Original citation:

Swinburne, Thomas and Kermode, James R.. (2017) Computing energy barriers for rare
events from hybrid quantum/classical simulations through the virtual work principle.
Physical Review B (Condensed Matter and Materials Physics), 96. 144102.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/92999

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution 4.0 International
license (CC BY 4.0) and may be reused according to the conditions of the license. For more
details see: http://creativecommons.org/licenses/by/4.0/

A note on versions:

The version presented in WRAP is the published version, or, version of record, and may be

cited as it appears here.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications


http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/92999
http://creativecommons.org/licenses/by/4.0/
mailto:wrap@warwick.ac.uk

PHYSICAL REVIEW B 96, 144102 (2017)

Computing energy barriers for rare events from hybrid quantum/classical simulations
through the virtual work principle
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Hybrid quantum/classical techniques can flexibly couple ab initio simulations to an empirical or elastic medium
to model materials systems that cannot be contained in small periodic supercells. However, due to electronic
nonlocality, a total energy cannot be defined, meaning energy barriers cannot be calculated. We provide a general
solution using the principle of virtual work in a modified nudged elastic band algorithm. Our method enables ab
initio calculations of the kink formation energy for (100) edge dislocations in molybdenum and lattice trapping

barriers to brittle fracture in silicon.
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I. INTRODUCTION

The two-way chemomechanical coupling of chemical and
elastic fields creates inextricably multiscale problems with
a simultaneous requirement for chemical accuracy and large
system sizes. Density functional theory (DFT) has been shown
to have excellent predictive power [1], but its typically high
O(N?) computational cost limits its application to problems
with fewer than around 1000 atoms [2]. This problem is
particularly acute for crystal defects such as dislocation lines
[3], grain boundaries [4], and cracks [5], which all possess
a long-range elastic field that can rarely be contained in
small periodic supercells without unrealistically strong image
interactions or strain gradients. While linear elastic corrections
have successfully removed finite-size effects for small point
defect clusters [6] and screw dislocation dipoles in bcc metals
[71, in the majority of cases crystal defects require very large
supercells which even O(N) first-principles approaches [8]
cannot readily accommodate, especially in metallic systems.
Furthermore, complex processes such as dislocation emission
or thermally activated crack growth occur on time scales
that are far too slow for direct dynamical simulations at the
ab initio level. As aresultitis necessary to determine rare event
rates using transition state theory [9], for which the ability to
calculate energy barriers is essential, using, e.g., the nudged
elastic band (NEB) method [10].

Large systems can be accurately modeled by combining
a local QM description with classical models using hybrid
multiscale approaches [11] such as the quantum mechan-
ics/molecular mechanics (QM/MM) [12] and “learn on the
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fly” (LOTF) schemes [13]. The LOTF approach has been
used extensively to perform ab initio molecular dynamics [5]
but is limited to dynamical simulations and cannot compute
energy barriers. Energy-based QM/MM schemes for metals
developed by Lu and co-workers [12] have been applied
to energy pathways [14,15] but do not provide seamless
coupling for materials systems [11] and require the definition
of system-specific interaction potentials between the QM and
MM regions, restricting the generality of the approach.

Flexible boundary DFT calculations couple a fully quantum
mechanical simulation to an infinite continuum through a
lattice Green’s function (LGF) [3,16—-19]. These methods are
ideally suited to crystal defect calculations, as the heavily
deformed defect core is treated quantum mechanically while
the weakly deformed elastic field is captured in the bulk
region for comparatively negligible computational cost [20].
However, while elastic embedding methods allow complex
local chemical effects to be modeled, they cannot include
thermal or entropic effects and rely on the existence of analyt-
ical elastic solutions not readily available for complex three-
dimensional problems. Recent work to numerically compute
the lattice Green’s function of large-scale defects extends the
applicability of the approach [19], but it remains restricted to
structural optimization and does not yet allow energy barriers
or temperature effects to be modeled. Similarly, the QM cou-
pled atomistic/discrete dislocation method (CADD) approach
[21] couples a DFT region directly with a finite-element model
but also cannot be used to compute energy barriers.

While hybrid and flexible boundary DFT calculations have
been successfully applied to treat a wide range of crystal
defects, they suffer from a well-known limitation: due to
the nonlocality of the electronic energy an “energy-per-ion”
cannot be defined in the QM region, meaning that the total
system energy, which in principle should be a sum of classical
and quantum contributions, cannot be defined [20]. (We note
that energy differences could in principle be calculated by
relying on cancellation of errors near boundaries; however,
this uncontrolled assumption would have to be tested on a
case-by-case basis.) As aresult, important and highly desirable
quantities such as migration barriers and segregation energies
have long been considered inaccessible.

Published by the American Physical Society
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In this paper we detail a general solution to the problem
of extracting energy barriers from hybrid simulation schemes
without a total energy function. We exploit the fact that ionic
forces in both the classical and quantum region are well defined
and localized, allowing us to apply the principle of virtual
work to construct energy barriers for a given configurational
pathway. Combining this principle with the nudged elastic
band routine for finding minimum energy pathways allows
the calculation of energy barriers in systems much larger than
can be treated in periodic DFT supercells. This is related to
using thermodynamic integration to reconstruct free energy
profiles in biochemical QM/MM methods [22,23], with the
key difference that here we target zero temperature potential
energies since entropic effects are comparatively small in hard
condensed-matter systems. We demonstrate our method on
two problems typically considered inaccessible to ab initio
methods: kink formation on (100) edge dislocations in Mo
and lattice trapping barriers to brittle fracture in Si.

II. HYBRID SIMULATION SCHEME

A prototypical hybrid simulation scheme is shown in Fig. 1.
To provide correct forces on atoms in the QM region, at each
force call a DFT calculation is performed which contains the
QM region, a surrounding “buffer” region, and a vacuum layer
to remove periodic image effects. The presence of free surfaces
in the DFT supercell induces electronic (though not elastic)
surface states, whose effects must be contained within the
buffer region, which in practice determines the required buffer
width. For insulators dangling bonds are created whose effects
can be suppressed through hydrogen bond termination, while
in metals a charge dipole is induced with decaying Friedel
oscillations [24]. As the buffer region is treated in DFT only to
provide correct forces in the QM region, forces on atoms in the
buffer (and bulk) region are given by the classical force field,
following the “abrupt force mixing” coupling scheme, which
gives accurate forces throughout the overall QM/MM system,
in contrast to other handshaking methods that typically incur
large force errors close to the QM/MM interface [11].

Here, DFT calculations are performed on clusters com-
posed of QM and buffer atoms surrounded by vacuum.
Alternative embedding approaches have been proposed for
metals that use periodic QM calculations surrounded by
bulklike regions instead of vacuum [16,25,26]. For example,
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FIG. 1. (Left) Convergence of DFT forces in a QM region of 12
perfect aluminium lattice ions with increasing buffer width. (Inset)

Cartoon of the hybrid system. (Right) Comparison of NEB methods
to calculate the migration barrier of a vacancy in fcc aluminum.

PHYSICAL REVIEW B 96, 144102 (2017)

Woodward [16] modeled dislocation cores in periodic DFT
cells by incorporating a domain boundary at the edge of
the cell. This is appropriate where the embedding region is
bulklike; however, the topology of dislocations and cracks
of interest here restricts the general applicability of such an
approach. We therefore used mixed boundary conditions, with
periodicity retained in the direction along dislocation lines and
crack fronts, and vacuum added in the other two directions.

For hybrid simulation schemes to produce accurate results,
the quantum/classical transition region should typically be
only weakly deformed by the presence of the defect, such
that an interatomic potential with identical elastic properties
and lattice constants (B,ac) to the DFT system (Bgy,aqm)
would give an identical mechanical response. However, while
modern interatomic potentials typically reproduce DFT elastic
properties well, the agreement is not perfect; as a result, the
atomic positions used for the classical calculation must be
scaled by a factor & = aqm/ac such that atoms in a perfect bulk
lattice are fully relaxed in both systems. In addition, using the
classical and quantum bulk moduli B and By, to represent the
elastic properties of each medium, the classical atomic forces
are scaled by a factor a8, where 8 = Bym/ a3 B,. A derivation
of this scaling is given in the Appendix. Beyond elastic
matching, there are no further QM/MM interaction terms to be
calibrated, unlike for energy-based QM/MM schemes where
an interaction potential describing the energetic coupling
between QM and MM regions must be specified [14].

Our hybrid force mixing implementation was performed
in the Atomic Simulation Environment [27], using LAMMPS
[28] to generate classical interatomic forces and VASP [29]
to perform DFT simulations using projected augmented wave
pseudopotentials [30]. To test the force mixing scheme and
buffer size we first considered a perfect fcc lattice of aluminum
using an embedded atom method (EAM) interatomic potential
by Liu et al. [31]. The QM region was a cube of 13 atoms,
with a buffer region of width w containing all atoms within a
distance w from an atom in the QM region. In this instance
the DFT system is a free cluster, meaning only a I'-point
calculation is required, with a plane-wave cutoff of 320 eV. As
there should be no residual forces on atoms in a perfect lattice
configuration, we measured the total magnitude of atomic
forces on all atoms in the QM region with buffer size. As
shown in Fig. 1, convergence was achieved for a buffer width
of 6.5 10\, or around three atomic layers, with the total residual
atomic force in the QM region being around 1073 eV/ A, well
below the tolerance of at most 10~2 eV /A per atom used during
structural minimization.

III. VIRTUAL WORK PRINCIPLE

The virtual work principle states that the energy AE(r)
required to traverse a pathway U(r) € RN, r €[0,1] in
configuration space is given by

U(r) r U
AE(r) = —/ dX - F(X) = —/ dr'= ¥¢), (1)
o) 0 or

where F(r) = F(U(r)) € RN is the force vector for a given
configuration U(r). When the force is a gradient field of some
energy function V(X) (for which only the spatial gradient,
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namely, the force, can be calculated in hybrid simulations),
it is simple to show that AE(r) = V(U(r)) — V(U(0)). We
have implemented the virtual work principle in a modified
nudged elastic-band-constrained minimization routine [10],
evaluating U(r) from a splined set of (possibly unconverged)
NEB knots, using (1) to extract energy differences along the
pathway. In the NEB routine an energy functional is only
required to define the climbing image and, in some variations
of the method, to determine the finite difference scheme used to
construct pathway tangents. As a result, we first run iterations
with no climbing image defined, until a certain tolerance in
the maximum force component perpendicular to the pathway
is reached, then use (1) to define energy differences along
the pathway to identify a climbing image. Typically, a larger
number of knots are required as compared to standard NEB
calculations to ensure the splined configuration is as smooth
as possible; we have found 10-15 knots to be adequate for
all the systems considered here. In Fig. 1 we demonstrate an
implementation of this method for the migration of a vacancy
in fcc aluminum, treated in the hybrid scheme using only a
single I'-point calculation, as the DFT region is again a free
cluster. We also performed the same simulations in pure DFT
using a 3 x 3 x 3 supercell of 107 atoms and a 7 x 7 x 7
k-point grid. In the latter case we are able to extract the total
energy and therefore compare the accuracy of our method.
As can be seen in Fig. 1, it is clear that the virtual work
energy landscape as calculated in hybrid and DFT and the
energy landscape as extracted from the total DFT energy are in
extremely good agreement, demonstrating the convergence of
the hybrid scheme and the validity of the virtual work principle.
In contrast to the LOTF scheme, in which the QM region can
be moved during a dynamical simulation, here we use the same
set of QM atoms for all knots along the NEB path.

IV. MIGRATION OF AN (100)(010) EDGE
DISLOCATION IN MO

(100)(010) edge dislocations in bcc metals are known to
migrate through a double-kink mechanism [32] and play an
important role in irradiation damage of bcc metals, forming
the core of (100) prismatic dislocation loops [33]. Edge
dislocations possess a strong, long-ranged deformation field
which, unlike 1/2(111) screw dislocation dipoles [7,34],
cannot be contained in periodic DFT supercells. As a result,
flexible boundary DFT calculations [3] or the hybrid methods
presented here must be used to capture the long-range elastic
field. NEB calculations have been successfully applied to
calculate the Peierls barrier to rigid dislocation motion in
a wide variety of materials [7,20,34,35]. However, in order
to correctly calculate a Peierls stress [7,35,36], care must be
taken to accurately determine the dislocation core position
as a function of the NEB coordinate r, captured through
some remapping function Xgio(r). In the present setting
the complication of finding a suitable Xgis0(#) does not
arise, as we focus on the zero stress double-kink formation
energy, which controls the thermally activated diffusion of
(100) prismatic dislocation loops [37]. By the chain rule
one can demonstrate that the maximum energy difference
AE = max, [— [; dr'd,U - F(r")] obtained in the virtual work
expression (1) is invariant under the substitution Xg;so(7) and
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FIG. 2. (a) Comparison of dipole and cylinder geometries to
calculate the Peierls barrier of an (100)(010) edge dislocation in
MEAM molybdenum. (b) Localized work for the MEAM and hybrid
systems as described in the main text, using Eq. (2).

thus does not affect our results. We note that existing methods
[7,20] to calculate the Peierls stress through the determination
of a suitable function x4is0(7) can be applied in postprocessing,
without modification, to the NEB pathways produced using our
approach.

An (100)(010) edge dislocation dipole of length b =
|a[100]| was formed in a square supercell such that the
dislocation dipoles are separated by half the supercell height,
with one dislocation migrating by a[001]. The system was
relaxed using a recently developed modified embedded atom
method (MEAM) potential by Park et al. [38], which includes
an angular dependence to capture the highly directional
bonding of bce metals. We find the MEAM migration barrier
converges with increasing system size and dipole separation,
as shown in Fig. 2; this size convergence was confirmed in
calculations with a single dislocation in a cylindrical supercell,
the outermost atoms fixed to the displacements predicted by
anisotropic elasticity theory [39]. The size convergence of the
migration barrier can also be investigated by considering the
local work done by an atom j along the migration pathway

oJu j

W) = - /0 dr' = 450, @)

where u;.f; € R? are the per-atom values of U,F. With a
saddle point r = ry, the locality of the total work can be probed
by summing all values of W;(r) less than a distance d from
the dislocation core, shown in Fig. 4(b). While it is clear that
the immediate core region gives the dominant contribution
to the migration barrier, the far field is essential to give a
convergence result, which is only accessible to the hybrid
simulation technique presented here. The final system used
for our hybrid simulations consisted of around 10 000 atoms,
far too large for a purely ab initio treatment.

In the hybrid simulations illustrated in Fig. 3, the QM region
was defined to contain three atomic planes around the joint
initial and final positions of the moving dislocation, with the
surrounding buffer region constructed as before. Although the
DFT simulation has free surfaces normal to the dislocation
line, the supercell remains periodic along the line direction,
meaning that we must introduce k points in one dimension [2].
Figure 4 shows the result of NEB calculations to determine
the Peierls barrier of the dislocation using a variety of buffer
widths and total number of k points. Unlike the vacancy and
pure bulk systems, where a buffer size of around three atomic
planes was required, for the dislocation system we require a
buffer of at least five atomic planes leading to DFT clusters
containing around 400 atoms, which we attribute to the much
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FIG. 3. Illustration of the buffer and QM regions used to treat
(100)(010) edge dislocations in this work. The supercell has periodic
boundary conditions in the dislocation line direction, [001].

greater degree of deformation caused by the dislocation and the
lower atomic density of the bece structure. Nevertheless, across
the range of buffer sizes and k points we find a variation from
the final converged value of around 10%. Significantly, the
value from our hybrid simulations is around 5 times smaller
than that found using the MEAM potential, demonstrating the
importance of using ab initio forces to treat highly deformed
defect cores.

A. Kink formation energy

As the dislocations under study migrate through a kink
mechanism, we have estimated the kink formation energy
through careful parametrization of the well-known Frenkel-
Kontorova (FK) model [32,40]. In the FK model, a regular
array of N nodes of spacing a along the dislocation line
direction are free to move in the perpendicular glide direction
with positions (ia,x;), i € [0, N — 1]. The nodes are coupled
by a line tension of strength I" and a Peierls potential Vp(x) =
Vp(x + D) of period b, which is given in the current setting
by the Peierls potential V (r) shown in Fig. 4 using the linear
relation X; = Xgisio(7;) = br;, giving Vp(X) = V(x/b) = V(7).

The FK model has been successfully applied to calculate
the kink formation energy on screw dislocations in bcc metals
[32,40], though in the current setting we have found it
necessary to allow an additional position dependence in I'(r),
giving a total FK system energy

Z b T(r;) + F(rz 1)

Erx[{r}] = ri —ri)* + V@), 3)

i=1

where V(r;) is the migration potential shown in Fig. 4. To
determine I'(r) and thus the kink formation energy, we will
conjoin two copies of the dislocation core configurations with
the same core positions r and calculate the restoring force
between when the core positions differ by a small quantity §.
Explicitly, a line profile r; =r + ©@{ — N/2 4 1/2)8 can be
formed in atomistic simulations (with N = 2) by conjoining
two NEB configurations U(r) € R and U(r + §) € RN
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FIG. 4. (Top) Comparison of NEB methods to calculate the
Peierls barrier of a (100)(010) edge dislocation in molybdenum.
(Bottom left) Line tension calculation using hybrid and MEAM
force fields as described in the text. (Bottom right) Kinks formed
in Frenkel-Kontorova models using the hybrid and MEAM values.

along the dislocation line direction to give an expanded system
Uexi(r,8) € RN, being a dislocation line twice the original
length. In this extended system we can calculate the force
to perturb the relative core positions by § by projecting the
force from atomistic simulations F[Ue(r,8)] € RN against
the tangent (3/38)Uex(r,8) € RN, yielding a restoring force

 Ue(n9)
frd) = =55

The same line profile r; =r + ®@{ — N/2 + 1/2)§ (where
again N = 2) can also be constructed in the FK model, which
yields a restoring force to order § of

- F[Uex(r,0)]. “

2
Jrx(r,8) = —%F(r)a - @V +832V) + 0. (5)

As we have already calculated V (r) through a spline interpola-
tion we can readily calculate the derivatives 9, V () and 8,2 V(r)

and thus can determine I'(r) by setting frx(7,6) = f(r,9),
which yields
I'(r)= [f(r 8+ 3,V — =53V +0@©). (6)

2b%5 2b2 ’
We emphasize that while to extract accurate Peierls stresses a
function x4ig10(7) which correctly extracts the “true” dislocation
position is required, the formation energies calculated using
the virtual work technique detailed here are independent of the
choice of Xgis1o (7).

We have performed these calculations using both MEAM
and hybrid forces to evaluate f(r,6), yielding a calculation of
I which we show in lower portion of Fig. 4. The FK model (3)
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can then be used to simulate a much longer dislocation line
to obtain a kink formation energy, which in the pure MEAM
case can be directly compared to the kink formation energy in
molecular statics [32]. This technique yields a kink formation
energy of 1.12 eV, which is closely approximated by the
MEAM FK kink formation energy of 1.09 eV. Due to the lower
line tension and Peierls barrier found in our hybrid simulations,
we find a much lower kink formation energy of 0.54 eV, just
less than half the MEAM value. It is interesting to note that
similar calculations [40] on (111) screw dislocations in bcc
Mo, using periodic DFT supercells, find a kink formation
energy of 0.52 eV, meaning that both slip systems have similar
activation energies for plastic flow [41].

V. BRITTLE CRACK GROWTH IN SILICON

As a final example, we carry out a direct ab initio
calculation of the discrete lattice trapping barriers [42,43]
to brittle crack growth in silicon in the (110)[110] cleavage
system (Fig. 5). We modeled an 8112 atom system with

dimensions 297 x 97.9 x 5.43 ;\3, periodic along the crack
front direction and with clamped top and bottom edges and
applied strains corresponding to strain energy release rates of
5.0, 5.5, and 6.0 J/m? (above the Griffith load of 3.44 J/m?
computed from the relaxed DFT surface energy [44]). An
initial configuration with N = 70 broken bonds along the crack
line was relaxed using the force-based hybrid scheme using
the Stillinger-Weber potential [45] for the MM region and
DFT with the Perdew-Burke-Ernzerhof exchange-correlation
functional for a QM region containing 32 atoms centered on
the crack tip plus a buffer radius of 6 A. The corrugated
reconstruction of the (110) surface leads to a slightly blunted
crack tip, with an alternating up-down structure that means
the next stable minimum occurs with N + 2 broken bonds.
Applying the virtual work NEB approach with (N,N + 2) end

0.5f

5.0 525 5.5 5.75 6.0

0.0 G [J/m?] R

-0.5

Energy Difference [eV]

-1.0

0.0 0.2 0.4 0.6
NEB Coordinate

FIG. 5. Minimum energy path for cleavage in the Si(110)[110]
fracture system, involving a blunt-sharp-blunt tip reconstruction with
two bonds opening simultaneously. Inset images show near-tip region
for the initial, transition, and final states following hybrid relaxation
of the path, with undercoordinated atoms shown in green. Upper-right
inset gives dependence of energy barrier on strain energy release rate,
with fracture becoming easier as load increases.
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points identifies a minimum energy path where two diagonally
oriented bonds cleave simultaneously, passing through a sharp-
tip transition state. The lattice trapping barrier decreases as the
strain energy release rate is increased, predicting thermally
activated crack growth rates similar to earlier work where DFT
barriers could only be estimated from cluster calculations [44],
but with the tip-blunting reconstruction indicating slow crack
growth remains important for larger strain energy release rates
than previously thought.

VI. CONCLUSION

In summary, we have proposed a method to compute
energy barriers for activated processes that combines DFT
and classical interatomic potentials in materials systems where
strong bonds cross the interface between QM and MM regions.
The method has been used to perform an ab initio calculation
of the Peierls barrier for (100)(010) edge dislocations in Mo
and to identify a novel crack advance mechanism in Si. The
method is expected to be generally applicable to any system
where localized chemical processes are driven by long-range
elastic fields. For example, the technique could be applied
to provide ab initio mechanistic insight into the dynamics
of three-dimensional crack fronts, where fracture proceeds
through kink formation and advance [44], or to provide
a QM-based analog of the Rice-Thomson criterion for the
transition from brittle cleavage to dislocation emission [46,47].
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APPENDIX: DERIVATION OF SCALING LAWS

We wish to define a position scaling « and energy scaling
B on the classical system to match the bulk moduli and lattice
constant of the quantum system. We define a potential energy
function E(X), and then a scaled function
E'(X) = BE(aX).
The corresponding force in the original coordinate system is
OE' OE’
FX)=—— =-
M ="9x = PUox

The equilibrium lattice constant changes from ag to ay,
and the equilibrium cell volume changes from V; to V

= Ba F(aX).
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according to

g W
0 a ’ 0 013 .
The scaled bulk modulus is
, I*E' 3., 0%E ;

Thus if we want to match a target volume V;; and bulk modulus
B’ we should use

<v0>% ao B'
o =\%7 = ,3=—3,
Vo a, Ba
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where ap and g are the lattice constants before and after
rescaling. For quantum/classical force mixing, where we label
the quantum region as 1 and the classical region as 2, the aim
is to rescale the classical region to match the quantum lattice
constant a; and bulk modulus Bj, so we have

aq Bl
a=—, B=——7,
ay B’z()t3
where a, and B, are the unmodified classical lattice constant
and bulk modulus, respectively. The force scaling is thus a8 =
Bi/a®B,, as given in the main text.
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