
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Basık, Fuat, Gedik, Buğra, Ferhatosmanoglu, Hakan and Kalender, Mert Emin. (2015) S3 -TM : 
scalable streaming short text matching. The VLDB Journal, 24 (6). pp. 849-866. 
 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/92827  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for profit 
purposes without prior permission or charge.  Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
“The final publication is available at Springer via http://dx.doi.org/10.1007/s00778-015-
0404-3 ” 
 
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see the 
‘permanent WRAP url’ above for details on accessing the published version and note that 
access may require a subscription. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/92827
http://dx.doi.org/10.1007/s00778-015-0404-3
http://dx.doi.org/10.1007/s00778-015-0404-3
mailto:wrap@warwick.ac.uk


VLDBJ manuscript No.
(will be inserted by the editor)

S3-TM: Scalable Streaming
Short Text Matching

Fuat Basık ·
Buğra Gedik ·
Hakan Ferhatosmanoğlu·
Mert Emin Kalender

Received: date / Accepted: date

Abstract Micro-blogging services have become ma-

jor venues for information creation, as well as chan-

nels of information dissemination. Accordingly, moni-

toring them for relevant information is a critical capa-

bility. This is typically achieved by registering content-

based subscriptions with the micro-blogging service.

Such subscriptions are long running queries that are

evaluated against the stream of posts. Given the popu-

larity and scale of micro-blogging services like Twitter

and Weibo, building a scalable infrastructure to evalu-

ate these subscriptions is a challenge. To address this

challenge, we present the S3-TM system for streaming

short text matching. S3-TM is organized as a stream

processing application, in the form of a data parallel

flow graph designed to be run on a data center environ-

ment. It takes advantage of the structure of the publica-

tions (posts) and subscriptions to perform the matching

in a scalable manner, without broadcasting publications

or subscriptions to all of the matcher instances. The ba-

sic design of S3-TM uses a scoped multicast for publica-

tions and scoped anycast for subscriptions. To further

improve throughput, we introduce publication routing

algorithms that aim at minimizing the scope of the mul-

ticasts. First set of algorithms we develop are based on

partitioning the word co-occurrence frequency graph,

with the aim of routing posts that include commonly

co-occurring words to a small set of matchers. While ef-

fective, these algorithms fell short in balancing the load.

To address this, we develop the SALB algorithm, which

provides better load balance by modeling the load more

accurately using the word-to-post bipartite graph. We

F. Basık · B. Gedik · H. Ferhatosmanoğlu · M. E. Kalender
Bilkent University Computer Engineering Department
Ankara, Turkey. E-mail: fuat.basik@bilkent.edu.tr

also develop a subscription placement algorithm, called

LASP, to group together similar subscriptions, in order

to minimize the subscription matching cost. Further-

more, to achieve good scalability for increasing number

of nodes, we introduce techniques to handle workload

skew. Finally, we introduce load shedding techniques

for handling unexpected load spikes with small impact

on the accuracy. Our experimental results show that

S3-TM is scalable. Furthermore, the SALB algorithm

provides more than 2.5× throughput compared to the

baseline multicast and outperforms the graph partition-

ing based approaches.

1 Introduction

Micro-blogging has enjoyed wide adoption among Inter-

net users and became a popular form of communication.

Services like Twitter and Weibo enable users to create

and share short updates to the public or to a selected

group of contacts. Microblog posts, known as tweets,

are up to 140 characters in length and short in compar-

ison to regular blog posts. Users of these services can

subscribe to the posts of other users, which is known as

following a user. The content of a post is irrelevant to

the subscription event and that means a user receives

all the posts from the users it follows, no matter what

the content is. In this respect, micro-blogging services

resemble the traditional topic-based publish/subscribe

(pub/sub) systems [7], in which tweets correspond to

publications and user ids are analogous to topics.

Micro-blogging services also provide APIs for sub-

scribing to streams of posts, where the matching is

based on the content. For instance, Twitter has a

Streaming API [27], which takes subscriptions in the

form of a set of words and delivers matching tweets

in a streaming manner. This model of service resem-

bles the content-based pub/sub systems [7]. However,

the backbone for this kind of service is typically imple-

mented within a data center [2], and not using brokers

over a wide-area network as in pub/sub systems [8,4,1].

Considering that the popular micro-blogging services

receive hundreds of millions of posts per day, imple-

menting this matching in a scalable manner is a key re-

quirement. In this work, we present S3-TM — a stream

processing based solution to scalable short text match-

ing under the content-based subscription model. We

develop effective techniques and algorithms for publi-

cation routing and subscription placement, which yield

an overall scalable solution.

While current services are typically targeted to-

wards a user-centric flow of information, S3-TM pro-

vides the ability to filter messages based on their con-

tent. An example usage scenario would be subscribing

to all microblog posts that contain the words white and



2 Fuat Basık et al.

house together, rather than following the official White

House microblog account. This model can capture a

broader range of relevant information, with less effort

on the part of the subscriber.

S3-TM is organized as a stream processing applica-

tion in the form of a data parallel flow graph designed

to be run on a data center environment. The system

aims at parallelizing the task of matching publications

against the subscriptions. For this purpose, it creates

multiple instances of the matcher module and performs

smart routing to avoid broadcasting publications or

subscriptions to the matchers, so that scalability can

be achieved as the number of replicas is increased in

response to increasing volume of publications.

There are a number of challenges faced by S3-TM:

Publication Routing. The core issue in achieving

scalability for streaming short text matching within

a data center environment is the routing of publica-

tions and placement of subscriptions to the machines

where the matching is to be performed. Previous at-

tempts at this have been limited to publication unicast

– subscription broadcast, publication broadcast – sub-

scription unicast, or a combination of these two fun-

damental approaches [2]. However, in order to achieve

good scalability as the workload (and thus the number

of machines) increases, we need to avoid any kind of

broadcast. To address this challenge, we take advan-

tage of the problem domain. In particular, the word

based publications and subscriptions in micro-blogging

enable us to apply hashing to multicast (as opposed to

broadcast) publications to the machines responsible for

matching the words they contain. This way, subscrip-

tions can be placed on any one of the machines that

are responsible for one of the words forming the sub-

scription. However, this brings an additional challenge,

which is to minimize the number of machines a publica-

tion is multicast to, which we refer to as the spread. To

address this challenge, we develop effective word par-

titioning algorithms (which replace the hashing based

partitioning) that keep the spread low.

Load Balancing. Another major obstacle to scalabil-

ity is load imbalance. At one extreme, one way to min-

imize spread is to assign all words to a single machine.

Obviously, this is the worst case scenario for load bal-

ance. In general, there is a trade-off between reduced

spread and better load balance. To address this chal-

lenge, we integrate load-awareness into our word parti-

tioning algorithms. We develop several graph partition-

ing based solutions that work on the co-occurrence fre-

quency graph of words, where vertex and edge weights

are used to create balanced partitions (words to be as-

signed to machines). However, graph partitioning based

approaches fell short, as they cannot accurately rep-

resent the load of a partition as the sum of edge or

vertex weights. Therefore, we develop the SALB algo-

rithm, which works on the word-to-post bipartite graph,

rather than the word co-occurrence graph. SALB in-

corporates mechanisms to create a spread-aware load-

balanced word partitioning.

Subscription Placement & Matching. The word

partitioning based routing leaves open the problem of

placing subscriptions to machines, as a subscription can

be placed on any one of the machines that is responsible

for at least one of the words in it. Furthermore, given

a number of subscriptions assigned to a machine, pub-

lications need to be matched efficiently against them.

To solve the subscription placement problem we first

model the load imposed on a machine for handling the

subscriptions placed on it, using a trie-based subscrip-

tion matching technique. We then use this model to

develop a placement algorithm that attempts to mini-

mize the load, while at the same time keeping the load

imbalance under control. Importantly, the subscription

placement algorithm is incremental by nature, making

it easy to admit streaming subscriptions.

Skew Handling. While the SALB algorithm we in-

troduce strives to balance the load, as the number of

machines keeps increasing, the skew in the word fre-

quencies starts inhibiting scalability. For instance, when

the the load due to a particular hot word exceeds the

average load on a machine (average load reduces as the

number of machines increases), it becomes increasingly

difficult to achieve good load balance. We solve this

problem by detecting hot words and applying a word

splitting mechanism, which is adaptive to the number

of machines, to break the hot words apart.

Overload & Load Shedding. Finally, under unex-

pected spikes in load, such as during rare events caus-

ing significant increase in post traffic, the streaming

text matching service can experience overload. To ad-

dress this, we develop simple yet effective techniques to

limit the load, with little impact on the matching ac-

curacy. We achieve this by putting a hard limit on the

spread, and selectively multicasting posts based on the

expected value of their words in terms of the matching

accuracy and the amount of load shed.

We evaluate S3-TM through an extensive experi-

mental study using real-world datasets. Our evaluation

showcases the system’s scalability, as well as the ef-

fectiveness of our publication routing and subscription

placement algorithms. We provide insights about the

behavior of the system at different scales, under differ-

ent kinds of subscription workloads, and for changing

publication contents (concept drift). Our results show

that the SALB algorithm is the most effective among



S3-TM: Scalable Streaming Short Text Matching 3

subscriptions
are anycast to

matchers

publications
are multicast to

matchers

Fig. 1: Overall architecture of the S3-TM system

all and can increase throughput by a factor of 2.5×
compared to a baseline multicast approach.

In summary, we make the following contributions:

•We present the S3-TM system for scalable stream-

ing short text matching, which relies on a distributed

stream processing architecture to run at scale in a data

center environment.

•We present algorithms for smart publication rout-

ing, including variants based on partitioning of the word

co-occurrence graph and a novel algorithm called SALB

that uses the word-to-post bipartite graph to perform

spread-aware load-balanced word partitioning.

• We develop a subscription placement algorithm,

called LASP, that takes into account the trie-based

matching to minimize load, while at the same time pre-

serving load balance.

•We develop simple yet effective techniques to han-

dle skew in the publication workload, as well as load

shedding techniques to handle overload situations.

2 Architecture

In this section, we present the general architecture of

the S3-TM system, which is illustrated in Figure 1. We

mainly focus on the scalable matching infrastructure

that receives publications and subscriptions, and per-

forms the matching between the two. Publications are

the micro-blogging posts, which are treated as sets of

words. An example is a tweet. Subscriptions are con-

tinuous queries [14] that are long running requests to

receive all publications that match a given monitoring

condition. Specifically, the monitoring condition is a set

of words. For instance, if a subscription is [“Obama”,

“health”], then any post that contains both of the words

“Obama” and “health” will be considered a match for

this subscription. The results for a subscription con-

stitute a stream, and this stream is delivered to the

subscriber client that owns the subscription, as new

matches take place. We assume that the publications

arrive at a much higher rate compared to subscriptions,

which is typical in practice for micro-blogging appli-

cations. As such, the system aims at maximizing the

publication processing throughput.

S3-TM is organized as a distributed data stream

processing application that runs on a data center with

multiple machines. The main flow of the application

consists of two unique stages, namely the Router &

Placer stage and the Matcher & Dispatcher stage. These

are shown in the middle of Figure 1. The system is de-

signed to scale via data parallel execution, thus there

will be many copies of these stages, depending on the

scale of the deployment (dashed lines in the figure).

On the left hand side of the figure, we see the clients

of the system: publishers and subscribers. We assume

that each client sends its publications and subscriptions

to one of the Router & Placer stages. This assignment

can change at any time, as any stage instance can han-

dle any client request. This kind of load balancing is

typical for all large-scale Internet services. Note that

publications flow through the system and are discarded

once they are fully processed. The subscriptions, on the

other hand, are stored for performing matches against

future publications, and are only removed upon explicit

request by the subscribers. On the right hand side of

the figure, we see the subscribers again, which receive

their matching publications as a stream.



4 Fuat Basık et al.

In what follows, we detail the two stages that con-

stitute the core of the scalable matching logic.

Router & Placer. This stage contains three operators

within. The first one is called the Receiver, which re-

cieves publications and subscriptions from the clients.

Recall that both publications and subscriptions con-

sist of words. The Receiver operator performs stemming

and stop word removal on both publications and sub-

scriptions. Publications are then forwarded to the Pub-

lication Routing operator, whereas the subscriptions

are forwarded to the Subscription Placement operator.

The Publication Routing operator is responsible for

multicasting each publication to a set of Matcher & Dis-

patcher stages. It routes a publication to those stages

that are responsible for one or more of the words con-

tained in the publication. As an optimization, only sub-

scribed words, that is words contained in at least one

subscription, are used for the multicast. For the pur-

pose of routing, words are partitioned over the Matcher

& Dispatcher stages, such that for a given word, there

is one stage responsible for it. The default partitioning

policy is to hash words to stages. This default scheme

has two undesirable properties. First, the spread of a

hashing based approach can be high, as it does not take

into account the co-occurrence frequency of words. Ide-

ally, words that commonly appear together should be

assigned to the same stage. Second, the words might

exhibit high skew, as some words are highly popular.

Under skew, it becomes difficult for hashing to maintain

load balance. As a result, we develop several alternative

techniques for partitioning words over stages. The par-

titioning of words is kept as a mapping in memory as

part of the Router & Placer stage and is used by the

Publication Routing operator to quickly determine the

target stages of a multicast for a given publication. This

mapping is computed off-line and is kept as a read-only

replicated copy in memory.

The Subscription Placement operator is responsible

for anycasting each subscription to a set of Matcher &

Dispatcher stages. A given subscription can be sent to

any one of the stages that are responsible for at least

one of the words in the subscription. For example, if a

subscription is [x, y], then the stage that is responsi-

ble for x, say S, would receive all the publications that

contain the word x. Since the subscription is interested

publications that contain both x and y, S is capable

of evaluating the subscription. Similarly, if stage P is

responsible for word y, it is also capable of evaluating

the subscription. As a result, anycasting the subscrip-

tion to one of the eligible stages is sufficient. The de-

fault anycast policy is to send the subscription to one

of the eligible Matcher & Dispatcher stages at random.

However, this policy suffers from two problems as well.

First, it may not balance the load properly, as the set

of eligible downstream stages is often a subset of the

entire set of Matcher & Dispatcher stages and it is pos-

sible that this eligible set is skewed. Second, to reduce

load, we should group together similar subscriptions as

much as possible [2,11,13].

To address these issues we develop subscription

placement algorithms that run as part of the Sub-

scription Placement operator. These algorithms use the

word partitioning information kept within the Router

& Placer stage (as it was used for publication routing

as well), in addition to the list of currently subscribed

words for each one of the Matcher & Dispatcher stages.

This latter information is updated as a result of each

subscription placement made, and the changes are sent

to all other Router & Placer stages. This is not a perfor-

mance bottleneck, as the subscription rate is expected

to be much lower compared to the publication rate.

Matcher & Dispatcher. This stage contains two op-

erators within. These are the Matcher and the Dis-

patcher operators. The Matcher operator is responsible

for matching streaming publications against the sub-

scriptions placed at the stage. For this purpose, we use

a trie-based subscription organization, which takes ad-

vantage of similar subscriptions assigned to the same

stage to reduce the overall matching load. Finally, the

dispatcher stage is responsible for sending the matching

publications to the subscribers.

In a typical deployment, each stage corresponds to

a process that can be distributed over machines. Mul-

tiple stages can be placed on a single machine as well,

such as having one stage per processor core. In what

remains, we introduce the techniques and algorithms
used in publication routing, subscription placement,

and matching in more detail.

3 Publication Routing

In this section, we formalize the problem of publica-

tion routing and present our solutions. The goal is to

come up with routing strategies that reduce spread and

improve load balance. Reducing spread results in less

load on the matchers, whereas improving load balance

results in better utilizing the available resources. Both

factors directly impact the throughput.

3.1 Formalization

Let P ∈ P be a publication, which is a set of words.

Here, P denotes the set of all publications. Each word

w ∈ P comes from a domain of words W , where

W =
⋃

P∈P P . We don’t make assumptions about the

subscriptions until later in Section 4, but we denote the

set of subscribed words as W s. We denote the number

of matcher stage instances in the system as N . Our goal



S3-TM: Scalable Streaming Short Text Matching 5

is to learn a mapping M : W 7→ [1..N ] that maximizes

the throughput. This mapping maps each word to one

of the matchers. The throughput, denoted by T (M) for

a given mapping, depends on the spread and the load

imbalance. We formalize these first, and define through-

put as a function of them later.

Spread. Let R(M) denote the spread for a given map-

ping M . The spread can be informally defined as the

average number of times a publication will be routed,

that is the average size of a publication multicast. Recall

that a publication is routed to a matcher iff the map-

ping M maps a subscribed word w ∈ W s contained in

the publication P to matcher i, i.e., the publication P

is routed to matcher i iff ∃w ∈ (P ∩W s) s.t. M(w) = i.

We denote the set of matchers a publication P is routed

to as K(P,M). Formally:

K(P,M) =
⋃

w∈P ∩W s

{M(w)} (1)

Given this definition, we can formally define spread,

R(M), as follows:

R(M) =
∑
P∈P
|K(P,M)|/|P | (2)

Imbalance. We denote load imbalance as B(M) for a

mapping M and define it as the ratio of the maximum

load on a matcher to the average load. In a perfectly

load balanced system, the imbalance will be 1. The

worst case is when all the load is on a single matcher,

in which case the imbalance will be N , that is the num-

ber of matcher stage instances. Let us denote the load

imposed on a matcher i as L(i,M). Formally, we have:

L(i,M) =
∑
P∈P

∑
w∈P

[w ∈W s ∧M(w) = i] (3)

Here, [...] is the Iverson bracket that evaluates to 1 when

the Boolean condition it encloses is true, to 0 otherwise.

It is important to note that here we make a simplifying

assumption, that is, all publications impose an equiv-

alent load of cost 1 unit on a matcher. We will revise

this assumption when we introduce subscriptions into

the picture in Section 4.

With the definition of load imposed on a matcher

at hand, load imbalance, B(M), is easily formalized as:

B(M) =
maxi∈[1..N ](L(i,M))∑

i∈[1..N ] L(i,M)/N
(4)

Throughput. We can define throughput T simply as

being proportional to the inverse of the maximum load:

T (M) ∝ (maxi∈[1..N ]L(i,M))−1 (5)

This is because in a data parallel streaming system

with a split, the throughput is bounded by the slowest

branch due to backpressure [23]. Let pi be the fraction

of the publications sent to matcher i and let C be the

capacity of each matcher. Assuming a unit cost of 1 for

publication processing, the throughput is bounded by

C/(pi ·1). We have pi = L(i,M)/|P|, and thus we have:

T (M) = mini∈[1..N ](C · |P|/L(i,M)) (6)

Equation 5 follows directly from Equation 6 after re-

moving the constant terms.

While Equation 6 is useful to estimate the through-

put of a matching M , during the learning of a map-

ping, as we will see later in this section, a more flexi-

ble throughput estimation method is required to avoid

getting stuck at local maximas. Intuitively, throughput

can also be expressed in terms of spread and imbalance.

In particular, throughput is inversely proportional to

spread, since the load on the system increases linearly

with the spread. If we consider load imbalance, we see

that maximum load appears as the nominator, so the

throughput is also inversely proportional to the load im-

balance. Thus, we can formulate an estimate through-

put, denoted by T̂ (M), as follows:

T̂ (M) ∝ (R(M) ·B(M))−1 (7)

The final problem can be formalized as finding

the best mapping M∗ that maximizes the through-

put, that is M∗ = argminMT (M) or, alternatively, as

argminM T̂ (M).

In the remaining of this section, we develop tech-

niques to learn an effective mapping M . First, we

introduce several alternatives based on partitioning
the word co-occurrence graph. Then we introduce the

greedy SALB algorithm that makes use of the word-to-

publication bipartite graph. In all approaches, we as-

sume that the system starts with the simple hash based

routing. After an initial training period, the publica-

tions data collected so far is analyzed to generate the

new mapping M , and the routing is updated to use it.

While not updating the mapping on-the-fly might

seem like a drawback, our evaluation in Section 6.4

shows that frequent mapping updates are not required

to keep the throughput high. Adding more servers

would require re-computation of the mapping M as

well. Thus, changes in the number of servers can be

coincided with the periodic mapping updates.

It is worth mentioning that the mapping M may not

contain mappings for every possible word we may see in

the future. Even though we have W =
⋃

P∈P P , a new

publication that arrives to the system after M has been

learned may contain a new word. For such words, we

fallback to the default policy of hash based multicast.



6 Fuat Basık et al.

Fig. 2: Word network partitioning algorithms: (a) Cut
minimizing (gC), (b) Co-frequency cut minimizing (gFC),
(c) Co-frequency cut minimizing, frequency load balancing

(gFCL), (d) Co-frequency cut minimizing, normalized
frequency and co-frequency load balancing (gNFCL).

Also note that the same mapping M is used by

all the Router & Placer instances. Recall that any

Router & Placer can handle any publication or sub-

scription. Furthermore, publications and subscriptions

are assigned to Receivers uniformly at random. Thus,

one can consider each Router & Placer to instance be

observing a sampled subset of the publications and sub-

scriptions. This motivates using the same mapping for

all Router & Placer instances. This requires mapping

M to be replicated to all instances. Since the size of

the mapping is limited by the number of words, it is

compact enough to fit into the main memory (typically

less that 200K words, where only the word id is kept,

taking less than 2MBs).

3.2 Word Network Partitioning

The word network partitioning algorithms construct

a mapping M by partitioning the set of words W

over the N matchers. The main intuition is to place

words that frequently appear together in publications

into the same partition, while at the same time bal-

ancing the load incurred on each partition. We map

this problem to a traditional graph partitioning one,

where the words are the vertices and the edges are

the co-occurring words. Let us represent this undi-

rected graph as G(W,E) and refer to it as the word

network. We define the edge set as E = {(w1, w2) |
w1, w2 ∈ W ∧ f(w1, w2) > 0}. Here, f(w1, w2) is the

co-occurrence frequency of the words w1 and w2. Thus,

any two words that appear together in at least one pub-

lication is represented as an edge in the word network.

We have:

f(w1, w2) = |{P | {w1, w2} ⊆ P ∧ P ∈ P}|/|P|.
The co-occurrence frequencies serve as the edge weights.

We also define the frequency of a word as f(w) = |{P |
w ∈ P ∈ P}|/|P|. The word frequencies serve as the

vertex weights.

Graph partitioning algorithms are well studied in

the literature [22] with well-established implementa-

tions, such as Metis [12]. These algorithms aim at min-

imizing the edge cut, defined as the total weight of the

edges that go across partitions. This matches our goal

of co-locating commonly co-occurring words within the

same partition. It is easy to see that such a partitioning

will reduce the spread, as several words within a pub-

lication will be mapped to the same matcher, reducing

the size of the multicast. However, we also need to main-

tain the load balance. Graph partitioning is able take

into account load balance as well. Yet, the load is ex-

pressed as vertex or edge weight sums. Unfortunately, it

is not possible to express the processing load, as defined

in Equation 3, using such a sum. Thus, we investigate

several alternative graph partitioning approaches that

differ in how load balancing is formulated, all of them

being heuristics. We also look at simple partitionings

that serve as baselines. Figure 2 gives an overview of

these alternatives, which are further detailed below:

Cut minimization (gC), Figure 2(a). This is a base-

line partitioning that does not consider load balanc-

ing. It aims at minimizing the cut, using an unweighted

word network. Thus, any pair of words that appear at

least once together would contribute the same amount

towards the total cut.

Co-frequency cut minimization (gFC), Fig-

ure 2(b). This is another baseline approach that does

not perform load balancing. However, it considers the

co-occurrence frequencies when minimizing the cut.

Thus, words that appear commonly together are ex-

pected to be placed within the same partitions as much

as possible. Since this baseline does not consider load

balance, and since load balance and spread are at odds,

we expect gFC to provide a very low (good) spread and

a high imbalance.

Co-frequency cut minimization, frequency load

balancing (gFCL), Figure 2(c). This is one of the

two graph partitioning based algorithms that are con-

tenders. Similar to gFC, it minimizes the co-occurrence

frequency based cut. Differently, it tries to maintain

load balance as well. Load for a partition is defined as

the sum of the vertex loads, where the vertex load is

defined as the word frequency. The downside of this

approach is that, it overestimates the partition load.



S3-TM: Scalable Streaming Short Text Matching 7

As a simple scenario, consider a small partition that

contains three words that always appear together in

publications. In this case, the overall partition load will

be three times the correct value. The real load depends

on the number of publications routed to the partition,

which is lower than the sum of the word frequencies for

that partition, due to co-occurrences.

Co-frequency cut minimization, normalized fre-

quency and co-frequency load balancing (gN-

FCL), Figure 2(d). This partitioning approach im-

proves upon gFCL by trying to compensate for the

overestimation of the partition load. Since using the

word frequency as the vertex load results in overesti-

mation, it uses a normalized vertex load for computing

the overall partition load. Specifically, it uses the ver-

tex load formulation l(w) = f(w)
1+fn(w)/f(w) , where fn(w)

is the sum of co-occurrence frequencies for the word w.

That is, fn(w) =
∑

(w,w′)∈E f(w,w′). To understand

the logic behind this normalization, let us consider two

extreme cases. In one extreme case, a word may always

appear by itself in publications. In this case, we have

fn(w) = 0, and thus l(w) = f(w). This is the correct

load contribution to the partition for word w. As an-

other extreme, we can consider a similar example from

the gFCL discussion, that is k words that always ap-

pear together in all publications. In this case, we have

l(w) = f(w)/k, since we have fn(w) = (k − 1) · f(w).

The total load of the k words would be f(w), which

is again correct. Despite these nice features, there are

many scenarios for which the partition load is not ex-

act. As a result, this is just a heuristic too, albeit one

that is more accurate than gFCL.

Once the word network partitioning is performed,
the results are easily converted into a global mapping

M by mapping each word in a partition to the matcher

associated with that partition.

3.3 SALB: Spread-Aware Load Balancing

The SALB algorithm aims at explicitly modeling the

notion of load, rather than relying on some approxi-

mation of it as done by the word network partitioning

based approaches. With a more accurate model of load,

it better balances it across matchers. However, a good

load balance does not necessarily imply a low overall

load, since words are not independent and to achieve

low average load one needs to co-locate commonly co-

occurring words. This latter can be achieved by trying

to minimize spread. Accordingly, SALB tries to min-

imize both imbalance and spread. Note that this also

matches with our intuition of approximate throughput

as expressed in Equation 7.

The SALB algorithm is given in Algorithm 1. It is

a greedy algorithm that assigns words to matchers one-

Alg. 1: SALB, Spread-Aware Load Balancing

Data: P, set of publications
Data: N , number of matchers
Result: M , word to matcher mapping
M ← {} . Initialize the mapping
R← 0 . Initialize the spread
∀i∈[1..N], Li ← 0 . Initialize loads

W ←
⋃

P∈P P . Collect words

. Form the word-to-publication bipartite graph
G(W,P, E) s.t. E = {(w,P ) | w ∈W ∧ P ∈ P ∧ w ∈ P}
for w ∈W in desc. order of f(w) do . For each word

u∗ ← −∞ . Initialize utility for the best mapping
l∗ ← 0 . Initialize delta load for the best mapping
k ← 0 . Initialize the best mapping index
for i ∈ [1..N ] do . For each matcher

. Compute the extra load w brings to matcher i
l←

∑
P∈nbrG(w) [ @w′∈P s.t. M(w′) = i ]

r ← R + l/|P| . Compute spread
L ←

⋃
j∈[1..N]\{i}{Lj} ∪ {Li + l} . Union loads

b←
√

var(L)/avg(L) . Compute imbalance
u← −r · b . Compute utility
if u > u∗ then . If a better mapping

u∗ ← u . Update the best utility
l∗ ← l . Update the delta load
k ← i . Update the best mapping

Lk ← Lk + l∗ . Update the load of the matcher
R← R + l∗/|P| . Update the spread
M(w)← k . Add the new mapping

return M . Return the constructed mapping

by-one. It considers words in decreasing order of ap-

pearance frequency (f(w) for w ∈W ). Frequent words

are assigned a mapping first, as this provides additional

flexibility to balance the load later. For each word, each

matcher is considered as a candidate mapping and the

one with the highest utility is picked as the one to be

added to the mapping. The process continues until all

words are assigned a mapping. The utility used for pick-

ing the best among all matchers is defined as spread

times load imbalance times -1 (making higher values

better), where spread and imbalance are computed as

if the candidate mapping is already applied.

To compute the spread and load imbalance incre-

mentally as words are assigned to matchers, we first

build a bipartite graph G(W,P, E), where W is the set

of words and P is the set of publications. There is an

edge (w,P ) in E if and only if the word w is contained

in the publication P , that is w ∈ P . We use nbrG(w)

to denote the set of neighbors of the word w in graph

G, i.e., the set of publications that contain the word w.

Consider a candidate mapping of word w to matcher

i. In order to compute the new spread and imbalance

incrementally, a key quantity we need to compute is

the additional load this mapping will introduce on the

matcher. This amount is denoted via l in the algorithm.

We have l =
∑

P∈nbrG(w) [@w′∈P s.t. M(w′) = i]. That

is, we find all publications that contain the word w (i.e.,



8 Fuat Basık et al.

P ∈ nbrG(w)) and for each such publication P , we add

1 to the load if the publication does not contain any

other word that is already mapped to matcher i (i.e.,

@w′∈P s.t. M(w′) = i). Given this quantity, we can

incrementally compute the new spread by adding l/|P|
to the existing spread, as l gives the increase in the

number of publications that are routed as a result of

adding a new mapping.

Recall that we define utility in terms of spread times

imbalance. We already discussed how spread is incre-

mentally updated. Similarly, we update the load im-

balance incrementally. For imbalance, we use a slightly

different formulation than the ratio of maximum load

to average load. Using the maximum term in the for-

mulation results in a highly insensitive metric during

the initial iterations of the algorithm, as mappings to

matchers other than the one that changes the maximum

load makes a very small impact. Thus, as an imbalance

metric, we use coefficient of variance of the matcher

loads. Since we have computed the extra load brought

by the new mapping, that is l, we can easily come up

with the new set of loads on the matchers. This is de-

noted as the set L in the algorithm. Then the imbalance

is given by
√

var(L)/avg(L), which is the standard de-

viation of the loads divided by the average load (aka.

coefficient of variance). The normalization via the av-

erage load is included in the formulation (the denom-

inator), since different candidate mappings may result

in different total loads.

Complexity. The outer loop of the algorithm iterates

|W | times and the inner loop iterates |N | times. Assum-

ing there are k words per publication on average and

there are d publications containing a word on average,

the inner loop performs O(d ·k+N) operations. The N

part comes from the computation of the imbalance. In

practice, both variance and average can be computed

incrementally, yet for brevity we have not shown that

in the algorithm. So the inner loop’s body can complete

in O(d · k) time. This results in an overall complexity

of O(d · k · N · |W |). We know that k is a small con-

stant irrespective of dataset size, so we can represent

the complexity simply as O(d · N · |W |). The average

number of publications a word appears in is bounded by

|P|, so an even simpler time complexity formula can be

given by O(N ·|P|·|W |), even though this bound will be

rather loose. Also note that we can add the log |W |·|W |
term that comes from the sorting, but this is not nec-

essary as the other multiplicative terms in front of |W |
are larger than log |W | in practice.

Our experimental results show that SALB algorithm

performs favorably in terms of the running time com-

pared to graph partitioners on large datasets.

Alg. 2: LASP, Load-Aware Subscription Placement

Data: S, subscription to be placed
Data: N , number of matchers
Data: M , word to matcher mapping
Data: H, subscription word map
Result: k, the matcher where the subscription is placed
u∗ ← −∞ . Initialize utility for the best placement
k ← 0 . Initialize the matcher for the best placement
B(P,M) = {i | ∃w ∈ S s.t. M(w) = i} . Eligible ones
for i ∈ B(P,M) do . For each eligible matcher

l← f(|S \H(i)|) . Compute subs. delta load
. Union all load lists
L ←

⋃
j∈{1..N}\{i}{f(|H(j)|)} ∪ {f(|S ∪H(i)|)}

b←
√

var(L)/avg(L) . Compute imbalance
u← −l · b . Compute utility
if u > u∗ then . If a better mapping

u∗ ← u . Update the best utility
k ← i . Update the best placement

H(i)← H(i) ∪ S . Update subscription word map
return k . The matcher for the best placement

4 Subscription Matching and Placement

The default policy used for placing subscriptions on

matchers is to anycast them to one of the eligible match-

ers. Let S be a subscription, which is a set of words. We

denote the set of eligible matchers as B(P,M) under a

given mapping M and define it as B(P,M) = {i | ∃w ∈
S s.t. M(w) = i}. This policy is sub-optimal as it does

not attempt to group together similar subscriptions and

doing so can significantly reduce the load. However, in

order to do such a grouping, we need a better under-

standing of the matching process.

4.1 Matching

We perform the matching using a trie data structure.

We sort each subscription before it is inserted into the

trie, so that its words are in lexicographic order. The

trie takes advantage of common prefixes within the sub-

scriptions. Each trie node has zero or more child nodes,

each associated with a word, and a potentially empty

list of subscriptions. For trie nodes that have large num-

ber of children, the child nodes are kept in a hash table.

We make use of these hash tables for fast search. For

instance, the root node has as many children as there

are unique start words in sorted subscriptions.

When a publication is to be matched against the set

of subscriptions stored in a trie, we do a scoped traversal

of the trie. During the traversal, a child node is visited

if and only if its associated word is in the publication.

To check this, we probe the child hash table using the

set of words in the publication. Since our publications

are short, this is quite efficient. Note that, during the

traversal, for any visited trie node we are guaranteed

that all the words up to the root are in the publication.

Thus, whenever a trie node is visited, any subscriptions

associated with it are added to the result.



S3-TM: Scalable Streaming Short Text Matching 9

4.2 Load-Aware Subscription Placement

For placing subscriptions we introduce an algorithm

called Load-Aware Subscription Placement, LASP for

short. The LASP algorithm is executed within the Sub-

scription Placement operator as part of the Router &

Placer stage instances. Any stage instance can place

any subscription. To facilitate this, we keep a repli-

cated data structure called the subscription word map,

denoted as H. For each matcher i, the subscription

word map contains the set of unique words that appear

in subscriptions assigned to that matcher, denoted as

H(i). This structure is potentially updated every time a

new subscription is placed. Since the subscription rate is

much lower than the publication rate, propagating up-

dates regarding the changes on this structure is cheap.

Alternatively, this structure can be kept centralized.

The LASP algorithm, given in Algorithm 2, is struc-

tured similar to the SALB algorithm’s inner loop. It

iterates over all possible placements, each correspond-

ing to placing the subscription on one of the eligible

matchers. For each eligible matcher (i ∈ B(P,M)), it

computes a utility metric and picks the one with the

highest utility as the matcher to place the publication

on. The utility is defined as the increase in the sub-

scription load of the matcher times the load imbalance

times -1 (making higher values better).

Subscription load is proportional to the cost of

matching a publication against the set of subscribers

placed on the matcher. We make a simplifying assump-

tion here: we assume that the matching cost (repre-

sented via the f function in the algorithm) is linear in

the number of unique words in the trie. This assumption

is motivated by the observation that the higher amount

of overlap in the subscriptions reduces the size of the

trie, which is equal to the number of unique words in it

(|H(i)| for matcher i).

0 5K 10K 15K 20K 25K 30K 35K
number of unique words

0

1M

2M

3M

4M

5M

6M

n
u
m
b
e
r
o
f
o
p
e
ra
ti
o
n
s

y=171*x+344959

Fig. 3: Number of lookup ops.

Figure 3 plots the number of operations performed

in our trie implementation as a function of the number

of unique words, using the workload setup described in

Section 6. We fit a linear line on this graph and employ

it as the f function used by the LASB algorithm.

5 Extensions

In this section, we present extensions to the base S3-TM

system to solve two problems commonly encountered

in practice, namely: skew in publication workload and

unexpected spikes in load.

Skew in word frequencies causes high load imbal-

ance and results in limited scalability. The skew be-

comes more pronounced when the number of machines

increases, as the load brought by a single word on a

matcher may exceed the average load per machine. By

handling skew via the help of a word splitting mecha-

nism that is adaptive to the number of machines used,

we reach near-linear scalability.

A micro-blogging service may experience unex-

pected load spikes, often due to a sudden mass reaction

from the user base. Without any special mechanism,

these spikes may result in randomly dropping incoming

publications, significantly reducing the match quality.

We develop load shedding techniques that aim at min-

imizing the impact of load spikes on match quality.

5.1 Skew Handling

When scaling up to large number of nodes, load im-

posed by some of the words might exceed the average

load of a node. Such hot words cause skew, since pro-

posed algorithms have the limitation that any given

word can be assigned to only a single matcher. Our ini-

tial experiments showed that SALB scales linearly up

to 64 nodes with many of the real-world tweet datasets.

After 64 nodes, linear scalability is lost, and after 128

nodes, no additional speedup is achieved.

To handle skew, we first find the average aggre-

gate word frequency a node should handle. Since SALB

tries to balance the load across nodes while keeping

the spread low, having a word with frequency higher

than the average frequency causes increased load im-

balance. Therefore, we limit each word to have at most

frequency equal to the half of the aggregate frequency a

node should handle. As a result, a single word can only

account for half of a node’s even share of load. If a word

does not satisfy this condition due to high frequency, we

split the word into versions, until the condition is sat-

isfied. If a word is split into k versions, then that word

is replaced with a random version in range [0..k) when

it is encountered within a publication. This effectively

reduces the load a single word can incur on a matcher.

This leaves us one last problem, that is, how to

place subscriptions that contain one of the hot words.

There are three types of subscriptions with respect to

the hot words: (i) those that do not contain any of the

hot words, (ii) those that contain both hot and regu-

lar words, and (iii) those that contain only hot words.

For the first category (no hot words), no change is re-



10 Fuat Basık et al.

quired during subscription placement. For the second

category (both hot and regular words), since the LASP

algorithm already selects the least frequent words dur-

ing placement, hot words are eliminated already and

subscription is anycast to one of the nodes that are

responsible for a regular word from the subscription.

Finally, for the last category (all hot words), the hot

word with the least frequency is selected and the sub-

scription is multicast to all nodes that are responsible

for a version of the selected hot word. The multicast

is needed, because multiple nodes may be handling the

different versions of the selected hot word. Luckily, the

third category of subscriptions is small in size.

Splitting words into versions is performed during

the learning phase. It impacts both the creation of the

mapping used for routing, as well as the assignment of

subscriptions to machines. When the learning phase is

repeated, the mapping is updated and the subscriptions

are replaced.

5.2 Load Shedding

Micro-blogging services may experience unexpected

spikes in load due to mass reaction from the users to

rare and noteworthy world events. In such scenarios,

the input publication rate may exceed the maximum

throughput that can be handled by the system. This re-

quires shedding some load to avoid lengthy delays and

eventual random dropping of the publications.

There are two aspects to load shedding in streaming

systems [25]: how much load to shed and and what load

to shed. The former typically changes as the workload

and resource availability varies, and as such, requires an

adaptive solution. In what follows, we first describe how

we resolve the ‘what’ question, and then we describe the

adaptive load shedding technique we use to handle the

spikes in load (the ‘how’ question).

5.2.1 What load to shed

The most straightforward way to shed load is to ran-

domly drop publications. An alternative and more ef-

fective way is to limit the number of matchers they are

multicast to. This reduces the spread, and thus load. We

perform load shedding by limiting the maximum num-

ber of matchers a publication is routed to, say m. If the

publication at hand has more than m target matchers

it ideally should be routed to, then we only route it to

the m matchers that have the highest utility metric. We

use two such metrics:

• Consensus shedding : Forward to the matchers with

the highest number of publication words mapping to

them. The main idea is to reduce the number of publi-

cation words for which forwarding is not performed, as

this may improve the overall match quality.

• Subscription shedding : Forward to the matchers that

contain the highest number of subscriptions for the

words in the publication. The main idea is to mini-

mize the impact of load shedding on the match quality,

as the publication is routed to mathcers that are more

likely to produce matches.

5.2.2 How much load to shed

The Publication Routing operator keeps a buffer of

publications. When a new publication is received, it

is enqueued into this buffer. A separate thread pulls

publications from this buffer and routes them to the

matchers. The overload is detected when the buffer is

full. The size of the buffer, say b, can be adjusted based

on the latency requirements of the system.

We perform dynamic load shedding by making use

of this buffer. In particular, we extend it with two addi-

tional segments, resulting in a total of three segments.

The front of the buffer is called the ideal segment, which

represents the ideal mode of operation in terms of the

buffer fullness. The next segment is called the stable

segment, and the one following it is called the overload

segment. The idea is that the system will increase the

level of load shedding when the buffer fullness is in the

overload segment, and reduce the level of load shedding

when the buffer is in the ideal segment. No changes will

be made when in the stable segment. The goal of the

stable segment is to avoid oscillation.

We define lowest shedding level as l = 0, which cor-

responds to m =∞. Level l = 1 corresponds to m = k,

where k is 7 based on our experimentation (see Sec-

tion 6). Each successive level has m decreased by ∆,

such as m = k − ∆ and m = k − 2 · ∆ for l = 2 and

l = 3, respectively. ∆ could be less than 1, which cor-

responds to probabilistic forwarding for the last word

selected for forwarding.

Let bi and bs be the sizes of the ideal and the sta-

ble segments. We have b = bs + bi and we ensure that

the system operates such that the overload segment is

avoided via increasing the shedding level. One impor-

tant point is that, we need to avoid oscillation in the

system. In particular, the system should not jump from

the ideal segment into the overload segment as a re-

sult of a single level reduction in the shedding level.

We achieve this by adjusting the ratio r = bi/bs. Let

us represent the load in the system for shedding level

l as L(l). Modeling the system as a queueing one and

applying Little’s Law, we say that the queue length

is proportional to the input rate times the processing

time (roughly inverse of the load level). This gives the

following inequality:

(bs + bi)/bs > L(l −∆)/L(l),∀l (8)



S3-TM: Scalable Streaming Short Text Matching 11

This ensures that reducing the load shedding level never

takes the buffer fullness from the ideal segment to the

overload segment. We have:

r = 1−max
l
L(l)/L(l −∆) (9)

We also need to ensure that the system does not

move from the overload segment to the ideal segment

when the shedding level is increased. That condition is

already satisfied by Equation 9. Finally, the L function

is easily computed experimentally, as we will show in

Section 6.5.

It is important to note that we may increase (de-

crease) the load shedding level due to being in the over-

load (ideal) segment, yet when the next adaptation time

comes, we might still be in the same segment. In this

situation, we continue to decrease (increase) the load

shedding level if and only if the buffer fullness level

has not went down (up) since the last adaptation time.

Given this, we can set the adaptation period low, con-

servatively. In our system, we set the adaptation period

to 1 second.

6 Experimental Evaluation

In this section, we evaluate the scalability and per-

formance of the S3-TM system, with a particular fo-

cus on the effectiveness of our publication routing and

subscription placement algorithms. The evaluation in-

cludes five sets of experiments. The first set of exper-

iments studies scalability, presenting performance as a

function of the number of nodes. The second set stud-

ies subscription-awareness, presenting performance as a

function of the number of subscriptions. The third set

studies concept drift, that is how the performance of

the system is impacted by the temporal changes in the

contents of the publications. The fourth set studies the

efficacy of the load shedding algorithms. Finally, the

last set of experiments study the learning time of alter-

native algorithms used for learning the word to matcher

mapping. In most of our experiments, we make use of

the spread, load imbalance, and throughput metrics.

All experiments are performed using 10-fold cross val-

idation and error bars showing the standard deviation

are included in the plots.

The word network partitioning based algorithms

make use of Metis 5.1.0 [12] for graph partitioning. In

contrast, the SALB algorithm does not make use of

graph partitioning. Mallet [15] implementation of La-

tent Dirichlet Allocation (LDA) [3] is used for creating

topic-based subscriptions, as we will detail later.

The S3-TM system is implemented in Python. We

use CPython 2.7 series for learning the word to matcher

mapping and PyPy 2.7 series (which includes a JIT)

for runtime subscription matching. All experiments are

Datasets ⇒ April-2013 Sparse

# of tweets (sampled) 979,442 979,442
# of words (sampled) 100,310 198,887

total word freq. (sampled) 3,874,826 10,190,479
# of word pairs (sampled) 5,507,437 7,559,671

# of tweets (unsampled) 9,791,543 10,467,110

Table 1: Properties of the attributes in the learning corpus.

100 101 102 103 104

frequency

100
101
102
103
104
105

#
o
f
w
o
rd
s April 2013

(a) April 2013

100 101 102 103 104

frequency

100
101
102
103
104
105
106

#
o
f
w
o
rd
s Sparse

(b) Sparse

Fig. 4: Word frequencies.

executed on Linux machines with 2 Intel Xeon E5520

2.27GHz CPUs and 48GB of RAM per machine. In the

rest of this section, we use the term node to refer to a

core on a machine. Since we go up to 256 nodes and

since each machine has 12 cores in total, we use 1 to 24

machines, depending on the experimental setup.

6.1 Experimental Workload

Experiments are performed using two different

datasets, details of which are shown in Table 1. Both

datasets contain public tweets in the English language,

collected using the Twitter Streaming API [27]. These

tweets are used for learning the word to matcher map-

ping. Before learning, we perform pre-processing, in-

cluding cleaning, stemming, and stop word removal.

Cleaning involves removing any non- word tokens (num-

bers are kept), links starting with the word “http”,

words starting with @ (screen names), and punctu-

ations. Each word is stemmed using Porter’s algo-

rithm [18]. Stop word removal is performed based on a

common stop words list taken from the Mallet library.

The first dataset consists of tweets we collected in

April, 2013. We used random sampling to create a learn-

ing corpus of around 1 million tweets. The learning cor-

pus contains about 100 thousand unique words after

pre-processing. Counting multiple occurrences of those

words, there are around 3.8 million word occurrences

and those words create 5.5 million pairs.

The second dataset is a publicly available tweet

dataset called Sparse [6]. We also sampled this dataset

to create a learning corpus of around 1 million tweets.

The learning corpus contains about 200 thousand

unique words, 10.2 million total word occurrences, and

7.6 million word pairs. Figure 4 shows the word fre-

quency distributions of the learning corpus we extracted

from the two datasets.

The motivation behind using a learning corpus of

size 1 million tweets is the following. The effectiveness



12 Fuat Basık et al.

21 22 23 24 25 26 27 28

number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

re
la
ti
v
e
th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 5: Relative throughput,
tweet based subscriptions.

21 22 23 24 25 26 27 28

number of nodes

210

211

212

213

214

215

216

th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 6: Throughput, tweet
based subscriptions.

21 22 23 24 25 26 27 28

number of nodes

20

21

22

23

sp
re
a
d

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 7: Spread, tweet based
subscriptions.

21 22 23 24 25 26 27 28

number of nodes

2-13
2-11
2-9
2-7
2-5
2-3
2-1
21
23
25
27

lo
a
d
im
b
a
la
n
ce

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 8: Load Imbalance, tweet
based subscriptions.

21 22 23 24 25 26 27 28

number of nodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
la
ti
v
e
th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 9: Relative throughput,
topic based subscriptions.

21 22 23 24 25 26 27 28

number of nodes

213

214

215

216

217

218

219

th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 10: Throughput, topic
based subscriptions.

21 22 23 24 25 26 27 28

number of nodes

20

21

sp
re
a
d

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 11: Spread, topic based
subscriptions.

21 22 23 24 25 26 27 28

number of nodes

2-7
2-6
2-5
2-4
2-3
2-2
2-1
20
21
22
23
24
25
26
27

lo
a
d
im
b
a
la
n
ce

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 12: Load Imbalance,
topic based subscriptions.

0 .125M.25M .5M 1M 2M 4M
training data size, 16 nodes

2.5K

3K

3.5K

4K

4.5K

5K

5.5K

6K

6.5K

7K

tth
ro

u
g

h
p

u
t

SALB

8M

Fig. 13: Throughout vs. the learning corpus size.

of the word to matcher mapping is impacted by the fre-

quent words and it is sufficient to capture those words

with a sample of size 1 million. However, increasing the

learning corpus size unnecessarily significantly increases

the learning time (see Section 6.6). To verify the sam-

pling claim, we used the Sparse dataset to measure the

impact of increasing the learning corpus sample size on

the throughput. The results are depicted in Figure 13.

We observe that increasing the learning corpus size be-

yond 0.5 million brings diminishing returns in terms

of throughout. The main intuition behind this is that,

only words with a significantly high frequency are im-

portant enough to impact the spread and load balance.

As such, a sample of 1 million tweets is as good as 10

million for the purpose of learning.

We generated the subscriptions using two alterna-

tive methods. The first one is called tweet-based sub-

scriptions and the second one is called topic-based sub-

scriptions. To create tweet-based subscriptions, we pick

random tweets from the dataset and register them as

subscriptions to the system. To create topic-based sub-

scriptions, we model the interests of the users. Specif-

ically, we created a topic extractor using LDA [3] im-

plementation of the Mallet library. We extracted 100

topics from each dataset. For each topic we selected

5 words related to it. Alpha and Beta parameters of

LDA are set to 0.1, which is the Mallet default. Since

the length of the subscriptions may show variability, we

used a Zipf distribution to decide how many predicates

a subscription contains. Each subscription selects one

topic, decides its length using a Zipf distribution with

a skew parameter of 0.5, and gets that number of words

from the topic at random. Shortest publication contains

a single word and the longest contains 5 words. Overall,

the tweet-based model represents the scenario where we

have relatively long subscriptions, with low popularity,

whereas the topic-based model represents the scenario

where we have relatively short subscriptions, with high

popularity.

In the rest of this section we present our experimen-

tal results. For brevity, we use the April 2013 dataset

for the throughput, spread, and load imbalance exper-

iments, as the results from the other dataset are very

similar. For the relative throughput experiments, we

use the average values computed using both datasets.

6.2 Scalability

We look at the spread, load imbalance, and through-

put as a function of the number of nodes in the system.

Here, the number of nodes corresponds to the number

of matcher instances, which is the number of cores in

our system. We also plot the relative throughput, where

we take the throughput achieved using the matching

learned via the SALB algorithm as 1 and report the

throughput of the alternative approaches relative to

that. The geometric mean of the relative throughputs

from both datasets is used. The number of subscriptions

used for this set of experiments is 100 thousand.



S3-TM: Scalable Streaming Short Text Matching 13

Figures 5 and 9 plot the relative throughput tweet-

and topic-based subscriptions, respectively. We observe

that SALB performs up to 130% and 150% better than

the baseline hash based routing, for tweet- and topic-

based subscriptions, respectively. Overall, for topic-

based subscriptions the improvement relative to hash-

ing is more lasting as the number of nodes increases.

Our main concern is the throughput of the system

and Figure 6 plots it as a function of the number of

nodes, which ranges from 2 to 256. We observe that

gC and gFC perform more than an order of magni-

tude worse than the best approach, so they are not

contenders. For the remaining algorithms, we see close

to linear scalability up to 128 nodes. After 128 nodes

the throughput starts to decrease, except for SALB.

We observe that SALB provides the best throughput

and scalability, where gFCL and gNFCL are second,

with the former being slightly better than the latter,

and hash based routing is the last. The results for the

topic-based subscriptions, shown in Figure 10, are even

more pronounced. In particular, for a 256 node sys-

tem, SALB provides 2.56 times better throughput than

the baseline hash based routing, and 2.2 times better

throughput than the gFCL and gNFCL approaches.

Figure 7 plots the spread of the routed publications

using the tweet-based subscription model. Note that the

minimal spread value that can be achieved is 1. We ob-

serve that as the number of nodes increases, the spread

increases as well, but the rate of increase decreases

and eventually the line flattens. This is expected, as

we know that the spread is bounded by the maximum

number of words in a publication. We also observe that

the cut-based graph partitioning algorithms that do not

care about load balance (gC and gFC) provide the low-

est spread. This is because these algorithms place fre-

quently co-occurring words to the same matchers. But

as we will see soon, the load imbalance of these algo-

rithms will result in poor throughput, which is the ul-

timate metric we care about. The graph partitioning

approaches that consider load (gFCL and gNFCL) pro-

vide lower spread than the hashing based routing and

SALB algorithms. SALB provides slightly lower spread

than hashing, but higher than that of gFCL and gN-

FCL. Interestingly, as the number of nodes in the sys-

tem increases, the spread converges to the same number

for gFCL and gNFCL, yet hashing and SALB converge

to a slightly higher spread.

Figure 11 plots the spread for the topic-based sub-

scription model. The results are similar, with a few

notable differences. First, the spread is much lower

in general, not crossing 2. Second, the spread differ-

ence between the hashing based routing and SALB is

much smaller. Since non-subscribed words are not for-

warded to matcher nodes, we observe that spread of

the topic based subscriptions are much lower than the

tweet based ones. As we will see shortly, the story is

quite different for load imbalance.

Figure 8 plots the load imbalance using the tweet-

based subscription model. We observe that gC and gFC

approaches suffer a very high load imbalance, and as we

will later observe in throughput experiments, this im-

balance causes their throughput to be non-competitive.

The SALB algorithm provides the best load imbalance

among all. The hash based routing has imbalance val-

ues that are mostly between those of gFCL/gNFCL

and SALB. As the number of nodes in the system in-

creases, the imbalance of hashing gets closer to that of

gFCL/gNFCL and eventually passes it. This is because

for a skewed workload, load balancing becomes increas-

ingly difficult with more nodes. We also observe that

gNFCL has slightly higher imbalance than gFCL. De-

spite considering load balance explicitly, both of these

algorithms still fall short in balancing the load and

SALB has 6 and 4 times better lower imbalance in an 8

node configuration compared to gNFCL and gFCL, re-

spectively. As the number of nodes reach higher values,

like 256, the difference between load imbalance values

gets smaller, but SALB still performs the best.

Figure 12 plots the load imbalance for the topic-

based subscription model. The results are very similar.

The load imbalance is higher in general for topic-based

subscriptions, but its rate of increase with increasing

number of nodes is lower. Also, for topic-based subscrip-

tions, gFCL has slightly higher imbalance than gNFCL

(reversed from tweet-based subscriptions).

6.3 Subscription Awareness

We look at the spread, load imbalance, and throughput

as a function of the number of subscriptions in the sys-

tem. We experiment with number of subscriptions that

range from 100 to 10 million. The number of nodes is

fixed to 16 for this set of experiments. We perform ex-

periments with both tweet-based and topic-based sub-

scriptions. It is important to note that for tweet-based

subscriptions, registering 107 random tweets gets close

to an all-words-subscribed system, which is the worst

case scenario for the S3-TM architecture. This is a

highly unlikely scenario in a real-world system, and we

use it as a stretch test.

Figures 14 and 18 plot the relative throughput, for

tweet- and topic-based subscriptions, respectively. For

the tweet-based subscriptions SALB provides 15% bet-

ter throughput compared to gFCL and gNFCL, and

10% better throughput compared to gFCL, until 10

thousand and 100 thousand tweet-based subscriptions,

respectively. Scaling to 10 million tweet-based subscrip-



14 Fuat Basık et al.

102 103 104 105 106 107

number of subscriptions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
la
ti
v
e
th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 14: Relative Throughput,
tweet based subscriptions.

102 103 104 105 106 107

number of subscriptions

29
210
211
212
213
214
215
216

th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 15: Throughput, tweet
based subscriptions.

102 103 104 105 106 107

number of subscriptions

20

21

22

23

sp
re
a
d

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 16: Spread, tweet based
subscriptions.

102 103 104 105 106 107

number of subscriptions

2-4
2-3
2-2
2-1
20
21
22
23
24

lo
a
d
im
b
a
la
n
ce

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 17: Load Imbalance,
tweet based subscriptions.

102 103 104 105 106 107

number of subscriptions

0.0

0.2

0.4

0.6

0.8

1.0

1.2

re
la
ti
v
e
th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 18: Relative Throughput,
topic based subscriptions.

102 103 104 105 106 107

number of subscriptions

213

214

215

216

217

th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 19: Throughput, topic
based subscriptions.

102 103 104 105 106 107

number of subscriptions

20

21

sp
re
a
d

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 20: Spread, topic based
subscriptions.

102 103 104 105 106 107

number of subscriptions

2-1

20

21

22

23

24

lo
a
d
im
b
a
la
n
ce

Hashing

gC

gFC

gFCL

gNFCL

SALB

Fig. 21: Load Imbalance,
topic based subscriptions.

0 5 10 15 20 25
# of weeks from learning

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

re
la
ti
v
e
th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

 
Fig. 22: Relative throughput,

topic-based subscriptions.

0 5 10 15 20 25
# of weeks from learning

215

216

217

218

219

th
ro
u
g
h
p
u
t

Hashing

gC

gFC

gFCL

gNFCL

SALB

 
Fig. 23: Throughput,

topic-based subscriptions.

0 5 10 15 20 25
# of weeks from learning

20

21

sp
re
a
d

Hashing

gC

gFC

gFCL

gNFCL

SALB

 
Fig. 24: Spread, topic-based

subscriptions.

0 5 10 15 20 25
# of weeks from learning

2-3

2-2

2-1

20

21

22

23

lo
a
d
im

b
a
la
n
ce

Hashing

gC

gFC

gFCL

gNFCL

SALB

 
Fig. 25: Load imbalance,
topic-based subscriptions.

tions, SALB still outperforms other approaches. As we

mentioned earlier, at this point the system converges to

an all-words-subscribed system and minimizing spread

becomes critically important. As we have seen from

most of the experiments so far, SALB is better at min-

imizing load imbalance than minimizing spread. That

being said, the all-words-subscribed scenario is highly

unlikely to be encountered in practice. We also observe

that with increasing number of tweet-based subscrip-

tions, the performance of the hash based routing de-

grades. For topic-based subscriptions, SALB provides

22% and 18% better throughput compared to gNFCL

and gFCL, and 42% better throughput compared to

hashing, respectively.

Figures 15 and 19 plot the throughput for tweet- and

topic-based subscriptions, respectively. For tweet-based

subscriptions, there is an almost linear decrease in the

throughput until 1 million subscriptions, whereas for

topic-based subscriptions, the rate of throughput reduc-

tion quickly diminishes after 10 thousand subscriptions.

The latter can be easily explained by the high amount

of overlap across the subscriptions for the topic-based

model. The former can be explained by the reverse,

that is low overlap among the tweet-based subscrip-

tions. This effect shows the importance of the LASP

algorithm for grouping together similar subscriptions.

For both subscription models, SALB algorithm out-

performs the alternatives. The gap between the SALB

algorithm and hashing initially increases as the number

of subscriptions increases. Interestingly, for tweet-based

subscriptions the gap continues to widen, whereas for

topic-based ones it stabilizes. SALB outperforms hash-

ing by more than 4.2 times and 1.42 times for tweet-

and topic-based subscriptions, respectively. For tweet-

based subscriptions, SALB is only marginally better

than gFCL and gNFCL, whereas for topic-based sub-

scriptions the difference is more pronounced.

Figures 16 and 20 plot the spread for the tweet- and

topic-based subscriptions, respectively. Likewise, Fig-

ures 17 and 21 plot the load imbalance for the tweet-

and topic-based subscriptions, respectively. In general,

we observe relationships between the different alterna-

tives as before. SALB has markedly better load imbal-

ance than other alternatives, whereas gFCL and gN-

FCL have better spread than SALB. SALB’s spread is

slightly better than hashing for tweet-based subscrip-

tions, but for topic-based subscriptions their spread is

the same (lines overlap in the figure). The spread in-



S3-TM: Scalable Streaming Short Text Matching 15

0 1 2 3 4 5 6 7
shedding threshold

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu
ra
cy consensusShedding

subscriptionShedding
randomShedding

10

20

30

40

50

60

70

80

90

100

%
of
Lo
ad

Sh
ed

Fig. 26: Accuracy and
amount of load shed

200 400 600 800 1K 1.2K1.4K1.6K1.8K2K
time

5K

10K

15K

20K

25K

30K

th
ro
u
g
h
p
u
t

tweet/sec

shedding level

0

2

4

6

8

sh
e
d
d
in
g
le
v
e
l

 
Fig. 27: Input rate and

shedding level

creases with increasing number of subscriptions, but

with a decreasing rate that diminishes quickly. The load

imbalance increases with increasing number of subscrip-

tions, but again with a decreasing rate that diminishes

eventually. SALB keeps its load imbalance advantage

across the range, having up to 3.3× lower imbalance

than the hashing approach for the tweet-based subscrip-

tions and 1.7× times lower for the topic-based ones.

6.4 Concept Drift

Figures 22, 23, 25, and 24 plot relative throughput,

throughput, load imbalance, and spread as a function of

time. Time corresponds to the number of weeks passed

since the learning was performed using the word to

matcher mapping. We use the tweets from week 0 to

build the word to matcher mapping, and use it for

evaluating the performance for the following weeks. We

report average metrics for 5 week intervals to reduce

noise. For this set of experiments 100K topic-based sub-

scriptions were used. To be able to track the concept

drift of subscriptions as well, for each week we extracted

new topics and created a new subscription set.

We observe that the throughput is markedly higher

for week 0. This is expected, as the model is specif-

ically built for the that week, and certain amount of

overfitting exists. The throughput decreases by a factor

of 2 after the first week and Figures 24 and 25 show

that this is due to both the increase in the spread as

well as the load imbalance. However, the increase in

load imbalance is sharper for all contender approaches.

Even though the increase in imbalance is most steep for

SALB, it still has better imbalance compared to all oth-

ers, and we observe from Figures 23 and 22 that it main-

tains the throughput advantage over other approaches

across the entire time range. Importantly, while there is

an initial decrease in throughput after week 0, there is

no decreasing trend afterwords. This can be explained

by the nature of the spoken languages. Irrespective of

the current topics of interest, there is a common struc-

ture of the spoken language that makes certain words

appear together and learning that structure is sufficient

to achieve better scalability and throughput.

6.5 Load Shedding

Figure 26 plots the accuracy of matching (on the left

y-axis using solid lines) as well as the percentage of

load shed (on the right y-axis using dashed lines), as a

function of the load shedding threshold (the maximum

number of matcher instances a publication is forwarded

to). Accuracy is defined as the fraction of the correct

matches produced by the system. Note that perform-

ing load shedding cannot result in superfluous matches,

but only missing matches. As we decrease the shedding

threshold, the accuracy initially decreases by a small

amount. But as the shedding threshold gets smaller,

the rate of decrease in the quality increases. In general,

the shape of the quality curve is friendly to load shed-

ding. However, the curve for the percent of load shed

is not as friendly. This is because the amount of load

shed is low for large thresholds and the rate of increase

is initially slow when the threshold is high and increases

later as the threshold gets smaller. Still, the load shed-

ding is effective. For instance, it is possible to shed close

to 25% of the load, while still maintaining 90% accu-

racy. Among the two load shedding approaches we have

proposed, that is subscription shedding and consensus

shedding, the former is more effective, as it can provide

higher accuracy for the same amount of load shed.

Figure 27 plots the input throughput (tweets/sec,

on the left y-axis using solid lines) as well as the load

shedding levels (on the right y-axis using dashed lines),

as a function of time. Increased load shedding level im-

plies a lower shedding threshold. Note that, this exper-

iment does not start from time 0, since we wait for the

buffer that holds the publications to stabilize. Also, in

this experiment, we display the throughput and load

shedding values for a single Router & Placer machine.

Starting with 16K publications per second input rate,

at time 500 we increase the input throughput to 32K,

and at time 1000 we decrease it down to 2K. After time

1500, we again go back to 16K publications per second.

Using this setup, we show how the shedding level adapts

to the changes in the input throughput.

We observe that the change in the shedding level

shows a similar pattern with the changes in the input

rate, but it is often shifted towards right. This delayed

reaction is due to the buffering effect, and is more pro-

nounced when the buffer is full (overloaded scenario).

For instance, at time 500, the buffer is not full, and the

sudden increase in throughput quickly fills up the buffer

and takes us to the overload segment. As a result, the

algorithm quickly adapts and increases the shedding

level to 7 (one below the maximum of 8). However,

when there is a very sharp decrease in input rate at

time 1000, it takes a longer time for the shedding level

to come down. This is because of the large buffer size we



16 Fuat Basık et al.

use. It takes time for the already buffered publications

to be processed. Eventually we get to the ideal region,

and the shedding level is lowered. The buffer size can

be adjusted based on the latency that could be toler-

ated. For small buffer sizes, the time it will take for us

to lower the shedding level will be shorter.

102 103 104 105 106 107

number of tweets

2-6
2-4
2-2
20
22
24
26
28
210
212
214

se
co

n
d
s

gCM

gWCM

gFCF

gIFCF

SALB

Fig. 28: Learning time.

6.6 Learning Time

Figure 28 plots the time it takes to build the word to

matcher mapping from the training dataset, as a func-

tion of the number of publications in the dataset. It

is important to note that the graph partitioning based

algorithms make use of the Metis library, which is a

highly optimized C implementation. The SALB algo-

rithm, on the other hand, is a Python implementation.

As a result, here we want to focus more on the trend,

rather than the absolute numbers. We observe that the

rate of increase in the amount of time it takes for SALB

to create the mapping is lower compared to graph par-

titioning based approaches and after 1 million tweets,

SALB starts to take less time. For 1 million tweets,

which is the number we have used in all our experi-

ments, it takes around a minute for graph partitioning

approaches to compute the mapping, and around two

minutes for SALB. For 10 million tweets the number

raises to around 4 hours for SALB and slightly higher

for the graph partitioning based approaches.

6.7 Discussion

In summary, our experimental evaluations shows that:

– The word to matcher mapping created by the SALB

algorithm is effective in increasing the throughput

of short text matching compared to hashing, by as

much as 2.5 times.

– SALB works better than word network partitioning

based solutions, due to its ability to balance the

load, in addition to reducing the spread. The word

network partitioning approaches fail at the former.

– To achieve scalability for large number of nodes,

popular words causing high skew need to be han-

dled via splitting.

– Under extreme load, smart load shedding techniques

can be used together with SALB to provide graceful

degradation in matching quality.

7 Related Work

We discuss prior work related to S3-TM with an

emphasis on pub/sub systems as well as matching and

filtering techniques. S3-TM is relevant to content-based

publish/subscribe systems, as it evaluates monitoring

queries (subscriptions) against micro-blog posts (pub-

lications). Matching and filtering are relevant too, as

one of the core components of S3-TM is the comparison

of publications and subscriptions to detect matches.

Publish/subscribe (pub/sub) systems. Pub/sub

systems can be classified into topic-based and content-

based, depending on the matching model. Much

early work on pub/sub was topic-based, wherein the

messages are filtered based on a single topic string

(e.g., TIBCO [26], Scribe [5]). Content-based pub/sub

systems are more expressive. They use subscriptions

in the form of a set of predicates and evaluate them

against the entire contents of the publications [7,

17]. In this work we use a variation of the content-

based matching model. The key difference from the

classical pub/sub work is that, our predicates in the

subscriptions are just words. We take advantage of this

structure by making intelligent content-based routing

and placement decisions in order to achieve scalability.

Wide-area network pub/sub systems.

PADRES [8], SIENA [4], CORONA [19], HER-

MES [17], and GRYPHON[1] are well-known examples

of distributed content-based pub/sub middleware that

use broker overlays. For instance, PADRES employs a

network of brokers and clients to implement pub/sub

functionality. Similarly, SIENA is developed as a

distributed general-purpose event notification system

that is composed of interconnected servers over a

wide-area network. Apart from these systems, there

also exist systems performing content-based data

dissemination in the context of data streams, such as

SemCast [16] and [9]. Compared to these works, we

focus on pub/sub within a data center environment.

Our system does not use brokers, and instead contains

multiple router and matcher operators, organized

into a pipeline of data parallel stages. However, the

fundamental idea behind content-based routing is

valid in our approach as well. Different than the

classical pub/sub problem, we have knowledge about

the characteristics of the publication data and exploit

it to optimize the routing.

Tightly coupled pub/sub systems. StreamHub [2],

Cobra [20], and S3-TM are pub/sub systems that are

designed to be run within a data center. We refer

to them as tightly coupled pub/sub systems, where

scalability and high throughput are the main concerns.

StreamHub resembles to our work in terms of its



S3-TM: Scalable Streaming Short Text Matching 17

architectural design. However, it treats publications

as black boxes during routing, and as a result, are

limited to publication broadcast and subscription

unicast, vice versa, or a two-level system where the

broadcast/unicast roles are switched between the

publications and subscriptions at successive levels.

Just like the StreamHub, Cobra is also designed to

be run within a data center. Cobra resembles our

work in terms of the goal of the matching, as they

match subscriptions to RSS feeds, enabling users to

make content based filtering and aggregation. While

application-level goals of Cobra are similar to our

work, the architectural design is different in terms of

data parallelism. Cobra has a three tiered architecture

with crawlers, filters, and reflectors. Subscriptions are

assigned to filters and matched data are polled by the

users via reflectors. Crawlers collect RSS feeds and

send those to filters. However, since Cobra assumes

publications as black box like StreamHub, crawlers are

limited to broadcasting feeds to all filters. In contrast

to StreamHub and Cobra, we take advantage of the

short text matching problem domain to avoid the

broadcast. Most importantly, our work focuses on opti-

mization of the routing and placement decisions based

on the contents of the publications and subscriptions,

which is not covered by earlier work.

Filtering and matching. The processing heavy core

of pub/sub systems involve the filtering and matching

of publications against subscriptions. State-of-the-art

matching algorithms for pub/sub systems fall into

one of two main categories, namely counting-based

algorithms [4,28] and tree-based algorithms [1,10,21].

A counting-based algorithm maintains the number of

predicates satisfied for each subscription. A tree-based

algorithm organizes subscriptions as a search tree,

where each node contains a predicate and each leaf

has a set of subscriptions. S3-TM uses a tree-based

subscription matching algorithm as well. In our case,

the search tree is a trie structure in which subscriptions

can be placed within internal nodes as well.

In a recent work on matching, Shraer et al. proposed

an architecture to maintain the top-k tweets relevant to

a news story [24]. In their architecture, the matching

between a subscription and a publication is achieved

by computing a score between the contents of the two

with respect to relevance and recency. This architecture

limits the subscriptions to a small set of news stories.

We have a different model, where subscriptions are set

of words queries and matching is based on strict con-

tainment, rather than similarity.

Delta [11] is a pub/sub system where subscriptions

are reorganized and rewritten to achieve low latency in

matching, and low resource utilization for scaling up to

large numbers of subscriptions. The subscriptions are

conjunctives as in our work, but they take the form of

more general predicates. The system is designed consid-

ering the fact that subscriptions often overlap partially

or completely. This is an assumption we also make use

of. However, the authors focus mainly on reorganizing

the subscriptions for efficient processing via linear pro-

gramming techniques, and not on optimizing routing or

placement. Our work is focused on the latter challenges,

and relies on a mostly traditional trie-based matching

algorithm, which can be easily replaced with more ad-

vanced alternatives like Delta.

8 Conclusion

In this paper, we presented S3-TM — a system for scal-

able streaming short text matching. S3-TM is designed

to be run in a data center environment to evaluate high-

throughput, streaming publications in the form of short

posts against large number of standing subscriptions

in the form of set of query terms. S3-TM is organized

as a data parallel streaming application that contains

many instances of routing and matching stages. A core

insight of our work is that, the matching can be par-

allelized by using a partitioning of words over match-

ers. This way, publications can be multicast to a subset

of relevant matchers and subscriptions can be anycast

to a subset of eligible matchers. We developed several

algorithms to learn a mapping that can minimize the

size of the multicasts and balance the load across the

matchers. Among these, the SALB algorithm that relies

on the word-to-post bipartite graph has proven to be

the most effective in practice. Our experimental results

show that the co-occurrence relationship between words

can indeed make the word partitioning based routing a
scalable and effective solution, resulting in more than

2.5 times higher throughput compared to a baseline ap-

proach. S3-TM also showcases good scalability. As part

of this work, we have also developed a load-aware sub-

scription placement algorithm called LASP and exper-

imentally showed its effectiveness in taking advantage

of overlap structure among subscriptions. Finally, we

have introduced extensions of the base system to han-

dle skew in the publication workload to achive better

scalability, and simple yet effective techniques for load

shedding to handle unexpected spikes in load.

9 Acknowledgements.

This study was funded in part by The Scientific Techno-

logical Research Council of Turkey (TÜBİTAK) under

grants EEEAG #111E217 and #112E271.

References

1. Aguilera, M.K., Strom, R.E., Sturman, D.C., Astley, M.,
Chandra, T.D.: Matching events in a content-based sub-



18 Fuat Basık et al.

scription system. In: ACM Symposium on Principles of
Distributed Computing (PODC) (1999)

2. Barazzutti, R., Felber, P., Fetzer, C., Onica, E., Pineau,
J.F., Pasin, M., Rivière, E., Weigert, S.: Streamhub:
A massively parallel architecture for high-performance
content-based publish/subscribe. In: ACM International
Conference on Distributed Event-based Systems (DEBS),
pp. 63–74 (2013)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allo-
cation. Journal of Machine Learning Research (JMLR)
3, 993–1022 (2003)

4. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design and
evaluation of a wide-area event notification service. ACM
Transactions on Computer Systems (TOCS) 19(3), 332–
383 (2001)

5. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron,
A.I.: Scribe: A large-scale and decentralized application-
level multicast infrastructure. IEEE Journal on Se-
lected Areas in Communications (JSAC) 20(8), 1489–
1499 (2006)

6. Choudhury, M.D., Lin, Y.R., Sundaram, H., Candan,
K.S., Xie, L., Kelliher, A.: How does the data sampling
strategy impact the discovery of information diffusion in
social media? In: AAAI Conference on Weblogs and So-
cial Media (ICWSM) (2010)

7. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec,
A.M.: The many faces of publish/subscribe. ACM Com-
puting Surveys (CSUR) 35(2), 114–131 (2003)

8. Fidler, E., Jacobsen, H.A., Li, G., Mankovski, S.: The
padres distributed publish/subscribe system. In: Inter-
national Conference on Feature Interactions in Telecom-
munications and Software Systems (FIW) (2005)

9. Gedik, B., Liu, L.: Quality-aware distributed data deliv-
ery for continuous query services. In: ACM International
Conference on Management of Data (SIGMOD) (2006)

10. Kale, S., Hazan, E., Cao, F., Singh, J.P.: Analysis and
algorithms for content-based event matching. In: Inter-
national Workshop on Distributed Event-Based Systems
(DEBS), pp. 363–369 (2005)

11. Karanasos, K., Katsifodimos, A., Manolescu, I.: Delta:
Scalable data dissemination under capacity constraints.
VLDB Endowment (PVLDB) 7(4), 217–228 (2013)

12. Karypis, G., Kumar, V.: A fast and high quality mul-
tilevel scheme for partitioning irregular graphs. SIAM
Journal on Scientific Computing (SISC) 20(1), 359–392
(1998)

13. Li, M., Ye, F., Kim, M., Chen, H., Lei, H.: Bluedove: A
scalable and elastic publish/subscribe service. In: IEEE
International Parallel & Distributed Processing Sympo-
sium (IPDPS), pp. 1254–1265 (2011)

14. Liu, L., Pu, C., Tang, W.: Continual queries for inter-
net scale event-driven information delivery. IEEE Trans-
actions on Knowledge and Data Engineering (TKDE)
11(4), 610–628 (1999)

15. McCallum, A.K.: MALLET: A machine learning for lan-
guage toolkit (2002). http://mallet.cs.umass.edu

16. Papaemmanouil, O., Çetintemel, U.: SemCast: Seman-
tic multicast for content-based stream dissemination.
In: IEEE International Conference on Data Engineering
(ICDE), pp. 37–42 (2004)

17. Pietzuch, P.R., Bacon, J.M.: Hermes: A distributed
event-based middleware architecture. In: IEEE Inter-
national Conference on Distributed Computing Systems
(ICDCS), pp. 611–618 (2002)

18. Porter, M.F.: An algorithm for suffix stripping. Program:
Electronic library and information systems pp. 313–316
(1997)

19. Ramasubramanian, V., Peterson, R., Sirer, E.G.: Corona:
A high performance publish-subscribe system for the
world wide web. In: USENIX Conference on Networked
Systems Design & Implementation (NSDI) (2006)

20. Rose, I., Murty, R., Pietzuch, P., Ledlie, J., Roussopoulos,
M., Welsh, M.: Cobra: Contentbased filtering and aggre-
gation of blogs and rss feeds. In: USENIX Conference on
Networked Systems Design & Implementation (NSDI),
pp. 3–3 (2007)

21. Sadoghi, M., Jacobsen, H.A.: Be-tree: An index struc-
ture to efficiently match boolean expressions over high-
dimensional discrete space. In: ACM International Con-
ference on Management of Data (SIGMOD), pp. 637–648
(2011)

22. Schaeffer, S.E.: Survey: Graph clustering. Computer Sci-
ence Reviews 1(1), 27–64 (2007)

23. Schneider, S., Hirzel, M., Gedik, B., Wu, K.L.: Safe data
parallelism for general streaming. IEEE Transactions on
Computers (TC) (2013). DOI 10.1109/TC.2013.221

24. Shraer, A., Gurevich, M., Fontoura, M., Josifovski, V.:
Top-k publish-subscribe for social annotation of news.
VLDB Endowment (PVLDB) 6(6), 385–396 (2013)

25. Tatbul, N., Çetintemel, U., Zdonik, S., Cherniack, M.,
Stonebraker, M.: Load shedding in a data stream man-
ager. In: Very Large Databases Conference (VLDB), pp.
309–320 (2003)

26. TIBCO Inc., Tib/rendezvous. White Paper (1999)
27. Twitter Streaming API. http://dev.twitter.com/docs/

streaming-apis. Retrieved Dec, 2013
28. Yan, T., Garcia-Molina, H.: Index structures for selective

dissemination of information under the boolean model.
ACM Transactions on Database Systems (TODS) 19(2)
(1994)

http://mallet.cs.umass.edu
http://dev.twitter.com/docs/streaming-apis
http://dev.twitter.com/docs/streaming-apis

	Introduction
	Architecture
	Publication Routing
	Subscription Matching and Placement
	Extensions
	Experimental Evaluation
	Related Work
	Conclusion
	Acknowledgements.

