
http://wrap.warwick.ac.uk

Original citation:
He, Ligang, Jarvis, Stephen A., 1970-, Spooner, Daniel P. and Nudd, G. R. (2003)
Performance-based dynamic scheduling of hybrid real-time applications on a cluster of
heterogeneous workstations. In: Kosch, H. and Boszormenyi, L. and Hellwagner, H.,
(eds.) Euro-Par 2003 Parallel Processing. Lecture Notes in Computer Science, Volume
2790 . Springer Berlin Heidelberg, pp. 195-200. ISBN 9783540407881

Permanent WRAP url:
http://wrap.warwick.ac.uk/9211

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

Publisher’s statement:
“© 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see
the ‘permanent WRAP url’ above for details on accessing the published version and note
that access may require a subscription.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk

http://wrap.warwick.ac.uk/
http://wrap.warwick.ac.uk/9211
mailto:publications@warwick.ac.uk

Performance-based Dynamic Scheduling of Hybrid Real-time
Applications on a Cluster of Heterogeneous Workstations1

Ligang He, Stephen A. Jarvis, Daniel P. Spooner and Graham R. Nudd

Department of Computer Science, University of Warwick
Coventry, United Kingdom CV4 7AL

{ligang.he, saj, dps, grn}@dcs.warwick.ac.uk

Abstract. It is assumed in this paper that periodic real-time applications are
being run on a cluster of heterogeneous workstations, and new non-periodic
real-time applications arrive at the system dynamically. In the dynamic sched-
uling scheme presented in this paper, the new applications are scheduled in such
a way that they utilize spare capabilities left by existing periodic applications in
the cluster. An admission control is introduced so that new applications are re-
jected by the system if their deadlines cannot be met. The effectiveness of the
proposed scheduling scheme has been evaluated using simulations; experiment
results show that the system utilization is significantly improved.

1. Introduction

In cluster environments the nodes are rarely fully utilized [1]. In order to make use of
the spare computational resources, scheduling schemes are needed to judicially deal
with the hybrid execution of existing and newly arriving tasks [2]. The work in this
paper addresses the issue. This work has two major contributions. First, an optimal
approach for modeling the spare capabilities of clusters is presented. Second, based on
the modeling approach, a dynamic scheduling framework is proposed to allocate newly
arriving independent non-periodic real-time applications (NPA) to a heterogeneous
cluster on which periodic real-time applications (PRA) are running.

2. System Modeling

A cluster of heterogeneous workstations is modeled as P = {p1, p2... pm}, where pi is an
autonomous workstation [4]. Each workstation pi is weighted wi, which represents the
time it takes to perform one unit of computation. Each workstation has a set of PRAs.
On a workstation with n PRAs, the i-th periodic real-time application PRAi (1≤i≤n) is
defined as (Si, Ci, Ti), where Si is the PRAi’s start time, Ci is its execution time (in time

1 This work is sponsored in part by grants from the NASA AMES Research Center (adminis-

trated by USARDSG, contract no. N68171-01-C-9012), the EPSRC (contract no.
GR/R47424/01) and the EPSRC e-Science Core Programme (contract no. GR/S03058/01).

units) on the workstation, and Ti is the PRAi’s period. An execution of PRAi is called a
periodic application instance (PAI) and the j-th execution is denoted as PAIij. PAIij is
ready at time (j-1)*Ti, termed the ready time (Rij, Ri1=Si), and must be complete before
j* Ti, termed the deadline (Dij). All PAIs must meet their deadlines and are scheduled
using Early Deadline First (EDF) policy. The i-th arriving NPA, NPAi, is modeled as
(ai, cvi, di), where ai is NPAi’s arrival time, cvi is its computational volume and di is its
deadline. The execution time of NPAi on workstation k is denoted as ck(cvi).

Pm

P 2

P 1

Local Schedule Queue
(for both NPA and PRA)

G lobal Schedule
Queue (for NPA)

•
•
•

G lobal
Scheduler

Local
Scheduler

Local
Scheduler

Local
Scheduler

PACE

Fig. 1. The scheduler model in the heterogeneous cluster environment

Fig.1 depicts the scheduler model in the heterogeneous cluster. It is assumed that the
PRAs are running in the workstations. All NPAs arrive at the global scheduler, where
they wait in a global schedule queue (GSQ). Each NPA from the GSQ is globally
scheduled and, if accepted, sent to the local scheduler of the designated workstation. At
each workstation, the local scheduler receives the new NPAs and inserts them into a
local schedule queue (LSQ) in order of increasing deadlines. The local scheduler
schedules both NPAs and PRAs’ PAIs in the LSQ uniformly using EDF. The local
schedule is preemptive. In this scheduler model, PACE accepts NPAs, predicts their
execution time on each workstation in real-time and returns the predicted time to the
global scheduler [3][5].

3. Scheduling Analysis

A function constructed of idle time units, denoted as Si(t), is defined in Equ.1. Pij is the
sum of execution time of the PAIs that must be completed before Dij. Pij can be cal-
culated as Equ.2, where, Sk is PRAk’s start time.

Si(t)= Dij-Pij Di(j-1)<t≤Dij, 1≤ i≤n, j≥1 Letting Di0=0 (1)

 ∑
=

=
n

k

kkij CTP
1

*/α , where,
kij

kijkij

SD
SDSD

≤
>



 −

=
0

α
(2)

S(t)=min{Si(t)|1≤i≤n} (3)

In the function Si(t), the time points, except zero, at which the function value in-
creases, are called Jumping Time Points (JTP). If the number of time units that are used
to run NPAs between time 0 and any JTP is less than Si(JTP), the deadlines of all PAIs
of PRAi can be guaranteed. Suppose n PRAs (PRA1..., PRAi..., PRAn) are running on the

workstation, then the function of idle time units, denoted as S(t), for the PRA set can be
derived from the individual Si(t) (1<i<n), shown in Equ.3. S(t) suggests that idle time
units of S(JTP) are available in [0, JTP].

If a NPA arrives and starts running at any time t0, the remaining idle time slots in [t0,
JTP], denoted as S(t0, JTP), is calculated in Theorem 1. Some additional notation is
introduced to facilitate the description. PA(t0) is a set of PAIs whose deadlines are no
more than time t0, defined in Equ.4. LA(t0) is a set of PAIs whose deadlines are more
than t0, but whose ready times are less than t0, defined in Equ.5. P(t0) and L(t0) are the
number of time units in [0, t0] that are used for running the PAIs in PA(t0) and LA(t0),
respectively. P(t0) can be calculated as Equ.6. Let JTP1, JTP2..., JTPk be a sequence of
JTPs after t0 in S(t) and JTP1 the nearest to t0. LAk(t0), defined in Equ.7, is a set of PAIs,
whose deadlines are more than t0, but no more than JTPk. Lk(t0) is the number of time
units in [0, t0] that are used to run the PAIs in LAk(t0).

PA(t0)={PAIij| Dij≤t0} (4)

LA(t0)={PAIij | Rij<t0<Dij} (5)

 ∑
=

=
n

k

kk CTtP
1

0 */)(α , where
k

kk

St
StSt

≤
>



 −

=
0

00

0
α

(6)

LAk(t0)={ PAIij | Rij<t0<Dij and Dij≤JTPk} (7)

Theorem 1. S(JTPk) and S(t0, JTPk) (0<t0<JTPk) satisfy the following equation:

)()()(),(0000 tLtPtJTPSJTPtS kkk ++−= (8)

Proof: PAIs whose deadlines are less than JTPk must be completed in [0, JTPk]. Their
total workload is P(JTPk) (see Equ.4 and 6). The workload of P(t0) and)(0tLk has to

been finished before t0, so the workload of P(JTPk)-P(t0)-)(0tLk must be done in [t0,
JTPk]. Hence, the maximal number of time units that can be spared to run NPAs in [t0,
JTPk], i.e. S(t0, JTPk), is (JTPk-t0)-(P(JTPk)-P(t0)-)(0tLk). Thus, the following exists:

S(t0, JTPk) = JTPk-P(JTPk)-t0+P(t0)+)(0tLk . In addition, JTPk-P(JTPk)=S(JTPk), and
therefore Equ.8 also holds. ¦

Theorem 2 reveals the distribution property of the remaining time units before t0

after running PAIs in PA(t0) as well as NPAs.),(0
0 ttI s

t
p represents the number of time

units left in [ts, t0] after executing PAIs in PA(t0);),(0,
0 tfI t

AP represents the number of

time units left in [f, t0] after executing both PAIs in PA(t0) and also NPAs.
Theorem 2. Let the last NPA before t0 be completed at time f, then there exists such a
time point ts in [f, t0], that a) there are no idle slots in [f, ts], b) either PAIs in PA(t0) retain
the same execution pattern in [ts, t0] as the case when no NPAs are run before t0, or all
PAIs in PA(t0) are completed before ts, and c) ts can be determined by Equ.9.

),(),(0
0
,0

0 tfIttI t
APs

t
p = (9)

Proof: The execution of the last NPA may delay the execution of PAIs in PA(t0). The
delayed PAIs may delay other PAIs in PA(t0) further. The delay chain will however
cease when the delayed PAIs no longer delay other PAIs, or all the PAIs in PA(t0) are
complete. Since all PAIs PA(t0) must be complete before t0, such a time point, ts, must
exist that satisfies Theorem 2.2. Since there are unfinished workloads before ts, Theo-
rem 2.1 also exists. Equ. 9 is a direct derivation from Theorem 2.1 and 2.2.¦

Since PAIs in PA(t0) running in [ts, t0] retain the original execution pattern (as though
there were no preceding NPAs), it is possible to calculate the remaining time units in [ts,
t0] after running these PAIs. Consequently, Lk(t0) in Equ.8 can be calculated.

4 Scheduling Algorithms

If a NPA starts execution at t0, using Equ.8, the global scheduler can calculate how
many idle time units there are between t0 and any JTP following t0, which can be used
to run the NPA. Therefore, it can be determined before which JTP the NPA can be
completed. Consequently, the NPA's finish time in any workstation pj can be deter-
mined, which is shown in Algorithm 1. If the NPA's finish time on any workstation in
the heterogeneous cluster is greater than its deadline, the NPA will be rejected. The
admission control is shown in Algorithm 2. When more than one workstation can sat-
isfy the NPA’s deadline, the system selects the workstation on which the NPA will have
the earliest finish time. After deciding which workstation the NPA should be scheduled
to, the global scheduler re-sets the NPA’s deadline to its finish time on that workstation
and sends the NPA to it. The global dynamic scheduling algorithm is shown in Algo-
rithm 3. When the local scheduler receives the new allocated NPAs or the PAIs are
ready, it inserts them into the LSQ. Each time a task (NPA or PAI) is fetched by the
local scheduler from the head of the LSQ and the task is then executed. As the modeling
analysis suggests in Section 3, a NPA cannot be finished earlier in the workstation on
which the new task is scheduled. Otherwise, some PAI’s deadline on that workstation
must be missed. In this sense, the modeling approach is optimal.

Algorithm 1 Calculating the finish time of NPAi starting at
t0 in workstation pj (denoted as ftj(NPAi))
1. cj(cvi)←NPAi’s execution time;
2. Calculate P(t0); Get ts;
3. Get the first JTP after t0;
4. Call Algorithm 1 to calculate corresponding Lk(t0);
5. Calculate S(t0, JTP) using Equ.8;
6. while (S(t0, JTP)<cj(cvi))
7. OJTP←JTP; Get the next JTP;
8. Calculate S(t0, JTP) by Equ.8;
9.end while
10.ftj(NPAi)←OJTP+cj(cvi)-S(t0, OJTP);

Algorithm 2 Admission Control
1. PC←Φ when a new NPAi arrives;

2. for each workstation pj (1≤j≤m)do
3. call Algorithm 2 to calculate ftj(NPAi);
4. if (ftj(NPAi)≤di) then PC=PC∪{pj};
5. end for
6. if PC=Φ then reject NPAi;
7. else accept NPAi;

Algorithm 3 the Global dynamic scheduling algorithm
1. if global schedule queue GSQ=Φ then
 wait until a new NPA arrives;
2. else
3. get a NPA from the head of GSQ;
4. call Algorithm 3 to judge if accept or reject it;
5. if accept the NPA then
6. select workstation pj by response-first policy;
7. set the NPA’s deadline to be its finish time;
8. Dispatch the NPA to workstation pj;
9. end if
10. end if
11. go to step 1;

5. Performance Evaluation

10

30

50

70

90

2 6 10 14 18 22
arrival rate(10-2)

ART cluster
M/M/8

GR

10

30

50

70

90

110

5 10 15 20 25 30

arrival rate(10-2)

10% 40%
70% M/M/8

SU

10

30

50

70

90

110

5 10 15 20 25 30
arrival rate(10-2)

10% 40%
70% M/M/8

 (a) (b) (c)

Fig. 2. (a) Comparison of ART of NPAs between our scheduling scheme and an M/M/8 queuing
model, 10% PRA, (b) Effect of workload on GR, (c) Effect of workload on SU,
MAX_DR/MIN_DR=1.0/0, MAX_CV/MIN_CV=25/5, MAX_W/MIN_W=4/1

The performance of the global scheduling algorithm is also evaluated through exten-
sive simulations. Workstation pi’s weight wi is chosen uniformly between MAX_W and
MIN_W. NPAs arrive at the cluster following a Poisson process with the arrival rate of
λ. The NPAi’s computational volume cvi is uniformly chosen between MAX_CV and
MIN_CV, and the NPAi’s deadline is chosen as follows: arrival-time+min{ck(cvi)}+cvi*

nw *dr (1≤k≤m), where, nw is the geometric mean of the weight of all workstations,
and dr is chosen uniformly between MAX_DR and MIN_DR. Three levels of PRA

workload, light, medium and heavy, are generated for each workstation, which pro-
vides 10%, 40% and 70% system utilization, respectively. Three metrics are measured
in the simulation experiments: Guarantee Ratio (GR), System Utilization (SU) and
Average Response Time (ART). The GR is defined as the percentage of jobs guaranteed
to meet their deadlines. The SU of a cluster is defined as the fraction of busy time for
running tasks to the total time available in the cluster. A NPA’s Response Time is de-
fined as the difference between its arrival time and the finish time. The ART is the
average response time for all NPAs.

Fig.2.a displays the ART of NPAs as a function of λ in a cluster of 8 workstations
each running 10% PRA workload. The Guarantee Ratio (GR) of NPAs is fixed to be
1.0. An M/M/8 queuing model is used to compute the ideal bound for the ART of the
same NPA workload in the absence of PRAs. As can be observed from Fig.2.a, the ART
obtained by this scheduling scheme is very close to the ideal bound except that λ is
greater than 0.18. This suggests that the scheduling scheme can make full use of the idle
slots and new NPAs are completed at the earliest possible time.

Fig.2.b and Fig.2.c illustrate the impact of NPA and PRA workload on GR and SU,
respectively. It can be observed from Fig.2.b that GR decreases as λ increases or PRA
workload increases, as would be expected. A further observation is that the curve for
10% PRA, as well as the curve for 40% PRA when λ is less than 0.1, is very close to that
for the M/M/8 queuing model; which again shows the effectiveness of the scheduling
scheme in utilizing idle capacities. Fig.2.c demonstrates that SU increases as λ in-
creases. This figure shows that utilization of the cluster is significantly improved
compared with the original PRA workload.

6. Conclusions

An optimal modeling approach for spare capabilities in heterogeneous clusters is pre-
sented in this paper. Furthermore, a dynamic scheduling scheme is proposed to allocate
newly arriving real-time applications on the cluster by utilizing the modeling results.

References

1. K. Hwang and Z. Xu.: Scalable Parallel Computing: Technology, Architecture, Programming.
McGraw Hill, 1998.

2. J. P. Lehoczky and S. Ramos-Thuel.: An Optimal Algorithm for Scheduling Soft-Aperiodic
Tasks in Fixed-Priority Preemptive Systems. Proc. of Real-Time Systems Symposium, 1992,
pp.110-123.

3. G.R. Nudd, D.J.Kerbyson et al.: PACE-a toolset for the performance prediction of parallel and
distributed systems. International Journal of High Performance Computing Applications,
Special Issues on Performance Modelling, 14(3), 2000, 228-251.

4. X Qin and H Jiang.: Dynamic, Reliability-driven Scheduling of Parallel Real-time Jobs in
Heterogeneous Systems. In Proceedings of the 30th International Conference on Parallel
Processing (ICPP 2001), Valencia, Spain, September 3-7, 2001.

5. D.P. Spooner, SA. Jarvis, J. Cao, S. Saini and GR. Nudd.: Local Grid Scheduling Techniques
using Performance Prediction. IEE Proceedings-Computers and Digital Techniques, 2003.

