
260 14.6 (8.1) 28.4 (10.6) 40.7 (10.5)

extracted locations only consider regions where users actually spent time, while

land usage elements consider entire buildings or features where a user may have

only interacted with part of it. The variance of land usage element sizes is also

considerably larger than locations as extracted locations are typically around

the same size, while interactions with very small or large elements are possible.

In order to reduce the variance of the area of land usage elements, we also

extract elements using the same procedure, but limit the size of elements by

imposing a maximum area in addition to the maximum radius used previously.

Figure 5.11 shows these elements, using a maximum area of 400m2, selected

empirically, and demonstrates areas much closer to those of the extracted loca-

tions, and consequently, a reduced variance. The average areas of the di↵erent

techniques, along with their standard deviations, are shown in Table 5.5.

The results in Figure 5.10 show that the elements identified from augmented

trajectories are often larger than the locations solely extracted from trajecto-

ries. While this comes with an increased representation of geographic features,
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Figure 5.11: Average size of elements and locations for the LUI procedure and
location extraction techniques, where land usage elements are restricted by both
radius and area.

it is possible that the extracted locations may have greater meaning in certain

circumstances. If, for instance, children play in part of a park which borders

onto a street, locations extracted from trajectories would be able to identify

that the park and street are considered one single location by the children, an

invisible space, even though they span multiple physical features in the envi-

ronment. Attempting to extract such a location from augmented trajectories

would yield either the whole park or the street, but would be not be able to

consider them together. This property may be desirable in some circumstances,

but undesirable in others, so it is important to consider which properties are

useful when selecting which approach to use for any given application.

5.4.4 Predicting Land Usage Interactions

In order to understand the utility of the identified elements and their interac-

tions, we turn our attention to a common use for the locations extracted from

geospatial trajectories, that of predicting the next interaction a user will make.

Prediction has been discussed previously in Chapter 2, Section 2.4, as well as

Chapter 4, Section 4.5. Once locations have been extracted, and interactions

identified, next location prediction is considered using established techniques:

Support Vector Machines (SVMs) and Hidden Markov Models (HMMs), both
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Table 5.5: Average area of extracted locations and identified land usage elements
(both unrestricted and restricted areas). Results are shown for di↵erent values
of d

min

, with standard deviations shown in brackets.

dmin Land Usage LU (Restricted) Thresholding GVE
2 66.2 (8.2) 42.5 (2.9) 46.0 (16.7) 45.9 (16.8)
4 69.1 (11.9) 43.1 (4.0) 43.4 (11.4) 43.8 (11.4)
6 63.9 (10.2) 39.4 (5.1) 41.5 (9.8) 41.6 (9.9)
8 61.7 (9.1) 42.5 (5.7) 41.6 (9.8) 42.0 (9.9)
10 63.9 (9.7) 42.6 (6.0) 42.0 (10.8) 41.9 (10.6)
20 76.1 (14.6) 40.0 (6.7) 40.3 (9.5) 40.3 (9.6)
40 81.2 (20.8) 40.3 (13.1) 40.1 (8.4) 40.4 (8.6)
60 94.0 (31.6) 50.5 (21.4) 42.2 (8.7) 42.9 (9.2)
80 81.5 (41.7) 49.2 (20.0) 44.8 (13.3) 44.9 (13.4)
100 100.6 (58.1) 57.8 (20.6) 37.5 (10.6) 37.5 (10.5)
120 72.8 (46.0) 57.1 (24.0) 38.0 (11.6) 38.1 (11.6)
140 50.6 (19.1) 58.4 (22.3) 35.3 (12.0) 34.9 (12.1)
160 76.8 (57.7) 55.6 (24.0) 34.1 (16.4) 34.1 (16.4)
180 30.0 (18.3) 48.6 (23.1) 34.0 (15.5) 34.1 (15.5)
200 67.1 (55.1) 55.1 (24.8) 29.5 (13.2) 29.8 (13.4)
220 64.4 (56.2) 46.7 (26.2) 31.6 (17.2) 31.5 (16.9)
240 73.2 (62.6) 61.5 (40.3) 28.0 (12.6) 28.2 (12.7)
260 72.7 (63.0) 62.6 (40.3) 29.9 (13.9) 30.3 (14.2)

of which have been demonstrated to achieve high predictive accuracies for this

task [Akoush and Sameh, 2007; Bilurkar et al., 2002; Wang and Prabhala, 2012].

For both extracted locations and land usage elements, training instances must

be generated. This is achieved by selecting interactions with locations or el-

ements that last longer than d
min

minutes. Instances are then generated by

summarising interactions into a set of features: day of year, day of week, start

hour, start minute, duration, current identifier (element or location), and class

(next identifier). The predictive models are then evaluated using 10-fold cross

validation.

Figure 5.12 shows the accuracies obtained from performing prediction over

extracted locations and identified land usage elements. The figure demonstrates

that increasing d
min

leads to predictions of higher accuracy, as d
min

controls

the minimum duration of an interaction to consider, with shorter interactions

being ignored as noise. A larger value for d
min

only considers locations and

elements at which the user has spent significant amounts of time, thereby mak-
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Figure 5.12: The e↵ect of minimum interaction duration, d
min

, on predictive
accuracy for existing location extraction and prediction techniques as well as
the proposed LUI procedure for the Warwick dataset.
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Table 5.6: Accuracy of di↵erent techniques for SVMs, with maximum values in
bold and standard deviations in brackets.

dmin Land Usage Thresholding GVE
2 31.5 (4.7) 41.6 (8.8) 27.6 (4.0)
4 35.4 (4.4) 43.7 (8.9) 29.5 (5.9)
6 39.0 (4.6) 45.3 (9.1) 30.5 (4.9)
8 42.7 (5.1) 46.3 (8.9) 33.2 (5.4)
10 44.6 (5.4) 46.8 (8.9) 31.1 (4.1)
20 49.5 (7.0) 47.2 (9.1) 34.8 (6.0)
40 53.0 (8.2) 49.1 (8.7) 38.0 (7.2)
60 60.7 (9.5) 51.7 (9.3) 40.2 (6.8)
80 63.2 (9.6) 54.6 (8.7) 41.5 (6.7)
100 62.4 (11.3) 57.0 (8.4) 38.3 (5.7)
120 64.9 (11.9) 60.4 (9.0) 42.2 (6.0)
140 66.2 (12.2) 62.8 (8.7) 42.4 (6.5)
160 69.9 (10.3) 64.5 (8.7) 42.8 (6.0)
180 69.2 (14.2) 65.4 (8.7) 42.6 (5.7)
200 73.2 (14.1) 67.8 (8.2) 38.2 (6.7)
220 73.6 (14.4) 68.2 (8.0) 45.5 (4.3)
240 76.6 (11.7) 70.4 (7.6) 41.8 (6.4)
260 76.7 (12.0) 71.9 (7.7) 48.9 (6.9)

Table 5.7: Accuracy of di↵erent techniques for HMMs, with maximum values
in bold and standard deviations in brackets.

dmin Land Usage Thresholding GVE
2 12.1 (2.9) 18.4 (2.6) 15.5 (2.8)
4 15.4 (2.7) 20.0 (2.8) 16.1 (3.0)
6 17.7 (4.3) 21.3 (3.1) 18.0 (4.2)
8 18.4 (3.9) 20.9 (3.5) 19.6 (4.2)
10 21.0 (3.8) 21.3 (3.3) 20.1 (3.5)
20 23.5 (4.0) 24.1 (3.6) 19.3 (4.2)
40 25.1 (3.9) 26.2 (3.8) 22.2 (4.2)
60 26.5 (7.0) 23.2 (3.7) 24.4 (4.3)
80 31.3 (7.7) 24.6 (5.5) 22.3 (4.9)
100 43.6 (15.0) 26.3 (4.9) 24.0 (3.0)
120 41.6 (15.7) 31.2 (5.8) 25.9 (5.3)
140 36.6 (14.7) 31.5 (5.7) 26.4 (5.7)
160 37.2 (13.1) 28.5 (4.0) 27.8 (4.6)
180 44.7 (17.4) 33.8 (8.3) 25.1 (6.0)
200 50.0 (19.0) 38.4 (12.1) 24.4 (6.2)
220 55.5 (19.3) 44.5 (13.0) 25.0 (5.7)
240 59.8 (18.1) 45.0 (12.0) 27.8 (6.0)
260 53.7 (18.4) 42.7 (14.3) 33.2 (5.4)
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ing predictions more accurate with fewer possible locations the user will visit.

This data is also shown in Tables 5.6 and 5.7, where it is clear that SVMs

outperform hidden Markov models in all cases. Of most relevance, however, is

the relative performance of the predictors operating over land usage elements

when compared with those operating over extracted locations. For short inter-

action durations, extracted locations provide the foundation that a↵ords more

accurate predictions, but as d
min

is increased beyond 20 minutes (for SVMs),

extracted land usage elements provide the better foundation, as demonstrated

by the higher predictive accuracies observed. Previously, in Figure 5.11, we

demonstrated a reduced variance among average area of land usage elements

when limiting the property during filtering to 400m2. Using these restricted

elements for prediction, Figure 5.13 demonstrates minimal impact compared

to the elements identified without a maximum area limit (but with a limit to

maximum radius), allowing for smaller elements without significantly impacting

on predictive accuracy. Reducing the size of identified elements in this manner,

to be closer to extracted locations, still yields higher predictive accuracies than

predicting over the extracted locations for values of d
min

over 20 minutes.

Additionally, the results in Figure 5.12 show that predictions over locations

clustered from visits extracted from GVE perform worse than those extracted

using thresholding. The reason for this is that GVE consistently extracts more

locations than thresholding for the same value of d
min

, as shown in Figure 5.8b,

leading to reduced predictive accuracy as the set of possible locations is in-

creased. Finally, Figure 5.14 and Table 5.8 show the results for performing

prediction over the MDC dataset, where the same general trends are observed.

5.5 Summary and Conclusion

This chapter has extended the idea of extracting significant locations from tra-

jectories by augmenting the trajectories with land usage elements. The Land

Usage Identification (LUI) procedure presented is capable of identifying which
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Figure 5.13: The e↵ect of minimum interaction duration, d
min

, on predictive
accuracy for the restricted land usage elements and existing location extraction
and prediction techniques, specifically the SVM, over the Warwick dataset.
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Figure 5.14: Predictive accuracies for locations extracted with thresholding, and
land usage elements identified through the LUI procedure, when predicting with
SVMs over the MDC dataset.
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Table 5.8: Accuracy of di↵erent techniques for SVMs over the MDC dataset,
with maximum values in bold and standard deviations in brackets.

dmin Land Usage Thresholding
2 19.7 (9.5) 27.3 (7.0)
4 24.3 (10.1) 32.1 (7.7)
6 23.6 (10.5) 34.7 (7.5)
8 28.8 (10.0) 35.2 (7.8)
10 31.7 (9.2) 34.9 (7.8)
20 34.4 (8.0) 34.5 (7.7)
40 38.4 (6.5) 36.6 (8.5)
60 42.2 (6.7) 38.3 (9.2)
80 48.4 (4.5) 42.2 (10.2)
100 50.1 (4.4) 42.8 (10.9)
120 48.6 (7.3) 44.7 (12.0)
140 47.8 (7.3) 45.4 (11.7)
160 49.0 (7.9) 47.2 (11.9)
180 49.6 (8.3) 47.3 (12.2)
200 50.8 (8.6) 47.9 (12.4)
220 52.0 (9.3) 46.4 (13.4)
240 51.2 (8.9) 47.6 (13.5)
260 43.8 (10.9) 42.7 (14.4)

land usage element a person was likely to have been interacting with, and sum-

marising these interactions. The resultant output is a set of interactions and

elements that are consistent with the visits and locations identified by existing

approaches, but have a far greater relationship with the real world. Not only

do these elements represent geographic features, but the elements also contain

information that can be used as a basis for understanding what a person may

have been doing.

The Land Usage Identification (LUI) procedure is evaluated through an ex-

ploration of the properties of identified elements and interactions, and through

a sample application, that of predicting future interactions. Through this ap-

plication, we demonstrate increased predictive accuracy when compared to pre-

dictions made over locations, using established predictive techniques. These

evaluations help to demonstrate the utility of the LUI procedure and the inter-

actions and elements it identifies. The interactions identified through the LUI

procedure go on to form the basis for determining contexts in Chapter 6.
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CHAPTER 6
The Context Tree

The work in Chapter 5 considers augmenting geospatial trajectories with land

usage information to identify the real-world feature that an individual, or other

entity, interacted with. These interactions are then summarised into a form

consistent with existing work that identifies locations from solely geospatial

trajectories. The utility of the procedure was demonstrated through a sample

application, that of predicting the next interaction the user would make.

The identified elements and their interactions o↵er a wealth of information

that is not present when identifying locations from trajectories alone, such as

the shape and properties of the real-world feature being interacted with. This

chapter focuses on leveraging the additional information to understand the con-

text behind user actions. Specifically, the chapter presents and evaluates the

Context Tree, a new hierarchical data structure that identifies and summarises

the context behind user actions in a single model. Through an exploration of

the properties of the generated trees, and the outputs of di↵erent stages of the

proposed generation procedure, we demonstrate the foundation for understand-

ing and modelling behaviour a↵orded by this model. Summarising user contexts

into a single data structure gives easy access to information that would other-

wise remain latent, providing a basis for better understanding and predicting

the actions and behaviours of individuals and groups.

6.1 Introduction

Exposing the latent knowledge present in geospatial trajectories has become an

increasingly important research topic in recent years, due in part to the perva-

siveness of location-aware hardware and the resulting availability of trajectory
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data. Motivated by a desire to understand the movement patterns of users,

this chapter presents a new data structure, the Context Tree, that uses the aug-

mented trajectories from Chapter 5 as a basis for identifying and summarising

the context behind user actions in a single hierarchical model. Using augmented

trajectories places a reduced burden on users than in existing techniques for

context identification, while providing vast amounts of information about what

a person may have been interacting with in the physical world. Clusters are

identified hierarchically and stored in a model that a↵ords easy access to the

information.

While existing work has considered identifying contexts by analysing at-

tributes such as location, social interaction histories, and sensor readings, they

are limited by the data that can be collected directly from each user. Employ-

ing augmented geospatial trajectories as a basis for context extraction allows for

contexts to consider the properties of features that people interact with with-

out collecting additional data from users directly. This chapter proposes and

evaluates techniques for identifying contexts from augmented trajectories and

summarising these contexts into a single model, namely the Context Tree. To-

wards these goals, Section 6.2 provides an overview of related work in the area

of context extraction and geospatial systems. The Context Tree data structure

itself, along with the generation procedure, is presented in Section 6.3, with

an exploration of properties of constructed trees and a comparison to partial

ground truths in Section 6.4. The chapter concludes with a summary and dis-

cussion in Section 6.5. Chapter 7 then goes on to illustrate the use of Context

Trees as a basis for constructing a predictive model to forecast the future actions

of individuals.

6.2 Related Work

Understanding people from data by identifying the activities they have per-

formed, and the contexts they have been immersed within, is an area of research

115



6. The Context Tree

that has received increased focus in recent years. Chapter 2, Section 2.5, pro-

vides a discussion of the current state of research in this area, with relevant

topics summarised here.

Identifying activities performed by individuals has previously been investi-

gated using video data [Brand et al., 1997; Kim et al., 2010; Messing et al.,

2009; Morris and Trivedi, 2011]. Although this provides a foundation for under-

standing what a person was doing, ensuring the constant availability of video

footage is infeasible, and so attention has turned to data that can be collected

by devices carried by the individual. Sensors such as heartrate, Global Posi-

tioning System (GPS) and accelerometers have been used to collect data as a

basis for classifying the activity being performed [Choudhury et al., 2008; Lester

et al., 2005; Pirttikangas et al., 2006; Subramanya et al., 2006; Van Kasteren

et al., 2008], with the collected data being used to train models as a super-

vised learning problem. Typically, the approaches employed are not concerned

with identifying when activities begin and end, but rather focus on classifying

a current activity from a set of known labels.

To reduce the requirement for known activities to be used in training models,

context identification aims to cluster periods of time in which a person has

similar goals or intentions, regardless of whether the specific goal is known.

This too has been considered from data generated by devices carried by the

user [Bao et al., 2011; Lemlouma and Layaida, 2004], but also by categorising

the contexts o↵ered by locations known to have been visited by the user [Assam

and Seidl, 2014]. These approaches have their own merits and drawbacks, as

they typically focus on a single context at a time and require specific data to

be collected from the users. In reality, users may be immersed within multiple

contexts or have multiple goals simultaneously, where one context may be a

subset of another (e.g. a specific type of task being conducted under the general

context of ‘at work’). The work in this chapter aims to reduce the onus placed on

individuals by requiring only the collection of geospatial trajectories, which can

be collected actively or passively, and identifying such a hierarchy of contexts.
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Figure 6.1: An abstract representation of a Context Tree, in which the similarity
of nodes increases with depth.

6.3 Identifying Contexts Through Clustering

This chapter proposes and evaluates the Context Tree hierarchical data structure

that summarises the contexts that a user has been immersed within at multiple

scales. Each leaf node of the tree represents a real-world feature or element

that the user is likely to have interacted with, be it a specific building, road,

area, or item (e.g. a bench in a park). These individual elements are joined

together through context nodes that represent a context at a specific scale,

where time spent within a context means that the user is likely to have had

similar aims or goals, with the root node being the highest scale, encompassing

all other contexts. In a similar manner to many other clustering tasks, the act of

identifying contexts is separate to that of labelling contexts. For this work, we

are only interested in the identification of groups of related element interactions

to form contexts, but the problem of assigning labels to contexts is left as

future work, as such labels are not required for many applications, for example

prediction, which is considered in Chapter 7. The contexts are identified by

determining periods of time the user spends interacting with elements with
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similar properties, or elements that are interacted with in a similar manner. As

it summarises time in this way, the Context Tree, depicted in Figure 6.1, can

become the basis for understanding people from augmented geospatial data.

Generating a Context Tree uses augmented geospatial trajectories as pro-

posed in Chapter 5, in addition to a clustering procedure that converts these

trajectories into a useful structure. The overall method of construction of a

Context Tree takes raw geospatial trajectories and land usage data as input,

and consists of the following four stages, as depicted in Figure 6.2:

1. Augmentation

Land usage elements likely to have been interacted with are identified

by extracting all potential elements and filtering them to remove noise (as

presented in Chapter 5). These trajectories are then summarised to detect

interactions.

2. Clustering

Filtered land usage elements and their interactions become the basis for

contextual clustering. Clustering is achieved with a hierarchical agglom-

erative algorithm.

3. Representation

Once clustered, the elements form a Context Tree data structure that can

be used as the basis for further understanding the behaviour of individuals

and groups.

4. Pruning

Some applications may be limited by the amount of data they can store,

or processing they can perform, so it may be necessary to prune a Context

Tree to reduce its size while maintaining as much useful information as

possible. Pruning is achieved through analysing the nodes of a Context

Tree with respect to a defined set of metrics.

The remainder of this section presents techniques to achieve each stage in

this procedure.
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Figure 6.2: Overview of the Context Tree generation framework. A trajectory
is augmented with land usage data; this augmented data is then hierarchically
clustered into a Context Tree. Subsequently the Context Tree can optionally
be pruned.
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6.3.1 Augmentation, Filtering, and Summarisation

The output of the augmentation, filtering, and summarisation procedures out-

lined in Chapter 5, Section 5.3, is a set of land usage elements. These elements

represent geographic features and have associated information including coordi-

nates, tags, and summarised interactions that describe the time the user spent

interacting with each element. The work in this chapter uses these summarised

trajectories as a basis for understanding behaviour; however, to achieve this we

extend the filtering and summarisation procedures used previously. In Chap-

ter 5, we identify the single land usage element that the user was most likely

interacting with, so the filtering process selects a single element smaller than

a specified size (Chapter 5, Section 5.3.2). For the process of Context Tree

construction, we relax these requirements by allowing multiple elements of arbi-

trary size to be assigned to each trajectory point. When considering clustering

contexts at multiple scales, it is reasonable to assume that a person may be

interacting with a hierarchy of land usage elements, for example a shop in a

shopping centre or a specific building on a university campus. By removing

the maximum element size, and allowing multiple land usage elements to be

associated with each point, we allow the identification of such hierarchies.

As part of the filtering procedure shown previously, each element in a bu↵er

is assigned a score. Selecting elements can therefore be performed in several

ways, depending on the desired outcome:

• Elements with a score above some threshold, t, can be assigned to the

point under consideration.

• Soft-thresholding, where a kernel function is employed to redistribute

scores, can be used to keep all elements.

• The n elements with the highest scores can be kept.

For this work, we are not concerned with element scores once filtering has

been completed, so we opt to select n elements to associate with each trajec-

tory point. Of course, with more than one element now associated with each
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Algorithm 4 Modified summarisation procedure for overlapping interactions.

1: trajectory  (p1, p2, ...) // augmented trajectory
2: t

max

 5 // maximum time between consecutive points (minutes)
3: d

min

 10 // minimum visit duration (minutes)
4: elements  ElementStore // store of elements and their interactions
5: ongoing  {} // stores start time of ongoing interactions until they are ended
6: previousTimestamp  p1.timestamp
7:

8: while currentPoint  trajectory.shift do
9: // If too much time has passed between points, end all ongoing interactions

10: if (currentPoint.timestamp - previousTimestamp) > t

max

then
11: toEnd  ongoing
12: toStart  currentPoint.elements
13: else
14: toEnd  (ongoing - currentPoint.elements) // End finished interactions
15: toStart  (currentPoint.elements - ongoing) // Start new interactions
16: end if
17:

18: // Store interactions that are long enough
19: while element  toEnd.pop do
20: if (previousTimestamp - ongoing[element]) > d

min

then
21: interaction  {start: ongoing[element], end: previousTimestamp}
22: elements.addInteraction(element, interaction)
23: end if
24: ongoing.delete(element)
25: end while
26:

27: // Mark the start time of new interactions
28: while element  toStart.pop do
29: ongoing[element ] = currentPoint.timestamp
30: end while
31:

32: previousTimestamp  currentPoint.timestamp
33: end while
34:

35: return elements

point, the summarisation procedure must be modified to handle overlapping

interactions. Algorithm 4 shows an extended version of Algorithm 3, that has

the capability of dealing with overlapping land usage interactions.

6.3.2 Building Clusters

The identification of similar contexts is performed through clustering that con-

siders both the properties of the elements and the properties of user interactions

to determine similarity. Rather than aiming to identify a single level of clus-

ters, which would limit the utility and applicability of the clusters to a single

scale, the goal here is to build a hierarchical model, constructed by progressively

merging land usage elements that represent similar contexts in a Context Tree,
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a depiction of which is shown earlier in Figure 6.1.

Initially, each land usage element is distinct and is treated as a singleton

cluster (i.e. a cluster with exactly one element). In each round of clustering,

several of these clusters are merged to represent a context and a new higher

level in the hierarchy, with pointers between the levels considered as parent and

child relationships. That is, if two clusters at one level become merged into

another cluster at the next level, the original clusters are considered as children

of the new cluster. This section describes how clusters are merged with respect

to their properties.

As discussed in Chapter 5, Section 5.3, land usage elements are assumed to

have a set of tags in the form of ‘key:value’ pairs that describe properties of

the real-world entity to which the element relates, in addition to geographical

coordinate sets that describe the geographical properties of the real-world entity.

Once augmented and summarised, these elements are also associated with a set

of interactions consisting of times the user interacted with each element. When

clusters are merged to create a Context Tree, the following procedures are used:

Times

The times for the merged cluster are taken to be the union of the sets of

times from all child clusters, where overlapping time ranges are them-

selves combined into one. For example, if one cluster had the set of

times {10:00-10:05, 11:00-12:00} and another had {10:04-10:20, 11:10-

11:15, 12:05-12:09}, then the merged times would be {10:00-10:20, 11:00-

12:00, 12:05-12:09}.

Tags

Similarly, each element has associated tags. The tags of the merged cluster

are defined as the union of tags from the child clusters, where if two

tags share a key but not a value, both values are stored. For example,

‘recreation:park, access:public’ would be merged with ‘recreation:pond’ to

form ‘recreation:park,pond, access:public’.
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Figure 6.3: An example of how clusters are merged together when generating
Context Trees.

Geographical Coordinate Sets

Each element contains a set of coordinates that define the geographical

shape of the entity to which they relate. Merging such elements should

keep each of these sets discrete, unless they intersect, in which case the

coordinates belonging to both shapes are combined and replaced with their

convex hull. This is shown in Figure 6.3.

The merging of times assumes a periodicity of 24 hours, which while reasonable

for many people (i.e. those who follow a daily routine), it may not be appropri-

ate for everyone. As such, automatic time series learning could be utilised to

improve the learning of meaningful movement patterns of the individual. While

exploring such techniques is beyond the scope of this work, there are many exist-

ing approaches that may be e↵ective for the task, as discussed in [Ahmad et al.,

2004]. An example merging of two elements according to these rules is shown

in Figure 6.3, where it is assumed there is no geographical overlap between the

two elements (i.e. the coordinate sets cannot be merged).

6.3.3 Contextual Distance Metrics

Clustering elements together requires a distance metric to measure element sim-

ilarity. While identifying contexts from certain types of data is a task considered

before, and discussed in Chapter 2, no metrics currently exist that have been
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tailored to the identification of contexts from augmented geospatial trajectories.

This section presents metrics that encapsulate the goals behind context extrac-

tion for this specific problem, with an emphasis on properties of the interactions

and properties of the geographic features being interacted with. Having defined

how elements are merged into clusters and, consequently, how two clusters are

merged (Section 6.3.2), we can now consider the similarity between two clusters.

Semantic Similarity

Clusters have tags that describe properties of the real-world entities contained

in the cluster, forming an ideal basis for understanding what the user might

have been doing. Under the assumption that clusters with similar tags are

likely to have properties in common, we use the semantic similarity between

cluster tags as the basis for a distance metric. For this, we adopt the similarity

measure proposed by Wu and Palmer [1994], and extended by Resnik [1999] for

calculating distance between word taxonomies through WordNet [Miller, 1995].

The calculated scores are between 0 and 1 (inclusive), where a score of 1 means

that the words are interchangeable. The semantic similarity between two sets

of tags, t1 and t2, is therefore calculated as:

TagSim(t1, t2) =

P
a2t1

max 8
b2t2Sim(a, b)

|t1|
(6.1)

As tag similarity is not commutative, cluster similarity is calculated as:

SemanticSimilarity(c1, c2) =

max(TagSim(c1.tags, c2.tags), TagSim(c2.tags, c1.tags)) (6.2)

Feature Similarity

The context of an activity or period of time is dependent not only on the location

in which time is spent, but on additional factors. With this in mind, we propose

a second similarity measure, FeatureSimilarity, that compares the interaction
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features of two clusters, specifically:

• average interaction duration,

• most common time of day interaction begins,

• count of the number of times the element is interacted with, and

• total area covered by elements (in m2).

The value from each feature is then discretised by placing values within bins

(e.g. time of day could be recorded in 4 hour increments), and converted into

a single string that describes the feature and value (e.g. ‘timeofday 12’ would

indicate that the most common time of day that interaction begins is between

12PM–4PM). This procedure generates a set of features, f1 and f2, for clusters

c1 and c2, from which a similarity score is defined using the Jaccard index

[Rajaraman and Ullman, 2011]:

FeatureSimilarity(f1, f2) =
|f1 \ f2|
|f1 [ f2|

(6.3)

Geographical Distance

For some applications it is possible that the similarity between clusters depends

upon their geographical proximity, where two clusters that are close together

may have common purposes. If this property is known to be true in the data,

or given the goal of clustering, then the proximity of clusters can be considered

as the minimum geographical distance between elements of a cluster, calculated

using the Haversine formula [Robusto, 1957]:

GeographicalDistance(c1, c2) = min 8
a,b2c1⇥c2Ds

(a, b) (6.4)

Hybrid Contextual Distance

Using one of the previously discussed metrics in isolation would not accurately

capture the context of the individual, as context depends on more than just any

one factor. Instead, we combine the SemanticSimilarity and FeatureSimilarity
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scores into Hybrid Contextual Distance (HCD), a measure of the contextual

similarity between two clusters:

HCD(c1, c2) = 1� (� SemanticSimilarity(c1, c2)

+ (1� �) FeatureSimilarity(c1, c2)) (6.5)

Where � is a user-specified weighting parameter that allows emphasis to be

placed either on the semantic or feature similarity between clusters.

We choose to ignore the geographical proximity of elements, and therefore

the geographical distance metric, because contexts should be separate from their

location (e.g. visiting two cafes in di↵erent cities is likely to be indicative of the

same context). If, however, additional domain knowledge is available that ties

geographical locations together with enhanced meaning (e.g. it is known that all

buildings in a given area perform a similar function), then geographical distance

could be added to the HCD metric. HCD can be used as a basis for clustering

elements, thus determining which elements have similar contexts, aiding in our

understanding of the individual to which the data belongs.

6.3.4 Hierarchical Clustering

With a distance metric in place, clustering can be performed using standard

techniques. While traditional clustering is limited in that it extracts clusters

at a single scale, which may not be appropriate for a given task, hierarchical

clustering identifies clusters at multiple scales. We use a greedy hierarchical ag-

glomerative clustering algorithm, presented in Algorithm 5, that extracts clus-

ters of increasing similarity up to a single root node, creating a Context Tree.

While the algorithm is fairly standard in itself, its application to the generation

of Context Trees is novel. The algorithm deviates slightly from existing hierar-

chical clustering approaches in that it is capable of extracting multiple clusters

together in a single step if they have the same distance.
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Algorithm 5 Agglomerative hierarchical clustering algorithm.

1: clusters  elements // The input set of elements, each treated as its own cluster
2: while clusters.length > 1 do
3:

4: // Create an n⇥ n matrix of distances between clusters
5: distanceMatrix  [ [d11, ...], [d21, ...], ...]
6:

7: // Find all pairs of clusters with the smallest distance between them
8: // If multiple pairs overlap (i.e. share a cluster), then group them together
9: closestGroups  ClosestGroups(distanceMatrix)

10:

11: // Merge each extracted group into a single cluster
12: for group 2 closestGroups do
13: newCluster  Merge(group)
14:

15: // Set the old clusters as children of the new and remove the old clusters
16: for cluster 2 group do
17: newCluster.children.append(cluster)
18: clusters.delete(cluster)
19: end for
20:

21: // Add the merged cluster to clusters
22: clusters.append(newCluster)
23: end for
24:

25: end while
26:

27: // By this point, clusters contains a single root cluster for the hierarchy
28: return clusters.first

6.3.5 Context Tree Pruning

Storing Context Trees in their entirety maintains the maximum amount of in-

formation; however, there are applications where reducing the size of a tree may

be desirable. Memory-constrained devices, for example, may be better able to

make use of a reduced size Context Tree as this would require lower storage re-

quirements, and also enable quicker search due to the reduced number of nodes.

Furthermore, reducing the size of Context Trees may have application-specific

benefits, such as preventing overfitting when learning prediction models. In

both of these cases, it is desirable to prune the tree to reduce the amount of

data stored while maintaining as much information as possible. This section

presents a method for such pruning, that although requiring additional process-

ing to select nodes eligible to be removed, results in smaller Context Trees that

require less memory to store and fewer operations to search. A representation

of a pruned Context Tree can be seen in Figure 6.4.
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Figure 6.4: An example of a pruned Context Tree (with removed nodes crossed
through).

Pruning is performed depth-first, evaluating each cluster to determine whether

the additional overhead of storing the node is outweighed by the utility a↵orded.

Clusters are considered using the null hypothesis, and the hypothesis rejected

when the utility of storing the cluster is above a threshold. Any cluster for which

we are unable to reject the hypothesis is pruned, and its parent is marked as eli-

gible for pruning. As metrics do not already exist for this task, we adapt existing

metrics used in related domains for the purpose of Context Tree pruning.

Storage Cost

Clusters are scored according to two metrics: their storage cost and their utility.

To determine the cost of storing a cluster, it is important to understand how

clusters are built up in a Context Tree (described in Section 6.3.2). When

merging two clusters together to form a parent cluster, the aspects that belong

to each cluster are considered in turn: specifically the tags, times and coordinate

sets. Sets of tags are combined from the child clusters by taking their union,

while times and coordinate sets are merged in such a way that overlapping
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components are combined into single elements, thus through the combining of

child clusters into a parent cluster, information has been removed. The cost

of storing an additional node is therefore the cost of storing the individual

components (e.g. time range) that are present in a child, but not present in the

same form in its parent. Assuming equal cost to store each component:

Cost(C|P ) = ⇠ + |C
times

\ P
times

|

+ |C
coordsets

\ P
coordsets

|+ | [
s2C

coordsets

s \ [
s2P

coordsets

s| (6.6)

Where ⇠ > 0 is a small, manually selected, penalty that represents the overhead

of storing each cluster, C
times

and P
times

are the sets of time ranges that are

associated with clusters C and P , and C
coordsets

and P
coordsets

are the sets of

coordinate sets associated with clusters C and P . Remembering that the coordi-

nate sets belonging to a cluster themselves contain sets of points (i.e. C
coordsets

= {{p1:1, p1:2, p1:3, ...}, {p2:1, p2:2, p2:3, ...}, ...}), [s2C

coordsets

s is taken to be the

set of all points associated with any coordinate set that belongs to cluster C.

Having ⇠ as non-zero represents that there is always a small cost associated with

each cluster. Equation 6.6 must be tuned for the specific application to better

represent the true cost of storing a node, but it provides a basic foundation.

Cluster Utility

Determining the utility of a cluster is di�cult and is dependent on the specific

use of the Context Tree. For this reason, any application of the approach will

need to consider the goal of pruning and use this to inform the measurement of

the utility a↵orded by a specific cluster. We adopt a general approach that can

be tailored to specific needs by providing a measure of the information lost if

the parent of a cluster were used to represent the child, similar in idea to the

Kullback-Leibler divergence used to measure the di↵erence between probability

distributions. As parents contain a superset of the children, we consider the

utility of a child cluster (C) given its parent (P ) to be the proportion of data
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present in the parent that is not covered by the child, where the measure of

data must consider the attributes (i.e. tags, times, and coordinate sets) present

in each cluster:

Data(C ) =
P

t2C

times

duration(t) +
P

s2C

coordsets

area(s) + |C
tags

| (6.7)

Providing even weighting to the di↵erent elements for the measure of utility:

Utility(C|P ) =

1�
 
1

3

P
t2C

times

duration(t)
P

t2P

times

duration(t)
+

1

3

P
s2C

coordsets

area(s)
P

s2P

coordsets

area(s)
+

1

3

|C
tags

|
|P

tags

|

!
(6.8)

Specifically, this metric considers the proportion of time, area and tags cov-

ered by the child with respect to the parent, and holds true to the aims of such

a metric to produce a score of 0 if the parent and child contain identical infor-

mation and a score approaching 1 if the child only represents a fraction of the

parent.

Cost-Benefit Score

The cost-benefit score of a child cluster given its parent is taken to be the utility

of the cluster divided by the storage cost:

CostBenefitScore(C|P ) =
Utility(C|P )

Cost(C|P )
(6.9)

While utility is normalised between 0 and 1 as it represents the proportion

of the parent that is not covered by the child, cost only has a minimum bound

of ⇠, where ⇠ > 0. Depending upon the application, it may be desirable to also

normalise cost relative to the current Context Tree. Using this metric on nodes

in a depth-first manner, pruning should occur for any cluster C with parent P

and CostBenefitScore(C|P ) < ✓, where ✓ is the pruning threshold and C has no

unpruned children.
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6.4 Case Study

In this work it is not practical to obtain a concrete ground truth to act as a point

of comparison for evaluating complete Context Trees because the correctness of

an extracted set of clusters depends on the task for which the clusters will

be used. In light of this, our evaluation of the proposed techniques follows a

similar approach to those used in existing literature where a single ground truth

does not exist, as discussed in Chapter 2, Section 2.1.4. This is achieved by

exploring the properties of the generated Context Trees and comparing them

against expected results while providing small, representative, examples that

demonstrate the utility a↵orded by these procedures.

This section provides a case study of the proposed Context Tree data struc-

ture, along with the modified filtering procedure (Section 6.3.1) and the clus-

tering and pruning procedures (Sections 6.3.2 and 6.3.5). Although there are

many use cases for Context Trees, including as a basis for anomaly detection,

location prediction, and city planning, we focus on understanding the high-level

behaviour of an individual throughout a 24 hour period as a representative ex-

ample. The evaluation here is continued in the following chapter where Context

Trees are converted into a hierarchical classification model capable of predict-

ing both future contexts and future interactions of individuals, thereby further

demonstrating the utility a↵orded by the structure evaluated here.

6.4.1 Methodology

Exploring the Context Tree uses augmented geospatial trajectories as a basis

for understanding past actions. For this purpose, we use the same trajectories

as in the previous chapter, detailed in Section 5.4.1. These trajectories are

augmented, filtered, and summarised using the procedure outlined in this and

the previous chapter. From the data generated through this process, Context

Trees can be constructed. A portion of a Context Tree generated from the same

data as in Figure 5.2 (Chapter 5) can be seen in Figure 6.5, where the example
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Figure 6.5: An extract of a Context Tree generated using real data.

element (‘w 145179860’) from the sample data is highlighted with a solid blue

circle.

Data

The data used for evaluating Context Trees is the same as used for evaluating

the Land Usage Identification (LUI) procedure in Chapter 5; specifically 10 users

from each of the Nokia Mobile Data Challenge (MDC) and Warwick datasets are

used in addition to land usage data from OpenStreetMap (OSM). In Chapter 5,

we limit the size of OSM elements selected for inclusion in the augmentation

procedure through the parameter maxradius. For this chapter, however, we do

not impose such a limit, to allow the identification of a hierarchy of features

(e.g. a building and the campus it resides on). However, OSM includes several

designations that go beyond our definition of a land usage element, namely the

boundaries of towns, counties, countries, etc. In the previous chapter, these

would have been ignored due to their size, but for this work instead we remove
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these elements from the dataset during the augmentation process1.

In addition to information about each element, OSM contains several meta

tags that relate to the dataset, but not specifically the real-world feature. Gen-

erating Context Trees uses these tags heavily to determine semantics of the

element, so we remove such metadata when generating augmented trajectories2.

6.4.2 Filtering and Summarising

The expanded filtering procedure presented in this chapter enables multiple land

usage elements to be associated with a single trajectory point. To understand

the e↵ectiveness of this procedure, we explore properties of the filtered data,

specifically focusing on how the elements and their semantics change. The aim

of filtering is to remove noise and focus the data on elements that the user was

likely to have been interacting with at a given time. It is reasonable therefore

to assume that the elements post-filtering should have more similarity than

those before, with less variation caused by the inclusion of random elements.

To explore this hypothesis, Figure 6.6 shows the average tag key similarity

(i.e. only the key part of the ‘key:value’ pair that makes up an element’s tags,

which corresponds to broad type, e.g. ‘building’) both pre- and post-filtering

for a sample user over 1,000 points of their data. Semantic similarity here is

calculated using the same method as discussed in Section 6.3.3. The figure

demonstrates that in the majority of cases, tag key similarity is increased after

filtering has occurred, specifically going from mean 0.089 (standard deviation:

0.036) to mean 0.187 (standard deviation: 0.156). These results indicate that

the elements present post-filtering are more similar and that unrelated noise

elements have been removed correctly.

Additionally, Figure 6.7 shows the relationship between n, the maximum

number of elements associated with each trajectory point and the number of

1Specifically, we remove OSM relations that have either ‘boundary:administrative’ or
‘boundary:ceremonial’ as one of their tags.

2Tags that begin with the following strings are removed: source, wikipedia, note, name,
alt, created, fixme, todo, website, phone, layer, url.
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Figure 6.6: The e↵ect of element filtering on tag key similarity from a single
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Figure 6.7: The e↵ect of n on number of land usage interactions identified when
constructing Context Trees.

individual interactions identified, averaged over all users of both datasets. The

trend present is as would be expected, with an increase in n resulting in more

interactions being identified as each additional element extracted has additional

interactions. For the remainder of this section, unless specified otherwise, we

set n = 5 as it produces representative results.

User-informed Evaluation

To understand the applicability of using identified land usage elements as a basis

for understanding the actions of people, we turn our attention to exploring how

well the identified elements represent what users were actually doing. While
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there is no ground truth available for this type of problem, we can evaluate the

procedure by considering desirable properties of the output for a specific appli-

cation and manually compare the expected and actual results for small subsets

of data. For this, we are unable to use the MDC data because contacting the

users who provided data is not possible, but we can use the Warwick dataset,

where we have the ability to converse with participants. By focusing on iden-

tified land usage elements instead of extracted locations, we can consider time

that the user spent moving as part of a user’s context.

This section presents analyses on small amounts of manually labelled real-

world data with the aim of understanding the types of feature a person interacts

with. The data analysed spans 24 hours from 3 of the 10 users of the Warwick

dataset, where annotations were added manually as accurately as possible, and

in consultation with the users. The augmentation and filtering procedures were

run over this data with parameters � = 10, n = 5, and, for each labelled

time period, the 3 most common element tags were identified. This is shown

in Figures 6.8-6.10. The aim here is not to label the time periods with the

exact activity being performed, but rather to demonstrate that a meaningful

relationship exists between the tags extracted and the true activity.

In Figure 6.8, general labels are applied to the activities being performed,

and a meaningful correlation between the tags extracted by the procedure and

these labels is evident. Specific examples include the action of driving being

labelled with the ‘highway’ key, and taking the train with ‘railway’. Although

the tags are not always perfect, they are indicative. For instance, when the

individual was at home no residential building was identified, but an indication

of the type of location was given by the tags ‘lit:yes’ and ‘highway’. In the

region where this data was collected, roads with street lighting typically signify

residential areas. A similar relationship is shown in Figures 6.9 and 6.10, with

labels applied hierarchically and at lower granularities. While not every item is

labelled exactly, this is likely to be a result of the data collection method. We

used a data collection rate of one point per minute, meaning that several labelled
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Figure 6.8: Partial ground truth: Manually labelled data (in bold) compared
against extracted element labels.

Figure 6.9: Partial ground truth: Manually labelled data (in bold) compared
against extracted element labels, for a di↵erent user and with increased granu-
larity over Figure 6.8.
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Figure 6.10: Partial ground truth: Manually labelled data (in bold) compared
against extracted element labels, for a di↵erent user to Figure 6.9.
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activities consist of only 1 or 2 trajectory points, leaving little information for the

procedure to utilise. Similarly, the land usage dataset contains a vast amount

of information, but can be limited in parts. An example of this is that the

pub which was visited at 17:25 (Figure 6.10) is inside a larger building. The

procedure is only capable of identifying that the building was occupied by the

user, but there is no information pertaining to which element inside the building

was being interacted with, so the only available information is ‘building:yes’.

To explore quantitatively how well the procedure worked over these exam-

ples, each tag extracted is scored based on the relevancy to the label using

three classifications: high, medium, low/none. These scores are manually as-

signed and shown in Table 6.1, where a high tag indicates that the label is very

well correlated to the activity (e.g. ‘building:residential’ to the activity ‘Home’),

medium indicates that there is some link (e.g. ‘surface:asphalt’ to ‘Driving on

a main road’), and low/none being given to tags with little or no relationship

to the activity (e.g. ‘highway:bus stop’ to ‘Attending lecture’). Figure 6.11a

shows the proportion of tags assigned to each of these weightings, demonstrat-

ing that the procedure identified tags with high or medium relevancy 69.7% of

the time. We also consider the highest-ranked tag assigned to each labelled time

period; the proportion of time periods represented by each tag score is shown

in Figure 6.11b. From these results, it is clear that while in the data from the

three users only 32.8% of tags were awarded a high relevancy score, 60.0% of

labels have at least one tag with such a score, and 88.9% contain at least one

tag with a score of high or medium. This indicates that while not all of the 3

tags per label were useful, in nearly all cases at least one of them was.

While this evaluation is limited in that it only considers 24 hours’ worth

of data from 3 di↵erent users, it provides an indication that the techniques

discussed previously are extracting useful and correct elements. This is demon-

strated by showing that there is a strong relationship between the tags identi-

fied by the system and the labels manually assigned to data as a partial ground

truth. A complete ground truth is not possible in this domain, since the desir-
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Table 6.1: Summary of tags and frequency count for each type of ground
truth interaction, scored based on the relevancy of each tag (High, Medium
and Low/None).

Label Tag S # Tag S #
Home landuse:residential H 2 barrier:kissing gate L 1

highway:residential H 2 oneway:no L 1
building:residential H 1 maxspeed:30 L 1
building:garage M 1 highway:primary L 1
lit:yes M 1 left county:nor... L 1

Walking (res.) landuse:residential H 1
Walking (shops) amenity:parking M 1
Walking (road) sidewalk:both H 2 highway:bus stop M 1

highway:secondary H 1 bicycle:yes M 1
oneway:yes M 2 ref:lmngtns L 1
lit:yes M 2 public transport:pay... L 1
boundary:public... L 1

Walking (park) leisure:park H 1 waterway:river M 1
foot:yes H 1 barrier:gate M 1
barrier:kissing gate M 1

Driving (res.) landuse:residential H 2
Driving (road) highway:tertiary H 6 maxspeed:60 M 3

highway:primary H 2 maxspeed:30 M 2
highway:secondary H 1 maxspeed:20 M 2
oneway:yes M 4 amenity:university L 2
highway:bus stop M 3 type:multipolygon L 1
surface:asphalt M 3

Parking (uni) amenity:university M 1 type:multipolygon L 1
Work (o�ce) building:university H 2 highway:footway L 1

building levels:4 M 2 highway:service L 1
Walking (uni) amenity:university H 4 landuse:grass M 1

highway:crossing H 2 type:multipolygon L 4
Eating (rest.) level:0 M 1 area:yes L 1

level:1 M 1 lit:yes L 1
building:yes M 1 surface:asphalt L 1

Eating (pub) building:yes M 1 area:yes L 1
level:0 M 1

Work (library) amenity:library H 2 type:multipolygon L 2
amenity:university M 2

Work (lecture) surface:asphalt L 2 highway:bus stop L 1
type:multipolygon L 1 oneway:yes L 1
lit:yes L 1

Visiting friend amenity:university M 1 type:multipolygon L 1
building:yes M 1

Petrol station operator:tesco H 1 amenity:fuel H 1
opening hours:24/7 H 1

Union (uni) amenity:university M 1 type:multipolygon L 1
Bar building:yes M 2 oneway:yes L 2

surface:asphalt L 2
Train electrified:rail H 2 railway:rail H 1

gauge:1435 H 2 frequency:0 L 1
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Figure 6.11: The proportion of tags identified as relevant through the ground
truth comparison.

able properties of Context Trees will vary significantly based on their intended

use. However, we believe that this exploration goes some way to demonstrating

the accuracy of the technique.

6.4.3 Clustering

With the applicability of the land usage elements to the task demonstrated, we

now explore properties of the Context Trees generated by clustering land usage

elements together based on their semantics and properties of the user’s inter-

actions with each element. When constructing Context Trees from summarised

data, the only required parameter is �, which specifies the weighting to be given

to semantic similarity as part of the HCD distance metric (Equation 6.5). A

weighting of 1 will construct a tree based only on the semantic similarity be-

tween node tags, and a weighting of 0 will construct a tree based only on the

similarity of features, with any value in between using a combination of the

two. The relationship between � and the number of nodes in a Context Tree

is shown in Figure 6.12 (constructed from augmented trajectories from both

datasets, filtered with parameters � = 10, n = 5, d
min

= 10, and t
max

= 60).

While low values of � produce fewer context nodes, the meaning behind the

identified clusters will be most influenced by the parameter.
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Figure 6.12: The e↵ect of � on the number of tree nodes in a Context Tree.

Since our work on understanding context from trajectories augmented with

land usage information is novel, there are no existing baseline methods or ground

truth datasets with which to compare. Instead, we take the closest method to a

baseline that exists and compare the results against this. Figures 6.13 and 6.14

show the results of clustering Context Trees using naive distance metrics that

consider only geographic distance between elements (Figure 6.13) and tempo-

ral distance between interactions (Figure 6.14). While these figures show only

one small example, the results are representative of using such metrics in that

the elements clustered together have no clear contextual relationship. This is

in contrast to the Context Trees generated from the same data using the Hy-

brid Contextual Distance metric, along with di↵erent values of �, as shown in

Figures 6.15–6.17.

In all of these examples, the element identifier has been replaced manu-

ally with a descriptive keyword to represent the element. Semantic clustering

(shown in Figure 6.15) creates distinctive groups for buildings, footpaths and

public amenities, as the elements in these groups are similar, while feature-based

clustering (Figure 6.16) creates groups that are less easily identifiable and relate

to properties of the elements (e.g. the footpaths are not grouped because they

were not encountered in the same journey, but rather were used at di↵erent

times of the day). Finally, hybrid clustering (Figure 6.17) shows properties of

both semantic and feature-based clustering where both the description of the

141



6. The Context Tree

Figure 6.13: Example Context Tree: Geographic clustering.

Figure 6.14: Example Context Tree: Temporal clustering.
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Figure 6.15: Example Context Tree: Semantic clustering (� = 1).

Figure 6.16: Example Context Tree: Feature-based clustering (� = 0).
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Figure 6.17: Example Context Tree: Hybrid clustering (� = 0.6).

element and properties of the interaction with the element are considered to

create clusters. Selecting an appropriate value of � is application-specific.

These Context Trees provide only small examples of the di↵erences between

trees generated with naive distance metrics (Figures 6.13 and 6.14) and those

generated with the HCD metric (Figures 6.15–6.17). In order to quantify such

di↵erences, and given knowledge of the data and how it was collected, we opt to

make several assumptions of expected properties of generated Context Trees and

explore the extent to which these expectations are violated with each distance

metric. While this is of course a subjective evaluation, and the utility will vary

based on the specific application to which the Context Tree is put, it goes some

way to providing an indicator of the utility of this approach in lieu of a ground

truth. The assumptions made are:

1. Buildings should be grouped together unless they have very di↵erent uses

(e.g. residential buildings should not be in the same group as o�ce build-

ings).

2. Roads should be grouped together, with elements relating to roads grouped

at a higher level (e.g. junctions).
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3. Public amenities should be grouped together unless the interactions have

very di↵erent properties.

These assumptions focus on the semantics of elements, but the features also

need to be considered when exploring possible reasons for clusters being split.

For instance, if a person visited many houses as part of their job, it would

be reasonable to assume that these houses should be semantically close to the

residence of the individual in the Context Tree, but not at exactly the same

level. The usefulness of such assumptions will depend on the application, but

it is possible to see that when aiming to characterise how a person has spent

their time, it is beneficial to identify the times spent at residential buildings

separately to those spent at work. On the small example Context Trees shown

in this section, geographic and temporal clustering (Figures 6.13 and 6.14) vio-

late all 3 assumptions. Semantic clustering (Figure 6.15) adheres best to these

assumptions, with the houses grouped at the same level and the building under

construction close by in the next level up. Similarly, the footpaths have been

grouped together with the cycle barrier, a related element, and the highway

grouped one level up. Feature-based clustering (Figure 6.16) has fewer valid

assumptions than semantic clustering, as it only considers the interactions with

the elements and not the elements themselves. Although the houses are together

in a single cluster, they are also joined with the car park and footpath. Finally,

hybrid clustering (Figure 6.17) is very similar to semantic clustering with the

exception that the highway is no longer situated close to the footpaths, but is

further up the Context Tree by itself. This still leaves 2 of the assumptions

strictly adhered to, with 1 very close: a change that can be explained by the

consideration of interaction features, where the highway has a di↵erent profile

of interaction than the footpath and cycle barrier elements. Again, these are

small examples; however the trends present have been observed to be consistent

across larger Context Trees.

With a better understanding of filtering, summarising, and clustering, we

turn our attention to exploring how data influences the properties of the gener-
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Figure 6.18: Example data from a single user showing the proportion of new
land usage elements encountered each day for a sequence of 20 days. Note that
no data was recorded during day 5 for this user.

ated Context Tree. Focusing on 21 days of data from a single user, Figure 6.18

shows repetition in data by using the first day as a set of training data and

calculating the coverage (i.e. the proportion of elements encountered in the test

day present in the training day’s data) for each following day, shown by the blue

Fixed line. Additionally, the red Retrained line shows the coverage when using

all previous days (i.e. 0 to d � 1, where d is the current day) as the training

set. The total number of nodes, leaf nodes, and interactions for a Context Tree

generated using the same data (where day d shows a summary for a tree built

using all data from days 0 to d) are shown in Figure 6.19a. Please note that no

data was recorded during day 5 for this sample user in the MDC dataset.

Figure 6.18 begins with a low coverage for both Fixed and Retrained lines,

indicating that few elements encountered in day 1 were present in the training

set (day 0). However, while the Fixed score remains low for days 2–4, the

Retrained score approaches 100%. In this instance, this is indicative of the

user visiting elements they did not encounter in the initial training day (day

0), but that they did encounter during subsequent days, as the Retrained line

includes all previous days as training data. The figure shows similar results

for the remaining test days, where during day 9 the user visited only locations

visited during day 0; during days 9, 11 and 16–20 the user encountered no
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Figure 6.19: The relationship between amount of training data and number of
tree nodes in a Context Tree.

new elements as the score for Retrained is at 100%. Figure 6.19a shows how

these properties relate to the size of Context Trees generated. The number of

leaf nodes is the number of unique elements and the number of interactions

is a count of the total number of interactions extracted. That is, if the user

encountered the same element 3 times, or 3 di↵erent elements, both would

count as 3 interactions. At day 1, the number of interactions is roughly the

same as the number of leaf nodes, indicating that all elements were encountered

approximately once. As time goes by, more elements are encountered, but a large

number of existing elements are revisited, demonstrated by the disproportionate

rise in the number of interactions. This indicates that over a short period, where

the user is likely to have remained within a single region, the size of the tree
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does not increase significantly as additional data is added. However, considering

trees over larger time periods will not have the same property as the user is likely

to visit new regions with entirely new leaf nodes. Figure 6.19b shows a similar

graph as Figure 6.19a, however it was generated using data from a user of the

Warwick dataset instead of the MDC dataset. As is evidenced by the figures,

the procedure extracts similar trends in users from each dataset.

This section has characterised the outputs and properties of the Context Tree

generation procedure presented in Section 6.3. While the concept of a ground

truth for this work is not applicable, and existing approaches for comparison

are lacking, through the provision of multiple small examples and a discussion

of general trends we have demonstrated the applicability of the approach to the

task of identifying similar contexts and storing such information in a hierarchical

data structure.

6.4.4 Pruning Evaluation

Pruning requires a pre-built Context Tree and two parameters, namely ✓ and

⇠, where ✓ provides a threshold for pruning and ⇠ is a penalty associated with

every node when calculating its storage cost.

Figure 6.20 shows the e↵ect of varying ✓ when pruning Context Trees gen-

erated from the same data and parameters as those used in Figure 6.12, with

� = 0.5 and ⇠ = 1 and trajectories from both datasets. From this figure it is

possible to see that the number of nodes in a Context Tree can be reduced dras-

tically while maintaining the majority of the information. Selecting ✓ = 0.8, the

resultant pruned Context Tree contains approximately 25% of the nodes present

in the unpruned tree, but maintains almost 75% of the useful information. While

the process to prune the Context Tree adds additional complexity, the resultant

tree is considerably more compact and thus applications that require storing or

searching the tree will have significantly lower overheads.

Using the same data again, but this time holding ✓ = 0.2, Figure 6.21 shows

the e↵ect of changing ⇠ on the number of unpruned nodes, average HCD and
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Figure 6.20: The e↵ect of ✓ on number of nodes in a sample Context Tree
(� = 0.5, ⇠ = 1).

information contained within the tree. Increasing either ✓ or ⇠ reduces the num-

ber of nodes remaining after pruning (Figures 6.20a and 6.21a), as increasing ✓

specifies a higher threshold required to maintain a node, and increasing ⇠ assigns

a higher cost to each node, making it less likely to exceed the threshold. The

results also demonstrate that as more nodes are pruned from the Context Tree,

the average distance of the remaining nodes becomes smaller (i.e. they become

more similar, Figures 6.20b and 6.21b). Finally, Figures 6.20c and 6.21c demon-

strate that although pruning reduces the total information in the tree, it does

so gradually until the number of unpruned nodes approaches 0, under the defi-

nition of data, i.e. useful information, presented in Equation 6.7 (Section 6.3.5).

This helps to demonstrate the e↵ectiveness of pruning as the number of nodes
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Figure 6.21: The e↵ect of ⇠ on number of nodes in a sample Context Tree
(� = 0.5, ✓ = 0.2).

in the tree can be reduced drastically, but the amount of information remains

high.

Figure 6.22 shows how pruning a↵ects trees generated from real-world data

(using the same data and clustering as in Figure 6.17). With the lowest value

of ✓ (✓ = 0.25 shown in Figure 6.22b), only two leaf nodes have been pruned:

one of the footpaths and one of the buildings. Increasing ✓ (✓ = 0.35 shown in

Figure 6.22c) causes more leaf nodes to be pruned, and a further increase (✓ =

0.45 shown in Figure 6.22d) has the e↵ect of pruning entire sub-trees, resulting in

a much smaller and more compact tree. Although containing less information,

such pruned trees provide benefits in resource-constrained applications where

storing and processing an entire tree may be infeasible.
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6. The Context Tree

(a) Unpruned tree. (b) ✓ = 0.25.

(c) ✓ = 0.35. (d) ✓ = 0.45.

Figure 6.22: Example Context Trees pruned with di↵erent values of ✓, with
⇠ = 1.5.
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6.5 Summary and Conclusion

This chapter presented and evaluated the Context Tree data structure, along

with techniques for generating Context Trees from augmented geospatial trajec-

tories. The Context Tree is a novel hierarchical data structure that identifies and

summarises user contexts at multiple scales, allowing rapid access to summary

information about a user’s interactions with their environment. From this, the

structure provides a foundation for further analysis, understanding, and mod-

elling of the behaviour of individuals and groups. The Context Tree and its

generation and pruning procedures are evaluated over real-world trajectories

through a comparison to expected properties and a partial ground truth.

The process for generating a Context Tree begins with augmented geospatial

trajectories, and clusters the land usage elements present in such trajectories

using a new distance metric, the Hybrid Contextual Distance (HCD) metric

that considers the semantics of elements and properties of the users’ interac-

tions with these elements. This distance metric then becomes the foundation

for hierarchical clustering and construction of the Context Tree summary model.

By summarising contexts into a single data structure, it becomes easier to de-

tect changes in routine through anomaly identification, identify similarities and

di↵erences between users, and predict users’ future actions. These areas are

proving to be increasingly important to the provision of tailored and useful ser-

vices both on individual and societal scales. The following Chapter builds upon

this foundation by converting the Context Tree into a predictive model capable

of predicting both the future context and interactions of individuals, further

demonstrating its utility.
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CHAPTER 7
Applying Context Trees: The Predictive Context Tree

Summarising the past actions of individuals goes a long way to understanding

how people spend their time, but it is the prediction of future actions that allows

us to provide real utility in the form of tailored and optimised services. Using

the Context Tree, presented in Chapter 6, as a basis, this chapter presents the

Predictive Context Tree (PCT), a hierarchical classification model that both

summarises and predicts the future contexts and interactions of individuals.

The PCT is evaluated over real-world trajectories, with results demonstrating

that the PCT achieves higher predictive accuracies than existing approaches

predicting over extracted locations (Chapter 4), and matches the performance

achieved by predicting over land usage interactions (Chapter 5), while adding

utility in the form of context predictions. Such a prediction system is capable of

understanding not only where a user will visit, but also future context in terms

of what they are likely to be doing.

7.1 Introduction

Prediction of the future actions of individuals in existing literature primarily

focuses on predicting locations the individual will visit. While location can be

used as a source of context, knowing only the geographic region that a person

is likely to visit provides little information. In order to improve upon this,

Chapter 5 proposed a methodology for extracting real-world land usage elements

as a basis for prediction. Using real-world elements for prediction provides

applications with more information, such as the type and properties of elements.

Such information can be leveraged to understand what action a person may wish

to perform, and thus form a basis for o↵ering services tailored to this action.
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7. Applying Context Trees: The Predictive Context Tree

Combining the idea of prediction with the Context Tree summary model

presented in Chapter 6, this chapter focuses on predicting both future element

interactions and the future contexts of individuals. Specifically, the proposed

technique, the Predictive Context Tree (PCT), is an extension of the Context

Tree that converts the data structure into a classification model that makes

use of the existing hierarchical structure of the Context Tree. This chapter

presents the PCT and evaluates its performance over real-world trajectories

and compares it with existing approaches that predict locations and land usage

elements. The results demonstrate increased accuracies when compared with

predictions made over extracted locations, and commensurate accuracies with

the technique proposed in Chapter 5, as well as increased utility over both

approaches when allowing for context predictions.

Section 7.2 provides a summary of related work in the area of prediction and

classification. The PCT is presented in Section 7.3, and evaluated in Section 7.4.

The chapter is concluded with a discussion in Section 7.5.

7.2 Related Work

The work in this chapter builds upon the other contributions of this thesis,

specifically using the Land Usage Identification (LUI) procedure presented in

Chapter 5, where background information can be found in Section 5.2. Addi-

tionally, the Context Tree data structure, presented in Chapter 6, is extended

for this work, with relevant related work being summarised in Section 6.2. The

extension to the Context Tree takes the form of converting it into a hierarchical

classification model.

Hierarchical classifiers operate in a similar way to traditional classifiers, by

taking a set of labelled training data, constructing a model and returning clas-

sifications from this model when presented with unlabelled instances. They

di↵er, however, in that the model is capable of learning from, or making use of,

hierarchical relationships between nodes or concepts. Existing work has consid-
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ered hierarchical classifiers as a basis for text classification, where a hierarchy

of labels may exist [Dumais and Chen, 2000; Rousu et al., 2005], as well as in

a general form for multiple domains [Cesa-Bianchi et al., 2006; Gopal et al.,

2012]. Achieving hierarchical classification is typically achieved in one of two

ways: big-bang classifiers are those where a single classifier is constructed for the

entire hierarchy, and are usually application-dependent. Top-down classifiers,

on the other hand, make use of an existing hierarchy and classification technique

by training a classifier at either each node or each level in the hierarchy [Silla Jr

and Freitas, 2011].

Many existing techniques can be used as the classifiers at each level or node

in a top-down hierarchical classification system, including decision trees [Jin

et al., 2009; Quinlan, 1996], Support Vector Machines (SVMs) [Cristianini and

Shawe-Taylor, 2000], and Artificial Neural Networks (ANNs) [Mitchell, 1997].

The top-down approach is the one we select for the PCT, as it is capable of

learning the hierarchical structure of the Context Tree without requiring an

entirely new model to be devised.

7.3 The Predictive Context Tree (PCT)

The Predictive Context Tree (PCT) (Figure 7.1) is a hierarchical predictive

model, built upon the Context Tree (Chapter 6), that is capable of both sum-

marising a user’s historical contexts as well as predicting their future element

interactions and contexts as a classification model. This section details the

procedure to convert a Context Tree into a PCT through the training of classi-

fication nodes in the Context Tree. As the Context Tree is already a hierarchical

data structure, it contains a vast amount of information pertaining to the re-

lationships between nodes, so it is desirable to conserve this information in a

predictive model. For this work, we maintain this hierarchical structure by

training the Context Tree as a top-down predictor.

This conversion is achieved by augmenting each node in a constructed Con-
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Figure 7.1: Abstract representation of a PCT.

text Tree, except the root node, with a binary classifier that is tasked with

answering the question “does this instance belong in the subtree rooted at this

node?” when presented with an instance for classification. With each non-root

node capable of answering this question, the overall classification of an instance

occurs by starting at the root node and requesting a classification from each of

the root’s children; children will be selected to follow based on a criteria until

a final classification is reached, again determined by a criteria. The goals of

prediction will determine the criteria:

• Single element: When predicting specific land usage elements, the pre-

dictor must return a leaf node, achieved by following the child with the

highest confidence at each stage. This process is shown in Figure 7.2a.

• Single context: When predicting contexts instead of land usage ele-

ments, there is no requirement for a prediction to reach a leaf node.

Figure 7.2b shows the procedure for single context prediction, where at

each node the child with the highest confidence is selected providing that

the confidence is at least T
s

, the selection threshold. If no child has confi-

dence of at least T
s

, the current node is returned as the class label.
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• Multiple element: When trained on augmented trajectories that allow

more than one land usage element to be associated with each trajectory

point, PCTs can be used to predict the multiple land usage elements that

will be interacted with next, unlike single element which is limited to

one leaf. This is achieved at each stage by following all classifiers that

return confidence > T
s

if such exist, otherwise taking the one with the

highest confidence, as shown in Figure 7.2c. Once a node has returned

a classification with confidence > T
s

, the procedure continues even if the

children of this node have confidence < T
s

. The child with the highest

confidence would be followed regardless.

• Multiple context: Again, this technique aims to predict multiple ele-

ments, but when confidence is low in specific elements, contexts or com-

binations of elements and contexts can be predicted instead. Predictions

are made by taking all children of a node whose confidence is above T
s

,

and returning the node when no child fulfils this criteria, as shown in

Figure 7.2d.

Single element and multiple element are examples of mandatory leaf node

prediction, in that the predictive model is required to return only leaf nodes

from the tree. Similarly, multiple element and multiple context are examples of

hierarchical multi-label classifiers in that they can return more than one class

label to a given test instance [Silla Jr and Freitas, 2011], although they can still

return leaf nodes (i.e. elements) if confidence is high.

7.3.1 Training a PCT

Training a PCT takes a set of instances as the training set, with known class

labels. The PCT can be used for next location or next context prediction where

the class label is an identifier pointing to the next location or context of the

user after finishing with their current context or location. In contrast, future

location or future context prediction may generate training instances for each
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(a) Single Element. (b) Single Context.

(c) Multiple Element. (d) Multiple Context.

Figure 7.2: Classification methods for PCTs. Classification begins at the root
node and selects which children to follow based on the output of their binary
classifiers, with di↵erent selection schemes and T

s

= 0.5.

time step and the class label is simply which location or context the user was

in during that time window. These instances are fed into each classifier in turn,

with the class variable modified to become binary in the following ways:

• If the instance’s class represents this node, it is a positive example.

• If the class represents a node in the subtree rooted at this node, it is a

positive example.

• If the class represents a sibling of this node, or a descendant of one, it is

a negative example.

• If the class represents an ancestor of this node, it is a negative example.

• If the class represents any other node, it is ignored and not used for training

this classifier.

Figure 7.3 shows how each node treats a particular instance. Training
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Figure 7.3: Example of how a training instance is treated by each classifier when
the class label is associated with the node labelled ‘class’. All nodes labelled
with ‘+’ treat this instance as a positive example, nodes labelled ‘-’ treat it as
negative, while nodes without a label ignore this instance for training.

through this process ensures that the hierarchical links between elements and

contexts are learnt by the PCT, as each node’s classifier is trained to return yes

if the instance belongs to itself or one of its descendants, or no if the instance

belongs to a sibling or one of their descendants (i.e. following this particular

child would be a mistake). Other nodes are ignored because they do not relate

to the current problem.

Each node can now be trained as a binary classifier using standard tech-

niques, such as decision trees or k-nearest neighbour approaches. However, us-

ing SVMs, which are tailored to the task of binary classification, and have been

shown to be applicable to the specific area of location prediction, are likely to

be good candidates here [Frohlich and Zell, 2005; Wang and Prabhala, 2012].

SVMs are not probabilistic classifiers, so they are traditionally trained to

return only a class value (in our case, yes or no). However, the PCT requires a

confidence value for each classification to determine which child or children to

follow at any given stage in the process. To calculate these probabilities, we use

a variant of the SVM classifier which uses logistic regression to calculate class

probabilities when returning classifications, and we evaluate other, probabilistic,

models in Section 7.4.
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7.4 Evaluation

Evaluating the PCT takes the form of exploring the predictive accuracies ob-

tained from the model, in comparison to existing approaches and with respect

to parameters used to train the underlying Context Trees. Constructing PCTs

for evaluation is performed using the methodology presented in Section 7.3 and

the same data as used in Chapters 5 and 6. For the first stage of evaluation, we

focus on single element and single context predictions, so we limit the number

of land usage elements that can be associated with each trajectory point to one

(i.e. n = 1, the same as used in Chapter 5). As we are imposing this limit,

we also make use of the maxradius parameter introduced in Chapter 5, Sec-

tion 5.3.1, and set it to 50m. Although this parameter was removed for Context

Tree construction in Chapter 6, it is required here to ensure comparable predic-

tions to those made in Chapter 5. Throughout this evaluation, we refer back

to the predictive accuracies presented in Section 5.4, for both predictions made

over extracted locations and identified land usage elements using the technique

that produced the highest accuracies, namely SVMs.

In addition to this, we also consider constructing PCTs from multi-element

land usage datasets (i.e. those that allow more than one element to be asso-

ciated with a single trajectory point; n > 1). Multi-element datasets may be

useful if, for example, a person is interacting with a building that is contained

within a larger building (e.g. a shop in a shopping centre), so we also utilise the

land usage extraction procedure with di↵erent values of n. Generating training

instances for these datasets uses the same features as in previous predictions

we have evaluated in this thesis, namely: day of year, day of week, start hour,

start minute, duration, current identifier (element or location), and class (next

identifier). However, the class label becomes the set of elements that the user

interacts with next. This is defined as taking the next interaction in the dataset,

selecting all other interactions that overlap, and combining the identifiers of all

such elements into a single string value that represents the set of elements.
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7.4.1 Constructing Predictive Context Trees

Context Trees are constructed from the land usage datasets, both single and

multi, and using the Hybrid Contextual Distance (HCD) metric with � = 0.5,

an empirically selected value that produces representative results. The HCD

metric is a similarity measure that balances semantic and feature similarities

into a single score used for clustering Context Trees, where � specifies the weight-

ing towards semantic similarity. The task now becomes that of converting the

generated Context Trees into Predictive Context Trees and evaluating the pre-

dictive ability of such a hierarchical model. Each non-root node in the Context

Tree is trained as a binary classifier using an SVM with the modification of

instances as described in Section 7.3.1.

7.4.2 Evaluating Predictions

For all location and element prediction approaches (extracted location, land

usage, and single element PCT), the training data’s class label represents the

next extracted location or land usage element that the user interacted with.

Evaluating the correctness of a prediction can simply be performed by comparing

the output of the predictor against the known class, referred to as an element

correct prediction.

Definition 7.1 A prediction is element correct if the predicted and actual

nodes are the same.

For context prediction, in some cases the PCT will return a leaf node which

can then be compared to see if it is element correct. In other cases, a non-leaf

node will be returned which requires the introduction of the notion of context

correctness.

Definition 7.2 A prediction is context correct if the node represented by the

predicted class label is an ancestor of the actual class node.
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For trees constructed over multi-element land usage datasets, predictions

take the form of a set of elements or contexts, so we require evaluative methods

to di↵erentiate between these predictions. For this, we define several tests,

applied in order such that the first test that passes is used as the classification,

with examples illustrated in Figure 7.4.

Full element correct: The set of predicted land usage elements matches the

set of actual elements exactly.

Full context correct: Every member in the set of actual elements is repre-

sented in the predicted set either by itself or an ancestor in the tree. Ad-

ditionally, every element in the predicted set is either contained within, or

an ancestor of at least one element in, the actual set (and the predictions

are not full element correct).

Partial element correct: Some elements were correctly predicted: the union

of the predicted and actual sets is nonempty (and neither of the previous

classifications are applicable).

Partial context correct: Some contexts were correctly predicted: the union

of the predicted set and the set of all ancestors of members of the actual

set is nonempty (and none of the previous classifications are applicable).

Incorrect: There is no overlap between the predicted and actual sets, or the

predicted set and ancestors of members of the actual set.

These tests ensure that we can evaluate the predictions made by a multi-

element context tree. If the tree predicts the exact set of elements to be in-

teracted with, the prediction is full element correct. If some or all elements

are represented by their contexts because element prediction confidence was not

high enough, it is full context correct. In times when some elements were pre-

dicted, but some missed (and not represented by a context) or some erroneous

elements or contexts were included, it is partial element correct. Partial context

correct is similar, but for times when no elements were correctly predicted, only

some contexts were. Finally, classifications which have no correct elements or
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(a) Full element correct: the set of
elements is predicted exactly.

(b) Full context correct: the element
or a corresponding context for each
element is predicted, and no erro-
neous elements or contexts are pre-
dicted.

(c) Partial element correct: some el-
ements are predicted correctly, but
either elements are missing or addi-
tional elements and/or contexts are
predicted.

(d) Partial context correct: no el-
ements are correctly predicted, but
some predicted contexts are ances-
tors of correct elements. Either some
correct elements are not covered by a
predicted context or additional con-
texts are predicted that do not relate
to a correct element.

(e) Incorrect: the predicted set does
not contain any correct elements or
ancestors of correct elements.

Figure 7.4: Example classification labels for di↵erent predicted sets through
the PCT, where the correct prediction is the set {3, 4, 5}. Each outlined box
represents a classification that will be given the corresponding classification
label.
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contexts are incorrect. These metrics are used as the basis for evaluating in-

dividual predictions, with the overall PCT model evaluated using 10-fold cross

validation.

7.4.3 Results

Figure 7.5 reproduces Figure 5.12a from Chapter 5, showing the predictive ac-

curacies achieved for location prediction and land usage element prediction for

the SVM classifier from the Warwick dataset, with results for the Nokia Mobile

Data Challenge (MDC) dataset shown later in Figure 7.10. With these base-

lines in place, the task becomes that of understanding the relative performance

of the PCT. Figure 7.6 shows the predictive accuracies achieved when using

the PCT to predict which land usage element a user will interact with, which

was the same task performed by the SVM in Figure 7.5 (with the performance

of the SVM predictor shown for comparison). As with Chapter 5, the results

for both the Warwick and MDC datasets are consistent, so we show only the

results for the Warwick dataset here, and summarise results for the MDC data

later in Figure 7.10. The figure demonstrates that the PCT produces compa-

rable predictive accuracies to SVM when predicting the next element a person

will interact with. The PCT is also designed to predict contexts as well as el-

ements; the accuracies achieved for context prediction are shown in Figure 7.7

and Table 7.1. A comparison of the performance of all techniques is shown in

Figure 7.8, and tabulated in Table 7.2, for d
min

= 10min and 40min, where

location extraction was performed by thresholding, since it gives the highest

predictive accuracies. For d
min

= 10min, predicting over extracted locations

using SVMs provides the highest element correct accuracy (i.e. it is best able

to predict the exact location or element to be interacted with). However, when

allowing for contextual prediction, the PCT outperforms this existing approach.

With larger values of d
min

, such as 40min, shown in Figure 7.8b, predicting over

identified land usage elements provides higher accuracies than predicting over

extracted locations for both the SVM based approach from Chapter 5, and the
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Figure 7.5: The e↵ect of minimum interaction duration, d
min

, on predictive
accuracy for existing location extraction and prediction techniques and the LUI
procedure for the Warwick dataset (reproduced from Chapter 5).
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Figure 7.6: Predictive accuracy of the PCT, considering element prediction
(� = 5, t

max
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= 0.6, n = 1, maxradius= 50).
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Figure 7.7: Predictive accuracy of the PCT, considering context prediction
(� = 5, t

max

= 60, � = 0.5, T
s

= 0.6, n = 1, maxradius= 50).

Table 7.1: Accuracy of the PCT when predicting contexts for the Warwick
dataset, with standard deviation shown in brackets.

dmin Element Correct Context Correct
2 40.5 (8.2) 50.5 (3.5)
4 39.2 (9.9) 54.9 (6.0)
6 36.3 (12.4) 58.1 (8.2)
8 31.9 (9.3) 57.8 (7.2)
10 18.0 (6.3) 54.3 (7.6)
20 6.9 (4.7) 53.7 (8.7)
40 11.8 (10.7) 60.8 (12.2)
60 12.4 (14.4) 70.2 (13.2)
80 10.9 (14.1) 72.5 (12.9)
100 13.7 (10.9) 67.9 (17.7)
120 10.0 (9.8) 68.0 (16.8)
140 20.2 (14.3) 72.7 (18.4)
160 11.6 (9.5) 72.0 (16.9)
180 11.0 (10.8) 73.9 (19.2)
200 12.7 (10.6) 78.0 (19.4)
220 12.3 (10.2) 77.1 (20.1)
240 10.3 (9.8) 78.1 (18.3)
260 12.7 (11.4) 79.5 (19.4)
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Figure 7.8: Comparison of di↵erent predictive techniques, considering extracted
locations, land usage elements, and contexts. Locations are extracted using the
thresholding technique.

Table 7.2: Comparison of di↵erent predictive techniques as plotted in Figure 7.8,
with standard deviations in brackets.

dmin 10 40
Location SVM 46.8 (8.89) 49.1 (8.71)
Element SVM 44.6 (5.39) 53.0 (8.20)
Element PCT 42.2 (6.59) 53.8 (8.48)
Context PCT (Element) 36.3 (7.58) 48.9 (12.2)
Context PCT (Context) 54.3 (6.29) 60.8 (10.74)

PCT. Again, allowing for contextual prediction, the PCT outperforms the other

approaches.

The impact of two of the remaining parameters, T
s

and �, for context pre-

diction using the PCT are shown in Figure 7.9 for the Warwick dataset, and in

Figure A.5 (Appendix C) for MDC. The Selection Threshold, T
s

, specifies the

predictive confidence required to follow a node through to its child when travers-

ing the Context Tree. A higher value for T
s

will mean that children are less

likely to be followed, instead returning contextual predictions, leading to fewer
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Figure 7.9: The e↵ect of parameters T
s

and � on context prediction, where
d
min

= 10min. The dashed red lines show the values used for previous figures.

element correct predictions, but more context correct ones. In Figure 7.9a, the

variance of context correct predictions is 0 until the context and element correct

lines diverge as no context-only predictions are made until this point. The PCT

is only returning element predictions. The Semantic Weighting parameter, �, is

used when clustering Context Trees. A value of 0 uses only the feature similarity

for determining contextual clusters, while a value of 1 uses only the semantic

similarity. The highest proportion of element correct predictions can be seen

when � = 0.5; moving away from this in either direction lowers the accuracy of

the predictor. Although this is made up for in context correct predictions, the

indication is that as � is moved towards 0 or 1, the contextual relationships are

less useful for determining which element a user will interact with, and conse-
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quently are likely to be less representative of meaningful contexts, meaning that

the context correct predictions are likely to be less useful.

As discussed previously, the results presented so far have all come from the

Warwick dataset as this has a high level of coverage. In order to demonstrate

the applicability of the PCT to other data, we also use the 10 users of the MDC

dataset for comparison; this is shown in Figure 7.10 and Table 7.3. Although

the MDC data contains periods of missing data, where truncated latitude and

longitude values are removed (as discussed in Section 3.1.4), the trends are con-

sistent with previous results. Contextual PCT prediction outperforms the other

approaches, with SVM and the PCT in element prediction mode performing

similarly.

Throughout this thesis, and as described in Chapter 3, we have been us-

ing a form of the MDC dataset where data points that have had their latitude

and longitude values truncated to preserve privacy have been removed from the

dataset. In Section 3.1.4 we posited that this would be more representative of

real-world applications as missing data would be expected in most geospatial

datasets, but that artificially limiting the accuracy of data may have unexpected

consequences. In order to ensure that this assumption is correct, we have per-

formed the same experiments using the MDC dataset without having removed

the truncated periods. A selection of these results are shown in Appendix D,

demonstrating similar trends between the data both with and without these

truncated periods. However, Figure 7.11 shows a direct comparison of the pre-

dictive accuracies attained by using the MDC dataset both with and without

these truncated periods as a basis for prediction through the LUI procedure

and the PCT. The figure demonstrates that both predicting land usage ele-

ments (extracted through the LUI procedure and predicted with SVMs) and

predicting elements through the PCT has significantly higher accuracy when

including the truncated periods than when removing such periods. The reason

for this is that the truncated periods cover vast amounts of time (a total of

3,552 hours across all considered users), and with no variance between latitude
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Figure 7.10: Predictive accuracies for the di↵erent prediction techniques for the
MDC dataset.

Table 7.3: Comparison of di↵erent predictive techniques for the MDC dataset,
with standard deviation shown in brackets.

dmin Thresholding Land Usage Element PCT Context PCT
2 27.3 (7.0) 19.7 (9.5) 14.8 (11.6) 47.7 (10.5)
4 32.1 (7.7) 24.3 (10.1) 18.9 (13.5) 51.9 (14.1)
6 34.7 (7.5) 23.6 (10.5) 19.2 (15.5) 64.1 (16.2)
8 35.2 (7.8) 28.8 (10.0) 28.7 (13.6) 60.1 (16.6)
10 34.9 (7.8) 31.7 (9.2) 25.6 (15.7) 61.6 (16.6)
20 34.5 (7.7) 34.4 (8.0) 30.0 (13.0) 72.8 (14.8)
40 36.6 (8.5) 38.4 (6.5) 36.8 (12.3) 59.2 (14.1)
60 38.3 (9.2) 42.2 (6.7) 38.7 (12.5) 79.8 (13.2)
80 42.2 (10.2) 48.4 (4.5) 49.5 (5.0) 65.2 (12.6)
100 42.8 (10.9) 50.1 (4.4) 47.7 (6.1) 73.3 (16.3)
120 44.7 (12.0) 48.6 (7.3) 50.9 (6.2) 68.1 (13.7)
140 45.4 (11.7) 47.8 (7.3) 52.7 (6.0) 69.2 (13.6)
160 47.2 (11.9) 49.0 (7.9) 58.5 (2.6) 70.7 (14.9)
180 47.3 (12.2) 49.6 (8.3) 58.5 (3.9) 72.3 (15.0)
200 47.9 (12.4) 50.8 (8.6) 56.4 (7.9) 73.0 (16.1)
220 46.4 (13.4) 52.0 (9.3) 58.4 (8.8) 75.1 (16.6)
240 47.6 (13.5) 51.2 (8.9) 57.6 (8.2) 74.3 (15.9)
260 42.7 (14.4) 43.8 (10.9) 43.9 (16.0) 67.1 (19.5)
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Figure 7.11: Comparisons of predictive accuracies for the MDC data with and
without truncated periods for land usage and element PCT prediction.
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and longitude values, each such region covered by truncated data maps directly

to a single land usage element. These elements represent significant amounts

of time where the person was likely to have been at home or work, locations

that are visited frequently, and are thus easier to predict than other elements,

increasing the average predictive accuracy by a significant amount. While it is

not possible to say exactly what the average predictive accuracy would be for

the MDC data if the longitude and latitude values had not been truncated, it

is likely to be higher than the accuracies reported throughout this thesis which

used the MDC data discarding such periods, perhaps bringing the predictions

in line with those made over the Warwick dataset. These results demonstrate

that our decision to remove such periods was justified in order to prevent artifi-

cially inflating the accuracy of the presented techniques, and therefore the MDC

results in this thesis present a baseline for the accuracy that can be expected

from the presented techniques. Further results obtained from the MDC dataset

while retaining the truncated periods can be found in Appendix D.

Pruning

The Context Tree generation procedure (Chapter 6), includes an approach for

pruning nodes to reduce storage and processing requirements. This process

takes two parameters, ✓ and ⇠, where ✓ specifies a threshold between 0 and 1

for a node to be pruned, and ⇠ assigns a storage overhead to each node in the

tree. Figure 7.12 shows the impact of these parameters on predictive accuracy

for the Warwick dataset, with MDC results shown in Figure A.6 (Appendix C).

A larger value of either parameter leads to more nodes being removed from the

tree, resulting in fewer element correct predictions (as the leaf nodes correspond-

ing to the elements are removed), but an increased number of context correct

predictions. If using the Context Tree for predictive applications, through the

PCT, these results indicate that a reduced size tree comes at a trade-o↵ of

reduced element correct predictive accuracy.
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Figure 7.12: Predictive accuracies observed when using pruned Context Trees.

Classification Models

As discussed in Section 7.3.1, the results presented so far have been determined

from PCTs trained using an SVM classifier in each node. While SVMs are

capable of determining confidence values for each classification, through logis-

tic regression, Figure 7.13 shows the predictive accuracy observed when using

other probabilistic classification techniques as the classifiers in each node for

the Warwick dataset (with similar MDC results in Figure A.7, Appendix C).

Specifically, we test C4.5, a decision tree learning algorithm, Logistic Regres-

sion and Naive Bayes in addition to the SVM. These models were selected as

representative examples of widely-used types of classification models. The same

data as in Figure 7.13 is shown in Tables 7.4 and 7.5, where the best performing
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Figure 7.13: Predictive accuracies obtained when using di↵erent probabilistic
models as classifiers in the PCT.

technique is shown in bold for each value of d
min

. From these results, it is

clear that there is no single algorithm that consistently outperforms all others,

however, Logistic Regression is consistently beaten, and Naive Bayes has only

a single case when it performs best, and only then it is within the margin of

error of another technique, indicating that it too can likely be discarded. This

leaves SVMs and C4.5, where for lower values of d
min

, SVMs always perform

best, but can be beaten by C4.5 for higher values.
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Table 7.4: Accuracies achieved using di↵erent classification models in the PCT
when predicting elements, with the highest score in bold, and standard devia-
tions in brackets, for each value of d

min

.

dmin C4.5 Logistic Naive Bayes SVM
2 2.3 (0.9) 0.9 (0.6) 11.0 (3.1) 21.7 (6.1)
4 16.3 (7.1) 9.3 (7.6) 17.4 (4.9) 25.6 (5.8)
6 17.3 (9.6) 6.9 (4.2) 17.0 (3.5) 33.1 (5.2)
8 20.9 (9.7) 14.7 (9.6) 25.3 (5.7) 37.3 (5.2)
10 20.6 (9.6) 12.5 (8.1) 29.0 (5.5) 42.2 (6.6)
20 34.3 (10.9) 13.1 (8.9) 38.0 (6.4) 49.3 (7.8)
40 55.2 (7.9) 24.0 (11.2) 41.6 (9.4) 53.8 (8.5)
60 59.9 (10.2) 37.1 (15.0) 50.8 (12.9) 64.7 (7.4)
80 65.6 (10.0) 52.7 (10.6) 53.7 (10.0) 64.4 (10.3)
100 72.0 (7.4) 54.7 (13.1) 62.2 (11.8) 60.0 (14.6)
120 75.0 (9.4) 55.2 (14.1) 62.1 (13.8) 63.1 (13.7)
140 72.2 (11.9) 50.9 (13.9) 63.1 (12.2) 64.3 (14.4)
160 73.7 (9.8) 51.8 (15.1) 69.1 (11.6) 68.6 (11.5)
180 77.3 (10.6) 57.5 (15.8) 68.0 (13.7) 73.6 (10.8)
200 78.9 (11.1) 59.1 (17.7) 69.1 (15.1) 75.7 (11.6)
220 80.5 (11.1) 63.9 (18.1) 73.1 (14.1) 76.1 (11.9)
240 78.9 (11.0) 64.6 (17.2) 73.2 (13.7) 74.3 (13.5)
260 73.5 (14.4) 60.6 (19.2) 70.0 (16.4) 73.4 (14.8)

Table 7.5: Accuracies achieved using di↵erent classification models in the PCT
when predicting contexts, with the highest score in bold, and standard devia-
tions in brackets, for each value of d

min

.

dmin C4.5 Logistic Naive Bayes SVM
2 24.1 (6.8) 14.3 (7.2) 50.3 (8.3) 50.5 (8.2)
4 35.1 (9.9) 18.9 (9.3) 50.2 (7.1) 54.8 (7.6)
6 24.6 (9.6) 11.5 (7.0) 49.0 (8.0) 57.7 (5.9)
8 25.6 (10.3) 23.6 (9.4) 50.0 (11.2) 58.6 (5.1)
10 25.3 (10.0) 22.5 (10.6) 49.5 (9.1) 54.2 (4.4)
20 38.1 (9.1) 19.2 (9.7) 53.8 (4.5) 53.7 (5.7)
40 56.2 (7.4) 28.4 (11.5) 53.1 (7.2) 60.0 (4.9)
60 59.9 (10.2) 39.2 (14.4) 62.4 (9.1) 70.3 (7.1)
80 65.6 (10.0) 53.1 (10.7) 61.9 (8.5) 72.6 (6.7)
100 72.0 (7.4) 56.2 (12.6) 68.9 (9.2) 67.1 (9.1)
120 75.0 (9.4) 56.2 (13.6) 70.6 (10.2) 68.7 (9.1)
140 72.2 (11.9) 51.7 (13.4) 68.2 (10.1) 73.4 (7.7)
160 75.2 (8.2) 53.5 (13.9) 73.4 (9.2) 72.0 (8.5)
180 77.3 (10.6) 59.8 (14.4) 70.3 (12.9) 71.9 (12.5)
200 78.9 (11.1) 59.5 (17.5) 74.3 (12.1) 76.9 (11.0)
220 80.5 (11.1) 64.1 (18.0) 76.3 (11.9) 77.1 (11.3)
240 78.9 (11.0) 64.6 (17.2) 78.1 (10.4) 78.3 (10.6)
260 74.6 (13.8) 60.9 (19.0) 75.9 (12.4) 79.5 (10.4)
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Figure 7.14: The e↵ect of n on predictive accuracy for the multi-element Context
Tree.

Multi-element Prediction

The PCT is capable of predicting multiple elements and contexts at the same

time. This may be useful in instances where a user is within, for instance, a

building that is contained within another building (e.g. a shop within a shop-

ping centre). Evaluation of predictions made by PCTs that allow multiple

such elements to be associated with a single time is conducted in accordance

with the metrics defined in Section 7.4.2. Multi-element prediction is shown in

Figure 7.14a (and Table 7.6) for di↵erent maximum numbers of elements per

point. Increasing the number of elements decreases the ability for the PCT to

identify exactly which elements are being interacted with; however, the partial
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Table 7.6: Accuracy of the PCT when predicting multiple elements over the
Warwick dataset, with standard deviation shown in brackets.

Maximum
Elements
per Point

Full
Element
Correct

Partial
Element
Correct

2 31.4 (12.4) 52.5 (7.4)
6 23.0 (13.4) 54.0 (11.7)
10 13.2 (9.8) 51.4 (11.0)
14 13.5 (10.7) 52.0 (11.0)
18 13.7 (12.0) 52.2 (11.8)

Table 7.7: Accuracy of the PCT when predicting multiple contexts over the
Warwick dataset, with standard deviation shown in brackets.

Maximum
Elements
per Point

Full
Element
Correct

Full
Context
Correct

Partial
Element
Correct

Partial
Context
Correct

2 28.6 (13.2) 42.1 (10.6) 59.6 (7.3) 64.1 (3.8)
6 22.3 (13.5) 25.4 (3.1) 52.1 (12.1) 65.1 (8.9)
10 12.1 (9.7) 15.5 (3.9) 48.6 (12.1) 66.4 (10.9)
14 12.3 (10.6) 15.7 (4.1) 48.4 (12.0) 68.3 (11.5)
18 12.9 (11.9) 15.2 (3.0) 48.1 (13.1) 68.6 (12.3)

value remains fairly consistent, demonstrating that the PCT typically gets some

of the predictions correct on occasions when it cannot predict all elements cor-

rectly. Figure 7.14b (and Table 7.7) shows the same graph, but for multi-context

prediction where full element correct indicates that the set of elements being

interacted with was predicted correctly, and full context correct represents times

when a prediction covers all correct elements through a parent context. Partial

element correct indicates that some elements were correctly predicted, but either

additional elements were included in the prediction or some elements were over-

looked. Partial context correct means that some contexts that were predicted

were correct, but again, not all elements are covered by a context or additional

contexts are predicted. The graph shows similar results to Figure 7.14a, where

an increase in n reduces the number of full element correct predictions, but

these are made up for with partial element and context predictions.
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7.5 Summary and Conclusion

This work has explored the potential for extending the Context Tree data

structure to perform hierarchical classification of land usage elements and con-

texts from trajectories collected about an individual. The Predictive Context

Tree (PCT) is a hierarchical classification model that trains and classifies in-

stances in a top-down approach, starting at the root node and following children

until an overall classification is reached. The entire model can be built using

only geospatial trajectories and a land usage dataset.

Through a comparison with predictions made over locations extracted from

existing techniques, and land usage elements identified through the LUI pro-

cedure proposed in Chapter 5, the evaluation in this chapter demonstrates the

applicability of the PCT. Specifically, the predictive accuracies achieved ex-

ceed those made over extracted locations and are on a par with the accuracies

achieved in predicting land usage elements, presented previously. The PCT’s

primary benefit over these techniques is its additional ability to predict contexts,

o↵ering utility to applications when a prediction for a specific element has low

confidence or when a contextual prediction would be useful. This is true of

many applications where, for example, predicting that a user will be immersed

within a ‘shopping’ or ‘work’ context is of more importance than knowing ex-

actly which building a user will be in. The additional utility a↵orded by the

PCT can provide the basis for constructing smart applications and services that

understand the future contexts of individuals, while requiring only the collection

of geospatial trajectories from the users.
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CHAPTER 8
Discussion and Conclusion

This thesis has explored the potential that geospatial trajectories can o↵er to

the understanding and prediction of human behaviour through machine learn-

ing techniques. Towards this aim, we have presented several novel approaches

and techniques, including the Gradient-based Visit Extractor (GVE) algorithm

and Land Usage Identification (LUI) procedure, alongside the Context Tree

data structure and Predictive Context Tree (PCT) classification model. Us-

ing these techniques, we have an improved ability to understand past actions

through identifying regions where individuals spend time, and the physical fea-

tures they interact with; we also have an improved ability to predict the future

movements and actions of individuals through locations, land usage elements

and contexts. Combined, we are better able to understand and predict the

movement of individuals, based on inference from geospatial trajectories. This

chapter summarises and reviews the contributions made throughout this thesis,

along with their limitations, and presents a discussion of possible avenues for

further research in this area.

Throughout this work we have made several contributions to the field of

geospatial machine learning, focusing on the discovery of knowledge from tra-

jectories. These include the extraction and prediction of contexts, locations and

interactions from geographic features. Specifically, the contributions are:

1. The Gradient-based Visit Extractor (GVE) Algorithm: An algo-

rithm for the extraction of periods of low mobility, referred to as visits,

from geospatial trajectories that can handle noisy data while overcoming

many drawbacks of existing approaches.

2. The Land Usage Identification (LUI) Procedure: A procedure for
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the identification of land usage elements, that represent geographic fea-

tures, with which a user has interacted, to replace extracted locations.

3. The Context Tree: A data structure and associated generation tech-

nique that identifies and stores contexts from augmented geospatial tra-

jectories.

4. The Predictive Context Tree (PCT): An application of the Context

Tree as a hierarchical classifier that predicts both contexts and interactions

with a demonstrated increase in utility over existing approaches.

8.1 Contribution Summary and Future Work

This section revisits the problem statement and contributions listed in Chap-

ter 1 by discussing how well each contribution meets its aims. In addition, the

limitations of each of the techniques are discussed and avenues for further work

are presented and explored.

1. Improving on current algorithms for identifying low mobility in

geospatial trajectories for the purpose of identifying locations

meaningful to the individual.

The Gradient-based Visit Extractor (GVE), introduced in Chap-

ter 4, was developed to achieve this task. Overcoming several drawbacks

of existing approaches, including improved handling of noise in data, and

not assuming evenly timesliced data, the GVE algorithm is capable of

extracting visits, i.e. periods of low mobility, from geospatial trajectories.

The algorithm is presented in detail and a thorough evaluation of the

properties of the extracted visits is conducted over real-world trajectories,

with specific comparisons to existing approaches, namely thresholding and

the Spatio-Temporal Activity (STA) extraction algorithm. This evaluation

not only establishes the applicability of the GVE algorithm to the task of

identifying periods of low mobility from geospatial trajectories, but it also

demonstrates the foundation a↵orded for identifying locations that are
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meaningful to users, with results indicating increased representativeness

of locations over existing techniques.

The GVE algorithm’s primary weakness is the range of parameters

required for it to operate: while these parameters allow for tuning the

algorithm, not all parameters map neatly to real-world properties (e.g. ra-

dius of visits), as with some existing approaches. The parameter d
min

was

introduced to allow specifying a minimum duration of a visit to consider,

and t
max

specifies the maximum duration between two consecutive points

for them to be included in the same visit. However, the parameters ↵

and �, which scale a function used for selecting a threshold, above which

a visit is marked as having ended, and n
points

, specifying the maximum

number of points in the bu↵er being considered, have a less well-defined re-

lationship to properties of the visits extracted. To mitigate this limitation

somewhat, Chapter 4 also proposed the use of mathematical optimisation

to automatically select and tune parameters for a given application. Fo-

cusing on location prediction as a sample application, a metric is presented

that assigns a cost to each set of parameters based on the size of extracted

locations and accuracy of predictions made over these locations. This

metric enables the optimisation procedure to determine parameters con-

sistent with the goals of location prediction. While this reduces the burden

placed on application developers to select parameters, it is a computation-

ally intensive task. Future work on the GVE algorithm could therefore

aim to reduce the domain knowledge needed to select parameters, or to

reduce the complexity of automatic parameter selection techniques, while

maintaining the utility of the algorithm itself.

2. Developing a technique for the identification of geographic fea-

tures with which an entity interacts (e.g. specific buildings).

In Chapter 5 we proposed the Land Usage Identification (LUI)

procedure, a method of augmenting geospatial trajectories with land us-

age elements extracted from a dataset. These elements in the augmented
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trajectories are scored and filtered, and then summarised, to identify a

sequence of interactions made by the user that mirror the visits to loca-

tions of previous work. As with the GVE algorithm, the LUI procedure is

presented in depth and evaluated over real-world trajectories along with

a sample application, that of predicting future interactions. Identifying

elements that represent physical features in the world, instead of using

extracted locations, provides applications with additional utility in the

form of known properties of these elements, often including their shape,

name and purpose. This additional information can become the basis for

understanding what the user may have been doing, and is indeed used in

this way in Chapters 6 and 7 to identify contexts in which individuals are

immersed.

The results presented in Chapter 5 demonstrate the applicability of

the LUI procedure and reveal that predicting over land usage elements

can obtain higher predictive accuracies than extracted locations, for min-

imum visit durations of approximately 20 minutes or longer. Despite the

advantages of using land usage elements as a basis for identifying where

people spend time, there are some drawbacks: in particular, for an element

to be identified as being interacted with by the user, it must exist in the

dataset as a single feature. In reality, there are times when a person may

consider something a location, but it is identified by multiple land usage

elements. An example of this would be if children were to play in a park

that borders a street; they may consider both the park and street as the

area in which they play and would expect it to be treated as a single en-

tity. The LUI procedure is capable of extracting either the whole park or

street, but is not capable of considering the two together. For this reason,

the decision of whether to use extracted locations or identified elements as

a method to understand how an individual has spent their time will need

to be carefully considered based on the goals of the application.

Additionally, the LUI procedure requires geospatial trajectories with
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associated accuracy values, as this value is used as a radius to consider

when selecting appropriate land usage elements. Some geospatial datasets,

such as GeoLife (as discussed in Chapter 3), do not include accuracy val-

ues, and others may have inaccurate or overly-pessimistic ones. In order to

ensure that the LUI procedure can be used on a wide variety of datasets,

it would be desirable to understand the implications of using either a fixed

value, or determining an approximate value based on other factors (e.g.

the amount of movement between trajectory points); further work in this

area is required to explore this possibility. One final issue with the pro-

cedure as outlined in Chapter 5 is that land usage datasets are typically

extremely large, especially if they cover whole cities or countries. Aug-

menting trajectories, therefore, can require significant processing power to

locate appropriate elements within the dataset. While it would be pos-

sible to store a small dataset on a mobile device, in order to maintain

up-to-date information and lessen the burden placed on the device, it is

likely that the dataset would need to be hosted as an external service.

In this case, any application of augmented trajectories must have an ac-

tive data connection for the LUI procedure to operate. Requiring access

to a land usage dataset is a fundamental requirement of the LUI proce-

dure and is the source of many of its advantages over existing techniques,

so removing this requirement is not possible, but methods to pre-filter

datasets to reduce their size may need to be considered, depending upon

the application.

3. Establishing a data structure for summarising identified contexts

from augmented geospatial trajectories to identify periods of

time with similar goals, desires and intentions.

Identifying land usage elements that a person was likely to have been

interacting with (Chapter 5) provides the foundation for understanding

not only where people spend their time, but also the type of activity they

may be performing. By having elements associated with properties, such
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as the name and function of buildings, or the type of roads, these proper-

ties provide the foundation for identifying contexts. To this end, Chapter 6

presented the Context Tree, a new hierarchical summary model paired

with a procedure for contextually clustering land usage elements based on

their semantics and the properties of their interactions. The resultant tree

models the contexts that a user has been immersed in at multiple scales,

with leaf nodes representing geographic features, and non-leaf nodes rep-

resenting contexts. Time spent within any such context is likely to be

indicative of time spent with similar goals. Such contexts are identified

using the proposed Hybrid Contextual Distance (HCD) metric, that aims

to find periods of time a user spent interacting with elements with similar

properties and function, or elements interacted with in a similar manner.

The generation procedure, along with the constructed Context Trees,

are evaluated both with respect to partial ground truths and naive cluster-

ing approaches, but also with respect to the expected properties of data

at each stage in the Context Tree generation procedure. Both types of

evaluation are conducted over real-world trajectories. In addition to this,

a method of pruning Context Trees is proposed that aims to maximise in-

formation while reducing the storage and processing required to search a

constructed Context Tree, designed for applications where resources may

be limited.

The Context Tree’s main drawback relates to the complexity of hierar-

chical clustering, where the distance between each pair of elements must

be calculated to find the closest pair or pairs, O(n2). The technique does,

however, place a lower burden on the users as only geospatial trajecto-

ries are required to be collected from them, in contrast to other context

identification techniques which require data from multiple low-level sen-

sors (e.g. heart-rate) to identify contexts. Improving on the Context Tree

should therefore focus on reducing the computational complexity of the

hierarchical clustering algorithm, possibly by using heuristics to guide the
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selection of pairs of elements that have low distances, instead of requiring

a comparison of all possible pairs.

In addition to reducing the complexity of clustering Context Trees,

retraining the trees with new data is a task which has not been considered.

At present, if additional trajectories were to be collected from the user, a

new Context Tree must be built from scratch to incorporate it. With real-

time collection approaches, this would require a great deal of processing

power to train trees continuously. More likely, the trees would be trained

periodically and thus would be based on out-of-date data for the majority

of the time. Exploring techniques to train Context Trees continuously as

new data arrives should therefore also gain focus when considering future

avenues of research for the Context Tree summary model.

Finally, while we consider an application of context trees, that of pre-

diction in Chapter 7, there are many other possible applications. For

example, the identification of similarities between trees from the same

user could be used to identify repeating patterns, or similarities between

trees from di↵erent users could be used to identify users with behaviours

in common. Calculating the similarity, or distance, between two trees has

been explored for other domains (e.g. using the tree edit-distance metric

[Klein, 1998]), but further work in this area could develop more specific

metrics for this task.

4. Evaluating the Context Tree through a predictive model for fore-

casting the future contexts and location interactions of individ-

uals.

Building upon the work of the two previous chapters, Chapter 7 pre-

sented the Predictive Context Tree (PCT). The PCT is an extension

to the Context Tree data structure (Chapter 6) that leverages the hier-

archical nature of the Context Tree to construct a classification model

capable of predicting both future contexts and element interactions of in-

dividuals. This extension takes the form of training each non-root node
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of the Context Tree as a binary classifier that determines if a specific in-

stance belongs in the subtree rooted at the node being trained; this is a

top-down predictor. By building the PCT in this manner, the hierarchical

relationship between contexts, as determined through contextual cluster-

ing as part of the Context Tree generation procedure, is learned by the

model.

The utility of this application of Context Trees is demonstrated by a

comparison to existing predictive approaches. Specifically, we have com-

pared the PCT to the results of predicting over extracted locations and

land usage elements using established techniques (presented in Chapter 5).

In these comparisons, the PCT is shown to exceed the accuracy of pre-

dicting over extracted locations and match the accuracy of predicting over

land usage elements using Support Vector Machines (SVMs). While the

PCT is more complex, and therefore has a higher computational cost to

construct than the SVM, the PCT is able to o↵er additional utility in

the form of context predictions lacking from existing approaches. In times

when predictive confidence in a specific land usage element is low, or times

when the application is interested in what a user will do, but not where, a

context prediction can be returned instead of a specific element. Factor-

ing in such context predictions, the PCT outperforms the other techniques

tested.

Although the PCT performs well when compared to other techniques,

there are times when existing approaches, or even PCTs trained using

alternate predictive models, can achieve higher accuracies. Better pre-

dictions can be made, for example, using only SVMs when considering

small minimum interaction durations (low values of d
min

). It would be

desirable therefore to harness the higher accuracies achieved by such tech-

niques by constructing a hybrid predictor that is capable of using mul-

tiple approaches to achieve the highest possible number of element cor-

rect predictions, while maintaining the ability to produce context correct
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predictions when no technique has enough confidence to predict a spe-

cific element. Additionally, the problem of retraining Context Trees was

previously mentioned, and the same issue exists with the PCT, where if

additional trajectories were to be brought into the system, the tree would

need to be constructed from scratch. Extending the Context Tree and

PCT to leverage additional data and training instances without requiring

a new tree to be constructed is, therefore, very desirable.

In addition to avenues of future work that aim to remove or reduce the

specific limitations of the approaches discussed above, expanding the focus of

the techniques would present utility for additional domains. An example of

this would be the consideration of additional sources of data for each of the

techniques presented in this thesis. Currently, only trajectories collected from

devices carried by individuals have been used for evaluating the proposed tech-

niques, but trajectories of di↵erent sources exist (as discussed in Chapter 3).

For example, tailoring the procedures for trajectories collected from vehicles

would require additional work to consider the di↵erent properties present in the

data, and would be likely to have slightly di↵erent goals. The GVE algorithm

could be tailored towards identifying parking areas, where vehicles are left, and

the LUI procedure could be used to determine the roads taken by the car, in

addition to the type of feature visited by the driver. The PCT could then be

used to predict what type of element the car is being driven towards, and this

information leveraged to o↵er intelligent tra�c avoidance, or perhaps to suggest

an alternative location with the same function if the drive would be shorter.

8.2 Final Remarks

In this thesis, we have presented several new techniques, algorithms and pro-

cedures in the domain of geospatial machine learning. Specifically, we have

improved upon the state-of-the-art for extracting visits from geospatial trajec-

tories, by presenting an algorithm with improved ability to handle noise and
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with fewer limitations than existing works. We have extended the idea of visit

extraction by considering land usage elements that represent geographic fea-

tures a user was likely to have been interacting with, rather than focusing on

identifying arbitrary shapes. These features have then gone on to form the basis

of contextual clustering to determine periods of time when the user is likely to

have had similar goals and intentions. Finally, these contextual clusters have

formed the basis of a new prediction approach that considers not only where a

person will be, but the likely context within which they will be immersed.

All of these processes have been thoroughly evaluated over two real-world

datasets with results demonstrating the applicability of each stage, and in-

creased accuracy and utility over existing techniques. With the increased avail-

ability of geospatial trajectories, in part due to the now-pervasive nature of

location-aware devices, we have an unprecedented platform on which to build

smarter and more tailored services to improve the lives of individuals and groups.

The work in this thesis has provided additional tools and techniques on which

such services can be built.
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Rubio, Ginés; Pomares, Héctor; Rojas, Ignacio; and Herrera, Luis Javier. 2010. A heuristic

method for parameter selection in LS-SVM: Application to time series prediction. Inter-

national Journal of Forecasting, 27(3):725739. doi: 10.1016/j.ijforecast.2010.02.007.

Russell, Stuart and Norvig, Peter. 2009. Artificial Intelligence: A Modern Approach. Prentice

Hall, 4th edition. ISBN 978-0130803023.

Saini, Lalit M; Aggarwal, Sanjeev K; and Kumar, Ashwani. 2010. Parameter Optimisation

Using Genetic Algorithm for Support Vector Machine-based Price-forecasting Model in

National Electricity Market. Generation, Transmission & Distribution, 4(1):36–14. doi:

10.1049/iet-gtd.2008.0584.

204



REFERENCES

Seo, Won-Il and Lim, Jae-Hyun. 2016. Implementation of Context Prediction System

Based on Event Recurrence Time. Cluster Computing, 19(3):1671–1682. doi: 10.1007/

s10586-016-0612-7.

Shen, Jianan and Cheng, Tao. 2016. A Framework for Identifying Activity Groups from

Individual Space-time Profiles. International Journal of Geographical Information Science,

pages 1785–1805. doi: 10.1080/13658816.2016.1139119.

Shiode, Shino and Shiode, Narushige. 2014. Microscale Prediction of Near-Future Crime

Concentrations with Street-Level Geosurveillance. Geographical Analysis, 46(4):435–455.

doi: 10.1111/gean.12065.

Shiode, Shino; Shiode, Narushige; Block, Richard; and Block, Carolyn R. 2015. Space-

time Characteristics of Micro-scale Crime Occurrences: An Application of a Network-

based Space-time Search Window Technique for Crime Incidents in Chicago. International

Journal of Geographical Information Science, 29(5):697–719. doi: 10.1080/13658816.2014.

968782.

Shye, Alex; Scholbrock, Benjamin; Memik, Gokhan; and Dinda, Peter A. 2010. Characterizing

and Modeling User Activity on Smartphones: Summary. In Proceedings of the ACM SIG-

METRICS International Conference on Measurement and Modeling of Computer Systems,

pages 375–376, New York. doi: 10.1145/1811099.1811094.

Si la-Nowicka, Katarzyna; Vandrol, Jan; Oshan, Taylor; Long, Jed A; Demšar, Urška; and

Fotheringham, A Stewart. 2015. Analysis of Human Mobility Patterns from GPS Tra-

jectories and Contextual Information. International Journal of Geographical Information

Science, 30(5):881–906. doi: 10.1080/13658816.2015.1100731.

Silla Jr, Carlos N and Freitas, Alex A. 2011. A Survey of Hierarchical Classification Across

Di↵erent Application Domains. Data Mining and Knowledge Discovery, 22(1-2):31–72. doi:

10.1007/s10618-010-0175-9.

Sillito, Rowland and Fisher, Robert. 2008. Semi-supervised Learning for Anomalous Tra-

jectory Detection. In Proceedings of the British Machine Vision Conference, pages 1–10,

Leeds.

SNAP. Brightkite Dataset Information, 2008. URL http://snap.stanford.edu/data/

loc-brightkite.html.

SNAP. Gowalla Dataset Information, 2010. URL http://snap.stanford.edu/data/

loc-gowalla.html.

205

http://snap.stanford.edu/data/loc-brightkite.html
http://snap.stanford.edu/data/loc-brightkite.html
http://snap.stanford.edu/data/loc-gowalla.html
http://snap.stanford.edu/data/loc-gowalla.html


REFERENCES

Steichen, Ben; Ashman, Helen; and Wade, Vincent. 2012. A Comparative Survey of Person-

alised Information Retrieval and Adaptive Hypermedia Techniques. Information Processing

& Management, 48(4):698–724. doi: 10.1016/j.ipm.2011.12.004.

Subramanya, Amarnag; Raj, Alvin; Bilmes, Je↵; and Fox, Dieter. 2006. Recognizing Activ-

ities and Spatial Context Using Wearable Sensors. In Proceedings of the Conference on

Uncertainty in Artificial Intelligence, pages 494–502, Cambridge.

Thanh, Nguyen and Phuong, Tu Minh. 2007. A Gaussian Mixture Model for Mobile Location

Prediction. In Proceedings of the 9th International Conference on Advanced Communica-

tion Technology, pages 914–919. doi: 10.1109/ICACT.2007.358509.

Thomason, Alasdair; Gri�ths, Nathan; and Leeke, Matthew. 2015a. Extracting Mean-

ingful User Locations from Temporally Annotated Geospatial Data. In Internet of

Things: IoT Infrastructures, volume 151 of LNICST, pages 84–90. Springer. doi:

10.1007/978-3-319-19743-2 13.

Thomason, Alasdair; Gri�ths, Nathan; and Sanchez, Victor. 2015b. Parameter Optimisation

for Location Extraction and Prediction Applications. In Proceedings of the 2015 IEEE

International Conference on Pervasive Intelligence and Computing, pages 2173–2180, Liv-

erpool. doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.322.

Thomason, Alasdair; Leeke, Matthew; and Gri�ths, Nathan. 2015c. Understanding the

Impact of Data Sparsity and Duration for Location Prediction Applications. In Internet

of Things: IoT Infrastructures, volume 151 of LNICST, pages 192–197. Springer. doi:

10.1007/978-3-319-19743-2 29.

Thomason, Alasdair; Gri�ths, Nathan; and Sanchez, Victor. 2016a. Identifying Locations

from Geospatial Trajectories. Journal of Computer and System Sciences, 82(4):566–581.

doi: 10.1016/j.jcss.2015.10.005.

Thomason, Alasdair; Gri�ths, Nathan; and Sanchez, Victor. 2016b. Context Trees: Augment-

ing Geospatial Trajectories with Context. ACM Transactions on Information Systems, 35

(2):14:1–14:37. doi: 10.1145/2978578.

Thomason, Alasdair; Gri�ths, Nathan; and Sanchez, Victor. 2016c. Predicting Interactions

and Contexts with Context Trees. In Proceedings of the 24th ACM SIGSPATIAL Interna-

tional Conference on Advances in Geographic Information Systems, pages 46:1–46:4, San

Francisco. doi: 10.1145/2996913.2996993.

Thomason, Alasdair; Gri�ths, Nathan; and Sanchez, Victor. 2016d. The Predictive Context

Tree: Predicting Contexts and Interactions. arXiv:1610.01381 (pre-print).

206



REFERENCES

Trasarti, Roberto; Guidotti, Riccardo; Monreale, Anna; and Giannotti, Fosca. 2015. MyWay:

Location Prediction via Mobility Profiling. Information Systems (In Press), pages 1–18.

doi: 10.1016/j.is.2015.11.002.

Tsai, Yi-Han; Chang, Fan-Ren; and Yang, Wen-Chih. 2004. GPS Fault Detection and Exclu-

sion Using Moving Average Filters. IEE Proceedings - Radar, Sonar and Navigation, 151

(4):240–247. doi: 10.1049/ip-rsn:20040728.

Van Kasteren, Tim; Noulas, Athanasios; Englebienne, Gwenn; and Krose, Ben. 2008. Ac-

curate Activity Recognition in a Home Setting. In Proceedings of the 13th International

Conference on Ubiquitous Computing, pages 1–9, Seoul. doi: 10.1145/1409635.1409637.

Vinciarelli, Alessandro; Esposito, Anna; André, Elisabeth; Bonin, Francesca; Chetouani, Mo-
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Appendices

Throughout this thesis, we have used two primary sources of geospatial tra-

jectories for evaluating techniques: the Nokia Mobile Data Challenge (MDC)

and Warwick datasets. In order to reduce repetition, however, several evalua-

tion graphs have been omitted from the main chapters when trends from both

sources of data are very similar. The previously omitted graphs are contained

here. Specifically, Appendix A contains graphs relating to the Gradient-based

Visit Extractor (GVE) algorithm presented in Chapter 4. The graphs in Ap-

pendix B relate to the Land Usage Identification (LUI) procedure from Chap-

ter 5, and Appendix C contains graphs for the Predictive Context Tree (PCT),

originally presented in Chapter 7. Finally, Appendix D contains graphs gener-

ated using the techniques presented in Chapters 5 and 7 but using data from the

MDC data where periods of data with truncated latitude and longitude values

have been retained, extending the discussion found in Section 7.4.
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A Visit Extraction
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Figure A.1: The e↵ect of the parameters n
points

and t
max

on the GVE algorithm
when extracting visits over the Warwick dataset, with the remaining parameters
fixed at ↵ = 0.1, � = 30. This figure mirrors the MDC graph in Figure 4.4.
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Figure A.2: The e↵ect of parameters on the minimum, average, and maximum
length of extracted visits for the GVE algorithm on the Warwick dataset, where
constrained parameters were held at ↵ = 0.1, � = 30, n

points

= 5, t
max

= 60.
This figure mirrors the MDC graph in Figure 4.5.
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Figure A.3: The e↵ect of DBSCAN’s eps and minpts parameters on the average
size of locations and the average number of visits per location for the Warwick
dataset on visits identified using GVE. This figure mirrors the MDC graph in
Figure 4.7.
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B Land Usage Augmentation
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Figure A.4: Summaries of comparisons between land usage elements identified
through the LUI procedure and locations extracted through location extraction
techniques over the MDC dataset. This figure mirrors the Warwick graphs in
Figures 5.8-5.10.
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C The Predictive Context Tree (PCT)
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Figure A.5: The e↵ect of parameters T
s

and � on context prediction, where
d
min

= 10min over the MDC dataset. This figure mirrors the Warwick graph
in Figure 7.9.
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Figure A.6: Predictive accuracies observed when using pruned Context Trees
generated from MDC data. This figure mirrors the Warwick graph in
Figure 7.12.
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Figure A.7: Predictive accuracies obtained when using di↵erent probabilistic
models as classifiers in the PCT over the MDC data. This figure mirrors the
Warwick graph in Figure 7.13.
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Figure A.8: The e↵ect of n on predictive accuracy for the multi-element Context
Tree over MDC data. This figure mirrors the Warwick graph in Figure 7.14.
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D MDC Data With Truncated Periods
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Figure A.9: Summaries of comparisons between land usage elements identified
through the LUI procedure and locations extracted through location extraction
techniques over the MDC dataset where the truncated periods of data have not
been removed.
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Figure A.10: Predictive accuracies for locations extracted with thresholding,
and land usage elements identified through the LUI procedure, when predicting
with SVMs over the MDC dataset with truncated periods.
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