

warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/92537

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/92537
mailto:wrap@warwick.ac.uk

M
A

E
G
NS

I
T A T

MOLEM

U
N

IVERSITAS WARWICENSIS

Analytical Modelling for the Performance

Prediction and Optimisation of Near-Neighbour

Structured Grid Hydrodynamics

by

James Alfred Davis

A thesis submitted to The University of Warwick

in partial fulfilment of the requirements

for admission to the degree of

Doctor of Philosophy

Department of Computer Science

The University of Warwick

May 2017

Abstract

The advent of modern High Performance Computing (HPC) has facilitated the

use of powerful supercomputing machines that have become the backbone of

data analysis and simulation. With such a variety of software and hardware

available today, understanding how well such machines can perform is key for

both efficient use and future planning. With significant costs and multi-year

turn-around times, procurement of a new HPC architecture can be a significant

undertaking.

In this work, we introduce one such measure to capture the performance

of such machines – analytical performance models. These models provide a

mathematical representation of the behaviour of an application in the context

of how its various components perform for an architecture. By parameterising

its workload in such a way that the time taken to compute can be described

in relation to one or more benchmarkable statistics, this allows for a reuseable

representation of an application that can be applied to multiple architectures.

This work goes on to introduce one such benchmark of interest, Hydra. Hy-

dra is a benchmark 3D Eulerian structured mesh hydrocode implemented in

Fortran, with which the explosive compression of materials, shock waves, and

the behaviour of materials at the interface between components can be inves-

tigated. We assess its scaling behaviour and use this knowledge to construct a

performance model that accurately predicts the runtime to within 15% across

three separate machines, each with its own distinct characteristics. Further,

this work goes on to explore various optimisation techniques, some of which see

a marked speedup in the overall walltime of the application. Finally, another

software application of interest with similar behaviour patterns, PETSc, is ex-

amined to demonstrate how different applications can exhibit similar modellable

patterns.

ii

Acknowledgements

I owe a great appreciation of thanks to many people for their support, advice

and friendship during my time as a postgraduate student at the University of

Warwick.

Foremost, I would like to thank my research supervisor, Professor Stephen

Jarvis, whose insight and contributions proved invaluable and without whom

none of this would have been possible.

I would also like to acknowledge both past and present members of the High

Performance and Scientific Computing Group in the Department of Computer

Science at the University of Warwick, as well as other friends for their support

In particular, I would like to thank Steven Wright, Simon Hammond, Gihan

Mudalige, John Pennycook, Oliver Perks, Richard Bunt, Robert Bird, Peter

Coetzee, Faiz Sayid, Matthew Leeke, Adam Chester, Stephen Roberts, Timothy

Law, Andrew Mallinson, David Beckingsale and James Dickson. In addition,

thanks must be given to the administrative staff of the department, including

Dr Christine Leigh, Catherine Pillet, Dr Roger Packwood, Paul Williamson,

Richard Cunningham, Sharon Howard and the secretarial staff whose aid behind

the scenes has always provided invaluable.

Thanks must be given to those at the Atomic Weapons Establishment (AWE)

for their support in not only resources but also knowledge, including Andy

Herdman, Wayne Gaudin, Wadud Miah, Ash Vadgama, Dr Iain Miller and Dr

Satheese Maheswaran.

Further general thanks must also go to the institutions of the Centre for

Scientific Computing (CSC) at the University of Warwick, Lawrence Livermore

National Laboratory (LLNL), Edinburgh Parallel Computing Centre (EPCC),

STFC Daresbury and Nag Ltd for the access provided to HPC architectures

used within this work, as well as the people behind the scenes facilitating access

iii

to these resources.

Finally, I would like to give thanks to my parents and sister, whose support,

presence and understanding has always been keenly felt.

iv

Declarations

This thesis is submitted to the University of Warwick in support of my appli-

cation for the degree of Doctor of Philosophy. It has been composed by myself

and has not been submitted in any previous application for any degree. The

work presented (including data generated and data analysis) was carried out by

the author except in the cases below:

• The compilation of the Hydra benchmark and the collection of benchmark

execution data on the Hera and DawnDev architectures was performed by

Simon Hammond. Data processing and analysis was performed by the

author.

Parts of this thesis have been published by the author:

• Davis, J. and Mudalige, G. and Hammond, S. and Herdman, J. and Miller,

I. and Jarvis, S., Predictive Analysis of a Hydrodynamics Application

on Large-Scale CMP clusters, International Supercomputing Conference

(ISC11), Computer Science — Reseach and Development, 26(3–4):175-

185, June 2011.

Other research works associated with the author but not used within this thesis

are:

• To upgrade or not to upgrade? Catamount vs Cray Linux Environment,

Hammond, S.D. and Mudalige, G.R. and Smith, J.A. and Davis, J.A. and

Jarvis, S.A. and Holt, J. and Miller, I. and Herdman J.A. and Vadgama,

A., Large Scale Parallel Processing Workshop 2010 (LSPP10) held in con-

junction with IPDPS 2010

v

Sponsorship and Grants

The research presented in this thesis was made possible by the support of the

following benefactors and sources:

• The Engineering and Physical Sciences Research Council (EPSRC) (2009-

2012).

• Access to the Hydra Benchmark was provided by the United Kingdom

Atomic Weapons Establishment (AWE) under grants CDK0660 (The Pro-

duction of Predictive Models for Future Computing Requirements) and

CDK0724 (AWE Technical Outreach Program)

• Use of computing resources was provided by the Centre for Scientific Re-

search (CSC) at the University of Warwick under the Science Research

Investment Fund and Joint Research Equipment Initiative under grant

JR00WASTEQ.

• Further compute resources were provided by the Lawrence Livermore Na-

tional Laboratory (LLNL) which is supported by the Office of Science

of the United States Department of Energy (DoE), contract DE-AC52-

07NA27344.

• Finally, use of the HECToR computing resources is managed by the EP-

SRC on behalf of the UK Research Councils.

vi

Abbreviations

AMG Algebraic Multi-Grid

API Application Program Interface

AVX Advanced Vector Instructions

AWE Atomic Weapons Establishment

BSP Bulk Synchronous Parallel

CAF Co-array Fortran

CFD Computational Fluid Dynamics

CMP Chip Multi-Processor

CPU Central Processing Unit

CG Conjugate Gradient

CRCW Concurrent Read, Concurrent Write

CREW Concurrent Read, Exclusive Write

CSC Center for Scientific Computing

CSR Compressed Sparse Row

CUDA Compute Unified Device Architecture

DMA Direct Memory Access

DPOP Double Precision Floating Point Operation

EPCC Edinburgh Parallel Computing Centre

ERCW Exclusive Read, Concurrent Write

vii

EREW Exclusive Read, Exclusive Write

FLOP Floating-Point Operation

FLOP/s Floating-Point Operations per Second

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

GPGPU General Purpose Graphics Processing Unit

HDL Hardware Description Language

HPC High Performance Computing

HYPRE Parallel High Performance Preconditioners

HPL High Performance LINPACK

IBM International Business Machines

ILP Instruction Level Parallelism

IMB Intel MPI Benchmark

I/O Input/Output

IPC Instructions Per Cycle

LANL Los Alamos National Laboratory

LLNL Lawrence Livermore National Laboratory

MIC Many Integrated Core

MIMD Multiple Instruction, Multiple Data

MISD Multiple Instruction, Single Data

ML MultiLevel Preconditioning Package

MPI Message Passing Interface

viii

PAPI Performance Application Programming Interface

PCIe Peripheral Component Interconnect Express

PE Processing Element

PETSc Portable, Extensible Toolkit for Scientific Computing

PMPI MPI Profiling Interface

PMTM Performance and Modelling Timing Interface

PRACE Partnership for Advanced Computing in Europe

PRAM Parallel Random Access Machine

PPE Power Processing Element

PVM Parallel Virtual Machine

RAM Random Access Memory

RWM Read/Write/Modify

SIMD Single Instruction, Multiple Data

SISD Single Instruction, Single Data

SMP Shared Memory Parallelism

SoA Structure-of-Arrays

SPE Synergistic Processing Element

SPMD Single Program Multiple Data

SPOOLES Sparse Object Oriented Linear Equations Solver

SSE Streaming SIMD Extensions

UPC Unified Parallel C

VECOP Vector Operation

ix

Contents

Abstract ii

Acknowledgements iii

Declarations v

Sponsorship and Grants vi

Abbreviations vii

List of Figures xviii

List of Tables xxv

1 Introduction 1

1.1 Motivation . 3

1.2 Thesis Contributions . 9

1.3 Thesis Overview . 11

2 Performance Analysis, Modelling and Optimisation 14

2.1 Forms of Parallelism . 15

2.1.1 Flynn’s Taxonomy — Program Classification 15

2.1.2 Single-Thread Parallelism 17

2.1.3 Shared Memory Parallelism 18

2.1.4 Distributed Memory Parallelism 20

2.1.5 Accelerators . 22

2.1.6 High Performance Clusters 24

2.2 Machine Cluster Architecture . 26

2.2.1 The Central Processing Unit 27

2.2.2 The Memory Hierarchy 28

x

2.2.3 Network Interconnects . 31

2.2.4 The Software Stack . 33

2.3 Performance Analysis and Modelling 34

2.3.1 Amdahl’s Law . 35

2.3.2 Gustafson’s Law . 36

2.3.3 Benchmarking . 37

2.3.4 Profiling . 40

2.3.5 PRAM Model . 43

2.3.6 The Bulk Synchronous Parallel Model 45

2.3.7 LogP/LogGP . 46

2.3.8 Statistical and Analytical Modelling 46

2.3.9 Simulation . 49

2.4 Summary . 50

3 Software and Hardware Overview 52

3.1 Libraries . 53

3.2 Benchmarks . 54

3.2.1 Network Interconnect Micro-Benchmarks 54

3.2.2 Memory Micro-Benchmarks 55

3.2.3 Macro-Benchmarks . 56

3.3 Machines . 58

3.3.1 Minerva — Warwick Commodity Cluster 58

3.3.2 HECToR . 61

3.3.3 DawnDev . 64

3.3.4 Hera . 66

3.3.5 Intel X3430 workstation 67

3.4 Summary . 68

4 Performance Scaling of a Near-Neighbour Hydrodynamics Ap-

plication 69

4.1 Hydra . 70

xi

4.2 Serial Behaviour . 72

4.2.1 Structured Mesh . 72

4.2.2 Mixed Cells . 74

4.2.3 Memory Management . 75

4.2.4 Grid Kernels . 76

4.2.5 Stencil Kernels . 76

4.2.6 Update Boundary Kernels 77

4.3 Parallel Behaviour . 78

4.3.1 Decomposition . 78

4.3.2 Point-to-Point Communications 79

4.3.3 Collective Communications 83

4.4 Function Breakdown . 84

4.5 Scaling Behaviour . 88

4.5.1 Serial Results . 89

4.5.2 Weak-Scaling Results . 92

4.5.3 Strong-Scaling . 100

4.5.4 Dynamic Central Processing Unit (CPU) Scaling 104

4.6 Summary . 106

5 Modelling Hydra - A Performance Prediction Case Study 108

5.1 Input Parameters . 108

5.2 Iteration Model . 110

5.2.1 MDT . 112

5.2.2 Mlagh . 112

5.2.3 Madv . 113

5.2.4 Madvx . 114

5.2.5 Madvy . 114

5.2.6 Madvz . 114

5.2.7 Madvmx . 115

5.2.8 Madvmy . 115

xii

5.2.9 Madvmz . 115

5.2.10 ShortPrint . 116

5.2.11 Lartvis . 116

5.2.12 Leosdrv . 116

5.3 Process and Cell Layout . 117

5.4 Compute - Work Per Unit (Wg) 123

5.4.1 Grid Kernels . 124

5.4.2 Boundary Kernels . 126

5.5 Point-To-Point Communication 126

5.5.1 Message Sizes . 126

5.5.2 Intra/Inter-Node Communication 131

5.6 Collective Communication . 142

5.7 Model Validation . 142

5.7.1 DawnDev/Hera . 142

5.7.2 Minerva . 144

5.8 Summary . 147

6 Optimisation 148

6.1 Optimisation Potential . 150

6.2 Memory Optimisations . 158

6.2.1 Memory Access Pattern Techniques 161

6.2.2 Cache Optimisation In Hydra 163

6.3 Compute Optimisation . 171

6.3.1 Results . 173

6.4 Compute-Communication Overlap 178

6.4.1 Implementation . 180

6.4.2 OpenMP Threaded Hydra 186

6.4.3 MPI Threaded Overlap 190

6.5 Node Core-Count . 193

6.6 Summary . 194

xiii

7 Application to Linear Solvers 195

7.1 Introduction to Linear Solvers . 196

7.1.1 Portable, Extensible Toolkit for Scientific Computing (PETSc)

Descomposition Behaviour 200

7.2 Conjugate Gradient Performance Analysis 202

7.2.1 CG Breakdown . 203

7.2.2 Coalesced CG . 212

7.3 Summary . 219

8 Conclusions 220

8.1 Thesis Limitations . 222

8.2 Future Work . 223

8.3 Final Words . 224

A Figure Data 245

B Other Validation Data 289

B.1 OpenMPI Comparison . 290

B.2 Hydra Critical Path by Function 290

B.3 PAPI Behaviour . 291

xiv

Listings

4.1 MPI Point-to-Point Data Exchange – Psudeocode 80

4.2 Single Hydra Iteration — Pseudocode 84

4.3 MDT Function — Pseudocode 85

4.4 Mlagh Function — Pseudocode 86

4.5 Madv Function — Psuedocode 87

4.6 Madv{x/y/z} Function — Psuedocode 87

4.7 Madvm{x/y/z} Function — Psuedocode 88

4.8 Lartvis Function — Psuedocode 88

4.9 ShortPrint Function — Psuedocode 88

5.1 Barriered MPI Point-to-Point Data Exchange – Psudeocode . . . 135

6.1 Madvmx1 Order-of-Operations — Variant A 164

6.2 Madvmy1 Order-of-Operations — Variant A 164

6.3 Madvmz1 Order-of-Operations — Variant A 164

6.4 Madvmz1 Order-of-Operations — Variant B 164

6.5 Madvmz1 Order-of-Operations — Variant C 164

6.6 Variant G . 182

6.7 Variant H . 182

6.8 Variant L . 190

xv

List of Figures

1.1 Top 500 Machine Performance Trends [161] 5

2.1 Flynn’s Taxonomy . 16

2.2 The Memory Hierarchy Pyramid 29

3.1 Memory Benchmarks — Minerva (Intel v12.0) 59

3.2 Intel MPI Benchmark (OpenMPI v1.4.3) — Minerva 60

3.3 HECToR STREAM Benchmark (PGI 12.10) 62

3.4 HECToR IMB Benchmark Measurements (MPICH2) 63

3.5 Network Benchmark — DawnDev 65

3.6 Point-to-Point Timings, Intel MPI Benchmark/SKaMPI 67

4.1 An 8× 8× 8 Cell Structured Mesh 73

4.2 Hydra 2D Message Exchange — 2×2 Decomposition 82

4.3 Hydra Function Mean Walltime per Iteration 90

4.4 Max Walltime Breakdown — Weak Scaling — Minerva (Node Fill) 94

4.5 Total Time Spent by Component Across All Ranks, Weak-Scaling

— Minerva . 95

4.6 Hydra Socket/Node Load Balancing - Minerva 97

4.7 DawnDev/Hera 753 Weak-Scaling Hydra Walltime by Component 100

4.8 Max Walltime Percentage Breakdown 102

4.9 Total Time Spent by Component Across All Ranks, Strong-Scaling

— Minerva . 103

5.1 Lartvis1 Kernel Timings – Minerva, 6 Cores Per Socket 125

5.2 Madvm Exchange Stage Walltimes - Minerva, OpenMPI-1.4.4 . . 133

5.3 Maximum Exchange Time Minus Compute Difference 134

xvi

5.4 Hydra with Barrier MPI Scaling, Max Comm. Time – Min-

erva, OpenMPI-1.4.3 – Single Face (Solid Line) vs Double Face

(Dashed Line) . 136

5.5 IMB PingPong vs PingPing vs Exchange - Single Process Pair . . 139

5.6 IMB Exchange (Process Chain Scaling) 139

5.7 IMB Simultaneous Chains (Chain Length 2 Processing Elements

(PEs)) . 139

5.8 Model Breakdown – Weak Scaled, 503 per Core, Hera [44] 143

5.9 Model vs Empirical by Component Breakdown, Minerva 146

6.1 Hydra Kernel Floating-Point Operation (FLOP)/s and Double

Precision Floating Point Operations (DPOPs):Cache Access Ra-

tio — Serial, Minerva (No Vectorisation) 155

6.2 Minerva, Hydra Serial Execution, Walltime vs. Mean Kernel

DPOPs . 160

6.3 DPOPs, Cache Accesses — Hydra Variants A/B/C, Serial, Min-

erva) . 167

6.4 Memory Optimisation - Variant Total Walltimes 170

6.5 Hydra Variants C, Dand E— Kernel Walltimes 175

6.6 Message Passing Interface (MPI) Overlap Performance — Non-

Blocking Variants . 184

6.7 Non-Blocking Madv Behaviour — Minerva 1003 Weak-Scaling,

256 PEs . 185

6.8 MPI Overlap Performance — OpenMP Variants 187

6.9 OpenMP Dynamic Schedule (Variant J), 1503, 12 Threads 188

6.10 MPI Communication/Computation Overlap - Non-Blocking, Threaded

Approach . 190

6.11 MPI Overlap Performance — Threaded Overlap Variants 191

6.12 Communication and Compute Overlap — Madvmx and Lartvis . 192

7.1 Linear Solver Components . 196

xvii

7.2 Structured Grid with 5-Point Stencil to Matrix 200

7.3 Breakdown by Percentage of CG Function Sum Time, CG/No

Preconditioner, HECToR, Weak-Scaled, 503 206

7.4 Single Matrix-Multiply Call (Mean) Breakdown by Function in

CG, CG/No Preconditioner, HECToR, Weak-Scaled, 503 208

7.5 VecNorm Components, CG/No Preconditioner, HECToR, Weak-

Scaling 503 . 209

7.6 VecTDot Components, CG/No Preconditioner, HECToR, Weak-

Scaling 503 . 211

7.7 Solve Time per Iteration, CG/No Preconditioner, Weak-Scaled,

503 . 214

7.8 Base vs Coalesced CG Function Breakdown, CG/No Precondi-

tioner, HECToR, Weak-Scaled, 503, 16384 Cores 215

7.9 Base vs Coalesced CG, VecNorm, CG/No Preconditioner, HEC-

ToR, Weak-Scaled, 503 . 217

7.10 Base vs Coalesced CG, VecDot, CG/No Preconditioner, HEC-

ToR, Weak-Scaled, 503 . 218

xviii

List of Tables

3.1 STREAM Benchmark Operations [111] 56

3.2 Machine Specification — Minerva 58

3.3 Machine Specification — HECToR 61

3.4 Machine Specification — DawnDev 64

3.5 Machine Specification — Hera . 66

4.1 Quantity grid sizes for a Nx ×Ny ×Nz problem 76

4.2 Sample Px, Py and Pz values at scale [44] 79

4.3 Minerva, Hydra Serial Walltimes 89

4.4 Minerva, Hydra Weak-Scaling Walltimes (1003, Node-Fill) 92

4.5 Socket Process Allocation. Format — (Socket Core Count)×[Number

of Sockets] . 96

4.6 Hera/DawnDev, Hydra Weak-Scaling Walltimes [44] 99

4.7 Minerva, Hydra Strong-Scaling Walltimes (1503, Node-Fill) . . . 101

4.8 Minerva, Hydra, Process 0 Clock Speeds 105

5.1 Model Summary - Hydra Input Parameters 109

5.2 Model Summary - Iteration Model Overview 111

5.3 Model Summary - Process and Cell Layout 118

5.4 Model Message Size Parameters 127

5.5 Message Size Models – Summary 128

5.6 Pure Phase Type Quantity Frequency 130

5.7 Hydra Walltime - Original vs. Global Barrier - Minerva 135

5.8 Number of ISend/IRecv Pairs Total (Worst-Case Node) 137

5.9 Minerva Communication Linear Regression Parameters 141

5.10 Hera/DawnDev Model Validation, Weak Scaled, 503 Per Core [44] 143

5.11 Hera/DawnDev Model Validation, Weak Scaled, 753 Per Core [44] 143

xix

5.12 Hydra Model Validation, Serial, Minerva Intel-12.0/OpenMPI-1.4.3145

5.13 Hydra Model Validation, Weak Scaling, Minerva Intel-12.0/OpenMPI-

1.4.3 . 145

5.14 Hydra Model Validation, Strong Scaling, Minerva Intel-12.0/OpenMPI-

1.4.3 . 146

6.1 Summary of Hydra Variants . 149

6.2 Performance Application Programming Interface (PAPI) Hard-

ware Counter Identifiers . 163

6.3 Kernel Loop Ordering — Outermost → Innermost 166

6.4 Minerva, Hydra Serial, Variant E Streaming SIMD Extensions

(SSE) — Vector Operation (VECOP):Total DPOP Ratio 174

6.5 Hydra 1003, Serial, PAPI Statistics — Intel X3430 177

6.6 Model Timings — Cores Per Socket, Minerva, Weak Scaled 1503 194

7.1 CG Function Sum Validation, CG/No Preconditioner, HECToR,

PGI-12.10/MPICH-5.6.1, Weak Scaling (503) 205

7.2 CG Function Call Frequency across i Iterations 213

A.1 Experimental Parameters by Figure 245

A.2 Experimental Parameters by Table 246

A.3 Top 500 Max/Peak Performance, June 1993 - June 2016 - Data

for Figure 1.1 . 247

A.4 STREAM – Data for Figure 3.1(b) 248

A.5 IMB AllReduce Time, 4 Bytes – Data for Figure 3.2(b) 248

A.6 IMB PingPong Intra/Inter-Node — Figure 3.2(a) 249

A.7 CacheBench – Data for Figure 3.1(a) 250

A.8 STREAM – Data for Figure 3.3 251

A.9 Intel MPI Benchmark (IMB) AllReduce, 8 Bytes – Data for Fig-

ure 3.4(b) . 251

A.10 IMB PingPong – Data for Figure 3.4(a) 252

xx

A.11 Hera IMB Timings, SkaMPI Full Send-Recv – Data for Figure 3.6 253

A.12 IMB Ping-Pong – Data Subset for Figure 3.5 254

A.13 Hydra – Function Serial Scaling – Time Per Iteration – Intel-

12.0/OpenMPI-1.4.3 – Data for Figure 4.3 255

A.14 Hydra, Minerva, Walltime Breakdown by Component (Min/Max)

– Data for Figure 4.4 . 256

A.15 Hydra, Minerva, Process Timing Range, Compute and Exchange

– Data for Figure 4.5(a) . 256

A.16 Hydra, Minerva, Process Timing Range, Collectives and Update

Bounds – Data for Figure 4.5(c) 257

A.17 Hydra, Minerva, Process Timing Range, Memory Management –

Data for Figure 4.5(e) . 257

A.18 Hydra, Minerva, Weak-Scaling - Node/Socket Load-Balancing –

Data for Figures 4.6(a), 4.6(b) 258

A.19 Hydra, DawnDev/Hera, Weak-Scaling - Walltime Breakdown –

Data for Figure 4.7 . 258

A.20 Hydra, Minerva, Walltime Breakdown by Function (Min/Max) –

Data for Figure 4.8 . 259

A.21 Hydra, Minerva, Process Timing Range, Compute and Exchange

– Data for Figure 4.9(a) . 260

A.22 Hydra, Minerva, Process Timing Range, Collectives and Update

Bounds – Data for Figure 4.9(c) 260

A.23 Hydra, Minerva, Process Timing Range, Memory Management –

Data for Figure 4.9(e) . 261

A.24 Minerva, Data for Figures 5.2, 5.3 262

A.25 Minerva, Data for Figure 5.9a . 262

A.26 Minerva, Data for Figure 5.9b . 263

A.27 PAPI Serial Mean Statistics for Kernel Madvx2, Variant A– Data

for Figures 6.1,6.2,6.3(a) . 265

xxi

A.28 PAPI Serial Mean Statistics for Kernel Madvy2, Variant A– Data

for Figures 6.1, 6.2, 6.3(b) . 265

A.29 PAPI Serial Mean Statistics for Kernel Madvz2, Variant A– Data

for Figures 6.1, 6.2, 6.3(c) . 266

A.30 PAPI Serial Mean Statistics for Kernel Madvmx1, Variant A–

Data for Figures 6.1, 6.2, 6.3(d) 266

A.31 PAPI Serial Mean Statistics for Kernel Madvmy1, Variant A–

Data for Figures 6.1, 6.2, 6.3(e) 266

A.32 PAPI Serial Mean Statistics for Kernel Madvmz1, Variant A–

Data for Figures 6.1, 6.2, 6.3(f) 267

A.33 PAPI Serial Mean Statistics for Kernel MDT1, Variant A– Data

for Figures 6.1 . 267

A.34 PAPI Serial Mean Statistics for Kernel MDT2, Variant A– Data

for Figures 6.1 . 267

A.35 PAPI Serial Mean Statistics for Kernel Mdivu, Variant A– Data

for Figures 6.1 . 268

A.36 PAPI Serial Mean Statistics for Kernel Lartvis1, Variant A– Data

for Figures 6.1 . 268

A.37 PAPI Serial Mean Statistics for Kernel UpdVel, Variant A– Data

for Figures 6.1 . 268

A.38 PAPI Serial Mean Statistics for Kernel Madv1, Variant A– Data

for Figures 6.1 . 269

A.39 PAPI Serial Mean Statistics for Kernel Madvx2, Variant B – Data

for Figures 6.3(a) . 269

A.40 PAPI Serial Mean Statistics for Kernel Madvy2, Variant B – Data

for Figures 6.3(b) . 270

A.41 PAPI Serial Mean Statistics for Kernel Madvz2, Variant B – Data

for Figures 6.3(c) . 270

A.42 PAPI Serial Mean Statistics for Kernel Madvmx1, Variant B –

Data for Figures 6.3(d) . 270

xxii

A.43 PAPI Serial Mean Statistics for Kernel Madvmy1, Variant B –

Data for Figures 6.3(e) . 271

A.44 PAPI Serial Mean Statistics for Kernel Madvmz1, Variant B –

Data for Figures 6.3(f) . 271

A.45 PAPI Serial Mean Statistics for Kernel Madvx2, Variant C – Data

for Figures 6.3(a) . 271

A.46 PAPI Serial Mean Statistics for Kernel Madvy2, Variant C – Data

for Figures 6.3(b) . 272

A.47 PAPI Serial Mean Statistics for Kernel Madvz2, Variant C – Data

for Figures 6.3(c) . 272

A.48 PAPI Serial Mean Statistics for Kernel Madvmx1, Variant C –

Data for Figures 6.3(d) . 272

A.49 PAPI Serial Mean Statistics for Kernel Madvmy1, Variant C –

Data for Figures 6.3(e) . 273

A.50 PAPI Serial Mean Statistics for Kernel Madvmz1, Variant C –

Data for Figures 6.3(f) . 273

A.51 Hydra Serial Walltimes, Minerva Intel-12.0/OpenMPI-1.4.3 – Data

for Figure 6.4(a) . 273

A.52 Hydra Strong and Weak-Scaling Walltimes – Data for Figures

6.4(b), 6.4(c), 6.6(a), 6.6(b) . 274

A.53 PAPI Serial Mean Statistics for Kernel MDT1, Minerva, Variants

D and E – Data for Table 6.4, Figure 6.5(a) 274

A.54 PAPI Serial Mean Statistics for Kernel MDT2, Minerva, Variants

D and E – Data for Table 6.4, Figure 6.5(b) 275

A.55 PAPI Serial Mean Statistics for Kernel UpdVel, Minerva, Vari-

ants D and E – Data for Table 6.4, Figure 6.5(c) 275

A.56 PAPI Serial Mean Statistics for Kernel Lartvis1, Minerva, Vari-

ants D and E – Data for Table 6.4, Figure 6.5(d) 275

A.57 PAPI Serial Mean Statistics for Kernel Mdivu, Minerva, Variants

D and E – Data for Table 6.4, Figure 6.5(e) 276

xxiii

A.58 PAPI Serial Mean Statistics for Kernel Mvolflx, Minerva, Vari-

ants D and E – Data for Table 6.4, Figure 6.5(f) 276

A.59 PAPI Serial Mean Statistics for Kernel Madvmx1, Minerva, Vari-

ants D and E – Data for Table 6.4, Figure 6.5(g) 276

A.60 Minerva – Strong and Weak-Scaling Walltime – Data for Figures

6.6(a), 6.6(b) . 277

A.61 Minerva – 256 PEs, 1003, Weak-Scaling – Communication Phase

Timings – Data for Figure 6.7(a) 277

A.62 Minerva – 256 PEs, 1003, Weak-Scaling – Compute Kernel Tim-

ings – Data for Figure 6.7(b) . 278

A.63 Minerva, Strong and Weak-Scaling Walltimes — Variants C, I, J

— Data for Figure 6.8 . 278

A.64 Minerva Intel-12.0/OpenMPI-1.4.4, Dynamic Block Size Perfor-

mance, 1503, 12 Threads – Data for Figure 6.9 279

A.65 Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Strong-Scaling Wall-

times – Data for Figure 6.11(a) 280

A.66 Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Strong-Scaling Wall-

times – Data for Figure 6.11(b) 281

A.67 Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Weak-Scaling, Lartvis

Walltimes – Data for Figure 6.12(a) 282

A.68 Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Weak-Scaling, Lartvis1

Walltimes – Data for Figure 6.12(a) 282

A.69 Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Weak-Scaling, Lartvis

Walltimes – Data for Figure 6.12(a) 283

A.70 Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Weak-Scaling, Madvmx

Walltimes – Data for Figure 6.12(b) 283

A.71 Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Weak-Scaling, Madvmx1

Walltimes – Data for Figure 6.12(b) 284

A.72 Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Weak-Scaling, Madvmx

Walltimes – Data for Figure 6.12(b) 284

xxiv

A.73 HECToR, PGI-12.10/MPICH2-5.6.1 – CG Algorithm Breakdown

by Function– Data for Figure 7.3 285

A.74 HECToR, PGI-12.10/MPICH2-5.6.1 – Single Matrix-Multiply Call

Mean Breakdown – Data for Figure 7.4 285

A.75 HECToR, PGI-12.10/MPICH2-5.6.1 – Data for Figure 7.5 286

A.76 HECToR, PGI-12.10/MPICH2-5.6.1 – Data for Figure 7.6 286

A.77 Minerva (Intel-12.0/OpenMPI-1.4.3), HECToR (PGI-12.10/MPICH2-

5.6.1) – Data for Figures 7.7(a), 7.7(b) 286

A.78 HECToR (PGI-12.10/MPICH2-5.6.1), 16384 Cores, Weak-Scaling

503, CG Function Breakdown – Data for Figures 7.8 287

A.79 HECToR (PGI-12.10/MPICH2-5.6.1) – Data for Figures 7.9(a) . 287

A.80 HECToR (PGI-12.10/MPICH2-5.6.1) – Data for Figures 7.9(b) . 287

A.81 HECToR (PGI-12.10/MPICH2-5.6.1) – Data for Figures 7.10(b) 288

A.82 HECToR (PGI-12.10/MPICH2-5.6.1) – Data for Figures 7.10(b) 288

B.1 OpenMPI 1.4.3 vs 1.4.4 Hydra Walltime Comparison – Strong

Scaling . 290

B.2 Minerva, Serial, Time spent by Function 290

B.3 Comparison of Measured L1 Data Cache Accesses 291

B.4 Comparison of Measured DPOPs across Architectures 291

xxv

CHAPTER 1
Introduction

The advent of modern computing has unveiled a wide array of potential for

modern science. Enabling fast computation on a grand scale, it facilitates

the use of new techniques that enhance and compliment traditional scientific

practices within multiple disciplines. Simulations, mathematical models that

parameterise and capture the behaviour of real-world systems, constitute one

such tool; used in tandem with more traditional empirical investigations, they

have applications across a wide range of domains such as biology [47, 101, 145],

chemistry/physics [87, 91] and weather prediction [26]. In doing so, they have

become a driving force for the advancement of supercomputing, fueling demand

for ever-more powerful machines.

As part of a scientific or industrial workflow, the power of these High Perfor-

mance Computing (HPC) architectures has become intrinsically tied to the yield

of both simulation and data analysis, not only in achieving faster results [146]

but also in enabling more complex, refined simulations that were previously

unattainable due to the time prohibitive nature of their execution. Across the

course of long running executions, even a minor boost can result in significant

time savings. The effective use of these machines has thus become the primary

drive in HPC at all levels, from machine procurement and configuration to per-

formance optimisation and prediction. The field of HPC has developed around

these concepts, focusing upon both improving existing architectures as well as

looking ahead, predicting and planning for the architectures of the future.

With an ongoing push towards the major milestone of Exascale comput-

ing [48], the adoption of more novel architectures such as accelerators/co-processors

in conjunction with an ever-increasing core count and a heavier reliance on the

1

1. Introduction

importance of the network has resulted in an increase in overall machine com-

plexity, making understanding the behaviour of a machine more crucial than

ever. The use of a significant multitude of algorithms across the domains re-

sults in a variety of different unknown demands upon these machines; ensuring

a high degree of efficiency promises to only become more difficult without guid-

ance on their usage. These HPC machines now represent a significant expense,

both in their initial procurement and in ongoing maintenance costs; achieving a

high throughput thus becomes neccessary to ensure a strong return from these

investments.

One approach towards achieving this goal has been the use of performance

models, constructs that aim to capture the key characteristics of a system and

algorithms in order to enable the prediction of their performance without the

hardware and/or time required to execute a real-time execution of the algorithm

in question. The work in this thesis represents the result of research into one such

approach, exploring the use of analytical modelling to capture the behaviour of

near-neighbour communication, structured grid applications. In particular, this

work focuses on Hydra, a key benchmark provided by the Atomic Weapons

Establishment (AWE) that is representative of a real-world application, con-

structing the first performance model that is able to accuractely describe its

behaviour. It is shown how such a model can be used alongside an understand-

ing of the application to identify and optimise bottlenecks, exploring a multitude

of potential opportunities for enhancement. Further, this thesis explores the ap-

plicability of such an approach to the Conjugate Gradient (CG) linear solver

within the Portable, Extensible Toolkit for Scientific Computing (PETSc), a

popular project with a different purpose/function but a demonstrably similar

behaviour in its implementation, showing how such techniques can be applied

on an application to application basis. In doing so, these methods can aid both

science and industry in preparing for the many-core architectures of the future.

2

1. Introduction

1.1 Motivation

Commenting on what he believed the future of computing hardware would

achieve, in 1965 Gordon E. Moore observed a trend that would come to domi-

nate the depiction of computing performance in the decades that followed:

The complexity for minimum component costs has increased at a rate

of roughly a factor of two per year... Certainly over the short term

this rate can be expected to continue, if not to increase. Over the

longer term, the rate of increase is a bit more uncertain, although

there is no reason to believe it will not remain nearly constant for at

least 10 years. Gordon E. Moore [118]

Moore’s observation (known as Moore’s Law) resulted in the prediction that

the future trend of the Central Processing Unit (CPU) transistor density was to

see an exponential growth, doubling approximately every two years. This trend

has typically been matched by an increase in the performance of a chip [25, 136].

In the early period following Moore’s publication, the most apparent out-

come of this was an improvement in the clock speed of the CPU. In conjunction

with Pollack’s Rule [25], which states “performance increases (when not limited

by other parts of the system) as the square root of the number of transistors

or area of a processor”, this has traditionally implied an overall improvement

in the performance of a chip as the transistor density improves. In the past

this improvement has previously offered easily accessable gains for serial appli-

cations with few to no changes required on the part of code maintainers, useful

for developers dealing with large or complex codes where refactoring and opti-

misation of such applications would require significant developmental resources.

This ultimately led to the period being described as a “free lunch” [164], yet it

was inevitable that such gains were unsustainable.

The physical consequences of increasing the tranistor density on a core have

proven to be an impediment to making such an approach permanently viable;

notwithstanding that the size of a transistor must ultimately be bound by a

3

1. Introduction

physical lower limit, voltage leakage [25] and heat generation [21, 96] threaten

to become prohibitive to efforts to improve CPU technology. Previously “easy”

gains in clock speed have become difficult to maintain, or are at the very least no

longer cost-effective [164], culminating in a paradigm shift towards concurrency.

Rather than making a single CPU core faster, tasks are distributed amongst

multiple computing entities to allow for their execution in parallel [165]. The

increase in transistor count on a chip has continued to observe Moore’s Law

for the present, but is no longer achieved through transistor density on a single

core of a CPU; rather multiple cores on a chip are now employed instead, in

some cases even resulting in an intentionally slower clock speed to provision for

heat, power or space requirements. Extending this concept past a single CPU,

work can be spread across multiple multi-core chips, installed in distributed

machines (nodes) that are physically separated but can communicate via some

form of network interconnect. This has resulted in the modern HPC field being

dominated by large scale, multi-core, multi-node cluster/grid supercomputing

systems that now handle the significant majority of the community’s workload,

typified by the concept of Beowulf clusters [159], with an additional shift towards

accelerator-based computing (see Section 2.2).

Due to the increasingly demanding requirements of modern simulations,

there is an ever-growing dependence upon the use of these modern supercomput-

ers. Their use has become the focus of a significant amount of research in both

industry and academia, addressing not only the development of efficient parallel

algorithms but also the implementation of new architectures or hardware con-

figurations, exploring what opportunities are available to increase the scientific

yield of such machines. The Top500 [84, 161] is dedicated to documenting

trends in the advancement of such machines, maintaining a bi-annually refreshed

report of the LINPACK [50] benchmark on the highest rated HPC machines.

Reporting both the practical (Rmax) and theoretical (Rpeak) peak number of

Floating-Point Operations per Second (FLOP/s), the rankings aim to provide

a relatively simple means of comparison for the maximum capabilities of these

4

1. Introduction

1993 1997 2001 2005 2009 2013 2017

10−1

102

105

Date

P
e
rf

o
rm

a
n
c
e

(T
F

L
O

P
/
s)

Rmax

Rpeak

(a) Linpack Performance

1993 1997 2001 2005 2009 2013 2017
0.0

20.0

40.0

60.0

80.0

100.0

Date

E
ffi

c
ie

n
c
y

(R
M

a
x
/
R

P
e
a
k

-
%

)

(b) Machine Efficiency

Figure 1.1: Top 500 Machine Performance Trends [161]

machines that is both historical and current in nature. During the past 23 years

a substantial change can be observed, from an initial 0.053 TFLOP/s in 1993

to the first reported Petascale machine, RoadRunner, in 2008 that heralded a

new landmark in sustained performance and beyond. As of June 2016 the

highest FLOP/s result (as reported by LINPACK) sits at a substantial 93.01

PFLOP/s (Figure 1.1(a)), with efforts now ongoing towards achieving the next

major milestone — Exascale computing [20].

The use of the LINPACK benchmark as a simple means of comparing the

computational capacity of HPC machines has proven to be a useful one. How-

ever, the scientific/industrial community at large has a wide-range of poten-

tial applications for these computing resources, with no guarantee that any

two codes exhibit the same underlying performance characteristics; as a conse-

quence, they can make different demands of the underlying hardware. A strong

LINPACK performance does not mean that another application will achieve a

similar efficiency, and from Figure 1.1(b) it can be seen that even LINPACK

(Rmax) does not achieve 100% efficiency for numerous architectures when con-

trasted against a machine’s theoretical peak (Rpeak). Identifying the perfor-

mance characteristics of a particular workload is thus crucial when selecting an

architecture; it can greatly boost the scientific throughput of a machine if it is

particularly attuned to the demands of an application. Such understanding also

5

1. Introduction

enables the optimisation of applications through the identification of notable

bottlenecks.

While both clusters and grids are capable of executing HPC workloads, the

predominant architecture used in HPC is that of cluster machines. As evidenced

by how heavily they are represented in the Top500, they possess characteristics

that are more suited towards the features of such workloads, specifically:

• Clusters are often more homogeneous in their node hardware, as opposed

to grid systems which may use a multitude of differing compute devices.

Since parallel codes can often operate at the speed of the slowest compute

device (due to blocking communication behaviours), the use of similar

hardware can prevent any need for extra oversight in the assignment and

decomposition of data to prevent load imbalance.

• Unlike cluster machines, the nodes of grid computers are typically more

geographically dispersed, resulting in the use of slower interconnects such

as the internet rather than the faster network interconnects often utilised

by cluster machines.

This is not to say however that there are not also complexities to the use of

cluster architectures. The modern HPC cluster can possess a number of different

architectural components, each of which can have complex interactions with

one another that impact upon the overall performance of an application. As

well as the underlying CPU performance, the data-processing throughput of

many applications can put great demands upon the memory bandwidth and/or

latency of a system. The difference in parity between the advancement of CPU

performance and memory performance has given rise to a problem known as

the “memory-wall” [178], where systems are often becoming more performance

bound by the bandwidth and latency of memory rather than the maximum

computational throughput a system is capable of. Further, the nature of parallel

compute means that the neccessity of data communication between remotely

distributed compute nodes introduces an additional overhead. The throughput,

6

1. Introduction

both bandwidth and latency, of the network interconnect becomes crucial to

ensuring speedy transmission of such data. A wide range of different potential

network topologies can mean that the effective distribution of parallel work is

crucial to minimising these overheads.

Finally, more recent advancements in the HPC domain have seen the intro-

duction of accelerators such as the IBM Cell accelerator [85], General Purpose

Graphics Processing Units (GPGPUs) using CUDA [134, 131]/OpenCL [125,

160] and Intel’s Xeon Phi architecture [38, 139], add-on components that seek

to enhance the parallel compute performance of individual nodes, marking a

shift to a more hybrid/hetrogeneous style of HPC where multiple different com-

pute hardware elements are available. At the time of writing many of the highest

rated Top-500 machines exploit such hardware indicating that this is a trend

that is unlikely to change in the immediate future. While not all codes yet use

such technologies, understanding and designing for hybrid systems early in the

development cycle can mitigate the cost of significant re-engineering efforts later

in an application’s lifecycle.

It is in this context that understanding the software and hardware that un-

derpins modern HPC architectures has become crucial to the effective use of

resources. The complexity of modern HPC architectures increases the risk of

introducing major performance bottlenecks, while the cost and time required

to procure, operate, and maintain such machines makes the impact of an un-

suitable/inefficient machine significant. Selecting the most appropriate machine

during the procurement phase is paramount to its longevity and usefulness dur-

ing its lifetime. The use of performance models provides a means by which

a user can assess their workload on a HPC machine when active or poten-

tially even prior to its purchase. Other works have demonstrated the use of

performance models not only in their capacity for predicting performance run-

time [32, 71, 72, 90, 107, 108, 122, 123, 124], but also in their ability to aid

in the procurement and configuration of HPC machines [74, 89]. The trend of

ever-increasing core counts promises to introduce new and potentially unfore-

7

1. Introduction

seen complexity to maintaining high throughput, especially given the variety of

workloads/applications of interest within the realm of academia and industry.

Providing a means to explore performance without having the full hardware

available, these models enable the user to explore not only alternate configura-

tion on existing hardware, but also to explore the domain of future architectures.

Of the various scientific domains, hydrodynamics applications fall into one

such class of codes of interest, representing a significant part of the HPC work-

load at organisations such as AWE in the UK and the U.S. national labora-

tories. For this reason, benchmark codes representative of these applications,

such as SAGE from the Los Alamos National Laboratory (LANL) [90] and

Hydra from AWE [44], provide a key tool for evaluating HPC systems dur-

ing design, procurement, installation and maintenance. The development of

such HPC codes, the evaluation of their performance on candidate systems and

sustaining performant execution is a costly and time consuming exercise. To

aid in these activities, much academic research has been conducted into de-

veloping accurate performance modelling tools and techniques for application

analysis [75, 90, 109, 124, 163].

The subject of this thesis is the use of predictive models to capture an

understanding of performance and use this knowledge to explore potential op-

timisation opportunities that may exist. The core focus of this thesis is based

around Hydra, a high-performance hydrodynamics benchmark developed and

maintained by AWE. The developed model elucidates the parallel computa-

tion of Hydra, with which it is possible to predict its run-time and scaling

performance on varying large-scale Chip Multi-Processor (CMP) clusters. A

key feature of the model is its granularity; the model is able to separate the

contributing costs, including computation, point-to-point communications, col-

lectives, message buffering and message synchronisation. We also explore how

these techniques can be portable to other applications of interest such as PETSc,

a linear solver library commonly in use among a number of scientific applica-

tions [69, 77, 86].

8

1. Introduction

The aims and objectives of this work are to demonstrate how the use of per-

formance models can aid in the development and execution of HPC applications

in a fast-changing environment. The rapid development of new architectures and

programming paradigms, combined with the frequent turnover of HPC architec-

tures in favour of more modern hardware, leads to a scenario where it is crucial

to not only understand the existing performance constraints of an application,

but to also be aware of future hindrances that might prevent a developer from

taking full advantage of new advances. Through the use of performance models,

it is possible to not only develop a strong understanding of existing performance

hotspots, but also to permit the adjustment of hardware parameters or to in-

vestigate the impact on overall performance when modifying a subset of the

application. This can have uses in not only the development and optimisation

of a code, but also during machine procurement where projections can aid in the

decision making process. The development of one such performance model in

this work is intended to show how such models can be constructed and applied,

highlighting their potential use as part of a HPC workflow.

1.2 Thesis Contributions

This thesis makes the following contributions:

Contribution 1: An initial performance analysis of Hydra

A strong and weak scaling study is used to identify the key performance in-

fluencing characteristics of Hydra, a structured-grid hydrodynamics bench-

mark. Seperately distinguishing these key contributors of performance into

compute, collective communications and near-neighbour data exchange com-

munications, it is revealed how different machine characteristics can influence

the application’s parallel behaviour. In addition, areas of unusual behaviour

are identified for further study, showing how a performance model could

guide further investigations.

9

1. Introduction

Contribution 2: Construction and validation of an analytical perfor-

mance model of Hydra

Building upon this empirical knowledge of Hydra, a performance model is

constructed that enables the prediction of run-time performance to within

15% of error at scale. As well as establishing the compute kernel behaviour,

communication patterns are also captured, modelling both intra- and inter-

node communications, as well as the influence of an increasing process count

and synchronisation upon collective MPI operations. This granular model

enables the exploration of various characteristics upon performance, chang-

ing not only the configuration parameters but also a machines performance

metrics , enabling model-led investigation of alternate runtime environments.

This can lead to more accurate assessment of such machines during procure-

ment, ensuring that they meet the demands placed upon them during their

operation, as well as highlighting unusual behaviour in the benchmarks per-

formance when contrasted against model predicted outcomes.

Contribution 3: Optimisation of the Hydra benchmark

Following from the observed behaviour, there exist a number of deviations

from what might be expected of model-predicted performance of some ker-

nels. With the knowledge provided by both the model and the scaling inves-

tigations, potential optimisations are explored to both correct and improve

upon the existing benchmark; this targets three machine linked characteris-

tics of interest — compute performance, memory access patterns and com-

pute/communication overlap. Further, demonstrating how the model can be

used to predict configuration changes, the impact of modifying the number

of compute cores used per node is explored. Such improvements can lead

to improved performance not only for existing hardware but potentially also

across future hardware, showing how the upfront cost of performance anal-

ysis and modelling can help reap benefits for future operation.

10

1. Introduction

Contribution 4: Linear solver analysis

It is expected that, within the scientific domain, interest will exist for other

benchmarks beyond that of a limited sample. As such, performance mod-

elling techniques must have some degree of portability in their implementa-

tion or usage. To this end, the performance of PETSc, a linear solver library

that is an integral part of many other scientific benchmarks, is investigated,

focusing upon the CG linear solver algorithm. While the purpose of PETSc

may differ, the underlying compute and communication behaviour of the

CG algorithm exhibit many similarities with Hydra, showing how the per-

formance modelling techniques used within this thesis could be applicable

to other applications.

1.3 Thesis Overview

The remainder of this thesis is structured as follows:

Chapter 2 provides a detailed theoretical background of the basic concepts and

techniques employed by the HPC community in the fields of performance analy-

sis, engineering and modelling. In particular, it focuses upon current techniques

for effective parallelisation, the theoretical laws that govern the performance of

parallel algorithms and the tools used to achieve these goals.

Chapter 3 details the experiment setup of the investigations undertaken within

this thesis; specifically, the machines, tools, libraries and software configurations

used to obtain empirical data. A selection of benchmark results for base ma-

chine parameters such as memory or network interconnect performance are also

included where available.

11

1. Introduction

Chapter 4 introduces Hydra, a benchmark Hydrodynamics application pro-

vided by AWE. Used as a case study herein, it is a representative benchmark of

a workload of interest, and contains characteristics that are exhibited by other

scientific applications of interest in the HPC domain. We explore the perfor-

mance of the current implementation and identify a number of areas for further

investigation — in particular underperforming kernels and the impact of the

machine’s hardware metrics.

Chapter 5 expands upon the initial performance analysis work of Chapter 4.

The understanding of Hydra’s behaviour is used to construct a parallel per-

formance model of Hydra, providing insight into a number of characteristics

including compute performance, point-to-point communication patterns, quan-

tity of data communicated and collective behaviour.

Chapter 6 applies our knowledge of Hydra from both performance analysis and

performance modelling to investigate a broad range of optimisations, applicable

to a variety of potential bottlenecks that can exist in modern HPC architec-

tures. Techniques of interest include memory pattern optimisation, the use of

vectorisation, hybrid OpenMP/Message Passing Interface (MPI) execution and

message-passing overlap with compute. Machine configuration guided by mod-

elling insights is also explored.

Chapter 7 introduces PETSc, a linear solver library, from which the perfor-

mance of the CG linear solver algorithm is examined. Demonstrating the use of

techniques previously applied to Hydra to capture performance characteristics

of interest, similarities in the structure of its parallel implementation to Hydra

are identified despite differences in their purpose. By extension, it is shown how

similar modelling techniques could be applied to CG, showing an example of

the portability of such techniques. Further, the performance of the CG solver

is contrasted against an alternative CG variant built into PETSc designed to

12

1. Introduction

reduce the number of collective operations, highlighting the performance impact

of collective operations and their effect on scalability.

Chapter 8 concludes this work, providing a summary of the outcomes and

outlining any potential future work of interest.

13

CHAPTER 2
Performance Analysis, Modelling and Optimisation

Within the fields of science and industry, the adoption of parallelism for the pur-

poses of High Performance Computing (HPC) has led to widespread demand

for a variety of tools. The complexity of parallelism is such that while the op-

portunities are great, the development process can be difficult, expensive and

time-consuming. As a consequence, the available range of parallel hardware and

techniques developed by both academia and industry has matured as the field

has grown. However, despite the progress made in developing powerful tools

for implementing parallelism, some degree of manual process remains. Even

with automated techniques, an application must be designed in such a way that

makes it amenable to executing tasks in parallel, with a range of approaches

still necessitating direct implementation within the codebase itself. Identifying

which parallel techniques are of interest, and understanding how they behave,

is crucial during the development process to ensure both correct and perfor-

mant code. Switching from a serial to parallel design can introduce a number

of potential error vectors, such as race-conditions, lack of data coherency or

performance degradation resulting from complex interactions between machine

components and the introduction of data commmunication overheads. Address-

ing this, much work has occurred in the field towards classifying parallel appli-

cations, understanding their behaviours and constructing toolchains that can

aid in their development.

In this chapter a background of work from the field of HPC is introduced,

focusing primarily upon its importance to the performance of an application.

Specifically:

• Section 2.1 introduces the core concepts of parallelism, highlighting the

14

2. Performance Analysis, Modelling and Optimisation

different forms that it can take;

• Section 2.2 describes the critical components that can influence the parallel

performance of a machine;

• Section 2.3 introduces the core concepts of performance modelling and

analysis. This details the various models and laws used to describe the

parallel performance of an application, as well as analytical and simula-

tion techniques that can be used to construct a performance model of an

application.

2.1 Forms of Parallelism

Unlike a serial application, which can only conduct operations sequentially, a

parallel program can vary in the order of execution across multiple distinct hard-

ware units. Capable of performing two or more operations simultaneously, such

programs are potentially able to scale their performance with the introduction

of additional compute components and a means to share data between them.

However, these advantages often come with a number of constraints that dictate

their usage; this complicates their implementation, debugging and performance

optimisation. This section introduces a number of parallel concepts, includ-

ing different algorithmic categories and the various hardware architectures that

enable their implementation.

2.1.1 Flynn’s Taxonomy — Program Classification

Flynn’s Taxonomy [55] describes four different classifications in an effort to bet-

ter capture the types of parallelism available. The Single Instruction, Single

Data (SISD) classification (Figure 2.1(a)) describes the characteristics of a serial

application, i.e., one that possesses no form of parallelism. In contrast to this,

the three remaining classifications all distinguish between the parallelisation of

the instruction stream and of the data stream — Single Instruction, Multiple

15

2. Performance Analysis, Modelling and Optimisation

D1I1

D2I2

D3I3

D4I4

1

2

3

4

Step Instruction
Stream

Data
Stream

(a) SISD

D1 D2 D3 D4I1

D5 D6 D7 D8I2

D9 D10 D11 D12I3

D13 D14 D15 D16I4

1

2

3

4

Step Instruction
Stream

Data
Stream

(b) SIMD

 I1 I2 I3 D1

D2

D3

D4

1

2

3

4

Step Instruction
Stream

Data
Stream

I4 I5 I6

I7 I8 I9

I10 I11 I12

(c) MISD

D1I1

D3I3

D5I5

D7I7

1

2

3

4

Step Instruction
Stream 1

Data
Stream 1

D2I2

D4I4

D6I6

D8I8

Instruction
Stream 2

Data
Stream 2

(d) MIMD

Figure 2.1: Flynn’s Taxonomy

Data (SIMD); Multiple Instruction, Single Data (MISD); and, Multiple Instruc-

tion, Multiple Data (MIMD).

A SIMD program (Figure 2.1(b)) uses parallelism of the data stream but

not of the instruction stream. It is capable of applying the same instruction to

multiple pieces of data simultaneously, enabling a much greater throughput of

data processing, albeit with the restriction that the problem must be amenable

to repeating the same operation across a large dataset.

MISD (Figure 2.1(c)) is the opposite of this, parallelising the instruction

stream but not the data stream, enabling the execution of multiple operations

on the same piece of data. This category sees little use in modern HPC, due to

scientific applications typically possessing the more common attribute of repeat-

16

2. Performance Analysis, Modelling and Optimisation

ing a similar set of instructions across large datasets, for which this approach is

not suitable.

MIMD (Figure 2.1(d)) is a combination of these two parallel approaches,

enabling the parallelisation of both the instruction and the data stream. This

is one of the more common forms of parallelism in HPC today, as it enables

the distribution of data across multiple parallel units while each is capable of

operating a different instruction stream. Darema [43] extends this classifica-

tion one step further to introduce the Single Program Multiple Data (SPMD)

category. This better describes parallel applications of a Shared Memory Paral-

lelism (SMP) or distributed nature that execute the same program concurrently

on various Processing Elements (PEs), resulting in the execution of similar (but

distinctly separate) instruction streams asynchronously upon different datasets

(or portions thereof). The critical path of such programs is usually similar

between processing elements, yet cannot be classified as SIMD due to the po-

tential for variation and there being no guarantee that the same operations on

different parallel units are being conducted simultaneously as part of their asyn-

chronous nature. It is this characteristic which adds an additional complexity

to understanding the performance of SPMD applications.

2.1.2 Single-Thread Parallelism

A number of hardware designs exist to exploit parallelism within an application

at the instruction level; such an approach is classified as Instruction Level Par-

allelism (ILP) [150]. Examples include:

Instruction Pipelining

Instructions are decomposed into a number of micro-instructions. Different

micro-instructions that do not share the use of the same resources can be

conducted in parallel. By employing pipelining, micro-instructions from two

or more instructions are able to be executed in parallel, permitting the over-

lap of multiple instructions per cycle.

17

2. Performance Analysis, Modelling and Optimisation

Superscalar Processors

A superscalar processor is designed with multiple execution resources, per-

mitting the execution of more than one instruction per cycle. This is different

from instruction pipelining where only micro-instructions are conducted in

parallel. It can be the case that a processor is both superscalar and capable

of pipelining.

Out-of-Order Execution

Out of order execution permits, data dependancies withstanding, the exe-

cution of instructions in an order different to that of the original program.

When an instruction is waiting on data to become available for processing,

an action that would normally result in a processor stall, the execution unit

can use these idle cycles to execute an alternate, non-dependent instruction

instead, mitigating the impact of a potential delay. The results are reordered

such that they appear as if they had been executed as per the original pro-

gram flow.

Vectorisation

Vector units take advantage of vector instructions to implement SIMD level

parallelism within a core, enabling the processing of multiple units of data for

a single instruction from an instruction stream. Examples include SSE and

AVX [54, 79] (Intel/AMD), Altivec [46] (PowerPC) or NEON [9] (ARM).

2.1.3 Shared Memory Parallelism

SMP exploits multi-core architectures, where multiple processing cores exist

on the same chip but must share the remaining machine resources such as its

main memory. The one notable exception to this is the use of cache memory,

where a multi-core processor can possess one or more cache levels unique to each

core and a shared cache accessible by any core. SMP can distribute a workload

18

2. Performance Analysis, Modelling and Optimisation

among the various cores through the use of threading Application Programming

Interfaces (APIs) such as POSIX threads [99, 130] or OpenMP [42] to allocate

at least one work-thread to a core. Approaches such as Intel’s Hyper-Threading

Technology [93, 106] support the creation of two virtual/logical threads per

physical core, but still share the resources of a core among its bound threads.

This enables one thread to exploit resources underused by another thread such

as when stalling occurs.

The benefits of SMP are readily apparent; by distributing and executing a

workload in parallel significant speedups can be obtained. However there are a

number of restrictions upon the use of this form of parallelism. Use of libraries

such as OpenMP permits the automation of the threading process to a degree,

but a developer must still ensure that suitable regions of code are parallelisable,

with no data-dependancies that impede the parallelisation process.

In addition to the mechanics of its implementation, ensuring performant

threading has a set of additional requirements for consideration. Algorithms

must have their workload decomposed and distributed in a manner that results

in a reasonable workload balance, such that a single core is not required to

perform a significantly greater amount of work than any other core. Further

to this, the creation of a thread and allocation of work can be expensive, thus

sufficient work must be made available for it to be worthwhile.

The use of shared memory also introduces the issues of concurrency, race

conditions and cache-coherency, where the order of threads accessing memory

can result in different output if not handled correctly. Critical regions can

combat issues of concurrency, but introduce a serial bottleneck into a parallel

application, as well as the overhead of locking and unlocking a region of code.

Finally the use of shared resources incorporates the problems of contention, that

a shared resource such as memory bandwith may reach a saturation point where

an execution unit is starved of data — commonly referred to as the memory

wall [178].

19

2. Performance Analysis, Modelling and Optimisation

2.1.4 Distributed Memory Parallelism

Distributed memory parallelism is built upon the foundation of SMP; the prin-

ciple of sharing a workload across multiple PEs remains. However SMP relies

upon particular characteristics of the underlying hardware — each compute

unit is able to access a shared memory space where the results of other compute

units can be stored and accessed freely, for example, via main memory. Since

a compute unit may require the results of computation from another compute

unit, such access is a neccessity. Distributed architectures however can consist

of multiple distinct machines or nodes, with no shared resources in common

(other than the hardware that comprises the network routing and communica-

tion facilities).

The advantage of this is clear — a shared memory unit is limited by the

number of available cores that can be placed into a single machine and the

saturation of its shared resources. A distributed architecture however, ignoring

the limitations of sufficient power, cooling and space, could continue to scale

its PE count by continuously adding more and more machines to the overall

structure. In doing so they offer a far greater scale of parallelism by increasing

the capacity for the overall system to distribute the workload across a larger

number of compute units.

A distributed setup does however come with its own set of disadvantages

and limitations. Data sharing between distinct nodes requires some form of

communication interconnect, the bandwidth and latency of which will typically

be slower than the intra-node counterpart. These data exchanges are also typ-

ically managed manually by the application due to individual processes being

unaware of data stored on remote nodes, yet said data is necessary to prevent

the propogation of errors that would otherwise arise. Failure to retrieve this

data results in a lack of coherency across the cluster and invalid computation.

This introduces a greater complexity in the development and debugging of par-

allel applications, as it is possible to bring about race conditions when data is

incorrectly propogated, or deadlocks where a node is permenantly idle waiting

20

2. Performance Analysis, Modelling and Optimisation

for the output of another node that never communicates its data. In addition,

while the hardware may be able to scale in its quantity/capacity, this does not

necessarily translate into equivalent performance, as addressed later in Sections

2.3.1 and 2.3.2 of this chapter.

The need for parallel data communication has resulted in a number of at-

tempts to standardise the API used by parallel applications to provide a con-

sistent and understandable description of how data is handled by the nodes. A

number of different approaches have been attempted, including the Parallel Vir-

tual Machine (PVM) [65], Message Passing Interface (MPI) [59, 67] and global

address space languages such as Co-array Fortran (CAF) [133] and Unified Par-

allel C (UPC) [39, 51]. Of these, the MPI standard has seen the most widespread

adoption, providing a standard with a wealth of descriptive API functions with

well defined outcomes, but leaving the specifics of their implementation to both

academia and industry. As such, a variety of different MPI libraries exist, tar-

geted at either providing a general-purpose solution available to the community

at large, such as OpenMPI [61] and MPICH [68], or to provide an optimised

library attuned to the characteristics of a particular architecture, such as MPI

on the BlueGene/L architecture [5].

Within the MPI standard, each unique MPI process is treated as a distinct

separate processing element with no shared memory space, regardless of the

underlying hardware that they are bound to. As such, data sharing between

the MPI processes can only occur through the MPI API — even if two MPI

processes both use a different core on the same node, they are unable to see

one another’s allocated block of memory; all communication occurs through

the use of MPI point-to-point communication functions, such as Send or Recv,

that communicate directly between two processes, or collective functions, such

as MPI AllGather/AllReduce, which communicate from one-to-many, many-to-

one or many-to-many.

21

2. Performance Analysis, Modelling and Optimisation

2.1.5 Accelerators

Recent advances in computing have seen the introduction of a new addition

to the field of parallel computing — accelerators. As highly parallel compute

devices, they are typically installed alongside a Central Processing Unit (CPU)

within a machine to form a hybrid architecture, where work is offloaded in part

from the CPU to the accelerator device for processing. They can see a sizeable

initial overhead in data transfer, but potentially offer a significant increase in

the level of parallelism a machine is capable of. Examples of accelerators that

have been introduced to the scientific community, either past or present, include:

Cell Broadband Engine Architecture

The Cell Processor [85], introduced in HPC as a component of Roadrun-

ner [18], contains 9 processing units — a general purpose Power Processing

Element (PPE) that acted as a scalar main processing unit and 8 Synergistic

Processing Elements (SPEs) that functioned as vector processors to provide

the bulk of the Cell’s parallel processing power. However, while the chip

provided the boost in power required to make Roadrunner the first Petas-

cale architecture in the TOP500 [161], it did not see a widespread adoption

among the HPC community. This was in part due to its overall complexity

— the PPE acted as the primary device for orchestrating how the SPEs were

used, but each SPE possessed its own reserved block of memory from which

it could draw instructions and data for processing. This neccesitated the use

of explicit Direct Memory Access (DMA) requests for data transfer, placing

a significant degree of difficulty in modifying existing codebases for use on

the architecture. In addition, the heavily restricted size of SPE memory

meant that such requests had to be carefully managed, raising the degree of

micro-management required to handle data for processing.

General Purpose Graphics Processing Units

While they originally had their genesis in markets such as computer graph-

22

2. Performance Analysis, Modelling and Optimisation

ics and videogames, Graphics Processing Units (GPUs) have developed over

time to become more generalised, highly parallel compute devices. It is this

property which saw them becoming of interest for use in HPC, a feature

which Nvidia opened up to the community at large with the introduction of

the Compute Unified Device Architecture (CUDA) [134, 131]. CUDA en-

abled access to these General Purpose Graphics Processing Unit (GPGPU)

devices for parallel computing such as that found in the field of HPC, and has

since seen a significant rise in their adoption for this purpose, evidenced by

their presence in the TOP500 including machines such as Titan [161] among

others. As their popularity has risen, a number of other frameworks/stan-

dards that are less hardware vendor specific have also been developed, such as

OpenCL [125, 160] and OpenACC [137], to facilitate efforts to develop more

platform independant support for accelerators into compilers and codebases.

Intel Many Integrated Core

The Intel Many Integrated Core (MIC) architectures, sold currently under

the monikor of the Intel Xeon Phi family [38], are co-processors connected

over the Peripheral Component Interconnect Express (PCIe) interface con-

taining a significant number of integrated cores, each in turn capable of

supporting multiple threads. Borne out of the Intel Larrabee project [154],

they are suited for highly parallel tasks due to their weaker but more nu-

merous cores, with multiple investigations demonstrating their potential for

compute performance [139]. Like GPGPUs, they have been adopted for use

in the field of HPC, as demonstrated by their presence in Tianhe-2 [161].

Field Programmable Gate Arrays

Field Programmable Gate Arrays (FPGAs) are reconfigurable circuits con-

sisting of an array of logic gates and interconnects that allows for the use of

flexible or repurposed designs as demanded. Through the use of Hardware

Description Languages (HDLs), they can be repurposed for HPC applica-

23

2. Performance Analysis, Modelling and Optimisation

tions by exploiting their parallel nature.

2.1.6 High Performance Clusters

Many modern high performance supercomputers adopt a mixture of the forms

of parallelism described thus far. Traditionally, the performance of a CPU was

closely tied to its clock speed — the rate at which it was able to process in-

structions. Dennard scaling [45], historically supporting Moore’s Law through

the trend of improvements in the compute/heat generated per Watt, has strug-

gled in the face of problems that have arisen from extremely small transistor

sizes [52]. This is not unexpected, as by the second law of thermodynamics there

must be a natural limit to the achievable efficiency of computing, as posited in

the work of Landauer [96]. However, this impacts upon the future scalability of

a single multi-core machine.

Based on the concept of Beowulf clusters [159], a HPC cluster can consist

of multiple distributed, usually homogeneous, nodes linked by a high speed

interconnect for data communication in a specific network topological arrange-

ment. Each node can consist of proprietry hardware, but many modern clusters

are comprised of commodity hardware, albeit stored in a cabinet/rack setup for

maintenance, space and organisational reasons. The nodes often have multi-core

CPUs that have a cache and access to a shared memory pool local to the node,

permitting the combination of SMP and distributed forms of parallelism across

the cluster. With this approach, the total amount of cores can theoretically

be scaled infinitely (though this is not neccessarily mirrored in the scalability

of an application). It distributes the problem of heat generation on a core, by

scaling outward across multiple nodes rather than scaling within a single node.

While heat generation still remains a significant problem across a system for

such clusters (due to often shared physical location of multiple nodes), it pro-

vides a form of scalability that does not suffer from the problem of transistor

leakage that accompanies miniaturisation. These setups are supported by the

adoption of MPI within the HPC community, applied to a significant portion of

24

2. Performance Analysis, Modelling and Optimisation

parallel scientific applications in use.

Alternate approaches exist in the form of Grid Computing, similar to cluster

based machines in that they consist of a distributed collection of nodes inter-

linked by some form of communication network. However, they are often more

geographically distributed and can consist of a wide range of heterogenous hard-

ware. Neither quality is conducive to high performance computing due to the

communication overheads, latencies and poor work load balance across different

hardware, resulting in significant delays in synchronisation steps.

Adopting such an abstract overview to HPC machines however would do a

disservice to the underlying complexity and work that goes into understanding

the impact of component selection and configuration upon the performance of

any arbitrary scientific application. Such applications can vary greatly in the

demands they make of a system’s components due to the variety of potential

workloads on offer. Throughout the history of the TOP500 [161] a multitude of

different combinations of hardware in a cluster format can be seen. For example,

in contrast to machines based on commodity hardware, the BlueGene architec-

tures [1] by International Business Machines (IBM) are exemplified by their

selection of a low clock-speed PowerPC architecture, bolstered by their quan-

tity and use of a high-speed interconnect to promote scaling performance over

individual node performance. Recent years have also seen the rise of machines

incorporating the use of accelerators/co-processors on their nodes, as addressed

in Section 2.1.5.

Such a wide array of metrics and hardware alone would be an argument for

the complexities of modern HPC architectures. When the additional consid-

erations of the software stack and machine configuration are introduced, it is

further apparent that the performance of applications could experience a sig-

nificant amount of variance. Given the substantial cost and time involved in

the procurement process, not to mention the ongoing overheads from power,

maintenance, cooling and housing of said machines, it is crucial that the most

suitable machine for a target workload is selected. Doing so will increase the

25

2. Performance Analysis, Modelling and Optimisation

use and return on investment, resulting in a greater overall scientific yield. Un-

derstanding and improving upon the behaviour of the dominant workloads of

interest thus becomes crucial. Achieving this requires an understanding of both

the architecture and of the characteristics of any algorithms of interest.

2.2 Machine Cluster Architecture

A modern supercomputer can possess a wide number of interconnecting com-

ponents, any of which can contribute towards a performance bottleneck. These

include:

The CPU (Section 2.2.1)

Compute bound performance is restricted by the rate at which the CPU is

capable of processing instructions.

Cache/Main Memory (Section 2.2.2)

In a memory bound code the cache or main-memory is unable to supply data

at a sufficient rate to fully use the available compute resources.

The Network Interconnect (Section 2.2.3)

In distributed architectures the fulfillment of remote data-dependencies re-

quires the transmission/retrieval of data over the network interconnect, in-

troducing a neccesary overhead before any further compute can take place.

Such interconnects are typically slower than a node’s memory.

The Software Stack (Section 2.2.4)

The selection of an appropriate compiler or compiler options, alongside the

MPI implementation, is capable of influencing the underlying performance

of the application. This can include factors such as the use of vectorisa-

tion (a SIMD facility), the degree of floating-point accuracy (more accurate

26

2. Performance Analysis, Modelling and Optimisation

is typically slower) or attunement of MPI to use architecture specific fea-

tures/characteristics.

Understanding the impact of these various components upon a system’s perfor-

mance is crucial to the process of profiling, modelling and optimisation.

2.2.1 The Central Processing Unit

The modern CPU supports a number of features that lend themselves towards

modern parallel HPC applications. As well as those techniques identified in

Section 2.1.2, provided here is an introduction to some commonly supported

CPU characteristics.

Vectorisation

Vectorisation is a single-core parallelisation technique, an implementation of

SIMD from Flynn’s Taxonomy (Section 2.1.1) that introduces the capacity

for multiple pieces of data elements to have the same operation applied to

them simultaneously. It is dependent upon a number of criteria, but support

is common among modern CPUs since the introduction of Intel’s Streaming

SIMD Extensions (SSE) instruction set. The repetitive nature of many sci-

entific simulations that process large datasets means that such an approach

is often a viable strategy.

Multi-core

Multi-core CPUs are the most common outcome of the adoption of the par-

allelism paradigm. By incorporating multiple compute cores onto a single

chip, each is able to use its own compute resources/cache while accessing a

shared memory for communication. A simple example is where each core

is assigned one thread with a distinct instruction stream, independant of

other threads. Some hardware supports multi-socket as well as multi-core

architectures, where a machine can have more than one CPU on the same

27

2. Performance Analysis, Modelling and Optimisation

motherboard sharing the same memory resource.

Hyper-Threading

Intel’s Hyper-Threading technology [93, 106] takes the concept of multiple

cores one step further, allowing a single physical core to appear as two log-

ical cores. This enables a single core to support two distinct threads that

may, under ideal conditions, use different system resources for an overall

speedup. However, since the underlying hardware still consists of one core,

hyperthreads are capable of contending for resources and thus care must be

taken with their use.

CPU Scaling

The use of CPU scaling recognises that not all algorithms are perfectly par-

allel. Via the application of dynamic clock speeds, a core that is operating

under its power/thermal limits can be placed under greater load by raising

its clock frequency higher than one for which it operates by default. This

can be used to exploit scenarios where a chip is being underutilised, such as

when not all cores are in use [37].

While the opportunities for on-chip parallelism are varied, their use often puts

a strain upon a shared memory resource where it becomes a requirement that

all compute units are efficiently served to prevent them being starved of data.

Thus it is vital that the implementation of any memory subsystem is able to

support this constraint. The most common form this takes in many cluster

architectures is that of the Memory Hierarchy.

2.2.2 The Memory Hierarchy

In modern systems there exist multiple different forms of data storage, each

possessing its own set of advantages and disadvantages. These include the use

of CPU registers, cache, Random Access Memory (RAM), and hard disks. The

28

2. Performance Analysis, Modelling and Optimisation

CPU
Registers

CPU Cache

Random Access Memory

Flash Based Memory (Solid State Drives)

Mechanical Hard Disks

Tape Storage

Increasing
Capacity

Increasing
Latency

Increasing
Bandwith

Increasing
Cost

Figure 2.2: The Memory Hierarchy Pyramid

use of each is afforded different levels of importance depending upon the desired

task, known as the memory hierarchy.

Prioritising the use of smaller but faster memory where possible is the core

concept of the memory hierarchy, with multiple layers of varying size and per-

formance. It is typically most common for higher bandwidth/lower latency

memory to be small in size and more expensive (in both cost and/or physical

space), while more sizeable storage capacity is reserved for slower forms of mem-

ory such as RAM. Hard disks, while slowest, offer a form of permenant storage

and thus their use is typically reserved for long term data storage rather than

intermediate compute, with the exception of checkpointing — a process that

stores a snapshot for the resumption of processing in the event of an unfore-

seen error or interruption [36]. This balance between performance and size is

represented as the Memory Hierarchy, captured in Figure 2.2.

The use of a memory hierarchy results in multiple layers of high-performance

memory, with modern systems relying heavily upon the use of an on-chip cache

of very small size (typically between 32 kB and 2 MB), moving data out of

29

2. Performance Analysis, Modelling and Optimisation

slower memory into faster memory as necessary. A system is designed around

promoting the use of this small amount of memory where possible to offset

the performance cost of using larger, slower memory. This concept is not a

binary either/or however, it is a sliding scale of balancing the cost of memory,

its size and its performance. In particular, locating memory closer to the CPU

is desirable due to the reduction in latency overheads that would occur out of

transmitting data over smaller distances. However, such space upon a machine

is at a premium and thus the prioritisation of faster memory is key to its effective

use.

Prefetching is a technique to predict (or be informed prior) of upcoming

memory accesses, and retrieve data in advance of it being required so that it

already exists in cache for subsequent operations. These techniques can be either

software or hardware based. Since this requires accesses from slower memory in

the memory hierarchy, it is done in advance to take advantage of quiet periods

on the memory bus (such as during intense compute), masking the cost of data

movement. This requires that a number of conditions be met in order to be

ultimately useful — the memory bus must not already be saturated, for no such

prefetching can then occur, and for the prefetcher to be effective it must retrieve

the correct data.

Obtaining the correct data requires the prefetcher to make an informed guess,

based on the behaviour of the program, to predict what data may be required in

advance of any requests. However, if it fails to achieve this, then a subsequent

request for the actual data from cache will fail — known as a cache-miss. This

incurs a significant performance penalty as the CPU must wait for the data to

be retrieved from lower in the memory hierarchy and moved into the cache/CPU

registers. In addition, if the cache was full, the prefetched data will have caused

the ejection of other data from cache in order to make room for it. This can

lead to complications of futher potential cache-misses if said ejected data is then

requested. To improve the likelihood of an accurate prediction, there are two

behaviours that a prefetcher will typically assume to be true. These behaviours

30

2. Performance Analysis, Modelling and Optimisation

are known as spatial locality and temporal locality. Implementing memory

access patterns that observe these behaviours will greatly improve the prefetcher

success rate.

Under the principle of spatial locality, it is presumed that data stored close to

previously accessed memory locations is more likely to be imminently requested.

When a cache miss occurs, multiple data elements are transfered into cache at

the same time as a whole, categorised as a cache line. The data elements

retrieved are located sequentially in memory — the number retrieved dependant

upon the size of a machine’s cache-line (on modern architectures typically in the

region of 32/64 bytes). By retrieving a cache-line, accessing sequential locations

after the initial address results in a cache-hit due to the data already existing

in cache. Memory patterns that traverse sequential blocks of memory are thus

able to exploit the use of full cache-lines before they are evicted.

By the principle of temporal locality, a second assumption about data is

made to improve the handling of data eviction from the cache. It is presumed

that data accessed recently has a greater chance of being re-used than less

recently accessed data, so data that has been less recently accessed in cache is

given a greater priority in cache for eviction over more recently accessed data.

By using memory access patterns that minimise the time between subsequent

accesses to the same location, the chance of data still remaining in the cache is

greater, as is the corresponding chance of a cache-hit.

Combined, both of these principles can guide the design of memory access

patterns that improve the likelihood of reusing data within cache. By doing so

this can have a significant reduction on the potential for the memory bus to

become a bottleneck.

2.2.3 Network Interconnects

The key component that facilitates the use of distributed components to achieve

massive scale parallelism is that of the network interconnect. Providing high-

speed data communication mechanisms is crucial to ensuring minimal delay in

31

2. Performance Analysis, Modelling and Optimisation

providing fresh data for processing to the various PEs within an HPC system.

In any distributed cluster there must exists some means by which data can

be communicated between remote nodes in the system. This communication

system is typically referred to as the network interconnect, and consists of three

key features:

The Network Interface

Hardware located in nodes, dedicated to interacting with the network.

The Network

Hardware dedicated to the task of transporting communications, such as

switches. Examples include high-speed ethernet [116] and multiple, differ-

ently performing variations of Infiniband [11, 29] such as DDR, QDR or FDR.

The Network Topology

The arrangement of distributed nodes within the network, dictating the

routes available between two nodes through the network. Examples include

Fat Tree [98], Torus [23] and Hypercube [22, 152]. The dominant charac-

teristic this influences is the speed that a packet can traverse the network

and can be down to many factors, with the positioning and availability of

network switches and interconnects determining the available routes for se-

lection. The routing and data management algorithms (such as data buffers)

determine the speed with which packets can traverse these available routes,

by processing data in a timely manner and identifying the routes with the

shortest traversal time. Further, while the underlying hardware determines

the theoretical peak throughput, existing network contention can limit the

actual throughput while also causing said routing algorithms to select longer

routes. Managing these factors to select suitable routes for the packets across

the entire machine is crucial to ensuring good parallel performance.

32

2. Performance Analysis, Modelling and Optimisation

The selection of these three characteristics influences both the network band-

width and the network latency:

Network Bandwidth

The network bandwidth dictates the throughput of a network — i.e. the

amount of data that can be transported via a network connection at the

same time.

Network Latency

The network latency dictates the travel time of data on a network — i.e.

the time taken for data to travel from a source A to a destination B. This

combines with the bandwidth to dictate the overall time taken for data

transport. With a latency α (seconds) and a bandwidth β (bytes/second)

the time taken for transport is roughly equivalent to α+β×datasize(bytes).

Assuming a uniform travel time for a stream of network packets (e.g. they

traverse the same network route, all packets are the same size etc.), the

latency cost is only measureably incurred on the first packet communicated

— the travel time of the second packet is mostly masked by the travel time

of the first, the third by the second etc.

2.2.4 The Software Stack

Implementing and executing a parallel application is dependent not only upon

the underlying hardware, but also the software that interfaces with it. The

selection of a suitable software stack is crucial to ensuring a machine efficiently

employs its hardware to achieve the best performance, with some vendors pro-

viding software attuned and optimised for their own architectures. Software

that can prove to be influential to the performance in an HPC environment can

include:

The Compiler

33

2. Performance Analysis, Modelling and Optimisation

Different compilers may incorporate alternate optimisations or exploit spe-

cific hardware features. This can include the use of CPU features such as

vectorisation or memory access pattern optimisations.

The Parallel Programming Interface

A software API can provide communication functionality to a developer, en-

abling the exchange of data between distinct PEs. Examples include MPI

or UPC. Their selection can depend upon the inclusion of machine specific

interface optimisations or support for select network interfaces.

The Scheduler

In shared HPC environments with multiple users, the contention for re-

sources means that frequently a queue is required to manage access. A

scheduler handles the prioritisation of jobs, balancing the resources (both

hardware and time) requested against the time spent in the queue to ensure

that a high machine utilisation is achieved without causing overly long queue

times for any particular user. A good scheduler will ensure that the number

of idle CPU hours is kept to a minimum.

The software stack on a HPC machine is normally application independent due

to such devices often managing a wide range of user requests. However, typically

a selection is available to the end-user, from which the most appropriate can be

selected via configuration settings.

2.3 Performance Analysis and Modelling

To understand the performance of an application it is neccesary to identify what

is expected behaviour and what is unexpected behaviour. If an application falls

short of an optimal performance outcome then there is a potential opportunity

for improvement, either algorithmically or in the configuration. In turn, identi-

34

2. Performance Analysis, Modelling and Optimisation

fying the ideal outcome is dependent upon a combination of the capabilities of

the machine, assuming ideal conditions, and a theoretical limit on the algorithm

in question. Much work from the academic and industrial community has gone

into the development of algorithms, descriptive laws and tools that allow the

capture and analysis of an application’s performance, both theoretically and in

real-world scenarios.

2.3.1 Amdahl’s Law

Amdahl conceptualised a definition of the maximum achieveable speedup of a

parallel application, termed Amdahl’s Law [6]. This law, depicted in Equation

2.1, was intended to show the limits of performance scaling for a fixed problem-

size as the number of parallel processes in a system increased — an experimental

setup known as strong-scaling.

Speedup =
(s+ p)

(s+
p

N
)

(2.1)

The terms s and p represent the proportion of application runtime that

consist of serial components and parallel components respectively. The speedup

of an application is a factor of the runtime at N processes, s+ p/N , against its

performance when N is one, s+p. Serial components show no change regardless

of the size of N, whereas the contribution of the parallel components is inversely

proportional to the number of processes.

This introduces a ceiling to the obtainable performance from a parallel code.

As N tends to infinity, p/N tends to zero, resulting in the maximum achieveable

speedup described in Equation 2.2.

MaxSpeedup =
(s+ p)

s
(2.2)

When the runtime becomes dominated by the serial component, any im-

provements in performance are restricted since s > p/N , and no increase in N

can reduce the cost of s. From this, two conclusions can be drawn about parallel

35

2. Performance Analysis, Modelling and Optimisation

performance:

• As the serial component comes to dominate the overall walltime, investing

in more parallel processes has diminishing returns;

• No matter the level of optimisation within the parallel component, the

maximum achievable speedup is bound by s.

Thus while achieving a greater scale offers the potential for improved per-

formance, the potential gains are constrained by the serial component of the

application. Unless the elimination of such serial components is addressed, per-

formance gains at scale will be restricted.

2.3.2 Gustafson’s Law

Gustafson proposed that there was a flawed assumption in using Amdahl’s law

when considering parallelisation efficiency [70] — namely that Amdahl’s law

assumes a strong-scaling setup where the overall problem size is fixed, with the

per-process problem size decreasing as the process count, N , increases. Con-

trary to this, Gustafson instead argued that there is a second scenario in which

parallel hardware may be used. For an arbitrary problem size, rather than us-

ing the increased parallelisation to improve the runtime, a larger problem size

could be executed in the same time as the original, smaller, problem size — an

experimental setup known as weak-scaling. This experimental setup exploits

the notion that larger HPC machines are capable of executing experiments that

were previously infeasible due to time, memory and/or storage constraints.

In this approach, both the serial component, s, and the parallel component,

p, per process would be fixed as the process count N increases due to the

scaling of the global problem size (but fixed size per process). Since the parallel

component per process is fixed, then the time on a single process is s+ p. If a

problem scaled for N processes were to be run on a single process, the runtime

taken would be s+ p×N . Theoretically, in a weak scaling scenario, the scaled

up problem size on N processes would run in the same time as a single process,

36

2. Performance Analysis, Modelling and Optimisation

thus the scaled speedup can be derived by Equation 2.3 to provide an alternate

means of analysing efficiency compared to Amdahl’s law, termed Gustafson’s

Law.

Scaled Speedup =
(s+ p×N)

(s+ p)
(2.3)

The crucial difference arises due to the ratio of serial to parallel components

per process. Under Amdahl’s law, in a strong scaling setup the runtime comes

to be dominated by the serial component as the process count increases, due

to the ratio of serial to parallel skewing towards the serial cost. As such,

the addition of more processes results in diminishing returns, and a declining

parallel efficiency. However in a weak-scaling setup there is less of a skew to-

wards the serial component due to the amount of parallel work scaling with

the process count to remain fixed per process. This is a setup representative of

many experimental workloads in modern HPC, due to the construction of larger

machines enabling experiments previously unavailable due to time, memory or

storage constraints, hence Gustafson’s law provides a more suitable means for

comparing the speedup of these tasks by reframing the parallel efficienciy in this

context. The diminishing returns of Amdahl’s law are avoided not by complet-

ing the same amount of work in less time, but by completing more work in the

same time. In so doing, the performance is not bound by the minimum time

required for the serial component, and the potential speedup is represented by

Gustafson’s law.

2.3.3 Benchmarking

The modern HPC supercomputing machine consists of a wide-array of compo-

nents, and has a variety of architecture selections available. To anyone looking

to procure or use an HPC machine, some form of comparison is neccesary in

order to identify the optimal selection. One such approach is the use of the

LINPACK/High Performance LINPACK (HPL) benchmark [50] used for the

37

2. Performance Analysis, Modelling and Optimisation

purposes of the TOP500 [161] supercomputer rankings.

Benchmarks such as LINPACK are intended to obtain suitable metrics which

provide quick and easy comparisons between machines, using real-world perfor-

mance as opposed to theroretical hardware peak performance. It summarises

these results in the form of the number of Floating-Point Operations per Sec-

ond (FLOP/s). Due to the significant use of floating-point operations in many

scientific codes, these are considered a reasonable metric of “useful work” per-

formed. However, LINPACK is most representative of applications that are

computationally bound, not those that may exhibit alternative patterns such

as unpredictable memory access patterns or possess a low ratio of FLOP/s to

memory operations. As such, it can be flawed to use LINPACK results as the

sole means for comparing supercomputing performance [49].

While a single number as a comparison metric sounds appealing, it can in-

hibit the comparison of different architectures in a number of ways. Due to

the TOP500, a not insignificant amount of importance is accredited to hav-

ing a high LINPACK ranking, especially when significant costs are involved

in procuring such machines. Care must be taken such that achieving a high

performance on LINPACK does not become the sole focus of design efforts, as

opposed to identifying and targeting bottlenecks that may impact a machine’s

intended workload. A wide range of scientific applications exist, and as such

different algorithms can exhibit different behaviours and, by extension, make

different demands of the underlying architecture and its components. The HPC

Challenge Benchmark [105] is one such alternate approach, incorporating not

only HPL but an assortment of kernels designed to assess both local and global

compute for kernels with both high and low spatial and temporal locality. Its

use allows for the capture of a selection of different kernel metrics to be reported

in a manner akin to the TOP500 [104], demonstrating the relationships between

kernel behaviour and the architectures upon which they are run. It is apparent

that while LINPACK has proven to a be a useful benchmark for understanding

the FLOP/s potential of a machine, it is not representative enough to act as the

38

2. Performance Analysis, Modelling and Optimisation

sole means of comparison when considered in the wider context of a machine’s

intended purpose.

The selection of any HPC machine should, first and foremost, be conducted

with the target workload in mind. To aid in this goal, a number of more spe-

cialised benchmarks have been constructed over the years that are intended to

capture different metrics of interest pertaining to specific scientific algorithmic

behaviours, such that a greater understanding of both the machine and how

well a code will perform can be formed. These benchmarks fall into two forms

of classification — micro-benchmarks and macro-benchmarks.

Micro/component benchmarks are targeted at a particular characteristic of

a machine, be it compute, memory, I/O performance etc. Their intention is

typically to capture the raw performance of a particular component under ideal

conditions, devoid of other compromising bottlenecks using a small piece of

code that focuses predominantly on the behaviour of interest. Examples in-

clude CacheBench [121] and STREAM [111] (memory); the Intel MPI Bench-

mark [81], and SKaMPI [167, 151] (network); and IOR [95, 156] (I/O). While

such benchmarks cannot describe the behaviour of an algorithm, if a component

is known to be the limiting bottleneck such benchmarks can help to reveal the

extent of the machine’s limitations.

Macro-benchmarks are intended to be representative of real-world applica-

tions, using multiple aspects of a system. They typically constitute cut-down

versions of such applications, intended to capture the core behaviours of the ap-

plication and how the various subsystems of a machine interact with one another.

Examples of such benchmarks include the NAS Parallel Benchmarks [13, 14],

and Sweep3D [75, 140].

The goals of these two classes of benchmarks are to provide different forms

of insight into a machine’s performance. Micro-benchmarks are ideally suited

to capturing the behaviour of one particular aspect of a machine, be it the

compute, network or memory. Macro-benchmarks however are better suited to

capturing the interactions between these systems, identifying the unexpected

39

2. Performance Analysis, Modelling and Optimisation

bottlenecks that may arise based on an application’s demands of a machine.

In an ideal scenario, an algorithm would use 100% of all necessary subsystems

simultaneously, with each subsystem handling data as fast as it arrives. In

reality however, systems are not in such perfect balance.

Advances in machine components, developed independently of one another,

have progressed at different rates. The most highlighted example of this is the

influence of memory and compute [110], the memory wall [178] being identified

as a significant factor in the performance of some HPC applications [8, 113].

As HPC machines have progressed to ever larger scale, the onus has fallen to

the software developer to ensure that algorithms are sufficiently parallel to fully

exploit the hardware. Given the proliferation of legacy codes, it can be the case

that codes are not optimised for a specific architecture or fail to take advan-

tage of a machine’s full potential. As a result a code may become significantly

bottlenecked by a subsystem and leave portions of the available resources idle.

With the unlikely scenario that a machine is in “perfect balance”, it is to

be expected that there will always be some form of bottleneck within a system.

Identifying the current bottleneck and eliminating it is a key part of the process

of optimisation — a task that requires both knowledge of the machine and the

application. To support this, a wide range of profiling tools and techniques have

been developed by the HPC community. Their effective use now forms a key

part of any HPC code development process.

2.3.4 Profiling

Understanding the internal behaviour of an application is crucial to identifying

and improving bottlenecks within an application. A significant amount of re-

search has gone into tools that can obtain performance metrics about internal

application behaviour, breaking down what would otherwise be a black-box sce-

nario. These techniques are collectively known under the moniker of profiling.

Of the various profiling approaches available, each possess different advantages

and disadvantages. These techniques include:

40

2. Performance Analysis, Modelling and Optimisation

• The use of hardware counters to track CPU metrics of interest;

• Instrumentation timers that capture the runtime of code blocks;

• Statistical sampling that approximates the time spent in different stack

locations;

• Application traces that capture runtime via instrumentation, while pre-

serving temporal data — distinct timings for the same code block called

at different times are preserved.

Hardware Counters

Hardware performance counters are specific to the hardware, using special

registers to track the execution of events of interest defined by the runtime

environment. Such counters provide a flexible means of measuring metrics

that typically would be difficult to extract from the application behaviour

due to their low-level nature, such as the number of floating-point operations

or cache misses, and would otherwise require other approaches to assess such

as simulation.

Instrumentation

Instrumentation is the most direct of profiling approaches. Timers are in-

troduced to capture the walltime (or cycle count) between two arbitrary

positions within an application. Profilers that adopt this approach typi-

cally instrument every function call; for example, GProf [66] will provide

a stack trace of the critical path, accompanied by a runtime breakdown of

each function. This provides insight into the functions that dominate overall

walltime.

Such approaches however are not necessarily refined enough for parallel

applications. At the function level no distinction is obtained between criti-

cally different behaviours such as compute and communication operations.

Some profilers, such as Tau [157] or Vampir [92, 128], provide additional

41

2. Performance Analysis, Modelling and Optimisation

functionality to capture event data via an instrumentation API through dy-

namic or manual means. Further, MPI libraries provide specialised function

names as part of MPI Profiling Interface (PMPI). This allows for the cap-

ture of MPI function calls via dynamic library loading, where timers can be

wrapped around MPI calls before calling the true function.

The use of instrumentation can provide a detailed breakdown of per-

formance. However manual instrumentation can rely upon possessing an

already in-depth knowledge of the areas of interest within a code. In addi-

tion, care must be taken to avoid the introduction of a significant overhead,

which could potentially skew any results.

Statistical Sampling

An alternate approach to that of manual instrumentation is sampling. Sam-

pling differs from instrumentation in that, rather than wrapping dedicated

timers around a block of code, predefined time intervals are specified to query

the current location within the stack and derive the duration spent within a

specific location statistically based on its frequency. Sampling is overall less

disruptive, since it prevents the overhead issues of high frequency function

calls (unless defining a very small interval period), but at the cost of less

accurate timing.

Tracing

The approach that provides the most extensive output is the production

of application runtime traces. Instrumentation as described above provides

runtime data, i.e., how long a particular portion of code took, but is usually

aggregated across the course of the run. No temporal data is stored, pre-

venting any distinction between separate executions of the same call path.

Temporal data can be particularly useful, especially in understanding the

synchronisation behaviours of applications. By using a common reference

point across all processes, a trace can reveal the duration of time taken

42

2. Performance Analysis, Modelling and Optimisation

to reach a shared common point within an application, such as a blocking

communication procedure where one or more processes are dependent on

remote processes to continue. However the use of traces produces more data

than that provided by aggregration metrics, resulting in significant storage

requirements. In addition, these storage requirements increase with process

count and, as is typical of any technique that produces sizeable datasets,

can be difficult to parse for behaviours of interest. Both Tau and Vampir

include functionality for such an approach, alongside alternate tools such as

Scalasca [64].

As well as any tools described above, an internal instrumentation library was

developed for use in Atomic Weapons Establishment (AWE) applications, called

the Performance and Modelling Timing Interface (PMTM). Unless otherwise

mentioned, all investigations conducted within this work make use of this inter-

face to take timing measurements. Further description of its functionality can

be found in Section 3.1.

2.3.5 PRAM Model

The Parallel Random Access Machine (PRAM) model is an abstract description

of a parallel architecture of p processes on a shared memory machine proposed

by Fortune and Wyllie [58]. It assumes a number of characteristics to reduce

complexity, including:

• An unspecified (potentially unlimited) number of parallel processes;

• An unspecified (potentially unlimited) amount of shared memory;

• A uniform unit time for memory access from any process, ignoring issues

such as latency, memory locality, cache behaviour and resource contention

(such as the memory bus).

The different classifications of parallelism are:

43

2. Performance Analysis, Modelling and Optimisation

• Exclusive Read, Exclusive Write (EREW) — No simultaneous access by

two processes to the same memory location is permitted; This can inhibit

performance if there is any overlap between processes in the accessed mem-

ory locations;

• Concurrent Read, Exclusive Write (CREW) — Memory can be read in

parallel, but two processes cannot write to the same memory in the same

step. This can significantly improve performance in any algorithm that

shares a data input set but maintains separate blocks of memory per

process for data storage;

• Exclusive Read, Concurrent Write (ERCW) — Typically ignored due to

concurrent write but no concurrent read being an unusual behaviour;

• Concurrent Read, Concurrent Write (CRCW) — Memory can either be

read or written to by multiple processes simultaneously. This has the

greatest performance potential as there is no restriction on two or more

processes accessing the same location.

CRCW poses the fewest restrictions on memory access, and in turn the greatest

potential for good performance. However unlike concurrent reads (which do

not interfere with the correctness of the data), concurrent writes possess a non-

deterministic nature due to the result being tied to the order of operations. This

leads to a further refinement of the behaviour of concurrent writes:

• Common — All processes must write the same value, else an undefined

state is achieved;

• Arbitrary — Any single random processor gets a write attempt, all other

remaining pending writes are unused;

• Priority — A priority algorithm determines which process out of all pend-

ing writes is chosen.

The abstract nature of PRAM makes it especially amenable to the construc-

tion of parallel algorithms in the absence of a formal implementation. The use

44

2. Performance Analysis, Modelling and Optimisation

of an idealised nature of the underlying hardware makes it especially useful for

comparison from an algorithmic complexity perspective. This encourages the

design of parallel algorithms that are theoretically faster. Unfortunately, this

same characteristic inhibits the usefulness of PRAM for performance modelling.

The level of abstraction prevents any comparison of the same algorithm on two

different hardware environments, as issues such as contention and machine per-

formance metrics are abstracted away in the assumption of uniform time, factors

which have a significant impact upon the real-world performance.

2.3.6 The Bulk Synchronous Parallel Model

The Bulk Synchronous Parallel (BSP) model [168] is another model that sets out

to capture the behaviour of distributed parallel algorithms similar to the PRAM

model. A BSP algorithm consists of a series of supersteps. Each superstep

consists of a three-stage process:

• A concurrent compute stage where p processes each perform a block of

local compute — the degree of compute does not have to be equal between

processes;

• A bulk communication stage — communication of h messages occurs be-

tween the processes, where g is the time taken to communicate a single

message;

• A synchronisation stage — a global synchronisation ensures the comple-

tion of the bulk communication stage.

The advantage of an approach such as BSP over PRAM is that it does not

assume a uniform cost for any action — it aims to incorporate the cost of com-

munication and synchronisation for data communication, thus providing a more

representative overview of the cost of parallel overheads. It is dependent upon

the operations operating in lockstep, with synchronisation points enforcing the

end of communication, but provides a more realistic assessment of performance

45

2. Performance Analysis, Modelling and Optimisation

when considering modern parallel environments that consist of a wide variety

of communication costs depending upon the hardware.

2.3.7 LogP/LogGP

The LogP model [40, 41] was developed as an analytical, mathematical means

of representing the cost of a network communication. It parameterises the com-

munication such that a model of the communication cost can be constructed

from the machine metrics. These metrics include:

• L — The maximum latency of a communication between two processes.

• o — The compute overhead of sending a small message.

• g — The minimum gap in between communicating small messages. The

reciprocal of this is the bandwidth of the network for small messages.

• P — The number of processes.

This model was further improved upon by Alexandrov [4], who expanded upon

the initial LogP model to include an additional parameter G — the minimum

gap between communicating large messages. The reciprocal of this is the band-

width for large messages. This important contribution made the LogP model

better able to capture the network performance, due to potential dissimilarities

in behaviour between small and large messages on different interconnects. A

number of works have since sought to expand upon the work of LogP/LogGP,

introducing additional characteristics such as network contention [60, 119].

2.3.8 Statistical and Analytical Modelling

One of the simplest approaches to modelling is the exploration of historical

data in conjunction with statistical techniques to identify trends in an applica-

tion’s performance. Methods such as simple linear regression enable the quick

identification of basic trends, yet without capturing and separating more com-

46

2. Performance Analysis, Modelling and Optimisation

plex attributes such as algorithmic behaviour or machine attributes, accurate

conclusions about an application’s behaviour cannot be drawn.

The use of analytical modelling is intended to provide a more accurate

means of applying statistical approachs in conjunction with parameterised, re-

fined mathematical models that can adequately capture detailed behaviours of

HPC applications, typically focusing upon the critical path (normally the exe-

cution path taken by an application for a specific problem of interest). This is

historically based on work from the field of queueing theory, with a stochastic

modelling approach to performance [27, 102, 117, 148], and a deterministic ap-

proach advocated by the thesis of Adve [2], who argued that for the purposes

of performance prediction the potential variance introduced into a system by

communication and contention for many general cases has minimal impact on

the execution time.

By employing this deterministic top-down approach a general model of a

critical path can be validated by the use of existing historical data (via an

understanding of the critical path and profiling/instrumentation), ensuring all

contributors to a component are captured, and then further refined by the in-

troduction of sub-models that are capable of using relevant parameters for the

purposes of prediction rather than requiring pre-existing historical data, which

does not exist for unexplored scenarios of interest. Examples of such include

PRAM, BSP and LogGP (as already introduced in this chapter), which can

make use of measurements such as network micro-benchmarks or application

instrumentation to obtain relevant metrics.

The advantages of an analytical model is that it enables the relatively rapid

and flexible prediction of different machine configurations or hardware via the

substitution of new values without a lengthy computation phase due to the

mathematical nature of the approach. However, there are also some factors

that can inhibit the usefulness of this approach. The use of statistical tech-

niques prevents a significant degree of depth — e.g. capturing the time of single

instructions can be prohibitive given the complexities of measuring such values

47

2. Performance Analysis, Modelling and Optimisation

(such as accounting for parallel pipelines and other processor optimisation tech-

niques). Instead, an analytical model will focus upon the critical path blocks,

collections of instructions that can be grouped into a single sub-model that can

be parameterised to provide sufficient predictive capacity without the need for

further refinement. For example, the compute component of any model may be

broken down into compute kernels, blocks of code that apply a repetitive set

of instructions with an influencing parameter that dictates the number of times

it is executed, such as a loop. In this scenario, a value representing the time

taken to conduct a minimal block of compute such as a single loop iteration,

the Wg value (a term appropriated from the work of Mudalige [124]), can be

used in conjunction with a parameter that determines the number of loops to

provide an overall prediction for the block of compute without the need to as-

sess the performance at an instruction level. By repeating this process for all

kernels, deriving the Wg values by statistical means such as regression analysis

from prior historical data, a set of sub-models can be built to form an overall

compute model. The use of such analytical techniques does however come with

a set of restrictions.

First, given the generalised nature of sub-models, more complex mannerisms

such as conditional execution paths can pollute the historical data set, leading

to inaccurate sub-models if not accounted for in a parameterised way. This

can be resolved through the use of focused experimental setups — where a

problem of interest focuses upon a particular execution path, or through the

use of sufficient parameterisation. However, even with this possible restriction,

there are numerous examples of the use of analytical models that not only

accurately predict the runtime [75, 76, 90, 107, 123, 124, 163], but are also

used to aid in the machine procurement/investigation [74, 88] and machine

configuration [88, 89, 141, 158] when executing HPC applications, implying

there are sufficient use-cases to make this a viable approach.

Second, the construction of such models neccessitates a sufficient level of

application/domain knowledge, especially given the complexity of parallel HPC

48

2. Performance Analysis, Modelling and Optimisation

applications, and as a consequence their construction can often be a lengthy

procedure due to the time investment required in their creation. Attempts have

been made to redress this with either the use of reusable models that can be

applied across applications such as in the work of Mudalige [124], or the use

of automation to reduce the application knowledge required to develop such

models [166].

2.3.9 Simulation

Simulation of a system typically takes one of two forms — continuous or discrete.

Continuous simulations model a system that is a constant state of flux, via means

such as mathematical equations. Discrete-event simulation represents a system’s

state as that of a stream of individual events, the processing of which takes a

system from one state into the next. In a performance model, an application’s

instruction stream can be thought of as a set of events, with a performance

model predicting the time taken to conclude each event by the simulation of

hardware from the intended target system. By processing the full set of events,

this results in an overall model for the final runtime. Such systems typically

make a tradeoff between simulation time and accuracy through the definition

of what constitutes an “event” — the more refined the event, the more events

that must be processed, resulting in a more accurate but longer simulation time.

As such, there exist a few different approaches to simulation-based performance

modelling.

Instruction-driven simulation attempts to simulate an application’s execu-

tion on an instruction-by-instruction basis such as with PACE [35, 132]. This

has a few benefits, namely that it provides a high degree of accuracy without the

need for someone to be familiar with the underlying algorithms and codebase

— the extraction of an instruction list can be automated. However this also

comes with significant compute costs leading to lengthy simulation times that,

while still useful for exploring unavailable hardware, might be little faster (or

possibly even slower) than executing an application on the native hardware.

49

2. Performance Analysis, Modelling and Optimisation

Trace-based simulators such as DIMEMAS [94, 142] use traces to store the

outcomes of executed instructions, typically from an application execution on

smaller configurations, and use these to extrapolate simulations on alternate

scenarios such as large-scale configurations. However, the use of traces can

prove to be prohibitive given the parallel environments of HPC, with the traces

requiring large amounts of storage space, and the generation of new simulations

being dependent upon these pre-existing traces.

The WARPP [72, 71] toolkit takes a more coarse-grained approach to that of

instruction-driven simulation, defining an event to be an appropriate collection

of instructions such as a loop block of compute. Used in conjunction with

application instrumentation, the toolkit is able to associate a time-cost with

these event blocks, enabling the prediction of runtimes through a simulation of

the event-list. This is in turn supported by additional models, such as network

profiles for MPI communication, or even possibly via the substitution of models

from alternate techniques such as an analytical approach. Some systems such

as POEMS [3] enable a hybrid approach, incorporating both analytical and

simulation-based modelling using systems such as LogGP [4] or MPI-SIM [144].

2.4 Summary

In this chapter the core topics and literature of HPC and performance mod-

elling/analysis were introduced, specifically:

• The multiple forms of parallelism used in modern HPC;

• The critical components that form part of a modern HPC platform;

• Existing work from the field, including existing laws and performance

models used to capture the behaviour of parallel algorithms;

• Existing approaches to performance analysis and model construction that

influence the approaches taken within this work.

50

2. Performance Analysis, Modelling and Optimisation

In the next chapter the tools and machines used throughout the remainder of

this work to define a well understood experimental environment for this work

are established.

51

CHAPTER 3
Software and Hardware Overview

To investigate the scaling properties of applications and algorithms, a set of

experimental tools and architectures of interest must first be established; this

enables investigations to be conducted in a well-defined, reproducable manner.

This chapter introduces the libraries, benchmarks and machines that are used

throughout the course of this thesis, as well as presenting micro-benchmark

results for architectures of interest. The following topics are addressed:

• Throughout the course of this work use is made of multiple existing li-

braries, developed either for the purpose of this work or by third-parties

for general use in academia and industry. These libraries either facilitate

the implementation of a parallel scientific program, or are used to measure

performance metrics of interest, and are detailed here in Section 3.1 in the

interests of potential future experimental replication;

• Section 3.2 introduces the benchmarks used within this work for captur-

ing the performance metrics, both micro and macro in nature, that are

used to assess both the machine architectures and the potential real-world

performance of applications. Such metrics are useful in identifying the

potential bottlenecks that inhibit performance, and inform our analysis of

under-performing applications;

• The architectures/machines used within this work are detailed in Sec-

tion 3.3 for the purposes of both experimental replication as well as for

comparative purposes. To this end, a selection of the micro-benchmarks

introduced in Section 3.2 have their results presented here alongside the

machine specifications. Macro-benchmark results are also obtained, but

52

3. Software and Hardware Overview

the outcomes of these experiments are not presented within this chapter;

rather, these are analysed in greater depth in Chapters 4 and 7.

3.1 Libraries

The work in this thesis makes use of a small number of notable libraries provided

by the Atomic Weapons Establishment (AWE) or other third-parties, either as

part of benchmarking efforts or application implementation. A brief description

of these libraries is provided here for reference.

The Performance and Modelling Timing Interface

The Performance and Modelling Timing Interface (PMTM) is a small in-

strumentation library developed by AWE and the University of Warwick

that provides facilities for defining, using and aggregating timing results be-

tween two arbitrary fixed points in an application. In this work it measures

the walltime of blocks of code, enabling us to identify hot-spots, validate

critical-paths and provides historical data useful for the construction of per-

formance models. This time is retrieved via the difference between two

timer calls, made using the C function gettimeofday. Different blocks of

code are assigned different identifiers to distinguish between one another.

These times are aggregated across multiple calls to the same timer block

to reduce storage requirements, reporting a mean time taken per Message

Passing Interface (MPI) process.

The Portable, Extensible Toolkit for Scientific Computing

The Portable, Extensible Toolkit for Scientific Computing (PETSc) [16, 17]

is a library developed for the purposes of efficient and scalable parallel solving

of systems of linear equations, solving for x in the matrix equation Ax = b.

Containing multiple implementations of a variety of solvers and precondi-

tioners, it also provides interfaces for alternate third-party libraries while at

53

3. Software and Hardware Overview

the same time acting as a consistent general framework which application

developers can use to explore the use of different linear solver approaches.

It provides support for both serial and parallel applications, using MPI for

the communication of distributed data.

PAPI

The Performance Application Programming Interface (PAPI) [31] provides

a unified interface for interacting with performance counter hardware that

is often provided by a wide variety of modern microprocessors. Due to

potential differences between manufacturers in hardware counter implemen-

tation, the use of such an interface allows for a “write-once, reuse-forever”

approach to capturing useful performance information such as cycle counts,

cache hits/misses and number of floating-point operations. These details

provide useful insight into understanding where or why a code may be un-

derperforming on an architecture, an important part of the performance

engineering process.

3.2 Benchmarks

During the course of this work, a select number of benchmarks were used to

acquire information about various machine characteristics.

3.2.1 Network Interconnect Micro-Benchmarks

The use of network interconnect benchmarks enables us to explore the underly-

ing latency and bandwidth performance of various hardware without the com-

plicating factor of a scientific application’s additional interactions, such as con-

tention, synchronisation or load-balancing that may misrepresent the potential

peak performance. The two interconnect benchmarks used in this thesis are:

54

3. Software and Hardware Overview

Intel MPI Benchmark

The Intel MPI Benchmark (IMB) [82] captures the performance of MPI net-

work operations, including point-to-point, collective and I/O operations [83].

SKaMPI

The SKaMPI benchmark [167, 12] is an alternate network benchmark that is

similarly capable of capturing both MPI point-to-point and collective oper-

ations, useful for validation of the IMB benchmark output. It is also exten-

sible, enabling the provision of custom tests for exploring alternate network

scenarios other than the tests provided by default.

3.2.2 Memory Micro-Benchmarks

Given the significant data processing elements of many scientific applications,

ensuring sufficient throughput of data for compute is key to maintaining a good

degree of performance. Memory benchmarks provide an insight into the un-

derlying capabilities of a target machine or architecture, highlighting potential

bottlenecks that could prove to be an inhibitor of high performance.

STREAM

STREAM [111] is a memory benchmark that by default uses a large block

of memory to measure the bandwidth performance of a machine’s Random

Access Memory (RAM). It has both C and Fortran implementations, as well

as being capable of executing in either a single-thread, OpenMP or MPI

setup. Using a large fixed-size block of memory, the benchmark captures

the bandwidth of a number of different operations (with differing byte and

Floating-Point Operation (FLOP) counts), summarised in Table 3.1.

The STREAM benchmark is particularly useful for capturing the be-

haviour of multi-core contention. When the memory bandwidth is sub-

stantially restricted, Central Processing Units (CPUs) can become memory

starved due to the inability of the memory subsystem to sustain sufficient

55

3. Software and Hardware Overview

Operation Kernel Bytes FLOPs

Copy a(i) = b(i) 16 0
Scale a(i) = q ∗ b(i) 16 1
Sum a(i) = b(i) + c(i) 24 1
Triad a(i) = b(i) + q ∗ c(i) 24 2

Table 3.1: STREAM Benchmark Operations [111]

throughput. By scaling up the number of cores used per node, the degree to

which performance can suffer as a result of an increased load on the memory

bus can be captured. Any such memory-starving should manifest itself as

poor scaling when the number of cores is increased. It is crucial to identify

such behaviour as any applications that process a substantial amount of data

(common in scientific simulations) can exhibit memory-bound performance

if the bandwidth is insufficient.

CacheBench

CacheBench [121] is a tool designed to capture the bandwidth performance

of the multiple levels of cache that a machine may possess. As part of

LLCbench [120], it provides useful insights into the underlying performance

of cache-level memory accesses, a key component of many scientific appli-

cations that can process a substantial amount of data. In particular, it can

reveal the potential cost of a cache-miss for different levels of cache, crucial

given the variety of possible memory access patterns that can arise from dif-

ferent data processing requirements. Tests include read performance, write

performance and Read/Write/Modify (RWM) performance.

3.2.3 Macro-Benchmarks

Unlike the previous micro-benchmarks designed to capture a single aspect of

a system, these macro-benchmarks are intended to be more representative of

real-world applications, stressing multiple characteristics of a machine at once.

This work focuses on two macro-benchmarks of interest, explored within the

56

3. Software and Hardware Overview

context of performance analysis and modelling.

Hydra

Hydra is a benchmark 3D Eulerian structured mesh hydrocode implemented

in Fortran, with which the explosive compression of materials, shock waves,

and the behaviour of materials at the interface between components can be

investigated. The Hydra benchmark code simulates a cube of mixed mate-

rials under stress by discretising the data onto a 3D grid of cells given by

Nx × Ny × Nz and using message passing for parallelisation. Thus, in a

typical Single Program Multiple Data (SPMD) fashion, the 3D cube of data

is decomposed onto a number of processing elements (PEs) during execu-

tion. During the course of this work Hydra is used as part of a case-study,

demonstrating both the performance and optimisation prediction capabili-

ties of our performance analysis and modelling efforts. Further information

on the Hydra benchmark can be found in Chapter 4.

Orthrus

While simple in description, solving for x in a linear system Ax = B proves

to be an expensive and common problem across a range of high-performance

scientific domains [77, 86, 103]. Orthrus is a benchmark 2D/3D radiation

solver developed at AWE, intended to explore the use of different linear solver

solutions such as Conjugate Gradient (CG) or Algebraic Multi-Grid (AMG).

It captures the behaviour of a structured, 7-point stencil, sparse linear system

that passes linear solver capabilities to external third-party libraries such as

PETSc.

This work modifies the Orthrus benchmark to use one of PETSc’s newer

Application Programming Interfaces (APIs), the Distributed Array struc-

tured interface introduced in version 3.2. This allows the exploration of per-

formance when ghost cells, underlying matrix memory allocation and grid

decomposition are all handled exclusively by PETSc, and the correspond-

57

3. Software and Hardware Overview

ing performance of a linear solver approach such as CG within a parallel

environment. Further details can be found in Chapter 7.

3.3 Machines

A number of different architectures are used during our investigations within this

work. This section details the hardware and software components that make up

these architectures, as well as provide the results of select micro-benchmarks for

comparison and analytical purposes. Specifically, the four machines of interest

within this work are Minerva (Section 3.3.1), Hector (Section 3.3.2), DawnDev

(Section 3.3.3) and Hera (Section 3.3.4).

3.3.1 Minerva — Warwick Commodity Cluster

Processor Intel Xeon X5650 (2.67 GHz)
Sockets Per Node 2
Cores Per Node 12
Nodes 396
Total Cores 4752
Memory Per Node 24 GB
Interconnect QLogic Truescale 4X QDR InfiniBand
OS SUSE Linux Enterprise Server 11
Compiler Toolkit Intel v12.0
MPI Toolkit OpenMPI v1.4.3/OpenMPI v1.4.4

Table 3.2: Machine Specification — Minerva

Minerva is a distributed computing platform located at the University of War-

wick’s Center for Scientific Computing (CSC). Provided by IBM and con-

structed from commodity components, it is a capacity cluster providing com-

puting resources to scientific departments internal to the university and as part

of Midplus, a collaborative computing effort between the University of Warwick,

Queen Mary University, University London and the University of Nottingham.

A full set of the machine specifications is provided in Figure 3.2, but most no-

table is its use of dual socket, hex core, 2.67 GHz Intel Xeon X5650s, 24 GB of

memory per node and a QLogic Truescale 4X QDR InfiniBand interconnect.

58

3. Software and Hardware Overview

103 104 105 106 107 108
0

20

40

60

80

Size (Bytes)

B
a
n
d
w

id
th

(G
B

/
s)

Read

Write

RWM

(a) CacheBench (Single Core)

5 10
0

20

40

60

80

PE Count

B
a
n
d
w

id
th

(G
B

/
s)

Scale Copy

Add Triad

(b) STREAM (Multi-Core)

Figure 3.1: Memory Benchmarks — Minerva (Intel v12.0)

Memory Benchmark Results

Figure 3.1(a) captures the overall bandwidth throughput for various problem

sizes of the basic CacheBench experiments — a double read test, a double

write test and a double read/write/modify test. It is apparent that there exist

four appreciable levels, consistent with the existence of three levels of cache and

RAM. The most pronounced drops occur on all three tests at 32 KB and 12 MB,

likely corresponding to the L1 and L3 cache sizes respectively, given a maximum

cache size of 12 MB reported by Intel [80]. Another further drop is pronounced

on both the write and RWM tests (and to a lesser degree on the read tests), and

occurs between 128–256KB, the behaviour of which is likely corresponding to a

transition from L2 to L3. This highlights the dramatic performance difference

between the different cache levels and main memory, with a factor of 5.10×

between the RWM benchmark’s best and worst bandwidths.

However, while extremely useful at capturing cache performance, CacheBench

does not capture the contention of main memory in a parallel shared memory en-

vironment. Figure 3.1(b) demonstrates this issue, presenting the results of the

STREAM benchmark using multiple OpenMP threads to capture the behaviour

of a parallel shared-memory environment. When the thread count reaches 4 or

higher, it can be seen that the available bandwidth is capped between 3-3.5

59

3. Software and Hardware Overview

GB/s depending upon the operation, suggesting that a significant degree of

contention is occuring at higher thread counts due to saturation of the memory

bus. The STREAM performance at one thread is also on par with the worst

performing CacheBench results when hitting main memory after experiencing

cache misses at large byte counts.

Interconnect Benchmark Results

0 2 · 105 4 · 105
0

50

100

150

200

Message Size (Bytes)

T
im

e
(µ

s)

Intra-Node

Inter-Node

(a) Point-to-Point PingPong

2 4 8 16 32 64 128
0

5

10

15

PE Count

T
im

e
(µ

s)

(b) AllReduce (8 Bytes)

Figure 3.2: Intel MPI Benchmark (OpenMPI v1.4.3) — Minerva

Using Intel’s MPI Benchmark, it is possible to investigate the point-to-point

and collective networking performance for both intra-node and inter-node be-

haviour. From the ping-pong results in Figure 3.2(a), it is apparent there

exists a noticable disparity between the performance of inter-node and intra-

node performance, as might be expected when contrasting a network connection

with the performance of a node’s memory. As the message size increases, the

scaling performance is better for intra-node than inter-node communications,

implying that any parallel application should place an emphasis on intra-node

communications where possible.

At the smaller process counts the AllReduce performance for a single value

in Figure 3.2(b) demonstrates a scaling behaviour exists in relation to the pro-

cess count, as might be expected. However, unfortunately an opportunity for

60

3. Software and Hardware Overview

an investigation at larger process counts was not possible due to the heavy use

of the machine and machine restrictions. Nevertheless, these results provide a

useful insight into the behaviour of machine load on the collective performance

seen later within this thesis, where disparities between benchmarked times and

instrumented calls within scientific applications can be identified. Since the

IMB benchmark is conducted in isolation from any extraneous compute work,

it would exhibit minimal synchronisation costs in the absence of any imbal-

ance in the work-load across processing elements. As such it provides a means

to distinguish between communication costs and synchronisation costs in later

work.

3.3.2 HECToR

Processor AMD Opteron Interlagos (2.3 GHz)
Sockets Per Node 2
Cores Per Node 32
Nodes 2816
Total Cores 90112
Memory Per Node 32 GB
Interconnect Cray Gemini 3D Torus
Compiler Toolkit PGI v12.10
MPI Toolkit Cray MPT v5.6.1 (MPICH2)

Table 3.3: Machine Specification — HECToR

HECToR was a Cray XE6 supercomputer, funded by the UK research councils

and operated by Edinburgh Parallel Computing Centre (EPCC), STFC Dares-

bury and NAG Ltd [135]. Running from 2007 to early 2014, it was a shared

resource available for numerous scientific projects with access provided via an

application process as part of the Partnership for Advanced Computing in Eu-

rope (PRACE) [57], before being superceded by a new machine, ARCHER. As

a large scale machine with up to 90,112 cores available, using the more unusual

AMD interlagos architecture, HECToR provided the means for exploring scala-

bility at high process counts within this work, with some investigations reaching

up to 16,384 cores. Other features of note include the use of a Cray Gemini 3D

Torus network interconnect, as well as dual socket boards with 4 NUMA regions

per node. An expanded specification can be found in Table 3.3

61

3. Software and Hardware Overview

Memory Benchmark Results

10 20 30
0

50

100

150

PE Count

B
a
n
d
w

id
th

(M
B

/
s)

Scale Copy

Add Triad

Figure 3.3: HECToR STREAM Benchmark (PGI 12.10)

As with Minerva, the nodes on HECToR possess dual socket setups, enabling

two distinct CPUs that are able to access a shared unified memory. However,

unlike Minerva, the memory architecture of HECToR consists of 4 distinct Non-

Uniform Memory Access (NUMA) regions, each tied to 8 individual cores.

Within a NUMA region, any of these 8 cores have uniform access to this block

of memory. However, accessing NUMA regions owned by any of the other 24

cores results in a bandwidth and latency penalty, with apparent implications

for the performance of parallel processing.

Figure 3.3 examines the STREAM performance, scaling up to 32 threads

within a single node. It can be seen that, as with Minerva, a contention point

is reached at a low thread count of between 4-8 threads where the bandwidth

performance does not improve. However, at 8 threads and above there is an

increase in bandwidth that can likely be attributed to the use of additional

NUMA regions (although note that the copy operation does appear to once

again hit a maximum threshold and does not scale much past 22 processes).

This implies that reasonable scaling performance can be achieved if the NUMA

regions are used appropriately, though it still falls short of perfect theoretical

scaling and such a conclusion cannot be assumed to hold in the event of cross-

62

3. Software and Hardware Overview

NUMA region accesses, due to the performance hit that may be incurred.

Interconnect Benchmark Results

0 2 · 105 4 · 105
0

50

100

150

Message Size (Bytes)

T
im

e
(µ

s)

Intra-Node

Inter-Node

(a) Point-to-Point Ping-Pong

2 4 8 16 32 64 12
8
25

6
51

2
10

24
20

48
40

96
81

92

16
38

4

32
76

8

65
53

6
0

50

100

150

PE Count

T
im

e
(µ

s)

(b) AllReduce (8 Bytes)

Figure 3.4: HECToR IMB Benchmark Measurements (MPICH2)

On HECToR it is possible to investigate a much greater core-count than Min-

erva. The Ping-Pong experiments capture a reasonably linear relationship be-

tween the message-size and the time taken for communication. It exhibits less

stepping than for Minerva, but once again there exists a measureable difference

in performance between inter-node and intra-node performance. Some minor

spikes in performance exist, but are uncommon enough that they may be at-

tributed to network contention given the significant number of shared workloads

that run simultaniously on machines such as HECToR.

The AllReduce experiments see an unusual fluctation in the maximum time

taken at some higher process counts. The causes of these fluctuations between

2,048 and 32,768 cores is unknown, but could potentially be attributed to con-

tention on the machines network at the time of investigation. Even so, there

is an apparent pattern of gradually increasing performance costs when using

the AllReduce function at higher core counts, as would be expected. When

restricted to the process range of Minerva this cost is less apparent, exhibit-

ing similarities between the two architectures in that there is relatively little

63

3. Software and Hardware Overview

increase in time between 2 and 256 processes. This would suggest that the

collective function will become a significant contribution towards the overall

runtime of the application when using a significant number of cores, as might

be expected, but have minimal impact at smaller process counts. With future

architectures (especially those pushing for Exascale) preparing to use an ever

greater number of processing elements, this makes the usage of AllReduce in

any algorithm a factor worthy of further investigation.

3.3.3 DawnDev

Processor PowerPC 450(d) (850 MHz)
Cores Per Node 4
Nodes 1024
Total Cores 4096
MemoryPerNode 4 GB
Interconnect BlueGene Torus and Tree
OS IBM CNK
Theoretical Peak 13.0 TFLOPs
Compiler Toolkit IBM XL 11.0 Fortran, 9.0 C
MPI Toolkit IBM BlueGene MPI

Table 3.4: Machine Specification — DawnDev

DawnDev is a now decommisioned IBM BlueGene/P previously in use at the

Lawrence Livermore National Laboratory (LLNL), acting as a development sys-

tem for Dawn that was itself an initial delivery system for Sequoia, a Blue-

Gene/Q deployed in 2012 with a LINPACK performance of 16 PFLOP/s. It

exhibits the traditional properties of a BlueGene system, consisting of slower

(850MHz) but more numerous processors than many typical commodity HPC

systems, a small amount of memory per node (1 GB per core) and a propri-

etary BlueGene Torus interconnect. The architecture targets scalability with a

relatively low power footprint over individual node performance. As such, the

focus for applications on such a system is on parallelisation, rather than raw

compute power, to achieve effective machine utilisation. This places a heavier

emphasis upon the cost of communication if the use of parallelisation is intended

to offset the use of poorer compute nodes. An extended list of the machine’s

64

3. Software and Hardware Overview

specification is provided in Table 3.4.

Interconnect Benchmarks

0

10
,0
00

20
,0
00

30
,0
00

0

10

20

30

40

Bytes

T
im

e
(µ

s)

Single Pair

Two Pair

(a) Intra-Node Ping-Pong Timings,
Intel MPI Benchmark

0

10
,0
00

20
,0
00

30
,0
00

0

100

200

300

400

Bytes

T
im

e
(µ

s)

Single Pair

64 Pairs

128 Pairs

256 Pairs

(b) Inter-Node Ping-Pong Timings,
Intel MPI Benchmark

Figure 3.5: Network Benchmark — DawnDev

Figure 3.5 presents the outcome of the IMB benchmarks for select PingPong

configurations. A selection of multi-communications benchmarks are also in-

cluded, where messages are exchanged concurrently between fixed nodes. This

is done in a fashion where all communications from a node, A, are received by

another node, B, with two processes being paired together and multiple pairs of

processes communicate in tandem with one another. The pairing configurations

are as follows:

• 64 Pairs, seperated by a process id gap of at least 16 (i.e. 0 � 16, 1 �

17, 2 � 18, 3 � 19, 4 � 20 etc);

• 128 Pairs, seperated by a process id gap of at least 8 (i.e. 0 � 8, 1 � 9,

2 � 10, 3 � 11, 4 � 12 etc);

• 256 Pairs, seperated by a process id gap of at least 4 (i.e. 0 � 4, 1 � 5,

2 � 6, 3 � 7, 8 � 12 etc).

In doing so, the number of pairs within the overall system is varied, while

65

3. Software and Hardware Overview

stressing the same communication link between two nodes. As might be ex-

pected, since this stresses the same communication link, this results in higher

communication times, but the overall number of pairs in the system leads to

little difference in this increase, suggesting it is predominantly the number of

communications between a pair of nodes that is the dominant influencing factor.

3.3.4 Hera

Processor AMD Opteron (2.3 GHz)
Sockets 4
Cores Per Socket 4
Cores Per Node 16
Nodes 847
Total Cores 13552
Memory Per Node 32 GB
Interconnect 4X DDR InfiniBand Switch
OS CHAOS 4.3
Theoretical Peak 127.2 TFLOPs
Compiler Toolkit PGI 8.0
MPI Toolkit OpenMPI 1.3.2

Table 3.5: Machine Specification — Hera

Hera is a now decommisioned AMD/InfiniBand system that was based at LLNL,

using an InfiniBand DDR high-speed interconnect. It exemplifies a more typical

large capacity resource, with densely packed nodes of four quad-core CPUs

across 847 nodes for a total of 13,552 cores, as well as 2 GB per core of memory.

An extended machine specification is provided in Table 3.5.

Interconnect Benchmarks

Figure 3.6 presents the outcome of ping-pong timings for both the Intel MPI

Benchmark and SKaMPI benchmarks; the SKaMPI benchmark reports the full

round-trip time of a ping-pong benchmark, while the Intel MPI benchmark

only returns half the round-trip time. Once halved, the measured SKaMPI

results correlate with the IMB results in Figure 3.6(a), albeit with the Intel MPI

Benchmark exhibiting more noise variation past approximately 12,000 bytes.

The drop at ≈12,000 bytes could potentially be attributed to a switch in MPI

behaviour, such as that experienced by a shift between an eager protocol, where

the acknowledgement of a waiting receieve is not required (possibly neccesitating

66

3. Software and Hardware Overview

0

5,
00

0

10
,0
00

15
,0
00

0

10

20

30

40

Message Size (Bytes)

T
im

e
(µ

s)

(a) Small Messages

0

2
· 1

0
5

4
· 1

0
5

0

200

400

600

800

Message Size (Bytes)

T
im

e
(µ

s)

(b) Large Messages

IMB Ping-Pong Intra-Node IMB Ping-Pong Inter-Node

SKaMPI Send-Recv Inter-Node (Half)

Figure 3.6: Point-to-Point Timings, Intel MPI Benchmark/SKaMPI

the use of a buffer and extra copy), to a rendevzous protocol where such an

acknowledgement is neccessary. As with many of the other benchmarks, at

large message sizes the relationship between the time taken and message size is

largely linear.

3.3.5 Intel X3430 workstation

This machine, a 2.4GHz Intel X3430 workstation, is not used in the vast-

majority of benchmarks, nor for any timings runs. However, due to the lack

of select PAPI counters, primarily the L1 Data Cache Hit or Access measure-

ments, it is used to obtain these values to provide an approximation of an

application’s behaviour for these metrics. It is presumed measurements such as

hit rates are not directly translatable between machines due to differences in

cache sizes and/or behaviours. However metrics such as total accesses may be

tied more closely to an application rather than a machine since accesses repre-

sents the sum of the hit and miss rate and thus, as long as a cache miss does not

also register as an additional hit, the ratio of these two characteristics does not

67

3. Software and Hardware Overview

matter. The access count from one machine could potentially then be used to

compute the potential cache hits on another by subtracting the measured miss

rate of the second machine.

However, while these derived numbers can potentially be useful for identi-

fying trends/behaviours, the translatable nature of the L1 Data Cache Access

count is an assumption and cannot neccesarily be considered accurate for the

target machine. While all other counters are measured directly from a target

machines (such as L1 Data Miss Rate, L2 Hit Rate etc.), the L1 Data Access-

es/Hits are always provided by the X3430 Workstation. Without the existence

of such counters on different architectures such as Sandy Bridge or Haswell, it

is difficult to verify how well such numbers translate. Appendix B.3 attempts

to address some of the issues surrounding the use of PAPI counters amongst

different architectures, including the accuracy/validity of Floating-Point Oper-

ations per Second (FLOP/s) and the use of L1 Data Cache Access rates. Despite

this, the method is adopted since no hardware based alternative are available

for such machines if the relevant counters are not available for a chipset, and

such counters are still sufficient to identify trends of interest when contrasting

between kernels (since such readings are all from the same machine).

3.4 Summary

This section has introduced a variety of tools and machines used within this

work for the purposes of empirical investigation. It highlights some of the core

benchmark characteristics, and tools necessary to reveal insightful performance

details about the behaviour of a code. In the remainder of this work, these tools

are applied to the task of performance analysis and optimisation, exploring how

the applications introduced in this chapter behave in parallel environments and

how this knowledge can be applied in a predictive capacity.

68

CHAPTER 4
Performance Scaling of a Near-Neighbour Hydrodynamics

Application

Hydrodynamics is a domain of science belonging to the field of Computational

Fluid Dynamics (CFD), specifically addressing the behaviour of fluid or fluid-

like substances in motion across a passage of time within a spatial domain.

These behaviours can be modelled computationally through the use of physical

laws/equations that represent fluid behaviour.

Predicting the dynamic behaviour of materials as they flow under the influ-

ence of high pressure and stress is of considerable importance to understanding

weapons. Without recourse to underground testing, access to experimental hy-

drodynamics facilities and supporting high-performance simulations has an im-

portant role in providing data to assess weapon safety and performance. Hydra

is a benchmark 3D Eulerian structured mesh hydrocode implemented in For-

tran, with which the explosive compression of materials, shock waves, and the

behaviour of materials at the interface between components can be investigated.

The ultimate goal of any High Performance Computing (HPC) application is

to provide accurate results, yet it is implicitly acknowledged that it is desirable

for these results to be obtained as quickly as possible. Given the possible vari-

ance in machine configuration, both software and hardware, understanding the

behaviour of the applications in question is crucial to both quick execution of

said application and knowing how its performance might be impacted by modi-

fications in the future. This can be further enhanced by the use of performance

models, mathematical or simulation-based systems that are capable of capturing

an application’s core behaviours and predicting its runtime.

This work sets out to construct an analytical performance model of Hydra,

69

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

an application of interest. However, in order to do so, a greater understanding

is required of the application itself. This chapter introduces Hydra, investi-

gating its current strong and weak-scaling performance with respect to both

its code structure and its use of the differing machine components such as com-

pute resources, point-to-point communications, collectives etc. It also highlights

any unusual behaviours that may be of interest in the model construction or

optimisation process.

Specifically, this chapter sets out to achieve the following goals:

• Introduce Hydra, a hydrodynamics benchmark provided by the Atomic

Weapons Establishment (AWE), describing its structure, critical path and

communication patterns;

• Investigate the parallel scaling performance of Hydra, including serial

compute, strong-scaling and weak-scaling performance on a large scale

machine — part of this work is published prior in 2011 [44];

• Identify performance influencing factors that can guide modelling and op-

timisation efforts, including any unusual discrepancies that warrent futher

investigation.

4.1 Hydra

The Hydra benchmark code simulates a cube of mixed materials under stress

by discretising the data onto a 3D grid of cells given by Nx×Ny×Nz and using

message passing for parallelisation. The 3D cube of data is decomposed onto

a number of processing elements (PEs) in a typical Single Program Multiple

Data (SPMD) fashion during execution. By representing the spatial volume as

a collection of cells, the physical properties of materials at different cartesian

locations within the grid can be quantified. The benchmark can then reflect

delta changes in the value of these properties as the time progresses throughout

the course of a simulation.

70

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

To achieve this goal the simulation executes a series of functions that are each

responsible for updating different simulated properties. The rate of progress is

delineated by ∆t, the amount of simulated time that has passed since the last

update. A single pass of this collection of functions is known as an iteration.

Repeated iterations of this series of functions progresses the simulated time,

with the benchmark terminating once the sum of ∆t values across all iterations

reaches a preconfigured amount. Large ∆t values progress the simulation faster

but lead to a loss of detail, potentially becoming too course-grained to be an

accurate simulation. Small ∆t values avoid this loss of detail, but increase

the overall runtime and may offer little benefit to accuracy if the grid is not

sufficiently refined/discretised to a point where any differences are appreciable.

To mitigate this, ∆t can change from iteration to iteration and is determined by

the current state of the simulation; a suitable value is computed at the beginning

of every iteration. The total number of iterations executed is determined by

the amount required for the sum of ∆t values to reach a preconfigured total.

From this it can be determined that two properties dictate the overall run-

time of the benchmark — the time taken to run a single iteration, and the

number of iterations to run to completion. Given its repetitive nature, identi-

fying the critical path across the course of an iteration becomes key to under-

standing the performance of Hydra. As a parallel program, during the course of

its execution the functional components of Hydra can be summarised as falling

into one of a number of different categories tied to the use of various machine

components (e.g. memory or network interconnect), therefore a constructive

breakdown of the various sub-functions called during the course of an iteration

is required. The five categories identified within this work are as follows:

• Memory Management — Functions responsible for the dynamic allo-

cation of large temporary arrays (Section 4.2.3).

• Compute — Kernels that perform computational operations (Sections

4.2.4 and 4.2.5).

71

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

• Update Boundary — Specialised kernels used to update the problem

boundary cells of the grid (Section 4.2.6).

• Point-to-Point Communications (Exchange) – MPI Point-to-Point

communications, such as Send and Recv, used to communicate data be-

tween two MPI processes (Section 4.3.2).

• Collective Communications — MPI functions, such as MPI Allgather

or MPI Allreduce, that provide gather/scatter operations to communicate

data across a set (potentially all) of the available MPI processes (Section

4.3.3)

The significant details of each operation is provided in more depth in Sections 4.2

and 4.3. It is necessary to provide a distinction between them for the purposes

of separating each of the functions into their different components, important

when distinguishing between different performance behaviours, especially in a

parallel environment.

4.2 Serial Behaviour

This section introduces the serial behaviour of Hydra, focusing on the applica-

tion behaviours that influence performance in the absence of parallel consider-

ations. Doing so will reveal how Hydra’s walltime can be tied to the problem

configuration and the structure of its compute kernels.

4.2.1 Structured Mesh

To simulate a hydrodynamic system, the problem space is discretised into cells.

The segmentation of the problem space influences both the accuracy and speed

to solution; the greater the number of cells the more refined the solution be-

comes. Since computation must occur for each cell position within the grid,

accuracy is increased but requires a more significant amount of computation.

72

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

Nx = 8
Ny = 8

Nz = 8

(a) Hydra Grid

(b) Cell-
Centered (c) Nodal (d) Faced

Figure 4.1: An 8× 8× 8 Cell Structured Mesh

These cell decompositions are known as meshes and can be structured, unstruc-

tured or hybrid in nature.

Structured meshes consist of a regular pattern, with a well-defined neigh-

bour relationship between cells. The cells are typically quadrilateral (2D) or

cuboid (3D) in shape. Such meshes implicitly store information regarding cell

neighbours as part of their data structure, with the indexing of a 2D or 3D

data array acting as a cartesian co-ordinate system from which lookups can be

performed, making them relatively memory efficient.

Unstructured meshes are irregular in nature, with variable cell shapes, re-

sulting in a more ill-defined neighbour lookup for an arbitrary cell. As such,

they must also store neighbour relationship data, making them more memory

inefficient.

Hybrid meshes incorporate both structured and unstructured components,

possessing regions that can be one of either approach resulting in an overall

decomposition that consists of both variants.

73

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

Hydra’s regular, spatially discretised grid is one such example of a structured

mesh. Its problem size is determined by two components, the spatial size and

the cell size. The spatial property defines the simulated physical size of the

problem. The cell count however determines the number of cells this physical

space is decomposed into — e.g. with 100 cells each cell represents 1/100th of

the simulated physical space. The majority of compute kernels within Hydra are

tasked with operating upon every cell within the grid; consequently the greater

the number of cells, the more significant the impact upon compute/memory

performance.

During the course of the simulation an iterative solve refreshes a collection

of simulated physical properties, termed quantities, each of which has a distinct

value stored per cell. These quantities fall into one of three different classifica-

tions — cell-centered, nodal or faced:

• Cell-Centered (Figure 4.1(b)) — Oriented at the centre of a cell.

• Nodal (Figure 4.1(c)) — Oriented at the vertex of a cell.

• Faced (Figure 4.1(d)) — Oriented at the centre of a cell face. This is the

equivalent of a nodal quantity in one dimension, and of a cell centered

quantity in the remaining two dimensions.

These classifications influence the storage requirements and the amount of work

required to process them. Each quantity has its own grid of data, and multiple

quantities are updated per cell at different stages during the course of a Hydra

iteration. The data for each quantity is stored in a 3D Structure-of-Arrays (SoA)

format.

4.2.2 Mixed Cells

As a mixed material simulation, each material is associated with their own dis-

tinct values per relevant quantity. Those quantities that are mutually exclusive

from individual materials are known as pure quantities, for which only one value

74

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

is required per cell, while those consisting of a property of a material are known

as mixed quantities, and must have a separate value per material, per cell. Cells

that possess only a single material at a given simulation time are known as pure

cells, while those with more than one are known as mixed cells. Whether a cell is

pure or mixed has implications for both storage and compute overheads. Mixed

cells require additional processing and storage per cell, with its time taken tied

to not only the number of cells but the number of mixed materials within the

system. This can complicate the analysis and prediction of performance, as

whether a cell is pure or mixed is dependent directly on the state of the simula-

tion, a nebulous state for any given series of inputs that cannot be determined

without executing the simulation itself. While it is possible to track the state

of mixed and pure cells through the use of tracing/simulation history, this work

focuses primarily on the execution of pure cell runs only to simplify the initial

modelling process. Doing so allows us to establish a baseline performance that

identifies links between the grid size, the application behaviour and the machine

hardware in the absence of complicating factors such as state dependant mixed

cell handling. This remains an avenue for future exploration, where the load-

balancing of mixed cells across processes remains a factor of interest, but is not

considered within the scope of this work.

4.2.3 Memory Management

Each quantity in Hydra requires storage space to preserve data across iterations

— this is typically stored in a 3D array, indexed by grid coordinates. The ma-

jority of such quantities are permanent — allocated once and only deallocated

at the completion of a run. However, a number of functions require the use of

intermediate values — computation that is reused within a function or across

a sub-set of functions, but does not need to be maintained between iterations.

While in some cases this can be a small 1D array or even a temporary variable,

in some cases the use of an additional 3D array is required. As such, a small

portion of the runtime is allocated to the creation and destruction of these tem-

75

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

Classification Grid Size

Cell-Centered Nx ×Ny ×Nz

Nodal (Nx + 1)× (Ny + 1)× (Nz + 1)
Faced in X Dimension (Nx + 1)×Ny ×Nz

Faced in Y Dimension Nx × (Ny + 1)×Nz

Faced in Z Dimension Nx ×Ny × (Nz + 1)

Table 4.1: Quantity grid sizes for a Nx ×Ny ×Nz problem

porary arrays. By allocating and deallocating only when needed, the maximum

watermark of memory used is reduced at the cost of a hit to performance.

4.2.4 Grid Kernels

The amount of data stored in memory (and thus processed during computation)

is related to the overall size of the grid, with slight variation depending on the

type of the quantity in question. A grid kernel is a kernel that iterates over

every cell point within the grid, and thus its performance is directly tied to the

number of data-points that must be processed. The size of the grid for each of

the different quantity types is summarised in Table 4.1. From this it can be seen

that any variation in grid size between the quantities is at its most significant for

very small problem sizes, but as a whole the general problem size is dominated

by the size of the grid (Nx ×Ny ×Nz).

In addition to the number of cells in any dimension, the grid also has a

spatial size associated with each dimension, such that each cell represents a

portion of the overall spatial volume. The parallel scaling investigations in this

work typically keep such values fixed per cell within a set of experiments for

consistency, though such values influence the simulation state, and indirectly

∆t, rather than a kernel’s compute time.

4.2.5 Stencil Kernels

Stencil kernels possess similarities to grid kernels, in that they also typically

iterate over every cell point within the grid. However, they possess unique

characteristics that can complicate any computation. As well as using data

associated with the cell of interest, stencil kernels also require data from one or

76

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

more neighbouring cells for computation. This can introduce additional data-

dependencies with corresponding restrictions when performing compute. For

example:

• In-order array updates cannot occur immediately if there exists an uncom-

pleted stencil operation in a neighbouring cell that requires the original

data. This necessitates the use of out-of-order updates and additional

temporary arrays;

• In some circumstances the computation depends on data not local to the

current process (Section 4.3.2);

• The use of stencil kernels can introduce more irregular memory access

patterns with regards to both spatial and temporal locality. This can

become more prominent as the size of the arrays in all three dimensions

increases.

Hydra possesses a number of these stencil kernels, though ultimately their

performance is still tied to the grid size. Unless otherwise noted, in this work

they are treated in a similar manner to grid kernels for the purposes of analysis

and modelling.

4.2.6 Update Boundary Kernels

The use of stencil kernels can require neighbouring cells in one or more dimen-

sions in order for them to be computed successfully. However, in the case of

cells on the boundary of the local grid, no such neighbour cell exists within the

context of the problem space, introducing a potential unhandled scenario.

To tackle this, the use of ghost cells, cells that extend past the boundary of

the local grid, is necessary. The number of cells that extend past the boundary

of the grid is known as a halo — e.g. a halo of two adds two ghost cells past

the boundary in a given dimension. These ghost cells can be populated with

appropriate data to ensure that the stencil computation resolves to an accurate

resolution without introducing errors into the simulation.

77

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

The data stored in ghost cells for internal boundaries is retrieved from remote

processes as part of the point-to-point data exchange described in Section 4.3.2.

The task of populating the ghost cells for external boundaries however falls

to a small collection of kernels, described within this work as update boundary

kernels. Such kernels do not iterate across the entire grid of cells; rather, they

focus primarily upon only those cells that form the outer faces of the grid (the

external boundary of the problem space) and the neighbouring ghost cells. Every

point-to-point exchange stage is followed by an update boundary stage that must

refresh these external boundary ghost cells.

It is noted here that the definition of an external boundary cell is not re-

stricted to just the very outermost cells of the grid in any dimension, for example,

if a stencil operation requires a neighbouring cell of up to two cells away, a halo

of two is required. In this context any cell within two cells of the edge of the

grid would have a dependency upon a ghost cell past the external boundary,

and the kernels would have to process two faces per boundary rather than one.

4.3 Parallel Behaviour

With the additional considerations of communication overheads and fixed syn-

chronisation points, a critical path of Hydra’s performance hotspots can be

constructed, informing future performance analysis and predictive modelling

efforts.

4.3.1 Decomposition

The decomposition of the dataset attempts to distribute the problem as evenly

as possible between the available Processing Elements (PEs). Given P pro-

cessing elements, the problem will be decomposed on to a processor grid of

Px × Py × Pz such that a local cell grid of size Nx/Px × Ny/Py × Nz/Pz will

be stored by a single PE. The decomposition is achieved by finding the factors

of P where the grid is partitioned successively, favouring decomposition in the

78

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

Cores Case PE Decomp. Cells Local Decomp.
Px Py Pz Nx Ny Nz

2048 Power of 2 16 8 16 160 160 160 10× 20× 10
1000 Integer cube root 10 10 10 100 100 100 10× 10× 10
1650 Three factors 10 11 15 165 165 165 16/17× 15× 11
817 Two factors 1 19 43 817 817 817 817× 43× 19

2003 Prime number 1 1 2003 2003 2003 2003 2003× 2003× 1

Table 4.2: Sample Px, Py and Pz values at scale [44]

dimension with the highest cell count to produce as “cubic” a local grid as possi-

ble. In the case of a cubic grid of equal length in all dimensions, the application

favours the order z, y, x with the exception of powers of 2, where the order is

adjusted to y, z, x. Table 4.2 illustrates example decompositions for various

cases of P , assuming a global grid with dimensions of equal length.

In the event that the division has a remainder, the remaining cells are spread

evenly across the processes in that dimension, for example, let Nx = 53, Px = 3.

The base number of cells per process is 53/3 = 17, with a remainder of 2. The

two remaining cells are spread across the first two processes in an X row of

processes, resulting in a total cell decomposition in the X dimension of 18, 18, 17

for each PE respectively.

4.3.2 Point-to-Point Communications

The use of stencil kernels within Hydra necessitates that there will exist cases

where requested data is stored on a remote process. The purpose of point-

to-point communications is to directly obtain any required data from these

processes, while simultaneously also providing any data they require from the

local process. Due to the nature of these stencil kernels, the set of processes

that possess this data is limited to only neighbouring processes in a cartesian

layout of the process allocation, making it a subset of the overall total set of

processes with a cap on the maximum number of processes that can be within

this set.

Within Hydra the communication pattern is restricted to the six immediate

process neighbours that share a grid face with the local process. While data

79

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

Listing 4.1: MPI Point-to-Point Data Exchange – Psudeocode

1 for d in {X,Y,Z} {
2 for f in faces(d) {
3 for dt in datatypes {
4 PackMessage(stage ,d,dt)
5 }
6 }
7 for f in faces(d) {
8 for dt in datatypes {
9 MPI ISend(f,d,dt)

10 MPI IRecv(f,d,dt)
11 }
12 }
13 MPI Waitall
14 for f in faces(d) {
15 for dt in datatypes {
16 UnpackMessage(stage ,d,dt)
17 }
18 }
19 }

is potentially required from processes that share a corner, i.e, diagonal neigh-

bours, this data is obtained via proxy from one of the immediate face-sharing

neighbours due to the order of communication in a Hydra point-to-point com-

munication process, referred to within this work as an Exchange stage, where

for each neighbour all relevant data is packed into a single message, communci-

ated via the use of MPI ISend/IRecv functions, and unpacked by the receiving

process to be placed into the appropriate ghost cells.

This workflow of packing, communicating and unpacking is performed for each

dimension of communication in a strict order, with the X dimension running

to completion before processing the Y and then the Z dimension messages, as

summed up in Listing 4.1. For each dimension, the workflow consists of:

• Construct a set of messages for communication — one per valid face (i.e.

those with a valid process neighbour up to a maximum of two for each

direction), per datatype (e.g. integer, double). Each of these messages

contains the data for all relevant quantities packed into a single buffer;

• Initialise the sending/receiving of these messages via the use of MPI non-

blocking primitives;

80

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

• Halt further progress until all sends and receives for the local process are

complete;

• Unpack the received data in a reverse manner to that of the packing stage,

populating ghost cells on the local MPI process.

• Repeat for each remaining dimension.

The size of these point-to-point messages is determined by which exchange

stage is being performed; different exchange stages require data from different

arrays depending on the position within the overall iteration. There exist 5

distinct communication stages in Hydra, which are distinguished in this work by

the unique labels Lartvis, Mlagh(1), Mlagh(2), Madv, and Madvm. The location

of their respective function calls is detailed in Section 4.4. Further to this, the

size of each message is also influenced by the number of ghost cells required. A

stencil kernel that requires data from a neighbouring cell up to two cells away

requires the communication of up to two faces worth of data rather than one

to populate the local processes’ ghost cells (a halo of two). No communication

with diagonal neighbours is performed directly — obtaining data from these

processes is achieved indirectly via the inclusion of retrieved ghost cells from

prior communications. Figure 4.2 is a 2D example of such an exchange.

Figure 4.2(a) presents the initial process layout prior to any communication

— a simplified example is provided here that only consists of a single data array

for consideration. The ghost cell data is not coherent with the remote processes,

and must be refreshed from the neighbours before any further compute can

continue. Each process has a single neighbour in both the X and Y dimensions.

Figure 4.2(b) is the state of the communication stage after the X dimension

communications are complete, but before any Y dimension communications

have been conducted. No ghost cells have been included in the sent message,

as prior to the exchange no relevant data was stored in them, meaning only a

single face of data was transmitted. This changes however for the Y dimension

communications. The face data transmitted in the Y dimension also extends

81

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

(a) Pre Exchange
(b) Post X Exchange

(c) Post Y Exchange

Process 0 Data

Process 2 Data

Process 1 Data

Process 3 Data

Ghost Cell

Figure 4.2: Hydra 2D Message Exchange — 2×2 Decomposition

into the ghost cells, including a small amount of data that was received from

the X dimension communications. This results in the outcome portrayed in

Figure 4.2(c). This is notable since, as is apparent in the diagram, it can be

seen that data has been transmitted from a diagonal neighbour indirectly via

an immediate neighbour. While not included here, it is noted that the same

behaviour is observed for Z dimension communications, where ghost data from

both the X and Y dimensions is incorporated into its messages.

From this, the most notable features of the data exchange process are as

follows:

82

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

• There exists an explicit data dependancy within the exchange workflow

— Y dimension communications cannot begin until all X dimension com-

munications have completed for a process, with the same relationship ap-

plicable between the Z and Y dimensions;

• Different stages have different data sizes, and thus influence the perfor-

mance of Hydra differently. However, they all observe the same underlying

communication pattern;

• The number of messages for an individual process is capped by the number

of face sharing neighbours.

4.3.3 Collective Communications

As well as point-to-point communications, there are also a number of collective

operations in use — MPI operations that communicate with all processes at

once rather than just a subset. A consequence of this attribute is that they can

threaten to scale in cost as the total number of processes increases. Therefore,

capturing them is necessary for any work which might involve a significant

number of processes, including the modelling of future large-scale architectures.

The predominant form of collectives in Hydra is the use of AllReduce, a

many-to-many operation where each process contributes a portion of data, an

operation such as sum/min/max is applied and the result is distributed to all

processes.

83

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

4.4 Function Breakdown

This section introduces the core functions of Hydra that make up the critical

path. These functions form the dominant performance hotspots, and make use

of multiple different machine components during their execution.

Hydra Iteration

Listing 4.2: Single Hydra Iteration — Pseudocode

1 Allocate Memory(MDT)
2 Call MDT
3 Deallocate Memory(MDT)
4 Call ShortPrint
5 Allocate Memory(Mlagh)
6 Call Mlagh
7 Deallocate Memory(Mlagh)
8 Allocate Memory(Madv)
9 Call Madv

10 Deallocate Memory(Madv)
11 Call ShortPrint

Listing 4.2 introduces the critical path as identified through profiling and

source-code analysis. In addition to these major functions, there also exist

communication stages. There are repeated instances during the course of an

iteration where compute cannot begin until the completion of both a com-

munication step and an update boundary step is reached. The quantities

communicated and processed during these steps depends upon what immedi-

ate data-dependancies must be resolved for computation to continue, varying

depending on what point has been reached within the iteration. These dif-

ferent stages are distinguished by attributing unique identifiers to each as

part of the following function descriptions:

Dynamic Memory Handling (Listing 4.2: Lines 1, 3, 5, 7, 8, 10)

The MDT, Mlagh and Madv primary functions all use temporary data arrays

(typically 3D) to store the intermediate results of computation, necessary for

the execution of that function but containing no data that must be preserved

across functions. Rather than preserve all of these arrays in memory simul-

84

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

taneously, they are allocated and deallocated before and after each function

call to conserve space.

MDT (Listing 4.2: Line 2)

Listing 4.3: MDT Function — Pseudocode

1 Compute: Kernel 1 (Grid)
2 Compute: Kernel 2 (Grid)
3 Call: Leosdrv
4 Call: Lartvis
5 Communications: AllGather × 23

This function is responsible for calculating the ∆t value for the current iter-

ation. Multiple ∆t values are computed from the current simulation state,

selecting the global minimum as the ∆t value for the current iteration to

determine the maximum amount of change permissible within the simula-

tion iteration. If outside predetermined minimum/maximum bounds, one of

these bounds is selected as appropriate.

85

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

Mlagh (Listing 4.2: Line 6)

Listing 4.4: Mlagh Function — Pseudocode

1 Compute: Kernel 1 (Grid)
2 Communications: Data Exchange(Mlagh (1))
3 Compute: Update Bounds(Mlagh (1))
4 for i in 0 → mlag {
5 Compute: Kernel 2 (Grid)
6 Compute: Kernel 3 (Grid)
7 Communications: AllGather × 1 (1 int)
8 Compute: Kernel 4 (Grid)
9 Compute: Kernel 5 (Grid)

10 Compute: Kernel 6 (Grid)
11 Communications: Exchange(Mlagh (2))
12 Compute: Update Bounds(Mlagh (2))
13 Compute: Kernel 7 (Stencil)
14 Compute: Kernel 8 (Grid)
15 Compute: Kernel 9 (Boundary× 6 Faces)
16 Compute: Kernel 10 (Grid)
17 Compute: Kernel 11 (Grid)
18 Communication: AllGather × 1 (1 int)
19 Compute: Kernel 12 (Grid)
20 if(i != 0) {
21 Compute: Kernel 13 (Grid)
22 Call: Lartvis
23 }
24 Compute: Kernel 14 (Grid)
25 Compute: Kernel 15 (Grid)
26 Compute: Kernel 16 (Grid)
27 Compute: Kernel 17 (Grid)
28 Compute: Kernel 18 (Grid)
29 }
30 Compute: Kernel 19 (Grid)
31 Compute: Kernel 20 (Grid)
32 Compute: Kernel 21 (Grid)
33 Call: Mvolflx (Grid)

Within the Mlagh function exists an internal loop governed by a loop bound

term, mlag. The value of mlag can vary from iteration to iteration, depend-

ing on the state of the simulation, with a minimum of 1 and a maximum

defined by preset constraints. As such, the Mlagh function can exhibit some

variability in walltime between iterations as, for example, an iteration where

mlag equals one takes less time to execute than an iteration where mlag

equals two.

86

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

Madv (Listing 4.2: Line 9)

Listing 4.5: Madv Function — Psuedocode

1 Compute: Kernel 1 (Stencil)
2 if(iteration step is even) {
3 Communications: Exchange(Madv)
4 Compute: Update Bounds(Madv)
5 Call: Madvx
6 Communications: Exchange(Madv)
7 Compute: Update Bounds(Madv)
8 Call: Madvy
9 Communications: Exchange(Madv)

10 Compute: Update Bounds(Madv)
11 Call: Madvz
12 }
13 else {
14 Communications: Exchange(Madv)
15 Compute: Update Bounds(Madv)
16 Call: Madvz
17 Communications: Exchange(Madv)
18 Compute: Update Bounds(Madv)
19 Call: Madvy
20 Communications: Exchange(Madv)
21 Compute: Update Bounds(Madv)
22 Call: Madvx
23 }
24 Compute Kernel 2 (Grid)
25 if(κ) {
26 Call: Lartvis
27 Compute Kernel 3 (Grid)
28 }
29 Compute Kernel 4 (Grid)

This function governs the advection updates of multiple quantities. This is

conducted one dimension at a time via a number of sizeable compute kernels

and communication exchange phases; this typically constitutes the bulk of

the runtime. It calls a number of smaller advection functions, Madvx, Madvy

and Madvz that each operate on the X, Y and Z dimensions respectively.

κ represents a pre-defined parameter than can be enabled or disabled in the

simulation input.

Madvx/Madvy/Madvz (Listing 4.5: Lines 5, 8, 11, 16, 19, 22)

Listing 4.6: Madv{x/y/z} Function — Psuedocode

1 Compute: Kernel 1 (Grid)
2 Compute: Kernel 2 (Stencil)
3 Call: Madvm(x/y/z)

87

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

Madvmx/Madvmy/Madvmz (Listing 4.6: Lines 3)

Listing 4.7: Madvm{x/y/z} Function — Psuedocode

1 Communications: Exchange(Madvm(x/y/z))
2 Compute: Update Bounds(Madvm(x/y/z))
3 Compute: Kernel 1 (Grid)

The Madv(x/y/z) and Madvm(x/y/z) collection of functions provide the ma-

jority of the overall advection functionality of the Madv function.

Lartvis (Listing 4.3: Line 4, Figure 4.4: Line 22, Figure 4.5: Line 26)

Listing 4.8: Lartvis Function — Psuedocode

1 Communications: Exchange(Lartvis)
2 Compute: Update Bounds(Lartvis)
3 Compute: Kernel 1 (Stencil)

Called during the operation of a selection of other functions, the Lartvis

function is notable for it potentially requiring a refresh more than once per

iteration.

ShortPrint (Listing 4.2: Lines 11)

Listing 4.9: ShortPrint Function — Psuedocode

1 Compute: Kernel 1 (Grid)
2 Communications: MPI AllGather ×7 (1 int)
3 Communications: MPI AllGather ×42(1 double)
4 Communications: Vector AllGather ×9:
5 MPI AllGather ×9 (1 int) +
6 MPI AllGatherv ×9 (1 double)
7 Communications: MPI AllGather ×1 (32 chars)

The ShortPrint function is responsible for collecting and displaying summary

data every iteration.

4.5 Scaling Behaviour

This section introduces the outcome of several investigations into the scaling

behaviour for both problem size and process count, revealing a number of be-

haviours of interest.

88

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

Number of Cells Total
Iterations

Mlag Iterations
Walltime (s)

Standard
ErrorX Y Z 1 2 3 4

30 30 30 209 209 0 0 0 11.18 0.03
50 50 50 209 193 16 0 0 50.94 0.14
80 80 80 210 169 17 10 14 205.09 0.27

100 100 100 217 157 18 10 32 418.70 0.31
120 120 120 229 148 17 10 54 809.37 0.81
150 150 150 258 136 18 10 94 1941.77 0.63

Table 4.3: Minerva, Hydra Serial Walltimes

4.5.1 Serial Results

This chapter has established a variety of potentially influential input parameters

such as the problem mesh size, number of processing elements, decomposition,

etc. In order to distinguish between the influence of these characteristics, only

serial executions are initially examined — this eliminates those factors that are

affected by communication overheads such as MPI point-to-point messages or

collectives, focusing upon the impact of the grid size on compute performance.

It is expected that in a code dominated by grid kernels a roughly 1 : 1 scaling

performance with the cell count would be exhibited, assuming that the work per

cell is consistent. To this end, the serial performance on Minerva is explored,

covering a range of different global problem sizes.

The outcome of these experiments is presented in Table 4.3 — the number of

cells in the X, Y and Z dimensions are scaled equally to maintain a cubic shape.

As well as the overall walltime, the times of individual kernels and library calls

are also captured. The instrumentation captures the entirety of the critical path

within 0.5% of the measured walltime (a breakdown by function is provided in

Table B.2, Appendix B.2), enabling the identification of Hydra’s hotspots with

confidence and confirming the inital assessment of Hydra’s critical path (at least

for serial runs) presented in Section 4.1.

Before the scaling performance of the serial experiments can be fairly com-

pared, a variable behaviour that is an outcome of changing the problem size

must first be accounted for. The number of iterations to reach an experiment’s

conclusion is inherently tied to the state of the experiment — if the ∆t values for

an experiment are smaller, the number of iterations taken to simulate the same

89

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

0 1 · 106 2 · 106 3 · 106
0

0.1

0.2

0.3

0.4

Cell Count

T
im

e
(s

)

(a) Memory Management

0 1 · 106 2 · 106 3 · 106
0

0.2

0.4

0.6

0.8

Cell Count

T
im

e
(s

)

(b) MDT

0 1 · 106 2 · 106 3 · 106
0

0.5

1

1.5

2

Cell Count

T
im

e
(s

)

(c) Mlagh

0 1 · 106 2 · 106 3 · 106
0

0.2

0.4

0.6

0.8

Cell Count

T
im

e
(s

)

(d) Mlagh Per Internal Mlag Loop

0 1 · 106 2 · 106 3 · 106
0

2

4

6

Cell Count

T
im

e
(s

)

(e) Madv

0 1 · 106 2 · 106 3 · 106
0

0.1

0.2

0.3

Cell Count

T
im

e
(s

)

(f) Shortprint

Figure 4.3: Hydra Function Mean Walltime per Iteration

90

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

amount of time is increased, in turn increasing the overall walltime. Likewise,

the state of the simulation also affects mlag, the number of loops internal to the

Mlagh function for a given iteration (see Figure 4.4 — lines 4-29). The count of

both of these values for these experiments is provided in Table 4.3, from which

it can be clearly seen that there exists a degree of variability (the total number

of mlag iterations provided is inclusive of the total number of iterations as a

factor, since there are one or more mlag iterations per global iteration). Figure

4.3 provides a breakdown by major function, normalised for a single Hydra iter-

ation to compare the performance of the individual functions. From these values

it can be seen that there exists a mostly linear relationship between the total

cell count and their respective walltimes. However, there exist a few notable

deviations:

• The Mlagh function has a noticeable curve — this however is attributable

to the variation in the inner mlag loop iterations. When this is refined to

the time taken per inner mlag loop in Figure 4.3(d), the relationship is

linear;

• The Memory Management functions are linear for the most part, with the

exception of small cell counts where the performance is improved;

• The Madv function is not a perfect linear relationship — while it is lin-

ear at small problem sizes, larger problems take longer than might be

projected, possibly as a consequence of one or more non-linearly scaling

components amongst linearly scaling contributors.

Identifying the cause of the unexpected non-linear relationship for Madv at

larger problem sizes is addressed later in this thesis (Section 6.2). However,

even with these exceptions, the overall outcome of these serial investigations

enables us to identify a relationship between the cell count, the overall compute

performance and the various kernels that comprise Hydra’s critical path. A par-

allel environment introduces the additional impact of communication overheads,

but these serial results provide us with the means to distinguish between the

91

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

Process
Count

Total
Iterations

Mlag Iterations Mean
Walltime (s)

Standard
Error1 2 3 4

1 217 157 18 10 32 418.70 0.31
2 217 157 18 10 32 468.52 1.18
4 217 157 18 10 32 564.68 0.34
8 217 157 18 10 32 655.61 0.44

12 217 157 18 10 32 668.99 0.50
16 217 157 18 10 32 671.10 0.49
24 217 157 18 10 32 674.86 0.58
32 217 157 18 10 32 678.20 0.13
48 217 157 18 10 32 681.67 0.71
64 217 157 18 10 32 689.28 0.30
96 217 157 18 10 32 692.87 0.23

128 217 157 18 10 32 708.31 8.88
192 217 157 18 10 32 697.32 0.18
256 217 157 18 10 32 700.35 1.38

Table 4.4: Minerva, Hydra Weak-Scaling Walltimes (1003, Node-Fill)

impact of increasing the cell count and other contributing performance factors.

In the following sections, this analysis is extended by examining Hydra in a par-

allel context, namely a weak-scaled (Section 4.5.2) and strong-scaled (Section

4.5.3) setup.

4.5.2 Weak-Scaling Results

This section sets out to investigate the impact of a parallel environment by fo-

cusing upon a weak-scaled experiment to capture the details of communication

overheads. The purpose of selecting weak-scaling over strong-scaling initially

is twofold. First, with a fixed compute size per process, the outcome of the

serial investigation suggests that for weak-scaling the compute times should be

relatively consistent; this knowledge can be used to quickly identify any dis-

crepancies and investigate further if warranted. Second, if the compute time

is fixed, it enables a better focus upon the impact of the communication over-

heads in isolation from other factors (though it is problematic to separate the

two entirely due to the intertwined nature of communication synchronisation

and compute load-balancing). The overall global problem size is scaled in such

a manner that the decomposition of the problem is evenly spread amongst the

three dimensions — i.e. the cell count is increased so that it is as close to a cubic

problem as possible for the available process count, leading to a similar cubic

construction in the cartesian distribution of the processes and their neighbours.

92

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

The maximum number of internal loops (mlag) in an Mlagh call for a single

global iteration is 4 for all weak-scaled experiments, with a minimum of 1.

Across this set of weak-scaled experiments the spread of iterations that have 1

mlag iteration, 2 mlag iterations etc. is consistent, permitting fair comparisons

of the walltime directly (unlike for the serial experiments).

Table 4.4 introduces a set of weak-scaled experiments with a fixed local size of

1003, using process counts that are both powers-of-two and multiples of twelve.

Process counts that are multiples of two are conducted using OpenMPI-1.4.3,

with the initial set of experiments using a näıve approach for process allocation

where a node is fully packed before process allocation begins on the next node.

Due to an error with version 1.4.3 that prevented their execution, process counts

that are multiples of twelve were conducted using OpenMPI-1.4.4 (the most

similar version available). A comparison of the two versions for the same process

count (powers-of-two only) is provided in Table B.1, Appendix B.1, to validate

that this change does not unduly modify the performance of Hydra, given the

similarity in walltimes. The iteration counts, total and for various mlag values,

are the same for both multiples-of-twelve and powers-of-two process counts in

these experiments.

From these results it can be identified that the absolute walltime does not

remain consistent across all process counts at this scale. It is to be expected

that initially as the scale increases, the communication overheads also increase,

thus a rise in walltime is not unexpected. This behaviour is confirmed in Fig-

ure 4.4, where a breakdown is shown of the mean time spent in various critical

path components across multiple runs, including the compute and communica-

tion costs. The selection of process minimum or maximum values for specific

components captures the overall breakdown in a representative manner. Due to

the cost of synchonisation, it is a reasonable expectation that the process that

spends the most time in compute also has the minimum time spent idle in the

communication stages, and vice-versa. Since the instrumentation of the commu-

nication stages also includes synchronisation time, as well as buffer pack/unpack

93

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

1 2 4 8 12 16 24 32 48 64 96 12
8

19
2

25
6

0

20

40

60

80

100

PE Count

%
o
f

W
a
ll
ti

m
e

Compute (Process Max) Point-To-Point Comms (Process Min)

Update Boundary (Process Max) Memory Management (Process Max)

Collectives (Process Min)

1 2 4 8 12 16 24 32 48 64 96 12
8

19
2

25
6

0

20

40

60

80

100

PE Count

%
o
f

W
a
ll

ti
m

e

Compute (Process Max) Point-To-Point Comms (Process Min)

Update Boundary (Process Max) Memory Management (Process Max)

Collectives (Process Min)

Figure 4.4: Max Walltime Breakdown — Weak Scaling — Minerva (Node Fill)

times, a summation of the maximum time spent in compute/memory compo-

nents with the minimum time of the communication stages such as collectives

or point-to-point data exchanges is used for the breakdown. This provides a

good approximation of the overall walltime, with the total sum falling typically

within 1% of the walltime of the maximum walltime across all process counts

(resulting in a close to, but not exact, 100% of walltime measurement in Fig-

ure 4.4 due to a small degree of overlap as a result of using min/max across

processes).

The node-fill approach to process allocation (i.e. no load-balancing) in these

initial results has the potential to cause imbalance where the total process count

is not divisible by the maximum number of cores per node. For example, in

a 16 process setup the node configuration consists of two nodes, one with 12

processes and one with only four. These load imbalances manifest themselves as

significant variability in the reported timings across the process counts. Figures

4.5(a) through 4.5(e) show the results of runs with the minimum walltime of

all repetitions to minimise the impact of noise. The variability in performance

94

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

1 2 4 8 12 16 24 32 48 64 96 12
8

19
2

25
6

350

400

450

500

550

PE Count

T
im

e
(s

)

(a) Compute

1 2 4 8 12 16 24 32 48 64 96 12
8

19
2

25
6

0

20

40

60

80

100

120

PE Count

T
im

e
(s

)

(b) Exchange

1 2 4 8 12 16 24 32 48 64 96 12
8

19
2

25
6

0

2

4

6

8

10

PE Count

T
im

e
(s

)

(c) Collectives

1 2 4 8 12 16 24 32 48 64 96 12
8

19
2

25
6

0

12.5

25

PE Count

T
im

e
(s

)

(d) Update Boundary

1 2 4 8 12 16 24 32 48 64 96 12
8

19
2

25
6

0

25

50

PE Count

T
im

e
(s

)

(e) Memory Management

Figure 4.5: Total Time Spent by Component Across All Ranks, Weak-Scaling
— Minerva

95

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

Process Count Nodes
Socket Mapping

Node-Fill Load-Balance Socket-Balance

8 1
(6)× [1]+ (6)× [1]+

(4)× 2× [1] (2)× [1]

16 2
(6)× [2]+ (6)× [2]+

(4)× 4× [1] (2)× [2]

32 3
(6)× [5]+ (6)× [2]+ (6)× [2]+
(2)× [1] (5)× [4] (5)× [4]

64 5
(6)× [10]+ (6)× [4]+ (6)× [4]+
(4)× [1] (5)× [8] (5)× [8]

128 11
(6)× [21]+ (6)× [18]+ (6)× [18]+
(2)× [1] (5)× [4] (5)× [4]

256 22
(6)× [42]+ (6)× [14]+ (6)× [14]+
(4)× [1] (5)× [8] (5)× [8]

Table 4.5: Socket Process Allocation. Format — (Socket Core
Count)×[Number of Sockets]

is most evident in the compute kernels and communication costs for runs with

power-of-two process counts, while those configurations that consists of solely

fully-packed nodes (i.e. multiples of twelve) do not demonstrate this variability.

This exposes some interesting mannerisms — the minimum compute time for

16/64/256 processes, where there exists one node with only four processes and

the remainder with twelve, is roughly on par with that of the compute time

for the four process experiment. Likewise, the minimum compute time for 32

and 128 processes, where there exists one node with only eight processes (six on

one socket and two on another), is roughly on a par with the two/eight process

experiments (where there exists only two processes on one socket). Conversely,

the maximum compute time is relatively fixed when there exists at least one

node in a configuration that has twelve processes allocated. There is a clear tie

between the number of processes per socket/node and the compute time taken

by a process, with better compute performance the fewer processes there are.

Given the memory benchmarking results first introduced in Section 3.3.1, it is

potentially the case that bottlenecks in the memory bandwidth are responsible

for such behaviour.

This link between compute performance and number of cores per socket can

be verified through the use of a load-balancing, rather than node-fill, approach to

process allocation. Using the -loadbalance option of OpenMPI, the processes

96

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

8 16 32 64 128 256

0

200

400

600

800

PEs

T
im

e
(s

)

(a) Walltime

8 16 32 64 128 256

0

200

400

PE=4

600

800

PEs

T
im

e
(s

)

(b) Max Compute

Non-Loadbalanced Node Loadbalanced Socket Loadbalanced

Figure 4.6: Hydra Socket/Node Load Balancing - Minerva

are spread as evenly across the nodes as possible. This leads to the process

spread under “Load-Balance” found in Table 4.5.

The initial outcome of using load-balancing is underwhelming, presenting

a few minor improvements in walltime as per Figure 4.6(a). However this ap-

proach only load-balances across nodes, not sockets. As such, even at 16 pro-

cesses, there exists at least one full socket, as per the socket mapping described

in Table 4.5. By applying the use of the OpenMPI option --by-socket in com-

bination with load-balancing, the processes are evenly spread between sockets

on a node, albeit in such a fashion that consecutive processes are on different

sockets or nodes, potentially modifying the communication behaviour. With

this more restricted approach for 8 and 16 processes, where only a maximum

of 4 cores per socket is used, a much reduced total walltime is observed, as per

Figure 4.6(a). Contrasting the compute performance against one another in

Figure 4.6(b) it can be seen that the timings for this approach are now com-

parable to that of four processes in the initial investigation (as indicated by

the line PE=4), where it is also the case that only four cores per socket are in

use. This lends credence to the theory that the compute performance is tied to

the number of cores per socket, likely as an outcome of the memory bandwidth

97

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

available to each being a dominant factor.

Beyond these process counts, it can be seen that at larger scales such load-

balancing has a vastly reduced influence given a much more restricted environ-

ment for spreading the compute load with a fixed number of nodes. Regardless

of the initial improvements at small scale, it has been established that the domi-

nant factor for compute is the maximum number of cores per socket in the worst

case — i.e. the existence of even a single socket with all cores in use means that

a reduced number of cores on the remaining sockets has little impact. While it

is possible to improve the spread across the sockets for 16 processes due to a

number of spare cores in a two-node configuration, as the process count increases

it becomes more difficult to provide an even spread where there is not at least

one socket fully loaded without increasing the number of nodes, as is the case

past 32 processes. Increasing the number of nodes available would improve this

spread, but at the cost of a greater number of idle cores and a potentially greater

communication cost due to more inter-node connections. Further to this, there

is a potential increase in monetary cost associated with a higher node usage but

same effective core count, an overall reduction in machine utilisation. Whether

such an approach is worthwhile is explored later within this thesis.

Considering the now established variable compute behaviour in the initial set

of results, the impact upon the communication is also non-negligible, mainifest-

ing itself as idle time spent in synchronisation barriers that are attributed to

collective/point-to-point blocking. With more significant compute ranges the

idle time is likely to be higher on the better performing cores, thus there is a

corresponding wider range of communication timings. For multiple-of-twelve

process counts a reduced range of compute times can be seen, resulting in a

similar reduction for the communication times, both point-to-point and collec-

tives. In all cases, the minimum communication times (both collectives and

point-to-point) follow a regular increasing trend as the process count increases.

The update boundary kernels are somewhat more irregular given that they

are also tied to the existence of external boundaries, making their behaviour

98

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

P

Iterations Walltime (s)

Total Mlag DawnDev (s) Hera (s)

1 2 3 4 503 753 503 753

32 217 157 18 10 32 — 253.30 806.94
64 217 157 18 10 32 505.23 1665.80 291.58 901.91

128 217 157 18 10 32 525.15 1702.63 295.74 905.04
256 217 157 18 10 32 534.24 1718.68 310.06 974.75
512 217 157 18 10 32 528.76 1707.78 325.15 1002.52

1024 217 157 18 10 32 544.43 1729.02 337.54 1039.30
2048 217 157 18 10 32 584.97 1779.78 398.10 1172.02

Table 4.6: Hera/DawnDev, Hydra Weak-Scaling Walltimes [44]

predominantly tied to changes in the decomposition — e.g. 64 processes is the

first case where there exists a process with no external boundaries at all, hence

the sudden drop of the minimum cost to basically zero. The variation between

these maximums and minimums is predominantly tied to the differences in the

number of boundaries, though given the evidence of performance variations due

to node-fill behaviour, it is possible that this is also a contributing factor.

To examine whether these properties are exhibited on multiple architectures,

the outcome of a set of weak-scaled experiments for two different problem sizes,

503 and 753 on both the DawnDev and Hera machines in Table 4.6 are also

presented.

As with Minerva, there is a slight upward trend in the time taken for a Hydra

run that is tied to the increasing cost of communications associated with these

parallel executions. As well as the associated increase in collective costs with

the rising process count, the increase in inter-node connections contributes to

a higher point-to-point communication cost. Given DawnDev and Hera’s cores

per node count of 4 and 16 respectively, for a given process count Hera will have

a reduced number of inter-node connections compared to DawnDev, resulting

in the trend of jumps in communication costs occuring at higher process counts

for Hera than DawnDev.

Figure 4.7 reveals that, as with Minerva, the compute cost is relatively fixed

while the higher walltimes result from an increase in the point-to-point and col-

lective overheads. Again, using a mixture of maximum compute and minimum

communication costs provides a reasonable approximation of the overall wall-

99

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

64 12
8

25
6

51
2

10
24

20
48

0

500

1,000

1,500

2,000

(a) DawnDev

32 64 12
8

25
6

51
2

10
24

20
48

0

500

1,000

1,500

2,000

(b) Hera

All Compute (Max) Point-To-Point Comms (Min)

Collectives (Min) Walltime

Figure 4.7: DawnDev/Hera 753 Weak-Scaling Hydra Walltime by Component

time, albeit with a slight shortfall for Hera at 2048 processes due to the nature

of using such broad aggregate values to capture an environment that includes

periods of process independent progression with fixed synchronisation points.

In this section it has been demonstrated that while the communication costs

do increase as expected for a weak-scaled problem, the number of cores in use

per socket is also an influencing factor, and that the computation costs are not

necessarily fixed solely on the basis of the problem size. In addition, a pattern

has been identified in the contribution of the various components that allows

us to reasonably predict the walltime while simultaneously also validating that

profiling efforts have captured the major performance “hot-spots”.

4.5.3 Strong-Scaling

In a strong-scaled approach there will exist a change in both the compute and

communication behaviour due to both (a) the reducing local problem/message

size and (b) the number of messages increasing as the scale increases. While it

is expected that the overall walltime should reduce at scale, the rate at which

it does so is restricted by the potentially increasing communication costs (both

100

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

Problem
Total

Iterations

Mlag Iterations
Walltime (s)

Standard
Error1 2 3 4

1 258 136 18 10 94 1941.77 0.63
2 258 136 18 10 94 1035.26 1.32
4 258 136 18 10 94 601.47 0.19
8 258 136 18 10 94 367.41 0.27

12 258 136 18 10 94 257.23 0.32
16 258 136 18 10 94 187.30 0.15
24 258 136 18 10 94 128.47 0.18
32 258 136 18 10 94 97.21 0.48
48 258 136 18 10 94 67.95 0.12
64 258 136 18 10 94 54.62 0.04
96 258 136 18 10 94 37.61 0.15

128 258 136 18 10 94 31.80 0.25
192 258 136 18 10 94 21.71 0.03
256 258 136 18 10 94 19.97 1.86

Table 4.7: Minerva, Hydra Strong-Scaling Walltimes (1503, Node-Fill)

point-to-point and collectives) — if these costs increase beyond the rate at which

the compute cost is reduced, little is offered by scaling any further. Thus cap-

turing the behaviour of these communication stages is important to accurately

predicting the behaviour at even greater scales. To explore this, a similar set of

experiments to that of the weak-scaled node-fill approach are repeated (includ-

ing those that are a multiple of twelve), but using a fixed global problem size of

1503 in a strong-scaled setup.

In Figure 4.8 a breakdown by the various contributing components is pro-

vided for a node-fill process allocation approach. Since a maximum/minimum

across all processes is used, rather than a single fixed process, the overall sum

only approximates the total measured walltime. Once again, there is a shift

in the performance hot-spots away from compute towards the communication

costs, as might be expected. However, unlike with weak-scaled the compute

cost is reducing, leading to a more rapid transition in comparison.

In the context of the absolute values, many of the expected trends of strong-

scaling are observed (see Figure 4.9). As the number of processes is increased,

the absolute overall compute cost decreases as expected. The variability of weak-

scaling is not strongly observed, though this is likely due to the significantly

reduced absolute values as the scale increases.

The point-to-point exchange costs, despite dominating more of the overall

walltime, decrease in absolute value with the introduction of more processes

101

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

1 2 4 8 12 16 24 32 48 64 96 12
8

19
2

25
6

0

20

40

60

80

100

PE Count

%
o
f

W
a
ll

ti
m

e

Compute (Process Max) Point-To-Point Comms (Process Min)

Collectives (Process Min) Update Boundary (Process Max)

Memory Management (Process Max)

Figure 4.8: Max Walltime Percentage Breakdown

after an initial increase. This initial rise is partially down to the introduction of

messages that were not previously present, as well as the transition to inter-node

rather than intra-node communication. As the scale increases, the reduction in

message size appears to have a greater impact than the introduction of addi-

tional messages, suggesting that the problem is initially bandwidth rather than

latency bound. Given a worst case node sending messages for all six faces of

its local grid, it is also expected that any increase from a rise in the number

of messages per process would taper off as a peak is achieved. Any further

increases in cost would be attributed not to an increase in messages per node,

but rather synchronisation/network delays that might arise from a node being

part of a chain of messages.

The collective costs once again exhibit a significant difference between the

minimum and maximum values, but this reduces at scale, likely in part due to

the reduction in the range of the compute values resulting in smaller synchroni-

sation costs. Despite this, the minimum collectives costs remain on a par with

the weak-scaled costs. This reinforces the idea that these particular costs are

102

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

1 2 4 8 12 16 24 32 48 64 96 12
8

19
2

25
6

0

500

1,000

1,500

2,000

PEs

T
im

e
(s

)

(a) Compute

1 2 4 8 12 16 24 32 48 64 96 12
8

19
2

25
6

0

50

100

PEs

T
im

e
(s

)

(b) Exchange

1 2 4 8 12 16 24 32 48 64 96 12
8

19
2

25
6

0

5

10

15

20

25

PEs

T
im

e
(s

)

(c) Collectives

1 2 4 8 12 16 24 32 48 64 96 12
8

19
2

25
6

0

10

20

30

40

50

PEs

T
im

e
(s

)

(d) Update Boundary

1 2 4 8 12 16 24 32 48 64 96 12
8

19
2

25
6

0

20

40

60

PEs

T
im

e
(s

)

(e) Memory Management

Figure 4.9: Total Time Spent by Component Across All Ranks, Strong-Scaling
— Minerva

103

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

primarily attributed to the number of processes, with their size/number being

independent of the problem parameters.

The update boundary functions also act in a manner similar to that of weak-

scaling in behaviour.

4.5.4 Dynamic Central Processing Unit (CPU) Scaling

The variation in compute performance shown in previous experiments implies

that there is an additional behaviour influencing the rate at which work is

completed. Serial investigations have revealed that the relationship between the

maximum walltime for compute and the local amount of work is close to linear,

yet in weak-scaled investigations the fixed amount of work per process has not

demonstrated this property for select process counts; instead, it exhibits a steady

increase in the compute time up to 16 processes. Since the primary experimental

change in the weak-scaled investigations is the number of processes, it would

appear that one of two factors is the cause — either the assumption that the

amount of work is fixed is incorrect, or the performance per cell is changing.

It is important to eliminate one such possibility that could unduly influence

the experiments while not being a part of Hydra itself — that of dynamic

CPU scaling. If the clock speed changes as the process count is increased, it

could potentially cause a change in the performance per cell. By using the

cpufreq-info tool available from the SUSE Linux Enterprise OS it is possible

to identify that Minerva is configured to have a dynamic scaling range between

1.60 GHz and 2.79 GHz with an “ondemand” policy, potentially influencing the

CPU performance of runs. To identify whether this is the case, the current CPU

clock speed is sampled approximately every 0.07 seconds during the course of

an execution. The mean, standard deviation and variance of these clock speeds

for a strong-scaled and weak-scaled experiment are presented in Table 4.8.

From this table it can be seen that there is a decline in mean clock speed

performance, and a corresponding increase in variance, but only at 16 cores

or greater. This decline is most appreciable for the strong-scaled experiments,

104

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

Strong-Scaled - 803 Weak-Scaled - 1003

P Mean Clock Std. Dev Variance Mean Clock Std. Dev Variance
Speed (GHz) (GHz) (GHz) Speed (GHz) (GHz) (GHz)

1 2.792 0.038 0.001 2.789 0.066 0.008
2 2.790 0.052 0.003 2.792 0.037 0.000
4 2.790 0.061 0.004 2.790 0.077 0.008
8 2.789 0.063 0.004 2.790 0.061 0.006

16 2.417 0.551 0.303 2.727 0.267 0.071
32 2.341 0.578 0.334 2.776 0.149 0.019

Table 4.8: Minerva, Hydra, Process 0 Clock Speeds

but weak-scaled experiments also exhibit a similar trait, albeit not to the same

degree. Our prior breakdown of the experiments for weak-scaling demonstrate

little variability in compute performance past 16 cores for a fixed workload

suggesting that, during the compute at least, no scaling is occuring. In turn,

strong-scaled experiments still exhibit a roughly linear scaling for compute on

a par with that demonstrated in the serial experiments at the same process

scale. The only suggestion of a poorer compute performance per cell occurs

at 8 cores or fewer, for which these dynamic scaling experiments suggest there

is little to no change in the scaled clock speed. As such, this posits that the

variance in compute performance per cell is not attributable to dynamic clock

scaling, but some other factor. The dynamic scaling decline in mean clock speed

is likely caused by idle time during communication where, for strong-scaling at

least, such stages become a more dominant part of the overall walltime as the

scale increases, alongside a reduced overall walltime, potentially explaining its

more significant decline over weak-scaling. This would also explain the dramatic

change in mean and variance values between 8 and 16 processes, where the first

inter-node communications are introduced (at 12 cores).

Given the behaviour of the different load balancing approaches in the weak-

scaled investigations, where the compute performance was clearly tied to the

number of cores per socket in use (rather than just the total cores per CPU), it

is likely that the variance is caused by issues related to memory contention. The

STREAM and CacheBench benchmarks of Section 3.3.1, where the bandwidth

as the thread count increased was capped at approximately 30-35GB/s past four

105

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

threads, demonstrate such behaviours can occur. If the kernels within Hydra

were to exhibit memory-bound rather than compute-bound properties, such

bottlenecking behaviours would naturally manifest themselves as the system’s

performance would become restricted by the memory bandwidth, potentially

accounting for the results presented here. Regardless, since such behaviours can

be identified and categorised based on the number of maximum number of cores

per socket in case, these details can be accounted for and incorporated into any

modelling efforts, without knowing their exact cause.

4.6 Summary

This chapter has introduced Hydra, a benchmark code of interest to AWE. By

establishing the critical path and code behaviours that dominate the perfor-

mance of the application, a number of interesting areas have been identified for

further investigation:

• A selection of input parameters have been shown to influence the be-

haviour of Hydra, including both simulation and machine chacteristics.

Isolating their individual contributions is crucial to constructing a portable

model;

• The full critical path has been instrumented, identifying all major con-

tributors to the overall performance;

• Through serial, strong-scaled and weak-scaled experiments the differences

in the performance of compute and communications have been captured,

as well as exposing unexpected behaviours that warrent further investiga-

tion. Understanding these behaviours is crucial to predicting performance

at scale;

• There exists an association between the performance per cell and the num-

ber of cores in use per socket, suggesting that memory-bound performance

issues may exist. The impact of the cores per socket factor demonstrated is

106

4. Performance Scaling of a Near-Neighbour Hydrodynamics Application

significant enough that using extra nodes (and the additional communica-

tion costs this incurs) may be a more performant configuration, warrenting

further investigation;

• At large enough problem sizes the serial investigations show a degradation

in performance for a selection of functions, suggesting a threshold at which

unoptimised behaviours occur.

Hydra has shown consistent patterns in its behaviour with regards to its input

parameters. However, discrepancies appear to exist under select scenarios which

could prove of interest to those seeking to improve its performance. To this

end, a performance model may either reinforce the understanding of the code or

reveal where deviations between expected and actual behaviour occur, leading

both correction and performance optimisation efforts, a technique demonstrated

in other works [89, 141]. To this end, the creation of an effective performance

model is the first step towards such efforts.

107

CHAPTER 5
Modelling Hydra - A Performance Prediction Case Study

During a procurement process, the availability of suitable hardware for assess-

ing the performance of machines often proves to be limited. Since the machine

of interest often does not yet exist, smaller scale or similar hardware is instead

provided for benchmarking purposes. However this by itself is only suitable for

speculating or extrapolating performance on the final product. Performance

models provide the means by which these metrics can be applied in an intelli-

gent fashion to provide insight into the potential suitability of a machine. In

this chapter, the process and construction of a performance model for the Hydra

benchmark is introduced, including validation on multiple machines.

Specifically, the following goals are addressed:

• The first analytical model of Hydra is introduced, a benchmark of impor-

tance to the workflow of the Atomic Weapons Establishment (AWE);

• The model accuracy is compared across serial, weak-scaled and strong-

scaled problem cases achieving accuracy within 15%;

• The model is validated for three distinct High Performance Computing

(HPC) machines, DawnDev, Hera and Minerva; each possesses a distinct

architecture, showing the transferability of the approach.

5.1 Input Parameters

For any analytical model, the selection of suitable model parameters is key to

ensuring that the full range of behaviours are represented. From Chapter 4,

108

5. Modelling Hydra - A Performance Prediction Case Study

Parameter Definition Type

cps Max cores per socket Configuration
cpn Max cores per node Configuration

iter(n)
Number of iterations with

Derivedn Mlagh inner loops

m
Max. number of Mlagh

Bench. inputsub-iterations per cycle
Lx Local X grid cell size Derived
Ly Local Y grid cell size Derived
Lz Local Z grid cell size Derived
Nx Global X grid cell size Bench. input
Ny Global Y grid cell size Bench. input
Nz Global Z grid cell size Bench. input
P Number of processing elements Configuration
pe Processing Element (PE) ID Model input
Px X Dimension PE count Bench. input
Py Y Dimension PE count Bench. input
Pz Z Dimension PE count Bench. input

Table 5.1: Model Summary - Hydra Input Parameters

a range of benchmark characteristics were identified that influence the perfor-

mance of Hydra, summarised in Table 5.1; it is these parameters that are used

within this work for the model inputs of Hydra. However, it should be noted

that not all model inputs are mutually exclusive.

Some parameters, such as P , Nx, Ny, Nz etc. are inputs to the Hydra

benchmark itself, and as such are directly modifiable as part of any empirical

experiment. These form the basis of any variation in our experimental setup.

Other parameters, such as iter and mlag(n) are indirectly determined by

these benchmark inputs, resulting from the progressive state of the benchmark

across the course of a run, the state naturally being determined by the model

initalisation and termination conditions. A select few, such as Px, Py and

Pz can be either input directly (assuming they are valid values), or left to the

benchmark to determine a suitable value. The state-derived parameters iter and

mlag(n) are populated within the model from historical data, since they cannot

be predicted without executing the benchmark itself, but are independant of a

machine enabling their reuse.

Finally configuration parameters are those which typically affect the perfor-

mance of the benchmark but not the result – e.g. the number of cores/nodes

the job is distributed across etc.

There also exists a small set of parameters, defined as Sx, Sy and Sz, that

109

5. Modelling Hydra - A Performance Prediction Case Study

influence the benchmark state, as previously mentioned in Section 4.2.4. These

parameters represent the simulated spatial size per cell in the X, Y and Z

dimensions, but their primary impact is to influence the values of iter and

mlag(n). Since iter and mlag(n) are already captured within the model from

historical data, Sx, Sy and Sz are omitted, with empirical investigations in this

work typical keeping them at fixed values where possible.

5.2 Iteration Model

From the analysis of Hydra in Section 4.4, the critical path that constitutes the

vast majority of the overall walltime taken in an execution is known, and the

control flow is independent of the architecture (but not the performance). It

is assumed that each of the processes is following a similar critical path, and

that in the case of small deviations the longest running critical path is selected

from amongst them. In addition, for the modelling work within this chapter it

is assumed that the architecture in question is a homogeneous one – that is to

say each of the individual PEs consists of the same hardware, with the same

network interconnects and topology. In so doing, the performance of compute

kernels or message communication times per unit of work or byte should be

relatively similar, within deviations being down to configuration characteristics

that can be captured by the model (such as workload balance or cores in use

per socket. Adopting a top-down approach to modelling, the total walltime is

the product of the time taken for an iteration with n inner mlag loops on a

process pe, and the number of iterations with n Mlagh inner loops, summed for

all values of n as in Equation 5.1.

TWalltime(pe) =

m∑
n=1

Titer(n, pe) ∗ iter(n) (5.1)

The overall walltime is dictated by the process with the highest walltime; how-

ever, given relatively frequent communication synchronisation points (both col-

lective and point-to-point), the walltimes across the various processes are typi-

110

5. Modelling Hydra - A Performance Prediction Case Study

Equation Function

Twalltime(pe) Time – Walltime on process pe
Titer(n, pe) Time – Iteration with n Mlagh inner loops on process pe
Tfunc(pe) Time – Function func on process pe
TMlagh(n, pe) Time – Mlagh function with n inner loops on process pe
Ta(func, pe) Time – Memory allocation for function func on process pe
Td(func, pe) Time – Memory deallocation for function func on process pe
Tc(k, pe) Time – Compute for kernel k on process pe
Tp(s, pe) Time – Near-neighbour comms stage s on process pe
Tag(s, pe) Time – Global all-gather comms stage s on process pe
Tagv(s, pe) Time – Global all-gather vector comms stage s on process pe
Tub(s, pe) Time – Boundary Update for stage s on process pe

Table 5.2: Model Summary - Iteration Model Overview

cally similar. These synchronisations points should have the least impact if the

hardware and configuration is homogeneous across all nodes. A calculation can

be made even if the hardware is not homogeneous; however the inputs/timings

for the model would have to be obtained from the slowest node, since it will

place constraints on the underlying performance due to synchronisation etc.

To provide the level of accuracy required to create a predictive model, the

relationship between the machine and the behaviour of Hydra must be clearly

established. It is neccessary to model the compute, point-to-point and collective

components of the Hydra benchmark individually with regards to each function;

doing so will reveal how the machine impacts upon these various components

and provides the level of refinement neccessary to make the model portable

across architectures. Substituting in function sub-models, the time for a single

iteration is given as:

Titer(n, pe) =Ta(MDT, pe) + TMDT (pe) + Td(MDT, pe)+ (5.2)

Ta(Mlagh,pe) + TMlagh(n, pe) + Td(Mlagh,pe)+

Ta(Madv,pe) + TMadv(pe) + Td(Madv,pe)+

TShortprint(pe)

The remainder of this model definition will elaborate further on how the

various functions are broken down into their respective compute and communi-

cation components.

111

5. Modelling Hydra - A Performance Prediction Case Study

The following sub-sections present models for each function in a Hydra iter-

ation. Within each model, a distinction is made between differing categories of

behaviour, namely (a) grid kernel identifiers (compute), (b) update-boundary

kernels (compute), (c) Message Passing Interface (MPI) point-to-point stages

(network) and (d) MPI collective stages (network). These different categories

are elaborated in further detail in Sections 5.4.1, 5.4.2, 5.5.2 and 5.6 respectively.

5.2.1 MDT

Compute Kernel identifiers: MDT1 and MDT2

Point-to-point communication stages: None

Update Boundary Stages: None

Global collective stages: MDT

Function calls: Leosdrv and Lartvis

TMDT(pe) = Tc(MDT1, pe) + Tc(MDT2, pe) + TLeosdrv(pe) + (5.3)

TLartvis(pe) + Tag(MDT, pe)

5.2.2 Mlagh

Compute Kernel identifiers: MlaghInit, Mlagh1, Mlagh2, Mlagh3, Mlagh4,

Mlagh5, Mlagh6, Mlagh7, UpdVel, Mdivu and MBFlux

Point-to-point communication stages: Mlagh1 and Mlagh2

Update Boundary Stages: Mlagh1, Mlagh2 and Mlagh3

Global collective stages: Mlagh1 and Mlagh2

Function calls: Leosdrv, Lartvis and Mvolflx

112

5. Modelling Hydra - A Performance Prediction Case Study

TMlagh(n, pe) = Tc(MlaghInit, pe) + Tp(Mlagh1, pe) + Tub(Mlagh1, pe) +

(5.4)

(Tc(Mdivu, pe) + Tc(Mlagh1, pe) + Tag(Mlagh1, pe) +

Tc(Mlagh2, pe) + TLeosdrv(pe) + Tc(Mlagh3, pe) +

Tp(Mlagh2, pe) + Tub(Mlagh2, pe) + Tc(UpdVel, pe) +

Tub(Mlagh3, pe) + Tc(Mlagh4, pe) + Tc(MBFlux, pe) +

Tc(Mdivu, pe) + Tc(Mlagh5, pe) + Tag(Mlagh2, pe) +

Tc(Mlagh6, pe))× n +

(TLeosdrv(pe)) + TLartvis(pe))× (n− 1) +

Tc(Mlagh7, pe) + TMvolflx(pe)

5.2.3 Madv

Compute Kernel identifiers: Madv1, Madv2 and Purge

Point-to-point communication stages: Madv

Update Boundary Stages: Madv

Global collective stages: Madv

Function calls: Madvx, Madvy and Madvz

TMadv(pe) =Tc(Madv1, pe) + Tc(Purge, pe) + (5.5)

Tp(Madv, pe) + Tub(Madv, pe) + TMadvx(pe) +

Tp(Madv, pe) + Tub(Madv, pe) + TMadvy(pe) +

Tp(Madv, pe) + Tub(Madv, pe) + TMadvz(pe) +

Tc(Madv2, pe)

113

5. Modelling Hydra - A Performance Prediction Case Study

5.2.4 Madvx

Compute Kernel identifiers: Madvx1 and Madvx2

Point-to-point communication stages: None

Update Boundary Stages: None

Global collective stages:

Function calls: Madvmx

TMadvx(pe) = Tc(Madvx1, pe) + Tc(Madvx2, pe) + TMadvmx(pe) (5.6)

5.2.5 Madvy

Compute Kernel identifiers: Madvy1 and Madvy2

Point-to-point communication stages: None

Update Boundary Stages: None

Global collective stages: None

Function calls: Madvmy

TMadvy(pe) = Tc(Madvy1, pe) + Tc(Madvy2, pe) + TMadvmy(pe) (5.7)

5.2.6 Madvz

Compute Kernel identifiers: Madvz1 and Madvz2

Point-to-point communication stages: None

Update Boundary Stages: None

Global collective stages: None

Function calls: Madvmz

TMadvz(pe) = Tc(Madvz1, pe) + Tc(Madvz2, pe) + TMadvmz(pe) (5.8)

114

5. Modelling Hydra - A Performance Prediction Case Study

5.2.7 Madvmx

Compute Kernel identifiers: Madvmx1

Point-to-point communication stages: Madvm

Update Boundary Stages: Madvm

Global collective stages: None

Function calls: None

TMadvmx(pe) = Tp(Madvm, pe) + Tub(Madvm, pe) + Tc(Madvmx1, pe) (5.9)

5.2.8 Madvmy

Compute Kernel identifiers: Madvmy1

Point-to-point communication stages: Madvm

Update Boundary Stages: Madvm

Global collective stages: None

Function calls: None

TMadvmy(pe) = Tp(Madvm, pe) + Tub(Madvm, pe) + Tc(Madvmy1, pe) (5.10)

5.2.9 Madvmz

Compute Kernel identifiers: Madvmz1

Point-to-point communication stages: Madvm

Update Boundary Stages: Madvm

Global collective stages: None

Function calls: None

TMadvmz(pe) = Tp(Madvm, pe) + Tub(Madvm, pe) + Tc(Madvmz1) (5.11)

115

5. Modelling Hydra - A Performance Prediction Case Study

5.2.10 ShortPrint

Compute Kernel identifiers: ShortPrint1

Point-to-point communication stages: None

Update Boundary Stages: None

Global collective stages: ShortPrintAg1 and ShortPrintAgv1

Function calls: None

TShortPrint(pe) =Tc(ShortPrint1, pe) + Tag(ShortPrintAg1, pe)+ (5.12)

Tagv(ShortPrintAgv1, pe)

5.2.11 Lartvis

Compute Kernel identifiers: Lartvis1

Point-to-point communication stages: Lartvis

Update Boundary Stages: Lartvis

Global collective stages: None

Function calls: None

TLartvis(pe) =Tp(Lartvis, pe) + Tub(Lartvis, pe) + Tc(Lartvis1, pe) (5.13)

5.2.12 Leosdrv

Compute Kernel identifiers: Leosdrv1

Point-to-point communication stages: None

Global collective stages: None

Function calls: None

TLeosdrv(pe) =Tc(Leosdrv1, pe) (5.14)

116

5. Modelling Hydra - A Performance Prediction Case Study

From prior domain knowledge of the Hydra benchmark, it is known that the

functional behaviour within the various “categories” of sub-model is similar,

enabling the production of general models whose output can be modified with

a small selection of inputs. This, in turn, permits the establishment of a rela-

tionship between the machine hardware and the benchmark performance. The

following sections introduce not only the work decomposition of Hydra (defining

a number of these influencing input parameters), but how the behaviour of the

compute and communication stages translates into their respective models.

5.3 Process and Cell Layout

The processes of Hydra, as established earlier in this work (Section 4.3.1) are

laid out in a 3D cartesian grid in a Px×Py×Pz arrangement. An Nx×Ny×Nz

global grid is then decomposed across these processes in a relatively even man-

ner. This layout is important due to the association between process id (pe)

and work allocation; specifically the size of the local grid, the identification

of neighbouring processes in the 3D cartesian grid, whether communications

will be intra-node or inter-node and whether a process has internal or external

boundaries (i.e. whether it shares a grid decomposition boundary with another

process). Capturing these behaviours is important to construct an accurate de-

piction of how a workload is distributed and processed for both compute and

communication models. To do this, it is neccessary to determine a number of

properties — the position of a process within the cartesian grid, the size of the

local grid in all three dimensions and whether each of the six faces is an inter-

nal or external boundary. In all models the process id and process coordinates

are zero-indexed. The remainder of this section introduces the models for the

default behaviour used in our experimental approach, that of a node-fill process

allocation with a relatively even grid decomposition (though in exploratory sce-

narios, alternate models can be substituted). These models are summarised in

Table 5.3.

117

5. Modelling Hydra - A Performance Prediction Case Study

Function Description Ref.

pc(dm, pe)
Returns the position of process pe in the

5.17process grid layout for dimension dm.

lc(dm, pe)
Returns the number of cells in the local grid

5.18for dimension dm on process pe.

ib(dm, dr, pe)

Determine whether an internal boundary exists

5.20in dimension dm on the face in direction dr
for process pe.

eb(dm, dr, pe)

Determine whether an external boundary exists

5.21in dimension dm on the face in direction dr
for process pe.

pn(pe, cpn)
Returns the node id of process pe where cpn

5.22is the number of cores per node (node-fill).

pcs(P, pe, cps)

Gives the number of active cores for the socket

5.23containing process pe, given cps cores
per socket and P total processes.

cn(cdm, pe, dm, dr)

If dimension coordinate cdm does not equal

5.23
dimension dm, return the current process
position in dm for process pe else return
the process position in dimension cdm for a
neighbouring process (if such a neighbour exists).

pid(cx, cy, cz)
Given the cartesian coordinates cx, cy and

5.24cz, return the process id.

nb(dm, dr, pe)
Find the process id of the process neighbouring

5.25pe in dimension dm and direction dr.

Table 5.3: Model Summary - Process and Cell Layout

The coordinate (cx, cy, cz) is defined to be the 3D cartesian position of a

process pe within the process layout grid, with the sets Sdm and Sdr describing

the potential configuration of any face’s dimension and direction (Low and High

being the opposite faces) respectively.

Sdm = {X,Y, Z} (5.15)

Sdr = {Low,High} (5.16)

The relationship between these coordinates and a process id is described in

Equation 5.17, where pe is the processing element id and dm is the dimension of

the coordinate (either X, Y or Z). The coordinates cx, cy and cz are equivalent

to pc(X, pe), pc(Y, pe) and pc(Z, pe) respectively.

118

5. Modelling Hydra - A Performance Prediction Case Study

pc(dm, pe) =


pe mod Px if dm = X

(bpe/Pxc) mod Py if dm = Y

(bpe/(Px × Py)c mod Pz if dm = Z

(5.17)

Since the performance is typically tied to the number of cells a process must

operate upon, understanding how the data for computation is distributed is

neccessary to identify the maximum number of cells on an individual process.

Equation 5.18 captures the allocation of cells from the global grid across a set

of decomposed processes, assuming a zero-index process id.

lc(dm, pe) =


bNx/Pxc+ min(1, b(Nx mod Px)/(pc(X, pe) + 1)c) if dm = X

bNy/Pyc+ min(1, b(Ny mod Py)/(pc(Y, pe) + 1)c) if dm = Y

bNz/Pzc+ min(1, b(Nz mod Pz)/(pc(Z, pe) + 1)c) if dm = Z

(5.18)

In the event that, for a dimension dm, Ndm/Pdm is a perfect division then there

is an equal spread of cells in that dimension. If this is not the case then there is a

slightly uneven distribution of cells. To minimise the imbalance this could cause,

the remainder of cells, r, are spread across the first r processes encountered in

the decomposition of dimension dr (i.e. pc(dr, pe) < r), increasing their local

cell count by one in this dimension.

Of note is the distinction between the management of processes within Hydra

and that of the MPI implementation. Hydra manages processes from a data per-

spective – it controls the allocation of data to each process, and which processes

possess data upon which another process is dependant; neighbouring processes

in the process cartesian grid also contain neighbouring grid data. However, the

manner in which these processes are mapped to hardware is handled by the MPI

implementation and configuration – neither step influences the other without

manual configuration, and there is no guarantee that two processes that contain

119

5. Modelling Hydra - A Performance Prediction Case Study

neighbouring data are physically neighbours – i.e. on the same socket/node.

The consequence of this is that it must be estabished whether any com-

munications between neighbouring processes are intra-node or inter-node, as

well as whether any such communications exist. This is dependant upon two

factors – which processes are communication neighbours and which core/node

these neighbour processes have been bound to. Equations 5.20 and 5.21 model

the existence of an internal and external boundary for a face in dimension dm,

direction dr on a process pe.

pd(dm) =


Px if dm = X

Py if dm = Y

Pz if dm = Z

(5.19)

ib(dm, dr, pe) =


0 if (pc(dm, pe) = 0) and (dr = Low)

0 if (pc(dm, pe) = pd(dm)− 1) and (dr = High)

1 else

(5.20)

eb(dm, dr, pe) = (ib(dm, dr, pe) + 1) mod 2 (5.21)

An internal boundary, signifying a dividing line in the cell grid where cells on

either side are assigned to differing processes, can result in either an intra-node

or inter-node communication, dependent on the relative physical mapping of

the neighbouring process. External boundaries, in contrast, signify where the

face of a local grid also aligns with the edge of the global grid – i.e. there

are no neighbouring cells and therefore no neighbouring processes past this

boundary. Both are determined by the process-to-hardware mapping policy

of MPI. In this work a node-fill allocation is typically applied, but alternate

process mapping policies can be substituted into the model to explore alternate

scenarios of interest (e.g. a node/socket round-robin policy). Equation 5.22

120

5. Modelling Hydra - A Performance Prediction Case Study

models this node-fill policy, returning the node position for a process pe with a

maximum of cpn cores per node.

pn(pe, cpn) = bpe/cpnc (5.22)

In addition, since it was previously identified in Chapter 4 that the number of

active cores on a socket influences the compute/memory performance, Equation

5.23 applies the node-fill approach (effectively also a socket-fill approach) to

derive the number of active cores on the same socket as process pe, for a system

with cps cores per socket.

pcs(P, pe, cps) =


P if P <= cps

(P mod cps)× bpe/(bP/cpsc × cps)c) +

(cps× (1− (bpe/(bP/cpsc × cps)c))) if P > cps

From these hardware mapping models, knowledge of which PEs are neighbours

combined with their node allocation can be modelled (Equations 5.23 – 5.30) to

show whether the MPI communications are intra-node or inter-node.

cn(cdm, pe, dm, dr) =


pc(cdm, pe) if cdm 6= dm

pc(cdm, pe)− ib(dm,Low, pe) else if dr == Low

pc(cdm, pe) + ib(dm,High, pe) else if dr == High

(5.23)

pid(cx, cy, cz) = cx + (cy ∗ Px) + (cz ∗ Px ∗ Py) (5.24)

Equation 5.23 acts as a neighbour coordinate filter. For any immediate neigh-

bour, two of the three coordinates between process pe and a neighbour must

remain the same. Passing through the three dimensions to this function will

121

5. Modelling Hydra - A Performance Prediction Case Study

retrieve the coordinates of the potential neighbour by returning two of the coor-

dinates unchanged and the third modified. In this equation, dm is the dimension

in which the target process is a neighbour to the process pe (since it can only

be an immediate neighbour in one dimension). dr represents the direction the

neighbour lies in on the plane of dimension dm — i.e. Low or High being the

left-hand face or the right-hand face. The equation returns the cartesian po-

sition in the overall process layout for the target neighbour in the dimension

cdm, i.e. X for the coordinate cx, Y for the coordinate cy and Z for the coor-

dinate cz. In the event that there is no internal boundary, the coordinates for

all three dimensions all match that of process pe (signifying the non-existence

of a neighbour).

nb(dm, dr, pe) = pid(cn(X, pe, dm, dr), cn(Y, pe, dm, dr), cn(Z, pe, dm, dr))

(5.25)

Equation 5.25 uses Equations 5.23 and 5.24 to retrieve the process id of a neigh-

bour by (1) finding the coordinate position of pe, (2) determining the coordinates

of the neighbour in dimension dm and direction dr and (3) constructing the pro-

cess id of the neighbour using the neighbour coordinates. In the event that a

neighbour does not exist then the process id pe is returned, and removed from

the set of potential neighbours as per Equation 5.26.

Sneigh(pe) = {nb(dm, dr, pe) : dm ∈ Sdim, dr ∈ Sdir} \ {pe} (5.26)

Sneigh,X(pe) = {nb(X, dr, pe) : dr ∈ Sdir} \ {pe} (5.27)

Sneigh,Y (pe) = {nb(Y, dr, pe) : dr ∈ Sdir} \ {pe} (5.28)

Sneigh,Z(pe) = {nb(Z, dr, pe) : dr ∈ Sdir} \ {pe} (5.29)

Sneigh(pe) = Sneigh,X(pe) ∪ Sneigh,Y (pe) ∪ Sneigh,Z(pe) (5.30)

122

5. Modelling Hydra - A Performance Prediction Case Study

5.4 Compute - Work Per Unit (Wg)

To derive a model for any compute portion of the benchmark, it is neccesary

to construct some means of predicting a kernel’s runtime. To do so, this work

adopts the use of Wg values [124], values that represent the amount of time to

process a basic “unit” of work. By identifying a relationship between a fixed

set of known input parameters and the amount of basic work units required

for a particular kernel, it is then possible to obtain a runtime prediction for a

compute block within the benchmark.

The computation of suitable Wg values is achieved primarily via the use of

linear regression. Previous investigations in this work have demonstrated the

apparently linear relationship between the number of cells and the time spent

in a compute kernel. However, a simple least-squares regression is not sufficient

to provide accurate predictions in all scenarios. Select kernels such as Madvmz1

have previously demonstrated unexpected, non-linear behaviour aross the full

range of cell counts. In addition, the use of least-squares regression across the

full range of values can skew accuracy towards those results with high cell counts.

Small deviations in absolute value have little impact upon the accuracy of these

results, but can have a significant effect upon the accuracy of smaller absolute

values such as those in the lower cell count range.

One such example of this is the Lartvis1 kernel in Figures 5.1(a) through

5.1(d). In Figure 5.1(a), it appears as a simple linear regression. However,

splitting it into distinct sub-regions, as in Figures 5.1(b) through 5.1(d) it can be

seen that the least-squares regression for the full data-set is off by a significant

margin for the smaller cell counts. To address this, a piece-wise/segmented

linear regression approach is adopted instead [115], where the overall data-set

is split into these segmented regions, each of which has its own distinct least

squares linear regression. To determine the region, a subset of the data is used

to plot a linear regression, before the next piece of data in the sorted data-set

is introduced. If the percentage error deviates outside of a pre-specified range

123

5. Modelling Hydra - A Performance Prediction Case Study

(for Hydra a value of 30% was used), then the prior linear regression is fixed,

marking the end of a region. A new region is then begun with the next distinct

set of data and its own distinct linear regression. As is evident in these Figures,

a more accurate result is obtained.

This maintains the predictive capacity of the linear relationships, but also

addresses both minute shifts in value across the large range of the independant

variable, as well as capturing sudden behaviour changes in results such as for

the Madvmz1. The danger of such an approach is that if the relationship is not

truely linear then the final result is effectively a linear-interpolation which has

no predictive capacity for those values that exists between previously measured

points. However, in the case of Hydra this seems unlikely, with the the error

margin of 30% producing typically around 3-4 distinct regions. The piecewise

approach offers a degree of accuracy sufficient for predictive purposes.

In Hydra, the predominant influencing parameter for a compute kernel is

the number of local cells to be processed – the portion of the global grid that

is allocated to a MPI process after decomposition. These kernels typically fall

into one of two categories – grid kernels or boundary kernels.

5.4.1 Grid Kernels

Grid kernels are usually 3D nested loops that operate across the entirity of a

local grid, repeating a fixed set of operations for each cell, lending themselves

towards the Wg model due to the similiarity in compute time per cell. The size

of the grid that is iterated across can vary slightly, depending upon the nature

of the quantities/data arrays they are processing. Section 4.2.1 earlier in this

work made a distinction between different types of meshes such as cell-centered

or nodal, where the data is treated as being at the centre of a cell or at any

of the cell’s vertices. In addition the nature of parallel decomposition is such

that transferred data from neighbouring processes, stored in buffer cells past

the range of the local grid, may also require processing as part of a kernel com-

putation, extending the range of the nested loops further. Depending upon the

124

5. Modelling Hydra - A Performance Prediction Case Study

0

1
· 1

0
6

2
· 1

0
6

3
· 1

0
6

0

0.1

0.2

0.3

Cell Count

T
im

e
(s

)

(a) All Regions

0

1,
00

0

2,
00

0
0

2 · 10−4

4 · 10−4

6 · 10−4

8 · 10−4

Cell Count

T
im

e
(s

)

(b) Region 1

0

10
,0
00

20
,0
00

30
,0
00

0

2 · 10−3

4 · 10−3

Cell Count

T
im

e
(s

)

(c) Region 2

54
00

0

1.
10

E
6

2.
10

E
6

3.
10

E
6

0

0.1

0.2

0.3

Cell Count

T
im

e
(s

)
(d) Region 3

Empirical Least-Squares Regression Piece-wise Regression

Figure 5.1: Lartvis1 Kernel Timings – Minerva, 6 Cores Per Socket

kernel, while the dominating input characteristics are the values of Lx, Ly and

Lz, the full range may extend by a few extra cells in both the lower and upper

dimensions, resulting in an increased number of “work-units”. While stencil

kernels can touch data values from cells other than their own, they typically

still cycle through the full grid of cells and are thus treated in the same manner

as grid kernels. Equation 5.31 offers a simple summary of the computation for

the compute time of a grid kernel.

Tc(func, pe) = Wgfunc ∗ lc(X, pe) ∗ lc(Y, pe) ∗ lc(Z, pe) (5.31)

125

5. Modelling Hydra - A Performance Prediction Case Study

5.4.2 Boundary Kernels

Boundary kernels, unlike grid kernels, operate on only a subset of the overall

local grid. They predominantly focus upon the outer faces, i.e. the boundaries

of the grid, iterating over the outermost cells up to a limited cell depth. Some

boundary kernels may operate solely upon external boundaries (where the local

grid boundary is also the outmost boundary of the global grid), or internal

boundaries (where there exist neighbouring processes and halo data for received

MPI communications). A select number of kernels process both external and

internal boundaries equivalently.

Tc(func, pe) =


Wgfunc ∗ lc(Y, pe) ∗ lc(Z, pe) if X Boundary

Wgfunc ∗ lc(X, pe) ∗ lc(Z, pe) if Y Boundary

Wgfunc ∗ lc(X, pe) ∗ lc(Y, pe) if Z Boundary

(5.32)

5.5 Point-To-Point Communication

5.5.1 Message Sizes

As previously identifed in Section 4.3.2, each point-to-point exchange phase

consists of up to 12 messages per process, comprised of two different data types,

per each of six faces (for near-neighbours in all directions). Each message in

turn is an amalgamation of the data belonging to multiple quantities, packed

in a setup phase and unpacked upon reception by a reverse of the process.

This substitutes multiple small messages for one large message to minimise the

impact of latency involved in sending many messages.

From Section 4.2.4 it is known that quantities with different properties (cell-

centered, nodal or faced) possess different array dimensions, resulting in small

variations in the amount of data to be communicated for a particular quantity.

In addition, each communication stage has its own particular characteristics.

It may pack one or more quantities into the buffer, and has a fixed halo size

126

5. Modelling Hydra - A Performance Prediction Case Study

Parameter Description

fqcc Number of Cell-Centered Quantities
fqn Number of Nodal Quantities
fqfx Number of X-Faced Quantities
fqfy Number of Y-Faced Quantities
fqfz Number of Z-Faced Quantities
h Width of the halo area
bytesint Size of an integer datatype in bytes
bytesreal Size of a real datatype in bytes

Table 5.4: Model Message Size Parameters

– e.g. a halo size of one indicates each face communicated must be one cell

deep, a halo of two is two cells deep etc. As per the exchange pattern in Section

4.3.2, the halo size will also influence the number of additional ghost cells to

be communicated in the Y and Z steps. The number of quantities and the halo

size directly influence the message size, and thus, along with the local cell count

parameters Lx, Ly and Lz, form the crux of the models for determining message

size introduced in the remainder of this sub-section, summarised in Table 5.5.

There exists a relationship between the number of cells in a given dimension and

which step is currently being conducted in the exchange process – i.e. the X,

Y or Z dimension communication. For example, when communicating a face in

the Y dimension, the cell-count in the X dimension is increased to include halo

cells received from the exchange step in the X dimension (see Section 4.3.2).

Similar behaviours exist for the X and Y dimension cells when communicating

the Z step. This behaviour can be summarised as X < Y < Z, and is captured

as a utility function in Equation 5.33.

dirrel(d1, d2) =



1 if (d2 = Y) and (d1 = X)

1 else if (d2 = Z) and (d1 = X)

1 else if (d2 = Z) and (d1 = Y)

0 else

(5.33)

As well as incorporating these received halo cells, different classes of quantities

can have similar but different numbers of cells in the three dimensions. Thus the

size of a message, mostly dependant upon the overall size of a single face of the

127

5. Modelling Hydra - A Performance Prediction Case Study

Function Description Equation

dirrel(d1, d2)
Determine whether d1 is a dimension of an

5.33
order higher than d2

dpcc(d, cd, h, pe)

Number of data-points in dimension d for a

5.34
message communicated in dimension cd with
halo width of h from process pe
single cell-centered quantity

dpn(d, cd, h, pe)

Number of data-points in dimension d for a

5.35
message communicated in dimension cd with
halo width of h from process pe
single nodal quantity.

dpf (d, cd, fd, h, pe)

Number of data-points in dimension d for a

5.36
message communicated in dimension cd
with halo width of h from process pe
single faced quantity with face direction fd.

mcc(cd, h, pe)

Number of data points communicated for a single

5.37
single cell-centered quantity communicating in
dimension cd with a halo size of h
from process pe

mn(cd, h, pe)

Number of data points communicated for a single

5.38
single nodal quantity communicating in
dimension cd with a halo size of h
from process pe

mf (cd, fd, h, pe)

Number of data points communicated for a single

5.39
single faced quantity (with face dimension fd),
communicating in dimension cd with a halo size
of h from process pe

msgC(fqcc, fqn, The total number of data elements in a

5.40

fqfx, fqfy, message that consists of fqcc cell-centered
fqfz, cd, pe, h) quantities, fqn nodal quantities,

fqfx faced quantities (X-faced),
fqfy faced quantities (Y-faced),
and fqfz faced quantities (Z-faced),
in the direction cd with a
halo size h from process pe

Table 5.5: Message Size Models – Summary

local cell grid, has an additional constraint on the class of quantities involved

in a phase. The computation of a message size is thus broken into the following

steps:

1. Identify all related quantities associated with the current point-to-point

communication stage;

2. For a single data type (e.g. integer or double), compute the size of a face

for the direction, dr and communication direction cdm for all quantities,

based on which class each quantity is;

3. Sum the size of these faces to obtain the total number of cells to be placed

128

5. Modelling Hydra - A Performance Prediction Case Study

into a single buffer, and multiply by the byte size of the data type for the

total message size in bytes;

4. Repeat steps 2 and 3 for each data type, since these are communciated

separately from one another.

The series of dp Equations 5.34 to 5.36 return the number of “datapoints” (aka.

cells) for cell-centered (cc), nodal (n) and faced (f) quantities respectively, for

a particular dimension dm when communicating in dimension cdm with a fixed

halo size of h for a process pe.

dpcc(dm, cdm, h, pe) =



h if dm = cdm

lc(dm, pe) + (h× ib(dm,Low, pe)

×dirrel(dm, cdm)

+(h× ib(dm,High, pe)

×dirrel(dm, cdm)) else if dm 6= cdm

(5.34)

dpn(dm, cdm, h, pe) =


h if dm = cdm

dpcc(dm, cdm, h, pe) + 1 else if dm 6= cdm

(5.35)

dpf (dm, cdm, fd, h, pe) =


h if dm = cdm

dpn(dm, cdm, h, pe) else if dm = fd

dpcc(dm, cdm, h, pe) else if dm 6= fd

(5.36)

The addition of further halo cells from prior communications in Equation 5.34

is dependent on (a) the existence of an internal boundary and (b) which step of

the exchange has been reached, as per the description of the exchange process

129

5. Modelling Hydra - A Performance Prediction Case Study

Phase Message Type fqcc fqn fqf,x fqf,y fqf,z h

Lartvis Real 1 0 0 0 0 1
Lartvis Integer 0 0 0 0 0 1
Mlagh1 Real 1 6 0 0 0 1
Mlagh1 Integer 1 0 0 0 0 1
Mlagh2 Real 3 0 0 0 0 1
Mlagh2 Integer 1 0 0 0 0 1
Madv Real 5 0 0 0 0 2
Madv Integer 1 0 0 0 0 2
Madvm Real 4 6 1 1 1 3
Madvm Integer 0 0 0 0 0 3

Table 5.6: Pure Phase Type Quantity Frequency

in Section 4.3.2 (i.e. whether prior communications have occured). From these

equations, the number of datapoints overall in the dimension of the communica-

tion is equivalent to the facesize×halosize. The face size is itself directly tied

to the number of cells in the local grid in dimensions dm – i.e. lc(dm, pe), while

the halosize is equivalent to a fixed input, determined by the communication

stage, and is returned by the equation when dm is equivalent to cdm. This

leads to Equations 5.37 through 5.39, capturing the total number of datapoints

communicated for a single quantity of a particular class in the dimension cdm,

capturing step 2 of the message size process.

mcc(cdm, h, pe) =
∏

dm∈Sdim

dpcc(dm, cdm, h, pe) (5.37)

mn(cdm, h, pe) =
∏

dm∈Sdim

dpn(dm, cdm, h, pe) (5.38)

mf (cdm, fd, h, pe) =
∏

dm∈Sdim

dpf (dm, cdm, fd, h, pe) (5.39)

Taken one step further, knowing the message size for a quantity of any partic-

ular class, the total message size can be derived from the frequency of various

quantities in a communication for a particular datatype. This leads to Equation

5.40 which, when used in conjunction with domain knowledge of Hydra as pre-

sented in Table 5.6, can derive the total number of data points in a single MPI

message using the appropriate frequencies. Finally, knowing the bytesize of a

130

5. Modelling Hydra - A Performance Prediction Case Study

datatype, Equation 5.41 produces the final message size in bytes, a value that

can be used as an input to a network performance model. From this, a point-

to-point communication stage can begin to be modelled with the knowledge of

how much data is being transferred.

msgC(fqcc, fqn, fqfx, fqfy, fqfz, cdm, pe, h) = (mcc(cdm, h, pe)× fqcc)

+ (mn(cdm, h, pe)× fqn)

+ (mf (cdm,X, h, pe)× fqfx)

+ (mf (cdm, Y, h, pe)× fqfy)

+ (mf (cdm,Z, h, pe)× fqfz)

(5.40)

msgBytes(fqcc, fqn, fqfx, fqfy, fqfz, cd, pe, h) =

msgC(fqcc, fqn, fqfx, fqfy, fqfz, cd, pe, h)× {bytesint‖bytesreal} (5.41)

5.5.2 Intra/Inter-Node Communication

From Section 4.3.2, it is known that the overall point-to-point data exchange

process in Hydra consists of multiple stages, repeated for each communication

direction:

• A pack phase, where data is transferred from multiple distinct arrays into

a contiguous buffer for communication;

• The initiation of non-blocking MPI ISend/IRecvs in up to two directions,

per data-type, which are then blocked by an MPI Waitall;

• An unpack phase, where data is moved from the received data buffer into

the ghost cell locations of various buffers.

131

5. Modelling Hydra - A Performance Prediction Case Study

The multiple components require distinct models for each part, in particular

only a portion of the point-to-point communication stage consists of “meaning-

ful” MPI communication over a network interface, the remainder being over-

head/setup costs or synchronisation delays. Any model thus necessitates the

separation of the pure MPI/synchronisation network costs and the pack/un-

pack components (more akin to the memory/compute kernels of Section 5.4).

Modelling these features requires an understanding of both a machine’s network

characteristics, with and without contention, and the network communication

patterns of Hydra with a scaling process count.

Focusing upon the Madvm communication stage, possessing the largest MPI

messages, Figures 5.2(a) through 5.2(c) present the minimum and maximum

exchange stage walltimes for the Madvmx, Madvmy and Madvmz functions re-

spectively. Despite functionally executing the same communication stage/pat-

tern, with the same message sizes, only the timings for Madvmx and Madvmz

are similar – Madvmy demonstrates a more substantial variance for the max-

imum timings. However, the timings for process counts that are multiples of

twelve remain consistent across each of the three functions – these peaks only

occur at process counts where there is a socket in use with idle cores, suggesting

a potential synchronisation/idle process problem that results in measurement

spikes.

Given a fixed order of operations, each of the Madvm functions begin with

a communication phase, which itself is preceeded by two Madvx, Madvy or

Madvz kernels (depending upon the function), resulting in any compute imbal-

ance manifesting itself in any synchronisation costs of the communication phase.

Examining the difference between the maximum and minimum time spent in

these compute kernels, it can be seen that the kernels for Madvy demonstrate

a noticeably higher fluctuation, likely the cause of the behaviour demonstrated

in Figure 5.2(b). Summing the minimum exchange time and this difference

exhibits a pattern that closely mirrors that of the maximum exchange time,

lending credence to this idea, with the presence of a higher compute variance

132

5. Modelling Hydra - A Performance Prediction Case Study

2 4 8 16 32 64 128 256
0

5 · 10−2

0.1

PEs

T
im

e
(s

)

(a) Madvmx

2 4 8 16 32 64 128 256
0

0.1

0.2

PEs

T
im

e
(s

)

(b) Madvmy

2 4 8 16 32 64 128 256
0

5 · 10−2

0.1

PEs

T
im

e
(s

)

(c) Madvmz

Process Min Process Min + Compute Diff. Process Max

Figure 5.2: Madvm Exchange Stage Walltimes - Minerva, OpenMPI-1.4.4

133

5. Modelling Hydra - A Performance Prediction Case Study

2 4 8 16 32 64 128 256
0.00

0.02

0.04

0.06

0.08

0.10

PEs

T
im

e
(s

)

Madvmx

Madvmy

Madvmz

Figure 5.3: Maximum Exchange Time Minus Compute Difference

in the Madvy function also translating into a greater variance in the commu-

nication step, the removal of this compute imbalance leading to more similar

performance as per Figure 5.3. However, this is not to say that the difference

between the minimum and maximum time is solely attributable to synchroni-

sation – variance in the number of messages for each process, the pack/unpack

costs, the size and direction of these messages including whether they are intra

or inter-node etc. and any contention behaviours are also possible factors. For

example, the transitions at 12 processes sees the first introduction of processes

with messages in two directions rather than one, resulting in a gap between

the maximum time, and the sum of the minimum time + compute-imbalance,

though due to the size of the compute imbalance this has a more noticeable

impact on the maximum time for the Madvmx and Madvmz exchange stages.

In addition, the point-to-point exchange stages are blocked only on local com-

munications, not global, and as such can exhibit a degree of variation between

processes for their completion time. Thus to carefully examine the impact of

the network, it is necessary to separate these communication costs from the

overheads and compute imbalance.

To examine the performance of the network individually the network usage

responsible must be isolated, namely the MPI communications without idle wait

time. For this purpose, the original variant of Hydra introduced in Chapter 4 is

extended to include additional barriers, producing a point-to-point stage that

134

5. Modelling Hydra - A Performance Prediction Case Study

Listing 5.1: Barriered MPI Point-to-Point Data Exchange – Psudeocode

1 Begin Point -to -Point Comms. Stage:
2 MPI Global Barrier
3 Pack Buffer
4 MPI ISend\IRecv
5 MPI Waitall
6 MPI Unpack
7 End Point -to -Point Comms. Stage

PEs
Walltime (s) Process Compute Time in

Master Barrier Range (s) Barrier (s)

1 418.70 421.21 N/A N/A
2 468.52 469.06 2.33E-3 3.16E-3
4 564.68 565.43 4.12E-3 4.41E-3
8 655.61 659.13 6.83E-2 7.33E-2

16 671.10 675.88 2.26E-2 2.43E-2
32 678.20 690.98 7.25E-2 7.52E-2
64 689.28 715.68 2.73E-2 2.66E-2

128 708.31 723.23 7.06E-2 7.66E-2
256 700.35 727.53 2.86E-2 3.00E-2

Table 5.7: Hydra Walltime - Original vs. Global Barrier - Minerva

follows the pattern in Listing 5.1, shifting any compute-imbalance synchronisa-

tion from the MPI Waitall to the MPI Barrier. While this modifies the com-

munication interaction somewhat due to enforcing a global rather than only

near-neighbour synchronisation pattern, the overall impact upon the walltime

of Hydra is limited to within 5% (see Table 5.7). This small increase is deemed

acceptable for the purposes of this section, due to the barriered version enabling

a distinction to be drawn between synchronisation costs that might result from

compute imbalance and time spent actively engaged in network communication,

as well as other disparate costs such as buffer pack/unpack times.

Figure 5.4 presents the MPI communication times without any extraneous

synchronisation costs or data exchange overheads, focusing purely on the impact

of network communication costs, with decomposition patterns consistent within

a set of results for a process count. Examining a variety of problem/message

sizes and process counts, it can be seen how these times scale not only with mes-

sage size, but with the number of active communications, potential an outcome

of contention due to the number of requests on a single communication link per

node. It is also apparent that there exists a difference in performance depending

135

5. Modelling Hydra - A Performance Prediction Case Study

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

1 · 10−2

2 · 10−2

3 · 10−2

Message Size (KB)

T
im

e
(s

)

(a) X Dimension

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

1 · 10−2

2 · 10−2

3 · 10−2

Message Size (KB)

T
im

e
(s

)

(b) Y Dimension

0 500 1,000 1,500 2,000 2,500 3,000 3,500
0

1 · 10−2

2 · 10−2

3 · 10−2

Message Size (KB)

T
im

e
(s

)

(c) Z Dimension

2 Processes 4 Processes 8 Processes 16 Processes

32 Processes 64 Processes 128 Processes 256 Processes

Figure 5.4: Hydra with Barrier MPI Scaling, Max Comm. Time – Minerva,
OpenMPI-1.4.3 – Single Face (Solid Line) vs Double Face (Dashed Line)

136

5. Modelling Hydra - A Performance Prediction Case Study

P Node Decomposition Intra-Node Inter-Node
X Y Z X Y Z

2 0 1× 1× 2 0 0 1 0 0 0
4 0 1× 2× 2 0 2 2 0 0 0
8 0 2× 2× 2 4 4 4 0 0 0

16 0 2× 2× 4 6 6 8 0 0 4
32 1 2× 4× 4 6 8 4 0 2 16
64 2 4× 4× 4 9 4 0 0 8 24

128 2/5 4× 4× 8 9 4 0 0 8 24
256 3/6 4× 8× 8 9 8 0 0 8 24

Table 5.8: Number of ISend/IRecv Pairs Total (Worst-Case Node)

upon the direction of communication, likely the result of different intra or inter

node communication patterns depending upon Hydra’s configuration. There are

a small selection of behaviours that this can be attributed to.

First, the patterns usually fall into one of two sets – a single-face or double

face communication. This is influenced by the decomposition pattern, where

within a dimension a communication may be required in both directions rather

than just one. This will result in two MPI messages rather than one and at a

minimum should correspond to a doubling of the time for a communication over

the single-face equivalent (assuming a single saturated communication link).

Second, as the number of processes increases there is a shift in the number of

both (a) simultaneous communication pairs and (b) the proportion of intra-

node to inter-node communications for a particular dimension. The behaviours

exhibited by each of the dimensions are dissimilar due to the differences in these

decompositions, and are summarised in Table 5.8 as the number of ISend/IRecv

Pairs. From this, the patterns for each of the dimensions can be identified as

follows:

• In the X dimension, the decomposition for this process set never extends

past 4, resulting in small process exchange chains that fit neatly into the

node size of 12 processes (either 6 × 2 processes or 3 × 4 processes). As

such, with an increase in the number of processes there is a corresponding

increase in the number of simultaneous pairs of communications intra-

137

5. Modelling Hydra - A Performance Prediction Case Study

node, but no communications ever go inter-node at this scale. When the

number of Send/Recv pairs reaches a cap, the timings tend to cluster

around similar values;

• In the Y dimension a similar behaviour can be observed, but due to the

gradual introduction of more inter-node communications the timings are

somewhat more spread than for the X dimension;

• Finally, in the Z dimension, both a greater spread and higher magnitude

can be observed due to the tendancy for these communications to be inter-

node. Once again the clustering can begin to be seen due to the number

of inter-node communications reaching a cap.

As the final modelling step, it is necessary to convert this knowledge of commu-

nication patterns/message sizes, in conjunction with network benchmarks, into

predictions that are similar to the empirical communication times as measured

from the Hydra benchmark.

Figures 5.5(a) through 5.7(b) present the outcome of various Intel MPI

Benchmark (IMB) experiments into the impact of contention on the network

behaviour of Minerva. The benchmarks used include PingPong, reporting half

the round-trip time of a send/recv communication pairing between two pro-

cesses; PingPing, the time to complete a send/recv between two processes si-

multaneously; and Exchange, the time to complete a send/recv communication

with processes n−1 and n+1 for a process n across the set of all processes (this

behaviour includes looping such that for x processes, process x − 1 and pro-

cess 0 communicate with one another). The Exchange benchmark is the closest

in communication pattern to that of Hydra’s Point-to-Point Exchange stages,

although Hydra’s communication patterns lack the looping behaviour present

in the IMB benchmark. To investigate contention, the “multi” variants per-

form the same benchmarks, but with multiple pairs and/or chains of processes

executing simultaneously.

138

5. Modelling Hydra - A Performance Prediction Case Study

0 2 · 105 4 · 105
0

200

400

Message Size (Bytes)

T
im

e
(µ

s)

(a) IMB Benchmark Timings

0 2 · 105 4 · 105
0

1

2

3

4

Message Size (Bytes)

R
at

io

(b) Ratio to PingPong

PingPong (Intra-Node) PingPing (Intra-Node) Exchange (Intra-Node)

PingPong (Inter-Node) PingPing (Inter-Node) Exchange (Inter-Node)

Figure 5.5: IMB PingPong vs PingPing vs Exchange - Single Process Pair

2 4 6 8 10 12
0

500

1,000

Chain PEs Length

T
im

e
(µ

s)

(a) Intra-Node (Exclusive)

2 4 6 8
0

200

400

Chain PEs Length

T
im

e
(µ

s)
(b) Inter-Node (Exclusive)

0.5 kB 8 kB 16 kB 32 kB

64 kB 128 kB 256 kB 512 kB

Figure 5.6: IMB Exchange (Process Chain Scaling)

1 3 9
0

200

400

600

800

No. of Pairs

T
im

e
(µ

s)

(a) PingPong – Inter-Node

2 4 6 8
0

1,000

2,000

3,000

No. of Pairs

T
im

e
(µ

s)

(b) Exchange – Inter-Node

0.5 kB 8 kB 16 kB 32 kB

64 kB 128 kB 256 kB 512 kB

Figure 5.7: IMB Simultaneous Chains (Chain Length 2 PEs)

139

5. Modelling Hydra - A Performance Prediction Case Study

Figure 5.5(a) investigates only a single pair of processes to contrast the dif-

ference between PingPong, PingPing and the Exchange benchmarks. PingPong

is reporting the time for a single Send/Recv (due to the measurement of the half

round-trip time), while PingPing reports the time for two Send/Recv executed

simultaneously while Exchange is conducting four Send/Recvs simultaneously

due to the looping nature of the benchmark. As such it would be expected

that, in the absence of contention with the PingPong time as a baseline, the

PingPing benchmark should be roughly equivalent (twice as many messages,

but overlapping), and the Exchange benchmark 2× as long (due to the setup

here leading to the benchmark effectively mimicing a PingPing benchmark, but

with two rounds of communications). Upon examination of the benchmarked

times, this pattern appears to hold for inter-node communications, where there

is a small increase for the PingPing benchmark of up to 15% when contrasted

with the PingPong benchmark, and likewise for the Exchange benchmark vs 2×

of the PingPong benchmark (Figure 5.5(b)). It is possible that this overlapping

capacity is a feature of using full duplex communications, enabling a send and

a recieve in both directions at once (at the cost of a small overhead). In the

case of the intra-node communications, the assumption of no contention does

not hold, with the PingPing benchmarks at larger message sizes being 2× that

of the PingPong messages, and for the Exchange benchmarks 4×, correspond-

ing heavily with the number of messages (Figure 5.5(b)). This would suggest

that the load on the system is such that only one single Send/Recv pairing is

occuring at any one time. The implications of this are that in the event of

intra-node, multi-message communications such as that of the Hydra bench-

mark, heavy contention behaviour will be seen. The primary exception is for

very small messages sizes, where latency plays a greater role than bandwidth.

To verify the above implication, Figures 5.6(a) and 5.6(b) explore the Ex-

change benchmark further, using a chain of processes greater than two to inves-

tigate the impact of a larger number of simultaneous connections. Following

from Figure 5.5(a), the expectation is that the intra-node communications would

140

5. Modelling Hydra - A Performance Prediction Case Study

Intra-Node Single-Message (µs) Inter-Node Single-Message (µs)

Message Size m c Message Size m c
(Bytes) (Bytes/µs) (µs) Bytes (Bytes/µs) (µs)

< 16384 1.78E-04 5.37E-01 < 36864 4.83E-04 2.13E+00
< 352256 1.28E-04 1.82E+00 < 65536 5.50E-04 6.80E+00
> 352256 1.08E-04 4.57E+00 > 65536 3.21E-04 3.33E+01

Table 5.9: Minerva Communication Linear Regression Parameters

see heavy contention, while the exclusively inter-node communication will see

a much smaller impact due to each extra process in the chain introducing an

additional communication interconnect to distribute the load of additional mes-

sages, since each extra process is effectively an extra node in this setup. The

outcomes of the Exchange benchmark suggest that this does appear to be the

case. At larger message sizes the increase in time is sizeable for intra-node

communication chains, while inter-node chains only see a marginal increase in

cost.

Finally, it is neccessary to explore the impact of multiple communication

pairs occuring between two nodes simultaneously. The above inter-node com-

munication benchmarks explore the impact of introducing additional nodes, but

this behaviour in isolation is unrealistic since it only enforces communication

between a single core on each node, leaving the remainder idle. In doing so

it does not heavily stress a single interconnect, and does not demonstrate the

contention impact of multiple communications. In the Hydra communication

patterns, it is possible for up to 12 pairs to be communicating between two nodes

at any one time, or 24 pairs with three nodes (communication in both directions

as per the Exchange benchmark). Figures 5.7(a) and 5.7(b) attempt to capture

this behaviour, using the PingPong and Exchange benchmark to highlight the

impact of multiple pairs of simultaneous communications between the same two

nodes at once.

Using the knowledge from above, it is possible to derive a linear regression

model for the time to communicate a single message, summarised in Table

5.9. In conjunction with the scaling behaviour of contending messages both

intra-node and between two fixed nodes, it is possible to combine these models

141

5. Modelling Hydra - A Performance Prediction Case Study

with the overall critical path model and kernel models, producing an overall

predictive walltime model for Hydra.

5.6 Collective Communication

MPI AllGather is the primary MPI collective used within Hydra, frequently

within mdt and with more limited use within mlagh.

In many respects the MPI AllGather is similar to that of an MPI AllReduce.

However for MPI AllGather as the number of communication steps required

scale with P , the amount of data sent does also, assuming a pair-wise exchange,

where the ranks are split into pairs and exchange data. New pairs are formed

on a tree-like basis until all ranks have received from all other ranks, directly

or indirectly as described in [19]. This results in a log2 arrangement, where the

amount of data sent doubles per step, and the resulting equation:

Tallgather(dts) =

(log2(cpn))−1∑
i=0

Tcomm,intra,n(2i ∗ dts)

 +

(log2(P))−1∑
i=log2(cpn)

Tcomm,inter,n(2i ∗ dts)

 (5.42)

where dts is the size of the initial data per process in bytes.

5.7 Model Validation

5.7.1 DawnDev/Hera

Earlier revisions of the Hydra Model were tested on two machines of interest,

DawnDev (Section 3.3.3) and Hera (Section 3.3.4), in both cases up to a scale

of 2048 cores as presented in Tables 5.10 and 5.11 for two different problem

sizes, alongside a breakdown of the model result in Figures 5.8(a) and 5.8(b).

In both cases, the error lay within 15% of the actual overall walltime, sans

142

5. Modelling Hydra - A Performance Prediction Case Study

DawnDev Hera

Cores Empirical (s) Model (s) Err. (%) Empirical (s) Model (s) Err. (%)

32 - - - 253.3 259.55 2.44
64 505.23 484.37 -4.13 291.58 287.76 -1.33
128 525.15 485.77 -7.15 295.74 302.07 2.10
256 534.24 487.44 -8.76 310.06 319.77 3.10
512 528.76 494.53 -6.47 325.15 339.31 4.33
1024 544.43 497.75 -8.57 337.54 363.90 7.78
2048 584.97 503.04 -14.01 398.1 413.01 3.71

Table 5.10: Hera/DawnDev Model Validation, Weak Scaled, 503 Per Core [44]

DawnDev Hera

Cores Empirical (s) Model (s) Err. (%) Empirical (s) Model (s) Err. (%)

32 - - - 806.94 783.36 −2.92
64 1665.8 1561.46 −6.26 901.91 832.89 −7.65
128 1702.63 1562.87 −8.21 905.04 859.41 −5.04
256 1718.68 1564.53 −8.97 974.75 888.32 −8.87
512 1707.78 1577.7 −7.62 1002.52 918.38 −8.39
1024 1729.02 1580.92 −8.57 1039.30 953.54 −8.25
2048 1779.78 1586.21 −10.88 1172.02 1013.88 −13.49

Table 5.11: Hera/DawnDev Model Validation, Weak Scaled, 753 Per Core [44]

32 64 128 256 512 1024 2048 4096 8192
0

200

400

PEs

T
im

e
(s

)

(a) Hera

64 128 256 512 1024 2048 4096 8192
0

200

400

PEs

T
im

e
(s

)

(b) DawnDev

Compute Point-to-Point Comms Collectives

Figure 5.8: Model Breakdown – Weak Scaled, 503 per Core, Hera [44]

143

5. Modelling Hydra - A Performance Prediction Case Study

I/O time which was omitted from both the predicted and empirical results.

The demonstrated capacity shows that the model was reuseable across multiple

machines/architectures, but had room for refinement.

From a breakdown perspective, the model predicts a higher collective cost

attributed to Hera over DawnDev. This highlights a difference in the level of

contribution associated with the network costs of the two machines; in particular

how the walltime scaling differs between the two machines from 32 cores to

2048 cores, as seen in the empirical results of Table 5.10. From this, it can be

posited that while Hera shows better walltimes at lower core counts, the scaling

performance of the two machines would indicate that, due to the communication

costs, DawnDev would reach a threshold point where it becomes the better

performing machine of the two. Given knowledge of the BlueGene architecture

from Chapter 2, and how it is designed around weaker individual chips in a

dense interconnected fashion, it might be expected that the design philosophy

of the machine would also hint at this conclusion.

5.7.2 Minerva

Using Minerva, three distinct cases were explored to further refine this model

and demonstrate its applicability for modelling different scaling/compute/com-

munication behaviours. Table 5.12 presents the outcome of a serial perfor-

mance investigation, where the captured walltime is solely compute without

any network/MPI communication. As demonstrated, the model is capable of

providing an accurate prediction of the runtime for a serial execution, confirm-

ing the capture of the vast majority of the application’s compute behaviour, as

well as the critical path. For the most part the model captures the relatively

linear relationship between the number of cells and the time taken. However,

during the course of the modelling process a few select kernels were revealed

to have unexpected behaviour, differing from the initially predicted linear rela-

tionship; these kernels were Madvmz1 and to a lesser possible extent Madvmy1.

Nevertheless, this behaviour was handled via the use of piece-wise regression for

144

5. Modelling Hydra - A Performance Prediction Case Study

Problem Empirical (s) Model (s) Err. (%)

303 11.18 11.40 1.99
503 50.94 49.96 −1.93
803 205.09 202.98 −1.03
1003 418.70 415.57 −0.75
1203 809.37 809.23 −0.02
1503 1941.77 1933.57 −0.42

Table 5.12: Hydra Model Validation, Serial, Minerva
Intel-12.0/OpenMPI-1.4.3

Total Walltime (s)

PEs Empirical Model Error (%)

1 418.7 415.57 −0.75
2 468.52 460.61 −1.69
4 564.68 557.59 −1.26
8 655.61 668.92 2.03

16 671.1 677.56 0.96
32 678.2 688.92 1.58
64 689.28 699.38 1.47

128 708.31 699.40 −1.26
256 700.35 703.64 0.47

Table 5.13: Hydra Model Validation, Weak Scaling, Minerva
Intel-12.0/OpenMPI-1.4.3

determining the Wg values and cell ranges.

The final weak and strong-scaling results in Tables 5.13 and 5.14 demon-

strate the capacity of the model to also incorporate the network communication

costs, remaining within 10% of the empirical results. With the model validated

on multiple machines for different compute and network hardware, this suggests

that the model is applicable for the purposes of performance prediction on differ-

ing architectures. The introduction of a parallel element also demonstrates the

model’s capacity to predict the separate breakdown costs of various components.

In Figures 5.9a and 5.9b, the overall walltime of both the empirical results and

the model prediction have been broken down into five components; these com-

ponents are the compute kernels, the overhead of dynamic memory allocation

and deallocation, the update boundary kernels (distinct from compute kernels

due to them being primarily involved in shifting data in memory on boundary

cells only), the point-to-point MPI communication costs and the collective MPI

costs. At this scale the collective costs are insignificantly small in comparison to

the other contributors. The compute costs are relatively close, as expected from

145

5. Modelling Hydra - A Performance Prediction Case Study

Total Walltime (s)

PEs Empirical Model Error (%)

1 1941.77 1933.57 −0.42
2 1035.26 1031.49 −0.36
4 601.47 601.92 0.07
8 367.41 370.37 0.81

16 187.3 195.65 4.46
32 97.21 103.27 6.23
64 54.62 55.48 1.58

128 31.8 31.16 −2.00
256 19.97 18.15 −9.12

Table 5.14: Hydra Model Validation, Strong Scaling, Minerva
Intel-12.0/OpenMPI-1.4.3

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

0

200

400

600

2 4 8 16 32 64 128 256PEs
Variant

PEs

T
im

e
(s

)

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

0

200

400

600

2 4 8 16 32 64 128 256PEs
Variant

PEs

T
im

e
(s

)

(a) Weak-Scaling

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

A
c
tu

a
l

M
o
d
e
l

0

500

1,000

1,500

2,000

1 2 4 8 16 32 64 128 256PEs
Variant

PEs

T
im

e
(s

)

(b) Strong-Scaling

Compute Point-to-Point Collectives Update Boundary Kernels Dynamic Memory

Figure 5.9: Model vs Empirical by Component Breakdown, Minerva

146

5. Modelling Hydra - A Performance Prediction Case Study

the serial experiments prior. The communication costs underpredict a small

amount but follow a similar scaling trend to that of the empirical results. The

primary difference is due to the model predictions being based on a PE that has

more external boundaries (process 0) but fewer internal boundaries. As such

some time shifts from the communication costs towards the update boundaries

costs due to synchronisation etc. The numbers for these Figures can be found in

Appendix Tables A.25 and A.26. As a group the model-predicted components

observe similar patterns to that of the actual Hydra runs, reinforcing the con-

fidence that might be placed in the model predictions. As such, it is especially

applicable when interest in the model lies in its application for procurement or

investigative prediction for larger-scale machines – in such cases it is often the

speedup trend rather than absolute numbers that are most important.

5.8 Summary

This section has introduced a performance model of the Hydra benchmark,

demonstrating an error rate of 15% or less on three distinct architectures. it

has shown a capacity for both serial and scaling benchmark predictions, showing

how it accounts both compute and network costs, factors that are crucial in the

model’s viability for the purposes of performance prediction at greater scales.

147

CHAPTER 6
Optimisation

While the primary goal of a scientific simulation is to produce an accurate out-

put, it is a given that the most desirable setup is one in which said results

are obtained as quickly and reliably as possible. As the High Performance

Computing (HPC) community and industry moves towards Exascale platforms,

understanding scalability constraints becomes ever more crucial for parallel ap-

plications [20, 28, 155]. Bottlenecks that do not exhibit themselves at small scale

can increase and supplant previous performance constraining factors, impeding

effective machine utilisation. Identifying these bottlenecks can be difficult due to

their nature; without reliable predictive capabilities they can only be uncovered

by executing runs on large-scale machines, a costly and prohibitive procedure.

In addition, with no Exascale machines yet in existence, insights regarding fu-

ture scalability performance remains uncertain. Until such architectures are in

production, it is only possible to theorise based on the performance of smaller

scale machines through the use of analytical models and simulation. Using

these techniques for the identification and elimination of potential bottlenecks

is thus a priority for not only current scalable architectures but also emerging

large-scale systems.

On current high-performance clusters, the expected performance of an appli-

cation can fall short of the peak performance (as measured by LINPACK) due to

differences in how the application operates. Given the expense involved in con-

structing and operating a typical supercomputing cluster, this raises concerns

for the scientific return on investment. It may be preferable to fully capitalise on

the capabilities of an existing machine before looking to adopt a new architec-

ture or expand with additional nodes, especially considering the extensive list of

148

6. Optimisation

Variant Description Ref. Based On

A Original Hydra 4 N/A
B Memory — 2D Loop-Interchange 6.2 A
C Memory — 3D Loop-Interchange 6.2 A
D Vectorisation — C Port 6.3 C
E Vectorisation — Vector Intrinsics 6.3 D
F MPI Overlap — No Comm Dependancies 6.4 C
G MPI Overlap — Refactored Compute 6.4 F
H MPI Overlap — Non-Blocking Overlap 6.4 G
I Threading — OpenMP Static Schedule 6.4 C
J Threading — OpenMP Dynamic Schedule 6.4 I
K Threaded Overlap — Refactored Compute 6.4 J
L Threaded Overlap — Comms Thread 6.4 K

Table 6.1: Summary of Hydra Variants

procurement factors that must be accounted for such as reliability, space, cool-

ing, power consumption and maintenance. However, the improvement of both

current and potential future large-scale performance is not mutually-exclusive.

Identifying the bottlenecks that lead to under-performance is crucial to im-

proving the performance of these applications. When considering the source of

a bottleneck on a given architecture, it is typically determined by the machine’s

components and their effective use. These potential bottlenecks are categorised

as (a) compute-bound, (b) memory-bound, (c) I/O-bound, (d) network-bound

and (e) algorithmic. Addressing only a single category offers the potential for

improvement, but will see the shifting of the bottleneck elsewhere. In addition,

it does not account for other influential factors that occur as a consquence of the

interaction between them such as the impact of poor load-balancing upon both

compute performance and the synchronisation stage of communication. Thus,

a multi-faceted strategy is required.

This chapter investigates and explores a selection of optimisation techniques

that are potentially applicable to Hydra. Table 6.1 summarises the various

different implementations employed within this chapter, with reference to the

section where each is introduced in more detail. Some of these variants are

not direct optimisations but act as controls for comparitive purposes, so that

performance changes that are an outcome of the code refactoring neccesary for

implementation and the optimisations themselves can be differentiated. Some

implementations expand upon previous code modifications, so an additional

149

6. Optimisation

reference is provided for which code each variant is based upon. A compari-

son between a new variant and its predecessor enables the attribution of any

performance changes solely to the delta changes between the two.

In summary, this chapter addresses the following:

• From knowledge of the underperforming kernels in Section 4.5, relation-

ships between kernel performance profiles and their underlying memory

patterns can be drawn. This is validated using the Performance Applica-

tion Programming Interface (PAPI) framework in conjunction with hard-

ware counters. Using this knowledge, the application of improved memory

access patterns leads to approximately a 1.3× to 1.4× speedup in walltime;

• Through the further use of PAPI/hardware counters the impact of vec-

torisation — a Single Instruction, Multiple Data (SIMD) technique that

allows for the execution of multiple compute instructions simultaneously

on a single core — is examined with regards to their machine-load (op-

erations:memory access ratio) profiles. This identifies both compute and

memory bound kernels;

• In addition to these memory and compute optimisations, a potential for

improvement exists in network behaviours. Focusing predominantly upon

the use of compute-communication overlap, new implementations are cre-

ated that explore the use of two distinct techniques — MPI non-blocking

overlap (in tandem with the requisite compute refactoring), and thread-

based overlap where the use of an MPI/OpenMP hybrid allows for the use

of a master communications thread alonside multiple compute threads.

6.1 Optimisation Potential

To guide optimisation efforts, it is necessary to establish what opportunities are

available to ensure the effective use of valuable development resources. In an

ideal scenario all machine resources would be fully utilised in perfect balance.

150

6. Optimisation

In reality however, it is far more likely that one or more components will be-

come a performance bottleneck, hindering the capability of other components.

The initial approach to any optimisation effort should be with the identification

and elimination of such bottlenecks where possible. Such bottlenecks can take

a number of forms, including:

Compute-Bound Optimisation

When a code is compute-bound, the kernel walltime is restricted by the per-

formance of the Central Processing Unit (CPU); the CPU is incapable of

processing data faster than it is being supplied either due its number of

Instructions Per Cycle (IPC) or the number of cycles per second (its clock

speed). Improving the number of instructions processed per cycle (e.g. with

vector instructions) can aid in the overall performance of such kernels.

Memory-Bound Optimisation

Memory-bound kernels are restricted by the throughput of the memory ar-

chitecture, being unable to supply data fast enough to prevent the CPU

from sitting idle. The cause can be due to the effective memory bandwidth

of the system, memory exclusive instructions that require no floating-point

operations or ineffective memory-access patterns that lead to cache-misses

upon a failure to preload the cache with the appropriate data, stalling the

CPU. Minimising the number of memory operations or improving data ac-

cess patterns can help to relieve such bottlenecks.

Network-Bound Optimisation

Network bottlenecks occur when parallel processes are required to wait idle

on the resolution of blocking network communications to resolve remote

data-dependancies. This ties the ongoing progress of the application to the

speed at which said data can be received/transmitted, either due to the dis-

tance/overheads (latency) of a message transmission or the capacity of the

151

6. Optimisation

network (bandwidth). In parallel applications it is typically the case that as

the number of distributed compute devices scales the cost of data commu-

nication can come to represent a significant cost in the overall computation.

The use of communication overlap, where network operations are executed

simultaneously with unrelated/independant compute operations, can help to

mask the cost of such bottlenecks.

Input/Output (I/O)-Bound Optimisation

An HPC application can experience I/O-bound behaviour when waiting on

significant data transmission to an underlying filesystem for the purposes

of data retrieval or writing checkpoints (recovery points in case of failure).

Addressing contention issues or the use of more efficient parallel filesystem

operations can help reduce their impact upon performance [176, 177].

Algorithmic

Rather than attempting to relieve bottlenecks through the optimisation of

existing operations, an alternate approach can be to seek the elimination

of such operations entirely, removing by extension the bottleneck they in-

troduced. Depending on the capacity of the underlying machine hardware,

shifting the dominant application bounding behaviour from one category

to another through algorithmic changes (e.g. compute-bound to memory-

bound), can result in improved performance by placing the burden of op-

eration on a machine’s more capable sub-systems. Likewise, alternate al-

gorithmic approaches may eliminate certain elements of compute entirely,

improving the overall efficiency of the application and by extension its per-

formance. However, it can be difficult to predict in advance whether this

will result in improvements without in-depth knowledge of both the appli-

cation and the hardware, unless the algorithm is objectively of a reduced

complexity.

152

6. Optimisation

For Hydra I/O investigations are left to potential future work (any such timings

are ignored or subtracted where appropriate), while the application remains

largely the same algorithmically (bar changes made to support the optimisation

of the other characteristics). For the remaining categories, identifying the im-

pact of each requires suitable metrics that capture the performance of Hydra’s

various components, most notably:

• Floating-Point Operations per Second (FLOP/s) — Kernels that fall short

of the potential peak FLOP/s rate of the system either fail to use all the

available instructions per cycle (e.g. vectorisation), or stall due to insuf-

ficient data throughput. PAPI verification shows that the vast majority

of Hydra’s prominent compute kernels have no single-precision floating-

point operations, and where present their number is relatively insignif-

icant. Therefore in this work the attribute Double Precision Floating

Point Operations (DPOPs) is taken to be interchangable with the number

of floating-point operations; unless specified otherwise any FLOP/s values

are calculated from the number of double-precision operations measured

by PAPI and the kernel walltime.

• The number of Vector Operations (VECOPs) — This allows for establish-

ing whether a kernel is fully vectorised.

• Cache Hit Rate — Establishing whether effective use is made of the mem-

ory heirarchy, and the effectiveness of the kernels at avoiding higher level,

low bandwidth memory transfers. Optimal memory access patterns will

support the effective reuse of cache where possible, minimising the poten-

tial for a memory bottleneck.

• Compute/Communication Breakdown — The use of some Message Pass-

ing Interface (MPI) parallel communication is inevitable in all but the

most embarrassingly parallel of problems. As already captured in Section

4.5, where the contributions of both compute and MPI communications

153

6. Optimisation

towards the overall walltime was examined, it is this that limits the effec-

tive overall speedup as per Amdahl’s or Gustafson’s Law.

To this end, our modelling efforts allow for the use of both our understand-

ing of the application and model-led optimisation — optimisation efforts that

are guided by the predictive capabilities of performance models to either (a)

examine areas that are underperforming beyond what might be expected, or

(b) identify alternate configurations that may allow for speedup opportunities.

Existing works have already demonstrated how such approaches can be used to

identify disparities between expected and actual performance [89, 141], and how

corrective efforts can be undertaken to restore performance.

Improving the level of optimisation is more than just identifying a ma-

chine’s peak theoretical performance. The concept of machine balance [34, 110],

the relationship between a machine’s ability to perform (Floating-Point Oper-

ations (FLOPs)/cycle) and its ability to supply sufficient data for processing

(Words/Cycle or Memory Bandwidth), is key to its real-world behaviour. A

machine is in balance when the rate at which it can receive data and the rate

at which it can process said data are equivalent; when this is not the case, ap-

proaching peak performance is prevented by one of these factors. Roofline [173]

provides a visual model for capturing the performance behaviour of various

kernels, drawing attention to the relationship between the peak memory band-

width, an algorithm’s arithmetic intensity and the corresponding achievable

performance as a result of the machine’s balance. This quantifies the potential

performance improvements on offer from increasing the empirical, measureable

arithmetic intensity, either through increasing the number of operations per

cycle or reducing the quantity of memory transfers occuring. In doing so, it

highlights the importance of establishing the machine balance of an algorithm

and how the theoretical speedup of some optimisations may be inhibited by

bottlenecks that inhibit such gains.

Figure 6.1 provides two metrics, FLOP/s and number of DPOPs per cache

access, for a selection of kernels that constitute major performance hotspots.

154

6. Optimisation

0

0.5

1

1.5

D
P

O
P

s:
C

a
ch

e

M
a
d
v
x
2

M
a
d
v
y
2

M
a
d
v
z
2

M
a
d
v
x
2

M
a
d
v
y
2

M
a
d
v
z
2

M
a
d
v
x
2

M
a
d
v
y
2

M
a
d
v
z
2

M
a
d
v
x
2

M
a
d
v
y
2

M
a
d
v
z
2

M
a
d
v
x
2

M
a
d
v
y
2

M
a
d
v
z
2

M
a
d
v
x
2

M
a
d
v
y
2

M
a
d
v
z
2

0

1

2

3

303 503 803 1003 1203 1503Problem

G
F

L
O

P
/
s

0

0.5

1

1.5

D
P

O
P

s:
C

a
ch

e

M
a
d
v
m

x
1

M
a
d
v
m

y
1

M
a
d
v
m

z
1

M
a
d
v
m

x
1

M
a
d
v
m

y
1

M
a
d
v
m

z
1

M
a
d
v
m

x
1

M
a
d
v
m

y
1

M
a
d
v
m

z
1

M
a
d
v
m

x
1

M
a
d
v
m

y
1

M
a
d
v
m

z
1

M
a
d
v
m

x
1

M
a
d
v
m

y
1

M
a
d
v
m

z
1

M
a
d
v
m

x
1

M
a
d
v
m

y
1

M
a
d
v
m

z
1

0

1

2

3

303 503 803 1003 1203 1503Problem

G
F

L
O

P
/
s

0

0.5

1

1.5

D
P

O
P

s:
C

a
ch

e

M
D

T
1

M
D

T
2

M
d
iv

u

M
D

T
1

M
D

T
2

M
d
iv

u

M
D

T
1

M
D

T
2

M
d
iv

u

M
D

T
1

M
D

T
2

M
d
iv

u

M
D

T
1

M
D

T
2

M
d
iv

u

M
D

T
1

M
D

T
2

M
d
iv

u

0

1

2

3

303 503 803 1003 1203 1503Problem

G
F

L
O

P
/
s

0

0.5

1

1.5

D
P

O
P

s:
C

a
ch

e

L
a
rt

v
is

1

U
p

d
V

e
l

M
a
d
v
1

L
a
rt

v
is

1

U
p

d
V

e
l

M
a
d
v
1

L
a
rt

v
is

1

U
p

d
V

e
l

M
a
d
v
1

L
a
rt

v
is

1

U
p

d
V

e
l

M
a
d
v
1

L
a
rt

v
is

1

U
p

d
V

e
l

M
a
d
v
1

L
a
rt

v
is

1

U
p

d
V

e
l

M
a
d
v
1

0

1

2

3

303 503 803 1003 1203 1503Problem

G
F

L
O

P
/
s

GFLOP/s DPOPS Per Cache Access

Figure 6.1: Hydra Kernel FLOP/s and DPOPs:Cache Access Ratio — Serial,
Minerva (No Vectorisation)

155

6. Optimisation

Such metrics can prove useful in an initial analysis as the FLOP/s count may

reveal underperforming kernels in terms of “useful” work, while the number of

DPOPs per cache access (the machine balance) can reveal which kernels suffer

more from memory overheads or instructions with high cycle latency. A low

DPOPs per cache access can reveal a kernel that has relatively few floating-

point operations generally (e.g. a memory copy) or has a very high number

of accesses per operation (signifying potentially high cache miss rates). It is

noted here that due to the restrictions of the available PAPI counters, with the

L1 hit/total accesses counter being unavailable on Minerva, the total number

of cache accesses was obtained from the readings of a separate machine using

an Intel Xeon 3065 CPU. The same compiled binary was used to maintain

consistency where possible. This restriction makes it difficult to draw precise

conclusions about the behaviour on Minerva; nevertheless, it should suffice for

the purposes of initial kernel ratio approximations — while the cache hit/miss

ratios will vary with differing cache sizes, the number of total accesses would

be expected to be more consistent with the same instruction stream across

machines. All other PAPI metrics (DPOPs, L1 Cache Miss, L2 Cache Hit/Miss

etc.) are obtained from Minerva readings exclusively.

As might be expected, the typical trend is that those kernels that perform

more DPOPs per cache access also see higher FLOP/s counts. Given the wide

variation in kernel performance, it is readily apparent that few to no kernels have

hit the peak compute performance capable on the machine, therefore any reduc-

tion in memory overhead is likely to see a corresponding increase in FLOP/s.

Those kernels that possess fewer DPOPs per cache access are expected to be

more heavily weighted towards performing memory operations, such that they

also see a reduction in the FLOP/s count. This can be because the time per

memory access is taking longer, or because there are fewer floating-point op-

erations total compared to the number of memory operations. While some

operations present are memory-exclusive (such as data copies for out-of-place

algorithms), the majority of these kernels’ workload is oriented towards floating-

156

6. Optimisation

point operations (raw PAPI numbers for these operations are provided in Tables

A.27 — A.38, Appendix A).

However, there are a few unexpected exceptions to these behaviours. The

Lartvis kernel possesses the best DPOPs count per cache access ratio of all

the kernels, yet falls short of the FLOP/s rates achieved by kernels with lesser

DPOPs counts per cache access such as Mdivu or Update Velocity ; the MDT

kernels also exhibit this trait, albeit on a smaller scale. In addition to this,

the Madvmz kernel (and to a lesser extent Madvmy), despite showing a slightly

better DPOPs:Cache Access ratio than the Madvmx kernel has a significantly

worse FLOP/s count as the problem size increases, implying that there is an

additional factor that is detrimental to performance tied to the overall problem

size. From this it is clear that, while useful for an initial analysis, these metrics

are insufficient alone to capture the underlying performance issues.

Given the differences between the FLOP/s value and the DPOPs:Cache

Access ratio, one of two conclusions can be drawn — (a) a DPOP in some kernels

takes longer per cache access or (b) a cache access in some kernels takes longer

than others on average; while some kernels may contain exclusively memory-

only operations, these would be expected to bring down both metrics. From

an understanding of the machine architecture alone (Section 3.3.1) it is known

that different levels of cache access have varying access times as you progress

through the memory heirarchy, as confirmed by the STREAM bandwidth results

in Section 3.3.1. When a single cache access could consist of either an L1 cache

hit or an L1 cache miss with an L2/L3/main memory hit it is therefore the case

that knowing the ratio of cache hits to misses also becomes of great importance.

In addition to this, there are a number of factors that impact the instruction per

cycle rate, including branch mispredictions, instruction pipelining or the use of

operations with higher instruction latencys such as square root functions [56].

157

6. Optimisation

6.2 Memory Optimisations

Section 6.1 has readily demonstrated that there exists a significant amount

of variability in performance across the various kernels of Hydra. In an ideal

scenario, all such kernels would fully utilise the CPU, assuming a compute-

bound environment. However even without considering the peak, the difference

in floating-point operations implies the existence of an additional bottlenecking

factor that prevents maximal efficiency. It is likely that additional factors such

as memory bandwidth are an important contributor to the time taken by these

various kernels — those kernels that have a low DPOPs:Cache Access ratio

typically also exhibit fewer FLOP/s.

When an application is found to have the majority of its walltime/perfor-

mance dominated by memory operations, it is classified as a memory-bound

code. The work of Wulf [178] on the memory wall and Wilkes [172] on the

physical constraints of CMOS miniturisation highlight potential future impedi-

ments to performance from a mismatch in the rate of improvement of memory

and CPU hardware, further works aptly demonstrate the impact of this bal-

ance between CPU and memory bandwidth/latency [33, 110]. Programs that

exhibit these characteristics frequently involve the manipulation of a significant

amount of data, with memory access performance remaining crucial to modern

HPC applications [7, 8, 113, 126, 169].

Such trends threaten to overshadow gains made from increasing the number

of processing elements local to a device; if the memory throughput is insufficient

then data cannot be transferred rapidly enough to fully exploit this increase in

compute power. The nature of the problem is such that scaling distributed

systems will not suffer from memory-bound issues (beyond memory accesses re-

quired for communication), but scaling Shared Memory Parallelism (SMP) sys-

tems has the potential to introduce contention on an already saturated memory

bus (and by extension, also applies to hybrid SMP/distributed systems such as

clusters). This problem will manifest itself as the total number of cores on a

158

6. Optimisation

single socket/node increases.

To mitigate this, understanding a machine’s memory architecture becomes

crucial to engineering solutions that make effective use of the available resources.

As well as the presence of different memory levels and speeds (see Section 2.2.2),

more novel structures exist such as NUMA regions [24] or shared levels of cache

that can complicate matters. Implementing memory access patterns that use the

cache effectively, enforcing access patterns expected by preloading algorithms, is

neccessary to ensure good throughput for any scientific application. Identifying

areas that exhibit the signs of poor memory access patterns is thus key to

achieving this goal.

In Section 4.5.1 it was noted that unexpected performance issues were ex-

hibited by the compute — most notably that of the Madv function. When

computing Wg values for the predictive model as per Section 5.4, it was ap-

parent that this was especially prominent in a subset of the compute functions.

As the problem size scales it is known that the performance of selected kernels

such as Madvmz1 is greatly diminished, especially when constrasted against a

kernel that has similar functionality, Madvmx1. This similarity gives cause to

query the increase in cost for Madvmz1, as it goes against expectations given

the comparable levels of compute between the two kernels. The model using just

linear regression rather than piece-wise regression would predict a substantially

reduced walltime for this particular kernel when contrasted against the empiri-

cal measurements, hinting at some form of performance deterioration. Through

the application of the PAPI framework and selected hardware counters, it is

possible to investigate the potential causes.

Since a change in FLOP/s value can represent either an increase in DPOPs

or a decrease in time taken, Figure 6.2 presents the FLOP/s values in a dif-

ferent manner distinguishing between the “useful” work done (DPOPs and the

time taken to complete it. The results here are conducted with vectorisation

disabled, thus one DPOP represents a single operation. It is confirmed that

there is indeed a similarity in the amount of DPOPs performed within the two

159

6. Optimisation

0.0

2.0

4.0

6.0

D
P

O
P

s
(1

0
8
)

M
a
d
v
x
2

M
a
d
v
y
2

M
a
d
v
z
2

M
a
d
v
x
2

M
a
d
v
y
2

M
a
d
v
z
2

M
a
d
v
x
2

M
a
d
v
y
2

M
a
d
v
z
2

M
a
d
v
x
2

M
a
d
v
y
2

M
a
d
v
z
2

M
a
d
v
x
2

M
a
d
v
y
2

M
a
d
v
z
2

M
a
d
v
x
2

M
a
d
v
y
2

M
a
d
v
z
2

0.0

0.4

0.8

1.2

303 503 803 1003 1203 1503Problem

T
im

e
p

e
r

C
a
ll

(s
)

0.0

2.0

4.0

6.0

D
P

O
P

s
(1

0
8
)

M
a
d
v
m

x
1

M
a
d
v
m

y
1

M
a
d
v
m

z
1

M
a
d
v
m

x
1

M
a
d
v
m

y
1

M
a
d
v
m

z
1

M
a
d
v
m

x
1

M
a
d
v
m

y
1

M
a
d
v
m

z
1

M
a
d
v
m

x
1

M
a
d
v
m

y
1

M
a
d
v
m

z
1

M
a
d
v
m

x
1

M
a
d
v
m

y
1

M
a
d
v
m

z
1

M
a
d
v
m

x
1

M
a
d
v
m

y
1

M
a
d
v
m

z
1

0.0

0.4

0.8

1.2

303 503 803 1003 1203 1503Problem

T
im

e
p

e
r

C
a
ll

(s
)

Walltime (s) DPOPs

Figure 6.2: Minerva, Hydra Serial Execution, Walltime vs. Mean Kernel
DPOPs

dominant sets of kernels in the Madv function, Madvmx/Madvmy/Madvmz and

Madvx/Madvy/Madvz. However, this trend does not translate across to the

walltime, where within the kernel sets the time per kernel execution is far more

disparate, with the Y and Z dimension variants typically taking longer than

the X variants. This is especially the case for the Madvmz kernel, where the

walltime is over twice that of similar kernels Madvmx and Madvmy at 1503.

Further to this, comparing between the two sets of kernels reveals that Madvx,

Madvy and Madvz exhibit a far more significant walltime in relation to their

DPOPs count (as suggested by their FLOP/s rate in Figure 6.1 prior). A factor

160

6. Optimisation

other than the number of DPOPs occupies a significant amount of their wall-

time, meaningful or otherwise. However, it is known from Figure 6.1 that, while

there is some minor difference, the number of DPOPs per cache access is also

roughly similar. Therefore it can only be concluded that the time taken to

perform a DPOP is different, either in terms of instructions (such as latency) or

in the time taken to retrieve data. This section focuses upon the latter of the

two, exploring the underlying performance of a cache access for these kernels.

6.2.1 Memory Access Pattern Techniques

A number of techniques exist for improving memory access patterns, mostly

oriented around promoting the reuse of data in cache through the use of spa-

tial and/or temporal locality (as described in Section 2.2.2). Their applica-

tion is often dependant upon the types of kernels/memory access patterns

in use, and whether there are any existing data-dependancies. For breadth

listed here are a selection of different techniques introduced or used by various

works [62, 114, 174, 175]

Loop Fission

Loop Fission is the act of merging two or more loops into a single loop. In

doing so it reduces the overhead of operating one or more loops into the

overhead of a single loop. In addition, it aims to promote temporal locality

if the same location was previously accessed in two separate loops. However,

it can also inhibit temporal locality by increasing the number of memory ac-

cesses that occur within a single iteration, and thus must be used sparingly

if a significant number of different memory locations are touched in a loop.

Loop Fusion

Loop Fusion is the inverse of loop fission. By separating a loop into two or

more separate loops, it can improve temporal locality by reducing the num-

ber of memory accesses per loop, and thus reducing the chance of a cache-line

161

6. Optimisation

eviction before it is reused. This is most appropriate if a loop iteration con-

sists of a number of memory accesses to disparate and independant locations.

Loop Interchange

Loop Interchange is used when there are two or more nested loops. The order

of the nested loops is manipulated in order to change the data access pattern

in memory, promoting spatial locality through the use of sequential memory

accesses where possible. The optimal order is typically dependant upon the

language used/underlying data storage pattern. For example, C utilises a

row-major order for sequential storage whereas Fortran uses a column-major

order.

Loop Blocking

Loop Blocking is the act of “chunking” a block of memory into segments.

When compute relies on using data from the same chunk multiple times, the

overall order of compute/memory access is modified such that each chunk

is fully used until no such further data is required from the chunk, before

proceeding onto the next chunk. This technique is most suitable for com-

pute that has a high FLOP:byte ratio, such as that of matrix-multiply (n3

operations with n2 memory usage).

Loop Pipelining

Loop Pipelining is the process of preloading cache-lines by accessing data

locations before they are required by looking ahead to the proceeding loop

iteration — i.e. performing memory operations for iteration i+ 1 while the

compute for iteration i is ongoing. In doing so, this “pipelines” the memory

and compute operations.

162

6. Optimisation

Counter Description

L1 DCH Number of L1 Data Cache Hits
L1 DCM Number of L1 Data Cache Misses
L2 DCH Number of L2 Data Cache Hits
L2 DCM Number of L2 Data Cache Misses
L3 DCH Number of L3 Data Cache Hits
L3 DCM Number of L3 Data Cache Misses

Table 6.2: PAPI Hardware Counter Identifiers

6.2.2 Cache Optimisation In Hydra

By surrounding the compute kernels with cache-access PAPI counters (see Table

6.2), it is possible to capture the memory access profiles across the course of

a Hydra execution. In empirical tests the kernel performance is explored by

capturing the mean miss rate of both the L1 and L2 caches on Minerva across

each kernel call; no such performance counters were available for the L1 Hit

or L3 Hit/Miss due to the lack of hardware support. This section details the

modifications made to Hydra to improve these cache hit:miss ratios, and the

performance improvements that accompanied them.

When considering the underlying memory performance, it is important to

reflect upon the implementation of the kernel memory access patterns. The na-

ture of these kernels is such that they require the the use of stencils for various

intermediate computations. Each operates with a consideration for dimen-

sionality within the grid, updating X (Madvx, Madvmx), Y (Madvy, Madvmy)

or Z (Madvz, Madvmz) dimensional quantities, with their various stencils act-

ing in these same respective dimensions. To minimise memory storage space

temporary 1D arrays are used to store any intermediate calculations across the

innermost loops, reuseable across the outermost loops. Since the use of tempo-

rary storage space is kept to a minimum, an in-place algorithm enforces a strict

order of operations to prevent the loss of required data (i.e. preventing a grid

data-point from being overwritten before it is used in a subsequent operation)

due to the introduction of data-dependancies.

Since these two sets of kernels largely perform similar operations, with the

major difference being the order of operations (see Listings 6.1 through 6.3),

163

6. Optimisation

Listing 6.1: Madvmx1 Order-of-Operations — Variant A

1 for z in nz
2 for y in ny
3 for subkernels 1...k
4 for x in nx
5 Compute -> Results (1D Array)
6 for x in nx
7 In -Place Cell Update (3D-Array)

Listing 6.2: Madvmy1 Order-of-Operations — Variant A

1 for z in nz
2 for x in nx
3 for subkernels 1...k
4 for y in ny
5 Compute -> Results (1D Array)
6 for y in ny
7 In -Place Cell Update (3D-Array)

Listing 6.3: Madvmz1 Order-of-Operations — Variant A

1 for x in nx
2 for y in ny
3 for subkernels 1...k
4 for z in nz
5 Compute -> Results (1D Array)
6 for z in nz
7 In -Place Cell Update (3D-Array)

Listing 6.4: Madvmz1 Order-of-Operations — Variant B

1 for y in ny
2 for subkernels 1...k
3 for z in nz
4 for x in nx
5 Compute -> Results (2D Array)
6 for z in nz
7 In-Place Cell Update (3D-Array)

Listing 6.5: Madvmz1 Order-of-Operations — Variant C

1 for subkernels 1...k
2 for z in nz
3 for y in ny
4 for x in nx
5 Compute -> Results (3D Array)
6 for z in nz
7 for y in ny
8 for x in nx
9 Out -of-place update (3D Array Copy)

164

6. Optimisation

the primary difference between them responsible for the differences in their

performance is likely the underlying memory access patterns. To combat the

high rate of cache misses, the technique of loop interchange is applied and, to

a lesser extent, loop fission to break some data-dependancies by re-ordering

the intermediate calculations from sub-kernels in such a way that they iterate

through more spatially local memory. However, since the loop pertaining to the

kernel’s dimensionality must remain within the sub-kernel structure (as per the

listings), this effectively results in a partial or full out-of-place update algorithm

rather than in-place update scheme due to the storage of the final result in a

separate location which is then copied to the final target. This improvement in

spatial locality also comes at a tradeoff — the overall memory usage is higher,

requiring 2D or 3D arrays rather than 1D arrays for storage, potentially causing

poorer temporal locality and introducing additional memory transfer overheads.

Ultimately this results in two new variants, in addition to the basic version of

Hydra:

• Variant A — The original Hydra codebase used for the scaling investi-

gations in Chapter 4. This acts as the control for intial performance

comparisons;

• Variant B — In each of the X, Y and Z dimensional kernels, the order of

traversal is dependant upon the 3D nested loop ordering. This variant ap-

plies loop interchange, but only upon the two innermost loops, to improve

the spatial locality while compromising to reduce the introduction of ad-

ditional memory usage/overheads (2D rather than 1D temporary arrays).

Listing 6.4 is one such kernel example. In each instance the X dimension

is promoted to the innermost loop, with the outer loop allocations being

dependant upon what dependancies must be maintained;

• Variant C — This variant applies a similar approach to Variant B, but

interchanges all loops to enforce an X → Y → Z ordering with multi-

ple intermediate 3D temporary arrays. This also permits the removal of

165

6. Optimisation

— Kernel

Variant Madvx2 Madvy2 Madvz2 Madvmx1 Madvmy1 Madvmz1

A z → y → x z → x→ y x→ y → z z → y → x z → x→ y x→ y → z
B z → y → x z → y → x y → z → x z → y → x z → y → x y → z → x
C z → y → x z → y → x z → y → x z → y → x z → y → x z → y → x

Table 6.3: Kernel Loop Ordering — Outermost → Innermost

further data-dependancies by enabling the use of a full out-of-place algo-

rithmic approach, at the cost of more memory storage. Listing 6.5 is one

such kernel example.

These orderings are summarised for each of the six kernels in Table 6.3. In

addition to these changes, in both new variants a small linked list that iterates

over selected quantities is eliminated within the Madvx, Madvy and Madvz ker-

nels, instead substituting it for hard coded accesses directly to each quantity

in question; the functionality remains the same. The next section contrasts

the performance of these three variants, examining the impact such modifica-

tions on the memory access patterns have upon the cache hit rates and overall

performance.

Results

In this work changes made to Hydra are predominantly focused upon modifying

the implementation to be more efficient (how it is calculated) as opposed to

algorithmic changes (what is calculated). As a result, it is expected that the

overall number of floating-point operations to be computed should be relatively

similar across the various optimisations, while other factors such as memory or

network usage are improved. Figure 6.3 shows the cache behaviour and DPOPs

of Variant B and Variant C for the six modified kernels; between the variants

the number of double-precision floating-point operations for a kernel remains

relatively the same, yet there is a significant variation in the memory profile,

with the total number of cache accesses differing between the variants.

In Variant B, kernels Madvx, Madvy and Madvz all show a significant reduc-

tion in the number of cache accesses, measured as the sum of the PAPI L1 cache

166

6. Optimisation

0.0
0.5
1.0
1.5
2.0
2.5

D
P

O
P

s
(1

0
9
)

A B C A B C A B C A B C A B C A B C

0.0
0.5
1.0
1.5
2.0
2.5

30 50 80 100 120 150Problem

C
a
ch

e
(1

0
9
)

(a) Madvx2

0.0
0.5
1.0
1.5
2.0
2.5

D
P

O
P

s
(1

0
9
)

A B C A B C A B C A B C A B C A B C

0.0
0.5
1.0
1.5
2.0
2.5

30 50 80 100 120 150Problem

C
a
ch

e
(1

0
9
)

(b) Madvy2

0.0
0.5
1.0
1.5
2.0
2.5

D
P

O
P

s
(1

0
9
)

A B C A B C A B C A B C A B C A B C

0.0
0.5
1.0
1.5
2.0
2.5

30 50 80 100 120 150Problem

C
a
ch

e
(1

0
9
)

(c) Madvz2

0.0

0.5

1.0

1.5

D
P

O
P

s
(1

0
9
)

A B C A B C A B C A B C A B C A B C

0.0

0.5

1.0

1.5

30 50 80 100 120 150Problem

C
a
ch

e
(1

0
9
)

(d) Madvmx1

0.0

0.5

1.0

1.5

D
P

O
P

s
(1

0
9
)

A B C A B C A B C A B C A B C A B C

0.0

0.5

1.0

1.5

30 50 80 100 120 150Problem

C
a
ch

e
(1

0
9
)

(e) Madvmy1

0.0

0.5

1.0

1.5

D
P

O
P

s
(1

0
9
)

A B C A B C A B C A B C A B C A B C

0.0

0.5

1.0

1.5

30 50 80 100 120 150Problem

C
a
ch

e
(1

0
9
)

(f) Madvmz1

L1H L2H L2M DPOPS

Figure 6.3: DPOPs, Cache Accesses — Hydra Variants A/B/C, Serial,
Minerva)

167

6. Optimisation

hits and misses registered. The three remaining kernels remain relatively consis-

tent, bar Madvmx which demonstrates a moderate improvement. From this it

might be expected that an improvement in the performance of the kernel would

be observed, given the reduction in memory overheads for the same fixed num-

ber of compute operations. For Variant C, a similar reduction in the number of

cache accesses is shown for kernels Madvx, Madvy and Madvz, but the number

of cache accesses for kernels Madvmx, Madvmy and Madvmz show a sizeable

increase, a characteristic that might be expected given the increase in mem-

ory storage and transfers/copies caused by the use of multiple 3D-loops/arrays.

It is possible that improvements in memory access patterns could be offset by

such an increase in the number of total accesses. To clarify this, it is important

to distinguish between the different types of cache accesses, that is to say the

number of hits and misses.

Not all cache accesses are equal, and any hits to main memory or the L3

cache could easily overshadow any improvements in the number of cache ac-

cesses (or vice-versa). Figure 6.3 also presents the various overall PAPI counter

frequencies. From this data, the memory access patterns of the kernels, while

reasonably effective for the Madvx2 and Madvmx1 kernels, are shown to be

poorer for the four remaining kernels (see Appendix A for the figure data in

greater detail). Most notably, the Madvmz1 kernel shows not only a sizeable

number of L1 cache misses, but also a distinguishable portion of additional L2

misses, likely responsible for the poor performance when scaling the problem

size observed in Section 4.5.1. Even though the absolute number of L1 and L2

Misses can be small in comparison to the total number of L1 Accesses, they

prove to have a significant impact on performance nonetheless.

The two new variants are both successful in reducing these cache misses, and

the impact of this is apparent in Figure 6.3. As might be expected, the reduction

in both cache access rate and cache miss rate has resulted in an improvement

for all six kernels in Variant B over the original Variant A. Variant C has a

more mixed result. For kernels Madvx2, Madvy2 and Madvz2, likely due to the

168

6. Optimisation

reduction in the number of total cache accesses, the performance of the kernels

has improved when contrasted against Variant A. However, among the remain-

ing three kernels only the Madvmz1 kernel has a notable improvement, with the

other two kernels exhibiting a decline in performance. For Madvmx1 there is no

reduction in the cache miss rate, meaning the increased total number of cache

accesses is a performance penalty with no chance at any improvements in other

areas, subverting attempts to improve performance. In the case of Madvmy1,

gains are made in the cache access miss rate, yet it appears to be insufficient to

overcome the costs of more total cache accesses. Only for the Madvmz1 kernel

is any improvement observed, likely due to the highly significant L2 miss rate

that is largely eliminated in the new variant.

In Figure 6.4 it can clearly be seen that, of the three variants, Variant B

clearly demonstrates itself as the best performing, providing a significant im-

provement over the original Variant A. Due to the Madv kernel (which inclu-

sively contains the kernels optimised here) dominating approximately 60-70%

of the overall walltime, a significant impact can also be seen upon the over-

all walltime for the serial execution, as shown in Figure 6.4. Due to these

improvements only affecting compute behaviour, they have a more limited im-

pact upon parallel executions — especially strong-scaled execution where the

impact of cache behaviour is minimised by smaller workloads per core as it is

scaled. Nevertheless, the optimisation still offers some scope for improvement

with weak-scaled executions where the workload per core is consistent and thus

consistent improvements are present across all process counts. Variant C in con-

trast does not offer as significant an improvement as Variant B. Its advantage

lies in the removal of a number of data-dependancies, enabling and improving

the ease with which alternate optimisations can be explored in the future while

still incorporating more optimal data access patterns. The improvement of the

miss-rate over Variant A is still substantial, with a corresponding improvement

in walltime. In subsequent experiments Variant C is used as the basis for fur-

ther optimisation efforts, having both the fewest data-dependancies while also

169

6. Optimisation

500000 1000000 1500000 2000000 2500000 3000000 3500000
0

500

1,000

1,500

2,000

Cell Count

T
im

e
(s

)

(a) Serial

1 2 4 8 16 32 64 128 256
10

100

1,000

Processing Elements (PEs)

T
im

e
(s

)

(b) Strong-Scaling (1503)

1 2 4 8 16 32 64 128 256

316

1,000

PEs

T
im

e
(s

)

(c) Weak-Scaling (1003)

Variant A Variant B Variant C

Figure 6.4: Memory Optimisation - Variant Total Walltimes

170

6. Optimisation

demonstrating a reasonable improvement in walltime over our base Hydra im-

plementation. In the following sections this permits the continuation of these

improvements while also enabling further optimisation opportunities.

6.3 Compute Optimisation

The vast majority of modern CPUs now typically come with some form of vec-

torisation support. Applying SIMD techniques enables the execution of a single

operation across multiple elements of data using only a single instruction; the

number of elements that can be operated upon simultaneously is dependant

upon the size of the vector registers available in the hardware. For example,

with a width of 32 bytes a Streaming SIMD Extensions (SSE) vector instruction

can operate on up to four single-precision floating-point datapoints (assuming

four bytes each), or two double-precision floating-point datapoints (assuming

eight bytes each). The Advanced Vector Instructions (AVX) instruction set ex-

tends this further using a maximum vector register width of 64 bytes, effectively

doubling the number of data-points it can process in a single instruction.

To make effective use of all a machines resources, code must be engineered in

such a way that it can take advantage of such instructions, else it immediately

places its potential peak at only a fraction of its theoretical maximum achievable

FLOP/s. To do this, achieving the following requirements is neccessary:

• Eliminating inter-loop dependancies — An operation cannot be performed

if it is still dependant upon the completion of an as yet uncompleted

operation.

• Targeting portions of the code that repeat the same operation across large

blocks of data - common in many scientific applications, this results in such

techniques being amenable to embarrassingly parallel problems.

• The overhead of loading data into vector registers is not substantially

higher than that of the vector operations — i.e., ideally reuse data in vector

171

6. Optimisation

registers where possible and target compute-bound rather than memory-

bound code.

Of the various kernels, the majority exhibit a relatively consistent FLOP/s

count. The exceptions are the Madvmy1 and Madvmz1 kernels, which exhibit

variability at higher cell counts. This is consistent with the knowledge of the

memory behaviour of their original implementation from Section 6.2.2, where

the increasingly poor cache hit rate inhibits the overall performance of the ker-

nel. For the remaining kernels, given the consistent nature of both the FLOP/s

rate, the number of double-precision floating-point operations per cell and the

cache miss rate established earlier in this work, it is unsurprising to see a steady

walltime performance for these kernels, which is what enables the predictive

power of the performance models.

Given the variation in FLOP/s between the various kernels, the typical trend

appears to be that the better the machine work balance (DPOPs:Memory Ac-

cess), the better its overall performance. The one exception to this is the Update

Velocity kernel, which appears to have the best overall FLOP/s rate yet sits at

approximately only ≈ 66% of the next closest perfoming kernel in terms of the

amount of work it performs per cell. Since all prior experiments were conducted

with vectorisation disabled, it can be established that such variation is not due

to some kernels being vectorised while others are not. Even without identifying

the machine’s overall peak, the existence of such differences in the FLOP/s rate

is sufficient to suggest that, in terms of theoretical compute peak performance,

some kernels are underperforming for reasons other than raw compute capacity.

This leads to two critical outcomes:

• If the overall performance is bottlenecked by a factor more dominant that

compute performance, then the gains from vectorisation will also be bound

by such factors, diminishing the overall improvements on offer.

• If this is the case, it would be prudent to identify those kernels most

suited to vectorization and focus efforts upon these kernels. If possible,

172

6. Optimisation

this should be quantifiable.

The remainder of this section will attempt to confirm these two statements,

vectorising a number of the key kernels using Intel SSE. Section 6.1 has already

established evidence of memory bound behaviours exhibited by kernels such as

Madvx2 and others. However from Figure 6.1 prior it is also apparent that

there exist kernels with DPOPS:Cache Access ratios weighted heavily towards

compute — it is these kernels that constitute the main focus of vectorisation

investigations.

6.3.1 Results

The overall implementation of SSE/AVX can be achieved in one of three ways:

• Automatic vectorisation by the compiler.

• Manual vectorisation via the use of compiler intrinsics.

• Manual vectorisation via the use of assembly instructions.

Of these three, automatic vectorisation is the simplest, minimising the complex-

ity of implementation. It does however offer the least control of the process. Its

opposite counterpart, assembly-based implementation, offers the most control

but is significantly more complex and less portable. Compiler intrinsics offers a

middle-ground between the two, offering a fair degree of control but still requir-

ing implementation by the developer at a level higher than assembly. To explore

vectorisation within Hydra, two new variants are implemented for a subset of

the kernels present in Hydra, Variant D and Variant E. Variant D acts as a

control case, porting these kernels to C but remaining unvectorised to identify

whether the act of porting has modified the kernel charcteristics. Variant E

provides a vector intrinsic implemention that uses SSE.

Before an investigation into the effective speedup on offer can be conducted,

it is neccessary to establish whether vectorisation is possible for the compute

available within Hydra. For an ideal SSE implementation in a double-precision

173

6. Optimisation

Cells MDT1 MDT2 UpdVel Lartvis1 Mdivu Mvolflx Madvmx1

303 0.47 0.50 0.48 0.50 0.50 0.49 0.40
503 0.47 0.50 0.49 0.50 0.50 0.50 0.41
803 0.47 0.50 0.49 0.50 0.50 0.50 0.42

1003 0.47 0.50 0.49 0.50 0.50 0.50 0.42
1203 0.47 0.50 0.50 0.50 0.50 0.50 0.42
1503 0.47 0.50 0.50 0.50 0.50 0.50 0.42

Table 6.4: Minerva, Hydra Serial, Variant E SSE — VECOP:Total DPOP
Ratio

code it would be expected that the number of vector instructions executed be

approximately half that of the unvectorised instruction count (for the same

number of DPOPs). The kernels selected are those that demonstrated some de-

gree of potential compute-bound behaviour — kernels such as Madvx2, Madvy2

and Madvz2 were omitted due to their apparent memory-bound nature from

Section 6.2. In Table 6.4 the kernels are verified as successfully vectorised by

comparing the ratio of PAPI measured DPOPs to the number of PAPI measured

VECOPs. On Minerva a single VECOP represents a singular vector instruction,

rather than the equivalent number of DPOPs, hence under SSE a single VECOP

should be equivalent to two DPOPs, with an expected ratio of 0.5 VECOPs for

each DPOP.

In an ideal scenario, the speedup of these kernels should match the increased

throughput of DPOPs — i.e. a speedup of 2× for twice the throughput — Figure

6.5 contrasts the speedup of Variant E, the vectorised C-language port, against

both Variant C, the data-parallel variant, and Variant D, the un-vectorised C-

language port.

The results of Figure 6.5 show that a number of the selected kernels demon-

strate a reasonable improvement. However, a selection exhibit an equivalent or

poorer performance, contrary to what might be expected from the DPOP:Cache

access Ratio of Figure 6.1 earlier — in particular both Mdivu and Mvolflx see

a slowdown, mainly because any speedup due to vectorisation is being offset by

a more significant increase in walltime from the transition to a C rather than

Fortran implementation. To explore this further, Table 6.5 shows a constrast

of select PAPI statistics between the three variants for a fixed 1003 problem

174

6. Optimisation

0 1 · 106 2 · 106 3 · 106
0.0

0.02

0.04

0.06

Cells

T
im

e
(s

)

(a) MDT1

0 1 · 106 2 · 106 3 · 106
0.0

0.05

0.10

0.15

Cells

T
im

e
(s

)

(b) MDT2

0 1 · 106 2 · 106 3 · 106
0.0

0.05

0.10

0.15

Cells

T
im

e
(s

)

(c) UpdVel

0 1 · 106 2 · 106 3 · 106
0.0

0.10

0.20

0.30

Cells

T
im

e
(s

)

(d) Lartvis1

0 1 · 106 2 · 106 3 · 106
0.0

0.02

0.04

0.06

Cells

T
im

e
(s

)

(e) Mdivu

0 1 · 106 2 · 106 3 · 106
0.0

0.01

0.02

0.03

Cells

T
im

e
(s

)

(f) Mvolflx

0 1 · 106 2 · 106 3 · 106
0

0.2

0.4

0.6

Cells

T
im

e
(s

)

(g) Madvmx1

Variant C Variant D Variant E

Figure 6.5: Hydra Variants C, Dand E— Kernel Walltimes

175

6. Optimisation

size on a small 2.4 GHz Intel X3430 workstation. Comparing the two machines,

both demonstrate similar patterns for the various kernels. It can be seen that

for those that underperform, once again, a speedup for the vectorised kernel is

observed, but due to the increase in cost for Variant D, this improvement is at

best offset or at worst insufficient to overcome the penalty.

For Mdivu, it can be observed that while the number of DPOPs remains

relatively consistent, there is a sizeable increase in the number of L1 cache

accesses, implying that the majority of the additional overhead is attributable

to poor memory access behaviour. Mdivu is a stencil kernel that can touch the

same memory locations multiple times (potentially with a reasonable amount

of time between accesses). It is also possible that such accesses are unaligned

due to stencil kernels using memory locations that are often offset from a fixed

address (e.g. + or − 1 from a cell position).

In the case of Mvolflx and Madvmx1, both the L1 Cache Accesses and

DPOPs count are relatively consistent. However, in the case of the vectorised

variant, it should be noted that while the total number of DPOPs is consis-

tent, the actual number of instructions required should be roughly half (due to

two double precision operations per an SSE vector operation), resulting in the

number of vectorised instructions being roughly half that of DPOPs, as was the

case for Minerva. A corresponding reduction in the number of cache accesses

might also be expected — kernels such as MDT1, MDT2 and Lartvis1 all see

a significant reduction in the number of L1 cache accesses for the vectorised

implementation, yet no such decline is present for the underperforming kernels.

MDT1 proves to be a curious exception here. While an increase in the number

of DPOPs and L1 Cache Accesses is observed in the transition from Variant C

to Variant D, this appears to be offset by a reduction in the number of stalled

cycles, with the final implementation of Variant E seeing a sizeable speedup

due to the reduction in instructions and, by extension, cycles overcoming this

increase in cost.

176

6. Optimisation

MDT1

Variant Cycles Stalled Cycles Stalled % Time (s) L1 Accesses DPOPs

C 4.43E+7 3.25E+7 73.24 1.87E-2 1.64E+7 1.15E+7
D 4.52E+7 2.36E+7 52.27 1.91E-2 2.55E+7 1.31E+7
E 2.46E+7 1.01E+7 41.15 1.05E-2 7.64E+6 1.72E+7

MDT2

Variant Cycles Stalled Cycles Stalled % Time (s) L1 Accesses DPOPs

C 9.67E+7 5.60E+7 57.94 4.07E-2 6.07E+7 4.39E+7
D 1.25E+8 5.61E+7 44.86 5.27E-2 1.05E+8 4.32E+7
E 7.06E+7 3.87E+7 54.81 2.98E-2 4.53E+7 4.43E+7

Lartvis1

Variant Cycles Stalled Cycles Stalled % Time (s) L1 Accesses DPOPs

C 3.02E+8 1.94E+8 64.44 1.27E-1 1.31E+8 1.46E+8
D 2.93E+8 1.80E+8 61.41 1.23E-1 1.09E+8 1.44E+8
E 1.82E+8 1.06E+8 57.96 7.68E-2 7.00E+7 1.66E+8

Mdivu

Variant Cycles Stalled Cycles Stalled % Time (s) L1 Accesses DPOPs

C 3.01E+7 1.95E+6 6.46 1.28E-2 2.89E+7 2.85E+7
D 5.31E+7 2.36E+7 44.47 2.25E-2 4.08E+7 2.92E+7
E 3.91E+7 1.11E+7 28.29 1.66E-2 3.37E+7 2.99E+7

UpdVel

Variant Cycles Stalled Cycles Stalled % Time (s) L1 Accesses DPOPs

C 1.39E+8 6.46E+7 46.39 5.86E-2 1.22E+8 8.49E+7
D 1.23E+8 5.30E+7 42.92 5.20E-2 1.00E+8 8.00E+7
E 8.03E+7 3.31E+7 41.19 3.40E-2 6.32E+7 8.24E+7

Mvolflx

Variant Cycles Stalled Cycles Stalled % Time (s) L1 Accesses DPOPs

C 2.10E+7 5.96E+6 28.39 8.91E-3 2.00E+7 1.62E+7
D 3.03E+7 3.06E+6 10.10 1.29E-2 1.81E+7 1.62E+7
E 2.27E+7 3.43E+6 15.14 9.68E-3 1.87E+7 1.68E+7

Madvmx1

Variant Cycles Stalled Cycles Stalled % Time (s) L1 Accesses DPOPs

C 4.08E+8 1.74E+8 42.81 2.00E-1 3.59E+8 1.66E+8
D 5.11E+8 2.11E+8 41.31 2.44E-1 3.60E+8 1.69E+8
E 4.20E+8 1.68E+8 39.93 2.05E-1 3.23E+8 1.91E+8

Table 6.5: Hydra 1003, Serial, PAPI Statistics — Intel X3430

177

6. Optimisation

The implication from these behaviours is that the memory access patterns

are inhibiting efforts to vectorise these kernels — their stencil nature caus-

ing either slower unaligned accesses or poor cache reuse from multiple vector

loads touching similar memory locations, despite the previously good ratio of

DPOPs:Cache Access ratio of some of these kernels prior. As such, it might be

expected that the most dominant kernels in Hydra, such as Madvz2 or Madvmx1

would likely not benefit from vectorisation, given their similar properties to

Madvmx1 and their prior evidence of being memory-bound. Work such as the

approach taken by Henretty[73] may help to alleviate this problem but is not

explored within this Thesis, leaving it for a future exercise, due to the complex-

ity of applying data-layout transformations to a larger code-base, especially one

that operates across three dimensions

This leads to the conclusion that vectorisation without addressing these

memory issues has little to offer in terms of optimisation for the Hydra bench-

mark, since without improving those kernels that dominate ≈ 60 of the compute

time, there is a significant limit on the speedup that can be achieved as per Am-

dahl’s Law.

6.4 Compute-Communication Overlap

The overall performance of a parallel code intra-node is dictated by the compute

and memory performance of the worst performing PE and the distribution of

its workload. In a parallel environment the overall impact of contention upon

a single-node performance can be mitigated by sharing the workload further

across more distributed PEs; the addition of further nodes does not contend

with resources on the existing node, but does reduce the workload per individual

node, lessening the impact of on-node bottlenecks somewhat. The trade-off for

this is the introduction of a new bottleneck, that of the network.

The communication costs of such scaling are an inherent and unavoidable

part of all but the most embarrassingly parallel of problems — the existence of

178

6. Optimisation

any form of data-dependancy on a neighbouring element in a structured problem

will necessitate the retrieval of data from a remote source. Such dependancies

exist within Hydra due to the use of stencil compute kernels that require data

from surrounding cells in all three dimensions, resulting in the near-neighbour

exchange steps described in Section 4.3.2. Minimising these overheads is of in-

terest for not only our problem benchmark, but all similar scientific applications

(such as those used in Chapter 7).

A straightforward approach to optimising network costs is to reduce or elim-

inate unneccesary data communication. However, in the absence of an alternate

algorithm, such an approach depends upon the initial implementation being sub-

optimal. Although worthwhile examining, it cannot be assumed in the general

case to be a viable optimisation (though should constitute part of a standard

code review process).

An alternate solution is to minimise the impact of latency costs when using

MPI messaging. Each message sent incurs a latency cost involved with its de-

livery, regardless of its size. Thus the higher the frequency of communication,

the greater the impact of a network’s latency cost. By merging multiple small,

frequent messages into larger, more infrequent messages the latency cost can be

kept to a minimum while ensuring that the overall amount of data communi-

cated remains the same. However. such an optimisation already exists within

Hydra, relying on five separate “stages” to communicate data for a number of

different quantities in large messages, the minimum possible due to a data-flow

dependancy between the completion of specific compute before the communia-

tion of its result. In addition, our analysis of Hydra’s network performance thus

far has revealed that it is typically dominated by bandwidth, not latency con-

straints, due to the size of its messages, thus the opportunities for optimisation

here remain minimal.

Instead, the approach of overlapping communications and compute simulta-

neously is explored. This addresses the issue where a greater efficiency can be

achieved within the system as a whole by minimising the amount of idle time

179

6. Optimisation

spent by one component, the compute, during the use of other components such

as the network. No such feature is currently exploited within Hydra, but in

theory such an optimisation is capable of masking either the communication

overheads or compute overheads (whichever is the smaller of the two). This

optimisation is reliant on a number of contributing factors, but provides oppor-

tunities for mitigating the cost of one or more idle CPUs waiting on MPI com-

munications, resulting in an overall speedup at scale. With some re-engineering

of how Hydra processes its communication and compute steps, the potential ex-

ists for the use of communication overlap as part of its approach. Understanding

the factors that influence the effectiveness of this approach thus becomes crucial

to ensuring its success.

6.4.1 Implementation

A number of works have explored the use of computation/communication over-

lap, addressing issues such as assessing the potential gains of MPI overlap [78, 97,

143, 153, 162, 170], independent progress in non-blocking communications [30],

the impact of network hardware [149] or the use of Hybrid approaches that

allow for separate communication and computation threads [147, 171]. In pur-

suit of these approaches, using the knowledge obtained from Chapter 4 on the

data-dependancy patterns, it is possible to identify large chunks of work that

are independent of MPI communications in Hydra. Cells identified as internal

boundary cells, due to their dependancy upon ghost cells refreshed from other

processes, require the completion of MPI communication before they can be up-

dated as part of any computation. However, non-boundary cells have no such

dependancy; they can be updated purely on data locally resident to the current

process — overlap can thus be achieved by separating out the dependant and

independant compute, overlapping MPI messages and only updating internal

boundary cells once any relevant communication is complete.

In Variant A of Hydra, there are two factors that interfere with this approach.

First, while non-blocking communications are used during Hydra’s point-to-

180

6. Optimisation

point communication steps, the transmission of messages in the Y-dimension

cannot be initiated before the completion of messages sent and received in the

X-dimension due to the use of received ghost cells in the construction of the

next message. The same restriction exists between Z-dimensional messages and

their dependence on the Y-dimension. Second, due to the order cells are pro-

cessed in some kernels, most notably the advection kernels Madvx2, Madvy2,

Madvz2, Madvmx1, Madvmy1 and Madvmz1, there can exist inter-loop compute

dependancies which require the processing of boundary cells before the internal

cells can be processed. To address these two issues, Hydra is re-engineered to

introduce both a separation of dependent and independent compute, while also

eliminating the dependancy of the communication steps.

For the communication step, the existence of the dependency is to minimise

the number of overall messages that must be communicated. Previously in

Section 4.3.2 the interdependency of the MPI messages was addressed; there

exist up to 26 data-dependent neighbours, yet the overall number of messages

is reduced to a maximum of 6. In doing so, the latency impact of having a

higher message count is reduced. It is apparent that the elimination of the

strict order of communications can be achieved by implementing the reverse,

that is to say returning to a state where a process communicates directly with

its diagonal neighbours as well as its face-sharing neighbours. This has the po-

tential to reintroduce an additional synchronisation or latency cost to the overall

communication stage, but also enables the full overlap of communication and

computation which, if effective, may mask any such increases in the communi-

cation overheads. Given the dominant influence of the bandwidth on network

costs, the cost of additional latency overheads should be minimal.

For the inter-loop dependencies, the introduction of a “data-parallel” vari-

ant, Variant C, in Section 6.2 not only implemented some of the memory im-

provements but also removed the intra-kernel dependencies between multiple

inner loops that enforced a strict cell processing order. Rather than a large

3D loop with multiple inner loops, the transition to multiple 3D loops allows

181

6. Optimisation

Listing 6.6: Variant G

1 Independant Compute
2 Exchange Stage
3 Dependant Compute

Listing 6.7: Variant H

1 Pack/ISend/Irecv
2 Independant Compute
3 Unpack/MPIWaitall
4 Dependant Compute

the seperation of compute in such a way as to separate between communication

dependent and communication independent compute. Removing these depen-

dencies allows us to persue two alternate approaches to overlap:

1. Explore the use of non-blocking communications in a context where over-

lapping can theoretically occur if the hardware and/or software is capable

of supporting such a capability.

2. Implement a Hybrid MPI/OpenMP approach, where a dedicated thread

handles communications while the remaining threads progress with com-

pute.

The former offers a greater potential for gains but is more restrictive in its req-

uisites for success, while the latter guarantees communication overlap will occur

but at the cost of sacrificing a thread/core that could potentially overshadow

any gains to be had.

MPI Non-Blocking Overlap

For the first approach, relying on the non-blocking overlap of the underlying

MPI implementation, there are four variants for exploration.

Variant C

Already introduced in Section 6.2, this variant provides the removal of var-

ious data dependencies that enable further alteration of the code base for

182

6. Optimisation

exploring overlap. It is included here as a performance baseline.

Variant F

This variant, based on Variant C, removes the data-dependency that exists

between the messages sent in the different dimensions during the MPI com-

munication stage (as detailed originally in Section 4.3.2). This is achieved

by enabling direct communication with diagonal neighbours in one or more

dimensions, removing the need to communicate ghost data as part of any

Y or Z dimension communication; this results in a maximum of 26 neigh-

bours/message send-recv pairs per communication phase. No overlap yet

occurs, but this action removes a potential block where, for example, the

Y-dimension processes are ready for communication but the X-dimension

processes are not. This control variant is intended to capture any perfor-

mance changes that could be attributed to modifying the communication

pattern (such as, for example, an increased latency or overhead cost).

Variant G (Figure 6.6)

Further extending Variant F, this variant modifies the order in which cells

are processed, such that internal, non-boundary cells can be processed as

independent compute distinct from those cells that are dependent upon the

completion of the communication stage. This is crucial since only indepen-

dent compute can be overlapped without violating the correctness of the

program. Since this modifies the memory access patterns of the program, it

is neccessary to draw a distinction between this and subsequent versions to

capture any change in performance.

Variant H (Figure 6.7)

This variant extends Variant G to introduce the final change required for

183

6. Optimisation

1 2 4 8 16 32 64 128 256

100

1,000

PEs

T
im

e
(s

)

(a) Strong-Scaling

1 2 4 8 16 32 64 128 256
0

200

400

600

800

1,000

PEs

T
im

e
(s

)

(b) Weak-Scaling

Variant C Variant F Variant G Variant H

Figure 6.6: MPI Overlap Performance — Non-Blocking Variants

enabling an opportunity for MPI overlap. The original blocking commands

to check for communications completion are shifted to immediatedly prior to

the dependent compute stage, with this block preceeded by both the begin-

ning of the communication stage and any independent compute. In a fully

functional overlapping code, this independent compute will be overlapped

with any MPI communications, masking the lesser cost of the two.

Results

From the overall walltimes it can be seen that the impact of removing commu-

nication dependencies is negligable (Variant F), as might be expected given the

overall amount of data communicated is effectively the same. However, the

separation of dependent and non-dependent compute for Variant G in relation

to the communication stage does experience an overall increase in the walltime.

184

6. Optimisation

G H G H G H G H G H G H G H

0

0.1

0.2

0.3

0.4

Madv Lartvis Mlagh1 Mlagh2 Madvmx Madvmy MadvmzPhase
Variant

Exchange Phase

T
im

e
(s

)

(a) Communication Stages - Variants G vs H

F H F H F H F H

0

0.2

0.4

0.6

0.8

Lartvis1 Madvmx1 Madvx1 Madvx2Kernel
Variant

Compute Kernels

T
im

e
(s

)

(b) Compute Kernels - Variants F vs H

Min Mean Max

Figure 6.7: Non-Blocking Madv Behaviour — Minerva 1003 Weak-Scaling, 256
PEs

This increase is due to an extra cost attributed to the compute component of

Hydra, and is likely a result of slower memory access patterns — the majority of

dependent compute that is separated out acts upon the boundaries of the local

grid, requiring multiple accesses to non-contiguous memory. This introduces an

extra overhead to the cost of overlapping compute and communications — if

this overhead is less than the potential savings then it becomes unworthwhile

to proceed.

The final variation that modifies the order of operations and enables over-

lapping via the use of non-blocking communications proves to be somewhat

surprising — an increase rather than a decrease is seen in the overall walltime,

a cost that is ascribed mostly to an effective tripling of the communication costs

185

6. Optimisation

of the Madv function amongst other communication increases. In Figure 6.7 a

breakdown of the Madv compute/communication balance between Variants G

and H for the weak-scaled, 256 PEs experiment highlights this behaviour. Ei-

ther no effective communication overlap is occuring, or the removal of the barrier

causes some form of communication imbalance or other cost that prevents ef-

fective overlap, such as one process performing compute while another waits

idle to communicate with it. Given the non-blocking behaviour is left to the

implementation of MPI, an alternate approach is required to enforce a more

strict interpretation of compute/communication overlap — allocating dedicated

resources through the use of threads.

6.4.2 OpenMP Threaded Hydra

To enable the use of threads for the purposes of overlapping communications, a

threaded version of Hydra is neccessary to enable the distribution of compute

and communication work among the threads. Two different variations are im-

plemented and contrasted here to provide both a baseline for comparison and

to establish the impact of threading upon the performance of Hydra.

Variant I

The initial threading variant uses OpenMP static scheduling in combina-

tion with 2D collapsed loops to reduce each block of compute to that of

an innermost loop. Threading is implementated at a kernel level, entering

and exiting a new parallel block upon entrance and exit of each major kernel.

Variant J

Built upon Variant I, but using dynamic as oppossed to static scheduling,

this variant is used as a baseline for any threaded overlap. The dynamically

threaded approach is explored here since it permits the communications

threaded to fall back into compute work upon the completion of any com-

munications, as oppossed to the fixed n−1 threads allocated to compute for

186

6. Optimisation

a static approach.

1 2 4 8 16 32 64 128 256
10

100

1,000

PEs

T
im

e
(s

)

(a) Strong-Scaling

1 2 4 8 16 32 64 128 256
0

500

1,000

PEs

T
im

e
(s

)

(b) Weak-Scaling

Variant C Variant I Variant J (Block Size 1)

Figure 6.8: MPI Overlap Performance — OpenMP Variants

From the walltimes it can be seen that the use of a static threading sched-

ule has introduced some additional overhead to an execution of Hydra. These

overheads can be ascribed to two factors.

First the memory allocation/deallocation functions are assigned workloads

tied to the number of processes, not threads. Due to the zeroing of these memory

locations, a lack of threading on these shared memory block allocations leads

to an effective increase in their cost over the non-threaded variants. This factor

is a mere oversight that can be fixed with appropriate threading of the zeroing

process.

Second, the use of OpenMP does see an increase in the compute costs of

select kernels. Since the use of threads is implemented through the use of

OpenMP pragmas, such as parallel for, the kernels themselves are largely un-

187

6. Optimisation

1
25

0
50

0
75

0

1,
00

0

1,
25

0

1,
50

0

1,
75

0

2,
00

0
250

300

350

OpenMP Static

Block Size

W
a
ll
T

im
e

(s
)

Figure 6.9: OpenMP Dynamic Schedule (Variant J), 1503, 12 Threads

touched from previous variants, suggesting that that some impact of introducing

OpenMP, such as threading overhead or some unforeseen interaction rather than

the threading configuration is at fault (each thread was validated to be bound to

a unique physical core). This would imply that some component of the thread-

parallel process is responsible for the increase in cost, such as either threading

overheads or memory access patterns. This may be in part due to the use of

collapsed 2D-loops.

The use of a dynamic schedule exacerbates this problem — the significant

increase in walltime over static scheduling is almost entirely attributable to an

increase in the compute costs of Hydra. This appears to be a factor of selecting

a suitable block size for the dynamic approach. In Figure 6.9 the block size

is varied across a range of values, approaching that of the block sizes selected

by a static approach that distributes the entire workload evenly with minimal

allocations.

For the investigation of the dynamic scheduling performance, 2 MPI pro-

cesses with 6 threads per process are used for a 150 × 150 × 150 problem size.

The 2D collapsed dynamic loop results in a work allocation of approximately

((150× 75)/blocksize) work blocks per MPI process, with each work block pro-

188

6. Optimisation

cessing a single inner loop iteration of roughly 150 cells (depending on the

kernel). This results in an approximate maximum number of 11250 blocks of

work if using the default block size of 1. When spread across 6 threads, this

allocates 1875 blocks per thread (assuming an even work load per block). As a

consequence, as the block size tends towards 1875, the number of times a block

of work must be assigned to a thread tends towards 1, similar to that of the

static work allocation.

In Figure 6.9 the impact of this block size upon the dynamic OpenMP variant

is apparent. With the exception of a block size of 1500, the performance of the

dynamic variant approaches that of the static implementation, suggesting that

the principle cause of the disparity in walltimes of the original experiments was

due to the very fine-grained work allocation, either due to OpenMP overhead or

potential other factors such as cache performance. However the improvement

is most significant at very small block sizes, as they get larger the potential

gains are reduced. In scenerios where the use of dynamic work allocation offers

a benefit to work-load balance, it may overcome this penalty using one of the

larger block-sizes.

The OpenMP variants as a whole do not offer direct performance improve-

ments over the initial data-parallel implementation of Hydra. However, these

underperforming aspects appear to be primarily tied to the implementation/block

size configuration issues, factors that can be refined using the existing code as a

basis for improvement. In addition, while not initially offering a direct improve-

ment, the use of dynamic work allocation permits us to explore other factors

of interest — most notably that of compute/communications overlap. By free-

ing the MPI processes from fixed sequences of tasks (beyond that of enforcing

data coherency), the use of threads allows the use of under-utilised resources

such as CPU compute power during communication steps that are primarily

bottlenecked by the interconnect. Such an optimisation could prove to elimi-

nate a significant bottleneck created by the distributed nature of much HPC

supercomputing hardware.

189

6. Optimisation

Listing 6.8: Variant L

1 Thread Creation
2 Master -> MPI Exchange Stage
3 -> Remaining Compute
4
5 Other Threads -> Compute Only
6 Thread Destruction

Figure 6.10: MPI Communication/Computation Overlap - Non-Blocking,
Threaded Approach

6.4.3 MPI Threaded Overlap

Variant K

Extending Variant J, the compute kernels are separated into dependent and

independent compute as per Variant F in the non-threaded version. As

before, this is intended to capture the performance overhead of this change,

but in a threaded context.

Variant L (Figure 6.8)

Extending Variant K, all handling of MPI communications is allocated to a

master thread, while the remaining threads begin to process any independent

compute. If any independent compute remains upon the completion of all

outstanding MPI comms, the master thread moves onto this compute via

the use of a dynamic schedule.

The disadvantage of a threaded overlap approach is primarily the removal of a

resource that could be used for compute, by allocating a thread (and associated

core) to primarily communications. In an environment with few threads, this

leads to a substantial increase in the compute cost of the remaining threads,

due to an increased workload — in an environment with only two threads, this

would lead to a doubling of the compute time, likely mitigating any savings to

be had from overlap (or even damaging overall performance). However, there

are techniques to mitigate the impact of such a scenario.

In a multi-threaded environment, only one thread is required for communi-

cation management. While not explored here, the use of Hyper-threading may

190

6. Optimisation

1 2 4 8 16 32 64 128 256

100

1,000

PEs

T
im

e
(s

)

(a) Strong-Scaling

1 2 4 8 16 32 64 128 256
0

200

400

600

800

1,000

PEs

T
im

e
(s

)

(b) Weak-Scaling

Variant J Variant K Variant L

Figure 6.11: MPI Overlap Performance — Threaded Overlap Variants

enable the independant progression of communication without removing a core

from the compute pool. In addition, the greater the pool of compute threads,

the lesser the impact of a single threads removal, distributing its workload evenly

across all remaining threads. In the Minerva experiments, where there are six

threads per MPI process, it would be expected that the compute workload of

the other threads would increase by no more than 1/5th. As long as the total

time for communication is less than this increase, it would suggest that over-

lap is worthwhile. Further to this, the use of the dynamic rather than static

scheduler avoids the scenario where the communication thread sits idle after all

MPI messages have been sent, resuming compute work. This limits the loss of a

compute thread to only the time taken to perform communications, and should

theoretically result in a scenario that is no worse than the non-overlap variant.

From the min/mean/max process walltimes in Figures 6.11(a) and 6.11(b),

it can be seen that the re-ordering of operations to facilitate overlap has had

191

6. Optimisation

K L K L K L

0

0.1

0.2

0.3

0.4

Component
Variant

Components and Variants

T
im

e
(s

)

(a) Lartvis Compute and Communications — Variants K vs L

K L K L K L

0

0.5

1

1.5

2

Component
Variant

Components and Variants

T
im

e
(s

)

(b) Madvmx Compute and Communications — Variants K vs L

Process Min Process Mean Process Max

Figure 6.12: Communication and Compute Overlap — Madvmx and Lartvis

little impact upon the overall walltime. Further, in Variant L the introduction of

overlap has a reasonable speedup over that of the non-overlap threaded variant.

Examining closer, Figures 6.12(a) and 6.12(b) demonstrate two of the compute-

communication stages, in the forms of functions Lartvis and Madvmx. The

resulting times are those measured on the master thread of each process, the

sole thread responsible for managing any MPI communications. As such, the

measurement of any compute times on this thread is the compute that remains

after the communications are complete - i.e. if overlap is occuring it should

be expected that some compute has already occured, resulting in a smaller

compute time. In an optimal scenario, this communication time plus any

remaining compute time should be less than the non-overlap variant.

192

6. Optimisation

As can be seen, the impact upon the Lartvis function is minimal, seeing

only a slight improvement in the overall function time. Given the minimal

time spent in communication, it is likely that is little scope for overlap within

the function. However, in a more substantial operation such as the Madvmx

function, a reduction of almost a quarter the runtime can be seen.

An interesting outcome of these sub-components is that it can be seen that

the assumption of a fixed communication time is invalid — in both cases the

time spent in the communication stage increases for all three statistical metrics.

This is likely due to an increased strain on the memory subsystem — both com-

pute and communications accessing data simultaneously for different purposes.

However, this extra communication time is still overlapped with the compute,

at the cost of an increased period of time where the computer work pool is

lacking the master thread. As long as this increase in compute time is worth

the savings from communication overlap, the process is still worthwhile.

6.5 Node Core-Count

In the course of this chapter a number of instances have been identified where

the impact of memory performance has become a primary bottleneck in the

performance of various compute kernels. It is likely this is also the predominant

cause of the difference in the Wg timings for Chapter 5, where the fewer active

cores per socket, the better the kernel performance per loop iteration. The

Hydra model enables the exploration of alternate scenarios, such as the impact

of reducing the number of cores per socket in use upon the overall walltime.

Table 6.6 presents the outcome of a weak-scaled 1503 problem at 256 PEs for a

variety of different core-counts per socket in use.

However this constitutes an unfair comparison. To maintain the same num-

ber of PEs with a reduced core count per socket requires an increased number

of nodes over the original empirical experiments. This introduces additional

resources to the overall system, including more memory/effective bandwidth,

193

6. Optimisation

Cores Per Socket

PEs Model(1) Model(2) Model(4) Empirical(6)

16 421.93 469.16 570.55 671.10
32 426.31 475.80 579.50 678.20
64 427.36 479.99 585.80 689.28

128 427.37 480.00 585.81 708.31
256 427.39 480.02 585.83 700.35

Table 6.6: Model Timings — Cores Per Socket, Minerva, Weak Scaled 1503

and more network interconnects. While the resulting amount of inter-node

communication is increased, the additional network hardware helps to alleviate

this. However, performance is not the only concern when constructing a HPC

system. Such models also enables the comparison of smaller-scale, lower per-

formance machines such that the trade-off between a reduced cost and reduced

computation can be calculated.

6.6 Summary

This chapter has demonstrated that a multitude of factors related to both soft-

ware and hardware ultimately influence the overall performance of an appli-

cation. A focus upon the memory patterns has demonstrated the impact of

memory performance upon an HPC code, showing both how improving the use

of cache and reducing memory access can improve the performance, while also

demonstrating that the benefits of compute optimisation techniques can be re-

stricted by these memory-bound kernels. Further, the use of computation/com-

munciation overlap techniques can mask such costs, although the use of solely

non-blocking MPI functions proves to be insufficient to rely on this approach,

given its potential dependance upon the implementation or hardware support.

While the overlap demonstrated here does not provide an overall speedup, this

is due to an underlying performance problem in the threaded implementation

(as can be seen from the control variants) rather than the overlap approach.

The approach itself is demonstrably viable and future efforts to identify and

migitate the threading overhead could result in a significant optimisation.

194

CHAPTER 7
Application to Linear Solvers

Previous chapters have focused upon the application of analytical modelling to

a single application, Hydra. However, for a method or technique to be viable

to the field at large, it must be demonstrated that other applications of interest

are also amenable to the same processes. Portable, Extensible Toolkit for Sci-

entific Computing (PETSc) is a software library that provides an API to either

first or third-party linear solver solutions, and is designed for the use in other

software applications across multiple domains. This chapter focuses upon the

performance characteristics of Conjugate Gradient (CG), one such linear solver

algorithm implemented within PETSc, demonstrating how it can not only be

broken down in a similar manner to Hydra, but also how it shares similar per-

formance characteristics in its communication patterns, despite being a distinct

piece of software in its own right.

Specifically, this chapter addresses the following:

• The CG algorithm of PETSc is introduced, including its function break-

down;

• The function breakdown is further separated into the compute and com-

munication components, and it is shown how the sum of various minimum

and maximum contributors is equivalent to ≈ 1% of the total runtime,

similar to how a critical path was achieved for Hydra;

• Given one basis for modelling is to establish behaviour of codes at scale,

a brief comparison is made between the original CG algorithm and a “co-

alesced” algorithm already implemented in PETSc that utilises fewer col-

lective operations in exchange for an additional compute component. It

195

7. Application to Linear Solvers

is shown that at the scale of 16384 Processing Elements (PEs) the contri-

bution of the collective component appears to have minimal impact, yet

the additional cost of compute in the coalesced algorithm is measureable

in its impact.

7.1 Introduction to Linear Solvers

A linear solver is an algorithm that solves a system of linear equations to find

vector x in the equation:

Ax = b (7.1)

In the equation, A is the matrix of coefficients for all of the linear equations, x

is the vector of the unknown components in the system of linear equations and

b is the vector of the results of the right hand side of the equation. An example

is provided in Figure 7.1.

2x1 + 4x2 + 10x3 + 12x4 = 126 (7.2)

4x1 + 1x2 + 8x3 + 5x4 = 67 (7.3)

3x1 + 6x2 + 4x3 + 8x4 = 97 (7.4)

6x1 + 3x2 + 7x3 + 13x4 = 135 (7.5)

5x1 + 4x2 + 9x3 + 11x4 = 126 (7.6)

A =


2 4 10 12
4 1 8 5
3 6 4 8
6 3 7 13
5 4 9 11

x =


x1
x2
x3
x4

 b =


126
67
97
135
126


Figure 7.1: Linear Solver Components

While simple in presentation, deriving the solution involves a significant amount

of computation and data movement. This problem becomes even more pro-

nounced when the matrix and vector are scaled up in size. In addition, the ma-

196

7. Application to Linear Solvers

trix can have many properties such as diagonal symmetry or density which influ-

ence the nature of the problem and, by extension, the approach to be taken. For

example, a dense matrix has many spatially local accesses in memory, whereas

a sparse matrix has relatively few local memory accesses.

To take advantage of current High Performance Computing (HPC) systems,

a linear solver approach must be scalable in order to achieve an appropriate

degree of machine efficiency. As the HPC community focuses its efforts towards

Exascale capable machines, this only becomes more critical. It is often the case

that some characteristics with little impact at small scale (such as global collec-

tive overheads) emerge to become significant bottlenecks when greater numbers

of processing elements are introduced. Understanding these computation and

communication characteristics becomes of great importance, and exploring new

approaches such as communication-avoiding algorithms will be significant in fu-

ture strategies. This introduces additional considerations beyond the compute

and memory overheads of any algorithm, as they must now ensure that data is

distributed and communicated in an efficient manner. These communications

overheads are obviously an impediment to achieving scalable behaviour, and

must be kept to a minimum.

This need for a portable, correct and efficient parallel implementation of such

algorithms has given rise to a number of third-party libraries targetted at the sci-

entific community. Linear systems can form the crux of a multitude of scientific

problems, including those used by the Atomic Weapons Establishment (AWE),

and thus efforts have focused upon enabling an application developer to inte-

grate a single, stable implementation across multiple applications rather than

requiring a reimplementation everytime. This has the benefit of saving a sig-

nificant amount of development time, and removing a potential avenue of error

by passing the complex nature of a parallel implementation to a single, more

maintainable, source. In doing so an application developer, whose particular

scientific domain may be unrelated to linear solver algorithms, can instead rely

on a library maintainer who is likely to be well versed in such algorithms (in

197

7. Application to Linear Solvers

both correctness and efficiency).

Examples of such libraries include:

• The PETSc [15, 16, 17]

• The Parallel High Performance Preconditioners (HYPRE) library [53]

• The MultiLevel Preconditioning Package (ML) [63]

• The Sparse Object Oriented Linear Equations Solver (SPOOLES) library

[129, 10]

However, there are dangers to using “blackbox” solutions. The library devel-

oper is entrusted with ensuring that the solution is found efficiently, restricting

optimisation efforts for those not involved in the library’s maintenance. This

can prevent a true understanding of how the solver performs at scale, since it is

difficult to make associations between how the library performs and the under-

lying hardware. Such libraries are often highly configurable, with a wide range

of options that can be overwhelming to a developer who is not familiar with

them. PETSc is especially notable for this, providing a significant selection of

solvers and preconditioners (some accessing further third-party libraries). Each

of these in turn can provide their own set of options. Thus, the performance

considerations of an algorithm must be well understood. For an iterative solver,

this total walltime can be broken down into two factors – the total number

of iterations required for convergence and the time taken for each individual

iteration to occur.

The total number of iterations (i.e. the rate of convergence) can be attributed

to the following factors:

• Algorithmic – the amount the error is reduced per iteration;

• Matrix condition number – the difficulty of solving the matrix. Typically

the lower the condition number, the faster the rate of convergence;

198

7. Application to Linear Solvers

• Preconditioning – An algorithmic approach that applies a transformation

to the problem to obtain a lower condition number and thus an easier

problem to solve;

• Convergence threshold – the required accuracy to determine if convergence

has been acheived (the higher the accuracy, the more iterations that are

required).

The time per iteration can be attributed to a different set of factors:

• Algorithmic – e.g. decomposition, communication patterns, number of ma-

trix/vector operations per iteration, etc;

• Preconditioning – The cost of the extra step involved in preconditioning

the problem;

• Machine hardware – e.g. CPU, memory bandwidth/latency, network in-

terconnect, etc;

• Implementation optimisation – e.g. vectorisation, efficient cache usage,

optimised math libraries, etc.

This chapter focuses upon the relationship between the time per iteration and

the machine hardware; specifically, the performance behaviour of the PETSc

implemented CG linear solver algorithm and how it relates to its parallel envi-

ronment, resulting in the following goals:

• Produce a fine-grained performance breakdown of the CG solver for a

sparse-matrix system of problems, with a particular focus upon collective

operations at scale.

• Highlight how the techniques used for capturing and modelling Hydra

could be applied to PETSc.

• Contrast the performance of PETSc’s base CG solver and its communication-

avoiding variant.

199

7. Application to Linear Solvers

Figure 7.2: Structured Grid with 5-Point Stencil to Matrix

7.1.1 PETSc Descomposition Behaviour

For any linear system the properties of the matrix, as well as its condition

number, can be highly influential upon the performance and validity of the

solver. Using a linear solver for a system of stencil computations, a single row

in the matrix contains all the values that pertain to a single cell’s stencil – i.e.

for a 5-point stencil there will be at most 5 non-zero entries in any arbitrary

matrix row; which stencil is used for a row is determined by the row ID. A

row in the matrix maps to the global ID of a single cell in a structured grid,

meaning that for an M×N structured grid, the number of rows in the matrix is

also M ×N . The values contained within said row consist of the stencil values

for that cell, e.g., in Figure 7.2 cell 4 has a stencil that consists of values from

itself and from cells 1, 3, 5 and 7. Thus row 4 of the matrix contains only the

non-zero data for these respective cells. This non-zero stencil data is arranged

in the matrix row in such a fashion that each piece of data has a column ID

that maps to the global ID of the cell it belongs to. As a consequence, this

200

7. Application to Linear Solvers

means that the number of columns in the matrix is also M × N , resulting in

a total matrix size of M × N × M × N . This size, in conjunction with the

limited number of entries per row, is what gives the matrix its sparse nature.

When applied to a 3D problem, it is readily apparent that this problem of

sparsity will only be exacerbated further. For a grid of Nx × Ny × Nz there

will be a maximum of 7 points per matrix row, but a global matrix size of

(Nx×Ny ×Nz)2, highlighting the need for efficient handling of non-zero data

in both computation and storage. The underlying PETSc library is capable

of employing efficient data storage structures to overcome the sparsity of such

data – Compressed Sparse Row (CSR) [15] techniques for matrix storage allow

the storage of only the non-zero elements, their column indexes and the location

of new rows. PETSc is capable of taking these CSR formats and populating its

own internal matrix data structures.

The work-decomposition behaviour of any parallel application is pivotal in

governing the frequency and size of any MPI messages required to fulfill data

dependencies for parallel computation. When using PETSc’s Distributed Array

interface to handle grid decomposition, the structured grid is typically spread

evenly across all available processes, minimising the surface area of any inter-

nal grid boundary such that each local grid is as cubic as possible. In turn,

the PETSc parallel data structures are decomposed in a similar manner, with

whichever process that owns a particular grid cell also owning its matching ma-

trix row and vector elements. The benchmark in use for this chapter explores a

structured 3D 7-point stencil problem rather than a 2D 5-point stencil, but the

same principles apply to its construction.

The nature of any stencil based computation is such that some degree of

communication must occur to ensure that local copies of remote data (i.e. the

ghost cells/halo data) are up-to-date and accurate. The two most typical com-

munication patterns found during the course of our investigations are collective

operations, such as those found in global reductions for Vector Dot-Products,

and near-neighbour communications, such as those found in Matrix-Vector Mul-

201

7. Application to Linear Solvers

tiplication.

The collective operations are largely performance independent of the problem

decomposition, with more influence being attributed to the number of processes

and their mapping to the underlying hardware. Near-neighbour communications

however are heavily reliant not only upon the network hardware but also upon

the decomposition patterns, as it is this that governs the size and number of

MPI message exchanges that must occur to resolve the data dependencies that

result from stencil-based computation.

With the decomposition patterns employed in PETSc the processes with

which communication must occur can be identified. Since the PETSc decompo-

sition will never split a matrix row, the only remote data required for a Matrix-

Vector multiply on a single row is the corresponding vector entries that match

the columns of the matrix row entries. Since any matrix row consists solely of

data belonging to a cell and its associated stencil locations, the required vector

entries belong to the processes that also own the corresponding stencil cells.

With a 7-point stencil, these can only be neighbouring processes in any of the

three dimensions, resulting in a maximum of 6 remote processes which may

require message exchanges. This describes a near-neighbour exchange pattern,

where all required data is packed into a single message on each process and

exchanged with its corresponding neighbouring processes.

7.2 Conjugate Gradient Performance Analysis

As the trend towards Exascale and large-scale multi/many core architectures

continues, the emergence of new bottlenecks and a shift in the cost of opera-

tions that were previously trivial at small scale is likely to inhibit future efforts

to optimise parallel applications [20, 155]. The notion of scalability becomes

an ever greater concern and will necessitate a renewed focus upon the role of

collective operations (amongst others), with the cost of such communications

coming under greater scrutiny.

202

7. Application to Linear Solvers

As a case study, the Conjugate Gradient solver is selected with no precon-

ditioner, constructing a PETSc Distributed Array benchmark based on the Or-

thrus benchmark provided by AWE as the basis for our investigations. The Or-

thrus benchmark is responsible for the initial data constructs, with interactions

with the PETSc benchmark performed via the use of the DMDA Application

Program Interface (API) functions. The algorithm employs both near-neighbour

communications and collectives, making it a prime candidate for investigating

the behaviour of its various potential bottlenecks. The presence of similar near-

neighbour communication patterns to Hydra also presents an interesting oppor-

tunity for comparison, allowing the potential application of similar techniques

to those of Chapter 4.

In order to obtain a more refined instrumented breakdown of the PETSc

CG implementation, a Performance and Modelling Timing Interface (PMTM)

instrumented version of PETSc is used to obtain the results in this chapter.

While PETSc can provide logging and timing functionality, these results are

restricted in both detail (capturing only library calls rather than their internal

components) and quantity (providing a more limited set of timing metrics than

PMTM). Instead, the pair are used in conjunction with one another; PMTM

timings provide computation/communication timings while PETSc logging fea-

tures provide both validation and additional metrics such as frequency and size

of MPI messages.

7.2.1 CG Breakdown

PETSc provides a range of typical Matrix/Vector operations via a set of library

function calls and the use of PETSc data constructs. During the course of a

single CG iteration, the following operations are used:

• One Matrix-Vector Multiply;

• One Vector Norm Computation;

• Two Vector Dot-Products;

203

7. Application to Linear Solvers

• Two Vector AXPY computations – y = αx+ y;

• One Vector AYPX computation – y = x+ αy;

• PCApply – Application of the preconditioner to a vector.

From this function list, a rough model of the callpath can be derived via the

summation of all library function calls. Of these functions, three contain some

form of network communication – the Matrix-Vector Multiply (MatMult), the

Vector-Norm (VecNorm) and the Vector Dot-Product (VecTDot). Delving fur-

ther, it is revealed the Matrix-Vector multiply contains a near-neighbour com-

munication exchange, while the remaining two functions both contain AllReduce

global collectives. The PCApply method can contain communication, depend-

ing upon the preconditioner, but only unpreconditioned scenarios are explored

in the following experiments and so PCApply is a simple local vector copy.

The nature of communication overheads means that any timings may con-

tain not only network communication overheads, but also the synchronisation

costs of ensuring that both sender and receiver are ready. One approach is to

use the average time across all processes for each function call, but this may give

a misleading impression of the collective costs (where load-balancing issues in

other functions may be the true cause). As an alternate approach the minimum

time of any library function that contains a collective operation is taken (which

has an implicit barrier synchronisation), aiming to capture the minimum syn-

chronisation cost involved with these functions. The maximum time for pure

compute/memory functions is used (i.e. AXPY, AYPX and PCApply), as these

timings lack any synchronisation points. In this manner, a similar approach

to that taken for capturing the various components of Hydra in Chapter 4 is

adopted.

The Matrix-Vector Multiply function is more complex. While not containing

any explicit global synchronisation, there is a degree of synchronisation with

a process’s nearest neighbours, which can cause load-imbalance to propogate

through the system. In addition, the computation in Matrix-Vector Multiply

204

7. Application to Linear Solvers

P
Total

Iterations
CG Solve
Time (s)

Function
Sum (s)

Error (%)

1 326 1.51 1.50 −1.14
2 451 3.52 3.49 −0.96
4 533 5.33 5.28 −0.82
8 605 10.50 10.40 −0.90

16 891 15.63 15.51 −0.72
32 1078 19.06 18.96 −0.54
64 1236 22.27 22.17 −0.47

128 1819 33.02 32.94 −0.24
256 2222 41.28 41.17 −0.26
512 2561 47.80 47.77 −0.07

1024 3721 71.05 70.99 −0.09
2048 4556 85.45 85.33 −0.14
4096 5256 100.64 100.96 0.32
8192 7573 149.78 150.94 0.78

16 384 9282 195.50 195.53 0.01

Table 7.1: CG Function Sum Validation, CG/No Preconditioner, HECToR,
PGI-12.10/MPICH-5.6.1, Weak Scaling (503)

can form some of the most computationally expensive parts of the CG iteration,

and thus has the greatest prospect of introducing imbalance (e.g. contention on

the memory subsystem or other shared resources). In conjunction with empirical

timings it is determined that the maximum timing for this function appears to

be the most representative.

This results in Equation 7.7, a rough approximation of the function cost of

a single CG iteration.

CGSolveiteration =MatMult (Max) + VecNorm (Min) +

(VecTDot (Min) ∗ 2) + (VecAXPY (Max) ∗ 2) +

VecAYPX (Min) + PCApply (Max)

(7.7)

The goal is to validate this approach for a 503 weak-scaled problem up to 16384

cores for 20 timesteps (i.e. 20 CG solver executions). CGSolver (Max) is defined

as the overall time measured for the CG solver across all iterations, while Sum

is the outcome of applying Equation 7.7. From Table 7.1 it can be seen that

this results in a time that is at most ≈ 1% away from the actual total solve

time, demonstrating that our breakdown sufficiently captures the CG iteration

behaviour. When broken down by percentage in Figure 7.3, past four cores

205

7. Application to Linear Solvers

(the point at which a single socket is fully populated) the breakdown is mostly

consistent with a small shift away from compute-only functions such as AXPY

towards functions with communication operations.

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
0

20

40

60

80

100

PEs

It
e
ra

ti
o
n

T
im

e
%

Matrix-Multiply (Max) VecNorm (Min) VecTDot (Min)

VecAXPY (Max) VecAYPX (Max) Apply PC (Max)

Figure 7.3: Breakdown by Percentage of CG Function Sum Time, CG/No
Preconditioner, HECToR, Weak-Scaled, 503

A Matrix-Vector multiplication, Mx = r, for an m row by n column matrix

is achieved via the following:

∀j ∈ {0, 1...m− 2,m− 1} : rj =

n−1∑
i=0

Mij ∗ xj (7.8)

where rj is a single element in the resulting vector. For each non-zero element

in a matrix row, element Aij , a matrix-vector multiply requires a local copy of

the corresponding vector element xj . The sparse nature of the matrix ensures

only a small selection of the vector’s elements will be required for each row.

However, due to the manner of PETSc’s decomposition, while a whole matrix

row can be guaranteed to be on the same process, it may not possess up-to-date

copies of all required vector elements. Thus, the process is divided into three

distinct components: (a) compute on local components; (b) a near-neighbour ex-

206

7. Application to Linear Solvers

change to resolve data dependencies; and, (c) all remaining compute using halo

data from the near-neighbour exchange. These three steps match the Multiply

Compute, VecScatterBegin/VecScatterEnd and Multiply-Add Compute stages

respectively.

The compute stages are split into two due to the data-dependencies involved.

In the first “local” compute stage the data-dependencies are already resolved,

with the required data being up-to-date on the local process. This is the case

for any Matrix-Vector element pair where the PETSc decomposition has placed

both the matrix row element and the corresponding vector element on the same

process. This constitutes the Multiply Compute stage.

In the second, “remote” compute stage, there exist matrix row elements

on the local process for which the matching vector element is on a remote

process. Thus before computation can go ahead a communication stage must

occur to retrieve and refresh the local halo data with a copy of these values.

These computations are grouped up and performed as part of the Multiply-

Add Compute stage where, upon completing all product calculations, the final

summation can occur to get the value for the result vector. This stage does not

begin until all communication is complete.

The remaining two stages, VecScatterBegin and VecScatterEnd are two sep-

arate functions responsible for overseeing the completion of the near-neighbour

exchange stage. To minimise the latency overheads, all halo data required for

the remote compute stage on a neighbouring process is identified and gathered

into a single packed buffer. This data is then communicated using non-blocking

MPI functions within a single message, and a reciprocating message received

from the neighbour process to populate the local process’s halo data. This step

is repeated for all other neighbouring processes till all data-dependencies are

resolved. The exchange is split into two functions to faciliate communication

overlap. Overlap is not guaranteed due to the complex nature of communica-

tion overlap and its dependence on overlap techniques, MPI implementation and

network hardware [30, 97, 170, 171]. However it does enable the potential ex-

207

7. Application to Linear Solvers

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
0

2 · 10−3

4 · 10−3

6 · 10−3

8 · 10−3

1 · 10−2

1.2 · 10−2

PEs

C
u
m

u
la

ti
v
e

T
im

e
(s

)

Multiply Compute Multiply-Add Compute

VecScatterBegin VecScatterEnd

Figure 7.4: Single Matrix-Multiply Call (Mean) Breakdown by Function in
CG, CG/No Preconditioner, HECToR, Weak-Scaled, 503

ecution of communication exchanges while simultaneously performing the non-

dependent local compute step, which would result in an overall speedup; Hence

the check for completion of communication (VecScatterEnd) is not performed

until after the completion of Multiply Compute, despite the communication

being started before the local compute stage.

Figure 7.4 presents the average time spent in each of these components, with

a summed cumulative time equal to the average time spent in the Matrix-Vector

Multiply library function. It is evident that as the process count is scaled, the

average time spent in both of the compute functions remains relatively consis-

tent, with the exception of between one and eight cores. In constrast, there

is an increasing trend in the time spent in the near-neighour exchange com-

ponents, despite the message sizes remaining reasonably consistent (due to the

weak-scaling nature of the problem). These increases could be attributed to a

number of factors, including synchronisation, contention or process affinity. An

increase in process count can impact the network utilisation and load balancing

208

7. Application to Linear Solvers

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
0

2 · 10−4

4 · 10−4

6 · 10−4

8 · 10−4

PEs

C
u
m

u
la

ti
v
e

T
im

e
(s

)

(a) Compute

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
0

2 · 10−4

4 · 10−4

6 · 10−4

8 · 10−4

PEs

C
u
m

u
la

ti
v
e

T
im

e
(s

)

IMB 8-Byte AllReduce(Max)(s)

(b) AllReduce

Min (s) Avg (s) Max (s)

Figure 7.5: VecNorm Components, CG/No Preconditioner, HECToR,
Weak-Scaling 503

of the problem, with minor variances in the compute time being propogated

throughout the system, leading to a more significant impact as the process

counts increase. In addition, with more processes, the process ID between

neighbours becomes greater (e.g. a Y dimension neighbour’s ID is separated

from the ID of the current process by the length of the X decomposition).

Depending upon the network architecture and the manner of process-to-core

allocation, this could lead to more physically distant communications with all

the additional overheads this entails.

The Vector-Norm library function does not contain any near-neighbour col-

lectives. It does however include a blocking MPI AllReduce global collective

alongside its local computation step, with the accompanying synchronisation

209

7. Application to Linear Solvers

step this requires. Figure 7.5 highlights the disparity that exists between the

aggregate minimum, average and maximum timings across the different pro-

cesses. It is apparent that, with the exception of a few anomolies, the compute

timings are relatively stable. The AllReduce collective function however demon-

strates a significant amount of variance, with both the minimum and maximum

times taken dominating that of the compute portions of the function. This

runs contrary to our understanding of the network performance of HECToR.

For reference, the 8 byte AllReduce performance originally reported in Figure

3.4(b) is overlaid on top. It is apparent that even if the focus is only upon the

minimum time taken, the benchmarked AllReduce time is significantly less than

that reported by the Vector-Norm function. Since the original IMB benchmark

is unlikely to capture characteristics such as load-imbalance, this time could

potentially be attributed to synchronisation costs born out of variances in the

compute or other library functions. Nonetheless, this breakdown reveals that

such collectives are making a contribution to the costs of these functions, al-

beit it is unclear if it as the result of actual communication costs or due to

synchronisation issues.

Extending this same process to the Vec Dot-Product functions (VecTDot),

it can be established that a similar behaviour is occuring. There is a little more

variance between the various statistical aggregates of the compute, but these are

relatively marginal in comparison to the variance of the AllReduce MPI calls.

Curiously, since both the Vector Dot-Product and the Vector Norm functions

operate on a single double (8 bytes) per process, it would be expected that

they demonstrate similar timings. This does not appear to be the case however,

lending more credence to the theory that this variance could be attributed to

other factors such as synchronisation costs due to imbalance. This could be po-

tentially problematic for any attempt at a communication-avoiding algorithm at

this scale, as the advantage of such approaches is eliminating the cost of commu-

nication. They would not however eliminate synchronisation costs attributable

to load-imbalance, as these would merely be shifted to the next synchronisation

210

7. Application to Linear Solvers

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
0

5 · 10−4

1 · 10−3

1.5 · 10−3

2 · 10−3

PEs

C
u
m

u
la

ti
v
e

T
im

e
(s

)

(a) Compute

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
0

5 · 10−4

1 · 10−3

1.5 · 10−3

2 · 10−3

PEs

C
u
m

u
la

ti
v
e

T
im

e
(s

)

IMB 8-Byte AllReduce(Max)(s)

(b) AllReduce

Min (s) Avg (s) Max (s)

Figure 7.6: VecTDot Components, CG/No Preconditioner, HECToR,
Weak-Scaling 503

point (assuming that the load-imbalance is not corrected before this point is

reached). To fully explore this possibility, the next section will explore the use

of such a communication-avoiding algorithm built into PETSc to combine two

Vector Dot-Products into one per CG iteration.

However, before exploring the application of optimisations at large-scale, it is

first necessary to address the poor scaling behaviours at a small number of cores

in these experiments. If all the functions are examined for general trends, it is

apparent that the compute contributions all exhibit the same increasing trend at

very small scale, before stabilising at approximately eight cores, reminiscent of

prior observed behaviour elsewhere. When examining that initial set of results,

it is speculated that the poor scaling performance could have been a consequence

211

7. Application to Linear Solvers

of either memory-bottlenecks or an increasing communication cost due to a

rising number of messages. However, when viewed in conjunction with the

breakdown measurements contained in this section, it is clear that the most

significant increases in walltime when scaling on a single node are a result of

increasing compute costs, not communication costs.

Since the poor performance is isolated to compute components only, it is a

likely conclusion that either memory or CPU performance is responsible for the

erratic behaviour. Documentation of the underlying CPU architecture reveals

that the Interlagos chip pairs cores together into modules. [127] Within these

modules a number of resources are shared, most notably the Floating Point

Execution Units. It is therefore possible for some degree of contention to occur

within these modules for select scenarios. However, this is raised as a possibil-

ity, there is no manifestation of poor scaling behaviour past eight cores. Such

behaviour is expected to be apparent for up to a full node, up to 32 cores on

HECToR, if the CPU structure was responsible. Since this does not appear to be

the case, it is likely not the cause of the observed behaviour, therefore we would

conclude that the primary factor lies elsewhere. Considering the STREAM

benchmarks of 3.3.2, and how Minerva exhibits similar behaviours without the

Interlagos chip structure being a factor, this would appear to reinforce the con-

clusion that not only is some degree of resource contention occuring. but that

it is likely memory contention and is significant enough to be resposible for the

poor single-node performance of these linear solvers.

7.2.2 Coalesced CG

In PETSc version 3.3 there exists an alternate version of CG intended to min-

imise the overall frequency of global collective AllReduce calls. Accessed via the

PETSc command line argument “-ksp cg single reduction”, this option uses an

approach where the number of AllReduces from Dot-Products is halved, instead

trading it for a roughly equivalent increase in the number of calls to AYPX, a

communication independent function. The frequency of different library calls

212

7. Application to Linear Solvers

Function CG (Original) CG (Coalesced) Comms.

MatMult i i+2 Neighbour Exchange
VecNorm i+1 i+1 AllReduce
VecTDot 2i 3 AllReduce
VecMDot 0 i-1 AllReduce
AXPY 2i 2i None
AYPX i-1 2(i-1) None
PCApply i+1 i+1 Situation Dependent

Table 7.2: CG Function Call Frequency across i Iterations

between the original and coalesced version of CG is detailed in Table 7.2, ob-

tained via instrumentation call counters and source-code inspection.

It is apparent from this table that the number of AYPX function calls has

doubled, while the two calls to VecTDot have been replaced by a single call to

VecMDot. The VecTDot function is a PETSc library function that computes

the Vector Dot-Product of a single vector. VecMDot takes multiple vectors as

input, computing the Dot-Products of all vectors involved but combining the

final AllReduce step of each Dot-Product into a single global collective call (with

an extra double in the send and recieve buffers for each vector involved). In this

scenario VecMDot operates upon two vectors. Thus, while the number of calls

to VecMDot is halved, the number of Vector Dot-Products involved overall is

the same – the primary reduction comes from combining two AllReduces into

one, minimising the impact of latency costs.

Since a Vector Dot-Product has both compute and a global AllReduce, and

AYPX has only compute, theoretically this code has greater scalability by eli-

miniating the overhead of the collective communication. However for a general

improvement this would require the assumption that the compute overheads of

AYPX are equivalent to, or less than, the savings made by combining two AllRe-

duces into a single AllReduce. The minor variances in other functions (such as

the two extra Matrix-Vector Multiplies) is discounted, since they should have

little overall impact with a large iteration count. When the cost of an AllReduce

is not significant, such as at small-scale, then any variance in time taken would

likely be attributed to the difference in compute/memory costs between the two

functions.

213

7. Application to Linear Solvers

1 2 4 8 16 32 64 12
8

25
6

0

1 · 10−2

2 · 10−2

PEs

T
im

e
(s

)

(a) Minerva

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
0

1 · 10−2

2 · 10−2

Process Count

T
im

e
(s

)

(b) HECToR

CG (Original) CG (Coalesced)

Figure 7.7: Solve Time per Iteration, CG/No Preconditioner, Weak-Scaled, 503

To investigate the effectiveness of a coalesced CG implemented in such a

manner, the earlier scaling investigations for CG with no preconditioner are re-

peated. All experiments were conducted using the PMTM instrumented version

of PETSc. To ensure a fair comparison, the following results for both the origi-

nal CG and coalesced CG are run using this built-from-source version of PETSc

(as opposed to reusing earlier results for the base implementation of CG).

Figure 7.7 presents the outcome of the weak scaling experiment. For an

arbitrary core count, the number of iterations for both the original and coalesced

CG algorithms was the same, thus the focus is upon the time spent per iteration

by each. A simple comparison reveals that for strong and weak scaling, on both

Minerva and HECToR, the coalesced algorithm appears to be slightly worse

than that of the original algorithm. The cause is likely to fall into one of two

categories – either the saving was not significant enough to overcome the trade-

214

7. Application to Linear Solvers

off, or the performance of the collectives operations includes a synchronisation

cost that is not eliminated by the use of a coalesced algorithm (merely moved

elsewhere).

M
at

M
ul

t(
M

ax
)

V
ec

N
or

m
(M

in
)

V
ec

D
ot

(M
in

)

V
ec

A
X
P
Y
(M

ax
)

V
ec

A
Y
P
X
(M

ax
)

A
pp

ly
P
C
(M

ax
)

0

50

100

Function

C
u
m

u
la

ti
v
e

T
im

e
(s

)

Base (s) Coalesced (s)

Figure 7.8: Base vs Coalesced CG Function Breakdown, CG/No
Preconditioner, HECToR, Weak-Scaled, 503, 16384 Cores

A similar breakdown process to Section 7.2.1 is now applied to the coalesced

reduction algorithm, presented in Figure 7.8. For reference a side-by-side com-

parison is provided between the original algorithm and the coalesced approach

presented within this section.

The side-by-side comparison reveals a number of expected outcomes. Most

notable is the disparity in the VecAYPX results. This is the expected tradeoff

for adopting this approach – doubling the number of AYPX calls has resulted in

roughly double the time spent within this function. A counter to this trade-off

is also seen – a relatively minor saving in the time spent performing VecDot

functions (VecDot here refers to VecTDot in the base algorithm and VecMDot

in the coalesced approach). These savings however would suggest that even

at 16,384 cores, the overall saving is not sufficient to overcome the increased

compute trade-off – the cost of the AllReduce function would need to be more

significant, potentially at a greater number of cores, before improvements in per-

formance could be expected. However, there also exist a number of unexpected

215

7. Application to Linear Solvers

discrepancies that could also impact upon the overall walltime.

Of the other functions that are expected to remain static in the context of

performance, only the Matrix-Vector Multiply appears to have done so. The

compute only functions ApplyPC and VecAXPY functions have seen a small

increase in their overall cost. In addition, the VecNorm function has also seen

an increase in its walltime.

While unexpected, the VecAXPY and PCApply (in a communication-free

preconditioning context) can be overcome with scaling, or could be the con-

sequence of some otherwise unidentified factor. However the prospect of an

increased Vector-Norm function is disconcerting, due to it also incorporating

an AllReduce as part of its function. Thus further investigations, presented

in Figures 7.9a and 7.9b, seek to decompose the behaviour into compute and

collective components.

From these results a simple conclusion can be taken away – the cause of the

increased Vector-Norm cost is potentially attributable to both compute and the

collective components, with both having maximums that are significantly higher

for the coalesced approach than for the base CG algorithm. In the case of the

compute, it would appear that the compute costs are approximately double for

the coalesced algorithm than for the base CG algorithm. At the time of the

writing however it is was not apparent as to what the source of this increased

compute cost is, and would likely have to be the focus of further investigation.

Nonetheless, it is readily apparent that the compute is at least in part, if not

primarily, responsible for the increase in Vector-Norm walltime.

The impact of the AllReduce is more complex. While the overall maximums

have increased, the minimums are still on a par with one another for both

algorithmic approaches. Since there is not an expected increase in the cost of

the Vector-Norm AllReduce, it could potentially be a consequence of different

synchronisation costs due to a modification in the order of functions called. Such

costs may not actually be an increase, but costs that were previously attributed

to, or the consequence of, other functions. For example, the disparity in the

216

7. Application to Linear Solvers

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

0

1 · 10−3

2 · 10−3

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384PEs

C
u
m

u
la

ti
v
e

T
im

e
(s

)

(a) Compute

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

B
a
se

C
o
a
le

sc
e
d

0

1 · 10−3

2 · 10−3

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384PEs

C
u
m

u
la

ti
v
e

T
im

e
(s

)

(b) AllReduceTimings

Base – Min Base – Mean Base – Max

Coalesced – Min Coalesced – Mean Coalesced – Max

Figure 7.9: Base vs Coalesced CG, VecNorm, CG/No Preconditioner,
HECToR, Weak-Scaled, 503

minimum and maximum times spent in the compute portion of this function

would likely factor as part of the time spent synchronising in the maximum

AllReduce time.

Finally, a direct comparison between the cost of the compute and collective

components of the Dot-Product functions is shown. For the base algorithm

VecDot here refers to VecTDot, while for the coalesced algorithm this refers to

VecMDot.

As expected, the compute portion of the VecMDot is roughly equivalent to

217

7. Application to Linear Solvers

twice that of the VecTDot function in the base algorithm – a consequence of

VecMDot performing twice as much work for half the number of calls. Thus the

overall time spent by each performing compute is similar across an iteration.

For the AllReduce component, there is a general trend of a decrease for

the coalesced algorithm. Since aggregate time spent in a single function call

is used as opposed to overall time spent, it may have been expected that the

two algorithms spend a similar time in the collective operations. Thus a hy-

pothesis is that this is similar to the Vector-Norm collective differences, where

synchronisation costs may play some role in the variance between the two sets of

results, either due to variance in compute or due to the order in which functions

are called resulting in a shift where synchronisation costs are attributed to a

different function.

0

5 · 10−4

1 · 10−3

1.5 · 10−3

2 · 10−3

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384PEs

C
u
m

u
la

ti
v
e

T
im

e
(s

)

(a) Compute

0

5 · 10−4

1 · 10−3

1.5 · 10−3

2 · 10−3

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384PEs

C
u
m

u
la

ti
v
e

T
im

e
(s

)

(b) AllReduce

Base – Min Base – Mean Base – Max

Coalesced – Min Coalesced – Mean Coalesced – Max

Figure 7.10: Base vs Coalesced CG, VecDot, CG/No Preconditioner,
HECToR, Weak-Scaled, 503

218

7. Application to Linear Solvers

7.3 Summary

This section has presented a more in-depth investigation of the Conjugate Gradi-

ent algorithm, revealing insights into not only compute, but also point-to-point

and collective communication components of the algorithm. In particular, the

consequences of an increasing number of cores upon the AllReduce collectives

were explored, identifying the subsequent increase in communication costs. It is

also shown that while these costs are likely to become ever more significant at

scale, they are not significant enough at up to 16384 cores to overcome trade-offs

in compute in order to exploit communication-avoiding approaches such as the

coalesced AllReduce algorithm. This is in part due to the additional number of

AYPX calls, but also in part due to an as yet unidentified general increase in

compute across all functions.

219

CHAPTER 8
Conclusions

The state of the High Performance Computing (HPC) field is constantly in flux.

Given that HPC provides the foundation for enabling many modern advances

in both science and industry, pushing the boundaries of what it is capable of

has remained a constant goal for those in this domain. Recent years have

seen the arrival of a multitude of different hardware configurations, including

highly-parallel large-scale clusters, co-processor based computing and further

specialised hardware; as a consequence, enabling the efficient use of these sys-

tems has been, and will likely continue to be, an interesting challenge of note

– especially with the goal of Exascale computing on the horizon. This work

has explored the use of performance modelling and analysis, demonstrating how

they can be applied to aid science and industry in their endeavours.

In Chapter 4 a case-study of a Hydrodynamics benchmark was introduced.

In doing so, it was demonstrated how such codes can show interesting perfor-

mance characteristics, as well as unexpected behaviours that warrant further

investigation. This provides justification for the motivation of this work, using

performance modelling and analysis to identify, characterise and potentially op-

timise codebases such as this for use in the highly parallel environment of HPC.

Serving as a useful case-study, it formed the basis for the work that followed.

Chapter 5 constructs the aforementioned analytical model of this applica-

tion, demonstrating a repeatable, step-wise approach to breaking down and

sub-modelling the various contributors to the overall walltime of the bench-

mark. A notable characteristic was that the maximum of the compute and

minimum of the communication times, along with the sync time, reasonably

captures the overall performance of the application, as was posited by the work

220

8. Conclusions

of Adve [2]. In turn, this characteristic can be used to construct sub-models of

the communication patterns/message times, as well as deconstructing the com-

pute behaviour into unit-time blocks based on an iteration of an internal loop

for each individual kernel. These times, represented as Wg values, abstract the

compute/memory cost performance into a single value per kernel, which can

easily be tied to the input parameters via a derivation of the total number of

loop iterations and then extrapolated into a total walltime per kernel. When

combined, these sub-models allow for the prediction of an overall walltime, as

well as showing up any discrepancies such as the disjoint between the perfor-

mance of the Madvmz and Madvmx, despite their similarity in functionality.

Such models can be used to analyse performance not only on existing machines,

as was validated for three different architectures in this work, but potentially

also for future architectures. Even in cases where full large-scale examples of

such machines do not yet exist, only a single node (for seeding Wg values)

and a network benchmark on a small-scale can allow for predictions at larger,

unknown configurations.

Chapter 6 uses the knowledge from Chapters 4 and 5 to explore poten-

tial optimisations for Hydra, focusing upon the memory, compute and network

characteristics. While the compute optimisations are minimal in their impact

at best, due to the memory-bound behaviour of the code as has been discovered

through both Performance Application Programming Interface (PAPI) and the

performance characteristics in Chapter 4, the discrepancies identified for the

Madvmz1 kernel lead to potential optimisation in the memory behaviour, lead-

ing to an overall speedup of approximately 1.3× to 1.4×. In addition, the use of

OpenMP threads highlights the lack of obverlapping behaviour from the Mes-

sage Passing Interface (MPI) non-blocking implementation, and while the poor

performance of select compute kernels with OpenMP threads leads to an overall

slowdown, it shows that such a behaviour is technically feasible in Hydra, and

can lead to an overall speedup over a non-overlapping variant if the problem

with underperforming OpenMP kernels is addressed.

221

8. Conclusions

Chapter 7 serves to demonstrate how these processes are not restricted to

just a single piece of software, introducing and highlighting Portable, Exten-

sible Toolkit for Scientific Computing (PETSc), a library that is available for

use across within many scientific or industrial applications. While serving a

different purpose to Hydra, it is shown how the techniques in this work can be

used to construct breakdowns of other codes, and a simple model of the critical

path using a max/min approach once again gets within 1% of the overall run-

time. Further breakdowns also show similar behaviours to Hydra in regards to

the compute and communication characteristics — compute times are relatively

fixed once a problem size is fixed past a minimum Processing Element (PE)

count (due to memory bandwidth behaviours), and the communication pat-

terns are striking similar due to both codes adopting a near-neighbour based

approach to data-transfer. While not conducted in this work, the derivation of

Wg values and prediction of message times would seem to follow a strikingly

similar approach to that of the work in earlier chapters, highlighting how such

techniques can be transferable across codebases.

8.1 Thesis Limitations

The use of analytical performance modelling within this work has proven viable

for Hydra, the benchmark application of interest, the core focus of this work.

However, while this work has demonstrated the similarity in behaviour of the

PETSc library, it should be highlighted that the use of such analytical models

is on an application-by-application basis, and applying the technique to another

code necessitates a time investment by a developer who is familiar with the code

in question. This does not limit the theoretical application of such a technique

but the approach within this work does not tackle other issues associated with

the practical application of the approach, such as the overheads and costs, in

both money and time, required to produce a model.

Additionally, this work has focused upon the performance prediction of this

222

8. Conclusions

application, but has not addressed additional factors such as power/energy costs.

Further, for reducing complexity in the initial construction of the model, more

nebulous variable costs such as I/O input have been discounted from the con-

tributing costs, yet in a real-world scenario they remain a factor in the overall

performance of running the application. Additional factors, such as the use of

mixed cell benchmarks, also remain an additional concern and would require a

further extension of the model.

Finally, while the model itself has validated satisfactorily, it is difficult to

validate for the most extreme of scales such as that which might be seen by

Petascale machines before such machines are developed and become more widely

available. Nevertheless, this does not reduce the usefulness of the model for

smaller scale and existing machines, nor does it mean that it is incapable of

predicting at higher scale, rather that the model may benefit from access to

larger scale machines for further validation.

8.2 Future Work

There exist a number of areas of interest for future work on this subject. Tack-

ling some of the limitations of this thesis, focus upon the use of automated tools

for the implementation of such analytical models would prove of great inter-

est for speeding up the process of their development. These techniques can be

applied in one of two ways:

1. The application of automated instrumentation tools. Existing tools al-

ready exist such as source-to-source compilers or dynamic library handling

that enable the insertion of timing code. By identifying suitable locations

in an automated manner, codes can have their critical paths automated

processed into an overarching analytical model.

2. The use of automation can remove some of the necessary domain knowl-

edge by employing automated experimentation techniques to tie the be-

haviours of instrumented blocks of code to a pre-defined set of input pa-

223

8. Conclusions

rameters. A number of existing works in the field already exist for the

purposes of automatically applying such an approach to experiments in

general. Statistical technniques can then be applied in such a manner that

relationships could be drawn without the need for intimate knowledge of

the code-base.

Finally, given the tendancy towards more unusual architectures that will

likely arise as Petascale machines are closer to reality, incorporating more het-

erogenous architectures within modelling efforts will likely become a must, such

as the Intel Xeon Phi or GPU-based computing. In particular, capturing the

behaviour of the data transfer onto accelerator devices, as well as generating

performance metrics for kernels on said devices, can enable the construction of

models that could balance workloads between an accelerator and the host de-

vice’s Central Processing Unit (CPU) in order to more effectively execute code

in hybrid hardware environments.

8.3 Final Words

While the physical and technical limitations of Moore’s Law may have been

more keenly felt in recent years, the field of HPC shows no sign of slowing with

regards to its continual pursuit of ever greater performance.

The Top 500 has demonstrated how the goal of Exascale computing is ever

closer, with the rise of co-processor/hybrid computing and increasingly more

performant parallel systems enabling a greater rate of scientific throughput and

processing than has ever been available in history.

With such a rapid rate of advance in the field this author looks forward with

great excitment to what HPC will have to offer in the future.

224

Bibliography

[1] N. R. Adiga, G. Almási, Y. Aridor, R. Barik, D. K. Beece, R. Bellofatto,

G. Bhanot, R. Bickford, M. A. Blumrich, A. A. Bright, J. R. Brunheroto,

C. Cascaval, J. G. Castaños, W. Chan, L. Ceze, P. Coteus, S. Chat-

terjee, D. Chen, G. L. Chiu, T. M. Cipolla, P. Crumley, K. M. Desai,

A. Deutsch, T. Domany, M. B. Dombrowa, W. E. Donath, M. Elefthe-

riou, C. C. Erway, J. Esch, B. G. Fitch, J. Gagliano, A. Gara, R. Garg,

R. S. Germain, M. Giampapa, B. Gopalsamy, J. A. Gunnels, M. Gupta,

F. G. Gustavson, S. Hall, R. A. Haring, D. F. Heidel, P. Heidelberger,

L. Herger, D. Hoenicke, R. D. Jackson, T. Jamal-Eddine, G. V. Kopcsay,

E. Krevat, M. P. Kurhekar, A. P. Lanzetta, D. Lieber, L. K. Liu, M. Lu,

M. P. Mendell, A. Misra, Y. Moatti, L. S. Mok, J. E. Moreira, B. J.

Nathanson, M. Newton, M. Ohmacht, A. J. Oliner, V. Pandit, R. B. Pu-

dota, R. A. Rand, R. D. Regan, B. Rubin, A. E. Ruehli, S. Rus, R. K. Sa-

hoo, A. Sanomiya, E. Schenfeld, M. Sharma, E. Shmueli, S. Singh, P. Song,

V. Srinivasan, B. D. Steinmacher-Burow, K. Strauss, C. W. Surovic, R. A.

Swetz, T. Takken, R. B. Tremaine, M. Tsao, A. R. Umamaheshwaran,

P. Verma, P. Vranas, T. J. C. Ward, M. E. Wazlowski, W. Barrett, C. En-

gel, B. Drehmel, B. Hilgart, D. Hill, F. Kasemkhani, D. J. Krolak, C. Li,

T. A. Liebsch, J. A. Marcella, A. Muff, A. Okomo, M. Rouse, A. Schram,

M. Tubbs, G. Ulsh, C. D. Wait, J. Wittrup, M. Bae, K. A. Dockser,

L. Kissel, M. K. Seager, J. S. Vetter, and K. Yates. An Overview of the

BlueGene/L Supercomputer. In Proceedings of the 2002 ACM/IEEE Con-

ference on Supercomputing, SC’02, pages 7:1–7:22, Baltimore, Maryland,

USA, November 2002. IEEE Computer Society, Los Alaminos, CA, USA,

IEEE.

[2] V. S. Adve. Analyzing the Behavior and Performance of Parallel Pro-

grams. PhD thesis, University of Wisconsin-Madison, 1993.

[3] V. S. Adve, R. L. Bagrodia, J. C. Browne, E. Deelman, A. Dube, E. N.

Houstis, J. R. Rice, R. Sakellariou, D. J. Sundaram-Stukel, P. J. Teller,

and M. K. Vernon. POEMS: End-to-End Performance Design of Large

Parallel Adaptive Computational Systems. IEEE Transactions on Soft-

ware Engineering, 26(11):1027–1048, November 2000.

[4] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. Scheiman. LogGP:

Incorporating Long Messages into the LogP Model–One Step Closer To-

wards a Realistic Model for Parallel Computation. In Proceedings of the

225

BIBLIOGRAPHY

Seventh Annual ACM Symposium on Parallel Algorithms and Architec-

tures, SPAA’95, pages 95–105, Santa Barbara, CA, USA, July 1995. ACM,

New York, NY, USA.

[5] G. Almási, C. Archer, J. G. Castaños, C. C. Erway, P. Heidelberger,

X. Martorell, J. E. Moreira, K. Pinnow, J. Ratterman, N. Smeds,

B. Steinmacher-burow, W. Gropp, and B. Toonen. Implementing MPI

on the BlueGene/L Supercomputer. In Euro-Par 2004 Parallel Process-

ing, volume 3149 of Lecture Notes in Computer Science, pages 833–845.

Springer, Berlin/Heidelberg, Germany, 2004.

[6] G. M. Amdahl. Validity of the Single Processor Approach to Achieving

Large Scale Computing Capabilities. In Proceedings of the American Fed-

eration of Information Processing Societies Spring Joint Computer Con-

ference, AFIPS’67 (Spring), pages 483–485, Atlantic City, New Jersey,

USA, April 1967. ACM, New York, NY, USA.

[7] J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data and Compu-

tation Transformations for Multiprocessors. In Proceedings of the Fifth

ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, PPOPP’95, pages 166–178, Santa Barabara, California, July

1995. ACM, New York, NY, USA.

[8] W. K. Anderson, W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F.

Smith. Achieving High Sustained Performance in an Unstructured Mesh

CFD Application. In Proceedings of the 1999 ACM/IEEE Conference on

Supercomputing, SC’99, Portland, Oregon, USA, November 1999. ACM,

New York, NY, USA.

[9] ARM. Cortex-A9 NEON Media Processing Engine Technical Reference

Manual — Revision:r4p1. Technical report, ARM, June 2012.

[10] C. Ashcraft and R. G. Grimes. SPOOLES: An Object-Oriented Sparse

Matrix Library. In Proceedings of the Ninth SIAM Conference on Parallel

Processing for Scientific Computing, PPSC’99), San Antonio, Texas, USA,

March 1999. Society for Industrial and Applied Mathematics, Philadel-

phia, PA, USA.

[11] I. T. Association et al. Infiniband Architecture Specification: Release 1.0.

Infiniband Trade Association, 2000.

[12] W. Augustin and T. Worsch. Usefulness and Usage of SKaMPI-Bench.

In Recent Advances in Parallel Virtual Machine and Message Passing In-

terface, volume 2840 of Lecture Notes in Computer Science, pages 63–70.

Springer, Berlin/Heidelberg, Germany, 2003.

226

BIBLIOGRAPHY

[13] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum,

R. Fatoohi, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,

V. Venkatakrishnan, and S. Weeratunga. The NAS Parallel Benchmarks

Summary and Preliminary Results. In Proceedings of the 1991 ACM/IEEE

Conference on Supercomputing, SC’91, pages 158–165, Albuquerque, NM,

USA, November 1991. ACM, New York, NY, USA.

[14] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,

L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.

Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K. Weeratunga. The

NAS Parallel Benchmarks. International Journal of High Performance

Computing Applications, 5(3):63–73, September 1991.

[15] S. Balay, J. Brown, , K. Buschelman, V. Eijkhout, W. D. Gropp,

D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang.

PETSc Users Manual. Technical Report ANL-95/11 - Revision 3.4, Ar-

gonne National Laboratory, 2013.

[16] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G.

Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc Web page.

http://www.mcs.anl.gov/petsc, 2013.

[17] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith. Efficient Man-

agement of Parallelism in Object Oriented Numerical Software Libraries,

pages 163–202. Birkhäuser Boston, Cambridge, MA, USA, 1997.

[18] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and

J. C. Sancho. Entering the Petaflop Era: The Architecture and Perfor-

mance of Roadrunner. In Proceedings of the ACM/IEEE 2008 Conference

on Supercomputing, SC’08, pages 1:1–1:11, Austin, Texas, USA, November

2008. IEEE Press Piscataway, NJ, USA.

[19] G. D. Benson, C.-W. Chu, Q. Huang, and S. G. Caglar. A Comparison of

MPICH Allgather Algorithms on Switched Networks. Recent Advances in

Parallel Virtual Machine and Message Passing Interface, 2840:335–343,

2003.

[20] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den-

neau, P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein,

R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling,

R. S. Williams, K. therine Yelick, K. Bergman, S. Borkar, D. Campbell,

W. Carlson, W. Dally, M. D. neau, P. Franzon, W. Harrod, J. Hiller,

S. Keckler, D. Klein, P. Kogge, R. S. y Williams, and K. Yelick. Exascale

227

http://www.mcs.anl.gov/petsc

BIBLIOGRAPHY

computing study: Technology challenges in achieving exascale systems,

2008.

[21] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R. Dillenschneider,

and E. Lutz. Experimental verification of landauer/’s principle linking in-

formation and thermodynamics. Nature, 483(7388):187–189, March 2012.

[22] L. N. Bhuyan and D. P. Agrawal. Generalized Hypercube and Hyperbus

Structures for a Computer Network. IEEE Transactions on Computers,

C-33(4):323–333, April 1984.

[23] M. Blumrich, D. Chen, P. Coteus, A. Gara, M. Giampapa, P. Heidelberger,

S. Singh, B. Steinmacher-Buros, T. Takken, and P. Vranas. Design and

Analysis of the BlueGene/L Torus Interconnection Network. Technical

Report Report RC23025 (W0312-022), IBM Research Division, 2003.

[24] W. Bolosky and M. Fitzgerald, R .and Scott. Simple but Effective Tech-

niques for NUMA Memory Management. In Proceedings of the 12th ACM

Symposium on Operating System Principles, SOSP’89, pages 19–31, Litch-

field Park, AZ, USA, December 1989. ACM, New York, NY, USA.

[25] S. Borkar and A. A. Chien. The Future of Microprocessors. Communica-

tions of the ACM, 54(5):67–77, May 2011.

[26] N. E. Bowler, A. Arribas, K. R. Mylne, S. E. Robertson, and S. E. Beare.

The MOGREPS Short-Range Ensemble Prediction System. Quarterly

Journal of the Royal Meteorological Society, 134(632):703–722, April 2008.

[27] J. T. Bradley. Towards reliable modelling with stochastic process algebras.

PhD thesis, University of Bristol, 1999.

[28] R. Brightwell, B. W. Barrett, K. S. Hemmert, and K. D. Underwood.

Challenges for High-Performance Networking for Exascale Computing. In

Proceedings of the 19th International Conference on Computer Communi-

cations and Networks, ICCCN’10, pages 1–6, Zurich, Switzerland, August

2010. IEEE Press, Piscataway, NJ, USA.

[29] R. Brightwell, D. Doerfler, and K. D. Underwood. A Comparison of 4X

InfiniBand and Quadrics Elan-4 Technologies. In Proceedings of the 2004

IEEE International Conference on Cluster Computing, CLUSTER’04,

pages 193–204, San Deigo, California, USA, September 2004. IEEE Com-

puter Society,Los Alaminos, CA, USA, IEEE.

228

BIBLIOGRAPHY

[30] R. Brightwell and K. D. Underwood. An Analysis of the Impact of MPI

Overlap and Independent Progress. In Proceedings of the 18th Annual In-

ternational Conference on Supercomputing, ICS’04, pages 298–305, Malo,

France, June–July 2004. ACM, New York, NY, USA.

[31] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci. A Portable

Programming Interface for Performance Evaluation on Modern Proces-

sors. International Journal of High Performance Computing Applications,

14(3):189–204, August 2000.

[32] R. Bunt, S. Pennycook, S. Jarvis, L. Lapworth, and Y. Ho. Model-Led

Optimisation of a Geometric Multigrid Application. In Proceedings of

the 15th IEEE International Conference on High Performance Computing

and Communications and The 11th IEEE/IFIP International Conference

on Embedded and Ubiquitous Computing, HPCC-EUC’13, pages 742–753,

Zhangjiajie, Hunan Province, China, November 2013. IEEE, IEEE Com-

puter Society, Los Alaminos, CA, USA.

[33] D. Burger, J. R. Goodman, and A. Kägi. Memory Bandwidth Limita-

tions of Future Microprocessors. SIGARCH Computer Architecture News,

24(2):78–89, May 1996.

[34] D. Callahan, J. Cocke, and K. Kennedy. Estimating Interlock and Im-

proving Balance for Pipelined Architectures. Journal of Parallel and Dis-

tributed Computing, 5(4):334–358, August 1988.

[35] J. Cao, D. J. Kerbyson, E. Papaefstathiou, and G. R. Nudd. Perfor-

mance Modeling of Parallel and Distributed Computing using PACE. In

Proceedings of the 19th IEEE International Performance, Computing and

Communications Conference, IPCCC’00, pages 485–492, Phoenix, Ari-

zona, USA, February 2000. IEEE Press, Piscataway, NJ, USA.

[36] K. M. Chandy and L. Lamport. Distributed Snapshots: Determining

Global States of Distributed Systems. ACM Transactions on Computer

Systems, 3(1):63–75, February 1985.

[37] J. Charles, P. Jassi, N. S. Ananth, A. Sadat, and A. Fedorova. Evaluation

of the Intel R© CoreTM i7 Turbo Boost Feature. In Proceedings of the 2009

IEEE International Symposium on Workload Characterization, IISWC’09,

pages 188–197, Austin, TX, USA, October 2009. IEEE Computer Society,

Los Alamitos, CA, USA, IEEE.

[38] G. Chrysos. Intel R© xeon phi coprocessor — the archi-

tecture. https://software.intel.com/en-us/articles/

229

https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

BIBLIOGRAPHY

intel-xeon-phi-coprocessor-codename-knights-corner, November

2012.

[39] U. Consortium et al. UPC Language Specifications v1.2. Technical report,

Lawerence Berkley National Laboratory, 2005.

[40] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. San-

tos, S. Ramesh, and T. von Eicken. LogP: Towards a Realistic Model of

Parallel Computation. In Proceedings of the Fourth ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming, PPOPP’93,

pages 1–12, San Diego, California, USA, 1993. ACM, New York, NY, USA.

[41] D. E. Culler, R. M. Karp, D. Patterson, A. Sahay, E. E. Santos, K. E.

Schauser, R. Subramonian, and T. von Eicken. LogP: A Practical Model

of Parallel Computation. Communications of the ACM, 39(11):78–85,

November 1996.

[42] L. Dagum and R. Menon. OpenMP: An Industry Standard API for

Shared-Memory Programming. IEEE Computational Science and Engi-

neering, 5(1):46–55, January–March 1998.

[43] F. Darema, D. George, V. Norton, and G. Pfister. A Single-Program-

Multiple-Data Computational Model for EPEX/FORTRAN. Parallel

Computing, 7(1):11–24, April 1988.

[44] J. Davis, G. Mudalige, S. Hammond, J. A. Herdman, I. Miller, and

S. Jarvis. Predictive Analysis of a Hydrodynamics Application on Large-

Scale CMP Clusters. Computer Science - Research and Development,

26(3–4):175–185, June 2011.

[45] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.

LeBlanc. Design of Ion-Implanted MOSFET’s with Very Small Physical

Dimensions. IEEE Journal of Solid-State Circuits, 9(5):256–268, October

1974.

[46] K. Diefendorff, P. Dubey, R. Hochsprung, and H. Scale. Altivec Extension

to PowerPC Accelerates Media Processing. IEEE Micro, 20(2):85–95,

March/April 2000.

[47] M. Djurfeldt, M. Lundqvist, C. Johansson, M. Rehn, O. Ekeberg, and

A. Lansner. Brain-Scale Simulation of the Neocortex on the IBM Blue

Gene/L Supercomputer. IBM Journal of Research and Development,

52(1.2):31–41, January 2008.

230

https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

BIBLIOGRAPHY

[48] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. An-

dre, D. Barkai, J.-Y. Berthou, T. Boku, B. Braunschweig, F. Cappello,

B. Chapman, X. Chi, A. Choudhary, S. Dosanjh, T. Dunning, S. Fiore,

A. Geist, B. Gropp, R. Harrison, M. Hereld, M. Heroux, A. Hoisie,

K. Hotta, Z. Jin, Y. Ishikawa, F. Johnson, S. Kale, R. Kenway, D. Keyes,

B. Kramer, J. Labarta, A. Lichnewsky, T. Lippert, B. Lucas, B. Maccabe,

S. Matsuoka, P. Messina, P. Michielse, B. Mohr, M. S. Mueller, W. E.

Nagel, H. Nakashima, M. E. Papka, D. Reed, M. Sato, E. Seidel, J. Shalf,

D. Skinner, M. Snir, T. Sterling, R. Stevens, F. Streitz, B. Sugar, S. Sumi-

moto, W. Tang, J. Taylor, R. Thakur, A. Trefethen, M. Valero, A. van der

Steen, J. Vetter, P. Williams, R. Wisniewski, , and K. Yelick. The Inter-

national Exascale Software Project Roadmap. International Journal of

High Performance Computing Applications, 25(1):3–60, February 2011.

[49] J. Dongarra and M. A. Heroux. Toward a New Metric for Ranking High

Performance Computing Systems. Technical Report SAND2013-4744,

Sandia National Laboratories, 2013.

[50] J. J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK Benchmark:

Past, Present and Future. Concurrency and Computation: Practice and

Experience, 15(9):803–820, August 2003.

[51] T. A. El-Ghazawi, W. W. Carlson, and J. M. Draper. UPC Language

Specifications v1.1.1. Technical report, Lawerence Berkley National Lab-

oratory, 2003.

[52] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and

D. Burger. Dark Silicon and the End of Multicore Scaling. IEEE Mi-

cro, 32(3):122–134, March–April 2012.

[53] R. D. Falgout and U. M. Yang. hypre: a Library of High Performance Pre-

conditioners. In Computational Science - ICCS 2002 Part III, volume 2331

of Lecture Notes in Computer Science, pages 632–641. Springer-Verlag,

Berling/Heidelberg, Germany, 2002.

[54] N. Firasta, M. Buxton, P. Jinbo, K. Nasri, and S. Kuo. Intel AVX, New

Frontiers in Performance Improvements and Energy Efficiency. Technical

report, Intel Corporation, 2008.

[55] M. J. Flynn. Some Computer Organizations and Their Effectiveness.

IEEE Transactions on Computers, C-21(9):948 –960, September 1972.

[56] A. Fog. Instruction tables: Lists of instruction latencies, throughputs and

micro-operation breakdowns for Intel, AMD and VIA CPUs. www.agner.

org/optimize/instruction_tables.pdf, Accessed April 2017.

231

www.agner.org/optimize/instruction_tables.pdf
www.agner.org/optimize/instruction_tables.pdf

BIBLIOGRAPHY

[57] P. for Advanced Computing in Europe (PRACE). Prace research infras-

tructure. http://www.prace-ri.eu/, Accessed August 2016.

[58] S. Fortune and J. Wyllie. Parallelism in Random Access Machines. In

Proceedings of the 10th Annual ACM Symposium on Theory of Computing,

STOC’78, pages 114–118, San Diego, California, USA, May 1978. ACM,

New York, NY, USA.

[59] M. Forum. Message passing interface (mpi) forum home page. http:

//www.mpi-forum.org/, Accessed June, 2014.

[60] M. I. Frank, A. Agarwal, and M. K. Vernon. LoPC: Modeling Contention

in Parallel Algorithms. In Proceedings of the Sixth ACM SIGPLAN Sym-

posium on Principles and Practice of Parallel Programming, PPOPP’97,

pages 276–287, Las Vegas, Nevada, USA, June 1997. ACM, New York,

NY, USA.

[61] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M.

Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Cas-

tain, D. J. Daniel, R. L. Graham, and T. S. Woodall. Open mpi: Goals,

concept, and design of a next generation mpi implementation. In Recent

Advances in Parallel Virtual Machine and Message Passing Interface, vol-

ume 3241 of Lecture Notes in Computer Science, pages 97–104. Springer,

Berlin/Heidelberg, Germany, 2004.

[62] D. Gannon, W. Jalby, and K. Gallivan. Strategies for Cache and Local

Memory Management by Global Program Transformation. In Supercom-

puting, 1st International Conference Proceedings, volume 297 of Lecture

Notes in Computer Science, pages 229–254. Springer, Berlin, Heidelberg,

Germany, 1988.

[63] M. W. Gee, C. M. Siefert, J. J. Hu, R. S. Tuminaro, and M. G. Sala. ML

5.0 Smoothed Aggregation User’s Guide. Technical Report SAND2006-

2649, Sandia National Laboratories, 2006.

[64] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and B. Mohr.

The scalasca performance toolset architecture. Concurrency and Compu-

tation: Practice and Experience, 22(6):702–719, April 2010.

[65] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-

deram. PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial

for Networked Parallel Computing. The MIT Press, Cambridge, Mas-

sachusetts, USA, 1994.

232

http://www.prace-ri.eu/
http://www.mpi-forum.org/
http://www.mpi-forum.org/

BIBLIOGRAPHY

[66] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A Call Graph

Execution Profiler. In Proceedings of the 1982 SIGPLAN Symposium

on Compiler Construction, SIGPLAN’82, pages 120–126, Boston, Mas-

sachusetts, USA, June 1982. ACM, New York, NY, USA.

[67] W. Gropp and E. Lusk. Reproducible Measurements of MPI Performance

Characteristics. In Recent Advances in Parallel Virtual Machine and Mes-

sage Passing Interface, volume 1697 of Lecture Notes in Computer Science,

pages 11–18. Springer, Berlin/Heidelberg, Germany, 1999.

[68] W. Gropp, E. Lusk, N. Doss, and A. Skejellum. A High-Performance,

Portable Implementation of the MPI Message Passing Interface Standard.

Parallel Computing, 22(6):789–828, September 1996.

[69] Gropp, William D. and Kaushik, Dinesh K. and Keyes, David E. and

Smith, Barry F. Performance Modeling and Tuning of an Unstructured

Mesh CFD Application. In Proceedings of the 2000 ACM/IEEE Confer-

ence on Supercomputing, SC’00, page 34, Dallas, Texas, USA, November

2000. IEEE Computer Society, Los Alaminos, CA, USA, IEEE.

[70] J. L. Gustafson. Reevaluating Amdahl’s Law. Communications of the

ACM, 31(5):532–533, May 1988.

[71] S. D. Hammond, G. R. Mudalige, J. A. Smith, S. A. Jarvis, J. A. Herdman,

and A. Vadgama. WARPP: A Toolkit for Simulating High-Performance

Parallel Scientific Codes. In Proceedings of the 2nd International Confer-

ence on Simulation Tools and Techniques, SimuTools’09, pages 19:1–19:10,

Rome, Italy, March 2009. ICST, Brussels, Belgium.

[72] S. D. Hammond, J. A. Smith, G. R. Mudalige, and S. A. Jarvis. Predictive

Simulation of HPC Applications. In Proceedings of the IEEE 23rd Interna-

tional Conference on Advanced Information Networking and Applications,

AINA’09, pages 33–40, Bradford, UK, May 2009. IEEE Computer Society,

Los Alaminos, CA, USA, IEEE.

[73] T. Henretty, K. Stock, L.-N. Pouchet, F. Franchetti, J. Ramanujam, and

P. Sadayappan. Data layout transformation for stencil computations on

short-vector simd architectures. In Compiler Construction, volume 6601 of

Lecture Notes in Computer Science, pages 225–245. Springer, Berlin/Hei-

delberg, Germany, 2011.

[74] A. Hoisie, G. Johnson, D. J. Kerbyson, M. Lang, and S. Pakin. A Perfor-

mance Comparison Through Benchmarking and Modeling of Three Lead-

ing Supercomputers: Blue Gene/L, Red Storm, and Purple. In Proceed-

ings of the 2006 ACM/IEEE Conference on Supercomputing, SC’06, pages

233

BIBLIOGRAPHY

3:1–3:10, Tampa, FL, USA, November 2006. IEEE Computer Society, Los

Alaminos, CA, USA, IEEE.

[75] A. Hoisie, O. Lubeck, and H. Wasserman. Performance and Scalability

Analysis of Teraflop-Scale Parallel Architectures Using Multidimensional

Wavefront Applications. International Journal of High Performance Com-

puting Applications, 14(4):330–346, November 2000.

[76] A. Hoisie, O. Lubeck, H. J. Wasserman, F. Petrini, and H. Alme. A Gen-

eral Predictive Performance Model for Wavefront Algorithms on Clusters

of SMPs. In Proceedings of the 2000 International Conference on Paral-

lel Processing, ICPP’00, pages 219–228, Toronto, Canada, August 2000.

IEEE Computer Society, Los Alaminos, CA, USA, IEEE.

[77] P. D. Hovland and L. C. McInnes. Parallel simulation of compressible flow

using automatic differentiation and petsc. Parallel Computing, 27(4):503–

519, March 2001.

[78] C. Iancu, P. Husbands, and P. Hargrove. HUNTing the Overlap. In

14th International Conference on Parallel Architectures and Compilation

Techniques (PACT’05), PACT’05, pages 279–290, St. Louis, MO, USA,

September 2005. IEEE Computer Society, Los Alaminos, CA, USA, IEEE.

[79] Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s

Manual Volume 2C:Instruction Set Reference. Technical report, Intel Cor-

poration, 2016.

[80] Intel Corporation. ARK — Your Source for Intel R© Product Specifications.

http://ark.intel.com/, Accessed August 2016.

[81] Intel Corporation. Getting Started with Intel MPI Bench-

marks 2017. https://software.intel.com/en-us/articles/

intel-mpi-benchmarks, Accessed August 2016.

[82] Intel Corporation. Intel MPI Benchmarks. http://software.intel.

com/en-us/articles/intel-mpi-benchmarks, Accessed July, 2013.

[83] Intel Corporation. Intel MPI Benchmarks 3.2.4 User’s Guide.

http://software.intel.com/sites/products/documentation/hpc/

ics/imb/32/IMB_Users_Guide/IMB_Users_Guide.pdf, Accessed July,

2013.

[84] H. W. M. J. Dongarra and E. Strohmaier. TOP500 Supercomputer Sites.

Supercomputer, 13(2–3):89–111, June 1997.

234

http://ark.intel.com/
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
https://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://software.intel.com/en-us/articles/intel-mpi-benchmarks
http://software.intel.com/sites/products/documentation/hpc/ics/imb/32/IMB_Users_Guide/IMB_Users_Guide.pdf
http://software.intel.com/sites/products/documentation/hpc/ics/imb/32/IMB_Users_Guide/IMB_Users_Guide.pdf

BIBLIOGRAPHY

[85] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,

and D. Shippy. Introduction to the Cell Multiprocessor. IBM Journal of

Research and Development, 49(4.5):589–604, July 2005.

[86] R. F. Katz and M. G. Worster. Simulation of Directional Solidification,

Thermochemical Convection, and Chimney Formation in a Hele-Shaw

Cell. Journal of Computational Physics, 227:9823–9840, December 2008.

[87] R. A. Kendall, E. Aprà, D. E. Bernholdt, E. J. Bylaska, M. Dupuis, G. I.

Fann, R. J. Harrison, J. Ju, J. A. Nichols, J. Nieplocha, T. Straatsma,

T. L. Windus, and A. T. Wong. High Performance Computational Chem-

istry: An Overview of NWChem, a Distributed Parallel Application. Com-

puter Physics Communications, 128(1):260–283, June 2000.

[88] D. J. Kerbyson, A. Hoisie, and H. Wasserman. Modelling the Performance

of Large-Scale Systems. IEE Proceedings — Software, 150(4):214–221,

August 2003.

[89] D. J. Kerbyson, A. Hoisie, and H. J. Wasserman. Use of Predictive Per-

formance Modeling During Large-Scale System Installation. Parallel Pro-

cessing Letters, 15(4):387–395, December 2005.

[90] D. J. Kerbyson, A. H. J., A. Hoisie, F. Petrini, H. J. Wasserman, and M. L.

Gittings. Predictive Performance and Scalability Modeling of a Large-

Scale Application. In Proceedings of the 2001 ACM/IEEE Conference on

Supercomputing, SC’01, pages 37:1–37:12, Denver, CO, USA, November

2001. ACM.

[91] D. E. Keyes, L. C. McInnes, C. Woodward, W. Gropp, E. Myra, M. Per-

nice, J. Bell, J. Brown, A. Clo, J. Connors, E. Constantinescu, D. Estep,

K. Evans, C. Farhat, A. Hakim, G. Hammond, G. Hansen, J. Hill, T. Isaac,

X. Jiao, K. Jordan, D. Kaushik, E. Kaxiras, A. Koniges, K. Lee, A. Lott,

Q. Lu, J. Magerlein, R. Maxwell, M. McCourt, M. Mehl, R. Pawlowski,

A. P. Randles, D. Reynolds, B. Rivire, U. Rde, T. Scheibe, J. Shadid,

B. Sheehan, M. Shephard, A. Siegel, B. Smith, X. Tang, C. Wilson,

and B. Wohlmuth. Multiphysics Simulations: Challenges and Opportuni-

ties. International Journal of High Performance Computing Applications,

27(1):4–83, February 2013.

[92] A. Knüpfer, H. Brunst, J. Doleschal, M. Jurenz, M. Lieber, H. Mickler,

M. S. Mller, and W. E. Nagel. The Vampir Performance Analysis Tool-

Set, pages 139–155. Springer Berlin, Heidelburg, Germany, July 2008.

235

BIBLIOGRAPHY

[93] D. Koufaty and D. T. Marr. Hyperthreading technology in the netburst

microarchitecture. IEEE Micro, 23(2):56–65, March–April 2003.

[94] J. Labarta, S. Girona, and T. Cortes. Analyzing Scheduling Policies Using

Dimemas. Parallel Computing, 23(1–2):23–34, April 1997.

[95] L. L. N. Laboratory. GitHub – LLNL/IOR Parallel Filesystem I/O Bench-

mark. https://github.com/LLNL/ior, Accessed July, 2016.

[96] R. Landauer. Irreversibility and Heat Generation in the Computing Pro-

cess. IBM Journal of Research and Development, 5(3):183–191, July 1961.

[97] W. Lawry, C. Wilson, A. B. Maccabe, and R. Brightwell. COMB: A

Portable Benchmark Suite for Assessing MPI Overlap. In Proceedings of

the 2002 IEEE International Conference on Cluster Computing, CLUS-

TER’02, pages 472–475, Chicago, IL, USA, September 2002. IEEE Com-

puter Society, Los Alaminos, CA, USA, IEEE.

[98] C. E. Leiserson. Fat-Trees: Universal Networks for Hardware-Efficient

Supercomputing. IEEE Transactions on Computers, C-34(10):892–901,

October 1985.

[99] B. Lewis, D. Berg, et al. Multithreaded Programming with Pthreads.

Prentice-Hall Inc, Upper Saddle River, NJ, USA, 1998.

[100] likwid Blog. likwid: Intel Sandybridge and Count-

ing the FLOPs. likwid-tools.blogspot.co.uk/2012/02/

intel-sandybridge-and-counting-flops.html, Accessed August

2016.

[101] H. Lin, P. Balaji, R. Poole, C. Sosa, X. Ma, and W.-c. Feng. Mas-

sively Parallel Genomic Sequence Search on the Blue Gene/P Architec-

ture. In Procedings of the 2008 ACM/IEEE Conference on High Perfor-

mance Computing, Networking, Storage and Analysis, SC’08, pages 33:1–

33:11, Austin, Texas, USA, November 2008. IEEE Computer Society,Los

Alaminos, CA, USA, IEEE.

[102] C. Lindemann. Performance Modelling with Deterministic and Stochastic

Petri Nets. SIGMETRICS Performance Evaluation Review, 26(2):3–3,

August 1998.

[103] A. Logg. Automating the Finite Element Method. Archives of Computa-

tional Methods in Engineering, 14(2):93–138, June 2007.

236

https://github.com/LLNL/ior
likwid-tools.blogspot.co.uk/2012/02/intel-sandybridge-and-counting-flops.html
likwid-tools.blogspot.co.uk/2012/02/intel-sandybridge-and-counting-flops.html

BIBLIOGRAPHY

[104] P. Luszczek, D. Bailey, J. Dongarra, J. Kepner, R. Lucas, R. Raben-

seifner, and D. Takahashi. The hpc challenge (hpcc) benchmark suite.

In Proceedings of the 2006 ACM/IEEE Conference on High Performance

Computing, Networking, Storage and Analysis, SC’06, page 213, Tampa,

Florida, USA, November 2006. ACM, New York, NY, USA.

[105] P. Luszczek, J. J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas,

J. Kepner, J. McCalpin, D. Bailey, and D. Takahashi. Introduction to

the HPC Challenge Benchmark Suite. Technical report, Lawrence Berkley

National Laboratory, 2005.

[106] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A. Miller,

and M. Upton. Hyper-Threading Technology Architecture and Microar-

chitecture. Intel Technology Journal, 6(1):4–15, February 2002.

[107] M. M. Mathis, N. M. Amato, and M. L. Adams. A General Performance

Model for Parallel Sweeps on Orthogonal Grids for Particle Transport

Calculations. In Proceedings of the 14th International Conference on Su-

percomputing, ICS’00, pages 255–263, Santa Fe, NM, USA, May 2000.

ACM.

[108] M. M. Mathis and D. J. Kerbyson. A General Performance Model of

Structured and Unstructured Mesh Particle Transport Computations. The

Journal of Supercomputing, 34(2):181–199, November 2005.

[109] M. M. Mathis and D. K. Kerbyson. Performance Modeling of Unstruc-

tured Mesh Particle Transport Computations. In Proceedings of the 18th

International Parallel and Distributed Processing Symposium, IPDPS’04,

pages 245–252, Santa Fe, New Mexico USA, April 2004. IEEE, IEEE

Computer Society, Los Alamitos, CA, USA.

[110] J. D. McCalpin. Memory bandwidth and machine balance in current high

performance computers. IEEE Computer Society Technical Commitee on

Computer Architecture (TCCA) NewsLetter, pages 19–25, December 1995.

[111] J. D. McCalpin. Stream: Sustainable memory bandwidth in high perfor-

mance computers. http://www.cs.virginia.edu/stream/, 1995.

[112] J. D. McCalpin. Preventing FP Overcounts for AVX Instructions

on Sandy Bridge. https://software.intel.com/en-us/forums/

software-tuning-performance-optimization-platform-monitoring/

topic/564455, Accessed August 2016.

237

http://www.cs.virginia.edu/stream/
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/564455
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/564455
https://software.intel.com/en-us/forums/software-tuning-performance-optimization-platform-monitoring/topic/564455

BIBLIOGRAPHY

[113] S. A. McKee. Reflections on the Memory Wall. In Proceedings of the

First Conference on Computing Frontiers, CF’04, pages 162–, Ischia, Italy,

April 2004. ACM, New York, NY, USA.

[114] K. S. McKinley, S. Carr, and C.-W. Tseng. Improving data locality with

loop transformations. ACM transactions on Programming Languages and

Systems (TOPLAS), 18(4):424–453, July 1996.

[115] V. E. McZgee and W. T. Carleton. Piecewise Regression. Journal of the

American Statistical Association, 65(331):1109–1124, September 1970.

[116] R. M. Metcalfe and D. R. Boggs. Ethernet: Distributed Packet Switching

for Local Computer Networks. Communications of the ACM, 19(7):395–

404, July 1976.

[117] M. K. Molloy. Performance Analysis Using Stochastic Petri Nets. IEEE

transactions on Computers, C-31(9):913–917, September 1982.

[118] G. Moore. Cramming more components onto integrated circuits. Elec-

tronics, 38(8):114 ff., April 1965.

[119] C. Moritz and M. Frank. Logpg: Modeling network contention in message-

passing programs. IEEE Transactions on Parallel and Distributed Sys-

tems, 12(4):404–415, April 2001.

[120] P. J. Mucci. Llcbench - low level architectural characterization benchmark

suite. http://icl.cs.utk.edu/llcbench, Accessed August 2016.

[121] P. J. Mucci, K. London, and J. Thurman. The cachebench report, Novem-

ber 1998.

[122] G. R. Mudalige, M. B. Giles, C. Bertolli, and P. H. Kelly. Predictive

Modeling and Analysis of OP2 on Distributed Memory GPU Clusters.

40(2):61–67, September 2012.

[123] G. R. Mudalige, S. A. Jarvis, D. P. Spooner, and G. R. Nudd. Predic-

tive Performance Analysis of a Parallel Pipelined Synchronous Wavefront

Application for Commodity Processor Cluster Systems. In Proceedings of

the 2006 IEEE International Conference on Cluster Computing, CLUS-

TER’06, pages 1–12, Barcelona, Spain, September 2006. IEEE Computer

Society, Los Alaminos, CA, USA, IEEE.

[124] G. R. Mudalige, M. K. Vernon, and S. A. Jarvis. A Plug-and-Play Model

for Evaluating Wavefront Computations on Parallel Architectures. In Pro-

ceedings of the 22nd IEEE International Symposium on Parallel and Dis-

238

http://icl.cs.utk.edu/llcbench

BIBLIOGRAPHY

tributed Processing, IPDPS’08, pages 1–14, Miami, Florida, USA, April

2008. IEEE Computer Society, Los Alaminos, CA, USA, IEEE.

[125] A. Munshi. The OpenCL Specification. In Proceedings of the 2009 IEEE

Hot Chips 21 Symposium, HCS’09, pages 1–314, Stanford, CA, USA, Au-

gust 2009. IEEE Press, Piscataway, NJ, USA.

[126] R. C. Murphy and P. M. Kogge. On the Memory Access Patterns of

Supercomputer Applications: Benchmark Selection and Its Implications.

IEEE Transactions on Computers, 56(7):937–945, July 2007.

[127] N. A. G. (NAG). How to Make Best Use of the AMD Interlagos Pro-

cessor. https://www.nag.co.uk/market/dcse_reports/interlagos_

whitepaper.pdf, Accessed 2016.

[128] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach.

VAMPIR: Visualization and Analysis of MPI Resources. Supercomputer,

12(1):69–80, January 1996.

[129] Netlib. SPOOLES 2.2 : SParse Object Oriented Linear Equations

Solver. http://www.netlib.org/linalg/spooles/spooles.2.2.html,

Accessed July, 2013.

[130] B. Nichols, D. Buttlar, and J. Farrell. Pthreads programming: A POSIX

standard for better multiprocessing. O’Reilly Media, Inc., Sebastopol, CA,

USA, 1996.

[131] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable Parallel Pro-

gramming with CUDA. Queue, 6(2):40–53, March 2008.

[132] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S. C. Perry, J. S. Harper,

and D. V. Wilcox. Pace - a toolset for the performance prediction of par-

allel and distributed systems. International Journal of High Performance

Computing Applications, 14(3):228–251, August 2000.

[133] R. W. Numrich and J. Reid. Co-array Fortran for Parallel Programming.

SIGPLAN Fortran Forum, 17(2):1–31, August 1998.

[134] NVIDIA. CUDA Parallel Computing — What is CUDA? — NVIDIA UK.

http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.

html, Accessed September, 2016.

[135] U. of Edinburgh HPcx Ltd. What is HECToR and why is it special?

http://www.hector.ac.uk/abouthector/hectorbasics, Accessed July,

2013.

239

https://www.nag.co.uk/market/dcse_reports/interlagos_whitepaper.pdf
https://www.nag.co.uk/market/dcse_reports/interlagos_whitepaper.pdf
http://www.netlib.org/linalg/spooles/spooles.2.2.html
http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html
http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html
http://www.hector.ac.uk/abouthector/hectorbasics

BIBLIOGRAPHY

[136] K. Olukotun and L. Hammond. The Future of Microprocessors. Queue,

3(7):26–29, September 2005.

[137] OpenACC. Openacc home. www.openacc-standard.org, Accessed Au-

gust 2016.

[138] PAPI. Counting floating point operations on intel sandy bridge

and ivy bridge. http://icl.cs.utk.edu/projects/wiki/PAPITopics:

SAndyFlops, Accessed August 2016.

[139] S. J. Pennycook, C. J. Hughes, M. Smelyanskiy, and S. A. Jarvis. Explor-

ing SIMD for Molecular Dynamics, Using Intel R© Xeon R© Processors and

Intel R© Xeon Phi Coprocessors. In Proceedings of the 27th IEEE Inter-

national Parallel & Distributed Processing Symposium, IPDPS’13, pages

1085–1097. IEEE Computer Society, Los Alaminos, CA, USA, IEEE, May

2013.

[140] F. Petrini, G. Fossum, J. Fernandez, A. L. Varbanescu, M. Kistler,

and M.Perrone. Multicore Surprises: Lessons Learned from Optimizing

Sweep3D on the Cell Broadband Engine. In Proceedigns of the 2007 IEEE

International Parallel and Distributed Processing Symposium, IPDPS’07,

pages 1–10, California, USA, March 2007. IEEE Press, Piscataway, NJ,

USA.

[141] F. Petrini, D. J. Kerbyson, and S. Pakin. The Case of the Missing Su-

percomputer Performance: Achieving Optimal Performance on the 8,192

Processors of ASCI Q. In Proceedings of the 2003 ACM/IEEE Conference

on Supercomputing, SC’03, pages 55:1–55:17, Phoenix, AZ, USA, Novem-

ber 2003. ACM, New York, NY, USA.

[142] V. Pillet, J. Labarta, T. Cortes, and S. Girona. Paraver: A Tool to Vi-

sualize and Analyze Parallel Code. In Proceedings of WoTUG-18: Trans-

puter and occam Developments, WoTUG-18, pages 17–31, Manchester,

UK, March 1995. IOs Press, Amsterdam, Netherlands.

[143] S. Potluri, P. Lai, K. A. Tomko, S. Sur, Y. Cui, M. Tatineni, K. W.

Schulz, W. L. Barth, A. Majumdar, and D. K. Panda. Quantifying Per-

formance Benefits of Overlap Using MPI-2 in a Seismic Modeling Appli-

cation. In Proceedings of the 24th International Conference on Supercom-

puting (ICS), ICS’10, pages 17–25, Tsukuba, Ibaraki, Japan, June 2010.

ACM, New York, NY, USA.

[144] S. Prakash and R. L. Bagrodia. MPI-SIM: Using Parallel Simulation to

Evaluate MPI Programs. In Proceedings of the 30th Conference on Winter

240

www.openacc-standard.org
http://icl.cs.utk.edu/projects/wiki/PAPITopics:SAndyFlops
http://icl.cs.utk.edu/projects/wiki/PAPITopics:SAndyFlops

BIBLIOGRAPHY

Simulation, WSC’98, pages 467–474, Washington, D.C, USA, December

1998. IEEE, IEEE Computer Society, Los Alamitos, CA, USA.

[145] S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov,

M. R. Shirts, J. C. Smith, P. M. Kasson, D. van der Spoel, B. Hess,

and E. Lindahl. GROMACS 4.5: A High-Throughput and Highly Parallel

Open Source Molecular Simulation Toolkit. Bioinformatics, 29(7):845–

854, April 2013.

[146] M. J. Puckelwartz, L. L. Pesce, V. Nelakuditi, L. Dellefave-Castillo, J. R.

Golbus, S. M. Day, T. P. Cappola, G. W. Dorn II, I. T. Foster, and

E. M. McNally. Supercomputing for the Parallelization of Whole Genome

Analysis. Bioinformatics, 30(11):1508–1513, June 2014.

[147] R. Rabenseifner, G. Hager, and G. Jost. Hybrid MPI/OpenMP Parallel

Programming on Clusters of Multi-Core SMP Nodes. In Proceedings of

the 17th Euromicro International Conference on Parallel, Distributed and

Network-Based Processing, PDP’09, pages 427–436, Weimar, Germany,

February 2009. IEEE Computer Society, Los Alamitos, CA, USA, IEEE.

[148] C. V. Ramamoorthy and G. S. Ho. Performance Evaluation of Asyn-

chronous Concurrent Systems Using Petri Nets. IEEE Transactions on

Software Engineering, SE-6(5):440–449, September 1980.

[149] M. J. Rashti and A. Afsahi. Assessing the Ability of Computation/Com-

munication Overlap and Communication Progress in Modern Intercon-

nects. In Proceedings of the 15th Annual IEEE Symposium on High-

Performance Interconnects, HOTI’07, pages 117–124, Stanford, CA, USA,

August 2007. IEEE, Computer Society, Los Alaminos, CA, USA, IEEE.

[150] B. R. Rau and J. A. Fisher. Instruction-Level Parallel Processing: History,

Overview, and Perspective. The Journal of Supercomputing, 7(1):9–50,

May 1993.

[151] R. Reussner, P. Sanders, L. Prechelt, and M. Müller. SKaMPI: A De-

tailed, Accurate MPI Benchmark. In Recent Advances in Parallel Virtual

Machine and Message Passing Interface, volume 1497 of Lecture Notes in

Computer Science, pages 52–59. Springer, Berlin/Heidelberg, Germany,

1998.

[152] Y. Saad and M. H. Schultz. Topological Properties of Hypercubes. IEEE

Transactions on Computers, 37(7):867–872, July 1988.

[153] J. C. Sancho, K. J. Barker, D. J. Kerbyson, and K. Davis. Quantifying

the Potential Benefit of Overlapping Communication and Computation

241

BIBLIOGRAPHY

in Large-Scale Scientific Applications. In Proceedings of the ACM/IEEE

2006 Conference on High Performance Networking and Computing, SC’06,

page 17, Tampa, Florida, USA, November 2006. IEEE Computer Society,

Los Alaminos, CA, USA, IEEE.

[154] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,

S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,

T. Juan, and P. Hanrahan. Larrabee: A many-core x86 architecture for

visual computing. volume 27, pages 18:1–18:15. ACM, New York, NY,

USA, August 2008.

[155] J. Shalf, S. Dosanjh, and J. Morrison. Exascale Computing Technology

Challenges. In High Performance Computing for Computational Science

VECPAR 2010, volume 6449 of Lecture Notes in Computer Science, pages

1–25. Springer, Berlin/Heidelberg, Germany, 2011.

[156] H. Shan and J. Shalf. Using IOR to Analyze the I/O Performance for HPC

Platforms. Technical report, Lawrence Berkley National Laboratory, 2007.

[157] S. S. Shende and A. D. Malony. The TAU Parallel Performance Sys-

tem. International Journal of High Performance Computing Applications,

20(2):287–311, May 2006.

[158] D. Spooner, S. Jarvis, J. Cao, S. Saini, and G. Nudd. Local Grid Schedul-

ing Techniques using Performance Prediction. IEE Proceedings — Com-

puters and Digital Techniques, 150(2):87–96, March 2003.

[159] T. L. Sterling, D. J. Becker, D. Savarese, J. E. Dorband, U. A. Ranawake,

and C. V. Packer. BEOWULF: A Parallel Workstation For Scientific

Computation. In Proceedings of the 24th International Conference on

Parallel Processing, ICPP’95, pages 11–14, Urbana-Champain, Illinois,

USA, August 1995. CRC Press, Boca Raton, FL, USA.

[160] J. E. Stone, D. Gohara, and G. Shi. Opencl: A parallel programming

standard for heterogeneous computing systems. Computing in Science &

Engineering, 12(3):66–73, May–June 2010.

[161] E. Strohmaier, J. Dongarra, H. Simon, and M. Meuer. Top500 supercom-

puter sites. https://www.top500.org/, Accessed August 2016.

[162] V. Subotic, J. C. Sancho, J. Labarta, and M. Valero. The Impact of Ap-

plication’s Micro-Imbalance on the Communication-Computation Over-

lap. In Proceedings of the 19th International Euromicro Conference on

242

https://www.top500.org/

BIBLIOGRAPHY

Parallel, Distributed and Network-Based Processing, PDP’11, pages 191–

198, Ayia Napa, Cyprus, February 2011. IEEE Computer Society,Los

Alaminos, CA, USA, IEEE.

[163] D. Sundaram-Stukel and M. K. Vernon. Predictive Analysis of a Wave-

front Application using LogGP. In Proceedings of the 1999 ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Programming,

PPOPP’99, pages 141–150, Atlanta, Georgia, USA, May 1999. ACM, New

York, NY, USA.

[164] H. Sutter. The free lunch is over: A fundamental turn toward concurrency

in software. Dr. Dobb’s Journal, 30(3):202–210, March 2005.

[165] H. Sutter and J. Larus. Software and the Concurrency Revolution. Queue,

3(7):54–62, September 2005.

[166] V. Taylor, X. Wu, and R. Stevens. Prophesy: An Infrastructure for Per-

formance Analysis and Modeling of Parallel and Grid Applications. ACM

SIGMETRICS Performance Evaluation Review, 30(4):13–18, March 2003.

[167] S. Team. Skampi webpage. http://liinwww.ira.uka.de/~skampi/, Ac-

cessed August 2016.

[168] L. G. Valiant. A Bridging Model for Parallel Computation. Communica-

tions of the ACM, 33(8):103–111, August 1990.

[169] J. Weinberg, M. O. McCracken, E. Strohmaier, and A. Snavely. Quan-

tifying Locality In The Memory Access Patterns of HPC Applications.

In Proceedings of the 2005 ACM/IEEE Conference on High Performance

Networking and Computing, SC’05, pages 50–, Seattle, WA, USA, Novem-

ber 2005. IEEE Computer Society, Los Alaminos, CA, USA, IEEE.

[170] J. White III and S. Bova. Where’s the overlap? an analysis of popular

mpi implementations. Number CEWES MSRC/PET TR/99-09, 1999.

[171] J. B. White III and J. J. Dongarra. Overlapping Computation and Com-

munication for Advection on Hybrid Parallel Computers. In Proceedings

of the 25th IEEE International Symposium on Parallel and Distributed

Processing, IPDPS’11, pages 59–67, Anchorage, Alaska, May 2011. IEEE

Computer Society, Los Alaminos, CA, USA, IEEE.

[172] M. V. Wilkes. The Memory Wall and the CMOS End-Point. SIGARCH

Computer Architecture News, 23(4):4–6, September 1995.

243

http://liinwww.ira.uka.de/~skampi/

BIBLIOGRAPHY

[173] S. Williams, A. Waterman, and D. Patterson. Roofline: An insightful

visual performance model for multicore architectures. Communications of

the ACM, 52(4):65–76, April 2009.

[174] M. E. Wolf. Improving Locality and Parallelism in Nested Loops. PhD

thesis, Stanford University, 1992.

[175] M. E. Wolf, D. E. Maydan, and D.-K. Chen. Combining Loop Transfor-

mations Considering Caches and Scheduling. In Proceedings of the 29th

Annual ACM/IEEE International Symposium on Microarchitectures, MI-

CRO 29, pages 274–286, Paris, France, December 1996. IEEE, IEEE Com-

puter Society, Los Alamitos, CA, USA.

[176] S. A. Wright, S. D. Hammond, S. J. Pennycook, I. Miller, J. A. Herd-

man, and S. A. Jarvis. LDPLFS: Improving I/O Performance without

Application Modification. In Proceedings of the 2012 IEEE 26th Inter-

national Parallel and Distributed Processing Symposium Workshops PhD

Forum, IPDPSW’12, pages 1352–1359, Shanghai, China, May 2012. IEEE

Computer Society, Los Alamitos, CA, USA, IEEE.

[177] S. A. Wright and S. A. Jarvis. Quantifying the Effects of Contention

on Parallel File Systems. In Proceedings of the 2015 IEEE International

Parallel and Distributed Processing Symposium Workshop, IPDPSW’15,

pages 932–940, Hyderabad, India, May 2015. IEEE Computer Society, Los

Alamitos, CA, USA, IEEE.

[178] W. A. Wulf and S. A. McKee. Hitting the Memory Wall: Implications of

the Obvious. SIGARCH Computer Architecture News, 23(1):20–24, March

1995.

244

APPENDIX A
Figure Data

Figure Machine Compiler MPI Data Tables

1.1 N/A N/A N/A A.3
3.1(a) Minerva Intel v12.0 N/A A.7
3.1(b) Minerva Intel v12.0 N/A A.4
3.2(a) Minerva Intel v12.0 OpenMPI v1.4.3 A.6
3.2(b) Minerva Intel v12.0 OpenMPI v1.4.3 A.5

3.3 HECToR PGI v12.10 Cray MPI v5.6.1 A.8
3.4(a) HECToR PGI v12.10 Cray MPI v5.6.1 A.10
3.4(b) HECToR PGI v12.10 Cray MPI v5.6.1 A.9

3.5 DawnDev IBM XL v11.0 IBM BlueGene MPI A.12
3.6(a) Hera PGI v8.0 OpenMPI v1.3.2 A.11
3.6(b) Hera PGI v8.0 OpenMPI v1.3.2 A.11

4.3 Minerva Intel v12.0 OpenMPI v1.4.3 A.13
4.4 Minerva Intel v12.0 OpenMPI v1.4.3 A.14
4.5 Minerva Intel v12.0 OpenMPI v1.4.3 A.15–A.17
4.6 Minerva Intel v12.0 OpenMPI v1.4.3 A.18

4.7(a) DawnDev IBM XL v11.0 IBM BlueGene MPI A.19
4.7(b) Hera PGI v8.0 OpenMPI v1.3.2 A.19

4.8 Minerva Intel v12.0 OpenMPI v1.4.3 A.20
4.9 Minerva Intel v12.0 OpenMPI v1.4.3 A.21–A.23
5.1 Minerva Intel v12.0 OpenMPI v1.4.3 —
5.2 Minerva Intel v12.0 OpenMPI v1.4.4 A.24
5.3 Minerva Intel v12.0 OpenMPI v1.4.4 A.24
5.4 Minerva Intel v12.0 OpenMPI v1.4.3 —
5.5 Minerva Intel v12.0 OpenMPI v1.4.3 —
5.6 Minerva Intel v12.0 OpenMPI v1.4.3 —
5.7 Minerva Intel v12.0 OpenMPI v1.4.3 —

6.1
Minerva/

Intel v12.0 N/A A.27–A.32Intel X3430

6.2
Minerva/

Intel v12.0 N/A A.27–A.32Intel X3430

6.3
Minerva/

Intel v12.0 OpenMPI v1.4.3 A.27–A.32, A.39–A.44,Intel X3430
A.45–A.50Intel X3430

6.4 Minerva Intel v12.0 OpenMPI v1.4.3 A.51–A.52

6.5
Minerva/

Intel v12.0 N/A A.53–A.59Intel X3430
6.6 Minerva Intel v12.0 OpenMPI v1.4.3 A.52, A.60
6.7 Minerva Intel v12.0 OpenMPI v1.4.3 A.61, A.62
6.8 Minerva Intel v12.0 OpenMPI-1.4.4 A.63
6.9 Minerva Intel v12.0 OpenMPI-1.4.4 A.64
6.11 Minerva Intel v12.0 OpenMPI-1.4.4 A.65, A.66
6.12 Minerva Intel v12.0 OpenMPI-1.4.4 A.67–A.72
7.3 HECToR PGI v12.10 Cray MPI v5.6.1 A.73
7.4 HECToR PGI v12.10 Cray MPI v5.6.1 A.74
7.5 HECToR PGI v12.10 Cray MPI v5.6.1 A.75
7.6 HECToR PGI v12.10 Cray MPI v5.6.1 A.76

7.7(a) HECToR PGI v12.10 Cray MPI v5.6.1 A.77
7.7(b) HECToR PGI v12.10 Cray MPI v5.6.1 A.77

7.8 HECToR PGI v12.10 Cray MPI v5.6.1 A.78
7.9 HECToR PGI v12.10 Cray MPI v5.6.1 A.79, A.80
7.10 HECToR PGI v12.10 Cray MPI v5.6.1 A.81, A.82

Table A.1: Experimental Parameters by Figure

245

Figure Data

Figure Machine Compiler MPI

3.2 Minerva Intel v12.0 OpenMPI v1.4.3
3.4 DawnDev IBM XL v11.0 IBM BlueGene MPI
3.5 Hera PGI v8.0 OpenMPI v1.3.2
4.3 Minerva Intel v12.0 N/A
4.4 Minerva Intel v12.0 OpenMPI v1.4.3
4.6 DawnDev IBM XL v11.0 IBM BlueGene MPI
4.6 Hera PGI v8.0 OpenMPI v1.3.2
4.8 Minerva Intel v12.0 OpenMPI v1.4.3
4.8 Minerva Intel v12.0 OpenMPI v1.4.3
5.7 Minerva Intel v12.0 OpenMPI v1.4.3
5.9 Minerva Intel v12.0 OpenMPI v1.4.3
5.10 DawnDev IBM XL v11.0 IBM BlueGene MPI
5.10 Hera PGI v8.0 OpenMPI v1.3.2
5.11 DawnDev IBM XL v11.0 IBM BlueGene MPI
5.11 Hera PGI v8.0 OpenMPI v1.3.2
5.12 Minerva Intel v12.0 OpenMPI v1.4.3
5.13 Minerva Intel v12.0 OpenMPI v1.4.3
5.14 Minerva Intel v12.0 OpenMPI v1.4.3
6.4 Minerva Intel v12.0 N/A
6.5 X3430 Intel v12.0 N/A
6.6 Minerva Intel v12.0 OpenMPI v1.4.3
7.1 HECToR PGI v12.10 Cray MPI v5.6.1
7.2 HECToR PGI v12.10 Cray MPI v5.6.1
7.1 HECToR PGI v12.10 Cray MPI v5.6.1
7.2 HECToR PGI v12.10 Cray MPI v5.6.1

Table A.2: Experimental Parameters by Table

246

Figure Data

Date Cores
Performance (GFLOP/s)

Efficiency(%)
Linpack Theoretical

1993-06-01 1024 0.06 0.13 45.57
1993-11-01 140 0.12 0.24 52.59
1994-06-01 3680 0.14 0.18 77.93
1994-11-01 140 0.17 0.24 72.09
1995-06-01 140 0.17 0.24 72.09
1995-11-01 140 0.17 0.24 72.09
1996-06-01 1024 0.22 0.31 71.74
1996-11-01 2048 0.37 0.61 59.93
1997-06-01 7264 1.07 1.45 73.50
1997-11-01 9152 1.34 1.83 73.10
1998-06-01 9152 1.34 1.83 73.10
1998-11-01 9152 1.34 1.83 73.10
1999-06-01 9472 2.12 3.15 67.25
1999-11-01 9632 2.38 3.21 74.18
2000-06-01 9632 2.38 3.21 74.18
2000-11-01 8192 4.94 12.29 40.19
2001-06-01 8192 7.23 12.29 58.81
2001-11-01 8192 7.23 12.29 58.81
2002-06-01 5120 35.86 40.96 87.55
2002-11-01 5120 35.86 40.96 87.55
2003-06-01 5120 35.86 40.96 87.55
2003-11-01 5120 35.86 40.96 87.55
2004-06-01 5120 35.86 40.96 87.55
2004-11-01 32 768 70.72 91.75 77.08
2005-06-01 65 536 136.80 183.50 74.55
2005-11-01 131 072 280.60 367.00 76.46
2006-06-01 131 072 280.60 367.00 76.46
2006-11-01 131 072 280.60 367.00 76.46
2007-06-01 131 072 280.60 367.00 76.46
2007-11-01 212 992 478.20 596.40 80.18
2008-06-01 122 400 1026.00 1375.80 74.57
2008-11-01 129 600 1105.00 1456.70 75.86
2009-06-01 129 600 1105.00 1456.70 75.86
2009-11-01 224 162 1759.00 2331.00 75.46
2010-06-01 224 162 1759.00 2331.00 75.46
2010-11-01 186 368 2566.00 4701.00 54.58
2011-06-01 548 352 8162.00 8773.60 93.03
2011-11-01 705 024 10 510.00 11 280.40 93.17
2012-06-01 1 572 864 16 324.80 20 132.70 81.09
2012-11-01 560 640 17 590.00 27 112.50 64.88
2013-06-01 3 120 000 33 862.70 54 902.40 61.68
2013-11-01 3 120 000 33 862.70 54 902.40 61.68
2014-06-01 3 120 000 33 862.70 54 902.40 61.68
2014-11-01 3 120 000 33 862.70 54 902.40 61.68
2015-06-01 3 120 000 33 862.70 54 902.40 61.68
2015-11-01 3 120 000 33 862.70 54 902.40 61.68
2016-06-01 10 649 600 93 014.60 125 435.90 74.15

Table A.3: Top 500 Max/Peak Performance, June 1993 - June 2016 - Data for
Figure 1.1

247

Figure Data

PEs
Bandwidth (GB/s)

Copy Scale Add Triad

1 10.05 10.55 11.81 11.99
2 15.28 15.70 18.18 18.52
3 23.41 22.47 25.92 26.31
4 31.59 28.54 37.46 32.10
5 28.01 27.18 32.19 31.76
6 24.62 26.32 28.92 31.00
7 29.93 30.63 34.90 35.03
8 33.85 31.00 39.82 34.96
9 30.13 27.41 34.98 33.63

10 29.18 29.45 35.35 34.49
11 31.85 27.20 34.52 36.04
12 31.63 27.78 29.70 30.15

Table A.4: STREAM – Data for
Figure 3.1(b)

PEs Time (s)

2 9.80E-7
4 1.94E-6
8 3.96E-6

16 5.90E-6
32 9.22E-6

128 1.52E-5

Table A.5: IMB AllReduce Time, 4
Bytes – Data for Figure 3.2(b)

248

Figure Data

Message
Size
(Bytes)

Time (s) Message
Size (Bytes)

Time (s)

Intra-Node Inter-Node Intra-Node Inter-Node

1 4.70E-07 1.76E-06 241664 3.29E-05 1.12E-04
2 4.80E-07 1.74E-06 245760 3.37E-05 1.13E-04
4 4.70E-07 1.78E-06 249856 3.40E-05 1.13E-04
8 4.80E-07 1.76E-06 253952 3.47E-05 1.14E-04

16 4.60E-07 2.01E-06 258048 3.53E-05 1.14E-04
32 4.20E-07 2.01E-06 262144 3.55E-05 1.16E-04
64 6.20E-07 2.01E-06 266240 3.64E-05 1.18E-04

128 6.50E-07 2.04E-06 270336 3.66E-05 1.20E-04
256 6.40E-07 2.15E-06 274432 3.72E-05 1.21E-04
512 6.60E-07 2.48E-06 278528 3.76E-05 1.22E-04

1024 7.90E-07 2.82E-06 282624 3.81E-05 1.23E-04
2048 1.01E-06 3.64E-06 286720 3.87E-05 1.25E-04
4096 1.33E-06 4.68E-06 290816 3.92E-05 1.25E-04
8192 2.02E-06 6.69E-06 294912 3.96E-05 1.27E-04

12 288 2.66E-06 8.52E-06 299008 4.01E-05 1.28E-04
16 384 4.49E-06 1.04E-05 303104 4.08E-05 1.30E-04
20 480 5.07E-06 1.21E-05 307200 4.11E-05 1.31E-04
24 576 5.50E-06 1.39E-05 311296 4.14E-05 1.33E-04
28 672 5.91E-06 1.58E-05 315392 4.20E-05 1.34E-04
32 768 6.45E-06 1.75E-05 319488 4.25E-05 1.34E-04
36 864 6.75E-06 2.71E-05 323584 4.30E-05 1.36E-04
40 960 7.30E-06 2.94E-05 327680 4.38E-05 1.43E-04
45 056 7.72E-06 3.16E-05 331776 4.43E-05 1.42E-04
49 152 8.16E-06 3.39E-05 335872 4.47E-05 1.45E-04
53 248 8.67E-06 3.60E-05 339968 4.51E-05 1.45E-04
57 344 9.15E-06 3.83E-05 344064 4.59E-05 1.46E-04
61 440 9.42E-06 4.07E-05 348160 4.53E-05 1.46E-04
65 536 9.98E-06 4.96E-05 352256 4.28E-05 1.47E-04
69 632 1.05E-05 5.15E-05 356352 4.31E-05 1.47E-04
73 728 1.08E-05 5.39E-05 360448 4.37E-05 1.48E-04
77 824 1.14E-05 5.57E-05 364544 4.42E-05 1.48E-04
81 920 1.20E-05 5.79E-05 368640 4.48E-05 1.51E-04
86 016 1.23E-05 6.01E-05 372736 4.48E-05 1.52E-04
90 112 1.30E-05 6.00E-05 376832 4.55E-05 1.54E-04
94 208 1.34E-05 6.18E-05 380928 4.55E-05 1.54E-04
98 304 1.39E-05 6.36E-05 385024 4.63E-05 1.56E-04

102 400 1.45E-05 6.56E-05 389120 4.67E-05 1.56E-04
106 496 1.51E-05 6.75E-05 393216 4.73E-05 1.57E-04
110 592 1.53E-05 6.95E-05 397312 4.78E-05 1.58E-04
114 688 1.60E-05 7.14E-05 401408 4.81E-05 1.59E-04
118 784 1.66E-05 7.35E-05 405504 4.85E-05 1.60E-04
122 880 1.71E-05 7.60E-05 409600 4.90E-05 1.61E-04
126 976 1.79E-05 7.78E-05 413696 4.94E-05 1.62E-04
131 072 1.83E-05 7.83E-05 417792 5.00E-05 1.64E-04
135 168 1.92E-05 7.73E-05 421888 5.03E-05 1.65E-04
139 264 2.00E-05 7.85E-05 425984 5.09E-05 1.66E-04
143 360 2.03E-05 7.97E-05 430080 5.12E-05 1.67E-04
147 456 2.10E-05 8.09E-05 434176 5.16E-05 1.69E-04
151 552 2.12E-05 8.21E-05 438272 5.22E-05 1.70E-04
155 648 2.18E-05 8.33E-05 442368 5.26E-05 1.71E-04
159 744 2.23E-05 8.45E-05 446464 5.30E-05 1.72E-04
163 840 2.30E-05 8.60E-05 450560 5.35E-05 1.74E-04
167 936 2.32E-05 8.74E-05 454656 5.38E-05 1.75E-04
172 032 2.42E-05 8.82E-05 458752 5.44E-05 1.86E-04
176 128 2.44E-05 8.98E-05 462848 5.46E-05 1.87E-04
180 224 2.54E-05 9.10E-05 466944 5.53E-05 1.88E-04
184 320 2.54E-05 9.21E-05 471040 5.56E-05 1.89E-04
188 416 2.64E-05 9.35E-05 475136 5.62E-05 1.90E-04
192 512 2.64E-05 9.48E-05 479232 5.66E-05 1.91E-04
196 608 2.76E-05 1.03E-04 483328 5.71E-05 1.92E-04
200 704 2.76E-05 1.04E-04 487424 5.75E-05 1.92E-04
204 800 2.84E-05 1.05E-04 491520 5.79E-05 1.92E-04
208 896 2.87E-05 1.05E-04 495616 5.83E-05 1.94E-04
212 992 2.93E-05 1.06E-04 499712 5.87E-05 1.94E-04
217 088 2.97E-05 1.06E-04 503808 5.91E-05 1.97E-04
221 184 3.03E-05 1.06E-04 507904 5.97E-05 1.98E-04
225 280 3.07E-05 1.06E-04 512000 6.00E-05 1.99E-04
229 376 3.16E-05 1.06E-04 516096 6.04E-05 2.02E-04
233 472 3.19E-05 1.09E-04 520192 6.09E-05 2.02E-04
237 568 3.26E-05 1.11E-04 524288 6.15E-05 2.02E-04

Table A.6: IMB PingPong Intra/Inter-Node — Figure 3.2(a)

249

Figure Data

Bytes
Bandwidth (GB/s)

Read Write RWM MemSet MemCopy

256 20.90 35.52 54.65 19.73 46.04
336 20.87 40.00 54.85 25.94 54.85
424 19.86 36.71 49.44 31.06 62.12
512 22.50 45.71 63.60 33.25 63.72
680 22.33 41.33 56.31 34.69 71.96
848 22.64 44.05 64.53 37.56 74.55

1024 22.66 45.71 68.03 37.51 72.69
1360 22.72 44.66 67.56 40.06 80.12
1704 22.75 44.64 65.34 40.57 82.52
2048 22.76 45.71 70.40 41.21 82.69
2728 22.79 45.04 67.51 42.36 85.65
3408 22.80 45.08 70.81 42.92 86.55
4096 22.81 45.71 71.79 42.79 86.83
5456 22.33 43.42 59.04 44.16 88.32
6824 22.36 43.42 58.89 44.31 89.03
8192 22.50 44.16 59.70 44.20 88.68

10 920 22.54 44.25 59.64 43.39 87.02
13 648 22.64 44.77 60.17 43.91 65.84
16 384 22.68 44.92 60.31 44.03 60.99
21 840 22.72 45.11 62.24 44.57 34.78
27 304 22.73 45.11 60.96 44.75 34.41
32 768 22.23 40.73 60.51 34.47 34.34
43 688 15.61 27.82 43.50 27.89 34.60
54 608 15.64 27.56 43.41 27.74 35.18
65 536 15.64 27.58 43.42 27.62 34.44
87 376 15.67 27.61 43.48 27.10 35.27

109 224 15.65 27.41 43.48 27.11 34.49
131 072 15.71 27.30 43.22 27.06 31.91
174 760 15.66 26.97 39.25 27.06 28.38
218 448 15.18 26.61 36.16 26.73 23.33
262 144 14.96 24.44 34.08 25.28 22.18
349 520 14.58 20.98 30.33 22.31 22.08
436 904 14.49 18.94 28.67 18.96 22.15
524 288 14.43 17.77 27.26 17.23 22.17
699 048 14.43 16.83 26.63 16.76 22.06
873 808 14.45 16.77 26.66 16.77 22.15

1 048 576 14.47 16.77 26.66 16.77 22.19
1 398 096 14.50 16.78 26.68 16.77 22.17
1 747 624 14.51 16.78 26.68 16.78 22.19
2 097 152 14.53 16.78 26.69 16.78 22.19
2 796 200 14.54 16.77 26.70 16.78 22.20
3 495 248 14.55 16.78 26.71 16.78 22.18
4 194 304 14.56 16.78 26.72 16.78 22.20
5 592 400 14.56 16.78 26.72 16.78 20.70
6 990 504 14.57 16.78 26.72 16.78 13.40
8 388 608 14.57 16.78 26.69 16.78 10.30

11 184 808 13.87 14.86 24.25 14.68 9.15
13 981 008 11.68 9.98 18.44 7.30 8.80
16 777 216 10.45 8.17 16.48 7.30 8.94
22 369 616 10.10 7.61 15.01 7.30 8.89
27 962 024 9.94 7.48 14.63 7.31 8.70
33 554 432 9.96 7.32 14.59 7.30 8.77
44 739 240 9.96 7.16 14.64 7.23 8.73
55 924 048 9.96 7.26 14.42 7.30 8.83
67 108 864 9.96 7.27 14.45 7.30 8.84
89 478 480 9.96 7.27 14.35 7.28 8.78

111 848 104 9.96 7.26 14.34 7.30 8.79
134 217 728 9.96 7.27 14.36 7.30 8.76
178 956 968 9.96 7.26 14.36 7.31 8.77
223 696 208 9.96 7.27 14.19 7.31 8.80
268 435 456 9.96 7.30 14.21 7.31 8.79
357 913 936 9.96 7.30 14.13 7.30 8.77
447 392 424 9.96 7.26 14.09 7.30 8.74
536 870 912 9.96 7.23 14.05 7.30 8.75

Table A.7: CacheBench – Data for Figure 3.1(a)

250

Figure Data

PEs
Bandwidth (GB/s)

Copy Scale Add Triad

1 11.80 5.56 6.16 5.79
2 12.27 6.79 7.55 7.45
3 14.45 8.04 8.89 8.92
4 16.16 9.06 9.87 9.94
5 15.92 9.40 9.81 9.86
6 16.27 9.94 10.04 10.09
7 16.42 10.03 9.94 10.09
8 16.52 9.91 9.77 9.91
9 18.87 11.37 11.07 11.36

10 21.29 12.73 12.18 12.51
11 23.64 14.17 13.47 13.93
12 26.06 15.47 14.32 14.87
13 29.01 17.26 15.54 16.19
14 32.24 19.55 17.06 17.35
15 34.95 21.78 18.57 19.04
16 36.89 24.47 20.14 20.44
17 40.01 27.56 21.52 21.48
18 42.06 31.07 23.25 21.99
19 44.57 35.36 25.37 22.94
20 47.49 40.32 27.94 25.71
21 49.52 45.96 31.46 28.32
22 52.35 51.06 34.88 31.97
23 52.89 59.20 40.93 38.77
24 53.41 66.20 49.13 48.27
25 53.24 72.18 59.27 64.04
26 53.15 79.53 71.57 72.90
27 54.25 87.56 82.50 85.86
28 52.87 92.96 93.40 99.95
29 54.84 98.92 105.59 108.03
30 56.52 104.86 113.25 116.89
31 56.72 110.42 120.77 122.73
32 58.75 113.98 130.20 129.52

Table A.8: STREAM – Data for
Figure 3.3

PEs Time (s)

2 1.20E-06
4 2.29E-06
8 3.89E-06

16 5.26E-06
32 6.65E-06
64 1.01E-05

128 1.94E-05
256 1.59E-05
512 3.00E-05

1024 3.58E-05
2048 3.83E-05
4096 1.20E-04
8192 9.84E-05

16 384 1.04E-04
32 768 7.10E-05
65 336 9.48E-05

Table A.9: IMB AllReduce, 8 Bytes
– Data for Figure 3.4(b)

251

Figure Data

Message
Size
(Bytes)

Time (s) Message
Size
(Bytes)

Time (s)

Intra-Node Inter-Node Intra-Node Inter-Node

1 2.80E-07 1.64E-06 241664 3.66E-05 5.24E-05
2 2.90E-07 1.68E-06 245760 3.72E-05 5.27E-05
4 2.90E-07 1.70E-06 249856 3.75E-05 5.39E-05
8 3.40E-07 1.67E-06 253952 3.84E-05 5.41E-05

16 3.50E-07 1.69E-06 258048 3.90E-05 5.54E-05
32 3.40E-07 1.69E-06 262144 3.93E-05 5.59E-05
64 3.50E-07 1.72E-06 266240 4.03E-05 5.74E-05

128 3.60E-07 1.80E-06 270336 4.64E-05 5.77E-05
256 4.10E-07 1.81E-06 274432 4.12E-05 5.88E-05
512 5.40E-07 1.97E-06 278528 4.22E-05 5.87E-05

1024 6.30E-07 2.20E-06 282624 4.28E-05 6.02E-05
2048 8.30E-07 2.65E-06 286720 4.31E-05 6.07E-05
4096 1.27E-06 3.44E-06 290816 4.39E-05 6.18E-05
8192 1.46E-06 8.67E-06 294912 4.44E-05 8.56E-05

12 288 2.19E-06 1.03E-05 299008 4.47E-05 6.39E-05
16 384 2.78E-06 1.06E-05 303104 4.59E-05 6.98E-05
20 480 3.42E-06 1.20E-05 307200 4.63E-05 8.11E-05
24 576 4.07E-06 1.23E-05 311296 4.64E-05 8.21E-05
28 672 4.66E-06 1.33E-05 315392 4.76E-05 6.72E-05
32 768 5.34E-06 1.55E-05 319488 4.83E-05 6.63E-05
36 864 5.89E-06 1.53E-05 323584 4.90E-05 7.02E-05
40 960 6.46E-06 1.62E-05 327680 4.93E-05 6.77E-05
45 056 7.15E-06 2.21E-05 331776 4.98E-05 6.88E-05
49 152 7.67E-06 1.92E-05 335872 5.19E-05 6.90E-05
53 248 8.31E-06 1.90E-05 339968 5.12E-05 1.11E-04
57 344 8.96E-06 2.20E-05 344064 5.19E-05 9.18E-05
61 440 9.47E-06 2.18E-05 348160 5.24E-05 7.37E-05
65 536 1.02E-05 2.17E-05 352256 5.38E-05 7.49E-05
69 632 1.09E-05 2.82E-05 356352 5.43E-05 7.75E-05
73 728 1.15E-05 2.75E-05 360448 5.45E-05 7.51E-05
77 824 1.21E-05 2.14E-05 364544 5.57E-05 7.61E-05
81 920 1.26E-05 2.94E-05 368640 5.58E-05 7.54E-05
86 016 1.33E-05 3.12E-05 372736 5.65E-05 7.79E-05
90 112 1.37E-05 2.41E-05 376832 5.71E-05 7.83E-05
94 208 1.45E-05 3.29E-05 380928 5.76E-05 9.40E-05
98 304 1.50E-05 3.42E-05 385024 5.89E-05 7.83E-05

102 400 1.57E-05 2.59E-05 389120 5.91E-05 8.00E-05
106 496 1.63E-05 3.77E-05 393216 6.15E-05 9.22E-05
110 592 1.69E-05 3.81E-05 397312 6.08E-05 1.35E-04
114 688 1.75E-05 2.83E-05 401408 6.25E-05 8.15E-05
118 784 1.81E-05 4.14E-05 405504 6.26E-05 8.27E-05
122 880 1.88E-05 5.17E-05 409600 6.29E-05 1.08E-04
126 976 2.04E-05 3.08E-05 413696 7.26E-05 8.36E-05
131 072 1.97E-05 4.32E-05 417792 6.55E-05 1.10E-04
135 168 2.07E-05 3.23E-05 421888 6.64E-05 8.43E-05
139 264 2.12E-05 3.28E-05 425984 7.65E-05 8.73E-05
143 360 2.17E-05 3.40E-05 430080 6.69E-05 8.71E-05
147 456 2.25E-05 3.52E-05 434176 6.94E-05 8.98E-05
151 552 2.29E-05 3.63E-05 438272 6.93E-05 8.65E-05
155 648 2.37E-05 3.61E-05 442368 7.02E-05 8.93E-05
159 744 2.44E-05 3.70E-05 446464 7.11E-05 8.85E-05
163 840 2.47E-05 3.76E-05 450560 7.01E-05 8.99E-05
167 936 2.54E-05 3.85E-05 454656 7.25E-05 8.92E-05
172 032 2.62E-05 3.88E-05 458752 7.27E-05 9.09E-05
176 128 2.67E-05 3.96E-05 462848 7.50E-05 9.12E-05
180 224 2.71E-05 4.05E-05 466944 8.01E-05 9.32E-05
184 320 2.80E-05 4.16E-05 471040 7.61E-05 9.17E-05
188 416 2.86E-05 4.20E-05 475136 7.50E-05 9.40E-05
192 512 2.88E-05 4.28E-05 479232 7.79E-05 9.19E-05
196 608 2.98E-05 4.34E-05 483328 7.96E-05 9.44E-05
200 704 3.05E-05 4.77E-05 487424 8.28E-05 9.38E-05
204 800 3.09E-05 8.70E-05 491520 8.31E-05 9.83E-05
208 896 3.13E-05 6.24E-05 495616 8.38E-05 9.80E-05
212 992 4.60E-05 5.04E-05 499712 8.49E-05 1.52E-04
217 088 3.25E-05 4.73E-05 503808 8.84E-05 9.78E-05
221 184 3.44E-05 4.93E-05 507904 8.78E-05 1.32E-04
225 280 3.40E-05 4.90E-05 512000 8.76E-05 1.27E-04
229 376 3.48E-05 4.98E-05 516096 9.07E-05 1.00E-04
233 472 3.51E-05 5.30E-05 520192 9.36E-05 1.21E-04
237 568 3.55E-05 5.18E-05 524288 9.46E-05 1.06E-04

Table A.10: IMB PingPong – Data for Figure 3.4(a)

252

Figure Data

Message
Size
(Bytes)

IMB (s) SKaMPI (s) Message
Size
(Bytes)

SKaMPI (s)

Intra-Node Inter-Node Inter-Node Inter-Node

16 1.41E-06 2.60E-06 9.10E-06 249 856 3.48E-04
32 1.52E-06 2.44E-06 9.10E-06 253 952 3.53E-04
64 1.54E-06 2.59E-06 9.10E-06 258 048 3.59E-04

128 1.62E-06 4.59E-06 1.20E-05 262 144 3.64E-04
256 1.83E-06 5.01E-06 1.24E-05 266 240 3.69E-04
512 2.27E-06 6.37E-06 1.41E-05 270 336 3.75E-04

1024 3.06E-06 1.23E-05 1.61E-05 274 432 3.80E-04
2048 4.54E-06 1.61E-05 2.16E-05 278 528 3.85E-04
3648 7.09E-06 1.61E-05 2.55E-05 280 576 3.87E-04
4096 7.07E-06 1.31E-05 2.68E-05 282 624 3.91E-04
8192 1.03E-05 1.94E-05 4.04E-05 286 720 3.96E-04

12 288 1.45E-05 3.26E-05 4.09E-05 290 816 4.01E-04
16 384 1.79E-05 2.97E-05 4.57E-05 294 912 4.07E-04
20 480 — — 5.10E-05 299 008 4.12E-04
24 576 — — 5.65E-05 303 104 4.17E-04
28 672 — — 6.23E-05 307 200 4.22E-04
32 768 — — 6.72E-05 311 296 4.28E-04
36 864 — — 7.26E-05 315 392 4.33E-04
40 960 — — 7.79E-05 319 488 4.38E-04
45 056 — — 8.76E-05 323 584 4.43E-04
49 152 — — 8.85E-05 327 680 4.49E-04
53 248 — — 9.42E-05 331 776 4.54E-04
57 344 — — 9.90E-05 335 872 4.70E-04
61 440 — — 1.04E-04 339 968 4.65E-04
65 536 — — 1.10E-04 344 064 4.75E-04
69 632 — — 1.15E-04 348 160 4.76E-04
73 728 — — 1.20E-04 352 256 4.82E-04
77 824 — — 1.48E-04 356 352 4.86E-04
81 920 — — 1.31E-04 360 448 4.91E-04
86 016 — — 1.36E-04 364 544 4.99E-04
90 112 — — 1.41E-04 368 640 5.02E-04
94 208 — — 1.47E-04 372 736 5.08E-04
98 304 — — 1.52E-04 376 832 5.15E-04

102 400 — — 1.57E-04 380 928 5.18E-04
106 496 — — 1.63E-04 385 024 5.25E-04
110 592 — — 1.68E-04 389 120 5.28E-04
114 688 — — 1.73E-04 393 216 5.34E-04
118 784 — — 1.79E-04 397 312 5.39E-04
122 880 — — 1.84E-04 401 408 5.44E-04
126 976 — — 1.89E-04 405 504 5.50E-04
131 072 — — 1.94E-04 409 600 5.56E-04
135 168 — — 2.00E-04 413 696 5.65E-04
139 264 — — 2.05E-04 417 792 5.66E-04
143 360 — — 2.10E-04 421 888 5.71E-04
147 456 — — 2.16E-04 425 984 5.76E-04
151 552 — — 2.21E-04 430 080 5.82E-04
155 648 — — 2.26E-04 434 176 5.87E-04
159 744 — — 2.32E-04 438 272 5.92E-04
163 840 — — 2.37E-04 442 368 5.98E-04
167 936 — — 2.42E-04 446 464 6.03E-04
172 032 — — 2.47E-04 450 560 6.08E-04
176 128 — — 2.53E-04 454 656 6.13E-04
180 224 — — 2.58E-04 458 752 6.18E-04
184 320 — — 2.63E-04 462 848 6.24E-04
188 416 — — 2.68E-04 466 944 6.29E-04
192 512 — — 2.74E-04 471 040 6.34E-04
196 608 — — 2.79E-04 475 136 6.40E-04
200 704 — — 2.84E-04 479 232 6.45E-04
204 800 — — 2.90E-04 483 328 6.51E-04
208 896 — — 2.95E-04 487 424 6.58E-04
212 992 — — 3.00E-04 491 520 6.61E-04
217 088 — — 3.06E-04 495 616 6.66E-04
221 184 — — 3.11E-04 499 712 6.72E-04
225 280 — — 3.16E-04 503 808 6.77E-04
229 376 — — 3.22E-04 507 904 6.82E-04
233 472 — — 3.27E-04 512 000 6.88E-04
237 568 — — 3.32E-04 516 096 6.93E-04
241 664 — — 3.38E-04 520 192 6.98E-04
245 760 — — 3.43E-04 524 288 7.03E-04

Table A.11: Hera IMB Timings, SkaMPI Full Send-Recv – Data for Figure 3.6

253

Figure Data

Message
Size
(Bytes)

Time (s)

Intra-Node Inter-Node

Single Pair Two-Pair Single Pair 64 Pair 126 Pair 256 Pair

16 2.70E-06 2.76E-06 2.98E-06 4.10E-06 4.09E-06 4.03E-06
32 2.73E-06 2.79E-06 3.02E-06 4.85E-06 4.95E-06 4.09E-06
64 2.89E-06 2.91E-06 3.21E-06 5.00E-06 5.44E-06 4.26E-06
128 2.97E-06 3.01E-06 3.45E-06 5.36E-06 4.86E-06 4.49E-06
256 4.06E-06 4.14E-06 4.90E-06 6.27E-06 6.28E-06 5.96E-06
512 4.32E-06 4.42E-06 5.72E-06 8.19E-06 8.13E-06 8.17E-06
1024 4.91E-06 5.23E-06 7.17E-06 1.33E-05 1.32E-05 1.33E-05
2048 7.03E-06 8.00E-06 1.26E-05 3.08E-05 2.70E-05 2.48E-05
3072 7.50E-06 8.80E-06 1.49E-05 4.23E-05 3.78E-05 3.51E-05
4096 7.98E-06 9.90E-06 1.81E-05 5.62E-05 4.93E-05 4.79E-05
8192 9.67E-06 1.33E-05 2.92E-05 1.04E-04 9.17E-05 9.14E-05
9216 1.00E-05 1.42E-05 3.17E-05 1.14E-04 1.02E-04 1.02E-04
10240 1.05E-05 1.51E-05 3.42E-05 1.25E-04 1.12E-04 1.12E-04
11264 1.10E-05 1.59E-05 3.68E-05 1.36E-04 1.25E-04 1.22E-04
12288 1.15E-05 1.69E-05 4.00E-05 1.50E-04 1.35E-04 1.35E-04
13312 1.20E-05 1.77E-05 4.26E-05 1.61E-04 1.45E-04 1.45E-04
14336 1.21E-05 1.86E-05 4.50E-05 1.73E-04 1.58E-04 1.55E-04
15360 1.26E-05 1.93E-05 4.77E-05 1.82E-04 1.68E-04 1.66E-04
16384 1.30E-05 2.03E-05 5.09E-05 1.95E-04 1.79E-04 1.78E-04
17408 1.35E-05 2.12E-05 5.36E-05 2.06E-04 1.91E-04 1.89E-04
18432 1.40E-05 2.19E-05 5.59E-05 2.15E-04 2.02E-04 1.99E-04
19456 1.44E-05 2.31E-05 5.91E-05 2.29E-04 2.12E-04 2.12E-04
20480 1.48E-05 2.37E-05 6.17E-05 2.40E-04 2.22E-04 2.22E-04
21504 1.53E-05 2.47E-05 6.45E-05 2.48E-04 2.35E-04 2.32E-04
22528 1.58E-05 2.54E-05 6.70E-05 2.58E-04 2.45E-04 2.42E-04
23552 1.62E-05 2.65E-05 7.01E-05 2.71E-04 2.55E-04 2.55E-04
24576 1.67E-05 2.74E-05 7.26E-05 2.81E-04 2.68E-04 2.65E-04
25600 1.71E-05 2.83E-05 7.53E-05 2.90E-04 2.78E-04 2.76E-04
26624 1.75E-05 2.91E-05 7.79E-05 3.00E-04 2.89E-04 2.86E-04
27648 1.80E-05 3.01E-05 8.10E-05 3.11E-04 3.01E-04 2.99E-04
28672 1.84E-05 3.09E-05 8.36E-05 3.22E-04 3.12E-04 3.09E-04
29696 1.89E-05 3.18E-05 8.61E-05 3.32E-04 3.22E-04 3.19E-04
30720 1.93E-05 3.25E-05 8.87E-05 3.40E-04 3.32E-04 3.29E-04
31744 1.98E-05 3.37E-05 9.19E-05 3.54E-04 3.45E-04 3.42E-04

Table A.12: IMB Ping-Pong – Data Subset for Figure 3.5

254

F
igu

re
D

ata

Problem

Iterations Time (s)

Total Mlagh MDT σx Mlagh σx Madv σx Shortprint σx Memory σx

Mlagh Per
Inner Loop

303 209 209 5.70E-03 2.00E-05 5.39E-03 9.82E-06 3.73E-02 9.88E-05 1.98E-03 1.72E-05 3.09E-03 2.33E-05 5.39E-03
503 209 225 2.62E-02 1.71E-05 2.74E-02 3.27E-05 1.66E-01 5.67E-04 8.75E-03 1.35E-05 1.53E-02 1.43E-04 2.54E-02
803 210 289 1.04E-01 2.94E-04 1.50E-01 4.55E-05 6.41E-01 1.25E-03 3.42E-02 6.05E-06 4.80E-02 3.16E-04 1.09E-01
1003 217 351 2.06E-01 1.55E-04 3.57E-01 1.86E-04 1.22E+00 8.95E-04 6.82E-02 5.93E-05 8.07E-02 5.62E-04 2.21E-01
1203 229 428 3.51E-01 9.92E-04 7.20E-01 3.16E-04 2.22E+00 2.68E-03 1.15E-01 2.93E-05 1.29E-01 3.16E-04 3.85E-01
1503 258 578 6.86E-01 2.87E-04 1.73E+00 3.04E-04 4.65E+00 3.10E-03 2.26E-01 1.88E-04 2.35E-01 2.66E-04 7.73E-01

Table A.13: Hydra – Function Serial Scaling – Time Per Iteration – Intel-12.0/OpenMPI-1.4.3 – Data for Figure 4.3

255

F
igu

re
D

ata

PEs Compute
σx

Collectives
σx

Update Bounds
σx

Point-To-Point
σx

Memory Management
σx(Max) (s) (Min) (s) (Max) (s) (Min) (s) (Max) (s)

1 382.08 0.24 0.03 0.00 18.77 0.02 0.04 0.00 17.52 0.11
2 425.68 1.15 0.20 0.08 18.78 0.02 4.96 0.19 18.46 0.07
4 500.08 0.49 0.30 0.01 23.99 0.09 13.80 0.44 26.16 0.06
8 548.96 0.10 0.43 0.29 23.60 0.20 41.88 0.88 40.82 0.04

12 549.31 0.36 0.58 0.14 24.72 0.13 50.77 1.51 44.00 0.09
16 550.19 0.25 0.58 0.08 24.46 0.20 53.99 0.88 44.17 0.14
24 553.40 2.32 0.82 0.18 24.47 0.03 56.22 2.09 44.11 0.10
32 550.36 1.05 1.34 0.38 22.29 0.24 61.91 1.38 44.16 0.16
48 556.93 1.26 1.08 0.17 21.85 0.43 61.40 2.04 43.96 0.09
64 549.99 0.79 1.61 0.16 20.21 0.43 76.39 1.29 44.03 0.04
96 563.30 1.30 1.27 0.21 19.89 0.21 71.79 6.60 44.04 0.08

128 565.66 7.62 4.09 2.02 21.34 0.94 76.08 0.59 47.15 1.50
192 564.74 0.99 2.58 0.76 19.08 0.23 75.60 5.20 44.13 0.07
256 553.72 0.83 4.00 0.70 18.06 0.20 82.83 2.35 45.43 0.45

Table A.14: Hydra, Minerva, Walltime Breakdown by Component (Min/Max) – Data for Figure 4.4

PEs
Compute (s) Point-to-Point Exchange (s)

Min Q1 Q2 µ Q3 Max σ Min Q1 Q2 µ Q3 Max σ

1 381.32 381.32 381.32 381.32 381.32 381.32 — 0.04 0.04 0.04 0.04 0.04 0.04 —
2 422.22 422.78 423.35 423.35 423.91 424.48 1.60 4.77 5.41 6.04 6.04 6.68 7.32 1.80
4 494.10 496.32 497.44 497.12 498.23 499.48 2.25 14.02 14.68 15.58 15.86 16.76 18.26 1.85
8 420.20 511.23 542.39 513.18 544.10 548.77 57.08 41.00 45.10 47.18 76.45 77.99 169.77 57.42

12 542.25 545.38 546.55 546.38 547.49 548.89 1.93 49.03 51.27 53.50 53.24 55.10 57.04 2.52
16 491.82 532.03 545.53 533.33 546.59 549.70 23.42 52.98 56.47 58.20 71.62 73.00 118.02 26.44
24 542.27 544.43 546.05 545.90 546.97 550.93 2.13 57.50 60.33 61.11 61.50 61.66 66.22 2.27
32 421.99 543.34 545.22 537.81 546.51 549.70 30.24 63.50 66.00 68.38 76.12 70.94 191.58 30.32
48 542.26 544.69 545.59 545.90 547.17 554.89 2.26 59.54 67.75 69.24 69.34 71.18 75.93 2.91
64 490.69 542.82 544.28 541.33 545.55 551.46 12.76 77.40 82.48 87.95 90.32 92.29 145.40 13.93
96 539.61 543.02 544.18 544.57 545.75 560.74 2.82 68.27 84.50 88.34 88.69 93.62 98.40 5.76

128 416.85 542.77 543.99 542.27 545.69 552.79 16.00 76.66 87.65 92.69 94.10 97.24 214.59 15.92
192 538.14 542.72 543.99 544.46 545.12 565.13 3.40 77.58 88.92 92.53 93.20 98.20 103.83 5.91
256 490.51 542.40 543.58 542.94 544.87 553.68 6.70 85.43 91.19 96.26 96.65 100.94 147.97 7.97

Table A.15: Hydra, Minerva, Process Timing Range, Compute and Exchange – Data for Figure 4.5(a)

256

F
igu

re
D

ata

PEs
Collectives (s) Update Bounds (s)

Min Q1 Q2 µ Q3 Max σ Min Q1 Q2 µ Q3 Max σ

1 0.03 0.03 0.03 0.03 0.03 0.03 — 18.80 18.80 18.80 18.80 18.80 18.80 —
2 0.26 0.32 0.37 0.37 0.42 0.47 0.15 18.69 18.72 18.76 18.76 18.79 18.83 0.10
4 0.30 0.62 0.74 0.83 0.95 1.52 0.51 23.43 23.67 23.76 23.73 23.81 23.97 0.22
8 0.76 0.90 1.66 9.34 9.92 33.53 14.85 11.80 19.76 22.83 20.19 23.17 23.32 5.14

12 0.71 1.25 1.83 1.69 2.11 2.56 0.61 18.78 19.39 23.58 22.36 24.28 24.46 2.46
16 0.60 1.29 1.75 5.91 6.27 19.56 7.90 14.27 18.03 19.66 19.51 21.09 24.60 3.36
24 0.75 2.06 2.56 2.43 2.96 3.70 0.81 13.08 18.74 19.76 19.92 23.35 24.54 3.38
32 1.32 2.18 2.43 4.45 2.82 35.42 7.97 9.75 15.02 18.65 17.49 20.09 21.99 3.29
48 1.11 3.26 3.59 3.59 4.14 4.81 0.66 12.12 14.96 17.68 17.28 19.43 22.23 2.49
64 1.43 2.80 3.74 4.60 4.45 21.85 4.28 0.01 3.44 10.25 9.68 16.02 19.35 6.80
96 1.05 5.05 6.05 5.88 6.65 7.73 1.06 0.01 3.29 9.45 9.43 16.13 20.27 7.05

128 2.71 4.20 5.29 5.67 6.01 39.13 4.33 0.01 3.31 8.24 8.77 15.25 20.26 6.61
192 2.43 6.21 7.07 7.08 8.12 10.03 1.41 0.01 2.01 8.69 8.37 14.58 19.03 6.75
256 3.24 5.20 6.17 6.59 7.47 26.85 2.87 0.01 0.01 8.20 7.77 13.70 17.89 6.48

Table A.16: Hydra, Minerva, Process Timing Range, Collectives and Update Bounds – Data for Figure 4.5(c)

Time (s)

PEs Min Q1 Q2 µ Q3 Max σ

1 17.29 17.29 17.29 17.29 17.29 17.29 —
2 18.26 18.29 18.31 18.31 18.34 18.36 0.07
4 25.86 25.97 26.00 25.98 26.02 26.06 0.09
8 19.06 34.83 40.36 35.11 40.58 40.74 9.90

12 42.80 43.29 43.63 43.54 43.84 44.03 0.41
16 25.16 38.23 43.38 39.02 43.72 44.00 7.98
24 42.78 43.41 43.56 43.57 43.89 44.13 0.39
32 18.77 42.25 43.31 41.33 43.47 43.91 5.99
48 42.53 43.10 43.42 43.38 43.62 44.13 0.39
64 25.36 43.05 43.38 42.24 43.63 43.99 4.38
96 41.81 43.01 43.32 43.23 43.51 43.92 0.41

128 18.64 43.07 43.30 42.71 43.52 44.21 3.17
192 41.17 42.82 43.18 43.10 43.43 43.98 0.46
256 25.36 42.88 43.20 42.90 43.47 44.55 2.25

Table A.17: Hydra, Minerva, Process Timing Range, Memory Management – Data for Figure 4.5(e)

257

F
igu

re
D

ata

— Total Walltime (s) Compute (s)

PEs None σx Node σx Socket σx None σx Node σx Socket σx

8 655.61 0.44 657.63 0.17 581.63 0.31 548.96 0.1 547.52 0.81 500.09 0.46
16 671.10 0.49 658.91 0.34 584.44 0.28 550.19 0.25 547.98 0.60 549.78 0.73
32 678.20 0.13 673.92 0.57 673.57 0.34 550.36 1.05 547.28 0.29 547.70 0.16
64 689.28 0.30 682.88 0.70 683.99 0.29 549.99 0.79 548.45 0.34 547.50 0.08

128 708.31 8.88 694.81 0.30 693.26 0.46 565.66 7.62 548.25 0.13 565.39 17.52
256 700.35 1.38 702.09 0.66 716.66 15.37 553.72 0.83 548.25 0.13 565.39 17.52

Table A.18: Hydra, Minerva, Weak-Scaling - Node/Socket Load-Balancing – Data for Figures 4.6(a), 4.6(b)

— DawnDev Time (s) Hera Time (s)

PEs Total) Max Compute) Min Point-To-Point Min Collectives Total) Max Compute) Min Point-To-Point Min Collectives

32 — — — — 806.95 703.71 94.43 5.56
64 1665.85 1573.35 92.56 3.40 902.04 705.53 175.30 19.70

128 1702.68 1571.53 129.55 3.82 905.10 720.79 146.96 25.89
256 1718.81 1569.75 139.64 4.65 975.13 713.22 187.45 41.52
512 1707.87 1571.23 120.76 5.65 1002.74 712.95 209.95 49.02

1024 1729.29 1570.17 125.58 7.20 1039.72 730.14 208.42 64.34
2048 1780.04 1569.47 153.47 12.25 1172.40 721.20 239.81 105.64

Table A.19: Hydra, DawnDev/Hera, Weak-Scaling - Walltime Breakdown – Data for Figure 4.7

258

F
igu

re
D

ata

Time (s)

PEs Compute
σx

Collectives
σx

Update Bounds
σx

Point-To-Point
σx

Memory Management
σx(Max) (Min) (Max) (Min) (Max)

1 1828.79 0.64 0.04 0.00 51.24 0.03 0.05 0.00 60.72 0.04
2 956.97 1.04 0.46 0.18 28.99 0.10 13.62 0.72 33.92 0.04
4 534.81 0.60 0.37 0.10 20.48 0.05 18.73 0.42 26.46 0.07
8 302.54 0.80 0.63 0.06 15.93 0.21 28.85 0.46 18.97 0.10

12 206.79 0.17 0.46 0.04 11.96 0.03 25.02 0.27 13.03 0.07
16 145.41 0.40 0.48 0.12 9.81 0.00 21.84 0.39 9.88 0.03
24 97.96 0.10 0.56 0.02 6.95 0.06 16.52 0.16 6.62 0.01
32 72.48 0.38 0.48 0.03 5.00 0.07 13.92 0.16 5.12 0.01
48 46.04 0.14 0.62 0.03 3.62 0.01 14.36 0.11 3.47 0.01
64 35.56 0.09 0.72 0.10 3.51 0.05 12.01 0.11 2.70 0.01
96 23.24 0.06 0.88 0.02 2.57 0.05 9.01 0.16 1.83 0.01

128 17.62 0.12 1.00 0.07 1.85 0.02 9.55 0.13 1.54 0.13
192 11.44 0.03 1.09 0.02 1.29 0.01 6.60 0.02 0.95 0.00
256 10.42 1.70 1.45 0.04 1.35 0.29 5.57 0.39 0.71 0.10

Table A.20: Hydra, Minerva, Walltime Breakdown by Function (Min/Max) – Data for Figure 4.8

259

F
igu

re
D

ata

PEs
Compute (s) Point-to-Point Exchange (s)

Min Q1 Q2 µ Q3 Max σ Min Q1 Q2 µ Q3 Max σ

1 1827.56 1827.56 1827.56 1827.56 1827.56 1827.56 — 0.05 0.05 0.05 0.05 0.05 0.05 —
2 947.32 949.90 952.47 952.47 955.04 957.61 7.27 12.21 14.02 15.82 15.82 17.63 19.44 5.11
4 528.68 529.44 530.03 530.64 531.23 533.83 2.24 19.55 20.65 21.68 21.47 22.49 22.95 1.51
8 220.62 278.70 299.09 280.05 300.41 301.73 36.63 29.19 30.90 31.42 48.59 49.59 101.66 32.59

12 202.48 203.37 203.60 203.86 204.18 206.16 1.04 24.82 25.90 26.84 27.44 29.75 30.07 2.01
16 122.75 135.79 142.04 138.15 144.40 145.33 8.65 21.53 23.96 25.80 28.57 31.07 41.03 6.95
24 92.65 93.25 94.42 94.81 96.40 97.81 1.75 16.25 18.37 19.48 19.61 20.58 22.82 1.77
32 53.53 67.08 67.77 67.41 69.31 72.44 4.00 13.63 16.75 17.73 18.29 18.77 28.17 3.02
48 41.78 42.76 43.17 43.24 43.64 45.79 0.91 14.57 16.12 16.94 16.96 17.65 19.27 1.04
64 28.63 32.36 32.78 32.64 33.27 35.63 1.22 11.94 14.37 15.35 15.31 16.24 17.92 1.23
96 20.89 21.35 21.63 21.67 21.98 23.29 0.44 8.79 10.37 10.78 10.85 11.49 12.23 0.77

128 12.57 15.76 16.20 15.98 16.35 17.61 0.65 9.55 11.00 11.41 11.41 11.80 13.37 0.58
192 9.81 10.38 10.52 10.49 10.74 11.48 0.31 6.56 7.57 7.77 7.82 8.17 8.78 0.40
256 6.56 7.55 7.84 7.77 8.00 8.86 0.32 5.76 6.98 7.17 7.16 7.42 7.90 0.33

Table A.21: Hydra, Minerva, Process Timing Range, Compute and Exchange – Data for Figure 4.9(a)

PEs
Collectives (s) Update Bounds (s)

Min Q1 Q2 µ Q3 Max σ Min Q1 Q2 µ Q3 Max σ

1 0.04 0.04 0.04 0.04 0.04 0.04 — 51.21 51.21 51.21 51.21 51.21 51.21 —
2 0.16 1.06 1.96 1.96 2.86 3.75 2.54 28.78 28.86 28.94 28.94 29.02 29.10 0.23
4 0.48 1.80 2.41 1.98 2.59 2.63 1.02 20.11 20.24 20.30 20.27 20.33 20.37 0.11
8 0.62 1.36 1.77 7.22 7.50 24.71 10.76 8.51 13.76 15.57 13.85 15.63 15.69 3.23

12 0.61 1.44 1.69 1.66 1.88 2.34 0.46 8.23 8.52 11.59 10.60 11.74 11.92 1.63
16 0.71 1.14 2.43 3.64 4.49 9.50 3.45 6.09 6.45 6.74 7.30 7.58 9.80 1.39
24 0.53 1.46 2.28 2.21 2.91 3.42 0.81 2.81 4.36 4.81 4.98 6.16 7.05 1.33
32 0.41 1.66 2.25 2.61 2.83 9.24 1.88 2.02 2.21 3.63 3.36 3.85 5.10 0.98
48 0.68 1.81 2.01 2.06 2.45 3.02 0.50 0.02 1.46 2.27 2.07 2.81 3.60 1.03
64 0.53 1.92 2.14 2.25 2.48 4.55 0.70 0.01 0.76 1.89 1.77 2.83 3.61 1.15
96 0.89 1.67 1.81 1.83 2.00 2.37 0.27 0.01 0.41 1.30 1.18 1.85 2.55 0.81

128 0.85 1.48 1.65 1.74 1.91 3.64 0.40 0.01 0.44 1.01 0.83 1.29 1.85 0.55
192 1.09 1.69 1.81 1.81 1.93 2.26 0.19 0.01 0.27 0.70 0.56 0.82 1.30 0.38
256 1.42 1.74 1.87 1.94 2.09 3.02 0.27 0.01 0.01 0.48 0.41 0.59 1.05 0.29

Table A.22: Hydra, Minerva, Process Timing Range, Collectives and Update Bounds – Data for Figure 4.9(c)

260

F
igu

re
D

ata

Time (s)

PEs Min Q1 Q2 µ Q3 Max σ

1 60.75 60.75 60.75 60.75 60.75 60.75 —
2 33.82 33.84 33.86 33.86 33.89 33.91 0.06
4 26.08 26.19 26.27 26.23 26.31 26.31 0.11
8 11.37 16.79 18.71 16.92 18.77 19.02 3.42

12 12.60 12.72 12.83 12.79 12.84 12.92 0.10
16 7.54 8.87 9.60 9.15 9.73 9.91 0.91
24 6.30 6.32 6.41 6.42 6.50 6.61 0.10
32 3.50 4.79 4.90 4.81 4.99 5.13 0.36
48 3.16 3.25 3.30 3.30 3.37 3.49 0.08
64 1.97 2.47 2.51 2.50 2.57 2.68 0.15
96 1.65 1.69 1.71 1.72 1.76 1.85 0.04

128 0.88 1.29 1.32 1.31 1.35 1.43 0.07
192 0.78 0.88 0.90 0.89 0.91 0.95 0.04
256 0.35 0.54 0.56 0.55 0.57 0.61 0.03

Table A.23: Hydra, Minerva, Process Timing Range, Memory Management – Data for Figure 4.9(e)

261

F
igu

re
D

ata

Madvmx Madvmy Madvmz

Comm (s)
Compute

Comm (s)
Compute

Comm (s)
Compute

Diff. (s) Diff. (s) Diff. (s)

PEs Min Max Madvx Min Max Madvy Min Max Madvz

2 5.09E-3 6.54E-3 1.14E-3 5.12E-3 9.05E-3 4.21E-3 5.10E-3 8.52E-3 1.63E-3
4 1.56E-2 1.72E-2 1.97E-3 1.46E-2 2.28E-2 8.33E-3 1.58E-2 1.74E-2 2.07E-3
8 4.60E-2 6.55E-2 1.99E-2 4.43E-2 2.07E-1 1.62E-1 4.56E-2 6.68E-2 2.27E-2
12 5.05E-2 6.09E-2 3.66E-3 4.84E-2 6.58E-2 8.79E-3 4.93E-2 6.22E-2 4.97E-3
16 4.93E-2 6.34E-2 7.81E-3 4.92E-2 9.60E-2 5.09E-2 4.89E-2 6.42E-2 8.99E-3
24 5.02E-2 7.27E-2 5.55E-3 4.98E-2 7.87E-2 2.03E-2 4.99E-2 7.34E-2 7.68E-3
32 5.13E-2 8.59E-2 2.06E-2 4.89E-2 2.30E-1 1.74E-1 5.15E-2 8.67E-2 2.32E-2
48 4.83E-2 7.62E-2 9.24E-3 4.73E-2 8.85E-2 2.07E-2 4.81E-2 7.94E-2 7.95E-3
64 5.46E-2 9.47E-2 1.89E-2 5.24E-2 1.27E-1 4.98E-2 5.26E-2 9.51E-2 1.32E-2
96 5.63E-2 9.79E-2 1.14E-2 5.46E-2 1.00E-1 3.63E-2 5.65E-2 9.64E-2 1.51E-2
128 5.15E-2 9.76E-2 2.01E-2 5.50E-2 2.27E-1 1.69E-1 5.15E-2 9.82E-2 2.27E-2
192 5.57E-2 9.83E-2 1.16E-2 5.30E-2 1.08E-1 3.68E-2 5.71E-2 1.01E-1 1.53E-2
256 5.70E-2 1.05E-1 2.23E-2 5.49E-2 1.21E-1 5.10E-2 5.84E-2 1.05E-1 1.25E-2

Table A.24: Minerva, Data for Figures 5.2, 5.3

Empirical Model

PEs Compute Comms Coll Updb Mem Compute Comms Coll Updb Mem

2 424.48 4.77 0.26 18.83 18.36 420.63 2.06 0.00 19.78 18.12
4 499.48 14.02 0.30 23.97 26.06 494.20 16.98 0.01 28.54 26.50
8 548.77 41.00 0.76 23.32 40.74 556.58 23.26 0.01 46.02 43.05
16 549.70 52.98 0.60 24.60 44.00 556.58 31.90 0.01 46.02 43.05
32 549.70 63.50 1.32 21.99 43.91 556.58 43.24 0.02 46.02 43.05
64 551.46 77.40 1.43 19.35 43.99 556.58 53.70 0.04 46.02 43.05
128 552.79 76.66 2.71 20.26 44.21 556.58 53.70 0.05 46.02 43.05
256 553.68 85.43 3.24 17.89 44.55 556.58 57.92 0.07 46.02 43.05

Table A.25: Minerva, Data for Figure 5.9a

262

F
igu

re
D

ata

Empirical Model

PEs Compute Comms Coll Updb Mem Compute Comms Coll Updb Mem

1 1827.56 0.05 0.04 51.21 60.75 1825.81 0.00 0.00 46.71 61.04
2 957.61 12.21 0.16 29.10 33.91 960.05 5.33 0.00 32.01 34.10
4 533.83 19.55 0.48 20.37 26.31 536.71 11.36 0.01 27.10 26.74
8 301.73 29.19 0.62 15.69 19.02 302.10 16.79 0.01 31.51 19.96
16 145.33 21.53 0.71 9.80 9.91 148.98 18.40 0.01 17.90 10.36
32 72.44 13.63 0.41 5.10 5.13 73.41 14.49 0.03 10.20 5.14
64 35.63 11.94 0.53 3.61 2.68 35.52 9.45 0.05 7.84 2.63
128 17.61 9.55 0.85 1.85 1.43 17.95 6.80 0.07 5.04 1.32
256 8.86 5.76 1.42 1.05 0.61 8.99 5.11 0.09 3.32 0.64

Table A.26: Minerva, Data for Figure 5.9b

263

Figure Data

For all PAPI statistics, the majority are obtained from executions of Hydra

on Minerva. However the lack of L1 cache hit/access counters neccesitated the

use of an alternate machine for such values. This machine was a single 2.4GHz

Intel X3430 workstation. See 3.3.5 for further details.

264

F
igu

re
D

ata

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 5.80E-3 2.06E-5 1.20E+6 2.04E+3 1.62E+7 5.93E+3 1.03E+5 1.57E+3 1.09E+5 4.48E+3 2.66E+3 3.66E+1 0.07
503 2.49E-2 1.23E-4 5.49E+6 1.45E+4 7.09E+7 2.40E+4 5.16E+5 8.35E+3 5.04E+5 8.51E+3 1.18E+4 5.12E+2 0.08
803 9.98E-2 5.77E-4 2.25E+7 9.85E+4 2.82E+8 2.78E+4 2.55E+6 1.70E+4 2.45E+6 2.89E+4 5.01E+4 1.40E+3 0.08
1003 1.90E-1 2.72E-4 4.36E+7 5.59E+4 5.44E+8 1.75E+5 5.53E+6 3.37E+3 5.30E+6 4.20E+4 1.02E+5 1.05E+3 0.08
1203 3.25E-1 7.67E-4 7.55E+7 3.31E+5 9.32E+8 1.42E+5 1.01E+7 3.27E+4 9.87E+6 2.34E+4 1.89E+5 3.04E+3 0.08
1503 6.29E-1 1.28E-4 1.47E+8 — 1.81E+9 3.76E+5 2.10E+7 — 2.07E+7 — 3.66E+5 — 0.08

Table A.27: PAPI Serial Mean Statistics for Kernel Madvx2, Variant A– Data for Figures 6.1,6.2,6.3(a)

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 7.15E-3 2.23E-5 1.20E+6 8.71E+2 1.72E+7 5.54E+3 5.05E+5 5.29E+2 2.81E+5 1.94E+3 2.15E+5 6.66E+2 0.07
503 3.40E-2 1.33E-4 5.50E+6 1.76E+4 7.56E+7 8.42E+3 2.45E+6 5.28E+3 1.32E+6 6.55E+3 1.11E+6 5.08E+2 0.07
803 1.41E-1 1.79E-4 2.27E+7 2.24E+4 3.01E+8 2.40E+4 1.02E+7 2.26E+4 5.73E+6 4.63E+3 4.45E+6 6.31E+3 0.08
1003 2.70E-1 1.49E-4 4.44E+7 3.72E+4 5.82E+8 4.00E+4 2.06E+7 1.44E+4 1.18E+7 2.42E+4 8.64E+6 2.50E+3 0.08
1203 4.74E-1 4.76E-4 7.67E+7 6.48E+4 9.97E+8 1.09E+5 3.54E+7 2.71E+4 2.02E+7 4.93E+4 1.51E+7 1.03E+4 0.08
1503 1.03E+0 2.53E-3 1.50E+8 — 1.94E+9 4.08E+5 7.15E+7 — 4.21E+7 — 2.97E+7 — 0.08

Table A.28: PAPI Serial Mean Statistics for Kernel Madvy2, Variant A– Data for Figures 6.1, 6.2, 6.3(b)

265

F
igu

re
D

ata

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 6.56E-3 2.16E-5 1.21E+6 2.39E+3 1.69E+7 6.43E+3 4.02E+5 7.63E+2 3.79E+5 3.72E+3 2.98E+4 6.62E+1 0.07
503 3.09E-2 1.31E-4 5.53E+6 1.62E+4 7.49E+7 5.25E+3 2.71E+6 9.38E+3 2.54E+6 1.29E+4 1.58E+5 2.59E+3 0.07
803 1.24E-1 2.70E-4 2.27E+7 4.19E+4 2.99E+8 3.17E+4 1.04E+7 3.32E+5 9.95E+6 1.13E+5 6.33E+5 1.41E+3 0.08
1003 2.39E-1 3.43E-4 4.44E+7 1.52E+4 5.81E+8 1.65E+5 2.00E+7 1.89E+4 1.87E+7 3.10E+4 1.29E+6 5.96E+3 0.08
1203 3.98E-1 7.77E-5 7.66E+7 1.92E+5 9.97E+8 3.71E+5 4.28E+7 4.69E+5 4.08E+7 5.43E+4 2.49E+6 2.94E+4 0.08
1503 8.10E-1 1.42E-3 1.49E+8 — 1.94E+9 4.36E+5 8.30E+7 — 7.53E+7 — 8.08E+6 — 0.08

Table A.29: PAPI Serial Mean Statistics for Kernel Madvz2, Variant A– Data for Figures 6.1, 6.2, 6.3(c)

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 2.97E-3 4.83E-6 4.76E+6 2.47E+3 8.48E+6 4.65E+2 9.24E+4 4.77E+2 8.41E+4 6.65E+2 7.12E+3 7.93E+1 0.56
503 1.29E-2 1.94E-5 2.10E+7 1.06E+4 3.63E+7 3.53E+3 5.48E+5 1.25E+3 5.02E+5 4.20E+3 3.62E+4 2.51E+2 0.58
803 5.00E-2 9.94E-5 8.31E+7 5.77E+4 1.42E+8 8.41E+3 2.29E+6 1.96E+4 2.04E+6 1.48E+4 1.22E+5 4.25E+2 0.59
1003 9.79E-2 1.19E-4 1.62E+8 5.58E+4 2.73E+8 6.95E+3 5.40E+6 1.75E+4 4.99E+6 3.93E+3 2.60E+5 7.80E+2 0.59
1203 1.69E-1 4.83E-4 2.77E+8 1.35E+5 4.67E+8 3.02E+4 1.24E+7 3.77E+4 1.16E+7 1.31E+4 5.16E+5 3.42E+3 0.59
1503 3.22E-1 1.50E-4 5.37E+8 — 9.02E+8 5.40E+4 2.15E+7 — 2.01E+7 — 1.04E+6 — 0.60

Table A.30: PAPI Serial Mean Statistics for Kernel Madvmx1, Variant A– Data for Figures 6.1, 6.2, 6.3(d)

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 3.09E-3 9.75E-6 4.81E+6 3.12E+3 8.28E+6 2.13E+3 5.43E+5 6.00E+2 5.18E+5 9.00E+2 2.13E+4 3.48E+2 0.58
503 1.45E-2 3.49E-5 2.13E+7 4.21E+3 3.53E+7 2.75E+3 3.21E+6 1.83E+3 3.02E+6 2.74E+3 1.85E+5 1.65E+3 0.60
803 6.27E-2 1.66E-4 8.44E+7 2.56E+4 1.37E+8 1.52E+4 1.34E+7 5.51E+3 1.22E+7 1.06E+4 1.19E+6 7.59E+3 0.61
1003 1.24E-1 9.06E-5 1.64E+8 4.39E+4 2.65E+8 4.09E+4 2.71E+7 9.24E+3 2.42E+7 2.20E+4 2.63E+6 4.19E+4 0.62
1203 2.14E-1 4.19E-4 2.82E+8 1.00E+5 4.54E+8 4.66E+4 4.87E+7 2.85E+3 4.10E+7 4.37E+4 7.53E+6 4.46E+4 0.62
1503 4.20E-1 2.25E-4 5.49E+8 — 8.86E+8 2.08E+5 9.17E+7 — 6.91E+7 — 2.21E+7 — 0.62

Table A.31: PAPI Serial Mean Statistics for Kernel Madvmy1, Variant A– Data for Figures 6.1, 6.2, 6.3(e)

266

F
igu

re
D

ata

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 4.13E-3 7.47E-6 4.91E+6 3.55E+2 8.36E+6 2.06E+3 7.87E+5 3.34E+2 4.39E+5 6.44E+2 3.43E+5 4.16E+2 0.59
503 2.24E-2 1.27E-4 2.18E+7 2.13E+4 3.58E+7 8.74E+3 4.04E+6 4.49E+3 2.27E+6 4.83E+3 1.76E+6 9.44E+3 0.61
803 8.38E-2 4.07E-4 8.63E+7 1.11E+5 1.42E+8 7.38E+4 1.68E+7 2.48E+5 9.49E+6 9.91E+4 7.46E+6 1.81E+4 0.61
1003 1.63E-1 5.43E-4 1.67E+8 3.77E+4 2.74E+8 6.10E+4 2.94E+7 4.83E+4 1.65E+7 5.01E+4 1.26E+7 7.88E+4 0.61
1203 4.32E-1 1.17E-3 2.87E+8 1.61E+5 4.78E+8 1.12E+5 6.44E+7 7.99E+4 3.30E+7 6.21E+4 3.12E+7 5.42E+4 0.60
1503 1.07E+0 2.29E-3 5.57E+8 — 9.33E+8 1.72E+5 1.33E+8 — 5.18E+7 — 8.07E+7 — 0.60

Table A.32: PAPI Serial Mean Statistics for Kernel Madvmz1, Variant A– Data for Figures 6.1, 6.2, 6.3(f)

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 4.80E-4 3.74E-7 3.25E+5 2.14E+1 5.22E+5 8.82E+0 2.18E+4 9.79E+0 2.08E+4 3.45E+1 7.78E+2 1.62E+1 0.62
503 2.19E-3 6.59E-7 1.50E+6 1.69E+1 2.35E+6 6.19E+2 9.81E+4 4.82E+0 9.40E+4 2.15E+1 2.42E+3 1.22E+1 0.64
803 9.06E-3 2.43E-6 6.17E+6 3.70E+2 9.53E+6 2.13E+2 3.97E+5 2.65E+1 3.81E+5 7.08E+1 1.04E+4 6.36E+1 0.65
1003 1.77E-2 1.03E-5 1.20E+7 3.26E+2 1.85E+7 1.58E+3 7.69E+5 2.09E+2 7.37E+5 4.68E+2 2.00E+4 2.99E+2 0.65
1203 3.07E-2 7.45E-6 2.08E+7 2.11E+2 3.19E+7 2.24E+2 1.32E+6 1.96E+2 1.26E+6 9.04E+1 3.40E+4 1.17E+2 0.65
1503 6.01E-2 2.49E-5 4.06E+7 — 6.21E+7 3.69E+2 2.57E+6 — 2.44E+6 — 6.66E+4 — 0.65

Table A.33: PAPI Serial Mean Statistics for Kernel MDT1, Variant A– Data for Figures 6.1

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 1.62E-3 1.48E-6 1.33E+6 3.24E+2 2.37E+6 2.57E+1 7.21E+4 3.82E+1 6.92E+4 7.65E+1 2.44E+3 7.94E+0 0.56
503 7.40E-3 1.61E-6 6.14E+6 1.47E+2 1.09E+7 1.56E+2 3.22E+5 2.41E+2 3.07E+5 4.39E+2 1.11E+4 6.04E+1 0.57
803 3.00E-2 6.79E-6 2.51E+7 6.89E+2 4.43E+7 2.70E+2 1.30E+6 2.88E+3 1.23E+6 1.60E+3 3.91E+4 1.88E+2 0.57
1003 5.85E-2 2.87E-5 4.91E+7 1.97E+2 8.62E+7 4.10E+2 2.51E+6 3.11E+2 2.39E+6 3.28E+3 6.78E+4 4.51E+2 0.57
1203 1.01E-1 2.75E-5 8.49E+7 5.32E+2 1.49E+8 1.31E+3 4.37E+6 1.39E+4 4.12E+6 2.64E+3 1.17E+5 5.98E+2 0.57
1503 1.97E-1 1.18E-4 1.66E+8 — 2.90E+8 2.48E+3 9.20E+6 — 8.82E+6 — 2.25E+5 — 0.57

Table A.34: PAPI Serial Mean Statistics for Kernel MDT2, Variant A– Data for Figures 6.1

267

F
igu

re
D

ata

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 2.79E-4 1.55E-7 7.72E+5 3.41E+2 8.19E+5 3.11E+1 2.96E+4 1.57E+1 2.78E+4 1.40E+1 1.69E+3 9.86E+0 0.94
503 1.27E-3 1.52E-6 3.56E+6 6.58E+2 3.68E+6 9.66E+2 1.27E+5 4.92E+1 1.19E+5 1.06E+2 6.88E+3 1.01E+2 0.97
803 5.15E-3 3.18E-6 1.46E+7 5.54E+3 1.49E+7 7.82E+2 4.95E+5 6.82E+2 4.53E+5 4.30E+2 3.73E+4 3.13E+2 0.98
1003 9.95E-3 5.41E-6 2.85E+7 9.15E+3 2.89E+7 5.42E+2 9.47E+5 1.59E+3 8.72E+5 1.78E+3 7.04E+4 6.02E+2 0.99
1203 1.71E-2 1.27E-5 4.92E+7 1.31E+4 4.96E+7 3.80E+2 1.62E+6 4.97E+2 1.48E+6 6.02E+2 1.24E+5 5.94E+2 0.99
1503 3.33E-2 2.58E-5 9.60E+7 — 9.65E+7 7.28E+3 3.23E+6 — 2.97E+6 — 3.25E+5 — 0.99

Table A.35: PAPI Serial Mean Statistics for Kernel Mdivu, Variant A– Data for Figures 6.1

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 2.66E-3 1.65E-6 3.96E+6 2.40E+3 3.57E+6 1.03E+2 4.70E+4 1.68E+1 4.48E+4 1.42E+2 1.79E+3 3.66E+1 1.11
503 1.26E-2 7.70E-6 1.83E+7 2.17E+3 1.64E+7 7.59E+2 1.97E+5 8.25E+1 1.87E+5 1.82E+2 9.16E+3 2.74E+2 1.11
803 4.88E-2 4.96E-6 7.50E+7 5.12E+3 6.67E+7 8.25E+2 8.09E+5 1.34E+3 7.78E+5 2.11E+3 2.82E+4 8.53E+1 1.12
1003 9.91E-2 5.33E-5 1.46E+8 6.88E+3 1.31E+8 2.04E+3 1.55E+6 1.38E+3 1.46E+6 5.94E+3 5.26E+4 2.57E+2 1.12
1203 1.66E-1 1.04E-4 2.53E+8 3.06E+3 2.25E+8 5.25E+2 2.76E+6 2.33E+3 2.66E+6 5.65E+2 8.65E+4 3.43E+2 1.13
1503 3.26E-1 7.26E-5 4.94E+8 — 4.38E+8 8.98E+3 7.01E+6 — 6.85E+6 — 1.66E+5 — 1.13

Table A.36: PAPI Serial Mean Statistics for Kernel Lartvis1, Variant A– Data for Figures 6.1

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 1.25E-3 4.99E-7 2.48E+6 3.38E+2 3.59E+6 2.19E+2 5.42E+4 3.56E+1 5.17E+4 1.52E+1 2.19E+3 5.91E+0 0.69
503 5.56E-3 1.30E-6 1.11E+7 1.43E+3 1.59E+7 3.55E+2 2.27E+5 3.21E+2 2.16E+5 1.59E+2 9.68E+3 1.09E+2 0.70
803 2.22E-2 1.17E-5 4.43E+7 9.91E+2 6.33E+7 5.50E+2 9.03E+5 2.23E+3 8.67E+5 6.84E+2 2.92E+4 3.49E+1 0.70
1003 4.28E-2 2.15E-5 8.59E+7 1.08E+3 1.22E+8 2.98E+3 1.74E+6 7.35E+3 1.68E+6 6.39E+3 5.14E+4 2.32E+2 0.70
1203 7.35E-2 3.77E-5 1.48E+8 2.12E+3 2.10E+8 2.28E+3 3.10E+6 4.32E+2 3.00E+6 1.48E+3 8.48E+4 4.03E+2 0.70
1503 1.42E-1 3.25E-5 2.87E+8 — 4.08E+8 7.74E+3 6.17E+6 — 6.03E+6 — 1.63E+5 — 0.70

Table A.37: PAPI Serial Mean Statistics for Kernel UpdVel, Variant A– Data for Figures 6.1

268

F
igu

re
D

ata

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 7.79E-4 1.91E-6 2.09E+5 1.19E+0 2.03E+6 5.51E+2 3.81E+4 2.53E+0 3.60E+4 1.12E+1 1.56E+3 6.20E+0 0.10
503 3.59E-3 1.39E-5 9.26E+5 8.76E+0 9.38E+6 2.41E+4 1.65E+5 1.95E+1 1.56E+5 5.99E+2 6.53E+3 1.72E+2 0.10
803 1.47E-2 8.01E-6 3.71E+6 2.50E+1 3.86E+7 5.57E+3 6.52E+5 1.68E+2 5.79E+5 3.60E+2 3.64E+4 6.82E+1 0.10
1003 2.85E-2 1.79E-5 7.19E+6 6.96E+1 7.53E+7 2.66E+4 1.26E+6 9.01E+1 1.12E+6 2.19E+2 7.30E+4 1.52E+2 0.10
1203 4.91E-2 2.44E-5 1.24E+7 4.23E+1 1.30E+8 2.99E+4 2.15E+6 1.38E+2 1.91E+6 1.53E+3 1.26E+5 6.76E+2 0.10
1503 9.54E-2 3.24E-5 2.41E+7 — 2.54E+8 7.07E+3 4.16E+6 — 3.72E+6 — 2.37E+5 — 0.09

Table A.38: PAPI Serial Mean Statistics for Kernel Madv1, Variant A– Data for Figures 6.1

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 3.29E-3 1.20E-5 1.32E+6 2.53E+3 9.42E+6 1.05E+3 3.26E+4 2.56E+1 3.06E+4 7.22E+1 1.83E+3 3.24E+1 0.14
503 1.51E-2 7.10E-6 6.04E+6 1.17E+4 4.28E+7 1.74E+4 1.40E+5 4.58E+2 1.29E+5 3.92E+2 9.76E+3 8.02E+1 0.14
803 6.06E-2 1.41E-4 2.45E+7 6.62E+4 1.73E+8 8.75E+3 5.60E+5 1.95E+3 5.24E+5 3.80E+3 3.43E+4 6.37E+2 0.14
1003 1.19E-1 1.96E-4 4.80E+7 1.18E+5 3.38E+8 1.52E+4 1.10E+6 3.82E+3 1.06E+6 3.39E+2 5.17E+4 1.35E+2 0.14
1203 2.02E-1 — 8.25E+7 1.69E+5 5.81E+8 7.68E+4 1.96E+6 4.03E+3 1.85E+6 3.91E+3 8.63E+4 8.69E+2 0.14
1503 3.98E-1 6.72E-4 1.62E+8 — 1.13E+9 6.94E+4 3.94E+6 — 4.02E+6 — 1.55E+5 — 0.14

Table A.39: PAPI Serial Mean Statistics for Kernel Madvx2, Variant B – Data for Figures 6.3(a)

269

F
igu

re
D

ata

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 3.49E-3 1.07E-5 1.28E+6 7.64E+2 1.06E+7 5.60E+4 9.72E+4 1.94E+1 9.50E+4 1.28E+2 2.10E+3 2.37E+1 0.12
503 1.59E-2 2.32E-5 5.86E+6 7.43E+2 4.78E+7 3.88E+3 4.49E+5 3.31E+2 4.22E+5 2.76E+3 2.52E+4 2.44E+3 0.12
803 6.40E-2 4.52E-4 2.39E+7 1.01E+3 1.94E+8 1.17E+5 1.84E+6 1.07E+3 1.74E+6 1.30E+3 9.37E+4 1.19E+3 0.12
1003 1.24E-1 1.23E-4 4.65E+7 6.84E+3 3.77E+8 6.37E+3 3.53E+6 2.24E+3 3.39E+6 1.31E+2 1.28E+5 7.39E+2 0.12
1203 2.15E-1 — 8.02E+7 9.43E+4 6.50E+8 3.90E+3 6.14E+6 3.25E+3 5.93E+6 2.09E+3 1.97E+5 1.57E+3 0.12
1503 4.15E-1 5.65E-4 1.57E+8 — 1.27E+9 1.11E+5 1.18E+7 — 1.14E+7 — 3.58E+5 — 0.12

Table A.40: PAPI Serial Mean Statistics for Kernel Madvy2, Variant B – Data for Figures 6.3(b)

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 3.56E-3 1.62E-5 1.26E+6 2.01E+3 1.04E+7 1.01E+3 1.10E+5 4.69E+1 7.78E+4 2.60E+2 3.19E+4 1.07E+2 0.12
503 1.68E-2 5.48E-5 5.76E+6 5.67E+2 4.74E+7 1.77E+4 4.94E+5 2.55E+2 3.21E+5 3.84E+2 1.72E+5 4.26E+2 0.12
803 6.54E-2 3.05E-4 2.35E+7 4.88E+3 1.93E+8 2.21E+3 1.96E+6 2.09E+3 1.41E+6 7.39E+3 5.38E+5 1.10E+4 0.12
1003 1.26E-1 3.08E-4 4.57E+7 2.74E+4 3.76E+8 8.36E+3 3.77E+6 6.33E+3 3.02E+6 1.13E+4 7.25E+5 1.56E+4 0.12
1203 2.14E-1 — 7.87E+7 9.19E+4 6.49E+8 3.26E+4 6.47E+6 5.83E+3 5.41E+6 8.92E+3 1.02E+6 8.26E+3 0.12
1503 4.17E-1 2.82E-3 1.54E+8 — 1.26E+9 2.93E+5 1.22E+7 — 1.07E+7 — 1.42E+6 — 0.12

Table A.41: PAPI Serial Mean Statistics for Kernel Madvz2, Variant B – Data for Figures 6.3(c)

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 2.69E-3 2.46E-5 4.94E+6 6.36E+3 7.58E+6 7.96E+2 1.43E+5 6.38E+2 1.17E+5 1.33E+3 1.90E+4 4.34E+2 0.65
503 1.17E-2 4.04E-5 2.15E+7 3.33E+4 3.21E+7 2.05E+3 7.74E+5 5.71E+3 6.55E+5 9.45E+2 6.90E+4 1.62E+3 0.67
803 4.53E-2 9.22E-6 8.46E+7 2.61E+4 1.24E+8 1.44E+4 3.23E+6 1.16E+4 2.71E+6 3.51E+3 2.60E+5 4.63E+3 0.69
1003 8.79E-2 1.27E-4 1.64E+8 5.94E+4 2.38E+8 1.89E+4 7.04E+6 1.16E+4 6.08E+6 2.64E+4 4.71E+5 2.76E+3 0.69
1203 1.52E-1 — 2.80E+8 1.55E+5 4.04E+8 4.82E+4 1.41E+7 2.25E+4 1.24E+7 1.08E+4 8.67E+5 1.43E+4 0.69
1503 2.91E-1 5.08E-4 5.43E+8 — 7.78E+8 8.72E+4 2.62E+7 — 2.29E+7 — 1.73E+6 — 0.70

Table A.42: PAPI Serial Mean Statistics for Kernel Madvmx1, Variant B – Data for Figures 6.3(d)

270

F
igu

re
D

ata

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 3.48E-3 1.25E-5 5.01E+6 1.82E+2 9.13E+6 7.33E+2 3.14E+5 3.19E+1 2.81E+5 9.23E+2 2.54E+4 8.90E+2 0.55
503 1.48E-2 1.26E-5 2.18E+7 9.04E+1 3.86E+7 8.27E+2 1.39E+6 9.27E+2 1.22E+6 3.80E+2 1.17E+5 1.50E+3 0.56
803 5.80E-2 1.41E-5 8.60E+7 3.75E+3 1.50E+8 2.02E+3 5.36E+6 4.51E+3 4.66E+6 2.69E+3 4.20E+5 8.11E+2 0.57
1003 1.11E-1 1.07E-4 1.66E+8 2.91E+3 2.88E+8 2.86E+4 1.10E+7 2.26E+3 9.59E+6 2.66E+3 8.54E+5 2.76E+3 0.58
1203 1.91E-1 — 2.84E+8 8.26E+3 4.90E+8 1.79E+4 2.09E+7 1.61E+4 1.87E+7 1.58E+4 1.29E+6 4.05E+3 0.58
1503 3.63E-1 1.34E-4 5.51E+8 — 9.44E+8 2.97E+4 3.68E+7 — 3.23E+7 — 2.76E+6 — 0.58

Table A.43: PAPI Serial Mean Statistics for Kernel Madvmy1, Variant B – Data for Figures 6.3(e)

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 3.60E-3 1.29E-5 4.99E+6 5.34E+2 9.29E+6 1.11E+3 3.44E+5 7.93E+1 2.33E+5 5.02E+2 1.04E+5 5.44E+2 0.54
503 1.55E-2 5.00E-6 2.17E+7 1.54E+3 3.97E+7 7.42E+2 1.54E+6 8.37E+2 9.82E+5 8.75E+3 5.12E+5 8.47E+3 0.55
803 5.94E-2 5.30E-5 8.57E+7 1.65E+3 1.54E+8 3.79E+3 5.48E+6 6.66E+3 3.71E+6 1.50E+4 1.48E+6 1.87E+4 0.56
1003 1.13E-1 1.08E-4 1.65E+8 5.01E+3 2.97E+8 3.67E+4 1.12E+7 5.32E+3 8.40E+6 2.12E+4 2.21E+6 2.54E+4 0.56
1203 1.99E-1 — 2.84E+8 2.32E+3 5.00E+8 7.20E+3 2.92E+7 1.44E+4 2.54E+7 1.24E+4 2.83E+6 4.61E+3 0.57
1503 3.70E-1 1.36E-4 5.49E+8 — 9.61E+8 2.00E+4 4.13E+7 — 3.46E+7 — 4.81E+6 — 0.57

Table A.44: PAPI Serial Mean Statistics for Kernel Madvmz1, Variant B – Data for Figures 6.3(f)

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 4.16E-3 8.92E-6 1.27E+6 6.62E+3 1.13E+7 1.39E+3 8.26E+4 2.88E+1 7.51E+4 6.40E+1 7.62E+3 8.42E+1 1.12E-1
503 1.93E-2 4.97E-5 5.80E+6 1.08E+3 5.17E+7 1.74E+3 3.65E+5 1.99E+3 3.36E+5 7.94E+2 2.68E+4 5.80E+2 1.12E-1
803 7.55E-2 1.17E-4 2.35E+7 4.19E+3 2.09E+8 3.91E+4 1.57E+6 2.32E+3 1.49E+6 2.04E+3 7.73E+4 2.37E+3 1.12E-1
1003 1.45E-1 3.47E-4 4.59E+7 1.05E+4 4.09E+8 6.93E+4 3.16E+6 7.68E+3 3.02E+6 6.72E+3 1.32E+5 4.16E+3 1.12E-1
1203 2.47E-1 6.24E-4 7.91E+7 3.50E+4 7.03E+8 9.39E+4 5.51E+6 1.20E+4 5.31E+6 9.39E+3 2.05E+5 2.32E+3 1.12E-1
1503 4.78E-1 0.00E+0 1.55E+8 0.00E+0 1.37E+9 1.03E+5 1.08E+7 0.00E+0 1.05E+7 0.00E+0 3.61E+5 0.00E+0 1.13E-1

Table A.45: PAPI Serial Mean Statistics for Kernel Madvx2, Variant C – Data for Figures 6.3(a)

271

F
igu

re
D

ata

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 4.32E-3 8.30E-6 1.28E+6 8.90E+1 1.19E+7 3.76E+2 8.36E+4 7.90E+1 7.67E+4 1.82E+2 6.98E+3 9.09E+1 1.07E-1
503 2.01E-2 5.99E-5 5.86E+6 3.36E+3 5.44E+7 9.78E+2 3.68E+5 8.95E+2 3.41E+5 5.85E+2 2.56E+4 6.09E+2 1.08E-1
803 7.89E-2 6.78E-5 2.39E+7 1.43E+4 2.21E+8 1.48E+4 1.59E+6 9.55E+2 1.52E+6 9.41E+3 7.50E+4 7.12E+2 1.08E-1
1003 1.51E-1 3.86E-4 4.66E+7 9.26E+4 4.30E+8 6.96E+4 3.19E+6 5.17E+3 3.05E+6 6.55E+3 1.27E+5 4.08E+3 1.08E-1
1203 2.57E-1 7.71E-4 8.03E+7 6.64E+3 7.42E+8 1.63E+4 5.59E+6 9.96E+3 5.36E+6 1.09E+4 2.03E+5 1.22E+3 1.08E-1
1503 4.97E-1 0.00E+0 1.57E+8 0.00E+0 1.45E+9 2.04E+5 1.10E+7 0.00E+0 1.06E+7 0.00E+0 3.42E+5 0.00E+0 1.08E-1

Table A.46: PAPI Serial Mean Statistics for Kernel Madvy2, Variant C – Data for Figures 6.3(b)

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 4.28E-3 1.07E-5 1.28E+6 7.77E+2 1.16E+7 4.27E+2 1.08E+5 1.58E+2 9.99E+4 1.10E+2 8.08E+3 1.39E+2 1.10E-1
503 2.00E-2 7.49E-5 5.89E+6 2.32E+4 5.29E+7 2.48E+3 4.73E+5 1.26E+3 4.29E+5 5.94E+2 4.49E+4 1.45E+3 1.11E-1
803 7.90E-2 2.34E-4 2.43E+7 1.59E+3 2.15E+8 3.31E+4 2.09E+6 2.81E+3 1.97E+6 5.95E+3 1.35E+5 3.88E+3 1.13E-1
1003 1.50E-1 1.82E-4 4.65E+7 6.27E+3 4.18E+8 2.58E+4 4.06E+6 6.16E+3 3.81E+6 1.21E+4 2.42E+5 9.13E+3 1.11E-1
1203 2.56E-1 3.85E-4 8.02E+7 9.14E+3 7.21E+8 1.37E+4 7.05E+6 2.94E+3 6.68E+6 6.68E+3 3.74E+5 1.18E+4 1.11E-1
1503 4.91E-1 0.00E+0 1.57E+8 0.00E+0 1.40E+9 2.75E+4 1.38E+7 0.00E+0 1.33E+7 0.00E+0 5.58E+5 0.00E+0 1.12E-1

Table A.47: PAPI Serial Mean Statistics for Kernel Madvz2, Variant C – Data for Figures 6.3(c)

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 4.89E-3 1.61E-5 4.97E+6 2.66E+3 1.12E+7 1.03E+2 3.04E+5 5.49E+1 2.30E+5 2.18E+2 7.18E+4 3.09E+2 4.44E-1
503 2.24E-2 6.56E-5 2.17E+7 7.40E+3 4.78E+7 5.27E+3 1.23E+6 1.12E+3 9.98E+5 1.56E+3 2.19E+5 1.20E+3 4.54E-1
803 8.02E-2 1.25E-4 8.57E+7 2.07E+4 1.86E+8 4.12E+4 4.70E+6 7.72E+3 4.08E+6 5.68E+3 5.99E+5 1.42E+3 4.59E-1
1003 1.49E-1 2.36E-4 1.65E+8 1.37E+4 3.59E+8 5.37E+4 9.10E+6 5.29E+3 8.05E+6 9.15E+3 9.92E+5 5.25E+3 4.61E-1
1203 2.48E-1 1.39E-4 2.83E+8 9.83E+4 6.13E+8 3.33E+4 1.55E+7 2.35E+4 1.39E+7 1.42E+4 1.53E+6 4.13E+3 4.62E-1
1503 4.75E-1 0.00E+0 5.49E+8 0.00E+0 1.18E+9 2.21E+5 2.98E+7 0.00E+0 2.69E+7 0.00E+0 2.73E+6 0.00E+0 4.63E-1

Table A.48: PAPI Serial Mean Statistics for Kernel Madvmx1, Variant C – Data for Figures 6.3(d)

272

F
igu

re
D

ata

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 4.97E-3 9.84E-6 4.93E+6 9.72E+2 1.21E+7 3.04E+2 2.82E+5 2.36E+2 2.40E+5 5.28E+2 4.11E+4 3.05E+2 4.06E-1
503 2.28E-2 7.88E-5 2.15E+7 3.92E+3 5.20E+7 3.99E+3 1.20E+6 4.49E+2 1.06E+6 2.71E+3 1.28E+5 1.63E+3 4.14E-1
803 8.24E-2 1.76E-4 8.49E+7 4.56E+3 2.03E+8 3.85E+4 4.77E+6 1.25E+4 4.39E+6 2.75E+3 3.62E+5 1.13E+3 4.17E-1
1003 1.53E-1 2.41E-4 1.64E+8 1.03E+4 3.91E+8 2.40E+4 9.34E+6 1.14E+4 8.67E+6 1.12E+4 6.10E+5 2.73E+3 4.20E-1
1203 2.56E-1 3.17E-4 2.81E+8 6.78E+3 6.69E+8 6.91E+4 1.61E+7 9.48E+3 1.51E+7 1.17E+4 9.23E+5 3.05E+3 4.20E-1
1503 4.89E-1 0.00E+0 5.44E+8 0.00E+0 1.29E+9 9.20E+4 3.16E+7 0.00E+0 2.97E+7 0.00E+0 1.72E+6 0.00E+0 4.21E-1

Table A.49: PAPI Serial Mean Statistics for Kernel Madvmy1, Variant C – Data for Figures 6.3(e)

Cells Time (s) σx DPOPs σx L1A σx L1M σx L2H σx L2M σx
DPOPS

L1A

303 5.24E-3 5.49E-7 4.99E+6 4.20E+2 1.23E+7 7.68E+2 3.75E+5 1.17E+2 2.95E+5 7.96E+3 7.91E+4 8.02E+3 4.05E-1
503 2.49E-2 8.31E-5 2.17E+7 1.55E+3 5.23E+7 1.67E+3 1.60E+6 2.28E+3 1.10E+6 3.02E+3 4.89E+5 3.48E+3 4.16E-1
803 9.45E-2 3.46E-4 8.58E+7 3.49E+3 2.05E+8 1.17E+3 6.26E+6 1.33E+4 4.40E+6 3.65E+3 1.83E+6 1.55E+3 4.18E-1
1003 1.80E-1 1.81E-4 1.66E+8 7.71E+3 3.95E+8 9.13E+3 1.21E+7 3.70E+3 8.57E+6 1.23E+4 3.51E+6 1.11E+4 4.20E-1
1203 3.01E-1 1.03E-4 2.84E+8 4.62E+4 6.73E+8 1.32E+4 2.12E+7 1.97E+4 1.56E+7 8.89E+4 5.40E+6 9.23E+4 4.22E-1
1503 5.86E-1 0.00E+0 5.50E+8 0.00E+0 1.30E+9 3.85E+4 4.00E+7 0.00E+0 2.84E+7 0.00E+0 1.15E+7 0.00E+0 4.23E-1

Table A.50: PAPI Serial Mean Statistics for Kernel Madvmz1, Variant C – Data for Figures 6.3(f)

Variant A Variant B Variant C

Cells Time (s) σx Time (s) σx Time (s) σx

27 000 11.18 0.03 8.66 0.04 10.56 0.01
125 000 50.94 0.14 38.23 0.07 47.25 0.12
512 000 205.09 0.27 152.21 0.28 183.33 0.24

1 000 000 418.70 0.31 314.26 0.35 371.55 0.39
1 728 000 809.37 0.81 587.57 — 683.50 0.71
3 375 000 1941.77 0.63 1355.32 2.13 1566.48 —

Table A.51: Hydra Serial Walltimes, Minerva Intel-12.0/OpenMPI-1.4.3 – Data for Figure 6.4(a)

273

F
igu

re
D

ata

Strong Scaling (1503) Weak Scaling (1003)

Variant A Variant B Variant C Variant A Variant B Variant C

PEs Time (s) σx Time (s) σx Time (s) σx Time (s) σx Time (s) σx Time (s) σx

1 1941.77 0.63 1355.32 2.13 1565.15 0.77 418.70 0.31 314.26 0.35 372.22 0.25
2 1035.26 1.32 722.85 1.09 833.35 0.79 468.52 1.18 328.87 0.25 387.85 0.36
4 601.47 0.19 434.37 0.27 506.54 0.29 564.68 0.34 396.21 8.47 459.23 1.18
8 367.41 0.27 269.47 0.29 316.68 0.22 655.61 0.44 471.08 1.27 563.84 1.02
16 187.30 0.15 143.65 0.12 168.98 0.18 671.10 0.49 485.08 0.60 580.81 0.42
32 97.21 0.48 76.61 0.29 89.62 0.11 678.20 0.13 491.48 0.97 586.63 —
64 54.62 0.04 45.08 0.07 51.68 0.09 689.28 0.30 501.07 1.17 594.73 —
128 31.80 0.25 26.21 0.11 29.24 0.20 708.31 8.88 503.38 0.47 597.64 0.27
256 19.97 1.86 15.13 0.04 16.27 0.08 700.35 1.38 512.26 5.25 603.90 —

Table A.52: Hydra Strong and Weak-Scaling Walltimes – Data for Figures 6.4(b), 6.4(c), 6.6(a), 6.6(b)

Variant: D E

Cells Walltime σx L1A σx DPOPs σx VECOPs σx Walltime σx L1A σx

303 4.11E-4 2.52E-7 7.15E+5 7.97E+0 4.89E+5 6.25E+2 2.30E+5 3.14E+2 2.62E-4 1.75E-5 2.43E+5 2.27E+1
503 1.85E-3 5.99E-7 3.24E+6 8.36E+1 2.26E+6 3.05E+1 1.06E+6 1.34E+1 1.05E-3 1.92E-5 1.04E+6 6.41E+2
803 7.63E-3 1.70E-5 1.31E+7 1.07E+2 9.22E+6 3.88E+3 4.35E+6 1.92E+3 4.23E-3 2.84E-5 4.00E+6 1.91E+3
1003 1.48E-2 1.31E-5 2.55E+7 1.06E+3 1.80E+7 9.20E+3 8.50E+6 4.60E+3 8.15E-3 3.10E-5 7.64E+6 5.38E+3
1203 2.56E-2 2.28E-5 4.39E+7 1.62E+3 3.10E+7 2.60E+3 1.46E+7 1.54E+3 1.40E-2 1.25E-5 1.30E+7 1.20E+3
1503 4.97E-2 1.42E-5 8.56E+7 7.72E+2 6.07E+7 5.29E+3 2.86E+7 2.64E+3 2.72E-2 1.71E-5 2.53E+7 3.73E+2

Table A.53: PAPI Serial Mean Statistics for Kernel MDT1, Minerva, Variants D and E – Data for Table 6.4, Figure 6.5(a)

274

F
igu

re
D

ata

Variant: D E

Cells Walltime σx L1A σx DPOPs σx VECOPs σx Walltime σx L1A σx

303 1.13E-3 1.29E-6 2.88E+6 4.75E+1 1.20E+6 1.21E+2 6.01E+5 6.03E+1 6.78E-4 1.74E-5 1.27E+6 1.64E+1
503 5.14E-3 3.25E-7 1.32E+7 1.94E+3 5.56E+6 2.85E+1 2.78E+6 1.42E+1 2.95E-3 1.89E-5 5.76E+6 3.74E+2
803 2.11E-2 4.87E-5 5.38E+7 5.51E+2 2.28E+7 3.56E+3 1.14E+7 1.78E+3 1.20E-2 2.34E-5 2.33E+7 2.47E+2
1003 4.10E-2 3.25E-5 1.05E+8 6.27E+2 4.44E+7 1.03E+4 2.22E+7 5.14E+3 2.33E-2 3.44E-5 4.53E+7 3.25E+2
1203 7.08E-2 4.95E-5 1.81E+8 6.59E+4 7.68E+7 9.38E+3 3.84E+7 6.03E+3 4.01E-2 1.73E-5 7.81E+7 5.39E+2
1503 1.39E-1 1.24E-3 3.53E+8 6.72E+3 1.50E+8 1.01E+4 7.49E+7 5.03E+3 7.80E-2 2.04E-5 1.52E+8 5.03E+3

Table A.54: PAPI Serial Mean Statistics for Kernel MDT2, Minerva, Variants D and E – Data for Table 6.4, Figure 6.5(b)

Variant: D E

Cells Walltime σx L1A σx DPOPs σx VECOPs σx Walltime σx L1A σx

303 1.08E-3 6.94E-7 2.99E+6 7.24E+1 2.42E+6 3.75E+2 1.17E+6 1.94E+2 7.93E-4 1.90E-5 2.03E+6 2.68E+1
503 4.77E-3 4.69E-6 1.31E+7 1.41E+2 1.07E+7 5.74E+2 5.26E+6 2.34E+2 3.34E-3 2.12E-5 8.50E+6 4.09E+2
803 1.89E-2 3.66E-5 5.20E+7 5.66E+2 4.29E+7 2.12E+3 2.12E+7 1.06E+3 1.29E-2 2.93E-5 3.30E+7 7.48E+2
1003 3.65E-2 5.08E-5 1.00E+8 2.41E+3 8.31E+7 4.71E+2 4.11E+7 1.54E+2 2.46E-2 4.63E-5 6.32E+7 4.47E+2
1203 6.24E-2 3.11E-5 1.72E+8 3.43E+3 1.43E+8 1.57E+3 7.08E+7 9.24E+2 4.19E-2 1.69E-5 1.08E+8 2.27E+3
1503 1.21E-1 1.90E-5 3.34E+8 5.50E+3 2.78E+8 2.31E+3 1.38E+8 8.74E+2 8.07E-2 2.45E-5 2.08E+8 2.54E+3

Table A.55: PAPI Serial Mean Statistics for Kernel UpdVel, Minerva, Variants D and E – Data for Table 6.4, Figure 6.5(c)

Variant: D E

Cells Walltime σx L1A σx DPOPs σx VECOPs σx Walltime σx L1A σx

303 2.57E-3 5.16E-8 2.98E+6 1.25E+2 4.44E+6 3.62E+3 2.22E+6 1.81E+3 1.65E-3 1.88E-5 1.95E+6 1.23E+2
503 1.22E-2 2.17E-6 1.38E+7 2.24E+2 2.06E+7 5.64E+3 1.03E+7 2.82E+3 7.64E-3 1.77E-5 8.88E+6 4.28E+2
803 4.73E-2 1.32E-4 5.52E+7 1.56E+2 8.37E+7 6.10E+3 4.19E+7 3.05E+3 2.95E-2 2.41E-5 3.60E+7 4.01E+2
1003 9.60E-2 1.42E-4 1.09E+8 1.94E+3 1.65E+8 2.10E+4 8.23E+7 1.05E+4 5.96E-2 5.17E-5 7.00E+7 2.80E+3
1203 1.60E-1 7.32E-5 1.86E+8 3.20E+3 2.83E+8 1.67E+4 1.41E+8 6.23E+3 1.00E-1 2.87E-5 1.21E+8 4.42E+3
1503 3.15E-1 3.12E-5 3.63E+8 6.60E+3 5.54E+8 6.29E+4 2.77E+8 3.14E+4 1.96E-1 3.48E-5 2.35E+8 1.84E+3

Table A.56: PAPI Serial Mean Statistics for Kernel Lartvis1, Minerva, Variants D and E – Data for Table 6.4, Figure 6.5(d)

275

F
igu

re
D

ata

Variant: D E

Cells Walltime σx L1A σx DPOPs σx VECOPs σx Walltime σx L1A σx

303 4.78E-4 2.75E-7 1.14E+6 1.72E+1 8.31E+5 3.47E+3 4.15E+5 1.73E+3 3.88E-4 2.00E-5 9.51E+5 7.28E+0
503 2.16E-3 4.01E-7 5.18E+6 6.31E+2 3.83E+6 2.37E+3 1.92E+6 1.19E+3 1.64E-3 2.85E-5 4.29E+6 2.74E+1
803 8.85E-3 2.01E-5 2.10E+7 1.79E+2 1.57E+7 4.11E+3 7.84E+6 2.05E+3 6.49E-3 3.27E-5 1.73E+7 6.41E+2
1003 1.72E-2 2.54E-5 4.08E+7 2.94E+1 3.05E+7 2.04E+4 1.53E+7 1.02E+4 1.25E-2 3.62E-5 3.37E+7 1.02E+3
1203 2.96E-2 2.18E-5 7.02E+7 2.24E+2 5.29E+7 2.79E+4 2.64E+7 1.61E+4 2.16E-2 2.21E-5 5.80E+7 3.79E+2
1503 5.75E-2 1.36E-5 1.37E+8 8.16E+2 1.03E+8 2.20E+4 5.16E+7 1.10E+4 4.20E-2 2.85E-5 1.13E+8 8.43E+3

Table A.57: PAPI Serial Mean Statistics for Kernel Mdivu, Minerva, Variants D and E – Data for Table 6.4, Figure 6.5(e)

Variant: D E

Cells Walltime σx L1A σx DPOPs σx VECOPs σx Walltime σx L1A σx

303 2.74E-4 1.77E-7 5.48E+5 4.62E+1 4.78E+5 9.78E+0 2.37E+5 5.49E+0 2.54E-4 1.75E-5 5.92E+5 3.03E+1
503 1.28E-3 5.00E-7 2.38E+6 2.35E+2 2.16E+6 1.18E+2 1.07E+6 5.91E+1 1.07E-3 1.74E-5 2.52E+6 1.51E+2
803 5.24E-3 8.88E-6 9.38E+6 1.66E+2 8.67E+6 1.01E+2 4.32E+6 4.94E+1 3.96E-3 2.15E-5 9.75E+6 2.75E+3
1003 1.00E-2 2.92E-6 1.81E+7 1.91E+2 1.68E+7 4.55E+2 8.38E+6 2.27E+2 7.52E-3 2.80E-5 1.87E+7 6.27E+3
1203 1.72E-2 1.16E-5 3.10E+7 1.03E+3 2.90E+7 1.13E+3 1.44E+7 7.32E+2 1.28E-2 1.43E-5 3.20E+7 7.68E+3
1503 3.31E-2 1.16E-5 6.00E+7 4.05E+2 5.63E+7 1.19E+3 2.81E+7 5.97E+2 2.54E-2 2.60E-5 6.19E+7 9.58E+2

Table A.58: PAPI Serial Mean Statistics for Kernel Mvolflx, Minerva, Variants D and E – Data for Table 6.4, Figure 6.5(f)

Variant:
D E

Cells Walltime σx L1A σx DPOPs σx VECOPs σx Walltime σx L1A σx

303 5.69E-3 5.98E-5 1.18E+7 4.86E+2 5.73E+6 1.39E+3 2.31E+6 1.61E+2 5.11E-3 2.85E-5 1.11E+7 1.44E+2
503 2.50E-2 8.36E-5 4.91E+7 7.66E+2 2.50E+7 1.47E+3 1.03E+7 5.26E+2 2.24E-2 4.45E-5 4.51E+7 1.81E+3
803 9.01E-2 2.30E-4 1.88E+8 3.06E+3 9.85E+7 1.05E+4 4.09E+7 6.88E+3 7.83E-2 1.30E-4 1.70E+8 9.80E+2
1003 1.67E-1 2.03E-4 3.60E+8 5.13E+3 1.90E+8 2.43E+3 7.92E+7 8.41E+3 1.45E-1 1.77E-4 3.23E+8 1.60E+4
1203 2.79E-1 2.19E-4 6.11E+8 2.38E+4 3.26E+8 8.53E+3 1.36E+8 1.68E+3 2.41E-1 6.88E-5 5.47E+8 1.55E+4
1503 5.32E-1 1.86E-4 1.18E+9 5.06E+4 6.33E+8 4.24E+4 2.65E+8 2.12E+4 4.59E-1 1.76E-4 1.05E+9 7.38E+4

Table A.59: PAPI Serial Mean Statistics for Kernel Madvmx1, Minerva, Variants D and E – Data for Table 6.4, Figure 6.5(g)

276

F
igu

re
D

ata

Strong-Scaling Weak-Scaling

PEs F σx G σx H σx F σx G σx H σx

1 1565.75 1.24 1545.64 1.48 1541.94 0.28 372.09 0.22
2 835.41 1.65 832.84 0.63 885.31 3.24 387.49 0.20 388.97 0.45 401.56 1.02
4 506.56 0.33 519.34 0.18 548.38 1.85 460.68 0.22 477.63 0.49 502.48 0.70
8 318.69 0.52 342.50 0.15 369.22 2.00 564.90 0.44 599.25 0.26 643.97 4.29

16 170.32 0.15 181.41 0.17 204.57 0.14 582.71 0.83 615.33 0.29 674.35 1.00
32 90.38 0.04 95.21 0.12 110.08 0.34 586.28 0.39 619.25 0.43 707.26 3.27
64 52.52 0.08 56.60 0.13 62.18 0.11 596.06 0.16 629.95 0.27 713.58 1.32

128 30.44 0.08 30.83 0.04 31.60 0.08 598.40 0.36 636.50 0.79 734.89 1.02
256 16.73 0.04 28.26 0.04 30.00 0.42 603.91 658.24 0.48 766.49 1.06

Table A.60: Minerva – Strong and Weak-Scaling Walltime – Data for Figures 6.6(a), 6.6(b)

Variant G H

Exchange Phase Min (s) σx µ (s) σx Max (s) σx Min (s) σx µ (s) σx Max (s) σx

MadvExch 2.33E-02 4.00E-04 3.13E-02 1.57E-04 1.22E-01 1.68E-03 9.89E-02 1.09E-03 1.19E-01 7.75E-04 1.66E-01 1.29E-03
LartvisExch 2.15E-03 2.18E-04 9.52E-03 1.82E-04 8.25E-02 2.08E-03 9.91E-03 4.06E-04 1.71E-02 1.81E-04 3.43E-02 3.96E-04
Mlagh1Exch 1.56E-02 1.73E-04 2.45E-02 5.41E-04 6.97E-02 7.49E-04 2.56E-02 8.79E-04 3.74E-02 6.64E-04 8.22E-02 7.65E-04
Mlagh2Exch 1.19E-02 3.40E-05 1.61E-02 7.67E-05 2.40E-02 1.33E-03 4.19E-02 1.66E-03 6.07E-02 1.41E-03 7.49E-02 2.08E-03

MadvmxExch 4.44E-02 5.21E-04 7.13E-02 1.64E-04 9.05E-02 6.25E-04 5.45E-02 9.02E-04 7.98E-02 5.71E-04 1.24E-01 1.90E-04
MadvmyExch 4.35E-02 7.68E-04 7.14E-02 2.36E-04 9.01E-02 7.70E-04 5.50E-02 1.48E-03 8.17E-02 3.55E-04 1.19E-01 1.11E-03
MadvmxExch 4.24E-02 8.90E-04 7.14E-02 1.78E-04 9.03E-02 8.90E-04 5.14E-02 5.78E-04 8.01E-02 3.38E-04 1.25E-01 1.54E-03

Table A.61: Minerva – 256 PEs, 1003, Weak-Scaling – Communication Phase Timings – Data for Figure 6.7(a)

277

F
igu

re
D

ata

Variant F H

Exchange Phase Min (s) σx µ (s) σx Max (s) σx Min (s) σx µ (s) σx Max (s) σx

LartvisComp 9.82E-2 — 9.89E-2 — 1.03E-1 — 1.02E-01 7.90E-05 1.04E-01 2.03E-05 1.08E-01 2.26E-04
MadvmxComp 1.85E-1 — 2.55E-1 — 2.63E-1 — 1.84E-01 7.32E-04 2.84E-01 5.78E-04 2.99E-01 4.96E-04
Madvx1Comp 8.80E-3 — 1.45E-2 — 1.55E-2 — 8.54E-03 1.46E-04 1.35E-02 4.22E-05 1.53E-02 1.98E-04
Madvx2Comp 1.53E-1 — 1.64E-1 — 1.69E-1 — 1.94E-01 5.66E-04 2.05E-01 7.62E-05 2.17E-01 3.77E-04

Table A.62: Minerva – 256 PEs, 1003, Weak-Scaling – Compute Kernel Timings – Data for Figure 6.7(b)

Strong-Scaling Weak-Scaling

Variant C I J C I J

PEs Walltime (s) σx Walltime (s) σx Walltime (s) σx Walltime (s) σx Walltime (s) σx Walltime (s) σx

1 — — 1753.12 1.86 1772.94 1.00 371.95 0.31 434.60 18.08 420.65 0.84
2 — — 948.50 2.87 1024.76 0.91 387.69 0.74 451.21 0.87 486.88 1.62
4 — — 584.97 0.13 685.99 0.28 460.00 0.68 551.58 1.64 664.68 0.50
8 — — 316.55 0.58 366.02 0.38 562.57 0.50 568.82 0.37 656.21 1.15
12 219.24 0.20 261.11 0.37 338.54 0.20 578.91 0.54 673.18 1.10 926.19 0.37
16 169.15 0.11 — — — — 579.58 0.24 — — — —
24 115.60 0.05 143.11 0.08 174.31 0.20 582.04 0.31 683.83 0.35 936.38 0.16
32 89.64 0.14 — — — — 586.26 0.15 — — — —
48 64.75 0.25 86.05 0.02 100.17 0.23 591.29 0.24 720.93 0.37 971.20 0.42
64 53.15 0.50 — — — — 594.43 0.30 — — — —
96 35.35 0.14 48.01 0.05 53.55 0.07 597.90 0.36 738.41 0.91 984.73 0.03
128 29.41 0.08 — — — — 598.54 0.11 — — — —
192 19.80 0.11 27.36 0.06 30.06 0.08 601.24 0.41 755.58 0.35 1000.10 0.46
256 15.93 0.08 — — — — 601.83 0.01 — — — —

Table A.63: Minerva, Strong and Weak-Scaling Walltimes — Variants C, I, J — Data for Figure 6.8

278

F
igu

re
D

ata

BlockSize Walltime (s) σx

1 337.70 0.16
8 323.32 0.07

32 318.73 0.26
500 277.30 0.70

1000 273.29 0.46
1500 324.67 0.28
1875 264.34 0.08

Table A.64: Minerva Intel-12.0/OpenMPI-1.4.4, Dynamic Block Size Performance, 1503, 12 Threads – Data for Figure 6.9

279

F
igu

re
D

ata

Variant C J K L

PEs Walltime (s) σx Walltime (s) σx Walltime (s) σx Walltime (s) σx

1 — — 1772.94 1.00 1561.69 1.81 1561.07 2.06
2 — — 1024.76 0.91 964.84 2.14 974.48 3.33
4 — — 685.99 0.28 666.40 0.56 666.71 0.32
8 — — 366.02 0.38 354.71 0.32 367.31 0.51

12 219.24 0.20 338.54 0.20 336.44 0.21 326.94 0.23
16 169.15 0.11 — — — — — —
24 115.60 0.05 174.31 0.20 172.73 0.13 167.07 0.71
32 89.64 0.14 — — — — — —
48 64.75 0.25 100.17 0.23 101.53 0.19 93.30 0.20
64 53.15 0.50 — — — — — —
96 35.35 0.14 53.55 0.07 53.79 0.13 49.27 0.09

128 29.41 0.08 — — — — — —
192 19.80 0.11 30.06 0.08 29.55 0.22 27.63 0.16
256 15.93 0.08 — — — — — —

Table A.65: Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Strong-Scaling Walltimes – Data for Figure 6.11(a)

280

F
igu

re
D

ata

Variant C J K L

PEs Walltime (s) σx Walltime (s) σx Walltime (s) σx Walltime (s) σx

1 371.95 0.31 420.65 0.84 368.19 0.52 338.10 0.78
2 387.69 0.74 486.88 1.62 461.06 0.75 440.22 2.40
4 460.00 0.68 664.68 0.50 652.55 1.50 651.51 0.66
8 562.57 0.50 656.21 1.15 622.91 0.67 643.39 1.59

12 578.91 0.54 926.19 0.37 915.07 0.37 866.47 1.24
16 579.58 0.24 — — — — — —
24 582.04 0.31 936.38 0.16 926.00 0.44 876.48 1.39
32 586.26 0.15 — — — — — —
48 591.29 0.24 971.20 0.42 964.54 0.33 877.46 0.61
64 594.43 0.30 — — — — — —
96 597.90 0.36 984.73 0.03 973.56 0.19 883.12 0.43

128 598.54 0.11 — — — — — —
192 601.24 0.41 1000.10 0.46 985.88 0.33 892.63 0.54
256 601.83 0.01 — — — — — —

Table A.66: Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Strong-Scaling Walltimes – Data for Figure 6.11(b)281

F
igu

re
D

ata

Variant K L

PEs Min (s) σx µ (s) σx Max (s) σx Min (s) σx µ (s) σx Max (s) σx

1 9.95E-02 1.28E-05 9.95E-02 1.28E-05 9.95E-02 1.28E-05 3.32E-02 3.32E-02 9.95E-02 4.08E-05 9.95E-02 4.08E-05
2 1.03E-01 2.85E-05 1.03E-01 2.85E-05 1.03E-01 2.85E-05 3.44E-02 3.44E-02 1.03E-01 7.98E-05 1.03E-01 7.98E-05
4 1.10E-01 1.21E-04 1.10E-01 1.21E-04 1.10E-01 1.21E-04 3.66E-02 3.65E-02 1.10E-01 1.28E-04 1.10E-01 1.28E-04
8 1.05E-01 2.29E-04 1.05E-01 6.70E-05 1.06E-01 1.24E-04 3.54E-02 3.53E-02 1.15E-01 3.99E-04 1.15E-01 6.55E-04
12 1.05E-01 6.04E-04 1.06E-01 3.24E-04 1.08E-01 1.12E-03 3.65E-02 3.58E-02 1.10E-01 1.12E-03 1.11E-01 1.43E-03
24 1.04E-01 3.38E-04 1.08E-01 3.59E-04 1.11E-01 3.11E-04 3.72E-02 3.69E-02 1.10E-01 5.98E-04 1.12E-01 7.82E-04
48 1.06E-01 4.73E-04 1.10E-01 3.71E-04 1.15E-01 6.47E-04 3.85E-02 3.80E-02 1.08E-01 2.07E-04 1.09E-01 1.11E-04
96 1.08E-01 1.79E-04 1.12E-01 3.53E-04 1.18E-01 1.04E-03 3.98E-02 3.91E-02 1.08E-01 3.35E-04 1.10E-01 1.42E-04
192 1.07E-01 2.48E-04 1.14E-01 1.49E-04 1.23E-01 3.88E-04 4.11E-02 4.08E-02 1.10E-01 2.86E-04 1.13E-01 5.08E-04

Table A.67: Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Weak-Scaling, Lartvis Walltimes – Data for Figure 6.12(a)

Variant K L

PEs Min (s) σx µ (s) σx Max (s) σx Min (s) σx µ (s) σx Max (s) σx

1 9.97E-02 1.42E-05 9.97E-02 1.42E-05 9.97E-02 1.42E-05 9.95E-02 7.55E-05 9.95E-02 7.55E-05 9.95E-02 7.55E-05
2 1.03E-01 2.35E-05 1.03E-01 2.35E-05 1.03E-01 2.35E-05 1.03E-01 9.38E-05 1.03E-01 9.38E-05 1.03E-01 9.38E-05
4 1.09E-01 1.05E-04 1.09E-01 1.05E-04 1.09E-01 1.05E-04 1.09E-01 9.93E-05 1.09E-01 9.93E-05 1.09E-01 9.93E-05
8 1.03E-01 9.40E-05 1.03E-01 2.25E-05 1.04E-01 4.93E-05 9.57E-02 1.15E-03 9.73E-02 2.69E-04 9.90E-02 6.32E-04
12 1.03E-01 5.45E-05 1.03E-01 2.70E-05 1.04E-01 7.20E-06 9.88E-02 3.59E-04 9.98E-02 3.77E-04 1.01E-01 4.71E-04
24 1.02E-01 4.15E-05 1.03E-01 1.89E-05 1.04E-01 4.38E-06 8.85E-02 1.63E-03 9.36E-02 1.73E-04 1.01E-01 1.60E-03
48 1.02E-01 9.80E-06 1.02E-01 5.56E-06 1.04E-01 2.00E-05 8.61E-02 1.21E-03 8.98E-02 6.16E-04 9.60E-02 1.47E-03
96 1.02E-01 4.01E-05 1.02E-01 5.46E-06 1.04E-01 2.58E-05 8.33E-02 2.52E-04 8.81E-02 4.02E-04 9.33E-02 1.90E-04
192 1.01E-01 3.18E-05 1.02E-01 7.86E-06 1.04E-01 2.23E-05 7.89E-02 1.05E-03 8.57E-02 5.09E-04 9.15E-02 8.15E-05

Table A.68: Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Weak-Scaling, Lartvis1 Walltimes – Data for Figure 6.12(a)

282

F
igu

re
D

ata

Variant K L

PEs Min (s) σx µ s) σx Max (s) σx Min (s) σx µ s) σx Max (s) σx

1 1.42E-05 9.23E-08 1.42E-05 9.23E-08 1.42E-05 9.23E-08 1.45E-05 1.34E-07 1.45E-05 1.34E-07 1.45E-05 1.34E-07
2 1.76E-05 3.42E-08 1.76E-05 3.42E-08 1.76E-05 3.42E-08 1.69E-05 1.41E-07 1.69E-05 1.41E-07 1.69E-05 1.41E-07
4 2.06E-05 3.30E-08 2.06E-05 3.30E-08 2.06E-05 3.30E-08 2.01E-05 3.03E-07 2.01E-05 3.03E-07 2.01E-05 3.03E-07
8 1.05E-03 1.71E-04 1.41E-03 4.53E-05 1.77E-03 1.54E-04 1.25E-02 5.58E-04 1.44E-02 6.05E-04 1.63E-02 1.54E-03
12 1.13E-03 3.92E-05 2.03E-03 1.62E-04 2.94E-03 3.34E-04 6.95E-03 6.74E-04 8.18E-03 8.65E-04 9.41E-03 1.09E-03
24 1.45E-03 1.13E-04 3.78E-03 2.40E-04 5.26E-03 3.76E-04 5.91E-03 9.02E-04 1.38E-02 5.38E-04 1.98E-02 1.70E-03
48 3.23E-03 2.66E-04 5.51E-03 2.06E-04 7.76E-03 3.12E-04 9.47E-03 1.11E-03 1.62E-02 7.07E-04 2.04E-02 1.52E-03
96 4.70E-03 5.08E-05 7.15E-03 2.14E-04 1.03E-02 4.64E-04 1.20E-02 1.18E-04 1.82E-02 5.02E-04 2.43E-02 2.17E-04
192 4.61E-03 2.22E-04 8.75E-03 8.90E-05 1.31E-02 1.52E-04 1.55E-02 2.34E-04 2.16E-02 5.77E-04 2.89E-02 1.58E-03

Table A.69: Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Weak-Scaling, Lartvis Walltimes – Data for Figure 6.12(a)

Variant K L

PEs Min (s) σx µ s) σx Max (s) σx Min (s) σx µ s) σx Max (s) σx

1 1.36E-01 2.74E-04 1.36E-01 2.74E-04 1.36E-01 2.74E-04 1.36E-01 1.75E-04 1.36E-01 1.75E-04 1.36E-01 1.75E-04
2 1.93E-01 9.35E-04 1.93E-01 9.35E-04 1.93E-01 9.35E-04 2.04E-01 2.41E-03 2.04E-01 2.41E-03 2.04E-01 2.41E-03
4 3.26E-01 1.18E-03 3.26E-01 1.18E-03 3.26E-01 1.18E-03 3.25E-01 2.41E-04 3.25E-01 2.41E-04 3.25E-01 2.41E-04
8 3.07E-01 1.29E-04 3.08E-01 2.44E-04 3.08E-01 4.24E-04 2.95E-01 8.21E-04 2.97E-01 1.48E-03 2.99E-01 2.15E-03
12 5.74E-01 9.18E-04 5.75E-01 9.88E-04 5.75E-01 1.07E-03 5.01E-01 5.04E-04 5.02E-01 5.18E-04 5.03E-01 5.76E-04
24 5.85E-01 9.67E-04 5.86E-01 5.98E-04 5.87E-01 1.51E-04 5.04E-01 1.87E-04 5.05E-01 2.61E-04 5.06E-01 7.19E-04
48 6.18E-01 4.46E-04 6.20E-01 2.56E-04 6.23E-01 3.19E-04 5.05E-01 3.36E-04 5.06E-01 1.49E-04 5.08E-01 1.40E-04
96 6.20E-01 8.89E-04 6.26E-01 3.40E-04 6.30E-01 4.35E-04 5.05E-01 3.43E-04 5.08E-01 2.18E-04 5.11E-01 1.94E-04
192 6.26E-01 3.03E-04 6.33E-01 2.02E-04 6.41E-01 1.20E-03 5.06E-01 3.32E-04 5.11E-01 1.90E-04 5.15E-01 1.60E-04

Table A.70: Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Weak-Scaling, Madvmx Walltimes – Data for Figure 6.12(b)

283

F
igu

re
D

ata

Variant K L

PEs Min (s) σx µ s) σx Max (s) σx Min (s) σx µ s) σx Max (s) σx

1 1.27E-01 2.87E-04 1.27E-01 2.87E-04 1.27E-01 2.87E-04 1.27E-01 3.02E-04 1.27E-01 3.02E-04 1.27E-01 3.02E-04
2 1.84E-01 9.35E-04 1.84E-01 9.35E-04 1.84E-01 9.35E-04 1.95E-01 4.19E-03 1.95E-01 4.19E-03 1.95E-01 4.19E-03
4 3.13E-01 1.16E-03 3.13E-01 1.16E-03 3.13E-01 1.16E-03 3.11E-01 4.32E-04 3.11E-01 4.32E-04 3.11E-01 4.32E-04
8 2.83E-01 2.04E-04 2.84E-01 1.17E-04 2.84E-01 1.84E-04 2.50E-01 7.44E-04 2.53E-01 2.38E-03 2.55E-01 4.55E-03
12 5.45E-01 1.08E-03 5.46E-01 1.06E-03 5.48E-01 1.07E-03 4.43E-01 4.03E-04 4.44E-01 8.80E-04 4.46E-01 1.90E-03
24 5.45E-01 9.36E-04 5.46E-01 6.49E-04 5.48E-01 6.76E-04 3.97E-01 4.13E-03 4.02E-01 1.90E-03 4.10E-01 2.48E-03
48 5.41E-01 7.61E-04 5.43E-01 2.76E-04 5.44E-01 8.21E-05 3.14E-01 8.97E-03 3.26E-01 6.25E-03 3.33E-01 7.30E-03
96 5.39E-01 4.18E-04 5.42E-01 2.51E-04 5.45E-01 5.56E-04 2.49E-01 1.17E-03 2.70E-01 1.62E-03 2.98E-01 3.92E-03
192 5.39E-01 7.77E-04 5.42E-01 3.27E-04 5.45E-01 5.93E-04 2.13E-01 2.35E-03 2.37E-01 2.08E-03 2.61E-01 4.10E-03

Table A.71: Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Weak-Scaling, Madvmx1 Walltimes – Data for Figure 6.12(b)

Variant K L

PEs Min (s) σx µ s) σx Max (s) σx Min (s) σx µ s) σx Max (s) σx

1 1.47E-05 5.45E-08 1.47E-05 5.45E-08 1.47E-05 5.45E-08 1.46E-05 1.01E-07 1.46E-05 1.01E-07 1.46E-05 1.01E-07
2 1.70E-05 1.17E-08 1.70E-05 1.17E-08 1.70E-05 1.17E-08 1.73E-05 1.30E-07 1.73E-05 1.30E-07 1.73E-05 1.30E-07
4 2.00E-05 3.67E-08 2.00E-05 3.67E-08 2.00E-05 3.67E-08 2.13E-05 2.73E-07 2.13E-05 2.73E-07 2.13E-05 2.73E-07
8 1.45E-02 1.46E-04 1.48E-02 1.23E-04 1.50E-02 1.10E-04 3.30E-02 3.60E-04 3.53E-02 3.39E-04 3.76E-02 9.04E-04
12 1.43E-02 1.02E-04 1.52E-02 3.21E-04 1.60E-02 5.42E-04 4.33E-02 8.07E-04 4.41E-02 4.73E-04 4.49E-02 3.25E-04
24 2.65E-02 6.55E-04 2.81E-02 7.13E-05 2.91E-02 1.56E-04 8.36E-02 1.52E-03 9.09E-02 1.33E-03 9.51E-02 2.51E-03
48 6.73E-02 3.87E-04 6.95E-02 1.17E-04 7.11E-02 2.83E-04 1.66E-01 3.74E-03 1.72E-01 3.71E-03 1.83E-01 5.09E-03
96 7.00E-02 8.00E-04 7.61E-02 1.50E-04 8.14E-02 6.90E-04 2.02E-01 1.93E-03 2.31E-01 8.05E-04 2.55E-01 1.33E-03
192 7.48E-02 6.03E-04 8.49E-02 1.23E-04 9.49E-02 4.50E-04 2.39E-01 1.95E-03 2.67E-01 1.15E-03 2.94E-01 6.60E-04

Table A.72: Minerva, Intel-12.0/OpenMPI-1.4.4 – 1003, Weak-Scaling, Madvmx Walltimes – Data for Figure 6.12(b)

284

Figure Data

Iteration Time (%)

PEs
MatMult VecNorm VecTDot VecAXPY VecAYPX ApplyPC

(Max) (Min) (Min) (Max) (Max) (Max)

1 68.67 2.45 8.63 11.50 4.83 3.92
2 63.19 3.12 9.96 11.87 6.28 5.58
4 62.02 2.54 9.08 15.23 6.53 4.59
8 57.11 1.81 10.50 17.06 7.33 6.18

16 57.14 1.76 10.82 17.06 7.40 5.83
32 57.35 1.76 10.52 16.95 7.44 5.98
64 56.99 1.85 11.39 16.54 7.45 5.79

128 57.63 1.94 11.03 16.35 7.36 5.70
256 57.53 2.08 11.33 16.10 7.32 5.63
512 57.72 2.13 11.39 15.92 7.21 5.63

1024 56.82 2.33 12.61 15.65 7.13 5.45
2048 57.63 2.24 11.30 15.96 7.29 5.58
4096 58.08 2.22 11.46 15.50 7.29 5.45
8192 55.84 3.39 12.92 15.65 6.94 5.25

16 384 57.55 3.84 12.96 14.14 6.52 4.99

Table A.73: HECToR, PGI-12.10/MPICH2-5.6.1 – CG Algorithm Breakdown
by Function– Data for Figure 7.3

Time (s)

PEs
Multiply Multiply-Add

VecScatterBegin (s) VecScatterEnd (s)Compute (s) Compute (s)

1 3.15E-03 0.00E+00 0.00E+00 0.00E+00
2 4.24E-03 5.79E-04 1.90E-05 3.20E-05
4 5.40E-03 6.10E-04 4.60E-05 6.50E-05
8 8.44E-03 1.01E-03 1.25E-04 1.54E-04

16 8.38E-03 9.86E-04 1.39E-04 2.39E-04
32 8.32E-03 1.02E-03 1.60E-04 2.79E-04
64 8.34E-03 1.04E-03 1.84E-04 3.88E-04

128 8.34E-03 1.05E-03 2.01E-04 4.10E-04
256 8.36E-03 1.05E-03 2.19E-04 4.83E-04
512 8.35E-03 1.06E-03 2.47E-04 5.33E-04

1024 8.35E-03 1.06E-03 2.46E-04 5.75E-04
2048 8.35E-03 1.07E-03 2.60E-04 5.70E-04
4096 8.35E-03 1.07E-03 2.89E-04 6.73E-04
8192 8.36E-03 1.07E-03 3.34E-04 6.67E-04

16 384 8.34E-03 1.07E-03 4.08E-04 9.16E-04

Table A.74: HECToR, PGI-12.10/MPICH2-5.6.1 – Single Matrix-Multiply
Call Mean Breakdown – Data for Figure 7.4

285

Figure Data

Time (s)

Compute AllReduce

PEs Min µ Max Min µ Max IMB

1 1.03E-4 1.03E-4 1.03E-4 0.00E+0 0.00E+0 0.00E+0 0.00E+0
2 2.19E-4 2.20E-4 2.21E-4 7.00E-6 1.00E-5 1.30E-5 1.20E-6
4 2.23E-4 2.24E-4 2.25E-4 1.50E-5 1.60E-5 1.60E-5 2.29E-6
8 2.76E-4 2.87E-4 2.96E-4 1.90E-5 3.30E-5 4.60E-5 3.89E-6

16 2.60E-4 2.87E-4 3.15E-4 1.90E-5 8.30E-5 1.64E-4 5.26E-6
32 2.68E-4 2.84E-4 3.03E-4 2.30E-5 1.35E-4 2.15E-4 6.65E-6
64 2.66E-4 2.85E-4 3.08E-4 4.20E-5 1.36E-4 1.87E-4 1.01E-5

128 2.61E-4 2.86E-4 3.41E-4 6.70E-5 1.57E-4 2.24E-4 1.94E-5
256 2.60E-4 2.86E-4 3.10E-4 9.90E-5 2.14E-4 3.55E-4 1.59E-5
512 2.58E-4 2.84E-4 3.13E-4 1.02E-4 2.36E-4 3.90E-4 3.00E-5

1024 2.61E-4 2.85E-4 3.31E-4 1.48E-4 2.80E-4 4.42E-4 3.58E-5
2048 2.66E-4 2.85E-4 3.26E-4 1.33E-4 2.60E-4 4.36E-4 3.83E-5
4096 2.47E-4 2.85E-4 3.18E-4 1.39E-4 2.66E-4 5.39E-4 1.20E-4
8192 2.16E-4 2.87E-4 5.05E-4 3.44E-4 5.06E-4 6.03E-4 9.84E-5

16 384 2.59E-4 2.90E-4 3.47E-4 4.91E-4 6.45E-4 7.68E-4 1.04E-4

Table A.75: HECToR, PGI-12.10/MPICH2-5.6.1 – Data for Figure 7.5

Time (s)

Compute AllReduce

PEs Min µ Max Min µ Max IMB

1 1.96E-4 1.96E-4 1.96E-4 0.00E+0 0.00E+0 0.00E+0 0.00E+0
2 3.68E-4 3.70E-4 3.73E-4 6.00E-6 8.00E-6 1.10E-5 1.20E-6
4 4.29E-4 4.33E-4 4.35E-4 9.00E-6 2.00E-5 3.10E-5 2.29E-6
8 8.76E-4 8.86E-4 8.95E-4 1.70E-5 4.90E-5 9.70E-5 3.89E-6

16 7.74E-4 8.75E-4 9.44E-4 1.70E-5 1.63E-4 4.04E-4 5.26E-6
32 8.50E-4 9.09E-4 9.44E-4 2.30E-5 1.42E-4 2.27E-4 6.65E-6
64 8.10E-4 9.09E-4 9.66E-4 6.90E-5 2.40E-4 4.89E-4 1.01E-5

128 7.36E-4 9.01E-4 9.72E-4 8.90E-5 2.97E-4 5.92E-4 1.94E-5
256 7.39E-4 9.06E-4 9.81E-4 1.43E-4 4.20E-4 7.10E-4 1.59E-5
512 7.59E-4 9.20E-4 9.83E-4 1.56E-4 4.03E-4 6.97E-4 3.00E-5

1024 7.56E-4 9.12E-4 9.79E-4 2.56E-4 5.87E-4 8.94E-4 3.58E-5
2048 7.29E-4 9.23E-4 9.97E-4 1.62E-4 4.09E-4 7.22E-4 3.83E-5
4096 7.18E-4 9.21E-4 9.95E-4 1.30E-4 5.40E-4 9.74E-4 1.20E-4
8192 7.12E-4 9.22E-4 1.02E-3 3.04E-4 7.08E-4 1.08E-3 9.84E-5

16 384 6.94E-4 9.13E-4 1.03E-3 3.67E-4 1.14E-3 1.74E-3 1.04E-4

Table A.76: HECToR, PGI-12.10/MPICH2-5.6.1 – Data for Figure 7.6

Time Per Iteration (s)

Minerva HECToR

PEs Base Coalesced Base Coalesced

1 3.07E-03 3.45E-03 4.66E-03 5.51E-03
2 3.87E-03 4.39E-03 7.83E-03 8.87E-03
4 6.04E-03 7.43E-03 1.00E-02 1.16E-02
8 9.72E-03 1.20E-02 1.74E-02 2.06E-02

16 1.09E-02 1.20E-02 1.76E-02 2.05E-02
32 1.02E-02 1.21E-02 1.77E-02 2.05E-02
64 1.09E-02 1.22E-02 1.81E-02 2.11E-02

128 1.11E-02 1.21E-02 1.82E-02 2.11E-02
256 1.12E-02 1.21E-02 1.86E-02 2.12E-02
512 — — 1.87E-02 2.14E-02

1024 — — 1.91E-02 2.17E-02
2048 — — 1.88E-02 2.14E-02
4096 — — 1.92E-02 2.15E-02
8192 — — 1.98E-02 2.24E-02

16 384 — — 2.11E-02 2.33E-02

Table A.77: Minerva (Intel-12.0/OpenMPI-1.4.3), HECToR
(PGI-12.10/MPICH2-5.6.1) – Data for Figures 7.7(a), 7.7(b)

286

Figure Data

Time (s)

Function Base Coalesce

MatMult (Max) 112.53 111.50
VecNorm (Min) 7.51 10.95
VecDot (Min) 25.34 23.00
VecAXPY (Max) 27.64 32.13
VecAYPX (Max) 12.75 26.58
ApplyPC (Max) 9.76 12.95

Table A.78: HECToR (PGI-12.10/MPICH2-5.6.1), 16384 Cores, Weak-Scaling
503, CG Function Breakdown – Data for Figures 7.8

Time (s)

Base Coalesced

PEs Min µ Max Min µ Max

1 1.03E-04 1.03E-04 1.03E-04 1.63E-04 1.63E-04 1.63E-04
2 2.19E-04 2.20E-04 2.21E-04 2.75E-04 2.75E-04 2.75E-04
4 2.23E-04 2.24E-04 2.25E-04 3.46E-04 3.50E-04 3.54E-04
8 2.76E-04 2.87E-04 2.96E-04 7.92E-04 7.95E-04 8.00E-04

16 2.60E-04 2.87E-04 3.15E-04 5.93E-04 7.27E-04 8.03E-04
32 2.68E-04 2.84E-04 3.03E-04 7.46E-04 7.81E-04 8.03E-04
64 2.66E-04 2.85E-04 3.08E-04 5.04E-04 7.42E-04 8.32E-04

128 2.61E-04 2.86E-04 3.41E-04 4.81E-04 7.60E-04 8.38E-04
256 2.60E-04 2.86E-04 3.10E-04 4.78E-04 7.52E-04 8.38E-04
512 2.58E-04 2.84E-04 3.13E-04 7.05E-04 7.85E-04 8.38E-04

1024 2.61E-04 2.85E-04 3.31E-04 6.74E-04 7.79E-04 8.39E-04
2048 2.66E-04 2.85E-04 3.26E-04 6.99E-04 7.93E-04 8.67E-04
4096 2.47E-04 2.85E-04 3.18E-04 4.35E-04 7.77E-04 8.47E-04
8192 2.16E-04 2.87E-04 5.05E-04 3.99E-04 7.73E-04 8.83E-04

16 384 2.59E-04 2.90E-04 3.47E-04 4.82E-04 7.62E-04 8.76E-04

Table A.79: HECToR (PGI-12.10/MPICH2-5.6.1) – Data for Figures 7.9(a)

Time (s)

Base Coalesced

PEs Min µ Max Min µ Max

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 7.00E-06 1.00E-05 1.30E-05 8.00E-06 1.10E-05 1.40E-05
4 1.50E-05 1.60E-05 1.60E-05 1.30E-05 2.90E-05 5.20E-05
8 1.90E-05 3.30E-05 4.60E-05 2.50E-05 4.30E-05 7.20E-05

16 1.90E-05 8.30E-05 1.64E-04 2.50E-05 2.38E-04 5.78E-04
32 2.30E-05 1.35E-04 2.15E-04 6.40E-05 2.10E-04 4.62E-04
64 4.20E-05 1.36E-04 1.87E-04 1.28E-04 5.33E-04 1.19E-03

128 6.70E-05 1.57E-04 2.24E-04 1.79E-04 6.16E-04 1.35E-03
256 9.90E-05 2.14E-04 3.55E-04 1.75E-04 7.70E-04 1.35E-03
512 1.02E-04 2.36E-04 3.90E-04 1.75E-04 7.46E-04 1.33E-03

1024 1.48E-04 2.80E-04 4.42E-04 4.00E-04 1.07E-03 1.73E-03
2048 1.33E-04 2.60E-04 4.36E-04 1.79E-04 7.61E-04 1.37E-03
4096 1.39E-04 2.66E-04 5.39E-04 2.27E-04 8.30E-04 1.55E-03
8192 3.44E-04 5.06E-04 6.03E-04 3.83E-04 1.17E-03 1.98E-03

16 384 4.91E-04 6.45E-04 7.68E-04 3.50E-04 1.65E-03 2.44E-03

Table A.80: HECToR (PGI-12.10/MPICH2-5.6.1) – Data for Figures 7.9(b)

287

Figure Data

Time (s)

Base Coalesced

PEs Min µ Max Min µ Max

1 1.96E-04 1.96E-04 1.96E-04 3.50E-04 3.50E-04 3.50E-04
2 3.68E-04 3.70E-04 3.73E-04 5.98E-04 6.00E-04 6.02E-04
4 4.29E-04 4.33E-04 4.35E-04 8.62E-04 8.64E-04 8.67E-04
8 8.76E-04 8.86E-04 8.95E-04 1.68E-03 1.72E-03 1.73E-03

16 7.74E-04 8.75E-04 9.44E-04 1.65E-03 1.69E-03 1.72E-03
32 8.50E-04 9.09E-04 9.44E-04 1.66E-03 1.69E-03 1.71E-03
64 8.10E-04 9.09E-04 9.66E-04 1.60E-03 1.67E-03 1.73E-03

128 7.36E-04 9.01E-04 9.72E-04 1.59E-03 1.67E-03 1.73E-03
256 7.39E-04 9.06E-04 9.81E-04 1.60E-03 1.67E-03 1.74E-03
512 7.59E-04 9.20E-04 9.83E-04 1.60E-03 1.67E-03 1.75E-03

1024 7.56E-04 9.12E-04 9.79E-04 1.59E-03 1.67E-03 1.75E-03
2048 7.29E-04 9.23E-04 9.97E-04 1.58E-03 1.67E-03 1.75E-03
4096 7.18E-04 9.21E-04 9.95E-04 1.60E-03 1.67E-03 1.75E-03
8192 7.12E-04 9.22E-04 1.02E-03 1.59E-03 1.68E-03 1.84E-03

16 384 6.94E-04 9.13E-04 1.03E-03 1.60E-03 1.68E-03 1.82E-03

Table A.81: HECToR (PGI-12.10/MPICH2-5.6.1) – Data for Figures 7.10(b)

Time (s)

Base Coalesced

PEs Min µ Max Min µ Max

1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
2 6.00E-06 8.00E-06 1.10E-05 5.00E-06 8.00E-06 1.00E-05
4 9.00E-06 2.00E-05 3.10E-05 1.10E-05 1.40E-05 1.70E-05
8 1.70E-05 4.90E-05 9.70E-05 1.50E-05 2.40E-05 6.70E-05

16 1.70E-05 1.63E-04 4.04E-04 1.40E-05 4.50E-05 8.50E-05
32 2.30E-05 1.42E-04 2.27E-04 2.20E-05 5.00E-05 7.90E-05
64 6.90E-05 2.40E-04 4.89E-04 3.80E-05 1.03E-04 1.69E-04

128 8.90E-05 2.97E-04 5.92E-04 4.80E-05 1.12E-04 1.89E-04
256 1.43E-04 4.20E-04 7.10E-04 6.00E-05 1.27E-04 2.00E-04
512 1.56E-04 4.03E-04 6.97E-04 5.70E-05 1.37E-04 2.09E-04

1024 2.56E-04 5.87E-04 8.94E-04 1.20E-04 1.97E-04 2.75E-04
2048 1.62E-04 4.09E-04 7.22E-04 7.10E-05 1.55E-04 2.46E-04
4096 1.30E-04 5.40E-04 9.74E-04 8.50E-05 1.60E-04 2.38E-04
8192 3.04E-04 7.08E-04 1.08E-03 4.37E-04 6.03E-04 6.88E-04

16 384 3.67E-04 1.14E-03 1.74E-03 6.54E-04 7.91E-04 8.66E-04

Table A.82: HECToR (PGI-12.10/MPICH2-5.6.1) – Data for Figures 7.10(b)

288

APPENDIX B
Other Validation Data

To verify that the L1 Data Cache Accesses can be transferable between ma-

chines, two different chips were used in Table B.3 to contrast their reported

values. In addition, reports [100, 112, 138] of potential inaccuracies for re-

ported DPOPS on SandyBridge let to a comparison of Nehalem vs Westmere vs

Sandybridge to determine whether such an overprediction can also occur for the

Minerva readings (Westmere). Table B.4 shows that the large overprediction

only appears to occur for Sandybridge in the kernels with more L1 cache misses,

as reported. Since the sources above also report a potential overprediction of up

to 5% for Nehalem, the results included in this work must be considered with

this in mind. Nevertheless, they are still very useful for comparisons and trends

between kernels.

289

O
th

er
V

alid
ation

D
ata

B.1 OpenMPI Comparison

PEs
OpenMPI 1.4.3 OpenMPI 1.4.4

Walltime (s) σx Walltime (s) σx

1 1941.77 0.63 1942.90 2.82
2 1035.26 1.32 1034.31 0.73
4 601.47 0.19 600.47 0.76
8 367.41 0.27 366.48 0.33

16 187.30 0.15 187.05 0.34
32 97.21 0.48 96.40 0.04
64 54.62 0.04 54.92 0.17

128 31.80 0.25 31.74 0.17

Table B.1: OpenMPI 1.4.3 vs 1.4.4 Hydra Walltime Comparison – Strong Scaling

B.2 Hydra Critical Path by Function

Problem
Total
Iterations

Mlag Iterations
MDT (s) Mlagh (s) Madv (s) Shortprint (s) Memory (s) Walltime (s) Sum (s) Diff(%)1 2 3 4

303 209 209 0 0 0 1.19 1.13 7.80 0.41 0.65 11.18 11.17 −0.06
503 209 193 16 0 0 5.48 5.73 34.69 1.83 3.20 50.94 50.92 −0.04
803 210 169 17 10 14 21.84 31.50 134.61 7.18 10.08 205.09 205.21 0.06

1003 217 157 18 10 32 44.70 77.47 264.74 14.80 17.51 418.70 419.22 0.12
1203 229 148 17 10 54 80.38 164.88 508.38 26.34 29.54 809.37 809.52 0.02
1503 258 136 18 10 94 176.99 446.34 1199.70 58.31 60.63 1941.77 1941.97 0.01

Table B.2: Minerva, Serial, Time spent by Function

290

O
th

er
V

alid
ation

D
ata

B.3 PAPI Behaviour

Problem

Madvz2 Madvmz1

Intel X5550 Intel X3430 Intel X5550 Intel X3430

L1 DCA σx L1 DCA σx % Diff. L1 DCA σx L1 DCA σx % Diff.

303 1.70E+7 3.76E+4 1.69E+7 6.43E+3 −0.12 8.41E+6 5.51E+3 8.36E+6 2.06E+3 −0.52
503 7.47E+7 5.33E+4 7.49E+7 5.25E+3 0.23 3.60E+7 6.72E+4 3.58E+7 8.74E+3 −0.60
803 2.99E+8 4.99E+4 2.99E+8 3.17E+4 −0.04 1.42E+8 1.25E+5 1.42E+8 7.38E+4 −0.19

1003 5.81E+8 5.25E+5 5.81E+8 1.65E+5 0.02 2.76E+8 1.88E+5 2.74E+8 6.10E+4 −0.61
1203 9.96E+8 1.01E+6 9.97E+8 3.71E+5 0.01 4.79E+8 4.80E+4 4.78E+8 1.12E+5 −0.25
1503 1.94E+9 5.87E+5 1.94E+9 4.36E+5 0.03 9.38E+8 7.61E+5 9.33E+8 1.72E+5 −0.52

Table B.3: Comparison of Measured L1 Data Cache Accesses

Problem

MDT1 Madvmz1

Nehalem Westmere Sandy Bridge Nehalem Westmere Sandy Bridge

DPOPs σx DPOPs σx DPOPs σx DPOPs σx DPOPs σx DPOPs σx

303 3.25E+5 1.83E+1 3.25E+5 2.14E+1 3.26E+5 1.25E+1 4.91E+6 2.82E+2 4.91E+6 3.55E+2 5.40E+6 6.41E+3
503 1.50E+6 2.71E+2 1.50E+6 1.69E+1 1.51E+6 6.71E+2 2.17E+7 1.73E+2 2.18E+7 2.13E+4 2.56E+7 2.43E+4
803 6.16E+6 5.35E+1 6.17E+6 3.70E+2 6.19E+6 2.17E+2 8.79E+7 3.87E+3 8.63E+7 1.11E+5 1.08E+8 3.87E+4

1003 1.20E+7 4.85E+1 1.20E+7 3.26E+2 1.21E+7 5.01E+2 1.70E+8 2.11E+4 1.67E+8 3.77E+4 2.11E+8 4.66E+5
1203 2.08E+7 1.05E+1 2.08E+7 2.11E+2 2.09E+7 1.06E+4 2.90E+8 1.76E+4 2.87E+8 1.61E+5 3.59E+8 3.18E+5
1503 4.06E+7 6.95E+1 4.06E+7 — 4.08E+7 2.31E+4 5.69E+8 5.68E+4 5.57E+8 — 7.23E+8 4.12E+5

Table B.4: Comparison of Measured DPOPs across Architectures

291

	Abstract
	Acknowledgements
	Declarations
	Sponsorship and Grants
	Abbreviations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Thesis Contributions
	Thesis Overview

	Performance Analysis, Modelling and Optimisation
	Forms of Parallelism
	Flynn's Taxonomy — Program Classification
	Single-Thread Parallelism
	Shared Memory Parallelism
	Distributed Memory Parallelism
	Accelerators
	High Performance Clusters

	Machine Cluster Architecture
	The Central Processing Unit
	The Memory Hierarchy
	Network Interconnects
	The Software Stack

	Performance Analysis and Modelling
	Amdahl's Law
	Gustafson's Law
	Benchmarking
	Profiling
	PRAM Model
	The Bulk Synchronous Parallel Model
	LogP/LogGP
	Statistical and Analytical Modelling
	Simulation

	Summary
	Software and Hardware Overview
	Libraries
	Benchmarks
	Network Interconnect Micro-Benchmarks
	Memory Micro-Benchmarks
	Macro-Benchmarks

	Machines
	Minerva — Warwick Commodity Cluster
	HECToR
	DawnDev
	Hera
	Intel X3430 workstation

	Summary

	Performance Scaling of a Near-Neighbour Hydrodynamics Application
	Hydra
	Serial Behaviour
	Structured Mesh
	Mixed Cells
	Memory Management
	Grid Kernels
	Stencil Kernels
	Update Boundary Kernels

	Parallel Behaviour
	Decomposition
	Point-to-Point Communications
	Collective Communications

	Function Breakdown
	Scaling Behaviour
	Serial Results
	Weak-Scaling Results
	Strong-Scaling
	Dynamic CPU Scaling

	Summary

	Modelling Hydra - A Performance Prediction Case Study
	Input Parameters
	Iteration Model
	MDT
	Mlagh
	Madv
	Madvx
	Madvy
	Madvz
	Madvmx
	Madvmy
	Madvmz
	ShortPrint
	Lartvis
	Leosdrv

	Process and Cell Layout
	Compute - Work Per Unit (Wg)
	Grid Kernels
	Boundary Kernels

	Point-To-Point Communication
	Message Sizes
	Intra/Inter-Node Communication

	Collective Communication
	Model Validation
	DawnDev/Hera
	Minerva

	Summary

	Optimisation
	Optimisation Potential
	Memory Optimisations
	Memory Access Pattern Techniques
	Cache Optimisation In Hydra

	Compute Optimisation
	Results

	Compute-Communication Overlap
	Implementation
	OpenMP Threaded Hydra
	MPI Threaded Overlap

	Node Core-Count
	Summary

	Application to Linear Solvers
	Introduction to Linear Solvers
	PETSc Descomposition Behaviour

	Conjugate Gradient Performance Analysis
	CG Breakdown
	Coalesced CG

	Summary

	Conclusions
	Thesis Limitations
	Future Work
	Final Words

	Figure Data
	Other Validation Data
	OpenMPI Comparison
	Hydra Critical Path by Function
	PAPI Behaviour

