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Abstract  

Engineering modelling of the progressive retreat of cliffs 

A thesis submitted for the degree of Doctor of Philosophy 

to the University of Warwick 

 

Chrysoula Voulgari 

 

In this thesis, the morphologic evolution of uniform c, φ slopes subject 

to successive failures is investigated. The research is conducted in two parts; 

the analytical part (employing the limit analysis upper bound method) and the 

experimental (by small scale model tests).  

An experimental prototype model to study the influence of water 

infiltration on the morphologic evolution of natural cliffs subject to progressive 

retreat is presented. A set of small scale laboratory tests is designed to 

investigate successive failures. The failure is reached by applying rainfall on 

the slope through a rainfall simulator device. The moisture content and the 

suction of the soil during the tests are monitored by soil moisture sensors and 

tensiometers that are buried inside the slope model. High resolution cameras 

record the behaviour of the slope model and GeoPIV is used to analyse the 

frames and obtain the deformations of the slope model during the tests. After 

a short time of rainfall, vertical cracks appear in the slope model with 

significant vertical deformations developing. Experimental results indicate that 

there is a strong connection between moisture content and the occurrence of 
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a landslide. A prediction model of slope failures can be introduced based on 

the observed moisture content response of the slope models. 

For the analytical part a semi analytical model on the evolution of intact 

and slopes with fissures is illustrated. A general analytical solution for the 

assessment of the stability of homogeneous slopes obeying the linear Mohr-

Coulomb criterion accounting for strength degradation, seismic action, 

formation of tension cracks and seepage is presented and a parametric 

analysis is run to assess the effect of each factor on cliff evolution. The so-

called pseudo-static approach and the pore pressure coefficient ru are 

employed. Results for a range of internal shearing resistance angle (φ) values 

of engineering interest are presented in the form of dimensionless ready-to-

use stability charts. 
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γw Water specific weight (kN/m3) 

ρd Dry density (g/cm3) 

ρsat Saturated densiity (g/cm3) 

ρT Total density (g/cm3) 

ρw Water density (g/cm3) 
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Chapter 1 : Introduction 

1.1. Context and Motivation 

Hundreds of lives and properties are lost every year due to slope 

failures, commonly called landslides. In the last decades, the increasing 

impacts of landslide hazards on human lives and infrastructure around the 

world have led to the need of finding cost effective and trustworthy techniques 

to predict the occurrence and magnitude of landslides. Landslides occur when 

earth material moves rapidly downhill after failing along a shear zone. They 

play a key role in landscape evolution, erosion, and sediment transport and 

they also constitute for a significant natural hazard. Landslides can be 

triggered by various actions such as rainfall, seismic events, weathering, etc. 

A good understanding of the underlying triggering mechanisms of slope 

failures is required to evaluate landslide risk and to optimise slope stabilization 

and mitigation strategies. The analysis of slope stability problems in 

geotechnical engineering is of paramount importance. However, despite 

intensive research, these events continue to result in human and property 

losses, and environmental degradation every year.  
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The morphological evolution of cliffs (natural and excavated slopes) is 

a traditional subject in engineering geology and geomorphology (Carson and 

Kirkby, 1972, Hutchinson, 1969, Hutchinson, 1970, Hutchinson, 2001, Selby, 

1982, Parsons, 2002) which investigates the evolution of the landscape over 

time. Modelling the progressive retreat of cliffs has recently received 

considerable attention by the engineering community due to increasing coastal 

erosive processes caused by climate change and amplified environmental 

awareness at national and European level (Bray and Hooke, 1997). The 

insurance industry needs reliable models to predict the amount of cliff retreat 

over time for residential buildings located in exposed areas, whereas local 

authorities, stakeholders and decision makers need to know the level of risk 

faced by the public infrastructure (e.g. coastal roads, pedestrian footpaths, car 

parks, etc.).  

 

 

Figure 1.1. Holbeck Hall landslide, Scarborough, June 1993 / Source: 

http://www.bgs.ac.uk 

 

http://www.bgs.ac.uk/
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In Figure 1.1, a typical example of cliff retreat due to rainfall and limited 

tensile strength in United Kingdom is illustrated. In June 1993, the Holbeck 

Hall Hotel collapsed after a long dry period followed by heavy rainfall. Over a 

three days period, a rotational landslide including about 1 million tons of 

glacial till cut back the 60m high cliff by 70m under smaller landslides that 

occurred, south of Scarborough in North Yorkshire on the North East Coast of 

England. It flowed across the beach to form a semicircular promontory 200m 

wide projecting 135m outward from the foot of the cliff. The first signs of 

movement on the cliff were seen six weeks before the main failure, when 

cracks developed in the tarmac surface of footpaths running across the cliffs. 

In Figure 1.2, an example of cliff retreat due to successive failures is 

illustrated. A steep slope in weakly and moderately cemented cliffs in Daly City 

near San Francisco, California can be observed. The slope has suffered a 

number of successive failures bringing its crest closer to the existing buildings. 

The assessment of the hazards caused by landslides and the possibility of 

slope failure are commonly addressed through slope stability analysis, 

allowing for analytical predictions of the failure conditions in a selected slope. 

The evolution of natural slopes over time is ruled by several factors, 

namely the strength of its component geomaterials and its weakening over 

time due to weathering processes, the occurrence of seismic events and the 

hydrogeological conditions, e.g. seepage as well as other atmospheric agents 

that affect the slopes. 
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[2012] 
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Figure 1.2. Photographs of steep slope in weakly and moderately cemented 

cliffs in Daly City near San Francisco, California [N37 39.23 W122 29.87] 

showing the successive retreat of the slope since 2002 
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1.2. Aims and Objectives of the thesis 

Given all the above it is obvious that it is very complex to study all the 

parameters that might affect the stability of slopes. This thesis is aimed at 

investigating and engineering modelling the morphological evolution of natural 

cliffs subject to progressive retreat induced by various actions.  

 

 

Figure 1.3. Illustration of the problem and possible approaches 

 

A slope can become unstable when the gravity forces that act on a 

mass of soil overcome the available shear stress within the mass and along its 

base. The result will be movement of the mass of soil down the slope, which in 

cases of populated areas can have catastrophic consequences. In 

unpopulated areas the result might be minimal and could lead only to the 

natural degradation of the slope surface. Figure 1.3 illustrates the possible 

ways to approach this issue. This thesis is focused on the experimental and 

analytical methods to approach the problem.  

For the analytical part the analysis upper bound method and the 

pseudo-static approach (Terzaghi, 1950) are used to derive the analytical law 
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describing the evolution of homogeneous cohesive frictional (c, φ) slopes with 

limited or no tensile strength subject to progressive retreat induced by 

weathering for static and seismic scenarios and with the presence of water 

and to provide rigorous upper bounds to the true collapse values. Moreover 

the use of the ru coefficient is adopted to include the influence of the water 

pore pressure. The work includes the introduction of the effect tension cracks, 

seismic action and pore water pressure in the pre-existing model for cliff 

retreat (Utili and Crosta, 2011a) and to extend its validity to wet conditions and 

to soils of limited tensile resistance and under earthquake loading. The aim is 

to build a model, which will be capable of predicting the evolution of slopes 

due to various actions.  

Soil strength is characterised by the Mohr-Coulomb failure criterion 

therefore only three parameters are needed to describe the soil properties 

(unit weight, internal friction angle and cohesion). The limit analysis upper 

bound method was applied to determine each discrete landslide event 

occurring over time for successive destabilization and complete removal of the 

failed mass after each event. The inclusion of tension crack, the seismic 

acceleration and the existence of pore water pressure lead to a change of the 

analytical expression of the energy balance equation.  A full set of solutions for 

the stability of homogeneous slopes for mechanisms including crack formation 

is presented both by nomograms and tables for different values of slope 

inclination, cohesion and internal friction angle.  

As for the experimental part, this thesis reports on a laboratory 

apparatus and a set of experiments that were designed and carried out, 

aiming to investigate the morphologic evolution of natural cliffs made of weakly 

cemented materials subject to progressive retreat under various causes. A set 

of small scale laboratory tests is designed and tested in an experimental 
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prototype apparatus to investigate successive landslides. Small scale slope 

models are constructed and a rainfall simulation device is placed on top of 

them; rainfall is then applied to them until successive failures are observed. 

The moisture content and the suction of the soil during the tests are monitored 

through soil moisture sensors and tensiometers, buried inside the slope model 

during the construction phase, while high resolution cameras record the 

behaviour of the slope model and GeoPIV software is used to analyse the 

frames and obtain the deformations of the slope model during the tests. After 

a short time of rainfall, vertical cracks appear in the slope model and 

significant vertical deformations are developed until a first failure is reached. 

Subsequently and due to further wetting of the slope material successive 

failure takes place.  

1.3. Structure of the thesis 

This thesis comprises of six chapters, with a summary of the main 

points covered at the beginning of each chapter.  

• Chapter 1 is the introductory chapter, illustrating the motivation and the 

focus of this research as well as the aims, objectives and the structure of 

this thesis.  

• Chapter 2 forms the literature review, presenting different methodologies 

for slope stability assessment as well as the current knowledge from a 

number of previous studies on the same field. The reasons why the 

analytical kinematic approach of limit analysis is adopted and also the 

small-scale experiments are chosen are justified. 

• Chapter 3 is focused on the analytical part of this thesis, explaining the 

basic concepts of the limit analysis upper bound method adopted in this 
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study together with the analytical model developed and the parametric 

analysis that has been carried out. 

• In Chapter 4 the preliminary results that led to the design of the final 

experimental set up and the experimental methodology are described. The 

experimental procedure is described in detail and the dimensional analysis 

is presented. Since this project required a novel testing approach, this 

section follows the development process and is in itself a result of this 

research.  

• Chapter 5 presents the set of experiments that were carried out for this 

research as well as the main experimental findings and  

• Chapter 6 presents the main conclusions from the conducted research for 

this thesis, the results and the main concluding points are summarised, 

while recommendations for future research are provided. 

This thesis also includes an Appendix section containing:  

 Sensors calibrations curves  

 Analytical calculations regarding the limit analysis model 

 MATLAB scripts  

 



Chapter 2: Literature Review 

 

9 
 

 

 

 

 

 

 

Chapter 2 : Literature review and Theory 

Landslides occur when earth material moves rapidly downhill after 

failing along a shear zone and they account for a significant natural hazard. 

The assessment of these hazards and the possibility of slope failure are 

commonly addressed through slope stability analysis, allowing for analytical 

predictions of the failure conditions in a selected slope. A large range of 

different tools exist today to investigate slope stability and many experimental, 

analytical and numerical studies have been conducted so far concerning slope 

stability. In order to study the landslide mechanisms, many different ways of 

modelling a slope and study the mechanism of slope failure have been 

implemented. The general aim of these studies is to assess, whether or not, a 

slope is considered to be stable and also to provide a safe distance from the 

slope crest behind which structures and other facilities can be safely 

constructed.  

In this chapter, the main factors causing slope instability are examined 

and the methods to study slope instability have been reviewed. Moreover, 

some important studies of modelling landslides due to various factors are 

listed. The reasons for using small scale tests to model successive failures are 
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illustrated and the choice of the upper bound method of limit analysis as the 

main research tool in the thesis is also justified. 

2.1. Causes of slope instability 

Slope failure occurs when gravity and shear stresses exceed the shear 

strength of the material, leading to the downward movements of slope 

material. Therefore, causes of slope instability can be divided into the factors 

that tend to increase the shear stresses applied on the slope and those that 

tend to decrease the available shear strength of the slope material. 

2.1.1. Increase of driving forces 

Natural landslides occur on slopes around the world. Ground water 

pressures and seismic loading are two major factors contributing to slope 

instability. A quick look in Table 2.1, illustrating the most catastrophic 

landslides of the 20th century can prove that rainfall and earthquake movement 

are the two most common triggering factors for these large slope failures, 

resulting in thousands of people being killed and huge infrastructure loss.  

Present slope stability is strongly influenced also by high pore 

pressures which can develop at the base of the soils in the previous top of the 

weathered rock (Grainger and Harris, 1986). Water infiltration can lead to 

slope instability by the increase in soil moisture content, leading to a decrease 

in soil matric suction and then a decrease in the shear strength of the potential 

failure surface (Rahardjo et al., 1995), while at the same time the soil weight 

increases due to the ingression of the water. The effect of water has been 

extensively studied using several different approaches (Michalowski, 1995a, 

Griffiths and Lu, 2005, Viratjandr and Michalowski, 2006, Oh and Lu, 2015). 

Earthquake shaking, on the other hand, can increase shear stresses in 

soils and thereby reduce the stability of a slope. In addition, earthquake 
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loading can influence the shape of failure surface, particularly when tension 

cracks are present. Earthquake-induced landslides are among the most 

destructive slope movements and there is a large body of literature on limit 

analysis or other methods applied on landslides triggered by seismic activities 

(Chang et al., 1984, Ling and Leshchinsky, 1995, Crespellani et al., 1998, Cao 

and Zaman, 1999, You and Michalowski, 1999, Loukidis et al., 2003, Chen 

and Liu, 1990, Yang and Chi, 2014). Seismic shaking can directly trigger slope 

failures and at the same time cause damage within the slope material, 

predisposing it to successive failures under different triggering factors or 

earthquakes of smaller magnitude.  

Cliff evolution is caused and / or accelerated by several physical 

agents (Arkin and Michaeli, 1985, de Lange and Moon, 2005, Briaud, 2008, 

Collins and Sitar, 2010). Key drivers of slope instability are seismic action 

(Chen and Liu, 1990, Ling and Leshchinsky, 1995, Loukidis et al., 2003, 

Wasowski et al., 2011, Rathje and Antonakos, 2011, Yang and Chi, 2014, Tsai 

and Chien, 2016), rainfall and climatic variations (Leroueil, 2001, Frayssines 

and Hantz, 2006, Take and Bolton, 2011, Conte and Troncone, 2012, 

Springman et al., 2013), weathering (Yokota and Iwamatsu, 2000, Hachinohe 

et al., 2000), crack formation (Baker, 1981, Hales and Roering, 2007) and 

wave action for sea cliffs (Benumof et al., 2000, de Lange and Moon, 2005). In 

the analytical part of this work all these actions, but the last one, are 

considered. To account for the presence of water the pore-water pressure, u, 

is considered in the analytical model using the coefficient ru. Seismic action 

will be accounted for by employing the so-called pseudo-static approach 

(Terzaghi, 1950) following the approach presented in (Utili and Abd, 2016).  
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Table 2.1. Catastrophic Landslides of the 20th Century - Worldwide / Source: 

http://landslides.usgs.gov/learn/majorls.php 

Year 
Country 
(State/Province) 

Name & type(s) 
Triggering 
factor 

Impact 

1911 
Tadzhik Rep. 
(Formerly USSR) 

Usoy rock slide 
Usoy 
earthquake M = 
7.4 

Usoy village destroyed; 54 killed; 
Murgab River dammed, 
impounding 65-km long still existing 
Lake Sarez 

1919 Indonesia (Java) 
Kalut lahars 
(Volcanic 
mudflows) 

Eruption of Kalut 
volcano 

5,110 killed; 104 villages destroyed 
or damaged 

1920 China (Ningxia) 
Haiyuan 
landslides 

Haiyuan 
earthquake 

100,000 killed; many villages 
destroyed 

1921 
Kazakh Rep. 
(formerly USSR) 

Alma-Ata debris 
flow 

Snowmelt 500 killed 

1933 China (Sichuan) Deixi landslides 
Deixi earthquake 
M = 7.5 

6,800 killed by landslides; 2,500 
drowned when landslide dam failed 

1939 Japan (Hyogo) 
Mount Rokko 
slides and mud 
flows 

Heavy rain 
505 dead/missing; 130,000 homes 
destroyed or badly damaged by 
mass movements and/or floods 

1949 
Tadzhik Rep. 
(formerly USSR) 

Khait rock slide 
Khait 
earthquake M = 
7.5 

12,000 - 20,000 killed or missing; 
33 villages destroyed 

1953 
Japan 
(Wakayama) 

Arita River 
slides and 
debris/mud 
flows 

Heavy rain 
460 dead/missing; 4,772 homes 
destroyed by mass 
movements/floods 

1953 Japan (Kyoto) 

Minamiy-
amashiro slides 
& debris/mud 
flows 

Heavy rain 
336 dead/missing; 5,122 homes 
destroyed or badly damaged by 
mass movements/floods 

1958 Japan (Shizuoka) 

Kanogawa 
slides and 
mud/debris 
flows 

Heavy rain 
1,094 dead/missing; 19,754 homes 
destroyed or badly damaged by 
mass movements/floods 

1962 Peru (Ancash) 

Nevados 
Huascaran 
debris 
avalanche 

Not known 
4,000-5,000 killed; much of village 
of Ranrahirca destroyed 

1963 
Italy (Friuli-
venezia-Griulia) 

Vaiont Reservoir 
Rockslide 

Not known 
2,000 killed; city of Longarone 
badly damaged; total damages: 
US$200 million (1963 $) 
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1964 
United States 
(Alaska) 

1964 Alaska 
landslides 

Prince William 
Sound 
Earthquake M = 
9.4 

Estimated US$280 million (1964 $) 
damages 

1965 China (Yunnan) Rock slide Not known 
Four villages destroyed and 444 
killed 

1966 
Brazil (Rio de 
Janeiro) 

Rio de Janeiro 
slides, 
avalanches, 
debris/mud 
flows 

Heavy rain 
1,000 dead from landslides and 
floods 

1967 
Brazil (Serra das 
Araras) 

Serra das 
Araras slides, 
avalanches, 
debris/mud 
flows 

Heavy rain 
1,700 dead from landslides and 
floods 

1970 Peru (Ancash) 

Nevados 
Huascaran 
debris 
avalanche 

Earthquake M = 
7.7 

18,000 dead; town of Yungay 
destroyed; Ranrahirca partially 
destroyed 

1974 
Peru 
(Huancavelica) 

Mayunmarca 
rock slide-debris 
avalanche 

Not known 

Mayunmarca village destroyed, 450 
killed; failure of 150-m-high 
landslide dam caused major 
downstream flooding 

1980 
United States 
(Washington) 

Mount St. 
Helens rock 
slide-debris 
avalanche 

Eruption of 
Mount St. 
Helens 

Only 5-10 killed, but major 
destruction of homes, highways, 
etc.; major debris flow; deaths low 
because of evacuation 

1983 
United States 
(Utah) 

Thistle debris 
slide 

Snowmelt & 
heavy rain 

Major railroad and highways 
destroyed; Spanish Fork flooding 
town of Thistle dammed; no deaths 

1983 China (Gansu) 
Saleshan 
landslide 

Not known 
237 dead; four villages buried; two 
reservoirs filled 

1985 Colombia (Tolima) 
Nevado del Ruiz 
debris flows 

Eruption of 
Nevado del Ruiz 

Four towns and villages destroyed; 
flow in valley of Lagunillas River 
killed more than 20,000 in city of 
Armero. 

1986 
Papua, New 
Guinea (East New 
Britain) 

Bairaman Rock 
slide-debris 
avalanche 

Bairaman 
earthquake M = 
7.1 

Village of Bairaman destroyed by 
debris flow from breached landslide 
dam; evacuation prevented 
casualties; huge effect on local 
landscape 

1987 Ecuador (Napo) 
Reventador 
landslides 

Reventador 
earthquakes M = 
6.1 and 6.9 

1,000 killed; many kms of trans-
Ecuadorian oil pipeline and 
highway destroyed; total losses: 
US$ 1 billion (1987 $) 

1994 Colombia (Cauca) Paez landslides Paez Several villages partially destroyed 
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earthquake, M = 
6.4 

by landslides; 271 dead; 1,700 
missing; 158 injured; 12,000 
displaced. 

1998 

Honduras, 
Guatemala, 
Nicaragua, El 
Salvador 

Hurricane Mitch 

flooding 

Landslides 

debris-flows 

Hurricane Mitch 

Around10.000 people killed in the 
flooding and landslides, which 
occurred throughout the region. 
Casitas volcano in Nicaragua 
experienced large debris flows. 
Impossible to differentiate deaths 
from landslides from deaths due to 
flooding. 

1999 
Venezuela 
(Vargas) 

Vargas tragedy Heavy rain 
Caused by a heavy storm that 
deposited 30000 people killed. 

2004 
Indonesia (South 
Sulawesi) 

Mt. 
Bawakaraeng 
landslide 

Collapse of 
caldera wall 

32 casualties. 

2005 
United States 
(California) 

La Conchita 
Landslide 

Remobilization 
of a previous 
landslide deposit 

13 houses were destroyed and 23 
others severely damaged, 10 
confirmed fatalities. 

2006 
Philippines 
(Southern Leyte) 

Southern Leyte 
mudslide 

Heavy rain 

The landslide overwhelmed the 
village of Guinsaugon resulting in 
the loss of over 1100 people, 
including 250 schoolchildren who 
were attending morning classes at 
the Guinsaugon School. 

2007 
Bangladesh 
(Chittagong) 

Chittagong 
mudslides 

Illegal hillside 
cutting and 
monsoon rains 

Landslides in two days killed at 
least 123 people in the port city. 

2008 Egypt (Cairo) Cairo landslide Not known 
Rockfall from cliffs, individual 
boulders up to 70 tonnes, 119 
people died in the rockslide. 

2009 China (Taiwan) 
Shiaolin 
landslide 

Typhoon 439-600 casualties. 

2010 
Uganda (Bududa 
District) 

2010 Uganda 
Landslide 

Heavy rain 
The slides buried three villages, 
leaving 83 dead and more than 300 
missing. 

2013 
India 
(Uttarakhand) 

2013 
Uttarakhand 
floods 

Floods 
More than 5,700 people were 
"presumed dead". 

2014 
Afghanistan 
(Badakhshan 
Province) 

Badakhshan 
mudslides 

A pair of 
mudslides 

The number of deaths varying from 
350 to 2,700. Around 300 houses 
were buried and over 14,000 were 
affected. 

2015 
Colombia 
(Antioquia 
Department) 

2015 Colombian 
landslide 

Heavy rain 
At least 78 people were killed by 
the landslide. An addition 37 
people were injured. 
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2.1.2. Decrease of resisting forces 

Apart from the increase of driving forces that are leading to slope 

instability, there are also factors causing the resisting force of the slope to 

decrease thus making it prone to failure subject to lower loads. An example of 

such factors is the presence of cracks. Cracks or fissures are widely present in 

soil slopes and can cause a significant decrease in their stability (Baker, 1981, 

Michalowski, 2013, Utili, 2013), as they provide preferential flow channels 

which increase the soil permeability and decrease the soil strength. Moreover, 

cracks form a part of the critical slip surface that has no shear strength and 

when filled with water, an additional driving force is applied on the slope. 

Cracks can be the result of a variety of phenomena, for instance exceedance 

of the ground tensile strength (Michalowski, 2013), the occurrence of 

differential settlements (Vanicek and Vanicek, 2008), desiccation (Konrad and 

Ayad, 1997, Dyer et al., 2009, Péron et al., 2009) and freezing (Hales and 

Roering, 2007) and are often found in cohesive soils and rock slopes. They 

may cause a significant decrease in the stability of a slope both in static 

(Michalowski, 2013, Utili, 2013, Utili, 2015, Gao et al., 2015) and seismic 

conditions (Utili and Abd, 2016). For this reason, the existence of cracks in 

slopes and their influence on its stability has been addressed before by 

several researchers (Spencer, 1968, Spencer, 1967). In this work, not only the 

intact slopes but also the stability of slopes with cracks is investigated for 

slopes with limited or no tensile strength. 

Cracks can also be a result of weathering. Weathering is one stage of 

the rock cycle, which involves the processes that form the earth's surface. 

Weathering reduces hard rocks into soft rocks which maintain the structure of 

the intact rocks, but are characterised by higher void ratios and reduced bond 

strengths, soft rocks are transformed into granular soils generally called 
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residual soils (Utili, 2004). That is to say, that a common result of weathering 

processes, is a degradation of the mechanical properties of the material. A 

number of landslides happen to slopes due to weathering and the result is the 

progressive retrogression of the slope front and the further degradation within 

the weathering zone.  

In this work cracks are considered in the analytical model and also 

weathering by assuming a decrease on the cohesion of the material until a 

failure is reached.  

2.2. Methods to study slope stability 

Different approaches have been developed through the years to give 

reliable estimations on slope stability problems. Slope stability can be 

approached through analytical, numerical or experimental techniques, as 

shown in Figure 2.1.  

 

 

Figure 2.1. Methods to study slope stability problems reviewed in this chapter 

 

All these methods are reviewed in this chapter showing that each of 

them has its own advantages and disadvantages and often they are used in 

combination to acquire the most reliable results. The most suitable method 
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should be carefully chosen to study each problem according to its specific 

needs.  

2.3. Review of analytical and numerical methods 

In general there are many ways to study slope stability either analytical 

or numerically. In what follows both the analytical and the numerical methods 

that have been developed and used in the past years are reviewed.  

The analytical methods are: 

 Limit equilibrium method (LEM) 

 Limit analysis (LA) 

While the numerical models are: 

 Finite element method (FEM) 

 Discrete element method (DEM) 

 Finite element limit analysis (FELA) 

2.3.2. Limit analysis (LA) 

Limit analysis is based on the limit theorems formulated by (Drucker et 

al., 1952, Drucker et al., 1950), and assumes that the geotechnical structures 

under investigation undergo small deformations that they are made of rigid-

perfectly plastic materials obeying an associated flow rule (normality rule). 

Following that, limit analysis can be either an upper bound or a lower bound 

theorem (Drucker et al., 1952, Chen, 1975).  

According to the upper bound theorem, if a set of external loads acts 

on a failure mechanism and the work done by them in an increment of 

displacement equals the work done by the internal stresses, the external loads 

obtained are not lower than the true collapse loads. It is noted that the external 

loads are not necessarily in equilibrium with the internal stresses and the 
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mechanism of failure is not necessarily the actual failure mechanism (Yu et al., 

1998). The lower bound theorem states if an equilibrium distribution of stress 

covering the whole body can be found that balances a set of external loads on 

the stress boundary and is nowhere above the failure criterion of the material, 

the external loads are not higher than the true collapse loads. It is noted that in 

the lower bound theorem, the strain and displacements are not considered 

and that the state of stress is not necessarily the actual state of stress at 

collapse (Yu et al., 1998). By examining different possible mechanisms, or 

different admissible states of stress, the best (least) upper bound and the best 

(highest) lower bound value can be found respectively. Thus, the actual 

collapse load can be bracketed when upper bound and lower bound values 

are known. However, most of the time it is not possible to construct statically 

admissible stress fields needed by the lower bound theorem and the kinematic 

approach of limit analysis upper bound method is more popular and widely 

used. 

The application of limit analysis has been extended to various factors 

causing slope instabilities, for example the influence of pore water pressure 

(Michalowski, 1995a, Michalowski, 1995b, Viratjandr and Michalowski, 2006), 

seismic action (Michalowski, 2002, Chen et al., 2012, Utili and Abd, 2016) or 

reinforcement (Michalowski, 1997, Michalowski, 1998, Michalowski, 2008, Abd 

and Utili, 2016). Some recent studies are available on the stability of slopes 

with cracks with limit analysis approach (Michalowski, 2013, Utili, 2013) and 

on the progressive retreat of slopes (Utili and Crosta, 2011a). 

2.3.1. Limit equilibrium method (LEM) 

Limit equilibrium is the oldest method for performing stability analysis, 

and was first applied in a geotechnical setting by (Coulomb, 1776), dominating 

the field of slope stability research. Limit equilibrium methods generally 
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prescribe the failure mechanism in advance and assume that the stresses 

along a pre-assumed failure surface are governed by linear (Mohr-Coulomb) 

relationships between shear strength and the normal stress on the failure 

surface.  

The first stability analyses of slopes were based on limit equilibrium 

methods (Espinoza et al., 1994), most of which methods are based on the 

method of slices, a technique that is first reported in (Fellenius, 1927), where 

the soil mass is discretized into vertical, horizontal or inclined slices., while 

others on wedge methods. The most used stability analyses of slopes are 

based on the conventional limit equilibrium methods (Janbu, 1954, Janbu, 

1975, Bishop, 1955, Morgenstern and Price, 1965, Spencer, 1967, Sarma, 

1979). Most limit equilibrium methods fulfil both moment and force equilibrium, 

while there are also the ‘simplified methods’ that fulfil only one. General two-

dimensional limit equilibrium formulation was extended by development of a 

generalized model for three-dimensional analysis (Chen et al., 2003, Fredlund 

et al., 2011). The application of the method has been employed  also to 

evaluate the stability of slopes under seismic effect by (Sarma, 1975) 

employing the pseudo-static approach, which is employed also in this 

research. 

However, limit equilibrium analyses present several shortcomings 

(Duncan, 1996) one of which is the fact that the solution is neither a lower nor 

an upper bound of the true collapse load. Another major disadvantage is that 

the failure surface needs to be assumed in advance, with poor choices giving 

poor estimates of the failure load (Sloan, 2013). Moreover, the weakness with 

limit equilibrium methods, when it comes to studying slopes with more 

complicated geometry, e.g. existence of cracks, is that they are not rigorous 



Chapter 2: Literature Review 

 

20 
 

methods and are limited in their capacity of analysis, since they usually require 

the user to assume a crack depth and location in the slope.  

2.3.3. Finite elements method (FEM) 

The use of numerical methods such as finite element method (Zheng 

et al., 2005, Potts et al., 2001, Huang and Jia, 2009) and material point 

method (Yerro et al., 2015) to provide approximate solutions to the slope 

stability problem is also increased in the latest decades. There are also plenty 

of numerical studies, using finite element method (Smith and Hobbs, 1974, 

Duncan, 1996, Griffiths and Lane, 1999) and discrete element method (Utili 

and Crosta, 2011a, Camones et al., 2013) to analyse slope stability. Many 

researchers (Cheng et al., 2007, Dawson et al., 2000, Chang and Huang, 

2005) have tried to approach slope stability analysis by using the strength 

reduction technique. Unlike limit equilibrium method, no assumptions need to 

be made about the location or shape of the failure surface or lateral forces on 

the sides of the slices and their directions. The critical failure mechanism in a 

complicated model may assume any shape. The factor of safety in case of 

slope stability analysis by strength reduction method may be defined as the 

ratio of the resisting shear strength of the material to the driving shear stress 

developed along the failure plane. 

One of the main disadvantages of FEM in the analysis of slope stability 

is that results depend on which indicator of slope failure is selected and since 

there is no universally accepted slope failure indicator users can rely on their 

experience and intuition to interpret FEM results. Moreover, as in every FEM 

analysis, mesh density, number of load steps, numerical integration scheme, 

tolerances used to check convergence of the global equilibrium iterations and 

the type of element employed in the model (Sloan, 2013) can influence and 
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change the obtained results. For these reasons, the results obtained from 

FEM analysis should be used together with some other techniques. 

2.3.4. Discrete element method (DEM) 

The Discrete Element Method was firstly used by (Cleary and 

Campbell, 1993) to simulate granular flows and since then it has been 

employed (Utili and Crosta, 2011b, Camones et al., 2013, Utili et al., 2015) to 

study slope stability and more recently also for 3D analyses of the stability of 

rock slopes (Boon et al., 2014) which has been made possible by 

computational advances in the DEM contact detection algorithms to deal with 

polyhedral blocks (Boon et al., 2012, Boon et al., 2013) and new algorithms for 

rock slicing (Boon et al., 2015). It has also become a complementary research 

method to laboratory experiments, revealing the fundamental mechanical 

characteristics of landslides (Staron and Hinch, 2007, Lacaze et al., 2008). 

However, in cases of rather uniform slopes subject to a few cracks, such a 

numerical approach is not justified. Numerical methods struggle to deal with 

the presence of cracks in the slope, because of the discontinuities introduced 

both in the static and kinematic fields by the presence of cracks.  

2.3.5. Finite limit analysis method (FELA) 

The finite element limit analysis (FELA) can be used to compute the 

upper or lower bound plastic collapse load. The founder of the finite element 

lower bound analysis is (Lysmer, 1970), while (Sloan, 1988) and 

(Makrodimopoulos and Martin, 2006)  have then extended the theory to 

include non-linear yield surfaces, including also more efficient optimisation 

processes.  

As for the finite element upper bound analysis, (Bottero et al., 1980, 

Sloan and Kleeman, 1995, Lyamin and Sloan, 2002) have combined constant 
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strain elements with kinematically admissible discontinuities in the 

displacement field, which help to compensate for the low order of the elements 

themselves. Moreover, second order cone programming is employed by 

(Makrodimopoulos and Martin, 2007) to increase the efficiency of the 

optimization process in FELA.   

Although with the rise of computer capabilities many complex 

behaviours and interactions such as existence of cracks or presence of water 

can be modelled, FELA still faces the same disadvantages (mesh 

dependency, element types, etc.) as those in traditional FEM.  

2.3.6. Choice of the analytical method 

As it is obvious from the studies that were described above, there are 

many different ways of modelling a slope and study the mechanism of a 

slope’s failure due to various factors. Although many researches have 

modelled slope stability under various conditions (Yu et al., 1998, Fourie, 

1996, Le Cossec et al., 2011), the evolution of a slope subject to successive 

failures and the deformation response of a slope subject to weathering are not 

yet thoroughly clarified.  

Some of the methods (LEM, FEM, LA, FELA) introduced in the 

previous sections are traditionally adopted in slope stability assessment. As 

summarized in (Sloan, 2013), the properties of each technique are compared 

in Table 2.2. It is obvious that no single method can outperform the others and 

they all have their strong points and drawbacks; to this end, the choice of 

which method will has to be determined on a case by case basis.  

In this thesis, a sequence of slope failures for initially planar slope 

profiles is systematically explored through an optimization technique. 

Thousands slope stability analyses have to be executed in order to calculate 
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the most critical failure mechanisms for intact slopes, slopes with cracks, water 

presence and under seismic action. This makes the numerical methods less 

favourable, due to the calculation time that they would require. Moreover, the 

new profile is always a result of the failure mechanism of the previous 

landslide which would complicate the numerical model even more. Moreover, 

regarding the analytical solutions and although the LEM is more widely used, it 

is known that when it comes to studying slopes with more complicated 

geometry, it is less efficient (Fredlund, 1984).  

 

Table 2.2. Properties of traditional methods used for geotechnical stability 

analysis (Sloan, 2013) 

Property LEM 
Upper 
Bound LA 

Lower 
Bound LA 

FEM 

Assumed failure 
mechanism? 

Yes Yes - No 

Equilibrium satisfied 
everywhere? 

No (in 
slices) 

- Yes 
No (nodes 
only) 

Flow rule satisfied 
everywhere? 

No Yes - 
No (integration 
points only) 

Complex loading and 
boundary conditions 
possible? 

No Yes Yes Yes 

Complex soil models 
possible? 

No No No Yes 

Coupled analysis 
possible? 

No No No Yes 

Error estimate? No 
Yes (with 
lower 
bound) 

Yes (with 
upper 
bound) 

No 

 

To this end, the kinematic approach of limit analysis is a suitable 

candidate as it is more rigorous and simple method and able to cope with 

some issues, such as the presence of cracks, water pressure and seismic 
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actions. Moreover, the limit analysis theory has already been used to study the 

influence of cracks (Utili, 2013, Michalowski, 2013), seismic action (Chang et 

al., 1984, Utili and Abd, 2016) and presence of water (Michalowski, 1995a, 

Viratjandr and Michalowski, 2006) on slope stability, but more importantly it 

has been used to study the evolution of slope subject to successive failures 

due to weathering (Utili and Crosta, 2011a). 

In this thesis a simple semi-analytical model is presented based on the 

explicit consideration of all discrete failure events (landslides) leading to 

significant modifications of the morphology of a slope. The model, derived 

under the framework of limit analysis assuming plane strain conditions, 

provides a tool for the assessment of whether manufacts and/or infrastructures 

located on a slope subject to various natural degradation phenomena will be 

affected by the occurrence of failures. Most of the models developed so far, 

assume that the normal and shear stresses along the slip surface comply the 

Mohr-Coulomb yield criterion, which is the most used criterion for slope 

stability problems in cohesive soils and is also used in this model. The 

pseudo-static method is employed to investigate the stability of slopes subject 

to seismic actions and the pore pressure coefficient ru to account for the 

presence of water, while weathering is taken into consideration by assuming 

that cohesion reduces in time.  

2.4. Review of physical modelling studies 

Physical modelling plays a fundamental role in the development of the 

understanding of the triggering mechanisms of landslides and has been used 

through the years to simulate the behaviour of slopes subject to many factors, 

in addition it is also performed in order to validate theoretical and empirical 

hypotheses (Wood, 2003).  
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Many researchers investigating the triggering mechanism of slope 

failure have approached the problem through experimental procedures. In 

each case, different techniques were applied to initiate the failure, while a 

number of different monitoring devices were used in order to record soil 

characteristics and the behaviour of the slope during the tests. Many kinds of 

sensors were also vastly used to record the changes in the characteristics of 

the soil (moisture content, pore pressure, temperature etc.) and digital 

cameras to record the displacements and the changes in the slope front. 

When investigating the influence of rainfall on slope stability, the results of 

most of these studies suggest that measurements of the changes of moisture 

content can be a factor to predict the slope’s movement, while the initiation of 

the slopes failure is mainly caused with a decrease of the cohesion of the soil, 

thus making the cohesion the most critical property of the soil to measure, 

when it comes to slope stability.  

The experimental models simulating slope stability issues can 

generally be divided in three categories: 

 Scaled model tests 

 Centrifuge tests 

Many of the studies reviewed here are used to validate analytical 

models or numerical analyses.  

2.4.1. Scaled model tests 

Scaled model tests are an efficient method to study slope stability as 

they can be performed in well controlled conditions and simulate failure 

initiation factors and failure process. When performing a scaled model test, the 

model and the prototype should be related by satisfying geometric similarity, 

for example the scaling factor of length between the prototype and the model 
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should be chosen and the materials used in the real slope and the slope 

model can have the same unit weight (Roscoe, 1968). Different geological 

conditions, soil materials and triggering factors have been considered as 

variables to test the stability of scaled slope models in the past. 

Most of the laboratory experiments require large slope models 

(Moriwaki et al., 2004, Jia et al., 2009, Iverson et al., 1997, Zhang et al., 2005) 

to realistically simulate slopes and clarify the triggering factors and failure 

processes of landslides. The large scale experiments provide insight into 

failure mechanisms and failure mode and the scale effects that occur because 

of the differences in stress level between the model slopes and the natural 

slopes are less when compared to those of smaller scale models. However, 

the costs involved in the slope model preparation and instrumentation of such 

scale as well as operational costs are prohibitively high. Field experiments 

demand continuous monitoring of the characteristics of the slope and soil and 

need time and are cost intensive; therefore not so many examples can be 

found in the literature.  

Smaller model test is also an important approach, in order to 

investigate the behaviour of a slope. Despite the limitation of scaled physical 

models under 1-g conditions, where the stress levels in the models are smaller 

than in the real slope, leading to different soil properties and loading condition, 

they are widely being used to give a first approximation of the failure 

conditions. In the case of rainfall induced slope failures, model test also 

provides the opportunity to observe the processes of infiltration, the 

progression of the water front, the deformation of the slope and finally the 

occurrence of a failure (Wang and Sassa, 2001, Chen et al., 2012, Okura et 

al., 2002, Huang et al., 2008, Orense, 2004, Tohari et al., 2007, Hu et al., 

2005).  A vibrating sand box has also been used in the study of (Katz and 
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Aharonov, 2006) to induce cracks in soils and investigate the instability of 

heterogeneous slopes. 

2.4.2. Centrifuge tests 

Concern over stress level differences has led to the use of centrifuge 

model tests where the stress conditions can be scaled. The centrifuge 

modelling technique was proposed by (Bucky, 1931) and has later found 

applications in the study of the behaviour of geological structures. The 

principle, when performing centrifuge tests on slope stability and in order to 

preserve the stress strain behaviour of soil, is to use a reduced-scale model to 

simulate the full-scale slope with dimensions n times smaller and under an 

acceleration n times the gravity (Taylor, 1995). More information on centrifuge 

scaling laws can be found in (Wood, 2003, Schofield, 1978). 

Although there many limitations in modelling which in many cases are 

difficult to overcome, centrifuge modelling is widely used especially to validate 

other analytical and numerical models. Centrifuge modelling has often been 

used to investigate the behaviour of slopes under certain conditions. There are 

several centrifuge studies on slope instability subject to rainfall (Take et al., 

2004, Wang et al., 2010, Askarinejad et al., 2012, Ling et al., 2009, Xu et al., 

2005, Kimura et al., 1991), others have even include the influence of cracks 

(Zhang et al., 2011, Zhang et al., 2012). The use of the centrifuge technique 

has also been used to study the performance of geo-synthetic reinforced 

slopes (Zornberg et al., 1998, Bolton and Pang, 1982).  

2.4.3. Choice of small scale tests 

From the short review in this chapter it was shown that all the types of 

physical modelling have been used in the past by researchers to study 

different triggering processes on slope stability and also the failure 
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mechanism. For each case the method should be chosen carefully, based on 

the problem that needs to be modelled and the available means to carry out 

the experiments.  

Although different aspects of slope instability problems have been 

modelled through the years, no example exists in the literature for 

experimental modelling of successive failures. In this work the evolution of a 

slope due to successive failure is modelled with triggering factor being the 

infiltration of water.  

For this research, slopes of different geometries and under different 

rainfall intensities had to tested, resulting in a big number of tests that needed 

to be carried out. This made the use of the large scale test impossible due to 

the high cost that it would require. Moreover, the challenges of modelling 

rainfall (e.g. size of rain drops) and also capturing successive failures in a 

centrifuge are almost prohibitive.  For this reason, the small scale test was 

chosen to study the evolution of slopes subject to successive failure. The 

slope models used in this research are rather small (dimensions: 15.00cm 

height, 12.00cm width and 35.00cm length) making it possible to produce a 

numerous amount of homogeneous slope models and to install proper 

instrumentation to observe soil behaviour prior, during and after failure. 

Some preliminary tests have been carried out at the Department of 

Environmental Sciences and Territory of Bicocca University in Milan and a 

larger experimental apparatus was built in the Geotechnical laboratory in the 

University of Warwick in Coventry to carry out the main experiments. Scaled 

slope models were constructed and then by applying different rainfall 

intensities on the material of the slope, the evolution of the slope subject to 

successive failures was simulated. The water content and the suction of the 

soil were recorded through sensors buried inside the slope model and 
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connected to data loggers and also the behaviour of the slope, the changes of 

the slope front and the propagation of the material were recorded by high 

resolution cameras.  
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Chapter 3 : Analytical study 

In this chapter, the development of the semi analytical model on the 

evolution of intact slopes and slopes with fissures is illustrated. A model for the 

assessment of the stability of homogeneous slopes obeying the linear Mohr-

Coulomb criterion subjected to weathering, presence of cracks, seismic action 

and water pressure is presented, based on the existing framework on the 

stability of slopes and slopes with fissures (Chen, 1975, Utili, 2013, 

Michalowski, 2013) as well as on the model for the static case to study the 

evolution of initially intact slopes (Utili and Crosta, 2011a).  

When cracks are present in the failure mechanisms of a slope they can 

cause changes in their evolution, compared to the intact case. Crack formation 

is also an important parameter which can lead to different stability numbers 

and geometries. In this chapter, a model based on the kinematic approach of 

limit analysis to predict evolution of slopes with cracks has been proposed. 

The location and the depth of the crack as well as the most critical failure 

mechanism for every failure were calculated through an optimisation 

procedure. Solutions were provided for three different types of problem; 

determination of the evolution of slopes with pre-existing cracks, slopes with 

no tensile strength (tension cut-off) where crack forming requires work to open 

and slopes with soil tensile strength limited to half of that described by the 
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classical Mohr-Coulomb yield condition for dry slopes and for slopes with 

presence of water. With this model, it is possible to relate the evolution of 

natural slopes with the presence of cracks by a sequence of rotational sliding 

block failures to the degradation of material strength properties. It can be 

concluded that with the proposed model it is possible, in principle, to predict 

the evolution by successive failures of any cliff made, knowing the strength 

degradation over time. 

The presence of cracks, the inclusion of the seismic effect and pore 

pressure lead to a change of the analytical expression of the energy balance 

equation (the balance between external work and dissipated energy) and as a 

consequence of the functions whose minimum provides the solutions in terms 

of failure mechanisms and associated values of soil strength. In this model, 

the geometry assumed by the slope profile after each landslide event is a 

function of the previous profile shape. As for the seismic action, the pseudo-

static approach is adopted and constant seismic accelerations are applied on 

the slope, while for the presence of water the ru coefficient is used to account 

for the pore pressure.  

This thesis presents a set of analytical solutions that were obtained 

considering a succession of discrete failure events (landslides) due to strength 

degradation, seismic action, formation of tension cracks and seepage; that 

progressively alters the slope morphology over time. A parametric analysis is 

run to assess the effect of each factor on cliff evolution. Results for a range of 

φ values of engineering interest are presented in the form of dimensionless 

ready-to-use stability charts for the benefit of practitioners. The strength 

degradation is assumed to be uniform within the slope and therefore the 

decrease in cohesion will be considered as homogeneous as well. This 

assumption is not realistic as the weathering is generally not uniform within the 
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slope, but has greater effects on the material exposed to the surface, but it 

offers a rough estimation on the evolution of slope. 

3.1. Limit analysis upper bound method 

In order to develop an analytical solution describing the morphological 

evolution of natural cliffs with limited tensile strength subject to progressive 

retreat induced by ground strength degradation, for instance weathering, for 

static and seismic scenarios and various hydrological conditions, for slopes 

with uniform cohesion c and internal friction angle φ, the kinematic approach 

of limit analysis upper bound method has been adopted. The limit analysis 

upper bound method (Chen, 1975) and the pseudo-static approach (Terzaghi, 

1950) are used to derive the analytical law describing the evolution of 

homogeneous c, φ slopes subject to strength degradation, seismic action, 

formation of tension cracks and various seepage conditions. Perhaps the 

greatest limitation of the analytical solution presented resides in assuming the 

slopes homogeneous. In fact, natural heterogeneity, layering, different 

material properties of the layers etc. tend to produce geomorphic features 

unique to each particular slope that are not captured by the solution here 

presented. On the other hand, such a strong assumption allows for the 

derivation of a comprehensive analytical solution that can be used to achieve 

a first rough estimation of the past or future evolution of a slope knowing a 

limited amount of information and to explore the relative influence on slope 

evolution of the various physical phenomenon considered in general terms. 

As described by (Chen, 1975), an upper-bound solution can be 

obtained by considering a rotational discontinuity, as shown in Figure 3.1. A 

fictitious homogeneous slope, with zero pore pressure and constant unit 

weight γ is presented, with H and β being the height and the inclination of the 
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slope respectively. Basic geometrical elements of the slope under study are 

illustrated in Figure 3.1. For the sake of simplicity, all the calculations 

presented below refer to the case of a horizontal slope crest, α=0. However, 

the solution can be straightforwardly extended to the case of a non-horizontal 

upper slope; as reported in (Utili, 2013, Utili and Crosta, 2011a).  

The ground strength is here characterised by the Mohr-Coulomb failure 

criterion therefore only three parameters are needed to describe its properties 

(unit weight, internal friction angle and cohesion). The limit analysis upper 

bound method was applied to determine each discrete landslide event 

occurring over time for successive destabilization and complete removal of the 

failed mass after each event (Utili and Crosta, 2011a). The material 

accumulated at the slope toe cannot be taken into account in our model since 

the limit analysis method is not able to give any information about the final 

geometry of the debris accumulated after each landslide. Therefore, it is 

assumed that the debris accumulating at the slope toe is removed by 

atmospheric agents or fluvial or marine erosion or it is simply deposited far 

from the slope toe, before a new landslide develops. This condition is known 

in the literature as a strong erosion condition and is typical of weathering-

limited processes (Hutchinson, 1975). 

The following geometrical relationships will be employed in the 

derivation of the semi-analytical solution: 

1 1 1 1exp[tan ( )]y xr r y x        [3.1] 

1 1 1 1exp[tan ( )]z xr r z x        [3.2] 

2 2 2 2exp[tan ( )]y xr r y x        [3.3] 

2 2 2 2exp[tan ( )]z xr r z x        [3.4] 
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 1 1exp[tan (y )]si sn inxH r x y x       [3.5] 
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11 1 1 1 1cos cos exp[tan ( )]xr x y y xL       [3.7] 

11 1 1 1 1cos cos exp[tan ( )]xr x z z xl       [3.8] 

22 2 2 2 2cos cos exp[tan ( )]xr x y y xL       [3.9] 

22 2 2 2 2cos cos exp[tan ( )]xr x z z xl  
           [3.10] 

where rx, ry and rz are the radii of the spiral at the angles x, y and z 

respectively, L, L1, l1 L2, l2 are the horizontal lengths (see Figure 3.1) and H is 

the height of the slope.  

3.2. First failure (landslide) 

The majority of analytical solutions that exist on slope stability analyses 

are based on the assumption that slopes are made of isotropic, homogeneous 

and continuous material (Chen et al., 1969, Chen, 1975), however, it has been 

proved that the presence of cracks can substantially reduce slope stability 

(Utili, 2013, Michalowski, 2013) as they form a part of the failure surface thus 

reducing slope resistance to failure. 

In this part, detailed calculations for the upper-bound limit analysis on 

the first failure mechanism are illustrated, considering cracks of any possible 

depth and location, departing from the upper surface of the slope are 

illustrated, presence of water and seismic action. The weathering of the slope 

can cause decrease in the cohesion and the friction angle of the slope’s 

material. In what follows, only the case of decreasing cohesion is illustrated. 
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The failure mechanisms assumed in this analysis are 2D single wedge 

rigid rotational mechanisms (see Figure 3.1). Concerning the occurrence of 

the first landslide and according to the failure mechanism assumed above, the 

region of soil EDCB rotates rigidly around point P1 with the ground lying on the 

right of the log-spiral DC and the vertical crack CB remaining at rest. The 

equation describing the logarithmic spiral line DC written in polar coordinates 

with reference to the spiral centre is: 

0 0exp[tan ( )]r r      

with r being the distance of a generic point of the spiral to its centre, θ the 

angle formed by r with a reference axis, and θ0 and r0 identifying the angle and 

distance of a particular point of the spiral to its centre. (see Figure 3.1).  

The upper bound is derived by imposing energy balance for the failing 

wedge EDCB:  

d cf extW W W 
       [3.11] 

where 
dW , cfW  and 

extW  are the rate of the dissipated energy, of the energy 

required for a crack to open and of the external work respectively.  

Energy is dissipated along the failure line BC, according to the 

assumed rigid rotational mechanism: 
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  [3.12] 

where ω is the angular velocity.  

The calculations for the first failure mechanisms can be found in (Utili, 

2013, Michalowski, 2013). The mechanism is defined by three variables x1, z1, 

y1 (Figure 3.1). Here, only the derivations for the analytical expressions for the 
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occurrence of the second failure mechanism are illustrated in detail, as the 

derivation for the analytical expressions for the first failure can be found in 

(Utili, 2013, Utili and Abd, 2016).  

 

 

Figure 3.1. First and second failure mechanisms: Region of soil EBCD slides 

away rotating around point P1 and then region of soil GIDCB rotates around 

point P2. 
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3.2.1. Tension crack 

The calculation of 
dW

 
accounting for the energy dissipated along the 

log-spiral segment BC is reported in (Utili, 2013). Cracks may develop from 

the slope face (DE) and / or from the upper part of the slope (EF) (see Figure 

3.1). Here cracks are treated as no-tension non-cohesive perfectly smooth (no 

friction) interfaces, therefore the angle η between the velocity vector and the 

crack surface (Figure 3.1) is 0°< η <180°.  

Following (Michalowski, 2013), two types of cracks can be considered: 

cracks existing in the slope before the formation of any failure mechanism, 

called pre-existing cracks by Michalowski, and cracks forming as part of the 

failure process due to the exceedance of the ground tensile strength, here 

called tension cracks, that take place contemporaneously to the formation of 

localized deformations leading to the failure of the slope.  

A pre-existing crack may have been formed in the past by tensile 

stresses that are no longer acting on the slope, for instance due to tectonic 

movements. Tension cracks instead indicate cracks that are generated by 

tensile stresses exceeding the current ground tensile strength leading to the 

formation of a failure mechanism (Terzaghi, 1950, Baker, 1981). Although the 

presence of pre-existing cracks can be easily accounted for in limit analysis 

(Utili, 2013), in this model only tension cracks are considered. This is because 

the evolution of a slope subject to material strength deterioration is ruled by 

the deterioration of the ground strength, and therefore of tensile strength, 

leading to the onset of tension cracks whereas pre-existing cracks generated 

in the course of the geological history of the slope formation are likely to affect 

the formation of the first failure mechanism only. Moreover, position and depth 

of pre-existing cracks need to be postulated whereas position and depth of 
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tension cracks can be clearly related to a physical property of the ground: its 

tensile strength (Baker, 1981, Michalowski, 2013).  

The most critical failure mechanism is the one associated with the 

highest cohesion, and as it has been showed in (Utili, 2013) the most critical 

failure mechanism for a planar slope subject to tension cracks is the one 

passing through the slope toe. For this reason, only this case is considered 

here. 

The tensile strength of a cohesive geomaterial obeying the Mohr-

Coulomb failure criterion, ft is defined by ft = c/tan. To calculate the energy 

dissipated by the formation of a crack with limit analysis, Michalowski (2013) 

has considered limiting the Mohr Coulomb linear envelope by the stress circle 

of an unconfined uniaxial tensile strength test with the circle being tangent to 

the linear envelope (see Figure 3.2). This failure criterion is realistically non-

linear in the tension zone and on the other hand lends itself to limit analysis 

calculations. The energy expended for the formation of a tension crack, 

 turns out to be (Michalowski, 2013): 
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[3.13] 

with μ1 being the angle made by the segment P-B with the horizontal 

(see Figure 3.1), 
M C

Cf


 being the Mohr-Coulomb unconfined compressive 

strength of the ground and tf  the unconfined tensile strength as measured 

from laboratory experiments (see Figure 3.2). It is convenient to introduce a 

dimensionless coefficient, t, defined as the ratio of the unconfined tensile 

strength measured in laboratory experiments, tf  , over the full unconfined 
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tensile strength predicted by the Mohr-Coulomb criterion, 
M C

tf


 (see Figure 

3.2a): 

t

M C

t

f
t

f 
          [3.14] 

It is straightforward to observe that 0<t<1. Also, both 
M C

Cf


 and  
M C

tf


 

are uniquely related to c and : 
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Now substituting equations [3.13], [3.14] and [3.15] into Eq. [3.12], the 

following expression is obtained: 
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 [3.17] 

Three different conditions controlling crack formation are tackled here:  

• tension cut-off (t=0)  

• slopes with soil tensile strength limited to t=0.2 and  

• slopes with soil tensile strength limited to t=0.5 
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Figure 3.2. Mohr-Coulomb failure criteria illustrating the failure mechanisms 

associated with soil of: (a) full unconfined tensile strength (t=1). (b) limited 

tensile strength (t=0.5). (c) zero tensile strength (t=0), after (Michalowski, 

2013). 
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3.2.2. Seismic action 

The earthquake load is adding an extra driving force (work rate) to the 

work balance equation. The seismic action is accounted for by employing the 

so-called pseudo-static approach (Terzaghi, 1950) following the approach 

presented in (Chang et al., 1984, Utili and Abd, 2016). The rate of external 

work for the sliding wedge EBCD, 
extW , is made by two contributions: 

ext wW W W          [3.18] 

with W  representing the external work done by the weight of the wedge and 

wW  representing the work done by the water pressure. 

W  is calculated as the work of block EDF minus the work of block 

BCF. In turn the work of block EDF is calculated by algebraic summation of 

the work of blocks P1DF, P1EF and P1DE (Chen, 1975) and the work of block 

BCF is calculated by summation of the work of blocks P1CF, P1BF and P1CB 

(Utili and Nova, 2007, Utili and Crosta, 2011a, Utili, 2013). Note that here, in 

addition to the weight force, a horizontal pseudo-static force, 

, with g being the gravitational acceleration and m the 

mass of the wedge, and a vertical one, , are added to 

account for seismic action (Chen and Liu, 2012, Utili and Abd, 2016). The 

expressions of the rates of each soil block Ẇ1 ~ Ẇ6 are found in Chen and Liu 

(2012) and Utili and Abd (2016) and here only the final expressions are 

provided. 

Considering the region P1FD (Figure 3.1): 
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with ω being the rate of angular displacement of the failing wedge.  

Considering the region P1FE: 
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Considering the region P1ED: 
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Considering the region P1FC:  
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Considering the region P1FB: 
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Finally, considering the region P1BC: 
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3.2.3. Pore pressure 

To account for the influence of the pore pressure, the work of pore-

water pressure on the deformation of the soil along the failure surface, and the 

work of the water pressure on the crack surface, as documented in (Viratjandr 

and Michalowski, 2006, Michalowski, 2013, Michalowski, 1995a), has to be 

included in the energy balance equation. Pore-water pressure, u, is accounted 

for in the model using the coefficient ru (Bishop and Morgenstern, 1960), as: 

u

u
r

h
          [3.25] 

with u being the total pore pressure in the considered point of the failure line, 

sat the ground bulk unit weight and h the depth of the point considered from 

the ground surface. The assumption of uniform ru is a strong one (Barnes, 

2010), since the use of the ru coefficients for calculating the pore water 

pressures in a slope treats the groundwater flow in a rather idealized manner. 

Therefore, the calculated pressures are not necessarily as accurate as those 

determined from more sophisticated analyses. However the method provides 

a practical and convenient method of assessing the stability of multiple slopes, 

is consistent with the level of accuracy of the other slope stability parameters, 

and it is still commonly used in slope stability analyses in engineering practice 

(Barnes, 2010).  
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Figure 3.3. Presence of pore pressure in the calculation of the most critical 

failure mechanism. 

 

The work of the water along the crack BC and along the log-spiral part 

CD can be calculated as an integral over the whole surface (Michalowski, 

1995a, Michalowski, 2013) by: 

w BC CDW W W         
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11
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where [v]n is the normal component of the boundary velocity (Figure 3.3) and 
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The detailed equations for the calculation of the work of water along 

the log-spiral part CD and the crack BC for the first failure are well 

documented and can be found in (Michalowski, 1995a).  

3.2.4. Calculation of the first failure mechanism 

Substituting Eqs [3.17], [3.18] and [3.26] into Eq [3.11], the final 

equation to calculate the stability factor, N=γΗ/c, is obtained: 
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[3.27]
 

with =Kv/Kh (consistently with Figure 3.1, the + sign indicates vertical 

downward acceleration, whereas the – sign indicates vertical upward 

acceleration). The global minimum of g (x1, y1, z1, , , Kh, ) over the three 

geometrical variables x1, y1, z1 provides the least (best) upper bound on the 

stability factor for the case that has been considered. The static case is a 

particular case obtained setting Kh=Kv=0.  

In Figure 3.4 the influence of the seismic action on the crack depth is 

investigated for a slope with friction angle φ=30° for the first failure and for 

different kinds of crack formation. It can be seen, that the lower the tensile 

strength, the lower the depth of the crack that will lead the slope to failure. For 

slope inclinations higher that 72° and for the case of tension cut off when 

Kh=0.2, a translational failure mechanism takes place, for this reason no curve 

is shown in the graph. 
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Unlike the case of intact slopes, failure mechanisms may in principle 

daylight on the slope face above the slope toe; however in (Utili and Abd, 

2016) no potential mechanism passing above the slope toe turned out to be 

the most critical, therefore no potential failure mechanisms passing above the 

toe were considered in this analysis. 

 

 

Figure 3.4. Crack depth against slope inclination for friction angle φ=30° for 

the first failure and for different kind of crack formation for seismic coefficient 

Kh=0, Kh=0.1 and Kh=0.2 (for slope inclinations higher that 72° and for the 

case of tension cut off when Kh=0.2, a translational failure mechanism takes 

place - no curve). 

 

3.3. Second and successive failures (landslides) 

The analytical expressions for the second failure also apply to every 

successive failure that will take place. After the region EBCD (Figure 3.1) has 

slipped away and due to further weathering, at some point a second landslide 

will occur. The double logarithm spiral shaped area GIDCB will rigidly rotate 
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around the center of rotation P2, yet undefined, with the material below the 

logarithmic spiral ID and right of the vertical crack GI remaining at rest. The 

mechanism is now defined by six variables x1, z1, y1, x2, z2, y2, where x1, y1, z1 

are the angles defining the first log spiral failure line (i.e., the current slope 

profile produced by the previous failure), that will be called ‘old’ landslide and 

x2, y2, z2 are the angles defining the second log spiral failure line (see Figure 

3.1), that will be called ‘new’ landslide.  

Two contributions constitute the rate of the external work for the sliding 

wedge GIDCB; the work done by the weight of the wedge that slides away W  

and the work done by the water pressure 
wW . The weight of the wedge that 

slides away W  is calculated this time as the work by block JDE minus the 

work of blocks BCDE and JIG. More specifically, the rate of the work of the 

block JDK is given by three contributors as Ẇ1
n-Ẇ2

n-Ẇ3
n, where Ẇ1

n, Ẇ2
n and 

Ẇ3
n are the rates of work done by regions P2JD, P2JK and P2KD respectively. 

The rate of the work of the region BCDE is given by six contributors as Ẇ1
o-

Ẇ2
o-Ẇ3

o-(Ẇ4
o-Ẇ5

o-Ẇ6
o), where Ẇ1

o to Ẇ6
o are the rates of work done by 

regions P1FD, P1FK, P1KD, P1FC, P1FB and P1BC respectively. The rate of the 

region JIG is also given by three contributors as Ẇ4
n-Ẇ5

n-Ẇ6
n, where Ẇ4

n, Ẇ5
n 

and Ẇ6
n are the works done by regions P2JI, P2JG and P2GI respectively. 

Therefore, the rate of external work due to the weight of the soil W  is a total 

of twelve different contributors, given by the following equation: 

1 2 3 4 5 6 1 2 3 4 5 6

n n n n n n o o o o o o

extW W W W W W W W W W W W W            [3.28] 

with n and o referring to the new and the old landslide respectively.  

The calculations of the expressions for Ẇ1
n, Ẇ2

n, Ẇ3
n etc. for all the 

aforementioned blocks and for Ẇw are provided in detail. Note that the second 
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(and every successive) mechanism could pass through any point since the 

current slope profile is no longer straight, as presented in Figure 3.5. 

Therefore, failure mechanisms daylighting at any point of the slope profile left 

after the first failure has occurred have to be considered. To this end, the 

slope profile was divided into a discrete number of points (n) and each point 

has been assumed as the toe of a sub-slope whose height, hi, is smaller than 

the overall height H (see Figure 3.5). The most critical mechanism among all 

the possible mechanisms has to be found. The critical cohesion values, ci, and 

angles, xi, yi and zi, associated with the critical failure mechanism, were 

determined for all n sub-slopes of different height, hi, with the parameter yi 

assuming a different value associated with each sub-slopes analysed. The 

most critical failure mechanism among the n potential mechanisms is the one 

with the highest cohesion value. As long as a sufficiently large value of n is 

chosen, n does not affect the obtained result. 

 

 
Figure 3.5. Potential failure mechanisms for the second failure, relative to 

different mechanisms considered (for different critical heights hi). 
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3.3.1. Weathering simulated by cohesion decrease 

By applying the procedure described above, it is possible to determine 

as many failure mechanisms as needed to follow the slope evolution until full 

degradation of the soil strength has taken place. Strength degradation has 

been considered to end at c=0, while φ=φconst. Here, the friction angle is 

assumed to remain constant in time and only cohesion decreases, since 

experimental evidence (failure envelopes obtained from tests on a granitic 

rock subject to various degrees of weathering) from the weathering of rocks 

and cemented soils as illustrated in Figure 3.6, have shown that weathering 

causes mainly a decrease in the cohesion and to a much lesser extend to the 

friction angle of the material (Kimmance, 1998). However, extension of the 

model to account for a decrease of both cohesion and friction angle is 

straightforward. The case of both c and φ decreasing for geomaterials with 

infinite tensile strength is reported in (Utili and Crosta, 2011a). 

 

 

Figure 3.6. (a) Weathering of granite, after (Kimmance, 1988) , (b) failure loci 

of cemented sands for different cement contents, after (Wang and Leung, 

2008) 
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Computations have been carried out using Matlab for a wide range of 

parameters (friction angle φ and initial slope inclination β for intact slopes 

(t=1), slopes with soil tensile strength limited to t=0.2 and t=0.5 of that 

described by the classical Mohr–Coulomb yield condition and slopes with no 

tensile strength, t=0 (tension cut-off) and under different seismic and 

groundwater scenarios.  

3.3.2. Effect of seismic acceleration 

In the following, the log spiral of the current slope profile and the log 

spiral of the failure line of the second (and each subsequent) mechanism are 

denoted by the superscripts o (old) and n (new), respectively. The equations 

for the static case and seismic case with the inclusion of crack and pore water 

pressure are reported, based on the analysis for the intact case (Utili and 

Crosta, 2011a). The calculations that refer to the ‘new’ failure line are derived 

in the same way as the calculations for the first failure and are given below. 

Note that for the calculation of the rates of the external works, the front of the 

slope is considered vertical for the simplicity of the calculations and that is the 

reason why the inclination of the slope β does not appear in the calculations. 

After subtracting Ẇ2 and Ẇ3 from Ẇ1 the result is the same. 

Considering the region P2JD (Figure 3.1): 
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with ω being the rate of angular displacement of the failing wedge.  

Considering the region P2JK (Figure 3.1): 
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Considering the region P2KD (Figure 3.1): 
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[3.31]

 

Considering the region P2JI (Figure 3.1): 

4 2 4 2

2 2 2 2 2 2

2

2 2 2 2 2 2

3

4

2

2 2 2

3

2

, ,

exp[3tan ( )](3tan cos sin ) 3t

(1 ) f ( , ) k f ( , )

sin
(1 )

cos co

a

s
k

n cos

3(1 9 tan )

exp[3tan ( )](3tan sin ) 3tan sin

3(1 9 tan )

v h

n n n

v h

v

h

x

x

r x x

z x z z x x

W k z z

r
z x z z x

k

x



  




 

 







 


   

  



 


 




 








[3.32]

 

Considering the region P2JG (Figure 3.1): 
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Finally, considering the region P2GI (Figure 3.1): 
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Note that the rate of the external work of the regions above could have 

also been achieved by calculating the moment of the considered soil regions 

accounting as the center of rotation the center of the log-spiral P2. The 

calculations of the rate of the external work for the six regions that refer to the 

occurrence of the ‘old’ landslide should also be achieved by calculating the 

moment of each soil region around point P2.  
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For the region P1FD, whose center of rotation is G1, the rate of the 

external work is calculated for an infinitesimal slice, as illustrated in Figure 

3.7a, considering this time, as the center of rotation the point P2: 
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After integration by parts, manipulations and substitutions the obtained 

expression is: 
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[3.35] 

Considering the region P1FK, whose center of rotation is G2, the rate of 

the external work is calculated for an infinitesimal slice, as illustrated in Figure 

3.7b: 
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And after manipulations and substitutions the following expression is 

obtained:  
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Considering the region P1KD, whose center of rotation is G3, the rate of 

the external work is calculated for an infinitesimal slice, as illustrated in Figure 

3.7c: 
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And after manipulations and substitutions the obtained expression is:  
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The external work for the region P1FC is calculated in a similar way 

with that of the rate of the external work Ẇ1
o and is given below: 
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Considering the region P1FB, the external work is calculated similar to 

that of the rate of the external work Ẇ2
o and is given below: 
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Finally, considering the region P1BC: 
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(a)  

(b)  

 

(c)  

Figure 3.7. Calculation for the rate of the external work for each ‘old’ landslide 
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3.3.3. Work of water during the second failure 

For the second and each successive failure, the calculation of the work 

of the water 
wW  is calculated over the mechanism boundaries which include 

the shear surface ID and the crack surface GI (Michalowski, 2013) and is here 

illustrated, as arising from Figure 3.3: 
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where the work of water along the long spiral part is given: 
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and θru2, d1, d2 and θc2 (Figure 3.3): 
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The distance between the two (d2) log-spirals has been approximated 

employing Simpon’s rule (see Appendix C- MATLAB SCRIPTS). 

3.3.4. Calculation of the second failure mechanism 

Substituting Eq [3.16], [3.19] and [3.21] into Eq [3.11] and dividing all 

terms by  and 2xr , and rearranging, the stability factor, Ns=γH/c, is obtained: 

 



 
Chapter 3: Analytical study 

 

57 
 

 
2 2 2 2 2

1 1 1 2 2, 2

1 2 3 2 3 4 6 4 6

1 2 3 2 3 4

1 5 5

1 65 6 54

( )

(

, ,  ,  , , , , ,

[exp(tan (y ))siny sin

1

]

)
v v v v v v v v v v v

h h h h h h h h h h

v

h h

h u

d

n n n o o o o

cf

n n

h

n n

h

o n

n n n o o o o o

H
g x y z x y z K r

c

f f x x

f f f f f f f f f f f f

f f f f f f f fK f

K

f f f






 








       

    



 

    

      n

wur f

 
 
 
 

[3.42] 

The global minimum of g (x1, y1, z1, x2, y2, z2, , , Kh, ) over the three 

geometrical variables x2, y2, z2, provides the least (best) upper bound on the 

stability factor for the second and any successive landslide. 

3.4. Geometric approximations 

In Figure 3.8, the evolution of initially steep slopes, with very limited or 

completely absent tensile strength, is shown. It emerges that this type of slope 

exhibits a peculiar type of evolution: several successive small failure 

mechanisms made of thin slices (from vertical line FC to vertical line GI) until a 

much larger failure mechanism takes place (mechanism JMK). The 

occurrence of thin slice mechanisms, which in the limit case of an initially 

vertical slope (=90°) become infinitesimally thin slices, is described and 

physically explained in (Utili, 2013).  

In Figure 3.9 the typical evolution undergone by a slope subject to 

weathering is shown. The features of the morphological evolution exhibited by 

the slopes are similar to what shown in (Utili and Crosta, 2011a) apart from the 

upper part of the failure mechanism which is always made by a vertical part 

due to the presence of cracks. A number of successive failures of decreasing 

area and depth of mechanism occur until a deeper mechanism of much larger 

area takes place (see Figure 3.9). To calculate the deeper mechanism, the 

slope profile, which is composed of several log-spiral pieces, was 

approximated by a straight line obtained as the linear envelope of the 

piecewise log-spiral profile.  



 
Chapter 3: Analytical study 

 

58 
 

3.4.1. Slope profile after each failure 

As it is well known that a vertical slope profile is more critical among 

slopes with angle lower than 90°. After the first failure takes place the new 

profile is no longer a straight line but it is made of a log spiral part CD and a 

vertical part FC as shown in Figure 3.8. The search for the most critical failure 

mechanism for some cases of steep initial slopes and for the case of tension 

cut-off; and following the procedure described above a failure line departing 

from point C (Figure 3.8) turns out to be the most critical one, with a crack 

depth for the second failure mechanism slightly shorter than that on the first 

mechanism. Following this second failure, a number of ‘small’ failures will take 

place forming the line IC, until a ‘significant’ failure (Figure 3.8) becomes more 

critical than the ‘small’ one and takes place. The line IC is formed by a number 

of very small log-spiral parts of every successive ‘small’ failure. 

A technique is used to avoid being trapped in the CI line when looking 

for the most critical successive failure mechanism. An illustrative example is 

presented in Figure 3.8 to explain how the second ‘significant’ failure is 

identified. A slope with inclination β=80° and φ=40° is selected; the second 

‘significant’ failure takes place when the stability number of this failure is lower 

than the stability number of any successive ‘small’ failure.  

Since the analytical formulation for a slope profile made up of more 

than one log-spiral line becomes prohibitive, the search for the second failure 

mechanism is always searched above the intersection of the two previous 

mechanisms. In the case of the ‘small’ failures developed in the vertical part of 

the slope, the line IC which is formed by small log spiral parts can be assumed 

to be linear with a specific inclination for every combination of β and φ. Then 

the profile is formed by a log-spiral and a planar part which makes the 

calculation of the stability number possible. A comparison is made between 
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the stability number of every successive ‘small’ failure mechanism and a 

failure mechanism for an initial profile I’CD, when the stability number for JMK 

is smaller than that for the next ‘small’ failure then the procedure is stopped as 

the second ‘significant’ failure becomes the most critical. The determination of 

the second significant failure mechanism with GCD being the starting profile 

for the second failure, can be a time consuming iterative procedure as it 

demands the calculation and comparison of the stability numbers for many 

profiles in order to identify the correct sequence.  

 

 
Figure 3.8. Most critical failure mechanism for the second ‘significant’ failure 

for slope with initial slope inclination β=80° and friction angle φ=40° (tension 

cut off). 
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Table 3.1. Stability number and crack depth for second ‘significant’ failure for 

different starting slope profiles for the second ‘significant’ failure 

Starting profile BCD GICD 

Stability Number 30.95 31.05 

Crack Depth  0.084 0.082 

Sliding Area 0.146 0.144 

 

For this reason the stability number, the failure mechanism and the 

depth of the critical crack for the second failure mechanism with BCD being 

the starting slope profile have been compared with these when GICD is the 

starting profile and the results are presented in Table 3.1 and in Figure 3.8. 

The results presented in this example present the larger difference among all 

the results in this paper and even so they are almost identical. For the sake of 

simplicity, the whole log spiral BCD is considered as the starting profile for 

each successive failure for the case of a pre-existing crack when a number of 

successive ‘small’ failures are more critical than the next ‘significant’ one. Note 

that this approximation is only made to define the second ‘significant’ failure, 

after that the second and for every successive n+1 failure the initial profile is 

the one predicted from the model for the previous (n) failure. 

3.4.2. Slope profile after a number of failures 

In the model, as described above, it has been assumed that after the 

second failure and to find each new failure mechanism, the potential failure 

lines have been searched only above the point of intersection of the two 

previous mechanisms. However, a closer look on the failure mechanisms and 

the final condition of the slope after a number successive failures (Figure 3.9); 

suggests that a deep mechanism involving more than one log spiral as an 

initial slope profile should also be considered in the case of pre-existing 



 
Chapter 3: Analytical study 

 

61 
 

cracks. As the failures progress, the cohesion of the soil decreases; the final 

condition of a slope made of a purely frictional material should be lower that 

the friction angle for the profile to be stable.  

In order to search for a deep-seated mechanism a slope profile made 

by more than 2 log spirals should be considered. A slope made by n spirals 

requires 2 times n number of parameters for its complete description, then the 

calculation of the external work by a sliding area enclosed in n+1 log-spirals 

would make the analytical equations involved in the energy balance for the 

calculation of the stability number far complicated. For this reason, a 

procedure similar to the one described above has been adopted.  

After m number of failures an almost planar profile is formed by m log-

spiral parts. To account for the deep-seated failure mechanism, a linear 

envelope to the piecewise log spiral profile after m successive failures for a 

slope with an initial slope inclination β=70° has been drawn (Figure 3.9). This 

envelope line is assumed as the new slope profile with β*=26.3° and φ=20°; 

the minimization procedure of limit analysis is then performed for this plane 

profile. The calculated stability number N* for this new profile is compared with 

the stability number of each failure mechanism i (2<i<m). The mechanism with 

the lower stability number will take place first. If the stability number N* 

becomes lower than Ni, the new slope profile is made by the single log spiral 

failure surface associated with this mechanism and all the subsequent failures 

will depart from this profile (Utili and Crosta, 2011a).  
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Figure 3.9. Deep seated failure mechanism for a slope with β=70° and initial 

friction angle φ=20° 

 

As in (Utili and Crosta, 2011a), during this process an approximation 

has been introduced. When calculating the deep log spiral failure mechanism, 

the slope profile is assumed to be planar, but the calculated log spiral failures 

from i+1 to m do not take place in reality, which means that the slope profile is 

not entirely a plane. It should be approximated by a plane in its lower part, a 

log spiral in its medium part and a vertical line in its upper part (see the 

shaded area in Figure 3.9). As it is obvious in Figure 3.9 the region delimited 

by the log spiral and the vertical line is small in comparison with the size of the 

failure mechanisms, therefore this approximation is acceptable and its 

influence on the calculation of the successive mechanisms can be neglected. 

3.5. Results 

3.5.1. Parametric analysis of slope evolution for various hydrogeological 

scenarios 

In Figure 3.10 the effect of the seismic action is analysed for various 

values of tensile strength. For each failure, numbered in chronological order, 

the area of the sliding mass is plotted. The results indicate that the influence of 
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the tensile strength on the sliding area is small, with seismic action having the 

effect of amplifying the small differences. To investigate the influence of 

seepage instead, the critical height for a slope with initial slope inclination 

β=60° and φ=20° is plotted in Figure 3.11 for 6 successive failures.  

In Figure 3.12, the step‐like relationship between the dimensionless 

normalised cohesion and crest retreat is plotted for 8 successive failures for 

various seismic scenarios (Kh=0, Kh=0.1 and Kh=0.2). It can be observed that if 

the first two failures are excluded, the values of critical cohesion and crest 

retreat lie on straight lines in agreement to what observed in (Utili and Crosta, 

2011a) for static dry slopes not subject to crack formation. However, when 

there is also seismic action this is not more the case for slopes with limited 

tensile strength. From the figure, it also emerges that the tensile strength does 

not affect significantly either the normalised cohesion or crest retreat although 

this is less the case for slopes subject to substantial seismic action. Same 

plots showing the relationship between the dimensionless normalized 

cohesion and crest retreat for inclination β=70° and φ=20°, only for intact 

slopes for intact slopes under seismic action and the influence of pore 

pressure is plotted in Figure 3.13.  

The evolution of the critical height (γH/c) and the dimensionless cliff 

retreat (L/H) as a function of the friction angle represented in the same graph 

as curves from the analysis of six successive failures, for initial slope 

inclination β=60°, β=70° and β=80° demonstrating the effect of limited tensile 

strength, seismic action and existence of water are plotted in Figure 3.14, 

Figure 3.15 and Figure 3.16. Solid black lines are used for the critical height 

and dashed lines for the dimensionless crest retreat, while the corresponding 

number of failure is marked on the curves. It is evident the influence of the 

tensile strength and the presence of cracks on the stability of the slopes is 
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more important in steep slopes. When seismic acceleration is taken into 

consideration the influence on both critical height and cliff retreat is significant 

(Figure 3.15). In Figure 3.16 and as explained by (Michalowski, 2013), the 

adverse influence of pore-water pressure on the dimensional critical height 

increases for larger values of the internal friction angle is illustrated.  

Note that for some cases of slopes with low friction angle, after a 

number of failures, the model predicts a much larger landslide in terms of area 

(volume), but not in terms of crest retreat (Figure 3.9) so this is more of 

interest for anthropic constructions at the toe of the slope. If the slope is a cliff 

by the ocean - an environment where there is a continuous wash away action 

– it is reasonable to expect the erosion of the excised material before the next 

mechanism occurs. In this case, the model illustrates an important feature for 

cliffs made of geomaterials with limited tensile strength. Instead, in case of 

less exposed cliffs (e.g. inland and less exposed by the sea) we can expect 

that this deep mechanism will not take place due to the stabilising action of the 

weight of the debris and therefore it is reasonable to disregard it. 

To make meaningful comparisons, the values of the crest retreat normalised 

by the initial slope height, the sliding area normalised by the square of the 

initial height and the associated crack depth normalised by the height are 

listed for initial slope inclinations β=60°, β=70° and β=80° and for friction 

angles φ=20°, φ=30° and φ=40° for the three different cases of the formation 

of the crack are reported in Table 3.2. The results of the parametric 

investigation in terms of normalised crest retreat and normalised sliding area 

for intact slopes under seismic action and the existence of water are reported 

in Table 3.3.
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Figure 3.10. Dimensionless normalized sliding area for inclination β=70° and 

for friction angle φ=40°, showing the influence of the tensile crest on the 

evolution of slopes for different Kh, for 6 successive failures 
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(a) ru=0.25 

 

(b) ru=0. 5 

 

Figure 3.11. Critical height (γH/c) for six successive failures for slope 

inclination β=60° and φ=20° for soil of full unconfined tensile strength (t=1), 

soil of limited tensile strength (t=0.5 and t=0.2) and soil of zero tensile strength 

(t=0), (a) for ru=0.25 and (b) for ru=0.50. 
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(a) 
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(b) 

 

 

 
Figure 3.12. Dimensionless normalized cohesion versus crest retreat for 

inclination β=70°, (a) step‐like relationship obtained for φ = 20°, for different 

tensile strengths for Kh=0, Kh=0.1 and Kh=0.2, for 8 successive failures (b) If 

the first two failures are excluded, the values of critical cohesion and crest 

retreat lie on straight lines only for intact slopes. 
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a).  

b).  

Figure 3.13. Dimensionless normalized cohesion versus crest 

retreat for inclination β=70°, step‐like relationship between cohesion 

and crest retreat obtained for φ=20°, for intact slopes (dry case) a) 

slope evolution for various Kh values and b) slope evolution for various 

ru values for 6 successive failures (static case) 
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β=60° 

Intact slope (t=1) 

 

Limited tensile strength (t=0.5) 

 
Limited tensile strength (t=0.2) 

 

No tensile strength (t=0) 

 

 

β=70° 

Intact slope (t=1) 

 

Limited tensile strength (t=0.5) 
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Limited tensile strength (t=0.2) 

 

No tensile strength (t=0) 

 

 

β=80° 

Intact slope (t=1) 

 

Limited tensile strength (t=0.5) 

 
Limited tensile strength (t=0.2) 

 

No tensile strength (t=0) 

 

Figure 3.14. Critical height (γH/c) and dimensionless cliff retreat (L/H) as a 

function of the friction angle represented in the same graph as curves for six 

successive failures for slope inclinations β=60°, β=70° and β=80° for the case 

of intact slope, for soil of full unconfined tensile strength, soil of limited tensile 

strength and soil of zero tensile strength. Solid black lines are used for the 

critical height and dashed lines for the dimensionless crest retreat. The 

corresponding failure number is marked on the curves. 
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 Intact slope Kh=0.1 Intact slope Kh=0.2 

β
=

6
0
° 

  

β
=

7
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8
0
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Figure 3.15. Critical height (γH/c) and dimensionless cliff retreat (L/H) as a 

function of the friction angle represented in the same graph as curves for six 

successive failures for slope inclinations β=60°, β=70° and β=80° for intact 

slopes and for seismic scenarios with coefficient Kh=0.1 and Kh=0.2. Solid 

black lines are used for the critical height and dashed lines for the 

dimensionless crest retreat. The corresponding failure number is marked on 

the curves. 
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Intact slope ru=0.25 Intact slope ru=0.5 

β
=

6
0
° 

  

β
=

7
0
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0
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Figure 3.16. Critical height (γH/c) and dimensionless cliff retreat (L/H) as a 

function of the friction angle represented in the same graph as curves for six 

successive failures for slope inclinations β=60°, β=70° and β=80° for the case 

of intact slope and for pore pressure with coefficient ru=0.25 and ru=0.5. Solid 

black lines are used for the critical height and dashed lines for the 

dimensionless crest retreat. The corresponding failure number is marked on 

the curves. 
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Table 3.2. Values for Associated Crest Retreat, Sliding Area and Crack Depth for Slopes with Initial Inclination β and Friction Angle φ, for 

slopes with t=1.0, t=0.5, t=0.2 and t=0. 

 β=60° β=70° β=80° 

 φ=20° φ=30° φ=40° φ=20° φ=30° φ=40° φ=20° φ=30° φ=40° 

 L/H Area L/H Area L/H Area L/H Area L/H Area L/H Area L/H Area L/H Area L/H Area 

Failure Intact slope t=1.0 

1 0,377 0,356 0,244 0,244 0,145 0,162 0,453 0,345 0,317 0,255 0,218 0,181 0,525 0,345 0,407 0,269 0,301 0,207 

2 0,742 0,270 0,468 0,141 0,277 0,072 0,867 0,353 0,578 0,178 0,386 0,097 0,947 0,364 0,702 0,239 0,518 0,154 

3 1,039 0,171 0,632 0,066 0,369 0,027 1,202 0,216 0,766 0,085 0,497 0,040 1,300 0,241 0,922 0,117 0,659 0,064 

4 1,279 0,105 0,748 0,033 0,428 0,011 1,473 0,138 0,898 0,042 0,568 0,016 1,580 0,151 1,076 0,058 0,748 0,025 

5 1,466 0,067 0,830 0,016 0,466 0,004 1,689 0,088 0,990 0,021 0,613 0,006 1,806 0,093 1,184 0,028 0,808 0,010 

6 1,616 0,041 0,887 0,008 0,490 0,002 1,862 0,056 1,055 0,010 0,642 0,003 1,981 0,059 1,260 0,014 0,844 0,004 

Failure limited tensile strength t=0.5 

1 0,378 0,349 0,248 0,246 0,137 0,159 0,463 0,344 0,334 0,257 0,217 0,181 0,552 0,350 0,419 0,269 0,310 0,206 

2 0,753 0,287 0,469 0,134 0,269 0,068 0,874 0,362 0,591 0,182 0,385 0,097 0,955 0,359 0,697 0,232 0,521 0,156 

3 1,054 0,175 0,633 0,065 0,360 0,027 1,215 0,224 0,782 0,088 0,495 0,038 1,306 0,238 0,914 0,113 0,660 0,060 

4 1,297 0,108 0,747 0,031 0,418 0,011 1,484 0,140 0,915 0,042 0,565 0,015 1,583 0,149 1,066 0,055 0,748 0,024 

5 1,486 0,069 0,827 0,015 0,456 0,004 1,701 0,086 1,008 0,021 0,609 0,006 1,808 0,092 1,172 0,027 0,804 0,010 

6 1,639 0,043 0,882 0,007 0,479 0,002 1,870 0,055 1,072 0,010 0,638 0,002 1,981 0,059 1,246 0,013 0,839 0,004 

Failure limited tensile strength t=0.2 

1 0,404 0,354 0,260 0,251 0,148 0,163 0,501 0,354 0,353 0,259 0,233 0,182 0,614 0,364 0,470 0,278 0,346 0,214 

2 0,760 0,284 0,481 0,133 0,278 0,066 0,893 0,328 0,599 0,191 0,388 0,095 1,025 0,343 0,702 0,213 0,505 0,136 

3 1,060 0,171 0,638 0,062 0,364 0,025 1,214 0,203 0,793 0,091 0,497 0,038 1,337 0,232 0,917 0,110 0,644 0,055 

4 1,298 0,107 0,750 0,030 0,421 0,010 1,471 0,127 0,929 0,044 0,567 0,015 1,598 0,138 1,065 0,053 0,730 0,023 

5 1,485 0,066 0,828 0,015 0,457 0,004 1,674 0,076 1,023 0,021 0,612 0,006 1,810 0,084 1,168 0,026 0,784 0,009 

6 1,633 0,041 0,883 0,007 0,479 0,002 1,831 0,047 1,089 0,010 0,640 0,002 1,976 0,052 1,240 0,012 0,818 0,004 

Failure tension cut-off t=0 

1 0,431 0,359 0,268 0,248 0,148 0,163 0,539 0,357 0,386 0,266 0,243 0,185 0,726 0,389 0,552 0,299 0,393 0,218 

2 0,770 0,280 0,483 0,133 0,276 0,062 0,876 0,344 0,603 0,177 0,389 0,091 1,068 0,391 0,771 0,237 0,554 0,150 

3 1,072 0,171 0,639 0,062 0,359 0,023 1,213 0,220 0,790 0,088 0,499 0,037 1,403 0,239 0,981 0,114 0,686 0,064 

4 1,301 0,103 0,751 0,029 0,412 0,009 1,473 0,133 0,923 0,041 0,567 0,015 1,678 0,142 1,129 0,053 0,773 0,025 

5 1,485 0,062 0,826 0,014 0,446 0,004 1,682 0,080 1,012 0,020 0,610 0,006 1,896 0,087 1,231 0,025 0,830 0,010 

6 1,625 0,039 0,879 0,007 0,468 0,001 1,842 0,050 1,075 0,009 0,637 0,002 2,065 0,053 1,302 0,012 0,865 0,004 
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Table 3.3. Values for Associated Crest Retreat and Sliding Area with Initial Inclination β and Friction Angle φ, for intact slopes under seismic 

action or with the existence of water. 

 β=60° β=70° β=80° 

 φ=20° φ=30° φ=40° φ=20° φ=30° φ=40° φ=20° φ=30° φ=40° 

 L/H Area L/H Area L/H Area L/H Area L/H Area L/H Area L/H Area L/H Area L/H Area 

Failure Kh=0.1 

1 0,490 0,415 0,330 0,293 0,199 0,194 0,553 0,393 0,400 0,293 0,286 0,216 0,628 0,390 0,485 0,302 0,380 0,238 

2 0,977 0,407 0,626 0,203 0,379 0,101 1,078 0,478 0,744 0,274 0,504 0,147 1,139 0,458 0,841 0,289 0,635 0,194 

3 1,391 0,288 0,850 0,106 0,501 0,042 1,531 0,344 1,004 0,143 0,652 0,062 1,595 0,349 1,118 0,164 0,809 0,084 

4 1,738 0,196 1,013 0,056 0,582 0,018 1,910 0,234 1,191 0,076 0,751 0,028 1,987 0,244 1,321 0,088 0,922 0,037 

5 2,026 0,136 1,132 0,030 0,635 0,008 2,226 0,163 1,330 0,041 0,817 0,012 2,311 0,176 1,470 0,046 0,998 0,016 

6 2,267 0,095 1,218 0,016 0,669 0,003 2,490 0,114 1,431 0,023 0,860 0,005 2,590 0,123 1,577 0,025 1,048 0,007 

Failure Kh=0.2 

1 0,618 0,483 0,420 0,337 0,281 0,238 0,667 0,455 0,505 0,340 0,366 0,250 0,731 0,442 0,586 0,349 0,456 0,270 

2 1,292 0,649 0,817 0,301 0,516 0,146 1,317 0,616 0,920 0,356 0,652 0,222 1,366 0,570 1,011 0,355 0,750 0,229 

3 1,913 0,535 1,121 0,174 0,676 0,068 1,945 0,524 1,262 0,209 0,850 0,102 1,993 0,541 1,365 0,224 0,969 0,115 

4 2,469 0,421 1,356 0,099 0,790 0,031 2,503 0,423 1,514 0,124 0,989 0,046 2,550 0,423 1,627 0,133 1,114 0,055 

5 2,968 0,339 1,530 0,059 0,865 0,015 3,004 0,342 1,714 0,072 1,085 0,023 3,050 0,340 1,835 0,077 1,215 0,025 

6 3,415 0,273 1,668 0,034 0,917 0,007 3,455 0,276 1,863 0,043 1,148 0,010 3,498 0,274 1,989 0,046 1,283 0,012 

Failure ru=0.25 

1 0,415 0,402 0,276 0,304 0,188 0,233 0,143 0,236 0,338 0,291 0,233 0,228 0,537 0,364 0,406 0,292 0,286 0,228 

2 0,873 0,390 0,593 0,228 0,422 0,147 0,354 0,131 0,691 0,275 0,507 0,195 1,059 0,388 0,796 0,276 0,578 0,197 

3 1,280 0,287 0,847 0,139 0,598 0,083 0,514 0,070 0,968 0,169 0,714 0,108 1,472 0,346 1,087 0,201 0,810 0,140 

4 1,625 0,211 1,045 0,086 0,732 0,048 0,630 0,038 1,185 0,105 0,872 0,065 1,829 0,241 1,317 0,120 0,984 0,080 

5 1,926 0,158 1,203 0,054 0,834 0,027 0,720 0,021 1,360 0,066 0,993 0,038 2,150 0,179 1,502 0,073 1,117 0,046 

6 2,187 0,119 1,329 0,034 0,913 0,016 0,788 0,012 1,498 0,041 1,085 0,022 2,427 0,134 1,645 0,045 1,218 0,027 

Failure ru=0.5 

1 0,436 0,444 0,313 0,357 0,280 0,406 0,490 0,404 0,355 0,327 0,246 0,268 0,533 0,378 0,403 0,310 0,277 0,250 

2 0,997 0,531 0,723 0,343 0,676 0,327 1,083 0,511 0,790 0,347 0,605 0,269 1,119 0,450 0,857 0,323 0,636 0,248 

3 1,515 0,445 1,077 0,248 1,014 0,232 1,597 0,468 1,152 0,276 0,891 0,201 1,624 0,474 1,233 0,304 0,937 0,221 

4 1,993 0,382 1,382 0,183 1,305 0,166 2,082 0,386 1,471 0,199 1,123 0,131 2,110 0,395 1,560 0,218 1,182 0,146 

5 2,443 0,324 1,644 0,136 1,555 0,123 2,526 0,330 1,744 0,147 1,315 0,088 2,557 0,331 1,842 0,156 1,382 0,095 

6 2,868 0,292 1,871 0,098 1,770 0,089 2,944 0,280 1,979 0,106 1,475 0,061 2,974 0,280 2,083 0,115 1,548 0,066 
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3.5.2. Case study 

The use of the model presented in this chapter can be twofold; for 

example, it can be used to identify the magnitude of past earthquake events 

by back analysis of the shape and the extent of the landslide, or to predict 

possible future failures. In what follows, an illustrative example is described to 

show how the model can be used for real cases. The case study described 

below is one of the most seismically active areas in the world (located south of 

Iquique in northern Chile), where the presence of large rockslide and 

avalanches occurred at different times is well documented.  

The study area lies along the hypo-arid coastal area of the Atacama 

Desert (Figure 3.17), with mean annual precipitation of about 1 mm, south of 

Iquique in northern Chile (Tarapaca province - between latitude 20°6’S and 

20°26’S, longitude 70°05’W and 70°10’W). The hypo-arid climate persists in 

this region since a few million years. This area coincides today with one of the 

most important seismic areas along the subduction zone of the Nazca plate 

without major earthquakes since those 1868 and 1877 (Beck and Ruff, 1989, 

Lomnitz, 2004, Baker et al., 2013). The area is characterized by a sequence of 

layered sedimentary rocks, prevalently marls and limestones, dipping with the 

slope (cataclinal) and covered at the cliff top by alluvial conglomerates 

characterized by polygenic angular to subangular clasts in a brownish sandy-

silty matrix (Crosta et al., in press). In this area along the coastal scarp and the 

coastal plain, some huge rock avalanches and rotational landslides  have 

been mapped (Crosta et al., 2012b, Crosta et al., 2014a). An example of a 

rock avalanche with a sequence of deposits is given in Figure 3.18. 

In Figure 3.18a the elevation profiles of the slope before the failures 

and the present situation are illustrated. The pre-failure profile is obtained from 
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the slope beside the area of interest that has not yet suffered failures. The 

average initial slope angle is 27° and the final average angle is approximately 

22°. 

 

 

Figure 3.17. Area of interest for the case study. 

 

As visible in Figure 3.18b, a series of rock avalanche deposits can be 

recognized from events occurring in a sequence all from the same source 

area. More rock avalanche groups have been recognized in the same area. 

The geometrical relationships among the various deposits of each group allow 

to define a relative age or order of occurrence for the various events (Crosta et 

al., in press). This makes evident a progressive decrease in rock avalanche 

size with time or order of occurrence within the sequence. Furthermore, field 

observations and aerial photointerpretation support the hypothesis that the 

main failure surface (or failure surfaces envelope) daylights about 250 m 
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above the slope toe. This is an important feature of these phenomena, which 

must be stressed because it could be an indicator of a possible seismic 

triggering. In fact, earthquake induced rockslides generally affect the middle-

upper portions of steep rock slopes where major seismic amplification effects 

are focused and a minor groundwater role is recognized. 

 

 

Figure 3.18. a. Elevation profiles for the rock avalanche area before and after 

the failures, b. group of rock avalanches studied here. The failure surface 

envelope daylight above the slope toe. 

 

The implementation of the model either looking for the yield 

acceleration of past events or for the most critical failure mechanism under 
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various seismic accelerations is presented in this section. First the model is 

applied to a simplified slope based on the case described above and the yield 

acceleration of past events is estimated. Then the evolution of a slope under 

different seismic accelerations is presented.  

The model calibration is performed by looking for the sequence of 

failures with cross sectional areas (i.e. volumes in three dimensions) similar to 

the observed ones. In particular, there should be a relationship between real 

and computed volumes (or cross sectional areas). The final geometry of the 

landslide alcove, generated by the complete sequence of failures, is also 

considered for calibration 

For all the results presented in this section, either looking for the slope 

yield acceleration or the most critical slip surface, only horizontal seismic 

action has been assumed (λ=0). 

Calculation of yield acceleration for past events 

The proposed model was applied to a simplified slope with initial slope 

angle β=27 (the average angle of the initial profile in the study area deriving 

from Figure 3.18a) as illustrated in Figure 3.19 and four successive failures 

were assumed based on the results of (Crosta et al., in press). The 

characteristics of the soil (friction and cohesion) during each failure are also 

based on the results of (Crosta et al., in press) regarding the study area 

discussed in the previous section, while the height of each failure event is 

proportional of the volume obtained in the same paper. Unfortunately, 

relatively few data are available about the geomechanical characteristics of 

the rock masses, because of the poor outcropping conditions. 
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The estimated height and cohesion for every landslide are presented in 

Table 3.4. A constant bulk unit weight of 25kN/m3 was assigned and the 

friction angle is assumed to be the same for every event φ=35˚. Note that the 

results presented here are based only on assumptions on the landslide 

heights as the geometric parameters of each failure cannot be calculated in 

detail (height and retreat length).  

 

Table 3.4. Estimated yield acceleration for four past failure events 

Failure 1 2 3 4 

c (kPa) 300 250 250 200 

H (m) 480 230 160 115 

Ky 0.33 0.27 0.26 0.32 

 

For the first failure, and from (Crosta et al., in press) observations, the 

total height of the failure was estimated to be around 450-500 m. The reason 

that the mechanism for the first failure did not pass from the slope toe, as this 

would have been the most critical failure mechanism for the static case, can 

be due to inhomogeneity of the material or can be related straight to the 

seismic activity in the region. This height was also assigned to the model to 

calculate the most yield acceleration of the first failure.  

Given the characteristics described above and by solving equations 

[3.27] and [3.42] to Ky, the final profile of the slope and the yield coefficient of 

acceleration (Table 3.4) for the first and each successive failure can be 

obtained respectively. For the first failure, the equation of the yield 

acceleration coefficient is:   
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and for the second and each successive failure: 
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The final profile after the four successive failures is close to the 

situation as observed today with an average inclination of 22˚ (Figure 3.19). In 

Figure 3.20, the areas calculated by limit analysis and the volumes as 

extrapolated from the DTM topographic dataset in (Crosta et al., in press) for 

each failure, are plotted. Area and volume values in the plot are normalized to 

the areas and volume of the first failure respectively. By looking at Figure 3.20, 

it is evident that the older events are characterized by larger sliding areas and 

volumes; a progressive decrease in area and volume is recorded for the 

successive events (Crosta et al., in press). 

 

 

Figure 3.19. Past failure mechanisms for a simplified slope profile with initial 

slope inclination β=27°. 
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Figure 3.20. Sliding volumes and areas normalised to the first failure 

Prediction of future events 

Using the same model solving equations [3.27] and [3.42], the most 

critical failure mechanisms can be obtained for slopes of any given height, 

angle and friction angle. The model is applied to a slope of initial slope 

inclination β=40˚ and friction angle φ=35˚. Three different seismic scenarios 

causing four successive failures each are considered and the failure 

mechanisms are obtained.  

In Table 3.5, the stability number of each failure and for different 

coefficient of yield acceleration is illustrated. To make meaningful 

comparisons, the outcome of calculations, the associated crest retreat 

normalised by the initial slope height and the sliding area normalised by the 

square of the initial height are listed for all seismic scenarios and for four 

failures. In  

Figure 3.21, the slope evolution is illustrated for the three different seismic 

scenarios. Solid line is illustrating the slope evolution after four failures, 

applying a horizontal seismic acceleration to the slope Kh=0.2, dashed line is 

used for the seismic acceleration is Kh=0.3 and dotted line for Kh=0.4. It is 

obvious that the magnitude of the seismic acceleration can cause a significant 
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change in the stability of the slope but also can alter the failure mechanism; 

leading to larger amount of soil sliding away and larger cliff retreat for higher 

seismic acceleration. Combinations of different seismic acceleration for each 

failure as well as vertical seismic acceleration can easily be applied to the 

model.Note that the first failures for all seismic scenarios have been assumed 

to pass through the slope toe and the cases of failure surfaces passing below 

or above the toe failure have not been considered. In fact, failures below the 

slope toe can generally occur only for very low friction angles (Chen, 1975) 

and failures above the toe cannot occur for intact slopes for reasons of 

similarity. Moreover, after the second failure and to find each new failure 

mechanism, the potential failure lines have been searched only above the 

point of intersection of the two previous mechanisms. 

 

Table 3.5. Results for Associated Stability Number γΗ/c, Crest Retreat 

normalized by the initial height of the slope CR/H and Sliding Area normalized 

by the square initial height of the slope A/H2 for slopes with initial inclination 

β=40˚ and friction angle φ=35˚, for horizontal seismic acceleration Kh=0.2, 

Kh=0.3 and Kh=0.4. 

 Failure 1 2 3 4 

K
h
=

0
.2

 γH/c 28.234 32.879 40.495 56.255 

CR/H 0.196 0.403 0.560 0.679 

A/H2 0.295 0.129 0.056 0.0316 

K
h
=

0
.3

 γH/c 17.989 23.540 28.426 39.223 

CR/H 0.280 0.592 0.826 1.003 

A/H2 0.359 0.218 0.101 0.061 

K
h
=

0
.4

 γH/c 12.628 18.007 22.535 27.310 

CR/H 0.422 0.842 1.189 1.479 

A/H2 0.454 0.291 0.194 0.131 
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Figure 3.21. Slope evolution during four successive failures under 

three different earthquake scenarios for slope with initial inclination 

β=40˚ and friction angle φ=35˚. Solid lines refer to failure mechanisms 

under horizontal acceleration Kh=0.2, dashed lines to Kh=0.3 and 

dotted to Kh=0.4. 

 

3.5. Conclusions 

In this chapter, the upper bound theorem of limit analysis and the 

pseudo-static approach have been adopted for the assessment of the stability 

of homogeneous c, φ slopes subject to seismic action providing rigorous upper 

bounds to the true collapse values. The influence of pore water pressure has 

also been implemented in the model using the ru coefficient. The limit analysis 

upper bound method was applied to determine each discrete landslide event 

occurring over time in a sequence of ordered events assuming the complete 

removal of the failed mass occurring before the onset of the successive 

mechanism. 

40  

35  
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Analytical solutions have been presented to investigate the effect of 

weathering induced strength degradation, seismic action, crack formation and 

various seepage scenarios on the geomorphological evolution of 

homogeneous slopes, employing the upper bound limit analysis method. 

Slopes are characterised by uniform cohesion, angle of shearing resistance, 

and finite tensile strength. The solutions were obtained considering a 

succession of discrete failure events (landslides) progressively altering the 

slope morphology over time and can be used to achieve a first rough 

estimation of the past or future evolution of a slope knowing a limited amount 

of information.  

The location and the depth of the crack as well as the most critical 

failure mechanism for every failure were calculated through an optimisation 

procedure. Solutions were provided for the evolution of cohesive slopes with 

full tensile strength, with a prescribed limited tensile strength or no tensile 

strength at all (tension cut-off) for a range of friction angle and slope inclination 

of engineering interest and more results can be obtained using the Matlab 

code that is provided in the Appendix.  

A comprehensive parametric analysis has been carried out to 

investigate the relative influence on slope evolution of the physical 

phenomenon considered, i.e. weathering induced strength degradation, 

seismic action, crack formation and seepage. It emerges that strength 

degradation, seismic action and seepage may significantly accelerate slope 

failure, exhibiting a stronger influence than the formation of cracks on the 

morphologic evolution of slopes. High seismic acceleration and / or seepage 

forces cause larger slope failure mechanisms and therefore larger slope crest 

retreats. Tension cracks forming due to exceedance of the limited tensile 

strength influence the first slope failures more than the subsequent ones. In 
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conclusion, the model here introduced allows in principle, to predict the 

evolution of natural cliffs subject to weathering processes and seismic events 

for cohesive geomaterials of limited (or nil) tensile strength. 

Moreover, a case study in northern Chile was presented showing that 

the model can be used to identify the minimum magnitude of past earthquake 

events by back analysis of the shape and extent of previous landslides, and 

also to predict possible future scenarios. The kinematic approach of limit 

analysis can be used to calculate the least upper bound on the yield 

coefficient of acceleration Ky for a given slope with uniform cohesion c and 

internal friction angle φ. The yield acceleration can be defined as the minimum 

level of horizontal acceleration (vertical acceleration being proportional to the 

horizontal acceleration) that can cause the slope to fail. However, when 

performing such an analysis the assumptions behind the model (e.g. that the 

failed debris is carried away before the occurrence of a second failure) should 

be considered.  
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Chapter 4 : Experimental Methodology 

This work aims at the morphologic evolution of natural cliffs made of 

weakly cemented materials subject to progressive retreat under various 

causes. Physical modelling of landslide processes in the laboratory can 

potentially create well documented, highly-instrumented case-studies of slope 

behaviour in which the material properties, initial state, and boundary 

conditions are well defined. To this end, an experimental apparatus was 

designed and scaled slope models were built in a transparent flume. Rainfall 

was applied on them until failure was reached, while soil moisture content and 

suction were monitored by sensors buried inside the slope model. High 

resolution cameras record the behaviour of the slope model during the tests 

and GeoPIV software and Matlab image analysis are used to analyse the 

frames and obtain the deformations of the slope model and the movement of 

the water front. The reproduction of the slope failure process at a greatly 

reduced scale is not fully representative of full scale behaviour (Camponuovo, 

1977), it is however a good approximation to approach the problem and to 

gain insight in the most important parameters.  

The goal of this experiment is to develop a physical model able to 

replicate retrogressive slope failures due to various actions. A set of 
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experiments is carried out on soil with limited tensile strength; after a short 

period of rainfall and due to degradation of the soil strength, vertical cracks 

appear in the slope model and significant vertical deformations start to occur 

around the crack, until a failure occurs. The experimental results help 

quantifying the correlation between moisture content and landslide onset and 

highlight how debris propagation and deposition affect the stability of the 

remaining slope. 

The present chapter reports on the laboratory apparatus and the 

experimental methodology that were designed and used for this research. The 

experimental program was carried out both at the Department of Geological 

Sciences and Geotechnologies of the University of Bicocca in Milano and at 

the Geotechnical laboratory of the University of Warwick in Coventry. 

Preliminary tests and soil characterization tests were carried out at the 

University of Bicocca, while the main experimental work was conducted at the 

University of Warwick.  

4.1. Preliminary tests 

Choosing the appropriate material to be used in the experiments was 

the first concern of the experimental set up. For this reason, the initial part of 

the experimental research was conducted at the Department of Geological 

Sciences and Geotechnologies of the University of Bicocca in Milano and 

included a set of preliminary experiments to conclude to the right material that 

would be used for the tests. 

The material being sought should be able to simulate weathering in 

laboratory timescales and be easily produced. The objective was to reproduce 

and visualize the formation and destruction of the depositional bonds during 

wetting. In order to support the above described short-term mechanism, ad 



Chapter 4: Experimental methodology 

 

89 
 

hoc experiments were carried out and are reported below. Four different 

artificial materials to be bound by depositional bonds only were used: a 

mixture of powder of crushed calcarenite and glass beads or silica sand, and a 

mixture formed by powder of gypsum and glass beads or silica sand with 

different proportions. Also, some ideas on how to get the specimen to fail were 

verified in practice. 

4.1.1. Selection and design of (artificial) weakly bonded geomaterial 

suitable for laboratory weathering 

The preliminary tests were of a very small scale, and for this reason it 

was possible to test 20 alternative combinations (Table 4.1) of the materials 

mentioned above without using large amounts of materials.  More specifically, 

small cylindrical specimens were prepared following the procedure proposed 

by (Soulié et al., 2007) and subsequently by (Ciantia et al., 2015a) and 

pictured in Figure 4.2b, with dimensions of diameter 13.00mm and height 

28.00mm (Figure 4.2). Once the cylindrical sample is extruded (Figure 4.2b), it 

is oven dried for 24 h at 105° Celsius to evaporate all the water. The particle 

size of the materials used is <0.20mm for calcarenite powder and gypsum, 

1.00 - 1.50mm for silica sand and 0.40 - 0.80mm for glass beads. The 

percentages used for each specimen are reported in Table 4.1. The name of 

each specimen illustrates the materials that it contains and the percentage of 

each material. The first letter stands for: B for glass beads and Q for silica 

sand, the second letter stand for: G for gypsum and C for calcarenite, the third 

letter inform about the percentage of water used for the preparation of each 

specimen and the last one (S) describes the percentage of fine silica sand.  

Three specimens of each different combination were created (Figure 

4.1 and Figure 4.2) and after being left to dry, they were tested under load in 

order to measure their strength (Figure 4.3a). Specimens 9 and 10 were very 
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loose and were destroyed only by touching them before testing. Because 

there was also an interest in the behavior of the material when encountering 

water, specimens were then tested under half of the load their dry peak 

strength, while at the same time water was gradually added to wet their base 

(see Figure 4.3b). The water at the base of the specimen was added 

gradually, starting from 2mm for the first two minutes and adding another 

2.00mm every 2min. Results from dry and wet tests are presented in Table 

4.1.  

 

 

Figure 4.1. Twenty different specimens tested 

 

The results of the tests suggested that the best candidates for the purpose of 

this research are number 1, 6, 19, 20. The next step of the procedure was to 

build small cubic models (15.00x8.00x6.00cm) with vertical front (Figure 4.4), 

in a small apparatus that was specially designed for this goal and test these 

four mixtures and their ability to form a slope model where a failure 

mechanism could develop under the influence of water. 
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a.  

b.  

Figure 4.2. a. Small specimen b. glass and powder structured sample 

preparation (Ciantia et al., 2015a) 

 

a.  

b.  

Figure 4.3. Specimen under load a. dry b. with water at its base 
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Tests on the cubic specimens, have been carried out in order to 

identify a geomaterial giving rise to more than one failure under rainfall in a 

reasonable timespan. The specimens were prepared and left to dry, then a 

simple mechanism to wet them was built and placed on top of them and a 

digital camera to record the evolution of the slope was used. The results 

suggested that only the specimens containing calcarenite could be destroyed 

and demonstrate ‘failure’ in laboratory time (Figure 4.4), because those 

containing gypsum would not fail even after 5 days under constant wetting. 

After the completion of these preliminary tests, the material that fitted the 

desired characteristics was selected to carry out the main experiments for this 

research. 

The mixture for all the slope models tested for the needs of this thesis 

consists of 43.5% w/w calcarenite, 43.5% w/w glass beads and 13% w/w 

water. This mixture has proved to be able to fail in laboratory time only under 

the influence of water, and a second failure was observed in the preliminary 

small scale slope model. In addition a similar material has been already 

studied and characterised by (Ciantia and Castellanza, 2015, Ciantia et al., 

2015b) proving that real weakly bonds are created and can be destroyed just 

with water. The geotechnical properties of the calcarenite and the glass beads 

used for the construction of the slope models of the main experiments are 

illustrated in Table 4.2. 
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Table 4.1. List of the 20 specimens tested 

 

Name F (g) σ (kPa) 50% F (g) Water Time 

1 B40C40W20 40 3.1 20 2.00mm <4min 

2 B30C46W23 130 9.8 65 2.00mm <1min 

3 B60C26W13 22 1.7 11 destroyed 
 

4 B45C45W10 46 3.5 23 2.00mm <2min 

5 B43G43W14 170 10.3 85 2.00mm 4-5min 

6 B60G24W16 3000 226 1500 Filled n/d 

7 B40G40W20 3000 226 1500 Filled n/d 

8 B70G20W10 3000 226 1500 Filled n/d 

9 Q70C20W10 0 0 0 
  

10 Q60C25W15 0 0 0 
  

11 Q40C40W20 44 3.3 22 2.00mm <2min 

12 Q30C50W20 130 9.8 65 2.00mm <2min 

13 Q70G20W10 3000 226 1500 Filled 3 days 

14 Q55G32W13 3000 226 1500 Filled n/d 

15 Q80G16W6 3000 226 1500 Filled n/d 

16 Q65G10W10S15 2500 188.4 1250 Filled n/d 

17 G65G10W10S15 2500 188.4 1250 Filled n/d 

18 Q50G15W10S25 2500 188.4 1250 20.00mm n/d 

19 Q75G10W7S8 1100 82.9 550 20.00mm 6-7min 

20 G80G7W5S8 1500 113 750 2.00mm <1min 

Note that B is for Glass beads, C for calcarenite, G for Gypsum, Q for Silica 
sand, S for fine silica sand and W for Water. 
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Figure 4.4. Small slope models (15.00x8.00x6.00cm) with vertical front 

 

Table 4.2. Geotechnical properties of the materials used in the experiments. 

Geotechnical Properties of calcarenite (Castellanza et al., 2009) 

 γd (kN/m3) γsat (kN/m3) Gs (-) n (-) e (-) 

 13.92 18.82 2.73 0.49 0.96 

Geotechnical Properties of glass beads 

γd (kN/m3) Gs (-) Micron range 

14.715 1.75 840-590 

 

4.1.2. Microstructure characterisation of the selected material 

The Grain Size Distribution performed with sieve analysis is presented 

in Figure 4.5. The effective particle size D10 of the mixture is 0.12mm, the 

average particle size D50 is 0.6mm and the uniformity coefficient Cu=D60/D10 

is 5.83. 

 



Chapter 4: Experimental methodology 

 

95 
 

 

Figure 4.5. Sieve Analysis - Particle size distribution curve 

 

By means of scanning electron microscope (SEM) analyses and 

mercury intrusion porosimetry (MIP), the microstructure both in 2D and 3D and 

the porosity of the material by different methods was defined. In what follows, 

only the most important results of such intensive micromechanical 

investigation of the material are reported. In Figure 4.6, a SEM image of the 

sample is used to show the grains and the bonds between the materials. In 

Figure 4.7, a typical thin-section obtained from samples hardened with epoxy 

resin is photographed by means of a high-resolution camera connected to an 

optical microscope to illustrate the bonds between the materials. 
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Figure 4.6. SEM images of 3D microstructure observations at increasing 

magnification (where GB stands for Glass beads and CB for calcarenite 

bonds) 

  

Figure 4.7. Typical thin-sections obtained at an optical microscope 

(where GB stands for Glass beads and CB for calcarenite bonds) 

 

The results of the porosimetry test by means of mercury intrusion 

porosimetry MIP are illustrated in  

Figure 4.8. The porosimetry samples that were prepared for this test are also 

shown in the figure. The porosity values calculated by the standard weighing 

method are summarised with those determined by MIP tests and 2D thin 

section image analysis in Table 4.3.  

 

CB GB 
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Figure 4.8. Porosimetry (blue curve for the cumulative pore volume and red 

columns for relative pore volume) 

 

Table 4.3. Porosity values calculated by means of the standard 

weighting method, mercury intrusion porosimetry MIP, and 2D image 

analysis 

 Weighting method MIP 2D - thin section 

Porosity n 0.34 0.25 0.30 

 

4.1.3. Macro scale tests to show the short term debonding process  

In this part of the thesis, macro experimental investigations performed 

on the selected material are shown; short- and long-term debonding 

processes are leading to the macro-scale weakening mechanisms of the 
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weakly cemented material. The dry strength is first investigated by means of 

UCT using strain controlled (0.25mm/s and 0.05mm/s) uniaxial compression 

test equipment. In Figure 4.9a and b the dry and wet soil sample after failure 

during the uniaxial test are illustrated and in Figure 4.9c the stress strain curve 

is shown at different saturation degrees of the material. In Figure 4.10 the soil 

water characteristic curve (SWCC) of the material obtained by pressure plates 

and ku-pF tests are plotted. Ku-pF is a laboratory instrument for the automatic 

determination of any saturated hydraulic conductivity ku and the pf curve 

(water tension curve).  

Soil strength can be expressed by two parameters, cohesion c and 

internal friction angle φ, according to the Mohr-Coulomb yield criterion. Hence, 

to characterise the strength of the material under different water contents, 

shear box tests have been carried out.  

Specimens of the exact same characteristics (components and 

density) as those used in the main experiments and with different moisture 

content, therefore various degrees of weathering were tested and the failure 

envelopes were obtained. The failure envelopes obtained from the direct 

shear tests are illustrated in Figure 4.11. The tests were carried out in dry 

samples, samples with moisture content 15% that were left for approximately 

an hour after the water was added and before the initiation of the test and 

saturated samples that were tested approximately 24 hours after the water 

was added to the soil. As shown in Figure 4.11, the increase in water content 

results in a decrease of the strength characteristics of the material. It causes 

mainly a decrease in the cohesion and a lower decrease in the friction angle of 

the material.  

 



Chapter 4: Experimental methodology 

 

99 
 

a. b.  

c.  

Figure 4.9. a. Dry soil sample after failure during the uniaxial test b. a. Wet soil 

sample after failure during the uniaxial test c. Stress strain curve at different 

moisture contents  
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Figure 4.10. Comparison of SWCC derived from pressure plate tests and ku-

pF and from measurements taken during calibration box tests  

 

 

Figure 4.11. Shear box tests for different water contents 
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Finally, to conclude on the length of the flume where the slope models 

were prepared the repose angle of the material was estimated both for dry 

mixture and for a saturated sample, as can be seen in Figure 4.12. 

 

 

Angle of repose of dry mixture: arctan (3.7/7.7) = 25.7° 

 

Angle of repose of saturated sample: arctan (6/18.5) = 18° 

Figure 4.12. Repose angle of dry and saturated sample 

 

4.2. Physical Model 

The main experimental program was carried out in the University of 

Warwick and involved two parts. First, a calibration box was built and a set of 

calibration tests were carried out to verify that the construction procedure of 

the slope models was accurate enough and that the test was repeatable. 

Second, the main apparatus was designed and constructed as well as the 
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rainfall simulation device and slope models were of different geometries were 

tested under different scenarios. 

4.2.1. Dimensional Analysis 

The main challenge is to provide rational analyses of large scale 

landslides via small scale laboratory tests. Since a model test is employed to 

study the progressive failure mechanism of a slope, a number of physical 

parameters that are used have to be related between the model and the 

prototype by satisfying three necessary conditions for complete similarity 

between a model and a prototype (Cengel, 2010):  

• Geometric similarity - the model must be the same shape as the 

prototype, but may be scaled by some constant scale factor.  

• Kinematic similarity - the velocity at any point in the model must be 

proportional (by a constant scale factor) to the velocity at the 

corresponding point in the prototype. 

• Dynamic similarity - When all forces in the model scale by a constant 

factor to corresponding forces in the prototype (force-scale 

equivalence). 

When the above conditions are met the reliability and feasibility of the 

test are ensured.  

Dimensional analysis is a means of simplifying a physical problem by 

appealing to dimensional homogeneity to reduce the number of relevant 

variables. The three primary purposes of dimensional analysis are to: 

• Generate non-dimensional parameters that help in the design of 

experiments (physical and / or numerical) and in the reporting of 

experimental results. 
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• Obtain scaling laws so that prototype performance can be predicted 

from model performance. 

• Predict (sometimes) trends in the relationship between parameters. 

By means of dimensional analysis, the governing parameters of the 

problem are identified, and then the independent and dependent 

dimensionless groups are formulated. The parameters include soil and 

geometric properties, rainfall intensity, velocity of the weathering front and and 

characteristic times, where the units are expressed using fundamental 

dimensions L, M and T, for length, mass and time respectively, as listed in 

Table 4.4. Based on how these parameters are related during the test they are 

categorized as independent and dependent ones.  

 

Table 4.4. The governing parameters of the slope model 

 Parameter Symbol Dimension Unit 

Independent 

parameters 

Initial slope height Hi [L] m 

Initial slope length Li [L] m 

Slope width W [L] m 

Gravitational 

acceleration g [LT-2] m/s2 

Friction angle φ [-]  

Cohesion c [M/LT2] kN/m2 

Rainfall intensity r [L/T] mm/h 

Weathering velocity vw [LT-1] m/s2 

Dependent 

parameters 

Failure location Lfi [L] m 

Failure duration time tf [T] s 

Particle velocity vf [LT-1] m/s2 

 

The objective of this research is to investigate the location and the time 

of the successive failures. For that reason, the dependent parameters are the 



Chapter 4: Experimental methodology 

 

104 
 

location of each failure (Lfi), the particle velocity (vf) and the failure duration 

time (tf). The other parameters are set as the independent ones.  

Greek letter Pi (Π) denotes a non-dimensional parameter. In a general, 

in a dimensional analysis problem, there is one Π called the dependent Π, 

giving it the notation Π1. The parameter Π1 is in general a function of several 

other Π’s, called independent Π’s. The functional relationship is:  

Π1 = f (Π2, Π3, ..., Πk) 

To ensure complete similarity between the model test and the real 

case, the model and prototype must be geometrically similar, and all 

independent groups (Π) must be identical between model and prototype 

(Cengel, 2010). Under these conditions the dependent Π of the model (Π1,m) is 

guaranteed to also equal the dependent Π of the prototype (Π1, p). 

Mathematically, the conditional statement for achieving similarity can be 

written: 

If Π2,m = Π2,r and Π3,m = Π3,r … and Πk,m = Πk,r then Π1,m = Π1,r. 

Assuming the above, that a link exists between the independent and 

the dependent parameters a general functional relationship can be written as: 

(Lfi, vf, tf) = f (Hi, Li, Wi, g, φ, c, r, vw) 

In Table 4.5, the relationship between the physical quantities of the real 

and the model slope is illustrated (Roscoe, 1968, Chen et al., 2012), obtained 

from similarity analysis. The scaling factor (λ) between the length of the real 

slope (Lr) and the slope model (Lm) is λ = Lr/Lm and the materials used in the 

model slope have the same unit weight with the real slope. According to 

(Askarinejad et al., 2012) the seepage time in the model is λ times less than 

that of the real slope as the seepage length in the model is λ times shorter, 

therefore the duration of the rainfall in the λ times scaled down model is λ 
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times less than that of the real slope. Moreover, the length equivalent of the 

total precipitated rainfall in the model is λ times less than that of the real slope, 

making the rainfall intensity which is the ration between the total rain and the 

rain duration equal between the model and the real slope.  

 

Table 4.5. Dimensional analysis of the physical quantities in model test  

Physical Quantity Relationship 

Length Lm = (1/ λ) Lr 

Slope angle θm = θr 

Unit weight γm = (1/ ρ) γr = γr 

Friction angle φm = φr 

Pore water pressure (or stress) um = (1/ λ) ur 

Strain εm = εr 

Time tm = (1/ λ) ir  

Rainfall intensity or velocity im = ir 

Hydraulic conductivity km = (1/ λ) kr  

Note that λ, and ρ are the scaling factors for length and unit weight 
respectively. In this study, the value of chosen to be λ was equal to 100 and ρ 
was equal to 1.  

 

To choose the appropriate scaling factor, the procedure that is 

simulated need to be studied. For example, weathering processes can have 

different velocities depending on the type of weathering, the changes and the 

evolution of natural slopes range from decades to thousands years depending 

on the type of soil and the weathering processes. To manage to model the 

weathering of a slope in the laboratory, a scaling factor should be chosen that 

will allow the progressive failure of the slope model to occur in laboratory time. 
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4.2.2. Main test Apparatus 

During laboratory testing, there are practical constrains such as space 

and material quantities making large scale modelling costly and prohibitive. To 

this end an apparatus was designed able to accommodate the needs of this 

research. The experimental apparatus is illustrated in Figure 4.13 (all 

dimensions are in centimetres). The main apparatus consists of a soil 

container made of 10mm thick Plexiglas supported by a steel frame, a rainfall 

simulation device, eight soil moisture sensors, two tensiometers and two high 

speed cameras to record the movement of the slope model during the tests. 

The container, with transparent sides, is 120.00cm long, 12.00cm wide and 

50.00cm high (inner dimensions).  

 

 

Figure 4.13. Arrangement of the experimental apparatus 

 

Starting at longitudinal distance x = 10.00cm from one end of the flume 

and at latitudinal distance y = 28.00cm from the top of the flume, a mesh of 
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small holes is drilled. The holes are located 1.50cm far from one another 

(vertically and horizontally) and are used to place the soil moisture sensors 

and the tensiometers. The other end of the sensors is connected to an 

Arduino microcontroller and / or a Delta-T GP2 data logger that allow the data 

to be logged in on a computer for further analysis.  

Two water nozzles are placed above the container, which under 

constant pressure; induce steady and uniform rainfall on the model. Finally, 

two high resolution cameras (25fps) are also used to monitor the test process 

from both sides of the flume. 

4.2.3. Slope model 

For the experiments, homogeneous slope models made of the material 

described in paragraph 4.1 above are constructed. Although non planar slope 

profiles are more common in nature and they may be more stable than planar 

ones (Utili and Nova, 2007), all the experiments were performed with planar 

slopes for sake of simplicity.  

 

Table 4.6. General characteristics of the slope model (height H=15.00cm) 

Number of layers  15 

Layer Width (cm) 12 

Layer Length (cm) 35 

Layer Height (cm) 1.00 

Weight of layer (g) 714 

Weight of the model (g) 10710 

Volume of the model (cm3) 6300 

Wet Bulk density (g/cm3) 1.700 

Dry Bulk density (g/cm3) 1.478 
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The dimensions of a typical vertical slope model were height: 15.00cm, 

width: 12.00cm and length: 35.00cm and the general characteristics are 

illustrated in Table 4.6. For the construction of homogeneous slope models, 

the materials were manually mixed and layered inside the box in 15 layers of 

714gr each. Each layer was compacted by a specifically designed plexiglass 

plate into 1.00cm height to achieve uniformity of the slope model, obtaining a 

wet density of 1.7g/cm3. The soil moisture sensors and tensiometers were 

buried inside the slope model during the construction phase (Figure 4.14), to 

cause the least possible disturbance to the soil. 

Transparent silicon oil was applied on the sides of the container to 

avoid friction between the slope model and the container. Tests have also 

been carried out without applying the silicon oil on the sides of the container. 

Soil material would stick to the sides not allowing for a failure mechanism to 

develop.  

 

 

Figure 4.14. Picture during the construction phase and placing the sensors 
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Moreover, thin plastic drainage rails were glued to both sides to 

prevent water from coming into the slope model from the sides (Figure 4.17). 

 

 

Figure 4.15. Transparent plastic drainage rails at the sides of the container 

 

4.2.4. Rainfall simulation device 

Two different artificial rainfall systems were developed and used. For 

higher rainfall intensities, the artificial rainfall system consists of a 1x12v 

diaphragm pump, a control set including a pressure gauge and a pressure 

regulating valve, plastic pipes and two M1 - Mini nozzles (Figure 4.16a), 

providing rainfall intensity of approximately at 40 - 60 mm/h. The flow rates of 

these nozzles are 0.04 l/h and 0.045 l/h, operating at 3 and 4 bars 

respectively. Different pressures can be set and flow rates can be determined. 

The desired surface of the slope crest can be wetted by adjusting the nozzle in 

different heights. In these experiments the nozzles are places 32.00cm above 

the slope crest. For lower rainfall intensities, two GSC1 gravity atomising 

nozzles (Figure 4.16b) were used to achieve small drop size and to provide 

rainfall intensities of 5 - 30 mm/h by adjusting the inlet pressure. 
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a.   b.     

Figure 4.16. a.M1 - Mini Nozzles, b. GSC1 gravity nozzles 

 

The nozzles are placed directly above the container and guarantee 

uniformity and accuracy. The uniformity of the nozzles was tested using small 

containers and measuring the flow rate at different pressures. Moreover, 

during all tests small containers were placed on the top of the slope to 

measure the rainfall intensity.  

4.2.5. Monitoring System 

In the following, the main geotechnical and geophysical measurements 

of the monitoring system are described. The main technical features of all the 

probes used in the monitoring program (e.g., the manufacturer, accuracy, and 

operational range) are given in Table 4.7. 

 



Chapter 4: Experimental methodology 

 

111 
 

Table 4.7. Main Technical Features of Probes Used for Monitoring 

Device Product 

name  

Manufacturer Accuracy and 

operational 

range 

Moisture  

sensors 

SM300 Delta-T Devices  

(http://www.delta-t.co.uk/) 

± 0.025m3.m-3
 

(2.5%) - Full 

accuracy over 0 

to 0.5m3.m-3 

Moisture  

sensors 

Vegetronix  

VH400 

Vegetronix  

(http://www.vegetronix.com/) 

2% at 25°C 

Tensiometers SWT-5x Delta-T Devices  

(http://www.delta-t.co.uk/) 

±0,5 kPa 

From -160kPa to 

160kPa 

 

Soil Moisture Sensors  

To record the changes in the volumetric water content of the soil by 

time, six Vegetronix VH400 soil moisture sensors were initially buried 

horizontally in one side of the slope model. The location of the soil moisture 

sensors is shown in Figure 4.13. The accuracy of these sensors is 2% and 

they measure volumetric soil moisture content, using transmission line 

techniques to detect the dielectric constant of the soil. The size of the sensors 

is very small, 9.40cm long and 0.70cm thick, thus causing minimal disturbance 

to the surrounding soil.  

The water content of the soil is recorded at frequency 1/s. Since 

reliable measurements are very important while performing experiments, two 

SM300 soil moisture and temperature sensors were also obtained later on 

during the tests and were also buried inside the slope model for independent 

measurements. These sensors are even smaller than the VH400 sensors 

causing least disturbance to the soil, their accuracy is 2.5% for the moisture 

content and 0.5°C for the temperature and they give continuous readings. The 
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SM300 sensors are used in combination with the others to ensure correct 

readings.  

Vegetronix VH400 soil moisture sensors were connected with an 

Arduino microcontroller and a code was written to obtain readings every 

second while SM300 sensors were connected to a GP2 Delta-T devices Data 

Logger obtaining continuous measurements.   

Soil moisture content tests took place in the laboratory to calibrate the 

output voltages of the sensors prior to the main tests. Moreover, some 

preliminary tests for the response time of these sensors were conducted, 

using small samples of the same density as that of the slope model and with 

known water contents which showed that the sensors responded accurately in 

less than 1s of contact with the soil. 

Tensiometers 

The suction of the soil can have a considerable influence on the slope 

stability (Fredlund et al., 1978); therefore it is essential to determine the 

suction of the slope during the test to evaluate the likelihood of a slope failure. 

In order to capture the changes in the soil suction during the tests, two 

tensiometers (SWT-5x) were employed. The accuracy of these tensiometers is 

± 0.5 kPa while the small size of the shaft (5mm diameter and 5mm length) 

causes very small disturbance to the soil. These sensors were also connected 

to the GP2 Delta T devices Data Logger to obtain the readings. 

GeoPIV analysis 

The displacement vectors were obtained using GeoPIV. GeoPIV is a 

Matlab module which combines the technologies of digital imaging, close 

range photogrammetry and the image-processing technique of Particle Image 

Velocimetry (PIV) in a manner suited to geotechnical testing (White and Take, 
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2002, White et al., 2003, White et al., 2005). The analysis technique used is 

based on the principles of PIV, which is a digital image-based surface 

displacement measurement method that compares a reference image to a 

series of deformed images. It measures whole velocity fields by taking two 

images in successive time instants and calculating the distance individual 

particles travel within these instants. Since the accuracy of displacement 

measurements using particle image analysis is strongly dependent on the 

surface contrast of the soil, some of the glass beads were painted blue and 

white to be used as markers, in order to have unique and easy to track 

patches (Figure 4.17) for the GeoPIV analysis.  

 

 

Figure 4.17. Soil texture after using blue and white paint for some glass beads 

 

During the event, two high resolution cameras were aimed at both 

sides of the container, to record the process of the test and the movement of 

the soil. These cameras have a video resolution of 1920 x 1080 pixels and a 

maximum frame rate of 25 fps. There were two cameras to verify that the 

wetting front is moving homogeneously through the model at both sides; the 

displacement vectors were obtained by analysing the images of the video only 

at one side via Particle Image Velocimetry (PIV). Frames were extracted from 

the video and were analysed to measure the displacement vectors of the soil 
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and the velocity of the wetting front, without causing any disturbance to the 

slope model.  

Matlab Image Processing 

When the experiment starts, the readings of every sensor are steady 

and after some time the moisture sensors readings start to increase due to the 

infiltration of the water. This is an indication that the wetting front has reached 

to the corresponding location of the sensor. To validate the accuracy of the 

sensors, the idea was to use red coloured water for the rainfall and the 

movement of the red colour could then be tracked through Matlab image 

processing, thus giving the movement of the wetting front and then compare 

these results were with those obtained from the soil moisture sensors, 

regarding the movement of the wetting front. 

4.3. Experimental Procedure 

4.3.1. Camera setting 

Since GeoPIV is a digital image - based surface displacement 

measurement method, its success relies heavily on the quality of the images 

used. Any displacement measured by the software will be made up of two 

components: the true displacement, and a certain amount of noise, caused by 

camera sake, lens distortion, misalignment of the camera and the plane of 

interest, refraction of light etc. The aim is to obtain displacement vectors that 

reflect the real movements within the soil. For that reason, noise effects should 

be minimised while setting up the experiment and post processing should take 

place in order to remove the noise from the frames. The camera should be 

positioned orthogonally to the plane of interest to capture images at regular 

time intervals. For every test the same set-up, same lighting and same camera 

to container distance were used. 
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4.3.2. Orthogonality between Plane of Interest and Camera 

The camera lens should be positioned orthogonally to the plane of 

interest to capture images at regular time intervals and their position must be 

identical for every frame taken.  

 

 

Figure 4.18. Cylinder for the orthogonal set-up 

 

To ensure that the plane of particles and the camera were orthogonal, 

a hollow Plexiglas cylinder with crosses as markers at both ends was attached 

inside the container before setting the camera (Figure 4.18). By looking 

through the eyepiece it was possible to align the camera by matching the 

points on either end of the cylinder. Before each test, the aforementioned 

cylinder should be installed to ensure that the camera and the container are 

orthogonal.  

4.3.3. Camera shake 

Even though the camera is still during the tests, placed on a steady 

tripod, camera shake cannot be completely avoided. Camera shake accounts 

for small apparent movements in the photograph due to external factors, such 

as the camera moving relative to the object being photographed between 



Chapter 4: Experimental methodology 

 

116 
 

images. It is due to the shutter mechanism of the camera, and to random floor 

vibrations due to activity around the testing area. To minimise the effects of 

camera shake, image post processing should take place to remove this ‘noise’ 

when necessary. To achieve that, markers (coloured stickers) were placed on 

the front plane of the container, which are known to stay static during the 

tests. A PIV analysis takes place, identifying the markers in the first image and 

determining their apparent movement in the series of images.  

After acquiring the displacement data for the markers known to be 

static during the test and once the detected movement is significant, this 

‘noise’ is removed from the GeoPIV analysis results for the deformation of the 

slope.  

4.3.4. Lens Distortion 

Lens distortion is a nonlinear and generally radial distortion; it is a 

deviation from a projection in which straight lines in a scene remain straight in 

an image. The photograph is affected by optical distortions caused by the lens 

which can be linear or nonlinear and causes elements of the image to appear 

altered from their original state. Most common types of distortion are: 

• Barrel distortion, where image magnification decreases with distance 

from the optical axis (Figure 4.19a) 

• Pincushion distortion, where image magnification increases with 

distance from the optical axis (Figure 4.19b) 
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Figure 4.19. a. Barrel distortion, b. Pincushion Distortion (Hugemann, 2010) 

 

Distortion can be defined as the difference between the original 

location (xu, yu) of an element in the photo and its distorted location (xd, yd).  

Distortion:   

To determine the effect of distortion on the images, a calibration mesh 

was created in the form of a sheet of with a mesh of square elements of 

250mm printed on it. This sheet was stuck in the inner side of the Plexiglas as 

seen in Figure 4.20 and was photographed by the SONY-HDR-SR12, under 

test conditions and by means of image analysis the distances between all the 

points were calculated. The results suggested ignoring lens distortion since no 

larger than 1.00 pixel distortions were calculated.  
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Figure 4.20. Calibration mesh for the effect of distortion 

 

4.3.5. Refraction of light 

Light refraction is a second parameter of image distortion, since light 

travels though mediums of different refractive indexes. The plane in the 

images will be magnified by the light refraction as it crosses the boundary 

between the different mediums; it this case air and Plexiglas. In the present 

experiment, there is no need to account for the refraction of light since the 

pure magnification of the real dimensions will be the same for all the images 

and will be accounted for when calculating the scaling factor in the GeoPIV 

analysis to transform from image-space (pixels) to object-space dimensions 

(mm or cm).  
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Chapter 5 : Experimental Study 

In the previous chapter the experimental apparatus and the 

experimental procedure to study the evolution of slopes due to progressive 

retreat has been described in detail. This chapter reports on the experiments 

that have been carried out for this aim. Twenty-eight main experiments have 

been carried out in total; applying different rainfall intensities, using different 

bottom surfaces for the failed material to slide on, removing manually the 

failed debris and also testing slopes with different initial slope inclinations.  

A calibration box has also been designed and one dimension tests 

were conducted prior to the main experiments and are reported in this 

Chapter. The aim of these 1D tests was to verify that the slope models were 

homogeneous and to measure the moisture content using not only the 

sensors but also the traditional oven-dry method. Moreover, some other 

techniques were used to verify the validity of the tests and are described in 

this chapter.  

Finally, the experimental analysis is presented together with the main 

conclusions of this study. The deformations of the slope were estimated 

through GeoPIV analysis during the tests and the experimental results are 

reported and discussed in this chapter.  
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5.1. Preliminary one dimensional tests  

To gather an initial feel of the water movement inside the soil, a 

calibration box was designed and tests were carried out prior to the model 

tests in order to obtain the infiltration rate of the soil. For this, a soil model 

100.00*100.00*160.00 mm (L : W : H, inner dimensions) was created, in the 

manner outlined in paragraph 3.2.3. The calibration box was placed within the 

testing flume and then the model was constructed in it (Figure 5.1).  

To conduct the oven-dry test to measure moisture content, a mesh of 

holes was drilled on one side of the calibration box, in order to take the 

samples through them (Figure 5.1a). Four thin metal stripes were placed to 

block the holes and were removed each time that a sample needed to be 

taken. Clear Rimmed Test Tubes (83.00*11.00mm) were used to take 

samples at four different depths at four times during the test (Figure 5.1b). 

Samples were taken at 1.00cm, 4.00cm, 7.00cm and 10.00cm from the slope 

top and at a: 10 minutes, b: 40 minutes, c: 100 minutes and d: 160 minutes 

after the beginning of the test. The rainfall intensity during these calibration 

tests was approximately 16mm/hr.  

 

 

Figure 5.1. Calibration box and sample extraction 

a b 
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All tests were carried out into two stages stages to minimise possible 

3D effects. Samples being extracted from two columns for each sub-test (e.g. 

samples from holes: a1, c2, a3, c4), to achieve minimum disturbance to the 

sample inside the calibration box and not affect the infiltration rate of the water 

inside the slope model. A new model was then created and the procedure was 

repeated to extract the samples from the other two columns.   

 

  Table 5.1. Water content during calibration box test 
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before 
oven  

after 
oven     (mw/ms)     

time: 10min       
 

       

A1 2.13 5.93 5.41 0.54 3.26 0.159 1.478 0.245 

A2 2.15 6.11 5.56 0.56 3.40 0.161 1.478 0.243 

A3 2.15 6.24 5.66 0.58 3.51 0.165 1.478 0.244 

A4 2.2 7.16 6.44 0.72 4.24 0.170 1.478 0.251 

time: 40min                 

B1 2.14 5.92 5.39 0.54 3.24 0.163 1.478 0.246 

B2 2.14 6.55 5.92 0.64 3.77 0.167 1.478 0.251 

B3 2.17 6.13 5.54 0.59 3.37 0.175 1.478 0.259 

B4 2.16 6.47 5.79 0.68 3.63 0.187 1.478 0.277 

time: 
100min                 

C1 2.13 5.41 4.94 0.47 2.81 0.167 1.478 0.247 

C2 2.13 6.45 5.82 0.63 3.69 0.171 1.478 0.252 

C3 2.19 6.51 5.84 0.67 3.65 0.184 1.478 0.271 

C4 2.16 6.85 6.07 0.78 3.91 0.199 1.478 0.295 

time: 
160min                 

D1 2.12 5.89 5.35 0.54 3.23 0.167 1.478 0.247 

D2 2.11 6.41 5.78 0.63 3.67 0.172 1.478 0.254 

D3 2.17 6.43 5.76 0.67 3.59 0.187 1.478 0.276 

D4 2.19 6.29 5.57 0.72 3.38 0.213 1.478 0.315 
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All the samples that were extracted from the calibration box were then 

weighted and placed in the oven at 100°C for 48 hours. After that, the soil and 

the containers were left to cool and their mass was measured again to 

calculate the dry mass of the sample and the soil gravimetric water content. 

Since the characteristics of the soil are known the gravimetric water content 

can be transformed into volumetric water content by using the dry unit weight 

of the mixture: γd=14.5kN/m3. All the results are presented in Table 5.1. The 

gravimetric water content is illustrated in Figure 5.2. It is seen that the 

moisture content is higher in greater depth and this can be due to the 

infiltration rate inside the slope being higher that the wetting rate (rainfall 

intensity). 

 

 

Figure 5.2. Gravimetric water content from oven-dry test during the calibration 

box test  

 

Apart from the samples, three Vegetronix VH400 were buried inside 

the model at different depths to measure the moisture content. In Figure 5.3, 

the results in terms of volumetric water content as obtained from the 
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Vegetronix VH400 soil moisture sensors are illustrated, with MS0, MS1, MS2 

being at depths 5.00cm, 8.00cm and 11.00cm from the slope top respectively. 

The results obtained during the calibration test by the oven dry method and 

those from the soil moisture sensors’ readings showed good agreement.  

 

 

Figure 5.3. Volumetric water content from sensors readings during the 

calibration box test 

 

5.2. Other verification techniques 

In most tests, soil moisture sensors were buried inside the slope model 

(Table 5.2) during the construction phase, so as to cause the least possible 

disturbance to the soil. However, tests without the soil moisture sensors were 

also carried out to verify that the existence of the moisture sensors inside the 

slope model did not cause any difference to the behaviour of the model and to 

the location of the failure mechanisms and the failure surface that developed.  

Moreover, since the aim was to capture the propagation of the wetting 

and thus the weathering front, red dye was used to make it possible to capture 
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the wetting front by the use of image analysis. A Matlab code was developed 

to capture the movement of the red part in the series of frames extracted from 

the videos. Frames were extracted every second and results from the Matlab 

image analysis are shown in Figure 5.4 at three different times during rainfall 

infiltration, showing that the red water - water front - is moving homogeneously 

across the length of the slope (blue lines are almost horizontal). Moreover, the 

height of the wet part of the slope can be calculated at each point. Thus the 

infiltration rate at any time can be also calculated. 

The initial idea was to use the red dye to gather an extra measurement 

of the velocity of the wetting front inside the slope model and to verify whether 

water infiltrates uniformly inside the slope. The wetting - infiltration front is also 

monitored by soil moisture sensors. A change in the reading of the moisture 

sensors implies that the wetting front has reached the location of the sensors. 

However, calibration test and comparison between the location of the red dye 

from the image analysis and the sensors’ readings showed that the red dye 

front is not moving at the same velocity as the wetting front. A hysteresis 

between the wetting front and the front of the red dye was observed, owing 

possibly to the size of the dye particles being filtered by the soil particles. 

Nevertheless, the red dye is still useful as it can be used as a way to verify the 

homogeneity of the wetting front downward the slope, since it was not possible 

to calculate the hysteresis, which changes with the saturation degree of the 

soil. 
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Figure 5.4. a. Sequence of photographs showing the advancing wet dye front 

and b. vertical slice of the model during the test showing uniform movement of 

water also inside the model 

 

Finally, experiments were carried out to test the correctness of the 

apparatus and the repeatability of the experiments. With regard to 

repeatability, identical tests (slopes with the exact same geometry, material, 

construction procedure and rainfall intensity) were carried out with the slopes 

exhibiting very similar failure mechanisms occurring at the same time after the 

initiation of the rainfall. Also slopes of two different heights (with a ratio of 1.5-

2.5 between the two) were tested under the same rainfall intensity. 

t1 t3 t2 



Chapter 5: Experimental study 

 

126 
 

In Figure 5.5 and Figure 5.6 the location and the time of failure (first) 

against rainfall intensity is illustrated respectively for all tests that have been 

carried out with vertical initial profile and height H=15.00cm. The location of 

the failure is measured as the distance from the slope crest to the failure line. 

It is seen that for the same rainfall intensity the location and the time at which 

the failure occurs do not present significant differences, thus validating the 

repeatability of the experimental procedure.  

 

 

Figure 5.5. Location of the failure vs. rainfall intensity 

 

 

Figure 5.6. Time of failure vs. rainfall intensity 
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Finally, Figure 5.7 illustrates the time at which the readings of SM300 

soil moisture sensor m1 (buried 4.00cm from slope top) started changing. 

From this plot, the mean infiltration rate for different rainfall intensities can be 

calculated.   

 

 

Figure 5.7.Time when water front reaches moisture sensor m1 vs. rainfall 

intensity 

 

5.3. GeoPIV analysis 

In Paragraph 4.2.5, it has already been mentioned, that a Matlab 

module based on PIV principles and suited to geotechnical testing, called 

GeoPIV will be employed in the analysis of the experiments. Frames from the 

videos that were recorded during the tests were extracted at a frame rate of 25 

frames per second and were analysed to measure the soil displacements.  

To run the GeoPIV analysis and avoid misleading or incorrect 

displacement data, suitable input variables for the module should be chosen 

(White and Take, 2002). On the other hand, the computation time should also 

be considered, when for example setting the search range over which GeoPIV 
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searches for a displaced patch. More specifically, a search zone set too small 

or a frame rate set too low leads to wild displacement vectors appearing in the 

results while if set too large it will lead to an impractically long computation 

time, on the other hand if the patch size is set too large then displacement 

resolution is lost while if set too small it can lead to wild vectors. Generally, the 

user needs to manually examine typical pairs of images and pick the input 

values. More details on how to choose the most appropriate input variables for 

the GeoPIV launcher file can be found in (White and Take, 2002). For this 

work, some analyses have been carried out using different input variables; 

e.g. different patch sizes (Figure 5.8), to see which ones can capture better 

the deformations of the soil and follow the failure mechanism, and select the 

values used for the analysis of the experiments. After several trials, the patch 

size and mesh spacing used for all the experiments presented in this thesis 

was chosen to be 24 pixels. 

Once the GeoPIV analysis has been carried out, some post processing 

of the data needs to take place. An additional analysis is carried out for the 

markers that are placed on the container which remains static during the test 

to account for the camera-ground shake (noise) which should be removed 

from the data to obtain valid results. In Figure 5.9, the identified displacement 

of a marker versus time for the whole duration of an experiment is illustrated to 

show that no significant movement was captured during the test. This was 

expected as there were not people walking around the laboratory during the 

test, nor was there the disturbance due to the camera shutter since there was 

video recording and for this reason it was not considered necessary to remove 

it from the GeoPIV analysis results for the deformation of the slope.  
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Figure 5.8. Different patch size used in the analysis 

 

Moreover, once the results from the analysis are obtained, suitable 

scaling factor should be used to convert image-space (PIV) measurements 

into object-space values, that means to say that coordinates in terms of pixels 

in the image are converted to coordinates in the observed soil. Here, the 

image-space to object-space conversion process was carried out by assuming 

a constant image scale. 
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Figure 5.9. Identified noise during the test 

 

5.4. Experiments and Results 

The initial aim of these experiments was to build a model test able to 

simulate weathering and compare the results with the analytical model. The 

idea was to use lightly rainfall to decrease the mechanical properties of the 

soil material. However, the procedure is more complicated since there is also 

the increase of the soil weight due to the water infiltration that changes the 

behavior of the soil. For this reason, it was decided to investigate other 

aspects of the slope behavior subject to successive failures, with the triggering 

factor being the water infiltration. Different patterns were used to investigate:  
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• the influence of rainfall intensity on slope evolution (for low rainfall 

intensity the experiment can simulate a weathering procedure),  

• the effect of the flume bottom surface on the debris propagation and as 

a result on the slope evolution and  

• the effect of the debris itself that was manually removed in some 

experiments just after failure occurred.  

The experimental procedure is designed and described in Chapter 3, 

and twenty-eight tests have been carried out. In Table 5.2, the main 

characteristics of these tests are summarised.  

The general characteristics of the slope model are shown in  

 

Table 5.3 for a typical vertical slope 15.00cm high. In some cases, different 

heights were used during the experiments as shown in the Table. A drawing 

illustrating the locations of the sensors is illustrated in Figure 5.10. In what 

follows a description of the experimental technique used in each case together 

with the findings from the experiments are presented. The model slope is 

heavily instrumented to quantitatively capture the pore water pressure, soil 

moisture and deformations during the test.  

In what follows the main aspects of the observations made during the 

tests is presented. Fourteen of the experiments are selected and analysed in 

detail in this Chapter. 
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Table 5.2. Tests characteristics 

   Rainfall 
intensity (mm/h) 

Sensors Soil 
bottom 

Soil 
removal 

1 S90_H15_L35_1 55 ✓   

2 S90_H15_L35_2 60 ✓   

3 S90_H15_L35_3 16 ✓   

4 S90_H15_L35_4 20    

5 S90_H15_L35_5 16 ✓   

6 S90_H15_L35_6 10 ✓   

7 S90_H15_L35_7 16 ✓   

8 S90_H15_L35_8 16    

9 S90_H15_L35_9 10 ✓   

10 S90_H15_L35_10 10    

11 S90_H15_L35_11 16 ✓   

12 S90_H15_L35_12 60 ✓  ✓ 

13 S90_H15_L35_13 60 ✓  ✓ 

14 S90_H15_L35_14 45 ✓  ✓ 

15 S90_H15_L35_15 10 ✓   

16 S90_H15_L35_16 45 ✓   

17 S90_H15_L35_17 30 ✓   

18 S90_H15_L35_18 10  ✓  

19 S90_H15_L35_19 20  ✓  

20 S90_H25_L35_20 16 ✓   

21 S90_H25_L35_21 30 ✓   

22 S90_H10_L35_22 16 ✓   

23 S60_H15_L35_23 10 ✓   

24 S60_H15_L35_24 30 ✓   

25 S60_H25_L35_25 30 ✓   

26 S60_H15_L35_26 16 ✓   

27 S45_H15_L35_27 16 ✓   

28 S45_H15_L35_28 60 ✓   
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Table 5.3. Model and soil characteristics 

Characteristic Symbol Type Value 

Glass beads Wb 

 

43.5% 

Calcarenite Wc 

 

43.5% 

Water Ww 

 

13.0% 

Number of layers  

  

15 

Layer Width (cm)  

Length (cm)  

Height (cm) 

  

10.00 

10.00 

1.00 

Weight of layer (g) 

  

170 

Weight of soil model (g) WT 
 

10710 

Volume of soil sample (cm3) VT 
 

6300 

Glass beads specific gravity γb 
 

1.75 

Calcarenite specific gravity γc 
 

2.73 

Mixture specific gravity γm 
 

2.24 

Water density (g/cm3) ρw 
 

1.0 

Water specific weight (kN/m3) γw 
 

9.81 

Dry weight of soil (g) Ws 
 

9313.04 

Weight of water (g) Ww =WT-Ws 1396.96 

Volume of water (g) Vw =Ww/γw 1396.96 

Volume of soil (cm3) Vs =Ws/γs 745.435 

Volume of voids (cm3) Vv =VT-(Vs+Vw) 561.98 

Void ratio e =(Vw+Vv)/Vs 0.515 

Degree of saturation S =Vw/(Vw+VV) 65.21% 

Total density (g/cm3) ρT =WT/VT 1.700 

Total unit weight (kN/m3) γT 
 

16.672 

Dry density (g/cm3) ρd =Ws/VT 1.478 

Dry unit weight (kN/m3) γd 
 

14.497 

Saturated density (g/cm3) ρsat =WT/VT (S=1) 2.040 

Saturated unit weight γsat 
 

20.007 

Gravimetric water content w =Ww/Ws 15.00% 

Volumetric water content 
 

=Vw/VT  (w*γd/g) 22.17% 

Gravimetric water content at 
saturation w =Ww(sat)/Ws 34.01% 

Volumetric water content at 
saturation 

 
=w*γd/g 44.01% 
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SM0-SM5: vegetronix moisture sensors, m1-m2: SM300  

moisture sensors,  t1,t2: tensiometers 

 

Figure 5.10. Experimental apparatus a. front view, b. plan view, c. location of 

soil moisture sensors & tensiometers (all dimensions are in cm) 

a. 

b. 

c. 

SM0 

SM1 

SM2 

SM3 

SM4 

SM5 

t1 

 

t2 

m1 

 

m2 

 

35cm 

15cm 
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All the experiments presented in this thesis were performed on planar 

slopes for sake of simplicity during the construction phase. Most of the 

experiments were performed on vertical profiles, however slope inclinations 

β=60˚ and β=45˚ were also tested. 

5.5. Slope behaviour under different rainfall intensities 

From the observation of the slope model behaviour during the tests 

described above, it can be stated that the setting was successful in inducing 

successive failure in the slope and the formation of cracks. Matlab image 

processing of the videos from both sides of the flume, suggested that the 

wetting front moves homogeneously inside the slope model.  

In this part, two experiments of the same geometry and soil 

characteristics but under different rainfall intensities are presented and 

analysed. More specifically, experiments S90_H15_L35_3 and 

S90_H15_L35_2 being subject to a rainfall of Ir=16mm/h and Ir=60mm/h 

respectively. 

In all the experiments, after the onset of rainfall, the moisture content 

starts to increase over time towards a saturated value due to the ingress of 

water. Increase of the moisture content leads to a decrease of the slope 

material strength as well as to an increase of the weight of the soil mass, 

causing initial deformation to the soil that will lead the soil mass to slide away.  

After a short period of rainfall, vertical cracks start to form in the upper 

part of the slope model (Figure 5.11) with vertical deformations near the crack 

progressively increasing. When the shear band developing from the slope toe 

joins the vertical crack, failure occurs (Utili, 2013) and a soil wedge slides 

away. After some time, the constant rainfall induced by the nozzles cause 

further degradation to the soil strength and additional water weight due to 
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water infiltration and further deformations are observed until a second failure 

occurs (in the case of heavy rainfall scenarios).  

 

a.     b.   

Figure 5.11. a. Vertical crack in the upper part of the slope and b. initiation of 

failure 

 

The time histories of the volumetric water contents at the location of 

the sensors can be obtained from the soil moisture sensors’ readings. 

Generally, three different phases can be observed (Figure 5.12), the first one 

featured by constant moisture readings when the water has not yet reached 

the point in question, the second one, featured by a significant increase of the 

volumetric water content due to the ingress of the wetting front and the third 

one when a steady moisture level is reached (Figure 5.12). 

In case of light rainfall events, slopes exhibit only minor deformations 

until a first failure takes place but no second failure occurs. On the other hand, 

during heavy rainfall events, after the first failure larger displacements 

occurred to the slopes which progressively increased with time, as shown in 

Figure 5.26, until a global failure takes place and following the same pattern 

after some time of constant rainfall a second smaller failure took place. 
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Figure 5.12. Time history of water content during test S90_H15_L35_3 

 

It was observed that at low rainfall intensities failure takes place much 

later and once the water front reached the toe of the slope, leading to the 

conclusion that the failure was caused due to the degradation of the slope 

material due to the ingress of water and then no second failure was observed. 

However, for intense rainfall scenarios, e.g. Ir=60mm/h, the first failure takes 

place after a few minutes of constant rainfall leading to the conclusion that in 

this case the failure occurred mainly due to the rapid increase of the weight of 

the soil mass. Also, vertical cracks were clearly noted on the slope crest 

causing the failure to occur sooner.  

5.5.1. First failure 

Ir=16mm/h 

For rainfall intensity Ir=16mm/h during experiment S90_H15_L35_3 

and at about t16=30min from rainfall initiation, surface cracks perpendicular to 

the slope started to form at the top of the slope, and small-scale deformation 

started to occur, until the first failure took place. As shown in Figure 5.13, the 

arrival of the water at the location of tensiomerer t1 (4.00cm from the slope 
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top) at time approximately t16=30min starts destroying a portion of the soil 

suction very rapidly at the shallow location of t1 and then it becomes 

asymptotic to a small negative value, while at the deeper location of t2 the 

value decreases once the moisture content starts to increase and diminishes 

to zero once the soil moisture reaches almost saturation value. Readings from 

the tensiometers cannot be taken into consideration to represent the real 

value of the suction in the soil, as the initial suction in the soil was not more 

than u=1.00kPa when the accuracy of the sensor is ±0.5 kPa, however the 

trend to decrease as the moisture content increases is clear.  

 

 

Figure 5.13.Soil suction during test S90_H15_L35_3 

 

At approximately t1
16=41min after the test initiation, the water front has 

progressed toward to slope toe and the slope mass is observed to accelerate. 

Using GeoPIV module, successive digital images extracted from the video 

captured during the tests are compared to determine the displacements of 

thousand patches where the failure is likely to take place by tracking the soil 

texture.  
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The cumulative pre-failure displacements from the beginning of the test 

until the onset of failure are plotted in Figure 5.14, in both x and y directions 

for a soil element on the slope crest (see Figure 5.17). For a better 

understanding of the displacements that are developed within the slope 

model, the incremental horizontal and vertical displacement contours are 

plotted in Figure 5.15 for one second before the onset of the first failure event.  

 

 

Figure 5.14. Accumulated soil element displacements before the onset of the 

first failure for a point on the slope crest (test: S90_H15_L35_3) 

 

It is seen that just after the initiation of the test and as the water 

infiltrates in the slope small movements are recorded on the slope crest. As 

the water moves further inside the slope soil consolidation deduced by the 

observed small vertical displacements, becomes more significant with time 
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and then failure is reached. The observed pre-failure displacements are a 

warning for the onset of a failure. It must be noted however, that no significant 

crack was observed before the failure for this rainfall intensity. 

The spatial distribution of displacement vectors is illustrated in Figure 

5.16, at a second before the onset of the failure. The region of instability 

observed during the first failure is clearly identified. As can be seen, at the 

onset of failure, displacements are predominantly vertical. In the next second 

a rotational failure mechanism occurs (Figure 5.17b) and the affected region of 

soil accelerates towards the toe, leading to a debris run-out shown by the two 

digital images in Figure 5.17b. Then the slope mass is observed to 

progressively decelerate. In Figure 5.17b a clear brittle failure mechanism is 

observed.  

Rainfall carries on for another 100 minutes; small deformations are 

observed but no further failure, with the failed debris sliding slowly downward 

the slope. Investigating propagation of the debris is not within the scope of this 

thesis, however, it was observed that for low rainfall intensities the debris 

moved at slower velocities and the failed mass did not propagate to the same 

distance as in the case of heavy rainfall intensities creating shorter run out, 

explaining to some extent the occurrence of a second failure during heavy 

rainfall scenarios. 
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Figure 5.15. Incremental a. horizontal and b. vertical displacement contours at 

the initiation of the first failure event (test S90_H15_L35_3) 
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Figure 5.16. Observed displacement vectors at the initiation of the first failure 

event for test S90_H15_L35_3 

 

 

a.      b.  

Figure 5.17. Digital images a. before and b. after the first failure during test 

S90_H15_L35_3 

 

Ir=45mm/h 

For a higher rainfall intensity Ir=45mm/h during experiment 

S90_H15_L35_16 and much sooner than for the case of Ir=16mm/h at about 

t145=16min from rainfall initiation, a failure takes place. At about 5min from the 

Soil element plotted in Figure 5.14 
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start of rainfall, vertical cracks started to form from the slope top (Figure 

5.18a). Small deformation could be observed, until the first failure took place. 

 

a.     b.  

Figure 5.18. Digital images a. before and b. after the first failure during test 

S90_H15_L35_16 

 

The spatial distribution of displacement vectors, at the initiation of the 

failure is illustrated in Figure 5.19a, for a timespan of one second before the 

onset of the failure. The region of instability observed during the first failure is 

clearly defined. Vectors are also plotted on top of the digital image of the slope 

model illustrate the affected region that will eventually slide away (Figure 

5.19b). The vectors appear to be larger for this higher rainfall intensity than the 

previous one (Ir=16mm/h) in terms of size and again they are predominantly 

vertical. There is however a strong horizontal component at the top of the 

slope which disappears towards the slope toe. 
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Figure 5.19. Observed displacement vectors before the first failure event for 

test S90_H15_L35_16 

 

 

a. 

b. 

Soil element plotted in Figure 5.20 
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Figure 5.20. Accumulated soil element displacements before the onset of the 

first failure for a point on the slope crest (test: S90_H15_L35_16) 

 

A more clear picture is given in Figure 5.20, where the accumulated 

soil element displacements for an element on the slope top (see Figure 5.19) 

before the failure are plotted in the horizontal and vertical direction. The 

cumulative pre-failure displacements show that the pre-failure displacements 

were much larger than before, even in the horizontal direction warning that an 

event is about to happen. Once the first failure took place, further 

deformations occurred at the slope mass as the failed material slides away 

and a second failure is observed which is described in detail in the next 

paragraph. 
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Ir=60mm/h 

For the event of heavy rainfall intensity of Ir=60mm/h during experiment 

S90_H15_L35_2, vertical cracks made their appearance on the slope crest 

much earlier than in the cases described above, at about t60=2min from the 

start of rainfall and are shown in Figure 5.21. Just a few seconds after the 

appearance of the cracks a sudden failure takes place. The wedge of soil that 

failed, slides away fast creating a low angle run-out within few seconds from 

the onset of the failure (Figure 5.27e). No changes in the soil moisture sensors 

readings were recorded until the occurrence of the first failure. Since the first 

sensor was buried 4.00cm from the slope crest and the first failure took place 

just 2min after the initiation of the rainfall, there was not enough time for the 

water to infiltrate to this depth. 

 

 

 

 

 

Figure 5.21. Crack forming in the slope during test S90_H15_L35_2 

 

Soil element plotted in Figure 5.23b. 

 

Figure 5.23a 

Soil element plotted in Figure 5.23b. 

 

Figure 5.23b 
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The spatial distribution of the displacement vectors is illustrated in 

Figure 5.22. The region of instability during the first failure is defined by the 

vectors, which are predominantly vertical, with maximum vectors magnitude 

appearing at the crest of the slope. It was observed that higher rainfall 

intensities lead much faster the slope to failure and the velocity of the mass 

that slides away at failure is higher.  

Figure 5.23 shows the accumulated horizontal and vertical 

displacements of two typical points (see Figure 5.21) of the slope during the 

test before failure is reached. In Figure 5.23a the cumulative displacement of a 

point at the slope top is illustrated showing the increase of the displacement in 

time, while in Figure 5.23b no significant movement at the bottom of the slope 

is recorded. It is obvious that the crest goes through significant deformation 

due to the infiltration of water, while no apparent movement is recorded inside 

the slope.  

 

 

Figure 5.22. Observed displacement vectors before the first failure event for 

test S90_H15_L35_2 
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a.  

b.  

Figure 5.23. Accumulated soil element displacements before the onset of the 

first failure for a point a. on the slope top and b. at the slope bottom (test: 

S90_H15_L35_2) 
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5.5.2. Second failure 

As stated before, a second or any successive failure occurred only for 

slopes under heavy rainfalls. Although the slope model experienced further 

deformations after the first failure, a second failure has not been triggered in 

every case. The non-appearance of a second event however, in certain 

circumstances does not mean that the event will never occur under any 

circumstance, e.g. bigger duration of rainfall. Therefore, the conventional 

understanding of successive failure triggering factors should not be dismissed 

on the evidence of only a few laboratory tests. Furthermore, there are also 

factors arising out of small scale testing that may indeed have influenced 

against the occurrence of a second failure, e.g. different stresses developed 

during the tests than in real conditions etc. 

Ir=45mm/h 

After the first failure and as the nozzles continue to produce constant 

rainfall Ir=45mm/h during experiment S90_H15_L35_16, a second failure 

occurs at t245= 25min. The occurrence of the failure was not as clear as the 

first one, where an almost rigid body of soil was observed to slide away. 

Therefore, it was not possible to capture the displacement vectors just before 

the occurrence of the failure. However, the spatial distribution of the 

displacement vectors during the failure is shown in Figure 5.24 to illustrate the 

affected region that slides away during the second failure.  

When compared to the region of soil that slides away during the first 

failure for the same test, it is clear that the region during the second failure is 

significantly smaller. Moreover, the velocity of the sliding mass during the 

second failure is lower than that of the first failure.  
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Figure 5.24. Observed displacement vectors during the second failure event 

for test S90_H15_L35_16 

 

It can be observed that this second failure (see Figure 5.25b) does not 

go through the slope toe as it happens for the first failure, but through a point 

much higher. In fact, the point through which the second failure passes, is the 

intersection of the slope with the failed debris from the first failure (Figure 

5.25a). In Figure 5.25, a sequence of the digital images extracted from the 

video is presented, showing the slope before and during the second failure 

with the displacement vectors as calculated by GeoPIV. The evolution of the 

slope and the mass of soil that slides away during the second failure is 

illustrated. 
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Figure 5.25. Digital images showing the evolution of second failure during test 

S90_H15_L35_16 

 

Ir=60mm/h 

As rainfall continues during the experiment S90_H15_L35_2, and as 

the failed debris slides away (Figure 5.27e) further deformations are observed 

in the slope until a second failure is reached. The observed mechanism for the 

occurrence of the second failure is similar to that for Ir=45mm/h. The 

displacement vectors during the second failure are illustrated in Figure 5.26, 

defining the region of soil that slides away.  

a. 

b. 

c. 

Slumped debris 

from first failure  
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Figure 5.26. Observed displacement vectors during the second failure event 

for test S90_H15_L35_2 

 

As for the case of Ir=45mm/h, the region of soil that is affected and 

slides away is significantly smaller than that during the first failure and also the 

failure event takes place at a lower velocity. It is interesting to observe that as 

expected the second failure does not pass through the slope toe and passes 

again through the intersection between the slope and soil mass that has failed 

previously and is deposited downhill the slope (Figure 5.27f). After the second 

failure and due to further rainfall infiltration more deformations occurred until 

flow of the upper part of the soil was observed (Figure 5.27h) due to the 

increase of the water content and the material flows downhill. Then the 

nozzles were turned off and the experiment ended.  
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Figure 5.27. Digital images showing the slope profile during test 

S90_H15_L35_2, observation of two slides and then flow occurs in the model 

 

All visible cracks that appeared during the tests on the slope model 

were almost vertical and led to slope failure a few minutes after their 

a. b. 

g. 

e. 

c. d. 

f. 

h. 

Soil element plotted in Figure 5.28 
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formation. In Figure 5.27, digital images showing the slope face during the test 

S90_H15_L35_2 can be seen. The first failure took place with an amount of 

soil moving mainly downwards at the onset of the failure and then horizontally 

away from the rest of the slope. Then after a second failure occurred, a third 

failure was not observed in the form of rigid body slide, however soil was 

flowing downwards the slope (Figure 5.27h). 

The evolution of the velocity of the sliding mass for the three different 

failure events recorded for test S90_H15_L35_2 is illustrated in Figure 5.28. 

For the sake of comparison, the velocity is estimated from GeoPIV results for 

soil elements on the top of the slope as shown in Figure 5.27b.  

 

 

Figure 5.28. Velocity of sliding masses during test S90_H15_L35_2 

 

It is observed that the first and the second failure are discrete events. 

For failures one and two a peak velocity is reached and then the mass of soil 

that failed slows down. More specifically, while before the first and the second 

failure small displacements were observed in the slope before the failure until 

at some point the mass of soil suddenly slides downwards the slope, during 

the third event it was not easy to distinguish between the small deformations 
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and the actual failure. However, for the third failure an almost constant velocity 

is developed, since no clear rigid body is observed to slide away. The peak 

velocity is higher during the first failure event. 

5.5.3. General observations 

The aim of the described set of experiments was to investigate the 

slope behaviour under different rainfall intensities. From the observed 

displacements vectors at different rainfall intensities and according to the 

image-based measurements seen in Figure 5.16, Figure 5.19 and Figure 5.22, 

it can be concluded that the displacement of the slope increased with 

increasing rainfall amount and decreased from the surface to the interior of the 

slope as a whole.  

The deformation was mainly concentrated near the surface of the slope 

at the beginning of each test, as it mainly depends on the rainfall infiltration. 

This is also apparent in Figure 5.23, where the accumulated soil displacement 

is plotted for two patches until the onset of the first failure and when the water 

has not yet infiltrated deep inside the model. Although the displacements of 

the element on the slope top are significant, both in the vertical but also in the 

horizontal direction (Figure 5.23a), no movement is recorded for the soil 

element on the slope bottom (Figure 5.23b). By observing the water infiltration 

behaviour one can predict in principal the deformation behaviour of the slope, 

since there seems to be a close relationship. 

When a second failure was observed, for the cases of higher rainfall 

intensities, it was seen that the soil mass that slides away during the second 

failure is significantly smaller than that of the first failure. In Figure 5.29, the 

areas of each failure are plotted for every experiment, where a successive 

failure was observed, normalised to the area of the first failure.  
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Figure 5.29. Sliding area of each failure normalised to the area of the first 

failure 

 

5.6. Effect of flume bottom on the evolution of the slope 

Another aspect that was investigated was the effect of the material at 

the bottom of the container on the sliding behaviour of the failed mass and 

thus on slope evolution. Two different surfaces were examined to explore the 

difference on debris propagation and its effect on slope evolution: in one case 

the bottom of the container was Plexiglas (Figure 5.30a), leaving the material 

to slide freely on it, while in the other case soil particles were glued on the 

bottom of the flume to mimic sliding on the same type of material as the one 

making the slope (Figure 5.30b).  
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 a.                                         b. 

 

Figure 5.30. Container bottom made of a. Plexiglas and b. Soil particles layer 

 

Experimental results of two sets of experiments under the same rainfall 

intensity are presented in this part. The experimental results presented below 

concern comparisons between S90_H15_L35_6 and S90_H15_L35_18 with a 

steady rainfall intensity of Ir=10mm/h applied on the slope and 

S90_H15_L35_4 with S90_H15_L35_19 with a steady rainfall intensity of 

Ir=20mm/h (see Table 5.2).  

In the first batch of experiments, the slope material that failed, was left 

to slide on the Plexiglas bottom of the container (see Figure 5.30a), while for 

the next batch, a thin layer (1.00-1.50mm) of soil particles was glued to the 

floor of the container (see Figure 5.30b) to create friction and to inhibit direct 

sliding of the slope base along the soil - container interface.  

In Figure 5.31 and Figure 5.32, the final profile of the  slope for the 

case of Plexiglas bottom and for soil particles glued on the bottom is illustrated 

for of Ir=10mm/h and Ir=20mm/h respectively. The failure mechanisms that 

were develop for both cases, were similar and occurred at the same time after 

the start of rainfall. In no case a second failure was observed, since the rainfall 
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intensity was kept low, however the debris propagation is different for different 

bottom surfaces. 

In Figure 5.31a and Figure 5.32a the slope profile for Plexiglas bottom 

after a certain time of rainfall is illustrated, while in Figure 5.31b and Figure 

5.32b the slope profile for soil particles glued in the bottom of the container. It 

can be seen that when soil particles are glued on the bottom of the container, 

the friction that is developed between the failed mass and the bottom does not 

allow the debris to propagate as much as in the case that the bottom is made 

of Plexiglas. Especially for the case of Ir=20mm/h and when soil particles are 

glued on the bottom, the friction developed between the failed mass and the 

container bottom does not let the failed mass to slide and a few minutes after 

the failure, toppling was observed (Figure 5.32b). 

 



Chapter 5: Experimental study 

 

159 
 

 

 

Figure 5.31. Slope profile at t=105min from the initiation of rainfall for 

Ir=10mm/h and after the occurrence of one failure for a. Plexiglas bottom (test: 

S90_H15_L35_6) b. soil particles glued on the bottom of the container (test: 

S90_H15_L35_18) 

 

The aim of this comparison was to investigate the effect of the material 

on which the debris slides on the debris propagation. It was shown, that the 

friction between the bottom material and the failed mass affects the debris 

propagation. More specifically, once the friction is higher the debris 

propagates less and as a result the failed mass acts as a stabilising force on 

the rest of the slope. In the next paragraph the stabilising effect of the failed 

mass is studied.  

            

 a. 

 b. 
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Figure 5.32. Slope profile at t=40min from the initiation of rainfall for Ir=20mm/h 

and after the occurrence of one failure for a. Plexiglas bottom (test: 

S90_H15_L35_4) b. soil particles glued on the bottom of the container (test: 

S90_H15_L35_19) 

 

5.7. Stabilising effect of the failed mass 

In this part, the stabilizing effect of the slumped debris on slope stability 

is examined. To this end, slope models were built in the transparent flume and 

were subjected to heavy rainfall. Two different cases are presented here; in 

one case debris is manually removed after the occurrence of each, while in 

the other one, debris is allowed to accumulate at the slope toe.  

Experimental results of two sets of experiments under the same rainfall 

intensity are presented. The experiments presented below are 

 a. 

 b. 
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S90_H15_L35_14 and S90_H15_L35_16 (see Table 5.2). A steady rainfall 

intensity of Ir=45mm/h was applied on the slopes. In the first batch of 

experiments the debris accumulating at the slope toe after each failure is 

manually removed to mimic the effect of strong atmospheric agents or fluvial 

or marine erosion that remove all the debris before a new landslide develops. 

The debris is carefully removed just after a landslide has occurred using a 

scoop, following the line of the failure mechanism (Figure 5.33), in order to 

avoid any changes to the new slope profile. 

 

a.          b.                c. 

 

Figure 5.33. Removal of slumped debris after the occurrence of each failure 

(test: S90_H15_L35_14) 

 

In Figure 5.34 and Figure 5.35, the evolution of the slope is illustrated 

for the case that debris is removed from the toe and where debris is left in situ 

respectively. Figure 5.34b and Figure 5.35b show the slope during the first 

failure that occurred approximately 16 minutes after the rainfall started. In 

Figure 5.34c and Figure 5.35c the second failure is plotted. In the case of the 

removed debris from the slope toe (Figure 5.34c), the second failure takes 

place earlier at t2=22min than in the case of debris left at the slope toe (Figure 

5.35c) where the second failure occurs at t2΄=25min. Moreover, the wedge 

coming off the slope face is larger with the failure mechanism being deeper in 

case of removed debris (see Figure 5.34c and Figure 5.35c). Also note that at 
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the onset of the second failure the position of the waterfront is shallower in the 

case of removed debris than the position in the case of debris left in situ, 

because it occurs much before the second failure in the case of debris left in 

situ allowing less time for water to infiltrate.  

In Figure 5.34d the slope at t3=33min after initiation of rainfall is plotted 

when the third failure takes place in the slope with the debris being removed 

from the toe. Instead, in case of debris left in situ on the slope toe no third 

failure is observed (see Figure 5.35d). The experiment lasted for 45 minutes in 

total until the rainfall was stopped. One more failure took place at t4=44min in 

the case of debris removal, whereas no further failure was observed on the 

slope where the debris was left on the slope toe.  

In Figure 5.36a and Figure 5.36b the slope is photographed after 45 

min for the case of debris removal and debris left in situ respectively. It can be 

observed that when the debris is removed from the slope toe, the slope front 

retreats further inwards since more failures occur for the same rainfall intensity 

and duration. This is in agreement with analytical and numerical models of 

cliffs subject to weathering (Utili and Nova, 2008, Utili and Crosta, 2011a, Utili 

and Crosta, 2011b) where it is shown that the weight of the soil debris 

accumulating on the slope toe contribute to resist subsequent failures and 

decrease the total final inward retreat of the slope.  
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 b. 

 c. 

 d. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.34. Initiation of three 

successive failure when debris is 

removed from the slope toe (test: 

S90_H15_L35_14), a. initial state (t0= 

0 min) b. first failure (t1= 16 min) c. 

second failure (t2=22 min) d. third 

failure (t3= 33min) 

 a. 
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 d. 

 c. 

 b. 

 a. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.35. Initiation of successive 

failure without debris removal (test: 

S90_H15_L35_16) a. initial state (t0’= 

0 min) b. first failure (t1’= 16 min) c. 

second failure (t2’= 25min) d. at the 

end of the test (t3’= 45min) 
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The aim of this part was to investigate progressive rainfall-induced 

slope failures and the stabilizing effect of debris accumulated at the slope toe 

and the following conclusions can be drawn: 

• The results suggested that when the debris that accumulated at the slope 

toe is removed before a new landslide develops; the new failure takes 

place earlier than in the case where the soil remains at the slope toe.  

• It was illustrated that the cliff retreat is faster when the accumulated debris 

is removed and the amount of soil slides away in the case of soil removal 

is larger.  

• The slumped debris contributes to the stability of the slope, acting as a 

stabilizing force. This, if not accounted for, can alter the stability number 

and the failure mechanisms when performing slope stability analyses.  

 

 

 

Figure 5.36. Slope profile at t=45min from the initiation of rainfall after the 

occurrence of a. four failures (debris removal) b. two failures (no debris 

removal) 

a. 

b. 
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5.8. Experimental results for inclined slope front 

The experiments were also extended for cases with no vertical slope 

front. Experiments 23 to 28 (see Table 5.2) have been carried out for an 

inclined initial slope profile with inclinations β=60˚ (23-26) and β=45˚ (27-28). 

For the construction of the slopes with inclined profile, a vertical slope was first 

built following the procedure described in Paragraph 4.2.3 and then the 

abundant material was cut out to achieve the desired slope inclination (Figure 

5.37).  

It was not possible to capture a rotational failure for the inclined slopes 

although the rainfall intensity varied from low Ir=16mm/h to very intense where 

Ir=60mm/h. In the cases of inclined slope, a local failure that occurred near the 

slope toe after some time of constant rainfall was observed, which was larger 

for higher rainfall intensities. However, no global failure occurred in any case. 

The phenomenon is illustrated in Figure 5.38 for slope with initial inclination 

β=60˚ and in Figure 5.39 for slope with initial inclination β=45˚ for all rainfall 

intensities that were tested. 

 

    

Figure 5.37. Construction of inclined slope profile 
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a.      b.  

c.  

Figure 5.38. Local slope failure for initial slope inclination β=60˚ and for rainfall 

intensity a. Ir=10mm/h, b. Ir=16mm/h and c. Ir=30mm/h 

 

a.  

b.  

Figure 5.39. Local slope failure for initial slope inclination β=45˚ and for rainfall 

intensity a. Ir=16mm/h and b. Ir=60mm/h 
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5.10. Conclusions 

In this chapter, the experiments that have been carried out for the 

needs of this thesis together with the main experimental results have been 

illustrated. Slope failure was induced in the slopes by water infiltration under 

different rainfall conditions. From the observation of the slope model’s 

behaviour during the tests described above, it can be stated that this setting 

performs well and satisfies the aim of this research to study the retrogressive 

retreat of the slope, as successive failures with cracks were recorded.  Matlab 

image processing of the digital frames from both sides of the flume, suggested 

that the wetting front was moving homogeneously inside the slope model. 

Failure mechanisms of similar geometries have been observed in all 

vertical slope models, while for inclined slope with β=60˚ and β=45˚ no major 

failure was recorded. Generally, failures that were developed, formed clear 

brittle failure mechanisms.  

The displacement process can be divided into three phases, first one 

where soil displacements are small and gradually increasing, second one 

when the main failure takes place and the displacements are increasing 

rapidly and the final one that failure has taken place and the mass of soil 

slides slowly away. Water infiltration causes mainly vertical deformation in the 

soil rather than horizontal one until the failure was reached.  

Results showed that more intense rainfall events cause greater soil 

displacement and overall larger amounts of soil slides away, while the retreat 

of the cliff moves deeper inside the slope for the same rainfall duration. As for 

the occurrence of successive failures, it was seen that the soil amount that 

slides away during the first failure is larger than during a second one. 
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Moreover, the experiments showed that the material on which the 

debris slides can affect the debris propagation; once the friction is higher the 

debris propagates less and as a result the failed mass acts as a stabilising 

force on the rest of the slope. When the material that slides away was 

manually removed, the cliff retreat proved to be faster and the mass that slides 

away larger.  

However, as in every experimental effort, there are some limitations 

and things that could be enhanced in the future. The size of the experiment 

was kept small and the degree of saturation inside the slope model was high 

at the initiation of the test, thus not allowing large differences in the moisture 

content. Regarding the first issue it will be beneficial to repeat some of the 

tests in a large-scale model or maybe even in a centrifuge to ensure that the 

results are comparable. Moreover, experiments could also be carried out on 

dry slopes to observe larger changes in the moisture content of the soils and 

get a more clear relationship between the moisture content and the 

displacement of the soil. Also, if the slopes are dry at the initiation of the test it 

will be possible to observe the movement of the water front from the images. 
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Chapter 6 : Conclusions 

In this thesis, the analytical upper bound theorem of limit analysis and 

a series of small scale laboratory tests have been employed to investigate the 

stability of slopes under various actions and to study their morphological 

evolution. More specifically, the aim of the thesis is to provide general 

solutions for the stability of intact slopes and slopes with cracks under the 

influence of water presence and seismic acceleration as well as to predict the 

morphological evolution of slopes in time due to degradation of the slope 

material. Solutions are provided through a number of stability charts for a 

range of friction angle and slope inclination of engineering interest available in 

this thesis to be used by engineers and practitioners, while more results can 

be obtained using the Matlab code in the Appendix.  

Moreover, through a series of laboratory tests, where failure is 

achieved through water infiltration, an approximation of the evolution of the 

slope was attempted to be modeled. In cases, successive failures were 

achieved.  

6.1. Analytical model 

A comprehensive parametric analysis has been carried out to 

investigate the effect of weathering of slopes with different tensile strength or 



Chapter 6: Conclusions 

 

171 
 

under seismic action and existence of water on the evolution of slopes after a 

number of failures and until the material becomes almost cohesionless, 

employing the upper bound limit analysis method together with the pseudo 

static approach. The evolution of slopes under the aforementioned actions has 

been compared to the intact, static and dry case.  

When cracks are formed in a slope they can cause changes in their 

evolution, compared to the evolution of intact slopes, especially during the first 

two failures, leading to different stability numbers, different failure mechanisms 

and sliding masses. Seismic action and presence of water can lead to faster 

slope failure and change significantly the morphologic evolution of slopes as 

the shape and the location of the failure mechanisms vary under different 

driving forces. In this paper, a model based on the kinematic approach of limit 

analysis to predict evolution of slopes under various scenarios has been 

proposed. The location and the depth of the crack as well as the most critical 

failure mechanism for every failure were calculated through an optimisation 

procedure. Solutions were provided for different types of problem; 

determination of the evolution of slopes for slopes with no tensile strength 

(tension cut-off) where crack forming requires work to open and slopes with 

soil tensile strength limited to 0.2 and 0.5 of that described by the classical 

Mohr–Coulomb yield condition have been examined. The influence of seismic 

acceleration was studied; acting either independently or synergistically with 

cracks and also the effect of the presence of water was explored. With this 

model, it is possible to relate the evolution of natural slopes by a sequence of 

rotational sliding block failures to the degradation of material strength 

properties. It can be concluded that with the proposed model it is possible, in 

principle, to predict the evolution by successive failures of any cliff under 

various actions, knowing the strength degradation over time. 
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6.2. Experimental model 

A series of small scale laboratory tests was designed and performed to 

investigate the onset of failure on slope caused by various actions as well as 

the evolution of slope due to successive failures. Slope failure was reached by 

increasing the degree of saturation within the slope though steady rainfall that 

was applied on the slope crest. For the simulation of the rainfall a bespoke 

device was designed and constructed. This is made of a distribution system 

which includes two atomising mist nozzles placed above a container to 

provide a uniform and steady rainfall to the model. Soil moisture sensors and 

tensiometers were buried inside the slope model during the construction 

phase to avoid causing any disturbance to the soil around them. The sensors 

were connected to a data acquisition system with readings being logged every 

second. Moreover, high resolution cameras were recording the slope 

behaviour throughout the duration of the test and GeoPIV was used to analyse 

the digital images and obtain the deformation of the slope.  

Constant rainfall was applied to the slope crest and minor slope 

displacements were recorded and, in cases, vertical cracks appeared prior to 

the failure. Slope failure in the case of low rainfall intensity occurred when the 

soil moisture content within the region that failed and across the failure 

mechanism reached nearly its saturation value. However, for higher rainfall 

intensities the failure occurred before the wetting front reaching the slope toe. 

Once the first failure was triggered, soil region accelerated downwardly, after 

that, additional deformations occurred in the rest of the slope. For the cases of 

high rainfall intensities this lead to the occurrence of a second failure, however 

when rainfall intensity was kept low water infiltration alone was not sufficient to 

induce a second failure.  
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6.3. Comparison of experimental with analytical results 

In this part, a comparison between experimental observations and the 

analytical model described in Chapter 3 is carried out. When designing the 

experiment, an effort was made to simulate the conditions adopted in the 

analytical model. However, due to the complexity of the experimental 

conditions it was not possible to achieve the desired similarity.  

The initial idea was to use water infiltration to simulate the material 

strength degradation and thus achieve successive failures due to material 

deterioration in time. In the analytical model, it is assumed that the cohesion of 

the soil is the same through the whole slope. Also, the failure occurs solely 

due to the uniform degradation of the cohesion in time which leads to 

successive events. During the experiments, it was not possible to achieve the 

same moisture content inside the model, thus the strength of the soil was not 

the same inside the whole slope. Moreover, the use of water during the tests, 

leads to slope failure due to a combination of factors, that is to say increase of 

the weight of the soil and also decrease of the soil strength due to changes in 

moisture content and suction. For these reasons, there are some 

shortcomings when it comes to comparing experimental to analytical results.  

Since the experimental model is wet at the time of the first failure and 

the moisture content is significant but has not yet its saturation value (Figure 

5.12), the comparison is made with results from the analytical model both for 

ru=0.25 and ru=0.50. It should be noted, that this is an additional difference to 

the experimental conditions since moisture content was different at different 

depths at the time of the failure during experiments while for the analytical 

model the water presence is assumed to be the same in the whole slope.  
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In Figure 6.1, the slope model is illustrated at the occurrence of the first 

failure during test S90_H15_L35_3 for rainfall intensity Ir=16mm/h. The 

solution from the analytical model is calculated for a slope with height and 

friction angle same as these for the slope model during the experiment. More 

specifically the input height for the analytical model is H=15cm and the shear 

resistance of the soil φ=40˚. Based on the shear box tests shown in Figure 

4.11, φ is likely to vary from approximately 40˚ to 37˚ during the test, as the 

failure is reached before the soil becomes fully saturated. Since the soil used 

in the experiments is a weakly cemented geomaterial, the failure line is 

calculated from the analytical model for the case of slopes with soil tensile 

strength limited to t=0.5. The failure lines as derived from the analytical model 

are superimposed on a digital image illustrating the slope model during the 

failure and represented by the blue line for ru=0.25, while the green line is for 

ru=0. 50. The dashed yellow line is illustrating the failure mechanism 

developed during the experiment. If lower φ is used in the analytical model the 

failure line moves further away from the slope crest. 

 

 

Figure 6.1. Failure mechanism developed during test S90_H15_L35_3 and 

failure lines as derived from the analytical model  
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It is seen that the mechanisms from the analytical model and that from 

the experimental results are of similar geometries. However, there is a 

significant difference in the location that the failure occurs. The failure 

mechanism derived from the analytical solution includes almost the double 

amount of soil sliding away. The differences in the failure mechanism between 

the analytical and the experimental results might be due to the assumptions 

made to obtain the analytical solutions as well to sthe limitations of the 

experimental procedure as described above. 

As far as a second failure is concerned a comparison between 

experimental and analytical results has not been carried out. The comparison 

of the first failure showed that different mechanisms were derived from the 

analytical model than those observed during the experiment, making a 

comparison of the second failure not meaningful. It must be noted however 

that when a second failure occurred during the experiments, the soil mass that 

slides away is decreased during the second failure event and that the second 

failure does not pass through the slope toe, which comes in good agreement 

with the analytical results.  

The analytical solution provided in Chapter 3 is modelling the 

degradation of the material of a slope in time; a physical phenomenon different 

from rainfall. Both phenomena cause a decrease of strength inside exposed 

slopes that drives the onset of successive mass movements and also there is 

a similarity between these two phenomena in causing slope inward retreat. 

However, the complexity of the experimental procedure does not allow for 

uniform conditions inside the slope model (moisture content, cohesion etc.) as 

assumed in the analytical model. Moreover, during the experiments the failure 

was reached both because of the decrease in the material strength due to the 

increase in moisture content and the debonding of the soil particles, but also 
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because of the increase of the soil weight due to the ingress of water which is 

not accounted for in the analytical model.  

6.4. Recommendations for future work 

This is thesis has tackled the problem of the evolution of slopes subject 

to a progressive retreat. This is especially interesting for many coastal or not 

areas characterized by moderate to steep cliffs. The results of this thesis could 

become useful for possible spatially distributed analysis of cliff stability both at 

a local and at a distributed scale in the UK and internationally, wherever the 

described phenomena often endanger the coastline.  

The analytical model is tested against a real case study for a group of 

landslides detached from a specific source area in a relatively clear sequence. 

This case study is interesting as it fits well with the assumptions made for the 

analytical model, because of the topography of the area leads the mass of soil 

that fails during each failure (deposits) to move to a distance away from the 

slope, therefore not affecting the stability of the remaining slope for the various 

successive failures. The solution could also be applied in other planetary 

conditions where similar types of landslides have been recognised (Crosta et 

al., 2012a, Crosta et al., 2014b) and for which rock mass mechanical 

properties determination could be of great interest.  

As far as the analytical part of this work is concerned, the model 

described in this thesis is a 2D model, which in general is well known to be 

more conservative than 3D models. A 3D analysis of the problems presented 

here, although it might be complicated, is required to achieve results closer to 

the real values.   

Regarding the experimental procedure described in this thesis, there 

are many limitations as in every experiment. The size of the model does not 
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allow to extract reliable results on the behaviour of the soil, it is however a 

good indicator. The experiments showed that prediction of slope failure 

initiation is possible by monitoring changes in soil moisture contents and 

displacements within the slope prior to the failure. Further studies based on 

larger scale experiments and in-situ monitoring of actual slopes during rainfall 

are recommended to verify this conclusion and to develop a comprehensive 

warning system based on changes in soil moisture content.  

Experiments should also be carried out on dry slopes where the 

identification of the water front will be easier to capture even through image 

analysis. More experiments can be carried out to validate all the results 

obtained here, as well as experiments on non - linear initial profiles since they 

are more common in nature and they have been proven to be more stable 

than planar ones (Utili and Nova, 2007).  

The analytical model developed in this work is a simplified model of 

what is happening in a real slope, with strong assumptions being made, e.g. 

uniformity as far as the water presence or the cohesion of the soil. However, 

while conducting experiments it was not possible to model the same 

conditions as reality is more complicated. An analysis using more detailed 

numerical methods could be developed to make more meaningful 

comparisons with the experimental results.  
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Appendices 

Appendix A - SOIL MOISTURE SENSORS  

Calibration 

The VEGETRONIX VH400 soil moisture sensors used in these 

experiments measure the volumetric water content of the soil by measuring 

the dielectric constant of the soil. Since, not all soils have identical electrical 

properties, due to variations in soil bulk density, mineralogy, texture and 

salinity, a generic calibration for these sensors was necessary. For higher 

precision, repeatability, and sensor to sensor agreement, each specific soil 

sensor was calibrated for that particular soil type.  

The soil was packed into the calibration container at approximately the 

model bulk density (ρ= 1.67 g/cm3). Soil into the containers was added into 

layers; packing each layer before adding the next. Then the soil moisture 

sensor was inserted vertically directly and fully into the full soil container. Soil 

around the exposed portion of the sensor was packed carefully to prevent air 

gaps while maintaining the desired bulk density. When the above procedure 

was completed sensors’ reading were recorded. There was generally some 

small variability (a few raw counts), so an average of 10 readings was taken. 

Next step was to measure the mass of the wet soil with the container, record 

the mass in Table 1 and put the specimen in the oven for 24 hours at 105°. 

After 24 hours, the soil containers were removed from the oven and allowed to 

cool, before measuring the mass of the dry soil and the containers.  

This was repeated for another 4 samples, each of them containing 

different amount of water (Table 1).  
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From Table 1 it is obvious that all the 6 sensors give almost the same 

output for the same water content. For that reason, only one calibration curve 

is exported for all the sensors (Figure 1). 

 

Table 0.1. Soil moisture content calibration 
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after 
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θ 

0 219 217 223 240 223 228 33 1020 1266 1266 0 1233 1.21 0.00 

1 317 315 306 315 314 317 33 1020 1366 1266 100 1233 1.21 0.10 

2 346 353 347 349 356 353 32 1020 1416 1266 150 1234 1.21 0.15 

3 420 419 437 420 428 430 33 1020 1466 1266 200 1233 1.21 0.20 

4 601 615 615 610 609 616 33 1020 1516 1266 250 1233 1.21 0.25 

 

Calculations for the numbers obtained in Table 1 are illustrated below:  

The volumetric water content is defined as the volume of water per 

volume of bulk soil:  

θ = Vw/Vt      (1)  

Where θ is volumetric water content (cm3/cm3), Vw is the volume of 

water (cm3) and Vt is the total volume of bulk soil sample (cm3). Vt of the 

sample is already known. Vw is the volume of the water that is lost from the 

soil sample during oven drying:  

mw = mwet - mdry    (2)   
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Vw = mw/ρw     (3)  

Where mw is the mass of water, mwet is the mass of moist soil (g), mdry 

is the mass of the dry soil, and ρw is the density of water (1 g/cm3). In addition 

to the volumetric water content, the bulk density of the soil sample can also be 

calculated. Bulk density (ρb) is defined as the density of dry soil (g/cm3):  

ρb = mdry/Vsoil     (4)  

Using the trend line function in Excel, a logarithmic line was found to fit 

best the calibration results, as shown in Figure 1. 

 

Soil specific calibration equation: y = 0.2494ln(x) - 1.3334 

 

Figure 0.1. Plot of calibration data and soil specific calibration equation. 
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ARDUINO Code for data logging 

int timer = 100;    // The higher the number, the slower 

the timing. 

 

void setup() {   

/* Setup the serial port for displaying the status of the 

sensor */ 

  Serial.begin(9600); 

} 

 

int voltage; 

void loop() {   

// loop from the lowest pin to the highest: 

  for (int i=3; i<6; i++) {      

/* Read the sensors analogue output & send it to the 

serial port */ 

  

 Serial.print("DATA,TIME,,");  

   Serial.print(analogRead(i)); 

    

 Serial.print(","); 

   Serial.println(i); 

        delay(1000); // wait for a second   

  }  

 }
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Appendix B - ANALYTICAL CALCULATIONS  

The analytical calculations for each successive failure are given below. 

The areas are shown in Figure 0.2. 

Considering the region P2JD: 
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Considering the region P2JI, the rate of the external work is calculated 

for an infinitesimal slice, as illustrated in Figure 0.2:  

4
3

4 4 4

1
| x | cos

3
G P

ndW u dF x dA r d         

where u4 is the displacement rate of the infinitesimal region, dF4 is the weight 

force, and xG4 and xP are the x coordinates of the gravity center of the soil 

region and of the center of rotation P2 respectively. Integrating over the whole 

region, the rate of the work of the region P2JI is calculated: 
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Figure 0.2. Infinitesimal slice of logarithmic spiral regions 

 

Considering the region P2JG: 
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Finally, considering the region P2GI: 
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For the region P1FD, the rate of the external work is calculated for an 

infinitesimal slice, similar to W4
n (Figure 0.). Considering this time, as the 

center of rotation the point P2: 
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And after integration by parts, manipulations and substitutions of the 

obtained expression: 

1

1

2

1

2

1

2

1

2

3

3

2

2 2 2

2

3

1 1

1 1 1 1 1 1

1 1 1

 

[exp(tan (y cos exp(2 tan ( 1)

exp(3tan (y y

) ( )

4 tan

))(sin 3tan ) sin 3tan cos

3(1

cos

[exp(

9 ta

tan

n )

) [(y cos exp(2 t (an y

o
P FD

x

x

x

x
x

x

x

W W

y y

y
r

y

x xr

r

x x xr

r

xr

r





 












 

   



 
 
 

 
 
 

 

 


 







3

2 1

1 1

1 1 2 2, y , ,

) 1]

4 tan )

( ),xr f

x

x x y



 

 
 
 
 
 
 
 

  





 

 

Considering the region P1FE: 
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And after manipulations and substitutions of the obtained expression, 

the following expression is obtained:  
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Considering the region P1ED: 
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And after manipulations and substitutions of the obtained expression:  
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The external work for the region P1FC is calculated similar to that of 

the rate of the external work W1
o and: 
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And after integration by parts, manipulations and substitutions of the 

obtained expression: 
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Considering the region P1FB: 
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And after manipulations and substitutions of the obtained expression 

and dividing by rx2
3, the following expression is obtained:  
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Finally, considering the region P1BC: 
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And after manipulations and substitutions of the obtained expression 

and dividing by rx2
3, the following expression is obtained:  
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Appendix C- MATLAB SCRIPTS 

Successive failures with cracks 

% Main program 
% -------------------------------------------------------------

------------ 
clear; 

  
% -------------------------------------------------------------

------------ 
% Input data  
% -------------------------------------------------------------

------------ 
% save the results with this filename 
filename = 'b_70_f_40_f1_kh01'; 

  
% friction angle [deg] 
phi_deg=40 
% initial slope height [m] 
H_ini=1; 
% initial slope inclination [deg] 
beta_deg=90 
% unit weight [KN/m^3]  
gamma=18;  
gamma_w=9.807; 
% n1= number of points used to divide the spiral 
n1=100; 
% n2+1= number of failures to be determined 
n2=0; 
% seismic coefficients 
seismic=1; %if looking for the critical cohesion seismic=1 if 

looking for the yield acceleration seismic=2 
lamda=0.0;     % ratio between vertical acceleration 

coeffecient to the horizontal one ?= Kv/Kh 
K_h=0.0;       % assigned horizontal acceleration (for static 

case K_h=0) 
cohesion=300; 
cgH=0.024;%cohesion/(gamma*H_ini);%0.0812; 

  
%way==1 for the case that i do not remove the vertical part 

from the new profile  
%way==2 to use the whole logspiral as the second/third... slope 

front  
%way==3 to remove planar part (trapezoid)   
way=0; 
%water 
ru=0.5; 
%calculation of the energy needed for the crack formation, 
%pre-existing crack: formation ==0 / tension cut-off: 

formation==1 / reduced 
%tensile strength to 0.2*fc: formation==3 / and formation==2 

for tensile strength 
%limited to 0.5*fc 
formation=2; 
info=[way;ru;formation;seismic;K_h;lamda;cgH] 
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% -------------------------------------------------------------

------------ 
% Determination of the first spiral 
% -------------------------------------------------------------

------------ 
h_norm(1)=1; 
x_guess_deg=58; 
y_guess_deg=89; 
z_guess_deg=89; 
delta_deg=5; 
 X0=[x_guess_deg;y_guess_deg;z_guess_deg] 

  
            % -------------------------------------------------

------------------------ 
            % Determination of the second spiral 
            % -------------------------------------------------

------------------------ 
               % starting values for the search of the minimum 

of funM 
               x_guess_deg(1)=50; 
               y_guess_deg(1)=107; 
               z_guess_deg(1)=55; 

  
               delta_deg_2=6; 
            % -------------------------------------------------

------------------------ 
if seismic==2 
    n1=1; 
    %parameters to change when looking for the most critical 

yield acceleration 
        %inputs for each failure: const= the height of the 

slope and and 
        %the cohesion of the soil  const= the normalised height 

of the new 
        %failure/slope 
        cohesion=300; 
        hi(1)=300; 
        const(1)=hi(1)/H_ini; 
        covergH(1)=cohesion/(gamma*hi(1)); 
        cohesion=300; 
        hi(2)=280; 
        const(2)=hi(2)/H_ini; 
        covergH(2)=cohesion/(gamma*hi(2)); 
        cohesion=300; 
        hi(3)=250; 
        const(3)=hi(3)/H_ini; 
        covergH(3)=cohesion/(gamma*hi(3)); 
         hi(4)=220; 
        const(4)=hi(4)/H_ini; 
        covergH(4)=cohesion/(gamma*hi(4)); 
end 

  
% -------------------------------------------------------------

------------ 
% derived variables 
% -------------------------------------------------------------

------------ 
% determination of angles in radians 
beta=beta_deg/180*pi; 
phi=phi_deg/180*pi; 
b=tan(phi); 
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beta_grad_low=phi_deg+3; 
deltabeta_grad=1.0; 
beta_grad=beta_grad_low; 
min_stability_number=2*tan(pi/4+phi/2); 

    
%critical depth = 3.83*c*tan(pi/4+phi/2)/gamma 
d_max_upper=3.83*tan(pi/4+phi/2); 
d_max_lower=2*tan(pi/4+phi/2); 

  
% determination of the minimum of funI (stability number)  
[X,M_,K_y]=funI_num(X0,delta_deg,b,beta,phi,ru,gamma,gamma_w,fo

rmation,K_h,seismic); 

%===================================================funI 
    M(i)=M_ 
    x(i)=X(1); 
    y(i)=X(2); 
    z(i)=X(3); 
    K_y(1)=K_y; 
    X0=X; 
    c_norm(1)=h_norm(1)/M(1); 
     end 

  
% geometrical variables 
rx_norm(1)=h_norm(1)/(exp(b*(y(1)-x(1)))*sin(y(1))-sin(x(1))); 
d_norm1=rx_norm(1)*(exp(b*(z(1)-x(1)))*sin(z(1))-sin(x(1))); 
L_norm1=rx_norm(1)*(exp(b*(z(1)-x(1)))*cos(z(1))-exp(b*(y(1)-

x(1)))*cos(y(1))); 
Xcir_norm(1)=-rx_norm(1)*exp(b*(y(1)-x(1)))*cos(y(1)); 
Ycir_norm(1)=rx_norm(1)*exp(b*(y(1)-x(1)))*sin(y(1)); 
retreat_norm(1)=Xcir_norm(1)+rx_norm(1)*cos(x(1))-cot(beta); 
M_norm(1)=M_; 

  
% normalised area of the landsliding mass: area/H_ini^2 
area1_norm=rx_norm(1)^2*(exp(2*b*(y(1)-x(1)))-1)/(4*b); 
area2_norm=1/2*rx_norm(1)^2*sin(x(1))*(-exp(b*(y(1)-

x(1)))*cos(y(1))+cos(x(1))); 
area3_norm=1/2*rx_norm(1)*exp(b*(y(1)-x(1)))*cos(y(1)); 
area4_norm=cot(beta)/2; 
area_norm(1)=area1_norm-area2_norm-area3_norm-area4_norm; 

  
% -------------------------------------------------------------

---------- 
% Determination of the successive spirals 
% -------------------------------------------------------------

---------- 
for j=1:n2; 
  x_old=x(j); 
  y_old=y(j); 
  z_old=z(j); 
  h_norm_old=h_norm(j); 
  rx_norm_old=h_norm_old/(exp(b*(y_old-x_old))*sin(y_old)-

sin(x_old)); 

    
  deltay=(y_old-z_old)/n1; 
  x1=x_old; 
  y1=y_old; 
  z1=z_old; 
   if j>1 
       way=1; 
   end 
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          if frictionchange==1 
              %changing the friction angle 
              phi_deg=phi_deg-(phi_deg_in-phi_deg_fn)/n2; 
              phi=phi_deg/180*pi 
              b=tan(phi); 
          end 
  for i=1:n1 
    X0=[x_guess_deg(i);y_guess_deg(i);z_guess_deg(i)]; 
     if seismic==1 
            % determination of the minimum of funM (stability 

number) 
            

[X,fval,fK_y]=funM_num(X0,delta_deg_2,x1,y1,z1,b,phi,info,gamma

,gamma_w);%====================================================

===============================funM 
            x_iter(i)=X(1); 
            y_iter(i)=X(2); 
            z_iter(i)=X(3); 
            M_iter(i)=fval; 
            h_norm_iter(i)=rx_norm_old*(exp(b*(y1-

x_old))*sin(y1)-sin(x_old)); 
            c_norm_iter(i)=h_norm_iter(i)/M_iter(i);   
    elseif seismic==2 
            options = optimset('TolX',1e-18); 
            [yh,exitflag,output] = 

fzero(@(yh)rx_norm_old*(exp(b*(yh-x_old))*sin(yh)-sin(x_old))-

const(j),[x1 y1],options); 
            y1=yh; 
            cgH=covergH(j) 
            [X,fval]=funM_num(X0,Xdelta,x1,y1,z1,b,phi,info); 
            x_iter(i)=X(1); 
            y_iter(i)=X(2); 
            z_iter(i)=X(3); 
            K_y_iter(i)=fK_y; 
            h_norm_iter(i)=rx_norm_old*(exp(b*(y1-

x_old))*sin(y1)-sin(x_old)); 
            M_iter(i)=fval*h_norm_iter(i); 
            c_norm_iter(i)=h_norm_iter(i)/M_iter(i);   
     end      
    x_guess_deg(i+1)=X(1)*180/pi; 
    y_guess_deg(i+1)=X(2)*180/pi; 
    z_guess_deg(i+1)=X(3)*180/pi; 
    y1=y1-deltay; 
    delta_deg_2=2; 
  end 
  if seismic==1 
  [d,ii]=max(c_norm_iter); 
   % if ii==n1 
    %  check=1 
    %  break; 
   % end 
  M_new=M_iter(ii); 
  theta_old=y_old-deltay*(ii-1); 
  x_new=x_iter(ii); 
  y_new=y_iter(ii); 
  z_new=z_iter(ii); 
  K_y_new=fK_y; 
  h_norm_new=h_norm_iter(ii); 
  rx_norm_new=h_norm_new/(exp(b*(y_new-x_new))*sin(y_new)-

sin(x_new)); 
  c_norm_new=c_norm_iter(ii); 
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  M_norm_new=1/c_norm_iter(ii); 
  elseif seismic==2 
      [d,ii]=min(K_y_iter); 
      M_new=M_iter(ii) 
      K_y_new=K_y_iter(ii); 
      theta_old=y1; 
      x_new=x_iter(ii); 
      y_new=y_iter(ii); 
      z_new=z_iter(ii); 
      K_y_new=fK_y; 
      h_norm_new=h_norm_iter(ii); 
      rx_norm_new=h_norm_new/(exp(b*(y_new-x_new))*sin(y_new)-

sin(x_new)); 
      c_norm_new=c_norm_iter(ii); 
      M_norm_new=1/c_norm_iter(ii); 
  end   

        
  theta(j)=theta_old; 
  x(j+1)=x_new; 
  y(j+1)=y_new; 
  z(j+1)=z_new; 
  x_guess_deg(1)=x_new*180/pi; 
  y_guess_deg(1)=y_new*180/pi; 
  z_guess_deg(1)=z_new*180/pi;  
  rx_norm(j+1)=rx_norm_new; 
  M(j+1)=M_new; 
  h_norm(j+1)=h_norm_new; 
  c_norm(j+1)=c_norm_new; 
  M_norm(j+1)=M_norm_new; 
  Xcir_norm(j+1)=rx_norm(j)*exp(b*(theta(j)-

x(j)))*cos(theta(j))-rx_norm(j+1)*exp(b*(y(j+1)-

x(j+1)))*cos(y(j+1))+Xcir_norm(j); 
  Ycir_norm(j+1)=rx_norm(j+1)*exp(b*(y(j+1)-

x(j+1)))*sin(y(j+1))+1-h_norm(j+1); 
  rx_norm(j+1)=rx_norm_new; 

   
  d_norm(1)=d_norm1; 
  L_norm(1)=L_norm1; 
  L_norm(j+1)=rx_norm(j+1)*(exp(b*(z(j+1)-x(j+1)))*cos(z(j+1))-

exp(b*(y(j+1)-x(j+1)))*cos(y(j+1))); 
  d_norm(j+1)=rx_norm(j+1)*(exp(b*(z(j+1)-x(j+1)))*sin(z(j+1))-

sin(x(j+1))); 

     
  % area of the landsliding mass 
  area1_norm_new=rx_norm_new^2*(exp(2*b*(y_new-x_new))-

1)/(4*b); 
  area2_norm_new=1/2*rx_norm_new^2*sin(x_new)*(-exp(b*(y_new-

x_new))*cos(y_new)+cos(x_new)); 
  area3_norm_new=1/2*rx_norm_new^2*exp(b*(y_new-

x_new))*cos(y_new)*(exp(b*(y_new-x_new))*sin(y_new)-

sin(x_new)); 
  area1_norm_old=rx_norm_old^2*(exp(2*b*(theta_old-x_old))-

1)/(4*b); 
  area2_norm_old=1/2*rx_norm_old^2*sin(x_old)*(-

exp(b*(theta_old-x_old))*cos(theta_old)+cos(x_old)); 
  area3_norm_old=1/2*rx_norm_old^2*exp(b*(theta_old-

x_old))*cos(theta_old)*(exp(b*(theta_old-

x_old))*sin(theta_old)-sin(x_old)); 
  area_norm(j+1)=area1_norm_new - area2_norm_new - 

area3_norm_new - (area1_norm_old - area2_norm_old - 

area3_norm_old); 



 

192 
 

  
  % Storing of values in arrays  
  theta(j)=theta_old; 
  x(j+1)=x_new; 
  y(j+1)=y_new; 
  h_norm(j+1)=h_norm_new; 
  c_norm(j+1)=c_norm_new; 
  M(j+1)=M_new; 
  K_y(j+1)=K_y_new; 
  rx_norm(j+1)=rx_norm_new; 

  
  % storing of other geometrical variables gotten from the 

above values 
  A(j+1)=-rx_norm(j+1)*exp(b*(y(j+1)-x(j+1)))*cos(y(j+1)); 
  B(j+1)=rx_norm(j+1)*exp(b*(y(j+1)-x(j+1)))*sin(y(j+1)); 
  Xcir_norm(j+1)=rx_norm(j)*exp(b*(theta(j)-

x(j)))*cos(theta(j))+A(j+1)+Xcir_norm(j); 
  Ycir_norm(j+1)=B(j+1)+1-h_norm(j+1); 
  retreat_norm(j+1)=Xcir_norm(j+1)+rx_norm(j+1)*cos(x(j+1))-

cot(beta); 
end 

  
%   phi_deg=phi_deg_in; 
%   phi=phi_deg/180*pi 
%   b=tan(phi); 

  
% creation of further geometrical variables 
x_deg=x*180/pi 
y_deg=y*180/pi 
z_deg=z*180/pi 
theta(n2+1)=0; 
theta_grad=theta*180/pi; 

  
% determination of dimensional variables 
h=h_norm*H_ini; 
rx=rx_norm*H_ini; 
Xcir=Xcir_norm*H_ini; 
Ycir=Ycir_norm*H_ini; 
c=c_norm*gamma*H_ini; 
%to plot at the same plot (existing) 
hold on 

  
% Plotting 
plot_line1(H_ini,beta,'k') 
axis equal 
hold on 
plot_line1(H_ini,phi,'g') 
% Spiral plotting 
plot_spirals1 
hold off 

  
 save(filename) 
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function  

% for the first failure 

[X,M_,K_y]=funI_num(X0,delta_deg,b,beta,phi,ru,gamma,gamma_w,fo

rmation,K_h,seismic) 

   
step=1; 
x_range_deg=(-delta_deg+X0(1)):step:(delta_deg+X0(1)); 
y_range_deg=(-delta_deg+X0(2)):step:(delta_deg+X0(2)); 
z_range_deg=(-delta_deg+X0(3)):step:(delta_deg+X0(3)); 

  
x_range=x_range_deg/180*pi; 
m=size(x_range); 
n3=m(2); 
y_range=y_range_deg/180*pi; 
m=size(y_range); 
n4=m(2); 
z_range=z_range_deg/180*pi; 
m=size(z_range); 
n5=m(2); 
for k=1:n3 
    for l=1:n4 
        for j=1:n5 
            if (x_range(k)>y_range(l)-10e-6) | 

(x_range(k)>z_range(j)-10e-6) | (z_range(j)>y_range(l)-10e-6)  
                funI(k,l,j)=NaN; 
            else 
                g=exp(2*b*(z_range(j)-

x_range(k)))*(exp(2*b*(y_range(l)-z_range(j)))-

1)*(exp(b*(y_range(l)-x_range(k)))*sin(y_range(l))-

sin(x_range(k)))/(2*b); 
                f1=(exp(3*b*(y_range(l)-

x_range(k)))*(sin(y_range(l))+3*b*cos(y_range(l)))-

3*b*cos(x_range(k))-sin(x_range(k)))/(3*(1+9*b^2)); 
                fLrx=sin(y_range(l)-

x_range(k))/sin(y_range(l))-

sin(y_range(l)+beta)/(sin(y_range(l))*sin(beta))*(exp(b*(y_rang

e(l)-x_range(k)))*sin(y_range(l))-sin(x_range(k))); 
                f2=1/6*fLrx*sin(x_range(k))*(2*cos(x_range(k))-

fLrx); 
                f3=1/6*exp(b*(y_range(l)-

x_range(k)))*(sin(y_range(l)-x_range(k))-

fLrx*sin(y_range(l)))*(cos(x_range(k))-

fLrx+cos(y_range(l))*exp(b*(y_range(l)-x_range(k)))); 
                f4=(exp(3*b*(z_range(j)-

x_range(k)))*(sin(z_range(j))+3*b*cos(z_range(j)))-

3*b*cos(x_range(k))-sin(x_range(k)))/(3*(1+9*b^2)); 
                f5=1/6*sin(x_range(k))*((cos(x_range(k)))^2-

exp(2*b*(z_range(j)-x_range(k)))*(cos(z_range(j)))^2); 
                f6=1/3*exp(2*b*(z_range(j)-

x_range(k)))*(cos(z_range(j)))^2*(sin(z_range(j))*exp(b*(z_rang

e(j)-x_range(k)))-sin(x_range(k))); 
 % here are the functions for horizontal coeffecient Kh: 
                f1_h=(exp(3*b*(y_range(l)-x_range(k)))*(-

cos(y_range(l))+3*b*sin(y_range(l)))-

3*b*sin(x_range(k))+cos(x_range(k)))/(3*(1+9*b^2)); 
                f2_h=1/3*fLrx*(sin(x_range(k)))^2;  
                f3_h=1/6*exp(b*(y_range(l)-

x_range(k)))*(sin(y_range(l)-x_range(k))-
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fLrx*sin(y_range(l)))*(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))+sin(x_range(k))); 
                f4_h=(exp(3*b*(z_range(j)-

x_range(k)))*(3*b*sin(z_range(j))-cos(z_range(j)))-

3*b*sin(x_range(k))+cos(x_range(k)))/(3*(1+9*b^2)); 
                lrx=cos(x_range(k))-exp(b*(z_range(j)-

x_range(k)))*cos(z_range(j));  
                f5_h=1/3*lrx*(sin(x_range(k)))^2; 
                f6_h=1/6*exp(b*(z_range(j)-

x_range(k)))*cos(z_range(j))*(exp(2*b*(z_range(j)-

x_range(k)))*sin(z_range(j))^2-sin(x_range(k))^2); 

                  
                 if formation==0                 
                        fcf=0; 
                    elseif formation==1 
                     %energy for crack formation with cut off 
                          

tan_theta_c=sin(x_range(k))/((exp(b*(z_range(j)-

x_range(k))))*cos(z_range(j))); 
                          theta_c=atan(tan_theta_c);  
                          if theta_c<phi 
                              

fcf=50000000000000000000000000000; 
                          else 
                             int_fcf = integral(@(theta) (1-

sin(theta))./(cos(theta)).^3,theta_c,z_range(j)); 
                             

fcf=((sin(x_range(k))/tan_theta_c)^2)*(cos(phi)/(1-

sin(phi)))*int_fcf*(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))-sin(x_range(k))); 
                          end 
                    elseif formation==3 
                     %energy for crack formation with limited 

tensile 
                     %strength (=0.2) 
                          

tan_theta_c=sin(x_range(k))/((exp(b*(z_range(j)-

x_range(k))))*cos(z_range(j))); 
                          theta_c=atan(tan_theta_c);  
                          if theta_c<phi 
                              

fcf=50000000000000000000000000000; 
                          else 
                             int_fcf1 = integral(@(theta) (1-

sin(theta))./(cos(theta)).^3,theta_c,z_range(j)); 
                             int_fcf2 = integral(@(theta) 

(sin(theta)-sin(phi))./(cos(theta)).^3,theta_c,z_range(j)); 
                             

fcf=((sin(x_range(k))/tan_theta_c)^2)*((cos(phi)/(1-

sin(phi)))*int_fcf1+0.4*(cos(phi)/((1-

sin(phi).^2)))*int_fcf2)... 
                                    *(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))-sin(x_range(k))); 
                          end 
                     elseif formation==2 
                     %energy for crack formation with limited 

tensile 
                     %strength (=0.5) 
                          

tan_theta_c=sin(x_range(k))/((exp(b*(z_range(j)-

x_range(k))))*cos(z_range(j))); 
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                          theta_c=atan(tan_theta_c);  
                          if theta_c<phi 
                              

fcf=50000000000000000000000000000; 
                          else 
                             int_fcf1 = integral(@(theta) (1-

sin(theta))./(cos(theta)).^3,theta_c,z_range(j)); 
                             int_fcf2 = integral(@(theta) 

(sin(theta)-sin(phi))./(cos(theta)).^3,theta_c,z_range(j)); 
                             

fcf=((sin(x_range(k))/tan_theta_c)^2)*((cos(phi)/(1-

sin(phi)))*int_fcf1+(cos(phi)/((1-sin(phi).^2)))*int_fcf2)... 
                                    *(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))-sin(x_range(k))); 
                          end 

                       
                    end 
% -------------------------------------------------------------

---------- 
% Energy dissipation due to water pore pressure 
% -------------------------------------------------------------

---------- 
         if ru==0 
              fw=0; 
         else 
         %work of water along the crack 
             z0=exp(b*(z_range(j)-x_range(k)))*sin(z_range(j))- 

sin(x_range(k)); 
             tan_theta_ru=(exp(b*(z_range(j)-

x_range(k)))*sin(z_range(j))-

(gamma/gamma_w)*ru*z0)./(exp(b*(z_range(j)-

x_range(k)))*cos(z_range(j))); 
             theta_ru=atan(tan_theta_ru); 
             int_z0=integral(@(theta_z0) (((exp(b*(z_range(j)-

x_range(k))).*cos(z_range(j)).*tan(theta_z0)-

sin(x_range(k))).*... 
                                            

(exp(2*b*(z_range(j)-

x_range(k)))*(cos(z_range(j))).^2*tan(theta_z0))./... 
                                               

(cos(theta_z0)).^2)),theta_ru,z_range(j));          
          %work of pore pressure along the logspiral part 
          %limit to calculate z1         
                theta1=0; 
                x01=(x_range(k)+y_range(l))/2; 
                options=optimset('TolX',1e-18); 
                [theta1 exitflag output] = 

fzero(@(theta1)(exp(b*(theta1-x_range(k))).*cos(theta1)-

(cos(x_range(k)))+fLrx),x01,options); 
            if theta1 < z_range(j) | theta1 > y_range(l)  
                    fw=5000000; 
                     funI(k,l,j)=50000; 
                else 
          %distance between the failure line from the slope 

surface(depth for water pore pressure calculations) 
          %z1 for distance from the horizontal part of the 

slope(crest)and 
          %z2 for distance from the inclined part  
            int_z1=integral(@(theta_z1) ((exp(b*(theta_z1-

x_range(k))).*sin(theta_z1)-sin(x_range(k))).*... 
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                                           (exp(2*b*(theta_z1-

x_range(k)))).*b),z_range(j),theta1); 
            int_z2=integral(@(theta_z2)((exp(b*(theta_z2-

x_range(k))).*sin(theta_z2)-sin(y_range(l)).*... 
                                           exp(b*(y_range(l)-

x_range(k)))+(exp(b*(theta_z2-x_range(k))).*cos(theta_z2)-... 
                                            

cos(y_range(l))*exp(b*(y_range(l)-

x_range(k)))).*tan(beta)).*... 
                                               

(exp(2*b*(theta_z2-x_range(k)))))*b,theta1,y_range(l)); 
           %total energy dissipated along the failure line due 

to the water pore pressure        
             fw=int_z0+int_z1+int_z2;  
            end 
         end 
 % ------------------------------------------------------------

-----------            

          
            %stability number        
             funI(k,l,j)=(g+fcf)/(f1-f2-f3-f4+f5+f6+K_h*(f1_h-

f2_h-f3_h-f4_h+f5_h+f6_h)+ru*fw); 
%             end 
               if (funI(k,l,j) < 1.0) | (funI(k,l,j) > 1000) 
                     funI(k,l,j)=NaN; 
               end 
        end 
    end 
end 
i=1; 
for k=2:(n3-1) 
    for l=2:(n4-1)      
        for j=2:(n5-1) 
            if (funI(k,l,j)<Inf)  
                 if (funI(k-1,l,j)>funI(k,l,j)) && 

(funI(k+1,l,j)>funI(k,l,j)) && (funI(k,l-1,j)>funI(k,l,j)) && 

(funI(k,l+1,j)>funI(k,l,j)) && (funI(k,l,j-1)>funI(k,l,j)) && 

(funI(k,l,j+1)>funI(k,l,j)) &&(funI(k-1,l-1,j)>funI(k,l,j)) && 

(funI(k-1,l+1,j)>funI(k,l,j)) && (funI(k+1,l-1,j)>funI(k,l,j)) 

&& (funI(k+1,l+1,j)>funI(k,l,j)) &&(funI(k-1,l,j-

1)>funI(k,l,j)) && (funI(k-1,l,j+1)>funI(k,l,j)) && 

(funI(k+1,l,j-1)>funI(k,l,j)) && (funI(k+1,l,j+1)>funI(k,l,j)) 

&&(funI(k,l-1,j-1)>funI(k,l,j)) && (funI(k,l-

1,j+1)>funI(k,l,j)) && (funI(k,l+1,j-1)>funI(k,l,j)) && 

(funI(k,l+1,j+1)>funI(k,l,j)) && (funI(k-1,l-1,j-

1)>funI(k,l,j)) && (funI(k+1,l+1,j+1)>funI(k,l,j)) 
                     potminima(i)=funI(k,l,j); 
                     potx(i)=k; 
                     poty(i)=l; 
                     potz(i)=j; 
                     i=i+1; 
                 end 
            end 
        end 
    end 
end 

  
if seismic==1 
    [M_,II]=min(potminima); 
    K_y=K_h; 
    k=potx(II); 
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    l=poty(II); 
    j=potz(II); 
    X(1)=x_range(k); 
    X(2)=y_range(l); 
    X(3)=z_range(j); 
elseif seismic==2 
    [M_,II]=min(potminima); 
    k=potx(II); 
    l=poty(II); 
    j=potz(II); 
    X(1)=x_range(k); 
    X(2)=y_range(l); 
    X(3)=z_range(j); 
end 

  

  

 
function  

%for second and each successive failure 

[X,fval,fK_y]=funM_num(X0,delta_deg_2,x1,y1,z1,b,phi,info,gamma

,gamma_w); 
step=1; 
x_range_deg=(-delta_deg_2+X0(1)):step:(delta_deg_2+X0(1)); 
y_range_deg=(-delta_deg_2+X0(2)):step:(delta_deg_2+X0(2)); 
z_range_deg=(-delta_deg_2+X0(3)):step:(delta_deg_2+X0(3)); 

  
way=info(1); 
ru=info(2); 
formation=info(3); 
seismic=info(4); 
K_h=info(5); 
lamda=info(6); 
cgH=info(7); 

  
% vertical seismic coefficent  
K_v=lamda*K_h; 

  
t=45*pi/180; 
tan_theta=sin(x1)/(exp(b*(z1-x1))*cos(z1)+(exp(b*(z1-

x1))*sin(z1)-sin(x1))*tan(t)); 
theta=atan(tan_theta); 

  
x_range=x_range_deg/180*pi; 
m1=size(x_range); 
n3=m1(2); 
y_range=y_range_deg/180*pi; 
m2=size(y_range); 
n4=m2(2); 
z_range=z_range_deg/180*pi; 
m3=size(z_range); 
n5=m3(2); 
for k=1:n3 
    for l=1:n4 
       for j=1:n5 
          if (x_range(k)>y_range(l)-10e-6) | 

(x_range(k)>z_range(j)-10e-6) | (z_range(j)>y_range(l)-10e-6)  
                funM(k,l,j)=NaN; 
          else 
                g=exp(2*b*(z_range(j)-

x_range(k)))*(exp(2*b*(y_range(l)-z_range(j)))-
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1)*(exp(b*(y_range(l)-x_range(k)))*sin(y_range(l))-

sin(x_range(k)))/(2*b); 

                    
                f1n=(exp(3*b*(y_range(l)-

x_range(k)))*(3*b*cos(y_range(l))+sin(y_range(l)))-

3*b*cos(x_range(k))-sin(x_range(k)))/(3*(1+9*b^2)); 
                L2_rx2=cos(x_range(k))-

cos(y_range(l))*exp(b*(y_range(l)-x_range(k))); 
                

f2n=1/6*L2_rx2*sin(x_range(k))*(2*(cos(x_range(k)))-L2_rx2);                                                     
                f3n=1/3*exp(2*b*(y_range(l)-

x_range(k)))*((cos(y_range(l)))^2)*(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))-sin(x_range(k))); 

                                             
                f4n=(exp(3*b*(z_range(j)-

x_range(k)))*(3*b*cos(z_range(j))+sin(z_range(j)))-

3*b*cos(x_range(k))-sin(x_range(k)))/(3*(1+9*b^2)); 
                l2_rx2=cos(x_range(k))-

cos(z_range(j))*exp(b*(z_range(j)-x_range(k))); 
                

f5n=1/6*l2_rx2*sin(x_range(k))*(2*(cos(x_range(k)))-l2_rx2); 
                f6n=1/3*exp(2*b*(z_range(j)-

x_range(k)))*((cos(z_range(j)))^2)*(exp(b*(z_range(j)-

x_range(k)))*sin(z_range(j))-sin(x_range(k))); 
                                rx1_rx2=(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))-sin(x_range(k)))/(exp(b*(y1-

x1))*sin(y1)-sin(x1)); 

                                 
                f1o=(rx1_rx2^2)*exp(b*(y_range(l)-

x_range(k)))*cos(y_range(l))*(exp(2*b*(y1-x1))-

1)/(4*b)+(rx1_rx2^3)*((exp(3*b*(y1-

x1))*(sin(y1)+3*b*cos(y1))... 
                        -sin(x1)-3*b*cos(x1))/(3*(1+9*b^2))-

exp(b*(y1-x1))*cos(y1)*(exp(2*b*(y1-x1))-1)/(4*b)); 
                L1_rx1=cos(x1)-exp(b*(y1-x1))*cos(y1); 
                

f2o=1/2*(rx1_rx2^2)*L1_rx1*sin(x1)*(exp(b*(y_range(l)-

x_range(k)))*cos(y_range(l))+1/3*rx1_rx2*(cos(x1)-2*exp(b*(y1-

x1))*cos(y1))); 
                f3o=1/2*(rx1_rx2^2)*((exp(b*(y1-x1))*sin(y1)-

sin(x1)))*exp(b*(y1-x1))*cos(y1)*(exp(b*(y_range(l)-

x_range(k)))*cos(y_range(l))-1/3*rx1_rx2*exp(b*(y1-

x1))*cos(y1));           

         
                f4o=(rx1_rx2^2)*exp(b*(y_range(l)-

x_range(k)))*cos(y_range(l))*(exp(2*b*(z1-x1))-

1)/(4*b)+(rx1_rx2^3)*((exp(3*b*(z1-

x1))*(sin(z1)+3*b*cos(z1))... 
                        -sin(x1)-3*b*cos(x1))/(3*(1+9*b^2))-

exp(b*(y1-x1))*cos(y1)*(exp(2*b*(z1-x1))-1)/(4*b)); 
                l1_rx1=cos(x1)-exp(b*(z1-x1))*cos(z1); 
                

f5o=1/2*(rx1_rx2^2)*l1_rx1*sin(x1)*(exp(b*(y_range(l)-

x_range(k)))*cos(y_range(l))+1/3*rx1_rx2*(2*(cos(x1))-l1_rx1)-

rx1_rx2*exp(b*(y1-x1))*cos(y1)); 
                f6o=1/2*(rx1_rx2^2)*((exp(b*(z1-x1))*sin(z1)-

sin(x1)))*exp(b*(z1-x1))*cos(z1)*(exp(b*(y_range(l)-

x_range(k)))*cos(y_range(l))+... 
                                        rx1_rx2*(2/3*exp(b*(z1-

x1))*cos(z1)-exp(b*(y1-x1))*cos(y1))); 
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               %calculation of the planar part 
                       if way==3 
                       f1pl=1/2*(exp(b*(z1-

x1))*cos(z1)+(exp(b*(z1-x1))*sin(z1)-

sin(x1))*tan(t))/cos(theta)*exp(b*(z1-x1))*sin(z1-theta)*... 
                                    

((rx1_rx2^3)*(2/3*exp(b*(z1-x1))*cos(z1)+1/3*(exp(b*(z1-

x1))*sin(z1)-sin(x1))*tan(t)... 
                                        -exp(b*(y1-

x1))*cos(y1))+(rx1_rx2^2)*exp(b*(y_range(l)-

x_range(k)))*cos(y_range(l)));                         
                       f2pl=1/2*(exp(b*(z1-x1))*sin(z1)-

sin(x1))*tan(t)*sin(x1)*((rx1_rx2^3)*(2/3*exp(b*(z1-

x1))*cos(z1)+1/3*(exp(b*(z1-x1))*sin(z1)-sin(x1))*tan(t)... 
                                    -(exp(b*(y1-

x1)))*cos(y1))+(rx1_rx2^2)*exp(b*(y_range(l)-

x_range(k)))*cos(y_range(l))); 
                       f3pl=1/2*(rx1_rx2^2)*((exp(b*(z1-

x1))*sin(z1)-sin(x1)))*exp(b*(z1-

x1))*cos(z1)*(exp(b*(y_range(l)-

x_range(k)))*cos(y_range(l))+... 
                                                

rx1_rx2*(2/3*exp(b*(z1-x1))*cos(z1)-exp(b*(y1-x1))*cos(y1))); 
                       fpl=tan_theta*(f1pl-f2pl-f3pl); 
                     end 
% -------------------------------------------------------------

---------- 
% Crack formation 
% -------------------------------------------------------------

----------                      
                if formation==0                 
                        fcf=0; 
                    elseif formation==1 
                     %energy for crack formation with cut off 
                          

tan_theta_c=sin(x_range(k))/((exp(b*(z_range(j)-

x_range(k))))*cos(z_range(j))); 
                          theta_c=atan(tan_theta_c);  
                          if theta_c<phi 
                              

fcf=50000000000000000000000000000; 
                          else 
                             int_fcf = integral(@(theta) (1-

sin(theta))./(cos(theta)).^3,theta_c,z_range(j)); 
                             

fcf=((sin(x_range(k))/tan_theta_c)^2)*(cos(phi)/(1-

sin(phi)))*int_fcf*(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))-sin(x_range(k))); 
                          end 
                     elseif formation==3 
                     %energy for crack formation with limited 

tensile 
                     %strength (ft=0.2c) 
                          

tan_theta_c=sin(x_range(k))/((exp(b*(z_range(j)-

x_range(k))))*cos(z_range(j))); 
                          theta_c=atan(tan_theta_c);  
                          if theta_c<phi 
                              

fcf=50000000000000000000000000000; 
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                          else 
                             int_fcf1 = integral(@(theta) (1-

sin(theta))./(cos(theta)).^3,theta_c,z_range(j)); 
                             int_fcf2 = integral(@(theta) 

(sin(theta)-sin(phi))./(cos(theta)).^3,theta_c,z_range(j)); 
                             

fcf=((sin(x_range(k))/tan_theta_c)^2)*((cos(phi)/(1-

sin(phi)))*int_fcf1+0.4*(cos(phi)/((1-

sin(phi).^2)))*int_fcf2)... 
                                    *(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))-sin(x_range(k))); 
                          end 
                      elseif formation==2 
                     %energy for crack formation with limited 

tensile 
                     %strength (ft=0.5c) 
                          

tan_theta_c=sin(x_range(k))/((exp(b*(z_range(j)-

x_range(k))))*cos(z_range(j))); 
                          theta_c=atan(tan_theta_c);  
                          if theta_c<phi 
                              

fcf=50000000000000000000000000000; 
                          else 
                             int_fcf1 = integral(@(theta) (1-

sin(theta))./(cos(theta)).^3,theta_c,z_range(j)); 
                             int_fcf2 = integral(@(theta) 

(sin(theta)-sin(phi))./(cos(theta)).^3,theta_c,z_range(j)); 
                             

fcf=((sin(x_range(k))/tan_theta_c)^2)*((cos(phi)/(1-

sin(phi)))*int_fcf1+(cos(phi)/((1-sin(phi).^2)))*int_fcf2)... 
                                    *(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))-sin(x_range(k))); 
                          end 
                    end 
% -------------------------------------------------------------

---------- 
% Horizontal seismic action 
% -------------------------------------------------------------

----------     
              %rate of external work done by the inertia force 

due to soil weight (seismic)       
                f1n_h=(exp(3*b*(y_range(l)-

x_range(k)))*(3*b*sin(y_range(l))-cos(y_range(l)))-

3*b*sin(x_range(k))+cos(x_range(k)))/(3*(1+9*b^2)); 
                f2n_h=1/3*L2_rx2*(sin(x_range(k)))^2;  
                f3n_h=1/6*(sin(x_range(k))+(exp(b*(y_range(l)-

x_range(k))))*(sin(y_range(l))))*((exp(b*(y_range(l)-

x_range(k))))*(sin(y_range(l)))-

sin(x_range(k)))*(exp(b*(y_range(l)-

x_range(k))))*(cos(y_range(l))); 
                f4n_h=(exp(3*b*(z_range(j)-

x_range(k)))*(3*b*sin(z_range(j))-cos(z_range(j)))-

3*b*sin(x_range(k))+cos(x_range(k)))/(3*(1+9*b^2)); 
                f5n_h=1/3*l2_rx2*(sin(x_range(k)))^2; 
                f6n_h=1/6*exp(b*(z_range(j)-

x_range(k)))*cos(z_range(j))*(exp(2*b*(z_range(j)-

x_range(k)))*sin(z_range(j))^2-sin(x_range(k))^2); 

                 
                f1o_h=rx1_rx2^2*exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))*(exp(2*b*(y1-x1))-
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1)/(4*b)+rx1_rx2^3*((exp(3*b*(y1-x1))*(3*b*sin(y1)-cos(y1))-

3*b*sin(x1)+cos(x1))/(3*(1+9*b^2))... 
                    -exp(b*(y1-x1))*sin(y1)*(exp(2*b*(y1-x1))-

1)/(4*b)); 
                

f2o_h=1/2*rx1_rx2^2*L1_rx1*sin(x1)*(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))+rx1_rx2*((2/3)*sin(x1)-exp(b*(y1-

x1))*sin(y1))); 
                f3o_h=1/2*rx1_rx2^2*(exp(b*(y1-x1))*sin(y1)-

sin(x1))*exp(b*(y1-x1))*cos(y1)*(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))+... 
                    rx1_rx2*((1/3)*sin(x1)-(2/3)*exp(b*(y1-

x1))*sin(y1))); 
                f4o_h=rx1_rx2^2*exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))*(exp(2*b*(z1-x1))-

1)/(4*b)+rx1_rx2^3*((exp(3*b*(z1-x1))*(3*b*sin(z1)-cos(z1))-

3*b*sin(x1)+cos(x1))/(3*(1+9*b^2))... 
                    -exp(b*(y1-x1))*sin(y1)*(exp(2*b*(z1-x1))-

1)/(4*b)); 
                

f5o_h=1/2*rx1_rx2^2*l1_rx1*sin(x1)*(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))+rx1_rx2*((2/3)*sin(x1)-exp(b*(y1-

x1))*sin(y1))); 
                f6o_h=1/2*rx1_rx2^2*(exp(b*(z1-x1))*sin(z1)-

sin(x1))*exp(b*(z1-x1))*cos(z1)*(exp(b*(y_range(l)-

x_range(k)))*sin(y_range(l))+... 
                    rx1_rx2*((1/3)*(sin(x1)+exp(b*(z1-

x1))*sin(z1))-exp(b*(y1-x1))*sin(y1))); 
% -------------------------------------------------------------

---------- 
% Energy dissipation due to water pore pressure 
% -------------------------------------------------------------

---------- 
         if ru==0 
              fw=0; 
         else 
            %work of water along the crack 
             z0=exp(b*(z_range(j)-x_range(k)))*sin(z_range(j))- 

sin(x_range(k)); 
             tan_theta_ru=(exp(b*(z_range(j)-

x_range(k)))*sin(z_range(j))-

(gamma/gamma_w)*ru*z0)./(exp(b*(z_range(j)-

x_range(k)))*cos(z_range(j))); 
             theta_ru=atan(tan_theta_ru); 
             int_z0=integral(@(theta_z0) (((exp(b*(z_range(j)-

x_range(k))).*cos(z_range(j)).*tan(theta_z0)-

sin(x_range(k))).*... 
                                            

(exp(2*b*(z_range(j)-

x_range(k)))*(cos(z_range(j))).^2*tan(theta_z0))./... 
                                               

(cos(theta_z0)).^2)),theta_ru,z_range(j)); 

                           
          %work of pore pressure along the logspiral part 
          %limit to calculate z1         
                theta1=0; 
                x01=(x_range(k)+y_range(l))/2; 
                options=optimset('TolX',1e-18); 
                [theta1 exitflag output] = 

fzero(@(theta1)(exp(b*(theta1-x_range(k))).*cos(theta1)-

(cos(x_range(k)))+(L2_rx2-L1_rx1*rx1_rx2)),x01,options); 
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                    if theta1 < z_range(j) | theta1 > 

y_range(l)  
                            fw=5000000; 
                             funI(k,l,j)=50000; 
                        else 
                  %distance between the failure line from the 

slope surface(depth for water pore pressure calculations) 
                  %z1 for distance from the horizontal part of 

the slope(crest)and 
                  %z2 for distance from the inclined part  
                    int_z1=integral(@(theta_z1) 

((exp(b*(theta_z1-x_range(k))).*sin(theta_z1)-

sin(x_range(k))).*... 
                                                   

(exp(2*b*(theta_z1-x_range(k)))).*b),z_range(j),theta1); 
                    tan_beta1=(exp(b*(y1-x1))*sin(y1)-

sin(x1))/(cos(x1)-exp(b*(y1-x1))*cos(y1));                            
                    int_z2 = 

integral(@(theta_z2)(0.7*(exp(b*(theta_z2-

x_range(k))).*sin(theta_z2)-sin(y_range(l)).*... 
                                                    

exp(b*(y_range(l)-x_range(k)))+(exp(b*(theta_z2-

x_range(k))).*cos(theta_z2)-cos(y_range(l))*... 
                                                        

exp(b*(y_range(l)-x_range(k)))).*tan_beta1).*... 
                                                            

(exp(2*b*(theta_z2-x_range(k))))*b),theta1,y_range(l)); 
                 %total energy dissipated along the failure 

line due to the water pore pressure        
                     fw=int_z0+int_z1+int_z2;  
                    end 
         end             
 %-------------------------------------------------------------

---------------------------------------------------------------

-------------------------------------- 

          
            if seismic==1 
                 %stability number without removing the 

vertical mass from the new slope front 
                if way==1 
                    funvalue(k,l,j)=(g+fcf)/((1+K_v)*(f1n-f2n-

f3n-f1o+f2o+f3o-f4n+f5n+f6n+f4o-f5o-f6o)+K_h*(f1n_h-f2n_h-

f3n_h-f1o_h+f2o_h+f3o_h-f4n_h+f5n_h+f6n_h+f4o_h-f5o_h-

f6o_h)+ru*fw); 
                 %stability number removing the trapezoid mass 

from the new slope front 
                elseif way==2 
                    funvalue(k,l,j)=(g+fcf)/((1+K_v)*(f1n-f2n-

f3n-f1o+f2o+f3o-f4n+f5n+f6n)+K_h*(f1n_h-f2n_h-f3n_h-

f1o_h+f2o_h+f3o_h-f4n_h+f5n_h+f6n_h)+ru*fw); 
                 %stability number using the whole logspiral as 

the new slope face  
                elseif way==3 
                    funvalue(k,l,j)=(g+fcf)/((1+K_v)*(f1n-f2n-

f3n-f1o+f2o+f3o-f4n+f5n+f6n+f4o-f5o-f6o-fpl)+K_h*(f1n_h-f2n_h-

f3n_h-f1o_h+f2o_h+f3o_h-f4n_h+f5n_h+f6n_h+f4o_h-f5o_h-f6o_h-

fpl)+ru*fw); 
                end 
            elseif seismic==2 
                    funvalue(k,l,j)=(cgH*g-(f1n-f2n-f3n-

f1o+f2o+f3o-f4n+f5n+f6n+f4o-f5o-f6o))/(lamda*(f1n-f2n-f3n-
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f1o+f2o+f3o-f4n+f5n+f6n+f4o-f5o-f6o)+(f1n_h-f2n_h-f3n_h-

f1o_h+f2o_h+f3o_h-f4n_h+f5n_h+f6n_h+f4o_h-f5o_h-f6o_h)); %K_y 
            end 
           if seismic==1      
                if (funvalue(k,l,j)< 1)  
                    funM(k,l,j)=Inf; 
                elseif (funvalue(k,l,j) > 50000.0) 
                    funM(k,l,j)=Inf;     
                else 
                    funM(k,l,j)=funvalue(k,l,j); 
                end 
            elseif seismic==2 
                if (funvalue(k,l,j) < 0)  
                    funM(k,l,j)=Inf; 
                elseif (funvalue(k,l,j)> 1) 
                    funM(k,l,j)=Inf;     
                else 
                    funM(k,l,j)=funvalue(k,l,j); 
                end 
           end 
          end 
        end 
    end 
end 

  
M_=1000; 
i=1; 
for k=2:(n3-1) 
    for l=2:(n4-1) 
        for j=2:(n5-1)                     
               if funM(k,l,j)<M_; 
                   if seismic==1 
                   M_=funM(k,l,j); 
                   fK_y=K_h; 
                   fval=M_; 
                   X(1)=x_range(k); 
                   X(2)=y_range(l); 
                   X(3)=z_range(j); 
                   elseif seismic==2 
                   M_=funM(k,l,j); 
                   fK_y=M_; 
                   X(1)=x_range(k); 
                   X(2)=y_range(l); 
                   X(3)=z_range(j); 
                   end 
                   i=i+1; 
               end    
        end     
    end 
end 

  
if i==1 %no minimum found 
    M_=-1; 
    X(1)=NaN; 
    X(2)=NaN; 
    X(3)=NaN; 
else 
end  
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