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Maintaining Near-Popular Matchings

Sayan Bhattacharya∗ Martin Hoefer† Chien-Chung Huang‡ Telikepalli Kavitha §

Lisa Wagner ¶

Abstract

We study dynamic matching problems in graphs among agents with preferences. Agents and/or
edges of the graph arrive and depart iteratively over time. The goal is to maintain matchings that
are favorable to the agent population and stable over time. More formally, we strive to keep near-
popular matchings with a small unpopularity factor by making only a small amortized number of
changes to the matching per round. Our main result is an algorithm to maintain matchings with
unpopularity factor (∆ + k) by making an amortized number of O(∆ + ∆2/k) changes per round,
for any k > 0. Here ∆ denotes the maximum degree of any agent in any round. We complement
this result by a variety of lower bounds indicating that matchings with smaller factor do not exist
or cannot be maintained using our algorithm.

As a byproduct, we obtain several additional results of independent interest. First, our al-
gorithm implies existence of matchings with small unpopularity factors in graphs with bounded
degree. Second, given any matching M and any value α ≥ 1, we provide an efficient algorithm to
compute a matching M ′ with unpopularity factor α over M if it exists. Finally, our results show
the absence of voting paths in two-sided instances, even if we restrict to sequences of matchings
with larger unpopularity factors (below ∆).
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1 Introduction

Matching arises as a fundamental task in many coordination, resource allocation, and network design
problems. In many domains, matching and allocation problems occur among agents with preferences,
e.g., in job markets, when assigning residents to hospitals, or students to dormitory rooms, or when
allocating resources in distributed systems. There are a number of approaches for formal study
of allocation under preferences, the most prominent being stable and Pareto-optimal matchings.
Usually, there is a set of agents embedded into a graph, and each agent has a preference list over his
neighbors. An edge is called a blocking pair if both agents strictly prefer each other to their current
partners (if any). A matching without blocking pair is a stable matching. In contrast, a matching
M is Pareto-optimal if there is no other matching M ′ such that every agent strictly prefers M ′ over
M . In this paper, we study a generalization of Pareto-optimality called popularity. In a popular
matching all agents get to vote between two matchings M and M ′. They vote for M if it yields a
partner which is strictly preferred to the one in M ′, or vice versa (they don’t vote if neither of them is
strictly preferred). The matching that receives more votes is more popular. For a popular matching
there exists no other matching that is more popular.

Stable matchings have been studied intensively in algorithms, economics, operations research,
and game theory, and popular matching are received increased attention in recent years. However,
most of the work on matching under preferences uses the assumption that the set of agents and
the set of possible matching edges remain static. In contrast, many application areas above are
inherently dynamic. For example, in a large firm new jobs open up on a repeated basis, e.g., due to
expansion into new markets, retirement of workers, or the end of fixed-term contracts. Similarly, new
applicants from outside arrive, or internal employees seek to get promoted or move into a different
department. The firm strives to fill its positions with employees in a way that is preferable to both
firm and workers. The naive approach would be to compute, e.g., a stable or popular matching from
scratch every time a change happens, but then employees might get assigned differently every time.
Instead, the obvious goal is to maintain a stable or popular assignment at a small rate of change.
Similar problems arise also in the context of dormitory room assignment or resource allocation in
distributed systems. While there have been works on the impact of addition and deletion of agents
on stable matchings, designing algorithms with the goal to maintain matchings under preferences at
a small rate of change has not been addressed in the literature so far.

Maintaining graph-theoretic solution concepts like matchings or shortest paths is an active re-
search area in algorithms. In these works, the objective is to maintain matchings of maximum car-
dinality while making a small number of changes. These approaches are unsuitable for systems with
agent preferences, which fundamentally change the nature and the characteristics of the problem.

More fundamentally, a central theme in algorithmic game theory is to study dynamics in games
such as best response or no-regret learning. However, in the overwhelming majority of these works,
the games themselves (agents, strategies, payoffs) are static over time, and the interest is to charac-
terize the evolution of strategic interaction. In contrast, there are many games in which maintaining
stability concepts at a small rate of change is a natural objective, such as in routing or scheduling
problems. To the best of our knowledge, our paper is the first to study algorithms for maintaining
equilibria in the prominent domain of matching and network design problems.

1.1 Model and Notation

Before we state our results, let us formally introduce the model and notation. We assume there is a
set V of vertices. Our analysis treats three different structural domains. In the roommates domain,
every vertex v ∈ V is an agent. An agent has a preference list �v over other agents V \ {v}. The
preference list of v can be incomplete (ranks only a subset of V \ {v}) and have ties (several agents
of V \ {v} are equally preferred). In the two-sided domain, the V is partitioned into two agent sets
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X and Y . Each agent x ∈ X has a preference list over agents in Y , and each agent y ∈ Y a list over
agents in X. In the one-sided domain, the vertex set V is partitioned into sets X and Y . Y is a set
of agents, and X is a set of houses. Every agent y ∈ Y has a preference list �y over all houses, but
houses do not have preferences. For two-sided and one-sided domains, we also allow incomplete lists
with ties. Each agent prefers being matched to any partner from its list over being unmatched.

Based on the preference lists we define a set of undirected edges E. In roommates and two-sided
domains, edge e = {u, v} ∈ E if and only if �u contains v and �v contains u, i.e., both agents prefer
to be matched via e than unmatched. In one-sided domains, edge e = {x, y} ∈ E if and only if �y

contains x, i.e., agent y would rather be matched to house x than unmatched. Obviously, E ⊆ X×Y
for one-sided and two-sided domains.

In each round t = 0, 1, . . . of the dynamics, there is an undirected graph Gt = (V t, Et), where
V t ⊆ V is a subset of vertices and Et ⊆ E a subset of undirected edges. The edges in Et indicate
the pairs of agents that are allowed match in round t. Equivalently, we assume that in round t the
preference list of each agent v ∈ V t is truncated to the set of its neighbors in Gt. For one-sided
domains, we assume that the houses are always present, i.e., X ⊆ V t for all t ≥ 0.

We consider two types of dynamics that describe how the system evolves from Gt to Gt+1. For
edge dynamics, we have initially E0 = ∅, and V t = V for all t ≥ 0. In the beginning of each round
t ≥ 1, a single edge is added or deleted, i.e., Et and Et+1 differ in exactly one edge. We denote this
edge by et. Note that a particular edge e can be added and removed multiple times over time.

For vertex dynamics, we have initially V 0 = E0 = ∅ for two-sided and roommates domains,
and V 0 = X and E0 = ∅ in one-sided domains. In the beginning of each round t ≥ 1, a single
agent arrives or departs. We denote this agent by vt, where the same agent can arrive and depart
multiple times over time. If vt arrives, then all edges from v to vertices in V t−1 are added, i.e.,
Et = Et−1 ∪ (E ∩ ({v}× V t−1)). Conversely, if vt departs, then all edges incident to vt are removed,
i.e., Et = Et−1 \ (E ∩ ({v} × V t−1)).

Equivalently, we can assume that in vertex dynamics all vertices are present throughout, i.e.,
V t = V for all t ≥ 0. We color them red and blue depending on whether they have arrived or not,
respectively. Then, in the beginning of a round, if vt arrives, it is colored red and all edges from E
between vt and red agents arrive. If vt departs, it is colored blue and all incident edges are removed.
Thus, Et and Et+1 differ by exactly a set of edges from vt to red agents. Vertex dynamics also
capture the case when in each round the preference list of one vertex changes. Assume there is a
separate vertex with the new preference list and consider two rounds in which the old vertex departs
and the new one arrives. Since the asymptotic bounds we prove in this paper do not depend on the
overall number of agents or edges, they directly apply also to this case.

Our goal is to maintain at small amortized cost a matching in each round that satisfies a preference
criterion. Towards this end, we study several criteria in this paper. For matching M and agent v
we denote by M(v) the agent matched to v in M , where we let v = M(v) when v is unmatched. In
round t, an edge e = (u, v) ∈ Et \M is called a blocking pair for matching M ⊆ Et if u �v M(v)
and v �u M(u). M is a stable matching if it has no blocking pair.

For two matchings M and M ′, v is called a (+)-agent if M ′(v) �v M(v). We call v a (−)-agent if
M(v) �v M

′(v) and (0)-agent if M ′(v) = M(v). We denote by V +, V − and V 0 the sets of (+)-, (−)-
and (0)-agents, respectively. For α ≥ 1, we say M ′ is α-more popular than M if |V +| ≥ α · |V −|. If
|V +| = |V −| = 0, we say M ′ is 1-more popular than M , and if |V +| > 0 = |V −| then M ′ is ∞-more
popular than M . In round t, the unpopularity factor ρ(M) ∈ [1,∞) ∪ {∞} of matching M ⊆ Et

is the maximum α such that there is an α-more popular matching M ′ ⊆ Et. M is a c-unpopular
matching if it has unpopularity factor ρ(M) ≤ c. A 1-unpopular matching is called popular matching.

Our bounds depend on the maximum degree of any agent, where for one-sided instances this
includes only the agents in Y . In round t, consider an agent v in Gt. We denote by N t(v) the set of
current neighbors of v, by dt(v) the degree of v, by ∆t the maximum degree of any agent. Finally,
by ∆ = maxt ∆t we denote the maximum degree of any agent in any of the rounds. Observe that
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throughout the dynamics, we allow the same edge to arrive and depart multiple times. In addition,
an agent v can have a much larger degree than ∆ in G = (V,E).

1.2 Our Results

We maintain matchings when agents and/or edges of the graph arrive and depart iteratively over
time. If every agent has degree at most ∆ in every round, our algorithm maintains O(∆)-unpopular
matchings by making an amortized number of O(∆) changes to the matching per round. This
result holds in one-sided, two-sided and roommates cases. It is almost tight with respect to the
unpopularity factor, since there are instances where all matchings have unpopularity factor at least
∆. More formally, if there is one edge arriving or leaving per round, our algorithm yields a tradeoff.
Given any number k > 0, the algorithm can maintain matchings with unpopularity factor (∆ + k)
using an amortized number of O(∆ + ∆2/k) changes per round. If one vertex arrives or leaves per
round, the algorithm needs O(∆2 + ∆3/k) changes per round.

The algorithm switches to a matching that is α > (∆ + k)-more popular whenever it exists, and
we show that this strategy converges in every round. We can decide for a given matching M and value
α ≥ 1 if there is a matching M ′ that yields an unpopularity factor at least α for M and compute M ′

if it exists. Our bounds imply the existence of matchings with small unpopularity factors in one-sided
and roommates instances with bounded degree. These insights might be of independent interest.

For two-sided instances, stable and popular matchings exist, but we show that maintaining them
requires an amortized number of Ω(n) changes to the matching per round, even when ∆ = 2.
In addition, our algorithm cannot be used to maintain matchings with unpopularity factors below
∆ − 1. Iterative resolution of matchings with such unpopularity factors might not converge. In
fact, we provide an instance and an initial matching from which every sequence of matchings with
unpopularity factor greater than 1 leads into a cycle. Furthermore, we show that cycling dynamics
can evolve even we only resolve matchings with higher unpopularity factors (up to ∆).

This result has consequences for the voting paths problem: Given an initial matching M1, find a
voting path of least length, i.e., a sequence of matchings M1,M2, . . . ,Mk of least length such that
Mk is popular. In this sequence every Mi must be more popular than Mi−1. In one-sided instances,
if the instance has a popular matching, there are always voting paths of length at most 2 [3]. In
contrast, we provide a two-sided instance with complete and strict preferences (and, hence, with a
popular matching) and an initial matching such that there is no voting path.

In summary, our results show that we can maintain a near-popular matching in a dynamic
environment with relatively small changes by pursuing a greedy improvement strategy. For the one-
sided case, this achieves essentially the best unpopularity factor we can hope for. In the two-sided
case, achieving a better factor with our strategy is bound to fail. Whether there are other strategies
with better factors or smaller changes to maintain near-popular matchings is an interesting direction
for future work.

1.3 Related Work

Stable matchings have been studied intensively over the last decades, and we refer to standard
textbooks in the area for an overview [18,26,30]. Perhaps closest to our paper are works on reaching
stable matchings via iterative resolution of blocking pairs. Knuth [24] provided a cyclic sequence of
resolutions in a two-sided instance. Hence, even though stable matchings exist, iterative resolution
of blocking pairs might not always lead there. Nevertheless, Roth and Vande Vate [31] showed that
there is always some sequence of polynomially many blocking-pair resolutions that leads to a stable
matching. Ackermann et al. [5] constructed instances where random sequences require exponential
time with high probability. Although in the roommates case (for general graphs) stable matchings
might not exist, Diamantoudi et al. [15] showed that there are always sequences of resolutions leading
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to a stable matching if it exists. Furthermore, the problem has been studied in constrained stable
matching problems [19–21] and for preferences with special structure [4, 22,27].

Some of the work in this literature assumes that agent sets are dynamic. Random serial dic-
tatorship is a classic mechanism for one-sided domains that obtains a Pareto-optimal allocation by
iterative arrival of agents in a uniform random order [1, 6]. In two-sided instances, Ma [25] pro-
posed the random-order mechanism, where agents arrive in uniform random order and blocking pairs
are resolved in a best-response manner. This mechanism is known to arrive at stable matchings
that are neither man- nor woman-optimal and has interesting structural and computational proper-
ties [13, 14, 25]. In terms of fully dynamic populations, Blum et al. [13] study resolution chains of
blocking pairs when in each round an arbitrary agent arrives or leaves.

In contrast, our main attention in this paper is to design algorithm that minimize the number of
changes per round, in the fully dynamic case with arrivals and departures. Here stable matching turns
out to be a very demanding concept that cannot be maintained at small cost. We obtain more positive
results for near-popular matchings. The notion of popularity was introduced by Gärdenfors [16] in
the two-sided case, who showed that every stable matching is popular when all preference lists are
strict. When preference lists admit ties, it was shown by Biró, Irving, and Manlove [12] that the
problem of computing an arbitrary popular matching in two-sided instances is NP-hard. They also
provide an algorithm to decide if a matching is popular or not in the two-sided and roommates cases.

When agents on only one side have preferences, popular matchings might not exist. Abraham
et al. [2] gave a characterization of instances that admit popular matchings; when preference lists
are strict, they showed a linear-time algorithm to determine if a popular matching exists and if so,
to compute one. Popular matchings in the one-sided case have been well-studied; the closest work
to our paper is that of Abraham and Kavitha [3], where the voting paths problem is studied. If a
one-sided instance admits a popular matching, then from every M1 there is always a voting path of
length at most 2, and one of least length can be determined in linear time [3].

McCutchen [28] introduced the notion of unpopularity factor and showed that the problem of
computing a least unpopular matching in one-sided instances is NP-hard. For a roommates instance,
popular matchings might not exist. Huang and Kavitha [23] show that with strict preference lists,
there is always a matching with unpopularity factor at most O(log n), and there exist instances where
every matching has unpopularity factor Ω(log n).

A prominent topic in algorithms is maintaining matchings in dynamic graphs that approximate
the maximum cardinality matching. In graphs with n nodes and iterative arrival and departure of
edges, Onak and Rubinfeld [29] design a randomized algorithm that maintains a matching which
guarantees a large constant approximation factor and requires only O(log2 n) amortized update
time. Baswana et al. [7] provide a randomized 2-approximation in O(log n) amortized time. For
deterministic algorithms, Gupta and Peng [17] gave a (1+ε)-approximation in O(

√
m/ε2) worst-case

update time. Bhattacharya et al. [9] showed a deterministic (4 + ε)-approximation in O(m1/3/ε2)
worst-case update time. Bernstein and Stein [8] showed a deterministic (3/2 + ε)-approximation in
O(m1/4ε−2.5) amortized update time. More recently, Bhattacharya et al. [10] gave a deterministic
(2 + ε)-approximation in O(poly(log n, 1/ε)) amortized update time.

An extended abstract of this paper has appeared in the proceedings of ICALP 2015, see [11].

2 Maintaining (∆ + k)-Unpopular Matchings

In this section, we present an algorithm that, given any number k > 0, maintains (∆ + k)-unpopular
matchings. Our approach applies in one-sided, two-sided and roommates instances. In the edge-
dynamic case, it makes an amortized number of O(∆+∆2/k) changes to the matching per round. In
every round, our algorithm DeferredResolution iteratively replaces the current matching with an
α-more popular matching until no such matching exists (see Algorithm 1). We show in Section 2.1
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Algorithm 1: DeferredResolution

1 for every round t = 1, 2, . . . do
2 Compute for matching M an α-more popular matching M ′ if it exists.
3 while M ′ exists do
4 M ←M ′

5 Compute for matching M an α-more popular matching M ′ if it exists.

Algorithm 2: Finding an α-more popular matching for M

1 if α ≤ 1 then return M
2 else if α > |V | − 1 then set α∗ ← |V |
3 else set α∗ ← min{r ∈ Qn | r ≥ α}
4 Set α′ ← α∗ − ε
5 Construct G̃ = (Ṽ , Ẽ) as union of two copies (V1, E1), (V2, E2) of G and edges E3 between

copies, and assign edge weights w(e) to every edge e ∈ Ẽ

w(e) =



3 + 2α′ if v �u M(u) and u �v M(v),

2 + 2α′ if v �u M(u) and u =v M(v), or v =u M(u) and u �v M(v),

1 + 2α′ if v =u M(u) and u =v M(v),

2 + α′ if v �u M(u) and M(v) �v u, or M(u) �u v and u �v M(v),

α′ + 1 if v =u M(u) and M(v) �v u, or M(u) �u v and u =v M(v),

1 if M(u) �u v and M(v) �v u

Compute a maximum-weight matching M∗ in G̃
6 if w(M∗) > |V |(2α′ + 1) then return M∗ ∩ E1

7 else return ∅

that such matchings can be computed efficiently. In Section 2.2 we show that when α > ∆ the
iterative replacement converges in every round and amortized over all rounds the number of changes
made to the matching is at most O(∆ + ∆2/k) per round.

2.1 Finding an α-More Popular Matching

Let us first show that for any given matching M and any value α, we can decide in polynomial time
if the unpopularity factor is ρ(M) ≥ α and construct an α-more popular matching if it exists. While
throughout this paper we assume agents to have strict preferences, this result holds even when the
preferences have ties.

Theorem 1. Let G = (V,E) be a graph, and suppose for every agent v ∈ V there is a preference
order �v (possibly with ties) over N(v) ∪ {v} such that u �v v for all u ∈ N(v). Then for every
matching M in G and every value α ∈ R ∪ {∞}, we can decide in polynomial time if ρ(M) ≥ α as
well as compute an α-more-popular matching M ′ if it exists.

Proof. The general structure of the algorithm is shown as Algorithm 2. The main idea is to construct
an adjusted graph and find a maximum-weight matching, which allows to see if an α-more popular
matching exists.
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Rationality and Adjustment of α The case α ≤ 1 is trivial. If α > |V |− 1, any α-more popular
M ′ has no (−)-agent. So we are checking if ρ(M) = ∞ or, equivalently, if ρ(M) ≥ α = |V |. If
ρ(M) ∈ (1, |V | − 1], it is given as a ratio of two numbers |V +| and |V −|, which are both integers in
{1, . . . , n}. Let Qn be the set of rational numbers that can be expressed as a fraction of two integers
in {1, . . . , n}. Thus, when α 6∈ Qn, we can equivalently test for ρ(M) ≥ α∗, where α∗ is the smallest
number of Qn larger than α (see line 3 in the algorithm).

In fact, we replace the test ρ(M) ≥ α∗ by testing ρ(M) > α′, where α′ is slightly smaller than
α∗, but still larger than the next-smaller number of Qn. Formally, α′ = α∗ − ε with

ε =
1

2
· min
r,r′∈Qn

{r − r′ | r − r′ > 0}

half of the smallest strictly positive difference between any two numbers in Qn. Observe that ρ(M) ≥
α if and only if ρ(M) > α′. The reason for this adjustment is a technical convenience in the usage of
edge weights to account for preference improvements of the agents.

Graph Construction We construct an α-more popular matching M ′ via a maximum-weight
matching in a graph structure G̃, where we use edge weights to indicate the gains and losses in
popularity. G̃ contains two full copies of G. In addition, for each vertex v in G there is an edge
connecting the two copies of v. More formally, G̃ = (Ṽ , Ẽ), Ṽ = V1 ∪ V2 and Ẽ = E1 ∪ E2 ∪ E3.
(V1, E1) and (V2, E2) constitute two copies of G. E3 contains for each vertex v in G an edge (v1, v2)
between its two copies v1 ∈ V1 and v2 ∈ V2. We define edge weights such that each maximum-weight
matching M∗ in G̃ is perfect. Then, we construct M ′ by restricting attention to V1 and matching
the same vertices as M∗ within V1. Vertices of V1 matched to their copy remain unmatched in M ′.

For clarity, we explain the edge weights w(e) in two steps. We first consider weights w1 where,
intuitively, w1(e) indicates whether the incident agents become (+)-, (0)-, or (−)-agents when e is
added to M . The value of w1 is used to charge the (+)-agents to the (−)-agents in the sense that for
each (+)-agent an α′-more popular matching shall exhibit at most α′ many (−)-agents. Formally,
let e = (ui, vj) ∈ Ẽ and set

w1(e) =



2 if v �u M(u) and u �v M(v),

1 if v �u M(u) and u =v M(v), or v =u M(u) and u �v M(v),

0 if v =u M(u) and u =v M(v),

1− α′ if v �u M(u) and M(v) �v u, or M(u) �u v and u �v M(v),

−α′ if v =u M(u) and M(v) �v u, or M(u) �u v and u =v M(v),

−2α′ if M(u) �u v and M(v) �v u

We let w1(M) =
∑

e∈M w1(e).

If there is an α∗-more popular matching M ′, there is a perfect matching M̃ in G̃ with total weight
w1(M̃) > 0. We simply install M ′ in both copies (V1, E1) and (V2, E2) and match single vertices to
their copy. Then, for every (+)-agent in V + we add a weight of 2 on the incident edges of M̃ . For
every (−)-agent in V − we subtract a weight of 2α′ on the incident edges of M̃ . The contribution of
(0)-agents in V 0 to the edge weight is 0. Thus, as 2|V +| ≥ 2α∗|V −| > 2α′|V −|, we get w1(M̃) > 0.
In contrast, an arbitrary matching M̃ with w1(M̃) > 0 might not be perfect and thus impossible to
be transformed into a α∗-more popular matching in G. Towards this end, we change the weights to
w with w(e) = w1(e) + 2α′ + 1 for every e ∈ Ẽ. This allows to argue that every maximum-weight
matching is also perfect.

Correctness We now show that there is an α∗-more popular matchingM ′ if and only if a maximum-
weight matching M∗ for w in G̃ has w(M∗) > |V |(2α′+1). The main argument here is that w(e) > 0
for all e ∈ Ẽ, and therefore under w every maximum-weight matching in G̃ is perfect.
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Claim 1. Every maximum-weight matching M∗ for w in G̃ is perfect. There is a maximum-weight
matching M∗ such that M∗ ∩E1 and M∗ ∩E2 are composed of the copies of the same subset of edges
in E.

Proof of Claim. Assume first there is some maximum matching M∗ where some vertex v remains sin-
gle. By M∗(V1) we denote M∗∩E1. Similarly, M∗(V2) = M∗∩E2. W.l.o.g. we assume w(M∗(V1)) ≥
w(M∗(V2)), and if w(M∗(V1)) = w(M∗(V2)) we assume the number of unmatched vertices in V1 is
larger or equal to the number of unmatched vertices in V2. If w(M∗(V1)) > w(M∗(V2)), then M∗

could be improved by matching V2 in the same manner as V1. Thus, w(M∗(V1)) = w(M∗(V2)), and
there is at least one single vertex v1 regarding M∗ in V1. If the corresponding copy v2 ∈ V2 is single
as well, we can improve M∗ by adding (v1, v2). If v2 is matched, we can rearrange the matching on
V2 to mirror the one on V1 without loss in total weight. Then (v1, v2) can be added. Hence, M∗ has
to be a perfect matching. Moreover, M∗(V1) and M∗(V2) are composed of copies of the same edges
from E.

For the proof of theorem, we first assume there is an α∗-more popular matching M ′. We construct
M̃ by installing M ′ in both copies (V1, E1) and (V2, E2), which implies w1(M̃) > 0. Observe that
w1(M̃) > 0 if and only if w(M̃) > |V |(2α′ + 1). Hence, the maximum-weight matching M∗ for w in
G̃ has w(M∗) > |V |(2α′ + 1).

Now we assume w(M∗) > |V |(2α′ + 1). We construct an α∗-more popular matching as follows.
As M∗ has maximum weight for w, by Claim 1 we can assume that M∗(V1) and M∗(V2) contain
exactly the copies of the same edges of E. Since M∗ is perfect, for each v ∈ V both copies v1, v2

are matched. If they are matched via (v1, v2), we leave v single in M ′. Otherwise, the non-single
agents in M ′ are matched as their copies in M∗(V1). We claim that w(M∗) > |V |(2α′ + 1) implies
M ′ is α∗-more popular. First, note that w(M∗) > |V |(2α′ + 1) implies w1(M∗) > 0. Especially, this
implies that |V +| > 0. The preference of agent v for M ′ corresponds to the contribution of v1 ∈ V1 to
w1(M∗), i.e., v1 contributes 1,0, or −α′ when v ∈ V +, V 0, or V −, respectively. By symmetry of M∗

and of edge weights in E3, the total contribution of vertices in V1 to w1(M∗) is exactly w1(M∗)/2.
Hence, w1(M∗) > 0 implies |V +| > α′|V −| for M ′. Here our choice of α′ = α∗ − ε becomes critical.
By the choice of ε we know that the smallest value of Qn larger than α′ is α∗. Thus, |V +| > α′|V −|
also implies |V +| ≥ α∗|V −| which shows |V +| ≥ α|V −|. Hence, w(M∗) > |V |(2α′ + 1) if and only if
an α-more popular matching exists.

We can use the same approach for instances with one-sided preferences by simply defining the
preferences of the other side to be indifferent between all potential matching partners as well as being
single.

2.2 Convergence and Amortized Number of Changes

Given that we can decide and find α-more popular matchings efficiently, we now establish that for
α > ∆ the iterative resolution does not lead into cycles and makes a small amortized number of
changes per round.

Theorem 2. DeferredResolution maintains a (∆+k)-unpopular matching by making an amor-
tized number of O(∆ + ∆2/k) changes to the matching per round with edge dynamics, for any k > 0.

Proof. Our proof is based on the following potential function

Φt(M) =
∑
v∈V

dt(v) + 1− rank(M(v)) ,

where rank(M(v)) = i if in the preference list of v restricted to N t(v) ∪ {v}, partner M(v) ranks
at the ith position. Whenever DeferredResolution replaces a matching M in round t with any
(∆ + k + ε)-more popular one M ′ with ε > 0, we know that |V +| > (∆ + k)|V −|.
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Consider the symmetric difference M ′⊕M = (M ∪M ′)\(M ∩M ′). Observe that due to strictness
of preference lists, we have v ∈ V 0 if and only if M(v) = M ′(v). In the two-sided or roommates case
this also implies M(v) ∈ V 0. This implies that the number of changes between M and M ′ is at most
|M ⊕M ′| ≤ |V +|+ |V −| (or in the one-sided case |M ⊕M ′| ≤ 2(|V +|+ |V −|)).

First, suppose |V −| = 0. In these steps, the potential strictly increases by at least |V +|. Thus,
on the average, for every unit of increase in the potential, the number of changes from M to M ′ is
O(1). Second, suppose |V −| ≥ 1. Then for every v ∈ V +, the potential increases by at least 1. For
every v ∈ V −, it drops by at most ∆. Let δ = |V +| − (∆ + k)|V −| > 0. Thus,

Φt(M ′)− Φt(M) ≥ |V +| −∆|V −| ≥ dδ + k|V −|e

The average number of changes made per unit increase in the potential due to updates of the matching
with V − > 0 is at most

|M ⊕M ′|
Φt(M ′)− Φt(M)

= O

(
1 +

∆

k

)
.

Finally, we bound the total increase in the potential function over time. Consider the rounds with
additions and deletions of edges. If an edge is added in round t, the maximum potential value
increases by at most 2 (or 1 in the one-sided case) and the current value of the potential does not
decrease. If an edge is deleted, the maximum potential value decreases by at most 2 (or 1 in the
one-sided case) and the current value of the potential decreases by at most 2∆ (or ∆ in the one-sided
case). Thus, in total we can increase the potential up to at most twice the number of edge additions.
Also, each deletion creates the possibility to increase the potential by at most 2∆ in subsequent
rounds. This implies an amortized potential increase of at most O(∆) per round. Also, we get an
average number of O(1 + ∆/k) changes in the matching per unit of potential increase. Combining
these insights yields the theorem.

We can strengthen the latter result in case we have only edge additions.

Corollary 1. DeferredResolution maintains a (∆+k)-unpopular matching by making an amor-
tized number of O(1+∆/k) changes to the matching per round with edge dynamics without deletions,
for any k > 0.

Proof. In the previous proof we observed that rounds with edge additions generate an amortized
potential increase of 1. Hence, we directly get the average number of O(1 + ∆

k ) changes in the
matching per unit of potential increase also as amortized change per round.

The following corollary is due to the fact that we can simulate the addition or deletion of a single
vertex by ∆ additions or deletions of the incident edges. A similar reduction by ∆ can be achieved
without vertex deletions.

Corollary 2. DeferredResolution maintains a (∆+k)-unpopular matching by making an amor-
tized number of O(∆2+∆3/k) changes to the matching per round with vertex dynamics, for any k > 0.

The above results apply in the roommates, two-sided, and one-sided cases. The bound on the
unpopularity factor is almost tight, even in terms of existence in the one-sided case. The following
proposition generalizes [2, Example 1.1].

Proposition 1. There exist one-sided instances with maximum degree ∆ for every agent in Y such
that every matching has unpopularity factor at least ∆.

Proof. As an example establishing the lower bound consider a one-sided instance with |X| = ∆
elements and |Y | = ∆ + 1 agents. We assume there is a global ordering x1, . . . , x∆ over elements
and xi �y xi+1 for all agents y ∈ Y . If a matching M leaves an element in X unmatched, we can
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add any single edge and thereby create a matching with |V +| > 0 and |V −| = 0. By definition
this new matching is now ∞-more popular, and the unpopularity factor becomes ρ(M) = ∞. For
any matching M that matches all of X, we w.l.o.g. denote yi as the agent with M(yi) = xi for
i = 1, . . . ,∆, and y∆+1 the remaining unmatched agent. We show that M has unpopularity factor
∆ by providing a matching M ′ that is ∆-more popular than M . Consider M ′ composed of edges
(xi, yi+1) for i = 1, . . . ,∆ and y1 unmatched. y1 is a (−)-agent, all others are (+)-agents.

3 Two-Sided Matching and Lower Bounds

For the roommates case, the construction in [23] shows that there are instances in which every match-
ing has unpopularity factor of Ω(log ∆). In contrast, in the two-sided case there always exists a stable
matching, and every stable matching is a popular matching. However, we show that maintaining a
stable or popular matching requires Ω(n) amortized changes per round, even in instances where we
have only edge or vertex additions and every agent has degree at most 2.

Theorem 3. There exist two-sided instances with ∆ = 2 such that maintaining a stable or popular
matching requires Ω(n) amortized number of changes to the matching per round for (1) edge dynamics
with only additions, (2) vertex dynamics with only additions in X and Y , (3) vertex dynamics with
additions and deletions only in X.

Proof. Consider a two-sided instance with |X| = |Y | = n, where all agents in X and Y have the
same preference list over Y and X, respectively. In particular, we denote x1, . . . , xn and y1, . . . , yn
such that for all i = 1, . . . , n we have xi �y xi+1 for every y ∈ Y and yi �x yi+1 for every x ∈ X.

For part (1), in round t = 1, . . . , 2n− 1, edge et = (xn−2b(t−1)/2c, yn−2bt/2c) arrives. Thereby, we
construct a long path, where the stable and popular matchings are unique in every round. Every
edge et is a blocking pair upon arrival. Resolving this edge iteratively introduces a new blocking pair
and requires to alternate through the entire existing path. Hence, in every round t ∈ Θ(n) we have
to make Θ(n) changes to the matching to maintain the stability conditions. It is easy to see that
the unique stable matching is also the unique popular matching here. This yields Θ(n) amortized
number of changes for every round to maintain stable or popular matchings. The degree of every
agent is at most 2.

For part (2), vertices of X and Y now arrive alternatingly one after the other, starting from xn
and yn to x1 and y1. In round t = 1, 3, 5, . . . we assume that xn−2bt/2c arrives along with all edges
to previously arrived vertices, and in round t = 2, 4, 6, . . . vertex yn−2b(t−1)/2c arrives along with all
edges to previously arrived vertices. The overall edge set again forms the above described path, which
is revealed iteratively as vertices arrive. It is easy to see that the same argumentation as above can
be applied to show Θ(n) amortized number of changes for every round to maintain stable or popular
matchings.

For part (3), we assume that in the first O(n) rounds, a graph G is constructed by arrivals of the
above described alternating path. In the subsequent rounds, xn iteratively arrives, departs, arrives
again, departs again, etc. Depending on xn being present or not, the unique stable and popular
matching requires to switch the edges along the entire alternating path down to x1 in every round.
Hence, for every subsequent round we need to make Θ(n) changes to the matching.

The case of vertex dynamics and only additions toX can be tackled using the standard Deferred-
Acceptance algorithm of Gale and Shapley for stable matching.

Proposition 2. DeferredAcceptance maintains a stable matching by making an amortized num-
ber of O(∆) changes to the matching per round with vertex dynamics and only additions to X.

Proof. It is straightfoward that when only vertices of X arrive, the standard X-proposing De-
ferredAcceptance algorithm can maintain a X-optimal stable matching with an overall number
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of O(|E|) many changes to the matching. For this, we simply consecutively implement the proposal
algorithm and continue the execution whenever a new vertex arrives. Each vertex has to account
only for a number of changes in the order of its degree.

Let us also mention a simple adjustment, by which this algorithm maintains a 2-unpopular
matching with edge dynamics and no deletions when edges arrive consecutively for their incident
vertex in X. When the first edge of xi arrives that is connected to a currently unmatched node yj ,
we temporarily match xi and yj . This guarantees that during the consecutive arrival of xi’s incident
edges, we generate at most an unpopularity factor of 2. If the last edge of xi has arrived, we remove
any edge incident to xi and continue DeferredAcceptance by including xi’s proposals. This
generates at most O(|E|) many changes to the matching and, hence, amortized O(1) per edge.

Hence, without any additional assumptions we can only expect to maintain α-unpopular match-
ings for α > 1. Here we observe that our algorithm DeferredResolution cannot be used to
maintain matchings with unpopularity factor significantly below ∆, even in the two-sided case. The
problem is that the iterative resolution may be forced to cycle.

Theorem 4. There is an instance with maximum degree ∆ and an initial matching such that no
sequence of iterative resolution of matchings with unpopularity factor (∆− 1) leads to a α-unpopular
matching, for any α < ∆− 1.

Proof. We consider an instance with |X| = |Y | = ∆ = 3 and an initial state such that it is impos-
sible to reach any α-unpopular matching with α < ∆ − 1 via resolution of alternating cycles with
unpopularity factor of at least ∆− 1. The preferences are as follows.

x1 x2 x3

y2 y1 y3

y1 y3 y2

y3 y2 y1

y1 y2 y3

x3 x2 x1

x1 x3 x2

x2 x1 x3

There exists a cycle of three perfect matchings:

{(x1, y1), (x2, y2), (x3, y3)} −→ {(x1, y2), (x2, y3), (x3, y1)}
↖ ↙

{(x1, y3), (x2, y1), (x3, y2)}

Each of these matchings has unpopularity factor exactly ∆ − 1 = 2 over the previous one. In
particular, in this cycle there is exactly one edge between two (+)-agents and two edges with a single
(+)-agent and (−)-agent in every step. It is, thus, impossible to simply drop any of the edges and
keep a positive factor. The remaining three perfect matchings are stable matchings:

X-optimal: {(x1, y2), (x2, y1), (x3, y3)}
Middle: {(x1, y1), (x2, y3), (x3, y2)}

Y -optimal: {(x1, y3), (x2, y2), (x3, y1)}

Note that all popular matchings must be perfect. As we have listed all perfect matchings, the
popular matchings are exactly the stable matchings here. However, from every cycle matching to
any of the stable matchings the unpopularity factor is 1. For every cycle matching there is no non-
perfect matching that yields an unpopularity factor greater than 1. Hence, if we initially have a cycle
matching, iterative resolution is forced to follow the cycle. Thus, it is impossible to converge to a
α-unpopular matching with α < ∆− 1 = 2.
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It is easy to force DeferredResolution into the cycle. We first add the edges of one cycle
matching, then the edges of the more popular cycle matching, and finally the edges of the third cycle
matching. DeferredResolution will construct the first cycle matching and switch to the next one
whenever it has arrived entirely.

The proof here uses a particular instance with degree ∆ = 3. Furthermore, it shows that even
though two-sided instances always have popular matchings, there are instances and initial matchings
such that no sequence of resolutions towards more popular matchings converges. The following
corollary sharply contrasts the one-sided case, in which there always exist voting paths of length 2
whenever a popular matching exists.

Corollary 3. There are two-sided matching instances and matchings from which there is no voting
path to a popular matching.

More generally, we can establish the following lower bound for any maximum degree ∆ ≥ 3.

Theorem 5. For every ∆ ≥ 3 and k = 3, . . . ,∆ there is an instance with maximum degree ∆ and
an initial matching M such that any sequence of resolutions of matchings with unpopularity factor
at least k − 1 does not converge to a (k − 2)-unpopular matching.

Proof. We consider an instance as in the proof of Theorem 3 with |X| = |Y | = k, where every x ∈ X
has the same preference over Y , and every y ∈ Y the same preference over X. We denote x1, . . . , xk
such that xi �y xi+1 for all i = 1, . . . , k − 1 and y ∈ Y . Similary, we denote y1, . . . , yk such that
yi �x yi+1 for all i = 1, . . . , k − 1 and x ∈ X. We assume that E = (X × Y ) \ {(xk, yk)}.

Consider the matching M = {(xi, yk+1−i) | i = 1, . . . , k}. Since all agents are matched in M
and all agents in X and Y have the same preference list, we create at least two (−)-agents when
changing the matching. When we increase the preference for some agent xi (i.e., the new partner of
xi has smaller index), we steal this better partner from some other agent xi′ . Either xi′ becomes a
(−)-agent, or it steals a better partner from some other agent in X. While this can generate a chain
of changes, we do not change the indices of agents in Y . Hence, there must be at least one (−)-agent
in X that ends up either single or with a partner of higher index. The same is true for the agents in
Y , so we create at least two (−)-agents.

Hence, we require at least 2(k− 1) (+)-agents to obtain the required unpopularity factor. There
is a unique matching M ′ = {(xi, yk−i) | i = 1, . . . , k − 1} that has unpopularity factor at least k − 1
over M . Here the (−)-agents are xk and yk (unmatched in M ′) and all other agents are (+)-agents.
Using a similar argumentation, M ′ has a unique matching M ′′ that verifies unpopularity factor at
least k − 1, where we cyclically shift all agents in X (Y ) to the next higher agent in Y (X), and
match the current partners of x1 (y1) to xk (yk), respectively. As there is no edge that simultaneously
combines the (−)-agents, we have no opportunity to leave out any edge, and hence the new matching
M ′′ must be perfect. Applying this argument iteratively, we see that we are forced to return to M .

To adjust the maximum degree, we can introduce additional agents xj and yj to X and Y ,
for j = ∆ − k + 1, . . . ,∆. For their preferences we assume yj �xj yj′ and xj �yj xj′ for all
j′ = 1, . . . , j − 1, j + 1, . . . ,∆. The remaining preferences of xj and yj are completed arbitrarily. For
every i = 1, . . . , k we have yi′ �xi yj and xi′ �yi xj for every i′ = 1, . . . , k and j = ∆− k + 1, . . . ,∆.
In the initial matching we add (xj , yj) to M . Therefore, none of the agents xj or yj can be (+)-
agents. Removing any edge (xj , yj) creates more (−)-agents and thereby makes it impossible to obtain
unpopularity factor of at least k−1. Hence, the unique M ′ that has unpopularity factor at least k−1
over M executes the cyclic shift as above and keeps all edges (xj , yj) for j = ∆− k + 1, . . . ,∆.

We can again steer DeferredResolution into the cycle. We first let the edges (xj , yj) arrive
that remain fixed throughout the cycle, for j = ∆−k+1, . . . ,∆. Then, we let the remaining incident
edges arrive for these nodes. DeferredResolution will construct all edges (xj , yj) and keep them
in the matching throughout. Then, we assume edges (xj , yj) arrive iteratively for j = 1, . . . , k − 1.
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DeferredResolution will include each of these edges into the matching. Subsequently, we consider
the next matching from the cycle and let the edges arrive iteratively, and so on. DeferredResolu-
tion will switch to the next matching in the cycle whenever it has arrived entirely. It then infinitely
runs through the cycle once all edges have arrived.
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