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Amenable covers for surfaces and growth of closed
geodesics

Mark Pollicott

July 27, 2015

1 Introduction

In the study of surfaces and closed geodesics an important characteristic is the topological entropy.
Let M be a compact surface with a smooth Riemannian metric and denote by π(M,T ) the number
of closed geodesics of length at most T . A dynamical perspective comes from considering the
geodesic flow φt : SM → SM on the three dimensional unit tangent bundle SM for M . For
compact surfaces of negative curvature the topological entropy h(φ) of the associated geodesics
flow corresponds to the growth rate of the number of closed geodesics π(M,T ) with length at
most T :

Theorem 1.1 (Sinai [10]). If M has strictly negative curvature then

lim
T→+∞

1

T
log π(M,T ) = h(φ),

where h(φ) denotes the topological entropy of the associated geodesic flow φt : SM → SM .

This was extended to an asymptotic formula for π(M,T ) by Margulis [6].
For non-compact surfaces with strictly negative curvature the situation is a little more com-

plicated [7] and even more so for surfaces of infinite area. Consider a non-compact infinite area

surfaces M̂ which occurs as a cover for a compact surface M of negative curvature. Given
any closed geodesic on M̂ there will be infinitely many of the same length by translating by an
element of the covering group Γ = π1(M)/π1(M̂). Therefore it is natural to count only the

closed geodesics on M̂ up to translation. Since every such closed geodesic on M̂ projects to
(possibly shorter) closed geodesic on M we see that the growth of the number π(M̂, T ) of closed

geodesics on M̂ is less than or equal to that for M , i.e., π(M̂, T ) ≤ π(M,T ). We call the
following definition.

Definition 1.2. We say a group Γ is amenable if it has a Folner sequence (i.e., a sequence
of finite sets Fn ⊂ Γ which exhaust the group and for any g ∈ Γ we have #gFn∆Fn/Fn → 0).

Examples of amenable groups include infinite abelian groups (such as Zd) and nilpotent groups
(such as the discrete Heisenberg group with entries in Z) are amenable.

In this case, it follows from work of Roblin on critical exponents and recent work of Dougall-
Sharp that providing the covering group G is amenable then h(φ) still gives the growth rate of

closed geodesics (up to translation by G) on the surface M̂ :
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1 INTRODUCTION

Theorem 1.3 (Roblin, Dougall-Sharp). If M has strictly negative curvature an the covering

group for M̂ is amenable then

lim
T→+∞

1

T
log π(M̂, T ) = h(φ).

This naturally prompts the question of what can be said when we relax the assumption of
negative curvature. Let M be any compact surface with a smooth Riemannian metric. We recall
the following well known result of Katok. 1

Theorem 1.4 (Katok [3]). We can bound

lim sup
T→+∞

1

T
log π(M,T ) ≥ h(φ),

where h(φ) denotes the topological entropy of the associated geodesic flow φt : SM → SM .

At this level of generality, we can expect to generally have an inequality in Theorem 1.4. For
example, the surface may have uncountably many closed geodesics if it contains an embedded
flat cylinder. Let us again consider a covering surface M̂ for M with covering group Γ. To prove
an analogue of Theorem 1.3, we need to impose an extra assumption.

Hypothesis 1.5. Assume that there exists a transitive geodesic on the non-wandering set
for M̂ .

By a result of Eberlein, this hold for example, if M̂ is a uniform visibility manifold (e.g., if
M has non-positive curvature) [2]. Our main result is that for transitive amenable covers we still
have the same lower bound on the growth rate as in Theorem 1.4.

Theorem 1.6. If Γ is amenable and satisfies the hypothesis then

lim sup
T→+∞

1

T
log π(M̂, T ) ≥ h(φ)

where h(φ) denotes the topological entropy of the geodesic flow φt : SM → SM .

As in the case of Theorem 1.4, at this level of generality one cannot necessarily expect to
have equality in Theorem 1.6.

Remark 1.7. If we impose stronger hypotheses on Γ then we don’t necessarily have to as-
sume the transitivity hypothesis. In particular, we could assume that Γ has sub-exponential
growth, in place of the transitivity hypothesis.

A property of the geodesic flow φt : SM → SM which will be particularly useful to us is the
following: There exists an involution τ : SM → SM (i.e., τ 2 = I) such that τ ◦ φt ◦ τ = φ−t.
A simplifying assumption that we can make without loss of generality is that h(φ) > 0, since
otherwise Theorem 1.6 is trivially true.

1The better known formulation of the theorem is for C2 diffeomorphisms of compact manifolds, but the
extension to flows is straightforward.
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2 ENTROPY AND CLOSING LEMMAS

Our method of proof is based on using Pesin Theory and non-uniformly hyperbolic speci-
fication lemmas to orbit segments arising from an application of Kesten’s result on symmetric
random walks on amenable groups. Most of the arguments are very straightforward variations on
corresponding results in the uniformly hyperbolic setting and so where appropriate we only sketch
the proofs.

In section 2 we will explain how the hypothesis that h(φ) > 0 allows us to generate suitable
orbit segments and closed orbits for the geodesic flow. In section 3, we will show how Kesten’s
theorem on symmetric random walks on amenable groups applies. Finally, in section 4 we combine
these ingredients to complete the proof of Theorem 1.6.

2 Entropy and closing lemmas

In this section we shall introduce two ingredients in the proof of Theorem 1.6. The first involves
the use of the entropy to generate orbit segments for the flow and (non-uniform) hyperbolicity
to create closed orbits. The second is a specification lemma to allow these orbit segments to be
closed up. Both are straightforward modifications of the original proof of Theorem 1.4 in [3].

2.1 Entropy

Let φt : SM → SM be a C2 flow. We recall a convenient definition of metric entropy.

Definition 2.1 (cf. [3]). 2 Let µ be an ergodic φ-invariant probability measure. For a fixed
value 0 < ε < 1 and T, δ > 0 we let N (T, δ, ε) be the smallest number of points {xi}Ni=1

required such that

µ ({y ∈M : ∃1 ≤ i ≤ N, 0 ≤ t ≤ T, d(φtxi, y) < δ}) > 1− ε.

Then:

1. we can then define the entropy h(φ, µ) of the measure µ by

h(φ, µ) = lim
ε→0

lim
δ→0

lim
T→+∞

1

T
logN (T, δ, ε); and

2. we can define the topological entropy h(φ) using the variational principle [11], i.e.,

h(φ) = sup {h(φ, µ) : µ = φ-invariant ergodic probability} .

In fact, it is not necessary to take the first limit in ε, as the next Lemma shows.

Lemma 2.2. For any ε > 0

h(φ, µ) = lim
δ→0

lim
T→+∞

1

T
logN (T, δ, ε)

2This is a straightforward modification of the original definition for diffeomorphisms.
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2.1 Entropy 2 ENTROPY AND CLOSING LEMMAS

Proof. In [3] this result is stated and proved for discrete maps, but the generalisation to
flows is immediate.

Definition 2.3. Given an ergodic φ-invariant probability measure µ we can associate the
positive Lyapunov exponent given by

λ(µ) = lim sup
T≥1

{
1

T

∫
log ‖DφT (x)‖dµ(x)

}
.

Remark 2.4. By the Pesin-Ruelle inequality [9] we have the inequality h(φ, µ) ≤ λ(µ).

As we observed before, we only need to consider the case that h(φ) > 0, since the conclusion
in Theorem 1.6 is trivial in the case h(φ) = 0. The following is well known.

Lemma 2.5. Let h(φ) > 0 then for any h(φ) > ε0 > 0 there exists an ergodic probability
measure µ such that h(φ, µ) ≥ h(φ) − ε0 and the Lyapunov exponent λ = λ(µ) is non-zero
(i.e., µ is hyperbolic).

Proof. By the variational principle we can write

h(φ) = sup{h(φ, ν) : ν is a φ-invariant probability}.

Therefore, we can choose an ergodic measure µ such that h(φ, µ) ≥ h(φ)− ε0. Moreover, by
the Pesin-Ruelle inequality we can write λ(µ) ≥ h(φ, µ) [9].

We now introduce non-invariant hyperbolic sets,

Definition 2.6. Given k ≥ 1, λ > 0 and λ > ε > 0 we let Nk = Nk(λ, ε) ⊂ M consist of
points x such that there exists a splitting TxM = Es

x⊕E0
x⊕Eu

x along the orbit {φtx}t∈R with:

1. E0 is tangent to the flow direction

2. ‖Dφt|Es
φt0x
‖ ≤ ekeε|t0|e−λt, for t ≥ 0, t0 ∈ R; ‖Dφt|Eu

φt0x
‖ ≤ ekeε|t0|e−λt, for t ≥ 0,

t0 ∈ R; and

3. 〈(Es
φtx
, Eu

φtx
) ≥ e−ke−|t|ε, for t ∈ R.

Furthermore, by construction, each set Nk ⊂ SM is compact and closed under the involution
(i.e., satisfying ι(Nk) = Nk).

The next lemma we need shows that the entropy can be used to give a lower bound on the
number orbit segments returning to a suitable neighbourhood of one of these sets Nk.

Lemma 2.7 (Entropy Lemma). For any ε1 > 0 we can choose Nk ⊂ SM closed under the
involution (i.e., satisfying ι(Nk) = Nk) such that:

1. µ(Nk) > 1− ε1; and

2. for any µ-density point x ∈ Nk and sufficiently small δ, ε2 > 0 there exists arbitrarily
large T > 0 and distinct orbits segments

τn = φ[0,Tn](xn) for n = 1, · · · , [e(h(φ)−2ε0)T ]

with endpoints xn ∈ B(x, δ)∩Nk, φTn(xn) ∈ B(ι(x), δ)∩Nk and length Tn ∈ [T−ε2, T ].
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2.2 Specification lemma 2 ENTROPY AND CLOSING LEMMAS

xn

τn

x
δ

ι(x)

φSn(xn)

δ
x

τ0

yφS(y)

Figure 1: Orbit segments τn from a neighbourhood of x to a neighbourhood of ι(x) (aris-
ing from Lemma 2.7) and a single sorbet segment τ from a neighbourhood of ι(x) to a
neighbourhood of x (arising from Lemma 2.8)

Proof. Using the sub additive ergodic theorem (or the more general multiplicative ergodic
theorem) applied to µ, we have that µ(∪∞n=1Nk) = 1. We can then choose k ≥ 1 sufficiently
large that Nk satisfies µ(Nk) > 0.

Property 2 follows from the definition of h(φ, µ) in Definition 2.1 and ergodicity (cf. [3],
[1]).

We now proceed with the construction of the orbit segments which will be used to construct
closed orbits. For each of the [e(h(φ)−2ε0)T ] geodesic arcs τn, say, provided by Lemma 2.7 we can
associate [e(h(φ)−2ε0)T ] more orbit segments using the involution, i.e., i(τn) = φ[0,Tn](i(xn)) for
n = 1, · · · , [e(h(φ)−2ε0)T ]. There exists K ≥ 1 such that these start in B(x,Kδ) ∩N and end in
B(ι(x), Kδ) ∩ N . To simplify the notation, let us assume that K = 1, the more general case
following by reducing the size of δ > 0.

2.2 Specification lemma

We will need the following easy lemma giving an orbit segment from B(ι(x), δ) back to B(x, δ),
when x is a density point for µ.

Lemma 2.8. We can choose y ∈ B(ι(x), δ)∩Nk and S > 0 such that φS(y) ∈ B(x, δ)∩Nk.

Proof. This follows by ergodicity.

Later in the proof it will be convenient to assume the following additional flexibility. Given
η > 0, we can assume T in Lemma 2.7 is sufficiently large that

S/T < η. (2.1)
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3 KESTEN’S THEOREM

We denote the orbit segment arising from Lemma 2.8 by τ0 = φ[0,S](y). On the set Nk we
have the following useful form of a specification lemma.

Lemma 2.9 (Specification). Given ε3, ε4 > 0, we can choose δ > 0 sufficiently small such
that for any m ≥ 1 and any orbit segments {τi}mi=1 of length Ti, each starting in B(x, δ)∩N
and finishing in B(ι(x), δ) ∩ Nk, we can find a single closed orbit τ = τ(τi) which remains
within the ε3-neighbourhood of τ1 ∪ τ0 ∪ τ2 ∪ τ0 ∪ · · · ∪ τm ∪ τ0 and satisfies∣∣∣∣∣λ(τ)−

(
m∑
i=1

Ti +mS

)∣∣∣∣∣ ≤ ε4m,∀m ≥ 1

Moreover, there exists k′ ≥ 1 such that τ ∩Nk′ 6= ∅

Proof. This is actually a combination of the shadowing and closing lemmas from [4], ([1]
Theorem 15.1.2 and Theorem 15.2.1). The shadowing lemma ensures that the orbit segments
give rise to a single orbit segment τ ′′, to which one can then apply the closing lemma to obtain
a single closed orbit τ , with the promised bound on the length.

In particular, for λ(τi) ≤ T we can deduce that the closed orbits generated by Lemma 2.9
satisfy

λ(τ) ≤ m(T + S + ε4) (2.2)

Moreover, by the hyperbolicity of N different choices of τi, · · · , τim in Lemma 2.9 can be assumed
to give rise to distinct choices of τ = τ(τi1 , τi2 , · · · , τim). Let τ (l), for l = 1, · · · , (2[e(h(φ)−2ε0)T ])m,
enumerate these possible closed orbits.

The basic strategy of the proof is to let m tend to infinity so as to generate a sequence of
times (approximating m(T + S)) tending to infinity, without changing the value T arising in
Lemma 2.7.

Finally, for this section, it is convenient to state separately a specification theorem for closed
orbits which is clearly a corollary of Lemma 2.9 (by taking the orbit segments there to be closed
orbits).

Corollary 2.10. Given ε5, ε6 > 0, we can choose δ > 0 sufficiently small such that for all
m ≥ 1 any closed orbits {τi}mi=1 of least period λ(τi) = T ′i , each passing through B(x, δ)∩Nk′

we can find a single closed orbit τ = τ(τi) which remains within a distance ε5 of the union
of τi ∪ τ0 and satisfies ∣∣∣∣∣λ(τ)−

(
m∑
i=1

T ′i +mS

)∣∣∣∣∣ ≤ ε6m,∀m ≥ 1.

3 Kesten’s theorem

The second main ingredient in the proof of Theorem 1.6 is a form of recurrence property for the
flow on the cover. This will come from the covering group being an amenable group and Kesten’s
theorem on symmetric random walks. Let us fix a copy F ⊂ M̂ of M , for example the quotient
of a fundamental domain in M̃ .
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3 KESTEN’S THEOREM

Definition 3.1. Let τ denote an orbit segment for φt : SM → SM of length T . We can
associate to τ an element gτ ∈ Γ so that the lift τ̂ has τ̂(0) in F and satisfies τ̂(λ(τ)) = gτ τ̂(0).

Other choices of lifts would lead to conjugate elements.

Lemma 3.2. We can assume without loss of generality that gτ0 = e.

Proof. This is a consequence of the transitivity hypothesis. 3

The following is immediate.

Lemma 3.3. If τi is an orbit segment and ι(τ) denotes the point set but with the reverse
orientation then gi(τ) = g−1

τ .

We can now observe that for each of the closed orbits τ (l), for l = 1, · · · , (2[e(h(φ)−2ε0)T ])m

constructed in the last section there corresponds another τ (l′), for some 1 ≤ l′ ≤ (2[e(h(φ)−2ε0)T ])m,
such that gτ (l) = g−1

τ (l′) . For example, this can be achieved achieved by replacing each of the
τi1 , τi2 , · · · , τim in Lemma 2.9 by their images ι(τi1), ι(τi2), · · · , ι(τim) (or vica versa) and using
Lemma 3.3.

Definition 3.4. For m > 0 sufficiently large, we can associate a probability measure on Γ
given by

Pm(g) =
#{1 ≤ l ≤ (2[e(h(φ)−2ε0)T ])m : gτ (l) = g}

(2[e(h(φ)−2ε0)T ])m
for g ∈ Γ,

where the numerator counts the orbits τ (l) constructed in the previous section, subject to their
lifts being equal to g (i.e., Pm(g) is the proportion of closed orbits constructed in the previous
section which satisfy gτ (l) = g).

There is an element of arbitrariness in the construction of the closed orbits and the definition
above which arises from the different possible sequences of orbit segments. However, this is
unimportant in the argument.

We next observe that as a consequence of Lemma 3.3 we have the following:

Lemma 3.5. The probability measure Pm is symmetric (i.e., Pm(g) = Pm(g−1)).

In order to state the result we need on random walks we need to introduce some more notation.
For each m ≥ 1 we can consider an operator Um : l2(Γ)→ l2(Γ) defined by

Umf(g) =
∑
h∈Γ

Pm(h)f(gh−1).

Definition 3.6. Let Γm < Γ be the subgroup generated by {gτ (l) : 1 ≤ l ≤ (2[e(h(φ)−2ε0)T ])m}.

Let δe : Γ→ R be defined by

δe(g) =

{
1 if g = e

0 if g 6= e

3Since we only need the existence of a single orbit segment passing through the lifts B(x0, δ) ∩ N and
B(i(x0), δ) ∩N this would also follow by a simple argument assuming sub-exponential growth in Γ and the
pigeonhole principle.
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4 PROOF OF THEOREM 1.6

Definition 3.7. We let ρm := limk→+∞
(
〈δe, Uk

mδe〉
) 1

k denote the spectral radius of Um.

The significance of ρm lies is the following important classical result.

Proposition 3.8 (Kesten [5]). If Γm is amenable then ρm = 1.

Since we are assuming that Γ is amenable then we can assume that the subgroup Γm < Γ is
amenable too (since any subgroup of an amenable group is amenable) and thus ρm = 1.

4 Proof of Theorem 1.6

Since we are assuming that Γ in amenable (and thus each Γm is amenable for sufficiently large
m) then by Proposition 3.8 we have that ρm = 1. Then for any given ε7 > 0 and m ≥ 1 we have
that for sufficiently large k = k(m)

log
(
〈δe, Uk

mδe〉
) 1

k > 1− ε7. (4.1)

In particular, we can consider k-tuples of closed orbits τ (l1), · · · , τ (lk), where 1 ≤ l1, · · · , lk ≤
(2[e(h(φ)−2ε0)])m, with:

1. λ(τ (l1)), · · · , λ(τ (lk)) ≤ m(T + S + ε4);

2. τ (li) ∩B(x, δ) ∩Nk′ 6= ∅ for 1 ≤ i ≤ k; and

3. gτ (l1) · · · gτ (lk) = e,

and by (4.1) the total number of k-tuples (τ (l1), · · · , τ (lk)) satisfying 1.-3. above can be bounded
from below by

(1− ε7)k
(
[2e(h(φ)−2ε0)T ]

)mk
.

Using Corollary 2.10, we can replace each k-tuple (τ (l1), · · · , τ (lk)) by a single closed orbit τ
such that:

1. l(τ) ≤ l(τ (l1)) + · · ·+ l(τ (lk)) + kε6 ≤ k(m(T + S + ε4) + ε6) ≤ k(m(T (1 + η) + ε4) + ε6)
by (2.1) and (2.2); and

2. gτ = gτ (l1) · · · gτ (lk) = e.

Moreover, by virtue of the hyperbolicity of N we can assume that the associated τ are all distinct.
Finally, we have a bound

π(M̂, km(T (1 + η) + ε4) + ε6)) ≥ (1− ε7)k(2[e(h(φ)−2ε0)Tm])k.

Let us denote Tm := km(T (1 + η) + ε4) + ε6. Given ε > 0, providing ε0, ε4, ε6, ε7 > 0 and η > 0

are sufficiently small we can choose C > 0 such that π(M̂, Tm) ≥ Ce(h(φ−ε)Tm), for all m ≥ 1.
This completes the proof.

8



REFERENCES REFERENCES

References

[1] L. Barreira and Y. Pesin, Nonuniform Hyperbolicity, Cambridge University Press, Cam-
bridge, 2007.

[2] P. Eberlein, Geodesic flows in certain manifolds without conjugacy points, Trans, Amer.
Math. Soc., 167 (1972) 151-170.

[3] A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publica-
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