Original citation: He, Ligang, Jarvis, Stephen A., 1970-, Spooner, Daniel P. and Nudd, G. R. (2003) Performance-based dynamic scheduling of hybrid real-time applications on a cluster of heterogeneous workstations. In: Kosch, H. and Boszormenyi, L. and Hellwagner, H., (eds.) Euro-Par 2003 Parallel Processing. Lecture Notes in Computer Science, Volume 2790. Springer Berlin Heidelberg, pp. 195-200. ISBN 9783540407881 #### Permanent WRAP url: http://wrap.warwick.ac.uk/9211 # Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. ## **Publisher's statement:** "© 2003 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works." #### A note on versions: The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher's version. Please see the 'permanent WRAP url' above for details on accessing the published version and note that access may require a subscription. For more information, please contact the WRAP Team at: publications@warwick.ac.uk http://wrap.warwick.ac.uk # Performance-based Dynamic Scheduling of Hybrid Real-time Applications on a Cluster of Heterogeneous Workstations¹ Ligang He, Stephen A. Jarvis, Daniel P. Spooner and Graham R. Nudd Department of Computer Science, University of Warwick Coventry, United Kingdom CV4 7AL {ligang.he, saj, dps, grn}@dcs.warwick.ac.uk **Abstract.** It is assumed in this paper that periodic real-time applications are being run on a cluster of heterogeneous workstations, and new non-periodic real-time applications arrive at the system dynamically. In the dynamic scheduling scheme presented in this paper, the new applications are scheduled in such a way that they utilize spare capabilities left by existing periodic applications in the cluster. An admission control is introduced so that new applications are rejected by the system if their deadlines cannot be met. The effectiveness of the proposed scheduling scheme has been evaluated using simulations; experiment results show that the system utilization is significantly improved. # 1. Introduction In cluster environments the nodes are rarely fully utilized [1]. In order to make use of the spare computational resources, scheduling schemes are needed to judicially deal with the hybrid execution of existing and newly arriving tasks [2]. The work in this paper addresses the issue. This work has two major contributions. First, an optimal approach for modeling the spare capabilities of clusters is presented. Second, based on the modeling approach, a dynamic scheduling framework is proposed to allocate newly arriving independent *non-periodic real-time applications* (*NPA*) to a heterogeneous cluster on which *periodic real-time applications* (*PRA*) are running. ## 2. System Modeling A cluster of heterogeneous workstations is modeled as $P = \{p_1, p_2... p_m\}$, where p_i is an autonomous workstation [4]. Each workstation p_i is weighted w_i , which represents the time it takes to perform one unit of computation. Each workstation has a set of PRAs. On a workstation with n PRAs, the i-th periodic real-time application PRA_i ($1 \le i \le n$) is defined as (S_i, C_i, T_i) , where S_i is the PRA_i 's start time, C_i is its execution time (in time ¹ This work is sponsored in part by grants from the NASA AMES Research Center (administrated by USARDSG, contract no. N68171-01-C-9012), the EPSRC (contract no. GR/R47424/01) and the EPSRC e-Science Core Programme (contract no. GR/S03058/01). *units*) on the workstation, and T_i is the PRA_i 's period. An execution of PRA_i is called a *periodic application instance* (PAI) and the j-th execution is denoted as PAI_{ij} . PAI_{ij} is ready at time $(j-I)*T_i$, termed the ready time $(R_{ij}, R_{iI}=S_i)$, and must be complete before $j*T_i$, termed the deadline (D_{ij}) . All PAIs must meet their deadlines and are scheduled using Early Deadline First (EDF) policy. The i-th arriving NPA, NPA_i , is modeled as (a_i, cv_i, d_i) , where a_i is NPA_i 's arrival time, cv_i is its computational volume and d_i is its deadline. The execution time of NPA_i on workstation k is denoted as $c^k(cv_i)$. Fig. 1. The scheduler model in the heterogeneous cluster environment Fig.1 depicts the scheduler model in the heterogeneous cluster. It is assumed that the *PRAs* are running in the workstations. All *NPAs* arrive at the global scheduler, where they wait in a *global schedule queue* (*GSQ*). Each *NPA* from the *GSQ* is globally scheduled and, if accepted, sent to the *local scheduler* of the designated workstation. At each workstation, the *local scheduler* receives the new *NPAs* and inserts them into a *local schedule queue* (*LSQ*) in order of increasing deadlines. The local scheduler schedules both *NPAs* and *PRAs' PAIs* in the *LSQ* uniformly using *EDF*. The local schedule is preemptive. In this scheduler model, *PACE* accepts *NPAs*, predicts their execution time on each workstation in real-time and returns the predicted time to the global scheduler [3][5]. # 3. Scheduling Analysis A function constructed of idle time units, denoted as $S_i(t)$, is defined in Equ.1. P_{ij} is the sum of execution time of the PAIs that must be completed before D_{ij} . P_{ij} can be calculated as Equ.2, where, S_k is PRA_k 's start time. $$S_i(t) = D_{ij} - P_{ij} \quad D_{i(j-1)} < t \mathfrak{L} D_{ij}, \ 1 \mathfrak{L} i \mathfrak{L} n, \ j^3 1 \text{ Letting } D_{i0} = 0$$ (1) $$P_{ij} = \sum_{k=1}^{n} \left[\mathbf{a} / T_k \right] * C_k, \text{ where, } \mathbf{a} = \begin{cases} D_{ij} - S_k & D_{ij} > S_k \\ 0 & D_{ij} \leq S_k \end{cases}$$ (2) $$S(t) = min\{S_i(t) | 1 \operatorname{fifn}\}$$ (3) In the function $S_i(t)$, the time points, except zero, at which the function value increases, are called *Jumping Time Points (JTP)*. If the number of time units that are used to run *NPA*s between time 0 and any *JTP* is less than $S_i(JTP)$, the deadlines of all *PAI*s of *PRA*_i can be guaranteed. Suppose n *PRAs* (PRA_1 ..., PRA_n) are running on the workstation, then the function of idle time units, denoted as S(t), for the PRA set can be derived from the individual $S_i(t)$ (1 < i < n), shown in Equ.3. S(t) suggests that idle time units of S(JTP) are available in [0, JTP]. If a *NPA* arrives and starts running at any time t_0 , the remaining idle time slots in $[t_0, JTP]$, denoted as $S(t_0, JTP)$, is calculated in Theorem 1. Some additional notation is introduced to facilitate the description. $PA(t_0)$ is a set of PAIs whose deadlines are no more than time t_0 , defined in Equ.4. $LA(t_0)$ is a set of PAIs whose deadlines are more than t_0 , but whose ready times are less than t_0 , defined in Equ.5. $P(t_0)$ and $L(t_0)$ are the number of time units in $[0, t_0]$ that are used for running the PAIs in $PA(t_0)$ and $LA(t_0)$, respectively. $P(t_0)$ can be calculated as Equ.6. Let JTP_1 , JTP_2 ..., JTP_k be a sequence of JTPs after t_0 in S(t) and JTP_1 the nearest to t_0 . $LA_k(t_0)$, defined in Equ.7, is a set of PAIs, whose deadlines are more than t_0 , but no more than JTP_k . $L_k(t_0)$ is the number of time units in $[0, t_0]$ that are used to run the PAIs in $LA_k(t_0)$. $$PA(t_0) = \{PAI_{ij} \mid D_{ij} \le t_0\} \tag{4}$$ $$LA(t_0) = \{PAI_{ij} \mid R_{ij} < t_0 < D_{ij}\}$$ (5) $$P(t_0) = \sum_{k=1}^{n} \left[\mathbf{a} / T_k \right] * C_k \text{, where } \mathbf{a} = \begin{cases} t_0 - S_k & t_0 > S_k \\ 0 & t_0 \le S_k \end{cases}$$ (6) $$LA_k(t_0) = \{ PAI_{ij} \mid R_{ij} < t_0 < D_{ij} \text{ and } D_{ij} \pounds JTP_k \}$$ (7) **Theorem 1.** $S(JTP_k)$ and $S(t_0, JTP_k)$ (0< t_0 < JTP_k) satisfy the following equation: $$S(t_0, JTP_k) = S(JTP_k) - t_0 + P(t_0) + L_k(t_0)$$ (8) **Proof:** *PAIs* whose deadlines are less than JTP_k must be completed in $[0, JTP_k]$. Their total workload is $P(JTP_k)$ (see Equ.4 and 6). The workload of $P(t_0)$ and $L_k(t_0)$ has to been finished before t_0 , so the workload of $P(JTP_k)-P(t_0)-L_k(t_0)$ must be done in $[t_0, JTP_k]$. Hence, the maximal number of time units that can be spared to run NPAs in $[t_0, JTP_k]$, i.e. $S(t_0, JTP_k)$, is $(JTP_k-t_0)-(P(JTP_k)-P(t_0)-L_k(t_0))$. Thus, the following exists: $S(t_0, JTP_k) = JTP_k-P(JTP_k)-t_0+P(t_0)+L_k(t_0)$. In addition, $JTP_k-P(JTP_k)=S(JTP_k)$, and therefore Equ.8 also holds. \vdash Theorem 2 reveals the distribution property of the remaining time units before t_0 after running PAIs in $PA(t_0)$ as well as NPAs. $I_p^{t_0}(t_s,t_0)$ represents the number of time units left in $[t_s,t_0]$ after executing PAIs in $PA(t_0)$; $I_{P,A}^{t_0}(f,t_0)$ represents the number of time units left in $[f,t_0]$ after executing both PAIs in $PA(t_0)$ and also NPAs. **Theorem 2.** Let the last *NPA* before t_0 be completed at time f, then there exists such a time point t_s in $[f, t_0]$, that a) there are no idle slots in $[f, t_s]$, b) either *PAI*s in *PA(t_0)* retain the same execution pattern in $[t_s, t_0]$ as the case when no *NPA*s are run before t_0 , or all *PAI*s in *PA(t_0)* are completed before t_s , and c) t_s can be determined by Equ.9. $$I_{p}^{t0}(t_{s},t_{0}) = I_{P,A}^{t0}(f,t_{0})$$ (9) **Proof:** The execution of the last *NPA* may delay the execution of *PAIs* in $PA(t_0)$. The delayed *PAIs* may delay other *PAIs* in $PA(t_0)$ further. The delay chain will however cease when the delayed *PAIs* no longer delay other *PAIs*, or all the *PAIs* in $PA(t_0)$ are complete. Since all *PAIs* $PA(t_0)$ must be complete before t_0 , such a time point, t_s , must exist that satisfies Theorem 2.2. Since there are unfinished workloads before t_s , Theorem 2.1 also exists. Equ. 9 is a direct derivation from Theorem 2.1 and 2.2. Since PAIs in $PA(t_0)$ running in $[t_s, t_0]$ retain the original execution pattern (as though there were no preceding NPAs), it is possible to calculate the remaining time units in $[t_s, t_0]$ after running these PAIs. Consequently, $L_k(t_0)$ in Equ.8 can be calculated. # 4 Scheduling Algorithms If a NPA starts execution at t_0 , using Equ.8, the global scheduler can calculate how many idle time units there are between t_0 and any JTP following t_0 , which can be used to run the NPA. Therefore, it can be determined before which JTP the NPA can be completed. Consequently, the NPA's finish time in any workstation p_i can be determined, which is shown in Algorithm 1. If the NPA's finish time on any workstation in the heterogeneous cluster is greater than its deadline, the NPA will be rejected. The admission control is shown in Algorithm 2. When more than one workstation can satisfy the NPA's deadline, the system selects the workstation on which the NPA will have the earliest finish time. After deciding which workstation the NPA should be scheduled to, the global scheduler re-sets the NPA's deadline to its finish time on that workstation and sends the NPA to it. The global dynamic scheduling algorithm is shown in Algorithm 3. When the local scheduler receives the new allocated NPAs or the PAIs are ready, it inserts them into the LSQ. Each time a task (NPA or PAI) is fetched by the local scheduler from the head of the LSQ and the task is then executed. As the modeling analysis suggests in Section 3, a NPA cannot be finished earlier in the workstation on which the new task is scheduled. Otherwise, some PAI's deadline on that workstation must be missed. In this sense, the modeling approach is optimal. ``` Algorithm 1 Calculating the finish time of NPA_i starting at t_0 in workstation p_j (denoted as ft^j(NPA_i)) ``` ``` 1. c^{j}(cv_{i}) \leftarrow NPA_{i}'s execution time; 2. Calculate P(t_{0}); Get t_{s}; 3. Get the first JTP after t_{0}; 4. Call Algorithm 1 to calculate corresponding L_{k}(t_{0}); 5. Calculate S(t_{0}, JTP) using Equ.8; 6. while (S(t_{0}, JTP) < c^{j}(cv_{i})) 7. OJTP \leftarrow JTP; Get the next JTP; 8. Calculate S(t_{0}, JTP) by Equ.8; 9.end while 10.ft^{j}(NPA_{i}) \leftarrow OJTP + c^{j}(cv_{i}) - S(t_{0}, OJTP); ``` ## Algorithm 2 Admission Control 1. $PC \leftarrow F$ when a new NPA_i arrives; ``` 2. for each workstation p_i (1 \le j \le m)do call Algorithm 2 to calculate ft^{j}(NPA_{i}); if (ft^{j}(NPA_{i}) \leq d_{i}) then PC=PC \cup \{p_{i}\}; 5. end for 6. if PC=F then reject NPA_i; 7. else accept NPA;; Algorithm 3 the Global dynamic scheduling algorithm 1. if global schedule queue GSQ=F then wait until a new NPA arrives; 2. else get a NPA from the head of GSQ; 3. call Algorithm 3 to judge if accept or reject it; 4. 5. if accept the NPA then select workstation p_i by response-first policy; 6. set the NPA's deadline to be its finish time; 7. 8. Dispatch the NPA to workstation p_i; 9. end if 10. end if 11. go to step 1; ``` # 5. Performance Evaluation **Fig. 2.** (a) Comparison of ART of NPAs between our scheduling scheme and an M/M/8 queuing model, 10% PRA, (b) Effect of workload on GR, (c) Effect of workload on SU, $MAX_DR/MIN_DR=1.0/0$, $MAX_CV/MIN_CV=25/5$, $MAX_W/MIN_W=4/1$ The performance of the global scheduling algorithm is also evaluated through extensive simulations. Workstation p_i 's weight w_i is chosen uniformly between MAX_W and MIN_W . NPAs arrive at the cluster following a Poisson process with the arrival rate of λ . The NPA_i 's computational volume cv_i is uniformly chosen between MAX_CV and MIN_CV , and the NPA_i 's deadline is chosen as follows: $arrival-time+min\{c^k(cv_i)\}+cv_i*$ $nw*dr(1\le k\le m)$, where, nw is the geometric mean of the weight of all workstations, and dr is chosen uniformly between MAX_DR and MIN_DR. Three levels of PRA workload, light, medium and heavy, are generated for each workstation, which provides 10%, 40% and 70% system utilization, respectively. Three metrics are measured in the simulation experiments: *Guarantee Ratio* (*GR*), *System Utilization* (*SU*) and *Average Response Time* (*ART*). The *GR* is defined as the percentage of jobs guaranteed to meet their deadlines. The *SU* of a cluster is defined as the fraction of busy time for running tasks to the total time available in the cluster. A *NPA's Response Time* is defined as the difference between its arrival time and the finish time. The *ART* is the average response time for all *NPAs*. Fig.2.a displays the ART of NPAs as a function of λ in a cluster of 8 workstations each running 10% PRA workload. The Guarantee Ratio (GR) of NPAs is fixed to be 1.0. An M/M/8 queuing model is used to compute the ideal bound for the ART of the same NPA workload in the absence of PRAs. As can be observed from Fig.2.a, the ART obtained by this scheduling scheme is very close to the ideal bound except that λ is greater than 0.18. This suggests that the scheduling scheme can make full use of the idle slots and new NPAs are completed at the earliest possible time. Fig.2.b and Fig.2.c illustrate the impact of *NPA* and *PRA* workload on *GR* and *SU*, respectively. It can be observed from Fig.2.b that *GR* decreases as λ increases or *PRA* workload increases, as would be expected. A further observation is that the curve for 10% *PRA*, as well as the curve for 40% *PRA* when λ is less than 0.1, is very close to that for the M/M/8 queuing model; which again shows the effectiveness of the scheduling scheme in utilizing idle capacities. Fig.2.c demonstrates that *SU* increases as λ increases. This figure shows that utilization of the cluster is significantly improved compared with the original *PRA* workload. ## 6. Conclusions An optimal modeling approach for spare capabilities in heterogeneous clusters is presented in this paper. Furthermore, a dynamic scheduling scheme is proposed to allocate newly arriving real-time applications on the cluster by utilizing the modeling results. ### References - K. Hwang and Z. Xu.: Scalable Parallel Computing: Technology, Architecture, Programming. McGraw Hill, 1998. - J. P. Lehoczky and S. Ramos-Thuel.: An Optimal Algorithm for Scheduling Soft-Aperiodic Tasks in Fixed-Priority Preemptive Systems. Proc. of Real-Time Systems Symposium, 1992, pp.110-123. - G.R. Nudd, D.J.Kerbyson et al.: PACE-a toolset for the performance prediction of parallel and distributed systems. International Journal of High Performance Computing Applications, Special Issues on Performance Modelling, 14(3), 2000, 228-251. - 4. X Qin and H Jiang.: Dynamic, Reliability-driven Scheduling of Parallel Real-time Jobs in Heterogeneous Systems. In Proceedings of the 30th International Conference on Parallel Processing (ICPP 2001), Valencia, Spain, September 3-7, 2001. - 5. D.P. Spooner, SA. Jarvis, J. Cao, S. Saini and GR. Nudd.: Local Grid Scheduling Techniques using Performance Prediction. IEE Proceedings-Computers and Digital Techniques, 2003.