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Abstract

Chapter 1 is an overview of the thesis in which I explain why work on housing

markets merits attention, discuss two broad questions that motivated the research,

emphasise the particular avenue I have chosen to pursue, and summarise the new

insights to be learned. I also include a short discussion on the methodologies that

are used.

In Chapter 2, I introduce information heterogeneity into a user-cost house

pricing model. I use the model to shed light on two empirical regularities in the

housing market: the predictability of housing return and the positive relationship

between rent volatility and housing prices. The model also has predictions on over-

pricing and housing price excess volatility.

In Chapter 3, I study a Real Business Cycle model with borrowing constraints

and incomplete information. I show that in such an environment noises in signals

may have real impacts on the macroeconomy; the effects are induced by learning

and amplified and propagated by the collateral effects. Noises may generate sizeable

and persistent fluctuations on consumption, credit, asset price, and output.

In Chapter 4, I implement a new strategy to identify shocks that drive the

co-movements between housing price and consumption. My results show that, in

the United Kingdom, productivity shocks and especially news shocks about future

productivity explain most of the co-movements. I also show that more than half of

the changes in housing price growth were not related to the changes in consumption

growth, which casts doubt on the importance of housing wealth effects on consump-

tion.
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Chapter 1

Introduction and Motivation

1.1 Why the Housing Market?

Housing is an asset class central to the households; in many countries, it makes up

the largest component of wealth. In the United States (U.S.), for instance, housing

wealth alone is nearly equal to all non-housing wealth for households. The housing

market lies at the heart of economic and financial crises across the world. Bank-

ing crises triggered by housing market collapses have occurred in many developed

countries as well as in emerging countries.1 In the United States, nine of the eleven

recessions since World War II were preceded by sustained and substantial problems

in the housing market.

To the extent that the housing market has been playing so prominent a

role in the economy, it is surprising that it had been of little interest to the main-

stream macroeconomists before the Great Recession. As Leamer (2007) observed,

no macroeconomics textbook placed “real estate” or “housing” front and centre—

even the National Bureau of Economic Research (NBER) macroeconomics data had

largely missed housing too. A similar observation comes from Iacoviello (2010),

one of whose papers on housing market was once rejected by a macro field journal,

because the editor thought that the paper “focuses on a small niche—the housing

market—with limited evidence that this market has the significance that is implied

for real economic activity (July 17, 2001).”

The fact that mainstream economists largely ignored the housing market

suggests that the market, and in particular its interactions with the macroeconomy,

could not have been understood well. The inadequate attention paid to—and hence

the limited understanding of—the housing market, may have led to the widespread

failure of the profession to foresee the recent burst of the housing bubble in the

United States (as well as in many other countries), and its long-lasting effects on

1Examples are the United Kingdom (U.K.) in 1973, Spain in 1977, the United States in 1986,
Norway in 1987, Finland and Sweden in 1991, Japan in 1992, and some Asian countries in 1997-1998.
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the broader economy.2 Thanks to the 2008-2009 crisis, however, more research

attention has now been directed to the housing market; and substantial progress in

understanding the market, as well as its relationship with the macroeconomy, has

been made since then. We are, nevertheless, still left with many questions open for

more satisfactory answers.

1.2 Two Broad Questions

Among those questions, there are two very fundamental ones: (1) what determines

the market price of housing? (2) how does the housing market affect the wider

economy?

The first question is always intriguing, particularly when there has been a

continuous appreciation of housing prices in a market but the “fundamentals,” such

as strong economic growth and rigid supply, seem not enough to justify the boom.

In such cases, housing is often considered as being overvalued, or more arguably,

there exist “housing bubbles.”3 An understanding of the nature of such booms is

desirable, especially by the policymakers, since it helps to predict whether a boom

is sustainable or not.

In general, there might be more than one factor behind each boom, and

the main driving forces may also vary in different times and markets. Taking the

2000-2006 housing boom in the United States for example, some blame the relaxed

standards for mortgage loans or monetary policy, whereas others attribute it to the

predatory lending and securitisation or even irrational exuberance. If the mech-

anisms and factors that induce undesirable housing cycles—presumably harmful

insofar as they give rise to imbalances in the economy—can be figured out, micro-

prudential and macro-prudential regulations could be imposed. To achieve this,

however, we need both empirical research and theoretical reasoning.

2In a timely staff working paper that was prepared for Federal Reserve Bank of Kansas City’s
2007 Jackson Hole Symposium, Miskin (2007) reviewed the role of housing in the monetary trans-
mission mechanism that had been known to the economists. Despite that the market had already
shown significant deteriorations at that moment, he seemed still optimistic about the prospect of
the economy, as he wrote in the introduction that “Fortunately, the overall financial system appears
to be in good health, and the U.S. banking system is well positioned to withstand stressful market
conditions.” Even Leamer (2007), who had recognised and forcefully emphasised the importance
of housing market in the business cycle, also underestimated the impacts, as he thought “this time
troubles in housing will stay in housing.”(Leamer, 2007, p. 155). Bezemer (2009) identifies twelve
analysts who predicted the crisis but none of them is from the mainstream.

3Researchers do not often agree on whether the housing prices in a market are overvalued. For
example, during the run-up phase of the recent housing cycle in the United States, Shiller (2005)
argued that the run-up was unprecedented and represented a housing bubble, whereas McCarthy
and Peach (2004) and Himmelberg, Mayer, and Sinai (2005) argued that the home valuations were
mostly in line with fundamentals. With hindsight, it seems Shiller was correct. But the fact that
the prices after the collapse have been lingering around the level of the year 2004 also alludes that,
the judgements in the two latter papers were not incorrect by that time.
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One might argue that there is no need to have specific pricing theories for

housing because it is just one type of assets and we have already had many well-

established asset pricing theories. Though housing shares many similarities with

other assets such as stocks, it has many distinct features that make it deserve special

attention. For example, housing is not only an asset but also a consumption good

that provides shelter services—a necessity to the households. Moreover, the size of a

purchase of a home is generally very large and, as a consumer durable, it usually has

very long life; hence housing often comprises a large and potentially volatile share

of the household balance sheet. These distinctions can make the participants in the

housing market very different from those in other asset markets, with respect to the

risk-aversion and incentives, for example. Housing is also tangible and immobile. As

a result, the costs involved in housing transactions, both economic and psychological,

are large, and the location is very important in price determination. Housing is also

different from other assets such as equity in the supply process. The supply of

housing incurs land-buying and construction work. Because of the rigid supply of

land in many countries nowadays, the relatively long construction process, as well

as the slow depreciation, changes in housing supply in response to the changes of

market conditions tend to be sluggish.

These and other features, which I will discuss in due course, can make the

characteristics of housing market quite different from those of other asset markets.

Figure 1.1 shows the historical evolution of prices of homes and stocks in the United

States since 1975. It can be seen that housing prices are less volatile than stock

prices in the short run; this may reflect the large cost involved in the transaction,

which prevents the buying and selling from being too active. The figure also shows

that, while closely related, the booms and busts of stock market and those of housing

market do not always happen at the same time; there was a stock market crash in

1987—though from today’s perspective it was more like a blip—the housing markets

in many cities in the U.S. nevertheless only fell two years later, about the time the

stock market collapsed again. Another more significant “out-of-step” episode is

around the year 2000 when the stock market dot-com bubble burst, but housing

prices did not decline at all. Differences in the dynamics of housing and stock prices

can also be found in many other countries.
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Figure 1.1: Housing Prices and Stock Prices in the United States

Notes: Grey areas indicate NBER recession dates (see www.nber.org/cycles.html).
Housing price index and Standard & Poor’s stock price index are from
http://irrationalexuberance.com/. Both indices are in nominal terms.

The second fundamental question arises in the aftermath of the recent hous-

ing market bust. The recession induced by the bust and the slow recovery have led

many to believe that developments in the housing sector might not be just a passive

representation of macroeconomic activity but instead one of the driving forces of

business cycles.

Previous research has identified at least three ways that housing market may

contribute to the macroeconomic fluctuations. First, residential investment itself

is part of the Gross Domestic Product (GDP). In the United States, for instance,

the contribution of residential investment to the weakness before recessions and to

the recovery after recessions are found to be substantial (Leamer, 2007), despite

of its relatively small share in GDP.4 The mechanisms behind this have not been

completely understood, and current models, both econometric and structural, can-

not fully account for the dynamics of residential investment.5 Second, the housing

4The share of housing investment in GDP has been constant around 5 percent throughout the
1952-2008 period (Iacoviello, 2010).

5Several models that are employed by the Federal Reserve Board in the U.S. take into account
many mechanisms but still do a poor job (Mishkin, 2007). Iacoviello and Neri (2010)’s estimation
using a dynamic stochastic general equilibrium (DSGE) model improves the result significantly. In
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may affect business investment. Applying a Bayesian vector autoregression (BVAR)

model to the data from the U.S., Liu, Wang, and Zha (2013) find that there is a

salient co-movement between land prices and business investment after a shock to

the former.6 They propose a collateral mechanism to explain this result, based on

the facts that real estate is an important collateral asset for both small firms and

large corporations,7, and the value of land holdings affects firms’ borrowing capaci-

ty and thereby their business investment and production. Finally, the housing may

affect consumer spending. The strong co-movement between housing prices and

consumption has long be found, and there is a very large literature in estimating

the marginal propensity to consume out of housing wealth, but no firm conclusion

has been reached. The theoretical mechanism behind this co-movement remains

controversial as well; while some argue for the housing wealth effect derived from a

life-cycle model (Case, Quigley, and Shiller, 2005, 2011), others believe it is the col-

lateral channel that is at work (Iacoviello, 2005), or perhaps that the co-movements

simply reflect the common factors that are driving both (Attanasio, Leicester, and

Wakefield, 2011).

1.3 Focus of This Thesis

In the following three chapters, I provide theoretical models and empirical evidence

on topics that are directly or indirectly related to the two questions discussed above.

The aim is not to be comprehensive, but to make complementary contributions to

the existing literature.

Each of these chapters is self-contained and studies the housing market from

a specific perspective; but they all share a similar focus—information. Chapter 2

introduces information heterogeneity into a house pricing model and explores its

implications for some empirical issues. Chapter 3 characterises a macroeconomic

model in which incomplete information may induce noise to drive “credit cycles.”

Chapter 4 shows, empirically, how the information about future productivity may

help explain the co-movement between housing prices and consumption.

My focus on information is both realistic and hopefully of interest. It is

realistic because neither the current nor the future state of the world is perfectly

known by economic agents, and information plays a nontrivial role in the agents’

decisions. It should be of interest because, although the implications of information

an extension of the model I set up in Chapter 2, I allude to an informational channel that may be
worth exploring.

6They focus on land prices because most of the fluctuations in housing prices are driven by land
prices rather than by the cost of structures.

7With a slight abuse of notation, I use the terms “real estate,” “housing,” and “houses” inter-
changeably in the thesis. Nearly 70% of all commercial and industrial loans in the United States is
secured by collateral assets (Liu, Wang, and Zha, 2013).
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problems for markets such as the stock market have been explored extensively, much

less has been done regarding the housing market.

The theoretical analyses in the first two chapters also recognise several dis-

tinct features of housing. The first feature is that, since a house is both a basic

consumption good and an asset, there is both a rental market and an asset mar-

ket for housing. The non-trivial scale of the rental market implies that rents may

have implications on house pricing more than merely as the dividends of housing

asset. The second feature is that, in contrast to many other financial assets, housing

is almost impossible to short-sell. If households have different opinions about the

market, the short-sale constraint may result in the houses being overpriced because

the pessimistic investors cannot act to counter optimism. Finally, housing or land

is, in practice, commonly used as collateral by firms to obtain credit from the banks

to finance business investment. While the value of housing is determined by the pro-

duction of other goods in the economy, a feedback effect from housing to production

may be significant enough to amplify economic fluctuations.

Though all of the distinct aspects of housing discussed above are already well

known, their implications have not been fully explored. My contribution, especially

in the two theoretical chapters, is that, when we combine these distinctive features

with information imperfection in the housing market, new insights that are discussed

below come out.

In relation to the two questions discussed in Section 1.2, Chapter 2 addresses

the first by providing a house pricing model with information heterogeneity. It

shows that, when agents hold heterogeneous information and cannot short-sell in

the housing market, the housing can be over-priced. The model also features the

consumption role of housing and there exists a rental market. Rental prices are

derived as a result of the market equilibrium; they clear the rental market and at

the same time determine the house prices through a non-arbitrage condition. More

interestingly, as households hold heterogeneous information, both housing prices and

rental prices also play informational roles—they are used as the public signals by

the market participants to infer the unobserved fundamentals. These novel features

are then used to explain the return predictability of rental prices documented in

Glaeser and Gyourko (2007), and the “rent volatility-housing price” relationship

documented in Sinai and Souleles (2005).

Chapter 3 and 4 relate to the second question discussed in Section 1.2. In

Chapter 3, I construct a model where there are two types of agents—households and

entrepreneurs—and land (housing) plays several roles in the economy. Households

are patient in consuming land (housing) and consumption goods and saving. The

entrepreneurs, who produce consumption goods using land as input, are impatient

and need to borrow from the households; however, borrowing must be secured a-

6



gainst land and is limited by the households’ expected value of entrepreneurs’ land

holdings. Neither type of agent has complete information about the fundamentals

of the economy, and land prices and some statistic of land prices will serve as infor-

mative signals, used by agents to infer unobserved fundamentals. High price signals,

which may be due to pure noises, can lead households and entrepreneurs to believe

a strong current economic condition prevails as well as an optimistic perspective for

the future. As a result, households are willing to lend more and entrepreneurs are

able to get more funds for production. That is, pure noise may drive optimism or

pessimism in the expectations of agents, which, through expanding or shrinking the

credit supply, generates macroeconomic fluctuations.

Chapter 4 is an empirical examination of the relationship between the price

of housing and consumption, using the data of the United Kingdom. As pointed

out in the previous section, many believe that housing has significant wealth effect

on the consumer spending, but neither the theoretical underpinning of the effect

nor its empirical magnitude is uncontroversial. Realising that much of the previous

empirical work using macroeconomic data suffers from the endogeneity problem

due to interdependency or omitted, unobservable variables, I estimate a Vector

Autoregression (VAR) model. Though the VAR model estimation does not generate

coefficients for the wealth effect or collateral effect directly, it gives indirect evidence.

More specifically, based on the estimated VAR model and a novel identification

strategy (assumption), I identify the productivity shock and news shock about future

productivity. The investigation following the identification shows that it is these

common factors that drive both the housing price and consumption and that a vast

majority of the variations in housing price are not related to consumption. In other

words, the results imply that the impacts of housing on macroeconomy through the

consumption channel may not be that important.

1.4 Methodology

In the theoretical parts of this thesis, i.e. Chapter 2 and 3, I follow the traditional

paradigm to understand housing market and the macroeconomy by using models

in which agents are “rational”. Furthermore, I employ the Rational Expectations

Equilibrium (REE) framework in these models. The assumption that agents are “ra-

tional” means two things (Barberis and Thaler, 2003). First, agents update beliefs

correctly using Bayes’ law in receiving new information. Second, given their beliefs,

agents make choices that are consistent with their subjective expected utility. Ra-

tional expectations equilibrium further requires “consistent beliefs”—the subjective

distribution agents use to forecast future realisations of unknown variables is indeed

the distribution that those realisations are drawn from. Hence, REE requires not
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only that agents process new information correctly but also that they have enough

information about the structure of the economy to be able to figure out the correct

distribution for the variables of interest.

The rational expectations hypothesis has become influential since the early

1970s and is now a ubiquitous modelling technique used widely throughout eco-

nomics. In the meantime, it has also received many critiques, especially since the

2007-2009 crisis. There are at least two alternatives: bounded rationality and be-

havioural economics. The literature on bounded rationality retains individual ra-

tionality but relaxes the consistent beliefs assumption: while investors apply Bayes’

law correctly, they lack the information required to know the actual distribution

variables are drawn from. The literature on behavioural economics goes further and

relaxes the individual rationality assumption: it analyses what happens when one or

both of the two rationality assumptions are relaxed, which is typically based on the

experimental evidence compiled by cognitive psychologists (Barberis and Thaler,

2003).

In the housing market literature, behavioural economics has gained substan-

tial attention because of Shiller (2005)’s influential book Irrational Exuberance (2nd

edition). Behavioural economics argues that some features of the asset prices are

most plausibly interpreted as deviations from fundamentals, and that these de-

viations are brought about by the presence of traders who are not fully rational

(Barberis and Thaler, 2003). In his book, Shiller (2005) exhibits a graph which

shows the housing price bubbles cannot be explained by fundamentals such as the

income, population, and construction costs. He then argues for psychology to play

the predominant role. While I agree that psychology may play an important role

in housing appreciation, I think he has overstated the case, possibly for the sake

of drawing people’s attention to social epidemics. I show in Chapter 2 that sev-

eral empirical regularities in the housing market, including the over-pricing, can

also be explained by information heterogeneity without assuming the irrationality

of investors.

Imposing rationality on agents is to have a kind of modelling discipline. As

“errors can be used to explain anything,” requiring rationality makes it harder to

come up with ad hoc models. This is one reason to keep the rationality assumption.

But the model in Chapter 2 has its own limitations. Because of its simple setup, the

model only has qualitative implications and cannot be readily used for empirical

assessment. However, Kasa, Walker, and Whiteman (2014) have shown that a

dynamic model with information heterogeneity has the potential to explain the stock

price dynamics in the United States; so I believe a dynamic version of the model

in Chapter 2 will also have the capability to explain the recent housing booms

emerged in many countries, such as the United States, the United Kingdom, Spain,
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Ireland, et. al.. But this does not mean that information heterogeneity should

be the only cause. It’s hard to believe the remarkable house price appreciations

in those countries were merely driven by information heterogeneity and short-sale

constraints, and I believe other factors, including social epidemics and credit market

developments, have also significantly contributed.

Chapter 3 takes into account the credit market and show a two-way feed-

back can arise between the credit market and housing prices. However, because of

the symmetric information “within island” and the assumption that land cannot

be traded “across islands”, the mechanism of over-pricing alluded in Chapter 2 is

absent. Moreover, the model only looks at the effect of information friction on the

demand side of the credit market, while the supply side of the credit market is mut-

ed. Yet the effect from the credit supply side was arguably much more important

during the 2008 financial crisis, see e.g. Adrian and Shin (2010, 2014). The absence

of endogenous financial shocks and financial institutions is also a weakness of this

chapter (as well as Chapter 2). Implications from the interaction of information

friction and financial institutions will be one focus of my future research.

For the empirical part of Chapter 4, I employ the Structural VAR (SVAR)

method to examine the relationship between housing price and consumption. This

is because the alternatives, such as the linear regression of one equation used by

most of the previous research on this issue, may generate biased estimates because

of endogeneity problems. While instrumental variables estimation or dynamic si-

multaneous equation models with plausible identification (which usually involves

finding some “exogenous” variables) can be used to overcome such problems, find-

ing the appropriate instruments or truly exogenous variables can be very difficult.

For these reasons as well as some others (see e.g. Gottschalk (2001) for a survey),

macro-economists turn to SVAR models which are designed to avoid these problems

that often lead to “incredible” identification restrictions (Sims, 1980). SVAR models

also need to be identified, but they treat all variables as endogenous and decompose

all variables into expected and unexpected parts. The restrictions are imposed only

on the unexpected part where plausible identifying restrictions are easier to find.

Nevertheless, like the simultaneous equation models, SVAR models identification

also suffers from the problem that the restrictions are imposed on a priori grounds

and cannot be tested. As a result, the implications from SVAR models should be

taken with some care.

9



Chapter 2

Housing Prices with

Heterogeneous Information

2.1 Introduction

Housing rents have been observed to display some interesting behaviours in the

housing markets. First, Glaeser and Gyourko (2007) find that, not only housing

prices but also rents help to predict future returns on houses.1 Second, Sinai and

Souleles (2005) find that, the larger the rent volatility in a given market, the higher

the housing price in that market. While Sinai and Souleles (2005) have provided

a risk-hedging explanation for their finding, the return predictability problem still

seems unresolved; as Glaeser and Gyourko (2007) observe, “rents may add predic-

tive power to housing price change regressions even if we are not sure why they

have this predictive power.” From the efficient market point of view, neither hous-

ing prices nor rental prices should help to predict future return on houses. Both

housing prices and rental prices are publicly available, easily observed by anyone,

and if they can really predict future housing prices and thereby future returns, all

rational investors will take advantage of them. However, if that were the case, the

competition would drive out any predictable movements in housing prices. Nonethe-

less, empirical research on the housing market has consistently found evidence that

suggests the predictive power of these prices. For example, Case and Shiller (1989,

1990) find that price-rent ratio has the predictive power for future returns.2 Glaeser

and Gyourko (2007) are the first to explicitly discuss the predictive power of rental

prices, and they conjecture that rental prices might be providing some information

not fully embedded in housing prices. They do not, however, formally model their

1To avoid confusion, all through the chapter, housing price means the purchase price of a house
and rental price is the price for renting a house. I will use “rental price” and “rent” interchangeably
in the following text, as rental price is equivalent to the rent per unit of house.

2See also Poterba (1991), Gallin (2008), and Engsted and Pedersen (2012). Ghysels, Plazzi,
Torous, and Valkanov (2013) have a comprehensive literature review.
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conjecture. This chapter then aims to provide a specific model to highlight the in-

formation value of rental prices in the housing market, so that not only the return

predictability may be explained but also the relationship between rent volatility and

housing price will be accommodated.

To this end, I construct a two-period model with a continuum of risk-neutral

agents, who not only consume housing services but also speculate in the housing

market for the future resale value of housing. The resale value is exogenously deter-

mined by a shock that is not directly observable to the agents. Instead, each agent

independently receives a private noisy signal about the shock. To make an optimal

forecast, each agent will need to use her privately received signal as well as price

signals including both housing price and rental price to infer the value of the shock

and thereby the resale value of housing. However, because neither aggregate housing

service demand nor total housing supply is observable, information is not fully re-

vealed in equilibrium. Prices are not fully revealing because even agents can subtract

the rent ‘noise’ from the housing price signal, they still cannot tell whether a high

housing price comes from high resale value or low house supply; even though rental

price provides further information about the supply, it does not reveal perfectly to

the agents as they are not sure whether a high rent is due to strong housing service

demand or low supply. Nevertheless, both prices provide useful information to the

agents, because housing prices aggregate private information in the market while

rental prices complement to housing prices by providing more information. More

specifically, rental prices not only refine agents’ information by revealing themselves

as one of the “noises” in the housing price signals but also increase the precision of

housing price signals by providing some more information about the house supply.

In equilibrium, agents will hold heterogeneous beliefs about the resale value, and

housing price will be determined by the agents who are indifferent in buying and

renting.

An important implication from the setup described above is that the market-

implied posterior over the housing resale value conditional on housing prices and

rental prices differs from the Bayesian posterior conditional on the same public

prices information; the Bayesian posterior is derived from the joint distribution of

housing resale value shocks and market equilibrium prices. Following Albagli, Hell-

wig, and Tsyvinski (2015), I call this difference the information aggregation wedge.

Defining the future return on housing as the sum of ex post capital gain and ren-

t from investing a house, the expected return conditional on an econometrician’s

information set will then become the difference between the econometrician’s ex-

pected housing resale value and the market expected housing resale value. If the

econometrician, who observes housing prices and rental prices, only knows the joint

distribution of housing resale value shocks and market equilibrium prices, and fails
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to take into account the expectations heterogeneity in the housing market, then

the expected return conditional on his information set will be the negative of the

nonzero information aggregation wedge. Moreover, because agents in the markets

are learning from prices, the wedge will be varying with both housing prices and

rental prices. Hence, when the econometrician regresses the observed returns on the

lagged housing prices and lagged rental prices, he will find nonzero coefficients on

both price variables! It needs to be emphasised that both heterogeneous information

and non-fully revealing equilibrium are required for this explanation of return pre-

dictability. If agents were homogeneously informed, there would be no need to learn

from prices and prices would not be helpful in any case to predict future return.

If agents were heterogeneously informed, but prices had reflected all information

in the economy, then the private signals would be redundant to agents and there

would be no difference between the market expectation and the expectation based

on econometrician’s information set. In either case, the expected return would be

zero.

As agents are learning from prices, the model also has a potential to explain

the documented positive relationship between housing price and rent volatility. Sinai

and Souleles (2005) first show this pattern using data from the metropolitan sta-

tistical areas in the United States, and they give a risk-hedging explanation about

this relationship. In a stylised model, they show when households are risk-averse,

owning a house involves both taking housing asset price risk and hedging rent fluc-

tuation risk. Which risk dominates on net in this trade-off largely depends on the

households’ expected length of stay and whether they move to correlated housing

markets. When households’ expected length of stay is large or when the spatial

correlation in housing prices is high, larger local rent volatility tends to increase the

households’ home-ownership demand, which will be capitalised into higher housing

price when housing supply is inelastic. In contrast with their explanation, my mod-

el works purely through an information channel given that agents are risk neutral.

Housing price and rent volatility are correlated in my model because rent volatility

affects the precision of price signals and, thereby, agents’ optimal investment deci-

sions in the housing market and, ultimately, the market equilibrium housing prices.

The relationship tends to be positive because when the volatility of rents increases,

the negative information effect from rental prices to housing prices becomes smaller;

as a result, housing prices will be higher.

In addition to the two implications discussed above, the model also has some

predictions about the level and volatility of housing prices. First, housing price is on

average higher than its fundamental value in this model when agents cannot short

sell in the housing market and their private signals are independently, identically

exponentially distributed about the resale value. Albagli, Hellwig, and Tsyvinski
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(2015) show, in an asset pricing model where agents are risk neutral and private sig-

nals are normally distributed around the future dividend, that overpricing happens

only when the asset dividend function is dominated by the upside risk. I deviate

from the normal assumption about the signal distribution and find that with an ex-

ponentially dispersed information structure, overpricing happens without the need

to impose restrictions on the risk dominance. This finding is thus a complement

to their results because the empirical distribution for private signals is not clear a

priori, and there is no reason why the private signals must be symmetrically dis-

tributed. For instance, it might make more sense to assume that the majority of the

population receives ‘good’ news about the underlying fundamentals in the ‘good’

times. For the volatility of housing prices, I show the model has the potential to

generate excess volatility in housing prices, which does not arise in a homogeneous

information model. However, because agents are learning from rental prices, the

magnitude of excess volatility is significantly restricted.

The primary contribution of this chapter is that it highlights a particular but

very natural channel through which rental prices might affect housing market infor-

mationally. Economists have long recognised the important role that prices play in

aggregating and transmitting information in markets, and a vast literature seeks to

understand the informational role played by prices for the stock market.3 Much less

has been done regarding the housing market. As opposed to the stock market where

the only price in the market is stock price, there is always a rental price for the hous-

ing market because of the existence of the rental market. Traditional wisdom often

just considers rent as the “dividend” of housing asset that determines the funda-

mental value of houses. But in an economy where agents are not perfectly informed

about the state of the world, rental prices should also convey useful information,

make households better informed, and affect their actions. More importantly, rental

prices may not only affect the rental market itself but also affect the housing market

at the same time. This is because housing rental market and housing asset market

are inevitably intertwined, and the information in the rental market revealed by

the rental prices may also help participants make optimal decisions in the housing

market. No one, however, has formally examined the information role that rents

could play in the housing market.

This chapter thus takes the first step and tries to formalise this information

channel,4 which is then used to explain the two empirical findings discussed above.

3Fama (1991) is a standard reference for the empirical tests, and Brunnnermeier (2001) is an
excellent reference for the theory.

4In theory, housing prices as determined in the housing market may also affect agents’ choice in
the rental market. To make my argument as simple as possible, I preclude the effects of housing
prices on rental prices. A richer setup could have been constructed; however, it may not offer addi-
tional clarity because many effects that are hard to disentangle will interact. Moreover, any other
considerations about the information effects of rental prices should not miss the basic mechanism
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The basic setup in the chapter follows the user-cost approach literature in which the

equilibrium housing price is attained when market participants are indifferent as to

whether to rent or to buy a house, and the cost of owning generally includes, among

other variables, the interest rate, property tax rate, risk premium, expected rate

of housing price appreciation. Previous research, such as Poterba (1984, 1991) and

Himmelberg, Mayer, and Sinai (2005), has generally focused on the effects of tax

rates and interest rates on housing price changes but left expected housing price ap-

preciation unexplored. Favara and Song (2014) fill this gap by showing in a dispersed

information model that heterogeneous expectations and no-short-sale constraints on

housing are crucial in generating higher and more volatile housing prices than a ho-

mogeneous information benchmark. However, they neglect the informational role

of rental prices. Gao, Sockin, and Xiong (2015) also study the implications of het-

erogeneous information to the housing market, but they focus on explaining the

hump-shaped relationship between housing cycle and supply elasticity.

My model is also closely related to Albagli, Hellwig, and Tsyvinski (2011,

2015), who focus on how alternative payoff assumptions affect information aggrega-

tion and apply their model to examine the effects of skewness on expected returns

in the stock market. More broadly, this chapter belongs to a growing literature that

seeks to generalise noisy rational expectations models beyond the CARA-normal

framework and explore the effects of relaxing these assumptions. For instance, Bar-

levy and Veronesi (2003) show that nonlinear equilibrium price functions which

may generate discontinuous price changes or a “price crash,” can emerge in a model

with binomial payoffs. Breon-Drish (2015) shows in a setting with “exponential

family” distributed payoffs, that shocks to fundamentals may be amplified purely

due to learning effects. He also shows that price drifts can arise naturally and the

disagreement-return relationship depends in a novel way on return skewness.

2.2 Model

In this section, I formalise the intuition described in the introduction part in a simple

two-period model with agents having heterogeneous information. The model intends

to generate qualitative implications with an emphasis on the effects of learning from

rental prices.

2.2.1 Setup

The economy has two periods t ∈ {1, 2}, and there is a measure-of-one continuum

of risk-neutral agents indexed by i ∈ [0, 1]. In t = 1 agents only consume housing

service and in t = 2 they only consume non-housing consumption good. More

shown in this chapter.
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specifically, each agent i’s utility function is assumed to be:

Ui = Ai lnBi + Ci,

where Ai is agent i’s housing service preference shock, Bi denotes i’s desired quantity

of housing services in the first period, Ci is i’s non-housing consumption good in

the second period.

In t = 1, nature draws w ∈ R from a normal distribution with zero mean and

variance σ2
w: w̃ ∼ N(0, σ2

w).5 In the following, I will call w the fundamental shock

as I assume that w determines the resale value of a house Pf in t = 2, according

to an increasing function h(·); that is, Pf = h(w).6 I assume w is not directly

observable to the agents. However, conditional on w, each agent i receives a private

signal wi ∈ [w,+∞) independently and from an identical exponential distribution:

w̃i|w̃ = w ∼ exp(λ;w), ∀i, where λ > 0 is the inverse scale parameter and w appears

as a shift parameter. The conditional distribution function of the private signal of

each agent i is then given by

Fw̃i|w̃(wi|w) = 1− e−λ(wi−w), wi ≥ w, λ > 0.

Though it is unconventional to assume an asymmetric distribution for private

signals, the shifted exponential distribution not only enables me to analytically

characterise the equilibrium but also generates some stronger results than those in

the symmetric signal distribution models, e.g. normal distribution, and thus offers

new insights about asset pricing with heterogeneous information. I further assume

that the law of large numbers applies to the continuum of agents so that conditional

on w the cross-sectional distribution of private signals ex post is the same as the ex

ante distribution of agents’ signals.

In addition to the private signal, each agent i is also endowed with income

Mi ∈ R+ and housing service preference shock Ai ∈ R+ in the first period.7 The

agents do not observe each other’s preference shock, nor do they know the aggregate

preference shock. However, the distribution of the aggregate preference shock Ã

is a common knowledge. Specifically, I assume the aggregate preference shock is

5All through this chapter and the corresponding Appendix A, I use a tilde “∼” on top of a letter
to denote the corresponding random variable.

6Assuming Pf is increasing in w is without loss of generality. Under such an assumption, w
could well be interpreted as the aggregate housing service demand shock in the second period. The
results will remain unchanged if I were to assume a decreasing function for h(w) and interpret w as
the housing supply shock in the second period. It is also possible to consider w as some combination
of both demand and supply shocks.

7As will be seen in the following analysis, the quasi-linear preference precludes any income
effect on agents’ demand for housing services or housing assets, thus the information content of
individual income is irrelevant to the agents. To ensure agent’s consumption in the second period is
non-negative, i.e. Ci ≥ 0, ∀i ∈ [0, 1], I assume the income received by each agent Mi is large enough
(see Appendix A.1 for a discussion). It then follows that the distribution of Mi’s is inessential.
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independent of w̃ and follows a log-normal distribution:8∫
Aidi = A ≡ ea, where ã ∼ N(0, σ2

a).

In period t = 1, each agent needs to decide if she buys houses to live or rents

to live. If she buys houses, she can resell them at the price Pf in the next period to

finance consumption. I assume agents are not allowed to short sell in the housing

market. Therefore, anyone who expects a loss in investing houses will simply save

the rest of their income after rent payment. On the other hand, if the agent expects

it is profitable, she may want to borrow in addition to its endowed income to buy

houses, but the units of houses she can buy will be restricted by a finite number

Z ≥ 1, due to for example regulation constraint or borrowing constraint. The credit

fund is assumed to be supplied exogenously at the fixed rate R. Although the

interest rate is very important to the housing market, it is not the focus of this

chapter. Without loss of generality, I will set R = 1.

Houses are also supplied exogenously as S = e−|ζ| ≡ es, where ζ̃ ∼ N(0, σ2
s).

This assumption implies that housing supply is bounded above by one, i.e. S ∈ (0, 1]

and is strictly increasing in s. Housing supply is independent of other random

variables in the model and it is not observable to the agents.

2.2.2 Discussion

As in Favara and Song (2014), my preference specification makes strong assumption-

s: it assumes away intertemporal consumption-saving decision and intra-temporal

consumption-housing decision. Piazzesi, Schneider, and Tuzel (2007) develop a

consumption-based asset pricing model in which both decisions are kept and thus

there exists a composition risk in addition to the consumption risk. They show the

composition risk factor has important implications for asset prices. Since the focus

of this chapter is on the information impacts of prices, the assumption in my model

that agents are risk-neutral has assumed away those risk effects.

My specification also implicitly assumes that all houses are homogeneous. In

particular, it does not distinguish the qualities between rental houses and owner-

occupied houses. Smith and Smith (2006) and Glaeser and Gyourko (2007) show

that on average owner-occupied housing is much larger and better than rental hous-

ing. This suggests that the information contained in rental price might not be very

informative about the owner-occupied housing market. This is indeed important.

However, as long as the two markets are not completely isolated, the mechanism

characterised in the model will still exist.

8Relaxing the independence assumption to, for example, being correlated to w̃ is possible and
may generalise some of the results in Section 2.3. However, a different approach may be needed to
make the characterisation of equilibrium tractable.
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In the setup above, I have also imposed an upper bound for the demand of

housing for each agent. Given the unit measure of agents, this essentially imposes

an upper bound for the total quantity of houses that can be demanded. To ensure

that the housing market will always clear, a corresponding upper bound for the

total house supply must be imposed as well. For simplicity, I have let the upper

bound of total supply be one, in turn, Z then must be equal or larger than one. The

specific sizes of these bounds are not crucial for my results as long as the market

clearing is guaranteed. What’s crucial is that agents cannot take unlimited positions

in the housing market, because agents are risk-neutral and if they are allowed to

take unlimited positions, prices would be perfectly revealing.

Given that the housing supply is crucial to my model, it is worth having a

discussion about the motivation. It is helpful to think that, the total housing supply

in the economy is a fixed number S̄ which is common knowledge, and there are two

types of agents. The first type is the continuum of agents described above, who

can be called the “sophisticated households” or “rational speculators”. The second

type is a continuum of other agents, who do not speculate on housing but only buy

whatever they want to live; they are näıve owner-occupied households. Therefore,

the second type agents are “noise traders”; their opinions and trading patterns may

subject to systematic biases (Shleifer and Summers, 1990). Suppose that the total

number of houses demanded by agents of the second type is a random variable DN .

Then, the total supply to the sophisticated households is simply S ≡ S̄−DN , which

cannot be directly observed by agents of the first type.

2.2.3 Optimality

Let Ei(·) be the expectation of a random variable conditional on i’s information set

Ωi in t = 1. Each agent i’s problem is to choose Bi units of houses to live and Hi

units of houses to invest conditional on her information set in t = 1, so that her

life-time expected utility is maximised:

max
{Bi,Hi}

EiŨi = Ai lnBi + EiC̃i,

subject to the budget constraint

Ci = R[Mi − PHi +Q(Hi −Bi)] + PfHi, (2.1)

and the trading constraint

Hi ∈ [0, Z].

To derive the optimal strategies chosen by agent i, I substitute (2.1) into his

expected utility function and take partial derivatives w.r.t. Bi and Hi. This gives
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the following first order conditions

Bi =
Ai
Q
, (2.2)

Ei(−P +Q+ P̃f ) ≥ 0, Hi ≥ 0, (2.3)

Ei(−P +Q+ P̃f ) < 0, Hi < 0, (2.4)

where I have let R = 1.

Equation (2.2) characterises agent i’s housing service demand in the house

rental market. That is, the demand for housing services will be higher when the

agent has a stronger preference on housing service or/and when the rental price of a

house is lower. Equation (2.3) and (2.4) characterise agent i’s decision in the housing

market. Whether she chooses to buy or not will be determined by its expectations

of the resale value of houses in the second period. Since the agent is risk-neutral,

she will buy houses when the cost of buying is less than the expected benefit from

owning, i.e. P < Q + EiP̃f . The agent will short sell houses if P > Q + EiP̃f , but

because it is not allowed to do this, she will simply demand zero of housing. The

agent will be indifferent in buying and not buying if P = Q+ EiP̃f .

As the realisation of the fundamental shock w̃ is not directly observable to the

agents, their asset trading decisions involve conditional expectations of an unknown

w. They will need to make inference about w based on all information available to

them so that their decisions made in the first period will be informationally optimal.

Apart from the exogenous signals agents observe, they can also extract infor-

mation from the equilibrium prices: both rental prices and housing prices. Hence,

the information set of each agent i is comprised of both exogenous private signals,

endogenous price signals, and the model structure. That is, Ωi = {Ai, wi, P,Q,M},
where M captures the notion of rational expectations and the assumption that agents

know the model structure. Because this is a standard assumption in the literature,

without causing any confusion I will omit M in the following text. By assump-

tion, observing one’s own housing preference does not provide useful information

about the aggregate preference shock; the idiosyncratic preference assumption only

serves to prevent housing rental price from fully revealing supply shocks. Thus,

the information set of each agent i can then be reduced as Ωi = {wi, P,Q} and

EiP̃f = E(P̃f |wi, P,Q). Each agent i’s housing asset trading strategy is then a map-

ping from signal-prices (wi, P,Q) into housing asset holdings Hi : [wi, P,Q]→ [0, Z].
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2.3 Equilibrium

Following Ozdenoren and Yuan (2008), I assume that each agent i follows a cut-off

strategy in the housing market as below

Hi =

{
0, if wi < w̌,

Z, if wi ≥ w̌,
(2.5)

where w̌ is some endogenously determined threshold. That is, any agent whose

private signal is larger than the cutoff value will buy as many units of houses as

possible, while any agent whose private signal is lower than the threshold value will

not buy any house. Let F (w|Ωi) denote the posterior distribution function of w̃

conditional on agent i’s information set. I then define a cut-off strategy equilibrium

as below.

Definition 2.1 (Equilibrium) A cutoff strategy equilibrium consists of two price

functions: P (a, s, w) and Q(a, s); each agent i’s strategies: Hi(Ai, wi, P,Q) and

Bi(Ai, Q), and the posterior belief F (w|Ωi); and the aggregate demands: H ≡
∫
Hidi

and B ≡
∫
Bidi, such that: (i) for each agent i and some cutoff point w̌, Hi, Bi ∈

argmax{Hi,Bi}E(Ũi|Ωi), where Hi = Z if wi ≥ w̌ and Hi = 0 if wi < w̌; (ii) both

housing rental market and housing asset market clear: H = S and B = S, for all

(a, s, w); and (iii) F (w|Ωi) satisfies Bayes’ rule whenever applicable.

2.3.1 Housing Rental Market

The quasi-linear preference makes the characterisation of housing rental market

particularly simple. From equation (2.2), we can see that each agent i’s demand

of housing service Bi is independent of her income and only determined by her

demand shock Ai and the rental price Q.9 The aggregate demand for housing

services is thus given by
∫
Ai
Q di. The total amount of houses for rent is simply S:

while non-home-buyers are renting from home-buyers who still have extra houses to

rent, home-buyers are renting to live from themselves (and maybe from other home-

buyers as well). Imposing rental market clearing condition yields the equilibrium

rental price

Q =

∫
Aidi

S
≡ A

S
. (2.6)

Thus, in equilibrium rental price will be only determined by the aggregate

9In Favara and Song (2014), agents have logarithmic preferences on both the housing service and
the non-housing consumption good. Hence, the demand for housing service will also be affected by
the expected future consumption or more specifically be affected by the decision made in the housing
market in the current period. They solve their model by log-linearisation and the information effect
of rental price is disregarded. My model avoids this complication while keeps the non-linearity and
makes the effect of rental price relatively easily discussed.
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demand shock and total housing supply. As will be explicit in the following subsec-

tion, rental prices not only clear the rental market but also provide more information

other than the housing prices alone to the agents to make investment decisions in

the housing market. To simplify the characterisations below, take logs on both sides

of equation (2.6) and I have

y ≡ lnQ = a− s, (2.7)

which is a strictly monotone transformation of Q and thus a sufficient statistic of

the equilibrium housing rental price.

2.3.2 Housing Asset Market

Different from the house rental market, the characterisation of the housing market

equilibrium involves solving for a noisy rational expectations model. It is well-known

that the primary difficulty in solving for such models is that the equilibrium prices

must both clear the market and be consistent with agents’ statistical inferences,

which presents a complicated nonlinear fixed-point problem that does not fit well

into any standard fixed-point theorems. The standard “guess and verify” method

works for models in which the random variables are jointly normally distributed.

With a non-normal joint distribution, this solution technique is not possible since

the functional form of the price is not clear a priori (Breon-Drish, 2015).

Nevertheless, as shown in the following analysis, the constraint on the housing

demand for each agent and the assumption of an exponential distribution for the

private signals, enable me to obtain a new set of sufficient statistics that can replace

the price signals in agents’ information set and make me to solve for the model

easily. A similar idea has been used in the finance literature recently. In a model

with hierarchical information structure, Breon-Drish (2012) avoids this difficulty

by exploiting the market clearing condition to determine a priori a statistic that is

informationally equivalent to any continuous equilibrium price. In the heterogeneous

information setup of Albagli et.al. (2011, 2015), model tractability is achieved by

imposing a trade constraint and assuming an unconventional asset supply function

(see also Hellwig, Mukherji, and Tsyvinski (2006) and Goldstein, Ozdenoren, and

Yuan (2013)).

Sufficient Statistics

The private signal that agent i receives conditional on w follows a shifted expo-

nential distribution with the cumulative distribution function: Fw̃i|w̃(wi|w) = 1 −
e−λ(wi−w), wi ≥ w, λ > 0. Note that E(w̃i|w̃ = w) = w+ 1

λ and V ar(w̃i|w̃ = w) = 1
λ2

.

Hence, the smaller the λ is, the larger the mean of the signals given w, and the larger

of signal variance. Given that all agent have the same trading constraint, and that
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w̃ is independent from ã and s̃, the housing market clearing condition
∫
Hidi = S

can be written as ∫ ∞
w̌

Zfw̃i|w̃(wi|w)dwi = S,

where w̌ = w̌(P,Q) is the cut-off point; any agent whose signal is higher than or

equal to w̌ will buy Z units of houses. Without loss of generality, let Z = 1. Then,

as agents’ signals are exponentially distributed ex post, housing market clearing

condition can be written as e−λ(w̌−w) = es or w̌(P,Q) = w − 1
λs. That is, for any

realisations of demand, supply, and fundamental shocks, this equation must hold

for the market to be cleared in the equilibrium. Since the left-hand side depends

on (w, s) through P and Q, any pair of equilibrium housing price and rental price

must reveal the statistic

x ≡ w − 1

λ
s, (2.8)

which is half-normally distributed conditional on w̃ = w: x̃|w ∼ HN
(
w, σ

2
s
λ2

)
. Then,

for a given rental price Q, one can determine the information content of equilibri-

um housing price through a new statistic x, independently of the functional form

w̌(P,Q) if and only if x(P,Q) is strictly monotone in P given Q. In other words,

w̌(P,Q) needs to be invertible in P given Q. If this strict monotonicity condition

is satisfied, {x, y} can be used as a set of sufficient statistics for {P,Q}.10 That

is, the equilibrium housing price and rental price that investor’s posterior belief is

conditional on, can be replaced by the informationally equivalent statistics x and y.

This equivalence also reveals how rental price signal helps refine agents’ information

set. On the one hand, it reduces the noise in the housing price signal as it is one

of the components in housing price. This is captured by x. On the other hand, it

provides additional information about the supply shock which further reduces the

uncertainty in the housing price signal. A full discussion on the information effects

of rental prices is deferred to subsection 2.3.5 and subsection 2.3.6.

Claim 2.1 Housing price P in the cut-off strategy equilibrium is strictly increasing

in x for any given rental price Q.

Claim 2.1 guarantees the strict monotonicity of w̌(P,Q) in P given Q. In

the next subsection, I will take this claim as given and use {x, y} instead of {P,Q}
to solve for the agents’ posterior beliefs and the housing price in equilibrium. I will

show this claim indeed holds once the equilibrium housing price is characterised.

10Note that x alone only reveals part of the information content of equilibrium housing price and
rent. More specifically, x only reveals the information content of some nonlinear combination of
housing price and rent. To fully exploit the information contained in P and Q, one still needs to
use rental price or equivalently y in combination with x.
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Heterogeneous Beliefs

Given Claim 2.1, the posterior beliefs in equilibrium can be characterised in the

following lemma:

Lemma 2.1 (1) For price realisations observed along the equilibrium path, agent

i’s posterior belief about w is given by

Fw̃|w̃i,x̃,ỹ(w|wi, x, y) =


Φ
(
w−µ(x,y)

σ

)
Φ
(
wi−µ(x,y)

σ

) , if wi < x,

Φ
(
w−µ(x,y)

σ

)
Φ
(
x−µ(x,y)

σ

) , if wi ≥ x,

where x ≥ w, y ∈ R, wi ≥ w,w ∈ R, Φ(·) is the standard normal cumulative distri-

bution function, and

σ ≡
(
λ2

σ2
a

+
λ2

σ2
s

+
1

σ2
w

)− 1
2

,

µ(x, y) ≡
[(

λ2

σ2
a

+
λ2

σ2
s

)
x−

(
λ

σ2
a

)
y + λ

]
σ2.

(2) If wj < wj < x, then F (w|wi, x, y) dominates F (w|wj , x, y) in the sense of first-

order stochastic dominance, and F (w|x, x, y) dominates F (w|wi, x, y) in the sense

of first-order stochastic dominance. (3) The posterior belief about w conditional on

the cut-off signal is given by Fw̃|w̃i,x̃,ỹ(w|x, x, y) =
Φ
(
w−µ(x,y)

σ

)
Φ
(
x−µ(x,y)

σ

) , x ≥ w, y ∈ R, w ∈ R.

The first point explicitly characterises the distribution of agents’ posterior

beliefs in equilibrium that are conditional on the private signals, housing prices, and

rental prices. Agents who receive private signals higher than the cut-off signal will

hold the same posterior belief as that of the cut-off point agent. This is because

the ex post private signals are exponentially distributed “one-sided” on the right

of fundamental shock. Given any rental price, the sufficient statistic for housing

price reveals the cut-off private signal to all agents. Thus, anyone who receives the

private signal that is higher than x will know that her private signal is too good.

The housing price signal gives them a chance to narrow down the distance between

their guess and the true fundamental value.

The second point implies that,11 for agents who receive signals lower than

11Milgrom (1981) shows the strict monotone likelihood ratio property (MLRP) is both necessary
and sufficient for higher signals of a random variable to be “good news” in the sense of first-order
stochastic dominance, independent of the prior of the random variable. A failure of MLRP, however,
does not preclude the possibility that for some prior the first-order stochastic dominance still holds.
In my case, although the signals distribution does not satisfy strict MLRP, for the normal prior
w ∼ N(0, σ2

w), Fw̃|w̃i(w|wi) does first-order stochastically dominate Fw̃|w̃i(w|wj) for wi > wj . Thus,
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the cut-off signal, they will be less optimistic about the resale value than the cut-off

belief. Moreover, the higher the private signal is, the more optimistic the agen-

t’s expectations about the resale value. This is because they know their private

signals are closer to the true value than the cut-off signal, and they remain their

belief unchanged even when they observe the cut-off signal implied by prices. The

heterogeneous posterior beliefs result comes from both the heterogeneous private

information and that the prices are non-fully revealing. If agents had homogeneous

information and identical priors, they will hold homogeneous posterior beliefs. If

agents had heterogeneous information and homogeneous priors, but the public price

signals were fully revealing, then private signals would be redundant to the agents

and they would still hold a homogenous belief.

The third point singles out the posterior belief of the agent who receives the

cut-off signal that will be used in combination with the indifference condition, to

derive the equilibrium price function. This is summarised in Theorem 2.1 in the

next subsection.

Housing Prices

Theorem 2.1 There exists a housing price function in the cut-off strategy equilib-

rium:

P = Q+ V,

where V is the expected housing resale value conditional on the cut-off agent’s in-

formation set

V ≡ E(P̃f |w̃i = x, x̃ = x, ỹ = y) =

∫ +∞

−∞
h(w)d

Φ
(
w−µ(x,y)

σ

)
Φ
(
x−µ(x,y)

σ

)
 .

Theorem 2.1 states that, housing price in the equilibrium equals to the sum

of rent and V that I call the market expected housing resale value. This expected

housing resale value is conditional on the cut-off trader’s information set, which

comprises of two public price signals: x̃ = x, ỹ = y, and the cut-off trader’s private

signal whose realisation must equal to the threshold x as well in order to be consistent

with the indifference condition.

The existence of the equilibrium price function is guaranteed if Claim 2.1

holds, which is shown in Appendix A.1 to be the case. The uniqueness of the equi-

librium nevertheless needs a bit more justification, which is left for future research.

To facilitate some of the analysis below, I assume an exponential function form for

“good news” in the sense of higher value of signal leads to higher or equal expectation on Pf as it
is an increasing function of w, and the defined cut-off strategy is legitimate.
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h(·) and then obtain the following housing price function:

Corollary 2.1 If h(w) = ew, then V = exp
(
σ2

2 + µ
)

Φ(κ−σ)
Φ(κ) , and the equilibrium

housing price function is given by

P = ey + exp

(
σ2

2
+ µ

)
Φ(κ− σ)

Φ(κ)
,

where κ ≡
(
x
σ2
w

+ λy
σ2
a
− λ
)
σ.

Despite the seemly simple form of the equilibrium housing price, the existence

of standard normal cumulative distribution function Φ(·), which is highly nonlinear,

makes some of the issues that are of interest cumbersome to analytically charac-

terise. Nevertheless, Φ(·) is a special function which is well-known and can be easily

computed since numerical tools are widely available. Hence, some the discussions

below will be based on numerical computations. To restrict the range of parameters

values, most of time σ2
a and σ2

s will be chosen from (0, 1).12 Parameter λ reflects the

precision of private signals which does not have a direct measure empirically, hence

I leave it free. For σ2
w, I sometimes let σ2

w = σ2
a by interpreting the fundamental

shock as the aggregate housing service preference shock in the next period so that

it has a similar variance as in the previous period.

2.3.3 Information Aggregation Wedge

An important implication from Theorem 1 is that the market expected housing re-

sale value, i.e. the market-implied posterior over the housing resale value conditional

on housing prices and rental prices, differs from the Bayesian posterior conditional

on the same public prices information. Following Albagli, Hellwig, and Tsyvinski

(2015), I call this difference the information aggregation wedge.

Proposition 2.1 Let D̂(x, y) ≡ V − V̂ be the information aggregation wedge, where

V̂ ≡ E(P̃f |x̃ = x, ỹ = y). Then, ∀(x, y) ∈ R2, D̂ > 0.

Proposition 2.1 implies that the information aggregation wedge is always

positive. However, this result must be taken with caution as it relies crucially on

the asymmetry of signal distribution as well as the monotonicity of resale value

function. In a nonlinear model where signals are normally distributed, as in Albagli

12Because lnQ = a− s, where ã and s̃ are independent from each other, the volatility of log rent
is simply the sum of variances of the two shocks: V ar(ln Q̃) = V ar(ã) +V ar(s̃) = σ2

a +σ2
s

(
1− 2

π

)
.

Data located at Land and Property Values in the U.S., http://www.lincolninst.edu/resources/,
show that V ar(ln Q̃) is about 0.75. If I take into account the interest rate, then lnQ+ lnR = a− s,
and the range of σ2

a and σ2
s will be slightly higher.
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et.al. (2015), such a strong inequality does not exist. Instead, some results about

the unconditional wedge could be established. More specifically, they show that

the unconditional wedge between the asset price with heterogeneous information

and homogenous information will be determined by the shape of Pf = h(·): if

h(·) is dominated by the upside risk (e.g. Pf is convex) then the unconditional

wedge will be positive; if h(·) has symmetric risk then the unconditional wedge

is zero; and if h(·) is dominated by the downside risk (e.g. Pf is concave) then

the unconditional wedge would be negative. The reason is that price places more

weight on the tails of the fundamental distribution from an ex ante perspective. In

my model, the resale value function is exponential and thus dominated by upside

risk, thus the unconditional wedge is expected to be non-negative even if the private

signal distribution is assumed as being symmetric. However, Proposition 2.1 holds

regardless of the shape of Pf as long as it is an increasing function.

2.3.4 Impacts of Learning

The characterised housing price function in Theorem 2.1 also enables me to examine

the impacts of static learning in the heterogeneous information model. If the agents

had perfect information about the resale value of houses, there will be no learning

and the equilibrium housing price will be simply given by

P ∗ = Q+ Pf . (2.9)

In this case, both housing service demand shocks and supply shocks affect housing

prices only through rents in a “fundamental” way: the larger the demand shocks or

the lower the supply shocks, the higher the rents, and thereby the higher the housing

prices. Note that the supply shocks do not affect housing prices through the standard

market clearing channel in the housing market, because the risk-neutral agents will

absorb whatever supply offered when the house is priced at the “fundamental” value.

In the presence of asymmetric information, each agent needs to use its pri-

vate signal and the publicly observed housing price and rental price to learn about

the resale value. Both the demand shock and the supply shock interfere with the

learning process and will have some additional effects. This is so, because price-rent

ratio signal x is a linear combination of fundamental shock w and supply shock s,

and the rental price signal y is a linear combination of housing service demand shock

a and supply shock s.

Proposition 2.2 V is decreasing in s and a, i.e. ∂V
∂s < 0, ∂V∂a < 0.

This proposition implies that, compared to the effects of demand shock and
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supply shock in the perfect information model where no learning is induced, there

will be a further negative effect from the supply shock and an additional negative

effect from the demand shock. Learning makes the negative effect of housing supply

on the housing price larger, and the positive effect of housing service demand on the

housing price smaller.

To understand this result, it is helpful to know how market expectation V

changes in x and y from a comparative statistic point of view. It is already known

from Claim 2.1 that for given y, V will be strictly increasing in x. The increase

in x shifts the cut-off position one-for-one. Since x = w − 1
λs, either the increase

of housing fundamental value w or the decrease of house supply s (scaled by 1
λ)

will increase x. If w increases, the distribution of private signals shifts up and the

demand for housing asset will increase for a given signal threshold. If instead house

supplies s decreases, the aggregate demand will be relatively high. In both cases,

house supply is relatively scarcer and the cut-off point must be increasing to clear

the market, so does the market expectation and the equilibrium housing price. A

similar comparative static for y can also be obtained.

Proposition 2.3 V is decreasing in y if x remains fixed: ∂V
∂y < 0.

This result comes from conditional dependence. Intuitively, although the

rental price does not provide information about w directly, it affects the expectation

of it by providing more information other than housing price alone. Since prices

are not fully revealing, even observing some price-rent ratio signal x in addition

to the private signal, agents are still not sure how much the fundamental value

w is and how much housing supply noise s is.13 Without any further information,

agents will simply use the rule derived from their prior knowledge about those shock

distributions as well as the realised signals, and attribute the observed x to w with

some fixed weight and to s with the rest weight. They then infer w by inversion.

When agents also observe an additional signal about rent, say, high rental price or

equivalently high y, they will rationally attribute high rental price partly to the

low housing supply, since everyone knows that rental price is negatively related to

housing supply. This knowledge and observation will lead them to believe that they

have overestimated the value of s initially and thereby must have overestimated

the value of w using only housing price signal and private signal. They will lower

their expectation on w accordingly and the lower marginal investor’s expectation

results in a lower equilibrium price. Similarly, if they observe a low rental price,

they know housing supply must be higher than they thought before and thus must

13Note that housing supply shock s affects housing price in two fundamental ways: indirectly
affects housing price by affecting rental price through rental market clearing and directly affects
housing price through market clearing.
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have underestimated the value of w. They will increase their expectation on w

accordingly and push up the equilibrium price to a higher level.

The intuition for the conditional dependence may be made more explicit in

a made-up example. Let x̃ = w̃ − s̃
λ , ỹ = ã − s̃, where w̃ ∼ N(0, σ2

w), ã ∼ N(0, σ2
a),

s̃ ∼ N(0, σ2
s) are independent from each other. Appendix A.2 shows E(ew̃|x̃ = x) =

exp
(
E(w̃|x̃ = x) + Σ′

2

)
and E(ew̃|x̃ = x, ỹ = y) = exp

(
E(w̃|x̃ = x, ỹ = y) + Σ

2

)
,

where E(w̃|x̃ = x) = W ′xx, E(w̃|x̃ = x, ỹ = y) = Wxx+Wyy, and W ′x,Wx,Wy,Σ,Σ
′

are some constants defined in Appendix A.2. Because W ′x < Wx and Wy < 0,

conditioning on one more variable y adds a negative effect from y while increases

the elasticity of the conditional expectation on x.

Because ∂V
∂y < 0, the change of house supply will have an additional effect on

housing price through the rental price signal; a decrease in s will result in an increase

in y which will make V smaller from Proposition 3. This negative adjustment will

offset some of the initial effects when agents did not use y explicitly for refining

information. In the current setup, this offset will not be large enough to reverse the

direction of effect and thus s still has a negative effect on V overall. On the other

hand, if the housing service demand shock a increases, then given w and s there will

be an increase in y but not in x. Thus, there will only be a negative effect on V .

Agents will mistakenly think some of the increase in y must be from the decrease

of house supply. So they will adjust their expectation on w that is just based on

x. They think they must have overestimated house supply and thus overestimated

the future resale value. When everyone including the cut-off agent downgrades its

expectation, the market expected house resale value will be lower. Thus, the change

of housing service demand shock will have a negative effect, other things equal.

2.3.5 Information Effects of the Rental Price

In the presence of heterogeneous information, rent will have two types of effects on

housing price in equilibrium: as a “fundamental” it has a user cost effect and as a

price signal it has an information effect. The user cost effect is very straightforward

and in this model where the equilibrium housing price is given by P = Q + V ,

it is simply one-for-one: given market expectation about future housing price V ,

when there is a unit increase in rent, so must be the housing price. In contrast,

the information effect of rent on housing price is more involved and deserves some

detailed discussion.

First note that rental price has information effect on housing price in this

model, not because it is directly correlated to the future resale value, but because it

provides additional information other than housing price alone to the agents. One

immediate information value of rental price is that the rental price refines agents’

information by revealing itself as one of the “noises” in the housing price signal.
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From Theorem 1 we can see that rental price is one of the arguments in the housing

price function. Because agents use housing prices as the public signals to infer

the value of w, if they did not observe the rental prices, then housing price as a

signal would be noisier to the agents. Upon observing rental prices, agents can

simply subtract these “noises” from the housing price signals. The result of such

refinement is captured by the statistic x.

The other information value of rental prices is that they can be used to further

reduce the uncertainty about w after getting x. After a preliminary refinement

discussed above, the “noise” left in x is the total housing supply shock s. Since the

rental price that is determined in the rental market is a function of aggregate housing

service demand shocks and total housing supply shock, observing a rental price then

provides agents one additional signal to infer the supply shock noise, which in turn

helps to infer the housing resale value w. Note that the first information effect

is a “level” effect and the change of rent volatility does not change the nature of

that effect. On the contrary, the second effect is a “signal” effect and the change

of rent volatility will change the weights that agents put in this signal. Therefore,

the second information effect from rental prices will be the main driving force in

this model for explaining the observed relationship between housing price and rental

volatility.

Proposition 2.3 states that this second effect tends to lower the market ex-

pected resale value. A hypothetical experiment can make this point even more

straightforward; that is, we want to see how the housing price in a model where

agents make inferences without conditioning on rental price explicitly would be dif-

ferent from the price in the original model? To do this, I first derive the equilibrium

housing price from a model where each agent i does not fully exploit the informa-

tion contained in rental price but instead makes predictions based only on wi and

x. I then compare this price and the price in Corollary 2.1 and check the additional

information effect that rental prices have on housing price. In Appendix A.2, I show

that when Pf = ew this housing price is obtained as

P ′ = ey + exp

(
σ′2

2
+ µ′

)
Φ(κ′ − σ′)

Φ(κ′)
,

where σ′ = limσ2
a→+∞ σ, µ′ = limσ2

a→+∞ µ, and κ′ = limσ2
a→+∞ κ. Therefore,

P ′ is essentially the limit case of the original model where rental price becomes

arbitrarily noisy because of the arbitrarily large housing demand shock σ2
a → +∞.14

By comparing the unconditional mean of housing price in Corollary 2.1 and the

unconditional mean of P ′, we can see the average effect of not conditioning on y.

14If the private signal is further assumed to be arbitrarily accurate, housing price in equilibrium
will be the same as the housing price under perfect foresight: limλ→+∞ P

′ = ex + ey = ew + ey.
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Figure 2.1 shows the unconditional difference E(P −P ′) for different pairs of

(σa, λ) with σs = σa and σw = 0.45. It shows that conditioning on rental price explic-

itly and making use of the additional information decrease the housing price on aver-

age. Note that in the previous made-up example, the law of iterated expectations im-

plies that E[E(ew̃|x)−E(ew̃|x, y)] = E[E(ew̃|x)]−E[E(ew̃|x, y)] = E(ew̃)−E(ew̃) = 0.

However, in the model such unconditional difference is negative, implying again the

failure of law of iterated expectations in the heterogeneous information model. This

negative unconditional difference is crucial for explaining the observed relationship

between housing price and rent volatility.
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Figure 2.1: Information Effect of Rental Price

2.4 Implications

Having the characterised equilibrium housing prices and several derived implica-

tions, I am now able to apply the model to examine several important issues in

the housing market. First, I relate the information aggregation wedge to the re-

turn predictability in the housing market and argue that explaining housing return

predictability does not have to move beyond the rational expectations assumption;

it could be because the econometrician does not observe private information and

fails to take into account the heterogeneous beliefs as well. Next, I show that the

information channel other than the risk-hedging explanation can also be consistent

with the positive relationship between rent volatility and housing price that is doc-

umented in Sinai and Souleles (2005). Third, I show in this model housing will be

priced on average higher than its fundamental value. Finally, I show the model has

the potential to generate excess volatility in housing prices, but learning from rental

prices restricts housing prices from being too volatile.
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2.4.1 Return Predicability

As discussed in the introduction part, both housing prices and rental prices are found

to have some predictive power on the future housing returns. More practically, it

means when an econometrician regresses the observed returns on lagged housing

prices and rental prices, he finds statistically significant coefficients on both price

variables. Specifically, if I define the return for housing asset RH , using the notations

in this chapter, as

RH ≡ (Pf − P )︸ ︷︷ ︸
capital gain

+ Q︸︷︷︸
rent

, (2.10)

and denote the econometrician’s information set by Ωe = {P,Q,Me}, where Me

captures the econometrician’s knowledge about the economy structure, then the

return predictability on houses from housing prices and rental prices implies that

E(R̃H |Ωe) = G(P,Q) 6= 0,

where G(·) is a function of both housing price and rental price.

If agents in the economy have homogeneous information, or they have het-

erogeneous information but with prices fully revealing information in the economy,

then the econometrician’s information set would be the same as that of the agents,

which implies

G(P,Q) = 0.

Neither housing price nor rental price is affecting the conditional expectation. That

is, a correctly specified econometric model will give zero coefficients on P and Q.

However, if prices are not fully revealing, as in the model I have just shown,

and if the econometrician does not have full information, G(P,Q) will be non-zero.

For instance, if the econometrician’s information set is the same as the Bayesian’s

information, which means the econometrician does not observe the future resale

value of housing nor does he observe the agents’ private information. More impor-

tantly, he does not know that the equilibrium housing prices were generated from

the economy with heterogeneous expectations. Instead, he only knows correctly the

joint distribution of the market prices and exogenous shocks. The econometrician

also observes the market prices: both housing prices and rental prices. With these

assumptions about the econometrician’s information set, it is shown below that the

expected return conditional on his information set is related to the information ag-

gregation wedge introduced in section 2.3.3.

Proposition 2.4 The expected return conditional on the econometrician’s informa-

tion set equals to the negative information aggregation wedge, that is, E(R̃H |Ωe) =
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−D̂, where D̂ is defined in Proposition 2.1.

From Proposition 2.1 and Proposition 2.4, it immediately follows that the

expected return conditional on econometrician’s information set is non-zero. More

importantly, because the conditional wedge D̂ is a function of x and y while x is, in

turn, a function of P and Q, the conditional expectation of housing asset return on

the econometrician’s information set will be a nonlinear function of both housing

price and rental price. That is, housing asset return is predictable by both price

and rent! Kasa, Walker, and Whiteman (2014) develop a dynamic asset pricing

model with persistent heterogeneous beliefs, and show that an econometrician, who

incorrectly imposes a homogeneous beliefs equilibrium, will find that the asset price

displays predictability of excess returns.15 The idea here is essentially the same to

theirs. However, by incorporating the mechanism that agents are also learning from

the rental price signals, my model implies both housing prices and rental prices dis-

play predictability of excess returns on houses. Had rental prices not provided more

information other than housing prices alone, even in the heterogeneous information

model the conditional expectation of housing asset return on the econometrician’s

information set will not depend on rental price but will only depend on housing

price.

Because −D̂ is a complex nonlinear function, it is hard to analytically sign

the effects of prices on G(P,Q). To facilitate the discussion, I assume an exponential

function for the resale value: h(w) = ew, and use the implied expected return for

simulations.

Corollary 2.2 If h(w) = ew, then the expected return conditional on the econo-

metrician’s information set is given by

E(R̃H |P̃ = P, Q̃ = Q) = exp

(
σ2

2
+ µ

)[
exp

(
−λσ2

) Φ(κ+ λσ − σ)

Φ(κ+ λσ)
− Φ(κ− σ)

Φ(κ)

]
.

Numerical simulation based on Corollary 2.2 and calibrated parameters (see

Figure 2.2) shows that E(R̃H |Ωe) could be decreasing in x, which is consistent with

the regression results in Cass and Shiller (1990) and those in Glaeser and Gyourko

(2007): fixing rental price, the higher the housing price the lower the expected future

return. It is not clear how the expected future returns changes in response to the

change of rental prices.

15Because I have let R = 1, the excess return is equivalent to the return.
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Figure 2.2: Expected Return Conditional on Econometrician’s Information

If x in this model is interpreted as the price-rent ratio and if the econometri-

cian thinks that the price-rent ratio has sufficiently aggregated all information in the

market, then we will get another wedge, which is no longer always positive. Howev-

er, the mean of this wedge is still positive. That is, on average, housing prices will be

always higher than the evaluations based only on the price-rent ratio. More formally,

Corollary 2.3 Let V̌ ≡ E(P̃f |x̃ = x) and Ď(x, y) ≡ V − V̌ . Then, E[ ˜̌D] > 0.

2.4.2 Rent Volatility and Housing Prices

In a tenure choice model with endogenous housing price, Sinai and Souleles (2005)

show that when the households are risk-averse, owning a house involves both taking

housing asset price risk and hedging rent fluctuation risk. Which risk dominates on

net in this trade-off largely depends on the household’s expected length of stay and

whether they move to correlated housing markets. When the household’s expect-

ed length of stay is large or when the spatial correlation in housing prices is high,

larger local rent volatility tends to increase household’s home-ownership demand,

which will be capitalised into higher housing price when housing supply is inelastic.

Empirically, they find that metropolitan statistical areas (MSAs) with more volatile

rents have significantly greater price-to-rent ratios. Similar to their findings, my

model may also generate the positive relationship.

Remark 2.2 Housing prices tend to be on average higher when rents are more

volatile.

This is shown through numerical simulations. Figure 2.3 shows the simula-

tions of two parameter sets. In the left, λ = 1 and σw = λa. In the right, λ = 9

and σ2
w = 0.1. In both cases, we can see that the unconditional housing price is not

monotonically changing in σ2
s . It is increasing in σ2

s when it is small but decreas-
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ing when it is very large. The effect of σ2
a seems ‘more’ monotonic: the larger the

demand shock volatility is, the higher the housing price on average, implying that

the effect of demand shock variance on the rental price signal dominates. Thus,

under reasonable parameter values, higher volatility of rent tends to generate higher

housing price on average.
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Figure 2.3: Rent Volatility and Expected Housing Resale Value

Despite the similar prediction, the channel through which the mechanism

works is completely different from that in Sinai and Souleles (2005). Risk comparison

is the key to their mechanism: if they were to assume households are risk neutral,

the volatility of rent wouldn’t have any effect on homeownership demand or housing

price. The assumption of risk neutral agents in my model precludes any risk impacts,

yet we still see a qualitatively similar effect. This is due to the information effects of

prices and especially the second information effect from rental price I have discussed

before: while x (price-rent ratio) serves as a noisy public signal on the determinant

of the housing resale value, y serves as an additional noisy public signal about the

supply shock s.

This negative information effect from the rental prices is the main cause of

the simulated positive relationship between rent volatility and unconditional housing

prices. Note that the volatility of rent comes from the volatility of demand shocks

and the volatility of supply shocks. When the variance of demand shocks increases,

the volatility of rental price signal becomes larger while the volatility of price-rent

ratio signal remains the same. Agents will then find the rental price signal is not

quite accurate in inferring the supply shock. Hence, the negative effect from the

second effect of rental price signals will be reduced and the housing price will be

higher. On the other hand, if the increase of rent volatility comes from the increase

of supply shock variance, the volatilities of both x and y will increase. While this

decreases the negative effect from y, it also decreases the positive effect from x.

The two effects offset each other and the overall effect depends on their relative

magnitudes. When the first effect dominates, we see housing price increasing.
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2.4.3 Over-Pricing

The model also has some important implications for the pricing of housing. Note

that the proof of Corollary 2.3 relies on the law of iterated expectations: E[E(P̃f |x̃ =

x)] = E[E(P̃f |x̃ = x, ỹ = y)]. It follows that the law of iterated expectations also im-

plies E[E(P̃f |x̃ = x)] = E(P̃f ), where E(P̃f ) coincides with the unconditional mean

of housing price under several other homogeneous information structures. The sim-

plest one is the perfect foresight case where everyone observes Pf . Another one

is that all agents get a public noisy signal about Pf or get no signal at all. Be-

cause of the symmetric information structure, no more information could be learned

from housing price or rental price and housing price in equilibrium will be given

by P = Q + E(P̃f |Ω), where Ω can be ∅. A common feature of these models is

that they all have an identical unconditional mean of housing price which equals

to E(P̃ ∗) = E(Q̃) + E(P̃f ). Therefore, when agents have homogeneous information,

either due to perfect foresight about house resale value or because they have public

noisy information, the housing price will be lower than that with heterogeneous in-

formation on average. This complements to Favara and Song (2014), who show in

a log-linearised dynamic model that housing price with heterogeneous information

and the no-short-sale constraint is on average higher than that with homogeneous

information. More importantly, if I define the perfect foresight house price as the

fundamental value of housing, it implies the over-pricing for houses in this model.

Corollary 2.4 For any increasing function h(·), the mean of housing price defined

in Theorem 1 is strictly larger than the mean of the fundamental value of housing

defined in equation (2.9): E(P̃ ) > E(P̃ ∗).

The exact relation between the unconditional difference E( ˜̌D) and the under-

lying distribution parameters can be fairly complicated. However, some limiting case

can be seen relatively easily. First note that the precision of x about w is increasing

in λ2 and decreasing in the variance of housing supply σ2
s , while the precision of y

on s is increasing in σ2
s . Thus, given σ2

w and σ2
a, when λ→ 0, the estimate on w is

converging to no information case and the unconditional difference will converge to

zero. If instead λ→∞, the estimate on w is converging to perfect information case

and the unconditional difference will converge to zero too. If σ2
s → 0, y becomes

useless but x is very precise about w so it converges to perfect information as well.

However, if σ2
s →∞, then on the one hand the signal x is not very precise about w

but on the other hand the signal y is very precise about s, it turns out that y will

have a negative effect while x will have a positive effect.
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2.4.4 Excess Volatility

It has been shown, by Algbali et.al. (2011) in a static model and by Kasa et.al.

(2014) in a dynamic model, that heterogeneous beliefs induced by heterogeneous

information can generate excess volatility in asset prices. In particular, when the

variance of noisy supply becomes arbitrarily large, the excess volatility of price could

be infinite. However, in those models, there is no signal like the rental price as in

my model. I show in this subsection that while my model has the ability to generate

excess volatility in housing prices for the same reason as in those models (i.e. the

failure of the law of iterated expectations due to private information), the learning

from rental prices by the agents restricts housing prices from being too volatile.

Define the excess volatility of housing price as the ratio of V ar(P̃ ) over

V ar(P̃ ∗):

φ∗ ≡ V ar(P̃ )

V ar(P̃ ∗)
. (2.11)

Because the equilibrium housing price is simply the sum of current rent and market

expected future price: P = Q+V , the variance of housing price is given by V ar(P̃ ) =

V ar(Q̃)+V ar(Ṽ )+2Cov(Q̃, Ṽ ). A similar expression can be written for the variance

of housing price ex post : V ar(P̃ ∗) = V ar(Q̃) + V ar(P̃f ) + 2Cov(Q̃, P̃f ). Thus,

φ∗ =
V ar(Q̃) + V ar(Ṽ ) + 2Cov(Q̃, Ṽ )

V ar(Q̃) + V ar(P̃f )
,

where I have used the fact that Cov(Q̃, P̃f ) = 0 as ã, s̃ and w̃ are independent

from each other by construction. Hence, whether equilibrium housing price is more

volatile than that of the ex post housing price (i.e. φ∗ > 1) depends on whether

V ar(Ṽ ) + 2Cov(Q̃, Ṽ ) > V ar(P̃f ). I have been unable to establish conditions for

this inequality to hold and thus have to use numerical method to simulate for some

sets of parameterisations.
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Figure 2.4 shows that φ∗ could be both higher or lower than one. More

importantly, φ∗ seems to be bounded and converges to one as the variance of sup-

ply shock goes to infinity. This is very different from that in Albagli et.al. (2011)

where the variability of asset prices can be arbitrarily large when the supply shocks

are unboundedly large even the variability of realised dividend is bounded. The

unbounded excess volatility does not seem to exist in my model. After all, a wide

range of parameterisations shows that it is unlikely that this excess volatility could

be infinite. While it is difficult to analyse this result analytically, the intuition may

be very straightforward: the rental price signal in my model, which is naturally from

the housing rental market, provides additional information about the noisy supply.

The reason that the excess volatility in Albagli et.al. (2011) can be very large is

that, the supply shocks become the noises in the asset price signals but there is no

other signal that can be used to infer this noise. Hence, when the supply shock

variance becomes large, the price signals become imprecise, and the pricing can go

very large. However, if there is an additional signal to this noise, the uncertainty

will be restricted because the inference about the noise itself will be more accurate

as its variance becomes larger.

Remark 3 The excess volatility of housing price φ∗ could be either higher or lower

than one, and tends to converge to one as σ2
s →∞.

2.5 An Extension: Feedback Effects

The model until now has just assumed the resale value of housing in the second

period is completely exogenous. If I allow that value to be also affected by the

real estate developers’ actions, the basic model then can be extended to study the

feedback effect of prices in the housing market. That is, equilibrium prices will not

only play the role to clear the market but also have real effects on the fundamentals

of the market.

More specifically, the resale value is assumed to be determined by two com-

ponents: Pf = h(w) + g(Sf ), where w can be interpreted as an aggregate preference

shock of the next generation, and Sf as the supply in the next period, which is

determined by the developers in the first period because of the time to build. I

assume g(Sf ) = −
(
θ−1−1

2

)
Sf ≡ −δSf , where 0 < θ < 1, such that the more houses

to build in the first period, the cheaper the price will be in the next period. In the

resale value function, θ is the feedback effect parameter; for a given Sf , the higher

θ is, the higher the future housing price will be. The developers choose the amount

of houses to build in the first period to maximise the expected profit in the second
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period:

max
{Sf}

E
[
P̃fSf − C(Sf )|Ωd

]
,

where C(Sf ) = 1
2S

2
f is the cost involved in building, Ωd is developer’s information

set. The first order necessary condition implies that the optimal construction is

Sf = θE[h(w̃)|Ωd].

Now the assumption about the information set of developers becomes crucial.

I assume the developers know that their new house building in the current period

will have a negative effect on housing value in the next period; however, they do

not know how much the value is going to be. The developers may or may not

have any exogenous information about the next period housing value. In either

case, developers will make use of the current housing prices and rental prices to

indirectly infer the information held by investors. The investors also know that

the indirect use of price signals by developers will have an undesirable effect on

their resale value of houses in the second period, which will, in turn, affect their

trading decisions in the first period. As a simple example, I assume the developers

do not hold any private information about w. Hence, their information set is Ωd =

{P,Q,Md}, where Md captures the assumption that developers know the model

structure. Since developers do not have any private information about w, they

can only rely on the equilibrium rental price and housing price to make inferences.

If Claim 2.1 still holds, then the equilibrium housing price could be obtained as

P = Q + E(h(w̃)|Ω̌) −
(

1−θ
2

)
E(h(w̃)|Ωd). Note that this price is lower than the

benchmark model and when θ = 1 it collapses to the benchmark model housing

price; the higher θ is, the smaller the housing price will be. Alternatively, I could

assume developers also have private information. This, however, will generate high

order expectations problem and poses challenges for solving the model. I will leave

this for future research.

2.6 Conclusion

In this chapter, I provide a house pricing model where agents observe heterogeneous

information about the future resale value of houses. In the model, agents learn

not only from their private information but also from the public information—

housing prices and rental prices, and they hold heterogeneous expectations in the

equilibrium because prices are not fully revealing. I show the model can be used

to explain two empirical regularities—the return predictability of houses from past

prices and the positive relationship between rent volatility and housing prices. I

also show that over-pricing in the housing market may arise if the agents cannot
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short sell in the market. The model has the potential to generate excess volatility

of housing prices, but learning from rental prices greatly restricts the magnitudes of

the excess volatility.

The model in the chapter has a great potential to be extended, and, thus has

potential to explain other phenomena regarding the housing market. I have provided

a simple extension of the model for studying the effects of real estate developers’

learning on the housing supply, which might be of interest to the study of residential

investments behaviour. Other extensions, for instance, the effects of lenders’ learning

on the housing demand, can also be considered in the future research.
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Chapter 3

Noises, Land Prices, and

Macroeconomic Fluctuations

3.1 Introduction

In an economy where debt must be fully secured by collateral, an endogenous two-

way feedback can arise between the credit market and the real economy—while firms’

goods production forms the basis of asset prices, asset prices, in turn, determine the

ability of firms to invest and thereby to produce. Such interactions between the

endogenously determined credit constraints and aggregate economic activities have

been shown to amplify and propagate relatively small, temporary shocks to generate

large, persistent fluctuations in output and asset price. Models following this strand

are, for example, Kiyotaki and Moore (1997), Iacoviello (2005), and Liu, Wang, and

Zha (2013).

In these models, borrowing must be secured against some collateral, which

is typically the land or housing. The total amount of borrowing is usually bounded

by the expected present value of the collateral. This is theoretically reasonable be-

cause it is the future value of collateral that matters in the case of default. Hence,

when the expected future value is high enough, the amount of funds one can bor-

row may exceed current (market or appraised) value of the collateral. Most often,

however, the amount of funds one can borrow is less than the current value of the

collateral; the difference is the down-payment. This is so, perhaps because lenders

are pessimistic about the future value of the collateral, or because the lenders are

risk-averse and the future is very uncertain, or because there are significant trans-

action costs in selling the collateral if borrowers default. If the loan-to-value ratios

are larger than one, it is mostly because the lenders somehow are very optimistic

about the future value of the collateral.

Expectations about the future, on the other hand, must be based on the
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information agents receive up until today. In an economy where agents are not

perfectly informed about the state of the world, the information that agents hold

could be very noisy. This implies that agents’ optimism or pessimism about the

future need not be justified by the economic fundamentals; noises in signals can be

confused by the agents and thereby taken as the fundamental shocks, and finally,

initiate fluctuations in the macroeconomic variables. Some recent empirical research

has shown that noises do play important roles in the short-run fluctuations (e.g.

Blanchard, L’Huillier, and Lorenzoni, 2013).

Macroeconomists have been trying to incorporate the information friction

into the Real Business Cycle models. However, most of the existing models seem

to have neglected the existence of financial frictions.1 The effects of noises on the

macroeconomy may be substantially large when there are also financial frictions.

The recent financial crisis in the U.S. is characterised by large swings in the housing

prices, consumer confidence, credit, as well as other macroeconomic variables such

as consumption and investment. An inclusion of financial friction in the model will

not only generate dynamics of the relevant variables such as housing price and credit

but also have the potential to make the effects of noise shocks sizeable enough.

This chapter then fills this gap by combining two strands of literature to-

gether: financial friction and information friction. I show how learning and financial

friction can together generate boom-bust business cycles initiated by purely noises

in the economy.

3.1.1 Preview of the Model

The model economy is comprised of a continuum of islands, each of which is inhabit-

ed by two types of infinitely-lived agents: non-productive households and productive

entrepreneurs. Islands are isolated from each other; there is no trade or capital flow

among islands. Households on each island desire both consumption good and land

(housing) for utility, while entrepreneurs’ utility only derives from consumption

good; their demand for land comes from the production technology requirement.

Because households are more patient, they tend to be lenders while entrepreneurs

tend to be borrowers. Entrepreneurs started with debt and are constrained in bor-

rowing in each period, they can only use their land holdings as collateral and the

total amount of funds they borrow cannot exceed the (households’) expected liqui-

dation value of the collateralised land in the next period. In each period, each island

is hit by an island-specific productivity shock that is comprised of two components:

an economy-wide common persistent shock and an idiosyncratic transitory shock.

As islands are informationally isolated from each other, there is no direct

way they can share information with each other. However, all of them observe

1La’O (2010) is the only exception I am aware.
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noisy public signals about the economy-wide average land prices. Hence, to infer

the persistent component (agents on each island have the incentive to do so because

it differs with the idiosyncratic shock in the persistence), both the island-specific

shocks and endogenously generated price signals will be used to draw inferences.

Because land price signals are partially determined by the expectations of agents on

other islands, agents on each island must “forecast the forecasts of others” in the

dynamic economy. The infinite regress makes forecast errors serially correlated and

thus generates “waves of optimism and pessimism” in expectations on each island.

As the entrepreneurs are borrowing constrained and the funding is subject to the

households’ expected liquidation value of the collateralised land in the future, any

forecasting errors from noises will directly affect households’ willingness of lending

and entrepreneurs’ investment ability, and thus, cause macroeconomic fluctuations.

To help understand how noise shocks affect the economy, let’s first consid-

er the effect of productivity shocks in the full information model. Suppose en-

trepreneurs on one island experience a temporary negative productivity shock that

reduces their production and therefore their net worth. Being unable to borrow

more, entrepreneurs are forced to reduce investment expenditure including invest-

ment in land, which results in a fall in land price. This is the static effect, and there

is a more powerful dynamic effect. That is, less investment in the current period also

leads entrepreneurs to earn less revenue in the next period, because capital and land

investments are predetermined. This fall in revenue again will force them to reduce

investment in the second period because of the borrowing constraint. As a result,

there will be a further fall in land price and output. The knock-on effects continue,

with the result that entrepreneurs’ demands for land are reduced and therefore falls

in land prices and outputs in all subsequent periods. The anticipated fall in each of

future periods also leads to a further fall in land price in the current period, which

reduces the entrepreneurs’ net worth in the current period still further. Persistence

and amplification reinforce each other. If the negative shock is expected to be per-

sistent, those effects will be even larger and more persistent because the dynamic

effects are stronger.

Consider now the dispersed information model and the effects a negative

noise shock. Since the noise shock does not affect production, entrepreneurs’ net

worth would not fall directly. However, as agents observe a low average land price

signal that tells them something negative might have happened to the common

persistent productivity shock, no matter what their island-specific shock is, both

households and entrepreneurs will believe that production in the future would be

low, which would then force the entrepreneurs to reduce investment expenditure

including investment in land in those future periods. As a result, there would

be falls in land prices and outputs in the future. Those expected falls in future
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land prices will, in turn, depress current land prices and thus indirectly hurt the

current net worth of the entrepreneurs, forcing them to reduce current investment

expenditures.

3.1.2 Related Literature

As already discussed, this chapter builds on two strands of literature: business cycle

models with financial frictions and business cycle models with incomplete informa-

tion. For the former literature, this chapter is mostly related to Pintus and Wen

(2013) and Liu, Wang, and Zha (2013). Pintus and Wen (2013) add consumption

habit into the Kiyotaki and Moore (1997) model and shows that the dynamic interac-

tions between the elastic credit supply (due to leveraged borrowing) and persistent

credit demand (due to consumption habit) can generate a multiplier-accelerator

mechanism that transforms a one-time productivity or financial shock into large

and long-lasting boom-bust cycles. Liu, Wang, and Zha (2013) construct a similar

but richer model than Pintus and Wen (2013); they use Bayesian estimation and

identify a shock that drives most of the observed fluctuations in land prices. They

show that positive co-movements between land prices and business investment are a

driving force behind the broad impact of land-price dynamics on the macroeconomy.

Neither of them, however, considers the effect of noise shocks on the macroeconomy,

which is the focus of this chapter.

The idea that imperfect information can cause the sluggish adjustment in

economic variables and generate fluctuations driven by expectation errors goes back

to Phelps (1969) and Lucas (1972). There was a period (the 1970s and early 1980s)

of intensive research on expectation-driven business cycle models. However, they

were replaced by technology-driven Real Business Cycle models and New Keynesian

sticky-price models. This waning of interest was caused not so much by convincing

empirical failures, but perhaps by the inability of these models to generate long-

lasting effects on the macroeconomic variables of interests, or by analytical hurdles

that prevented researchers from constructing empirically tractable models (Kasa,

2000). Woodford (2002), Mankiw and Reis (2002), and Sims (2003) have renewed

attention to imperfect information and limited information processing as sources

of inertial behaviour. This renewal is quickly followed by, for instance, Lorenzoni

(2009), Angeletos and La’O (2009), and Graham and Wright (2010). These models

build on either New Keynesian model or Real Business Cycle model, and not consider

the interactions between information friction and financial friction.
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3.2 Model

The economy is comprised of a continuum of islands indexed by i ∈ [0, 1]. Islands

are correlated in their productivity, they are however economically isolated. Each

island is a Kiyotaki-Moore style economy2. More specifically, on each island i,

there is a measure-of-one continuum of infinitely-lived patient agents and a measure-

of-one continuum of infinitely-lived impatient agents. Following the literature, I

call the patient agents the households, and the impatient agents the entrepreneurs.

Households and entrepreneur differ not only in their discount factors but also in

other aspects that will be specified in the following subsections.

3.2.1 Productivity Shocks

In each period t, each island i in the economy is hit by both a common economy-wide

shock and an idiosyncratic shock. Denoted by Ait = ea
i
t the island-specific produc-

tivity shock on each island i at time t. Then, ait is comprised of two components:

ait = θt + εit, (3.1)

where θt is the economy-wide productivity shock that follows a mean-reverting pro-

cess:

θt = ρθt−1 + vt, where 0 < |ρ| < 1, vt ∼ N(0, σ2
v),

and εit is the idiosyncratic productivity shock. I assume εit ∼ N(0, σ2
ε ), ∀i ∈ [0, 1] are

identically independently distributed across time and island and satisfy an adding

up constraint: ∫
εitdi = 0,∀t.

Note that the independence of {εi} across time is not crucial. What is important to

the model is that the two shocks are different in their persistence; otherwise, agents

have no incentive to disentangle them. Finally, I assume all shocks are orthogonal

to each other.

3.2.2 Households

Households on each island i derive utilities from both consumption good and land.

Households do not produce or accumulate capital goods but provide loans to the

entrepreneurs. The type of loans provided by the households is the one-period loan

that can be used by the entrepreneurs to finance their consumption and investment.

The interests from the previous loans that the entrepreneurs pay to the households

2The economy structure for each island follows Pintus and Wen (2013) and Liu, Wang, and Zha
(2013).
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may be used by the households to finance their current consumption, land invest-

ment, as well as new loans in the next period.

Denote by C̃it the representative household’s consumption on island i in peri-

od t, L̃it the amount of lands owned by the household at the beginning of period t, B̃i
t

the amount of new loans generated in period t, and Ẽit[·] ≡ Π[·|F̃ it ] the household’s

linear least-squares projection conditional on his information F̃ it in period t. Given

the initial land holding L̃i0 ≥ 0 and loan B̃i
0 ≥ 0, the problem of the representative

household on island i can be written as

max
{C̃it ,L̃it+1,B̃

i
t+1}∞t=0

Ẽi0
∞∑
t=0

β̃t(C̃it + b ln L̃it+1),

subject to budget constraints

C̃it +Qit(L̃
i
t+1 − L̃it) + B̃i

t+1 = (1 +Rit)B̃
i
t,∀t, (3.2)

where Qit is the relative price of land on island i in period t, Rit is the loanable

fund interest rate from time period t to t + 1, β̃ ∈ (0, 1) refers to the household’s

time discount factor, and b his land preference parameter. Note that there are not

superscript for β̃ or b, implying that all households on all islands share the same

discount factor and land preference parameter.

3.2.3 Entrepreneurs

Entrepreneurs on each island i derive utilities from consumption Cit but not from

land.3 Their demand for lands comes from production of Y i
t , the technology of which

requires the inputs of capital Ki
t and land Lit. I assume there is no capital rental

market nor land rental market. Hence, entrepreneurs need to buy capital and land

in the asset markets. The production function is assumed to be of the Cobb-Douglas

form

Y i
t = Ait(K

i
t)
α(Lit)

γ ,∀t, (3.3)

where Ait is the productivity shock of the representative entrepreneur on island i,

α, γ ∈ (0, 1) are the output elasticities of capital and land respectively. Again, note

that there are not superscript for α or γ, implying that entrepreneurs on all islands

share the same output elasticities.

Given the initial land holding, debt, and capital stock Li0 ≥ 0, Bi
0 ≥ 0,Ki

0 ≥
3The asymmetry in preference assumption is not essential. Assuming land preference for house-

holds is just a short-cut to have them to demand land. See also Iacoviello (2005).
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0, the problem of the representative entrepreneur on island i can be written as

max
{Cit ,Lit+1,K

i
t+1,B

i
t+1}∞t=0

Ei0
∞∑
t=0

βt
(Cit)

1−σ

1− σ
,

subject to budget constraints

Cit +Ki
t+1 − (1− δ)Ki

t +Qit(L
i
t+1 − Lit) + (1 +Rit)B

i
t = Bi

t+1 + Y i
t ,∀t, (3.4)

and borrowing constraints

(1 +Rit+1)Bi
t+1 ≤ EitQit+1L

i
t+1,∀t, (3.5)

where Eit[·] ≡ Π[·|F it ] denotes the entrepreneur’s linear least-squares projection con-

ditional on his information F it in period t, β ∈ (0, 1) refers to his time discount

factor, and σ is the entrepreneur’s risk aversion parameter. Land does not depre-

ciate but capital depreciates at rate δ. The entrepreneurs on all islands have the

same discount factor, risk aversion parameter, and capital depreciation rate. Note

that leisure does not enter the utility function. I assume α + γ ≤ 1, which implies

an inelastic labour input assumption. Finally, the assumption that households are

more patient than the entrepreneurs implies that

β < β̃.

3.2.4 Information Structure

The information structure and its implications on the business cycle are the focus of

the chapter. To simplify the analysis, the first assumption I make on the information

structure is that, households and entrepreneurs on the same island have identical

information at all times. This implies

Ẽit[·] = Eit[·], ∀i,∀t.

Next, I assume that in each period t, agents on island i observe the history

of their island-specific productivity shocks up to time t, {ait}t−∞. They may also

observe a history of other signals vector {Ψi
t}t−∞, which will be specified explicitly

in the following analysis.

In addition, I assume that agents cannot share or exchange information across

islands. If agents were able to share information, then even they cannot tell the two

component shocks apart initially, averaging the sequence of signals {ait}i∈[0,1] for

each time period across islands would still reveal the true value of economy-wide

productivity shock to all agents in the economy at all times, because of the zero
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adding up constraint on the islands idiosyncratic shocks.

To facilitate the analysis for the incomplete information model, in which the

past history of signals will be informative to agents4, I follow Walker (2007) and

express the information set of the agents on island i in period t as

F it ≡ Vt(ai) ∨ Vt(Ψi) ∨M, ∀i ∈ [0, 1],

where the operator Vt(x) denotes the Hilbert space generated by the random se-

quence {xt−j}∞j=0 and ∨ denotes the span (i.e. the smallest closed subspace which

contains the subspaces) of the Vt(x) and Vt(y) spaces. If the information sets are

disjoint, then the linear span becomes a direct sum. If Vt(x) = Vt(y), it means

the space spanned by {xt−j}∞j=0 is equivalent to the space spanned by {yt−j}∞j=0, in

the sense of mean square. M captures the notion of rational expectations and the

assumption that agents know exogenous processes and the endogenously generated

processes in the equilibrium. In Section 3.4, I will derive equilibrium under different

assumptions about {Ψi
t}t−∞. For example, if Ψi

t = vt,∀t,∀i, the model becomes the

full information case.

3.3 Equilibrium

In this section I define a competitive equilibrium of the economy, and derive the

optimal decisions chosen by households and entrepreneurs.

Definition 3.1

A competitive equilibrium is defined as a sequence of allocations and productions:

{{Cit , C̃it , Lit+1, L̃
i
t+1,K

i
t+1, B

i
t+1, B̃

i
t+1, Y

i
t }i∈[0,1]}∞t=0, a sequence of prices:

{{Qit}i∈[0,1], {Rit+1}i∈[0,1]}∞t=0, and a sequence of information sets:

{{F it}i∈[0,1], {F̃ it}i∈[0,1]}∞t=0, such that:

(1) for each island i ∈ [0, 1], given prices, information sets, and the initial endow-

ments: Li0 ≥ 0, Bi
0 ≥ 0, L̃i0 ≥ 0, B̃i

0 ≥ 0,Ki
0 ≥ 0, the allocations:

{Cit , C̃it , Lit+1, L̃
i
t+1,K

i
t+1, B

i
t+1, B̃

i
t+1}∞t=0 solve the optimisations problems of house-

holds and entrepreneurs for all t and satisfy the transversality conditions:

limt→∞ β
tΛitL

i
t+1 = 0, limt→∞ β

tΛitK
i
t+1 = 0, limt→∞ β̃

tΛ̃itL̃
i
t+1 = 0; agents form

expectations according to Eit(·) = Π(·|F it ) and Ẽit(·) = Π(·|F̃ it ); and

(2) all markets clear.

4If agents can separate the two components from their island-specific shocks, or all agents have
“full information”, the past history of signals will be redundant, and only the current realisations
of shocks will be relevant.
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3.3.1 Households Optimality

The optimal choices of land and lending for the representative households on island

i can be characterised in the following equations (see Appendix B.1)

Qit = β̃ẼitQit+1 +
b

L̃it+1

, (3.6)

β̃(1 +Rit+1) = 1. (3.7)

Equation (3.6) states that the marginal (utility) cost of buying land Qit must

be compensated by the expected marginal benefit β̃ẼitQit+1 + b
L̃it+1

, which is the

instantaneous utility gained from enjoying a unit of land as well as the expected

resale value of each unit of land in the next period. Therefore, land not only directly

provides utility to the households but also serves the role of asset, transferring utility

(measured by the numeraire consumption good) between times.

Equation (3.7) shows that households equate the marginal (utility) cost of

lending to the expected marginal discounted benefit β̃(1 +Rit+1). The linear prefer-

ence in consumption good implies that, for the household to be indifferent between

consuming consumption good and lending, the gross interest rate must be always

equal to the inverse of his time-invariant time discount factor.5

1 +Rit+1 = β̃−1, ∀t.

Note that at the beginning of time t, households’ income for consumption

comes from the predetermined interest of lending at t−1, principle, and the potential

current income from selling land at t.

3.3.2 Entrepreneurs Optimality

The optimal choices of land holdings and borrowing for the representative en-

trepreneur on island i can be characterised in the following equations (see Appendix

B.1)

1

(Cit)
σ

= βEit

α Y it+1

Ki
t+1

+ 1− δ

(Cit+1)σ

 , (3.8)

Qit
(Cit)

σ
= Φi

tE
i
tQ

i
t+1 + βEit

γ Y
i
t+1

Lit+1
+Qit+1

(Cit+1)σ

 , (3.9)

5If I were to assume a linear utility for land as well, then the land price equation will be
given by Qit = β̃ẼitQit+1 + b, from which I can solve for the price as Qit = b

1−β̃ , ∀t, by ruling out the

explosive solution. However, this setup does not allow me to capture the idea that land prices reveal
information and lead people to make inferential mistakes and thereby cause economic fluctuations.
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1

(Cit)
σ

= βEit
[

1 +Rit+1

(Cit+1)σ

]
+ Φi

t(1 +Rit+1), ∀t, (3.10)

where Φi
t is the Lagrangian multiplier of the borrowing constraint.

Equation (3.8) equates the marginal cost of buying a capital good (Cit)
−σ

to the expected marginal benefit βEit
[(
α
Y it+1

Ki
t+1

+ 1− δ
)

(Cit+1)−σ
]

from the capital

investment. Equation (3.9) states that entrepreneurs equate the marginal cost of

buying land
Qit

(Cit)
σ to the expected marginal benefit βEit

[(
γ
Y it+1

Lit+1
+Qit+1

)
(Cit+1)−σ

]
from land investment plus the term Φi

tQ
i
t. Equation (3.10) states that entrepreneurs

equate the marginal benefit of borrowing 1
(Cit)

σ to the expected marginal cost

βEit
[
(1 +Rit+1)(Cit+1)−σ

]
plus the term Φi

t(1 +Rit+1).

The appearance of the terms Φi
tQ

i
t and Φi

t(1+Rit+1) reflects the effect of bor-

rowing constraint. When households are more patient than entrepreneurs, I show

in Appendix B.2 that in the steady state Φi = (β̃ − β)Λi > 0,∀i. It immediately

follows that around the steady state the marginal cost of borrowing is lower than the

marginal benefit due to the positive term Φi
t(1 +Rit+1), suggesting that the borrow-

ing constraint binds around the steady state. In the absence of credit constraint,

equation (3.8) and (3.9) imply that marginal products of capital would be equal

to the real interest rate. However, with credit friction and difference in discount

factors, the real interest rate is lower than the marginal product of capital around

the steady state.

3.3.3 Markets Clearing

For each island i ∈ [0, 1], there are three markets to clear in each period t:

land market: L̄i = L̃it + Lit, (3.11)

credit market: B̃i
t = Bi

t, (3.12)

goods market: Y i
t = C̃it + Cit +Ki

t+1 − (1− δ)Ki
t , (3.13)

where L̄i is constant ∀i.

3.4 Equilibrium Characterisation

3.4.1 Solution Methods

To characterise the model equilibrium, I need to solve the highly nonlinear system

comprised of equations (3.1)-(3.12).6 To simplify the analysis, I follow the liter-

ature and characterise a log-linear approximation of the system. In a setup with

6By the Walras’ Law, one of the market clearing condition is redundant for solving the model.
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incomplete information, the advantage of log-linearisation could be even more; as

emphasised in Lorenzoni (2009), log-linearisation simplifies the inference problem

of individual agents, the state space for individual decision rules, and aggregation.

However, complex nonlinear equilibrium functions with considerable curvature may

have sizable economic implications. This is particularly true when agents in the

model do not have complete information and have to solve signal extraction prob-

lems. Log-linearisation throws away nonlinear effects and the simplified model may

generate very different implications from those of the original model. For these rea-

sons, the implications in the following analysis may only be reliable for relatively

small or one-off shocks; further work will be needed to examine how robust the

findings are when allowing for larger repeated disturbances that result in a wide

distribution of values for agent net-worth and expectations in each island in each

period rather than a point value.

The log-linearisation procedure in this chapter is standard as in the literature;

that is, I log-linearise the nonlinear stochastic model around the deterministic steady

state under full information. A detailed description of the steady state is available

in Appendix B.2. Following the convention, I use the lower case letters to denote the

log deviations. That is, I define xt ≡ lnXt− lnX, where X is the steady state value

of Xt. The log-linearisation of the optimality conditions, the budget constraints,

and market clearing conditions, which are presented in Appendix B.3, gives me a

linear system that approximately characterises the model equilibrium around the

steady state.

Having the log-linearised model, the next step is to solve the linearised sys-

tem. Different from the standard procedure, which generally employs a programme

package such as Dynare (based on the perturbation methods) to solve for a dynamic

stochastic general equilibrium model under rational expectations, I solve the model

by hand. More specifically, I first rearrange the log-linearised system into a high-

order stochastic equation in land price for each island i, and a sequence of other

equations in a recursive order. These equations are shown in Appendix B.4. The

key equation to solve is as below

δ1q
i
t−1 + δ2q

i
t + δ3Eit−1q

i
t + (δ4− δ5)Eitqit+1 = δ6Eit−1a

i
t+ δ7a

i
t+ δ8Eitait+1 + δ9

∞∑
j=0

β̃jEitait+2+j ,

(3.14)

where δj ≡ δj(β̃, β, δ, α, γ, σ), j = 1, · · · , 9. Once I obtain the explicit expression for

qit, the rest of variables can be obtained recursively using equations in Appendix

B.4.

Despite that this rearranging procedure is tedious and it does not have any

advantage in solving the full information model, it does show great benefits in solving

models where there is incomplete information among islands and agents are learning

from some endogenously generated variables. This is because in such models the
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learning of rational agents involves an infinite regress problem, and the standard

procedure has difficulty in solving it. In contrast, the way I rearrange the model

equilibrium system gives me a chance to employ a different solution method, from

which I can derive exact analytic solutions to the model. More importantly, this

method can make the comparison between different models clearer.

Having equation (3.14), I then follow Townsend (1983) and first solve it in a

general form. Let

Θi
t ≡ E(θt|F it ).

In Appendix B.4, I derive a general form solution to equation (3.14) by imposing

the rational expectations equilibrium restriction. This is given by

qit = π1q
i
t−1 + π2Θi

t + π3Θi
t−1 + π4a

i
t, (3.15)

where πn = π({δj}91, ρ), n = 1, 2, 3, 4 are obtained in Appendix B.4.

Note that equation (3.15) is not yet the final solution to equation (3.14). The

final solution requires an explicit expression for Θi
t, which clearly depends on the

information sets of agents on island i. As will be seen, equation (3.15) makes the

comparison between the solutions under different information extremely straightfor-

ward.

3.4.2 Full Information Benchmark

As a benchmark, it is useful to look at the solution to the model where agents

observe all contemporaneous shocks hitting the economy. In this case, there is no

possibility for agents to confound different shocks, and therefore all noisy signals

will be redundant. This will enable us to see how the picture will be changed if

agents have only incomplete information about the productivity shocks.

Definition 3.2

A full information equilibrium is the definition 3.1, with the agents’ information set

at each time period t specified as F it = FFt = Vt({v, εi}i∈[0,1]) ∨Mt,∀i.

Since all agents observe the underlying shocks directly in each period, there

is no room for fluctuations caused by non-fundamental noises, and we have

Θi
t ≡ Eitθt = θt.

The land price function is then given by

qit = π1q
i
t−1 + (π2 + π4)θt + π3θt−1 + π4ε

i
t.
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That is, land prices follow an ARMA(2,1) process

(1− π1L)(1− ρL)qit = (π2 + π4 + π3L)vt + π4(1− ρL)εit. (3.16)

where L is the lag operator.

3.4.3 Incomplete Information

No Public Signals

In this subsection, I assume agents only observe their island-specific productivity

shock in each period without being able to distinguish between the two components.

Also, they do not observe any public signals. That is, I assume {Ψi
t}t−∞ = ∅.

Definition 3.3

An incomplete information equilibrium of Type-I is the definition 3.1, with the a-

gents’ information set at each time period t on island i specified as FI,it = Vt(ai)∨Mt.

Without any additional public signal that can be observed by agents on all

islands, the model becomes very simple; each island is an isolated Kiyotaki-Moore

economy. In each period, agents on each island only need to solve a simple signal

extraction problem based on their island-specific productivity shock ait. Applying

the standard Kalman filter formula, I have

Θi
t = (1− κ)ρΘi

t−1 + κait,

where κ is the stationary Kalman gain given by

κ ≡
1
σ2
ε

1
σ2
r

+ 1
σ2
ε

∈ (0, 1),

in which σ2
r is the solution to σ2

r = ρ2
1

σ2r
+ 1

σ2ε

+ σ2
v . Substituting Θi

t into the general

solution equation, we can see that land prices follow an ARMA(3,2) process

(1− π1L)(1− ρL)(1− (1− κ)ρL)qit

= [π4+π2κ+(π3κ−π4(1−κ)ρ)L]vt+[π4+π2κ+(π3κ−π4(1−κ)ρ)L](1−ρL)εit. (3.17)

Note that the on-impact effect of one unit shock vt on land price in the full

information model is π2 +π4, while the on-impact effect of one unit shock εt on land

price in the full information model is π4. When agents cannot disentangle the two

51



shocks apart, the on-impact effects of the two shocks on land price become equalised

and are given by π2κ+ π4. As κ ∈ (0, 1), it follows immediately that the on-impact

effect of vt is smaller than that in the full information model, while the on-impact

effect of εt is bigger than that in the full information model.

Exogenous Public Signals

Until now I have discussed the model with only real shocks. Now I am introduc-

ing non-fundamental noises into the model. The simplest way of doing this is to

introduce an exogenous noisy public signal

s∗t = θt + η∗t ,

where η∗t ∼ N(0, σ2
η∗). The noise shocks are independently identically distributed

across times and independent of all other shocks.

Definition 3.4

An incomplete information equilibrium of Type-II is the definition 3.1, with the a-

gents’ information set at each time period t on island i specified as FII,it = Vt(ai)∨
Vt(s∗) ∨Mt.

As agents’ behaviours will not have any effect on the exogenous signals,

agents on each island are only solving a signal extraction problem a bit complicated

than the previous case. As before, applying the standard Kalman filter formula, I

have

Θi
t = (1−K1 −K2)ρΘi

t−1 +K1a
i
t +K2s

∗
t ,

where

K1 ≡
1
σ2
ε

1
σ2
r∗

+ 1
σ2
η∗

+ 1
σ2
ε

∈ (0, 1),

K2 ≡
1
σ2
η∗

1
σ2
r∗

+ 1
σ2
η∗

+ 1
σ2
ε

∈ (0, 1),

in which σ2
r∗ is the solution to the following nonlinear function

σ2
r∗ =

ρ2

1
σ2
r∗

+ 1
σ2
η∗

+ 1
σ2
ε

+ σ2
v .

Substituting Θi
t into the general solution equation, land prices follow an ARMA(3,2)
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process

(1− π1L)(1− ρL)(1−K1 −K2)ρL)qit

= {π4 + π2(K1 +K2) + [π3(K1 +K2)− π4(1−K1 −K2)ρ]L}vt

+{π4+π2K1+[π3K1−π4(1−K1−K2)ρ]L}(1−ρL)εit+(π2+π3L)K2(1−ρL)η∗t . (3.18)

With one more public signal about vt, the on-impact effect of one unit shock

vt on land price becomes π2(K1+K2)+π4, which is strictly larger than the on-impact

effect of shock εt which is π2K1 + π4. This is intuitive: more information about vt

makes agents to have more accurate estimation about the shock, and thus react more

heavily to it. The noise contained in the public signal also have significant effect on

the economy; the land price dynamics due to the noise shock is characterised by an

ARMA(2,1) process

(1− π1L)[1− (1−K1 −K2)ρL]qit = (π2 + π3L)K2η
∗
t , (3.19)

From (3.19), we can see that the on-impact effect of η∗t on land price is π2K2.

Note that, given σ2
r∗ and σ2

ε , K2 is decreasing in the variance of noise σ2
η∗ . However,

σ2
r∗ will be increasing if σ2

η∗ increases, which tends to make K2 bigger. Hence, the

change of σ2
η∗ on the effect of noise shock is non-monotonic; the effect will be small

when σ2
η∗ is not very small or very large. That is, when the public signal is very

precise or very imprecise, noise shocks tend to generate small volatility on land price

as well as other variables. As pointed out by Lorenzoni (2009), this non-monotonic

relation between the variance of the noise shocks and the macroeconomic variables

volatility they generate is a peculiar feature of a learning model of business cycles.

If information is revealed one period later, I show in Appendix B.5 that land

price follows an ARMA(2,2) process

(1− π1L)(1− ρL)qit = {(π2 + π3L)[ρL+ (1− ρL)(W ∗1 +W ∗2 )] + π4}vt

+[(π2 + π3L)W ∗1 + π4](1− ρL)εit + [(π2 + π3L)W ∗2 (1− ρL)]η∗t ,

where

W ∗1 ≡
σ2
v(σ

2
v + σ2

η∗)− σ4
v

(σ2
v + σ2

ε )(σ
2
v + σ2

η∗)− σ4
v

,

W ∗2 ≡ σ2
v(σ

2
v + σ2

ε )− σ4
v

(σ2
v + σ2

ε )(σ
2
v + σ2

η∗)− σ4
v

.
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The dynamics of land prices due to noise shocks are described by

(1− π1L)qit = (π2 + π3L)W ∗2 η
∗
t .

Endogenous Public Signals

So far as I have discussed, all the signals are exogenous. In this subsection, I assume

agents on all islands observe a noisy indicator of the economy-averaged land prices

at each time, instead of an exogenous public signal. More specifically, the price

indicator is assumed as

st =

∫
qitdi+ ηt,

where ηt ∼ N(0, σ2
η). Because land price on each island is an endogenously gen-

erated variable, which depends on the expectations of economic fundamentals on

that island, st turns out to be an endogenous public signal with some noise ηt.

This seemingly innocuous change in the information sets of agents has a profound

effect on the nature of the rational expectations equilibrium. This is because the

endogenous variable as stochastic processes is itself influenced by the solution of the

signal extraction problems that agents on other islands are simultaneously solving.

As emphasised in the literature, when agents in the economy have heterogeneous

information, the law of iterated expectations for the average beliefs operator typi-

cally does not hold (Allen, Morris, and Shin, 2006), and agents on each island must

“forecast the forecasts of others.”

The infinite regress induced from the signal extraction from endogenous pub-

lic signals poses some technical challenges in solving the model, as it implies an

infinite number of state variables so that the standard Kalman filtering formulas

no longer fit. In the recent literature, a method of indeterminate coefficients with

a truncated state space is often used.7 However, this method relies on numerical

simulation and how does the solution look like is not clear. In the following, I

follow the earlier literature in solving such models. More specifically, I assume all

information is revealed with one period lag so that an analytical solution can be

derived. Although this simplification might have made the problem less interesting,

it delivers clearer results that can be compared with the benchmark results.

Definition 3.5

An incomplete information equilibrium of Type-III is the definition 3.1, with the

agents’ information set at each time period t on island i specified as FIII,it =

Vt(ai) ∨ Vt(s, v−1, ε−1, η−1) ∨Mt.

7See for instance Nimark (2011) and Loronzoni (2009). Kasa (2000), however, shows that
transforming the problem from the time domain into the frequency domain will circumvent the
difficulty and delivers analytic solutions.
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To solve for the land price function and characterise the equilibrium, suppose

the expectation of agents on island i about the common persistent shock θt is a linear

combination of all current and past values of observable signals (ait, q
i
t, s). Since each

of these is a function of the history of the shocks, Θi
t ≡ Eit(θt) can be represented as

Θi
t = Pv(L)vt + Pε(L)εit + Pη(L)ηt,

where Pv(L), Pε(L) and Pη(L) are in general infinite-order, square-summable poly-

nomials in the lag operator L; that is,

Pi(L) =

∞∑
j=0

PijLj , i = v, ε, η.

Let A(L) = 1
1−ρL , B(L) ≡ 1

1−π1L and C(L) ≡ π2 + π3L. In Appendix B.5, I show

given this conjecture and imposing rational expectations condition, θt can be derived

as

Θi
t = Pv(0)vt +

∞∑
j=1

ρjvt−j + Pε(0)εit + Pη(0)ηt. (3.20)

where Pj(0), j = v, ε, η are defined in Appendix B.5. Having equation (3.20), the

land price then becomes

(1− π1L)(1− ρL)qit = {(π2 + π3L)[ρL+ (1− ρL)Pv(0)] + π4}vt

+[(π2 + π3L)Pε(0) + π4](1− ρL)εit + [(π2 + π3L)Pη(0)(1− ρL)]ηt. (3.21)

which is an ARMA(2,2) process with persistent shock v, transitory shock ε, and

noise shock η. (i) The on-impact effect of shock vt is π2Pv(0) + π4; (ii) the on-

impact effect of shock εt is π2Pε(0) + π4. The effect from the noise shock can be

characterised by

(1− π1L)qit = (π2 + π3L)Pη(0)ηt, (3.22)

which is an ARMA(1,1) process with the on-impact effect (from one unit shock)

π2Pη(0). Comparing (3.22) with (3.19)

(1− π1L)qit = (π2 + π3L)W ∗2 η
∗
t ,

we can see that the dynamics are defined by the same parameters while they differ

in the on-impact effects.
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3.4.4 Optimism and Pessimism

Having characterised the model equilibrium, I am now able to derive the agents’

forecast errors about the common persistent productivity shock for the continuum

of islands. Following the literature, the concept of optimism and pessimism is de-

fined on the agents’ one-period ahead forecasting error about the persistent shocks.

Definition 3.6

Let ξit ≡ θt−Eit−1θt be the time t−1 forecast error of the agents on island i about the

persistent shock in period t, and ξt ≡
∫
ξitdi = θt − Ēt−1θt be the economy average

forecast error, where Ēt−1θt =
∫
E(θt|F it−1)di. The economy is optimistic about θ if

ξt < 0; they are pessimistic about the shock if ξt > 0.

Similar to the previous discussion, to highlight the learning effect, I still use

the results from the full information model as the benchmark. It is easy to show

that if agents have full information about the economy, on each island i the agents’

forecast errors are the same and serially uncorrelated. Thus, the forecast errors of

the economy are i.i.d., that is,

ξt = vt,∀t.

However, if information is incomplete and signals are not fully revealing, then

the economy average forecast errors are serially correlated. Appendix B.6 shows, for

the no public signal case, the forecast errors follow an ARMA(2,1) process; for the

exogenous public signal case, they follow an ARMA(2,2) process. For the endoge-

nous public signal model and the exogenous public signal model where information

is fully revealed with one period lag, the forecast errors are both governed by the

MA(1) process.

3.4.5 Loan-to-Value Ratio

Define the loan-to-value ratio on island i at each time t as

τ it ≡
Bi
t+1

QitL
i
t+1

.

Log-linearise τ around the steady-state, I have

τ̂ it = Eitqit+1 − qit.

which is simply the difference between the expected future land price and current

land price. In equilibrium, entrepreneurs’ borrowing constraint hold with equality

and they will use all their net worth to finance the difference between the price
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of land and the amount they can borrow against each unit of land, i.e. the down

payment. Hence, the lower the down payment lenders require, the more the land

entrepreneurs will buy. In terms of the loan-to-value ratio, the high the ratio τ̂ it , the

more land entrepreneurs on island i can buy. This will be true when the households

on island i have higher expected future land price given the current price.

The previous analysis then implies that the high (low) expectation might be

driven by noises. Lenders have optimistic expectations about future land price not

only because current and future productivity shocks are expected to be high, but

also because they are confused about the true state of the world and mistakenly

take the noise in the public signals as a fundamental shock. Hence, noises generate

sizable and persistent effect on the macroeconomy in a way that is different from the

true productivity shocks described in Kiyotaki and Moore (1997); in their model,

productivity shock generates effects by initializing a change in constrained firms’

net worth, while noises in this model effect through lenders’ (as well as borrowers’)

expectation induced by some public signal.

3.5 Conclusion

In this chapter, I introduce dispersed information and collateral constraints into a

Real Business Cycle model. I show that noises may have real impacts on the macroe-

conomy, which is induced by learning and amplified by the collateral effect. More

specifically, I incorporate Kiyotaki and Moore (1997) mechanism into an “islands

economy” where agents on a continuum of islands have dispersed information about

the aggregate productivity shock. As agents on each island cannot tell the aggre-

gate shock apart from the island-specific idiosyncratic productivity shock, they use

both privately observed signals and noisy public signals to make optimal inferences.

When information is not fully revealed, I show noises in the public signals can be

important sources of macroeconomic fluctuations.
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Chapter 4

News Shocks, Housing Prices,

and Consumption

4.1 Introduction

Aggregate time series data from many countries clearly show there is a strong co-

movement between housing price change and consumption change. These facts have

attracted a lot of attention among economists and policy makers, and lead them to

ask the questions: What is the relationship between housing price and consumption?

How do housing prices affect consumer spending?

Under the life-cycle hypothesis, a natural explanation is attributed to the

“wealth effect”, and there are a bunch of papers finding significant sizes of marginal

propensity to consume out of housing wealth. The most influential ones might be

Case et.al. (2005) who use the aggregate data and Campbell and Cocco (2007) who

use the household level data.

Nonetheless, the wealth effect explanation has been challenged for both its

theoretical underpinning (Buiter, 2008) and the empirical estimations. One of the

arguments is that at the aggregate level housing wealth effect may not be significant,

even though it may be large from the household perspective. This is because there

are both winners and losers in the housing market. While homeowners may increase

their consumption in response to the housing price appreciation, those who want to

get on or up the property ladder may be forced to reduce consumption. Therefore,

the overall effect will depend on the distribution of winners and losers in the housing

market, and their responses to house price changes.

Other economists, such as Iacoviello (2005), therefore argue for the collateral

effect to explain the strong co-movement between the two series. The idea is that

housing is often used as the collateral to borrow funds, and when the price becomes

higher, credit constrained homeowners can borrow more to finance consumption
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spending.

The co-movement between housing price and consumption may also be driven

by the common factors, especially those unobservable factors such as the news about

future productivity (King, 1990). Attanasio et.al. (2009) study the same household

level data as that in Campbell and Cocco (2007), but conclude that it is the common

factors instead of wealth effect that explain the co-movement.

This chapter tends to support the common factors view as argued by e.g.

Attanasio and Weber (1994) and Attanasio et.al. (2009). In contrast to the previous

papers which indirectly show the point using household level data, this chapter

explicitly identifies the most suspected common factor. More specifically, I use

the aggregate time series data from the United Kingdom and the Structural Vector

Autoregression (SVAR) methodology to identify productivity shock and news about

future productivity shock.

While it is not possible to disentangle the different effect channels discussed

above using the macroeconomic data and SVAR methodology, I am able to quantify

the importance of common factors in explaining the co-movement between housing

price and consumption. My empirical estimation of the U.K. data delivers two find-

ings: (1) most of the positive co-movement between housing price and consumption

comes from current productivity shock and news shock about future productivity;

(2) the shock that moves the vast majority of housing price barely moves consump-

tion. These two findings thus cast doubt on the importance of wealth effect in

explaining the striking co-movement of housing price and consumption.

4.2 An Illustrative Model

Before I show the empirical part, I first show an illustrative model in this section. I

should emphasise that, while the model reflects my understanding about the ques-

tion and motivates my empirical strategy, the empirical analysis that follows is not

an estimation of the model.

Consider an economy populated by a large number (Lt) of identical individual

consumers in which the only assets are a set of identical infinitely-lived trees and a

set of identical infinitely-lived houses. Consumers have infinite horizons. Aggregate

output equals the fruit of the trees and service flows of housing, neither of which can

be stored. Assume that in a given year, each tree produces exactly the same amount

of fruit as every other tree, but the total harvest output of fruit per tree dt varies

from year to year depending on the weather. Each house produces exactly the same

amount of housing services as every other house and the total services per house is

constant and normalised to be one. Each consumer owns the same number of trees

and houses. The aggregate stock of trees is Kt and aggregate stock of housing is
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Ht. Each consumer, for given k−1, h−1, solves the problem

max
{ct,st,kt,ht}∞t=0

E0

∞∑
t=0

βt[u(ct) + θtw(st)],

s.t.

ct + rtst + ptkt + qtht = (pt + dt)kt−1 + (qt + rt)ht−1,∀t,

where ct is the consumption of fruit per person in t and u(ct) is the utility by

consuming fruit ct, st is the consumption of housing service per person in t and

w(st) is the utility derived from st, rt is the price of housing service in t, pt is the

price of a tree in t, qt is the the price of a house in t, kt is the quantity of trees held

per person in t, ht is the quantity of houses held per person in t, β is consumer’s

discount factor, and θt is consumer’s preference parameter for housing services. The

first-order conditions to the consumer’s problem are given by

θt
rt

=
u′(ct)

w′(st)
,

pt = βEt
[
u′(ct+1)

u′(ct)
(dt+1 + pt+1)

]
,

qt = βEt
[
u′(ct+1)

u′(ct)
(rt+1 + qt+1)

]
.

Forward-looking iterations give the celebrated pricing formulas for both the tree and

the house

pt = Et
∞∑
j=1

βj
u′(ct)

u′(ct+j)
dt+j ,

qt = Et
∞∑
j=1

βj
u′(ct)

u′(ct+j)
rt+j .

There are four markets to be cleared: (1) fruit market: ctLt = dtKt; (2)

housing rental market: stLt = Ht; (3) trees market: ktLt = Kt; and (4) housing

market htLt = Ht. If I normalise so that Lt = 1 and Kt = 1, these markets clearing

conditions become ct = dt, st = Ht, kt = 1, ht = Ht. If I further assume u(ct) = ln ct

and w(st) = ln st, then the house pricing formula can be written as

qt = Et
∞∑
j=1

βj
θt+j
Ht+j

dt.

Hence, in this simple endowment economy, non-housing consumption (fruit)

change is completely exogenous, while housing price is determined by the preference

shock, housing supply, and fruit production. I take this extreme stand in order to
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show that in a general equilibrium model with homogeneous consumers, the housing

wealth effect concept could be misleading. The co-movement may reflect a reversed

causality from consumption to housing price.

To introduce the information structure and see how the news about future

productivity change affects these variables, I assume the productivity process for

each fruit tree as follows

ln dt = ρ ln dt−1 + v1,t−1 + v2,t,

where v1,t−1 is the news shock observed in period t − 1 about the productivity

change that will realise in period t, and v2,t is the productivity shock in period t.

Other things equal, productivity shock and news shock will drive housing price and

consumption to move in the same direction.

In the following section, I identify the news shock and productivity shock

based on the estimation of a three-variable vector autoregression (VAR) model.

4.3 Empirical Strategy

4.3.1 Structural Vector Autoregression Model

Consider a k-dimensional time series Yt, where t = 1, . . . , T . Assume Yt can be

approximated by a structural vector autoregression model of finite order p as below

B(L)Yt = ut, (4.1)

where B(L) ≡ B0 −B1L−B2L
2 − · · · −BpLp is the autoregressive lag order poly-

nomial1, and the variance-covariance matrix of structural error term is normalised

such that

E(utu
′
t) ≡ Σu = Ik.

The normalisation implies that, a unit innovation in the structural shocks is of size

one standard deviation by construction.

A reduced form of the model can be derived by pre-multiplying both sides

of equation (4.1) by B−1
0 . That is,

A(L)Yt = εt, (4.2)

where A(L) ≡ I − A1L − A2L
2 − · · · − ApLp, As ≡ B−1

0 Bs, s = 1, . . . , p, and εt ≡
B−1

0 ut. The standard estimation methods allow us to obtain consistent estimates

of the reduced-form parameters As, the errors εt, and their covariance matrix Σε.

1All deterministic regressors have been suppressed for notational convenience.
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By recovering the elements of B−1
0 from the estimates of reduced form parameters,

the coefficient matrices of the structural equation can be constructed by using the

relation Bs ≡ B0As, and the desired structural shocks may be obtained.

Note that there could be numerous possible sets of structural shocks. To see

this, let B̂−1
0 be the Cholesky decomposition of Σε. Then, any B̃−1

0 ≡ B̂−1
0 Q and

ũt ≡ Q′ût can be candidate orthogonalisation and candidate structural shocks. It

is then essential to impose reasonable restrictions to identify the desired structural

shocks.

4.3.2 Identification Strategy

I aim to identify two types of shocks: the productivity shock and news shock about

future productivity. The identification strategy is similar to that in Barsky and

Sims (2011) and Uhlig (2003). Specifically, I first identify two orthogonal shocks

that best explain the sum of forecast error variance of productivity at all horizons.

I then distinguish the two shocks by restricting no contemporaneous effect of news

shock on productivity. In the first step, I followed Barsky and Sims (2011) and

truncated the horizon to 40 periods.2

To find out shocks that account for the variation of a particular variable as

much as possible turns out to be the same as finding eigenvectors corresponding to

the largest eigenvalues of some matrix. To see this, write Yt in the vector moving

average (VMA) representations

Yt =
∞∑
s=0

θ̂sût−s =
∞∑
s=0

θ̃sũt−s,

where û’s are the structural shocks obtained from the Cholesky decomposition, and

ũ’s are the structural shocks obtained from any arbitrary orthogonalisation. Given

all the data up to and including t, the h-step forecast error of Yt+h is
∑h−1

s=0 θ̂sût+h−s

which is equal to
∑h−1

s=0 θ̂s(Qũt+h−s). The forecast error variance-covariance matrix

is thus given by
∑h−1

s=0 [θ̂sQ][θ̂sQ]′, with the off-diagonal elements being replaced by

zeros. This matrix can be further decomposed as

k∑
j=1

h−1∑
s=0

[θ̂sqj ][θ̂sqj ]
′,

where qj is the jth column of Q, k is the dimension of the system, and h = 1 · · · .
Identifying the shock j that best explains the forecast error variance of variable i

2This looks quite arbitrary but a sensitivity check shows that the choice turns out to have little
impact on the results once it is large enough.
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from period H + 1 to H is equivalent to doing the maximisation problem below

maxσ2(H,H; qj) =

H∑
h−1=H

h−1∑
s=0

[θ̂sqj ][θ̂sqj ]
′
ii = q′jSiqj ,

subject to

q′jqj = 1,

where [θ̂sqj ][θ̂sqj ]
′
ii denotes the (i, i)th element in [θ̂sqj ][θ̂sqj ]

′, and

Si =
H∑

h−1=H

h−1∑
s=0

(θ̂is)
′θ̂is =

H∑
s=0

(θ̂is)
′θ̂is +

H+1∑
s=0

(θ̂is)
′θ̂is + ...+

H∑
s=0

(θ̂is)
′θ̂is,

where θ̂is denotes the ith row of θ̂s. Solving the Lagrangian problem

maxL(qj , λ) = q′jSiqj − λ(q′jqj − 1),

I have the first-order necessary condition

2Siq
∗
j = 2λq∗j ,

from which we can see that the solution to qj lies in the set of eigenvectors of Si.

Combining with the constraint q′jqj = 1, I have the maximum value

σ2
max(H,H; qj) = (q∗j )

′Siq
∗
j = (q∗j )

′λq∗j = λ(q∗j )
′q∗j = λ.

This implies that q∗j is just the eigenvector with the maximal eigenvalue λ.3

The above analysis can be easily generalised if one wants to identify multiple

shocks that best explain the forecast error variance of variable i. In this case,

the maximum value of σ2 will be the sum of largest eigenvalues in λ. Then one

can get the corresponding eigenvectors. However, the eigenvectors are not unique

for maximizing σ2.4 In other words, one can find many (numerous) sets of two

orthogonal shocks that give the same maximised total forecast error variance of

variable i at the horizon H. Therefore, one needs to impose other restrictions to

distinguish those shocks.

3Since the maximum σ2 is just λ and to get the maximum value is equivalent to choose the
largest value from {λ}, and thus the corresponding eigenvector is the solution. Si is something
I can compute from the reduced VAR and the eigenvalues and eigenvectors to it can be easily
obtained using Matlab.

4See Uglig(2003) for detail.
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4.3.3 Data and VAR Estimation

The primitive data are from the U.K. Office for National Statistics, including nomi-

nal housing price, labour productivity, non-durable goods and service, durable good-

s, GDP deflator, and population. They are quarterly data covering the period of

1971-2011. I use these data to obtain the four series of variables: housing price,

labour productivity, non-durable consumption good, and durable consumption good;

all are in real per capita terms. The data in the VAR model are first-order differ-

ences of the log values of those transformed data. I estimate the model for both

non-durable goods and durable goods respectively, but my analysis in the following

section focuses mainly on the results of non-durable goods case.

All the data series in the sample are stationary, tested by the Dicky-Fuller

method. For both cases (durable goods and non-durable goods) the order of VAR is

of one, which is based on a combination of information criteria and serial correlation

tests. With a stationary system, I can write the VAR model into a vector moving

average model with structural shocks∆hpt

∆dt

∆ct

 =
∞∑
s=0

θ
hp
news θhpun θhp3

θdnews θdun θd3
θcnews θcun θc3


s

v1

v2

v3


t−s

,

where hpt, dt and ct denote the log level of housing price, log level of labour pro-

ductivity and log level of consumption, respectively; ∆ is the first-order difference

operator; v1 denotes the shock that has a delayed effect on productivity but perfectly

predicted by the consumers, i.e. news shock, v2 denotes the shock that affects pro-

ductivity contemporaneously, v3 can be interpreted as a combination of preference

shock and housing supply shock. θs are impulse responses of variables to shocks.

4.4 Results

As the basis of the analysis, I show the forecast error variance decompositions,

impulse response functions, and conditional correlations. Forecast error variance

decompositions show the relative importance of each shock to each variable, Impulse

response functions tell the magnitude and persistence of each variable to each shock.

Conditional correlations show what the correlation between two variables would be

if only one of the shocks were at work.

4.4.1 Forecast Error Variance Decompositions

Table 4.1 and 4.2 show the forecast error variance decompositions. For non-durable

consumption goods, we can see that for the horizon of 40 periods, 99.91% of forecast
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error variance of the productivity growth rate is explained by the two shocks. This

is not surprising given that this is just how I identify the shocks. However, the ma-

jor contribution comes from unexpected productivity shock (0.55% versus 99.36%).

The two shocks also explain a very large proportion (81.97%) of the forecast error

variance of non-durable consumption growth rate. In contrast to the labour pro-

ductivity, however, a larger contribution comes from the news shock (65.72% versus

16.25%). This implies that the predicted productivity shock plays a dominant role

in changing non-durable consumption. As for the housing prices, the two shocks can

only explain less than half of the forecast error variation of housing price growth

rate. The vast majority of housing price variation comes from Shock 3, which only

accounts a small proportion of forecast error variance in consumption. Similar to

the case of consumption, news shocks explain a larger part than the current pro-

ductivity shock (42.49% vs 3.83%). For the durable goods consumption model, the

results are quite similar.

Table 4.1: Forecast Error Variance Decomposition: Non-durable Goods

H=40 housing price productivity non-durable

news shock 42.49 0.55 65.72
productivity shock 3.83 99.36 16.25

subsum 46.32 99.91 81.97
shock 3 53.68 0.09 18.03

Table 4.2: Forecast Error Variance Decomposition: Durable Goods

H=40 housing price productivity durable

news shock 17.99 1.48 79.5
productivity shock 3.78 98.4 14.55

subsum 21.76 99.84 94.04
shock 3 78.24 0.16 5.96

4.4.2 Impulse Response Functions

The three panels in Figure 4.1 show the impulse response functions for (the level of)

housing price, labour productivity, and non-durable goods consumption to each of

the shocks. It can be seen that all variables are permanently affected by productivity

shock and news shock. The magnitudes and dynamics, however, are quite different.

Productivity shock has larger effects on labour productivity but smaller effect

on consumption and housing price. Labour productivity responds to unexpected

productivity more than nine times than that to the news shock. In contrast, the
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response of housing price to news shock is about as four times large as that to the

productivity shock. Similarly, the response of consumption to news shock is about

as two times large as that to the productivity shock.

The third shock has a significantly large effect on housing prices but statis-

tically insignificant effect on productivity. On the other hand, the effect of shock 3

on consumption is negative in the short run and negligible effect in the long run.

4.4.3 Conditional Correlations

Table 4.3 shows the unconditional and conditional correlations. For non-durable

good, the unconditional correlation coefficient between housing price and consump-

tion is 0.38. A further decomposition shows that the correlation between housing

price and consumption is more strongly positive (both are over 0.8) when condi-

tional on news shock or productivity shock. This suggests that the importance of

productivity shock and news shock in driving housing prices and consumption to

co-move. In contrast, the correlation of the two becomes negative when conditional

on the third shock, which is consistent with the results from impulse response func-

tions. That is, the most important shock behind the movement of housing prices, in

fact, has a dampening effect on consumption, causing a negative correlation between

housing price and consumption.

Table 4.3: Conditional Correlations between Housing Price and Consumption

H=40; 1971Q2-2011Q4 non-durable durable

on news shock 0.82 0.64
on productivity shock 0.86 0.31

on shock 3 -0.40 0.08

unconditional 0.38 0.60

4.4.4 Summary

Based on these results, I have two important findings that cast doubts on the housing

wealth effect on household consumption. First, both housing price and consumption

respond strongly to the productivity shock and news shock. While the two shocks

together drive less than half of housing price variation, they drive more than 80%

of the consumption variation. The correlations between the two series conditional

on the productivity shock and news shock are both strongly positive, implying that

the co-movement of housing price and consumption comes from productivity shock

and news shock. Second, while more than half of the variations in housing price

comes from the third shock, that shock has small (18.03% in forecast error variance)
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and negative effect (negative impulse response function and negative conditional

correlation) on non-durable consumption.

4.5 Historical Decompositions

In this section, I implement counterfactual experiments to assess the contributions

of each shock to housing prices and consumption in the sample history. Specifically,

I feed in only shock each time to see how housing prices and consumption would

have been. Figure 4.2 presents the historical decompositions; the lines around the

x-axis are the differences between data and simulation.

The first panel shows that, if there were no news shocks how would house

prices and non-durable goods consumption have behaved. For instance, they both

would have been much lower between the year 1998 and 2009 without new shocks.

This implies that news shocks were playing a prominent role in the recent housing

market boom. In contrast, in the earlier years especially the fifteen years between

1974 and 1989 when housing prices fluctuated significantly, news shocks decreased

housing prices. Households in that period must have seen negative news about

future productivity and thereby decreased demand for houses. Interestingly, news

shocks didn’t seem to be important after the market crash in 1989. The historical

effects of news shocks on consumption display a similar pattern as on housing prices.

The second panel shows that, if there were no current productivity shocks

how would house prices and non-durable goods consumption have behaved. Produc-

tivity shocks had been playing a trivial role in housing price dynamics before 1991,

they significantly helped drive the recent housing market boom; without productiv-

ity shocks, housing prices would have been much lower. Again, the historical effects

of the productivity shock on consumption display a similar pattern as on housing

prices.

The importance of the third shock in sample history is shown on the third

panel. This shock contributed to the housing boom between 1971 and 1990. This

shock dragged housing price during 1991-2004. It played important roles in the first

three boom-busts in the sample history, but not in the recent one (2004-2009). It

was responsible for the housing market crash in the late 1980s. Despite its dramatic

impacts on housing prices, this third shock just looks like noises to the consumption:

without it, consumption in the whole sample history barely changed.

Consistent with forecast error variance decompositions, the historical decom-

positions also show that the third shock was important to housing prices but not

important to consumption.
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4.6 Conclusion

The housing wealth effect is believed by many to have driven the strong co-movement

between housing prices and consumption. However, the (real) housing price is sim-

ply the relative price of housing to the non-housing consumption good, thus an

appreciation of housing price is just a reflection of an increase in the production of

the non-housing consumption good relative to houses. Under this explanation, it is

the increase of non-housing consumption good production that drives the increase

in housing prices; the causality implied by the wealth effect is reversed. This idea

has been shown in a simple house asset pricing model in this chapter.

Because the direction of causality can be in either way, empirical research

using aggregate data and single equation Ordinary Least Squares estimation is vul-

nerable to the endogeneity problem; the estimate based on this type of research can

be seriously biased. Instrument variable estimation or simultaneous equation mod-

els can be used to overcome this problem. However, neither instrument variables

nor truly exogenous variables, which are required in those methods, are easy to find.

To circumvent these difficulties, I adopt the structural vector autoregression method

in this chapter and implement a novel strategy to identify the productivity shock

and the news shock about future productivity. The third shock that is not specifi-

cally labelled but implicitly identified has been found important to the variation of

housing prices. The news shock and productivity shock are found to be the main

drivers behind the co-movement between housing price and consumption. While not

being able to directly estimate the wealth effect or collateral effect, the results from

my empirical exercise cast doubt on the importance of housing wealth in affecting

household consumption.
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Figure 4.1: Impulse Response Functions

Note: dotted lines are the confidence intervals.
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Appendix A

A.1 Proofs

Definition A1: (First Order Stochastic Dominance)

Let Θ be a subset of R, representing possible values of the random parameter θ̃. A distribu-

tion G1 is said to dominate G2 in the sense of first-order stochastic dominance if for every

increasing function U(·), we have
∫
U(θ)dG1(θ) >

∫
U(θ)dG2(θ). (Milgrom, 1981, p.382)

Lemma A1:

G1 dominates G2 in the sense of first-order stochastic dominance if and only if G1(θ) ≤
G2(θ), ∀θ, with strict inequality for some value of θ.

Proof : see Milgrom (1981, p.382). �

Proof of Lemma 2.1:

(1) First note that the joint distribution of s̃ and ã is given by

fs̃,ã(s, a) = fs̃(s)fã(a) =
1

πσsσa
exp

(
− s2

2σ2
s

− a2

2σ2
a

)
,

where a ∈ R, s ∈ R−;σa > 0, σs > 0 and where I have used the fact that w̃ and ã are

independent from each other and their density functions

fã(a) =
1√

2πσa
exp

(
− a2

2σ2
a

)
, a ∈ R,

fs̃(s) =

√
2√
πσs

exp

(
− s2

2σ2
s

)
, s ∈ R−.

Since x̃ = w− 1
λ s̃ and ỹ = ã− s̃, I am able to obtain the joint distribution fx̃,ỹ|w̃(x, y|w) as

fx̃,ỹ|w̃(x, y|w) = |J | · fs̃,ã|w̃ {λ(w − x), λw − λx+ y}

=
λ

πσsσa
exp

[
−λ

2(w − x)2

2σ2
s

− (λw − λx+ y)2

2σ2
a

]
, x ≥ w, y ∈ R, w ∈ R,

where

J ≡

∣∣∣∣∣ ∂s∂x ∂s
∂y

∂a
∂x

∂a
∂y

∣∣∣∣∣ =

∣∣∣∣∣−λ 0

−λ 1

∣∣∣∣∣ = −λ.

Given the independence assumption about w̃i, ã and s̃, the joint density of w̃i, x̃, ỹ condi-

tional on w̃ = w can be obtained as

fw̃i,x̃,ỹ|w̃(wi, x, y|w) = fw̃i|w̃(wi|w)fx̃,ỹ|w̃(x, y|w) = λe−λ(wi−w) · fx̃,ỹ|w̃(x, y|w)

=
λ2

πσsσa
exp

[
−λ(wi − w)− λ2(w − x)2

2σ2
s

− (λw − λx+ y)2

2σ2
a

]
, x ≥ w, y ∈ R, wi ≥ w,w ∈ R.
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By the multiplication rule, the joint distribution of w̃i, x̃, ỹ, w̃ is given by

fw̃i,x̃,ỹ,w̃(wi, x, y, w) = fw̃i,x̃,ỹ|w̃(wi, x, y|w)fw̃(w)

= fw̃i,x̃,ỹ|w̃(wi, x, y|w) ·
[

1

σw
√

2π
exp

(
− w2

2σ2
w

)]
=

λ2

π
√

2πσsσaσw
exp

[
−λ(wi − w)− λ2(w − x)2

2σ2
s

− (λw − λx+ y)2

2σ2
a

− w2

2σ2
w

]
≡ N · exp[−(β2w

2 + β1(x, y)w + β0(x, y, wi))], x ≥ w, y ∈ R, wi ≥ w,w ∈ R,

where N ≡ λ2
√

2ππσsσaσw
, and

β2 ≡ 1

2

(
λ2

σ2
a

+
λ2

σ2
s

+
1

σ2
w

)
,

β1 ≡ −λ
(
λx− y
σ2
a

+ 1 +
λx

σ2
s

)
,

β0 ≡ 1

2

[
λ2x2

σ2
s

+
(λx− y)2

σ2
a

]
+ λwi.

From the Bayes’ theorem, I have the posterior density of w̃ conditional on w̃i = wi, x̃ = x

and ỹ = y as

fw̃|w̃i,x̃,ỹ(w|wi, x, y) =
fw̃i,x̃,ỹ,w̃(wi, x, y, w)∫
fw̃i,x̃,ỹ,w̃(wi, x, y, w′)dw′

.

If wi < x, i.e. the signal of agent i is smaller than w̌, then

1

N

∫
fw̃i,x̃,ỹ,w̃(wi, x, y, w

′)dw′ =

∫ wi

−∞
exp[−(β2w

′2 + β1w
′ + β0)]dw′

=

√
π

β2
exp

(
β2

1

4β2
− β0

)
Φ

(√
2β2wi +

β1√
2β2

)
,

and the cumulative distribution function is

Fw̃|w̃i,x̃,ỹ(w|wi, x, y) =

∫ w
−∞ exp[−(β2w

′2 + β1w
′ + β0)]dw′∫ wi

−∞ exp[−(β2w′2 + β1w′ + β0)]dw′

=
Φ
(√

2β2w + β1√
2β2

)
Φ
(√

2β2wi + β1√
2β2

) =
Φ
(
w−µ(x,y)

σ

)
Φ
(
wi−µ(x,y)

σ

) ,
where

σ ≡ 1√
2β2

=

(
λ2

σ2
a

+
λ2

σ2
s

+
1

σ2
w

)− 1
2

,

µ ≡ − β1

2β2
=

(
λx− y
σ2
a

+
λx

σ2
s

+ 1

)
λσ2.
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If wi ≥ x, i.e. the signal of agent i is equal or larger than w̌, then

1

N

∫
fw̃i,x̃,ỹ,w̃(wi, x, y, w

′)dw′ =

∫ x

−∞
exp[−(β2w

′2 + β1w
′ + β0)]dw′,

Fw̃|w̃i,x̃,ỹ(w|wi, x, y) =
Φ
(√

2β2w + β1√
2β2

)
Φ
(√

2β2x+ β1√
2β2

) =
Φ
(
w−µ(x,y)

σ

)
Φ
(
x−µ(x,y)

σ

) .
(2) It is straightforward to see that Fw̃|w̃i,x̃,ỹ(w|wi, x, y) ≤ Fw̃|w̃i,x̃,ỹ(w|wj , x, y) for all w if

wi > wj , since Φ(·) is an increasing function. This implies that, given price signals x and

y, agent who receives signal wi will have higher or equal expectation about w than agent

who receives signal wj . Because house resale value is an increasing function of w, agent who

receives signal wi will have higher or equal expectations about house resale value than that

of agent who receives signal wj .

(3) This follows immediately from (1), that is, the posterior distribution of w̃ is conditional

on w̃i = x, x̃ = x and ỹ = y:

Fw̃|w̃i,x̃,ỹ(w|x, x, y) =
Φ
(
w−µ(x,y)

σ

)
Φ
(
x−µ(x,y)

σ

) . �

Proof of Theorem 2.1:

The equilibrium housing price function is obtained by using the cut-off agent’s posterior

belief: Fw̃|w̃i,x̃,ỹ(w|x, x, y) in the indifference condition:

P = Q+
1

R

∫ +∞

−∞
h(w)dFw̃|w̃i,x̃,ỹ(w|x, x, y). �

Lemma A2:

Define Φ̂(u) ≡ Φ(u)
φ(u) , where φ(u) = 1√

2π
e−

u2

2 and Φ(u) =
∫ u
−∞

1√
2π
e−

u2

2 du. Φ̂(u) is increas-

ing in u, i.e. ∂Φ̂(u)
∂u ≥ 0.

Proof:

∂ Φ(u)
φ(u)

∂u
=
φ(u)φ(u)− ∂φ(u)

∂u Φ(u)

(φ(u))2
=
φ(u)φ(u) + uφ(u)Φ(u)

(φ(u))2
=
φ(u)[φ(u) + uΦ(u)]

(φ(u))2
.

Since φ(u) > 0,∀u, I only need to show that φ(u) + uΦ(u) ≥ 0. But

φ(u) + uΦ(u) = φ(u) +

∫ u

−∞
uφ(t)dt ≥ φ(u) +

∫ u

−∞
tφ(t)dt = φ(u)− φ(t)|u−∞ = 0.

This lemma will be useful in the following proofs. �

Proof of Claim 2.1:

From Theorem 2.1, I have P = Q+ V (x, y). Since Q = ey, it suffices to show that V (x, y)

is increasing in x for fixed y = lnQ. Because V is the expectation of an increasing function

of the random variable w̃, conditional on the realisations of x̃ and ỹ, it then suffices to
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show the conditional distribution Fw̃|w̃i,x̃,ỹ(w|x, x, y) is decreasing in x for fixed y. Define

g1(w, x, y) ≡ w−µ(x,y)
σ and g2(x, y) ≡ x−µ(x,y)

σ . Then, I have Fw̃|w̃i,x̃,ỹ(w|x, x, y) = Φ(g1)
Φ(g2) ,

where g1 = w
σ − σ

[
λ(λx−y)

σ2
a

+ λ+ λ2

σ2
s
x
]
, g2 = σ

(
1
σ2
w
x+ λ

σ2
a
y − λ

)
. Note that

∂Fw̃|w̃i,x̃,ỹ(w|x, x, y)

∂x
= [Φ(g2)]−2

[
Φ(g2)φ(g1)

∂g1

∂x
− Φ(g1)φ(g2)

∂g2

∂x

]
,

where Φ(gi) > 0, φ(gi) > 0 for i = 1, 2, g1 ≤ g2, and

∂g1

∂x
= −σλ2

(
1

σ2
a

+
1

σ2
s

)
< 0,

∂g2

∂x
=

σ

σ2
w

> 0.

Hence,
∂Fw̃|w̃i,x̃,ỹ(w|x,x,y)

∂x < 0 for g1 < g2, and for any Pf = h(w) that is increasing in w,

this implies V ≡ E(P̃f |w̃i = x, x̃ = x, ỹ = y) is strictly increasing in x. �

Proof of Corollary 2.1:

Substituting h(w) = ew into the price function in Theorem 2.1, we have

P = ey +

∫ x
−∞ exp{−[β2w

2 + (β1 − 1)w + β0]}dw[ √
π√
β2

exp
(
β2
1

4β2
− β0

)]
Φ
(√

2β2x+ β1√
2β2

)
= ey +

[ √
π√
β2

exp
(

(β1−1)2

4β2
− β0

)]
Φ
(√

2β2x+ β1−1√
2β2

)
[ √

π√
β2

exp
(
β2
1

4β2
− β0

)]
Φ
(√

2β2x+ β1√
2β2

)
= ey + exp

(
1− 2β1

4β2

)
Φ
(
x−µ
σ − σ

)
Φ
(
x−µ
σ

)
≡ ey + exp

(
σ2

2
+ µ

)
Φ(κ− σ)

Φ(κ)
,

where

κ ≡ x− µ
σ

=

(
1

σ2
w

x+
λ

σ2
a

y − λ
)
σ. �

Assumption for Interior Solution:

Note that the consumption in the second period is given by Ci = R[Mi − PHi + Q(Hi −
Bi)]+PfHi = RMi−Ai+

[
Pf −

∫ +∞
−∞ h(w)fw̃|w̃i,x̃,ỹ(w|x, x, y)dw

]
Hi. For Ci ≥ 0,∀i ∈ [0, 1],

it is sufficient to assume

Mi ≥
1

R

[
Ai +

∫ +∞

−∞
h(w)fw̃|w̃i,x̃,ỹ(w|x, x, y)dw − h(w)

]
.

Proof of Proposition 2.1:

From Lemma 2.2, I have the joint density of x̃ and ỹ conditional on w̃ = w as

fx̃,ỹ|w̃(x, y|w) =
λ

πσsσa
exp

[
−λ

2(w − x)2

2σ2
s

− (λw − λx+ y)2

2σ2
a

]
.
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The joint density of x̃, ỹ, and w̃ is then given by

fx̃,ỹ,w̃(x, y, w) = fx̃,ỹ|w̃(x, y|w) · fw̃(w) = N̂ · exp[−(β2w
2 + β̂1w + β̂0)],

where w ∈ R, x ≥ w, y ∈ R, N̂ ≡ λ√
2ππσsσaσw

, β̂1 = β1 + λ, and β̂0 = β0 − λwi. From the

Bayes’ theorem, I have the posterior distribution of w̃ conditional on x̃ = x and ỹ = y

Fw̃|x̃,ỹ(w|x, y) =

∫ w
−∞ fx̃,ỹ,w̃(x, y, w′)dw′∫ x
−∞ fx̃,ỹ,w̃(x, y, w′)dw′

=
Φ
(√

2β2w + β1+λ√
2β2

)
Φ
(√

2β2x+ β1+λ√
2β2

) =
Φ
(
w−µ̂(x,y)

σ

)
Φ
(
x−µ̂(x,y)

σ

) ,
where µ̂(x, y) ≡ −β1+λ

2β2
= µ(x, y)− λσ2 < µ(x, y). Denote g(µ) ≡ Φ(w−µσ )

Φ( x−µσ )
. We can see that

∂g(µ)

∂µ
= −

φ(w−µσ )φ(x−µσ )

σ[Φ(x−µσ )]2

[
Φ(x−µσ )

φ(x−µσ )
−

Φ(w−µσ )

φ(w−µσ )

]
≤ 0,∀w.

Thus, g(µ) ≤ g(µ̂) or Fw̃|w̃i,x̃,ỹ(w|x, x, y) ≤ Fw̃|x̃,ỹ(w|x, y), with strict inequality for some

value of w. As Pf is increasing in w, then E(P̃f |w̃i = x, x̃ = x, ỹ = y) > E(P̃f |x̃ = x, ỹ = y)

and thereby D̂ > 0,∀(x, y) ∈ R2. �

Proof of Proposition 2.2:

For Pf = ew, the market expected house resale value is given by

V (w, a, s) = exp

(
σ2

2
+ µ

)
Φ(κ− σ)

Φ(κ)
.

If I take the random variables a, s, w as being deterministic, and take the partial derivatives

with respect to each of them, I have

∂V

∂s
= V σ

{
−
[
λσ

σ2
s

+
1

λ

(
1

σ2
w

+
λ2

σ2
a

)(
φ(κ− σ)

Φ(κ− σ)
− φ(κ)

Φ(κ)

)]}
,

∂V

∂w
= V σ

{
λ2σ

(
1

σ2
a

+
1

σ2
s

)
+

1

σ2
w

[
φ(κ− σ)

Φ(κ− σ)
− φ(κ)

Φ(κ)

]}
,

∂V

∂a
= V σ

{
λ

σ2
a

[
φ(κ− σ)

Φ(κ− σ)
− φ(κ)

Φ(κ)
− σ

]}
.

As φ(κ−σ)
Φ(κ−σ) −

φ(κ)
Φ(κ) > 0 from Lemma A2, it’s easy to see that ∂V

∂w > 0 and ∂V
∂s < 0. For

∂V
∂a , since ∂V

∂y = ∂V
∂a and from Proposition 2.3 we know ∂V

∂y must be negative, it follows

immediately that ∂V
∂a < 0. �

Proof of Proposition 2.3:

Similar to the proof of Claim 2.1, I first take the partial derivative of Fw̃|w̃i,x̃,ỹ(w|x, x, y)

w.r.t. y

∂Fw̃|w̃i,x̃,ỹ(w|x, x, y)

∂y
=

φ(g1)φ(g2)

[Φ(g2)]2
∂g1

∂y

[
Φ(g2)

φ(g2)
− Φ(g1)

φ(g1)

]
,
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where the second equality comes from the fact that ∂g1
∂y = ∂g2

∂y = λσ
σ2
a
> 0. For g1 < g2,

the term in the bracket is positive from Lemma A2. Thus, for g1 < g2, ∂F
∂y > 0. As

Pf = h(w) is increasing in w, E(P̃f |w̃i = x, x̃ = x, ỹ = y) is strictly decreasing in y, i.e.
∂E(P̃f |w̃i=x,x̃=x,ỹ=y)

∂y > 0, and
∂E(P̃f |w̃i=x,x̃=x,ỹ=y)

∂Q =
∂E(P̃f |w̃i=x,x̃=x,ỹ=y)

∂y
∂y
∂Q < 0. �

Proof of Proposition 2.4:

Taking expectation of RH conditional on the econometrician’s information set yields

E(R̃H |Ωe) = E(P̃f |Ωe) +Q− P,

where E(P̃f |Ωe) = E(P̃f |x̃ = x, ỹ = y) = V̂ . From Theorem 2.1, I have

P = Q+ V.

Hence, E(R̃H |Ωe) = V̂ − V = −D̂ where −D̂ is defined in Proposition 2.1. �

Proof of Corollary 2.2:

From Proposition 2.1, I have

Fw̃|x̃,ỹ(w|x, y) =
Φ
(
w−µ̂
σ

)
Φ
(
x−µ̂
σ

) .
The expected house resale value conditional based on this posterior probability can then be

obtained as

V̂ ≡ E(P̃f |x̃ = x, ỹ = y) = exp

(
σ2

2
+ µ− λσ2

)
Φ(κ− σ + λσ)

Φ(κ+ λσ)
.

It thus follows immediately that the conditional return on only housing price and retnal

price is given by

E(R̃H |Ωe) = exp

(
σ2

2
+ µ− λσ2

)
Φ(κ+ λσ − σ)

Φ(κ+ λσ)
− exp

(
σ2

2
+ µ

)
Φ(κ− σ)

Φ(κ)
. �

Proof of Corollary 2.3:

E
[
Ď(x, y)

]
= E

[
V (x, y)− V̌ (x, y)

]
= E[V (x, y)]− E[V̌ (x, y)]

= E[V (x, y)]− E[V̂ (x, y)] = E
[
V (x, y)− V̂ (x, y)

]
= E[D̂(x, y)] > 0.

The third equality comes from the law of iterated expectations, and the last inequality holds

because from Proposition 2.1, I have D̂(x, y) > 0 for all (x, y) ∈ R2 when Pf is increasing

in w. �

A.2 Derivations

(1) Housing Prices Conditional on Private Signal and x̃ = x:

Since the private signal conditional on w is given by fw̃i|w̃(wi|w) = λe−λ(wi−w), wi ≥ w, and
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the probability density of x̃ conditional on w̃ = w is fx̃|w̃(x|w) =
√

2λ√
πσs

exp
[
−λ

2(w−x)2

2σ2
s

]
, x ≥

w,w ∈ R, the joint density of x̃ and wi conditional on w is

fw̃i,x̃|w̃(wi, x|w) = fw̃i|w̃(wi|w)fx̃|w̃(x|w)

=
λ2
√

2√
πσs

exp

[
−λ

2(x− w)2

2σ2
s

− λ(wi − w)

]
, x ≥ w,wi ≥ w,w ∈ R,

due to the conditional independence. The joint density function is thus

fw̃i,x̃,w̃(wi, x, w) = fw̃i,x̃|w̃(wi, x|w)fw̃(w) = N ′ · exp[−(β′2w
2 + β′1(x)w + β′0(x,wi))],

where x ≥ w,wi ≥ w,w ∈ R, N ′ ≡ λ2

πσsσw
, and β′2 ≡ 1

2

(
λ2

σ2
s

+ 1
σ2
w

)
, β′1 ≡ −λ

(
1 + λ

σ2
s
x
)
, β′0 ≡

λ2

2σ2
s
x2 + λwi. The probability distribution of w̃ conditional on wi and x is

Fw̃|w̃i,x̃(w|wi, x) =

∫ w
−∞ fw̃,w̃i,x̃(w′, wi, x)dw′∫ x
−∞ fw̃,w̃i,x̃(w′, wi, x)dw′

=
Φ
(
w−µ′(x)

σ′

)
Φ
(
wi−µ′(x)

σ′

) ,
where σ′ ≡

(
λ2

σ2
s

+ 1
σ2
w

)− 1
2

and µ′ ≡
(
λ2

σ2
s
x+ λ

)
σ′2. If agents make inference only through

observing private signal and x, and if Pf = h(w) = ew, the equilibrium housing price can

be obtained as

P ′ = Q+ V ′ = Q+

∫ x

−∞
ew
′
· fw̃|w̃i,x̃(w′|x, x)dw′ = ey + exp

(
σ′2

2
+ µ′

)
Φ(κ′ − σ′)

Φ(κ′)
,

where κ′ ≡ σ′
(
x
σ2
w
− λ
)

.

(2) Housing Prices Conditional on x̃ = x:

The joint density of x̃ and w̃ is given by

fx̃,w̃(x,w) = fx̃|w̃(x|w) · fw̃(w) =
λ

πσsσw
exp[−(β′2w

2 + β̂′1w + β̂′0)],

where β̂′1 = β′1 + λ and β̂′0 = β′0 − λwi. Similar to the other proofs, I have

V̌ ≡ E(P̃f |x̃ = x) = exp

(
σ′2

2
+ µ′ − λσ′2

)
Φ(κ′ − σ′ + λσ′)

Φ(κ′ + λσ′)
.

Note that this is also the price in the model where agents don’t learn from endogenous price

signals but only condition on their exogenous private signals.

(3) Understanding the Impacts of Learning: A Made-up Example

Assume x̃ = w̃ − s̃
λ , ỹ = ã − s̃, where w̃, ã, s̃ are independently normally distributed with

zeros means and variances σ2
w, σ

2
a, σ

2
s respectively. Since x̃ and ỹ are linear combinations of
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normal random variables, they are jointly normally distributed with w̃wx
y

 ∼ N


0

0

0

 ,

σ
2
w σ12 0

σ12 σ2
x σ23

0 σ23 σ2
y


 ,

with σ2
x = σ2

w +
σ2
s

λ2 , σ
2
y = σ2

a + σ2
s , σ12 = σ2

w, σ23 =
σ2
s

λ . Denote the expectation and variance

of w̃ conditional on x̃ = x by µ′ and Σ′ respectively, and the expectation and variance of

w̃ conditional on x̃ = x, ỹ = y by µ and Σ respectively. It follows that µ′ ≡ E(w̃|x̃ =

x) = W ′xx, µ ≡ E(w̃|x̃ = x, ỹ = y) = Wxx + Wyy, and Σ′ ≡ V ar(w̃|x̃ = x) =
(
σ2
s

λ2

)
W ′x,

Σ ≡ V ar(w̃|x̃ = x, ỹ = y) =
(
−σ

2
a

λ

)
Wy, where

W ′x ≡
1
σ2
s

1
σ2
s

+ 1
λ2σ2

w

,Wx ≡
1
σ2
a

+ 1
σ2
s

1
σ2
a

+ 1
σ2
s

+ 1
λ2σ2

w

,Wy ≡
− 1
λσ2

a

1
σ2
a

+ 1
σ2
s

+ 1
λ2σ2

w

.

It is easy to show that W ′x < Wx and Wy < 0. When σ2
a → ∞ or λ → ∞, then Wy → 0

and both Wx,W
′
x converge to some constant smaller or equal to one, and the two cases are

converging. Similarly, when λ→ 0, then Wx → 0, W ′x → 0, and Wy → 0, and both converge

to no information case. (i) When σ2
a → 0, then Wy → − 1

λ , Wx → 1, and W ′x is a constant

smaller than one. Thus, the smaller the λ (but not too small), the larger negative effect from

y but also the larger the difference Wx −W ′x, and the overall effect is ambiguous. However,

because Wx and W ′x are confined by 1 while Wy could be much larger than 1, the negative

effect tends to dominate; (ii) When σ2
s → ∞, then Wy →

− 1
λσ2a

1
σ2a

+ 1
λ2σ2w

, Wx →
1
σ2a

1
σ2a

+ 1
λ2σ2w

, and

W ′x → 0. Thus, the smaller the λ (but not too small), the larger negative effect from y

but also the larger the difference Wx −W ′x, and the overall effect is ambiguous. However,

because Wx and W ′x are confined by 1 while Wy could be much larger than 1, the negative

effect tends to dominate; (iii) When σ2
s → 0, then Wy → 0, Wx → 1, and W ′x → 1.

The conditional expectations of ew are given by Λ′ ≡ E(ew̃|x̃ = x) = exp
(
µ′ + Σ′

2

)
and

Λ ≡ E(ew̃|x̃ = x, ỹ = y) = exp
(
µ+ Σ

2

)
. The law of total variance implies that E(Λ) = E(Λ′).

A.3 Numerical Computations

The mean of housing price is

E(P̃ ) = E(Q̃) + E(Ṽ ).

The (additional) effect of rental price on housing price volatility

φ′ =
V ar(Q̃) + V ar(Ṽ ) + 2Cov(Q̃, Ṽ )

V ar(Q̃) + V ar(Ṽ ′) + 2Cov(Q̃, Ṽ ′)
.

The excess volatility is

φ∗ =
V ar(Q̃) + V ar(Ṽ ) + 2Cov(Q̃, Ṽ )

V ar(Q̃) + V ar(P̃f )
.
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(1) Densities

fx̃(x) =

√
2
π√

σ2
w +

σ2
s

λ2

exp

− x2

2
(
σ2
w +

σ2
s

λ2

)
Φ

 σs
λσw

x√
σ2
w +

σ2
s

λ2

 ,

fỹ(y) =

√
2
π√

σ2
a + σ2

s

exp

[
− y2

2(σ2
a + σ2

s)

]
Φ

(
σs
σa
y√

σ2
a + σ2

s

)
,

fx̃,ỹ(x, y) = N̂

√
π

β2
exp

(
β̂2

1

4β2
− β̂0

)
Φ

(√
2β2x+

β̂1√
2β2

)
.

(2) Mean and Variance of P̃f

E(P̃f ) = exp

(
σ2
w

2

)
,

V ar(P̃f ) =
[
exp(σ2

w)− 1
]

exp(σ2
w).

(3) Mean and Variance of Q̃

E(Q̃) =

∫ ∞
−∞

eyfỹ(y)dy

=

√
2
π√

σ2
a + σ2

s

∫ ∞
−∞

exp

[
y − y2

2(σ2
a + σ2

s)

]
Φ

(
σs
σa
y√

σ2
a + σ2

s

)
dy,

V ar(Q̃) =

∫ ∞
−∞

e2yfỹ(y)dy − [E(Q̃)]2

=

√
2
π√

σ2
a + σ2

s

∫ ∞
−∞

exp

[
2y − y2

2(σ2
a + σ2

s)

]
Φ

(
σs
σa
y√

σ2
a + σ2

s

)
dy − [E(Q̃)]2.

(4) Mean and Variance of Ṽ

E(Ṽ ) =

∫ ∞
−∞

∫ ∞
−∞

v(x, y) · fx̃,ỹ(x, y)dxdy

= N̂

√
π

β2

∫ ∞
−∞

∫ ∞
−∞

exp

[
σ2

2
+ µ+

(β1 + λ)2

4β2
− β̂0

]
×

[
Φ
(
x−µ
σ − σ

)
Φ
(
x−µ
σ + λσ

)
Φ
(
x−µ
σ

) ]
dxdy,

V ar(Ṽ ) =

∫ ∞
−∞

∫ ∞
−∞

v2 · fx̃,ỹ(x, y)dxdy − [E(Ṽ )]2

= N̂

√
π

β2

∫ ∞
−∞

∫ ∞
−∞

exp

[
σ2 + 2µ+

(β1 + λ)2

4β2
− β̂0

]
×

[(
Φ
(
x−µ
σ − σ

))2
Φ
(
x−µ
σ + λσ

)(
Φ
(
x−µ
σ

))2
]

dxdy − (E[Ṽ ])2.
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(5) Mean and Variance of V ′

E(Ṽ ′) =

∫ ∞
−∞

∫ ∞
−∞

v′(x) · fx̃(x)dx

=

√
2
π√

σ2
w +

σ2
s

λ2

∫ ∞
−∞

exp

σ′2
2

+ µ′ − x2

2
(
σ2
w +

σ2
s

λ2

)


×Φ

 σs
λσw

x√
σ2
w +

σ2
s

λ2

 Φ(κ′ − σ′)
Φ(κ′)

dx,

V ar(Ṽ ′) =

∫ ∞
−∞

v′2 · fx̃(x)dx− [E(Ṽ ′)]2

=

√
2
π√

σ2
w +

σ2
s

λ2

∫ ∞
−∞

exp

σ′2 + 2µ′ − x2

2
(
σ2
w +

σ2
s

λ2

)


×Φ

 σs
λσw

x√
σ2
w +

σ2
s

λ2

(Φ(κ′ − σ′)
Φ(κ′)

)2

dx− (E[Ṽ ′])2.

(6) Covariances

Cov(Q̃, Ṽ ) = E(Q̃Ṽ )− E(Q̃)E(Ṽ ),

Cov(Q̃, Ṽ ′) = E(Q̃Ṽ ′)− E(Q̃)E(Ṽ ′),

where

E(Q̃Ṽ ) = N̂

√
π

β2

∫ ∞
−∞

∫ ∞
−∞

exp

[
σ2

2
+ µ+ y +

(β1 + λ)2

4β2
− β̂0

]
×
[

Φ(κ− σ)Φ(κ+ λσ)

Φ(κ)

]
dxdy,

E(Q̃Ṽ ′) = N̂

√
π

β2

∫ ∞
−∞

∫ ∞
−∞

exp

[
σ′2

2
+ µ′ + y +

(β1 + λ)2

4β2
− β̂0

]
×
[

Φ(κ′ − σ′)Φ(κ+ λσ)

Φ(κ′)

]
dxdy.
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Appendix B

To save notation, I omit the superscript i in the following derivations when it is not necessary.

B.1 First-Order Conditions

For each island i, the first-order conditions to the household’s problem and entrepreneur’s

problem are obtained as

C̃t : 1 = Λ̃t,

L̃t+1 : Λ̃tQt = bL̃−1
t+1 + β̃ẼtΛ̃t+1Qt+1,

B̃t+1 : Λ̃t = β̃(1 +Rt+1)ẼtΛ̃t+1,

Ct : C−σt = Λt,

Kt+1 : Λt = βEtΛt+1

(
α
Yt+1

Kt+1
+ 1− δ

)
,

Lt+1 : ΛtQt = ΦtEtQt+1 + βEtΛt+1

(
γ
Yt+1

Lt+1
+Qt+1

)
,

Bt+1 : Λt = β(1 +Rt+1)EtΛt+1 + Φt(1 +Rt+1),

where Λ̃t is the Lagrangian multiplier of household’s budget constraint, Λt is the Lagrangian

multiplier of entrepreneur’s budget constraint, and Φt is the Lagrangian multiplier of en-

trepreneur’s borrowing constraint. The above first-order conditions, together with the bud-

get constraints for households and entrepreneurs, and the market clearing conditions5 for

each island characterise the competitive equilibrium of the economy of island.

C̃t +Qt(L̃t+1 − L̃t) + B̃t+1 = (1 +Rt)B̃t,

Yt = AtK
α
t L

γ
t ,

Ct +Kt+1 − (1− δ)Kt +Qt(Lt+1 − Lt) + (1 +Rt)Bt = Bt+1 + Yt,

(1 +Rt+1)Bt+1 ≤ EtQt+1Lt+1,

L̄ = L̃t + Lt,

B̃t = Bt.

5The good market clearing condition has been omitted because of the Walras’ law.
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B.2 Steady State

Denote the variables in the steady state by the corresponding letters without time subscript.

The steady state of the equilibrium can be characterised by the following equations

1 +R = β̃−1,

Q = bL̃−1 + β̃Q,

C̃ = RB̃;

C−σ = Λ,

1 = β

(
α
Y

K
+ 1− δ

)
,

ΛQ = ΦQ+ βΛ

(
γ
Y

L
+Q

)
,

Λ = β(1 +R)Λ + Φ(1 +R),

Y = AKαLγ ,

C + δK +RB = Y

(1 +R)B = QL;

L̃+ L = 1,

B = B̃.

From Λ = β(1 +R)Λ + Φ(1 +R) and 1 +R = β̃−1, it follows immediately that

Φ = (β̃ − β)Λ,

which is positive because Λ = C−σ > 0 and β̃ − β > 0. From the above equations, we can

also see that the capital-to-output ratio, which determines the return from capital in the

steady state, is given by
K

Y
=

αβ

1− β(1− δ)
.

and the price of land in the steady state

Q = (1− β̃)−1βγ
Y

L
=

∞∑
j=0

β̃jβγ
Y

L
.

B.3 Log-linearisation

Define

xt ≡ lnXt − lnX.

I log-linearise the model equilibrium around the steady state as below

Λ̃Qqt = −bL̃−1 l̃t+1 + β̃Λ̃QẼtqt+1,

−σC−σct = Λλt,

λt = β

(
α
Y

K
+ 1− δ

)
Etλt+1 + βα

Y

K
Et(yt+1 − kt+1),
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ΛQ(λt + qt) = ΦQ(φt + Etqt+1) + βΛ
γY

L
Et(λt+1 + yt+1 − lt+1) + βΛQEt(λt+1 + qt+1),

Λλt = βΛEt[(1 +R)λt+1] + (1 +R)Φφt,

C̃

B
c̃t +

QL̃

B
(l̃t+1 − l̃t) + b̃t+1 = (1 +R)b̃t,

yt = at + αkt + γlt,

C

Y
ct +

K

Y
kt+1 − (1− δ)K

Y
kt +

QL

Y
(lt+1 − lt) +

(1 +R)B

Y
bt =

B

Y
bt+1 + yt,

(1 +R)bt+1 =
QL

B
(Etqt+1 + lt+1),

L̃l̃t + Llt = 0,

b̃t = bt,

at = θt + εt.

where I have used the fact that rt+1 = 0,∀t.

B.4 Rational Expectations Equilibrium: A General Solution

If agents have complete information, in the sense that in each period agents on each is-

land observe both the persistent common shock and the temporary idiosyncratic shock, the

model may be solved by some standard package such as Dynare. If agents have incomplete

information, however, the solution to the model is not readily available using the standard

tool. The strategy I take in this paper is that, I first solve for the rational expectations

equilibrium (REE) under a general information structure. Given the general solution, I

then solve for REE solutions under different information structures in the next subsection.

To obtain a general solution, I rearranged the system in B.3 into three parts:

(i) a high-order stochastic difference equation for qi:

δ1q
i
t−1 + δ2q

i
t + δ3Eit−1q

i
t + (δ4− δ5)Eitqit+1 = δ6Eit−1a

i
t+ δ7a

i
t+ δ8Eitait+1 + δ9

∞∑
j=0

β̃jEitait+2+j ,

(B1)
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(ii) the productivity process ait = θt + εit, and

(iii) other companion equations characterizing the dynamics of each variable as below:

household’s land holding : l̃it+1 =
β̃Ẽitqit+1 − qit

1− β̃
,

entrepreneur’s land holding : lit = −l̃it,

entrepreneur’s debt : bit+1 = Eitqit+1 + lit+1,

household’s lending : b̃it = bit,

entrepreneur’s capital stock : kit+1 = δ10(qit − β̃Eitqit+1)− δ11Eitait+1 − δ12l
i
t+1,

entrepreneur’s good production : yit = ait + αkit + γlit,

household’s consumption : c̃it =
lt+1 − lit − β̃bit+1 + bit

1− β̃
,

entrepreneur’s consumption : cit =
yit − βγc̃it − δ13[kit+1 − (1− δ)kit]

δ14
,

where {δj}14
j=1 are functions of the model parameters: β̃, α, γ, σ, β, δ. The solution to (B1)

is the key to solving for the whole system, because once it is obtained the dynamics of other

variables follow recursively from (iii).

For each island i, denote the agents’ expectations about the persistent shock by

Θi
t ≡ Eitθt. Then, equation (B1) can be rewritten as

δ1q
i
t−1 + δ2q

i
t + δ3Eit−1q

i
t + (δ4 − δ5)Eitqit+1 = δ6ρΘi

t−1 +

(
δ8ρ+

δ9ρ
2

1− ρβ̃

)
Θi
t + δ7a

i
t. (B2)

A general rational expectations equilibrium (REE) solution can be obtained as follows: first

guess a solution for qit
qit = π1q

i
t−1 + π2Θi

t + π3Θi
t−1 + π4a

i
t, (B3)

then, substitute the conjecture (B3) into equation (B2), and, finally, impose the rational

expectations equilibrium (REE) restriction to solve for π’s as a fixed point problem. More

specifically, the substitution yields

δ1q
i
t−1+δ2q

i
t+δ3(π1q

i
t−1+π2ρΘi

t−1+π3Θi
t−1+π4ρΘi

t−1)+(δ4−δ5)(π1q
i
t+π2ρΘi

t+π3Θi
t+π4ρΘi

t)

= δ6ρΘi
t−1 +

(
δ8ρ+

δ9ρ
2

1− ρβ̃

)
Θi
t + δ7a

i
t.

Rearranging it, I have

[δ2 + (δ4 − δ5)π1]︸ ︷︷ ︸
α1

qit = −(δ1 + δ3π1)︸ ︷︷ ︸
α2

qit−1+

[(
δ8ρ+

δ9ρ
2

1− ρβ̃

)
− (δ4 − δ5)(π2ρ+ π3 + π4ρ)

]
︸ ︷︷ ︸

α3

Θi
t

+ [δ6ρ− δ3(π2ρ+ π3 + π4ρ)]︸ ︷︷ ︸
α4

Θi
t−1 + δ7a

i
t.
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Matching the coefficients, I have

π1 =
α2

α1
=
−(δ1 + δ3π1)

δ2 + (δ4 − δ5)π1
,

π4 =
δ7
α1

=
δ7

δ2 + (δ4 − δ5)π1
,

π2 =
α3

α1
=
δ8ρ+ δ9ρ

2

1−ρβ̃ − (δ4 − δ5)(π2ρ+ π3 + π4ρ)

δ2 + (δ4 − δ5)π1
,

π3 =
α4

α1
=
δ6ρ− δ3(π2ρ+ π3 + π4ρ)

δ2 + (δ4 − δ5)π1
.

Then, π1 and π4 can be obtained from the first two equations, and π2 and π3 can be obtained

from solving the following two equations

[δ2 + (δ4 − δ5)(π1 + ρ)]π2 + (δ4 − δ5)π3 = δ8ρ+
δ9ρ

2

1− ρβ̃
− (δ4 − δ5)π4ρ,

δ3ρπ2 + (δ2 + (δ4 − δ5)π1 + δ3)π3 = δ6ρ− δ3π4ρ.

B.5 Rational Expectations Equilibrium with Incomplete Information

I. No Public Signals

The state space is given by

θt = ρθt−1 + vt,

ait = θt + εit.

Using Kalman filter formula, I have

Θi
t = (1− κ)ρΘi

t−1 + κait, (B4)

where κ is the stationary Kalman gain

κ ≡
1
σ2
ε

1
σ2
r

+ 1
σ2
ε

,

in which σ2
r can be derived from the stationary Riccati equation

σ2
r =

ρ2

1
σ2
r

+ 1
σ2
ε

+ σ2
v .

Substituting (B4) into (B3), land price is obtained as

(1− π1L)(1− ρL)(1− (1− κ)ρL)qit

= [π4 + π2κ+ (π3κ− π4(1− κ)ρ)L]vt + [π4 + π2κ+ (π3κ− π4(1− κ)ρ)L](1− ρL)εit. (B5)
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II. Exogenous Public Signals

The state space is given by

θt = ρθt−1 + vt,(
ait
s∗t

)
︸ ︷︷ ︸

Yt

=

(
1

1

)
︸︷︷ ︸

B

θt +

(
εit
η∗t

)
.

Using Kalman filter formula, I have

Θi
t = (1−KB)ρΘi

t−1 + KYt, (B6)

where K is the stationary Kalman gain vector

K = σ2
r∗

(
1 1

)(σ2
r∗ + σ2

ε σ2
r∗ ,

σ2
r∗ σ2

r∗ + σ2
η∗

)−1

=

(
1
σ2ε

1

σ2
r∗

+ 1

σ2
η∗

+ 1
σ2ε

1

σ2
η∗

1

σ2
r∗

+ 1

σ2
η∗

+ 1
σ2ε

)
≡
(
K1 K2

)
,

where σ2
r∗ can be derived from the stationary Riccati equation

σ2
r∗ =

ρ2

1
σ2
r∗

+ 1
σ2
η∗

+ 1
σ2
ε

+ σ2
v .

Substituting (B6) into (B3), land price land price is obtained as

(1− π1L)(1− ρL)(1− (1−KB)ρL)qit = {π4 + π2KB + [π3KB− π4(1−KB)ρ]L}vt

+{π4 + π2K1 + [π3K1 − π4(1−KB)ρ]L}(1− ρL)εit + (π2 + π3L)K2(1− ρL)η∗t . (B7)

If information is revealed with one period lag, I can now define two new observable variables

âit and ŝ∗t , corresponding to the signals ait and s∗t respectively.

âit ≡ vt + εit,

ŝ∗t ≡ vt + η∗t .

Note that the joint distribution of âit, ŝ
∗
t and vt is multi-normal. More specifically,vtâit

ŝ∗t

 ∼ N


0

0

0

 ,

σ
2
v σ2

v σ2
v

σ2
v σ2

v + σ2
ε σ2

v

σ2
v σ2

v σ2
v + σ2

η∗


 ,

from which I may compute the expectation of the unobservable shock vt conditional on the

observables {âit, ŝ∗t } as

E(vt|âit, ŝ∗t ) = W ∗1 (vt + εit) +W ∗2 (vt + η∗t ),
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where

W ∗1 ≡
σ2
v(σ2

v + σ2
η∗)− σ4

v

(σ2
v + σ2

ε )(σ2
v + σ2

η∗)− σ4
v

,

W ∗2 ≡ σ2
v(σ2

v + σ2
ε )− σ4

v

(σ2
v + σ2

ε )(σ2
v + σ2

η∗)− σ4
v

.

Since Θi
t = Eit(vt) +

∑∞
j=1 ρ

jvt−j , I have

Θi
t = Eit(vt) +

∞∑
j=1

ρjvt−j =

(W ∗1 +W ∗2 )vt +

∞∑
j=1

ρjvt−j

+W ∗1 ε
i
t +W ∗2 η

∗
t .

Substituting it into (B3), land price is obtained as

(1− π1L)(1− ρL)qit = {(π2 + π3L)[ρL+ (1− ρL)(W ∗1 +W ∗2 )] + π4}vt

+[(π2 + π3L)W ∗1 + π4](1− ρL)εit + [(π2 + π3L)W ∗2 (1− ρL)]η∗t . (B7′)

III. Endogenous Public Signals

The REE equilibrium land price (B3) can be written as

qit =

[
π2 + π3L
1− π1L

]
Θi
t +

π4a
i
t

1− π1L
≡ B(L)C(L)Θi

t + π4B(L)[A(L)vt + εit],

where B(L) ≡ 1
1−π1L and C(L) ≡ π2+π3L. Note that qt should be a time-invariant function

of exogenous stochastic processes. Hence, I guess

Θi
t = Pv(L)vt + Pε(L)εit + Pη(L)ηt,

where ηt is the noise shock. Then, the land price function (B3) can be further expressed as

qit = B(L)C(L)[Pv(L)vt + Pε(L)εit + Pη(L)ηt] + π4B(L)[A(L)vt + εit]

= [B(L)C(L)Pv(L) + π4B(L)A(L)]vt + [B(L)C(L)Pε(L) + π4B(L)]εit

+B(L)C(L)Pη(L)ηt.

Since information is fully revealed with one period lag, I can now define two new observable

variables âit and ŝt, corresponding to the signals ait and st respectively.

âit ≡ vt + εit,

ŝt ≡ (π2Pv(0) + π4)︸ ︷︷ ︸
s1

vt + (1 + π2Pη(0))︸ ︷︷ ︸
s2

ηt.
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Note that the joint distribution of âit, ŝt and vt is multi-normal. More specifically,vtâit
ŝt

 ∼ N


0

0

0

 ,

 σ2
v σ2

v s1σ
2
v

σ2
v σ2

v + σ2
ε s1σ

2
v

s1σ
2
v s1σ

2
v s2

1σ
2
v + s2

2σ
2
η


 ,

from which I may compute the expectation of the unobservable shock vt conditional on the

observables {âit, ŝt} as

E(vt|âit, ŝt) = W1(vt + εit) +W2(s1vt + s2ηt), (B8)

where

W1 ≡
σ2
v(s2

1σ
2
v + s2

2σ
2
η)− s2

1σ
4
v

(σ2
v + σ2

ε )(s2
1σ

2
v + s2

2σ
2
η)− s2

1σ
4
v

,

W2 ≡ s1σ
2
v(σ2

v + σ2
ε )− s1σ

4
v

(σ2
v + σ2

ε )(s2
1σ

2
v + s2

2σ
2
η)− s2

1σ
4
v

.

Given that information is fully revealed one period later, and that θt = ρθt−1 + vt, the

conditional expectation Θi
t ≡ Eit(θt) can be written as

Θi
t = Eit(vt) +

∞∑
j=1

ρjvt−j . (B9)

Note that agents’s confusion about θt will only be from current idiosyncratic productivity

shock and noise shock, not those from previous periods. Hence, the conjecture about Θi
t

can be rewritten as

Θi
t = Pv(0)vt +

∞∑
j=1

ρjvt−j + Pε(0)εit + Pη(0)ηt. (B10)

Substituting (B8) into (B9) and matching the coefficients with those in the conjecture, I

have

Pv(0) = W1 +W2s1,

Pε(0) = W1,

Pη(0) = W2s2.

Note that W1 and W2 contain Pv(0) and Pη(0). Solving the nonlinear equations above yields

Pv(0), Pε(0), and Pη(0). Substituting them back into (B10), I obtain an explicit expression

for Θi
t, which is then substituted into the general solution (B3) to get the land price function

(1− π1L)(1− ρL)qit = {(π2 + π3L)[ρL+ (1− ρL)Pv(0)] + π4}vt

+[(π2 + π3L)Pε(0) + π4](1− ρL)εit + [(π2 + π3L)Pη(0)(1− ρL)]ηt. (B11)
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B.6 Forecast Errors

Note that Ēt−1θt = ρ
∫

Θi
t−1di.

(i) For the full information model, the forecast error is given by

ξt = θt − Ēt−1θt = θt − ρθt−1 = vt.

(ii) For the incomplete information model without public signal, the forecast error is given

by

ξt =

[
(1− ρκ− (1− κ)ρL)

(1− (1− κ)ρL)(1− ρL)

]
vt.

(iii) For the incomplete information model with exogenous public signal, the forecast error

is given by

ξt =

[
(1− ρKB− (1−KB)ρL)

(1− (1−KB)ρL)(1− ρL)

]
vt +

[
ρK2L

1− (1−KB)ρL

]
η∗t .

When information is fully revealed one period later, the forecasting error is given by

ξt = vt + ρ(1−W ∗1 −W ∗2 )vt−1 − ρW ∗2 η∗t−1.

(iv) For the incomplete information model with endogenous public signal and information

fully revealed one period later, the forecast error is given by

ξt = θt − Ēt−1θt =

∞∑
j=0

ρjvt−j − ρ

Pv(0)vt−1 +

∞∑
j=1

ρjvt−1−j + Pη(0)ηt−1


= vt + ρ(1− Pv(0))vt−1 − ρPη(0)ηt−1.
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Appendix C

C.1 Forecast Error Variance Decomposition

The error of the optimal h-step forecast is

Yt+h − Ŷt+h =

h−1∑
s=0

θsut+h−s.

The contribution of forecast error variance of variable i attributable to structural shock j

at horizon h is
h−1∑
s=0

(e′iθsej)
2 =

h−1∑
s=0

(θ(i,j)
s )2,

where ei is ith column of Ik and θ
(i,j)
s is the ijth element in θs. The share of forecast error

variance of variable i attributable to structural shock j (of k) at horizon h is

Ω
(i,j)
h =

∑h−1
s=0 (e′iθsej)

2∑k
j=1

∑h−1
s=0 (e′iθsej)

2
=

∑h−1
s=0 (θ

(i,j)
s )2∑k

j=1

∑h−1
s=0 (θ

(i,j)
s )2

.

Because Yt =
∑∞
s=0 θsut−s =

∑∞
s=0 φsεt−s, and εt ≡ B−1

0 ut, θs ≡ φsB−1
0 by definition.

Ω
(i,j)
h =

∑h−1
s=0 [(φsB

−1
0 )(i,j)]2∑k

j=1

∑h−1
s=0 [(φsB

−1
0 )(i,j)]2

.

C.2 Historical Decomposition

Consider reorganisation of the vector moving average (VMA) representation of Yt+h

Yt+h =

∞∑
s=0

φsεt+h−s ≡
h−1∑
s=0

φsεt+h−s +

∞∑
s=h

φsεt+h−s. (C1)

The first sum represents that part of Yt+h due to innovations in periods t+ 1 to t+h, while

the second sum is the forecast given data through t (because E(ut) = 0 for ut+1, ..., ut+h).

If ε = Fu for any full rank (factor) matrix F , the forecast error can be rewritten as

h−1∑
s=0

φsεt+h−s =

h−1∑
s=0

(φsF )(F−1εt+h−s) =

h−1∑
s=0

(φsF )ut+h−s =

k∑
i=1

h−1∑
s=0

[(φsF )ei](e
′
iut+h−s),

where ei is the ith column of Ik
6, the first summation regards to k factored shocks, and

the second summation regards to the accumulated horizon. The analysis above implies that

we can decompose the forecast error with some factor matrix F and see how each factored

shock would have affected the historical forecast error. If we want to check the structural

shocks’ effect, then set F = B−1
0 , and φsF = φsB

−1
0 ≡ θs.

6In the first parentheses ei is used to pick up the ith column of φsF and in the second parentheses
to pick up the ith factored (or structural) shock. So the vector of forecast error for each variable is
comprised of a vector of sum over all of the structural shocks’ contributions and over horizon h.
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In practice, I do historical decomposition following steps as below7:

(Step 1) Set in (C1) t = p, h ∈ {1, 2, ..., T − p}, and therefore the forecast with shocks is

from p+ 1 to T , where k is the dimension of VAR, p is the maximum lag in VAR, and T is

sample size. Transform the k × (T − p) reduced shocks ε into structural shocks u by using

u = B0ε.

(Step 2) For each i, left multiply column i in B−1
0 by row i in u to get k stacks of k× (T −p)

matrices. The ith stack matrix represents ith structural shock to all k variables during time

period p+ 1 to T . Denote ith stack matrix as εi, which is interpreted as the contribution of

ith structural shock to reduced shock u and
∑k
i=1 u

i = u.

(Step 3) Given initial values Y1, ..., Yp, forecast Yt+h (i.e. from p+ 1 to T ) by adding shocks

uij in each period, where j ∈ {1, 2, ..., T − p}.8

(Step 4) Subtract the base forecast (i.e. forecast without shocks in each period) from the

forecast in step 3 to get the cumulative contributions of each structural shock.

For periods close to the (forecast) starting point (p + 1), the initial values have

substantial impact even in stationary process, so one may want to consider the decomposition

for periods some distance away from the starting point.

C.3 Conditional Correlation

From Yt =
∑∞
s=0 θsut−s, the covariance between variable i and j is

Cov(Yi, Yj) =

∞∑
s=0

θ(i,1)
s θ(j,1)

s +

∞∑
s=0

θ(i,2)
s θ(j,2)

s + ...+

∞∑
s=0

θ(i,k)
s θ(j,k)

s

=

k∑
κ=1

∞∑
s=0

θ(i,κ)
s θ(j,κ)

s ≡
k∑
κ=1

Cov(Yi, Yj |uκ),

and the correlation of variable i and j in Y conditional on the κth structural shock can be

obtained using the following formula

ρ(Yi, Yj |κ) =

∑∞
s=0 θ

(i,κ)
s θ

(j,κ)
s√

[
∑∞
s=0(θ

(i,κ)
s )2][

∑∞
s=0(θ

(j,κ)
s )2]

,

where θ
(i,κ)
s is the (i, κ)th element in θs. In practice, the infinite sums are truncated at some

large but finite lag. Similar to historical decomposition, we can also compute historical

conditional correlation coefficient of Yi and Yj by using the simulated series of Yi and Yj

conditional structural shock κ.9

7Another simple way (easier to understand) to do the historical decomposition: (I) Transform
reduced shocks into structural shocks using B0; (II) Zero out irrelevant structural shocks for each
structural shock, respectively; (III) Transform the k new structural shock (matrices) into new
reduced shocks; (IV) Simulating as if there was only one structural shock in history.

8In this step, I forecast Y recursively. For example, I use updated Yp+1, ..., Yp+p in calculating
Yp+p+1

9Note the similarity with the relationship between FEVD a historical decomposition.
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