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Abstract 

Explosions in homogeneous reactive mixtures have been widely studied both experimentally 

and numerically. However, in practice, combustible mixtures are usually inhomogeneous and 

subject to both vertical and horizontal concentration gradients. There is still very limited 

understanding of the explosion characteristics in such situations. The present study aims to 

investigate deflagration to detonation transition (DDT) in such mixtures. Two cases in a 

horizontal obstructed channel with 30% and 60% blockage ratios filled with hydrogen/air 

mixture with vertical concentration gradients are numerically studied. These cases were 

experimentally investigated by Boeck et al. (2015), and hence some measurements are 

available for model validation. A density-based solver within the OpenFOAM CFD toolbox is 

developed and used. To evaluate the convective fluxes contribution, the Harten–Lax–van 

Leer–Contact (HLLC) scheme is used for shock capturing. The compressible Navier–Stokes 

equations with a single step Arrhenius reaction are solved. The numerical results are in good 

qualitative and quantitative agreement with the experiments. The predictions show that the 

overpressure at the DDT transition stage is higher in the non-uniform mixtures than that in 

homogeneous mixtures under similar conditions. It is also found that increasing the blockage 

ratio from 30% to 60% resulted in faster flame propagation and lower propensity to DDT. The 

Baroclinic torque and the resulting Richtmyer–Meshkov (RM) instability are also analyzed in 

relation to flame acceleration and DDT.  
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1. Introduction and background 

Flame acceleration (FA) and deflagration to detonation transition (DDT) in channels have 

been extensively studied. Most of these studies were conducted for industrial safety and 

intending to understanding the mechanisms of flame propagation. Much effort has been 

dedicated to understanding the phenomena related to FA and DDT (Ersen, 2004). Thomas 

(2012) has given a comprehensive study on various forms of DDT phenomena, and 

differentiated the terminology between the macroscopic and the microscopic DDT. He 

considered the large scale macroscopic DDT to include the process from accelerating 

deflagration up to a propagating detonation; and the small-scale microscopic DDT initiate the 

actual onset of detonation at the point where the combustion process changes from diffusion 

controlled to shock heating controlled. Looking from this stand point, the present work 

concerns the large-scale macroscopic DDT.  



 

Industrial pipelines, equipment transport and storage, involve a wide range of hazardous 

materials which are combustible. Their existence poses a risk, particularly when an ignition 

source is available or when the temperature or pressure go over the self-ignition limitations 

(Ersen, 2004). There is still very little understanding about the effect of mixture 

inhomogeneity on explosion behavior and the potential for DDT. 

Boeck et al. (2015) recently studied flame acceleration and DDT in a channel with vertically 

variable hydrogen concentrations. They illustrated that the flame accelerated faster when it 

burned in these gradients. The DDT phenomena were also observed as reflected shock waves 

interacted with the deflagration flame front. 

Some theoretical and numerical studies have also been directed towards understanding the 

evolution and growth of Richtmyer–Meshkov (RM) instability in reactive flows (e.g. Li & 

Zhang, 1997). The fundamental physics of generation and propagation of RM instability was 

studied in detail numerically by Brouillette (2012). They examined a shock wave interacting 

with the interface of two fluids of different densities. Any perturbation on the interface of the 

flow was found to increase the refraction of the shock wave in the flow field. The evolution of 

the initial perturbation along the interface of the flow changes linearly with time (Cloutman 

and Wehner, 1992). However, while the amplitude increases, it causes heavy fluid 

accelerating towards the light fluid and bubbles of light fluid “rise” into the heavy fluid 

(Brouillette, 2012). Moreover, at some points, this can result in “mushrooming” of the spike 

and the appearance of smaller-scale vortices (Mahmoudi et al., 2013). As a result, a turbulent 

mixing zone grows among the two fluids (Brouillette, 2012). The mechanism for the increase 

of perturbations on the interface of the fluid is known as baroclinic vorticity generation, which 

is due to the misalignment of the density and pressure gradient across the interface ((∇ρ ×
∇p) ⁄ ρ2 ). Its existence leads to surface fluctuations from RM instability at the interface 

between the burnt and unburnt gases. 

This unstable vortex sheet leads to increase in the amplification of the initial perturbations, 

which can be characterized either by a sinusoidal function of a given wavelength and 

amplitude (i.e., single mode of RM instability) or a superposition of these perturbations (i.e., 

multiple mode of RM instability) (Vetter and Sturtevant, 1995). Additionally, probable 

secondary shocks impacting on the evolving mixing layer can substantially increase the 

mixing processes (Ukai et al., 2011) and accelerate the transition of the layer to a fully 

turbulent mixing zone. 

Li and Zhang (1997) conducted a detailed numerical investigation of RM instability in two-

dimensional (2D) and 3D coordinates and found that, for the same initial amplitude and 

wavelength, the growth rate of the instability in 2D and 3D models are basically the same and 

have the same perturbation in the linear regime. However, for the nonlinear regime, the 

growth rates in the 3D cases were found to be about 20% and 25% larger and faster. 

Khokhlov et al. (1999), conducted similar numerical investigations and found that in 3D 

simulations the perturbations of the same wavelength and amplitude grow by a factor of two 

faster than the 2D case, and the maximum energy release rate was larger by a factor of two. 

Their findings contradict the results of some other investigations which showed that the trend 

of instability generation and evolution were the same for both 2D and 3D modeling (Regele, 

2013). 

Ciccarelli and Dorofeev (2008) experimentally showed that in the fast turbulent flame regime, 

the shock-flame interaction is the main mechanism affecting the flame speed. Therefore, 

because of the interaction of reflected shock waves with the flame, the interface between the 

burned and unburned gases will be distorted via the baroclinic vorticity generation 

mechanism. This will triggers the RM instability leading to fine-scale flame wrinkling.  



 

Kholkhlov et al. (1999) also concluded similarly that shock-flame interaction is important to 

accelerate flames to critical conditions for the onset of detonation. They mentioned that large 

scale RM instability is the primary mechanism increasing the heat release rate during the 

interaction of a flame with a single shock through macroscopic flame surface area growth. 

Mahmoudi et al. (2013) emphasized the role of hydrodynamic instabilities in the propagation 

mechanism of detonation. Although they detected self-sustained propagation of detonation in 

a laboratory experiment, in the numerical investigations, it was only observed in the regions 

where the turbulent mixing was not resolved and large unreacted pockets of gas were formed. 

It can, therefore, be postulated that without the unresolved small-scale instabilities, the 

detonation wave could not be self-sustained and would fail.   

Mazaheri et al. (2012), showed that for regular detonation in the hydrogen-air mixture, 

hydrodynamic instabilities do not play a role in propagation mechanism of the detonation 

wave, so there is no need to use a high grid resolution in order to capture the phenomena 

properly. In the present work, we investigate the propagation of hydrogen-air detonation in a 

very long channel, and thus, resolution of 10 cell per half reaction length (HRL) is enough for 

analysis based on the available computational resources. 

In the present study, numerical investigations were conducted on the propagation mechanism 

of DDT in the non-homogenous mixture in an obstructed channel with different blockage 

rations. This was flowed by the analysis of RM instability and its influence on FA and DDT. 

2. Numerical methods 

A density-based solver within OpenFOAM CFD toolbox (OpenFOAM Ltd., 2015) is 

assembled on the basis of rhoCentralFoam for density based Navier-Stokes equation and 

reactingFoam for combustion. The Harten–Lax–van Leer–Contact (HLLC) scheme with 

multidimensional slope limiters (“cellMDLimited” (OpenFOAM Wiki, 2010)) is used for 

shock capturing (Ettner 2014). Two-dimensional compressible Navier–Stokes equations with 

a single step Arrhenius reaction are solved. The single-step hydrogen reaction scheme 

developed by Wang et al., (2012) is used. For code verification, predictions were conducted 

for the Sod’s shock tube problem (Sod, 1978). As shown in Fig. 1, the predicted pressure and 

temperature distributions are in excellent agreement with the analytical solutions.  

 

 

Fig. 1. Model verification with the Sod’s problem. 



 

3. The experiments considered 

The experiments of Boeck et al. (2015) involving inhomogeneous DDT phenomena of 

hydrogen-air mixture were chosen for the present study. The experiments were conducted in a 

horizontal obstructed channel with 30% and 60% blockage ratios. The channel was 60 mm 

high, 5.1 mm long and 300 mm wide, respectively. It was initially filled with inhomogeneous 

hydrogen-air mixture, which was on average 30% hydrogen by volume. The initial 

concentration profile is shown in Figure 3 with concentration gradients in the vertical 

direction. The ignition was started by a weak spark in the experiment. 

 

Fig. 2. Schematic of the computational domain (Reproduced from Boeck et al., (2015)). 

 

 

Fig. 3. The volumetric hydrogen concentration gradients in the experiments (Reproduced from Boeck 

et al., (2015)). 

 

4. Numerical setup 

Figure 2 shows the computational domain which represents a smooth closed channel with 

obstacles. The mixture was initially in ambient pressure and temperature. In order to initiate 

ignition, a patch of cells within a radius of 10 mm around the point of ignition (x=0, y=0.03m) 

was set with a temperature of 2400 K and atmospheric pressure. 



 

Several researchers report different values of the half reaction length. This depends on the 

reaction mechanism and the initial condition of that reaction as well. Gamezo et al. (2007), 

reported half reaction length of hydrogen-air mixture is 0.01927 cm, however, Kumar et al. 

(2015), showed that half reaction length of hydrogen-air reaction is different for different 

reaction mechanism and in their study with changing the initial temperature that varied from 

0.02 mm to 0.1 mm. Moreover, as shown by Stamps et al. (1991), the HRL changes 

considerably with the mixture equivalence ratio. In the present study, the average volumetric 

hydrogen concentration is 30% which is close to the stoichiometric value with HRL 0.3 mm. 

However, with the presence of the concentration gradients, the actual equivalence ratio varies 

from 0.338 to 1.69. According to Fig. 5, the actual HRL would be between 0.3mm 

(stoichiometric value) and 0.39mm (rich level). Therefore, for the majority of the domain, the 

resolutions should meet the usual practice of between 10 to 14 cells per HRL. 

Therefore, the adaptive mesh refinement capability was used with a minimum cell size of 30 

µm, giving approximately by average 10 grid points per half reaction length (HRL) in the 

finest region near the flame and shock fronts. 

 

 

Fig. 4. The half reaction length of hydrogen-air flame verse equivalence ratio (Reproduced from 

Stamps et al. (1991)). 

 

5. Results and discussion 

As shown in Figures 5 and 6, the predicted flame position and flame tip speed for both cases 

are in reasonably good agreement with the measurements of Boeck et al. (2015). It can be 

seen (Fig. 5) that the flame velocity rises continuously in the obstructed part of the channel 

(around the 7th obstacle, x ≤ 2.05 m) due to flame interaction with the obstacles, resulting in 

combustion-induced expansion and turbulence generation. Then, after the flame passes the 6th 

obstacle, the flame speed reaches around 2100 m/s, which is around the Chapman-Jouguet 

(CJ) detonation velocity (1980 m/s) of stoichiometric hydrogen-air mixture. After the flame 

and detonation wave pass the last obstacle which is located in x=2.05 m, the flame speed 

reaches to a maximum of around the 2200 m/s before decreasing slowly.  

 



 

  

Fig. 5. Comparison between the predicted and measured flame position for left) BR30% and right) BR60%. 

 

  

Fig. 6. Comparison between the predicted and measured the flame tip speed for left) BR30% and 

right) BR60%. 

 

However, Fig. 5 shows that by increasing the blockage ratio from BR 30 to BR 60, the flame 

will propagate faster in the channel, but it does not mean the mixture will detonate faster, and 

for this issue, other parameters should be investigated. From Fig. 6, it can be seen that the 

maximum flame speed in the case with 30% BR is higher than that in the case with 60% BR 

(maximum flame speed of BR 30 is 2507 m/s located at x=2.75 and maximum flame speed 

for BR 60 is 2285 m/s located at x=2.35 m). Also, it can be found that until flame reaches the 

detonation (around obstacle 6 and 7), always the BR60 case has a higher flame tip velocity 

than the BR30 case, and after the flame transited to detonation, in average, they have almost 

the same amount of flame tip speed. 

Figure 8 shows the predicted pressure contours in the regions around obstacles 6 and 7, where 

the first local explosion took place. It can be seen that the first abrupt pressure rise appears 

next to the obstacle 6 near to the bottom wall at 12.39ms (it also can be seen in Fig. 7).  



 

 

Fig. 7. Temperature contours of deflagration to detonation for average 30% Vol H2, BR30. 

 

Figure 7 shows the temperature contour around obstacle 6 and 7 and Fig. 8 shows the pressure 

contour around these two obstacles. These two pictures illustrate the process of DDT in the 

30% BR case. It can be seen that the generated flame propagates faster at the top of the 

domain where the fuel is richer due to the non-uniformity of the mixture. 

 



 

 

Fig. 8. Pressure contours of deflagration to detonation for average 30% Vol H2, BR30. 

 

As shown in Fig. 8, at 12.29ms, the flame and shock are still detached. From the temperature 

contour in Fig. 7, it can be seen no localized explosion is formed yet. 

The first localized explosion occurred at 12.39ms near the bottom wall where the shock and 

flame interacted and the mixture was most lean with the volumetric hydrogen concentration 

being around 10% and the local speed of sound being around 361m/s. The Mach stem can be 

seen as a normal shock propagating at Mach number Ma = 4.01 near the bottom of the 

channel, as shown in Fig. 7 and Fig. 8, around the obstacle 7 at 12.39ms. This was followed by 

a stronger second localized explosion near the top wall as a result of the reflected shock from the 

top obstacle hitting the flame front (it can be found at 12.415ms). From the next frame, it can 

be seen that the second local explosion became the main drive for the detonation wave 

propagation through the rest of the domain. Moreover, after this time, the leading shock and the 

flame are coupled indicating that the flame has undergone a transition to detonation.  

Fig. 9 shows the temperature contour for the case with 60% BR. Here the first leading shock 

ahead of the flame front occurred around 8.08ms but DDT still has not occurred. However, 

according to Fig. 7 for the 30% BR case, the first shock ahead of the flame front occurred 

around 12.34ms, indicating that flame is faster in the 60% BR case. Comparison with the 

predictions for the 30% BR case, increasing the blockage ratio in the present configuration 

has increased the flame speed, but it has also increased the DDT run up distance, therefore 



 

reduced the possibility of DDT (as discussed in Fig. 6). Moreover, Fig. 9-b, which illustrates 

the flame around obstacle 3, shows that RM instability has occurred sooner in this case owing 

to greater flame speed comparing with the 30% BR case. This is thought to be due to 

enhanced turbulence mixing caused by interaction with the obstacles. 

 

Fig. 9. The predicted contour of the temperature for BR 60, a) time=8.08ms and b) time=6.49ms. 

 

Figure 9 shows the evolution of the turbulent deflagration. Some forward and backwards jets 

can be seen at the interface of the burnt and unburnt gases, illustrating the existence of RM 

instability. Because of the existence of high gradients of pressure and density, one of the main 

hydrodynamic instabilities in DDT phenomena, is RM instability.  There is a strong 

misalignment of the density gradient and pressure gradient at the interface between the flame 

front and pressure wave. This can trigger baroclinic torque (∇ρ × ∇p) which is generated as 

the results of baroclinic vorticity (
∇ρ × ∇p

ρ2⁄ ) and responsible for RM instability.  

 

Fig. 10. The contour of the predicted Baroclinic torque in Z direction for BR 60 and time 8.08 ms. 

This misalignment in a baroclinic torque which generates vorticity can be seen in Fig. 10. As 

discussed in the introduction, while shock refracts from the interface of burned and unburned 

gas, a misalignment in the density and pressure gradients occurs. This results in the 

presentence of baroclinic vorticity through the production of baroclinic torque along the 

contact discontinuity causing the perturbations to grow in amplitude (Mahmoudi et al., 2013).  

The misalignments between baroclinic vorticities are due to the cross-multiplication of 

gradient of density to the gradient of pressure (the misalignment is illustrated in Fig. 11).  



 

 

Fig. 11. Pressure gradient (left), and density gradient (right), in X and Y directions for BR 60 

and time 8.08 ms. 

As can be seen from Fig. 11 that, in the same direction either X or Y, the pressure and density 

gradient vectors in the same regions are inline, i.e. they are either both negative or positive. 

On the other hand, for different directions, these vectors have misalignment. As a result, as 

shown in Fig. 10, some parts of the baroclinic torque vectors are red ( a positive vector which 

points away from the page), and some parts are blue ( a negative vector which points towards 

the page). These results illustrate the existence of both positive and negative baroclinic 

vorticities in the flow field.  

Figure 12 plots the contours of the predicted baroclinic torque for the region around obstacles 

6 and 7 at different times. It is seen that the baroclinic torque increases with time, promoting 

RM instability, FA and DDT. It can be seen in Fig. 12-(a, b and c), the locations of the 

maximum values of the baroclinic torque are aligned with those spots where there is Mach 

stem in the bottom wall. In Fig. 12-d, it can be seen that the DDT occurred at where there is 

maximum baroclinic torque and RM instability, and also according to Fig. 8, it can be seen 

that around this time DDT has occurred. 
 

 



 

 
Fig. 12. The contours of the predicted Baroclinic torque in Z direction for BR 30 and a) time=11.79 

ms, b) time=11.91 ms, c) time=12.48 ms and d) time=12.50 ms. 

 

It can also be seen Fig. 10 and 12 that more baroclinic vorticities are generated in the vicinity 

of the Mach stem (Mach stem can be seen in Fig. 10 and Fig. 12-b). In other regions, 

baroclinic torque exists just along the interface between the flame and strong shock waves. 

The vicinity of the Mach stem and flame shock interfaces are therefore, the regions most 

prone to have RM instabilities. This is also evidenced by the presence of forward or backward 

jets, resulting in mushroom shape flow patterns along the interface. 

 



 

 

Fig. 13. RM instability diagram in BR 30 and time=12.49ms, a) The predicted temperature contour 

illustrating RM instability b) pressure gradient contour and c) density gradient contour. 

Figure 13-a, shows the temperature contour illustrating the occurrence of RM instabilities at 

the burnt-unburnt gas interface. The typical mushroom shapes RM instability are seen in the 

form of forward and backward jets. The interaction of the shock with the flame front is also 

accompanied by the existence of density differences between the burnt and unburnt gases. 

The backward jets in the primary shear layer propagated into the hot and burned gases and 

can be consumed shortly in the pool of hot products. 

By taking a look at Fig. 13-b, and -c, it can be seen that the shock and other features of the 

flow occur at the same time. Figure 13-b, shows the pressure gradient magnitude in the flow 

field, and Fig. 13-c, shows the density gradient, and these two parameters are the most 

important elements in the DDT phenomena. Overall, Fig. 13 shows a strong shock wave 

propagating ahead of the flame front. After its interaction with the flame front, a Mach steam 

was generated and acted as the leading shock. A group of shock waves propagated down the 

channel before the flame arrival. These shocks diffract around the obstacles, inducing flow, 

and enhancing shear layer turbulence behind the obstacle plates. As a result of the interaction 

of Mach stem with a transverse shock wave and the incident shock, a triple point has been 

generated in the flow field (which can be seen in Fig. 13-b). Moreover, due to the generation 

of the secondary transverse shock wave and interaction of this wave with the secondary Mach 

stem and the reflected shock wave, another triple point appeared in the flow field, which can 

be seen in Fig. 13-b and named as a secondary triple point. 



 

It is known that Baroclinic vorticity generation due to non-parallel gradients in the pressure 

and density fields can enhance flame wrinkling on small scales and macroscopic flame 

distortion on large scales. Thomas et al. (2001) experimentally demonstrated the great 

potential of shock-flame interaction in flame acceleration. Kholkhlov et al. (1999) likewise 

found that shock-flame interaction is important to accelerate flames to critical conditions for 

the onset of detonation. They believe large scale RM instability was the primary mechanism 

increasing the heat release rate during the interaction of a flame with a single shock through 

macroscopic flame surface area growth while small-scale instability decays quickly and hence 

can only contribute for a short time.  

6. Conclusions 

Numerical studies have been conducted to investigate DDT of non-homogenous mixture of 

hydrogen-air in an obstructed channel with both 30% and 60% BR. The predicted flame 

position and flame tip speed are in reasonably good agreement with the measurements of 

Boeck et al. (2015). Qualitatively the predicted density fields are in line with the recorded 

density Schlieren. The first localized explosion occurred near the bottom wall where the 

shock and flame interacted, and the mixture was most lean and then the second localized 

explosion is occurred at the top wall due to the reflection of shock and flame front which is in the 

region and later develops to form the leading detonation wave. The increase in the BR was 

found to increase the FA and slow down the possibility of transition to detonation in the 

present configuration.  

The role of hydrodynamic instabilities and the effect of baroclinic torque and RM instability 

have also been studied. The forward jet and backward jets which are a mushroom form flow, 

represent the RM instability on the interface between the burned and unburned gas. The 

forward jets were found to impact on the shock front causing the appearance of a secondary 

triple point on the initial Mach stem on the flame front. The forward jet in the first shear layer 

was found to be consumed faster than those in the secondary shear layer. On the contrary, the 

backward jet consumed slower in the first shear layer than in the secondary shear layer. This 

is thought to be due to the existence of an unburned gas region between these two shear 

layers. The jets moving toward the burned pockets are moving slower than those going 

towards the unburned gas. The results support that RM instability is the primary source of 

turbulence generation in the present case. 
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