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Bayesian Cluster Analysis: Point Estimation and
Credible Balls

Sara Wade* and Zoubin Ghahramanit

Abstract. Clustering is widely studied in statistics and machine learning, with
applications in a variety of fields. As opposed to popular algorithms such as ag-
glomerative hierarchical clustering or k-means which return a single clustering
solution, Bayesian nonparametric models provide a posterior over the entire space
of partitions, allowing one to assess statistical properties, such as uncertainty on
the number of clusters. However, an important problem is how to summarize the
posterior; the huge dimension of partition space and difficulties in visualizing it
add to this problem. In a Bayesian analysis, the posterior of a real-valued pa-
rameter of interest is often summarized by reporting a point estimate such as the
posterior mean along with 95% credible intervals to characterize uncertainty. In
this paper, we extend these ideas to develop appropriate point estimates and cred-
ible sets to summarize the posterior of the clustering structure based on decision
and information theoretic techniques.

Keywords: mixture model, random partition, variation of information, Binder’s
loss.

1 Introduction

Clustering is widely studied in statistics and machine learning, with applications in a
variety of fields. Numerous models and algorithms for clustering exist, and new studies
which apply these methods to cluster new datasets or develop novel models or algorithms
are constantly being produced. Classical algorithms such as agglomerative hierarchical
clustering or the k-means algorithm (Hartigan and Wong (1979)) are popular but only
explore a nested subset of partitions or require specifying the number of clusters apriori.
Moreover, they are largely heuristic and not based on formal models, prohibiting the
use of statistical tools, for example, in determining the number of clusters.

Model-based clustering methods utilize finite mixture models, where each mixture
component corresponds to a cluster (Fraley and Raftery (2002)). Problems of determin-
ing the number of clusters and the component probability distribution can be dealt with
through statistical model selection, for example, through various information criteria.
The expectation-maximization (EM) algorithm is typically used for maximum likelihood
estimation (MLE) of the mixture model parameters. Given the MLEs of the parameters,
the posterior probability that a data point belongs to a class can be computed through
Bayes rule. The cluster assignment of the data point corresponds to the class with max-
imal posterior probability, with the corresponding posterior probability reported as a
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measure of uncertainty. Importantly, however, this measure of uncertainty ignores un-
certainty in the parameter estimates. As opposed to MLE, Bayesian mixture models
incorporate prior information on the parameters and allow one to assess uncertainty in
the clustering structure unconditional on the parameter estimates.

Bayesian nonparametric mixture models assume that the number of components is
infinite. As opposed to finite mixture models, this not only avoids specification of the
number of components but also allows the number of clusters present in the data to
grow unboundedly as more data is collected. Bayesian nonparametric mixture models
induce a random partition model (Quintana (2006)) of the data points into clusters, and
the posterior of the random partition reflects our belief and uncertainty of the clustering
structure given the data.

However, an important problem in Bayesian nonparametric cluster analysis is how
to summarize this posterior; indeed, often the first question one asks is what is an ap-
propriate point estimate of the clustering structure based on the posterior. Such a point
estimate is useful for concisely representing the posterior and often needed in applica-
tions. Moreover, a characterization of the uncertainty around this point estimate would
be desirable in many applications. Even in studies of Bayesian nonparametric models
where the latent partition is used simply as a tool to construct flexible models, such as
in mixture models for density estimation (Lo (1984)), it is important to understand the
behavior of the latent partition to improve understanding of the model. To do so, the
researcher needs to be equipped with appropriate summary tools for the posterior of
the partition.

Inference in Bayesian nonparametric partition models usually relies on Markov chain
Mounte Carlo (MCMC) techniques, which produce a large number of partitions that
represent approximate samples from the posterior. Due to the huge dimension of the
partition space and the fact that many of these partitions are quite similar differing
only in a few data points, the posterior is typically spread out across a large number
of partitions. Clearly, describing all the unique partitions sampled would be unfeasi-
ble, further emphasizing the need for appropriate summary tools to communicate our
findings.

In a typical Bayesian analysis, the posterior of a univariate parameter of interest is
often summarized by reporting a point estimate such as the posterior mean, median,
or mode, along with a 95% credible interval to characterize uncertainty. In this paper,
we aim to extend these ideas to develop summary tools for the posterior on partitions.
In particular, we seek to answer the two questions: 1) What is an appropriate point
estimate of the partition based on the posterior? 2) Can we construct a 95% credible
region around this point estimate to characterize our uncertainty?

We first focus on the problem of finding an appropriate point estimate. A simple
solution is to use the posterior mode. If the marginal likelihood of the data given the
partition, that is with all mixture component parameters integrated out, and the prior
of the partition are available in closed form, the posterior mode can be estimated based
on the MCMC output by the sampled partition which maximizes the non-normalized
posterior. In practice, a closed form for the marginal likelihood or prior is often unavail-
able, specifically, if conjugate priors for the component specific parameters do not exist
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or are not utilized or hyperpriors are assigned to any hyperparameters. More generally,
the posterior mode can be found by reporting the partition visited most frequently in the
sampler. Yet this approach can be problematic, as producing reliable frequency counts is
intractable due to the huge dimension of the partition space. In fact, in many examples,
the MCMC chain does not visit a partition more than once. To overcome this, alter-
native search techniques have been developed to locate the posterior mode (Heller and
Ghahramani (2005), Heard et al. (2006), Dahl (2009), Raykov et al. (2014)). However,
it is well-known that the mode can be unrepresentative of the center of a distribution.

Alternative methods have been proposed based on the posterior similarity matrix.
For a sample size of N, the elements of this V by N matrix represent the probability
that two data points are in the same cluster, which can be estimated by the proportion
of MCMC samples that cluster the two data points together. Then, classical hierarchical
or partitioning algorithms are applied based on the similarity matrix (Medvedovic and
Sivaganesan (2002), Medvedovic et al. (2004), Rasmussen et al. (2009), Molitor et al.
(2010)). These methods have the disadvantage of being ad-hoc.

A more elegant solution is based on decision theory. In this case, one defines a
loss function over clusterings. The optimal point estimate is that which minimizes the
posterior expectation of the loss function. For example, for a real-valued parameter 6,

the optimal point estimate is the posterior mean under the squared error loss La(6,0) =
(6 — 0)? and the posterior median under the absolute error loss Li(6,8) = |6 — 0.

The question to answer then becomes what is an appropriate loss function on the
space of clusterings. The 0-1 loss function, a simple choice which leads to the posterior
mode as the point estimate, is not ideal as it does not take into account the similarity
between two clusterings. More general loss functions were developed by Binder (1978),
and the so-called Binder’s loss, which measures the disagreements in all possible pairs
of observations between the true and estimated clusterings, was studied in a Bayesian
nonparametric setting by Lau and Green (2007). Alternative loss functions considered
in Bayesian nonparametrics can be found in Quintana and Iglesias (2003) and Fritsch
and Ickstadt (2009).

In this paper, we propose to use the variation of information developed by Meila
(2007) as a loss function in a Bayesian nonparametric setting. Both the variation of
information and Binder’s loss possess the desirable properties of being metrics on the
space of partitions and being aligned with the lattice of partitions. We provide a detailed
comparison of these two metrics and discuss the advantages of the variation of informa-
tion over Binder’s loss as a loss function in Bayesian cluster analysis. Additionally, we
propose a novel algorithm to locate the optimal partition, taking advantage of the fact
that both metrics are aligned on the space of partitions.

Next, to address the problem of characterizing uncertainty around the point es-
timate, we propose to construct a credible ball around the point estimate. As both
Binder’s loss and the variation of information are metrics on the partition space, we can
easily construct such a ball. Interestingly, the two metrics can produce very different
credible balls, and we discuss this in detail. In existing literature, quantifications of
uncertainty include reporting a heat map of the estimated posterior similarity matrix.
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However, there is no precise quantification of how much uncertainty is represented by
the posterior similarity matrix, and in a comparison with the 95% credible balls, we find
that the uncertainty is under-represented by the posterior similarity matrix. Finally, we
provide an algorithm to construct the credible ball and discuss ways to depict or report
it.

The paper is organized as follows. Section 2 provides a review of Bayesian nonpara-
metric clustering and existing point estimates of the clustering structure from a decision
theoretic approach. In Section 3, we give a detailed comparison of two loss functions,
Binder’s loss and the variation of information, pointing out advantages of the latter.
The optimal point estimate under the variation of information is derived in Section 4
and a novel algorithm to locate the optimal partition is proposed. In Section 5, we con-
struct a credible ball around the point estimate to characterize posterior uncertainty
and discuss how to compute and depict it. Finally, simulated and real examples are
provided in Section 6.

2 Review

This section provides a review of Bayesian nonparametric clustering models and existing
point estimates of the clustering in literature.

2.1 Bayesian nonparametric clustering

Mixture models are one of the most popular modeling tools in Bayesian nonparametrics.
The data is assumed conditionally i.i.d. with density

f(ylP) = / K(y/0)dP(0),

where K (y|6) is a specified parametric density on the sample space with mixing param-
eter § € © and P is a probability measure on ©. In a Bayesian setting, the model is
completed with a prior on the unknown parameter, which in this case, is the unknown
mixing measure. In the most general setting, this parameter P can be any probability
measure on O, requiring a nonparametric prior. Typically the nonparametric prior has
discrete realizations almost surely (a.s.) with

o
P= g w;dy; a.s.,
=1

where it is often assumed that the weights (w;) and atoms (6;) are independent and the
0; are i.i.d. from some base measure Fy. Thus, the density is modeled with a countably
infinite mixture model

fylP) = Z%‘K(yl@j)-

Since P is discrete a.s., this model induces a latent partitioning c of the data where
two data points belong to the same cluster if they are generated from the same mixture
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component. The partition can be represented by ¢ = (C4, ..., Ck, ), where C; contains
the indices of data points in the j*" cluster and ky is the number of clusters in the
sample of size N. Alternatively, the partition can be represented by ¢ = (cy,...,cn),
where ¢,, = j if the n*® data point is in the j*" cluster.

A key difference with finite mixture models is that the number of mixture compo-
nents is infinite; this allows the data to determine the number of clusters ky present
in the data, which can grow unboundedly with the data. Letting y; = {yn}nec;, the
marginal likelihood for the data y;.5 given the partition is

Fnnle) HmyJ H/HKyuedPou

neC;

The posterior of the partition, which reflects our beliefs and uncertainty in the clus-
tering given the data, is simply proportional to the prior times the marginal likelihood

plelyrn) o< p(c HmyJ (1)

where the prior of the partition is obtained from the selected prior on the mixing mea-
sure. For example, a Dirichlet process prior (Ferguson (1973)) for P with mass parameter
« corresponds to

_ Do) aky

p(c) = m H D(n;),

j=1

where n; = |C;| is the number of data points in cluster j. Various other priors de-
veloped in Bayesian nonparametric literature can be considered for the mixing mea-
sure P, such as the Pitman—Yor process (Pitman and Yor (1997)), also known as the
two-parameter Poisson—Dirichlet process, or the normalized generalized Gamma pro-
cess or more generally, a prior within the class of normalized completely random mea-
sures, Poisson-Kingman models (Pitman (2003)), or stick-breaking priors (Ishwaran
and James (2001)). See Lijoi and Priinster (2011) for an overview.

In general, the marginal likelihood of the data given the partition or the prior of
the partition used to compute the posterior in (1) may not be available in closed form.

Moreover, there are
1< k
Snk=> (7 T ) (k=)
Nk = j:O( ) (] )( 7)

a Stirling number of the second kind, ways to partition the N data points into k groups

and
N
By =) Svi
k=1

a Bell number, possible partitions of the IV data points. Even for small N, this number is
very large, which makes computation of the posterior intractable for the simplest choice
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of prior and likelihood. Thus, MCMC techniques are typically employed, such as the
marginal samplers described by Neal (2000) with extensions in Favaro and Teh (2013)
for normalized completely random measures and in Lomelli et al. (2016) for o-stable
Poisson—-Kingman models; the conditional samplers described in Ishwaran and James
(2001), Papaspiliopoulos and Roberts (2008), or Kalli et al. (2011), with extensions
in Favaro and Teh (2013) for normalized completely random measures and in Favaro
and Walker (2012) for o-stable Poisson-Kingman models; or the recently introduced
class of hybrid samplers for o-stable Poisson-Kingman models in Lomell{ et al. (2015).
These algorithms produce approximate samples (¢™)Y_, from the posterior (1). Clearly,
describing all the posterior samples is infeasible, and our aim is to develop appropriate
summary tools to characterize the posterior.

Extensions of Bayesian nonparametric mixture models are numerous and allow one
to model increasingly complex data. These include extensions for partially exchangeable
data (Teh et al. (2006)), inclusion of covariates (MacEachern (2000)), time dependent
data (Griffin and Steel (2006)), and spatially dependent data (Duan et al. (2007)) to
name a few. See Miiller and Quintana (2004) and Dunson (2010) for an overview. These
extensions also induce latent clusterings of the observations, and the summary tools
developed here are applicable for these settings as well.

2.2 Point estimation for clustering

Firstly, we seek a point estimate of the clustering that is representative of the posterior,
which may be of direct interest to the researcher or, more generally, important for
understanding the behavior of the posterior. From decision theory, a point estimate is
obtained by specifying a loss function L(c,¢), which measures the loss of estimating the
true clustering ¢ with €. Since the true clustering is unknown, the loss is averaged across
all possible true clusterings, where the loss associated to each potential true clustering is
weighted by its posterior probability. The point estimate ¢* corresponds to the estimate
which minimizes the posterior expected loss,

c” = argmin E[L(c,¢)|y1.n] = argAminZL(c,E)p(dyl;N).

c

A simple choice for the loss function is the 0-1 loss, Lo—_1(c,¢) = 1(c # ¢), which
assumes a loss of 0 if the estimate is equal to the truth and a loss of 1 otherwise. Under
the 0-1 loss, the optimal point estimate is the posterior mode. However, this loss function
is unsatisfactory because it doesn’t take into account similarity between two clusterings;
a partition which differs from the truth in the allocation of only one observation is
penalized the same as a partition which differs from the truth in the allocation of many
observations. Moreover, it is well-known that the mode can be unrepresentative of the
center of a distribution. Thus, more general loss functions are needed.

However, constructing a more general loss is not straightforward because, as pointed
out by Binder (1978), the loss function should satisfy basic principles such as invariance
to permutations of the data point indices and invariance to permutations of the cluster
labels for both the true and estimated clusterings. Binder notes that this first condition
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implies that the loss is a function of the counts n;; = |C; N 6j|, which is the cardinality
of the intersection between C;, the set of data point indices in cluster ¢ under ¢, and éj,
the set of data point indices in cluster j under c fori=1,...,ky and 7 =1,... ,@N;
the notation ky and kpy represents the number of clusters in ¢ and ¢, respectively. He
explores loss functions satisfying these principles, starting with simple functions of the
counts n; j. The so-called Binder’s loss is a quadratic function of the counts, which for
all possible pairs of observations, penalizes the two errors of allocating two observations
to different clusters when they should be in the same cluster or allocating them to the
same cluster when they should be in different clusters:

¢) = > hl(cn =) 1(Cn # Cur) + la1(cn # cnr)1(Cn = Co).

n<n’
If the two types of errors are penalized equally, I = Iy = 1, then

kn kn

Z”H*Z”ﬂ QZan ;

=1 j=1

where n; . = Zj n;; and ny; = >, n; ;. Under Binder’s loss with [; = l5, the optimal
partition c* is the partition ¢ which minimizes

Z |1 pnn/'a

n<n/’

or equivalently, the partition ¢ which minimizes

Z (1(Cn = Cn’) _pnn’)27 (2)

n<n’

where py, v = P(cp, = ¢p/ly1.v) is the posterior probability that two observations n and
n are clustered together. This loss function was first studied in Bayesian nonparametrics
by Lau and Green (2007). We note that in earlier work Dahl (2006) considered mini-
mization of (2) but without the connection to Binder’s loss and the decision theoretic
approach.

Binder’s loss counts the total number of disagreements, D, in the ( ) possible pairs
of observations. The Rand index (Rand (1971)), a cluster comparison criterion, is defined
as the number of agreements, A, in all possible pairs divided by the total number of
possible pairs. Since D + A = (g), Binder’s loss and the Rand index, denoted R(c,<c),
are related:

B(c,¢) = (1 — R(c, <)) (];7>’

and the point estimate obtained from minimizing the posterior expected Binder’s loss
is equivalent to the point estimate obtained from maximizing the posterior expected
Rand’s index. Motivated by this connection, Fritsch and Ickstadt (2009) consider max-
imizing the adjusted Rand index, introduced by Hubert and Arabie (1985) to correct
the Rand index for chance. An alternative loss function is explored by Quintana and
Iglesias (2003) specifically for the problem of outlier detection.
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3 A comparison of the variation of information and
Binder’s loss

Meila (2007) introduces the variation of information (VI) for cluster comparison, which
is constructed from information theory and compares the information in two clusterings
with the information shared between the two clusterings. More formally, the VI is defined
as

VI(c,¢) = H(c) + H(c) — 21(c c)

S e (1) -3 B () 2575 B (20

ni4Mn
=1 j=1 i+t

where log denotes log base 2. The first two terms represent the entropy of the two clus-
terings, which measures the uncertainty in bits of the cluster allocation of an unknown
randomly chosen data point given a particular clustering of the data points. The last
term is the mutual information between the two clusterings and measures the reduction
in the uncertainty of the cluster allocation of a data point in ¢ when we are told its
cluster allocation in €. The VI ranges from 0 to log(NN). A review of extensions of the
VI to normalize or correct for chance are discussed in Vinh et al. (2010). However, some
desirable properties of the VI are lost under these extensions.

In this paper, we propose to use the VI as a loss function. Note that since I(c,¢) =
H(c) + H(c) — H(c, €), we can write

VI(c,¢) = H(c) + H(¢) — 2H(c) — 2H(¢) + 2H(c, ©),
= —H(c) — H(c) + 2H(c, E)

3 () 5t (1) 235 ().

i=1 j=1

We provide a detailed comparison with an N-invariant version of Binder’s loss, defined

B(C,E)Z%B(c,’c‘) Z("%—i—) +Z<n+]) _222(%)2

i=1

Both loss functions are considered N-invariant as they only depend on N through the
proportions n; ;/N. We focus on these two loss functions as they satisfy several desirable
properties.

The first important property is that both VI and B are metrics on the space of
partitions.

Property 1. Both VI and B are metrics on the space of partitions.
A proof for VI can be found in Meila (2007). For B, the proof results from the fact that

B can be derived as the Hamming distance between the binary representation of the
clusterings.
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Figure 1: Hasse diagram for the lattice of partitions with a sample of size N = 4. A line
is drawn from ¢ up to ¢ when c is covered by c.

The next properties involve first viewing the space of partitions as a partially ordered
set. In particular, consider the space of partitions C and the binary relation < on C
defined by set containment, i.e. for c,c € C, ¢ < cif for alli =1,...,kn, C; C Cj
for some j € {1,... ,EN}. The partition space C equipped with < is a partially ordered
set.

For any c,§€ C, c is covered by ¢, denoted ¢ < ¢, if ¢ < € and there is no cecC
such that ¢ < € < €. This covering relation is used to define the Hasse diagram, where
the elements of C are represented as nodes of a graph and a line is drawn from ¢ up to
¢ when ¢ < €. An example of the Hasse diagram for N = 4 is depicted in Figure 1.

The space of partitions possesses an even richer structure; it forms a lattice. This
follows from the fact that every pair of partitions has a greatest lower bound and least
upper bound; for a subset S C C, an element ¢ € C is an upper bound for S if s < ¢
for all s € S, and ¢ € C is the least upper bound for S, denoted ¢ = lLu.b.(S), if
¢ is an upper bound for S and ¢ < ¢’ for all upper bounds ¢’ of S. A lower bound
and the greatest lower bound for a subset S C C are similarly defined, the latter
denoted by g.1.b.(S). We define the operators A, called the meet, and V, called the
join, as ¢ A€ = g.l.b.(c,¢) and ¢ V¢ = L.u.b.(c, €). Following the conventions of lattice
theory, we will use 1 to denote the greatest element of the lattice of partitions, i.e. the
partition with every observation in one cluster ¢ = ({1,...,N}), and 0 to denote the
least element of the lattice of partitions, i.e. the partition with every observation in its
own cluster ¢ = ({1},...,{N}). See Nation (1991) for more details on lattice theory
and the Supplementary Material (Wade and Ghahramani, 2017) for specific details on
the lattice of partitions.

A desirable property is that both VI and B are aligned with the lattice of partitions.
Specifically, both metrics are vertically aligned in the Hasse diagram; if ¢ is connected
up to € and ¢ is connected up to c, then the distance between ¢ and c is the vertical
sum of the distances between ¢ and € and between ¢ and c (see Property 2). And,
both metrics are horizontally aligned; the distance between any two partitions is the
horizontal sum of the distances between each partition and the meet of the two partitions
(see Property 3).
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0 {1727 374}
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—
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Figure 2: Hasse diagram stretched by VI with a sample of size N = 4. Note 2—% log(3) ~
0.811. From the VI stretched Hasse diagram, we can determine the distance between
any two partitions. Example: if ¢ = ({1,2},{3,4}) and © = ({1}, {3},{2,4}), then
cAc = ({1},{2},{3},{4}) and d(c,¢) = d(c A¢,1) —d(e,1) + d(c AT,1) —d(c,1) =
2—-14+2-15=1.5.

0 {1,2,3,4}

_—

0.375 {1}{2,3,4]2}{1,3,4)3}{1,2,4)4}{1,2,3}
0.5 | 1,3}{2.4)1,4}{2,3}

0.625 {1}{2}{3,4]1 A 21?} ¢ 1,4}
0.75 {1}{2}{3}{4}

Figure 3: Hasse diagram stretched by B with a sample of size N = 4. From the B
stretched Hasse diagram, we can determine the distance between any two partitions.
Example: ifc = ({1,2},{3,4}) and ¢ = ({1}, {3}, {2,4}), then cAC = ({1}, {2}, {3}, {4})
and d(c,¢) = d(cAc,1)—d(c,1)+d(cAc,1)—d(c,1) = 0.75—0.540.75—0.625 = 0.375.

Property 2. For both VI and B, ifc>¢c> a then
d(c,©) = d(c,€) + d(€, ).
Property 3. For both VI and B,
d(c,¢) =d(c,cAc)+d(c,cAc).

Proofs can be found in the Supplementary Material. These two properties imply that if
the Hasse diagram is stretched to reflect the distance between any partition and 1, the
distance between any two partitions can be easily determined from the stretched Hasse
diagram. Figures 2 and 3 depict the Hasse diagram for N = 4 in Figure 1 stretched
according to VI and B respectively.

From the stretched Hasse diagram, we gain several insights into the similarities
and differences between the two metrics. An evident difference is the scale of the two
diagrams.
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Property 4. A distance on partitions satisfying Properties 2 and 3 has the property
that for any two partitions ¢ and ¢,

d(c,e) < d(1,0).

Thus,
~ = 1
VI(c,¢) <log(N) and B(c,c)<1-— N

A proof can be found in the Supplementary Material. In both cases, the bound on the
distance between two clusterings depends on the sample size N. However, the behavior
of this bound is very different; for VI, it approaches infinity as N — oo, and for B, it
approaches one as N — o0o. As N grows, the number of total partitions By increases
drastically. Thus, it is sensible that the bound on the metric grows as the size of the
space grows. In particular, 1 and 0 become more distant as N — oo, as there is an
increasing number, By — 2, of partitions between these two extremes; for B, the loss
of estimating one of these extremes with the other approaches the fixed number one,
while for VI, the loss approaches infinity.

From the stretched Hasse diagram in Figures 2 and 3, we can determine the clos-
est partitions to any c. For example, the closest partitions to 1 are the partitions
which split 1 into two clusters, one singleton and one containing all other observa-
tions; and the closest partitions to ({1}, {2}, {3,4}) are the partition which merges the
two smallest clusters ({1,2}, {3,4}) and the partition which splits the cluster of size two

({13, {2}, {3}, {4}).

Property 5. For both metrics VI and B, the closest partitions to a partition ¢ are:

e if c contains at least two clusters of size one and at least one cluster of size two,
the partitions which merge any two clusters of size one and the partitions which
split any cluster of size two.

e if ¢ contains at least two clusters of size one and no clusters of size two, the
partitions which merge any two clusters of size one.

e if ¢ contains at most one cluster of size one, the partitions which split the smallest
cluster of size greater than one into a singleton and a cluster with the remaining
observations of the original cluster.

A proof can be found in the Supplementary Material. This property characterizes the
set of estimated partitions which are given the smallest loss. Under both loss functions,
the smallest loss of zero occurs when the estimated partition is equal to the truth.
Otherwise, the smallest loss occurs when the estimated clustering differs from the truth
by merging two singleton clusters or splitting a cluster of size two, or, if neither is
possible, splitting the smallest cluster of size n into a singleton and a cluster of size
n — 1. We further note that the loss of estimating the true clustering with a clustering
which merges two singletons or splits a cluster of size two, is % and % for VI and B

respectively, which converges to 0 as N — oo for both metrics, but at a faster rate for
B.
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Next, we note that the Hasse diagram stretched by B in Figure 3 appears asymmetric,
in the sense that 1 is more separated from the others when compared to the Hasse
diagram stretched by VI in Figure 2.

Property 6. Suppose N is divisible by k, and let cy denote a partition with k clusters
of equal size N/k.
= 1

B(l,ck) =1-—->

1 1
k= k

N

= B(O, Ck).

VI(1,c;.) = log(k) < log(N) —log(k) = VI(0,¢c;), fork < VN,

and

VI(1,c;) = log(k) > log(N) — log(k) = VI(0,¢cy), fork>VN.

Property 6 reflects the asymmetry apparent in Figure 3. In particular, for B, a
partition with two clusters of equal size co will always be closer to the extreme 0 of each
data point in its own cluster than the extreme 1 of everyone in one cluster. However, as
the sample size increases, co becomes equally distant between the two extremes. For all
other values of k, the extreme 0 will always be closer. This behavior is counter-intuitive
for a loss function on clusterings. VI is much more sensible in this regard. If k = v/N,
0 and 1 are equally good estimates of c;. For k < V/N, ¢, is better estimated by 1 and
for k > v/N, ¢y, is better estimated by 0; as the sample size increases, these preferences
become stronger. In particular, note that loss of estimating co with 1 will always be
smaller than estimating it with 0 for N > 4.

Additionally, we observe from Figure 3 that the partitions with two clusters of sizes
one and three are equally distant between the two extremes under B. The following
property generalizes this observation.

Property 7. Suppose N is an even and square integer. Then, the partitions with two
clusters of sizes n = %(N —+V/'N) and N —n are equally distant from 1 and O under B.

This property is unappealing for a loss function, as it states that the loss of esti-
mating a partition consisting of two clusters of sizes 3 (N — V/N) and (N + V'N) with
the partition of only one cluster or with the partition of all singletons is the same. In-
tuitively, however, 1 is a better estimate. The behavior of VI is much more reasonable,
as partitions with two clusters will always be better estimated by 1 than 0 for N > 4
and partitions with v/N clusters of equal size are equally distant from 0 and 1.

Finally, we note that as both VI and B are metrics on the space of clusterings, we
can construct a ball around c of size €, defined as:

B.(c) ={c e C:d(c,c) <¢€}.

From Property 5, the smallest non-trivial ball will be the same for the two metrics. When
considering the next smallest ball, differences emerge; a detailed example is provide in
the Supplementary Material. In the authors’ opinions, the VI ball more closely reflects
our intuition of the closest set of partitions to c.
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4 Point estimation via the variation of information

As detailed in the previous section, both VI and B share several desirable properties
including being aligned with the lattice of partitions and coinciding in the smallest
non-trivial ball around any clustering. However, in our comparison, differences also
emerged. Particularly, we find that B exhibits some peculiar asymmetries, preferring
to split clusters over merging, and we find that the VI ball more closely reflects our
intuition of the neighborhood of a partition. In light of this, we propose to use VI as a
loss function in Bayesian cluster analysis. Under the VI, the optimal partition c* is

c¢” = argmin E[VI(c, ©)|D]
<

N N N

= argAminZ log(z 1(cy =¢,)) —2 ZE[log(Z 1(cn = cn e =¢))|D),  (3)

Cc

n=1 n’'=1 n'=1

with D denoting the data. For a given €, the second term in (3) can be approximated
based on the MCMC output, and evaluating this term is of order O(M N?) (recall M
is the number of MCMC samples). This may be computationally demanding if the
number of MCMC samples is large and if (3) must be evaluated for a large number of
C. Alternatively, one can use Jensen’s inequality, swapping the log and expectation, to
obtain a lower bound on the expected loss which is computationally more efficient to
evaluate:

N N N N
argmin » log( > 1@ =2,)) =2 log( D Plew = e D)1(@r =Cn)).  (4)
n’=1 n=1

€ n=1 n’'=1

Similar to minimization of the posterior expected Binder’s loss, minimization of (4)
only depends on the posterior through the posterior similarity matrix, which can be
pre-computed based on the MCMC output. In this case, computational complexity for
a given € is reduced to O(N?).

Due to the huge dimensions of the partition space, computing the lower bound
in (4) for every possible ¢ is practically impossible. A simple technique to find the
optimal partition c* restricts the search space to some smaller space of partitions. The R
package ‘mcclust’ (Fritsch (2012)), which contains tools for point estimation in Bayesian
cluster analysis and cluster comparison, includes a function minbinder () that finds the
partition minimizing the poster expected Binder’s loss among the subset of partitions
1) visited in the MCMC chain or 2) explored in a hierarchical clustering algorithm
with a distance of 1 — P(¢, = ¢,v|D) and average or complete linkage. An alternative
search algorithm developed in Lau and Green (2007), which is based on binary integer
programming, is also implemented.

We propose a greedy search algorithm to locate the optimal partition ¢* based on the
Hasse diagram, which can be used for both VI and B. In particular, given some partition
¢, we consider the [ closest partitions that cover ¢ and the [ closest partitions that ¢
covers. Here, the distance used to determine the closest partitions corresponds to the
selected loss of VI or B. Next, the posterior expected loss E[L(c, ¢)|D] is computed for all

proposed partitions :\c\, and we move in the direction of minimum posterior expected loss,
that is the partition ¢’ with minimal E[L(c, ¢’)|D] is selected. The algorithm stops when
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no reduction in the posterior expected loss is obtained or when a maximum number of
iterations has been reached. At each iteration, the computational complexity is O(IN?).

We have developed an R package ‘mcclust.ext’ (Wade (2015)), expanding upon the
‘mcclust’ package, that is currently available on the author’s website! and includes
functions minbinder.ext () and minVI() to find the partition minimizing the poste-
rior expected Binder’s loss and VI, respectively. In addition to implementing the search
algorithms of minbinder () in ‘mcclust’ described previously, the greedy search algo-
rithm is also included. As is common in greedy search algorithms, results are sensitive
to both the starting value of ¢ and the step size [. In practice, we recommend multiple
restarts, for example, at different MCMC samples or the best partition found by the
other search algorithms. A larger value of [ will allow more exploration and reduce the
need for multiple restarts, and we have chosen a default value of | = 2N as this showed
good exploration in the examples considered with little sensitivity to the initial value
of ¢. However, for larger datasets, this may be too expensive and multiple restarts with
smaller [ may be preferred.

An advantage of the greedy search algorithm over simply restricting to partitions
visited in the chain is that partitions not explored in the MCMC algorithm can be
considered; in fact, in almost all simulated and real examples, the clustering estimate is
not among the sampled partitions and results in a lower expected loss than any sampled
partition.

5 Credible balls of partitions

To characterize the uncertainty in the point estimate c*, we propose to construct a
credible ball of a given credible level 1 — a, € [0, 1], defined as
B (c*) ={c:d(c",c) <€},

where €* is the smallest ¢ > 0 such that P(B.(c*)|D) > 1 — a. The credible ball is
the smallest ball around c* with posterior probability at least 1 — a. It reflects the
posterior uncertainty in the point estimate ¢*; with probability 1 — a;, we believe that
the clustering is within a distance of €* from the point estimate c* given the data. It
can be defined based on any metric on the space of partitions, such as VI and B. If the
smallest non-trivial ball under VI or B has posterior probability of at least 1 — «, the

credible balls under the two metrics will coincide (see Property 5). Typically, however,
they will be different.

From the MCMC output, we can obtain an estimate of €*, and thus the credible ball
of level 1 — «. First, the distance between all MCMC samples {c™} and c¢* is computed.
For any € > 0,

M
P(B.(¢")|D) = E[1(d(c", ) < ¢)|D] ~ — S e < ),
ﬂz:l

and ¢* is the smallest ¢ > 0 such that - Zm 11(d(c*,c™) <€) >1—au

Ihttps://www2.warwick.ac.uk/fac/sci/statistics/staff/academic-research/wade/.
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To characterize the credible ball, we define the vertical and horizontal bounds of
the credible ball. The vertical upper bounds consist of the partitions in the credible
ball with the smallest number of clusters that are most distant from c*. The vertical
lower bounds consist of the partitions in the credible ball with the largest number of
clusters that are most distant from c*. The horizontal bounds consist of the partitions
in the credible ball that are most distant from c*. The bounds are defined more formally
below, where the notation k(c) is used for the number of clusters in c.

Definition 1 (Vertical upper bounds). The vertical upper bounds of the credible ball
B« (c*), denoted v¥ (c*), are defined as

v (c¢*) ={c € Bes(c*) : k(c) < k(') V' € Bex(c*) and
d(c,c*) > d(c",c*) V" € Bex(c*) with k(c) = k(c")}.

Definition 2 (Vertical lower bounds). The vertical lower bounds of the credible ball
B« (c*), denoted vl.(c*), are defined as

vl (c*) = {c € Be-(c*) : k(c) > k(c') V' € Be-(c*) and
d(c,c*) > d(c",c*) V" € Bex(c*) with k(c) = k(c")}.

Definition 3 (Horizontal bounds). The horizontal bounds of the credible ball Be(c*),
denoted he«(c*), are defined as

hes(c*) = {c € Be(c*) : d(c,c*) > d(c',c*) V' € Bes(c*)}.

These bounds describe the extremes of the credible ball and with 1 — « posterior
probability, how different we believe the partition may be from c*. An example is pro-
vided in the Supplementary Material. In practice, we define the vertical and horizontal
bounds based on the partitions in the credible ball with positive estimated posterior
probability.

In existing literature, quantification of uncertainty in the clustering structure is
typically described through a heat map of the estimated posterior similarity matrix.
However, as opposed to the credible ball of Bayesian confidence level 1 — «, there is no
precise quantification of how much uncertainty is represented by the posterior similar-
ity matrix. Moreover, in the examples of Section 6, we find that in a comparison with
the 95% credible balls, the uncertainty is under-represented by the posterior similar-
ity matrix. Additionally, the credible balls have the added desirable interpretation of
characterizing the uncertainty around the point estimate c*.

6 Examples

We provide both simulated and real examples to compare the point estimates from VI
and Binder’s loss and describe the credible ball representing uncertainty in the clustering
estimate.
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(a) Example 1: 4 clusters (b) Example 2: 4 clusters

Figure 4: The data is simulated from a mixture of four normals with locations (£2, £2)’
and colored by cluster membership. In (b) components having varying standard devia-
tions.

6.1 Simulated examples

Two datasets of size n = 200 are simulated from:

(e 4)

j=1 J

In the first example, o; = 1 for all components, while in the second example, components
have varying standard deviations; o; = 1 for the two components located in the first
and third quadrants, o; = 0.5 in the second quadrant, and o; = 1.5 in the fourth
quadrant. The datasets for both examples are depicted in Figure 4 and colored by
cluster membership.

We consider a Dirichlet process (DP) mixture model:

X; |P“d/N ([ H ] [ ‘6% 002 D dP(u,%) and P~ DP(aR), (5)

H2 2

where 1 = (1, p2)" and ¥ is a diagonal matrix with diagonal elements (02,03). The
base measure of the DP is the conjugate product of normal inverse gamma priors with
parameters (f,;, ¢;, aq, b;) for ¢ = 1,2, i.e. Py has density

2
i b;
po(p, M2v01702 CXIl\/ 2e p( 2% 2 'uOl))(UiQ) l 1eXp(_0.2>.
K3

The parameters were fixed to po; =0, ¢; = 1/2, a; = 2, b; = 1 for ¢ = 1,2. The mass
parameter « is given a Gam(1, 1) hyperprior.

A marginal Gibbs sampler is used for inference (Neal (2000)) with 10,000 iterations
after a burn in period of 1,000 iterations. Trace plots and autocorrelation plots (not
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(c) Ex 1 VI: 4 clusters (d) Ex 2 VI: 4 clusters

Figure 5: Clustering estimate with color representing cluster membership for Binder’s
loss (first row) and VI (second row) with columns corresponding to examples.

shown) suggest convergence. Among partitions sampled in the MCMC, only one is
visited twice and all others are visited once in the first example, while no partitions are
visited more than once in the second example.

Figure 5 depicts the partition estimate found by the greedy search algorithm for
Binder’s loss and VI and for both examples (with multiple restarts and the default
value of [ = 2N); colors represent cluster membership with the posterior expected
cluster-specific mean and variance represented through stars and ellipses, respectively.
Tables in the Supplementary Material provide a comparison of the true partition with
the estimates through a cross tabulation of cluster labels. In all examples, the four true
clusters are visible; however, Binder’s loss creates new small clusters for observations on
the border between clusters where cluster membership is uncertain, overestimating the
number of clusters. This effect is most extreme for the second example, where the fourth
cluster (blue in Figure 4b) has increased overlap with the second and third clusters (red
and green in Figure 4b), while the first cluster (black in Figure 4b) with decreased
variance is well separated from the other clusters and identified in both estimates.

A further comparison of the true partition with the estimates under Binder’s loss
and VI, for both examples, is provided in Table 1. As expected, the B estimate and
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Loss | k% N;r E[B|D] B(c,c*) E[VILg|/D] E[VID] VI(c;,c*)
Fx 1: B 9 13 0.062 0.045 0.545 0.816 0.643
VI 4 9 0.064 0.044 0.426 0.77 0.569
Ex 2: B 12 18 0.088 0.056 0.846 1.068 0.764
VI 4 10 0.093 0.049 0.668 0.99 0.561

Table 1: A comparison of the clustering estimate with B or VI in terms of 1) number
of clusters k};; 2) number of data points incorrectly classified, denoted Nr; 3) expected
B; 4) B between the optimal and true clusterings; 5) expected lower bound of VI; 6)

expected VI; and 7) VI between the optimal and true clusterings for both examples.

Ex 1 Loss | k% N; E[B|D] B(cy,c*) E[VILs|/D] E[VID] VI(c,c*)
N—o B [9 13 0062 0045 0.545 0.816 0.643
VI | 4 9 0064 0.044 0.426 0.77  0.569
N—a400. B [17 31 0.068 0052 0.674 1.0 0.769
VI | 4 18 0.073  0.044 0.505  0.933 0.54
N—sop. DB [24 62 0068 0061 0.615 1.016 0.903
VI | 4 47 0069  0.056 0.477 0.943  0.742
N—1600. B |4 93 0058 0.044 0.551 0.898 0.719
VI | 4 49 0059  0.045 0.403 0.814  0.629

Table 2: Example 1 with increasing sample size: a comparison of the clustering estimate
with B or VI in terms of 1) number of clusters k%; 2) number of data points incorrectly
classified, denoted Np; 3) expected B; 4) B between the optimal and true clusterings; 5)
expected lower bound of VI; 6) expected VI; and 7) VI between the optimal and true
clusterings.

VI estimate achieve the lowest posterior expected loss for B and VI, respectively, but
interestingly, the VI estimate has the smallest distance from the truth for both B and VI
in both examples, with the greatest improvement in the second example. Furthermore,
the number of incorrectly classified data points is greater for the B estimate than the
VI estimate.

Additional simulated experiments were performed to analyze the effect of increasing
the sample size in the first example. The results are succinctly summarized in Table 2.
As the sample size increases, more points are located on the border where cluster mem-
bership is uncertain. This results in an increasing number of clusters in the B estimate
(up to 41 clusters for N = 1600), while the VI estimate contains only four clusters
for all sample sizes. In both estimates, the number of incorrectly classified data points
increases with the sample size, however this number is smaller for the VI estimate in all
sample sizes, with the difference between this number for Binder’s and VI growing with
the sample size. Furthermore, the VI estimate has improved VI distance with truth and
improved or comparable B distance with truth when compared with the B estimate.

Further experiments were carried out to consider highly unbalanced clusters. In this
case, the conclusions continue to hold; Binder’s loss overestimates the number of clusters
present, placing uncertain observations in new small clusters, and this effect becomes
more pronounced with increased overlap between clusters (results not shown).
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Figure 6: Example 1: 95% credible ball with Binder’s loss around c* (a) represented by
the (b) horizontal bound, (c¢) upper vertical bound, and (d) lower vertical bound, where
color denotes cluster membership, and a heat map of the posterior similarity matrix (e).

For the first example, Figures 6 and 7 represent the 95% credible ball around the opti-
mal partition for B and VI, respectively, through the upper vertical bound, lower vertical
bound, and horizontal bound, with data points colored according to cluster membership.
Analogous plots for the second example are found in Figures 8 and 9. The Supplemen-
tary Material provides tables comparing the bounds with the true clustering through a
cross tabulation of the true cluster labels with the cluster labels for each bound.

In the first example, we observe that elements of the 95% credible ball with positive
estimated posterior probability have at least four clusters for both metrics and at most
18 clusters for B or 16 clusters for VI, while the most distant elements contain 11 clusters
for B and VI (Table 3). For both metrics, these bounds reallocate uncertain data points
on the border with these points either added to one of the four main clusters or to new
small to medium-sized clusters. For example, in the B upper bound, 19 elements of the
third cluster (green in Figure 4a) are added to the fourth cluster (blue in Figure 4a) and
in the B lower bound, the fourth cluster (blue in Figure 4a) is split in two medium-sized
clusters and several small clusters.

In the second example, the first cluster (black in Figure 4b) is stable in all bounds,
while the 95% credible ball reflects posterior uncertainty on whether to divide the re-
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Figure 7: Example 1: 95% credible ball with VI around c* (a) represented by the (b)
horizontal bound, (c) upper vertical bound, and (d) lower vertical bound, where color
denotes cluster membership, and a heat map of the posterior similarity matrix (e).

Loss Upper Lower Horizontal
kYo d(c,cy) | Ky d(c*,e) | KRy d(c*,cn)
Ex 1: B 4 0.097 18 0.097 11 0.097

- VI 4 1.02 16 1.152 11 1.213
Ex 2: B 4 0.137 19 0.131 10 0.137

- VI 3 1.043 16 1.342 6 1.403

Table 3: A summary of the credible bounds with B or VI in terms of the number of
clusters and distance to the clustering estimate for the upper vertical, lower vertical,
and horizontal bounds and for both examples.

maining data points into 3 to 18 clusters for B and 2 to 15 clusters for VI (Table 3).
Notice the high uncertainty in the fourth cluster with increased variance (blue in Fig-
ure 4b). Additionally, note the greater uncertainty around the optimal estimate in Ex-
ample 2, as the horizontal distance in Table 3 is greater for Example 2 for both metrics.

Figures 6-9 also present heat maps of the posterior similarity matrix for both ex-
amples. In general, the posterior similarity matrix appears to under-represent the un-
certainty; indeed, one would conclude from the similarity matrix that there is only
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Figure 8: Example 2: 95% credible ball with Binder’s loss around c* (a) represented
by the (b) horizontal bound, (c¢) upper vertical bounds (only one of two shown for
conciseness), and (d) lower vertical bound, where color denotes cluster membership,
and a heat map of the posterior similarity matrix (e).

uncertainty in allocation of a few data points in Example 1. Moreover, the 95% credible
ball gives a precise quantification of the uncertainty.

6.2 Galaxy example

We consider an analysis of the galaxy data (Roeder (1990)), available in the MASS
package of R, which contains measurements of velocities in km/sec of 82 galaxies from
a survey of the Corona Borealis region. The presence of clusters provides evidence for
voids and superclusters in the far universe. The data is modeled with a DP mixture (5).
The parameters were selected empirically with pg = #,¢ = 1/2,a = 2,b = s, where
represents the sample mean and s? represents the sample variance. The mass parameter
a is given a Gam(1, 1) hyperprior.

With 10,000 samples after 1,000 burn in, the posterior mass is spread out over 9,636
partitions, emphasizing the need for appropriate summary tools. Figure 10 plots the
point estimate of the partition found by the greedy search algorithm for Binder’s loss
and VI (with multiple restarts and the default value of | = 2N). The data values are



22 Bayesian Cluster Analysis: Point Estimation and Credible Balls

% 4 2 60 2 4 6 % 4 2 b6 2 4 6
x1 x1
(a) VI estimate: 4 clusters  (b) VI horizontal bound:
6 clusters
(=3

b 4 2 0 5 k8 % 4 2 0 248 100 150 20(
x1 x1
(c) VI upper vertical bound: (d) VI lower vertical bound: (e) Posterior similarity matrix
3 clusters 16 clusters

Figure 9: Example 2: 95% credible ball with VI around c* (a) represented by the (b)
horizontal bound, (c) upper vertical bound, and (d) lower vertical bound, where color
denotes cluster membership and a heat map of the posterior similarity matrix (e).

plotted against the estimated density values from the DP mixture model and colored
according to cluster membership, with correspondingly colored stars and bars along the
x-axis representing the posterior mean and variance within cluster. Again, we observe
that Binder’s loss places observations with uncertain allocation into singleton clusters,
with a total of 7 clusters, 4 of which are singletons, while the VI solution contains 3
clusters. Table 4 compares the point estimates in terms of the posterior expected B,
lower bound of VI, and VI; as anticipated, the B solution has the smallest posterior
expected B and the VI solution has the smallest posterior expected VI.

Loss | ky E[B|D] E[VIg/D] E[VID]
B | 7 o0.218 0.746 1.014
VI | 3 0237 0.573 0.939

Table 4: Galaxy example: a comparison of the optimal partition with Binder’s loss and
VI in terms of posterior expected B, lower bound to VI, and VI.

The 95% VI credible ball contains all partitions with a VI distance less than 1.832.
Figure 11 depicts the 95% credible ball through the upper vertical, lower vertical,
and horizontal bounds, which are further described and summarized in Table 5 and
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Figure 10: Galaxy example: optimal clustering estimate with color representing cluster
membership for Binder’s loss and VI, with correspondingly colored stars and bars along
the x-axis representing the posterior mean and variance within cluster.

Upper Lower Horizontal
v d(c*,ey) | Ky d(c* ) | KR d(c*cp)
Galaxy | 2 1364 | 15 1669 | 8  1.832

Table 5: Galaxy example: a summary of the credible bounds with VI in terms of the
number of clusters and distance to the clustering estimate for the upper vertical, lower
vertical, and horizontal bounds.

in cross tabulation tables in the Supplementary Material. We observe a large amount
of variability around the optimal partition. With 95% posterior probability, we believe
that, on one extreme, the data could be modeled using only 2 components, one with
a large variance to account for outliers (black cluster in Figure (11a)). On the other
extreme, the data could be further split into one medium sized cluster and many, 14
to be precise, smaller clusters. The horizontal bound, the most extreme partition in
the credible ball, splits the largest cluster (red in Figure 10b) into two medium sized
clusters and four small clusters and reallocates some of its data points to the first
cluster (black in Figure 10b). Figure 11d emphasizes that the posterior similarity ma-
trix under-represents the uncertainty around the point estimate in comparison to the
credible ball.

7 Discusssion

Bayesian cluster analysis provides an advantage over classical cluster analysis, in that
the Bayesian procedure returns a posterior distribution over the entire partition space,
reflecting uncertainty in the clustering structure given the data, as opposed to returning
a single solution or conditioning on the parameter estimates and number of clusters. This
allows one to assess statistical properties of the clustering given the data. However, due
to the huge dimension of the partition space, an important problem in Bayesian cluster
analysis is how to appropriately summarize the posterior. To address this problem, we
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Figure 11: Galaxy example: 95% credible ball with VI represented by the (a) upper
vertical bound, (b) lower vertical bound, and (c) horizontal bound, where color denotes
cluster membership, with correspondingly colored stars and bars along the x-axis rep-
resenting the posterior mean and variance within cluster, and (d) a heat map of the
posterior similarity matrix.

have developed tools to obtain a point estimate of clustering based on the posterior and
describe uncertainty around this estimate via the 95% credible ball.

Obtaining a point estimate through a formal decision theory framework requires
the specification of a loss function. Previous literature focused on Binder’s loss. In this
work, we propose to use an information theoretic measure, the variation of information,
and provide a detailed comparison of the two metrics. We find that Binder’s loss ex-
hibits peculiar asymmetries, preferring to split over merge clusters, and the variation
of information is more symmetric in this regard. This behavior of Binder’s loss causes
the optimal partition to overestimate the number of clusters, allocating uncertain data
points to small additional clusters. In addition, we have developed a novel greedy search
algorithm to locate the optimal partition, allowing one to explore beyond the space of
partitions visited in the MCMC chain.

To represent uncertainty around the point estimate, we construct 95% credible balls
around the point estimate and depict the credible ball through the upper vertical, lower
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vertical, and horizontal bounds. In addition to a heat map of the posterior similarity
matrix, which is often reported in literature, the 95% credible ball enriches our un-
derstanding of the uncertainty present. Indeed, it provides a precise quantification of
the uncertainty present around the point estimate, and in examples, we find that an
analysis based on the posterior similarity matrix leads one to be over certain in the clus-
tering structure. The developed posterior summary tools for Bayesian cluster analysis
are available? through an R package ‘mcclust.ext’ (Wade (2015)), expanding upon the
existing R package ‘mcclust’ (Fritsch (2012)).

In future work, we aim to extend these ideas to Bayesian feature allocation analy-
sis, an extension of clustering which allows observations to belong to multiple clusters
(Griffiths and Ghahramani (2011)). A further direction of research will be to explore
posterior consistency for the number of clusters based on the VI estimate for Bayesian
nonparametric mixture models; this is of particular interest in light of the negative re-
sults of Miller and Harrison (2013) and Miller and Harrison (2014) and the positive
results in our simulation studies (Table 2). Finally, scalability issues of Bayesian non-
parametric mixture models are an important concern for very large datasets. To scale
with large sample sizes, a number of papers have avoided exploration of the posterior on
partitions through MCMC and focused on finding a point estimate of the partition, of-
ten through MAP inference (Heller and Ghahramani (2005), Dahl (2009), Raykov et al.
(2014)) or the DP-means algorithm and its extensions (Kulis and Jordan (2012), Jiang
et al. (2012), Broderick et al. (2013)). One direction of future research is to develop an
algorithm to find the point estimate which minimizes the posterior expected VI that
avoids MCMC. Of course, while gaining in scalability, we lose the uncertainty in the
clustering structure.

Supplementary Material

Supplementary material for Bayesian cluster analysis: Point estimation and credible
balls (DOI: 10.1214/17-BA1073SUPP; .pdf).
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