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Abstract

The grouped independence Metropolis-Hastings (GIMH) and Markov chain within Metropolis
(MCWM) algorithms are pseudo-marginal methods used to perform Bayesian inference in la-
tent variable models. These methods replace intractable likelihood calculations with unbiased
estimates within Markov chain Monte Carlo algorithms. The GIMH method has the posterior
of interest as its limiting distribution, but suffers from poor mixing if it is too computation-
ally intensive to obtain high-precision likelihood estimates. The MCWM algorithm has better
mixing properties, but tends to give conservative approximations of the posterior and is still
expensive. A new method is developed to accelerate the GIMH method by using a Gaussian
process (GP) approximation to the log-likelihood and train this GP using a short pilot run of
the MCWM algorithm. This new method called GP-GIMH is illustrated on simulated data
from a stochastic volatility and a gene network model. The new approach produces reasonable
posterior approximations in these examples with at least an order of magnitude improvement
in computing time. Code to implement the method for the gene network example can be
found at http://www.runmycode.org/companion/view/2663.

Keywords: Gaussian processes, likelihood-free methods, Markov processes, particle Markov
chain Monte Carlo, pseudo-marginal methods, state space models
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1 Introduction

Bayesian inference for high-dimensional latent variable models is currently challenging. In
particular Markov chain Monte Carlo (MCMC) samplers can suffer from poor mixing due
to correlation between the parameter of interest and the latent variables. Beaumont (2003)
and Andrieu and Roberts (2009) have introduced pseudo-marginal methods to improve the
statistical efficiency of MCMC. These methods work by replacing the actual likelihood with
an unbiased likelihood estimate in the Metropolis-Hastings ratio. This allows proposals for
the Markov chain to be made directly on the space of the parameter of interest, rather than
conditional on the value of a set of the latent variables.

One of these methods, the grouped independence Metropolis-Hastings (GIMH) method by
Beaumont (2003), recycles the likelihood estimate for the current value of the chain to the
next iteration. Andrieu and Roberts (2009) have shown that the GIMH method has the desired
posterior as its limiting distribution, which is why it has received considerable attention in
the literature (Andrieu et al. (2010); Doucet et al. (2015)). However, a drawback of the
GIMH method is that it can suffer from poor mixing if it is too computationally expensive to
estimate the likelihood with high precision.

The other method, the Markov chain within Metropolis (MCWM, Beaumont (2003)) algo-
rithm, estimates the likelihood at both the current and proposed values of the Markov chain
at every iteration. This method generally possesses better mixing properties as it is able to
escape an overestimated likelihood value by re-estimating it at the next MCMC iteration.
However, the MCWM method does not have the posterior distribution of the parameter of
interest as its limiting distribution. Because of this, MCWM has received comparatively less
attention.

In this paper we make use of a Gaussian process (GP) to accelerate the GIMH method while
at the same time accepting some approximation to the posterior distribution.

Wilkinson (2014) proposes that GPs be used to accelerate approximate Bayesian computation
(ABC) methods where the likelihood is approximated by generating many model simulations
from each proposed parameter value, and measuring the distance between observed and sim-
ulated data through a careful choice of summary statistics. Here GPs are used to emulate the
actual (ABC) log-likelihood surface based on noisy estimates obtained through simulation.
The method iteratively uses the GP to discard implausible parts of the parameter space, re-
trains the GP in the updated not-implausible part of the parameter space and continues this
process until the GP fit has been deemed as satisfactory. The final GP is then used within an
MCMC method to predict the log-likelihood surface at all proposed values of the parameter
of interest. GPs have also been used for ABC by Meeds and Welling (2014), Gutmann and
Corander (2016) and Järvenpää et al. (2016).

We follow a similar approach to Wilkinson (2014) to accelerate pseudo-marginal methods.
However, one key difference is that we take advantage of the pseudo-marginal literature. In
particular, we use a short run of the MCWM method as a natural approach to obtain training
samples for the GP in non-negligible regions of the posterior support. The MCWM method
is ideal for training the GP as it has better mixing properties and is less prone to sticky
periods than the GIMH method. Medina-Aguayo et al. (2016) develop sufficient conditions
for the geometric ergodicity and hence the existence of an invariant distribution of MCWM.
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Our experience with MCWM is that it is generally conservative (inflated posterior variance),
allowing the tails of the posterior to be explored. The fitted GP is used instead of expensive
likelihood estimates within the GIMH method. We introduce further novelties into our method
to make it practically useful.

The paper has the following outline. In Sections 2.1 and 2.2 we provide a brief overview of
pseudo-marginal methods and GPs, respectively. In Section 2.3 we present our new method,
GP-GIMH, which uses the MCWM algorithm to train the GP and subsequently uses the GP
to accelerate the GIMH method. Finally, in Section 4, we conclude with a discussion.

2 Accelerated Pseudo-Marginal MCMC

In this section we give some background on pseudo-marginal MCMC methods and Gaussian
processes before describing how, by emulating the log-likelihood using a GP, we can accelerate
pseudo-marginal MCMC.

2.1 Pseudo-Marginal MCMC

Suppose we have observed data y in Y which is described by a statistical model with likelihood
function p(y|θ) and depends on an unknown parameter θ in Rd. Prior beliefs about the
parameter are summarised by the prior density p(θ). We assume that the model requires, or is
facilitated by, an auxiliary variable x in X, whose value is not of direct interest. In this scenario
the complete data likelihood is p(y,x|θ) = p(y|x,θ)p(x|θ) and leads to the observed data
likelihood p(y|θ) =

∫
X p(y|x,θ)p(x|θ)dx. Ideally this observed data likelihood is combined

with the prior to make inferences about the parameters via the posterior density p(θ|y) ∝
p(y|θ)p(θ). However, in non-toy problems the observed data likelihood is an analytically
intractable integral. Therefore the parameter posterior is accessed as the marginal of the
joint posterior for all unknowns, that is, via p(θ|y) =

∫
X p(θ,x|y)dx.

A standard Bayesian approach for fitting such a latent variable model is to develop an MCMC
algorithm that samples the joint posterior p(θ,x|y) and marginalises by ignoring the x sam-
ples. A common approach is to develop an MCMC algorithm using two blocks, θ and x, that
iteratively samples from the full conditionals p(θ|x,y) and p(x|θ,y). A key problem with
such algorithms is that they can mix poorly because of high posterior correlation between
the blocks θ and x. Further, for non-trivial state space models, p(x|θ,y) cannot be sampled
directly and is difficult to sample efficiently (see Andrieu et al. (2010) for a discussion). In
an attempt to overcome the mixing issue, Beaumont (2003) develop algorithms that replace
the computationally intractable likelihood p(y|θ) with an unbiased estimate p̂(y|θ). The un-
derpinning mathematics of these pseudo-marginal MCMC algorithms is studied in Andrieu
and Roberts (2009) and they develop conditions under which they indeed have the correct
posterior distribution p(θ|y) as their limiting distribution. A simple example of an unbiased
likelihood estimate is one obtained through importance sampling, namely

p̂(y|θ) =
1

N

N∑
i=1

p(y|xi,θ)p(xi|θ)

g(xi)
,
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where x1, . . . ,xN
iid∼ g(x) and g is an importance density defined on X. Alternative approaches

to obtaining an unbiased likelihood estimate are available. For example, Andrieu et al. (2010)
show that when the model of interest is a state-space model, the likelihood p(y|θ) can be
estimated unbiasedly using a particle filter with N particles. Such pseudo-marginal methods
are referred to as particle Markov chain Monte Carlo (PMCMC). We consider models in the
state-space form in Section 3 and use the bootstrap particle filter of Gordon et al. (1993) to
obtain an unbiased likelihood estimator.

Bérard et al. (2014) establish a log-normal central limit theorem for the particle filter. In
PMCMC, the likelihood is estimated with multiplicative noise, p̂(y|θ) = Wp(y|θ), where the
random weight W is strictly positive with E[W ] = 1. The CLT defines a limiting distribution

for the noise in which logW
d−→ N

(
−ασ2/2, ασ2

)
as the dimension (of the state space X)

T → ∞. Here σ2 is the asymptotic variance of the estimator, and α is the asymptotic ratio
of T to N as both T,N →∞, and is usually taken to be 1. Doucet et al. (2015) observe that
this limiting distribution is a good fit for the noise, even for modest values of T and N . The
log-normal CLT is very useful for theoretical analysis of PMCMC algorithms as shown, for
example, by Doucet et al. (2015) and Medina-Aguayo et al. (2016). We assume log-normality
of p̂(y|θ) in our GP model.

The first algorithm developed by Beaumont (2003), known as grouped independence Metropolis-
Hastings (GIMH), is shown in Appendix A. This is essentially a standard Metropolis-Hastings
algorithm in which the intractable likelihood at a new proposal θ∗ is replaced by an unbiased
likelihood estimate. Note that the likelihood at the current value θ is not re-estimated but
simply recycled from the previous iteration.

Andrieu and Roberts (2009) show that the GIMH algorithm has the posterior p(θ|y) as
its limiting distribution. If we denote all the random numbers (assumed to be uniformly
distributed without loss of generality) used to produce an unbiased likelihood estimate as
η ∈ [0, 1]s and considering a target posterior distribution on the extended space of (θ,η),
the θ marginal target of interest is proportional to p(θ)E[p̂(y|θ,η)] where p̂(y|θ,η) is the
likelihood estimate given the random numbers and the expectation is taken with respect to
the distribution of η given θ. The unbiased nature of the likelihood estimator implies that the
expectation is p(y|θ) giving the desired posterior distribution as the target. This theoretically
appealing property has led to the GIMH method becoming more prominent in the literature
(e.g. Andrieu et al. (2010), Doucet et al. (2015) and Sherlock et al. (2017)) compared to the
other approach of Beaumont (2003), the Monte Carlo within Metropolis (MCWM) algorithm.
However, the GIMH method can get stuck when the likelihood is substantially overestimated
at any given iteration. Doucet et al. (2015) suggest that for good performance in the GIMH
algorithm, the log-likelihood should be estimated with a standard deviation between 1.0 and
1.7. However, in complex applications, it may be computationally difficult to achieve this
goal.

The MCWM algorithm of Beaumont (2003) is the same as GIMH except for an extra step
where the likelihood at the current θ is re-estimated and not recycled from the previous
iteration; see Appendix A. Although MCWM requires roughly double the amount of compu-
tational effort per iteration relative to GIMH, it does not suffer from stickiness in the Markov
chain. However, the drawback is that the limiting distribution of MCWM is only the poste-
rior p(θ|y) in the limit as N →∞. Medina-Aguayo et al. (2016) develop sufficient conditions
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for the geometric ergodicity and hence the existence of an invariant distribution of MCWM
for large enough N . The conditions are that the idealised chain (the chain that uses exact
likelihood evaluations) is geometrically ergodic, the weights W are uniformly integrable and
the weights satisfy uniform exponential bounds on their densities close to 0. These conditions
are quite weak when the parameter space is compact. In our experience, MCWM generally
produces an approximate posterior that is less precise than the actual posterior for finite N ,
and thus could be considered a conservative method in the sense that the posterior variances
are overestimated.

Our aim is to accelerate the GIMH method by emulating the (unobserved) true log-likelihood
surface as a function of θ with a GP, where the GP is trained in relevant parts of the parameter
space based on the output of a short run of MCWM.

2.2 Gaussian Processes

Gaussian processes can be used as a prior distribution to describe uncertainty about an
unknown function f(·). They are characterised by a mean function mβ(θ) and covariance
function Cγ(θ,θ′) = cov{f(θ), f(θ′)}, where β and γ are so-called hyperparameters of the
GP. A Gaussian process has the property that the joint distribution for the values of the
function at a finite collection of points has a multivariate normal distribution; see, for example,
Rasmussen and Williams (2006). In this paper, the function we wish to emulate is the log-
likelihood function f(θ) = log p(y|θ). We assume a GP prior with mean function mβ(θ) =
β0 +

∑p
k=1 βkθk +

∑p
k=1 βk+pθ

2
k, where θk is the kth component of the parameter vector θ and

β = (β0, β1, . . . , β2p)
>. We also assume that the log-likelihood surface is smooth and so take

a squared exponential covariance function

Cγ(θ,θ′) = δc exp

{
−1

2

p∑
k=1

(θk − θ′k)2

r2k

}
,

with hyper-parameters γ = (δc, r1, . . . , rp)
>.

Only noisy estimates of the likelihood are available and so we need to model their sampling
distribution. We rely on the log-normal CLT (Bérard et al., 2014) and assume multiplicative
noise with variance δ. This assumption is not quite correct as the estimates are not exactly
log-normal for finite N , even when drawn from a particle filter. Additionally, there may be
some dependence of their accuracy on the parameter value θ. Nevertheless we believe that this
description captures the key aspects of the sampling distribution and has the great benefit
of simplifying the form of GP prediction. Specifically, taking account of the variability in
the function evaluations requires that we add a nugget term to the covariance function, so
that cov{f̂(θ), f̂(θ′)} = Cγ(θ,θ′) + δ1(θ = θ′), where 1(·) denotes the indicator function,
which is 1 if its argument is true and 0 otherwise. We can estimate the GP hyperparameter
ξ = (β,γ, δ) using a training sample containing evaluations of the log-likelihood estimates at
a set of J (input) values Θ. We denote this training sample by DT = {θj , f̂(θj)}Jj=1.

Denote the J × 1 vectors of log-likelihood estimates and (prior) mean functions as f(Θ) and
mβ(Θ), where f(Θ)j = f̂(θj) and mβ(Θ)j = mβ(θj), and the J × J covariance matrix
derived from the covariance function as Cγ(Θ,Θ) where Cγ(Θ,Θ)ij = Cγ(θi,θj). Under the
GP model assumption, we have that f(Θ) ∼ N{mβ(Θ), Cγ(Θ,Θ)+ δI}, where I is the J×J
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identity matrix. This result is obtained by integrating over the random variables describing
the actual function values at the training input values and is thus often referred to as the
marginal likelihood. The hyperparameter can therefore be estimated via maximising the log
marginal likelihood, that is, taking

ξ̂ = arg min
ξ

(
{f(Θ)−mβ(Θ)}>{Cγ(Θ,Θ) + δI}−1{f(Θ)−mβ(Θ)}+ log |Cγ(Θ,Θ) + δI|

)
.

(1)

In practice the estimate is obtained using a numerical scheme and so we use multiple starting
values for the optimisation process in order to obtain a result that we believe to be close to
the maximum marginal likelihood estimate.

The fitted GP is the posterior distribution of the log-likelihood function in light of the observed
training data. It can be used to predict the value of the log-likelihood function f(θ) at any
value θ as its posterior distribution is f(θ)|DT ∼ N{m∗(θ), s∗(θ)2}, where

m∗(θ) = mβ̂(θ) + Cγ̂(Θ,θ)>{Cγ̂(Θ,Θ) + δ̂I}−1{f(Θ)−mβ̂(Θ)}, (2)

s∗(θ)2 = Cγ̂(θ,θ)− Cγ̂(Θ,θ)>{Cγ̂(Θ,Θ) + δ̂I}−1Cγ̂(Θ,θ), (3)

and Cγ̂(Θ,θ) is a J × 1 vector, with Cγ̂(Θ,θ)j = Cγ̂(θj ,θ). Note that the computational

complexity of the GP prediction is O(J3). If the hyperparameter estimate ξ̂ and the training
data DT are static then the inverse computation {Cγ̂(Θ,Θ) + δ̂I}−1 can be re-used for each
new θ. However, if additional training data is added then the inverse must be re-computed.
In such cases it is of interest to limit the number of training points J .

2.3 Pseudo-Marginal MCMC using Gaussian Processes

This section describes how to deploy a GP to accelerate the GIMH algorithm. The new
algorithm, called GP-GIMH, is given in Algorithm 1. More detail about each of the steps is
given below.

As described in the previous section, we use a pilot run of the MCWM algorithm to gen-
erate the design points Θ, during which we record the parameter value and both estimated
log-likelihood values encountered during the MCWM algorithm (even those from rejected
proposals) in the training sample. Our motivation for using MCWM to determine the train-
ing sample for the GP is three-fold: (i) it harnesses the observed data and thus most of the
training points will be parameter values with non-negligible posterior density; (ii) it has good
mixing properties ensuring that the GP is trained at a wide range of plausible θ values; and
(iii) the MCWM method is conservative and so it can provide good coverage of the tails of the
posterior distribution. However, since MCWM is conservative, it may visit parameter regions
where the log-posterior is very low (especially for proposals rejected by the algorithm) and
so we suggest removing points with very low log-posterior (ignoring the normalising constant
independent of θ) values from the training sample so that the training of the GP focuses on
plausible regions of the parameter space.

Once the GP is fitted, giving the functions m∗(θ) and s∗(θ), one might consider an algorithm
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that samples from the following approximate posterior

pGP(θ|y) ∝ exp

{
m∗(θ) +

s∗(θ)2

2

}
p(θ),

where the exponential term is the mean of the log-normal distribution implied by the GP
assumption. A standard MCMC algorithm could be applied to sample from pGP (θ|y). How-
ever, for pGP(θ|y) to be a reasonable approximation of p(θ|y) we require s∗(θ) to not be
too large across important parts of the parameter space. When s∗(θ) is too large at a pro-
posed value θ∗, i.e. s∗(θ∗) > ε for some chosen threshold ε, we apply an intervention. Also,
to reduce computation, we would like to limit the number of times where interventions are
necessary. To achieve this, we adopt a GIMH-style algorithm. Instead of evaluating the
mean of the log-normal density directly, we simulate a log-likelihood estimate from the fitted
GP, N{m∗(θ∗), s∗(θ∗)2}. When s∗(θ∗) > ε and θ∗ is accepted, there is an increased risk of
obtaining a sticky period at θ∗. If s∗(θ∗) > ε and θ∗ is rejected we do not apply an inter-
vention. The intervention involves obtaining a more accurate GP prediction to check if θ∗

was wrongly accepted or to help reduce sticky periods. We obtain K independent estimates
of f(θ∗) = log p(y|θ∗) using the same method (e.g. importance sampling or particle filter
estimates) as in the training phase and determine their mean. Under the log-normal CLT,
this mean also has a normal distribution: f̄K(θ∗) ∼ N{f(θ∗), δ̂/K} where δ̂ is the maximum
likelihood estimate of δ found in (1). We can incorporate this information into our beliefs
about the log-likelihood at this point using a simple Bayes update, to give

f(θ∗)|DT , f̄K(θ∗) ∼ N

(
m∗(θ∗)/s∗(θ∗)2 +Kf̄K(θ∗)/δ̂

1/s∗(θ∗)2 +K/δ̂
.

1

1/s∗(θ∗)2 +K/δ̂

)
, (4)

Therefore the total number of independent log-likelihood estimates needed to secure a suffi-
ciently accurate GP prediction is roughly K = dδ̂{ε−2−s∗(θ∗)−2}e. If these multiple estimates
can be farmed out across say A available processors then the number of estimates in each batch
to achieve this goal is dK/Ae.
We allow a burn-in phase consisting of B iterations where such additional likelihood estimates
can be appended to the training sample DT . The motivation for this burn-in phase is to assist
the GP in being trained in important regions not explored sufficiently in the MCWM phase.
We find in Section 3 that the burn-in phase is useful in applications where it is very expensive
to estimate the likelihood. The computational drawback of the burn-in phase is that the
matrix inversion in (2) and (3) must be re-computed. However, in demanding applications
these additional matrix inversions can be relatively cheap. It would be feasible to re-estimate
the GP hyperparameter after the burn-in phase if desired. We note that the relative computing
time for this should be short in complex applications as the current hyperparameter estimate
can be used as a starting value.

It might be tempting to continually grow the training sample through the entire algorithm and
thereby obtain a more accurate GP across more of the parameter space. However, not only
would this require additional time-consuming calculations of matrix inverses (of increasing
size) but we also find that, as this alters the GP fit in areas previously explored, it creates
unusual trace plots; essentially the target distribution of the algorithm is changing. We discuss
this in more detail in Section 4. Once the additional training data at θ∗ is obtained we
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perform another Metropolis-Hastings accept/reject step but where the log-likelihood estimate
is simulated based on (4).

The value of ε controls the level of uncertainty allowed in the GP prediction when parameter
values are accepted. If ε is set too large then a parameter value may be accepted with a
grossly overestimated log-likelihood value and lead to stickiness in the Markov chain, similar
behaviour that can be observed in the standard GIMH method. Smaller values of ε will lead to
runs that are generally less sticky, but more computation is required to satisfy the constraint
s∗(θ∗) < ε. Recall that Doucet et al. (2015) suggest that the log-likelihood should be estimated
with a standard deviation of roughly 1 for the GIMH method to have similar statistical
efficiency to a standard Metropolis-Hastings method where the likelihood is available. For
our examples we find that ε < 2 is a suitable choice.

In practice we choose ε by performing some very short pilot runs and ensuring that for the
majority of accepted θ∗ we have s∗(θ∗) < ε. Some insight into a suitable value of ε may also
be obtained by inspecting the empirical distribution of the GP prediction standard deviations
at the training points {s∗(θj), θj ∈ DT }. If ε is not in the upper tail of this distribution then
this indicates that the GP training set DT requires additional training points as otherwise
many additional log-likelihood estimates will be needed in GP-GIMH and little algorithmic
speed-up will be obtained.

The speed-up of the GP-GIMH approach is roughly F/(2ρF+G) where F is the time taken to
run GIMH for Q iterations, 2ρF is the time for L iterations of the MCWM pre-computation
step where ρ = L/Q and the value of 2 denotes the fact that two likelihood estimations are
required at each iteration of MCWM, and G is the remaining time of the GP-GIMH method.
In this paper we assume that F is very large; it is computationally demanding to estimate
the likelihood. In such cases G may be negligible in comparison, in which case the speed-up
is roughly Q/(2L). Thus it is of interest to set L small. However, if L is set too small then G
may become non-negligible since the GP may be too uncertain across much of the parameter
space. Furthermore we note that L will naturally need to increase as the parameter dimension
grows (although it may be of interest to increase Q as well). The value of G will also likely
increase with the parameter dimension since it becomes increasingly difficult to train the GP
in areas of non-negligible posterior support. In summary, the GP-GIMH approach does suffer
from the curse of dimensionality. Nonetheless, in Section 3, we demonstrate that it is possible
to achieve significant speed-ups on non-trivial models of moderate dimension. It is important
to note that the above discussion only considers the computational gains. We generally find
also with GP-GIMH that sticky periods can be mitigated, adding to the overall efficiency
gains of GP-GIMH.

Our approach uses the MCWM algorithm to train the GP whereas Wilkinson (2014) uses a
history matching approach, which iteratively fits a GP to samples drawn from a hypercube,
which shrinks upon each successive GP fit. This process may be expensive in moderate
dimensions if uninformative priors are used and it does not exploit the correlation between
parameters as our approach does. We compare the two training approaches on one of the
examples later. Our remaining MCMC algorithm that uses GP predictions is similar to
Wilkinson (2014). However, we include the novel aspects of obtaining additional likelihood
estimates when required and a burn-in phase.

All computations involving GPs are facilitated by the gpml package (Rasmussen and Williams,
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Algorithm 1 GP-GIMH algorithm.

Input: threshold ε, burn-in B and the number of MCMC iterations (iters)
Output: MCMC output θ1, . . . ,θiters

1: Perform an MCWM algorithm for L iterations to help determine an initial training sample.
See the text for more details. The training sample after these processes is denoted as
DT = {θj , f̂(θj)}Jj=1

2: Estimate the hyperparameter ξ = (β,γ, δ) of a GP using the training sample DT
3: Simulate φ0 ∼ LN{m∗(θ0), s∗(θ0)2} from the GP with hyperparameter ξ̂. θ0 can be

chosen based on the MCWM pilot run
4: for i = 1 to iters do
5: Propose θ∗ ∼ q(·|θi−1)
6: Simulate φ∗ ∼ LN{m∗(θ∗), s∗(θ∗)2} from the GP with hyperparameter ξ̂

7: Compute α = min
{

1, φ∗p(θ∗)q(θi−1|θ∗)

φi−1p(θi−1)q(θ∗|θi−1)

}
8: Draw u ∼ U(0, 1)
9: if u < α then

10: if s∗(θ∗) ≤ ε then
11: Set φi = φ∗ and θi = θ∗

12: else
13: Obtain A batches of dK/Ae independent likelihood estimates and update m∗(θ∗)

and s∗(θ∗) using (4)
14: If i ≤ B then append the likelihood estimates to the training sample DT .
15: Simulate φ∗ ∼ LN{m∗(θ∗), s∗(θ∗)2} from the GP with hyperparameter ξ̂

16: Compute α = min
{

1, φ∗p(θ∗)q(θi−1|θ∗)

φi−1p(θi−1)q(θ∗|θi−1)

}
17: if u < α then
18: Set φi = φ∗ and θi = θ∗

19: else
20: Set φi = φi−1 and θi = θi−1

21: end if
22: end if
23: else
24: Set φi = φi−1 and θi = θi−1

25: end if
26: end for

2006) in Matlab, particularly the functions minimize and gp. The function minimize runs
the optimisation process to estimate the hyperparameter. The function gp returns the mean
and variance of the GP prediction with and without the nugget. However, we note that in
(2) and (3), information regarding the expensive matrix inversion can be pre-stored as the
training sample is static for all iterations in GP-GIMH after the burn-in phase. Further, the
gp function contains extensive error checking and additional unnecessary computations for
our purposes. Thus we implement our own function, based on gp, to obtain the mean and
variance of the GP prediction. We find that GP-GIMH based on our GP prediction code runs
roughly two to three times faster compared to the version that uses gp.
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2.4 Related Literature

GPs have been used for the emulation of complex deterministic models by Kennedy and
O’Hagan (2000, 2001) and for complex stochastic models by Henderson et al. (2009, 2010)
and Baggaley et al. (2012). Conrad et al. (2016) use local polynomials or GPs in a Metropolis-
Hastings algorithm to reduce the number of model evaluations that are required. However,
the focus of Conrad et al. (2016) is not on applications where a stochastic likelihood estimator
is available.

Tran et al. (2017) develop a variational Bayes approach that can be used in any applica-
tion where an unbiased likelihood estimator is available to approximate the posterior more
efficiently compared to GIMH. However, the variational approximation is typically of a para-
metric form and assumptions are sometimes made that the parameters are independent a
posteriori.

Rasmussen (2003) use GPs to accelerate the Hamiltonian Monte Carlo (HMC) method for
Bayesian inference when posterior density evaluation is expensive. The proposal distribution
in HMC involves (approximately) solving a Hamiltonian system, and requires several evalu-
ations of the posterior distribution. The GP is trained from a pilot HMC run and used to
approximate posterior evaluations required in the HMC proposal. This method remains exact
as the GP is used only for the proposal and a Metropolis-Hastings (MH) correction is applied
to account for the fact that the Hamiltonian is only solved approximately. The MH correction
step requires an evaluation of the (expensive) exact posterior density.

A related literature is on the delayed-acceptance MCMC method (Christen and Fox, 2005).
Here each proposed parameter goes through an initial Metropolis-Hastings step where the
actual posterior density is replaced by a computationally cheap posterior approximation.
The idea of the method is that ‘poor’ proposals can be rejected quickly and the majority of
‘promising’ proposals make it through to the next Metropolis-Hastings stage, which involves
evaluations of the exact posterior density. The second Metropolis-Hastings step is constructed
so that the Markov chain has the correct limiting distribution. As an example, Golightly et al.
(2015) perform Bayesian inference for Markov jump processes using the corresponding linear
noise approximation in the screening Metropolis-Hastings step. Sherlock et al. (2017) consider
a more general approach and use a k nearest neighbour surrogate within a delayed-acceptance
MCMC algorithm when the likelihood is expensive or when the likelihood is estimated unbi-
asedly. Although the delayed-acceptance MCMC approach is exact, Golightly et al. (2015)
and Sherlock et al. (2017) report efficiency gains of generally less than an order of magnitude.
Our motivation here is to obtain a significant speed-up in very complex applications whilst
accepting some approximation to the posterior.

3 Examples

In the examples below we consider models that can be placed in the state space formulation.
For likelihood estimation we use the bootstrap particle filter (Gordon et al., 1993). The
particle filter is implemented in C whilst the rest of the code is written in Matlab.
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Figure 1: Data simulated from the stochastic volatility model of Section 3.1.1.

3.1 Stochastic Volatility Example

3.1.1 Model and Data

We illustrate our method by analysing data simulated from a stochastic volatility model in
Chopin et al. (2013); this paper (and some of the references therein) give more details of
the model construction and its interpretation. The observation at time t is scalar and has
distribution yt ∼ N (µ+βvt, vt), where vt denotes the evolving and unobserved variance of the
observation process. Here µ and β are static parameters. The evolution of the state process

follows λvt = zt−1−zt+
∑k

j=1 fj , where k ∼ Po(λξ2/w2), c1:k
iid∼ U(t−1, t), f1:k

iid∼ Exp(ξ/w2),

and zt = e−λzt−1 +
∑k

j=1 e
−λ(t−cj)fj , and Po, U and Exp denote the Poisson, uniform and

exponential distributions respectively. Here w2, ξ and λ are additional static parameters
so that the full parameter set is θ = (w2, µ, ξ, β, λ). We assume our prior has independent
components with w2, ξ ∼ Exp(5), µ, β ∼ N (0, 2) and λ ∼ Exp(1). Also we initialise the z-
process using z0 ∼ Ga(ξ2/w2, ξ/w2), that is, a gamma distribution with mean ξ and standard
deviation w.

The observed data for this example has been generated from the model using the same pa-
rameter values as in Chopin et al. (2013), namely w2 = 0.0625, µ = 0, ξ = 0.25, β = 0 and
λ = 0.01. However, our data are a longer series with 5000 observations (as opposed to their
1000 observations). The length of our time series creates a challenging problem for PMCMC
algorithms. The data are shown in Figure 1.

3.1.2 Implementation Details

Unbiased likelihood estimates are determined by using the bootstrap particle filter of Gordon
et al. (1993) withN = 800 particles. This value ofN produces an estimated log-likelihood with
a standard deviation of roughly 2.5 at the true parameter value. For the GIMH method, we
also consider N = 500 and N = 1000 so that an essentially un-optimised GP-GIMH approach
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is compared to a close-to-optimal GIMH run. To further improve the performance of GIMH,
we use the multiple-core PMCMC approach of Drovandi (2014) which uses multiple cores
(here A = 16 cores) to obtain independent likelihood estimates for each proposed parameter
value and takes the average in order to reduce the variance of the estimated likelihood. We
run 100K iterations of GIMH. We also consider MCWM with N = 800 but only run it for
50K iterations as this algorithm requires two likelihood estimates at each iteration. We use
the 16 cores in a similar way to improve the accuracy of MCWM. To use as a gold standard
for comparison purposes, we run the GIMH algorithm for 400K iterations (with N = 800).

For the MCWM pre-computation step of GP-GIMH we use L = 1500, producing ≈ 3000
likelihood estimates. During this step, we adapt the covariance matrix of the multivariate
normal random walk proposal every 10th iteration, following an initial 50 iterations. Recall
that this MCWM output is only used to train the GP. We do not take advantage of any
parallel computing in the MCWM pre-computation phase to illustrate that GP-GIMH can be
effective even when the likelihood is not estimated as precisely as in our implementations of
the standard GIMH and MCWM methods. The maximum log-posterior estimate encountered
during the MCWM pre-computation phase is roughly −4610. We discard any log-posterior
estimates below −4700. The main motivation for selecting this value is to eliminate two
extreme log-likelihood estimates (-8926 and -6362) from the training. There are 18 other
log-likelihood estimates that are also below this chosen threshold. To investigate the effect
of the training sample size, J , we use all samples obtained from the MCWM pre-computing
step and also thin the output by a factor of 2, producing (roughly) J = 1500 and J = 3000.
For comparison purposes the remaining part of GP-GIMH (again 100K iterations) uses the
same multivariate normal random walk as GIMH/MCWM. No burn-in phase is used for GP-
GIMH (i.e. no additional log-likelihood estimates are added to the training sample). We
consider ε values of 1, 1.5 and 2. When the tolerance condition is not met, we obtain dK/Ae
batches of A = 16 independent likelihood estimates. We also make the 16 cores available in
the remaining part of the GP-GIMH algorithm as Matlab automatically parallelises some of
the computations. We run the full GP-GIMH procedure independently five times for each
combination of J and ε.

To simplify comparisons between methods, we assume that a suitable starting value and multi-
variate normal random walk covariance matrix have already been determined, which are used
for each algorithm (except the MCWM pre-computing phase, which adaptively determines
a covariance matrix). Here we use the true parameter value to initialise the chain (unless
otherwise stated) and an updating matrix obtained from some pilot runs. We note that, in
reality, it is likely that the GP-GIMH algorithm would be faster at determining a suitable
covariance matrix given that pilot runs can be performed quickly. This could also be a strong
motivation for using a GP-GIMH algorithm if exact inferences are necessary (up to Monte
Carlo error). We now explore the accuracy of the GP-GIMH algorithm in determining the
posterior distribution.

3.1.3 Results

We find the marginal posterior estimates of GP-GIMH are insensitive to the choices of ε
(see Appendix B). Very occasionally there is a distortion in the posterior tail when ε = 2.0.
Given the insensitivity to ε, in Figures 2 (J ≈ 1500) and 3 (J ≈ 3000) we only present
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Table 1: Upper triangular part of the posterior correlation matrix for θ obtained from the
gold standard GIMH/GP-GIMH (first run with J ≈ 1500 and ε = 1.0) algorithms for the
stochastic volatility model.

µ ξ β λ
w2 -0.91/-0.90 -0.03/0.00 -0.05/-0.02 0.03/0.01
µ 0.02/0.02 0.05/0.01 -0.03/0.00
ξ 0.63/0.68 -0.07/-0.06
β -0.40/-0.33

results for ε = 1. Shown in the figures are results from the 5 independent runs of GP-GIMH,
as well as the results produced by GIMH (gold standard run) and MCWM. One possible
metric to assess the accuracy of the results from the different approximations is the total
variation (TV) distance between the posterior estimates (e.g. kernel density estimates from
the posterior samples, see Appendix K for more details) obtained from an approximation and
the gold standard run. It is important to note that even the GIMH run suffers from Monte
Carlo variability. Tables 1 and 2 in Appendix C show the TV distances between the univariate
and bivariate posteriors, respectively, for the results obtained from GIMH (N = 800), MCWM
and GP-GIMH (results averaged over 5 runs) with respect to the gold standard GIMH run.
Due to the computational expense of computing the TV over two dimensions we only consider
GP-GIMH results for ε = 1.0 and J ≈ 3000. From the tables it is clear that, unsurprisingly,
GIMH is the most accurate. However, GP-GIMH appears to be more accurate than MCWM,
except for any marginal or bivariate posterior that involves the parameter λ. Figures 2 and 3
show a clear bias in the estimated posterior from GP-GIMH for λ. Further, it appears that
the GP-GIMH algorithm has more difficulty approximating the posterior distributions that
show some skewness.

One drawback of GP-GIMH is there is some between-run variability, which is more apparent
for the posterior distributions that deviate away from symmetry. It is likely that this variabil-
ity comes from different GP fits resulting from different MCWM pre-computing runs. From
Figure 3 it appears that the between-run variability is reduced slightly when using the larger
training sample size, J ≈ 3000. We attempt to validate this numerically. Here we consider the
TV distances between the marginal densities produced from an individual run of GP-GIMH
and the average marginal densities over the five runs of GP-GIMH. We then average these five
distances to produce a single measure of the between-run variability. The table for different
combinations of ε and J are shown in Appendix C. It is indeed evident that the between-run
variability is generally reduced for larger J . Further, when J ≈ 1500, we see an increase in the
between-run TV distances for the parameters ξ, β and λ when ε is increased to 2.0. This is
due to the distortion in the tails of these posteriors that is occasionally present when ε = 2.0.
When J ≈ 3000, we see an increase in the between-run TV for λ when ε is increased for the
same reason.

Table 1 shows the upper triangular part of the estimated posterior correlation matrix from
a run of GIMH and one of the runs of GP-GIMH. It is evident that GP-GIMH is able to
produce reasonable estimates of the posterior correlation matrix in this example, confirming
that the algorithm could be useful for determining a suitable proposal distribution for GIMH.
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Figure 2: Estimated marginal posterior densities for the stochastic volatility example from
runs of the gold standard GIMH (red dash) and MCWM (blue dash-dot) algorithms and five
independent runs of the GP-GIMH (black solid) algorithm with J ≈ 1500 and ε = 1.
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Figure 3: Estimated marginal posterior densities for the stochastic volatility example from
runs of the gold standard GIMH (red dash) and MCWM (blue dash-dot) algorithms and five
independent runs of the GP-GIMH (black solid) algorithm with J ≈ 3000 and ε = 1.
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Table 2: Average run times for GP-GIMH (excluding the MCWM pre-computing phase and
GP fitting) for different combinations of J and ε for the stochastic volatility example. The
average time for GP training and fitting is 2.1 hours.

Configuration avg run time (h)

ε = 1.0, J ≈ 1500 0.6
ε = 1.5, J ≈ 1500 0.6
ε = 2.0, J ≈ 1500 0.7
ε = 1.0, J ≈ 3000 1.1
ε = 1.5, J ≈ 3000 1.1
ε = 2.0, J ≈ 3000 1.2

Table 2 shows the run times (averaged over the 5 independent runs) for GP-GIMH (excluding
the MCWM pre-computing phase and GP fitting) for different combinations of J and ε. There
is little sensitivity to the run times with respect to ε. Intuitively, the run time should decrease
with an increase in ε, however only a very small proportion of iterations had s∗(θ∗) > ε even
when ε = 1. The increase in computing time for larger J can be explained by the additional
computation involved in generating the GP prediction. There is actually a complex interaction
between J and ε with respect to the computing time, as we highlight in the next example.

Table 3 compares the statistical and computational efficiency of the three algorithms. The
results for GP-GIMH are based on average results over the five runs. The effective sample
size (ESS) for each parameter in each parameter set is calculated from the output of each
algorithm using the coda package in R (Plummer et al., 2006). An overall summary of the
algorithm output is taken as the minimum ESS value or the average ESS value over all
parameters in the output. Shown also is the clock time in hours. For GP-GIMH, the time
represents the cumulative time for the pre-computation step, GP fitting (allocated 10 minutes
for J ≈ 1500 and 20 minutes for J ≈ 3000) and the remaining MCMC algorithm. For a final
measure of performance we look at the ESS measures divided by the computing time. Here
the GIMH method is slightly more efficient than MCWM. The GIMH method is able to
better take advantage of the 16 cores, which results in an increase in acceptance rate from
6% (single core) to 19% (16 cores), whereas the use of additional cores does not greatly affect
the acceptance rate for MCWM (although it does improve the posterior accuracy). The GP-
GIMH algorithm eclipses both of the other two in terms of statistical efficiency. This is due to
the increased acceptance rate of GP-GIMH relative to GIMH and the fact that GP-GIMH is
run for double the number of iterations compared with MCWM. The GP-GIMH method has
a much higher acceptance rate than GIMH as the log-likelihood estimates generated from the
fitted GP generally have much less noise relative to the log-likelihood estimates obtained from
the bootstrap filter. The total computing time of the GP-GIMH algorithm is considerably
lower than the other two. Improved performance on both the ESS and computing time leads
to an overall performance gain of one to two orders of magnitude for GP-GIMH over GIMH
and MCWM. We also run the GP-GIMH method with 5 different Markov chain starting values
(obtained from the MCWM pre-computation step) and obtain similar efficiency results (based
on run 1 with J ≈ 3000 and ε ∈ {1.0, 2.0}).
Finally we consider whether or not the quality of the GP fit has an impact on the approxima-
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Table 3: Comparison of the computational and statistical efficiency of the GIMH, GP-GIMH
and MCWM algorithms for the stochastic volatility model. For GP-GIMH the results are
averaged over the five independent runs for each combination of J and ε.

method acc rate (%) min ESS avg ESS time (hrs) min ESS/time avg ESS/time

GIMH (N = 500) 11 541 955 32 17 30
GIMH (N = 800) 19 815 1899 77 11 25
GIMH (N = 1000) 22 696 1737 81 9 21

MCWM 34 653 1385 77 8 18
J ≈ 1500, ε = 1.0 30 1457 3399 2.7 559 1305
J ≈ 1500, ε = 1.5 29 1448 3074 2.6 565 1207
J ≈ 1500, ε = 2.0 29 1324 2645 2.8 501 1012
J ≈ 3000, ε = 1.0 30 1501 3651 3.2 471 1146
J ≈ 3000, ε = 1.5 30 1574 3564 3.2 500 1135
J ≈ 3000, ε = 2.0 30 1434 3308 3.3 441 1023

tion error we observe for GP-GIMH. We do this by comparing the GP prediction with other
log-likelihood estimates at training points not used to determine the GP fit. Specifically we
use the fitted GP from the first run of the MCWM pre-computation step and the training
points (and log-likelihood estimates) from the other four MCWM pre-computation runs. The
fit is assessed using a standardised residual

ri =
f̂(θi)−m∗(θi)√

s∗(θi)2 + δ̂
.

Note that the nugget is included in the GP variance term as the comparisons are made with
noisy log-likelihood estimates. In Appendix D, we show normal quantile-quantile plots of the
standardised residuals and plots of these residuals against parameter value components. Note
that we only include residuals at training points with an accurate GP prediction (standard
deviation below ε) as it is only at these points that the GP prediction alone is used. Appendix
D shows the residual plots for different combinations of ε and J . It is evident that the residuals
depart further from normality with an increase in ε. However, from the sensitivity results
in Appendix B, it appears that the GP-GIMH method is somewhat robust to the lack of
normality in this example. In some cases there is a small amount of curvature in the residuals
when plotted against the training samples of each parameter component.

3.2 Gene Network Example

3.2.1 Model and Data

Golightly and Wilkinson (2005) consider a Markov jump process for an autoregulatory gene
network consisting of four species DNA, RNA, P and P2 and explain its relevance and appli-
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Figure 4: Data simulated from the gene network model of Section 3.2.1.

cation. The system is described by eight reactions

DNA + P2
c1DNA×P2−−−−−−−→ DNA · P2, 2P

c5P(P−1)/2−−−−−−−→ P2,

DNA · P2
c2(k−DNA)−−−−−−−→ DNA + P2, P2

c6P2−−−→ 2P,

DNA
c3DNA−−−−→ DNA + RNA, RNA

c7RNA−−−−→ ∅,

RNA
c4RNA−−−−→ RNA + P, P

c8P−−→ ∅,

where k is a conservation constant (number of copies of the gene) and c = (c1, . . . , c8) are
the stochastic rate constants governing the speed at which the system evolves. We study
the scenario in Golightly and Wilkinson (2005) where data are simulated using rates c =
(0.1, 0.7, 0.35, 0.2, 0.1, 0.9, 0.3, 0.1), with k = 10, and initial species levels (DNA,RNA,P,P2) =
(5, 8, 8, 8). We simulate equi-spaced data as the next 100 observations (on all species) recorded
at 0.5 unit time intervals (see Figure 4). We now investigate how our method performs in
making inferences from these simulated data for the stochastic rate constants. Note that we
assume that the conservation constant k and initial species levels are known as this is typical
in designed experiments (and is as in Golightly and Wilkinson (2005)). Note that we assume
these data are observed without error. Even though the observed counts are small, due to
the large number of species, this model does not allow a computationally tractable likelihood
function. As in Fearnhead et al. (2014), we take independent half-Cauchy priors for the pa-
rameters, with density p(ci) ∝ 1/(1 + 4c2i ), ci > 0 for i = 1, . . . , 8. Also, in our analysis, we
remove the positivity constraint on the rate parameters by working on the log scale, that is,
with θi = log ci for i = 1, . . . , 8.

One approach to perform inference for such models is to assume that each species is observed
with Gaussian error with a standard deviation of σ (Holenstein, 2009). This facilitates an
analysis using a standard particle MCMC approach with a bootstrap filter. More accurate
inferences are obtained with a low value of σ, with the correct posterior obtained in the limit
as σ → 0. However as σ decreases, more particles (N) are required to obtain an accurate
likelihood estimate and this makes the procedure increasingly computationally demanding.
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3.2.2 Implementation Details

Here we use σ = 0.6 and N = 6000 for the bootstrap particle filter. As mentioned earlier,
the smaller the value of σ the closer the approximate posterior is to the true posterior with
the drawback that a larger N is required to estimate the likelihood to a reasonable level
of precision. At the true parameter value, the log-likelihood is estimated with a standard
deviation of 1.9 when N = 6000. Similar to the previous example, pilot runs of GIMH are
used to determine a suitable covariance matrix for a multivariate random walk proposal,
which all methods use. For simplicity we start all chains at the true parameter value (unless
otherwise stated). We run GIMH for 100K iterations and MCWM for 50K iterations and make
available the A = 16 cores. At the true parameter value, the standard deviation of the log-
likelihood estimate is roughly 0.75 when using the 16 cores. We also consider N = 4000, 5000
and 8000 for GIMH (70K iterations for N = 8000). For comparison purposes we consider a
gold standard GIMH run of 350K iterations (with N = 6000).

For the GP-GIMH algorithm, we use a similar approach to the previous example. We first run
the MCWM pre-computation step for L = 2000 iterations. During this step, after an initial 50
iterations, we adapt the covariance matrix of the multivariate normal random walk proposal
every 10th iteration. Again we do not use the A = 16 cores in the MCWM pre-computing
phase. The maximum log-posterior encountered during the MCWM pre-computation phase
is roughly −708 and we do not discard any proposals (the minimum is −789). To investigate
the effect of the training sample size, J , we compare the results of using a GP trained on all
likelihood estimates from the MCWM pre-computing step with that of a GP trained on the
same estimates but after thinning the parameter output by a factor of two, producing training
data with (roughly) J = 4000 and J = 2000. The remaining part of GP-GIMH (again 100K
iterations) uses the same multivariate normal random walk as GIMH/MCWM. No burn-in
phase is used for GP-GIMH (in Section 3.2.4 we consider the impact of using a burn-in phase).
We consider ε values of 1.2, 1.5 and 2 and make the 16 cores available. When the tolerance
condition is not met, we obtain dK/Ae batches of A = 16 independent likelihood estimates.
We run the full GP-GIMH procedure independently five times for each combination of J and
ε.

Code to implement our method for this example can be found at http://www.runmycode.

org/companion/view/2663.

3.2.3 Results

Before discussing posterior approximations, we compare our MCWM training procedure with
the history matching approach of Wilkinson (2014). The full details are provided in Appendix
E. We find that with less training time our trained GP is able to predict much more accurately
than the history matching trained GP for samples from the posterior distribution generated
from the exact GIMH method.

As before we find that the GP-GIMH results are generally insensitive to ε, though we oc-
casionally observe incorrect tail behaviour when ε = 2; see the plots in Appendix F. The
marginal posterior density estimates for the different approaches are shown in Figures 5 (with
J ≈ 2000 for GP-GIMH) and 6 (with J ≈ 4000 for GP-GIMH). Both GP-GIMH implemen-
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Figure 5: Estimated marginal posterior densities for the gene network example from runs
of the gold standard GIMH (red dash) and MCWM (blue dash-dot) algorithms and five
independent runs of the GP-GIMH (black solid) algorithm with J ≈ 2000 and ε = 1.2. The
results for GIMH and MCWM are based on N = 6000.

tations use a tolerance of ε = 1.2. We also show the univariate and bivariate TV distances
between the different approximations and the gold standard run in Appendix G. In general
it is evident that the GP-GIMH method is producing results not quite as accurate as GIMH
but more accurate than MCWM for this example. From the between-run TV distances shown
in Appendix G, it is evident that the between-run variability is reduced when increasing J .
Again, for some of the parameters, we see an increase in the between-run TV distances when
ε = 2.0.

From Table 4 it is evident that GP-GIMH is capturing the true posterior correlation matrix
quite accurately. In the GIMH run, there is a period where the Markov chain does not
move for roughly 1700 iterations, which highlights the difficulty encountered with the GIMH
approach. With the GP-GIMH method, as long as ε is set low enough, we do not observe
such sticking behaviour. Trace plots from the different approaches are shown in Appendix H.

Table 5 shows the run times (averaged over the five independent runs) for GP-GIMH for
different combinations of J and ε. Note that these times exclude the MCWM pre-computing
phase and GP fitting. Again these times appear to be fairly insensitive to the tolerance level ε.
It is interesting to note that there is only a small increase in run times for J ≈ 4000. The
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Figure 6: Estimated marginal posterior densities for the gene network example from runs
of the gold standard GIMH (red dash) and MCWM (blue dash-dot) algorithms and five
independent runs of the GP-GIMH (black solid) algorithm with J ≈ 4000 and ε = 1.2.

Table 4: Upper triangular part of the posterior correlation matrix for θ obtained from the
gold standard GIMH/GP-GIMH (first run with J ≈ 2000 and ε = 1.2) algorithms for the
gene network model.

θ2 θ3 θ4 θ5 θ6 θ7 θ8
θ1 0.98/0.97 0.03/0.06 0.00/-0.02 -0.01/-0.04 0.00/-0.04 0.03/0.06 -0.01/0.01
θ2 0.03/0.05 0.00/-0.01 -0.01/-0.04 -0.01/-0.04 0.04/0.05 -0.01/0.02
θ3 -0.01/0.02 -0.01/-0.07 -0.01/-0.07 0.70/0.71 -0.02/-0.01
θ4 0.00/0.06 0.01/0.07 -0.01/-0.02 0.70/0.73
θ5 0.99/0.99 0.00/-0.04 0.01/0.09
θ6 0.00/-0.04 0.01/0.09
θ7 -0.01/-0.04
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Table 5: Average run times for GP-GIMH (excluding the MCWM pre-computing phase and
GP fitting) for different combinations of J and ε for the gene network example. The average
time for GP training and fitting is around 4 hours.

Configuration avg run time (h)

ε = 1.2, J ≈ 2000 1.9
ε = 1.5, J ≈ 2000 1.9
ε = 2.0, J ≈ 2000 2.3
ε = 1.2, J ≈ 4000 2.9
ε = 1.5, J ≈ 4000 2.5
ε = 2.0, J ≈ 4000 2.6

Table 6: Comparison of the computational and statistical efficiency of the GIMH, GP-GIMH
and MCWM algorithms for the gene network model. For GP-GIMH the results are averaged
over the five independent runs for each combination of J and ε. † 70K iterations are used for
GIMH when N = 8000.

method acc rate (%) min ESS avg ESS time (hrs) min ESS/time avg ESS/time

GIMH (N = 4000) 7 517 700 58 9 12
GIMH (N = 5000) 9 689 902 78 9 12
GIMH (N = 6000) 10 537 984 108 5 9
GIMH (N = 8000)† 12 684 944 123 6 8

MCWM 19 445 769 121 4 6
J ≈ 2000, ε = 1.2 13 956 1452 5.9 176 260
J ≈ 2000, ε = 1.5 13 868 1389 5.9 149 240
J ≈ 2000, ε = 2.0 13 495 1190 6.3 81 194
J ≈ 4000, ε = 1.2 13 892 1419 7.1 132 206
J ≈ 4000, ε = 1.5 13 971 1476 6.7 151 226
J ≈ 4000, ε = 2.0 13 716 1354 6.8 110 204

increase in time for GP prediction is offset by the fact that the GP is trained at more points
so that unreliable GP predictions (with s∗(θ∗) > ε) occur less often. Furthermore, there is
lower variability in the run times with J ≈ 4000: in the 15 runs of GP-GIMH with J ≈ 4000
(five independent runs for each of three different ε values) the standard deviation of the run
time is 0.9 hours whereas the corresponding number for J ≈ 2000 is 1.3 hours.

The computational, statistical and overall efficiency of the different approaches is shown in
Table 6. Again it is clear that the GP-GIMH algorithm offers generally at least an order of
magnitude improvement in overall efficiency, resulting from the large reduction in computing
time and a slightly higher acceptance rate than GIMH. The overall efficiency for GP-GIMH
depends little on J in this example. There is perhaps a slight decrease in overall efficiency as
ε increases, especially for ε = 2. We also run the GP-GIMH method with 5 different Markov
chain starting values (obtained from the MCWM pre-computation step) and obtain similar
efficiency results (based on run 1 with J ≈ 4000 and ε ∈ {1.2, 2.0}).
The GP residual plots are shown in Appendix I. As with the previous example, the normality
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assumption of the residuals is increasingly violated with an increase in ε. Again there is a
small amount of curvature in some of the residual plots, however generally the GP appears
to fit reasonably well.

3.2.4 Increasing Accuracy with GP-GIMH

Finally, we attempt to use the increased efficiency of the GP-GIMH approach to target a
smaller value of σ. The idea is to obtain an approximate solution to a more accurate posterior
(in the sense that it is closer to the true posterior) rather than an exact solution to a less
accurate posterior. Here we set σ = 0.4 and use N = 10000 for the MCWM pre-computing
step. Given the challenging nature of this problem, we use the 16 cores in the MCWM pre-
computing step to obtain a more accurate log-likelihood estimate at each iteration of the
MCWM phase by taking the average of 16 independent likelihood estimates. Using the 16
cores, the log-likelihood estimate has a standard deviation of roughly 2.2 at the true parameter
value. The MCWM pre-computing phase is run for 2000 iterations with an adaptive MCMC
strategy as detailed earlier. None of the training samples are discarded. We use ε = 1.2 for
the remaining GP-GIMH algorithm with a multivariate normal proposal estimated from a few
pilot runs of the method. Once the proposal distribution is determined, GP-GIMH is run for
100K iterations.

Given that all 16 cores are already used to obtain a single log-likelihood estimate, additional
likelihood estimates required when s∗(θ∗) > ε can only be obtained in batches of size 1,
increasing the time needed to generate these additional likelihood estimates (compounded
by the fact that we use the larger N = 10000 to accommodate the smaller σ). Given the
complexity of this application, we examine the impact of including for the first time a burn-in
phase. Here we use B = 20000.

Since the likelihood cannot be estimated accurately even with the 16 cores here, GIMH does
not perform well with N = 10000 (acceptance rate of 6% over 10K iterations). Instead we
trial GIMH using N = 14000 (with this choice the standard deviation of the log-likelihood
estimate is roughly 1.6 at the true value).

For GP-GIMH, the MCWM phase takes 10 hours. The remaining part of the GP-GIMH
algorithm takes 7.5 hours without the burn-in phase and 2.3 hours with the burn-in phase.
The improvement in computing time afforded with the burn-in is however reduced in that
20K less iterations can be used for inference. Using the burn-in period would be even more
beneficial if more iterations were performed. Appendix J shows that the posterior estimates
obtained by GP-GIMH depend very little on whether a burn-in is used. The GIMH method
takes roughly 470 hours to run only 100K iterations. Further, there is a dramatic reduction in
acceptance rate, down from 35% for GP-GIMH to 12% for GIMH (note that this is even with
smaller random walk standard deviations to improve the acceptance rate). This amounts to
an efficiency improvement of roughly 100 times for GP-GIMH (with and without the burn-in).

Posterior distribution estimates are shown in Figure 7 for GP-GIMH (σ = 0.4 with burn-in
phase) and GIMH (for both σ = 0.6 and σ = 0.4). It is important to note that the GIMH
posterior estimates with σ = 0.4 are rough as they are based on a low ESS (average ESS over
parameters of about 80). There is a marked shift in the posteriors towards the true values
for θ3 and θ7 when σ is reduced to 0.4, which the GP-GIMH approach is able to capture
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Figure 7: Estimated marginal posterior densities for the gene network example from GIMH
with σ = 0.6 (red dash) and GP-GIMH with σ = 0.4 and a burn-in phase of B = 20000
iterations (black solid).

accurately. There is a gain in precision for θ4 and θ8, which GP-GIMH is also able to capture.
The GP-GIMH approach is recovering the skewed posteriors (θ1, θ2, θ7 and θ8) with less
accuracy, with the method appearing to spend too much time in the right tails. Overall, the
GP-GIMH method is performing well here given the massive improvement in efficiency. The
results of GIMH suggest that the posteriors are moving away from the true parameter values
for θ1 and θ2 when σ is reduced. This might be explained by the fact that only a relatively
small (partially observed) dataset is used here, and so the parameter values most favourable
for the dataset generated may be away from the true parameter values.

4 Discussion

In this paper we have presented an approach to accelerate pseudo-marginal methods using
GPs. We expect our method to be useful in applications with a relatively low number of
parameters and where precise likelihood estimation is very expensive. For accurate posterior
approximations, we also require that the underlying true log-likelihood surface can be well
approximated with a GP. Thus we require a smooth log-likelihood function.
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Other choices for the mean function, covariance function and observation model may be
selected. Such selections are likely to be problem dependent, for example some noisy log-
likelihood functions might be better modelled with an error variance that depends on θ, such
as heteroscedastic GP models (Goldberg et al., 1998; Kersting et al., 2007). In practice one
may use a model selection procedure (Rasmussen and Williams, 2006, chap. 5) to determine
the most appropriate GP for a given training sample. Järvenpää et al. (2016) use a GP with
input-dependent noise for ABC and discuss model selection in this context. However, a more
sophisticated GP will result in more complex computations involving the GP. This requires
further investigation.

In this article we have not investigated the optimal standard deviation of the log-likelihood
estimator to use in the MCWM pre-computing phase. Such an investigation would require an
extensive and significant simulation study. Here we found success when the standard deviation
of the log-likelihood estimator is roughly 2 in the MCWM pre-computing phase. This is of
interest as it is larger than that recommended for GIMH (Doucet et al., 2015), which suggests
that our approach should be useful in complex scenarios.

Here we used a multivariate normal random walk proposal in the MCMC. Alternatively,
the pre-computed approximation to the log-likelihood could also be used to design improved
proposals for GP-GIMH. The covariance function of the GP could be viewed as a smoothed
representation of the geometry of the parameter space. Where there is strong dependence
between parameters, information such as gradient and curvature can be utilised to propose
large moves with high acceptance probability. For example, Zhang et al. (2017) incorporate
a pre-computation step in their approximate Hamiltonian Monte Carlo method (see also
Rasmussen (2003)).

Our approach could also be used to accelerate approximate Bayesian inferences when an
expensive biased likelihood estimator is used. Alquier et al. (2016) present a noisy MCMC
framework that provides bounds on the error when a biased likelihood estimator is used in
an MCMC method. Another example is the synthetic likelihood of Wood (2010) (see also
Price et al. (2017)), which assumes a multivariate normal approximation for the likelihood
of a summary statistic, with a mean and covariance matrix estimated by repeated model
simulation.

A GP surrogate may be incorporated into delayed-acceptance MCMC to facilitate exact
Bayesian inferences in the presence of models where only an unbiased likelihood estimator
is available or those with expensive likelihood functions. There is scope here to adapt the GP
during the MCMC algorithm by adding training samples when necessary and/or re-estimating
hyperparameters.

If exact results are necessary, the output of our GP-GIMH approach may be used to form an
importance distribution for importance sampling (IS) or sequential Monte Carlo (SMC). The
IS and SMC approaches have been extended to allow for unbiased likelihood estimators to be
used (see Chopin et al. (2013), Tran et al. (2014), Duan and Fulop (2015) and Drovandi and
McCutchan (2016)). The IS and SMC methods are of additional interest as they produce also
an estimate of the evidence, which can be used for fully Bayesian model comparisons; see, for
example, Drovandi and McCutchan (2016) and Carson et al. (2017).
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A GIMH and MCWM algorithms

The pseudo-marginal algorithms discussed in the main text are shown in Algorithm 1 (GIMH) and
Algorithm 2 (MCWM).

Algorithm 1 GIMH algorithm of Beaumont (2003).

Input: θ0 and iters
Output: MCMC output θ1, . . . ,θiters

1: Compute φ0 = p̂(y|θ0)
2: for i = 1 to iters do
3: Propose θ∗ ∼ q(·|θi−1)
4: Compute φ∗ = p̂(y|θ∗)
5: Compute α = min

{
1, φ∗p(θ∗)q(θi−1|θ∗)

φi−1p(θi−1)q(θ∗|θi−1)

}
6: Draw u ∼ U(0, 1)
7: if u < α then
8: Set φi = φ∗ and θi = θ∗

9: else
10: Set φi = φi−1 and θi = θi−1

11: end if
12: end for

Algorithm 2 MCWM algorithm of Beaumont (2003).

Input: θ0 and iters
Output: MCMC output θ1, . . . ,θiters

1: Compute φ0 = p̂(y|θ0)
2: for i = 1 to iters do
3: Compute φi−1 = p̂(y|θi−1)
4: Propose θ∗ ∼ q(·|θi−1)
5: Compute φ∗ = p̂(y|θ∗)
6: Compute α = min

{
1, φ∗p(θ∗)q(θi−1|θ∗)

φi−1p(θi−1)q(θ∗|θi−1)

}
7: Draw u ∼ U(0, 1)
8: if u < α then
9: Set θi = θ∗

10: else
11: Set θi = θi−1

12: end if
13: end for
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B Sensitivity of GP-GIMH to ε for the stochastic volatility example
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Figure 1: Sensitivity to ε for the stochastic volatility example for the first independent run when J ≈ 1500.
Posterior estimates are shown for ε = 1.0 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 2: Sensitivity to ε for the stochastic volatility example for the second independent run when
J ≈ 1500. Posterior estimates are shown for ε = 1.0 (black), ε = 1.5 (blue) and ε = 2.0 (red).

4



-0.1 -0.05 0 0.05 0.1

w2

0

10

20

30

-0.4 -0.2 0 0.2

µ

0

5

10

0.2 0.3 0.4 0.5 0.6

ξ

0

5

10

15

0 0.05 0.1 0.15

β

0

20

40

60

0 0.01 0.02 0.03

λ

0

50

100

150

Figure 3: Sensitivity to ε for the stochastic volatility example for the third independent run when J ≈ 1500.
Posterior estimates are shown for ε = 1.0 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 4: Sensitivity to ε for the stochastic volatility example for the fourth independent run when
J ≈ 1500. Posterior estimates are shown for ε = 1.0 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 5: Sensitivity to ε for the stochastic volatility example for the fifth independent run when J ≈ 1500.
Posterior estimates are shown for ε = 1.0 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 6: Sensitivity to ε for the stochastic volatility example for the first independent run when J ≈ 3000.
Posterior estimates are shown for ε = 1.0 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 7: Sensitivity to ε for the stochastic volatility example for the second independent run when
J ≈ 3000. Posterior estimates are shown for ε = 1.0 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 8: Sensitivity to ε for the stochastic volatility example for the third independent run when J ≈ 3000.
Posterior estimates are shown for ε = 1.0 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 9: Sensitivity to ε for the stochastic volatility example for the fourth independent run when
J ≈ 3000. Posterior estimates are shown for ε = 1.0 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 10: Sensitivity to ε for the stochastic volatility example for the fifth independent run when J ≈
3000. Posterior estimates are shown for ε = 1.0 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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C Total variation distances for the stochastic volatility example

Table 1: TV distances between the marginals of the gold standard GIMH run and the GIMH, MCWM
and GP-GIMH (for different values of ε and J where the results are averaged over the five runs) methods
for the stochastic volatility example.

method w2 µ ξ β λ

GIMH (N = 800) 0.032 0.018 0.027 0.023 0.016
MCWM 0.068 0.079 0.095 0.099 0.052

GP-GIMH (ε = 1.0, J ≈ 1500) 0.033 0.032 0.032 0.086 0.158
GP-GIMH (ε = 1.5, J ≈ 1500) 0.033 0.034 0.038 0.088 0.151
GP-GIMH (ε = 2.0, J ≈ 1500) 0.031 0.031 0.042 0.097 0.157
GP-GIMH (ε = 1.0, J ≈ 3000) 0.026 0.024 0.044 0.061 0.190
GP-GIMH (ε = 1.5, J ≈ 3000) 0.025 0.025 0.044 0.064 0.192
GP-GIMH (ε = 2.0, J ≈ 3000) 0.023 0.024 0.042 0.060 0.192

Table 2: TV distances between the bivariate posterior distributions of the gold standard GIMH run and
the GIMH/MCWM/GP-GIMH (based on the average over five runs with ε = 1.0 and J ≈ 3000) methods
for the stochastic volatility example.

µ ξ β λ

w2 0.24/0.50/0.22 0.25/0.50/0.28 0.21/0.54/0.30 0.33/0.58/0.93
µ 0.24/0.54/0.28 0.22/0.56/0.30 0.14/0.64/0.93
ξ 0.24/0.56/0.42 0.25/0.68/0.94
β 0.14/0.69/0.98

Table 3: The mean TV distances over the five independent runs of GP-GIMH between each run and the
mean of the five runs for the stochastic volatility example. Results are shown for different combinations
of ε and J .

GP-GIMH parameters w2 µ ξ β λ

(ε = 1.0, J ≈ 1500) 0.031 0.028 0.027 0.048 0.044
(ε = 1.5, J ≈ 1500) 0.032 0.029 0.032 0.052 0.051
(ε = 2.0, J ≈ 1500) 0.030 0.028 0.039 0.063 0.062
(ε = 1.0, J ≈ 3000) 0.024 0.021 0.032 0.041 0.014
(ε = 1.5, J ≈ 3000) 0.021 0.021 0.030 0.043 0.021
(ε = 2.0, J ≈ 3000) 0.020 0.021 0.029 0.039 0.024
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D GP residual plots for the stochastic volatility example for different
values of J and ε
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Figure 11: Residual plots of the GP fit for the stochastic volatility example when J ≈ 1500 and ε = 1.0.
The grey curves show a quadratic fit to the residuals.
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Figure 12: Residual plots of the GP fit for the stochastic volatility example when J ≈ 1500 and ε = 1.5.
The grey curves show a quadratic fit to the residuals.
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Figure 13: Residual plots of the GP fit for the stochastic volatility example when J ≈ 1500 and ε = 2.0.
The grey curves show a quadratic fit to the residuals.
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Figure 14: Residual plots of the GP fit for the stochastic volatility example when J ≈ 3000 and ε = 1.0.
The grey curves show a quadratic fit to the residuals.
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Figure 15: Residual plots of the GP fit for the stochastic volatility example when J ≈ 3000 and ε = 1.5.
The grey curves show a quadratic fit to the residuals.
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Figure 16: Residual plots of the GP fit for the stochastic volatility example when J ≈ 3000 and ε = 2.0.
The grey curves show a quadratic fit to the residuals.
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E History matching

The history matching approach of Wilkinson (2014) for GP training is shown in Algorithm 3. The
method begins by sampling J trial values from the prior (Wilkinson (2014) suggest to use quasi-Monte
Carlo numbers for this step since it has better space filling properties than pseudo-random numbers),
estimating the log-likelihood for each trial value and fitting a GP where the training data is denoted as
DT = {θj , f̂(θj)}Jj=1. Then, the fitted GP is used to define a region of the θ-space of implausibility.

A proposed value θ∗ is determined as not implausible if m∗(θ∗) + 3σ∗(θ∗) < max{f̂(θj)}Jj=1 − T . A
suitable value of T must be selected by the user. The portion of the training data that is deemed as not
implausible by the fitted GP is retained and is replenished by continually simulating from the prior until
J not implausible values are again generated.

From the new training set, another GP is fitted and the process continues in waves, where each proposed
θ∗ is required to pass the non-implausibility test of the fitted GPs thus far.

Algorithm 3 History matching algorithm of Wilkinson (2014) for GP training.

Input: Number of trial points J , threshold T > 0 for determining implausibility, number of waves W .
Output: A set of training samples and fitted GPs for W waves.

1: Simulate {θj}Jj=1
iid∼ p(θ).

2: Estimate log-likelihood f(θj) for j = 1, . . . , J . This produces training data DT = {θj , f̂(θj)}Jj=1.
3: for w = 1 to W do
4: Fit GP model to DT . Denote the fitted GP as GPw.
5: Compute m∗(θj) and σ∗(θj)

2 from the fitted GPw for j = 1, . . . , J .
6: Determine which of the current trial values {θj}Jj=1 are not implausible based on GPw where

implausibility occurs when m∗(θj) + 3σ∗(θj) < max{f̂(θj)}Jj=1 − T . Remove implausible values
from the training data.

7: while number of not implausbile trial values < J do
8: while true do
9: Propose θ∗ ∼ p(θ).

10: Check through all GP fits {GPk}wk=1 that θ∗ is not implausible. If it is implausible, go back
to line 9, otherwise go to the next step.

11: Estimate log-likelihood f(θ∗) and add (θ∗, f(θ∗)) to the training data. Break out of the inner
while loop.

12: end while
13: end while
14: end for

We apply the history matching method to the gene network example of the main paper. We encountered
several issues. For the initial training data from the prior, there are several extremely low log-likelihood
estimates. As suggested by Wilkinson (2014), the GP is fitted to the values log{−f̂(θj)} for j = 1, . . . , J .
Wilkinson (2014) suggest that this might only be required for the first few waves. However, we find
that even after 10 waves there are still proposed parameter values that are deemed not implausible even
though they produce very low log-likelihood estimates. Thus our fitted GPs always use log{−f̂(θ)} as the
response variable. Further, the samples from the prior can be particularly poor so that due to numerical
problems the log-likelihood is estimated to be −∞. We set such estimates to the minimum log-likelihood
of the other training samples so that such parameter regions are discouraged in future waves. Unlike
Wilkinson (2014), we also find that using a constant value of T through the waves is not suitable. Here
we choose a value of T at each wave such that a certain percentage of the training data are deemed to be
non-implausible by the fitted GP.

For the gene network example we use J = 1000 and select T at each wave using the bisection method
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so that roughly 250 of the training data are deemed non-implausible. We use W = 10 waves so that
750× 10 + 1000 = 8500 log-likelihood estimates are required. This is more than our MCWM approach in
the main paper, but the history matching approach is more suitable for parallel computing. However, the
9th and 10th waves are computationally intensive as many prior simulations are required to find parameter
values that are deemed not implausible by all the fitted GPs. Thus the history matching approach is
comfortably allocated more training time compared to our MCWM approach in the main paper.

Boxplots of the values of log{−f̂(θ)} in the training set over the 10 waves is shown in Figure 17. Even
though there is general improvement in the log-likelihood estimates as the wave number increases, in the
last wave there are still many parameter values that are not rejected by the previously fitted GPs that
produce very low log-likelihood estimates.
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Figure 17: Boxplot of log{−f̂(θ)} values obtained during the history matching procedure.

To compare the performance of the history matching and MCWM to training in the context of our pseudo-
marginal application, we took 1000 samples from the actual posterior of the gene network example by
thinning the output of the exact GIMH method. We then predict from the different GP fits at these test
samples and compare the predicted log-likelihood to the log-likelihood estimates from the particle filter.
For the history matching method, we consider the fitted GP from the final wave. The results are shown
in Figure 18. It is clear that the MCWM training approach leads to a GP that predicts more successfully
in posterior support regions.
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Figure 18: Comparison of GP predictions of the log-likelihood estimates from a posterior sample for the
gene network example. (a) GP fitted from the last wave of history matching and (b) GP fitted based on
the MCWM approach of the main paper.
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F Sensitivity of GP-GIMH to ε for the gene network example
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Figure 19: Sensitivity to ε for the gene network example for the first independent run when J ≈ 2000.
Posterior estimates are shown for ε = 1.2 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 20: Sensitivity to ε for the gene network example for the second independent run when J ≈ 2000.
Posterior estimates are shown for ε = 1.2 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 21: Sensitivity to ε for the gene network example for the third independent run when J ≈ 2000.
Posterior estimates are shown for ε = 1.2 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 22: Sensitivity to ε for the gene network example for the fourth independent run when J ≈ 2000.
Posterior estimates are shown for ε = 1.2 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 23: Sensitivity to ε for the gene network example for the fifth independent run when J ≈ 2000.
Posterior estimates are shown for ε = 1.2 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 24: Sensitivity to ε for the gene network example for the first independent run when J ≈ 4000.
Posterior estimates are shown for ε = 1.2 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 25: Sensitivity to ε for the gene network example for the second independent run when J ≈ 4000.
Posterior estimates are shown for ε = 1.2 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 26: Sensitivity to ε for the gene network example for the third independent run when J ≈ 4000.
Posterior estimates are shown for ε = 1.2 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 27: Sensitivity to ε for the gene network example for the fourth independent run when J ≈ 4000.
Posterior estimates are shown for ε = 1.2 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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Figure 28: Sensitivity to ε for the gene network example for the fifth independent run when J ≈ 4000.
Posterior estimates are shown for ε = 1.2 (black), ε = 1.5 (blue) and ε = 2.0 (red).
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G Total variation distances for the gene network example

Table 4: TV distances between the marginal posterior distributions of the gold standard GIMH run and
the GIMH, MCWM and GP-GIMH (for different values of ε and J where results are averaged over the
five runs) methods for the gene network example.

method θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
GIMH (N = 6000) 0.026 0.031 0.016 0.026 0.047 0.044 0.028 0.033

MCWM 0.117 0.115 0.067 0.092 0.106 0.110 0.076 0.101
GP-GIMH (ε = 1.2, J ≈ 2000) 0.053 0.053 0.066 0.046 0.074 0.069 0.070 0.059
GP-GIMH (ε = 1.5, J ≈ 2000) 0.055 0.054 0.066 0.042 0.081 0.075 0.071 0.055
GP-GIMH (ε = 2.0, J ≈ 2000) 0.058 0.058 0.056 0.047 0.091 0.088 0.072 0.056
GP-GIMH (ε = 1.2, J ≈ 4000) 0.037 0.040 0.064 0.063 0.064 0.058 0.078 0.076
GP-GIMH (ε = 1.5, J ≈ 4000) 0.041 0.039 0.065 0.066 0.065 0.062 0.082 0.080
GP-GIMH (ε = 2.0, J ≈ 4000) 0.050 0.042 0.064 0.060 0.068 0.064 0.082 0.076

Table 5: TV distances between the bivariate posterior distributions of the gold standard GIMH run and
GIMH/MCWM/GP-GIMH (based on the average over five runs with ε = 1.0 and J ≈ 4000) methods for
the gene network example.

θ2 θ3 θ4 θ5 θ6 θ7 θ8
θ1 0.07/0.14/0.08 0.07/0.14/0.10 0.07/0.15/0.09 0.09/0.17/0.10 0.09/0.17/0.09 0.08/0.15/0.10 0.08/0.15/0.10
θ2 0.07/0.14/0.10 0.07/0.15/0.09 0.09/0.17/0.10 0.09/0.17/0.09 0.08/0.15/0.11 0.08/0.15/0.10
θ3 0.06/0.12/0.10 0.08/0.14/0.10 0.08/0.14/0.10 0.06/0.11/0.10 0.07/0.12/0.11
θ4 0.08/0.15/0.10 0.08/0.15/0.10 0.07/0.13/0.11 0.06/0.13/0.10
θ5 0.08/0.15/0.09 0.08/0.14/0.12 0.09/0.15/0.11
θ6 0.09/0.14/0.11 0.08/0.15/0.11
θ7 0.06/0.13/0.12

Table 6: The mean TV distances over the five independent runs of GP-GIMH between each run and the
mean of the five runs for the gene network example. Results are shown for different combinations of ε
and J .

GP-GIMH parameters θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8
(ε = 1.2, J ≈ 2000) 0.044 0.043 0.037 0.026 0.057 0.057 0.038 0.025
(ε = 1.5, J ≈ 2000) 0.043 0.043 0.042 0.028 0.064 0.065 0.045 0.029
(ε = 2.0, J ≈ 2000) 0.054 0.055 0.040 0.034 0.070 0.072 0.044 0.030
(ε = 1.2, J ≈ 4000) 0.027 0.028 0.029 0.027 0.036 0.036 0.029 0.025
(ε = 1.5, J ≈ 4000) 0.030 0.028 0.033 0.025 0.046 0.047 0.031 0.020
(ε = 2.0, J ≈ 4000) 0.041 0.036 0.033 0.027 0.037 0.040 0.029 0.026
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H Trace plots for the gene network example

Trace plots for θ1 of the gene network example are shown in Figure 29 for the different approaches.
The GIMH (Figure 29(a)) and GP-GIMH (Figure 29(b)) results are thinned by a factor of 20 whilst the
MCWM results (Figure 29(c)) are thinned by a factor of 10. In Figure 29(a) it is evident that the GIMH
method becomes stuck for a large number of iterations around iteration 2000 (after thinning) whilst the
GP-GIMH run Figure 29(b) displays generally better mixing. The MCWM method (Figure 29(c)) has a
tendency to mix well at it is less affected by over estimated likelihoods unlike GIMH.
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Figure 29: Trace plots of θ1 for the gene network example. (a) GIMH, (b) GP-GIMH (first of the 5 runs
with ε = 1.2) and (c) MCWM.
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I GP residual plots for the gene network example for different values
of J and ε
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Figure 30: Residual plots of the GP fit for the gene network example when J ≈ 2000 and ε = 1.2. The
grey curves show a quadratic fit to the residuals.
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Figure 31: Residual plots of the GP fit for the gene network example when J ≈ 2000 and ε = 1.5. The
grey curves show a quadratic fit to the residuals.
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Figure 32: Residual plots of the GP fit for the gene network example when J ≈ 2000 and ε = 2.0. The
grey curves show a quadratic fit to the residuals.
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Figure 33: Residual plots of the GP fit for the gene network example when J ≈ 4000 and ε = 1.2. The
grey curves show a quadratic fit to the residuals.
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Figure 34: Residual plots of the GP fit for the gene network example when J ≈ 4000 and ε = 1.5. The
grey curves show a quadratic fit to the residuals.
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Figure 35: Residual plots of the GP fit for the gene network example when J ≈ 4000 and ε = 2.0. The
grey curves show a quadratic fit to the residuals.
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J Comparison of GP-GIMH results for the gene network model (with
σ = 0.4) with and without the burn-in
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Figure 36: GP-GIMH results for the gene network model with σ = 0.4 with (black solid) and without
(red dash) the burn-in phase.
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K Total variation distance calculation

One measure of the difference between two probability distributions with densities f and g is the total
variation (TV) distance, which is given by

δ(f, g) =
1

2

∫
θ
|f(θ)− g(θ)|dθ.

In our context there is not an analytical expression for either f or g, but we are able to generate samples
(albeit correlated ones from the output of MCMC methods) from these distributions. We can use these
samples and non-parametric techniques to produce density estimates f̂ and ĝ. Then, we consider a regular
grid of θ values where both f and g have non-negligible density in order to approximate the integral needed
to compute the TV distance.

Due to the difficulty of estimating densities non-parametrically in high-dimension and also in approx-
imating high-dimensional integrals we consider computing the TV distance over all the one and two
dimensional marginals of f and g. Since MCMC samples from joint distributions it also automatically
samples from the marginals. Consider the ith and jth component of the parameter vector θ. Consider
a regular grid over this two dimensional space with spacings ∆i and ∆j in the ith and jth directions,
respectively. Then the estimate of the TV distance is given by

δ̂(f, g) =
1

2
∆i∆j

∑
i

∑
j

|f̂(θi, θj)− ĝ(θi, θj)|.

For one dimensional density estimation we use the ksdensity function in MATLAB, which automatically
selects a bandwidth. For two dimensional density estimation we use the ks package (Duong, 2015) in R
and the automatic Matrix bandwidth selection approach of Wand and Jones (1994). We use thinning to
reduce the dependence between the MCMC samples when estimating the densities and also choose the
grid upon inspection of the approximated densities. We use a larger thinning interval and a coarser grid
when computing the two dimensional TV distances to reduce the required computation.

References

Beaumont, M. A. (2003). Estimation of population growth or decline in genetically monitored populations.
Genetics, 164(3):1139–1160.

Duong, T. (2015). ks: Kernel Smoothing. R package version 1.10.0.

Wand, M. P. and Jones, M. C. (1994). Multivariate plug-in bandwidth selection. Computational Statistics,
9(2):97–116.

Wilkinson, R. (2014). Accelerating ABC methods using Gaussian processes. Journal of Machine Learning
Research, 33:1015–1023.

42


	Pseudo_Marginal_GP_Revision
	Appendix_Revision

