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Abstract

The inverse problem, i.e., estimating parameters in an assumed model struc-
ture representing the system of interest, is central in mathematical modelling. Struc-
tural identifiability is a prerequisite to successful parameter estimation. If a model
is structurally globally identifiable then there exists a unique solution to the inverse
problem. Structural indistinguishability relates to the uniqueness of the structures
in a set of candidate models. These two closely related concepts are of particular
importance in the modelling of biological systems where conclusions are often drawn
from the parameter estimates following parameter estimation and where candidate
models are used to understand the underlying mechanisms of the biological system.

In this thesis two new definitions of structural identifiability and indistin-
guishability are presented in which the two concepts have been generalised to now
also include the mixed-effects modelling framework which is frequently used in phar-
maceutical applications. Several analytical methods applicable to study these con-
cepts in mixed-effects models are presented. These are applicable to any arbitrary
mixed-effects models written in state-space form. The developed methods can be
used to determine whether the distribution of the set of output functions uniquely,
or otherwise, determine the parameter/model structure.

Interesting results have followed from the application of these established
techniques to mixed-effects models. It is shown using examples that result from
either structural identifiability or indistinguishability analyses of non-mixed-effects
models no longer necessarily hold for the corresponding mixed-effects model for-
mulation. This is due to the random effects in the statistical sub-model in three
different ways i) where the random effects enter into the structural model ii) the
form of the random effects iii) the structure of the covariance matrix related to the
random effects. These insights are collected in a set of conjectures.

Several such examples are provided including the well-known unidentifiable
one-compartment absorption model whose mixed-effects version is shown to be iden-
tifiable depending on the choice of the statistical sub-model.

The contributions from this thesis are thus theoretical, but with direct prac-
tical use in a mixed-effects modelling context.

xv



Abbreviations

SGI Structurally globally identifiable

SLI Structurally locally identifiable

SU Structurally unidentifiable

RSE Relative Standard Error

ODE Ordinary differential equation

RDE Random differential equation

θ Population parameter

η Random effect

ω Variance parameter

Ω Covariance matrix

IV Intravenous

SC Subcutaneous

IT Intratracheal

xvi



Chapter 1

Introduction

Mathematical modelling is today an integral part of the process of optimising the

development of new pharmaceutical drugs. Such mathematical models are not only

used to analyse already gathered experimental data, but also to help design of new,

optimal experiments. Since mathematical modelling now plays such a central role,

it is important that the models used are reliable. To ensure this, much effort is

spent on producing experimental data with high quality, e.g., dense sampling, many

subjects, different dose levels etc. However, despite the fact that having a lot of

experimental data is necessary for reliable model predictions, it is not sufficient.

The theoretical concept, and subject of this thesis, of structural identifiability

is a prerequisite for reliable model predictions. In a structurally identifiable model

there exist a unique set of model parameters for every trajectory of the model output

function under ideal experimental observations. The related concept of structural

indistinguishability, also the subject of this thesis, concerns the uniqueness of the

model structure itself for a particular input-output relation. In other words, these

two concepts are related to the model structure itself, and not the quality of the

experimental data. If a model is structurally unidentifiable, it means that there is

a subset of the model parameters that can take on any arbitrary numerical values

while the model output function remains unchanged. This in turn means that any

biological interpretation of those model parameters is effectively meaningless. If a

set of candidate models is structurally indistinguishable it is not possible to conclude
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which one of the models is the correct one for application since a generic parameter

relation between all models can be established in such a way that the outputs from

each candidate model are identical. Details of these two concepts including their

mathematical definition, and why they are so important, will be covered in more

detail in Chapter 2.

Analytical methods that can determine whether a model is structurally iden-

tifiable, or whether a set/pair of models (in the linear/nonlinear case) are struc-

turally indistinguishable exist for models defined in a particular mathematical frame-

work, namely ordinary differential equations in a state-space form. This type of

model is referred to as non-mixed-effects model in this thesis to contrast this model

type to another modelling framework also written on a state-space form but with a

statistical component, as explaned below.

However, a common modelling framework in the pharmaceutical industry is

that of mixed-effects models for which no analytical method to study either struc-

tural identifiability or structural indistinguishability exist in the literature. In a

mixed-effects model, random variables called random effects are associated with

the model parameters, resulting in different parameter values for each subject. A

form of the distribution of the random effects is postulated in mixed-effects models.

Both variance parameters and population parameters are included in the inference

problem. Details on the mixed-effects modelling framework are covered in Chapter

2. The lack of methods applicable to study structural identifiability and structural

indistinguishability of mixed-effects models is an issue which should be taken seri-

ously, mainly because the results and predictions generated by mixed-effects models

are often used as a part of the decision making process as to which direction to

take the pharmaceutical drug research development project when moving forward.

By using structurally unidentifiable models or structurally indistinguishable models,

there is a potential risk of drawing erroneous conclusions about some of the char-

acteristic properties of the pharmaceutical drug under development and potentially

also about the biological sub-system in which the drug acts. Therefore, developing

analytical methods which can analyse mixed-effects models is of great importance in

2



order to increase the reliability of the predictions drawn from mixed-effects models

in pharmaceutical drug research development projects.

1.1 Aims, objectives

The aims of this thesis are thus to expand the concept of structural identifiability

and structural indistinguishability from non-mixed-effects models to mixed-effects

models and to develop new methods and approaches that can perform such analysis.

For this purpose, the following objectives were set

• Develop formal mathematical definitions of what structural identifiability and

structural indistinguishability mean in a mixed-effects framework.

• With respect to the developed mathematical definitions, develop analytical

methods applicable to study structural identifiability and structural indistin-

guishability of mixed-effects models.

• Apply the developed methods to commonly used mixed-effects model struc-

tures in a pharmaceutical context.

• Explore how structural identifiability and structural indistinguishability anal-

ysis results from non-mixed-effects models translates to the mixed-effects case

using the developed methods in this thesis.

• Investigate how random effects associated with different parameters, different

covariance structures, and different forms of the distribution of the random

effects affect the structural identifiability and structural indistinguishability of

a mixed-effects model.

• In addition to considering mixed-effects models, a set of non-mixed-effects

models will analysed from a structural identifiability perspective.
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1.2 Thesis outline

In Chapter 2, a review of the relevant background literature is provided. The results

and insights concluding the main outcomes from this thesis work are presented in

Chapters 3–8.

In Chapter 2, an introduction as to why mathematical modelling is a par-

ticularly useful tool while developing new pharmaceutical drugs will be provided.

Both the advantages and limitations of mathematical modelling in this context will

be discussed which will lead into the main topic of the thesis. The mathemati-

cal definitions of structural identifiability and structural indistinguishability will be

given as well as previously published methods on how to analyse non-mixed-effects

models with respect to these two concepts.

In Chapter 3, a set of non-mixed-effects models will be analysed in a struc-

tural identifiability context. These models come from four different collaborative

projects in which structural identifiability analysis was performed. This analysis

was also performed to demonstrate existing methodologies and their application to

other models in the IMPACT EU project of which this thesis forms a component.

In Chapter 4, the concept of structural identifiability and structural indistin-

guishability is generalised to also include mixed-effects models. Two more general

mathematical definitions of structural identifiability and structural indistinguisha-

bility of mixed-effects models are presented. The new definitions are more general in

the sense that identifiability of non-mixed effects models is a special case of identi-

fiabiltiy, i.e., when all variance parameters are set to zero. Five methods applicable

to the study of structural identifiability and indistinguishability in this framework

are presented.

In Chapter 5, the developed methods for the study of the structural identi-

fiability of mixed-effects models presented in Chapter 4 will be applied to a set of

mixed-effects models to illustrate how they can be applied in practice. Examples

of structurally globally, locally and unidentifiable mixed-effects models are given.

Each method developed is applied to at least one model.

In Chapter 6, the question whether structural identifiability analysis results

4



translate from the non-mixed-effects case to the mixed-effects case is addressed,

i.e., whether a locally identifiable/unidentifiable non-mixed-effects model implies

a locally identifiable/unidentifiable mixed-effects model. To answer this question,

the methods presented in Chapter 4 are applied to a set of mixed-effects models

where the non-mixed-effects versions are known to be structurally globally/locally

identifiable and unidentifiable. The effects of how different covariance structures,

different forms of distributions of the random effects and where the random effects

enter the structural model affect the structural identifiability of the model are all

investigated and explored. In particular, it is shown that unidentifiable or locally

identifiable non-mixed-effects models may become locally or even globally identi-

fiable in a mixed-effects framework. It is also shown that under certain special

conditions, otherwise unidentifiable variance parameters become globally identifi-

able with a non-zero covariance parameter with some other random effect whose

variance parameter is globally identifiable. The insights presented in this chapter

are collected in a set of conjectures.

In Chapter 7, a structural indistinguishability analysis of a set of mixed-

effects models is presented. Again, the methods developed for structural indistin-

guishability analysis presented in Chapter 4 are applied to show how they work in

practice. The question regarding whether structural indistinguishability results of

non-mixed-effects models translates directly or otherwise to the mixed-effects case

will be addressed with these examples.

In Chapter 8, general conclusions and discussion about the presented work

are given. Suggestions for future potential research projects extending the results

presented are also given. The focus in this thesis has been on mixed-effects models

with application in the pharmaceutical industry. However, the developed novel

methods are generic in nature and can therefore be applied to analyse mixed-effects

models of any system, e.g., ecology. This generic nature of the developed methods

will in this last chapter also be discussed to some extent.
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Chapter 2

Background

2.1 Mathematical modelling in the pharmaceutical in-

dustry

Mathematical modelling is a very useful tool when characterizing properties of any

system. In the pharmaceutical industry, the system of interests is the interaction

between pharmaceutical drugs and the human body. This interaction is typically

divided into two parts: i) Pharmacokinetics (PK), which is about what the body

does to the drug, i.e., the distribution of the drug in different organs and tissues over

time. ii) Pharmacodynamics (PD), which is about what the drug does to the body,

e.g., lowered blood pressure, lowering of glucose levels in the blood. Mathematical

modelling of these two types is called PKPD-modelling and is routinely applied at

all stages of the model-based drug development process (Milligan et al. [2013]).

In contrast to engineering systems such as, e.g., electric circuits or aircraft

systems, the main challenge when modelling a biological system is often the limita-

tion of available experimental data. While time-continuous measurements are often

possible in a technical system, experimental data from animals or humans are often

quite sparse. This is partly due to practical reasons, and partly because of restric-

tions due to ethical guidelines. In addition to the challenge of having sparse data is

the problem of variability, something which is always present in biological systems.
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A modelling framework developed specifically to handle these types of challenges is

called mixed-effects modelling, which will be presented in Section 2.3. Despite the

challenges of experimental data, mathematical modelling as a tool to optimise the

development process of new pharmaceutical drugs is useful.

There are a several advantages of using mathematical modelling when devel-

oping new pharmaceutical drugs. Firstly, modelling can be used to characterise the

properties of a drug. With the use of modelling and experimental data the PKPD

behaviour of a drug can be represented by the parameter estimates. These parameter

estimates can then be compared and contrasted to other parameters from different

compounds. Secondly, a model can be used for the prediction of scenarios which may

not have been tested experimentally. This would typically include simulating the

model for different dosing schedules to fully characterise the dose-response relation-

ship. Simulation can also be used for optimal experimental design, i.e., designing

experiments that will yield maximal information with respect to cost. Thirdly, mod-

elling can be used to understand how the underlying biological mechanisms work. If

there are several competing hypotheses regarding the nature of the mechanisms of

the biological system of interest, those hypotheses can be formalised into different

candidate models. If a candidate model can be shown through simulation to not be

able to describe the available experimental data, then the corresponding hypothesis

has been incorrect and thus a deeper understanding of the system has been gained.

From this standpoint, additional experiments may be designed which can further

eliminate candidate models, something which can be repeated until ideally only one

candidate model remains.

A model in its most general form can be summarised as depicted in Figure

2.1, where there is an input function u(t) and an output function y(t) to and from

a system S respectively. In PKPD-modelling, a common scenario is that the input

function u(t) is an intravenous (IV) infusion of a pharmaceutical drug A, S is the

human body, and y(t) is measurement of the concentration of the drug A in the

blood plasma. The system S can be represented by a postulated parameterised

model written in a state-space form, which will be defined in Section 2.2. The
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different parts of the system are represented by the states x. Together with the

model parameters, they make up the representation of the system. By observing the

input-output relation between u(t) and y(t) from the experimental data, numerical

values of the model parameters can be inferred in the parameter estimation step

using different optimization algorithms.

An important part of the modelling process is to assess the reliability and

usefulness of the model after the parameter estimation. Having a model that can

describe the available experimental data does not necessarily make the model re-

liable in the sense that it may not be able to predict the system behaviour under

non-tested experimental conditions. A common way of model validation is to divide

up the available experimental data into a training data set and a validation data set,

often with the ratio two thirds to one third, (Cock et al. [2010]), although this may

vary across different disciplines. First the training data set is used in the parameter

estimation. Then the predictability of the model is checked by evaluating if the

model can describe the validation data set. If so then the model is often considered

sufficiently reliable for its purpose. Related to model reliability and model valida-

tion is parameter identifiability, which is the main topic of this thesis. Parameter

identifiability in the structural sense is a prerequisite to parameter estimation. An

introduction to parameter identifiability will be given in Section 2.4.

2.2 State-space modelling

In this section an overview will be given of state-space models as well as the math-

ematical notation for such models that will be used throughout this thesis.

2.2.1 Introduction

A state-space model is a system of first order differential equations (ODE’s) where

the model states x(t) represent and describe the evolution of the system, with or

without some perturbation of the system from an input function u(t). Typically

only a subset of the model states are observed from the output functions denoted
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Figure 2.1: A system with an input function u(t) and an output function y(t)
represented in its most general form.

Figure 2.2: Two-compartment model with an observation of and a linear elimination
from compartment 1.

by y(t).

As an example of a model written in a state-space form, consider the two-

compartment model in Figure 2.2 with the following structure

ẋ1 = −(θ10 + θ12)x1 + θ21x2

ẋ2 = θ12x1 − θ21x2

x1(0) = x0

x2(0) = 0

(2.1)
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with observation

y =
x1

θV
(2.2)

with unknown parameter vector

θ = (θ10, θ12, θ21, θV ). (2.3)

By measuring the concentration of the drug in the blood plasma, i.e., y, knowledge

can be inferred about the profile of both the observed state x1 and the unobserved

state x2, as well as the model parameters θ. In a PKPD setting the state x1

represents the amount of drug in the plasma while x2 represents the amount of

drug in the rest of the body. The model parameters consists of four rate constants

{θ10, θ12, θ21} and one volume scaling parameter θV .

2.2.2 Mathematical definition

A state-space model is written in the following form

ẋ(t) = f(x(t),u(t),θ)

x(t0) = x0(θ)

y(t) = h(x(t),u(t),θ)

(2.4)

where x(t) ∈ Rn is the state, u(t) ∈ Rq is the input, θ ∈ Rp is the vector of the model

parameters, y(t) ∈ Rm is the output and f and h are smooth rational functions.

2.3 Mixed-effects state-space model

In this section an overview of the mixed-effects mathematical modelling framework

will be given.

2.3.1 Introduction

A typical data set involving experiments with a new pharmaceutical drug contains

repeated measurements from different subjects. A naive way of analysing such data
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is by the so called standard two-stage approach (STS) (Sheiner [1984]). In the STS

approach, data from each subject are considered, using a state-space model of the

form (2.4), as a separate inference problem. Once individual parameter estimates

are obtained from each subject the mean and variability in the population of the

model parameters is computed. This approach works reasonably well when the ex-

perimental data is densely sampled with relative low signal-to-noise ratio (Karlsson

et al. [2015]). However, if the data on an individual level are sparsely sampled then

the individual parameters are in general not well-determined. This will in turn lead

to erroneous conclusions regarding the population mean and variability.

In a mixed-effects modelling framework (2.5), both the individual parameters

from all subjects and the statistical population parameters are estimated in a joint

inference problem, (Davidian [1995]). By doing so, the problem of sparsely sampled

data on an individual level is minimised, since such a framework allows, in some

sense, a sharing of information between all individuals. The framework also allows

for estimation of different sources of variability, such as between-subject variability

(BSV), inter-study variability (ISV) and intra-occasion variability (IOV), (Karlsson

and Sheiner [1993], Bonate [2011]). In addition, by using mixed-effects modelling it

is possible to detect and quantify covariates, i.e., subgroups in the population with

some common characteristic, such as sex, age etc., whose response following adminis-

tration of a pharmaceutical drug is statistically significantly different from the rest of

the population (Hennig and Karlsson [2014]). Due to the reasons mentioned above,

mixed-effects modelling is often considered to be the most advantageous modelling

approach when developing new pharmaceutical drugs.

2.3.2 Mathematical definition of a mixed-effects model

By a mixed-effects model we mean a system written in the following form

ẋi(t) = f(xi(t),ui(t),φi)

xi(t0) = x0(φi)

yi(t) = h(xi(t),ui(t),φi)

(2.5)
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where

φi = g(θ,ηi,Ci) (2.6)

are the parameters for the i:th subject, where i = 1, 2, . . . and

ηi ∼ N(0,Ω) (2.7)

are the random effects where Ω is the covariance matrix of the random effects ηi, θ

are the population parameters and Ci are the covariates for the different subjects

in the population.

An example of a simple one-compartment mixed-effects model with a lognor-

mal distribution of the elimination parameter, Figure 2.3, with the initial condition

D has the following structure

ẋ1 = −θeηx1

x1(0) = D
(2.8)

with observation

y = x1 (2.9)

and normally distributed random effect

η ∼ N(0,
√
ω). (2.10)

2.4 Structural Identifiability

In this section the concept of structural identifiability will be introduced. The math-

ematical definition of what structural identifiability means for a non-mixed-effects

state-space system written in the form (2.4) will be given. Previously established

methods applicable to study structural identifiability of models written in such a

form will be presented.
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Figure 2.3: The one-compartment mixed-effects model with linear elimination.

2.4.1 Introduction

The parameters in a model often have a biological meaning within the system such

as rate constants or saturation levels. Since these parameters most often can not be

measured directly, an indirect measurement is instead used by applying a model to

experimental data to infer what those parameter values are. When the parameter

estimation step is done, biological interpretations of the estimates can be made.

However, in order for the biological interpretations of the parameter estimates

to be reliable the concept of parameter identifiability must be taken into considera-

tion. There are two types of parameter identifiability: Practical identifiability (Raue

et al. [2009]; Galvanin et al. [2013]) and structural identifiability (Villaverde et al.

[2016]), also referred to as a priori identifiability (Audoly et al. [2001]). Practi-

cal identifiability is sometimes also discussed using the term sloppiness (Chis et al.

[2016]; Gutenkunst et al. [2007]) or a posteriori identifiability (Balsa-Canto et al.

[2010]). The two concepts are related in the sense that they both affect the reliabil-

ity of the model parameters, but they do this from different perspectives and there

are therefore certain important key differences between them.

To study practical identifiability experimental data are required. This is

because practical identifiability considers how the amount and quality of the experi-

mental data are translated into the uncertainty of both the parameter estimates and

the subsequent model predictions. If the model parameters after parameter estima-

tion have sufficiently small standard deviations the model is said to be practically
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identifiable (S. Hengl and Maiwald [2007]). However, there are issues related to

only rely on the estimates of the standard deviations of the parameters, (Aoki et al.

[2014, 2015]; Janzén et al. [2016]). It is important to quantify how well-determined

the parameter estimates are following the parameter estimation as this will influ-

ence the weight of insights from the modelling efforts. If the uncertainty in the

model parameters is considered to be too high, the most common approach to solve

this problem is to perform additional experiments, for instance with more frequent

sampling or using a larger group of subjects. Although including additional exper-

imental data in the inference problem will often reduce the parameter uncertainty,

there are cases where the parameter uncertainty remains unacceptable despite the

addition of new experimental data.

Structural identifiability considers the parameter identifiability under ideal

experimental conditions, i.e., with noise-free and time-continuous data (Godfrey

[1985]). Under such conditions the determinability of the model parameters is then

only dependent on the model structure itself along with the inputs and outputs

for the model. For some combinations of input and output functions the model

parameters may be determined, where for other combinations some of the model

parameters cannot be determined. If the model parameters cannot be determined

under ideal experimental conditions it follows that they cannot be determined under

less ideal conditions either, i.e., real experimental conditions. Structural identifiabil-

ity is therefore a prerequisite for successful parameter estimation and for practical

identifiability.

If a model is structurally unidentifiable, a subset of the model parameters

θ can take on an uncountable number of different numerical values for the experi-

ments(s) while the model output y(t) remains unchanged. A structurally unidentifi-

able parameter is therefore effectively meaningless in a biological sense as it can take

on an uncountable number of different numerical values while the model is still able

to describe the experimental data. It is therefore crucial to know whether a model

parameter is identifiable or unidentifiable before drawing any biological conclusions

from its numerical estimates. Furthermore, if a model is structurally identifiable
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it can be either structurally globally identifiable or structurally locally identifiable.

In a structurally globally identifiable model, the model parameters can be deter-

mined uniquely, meaning that for every input-output map there exist a unique set

of parameters. Having a structurally globally identifiable model is the best case

scenario. The second best case scenario, but often sufficient, is a locally identifiable

model. In such a model, there exist a countable number of distinct parameter sets

for every input-output map and is thus a necessary condition for global identifia-

bility (Rothenburg [1971]). In addition, it is sometimes possible to exclude some of

the solutions from a structurally locally identifiable model by setting up parame-

ter constraints derived from prior biological knowledge, e.g., parameter θ1 > θ2. If

a model is structurally unidentifiable then a structural identifiability analysis can

inform on what parameter combinations, i.e., the functional forms, are identifiable

(Eisenberg and Hayashi [2014]; Meshkat et al. [2009, 2011, 2014]; Chappell and

Gunn [1998]; Evans and Chappell [2000]; Gunn et al. [1997]; Denis-Vidal and Joly-

Blanchard [2004]; Cheung et al. [2012]). Such an analysis can also inform on what

additional measurements and/or inputs are required in order to achieve structural

identifiability (Chapman et al. [2003]; Godfrey et al. [1980]).

Unfortunately, structural identifiability is an often overlooked concept de-

spite its importance. As depicted in Figure 2.4, the structural identifiability of a

model needs to be determined before moving on to parameter estimation, practical

identifiability analysis, sensitivity analysis, robustness analysis, model predictions

and conclusions. The reason for this is because if no structural identifiability analy-

sis has been performed, there is no way of knowing whether the source of parameter

uncertainty comes from a lack of information in the experimental data or from the

structure itself. Theoretically, having a practically identifiable model implies that

the model is also structurally identifiable. However, because of how a practical

identifiability analysis is performed this is not true in practice. For instance, in the

inference problem either a global or local optimisation routine is used. If a local

optimisation routine is used, then by definition, only a subset of the parameter space

is explored. Since no true global optimisation routine exists, since this would re-
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Figure 2.4: Workflow of model development with a structural identifiability analysis
as a prerequisite to the parameter estimation step.

quire exploring the entire parameter space, which is infinite, using a global routine

does not prove structural identifiability either. Other problems with using practical

identifiability techniques as a way of proving structural identifiability are numerics,

how things are implemented etc. Also, by definition, it is dependent on a particular

data set whereas a structural identifiability analysis deals with the generic case.

To illustrate the issue of structural identifiability with a simple example,

consider a one-compartment model with the following model structure

ẋ(t) = −θ1x(t) + θ2u(t)

x(0) = 0
(2.11)

with observation

y(t) = θ3x(t) (2.12)

with the unknown model parameters

θ = (θ1, θ2, θ3) (2.13)

and input function u(t) and output function y(t). Differentiating the model output

y(t) with respect to time t yields the following expression

ẏ(t) = θ3ẋ(t) = −θ1θ3x(t) + θ2θ3u(t). (2.14)
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Figure 2.5: Two simulations of the model with different parameter values. The
used parameter values are listed in Table 2.1. The outputs are identical and thus
illustrating the identifiability problem.

The state variable x(t) can be eliminated from (2.14) by substituting θ3x(t) with

y(t). The input-output relation is therefore

ẏ(t) + θ1y(t)− θ2θ3u(t) = 0. (2.15)

From the coefficients of the terms in the input-output relation it is clear that pa-

rameter θ1 can be determined but only the product of θ2θ3 can be determined. The

model is therefore structurally unidentifiable. This is examplified with two simula-

tions with u(t) = δ(t) in Figure 2.5 where the parameter values for θ2 and θ3 are

different in Figure 2.5A and Figure 2.5B, but the numerical value of θ1 and the

product θ2θ3 is still the same. To render the model structurally identifiable, some

prior knowledge about either θ2 or θ3 must be used so that one of them can be fixed.

Table 2.1: Parameter values that was used for model (2.11) when simulating the
model, Figure 2.5. The product θ1θ2 is the same for parameter set A and B which
results in identical outputs from the model.

Parameter set θ1 θ2 θ3

A 0.2 0.8 0.2

B 0.2 0.2 0.8

As can be seen, the example model above is very simple and the subsequent

structural identifiability analysis required minimal computation where simply a vi-

sual inspection of the input-output relation was sufficient to determine identifiabil-
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ity of the model parameters. Even for only slightly more complex model structures

the analytical analysis becomes non-trivial. There are several different approaches

available that can be used to study structural identifiability of models written in the

state-space form as in equation (2.4). Some of the available structural identifiability

analysis methods can be used to include the whole (feasible) parameter space and

can therefore be used to show structural global identifiability. Other methods can

be used only to show whether a model is structurally locally identifiable or not.

Obviously, showing that a model is structural locally identifiable does not rule out

that the model is structurally globally identifiable if a local identifiability analysis

methods has been used. In addition, some methods are only applicable to linear

models where others can be applied to nonlinear models as well.

The Laplace transform approach was first introduced in Bellman and Åström

[1970] and is only applicable to linear models. The Taylor series expansion approach

was first introduced in Pohjanpalo [1978] and is applicable to both linear and non-

linear models but suffers from expensive computations for already relatively simple

model structures. The Similarity transformation approach, Vajda et al. [1989], has

different versions for linear and nonlinear systems. There are also various approaches

to generate the input-output form (Bearup et al. [2013]; Meshkat et al. [2012, 2011];

Bellu et al. [2007]; Ljung and Glad [1994]; Meshkat et al. [2014]) from which the

structural identifiability of the model can be studied.

If a model turns out to be structurally unidentifiable a structural identifia-

bility analysis can also be used to determine what is required to make the model

structurally identifiable. A model can change from being structurally unidentifiable

to being structurally identifiable by either reparametrisation or including additional

output functions by assuming additional measurements of something else in the

system. Sometimes the lack of identifiability may come from an inadequate input

function, which is also something that a structural identifiability analysis will show.

A structural identifiability analysis should therefore also be regarded both as a help-

ful and necessary tool when designing experiments, see again Figure 2.4. However,

it is worth reiterating that structural identifiability is a prerequisite for successful
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parameter estimation, but not a guarantee.

Unfortunately, there is no straight forward way of deciding what identifiabil-

ity analysis approach is in general the best. It is also often not possible to predict

what method is the most appropiate one for a particular model. Using methods

that can generate answer to whether a model is structurally globally or otherwise

is the prefered choice. However, such an analysis may result in inconclusive results

due to the analytical expressions growing exponentially in size. In such cases it

should be attempted to apply methods that can at best prove local identifiability,

for instance the EAR approach (Karlsson et al. [2012]) presented later in this chap-

ter. In Chis et al. [2011a] a comprehensive review of some of the most common

identifiability approaches is presented and compared. In that publication, a com-

bination of the generating series approach (Walter and Lecourtier [1982]) and the

identifiability tableaus (Balsa-Canto et al. [2010]) is concluded to, on average, be

the best approach to study structural identifiability with respect to applicability

range, computational demand and concluding results.

2.4.2 Definition of Structural Identifiability for Non-Mixed-Effects

Model

Definition 1. Let the generic parameter vector θ belong to a feasible parameter

space Θ such that θ ∈ Θ. Let y(t,θ) be the output function from a state-space

model (2.4). Further, consider a parameter vector θ̄ where y(t,θ) = y(t, θ̄) for all t.

If this equality, in a neighbourhood N ∈ Θ of θ, implies that θ = θ̄ then the model

is structurally locally identifiable. If N = Θ then the model is structurally globally

identifiable. For a structurally unidentifiable parameter θi, every neighbourhood

N around θi has a parameter vector θ̄ where θi 6= θ̄i that gives rise to identical

input-output relations.

2.4.3 Methods

In this section structural identifiability methods applicable to models written in the

state-space form (2.4) will be outlined.
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Taylor Series Expansion

The Taylor series expansion as an approach to study structural identifiability was

first introduced by Pohjanpalo [1978]. As mentioned above, ideal experimental

conditions are assumed in a structural identifiability analysis. This means that

both the output function y(t) and all the higher order derivatives of the output

function y(t) are theoretically measurable and known. They are all unique for a

particular output which is utilised in the Taylor series approach. For a component

i, the Taylor series expansion of yi(t,θ) around a known time point, typically the

initial condition t = 0, is

yi(t,θ) = yi(0,θ) + y
(1)
i (0,θ)

t

1!
+ y

(2)
i (0,θ)

t2

2!
+ · · ·+ y

(k)
i (0,θ)

tk

k!
+ . . . (2.16)

By equating the coefficients in equation (4.68) as

yi(0,θ) = yi(0, θ̄)

...

y
(k)
i (0,θ) = y

(k)
i (0, θ̄)

(2.17)

gives an equation system with k + 1 equations where θ̄ is an alternative parameter

vector. If there is only one solution for the model parameters in this system (2.17),

the model is structurally globally identifiable. If there are several, but finite number

of solutions the model is structurally locally identifiable. If the system has no

solution the model is structurally unidentifiable. However, proving that a model

is locally identifiable or unidentifible with the Taylor series expansion approach is

often difficult. This is because the upper bounds, i.e., the number of nessecary

coefficients in the Taylor series expansion in order to prove local identifiability or

unidentifiability, must be reached. Even for relatively simple model structures, the

computations often proves to be intractable.

For linear systems the upper bound is 2n−1 Vajda [1982], for bilinear systems
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22n − 1 Vajda [1987], for homogeneous polynomial systems s2n−1
s−1 Vajda [1987] and

for a generic state-space model on the form (2.4) the upper bound is n+p Margaria

et al. [2001] where n, p, and s is the number of states, number of parameters and

the degree of the polynomial respectively.

Laplace Transform approach

Using the Laplace transform approach, also called the transfer function approach,

to study structural identifiability of systems written in a state-space form was first

introduced in Bellman and Åström [1970]. The method is limited to the study of

structural identifiability of linear systems in the state-space form

ẋ(t,θ) = A(θ)x(t) +B(θ)u(t)

x(0,θ) = x0(θ)

y(t,θ) = C(θ)x(t)

(2.18)

where A(θ), B(θ) and C(θ) are the system matrices. Assuming for simplicity,

without loss of generality, a system where the initial conditions of the model states

are set to zero, i.e., x(0,θ) = 0, and instead are incorporated into B(θ)u(t). The

Laplace transformation of the system is then given by the input-output relation

Y (s) = G(s)U(s) (2.19)

where

G(s) = C(θ)(sI −A(θ))−1B(θ) (2.20)

is the transfer function matrix of the system. Assuming, again without loss of

generality, a single output system. The elements of the transfer function matrix can

then be written in the following form

G(s) =
b1(θ)sn−1 + · · ·+ bn−1(θ)s+ bn(θ)

sn + a1(θ)sn−1 + · · ·+ an−1(θ)s+ an(θ)
. (2.21)
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The coefficients of the powers of s in the numerator and denominator are called

moment invariants (Godfrey and Chapman [1989]) and are unique with respect to

the input-output relationship. Let

σ(θ) = (a1(θ), . . . , an(θ), b1(θ), . . . , bn(θ)) (2.22)

be the exhaustive summary (Walter [1982]) of a model written in the form (2.18) and

where σk(θ) denotes the k:th element in σ(θ). If a model is structurally identifiable

then the model parameters can be deduced from the exhaustive summary σ(θ). By

equating and solving

σk(θ) = σk(θ̄) k = 1, 2, . . . , N (2.23)

the structural identifiability of a linear state-space system can be studied. If the

equation system (2.23) only has one solution for the model parameters θ the model is

structurally globally identifiable. If the equation system has a countable number of

solutions it is structurally locally identifiable. If there exists an uncountable number

of solutions the model is structurally unidentifiable.

Similarity transformation/exhaustive modelling approach for linear mod-

els

The similarity transformation approach, also called the exhaustive modelling ap-

proach, provides a way of finding a transformation between two systems while still

preserving the input-output relation (Cheung et al. [2013]). Given a linear system

S, the similarity transformation approach (Walter [1982]) can be used to generate

all linear models that have the same input-output relation as S.

However, in order for the similarity transformation to be applicable the model

needs to be locally reduced, also called minimal. For a model to be minimal it

needs to be both observable and controllable. A sufficient and necessary condition

respectively that needs to be satisfied is the Observability Rank Criterion (ORC)

and the Controllability Rank Criterion (CRC).
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Therefore, checking whether these two conditions are satisfied provides a

means to check whether the model is minimal. The ORC for a linear model written

in the form as in 2.18 is satisfied if the observability matrix O has full rank, i.e.,

O = Rank




C(θ)

C(θ)A(θ)
...

C(θ)A(θ)n−1




= n (2.24)

where n is the number of model states. The CRC is satisfied if the controllability

matrix C has full rank, i.e.,

C = Rank
(
B(θ) A(θ)B(θ) · · · A(θ)n−1B(θ)

)
= n (2.25)

For a minimal system there exists a transformation T between two systems

(A(θ),B(θ),C(θ)) and (A(θ̄),B(θ̄),C(θ̄)) with the same input-output relation

which satisfies

TA(θ) = A(θ̄)T

TB(θ) = B(θ̄)

C(θ) = C(θ̄)T

(2.26)

where T is a nonsingular n × n matrix. If the only solution of (2.26) is T being

the identity matrix In then no transform of the system A(θ),B(θ),C(θ) can be

performed without changing the input-output relation and the system is therefore

structurally globally identifiable. If there exists a finite set of element vectors that

T can take then the model is structurally locally identifiable, otherwise the model

is structurally unidentifiable.

Similarity transformation/exhaustive modelling approach for nonlinear

models

The similarity transformation approach was extended in Vajda et al. [1989] to in-

clude non-linear systems as well. The method was developed and presented in Vajda
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et al. [1989] and is based on the local state isomorphism theorem (Sussman [1977],

Vajda and Rabitz [1989]).

Under the similarity transformation approach, all state-variable transforma-

tions of a particular system that leave both the input-output relation and the model

structure invariant are sought (Chis et al. [2011b]). Consider a nonlinear system

written in the following form

ẋ(t,θ) = f(x(t,θ),θ) + u(t)g(x(t,θ),θ)

y(t,θ) = h(x(t,θ),θ)

x(0,θ) = x0(θ)

(2.27)

where x(t,θ) ∈ Rn, y(t,θ) ∈ Rm and θ ∈ Rq. By using the local state isomorphism

theorem, a set of first order inhomogeneous partial differential equations can be de-

rived which in turn are used to construct the functional form of the transformations

which leave both the input-output relation and the model structure the same. The

utilisation of the local state isomorphism theorem is presented in Proposition 2 in

Vajda and Rabitz [1989] which will here be restated.

Theorem 2. Consider θ, θ̄ ∈ Ω, an open neighbourhood V of x0(θ̄) in Rn, and

any analytical map λ: V → Rn defined on V such that

λ(x0(θ̄)) = x0(θ) (2.28)

rank
∂λ(x̄)

∂x̄
= n (2.29)

f(λ(x̄),θ) =
∂λ(x̄)

∂x̄
f(x̄, θ̄) (2.30)

g(λ(x̄),θ) =
∂λ(x̄)

∂x̄
g(x̄, θ̄) (2.31)

h(λ(x̄),θ) = h(x̄, θ̄) (2.32)

for all x̄ ∈ V . If the model is structurally globally identifiable the only solution that

fulfils the conditions (2.28)–(2.32) is θ = θ̄ for which λ(x̄) = x̄. If there exists a

countable number of solutions to (2.28)–(2.32) then the system is structurally locally

identifiable. If no solutions exist then the system is structurally unidentifiable.
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An additional property of the similarity transformation approach for nonlin-

ear systems is that if λ(x̃) cannot be expressed explicitly, it cannot be determined

via the similarity transformation approach whether the system is identifiable or not,

(Chappell and Godfrey [1990]).

Similarily as for the linear case, nonlinear models also must be locally reduced

in order for the similarity transformation approach to be applicable. To determine

if a nonlinear model is minimal the ORC and the CRC for nonlinear models can be

used. Checking the ORC and the CRC requires the application of Lie algebra and

Lie derivatives which may become quite computationally demanding.

Determining whether a nonlinear system is observable or not can be done

by computing the rank of the observability rank matrix O. If the rank of the

observability matrix O is full the system is observable. For a nonlinear system, the

application of Lie derivatives is necessary to compute both the observability matrix

and the controllability matrix (August and Papachristodoulou [2009]).

Input-Output approach: Characteristic sets

Consider a system written in the following form

ẋ(t,θ) = f(x(t,θ),θ)

y(t,θ) = h(x(t,θ),θ)

x(0,θ) = x0(θ).

(2.33)

A model of the form as in (2.33) can be rewritten in an input-output form, meaning

that the model states x can be substituted for the output function y and its higher

derivatives resulting in an expression as

g(y(θ), ẏ(θ), . . . ,y(n−1)(θ)). (2.34)

One way of deriving this expression is to compute the characteristic sets of the

model, see Ljung and Glad [1994], with some suitable ranking of the variables. One
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member of the characteristic sets is the input-output relation. By introducing an

alternative parameter vector θ̄ and equating two input-output relations as

g(y(θ), ẏ(θ), . . . ,y(n−1)(θ)) = g(y(θ̄), ẏ(θ̄), . . . ,y(n−1)(θ̄)) (2.35)

and solve for θ, the structural identifiability of the model can be determined. If

(2.35) has a unique solution for θ then the model is structurally globally identifiable.

If there exist a countable number of solutions for θ the model is structurally locally

identifiable. If an uncountable number of solutions exists the model is structurally

unidentifiable. However, it is noted in Saccomani et al. [2003] that identifiability

analysis of models using differential algebra approaches may fail, i.e., give an in-

correct answer, when the model is analysed at specific initial conditions. This is

because in such cases the wrong exhaustive summary is derived.

Input-Output approach: Algebraic relation

An alternative approach to generating the input-output relation of a model written

in the form (2.33) has been developed in Evans et al. [2013]. By computing a set of

Lie derivatives of the output function y and using them as inputs in the Groebner

Bases algorithms in Maple, see Grandjean [2013] and Forsman [1991], the input-

output relation can be generated. Again by introducing an alternative parameter

vector θ̄, equating the two input-output relations as in (2.35), and solve for θ the

structural identifiability of the model can be determined.

Input-Output approach: Observable Normal Form

A third way of generating the input-output relation of a model written in the form

(2.33) is by a co-ordinate transformation of the system to a form called Observable

Normal Form (Evans et al. [2013]).

The outline of the Observable Normal Form is given in Evans et al. [2013]
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and will be restated here. Let fp = f(·,θ) and define the vector field

Hθ(x) = (µ1(x,θ), . . . , µn(x,θ))T (2.36)

where

µ1(x,θ) = h(x,θ) (2.37)

µi+1(x,θ) = Lfpµi(x,θ) i = 1, . . . , n. (2.38)

Then we have that

z = Hθ(x) (2.39)

is a co-ordinate transformation of the system (2.33) into the Observable Normal

Form

ż(t,θ) = zi+1(t,θ) i = 1, . . . , n− 1 (2.40)

żn(t,θ) = µn+1(H−1
θ (z(θ, t)),θ). (2.41)

where the input-output relation can be found in the final state equation żi(θ, t).

By introducing an alternative parameter vector θ̄, equating the two input-output

relations as

żn(t,θ) = żn(t, θ̄) (2.42)

and solving for θ the structural identifiability of the system can be determined.

Exact Arithmetic Rank

The Exact Arithmetic Rank (EAR) approach was presented in Karlsson et al. [2012]

and is based on a method for local observability by Sedoglavic [2002]. The output

function of the model is iteratively differentiated with respect to time. It has been

shown in Anguelova [2007] that the number of necessary derivatives is n+ d− 1, as
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higher order derivatives are algebraically dependent on the lower order derivatives.

By applying the inverse function theorem (Krantz and Parks [2013]) to the system

of equations, the rank of the Jacobian of the system of the equations informs on the

identifiability of the model. If the rank of the Jacobian is full, the model is at least

structurally locally identifiable. If the Jacobian matrix is rank deficient, the model

is structurally unidentifiable.

The EAR approach is implemented as a Mathematica function where the

user simply defines the model structure, unknown parameters and potentially pa-

rameterised initial conditions as arguments to a function which will return whether

the model is at least locally identifiable. The EAR approach is a hybrid gener-

ic/numeric approach and as such it is very computationally efficient and is therefore

suitable for large systems as shown in Raue et al. [2014]. The computational ef-

ficiency is due to the randomly instantiation of integers for the model parameters

and initial states. The input function is a truncated integer coefficient power series.

In the Mathematica implementation there is also an option, based on the work in

Anguelova et al. [2012], to compute minimal output sets necessary and sufficient for

identifiability.

2.5 Structural Indistinguishability

In this section the problem of structural indistinguishability will be presented along

with methods applicable to study it.

2.5.1 Introduction

If a set of candidate models represents different hypotheses on the possible structure

of the underlying biological mechanisms can take, then it is important to know

whether the available measurements are sufficient to distinguish between different

candidate models.

This problem is called structural indistinguishability (Godfrey and Chapman

[1989]; Godfrey et al. [1994]; Collins and King [1991]; Evans et al. [2004]; Godfrey
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and Chapman [1990]). Structural identifiability is neither a necessary nor sufficient

condition for indistinguishability (Walter et al. [1984]). While structural identifiabil-

ity concerns whether the model parameters can be globally/locally identified given

a model structure and experiments with perfect input-output data, a structural in-

distinguishability analysis studies whether two mathematical models with different

structures can produce the same input-output map.

It is possible to generate all structurally indistinguishable linear models with

the same number of compartments (Collins and King [1991]; Walter and Lecourtier

[1981]). However, for the nonlinear case this is not possible. Instead, only pairwise

comparisons between nonlinear models can be performed (Godfrey et al. [1994]).

2.5.2 Definition

Definition 3. Consider the following two nonlinear systems

Σ(θ) =





ẋ(t,θ) = f(x(t,θ),u(t,θ),θ)

y(t,θ) = h(x(t,θ),θ)

x(0,θ) = x0(θ)

(2.43)

Σ̄(θ̄) =





˙̄x(t, θ̄) = f̄(x̄(t, θ̄), ū(t, θ̄), θ̄)

ȳ(t, θ̄) = h̄(x̄(t, θ̄), θ̄)

x̄(0, θ̄) = x̄0(θ̄)

(2.44)

where x(t,θ) ∈ Rn and x̄(t, θ̄) ∈ Rn is the state, u(t,θ) ∈ Rr and ū(t, θ̄) ∈ Rr

is the input, y(t,θ) ∈ Rm and ȳ(t, θ̄) ∈ Rm is the output, θ ∈ Θ ⊂ Rq and

θ̄ ∈ Θ̄ ⊂ Rd where Θ ⊂ Rq and Θ̄ ⊂ Rd is the set of possible parameter values in

a feasible parameter space. The two systems Σ(θ) and Σ̄(θ̄) are said to be output

indistinguishable, denoted Σ(θ) ∼ Σ̄(θ̄), if y(t,θ) = ȳ(t, θ̄). If for generic θ there

exists a θ̄ so that Σ(θ) ∼ Σ̄(θ̄) and at the same time for some generic θ̄ there exists

a θ so that Σ̄(θ̄) ∼ Σ(θ) then the two systems are structurally indistinguishable.
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2.5.3 Methods

Since structural identifiability and indistinguishability are related, i.e., structural

identifiability is a special case of indistinguishability (Evans et al. [2004]; Walter

and Pronzato [1996]; Walter et al. [1984]), the methods to study indistinguishability

are modifications of the methods used to study identifiability.

Laplace Transform approach

The Laplace transform approach to study structural indistinguishability involves

computing and equating the moment invariants from the two (or more) models and

solve for θ. If a generic relation between the model parameters from the investigated

models can be found from equating the moment invariants without any contradic-

tions, e.g., some model parameters needed to be equal to zero, then the two models

are structurally indistinguishable (Bonate [2011]).

Taylor series expansion

The Taylor series expansion can be used to study structural indistinguishability

by equating the coefficients in the Taylor series expansion of the output function

y(t,θ) and ȳ(t, θ̄) from the two models, see Hattersley et al. [2011]. The number

of coefficients included in the comparison between the models is often less than

the number of parameters as either relations between the parameters from the two

models are established, or contradictions are found, e.g., some parameter from one

of the investigated models needs to be equal to zero.

Input-Output approach

By rewriting two models to an input-output form, using either the characteristic

sets, algebraic relation or co-ordinate transform, structural indistinguishability can

be studied. By equating the corresponding coefficients in the two input-output

relations from the two models, and attempting to derive generic relations between

the model parameters from the two models it can be shown whether the two are

structurally indistinguishable. Similarly, if equality between the coefficients from
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the input-output relation from the two models implies some contradiction, then the

models are structurally distinguishable.
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Chapter 3

Structural identifiability

analysis of non-mixed-effects

models

3.1 Introduction

As introduced in Chapter 2, structural identifiability is a prerequisite to successful

parameter estimation. Although the main focus within this thesis is on the devel-

opment of new methods and techniques to study structural identifiability of mixed-

effects models, structural identifiability of non-mixed-effects models has also been

considered to a certain extent. However, for non-mixed-effects models no work has

been done on method development in this thesis. Instead, structural identifiability

analysis has been performed in a number of collaborative projects. The contribution

from this work in these collaborations has been the structural identifiability analysis

and is presented below. In these four collaborative projects structural identifiability

of the following were considered

• A set of routinely used pharmacodynamic models

• A lung slice model
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• A five-compartment lung PK-model

• Estimation of an unknown input function for nonlinear system.

More details of each of these collaborative projects will be given below as well as

the main results from the structural identifiability analysis in each project.

In addition to presenting new structural identifiability analysis results of

model structures that have never been analysed before, this chapter also serves

the purpose as a bridge to the main results of this thesis: structural identifiability

and structural indistinguishability in mixed-effects models. By presenting how a

structural identifiability analysis of a non-mixed-effects model is undertaken the

author hopes that the addition of the statistical sub-model in the mixed-effects

case and the presented methods applicable to mixed-effects models will be easier to

understand.

3.2 Structural identifiability analysis of state-space mod-

els

3.2.1 Pharmacodynamic models

As has been described briefly in Chapter 2, pharmacodynamic models, or PD-

models, aims to capture the effect a pharmaceutical drug has on the body, e.g.,

lowering heart rate, killing cancer cells etc. Often it is the characteristics of the

dose-response relation that is sought using a PD-model, i.e., the amount of drug

that is required to produce a particular level of response as well as finding the satu-

ration level. This relation often involves capturing the temporal aspects, or delays,

of drug effects and for this reason several different models may exist. However, the

issue of structural identifiability is often overlooked when such models are used. In

Janzén et al. [2016], a total of 16 models, Table 3.2, was analysed from a structural

identifiability perspective. These investigated models have three different sources of

time delays: biophase distribution, receptor binding and signal transduction. Al-

though often used in practice for parameter estimation, no structural identifiability
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analysis of these models has ever been published, as far as the author is aware. A

consequence of this is that it is not known whether it is theoretically possible to

distinguish the source of the time delay between drug concentration and drug effect.

The 16 analysed models are different combinations of the models shown in Figure

3.1 and their explicit model structure is listed in Table 3.2.

Figure 3.1: Combinations of the different sub-models of biophase distribution, re-
ceptor binding and signal transduction analysed from a structural identifiability
perspective.

Structural identifiability analysis example 1

All of the 16 PD-models considered were analysed using the input-output approach,

Bearup et al. [2013], except for models 6, 10 and 14 where it was not possible

to generate an input-output relation. For these three models, the EAR approach,

Karlsson et al. [2012], was used instead. Including the details of all of the analysis

for each model would take up too much space. Instead, for brevity two examples of

an analysis of the models is here instead presented. Model 16 from Table 3.2 was

chosen since the analysis itself is relatively straightforward and should be easy to

follow. Model 2 from Table 3.2 was chosen since an augmentation of the system was

necessary in order to apply the input-output approach and thus exemplifying that

structural identifiability analysis often requires problem specific hands-on solutions.
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The first example is model 13 from Table 3.2 which has the following structure

ẋ1 = ke0(u− x1)

ẋ2 = kon(Rtot − x2)x1 − koffx2

x1(0) = 0

x2(0) = 0

(3.1)

with observation

y = kex2 (3.2)

with the unknown parameter vector

θ = (ke0, ke, kon, koff , Rtot) (3.3)

where u is the PK-profile assumed to be known, x1 is the state representing the

artificial effect compartment, x2 is the state representing the receptor complex and

Rtot is the total number of receptors. By iteratively differentiating the output func-

tion y and eliminating the state variables x1 and x2 the model can via substitution

be rewritten in the following input-output form

yÿ − Rtot
2uk2

eke0kon − 2 Rtot ukeke0kony + Rtot keke0koff y−

uke0kony
2 + Rtot keke0 ẏ + Rtot kekoff ẏ + ke0koff y

2+

Rtot keÿ + ke0yẏ − ẏ2 = 0. (3.4)

The structural identifiability of such a model can be studied by considering the

coefficients in the input-output form of the model. By introducing an alternative

parameter vector θ̄ and collecting the coefficients in the input-output form as

l∑

k=1

ck(θ, θ̄)φk(y(t,θ), ẏ(t,θ), ÿ(t,θ), . . . ) = 0 (3.5)

the structural identifiability of model (3.1) can be analysed by solving the following
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system of coefficient equations:

c1(θ, θ̄) = ke0 − k̄e0 = 0 (3.6)

c2(θ,θ) = Rtotke −R2
totuk

2
eke0kon − (R̄totk̄e − R̄2

totuk̄
2
e k̄e0k̄on) = 0 (3.7)

c3(θ, θ̄) = Rtot(keke0 + kekoff )− R̄tot(k̄ek̄e0 + k̄ek̄off ) = 0 (3.8)

c4(θ, θ̄) = −uke0kon + ke0koff − (−uk̄e0k̄on + k̄e0k̄off ) = 0 (3.9)

c5(θ, θ̄) = −Rtotukeke0kon +Rtotkeke0koff−

(−R̄totuk̄ek̄e0k̄on + R̄totk̄ek̄e0k̄off ) = 0. (3.10)

In a structural identifiability analysis a visual inspection can sometimes be enough

in order to be able to determine that a model is structurally unidentifiable. Model

13 from Table 3.2 is a good example of this. In the equation system (3.6)–(3.10)

above it can seen that the two parameters Rtot and ke allways appear together either

as a product Rtotke or as a squared product (Rtotke)
2. From this observation it can

be concluded that model 13 is structurally unidentifiable. In order to see whether

the product Rtotke can be determined the Rtot parameter was fixed, i.e.,

Rtot = R̄tot. (3.11)

and the subsequent analysis was performed using this assumption. Equation (3.6)

has only one solution, namely

ke0 = k̄e0. (3.12)

Equation (3.9) can then be rewritten as

−uke0kon + ke0koff = (−uke0k̄on + ke0k̄off ) (3.13)

ke0(−ukon + koff ) = ke0(−uk̄on + k̄off ) (3.14)

−ukon + koff = −uk̄on + k̄off . (3.15)
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Again, by using (3.12) equation (3.10) can be rewritten as

−ukeke0kon + keke0koff = −uk̄eke0k̄on + k̄eke0k̄off (3.16)

keke0(−ukon + koff ) = k̄eke0(−uk̄on + k̄off ) (3.17)

ke(−ukon + koff ) = k̄e(−uk̄on + k̄off ). (3.18)

Combining (3.15) and (3.18) gives only one solution, namely

ke = k̄e. (3.19)

From here it is straightforward to see, using the previous results from (3.7) and (3.8)

that only one solution exists, namely

kon = k̄on (3.20)

koff = k̄off . (3.21)

In other words, this particular system has only one solution which is

θ = θ̄ (3.22)

which means that model (3.1) is structurally globally identifiable under the as-

sumption that Rtot is fixed. If Rtot is not fixed the model is instead structurally

unidentifiable. Since the exact total number of receptors in a system is unknown

the most obvious numerical value that Rtot should be assigned is 100, i.e., the total

percentage (instead a number of) of receptors is 100 %.

The result from the structural identifiability of all 16 models, Table 3.2, is

summarised in Table 3.1. It was found that the two parameters Rtot and ke can not

be determined uniquely which makes all of the models structurally unidentifiable.

However, the analysis also found that the productRtotke can be determined uniquely.

Therefore, by either fixing the parameter Rtot or ke renders all of the 16 models

structurally globally identifiable since the other model parameters can be uniquely
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Table 3.1: Results of the structural identifiability analysis of the models in Table
3.2. Identifiable and unidentifiable parameters are presented.

Model description Structural identifiability results

N Distr. | Binding | Transd. Unidentifiable Globally identifiable

1 Direct | SS | Linear Rtot, ke Kd
2 Direct | SS | Sigmoid Rtot, RC50 n,Kd, Em
3 Direct | SS | Indirect Rtot, ke kin, kout,Kd
4 Direct | SS | Indirect Rtot, ke kin, kout,Kd
5 Direct | Dynamic | Linear Rtot, ke kon, koff
6 Direct | Dynamic | Sigmoid Rtot, RC50 n, kon, koff , Em
7 Direct | Dynamic | Indirect Rtot, ke Rtotke, kon, koff , kin, kout
8 Direct | Dynamic | Indirect Rtot, ke Rtotke, kon, koff , kin, kout
9 Delay | SS | Linear Rtot, ke Rtotke, ke0,Kd
10 Delay | SS | Sigmoid Rtot, RC50 n, ke0, kon, koff , Em
11 Delay | SS | Indirect Rtot, ke Rtotke, ke0, kin, kout,Kd
12 Delay | SS | Indirect Rtot, ke Rtotke, ke0, kin, kout,Kd
13 Delay | Dynamic | Linear Rtot, ke Rtotke, ke0, kon, koff
14 Delay | Dynamic | Sigmoid Rtot, RC50 n, ke0,kon, koff , Em
15 Delay | Dynamic | Indirect Rtot, ke Rtotke, ke0, kon, koff , kin, kout
16 Delay | Dynamic | Indirect Rtot, ke Rtotke, ke0, kon, koff , kin, kout

determined. By fixing the parameter Rtot to 100 the parameter would represent a

percentage of total number of receptors in the system.

Structural identifiability analysis example 2

Now follows a second example analysis where model 2 from Table (3.2) which has a

direct distribution, i.e., no effect compartment, a steady-state binding and a sigmoid

transduction is considered. The model has the following model structure

ẋ = −x

x(0) = D
(3.23)

with observation

y =
Em(Rtotx)n

(Kd + x)nRCn50 + (Rtotx)n
(3.24)

with unknown parameter vector

θ = (Em,Kd, RC50, n,Rtot) (3.25)
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Table 3.2: Summary of the system equations of the investigated models.

Parameters
N Model equations In/Out ICs

1 E = ke
RtotCp
Kd+C

Cp/E Rtot, ke, Kd

2 E =
Em(RtotCp)n

(Kd+Cp)nRCn
50+(RtotCp)n

Cp/E Rtot, Em, RC50, n,Kd

3 Ė = kin(1 + ke
RtotCp
Kd+Cp

) − koutE Cp/E E(0) = kout/kin Rtot, kin, kout, ke, Kd

4 Ė = kin − kout(1 + ke
RtotCp
Kd+Cp

)E Cp/E E(0) = kout/kin Rtot, kin, kout, ke, Kd

5 ṘC = kon(Rtot − RC)Cp − koffRC Cp/E RC(0) = 0 Rtot, kon, koff , ke
E = keRC

6 ṘC = kon(Rtot − RC)Cp − koffRC Cp/E RC(0) = 0 Rtot, kon, koff , Em, RC50, n

E = EmRCn

RCn
50+RCn

7 ṘC = kon(Rtot − RC)Cp − koffRC Cp/E RC(0) = 0 Rtot, kon, koff , kin, kout, ke
Ė = kin(1 + keRC) − koutE E(0) = kout/kin

8 ṘC = kon(Rtot − RC)Cp − koffRC Cp/E RC(0) = 0 Rtot, kon, koff , kin, kout, ke
Ė = kin − kout(1 + keRC)E E(0) = kout/kin

9 Ċe = ke0(Cp − Ce) Cp/E Ce(0) = 0 ke0, Rtot, ke, Kd

E = ke
RtotCe
Kd+Ce

10 Ċe = ke0(Cp − Ce) Cp/E Ce(0) = 0 ke0, Rtot, Em, RC50, n,Kd

E =
Em(RtotCe)n

(Kd+Ce)nRCn
50+(RtotCe)n

11 Ċe = ke0(Cp − Ce) Cp/E Ce(0) = 0 ke0, Rtot, kin, kout, ke, Kd

Ė = kin(1 + ke
RtotCe
Kd+Ce

) − koutE E(0) = kout/kin

12 Ċe = ke0(Cp − Ce) Cp/E Ce(0) = 0 ke0, Rtot, kin, kout, ke, Kd

Ė = kin − kout(1 + ke
RtotCe
Kd+C

)E E(0) = kout/kin

13 Ċe = ke0(Cp − Ce) Cp/E Ce(0) = 0 ke0, Rtot, kon, koff , ke
ṘC = kon(Rtot − RC)Ce − koffRC RC(0) = 0
E = keRC

14 Ċe = ke0(Cp − Ce) Cp/E Ce(0) = 0 ke0, Rtot, kon, koff , kin, ke
ṘC = kon(Rtot − RC)Ce − koffRC RC(0) = 0

E = EmRCn

RCn
50+RCn

15 Ċe = ke0(Cp − Ce) Cp/E Ce(0) = 0 ke0, Rtot, kon, koff , kin, kout, ke
ṘC = kon(Rtot − RC)Ce − koffRC RC(0) = 0

Ė = kin(1 + keRC) − koutE E(0) = kout/kin
16 Ċe = ke0(Cp − Ce) Cp/E Ce(0) = 0 ke0, Rtot, kon, koff , kin, kout, ke

ṘC = kon(Rtot − RC)Ce − koffRC RC(0) = 0

Ė = kin − kout(1 + keRC)E E(0) = kout/kin
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and known dose D. Generating the input-output form of the model written in this

form is not possible. This is because one of the model parameters n appears as an

exponent. To handle this, the system can be augmented in such a way that the

parameter n appears elsewhere in the model structure.

The augmentation of the original system was performed in the following way.

Let a new state A(t) be defined as

A(t) =
(Kd + x(t))n

(Rtotx(t))n
(3.26)

which has the following time derivative

Ȧ(t) =
nKdRtotẋ(t)

(
Kd+x(t)
Rtotx(t)

)n+1

(Kd + x(t))2
. (3.27)

The initial condition of the new state A(t) is

A(0) =
(Kd +D)n

(RtotD)n
. (3.28)

As can be seen, the problem of having a parameter as an exponent has now been

removed from the output function y to the initial condition of A(t). At this stage,

this is handled by defining a dummy parameter a0 as

a0 =
(Kd +D)n

(RtotD)n
. (3.29)

Finally, the last augmentation of the original system is done by the following sub-

stitution

RC∗50 = RCn50. (3.30)
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The new augmented and reparameterised form of model (3.23) is then given by

ẋ(t) = −x

Ȧ(t) = − nKd

Kd + x(t)
A(t)

x(0) = D

A(0) = a0

(3.31)

with observation

y =
Em

A(t)RC∗50 + 1
(3.32)

and with unknown parameter vector

θ = (a0, n,Kd, Em, RC
∗
50). (3.33)

The augmented model (3.31) is now in a form from which the input-output relation

can be generated. The input-output relation was generated using Maple, (MapleSoft

[2015]), see Appendix A for the relevant Maple code and details. The input-output

relation is given by

−nẏyEm + nEmyÿ − nEm ẏ
2 + nẏy2 − nÿy2 + 2nyẏ2 − Em ẏ

2 = 0 (3.34)

The initial conditions for the output function are

y(0) =
Em

a0RC∗50 + 1
(3.35)

ẏ(0) = − nKda0EmRC
∗
50

(Kd +D)(a0RC∗50 + 1)2
(3.36)

Again, by introducing an alternative parameter vector θ̄ and collecting the coeffi-
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cients in the input-output relation as

l∑

k=1

ck(θ, θ̄)φk(y(t,θ), ẏ(t,θ), ÿ(t,θ), . . . ) = 0 (3.37)

it is easy to see from the input-output relation that only one solution exists, namely

Em = Ēm (3.38)

and

n = n̄. (3.39)

Considering the initial conditions the following two relations can also be derived

Em
a0RC∗50 + 1

=
Ēm

ā0RC∗50 + 1
(3.40)

− nKda0EmRC
∗
50

(Kd +D)(a0RC∗50 + 1)2
= − n̄K̄dā0ĒmRC∗50

(K̄d +D)(ā0RC∗50 + 1)2
(3.41)

from which, using previous results from (3.38)–(3.39), the following solution can be

found

Kd = K̄d (3.42)

and

a0RC
∗
50 = ā0RC∗50. (3.43)

Model (3.23) is therefore structurally unidentifiable. However, since the parameters

Kd and n have been shown to be identifiable, the identifiability problem can be

solved by fixing parameter Rtot which will lead to

a0 = ā0 (3.44)
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and thus

RC∗50 = RC∗50. (3.45)

From (3.30) it is clear that if both RC∗50 and n are identifiable then so is RC50.

In summary, model (3.23) is structurally unidentifiable, but becomes structurally

globally identifiable if either Rtot or RC50 is fixed.

In relation to this work, the importance of performing an analytical struc-

tural identifiability analysis was demonstrated by attempting to estimate parameters

using a structurally unidentifiable model, Figure 3.2, using Monolix (Lixoft [2012]).

An argument against performing structural identifiability analysis that is relatively

often presented is the claim that if there are any issues with identifiability, such is-

sues will appear when the used software estimates the uncertainty of the parameter

estimates. In theory, an unidentifiable parameter has an infinitely large uncertainty,

i.e., a flat likelihood with respect to the unidentifiable parameter. However, since

computations of the estimates of the parameter uncertainties are done numerically

they are subject to numerical noise and approximations. Because of this, estimated

parameter uncertainties such as Relative Standard Error (RSE) should not be re-

garded as a substitute for a structural identifiability analysis. Figure 3.2 is an

example of this where one set of initial estimates of the model parameters results in

seamingly reasonable RSE-values, while with a different set on initial estimates the

RSE-values indicate a potential structural identifiability problem.

3.2.2 Lung slice model

In this section the structural identifiability of four lung slice models will be con-

sidered. These models have been developed by Boger [2016] and the aim of the

modelling efforts was to evaluate whether the lung absorption half-life of inhaled

drugs can be predicted with rat lung slices. Traditionally, estimation of lung drug

half-life is determined by measurement of total lung concentration at different time-

points after inhalation of a drug. This approach often requires a large number of
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Figure 3.2: Parameter estimation results using a structurally unidentifiable model.
In B1, the RSE-values indicates a potential identifiability issues. However, in B2
the reported RSE-values seems resonable. In B3 the Rtot parameter has been fixed
resulting in a structurally globally identifiable model. Note also that the residuals
in all three cases are more or less the same.

animals in each experiment, a problem which can be avoided if the proposed lung

slice modelling approach proves to be successful as this alternative approach requires

much fewer animals per study.

An important part in evaluating the feasibility of this alternative approach

to evaluate the lung absorption half-life of inhaled drugs is to determine whether

the models used are structurally identifiable. The structural identifiability analysis

of the four lung slice models is presented below.

Model structures

Firstly, the model structures for all of the models considered will be presented,

Figure 3.3. Cb is the buffer concentration of the drug, Cu is the unbound lung

concentration, Cu2 is the unbound lung concentration in the lysosomes, A0 is the

initial amount of drug in the lung slices, Ab0 is the initial amount of drug in the

buffer, Vb is the buffer volume, Vlung is given by

Vlung = WtotVulung (3.46)

where both Wtot (total weight of lung tissue) and Vulung (apparent volume of distri-

bution) can be measured experimentally (Bäckström et al. [2016]), Vlung2 (apparent
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Figure 3.3: Model A has no lysosomal contribution while Model B has lysosomal
contribution. There are two versions of both model A and model B: with and
without mass balance.

volume of distribution of the lysosomes) is defined as

Vlung2 = flysoWtotVulungα, (3.47)

flyso is the volume fraction of lysosomes in the tissue which is assumed to be known,

α assigns the relationship between Vlung2, i.e., how much greater Vlung2 is for lyso-

somes, and can be computed from experimental measurements, f0 is defined as

f0 =
αflyso

(αflyso + (1− flyso))
. (3.48)

The first version of model A, i.e., without lysosomal contribution, has the following

model structure

Ċu = CL
Cb − Cu
Vlung

Ċb = CL
Cu − Cb
V b

Cu(0) =
A0

Vlung

Cb(0) = 0

(3.49)
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with observations

y1 = (1− V0)CuVulung + V0Cb

y2 = Cb

(3.50)

and with the unknown parameter vector

θ1 = (CL,A0). (3.51)

The second version of model A has the following model structure

Ċu = CL
Cb − Cu
Vlung

Ċb = CL
Cu − Cb
V b

Cu(0) =
A0

Vlung

Cb(0) =
Ab0
Vb

(3.52)

with observations

y1 = (1− V0)CuVulung + V0Cb

y2 = Cb

(3.53)

and with the unknown parameter vector

θ2 = (CL,A0, Ab0). (3.54)
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The first version of model B, i.e., with lysosomal contribution, has the following

model structure

Ċu =
CLCb − CLCu + CL2Cu2 − CL2Cu

Vlung

Ċb = CL
(Cu − Cb)

Vb

Ċu2 = CL2
(Cu − Cu2)

Vlung2

Cu(0) =
(1− f0)A0

Vlung

Cb(0) = 0

Cu2(0) =
f0A0

Vlung2

(3.55)

with observations

y1 = (1− V0) (flysoCu2Vulungα+ (1− flyso)CuVulung) + V0Cb

y2 = Cb

(3.56)

and the unknown parameter vector

θ3 = (CL,CL2, A0) (3.57)

The second version of model B has the following model structure

Ċu =
CLCb − CLCu + CL2Cu2 − CL2Cu

Vlung

Ċb = CL
(Cu − Cb)

Vb

Ċu2 = CL2
(Cu − Cu2)

Vlung2

Cu(0) =
(1− f0)A0

Vlung

Cb(0) =
Ab0
Vb

Cu2(0) =
f0A0

Vlung2

(3.58)
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with observations

y1 = (1− V0) (flysoCu2Vulungα+ (1− flyso)CuVulung) + V0Cb

y2 = Cb

(3.59)

and with the unknown parameter vector

θ4 = (CL,CL2, A0, Ab0). (3.60)

Structural identifiability analysis

All four lung slice models were analysed using the Taylor series expansion approach,

Pohjanpalo [1978], as outlined in Section 2.4.3. Although other structural identifi-

ability analysis approaches also would have worked fine to analyse these four lung

models, the Taylor series expansion approach was here chosen in order to show how

it works in practice.

The first coefficient in the Taylor series expansion of the first output function

y1 of model (3.49) is

y1(0) = (1− V0)
A0

Vlung
(3.61)

The first two coefficients in the Taylor series expansion of the second output function

y2 are

y2(0) = 0 (3.62)

ẏ2(0) =
CLA0

VbVlung
. (3.63)

Introducing an alternative parameter vector θ̄1 and equating the coefficients as

y1(0,θ1) = y1(0, θ̄1) (3.64)

ẏ2(0,θ1) = ẏ2(0, θ̄1) (3.65)
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yields the following two equations

(1− V0)
A0

Vlung
= (1− V0)

Ā0

Vlung
(3.66)

CLA0

VbVlung
=

CLĀ0

VbVlung
(3.67)

which has only one solution, namely

A0 = Ā0 (3.68)

CL = CL (3.69)

and we therefore have that

θ1 = θ̄1 (3.70)

meaning that model (3.49) is structurally globally identifiable.

The first coefficient in the Taylor series expansion of the first output function

y1 of model (3.52) is given by

y1(0) = (1− V0)
A0

Vlung
+ V0

Ab0
Vb

. (3.71)

The first two coefficients in the Taylor series expansion of the second output function

y2 of model (3.52) are given by

y2(0) =
Ab0
Vlung

(3.72)

ẏ2(0) = CL

(
A0
Vlung

− Ab0
Vb

)

Vb
. (3.73)
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Introducing an alternative parameter vector θ̄2 and equating the coefficients as

y1(0,θ2) = y1(0, θ̄2) (3.74)

y2(0,θ2) = y2(0, θ̄2) (3.75)

ẏ2(0,θ2) = ẏ2(0, θ̄2) (3.76)

yields the following three equations

(1− V0)
A0

Vlung
+ V0

Ab0
Vb

= (1− V0)
Ā0

Vlung
+ V0

Āb0
Vb

(3.77)

Ab0
Vlung

=
Āb0
Vlung

(3.78)

CL

(
A0
Vlung

− Ab0
Vb

)

Vb
= CL

(
Ā0
Vlung

− Āb0
Vb

)

Vb
(3.79)

which have only one solution, namely

A0 = Ā0 (3.80)

Ab0 = Āb0 (3.81)

CL = CL (3.82)

and we therefore have that

θ2 = θ̄2 (3.83)

meaning that the model (3.52) is structurally globally identifiable.

The first coefficient in the Taylor series expansion of the first output function

y1 of model (3.58) is given by

y1(0) = (1− V0)

(
A0(1− f0) (1− flyso)Vulung

Vlung
+
αA0f0flysoVulung

Vlung2

)
. (3.84)

The first three coefficients in the Taylor series expansion of the second output func-
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tion y2 are given by

y2(0) = 0 (3.85)

ẏ2(0) =
A0CL(1− f0)

VbVlung
(3.86)

ÿ2(0) =

CL

(
−A0CL(1−f0)

Vlung
−A0CL2(1−f0)

Vlung
+
A0CL2f0
Vlung2

Vlung
− A0CL(1−f0)

VbVlung

)

Vb
. (3.87)

Introducing an alternative parameter vector θ̄3 and equating the coefficients as

y1(0,θ3) = y1(0, θ̄3) (3.88)

ẏ2(0,θ3) = ẏ2(0, θ̄3) (3.89)

ÿ2(0,θ3) = ÿ2(0, θ̄3) (3.90)

yields the following three equations

(1− V0)

(
A0(1− f0) (1− flyso)Vulung

Vlung
+
αA0f0flysoVulung

Vlung2

)
=

(1− V0)

(
Ā0(1− f0) (1− flyso)Vulung

Vlung
+
αĀ0f0flysoVulung

Vlung2

)
(3.91)

A0CL(1− f0)

VbVlung
=
Ā0CL(1− f0)

VbVlung
(3.92)

CL

(
−A0CL(1−f0)

Vlung
−A0CL2(1−f0)

Vlung
+
A0CL2f0
Vlung2

Vlung
− A0CL(1−f0)

VbVlung

)

Vb
= (3.93)

CL

(
− Ā0CL(1−f0)

Vlung
− Ā0CL2(1−f0)

Vlung
+
Ā0CL2f0
Vlung2

Vlung
− Ā0CL(1−f0)

VbVlung

)

Vb
(3.94)

which has only one solution, namely

CL = CL (3.95)

CL2 = CL2 (3.96)

A0 = Ā0 (3.97)
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and we therefore have that

θ3 = θ̄3 (3.98)

meaning that model (3.55) is structurally globally identifiable.

The first coefficient in the Taylor series expansion of the first output function

y1 of model (3.58) is

y1(0) =
V0Ab0
Vb

+ (1− V0)

(
A0(1− f0) (1− flyso)Vulung

Vlung
+
αA0f0flysoVulung

Vlung2

)
.

(3.99)

The first three coefficients in the Taylor series expansion of the second output func-

tion y2 are given by

y2(0) =
Ab0
Vb

(3.100)

ẏ2(0) =
CL

(
A0(1−f0)
Vlung

− Ab0
Vb

)

Vb
(3.101)

ÿ2 =

CL




CLAb0
Vb

−A0CL(1−f0)
Vlung

−A0CL2(1−f0)
Vlung

+
A0CL2f0
Vlung2

Vlung
−

CL

(
A0(1−f0)
Vlung

−Ab0
Vb

)

Vb




Vb
.

(3.102)

Introducing an alternative parameter vector θ̄4 and equating the coefficients as

y1(0,θ4) = y1(0, θ̄4) (3.103)

y2(0,θ4) = y2(0, θ̄4) (3.104)

ẏ2(0,θ4) = ẏ2(0, θ̄4) (3.105)

ÿ2(0,θ4) = ÿ2(0, θ̄4) (3.106)
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yields the following four equations

V0Ab0
Vb

+ (1− V0)

(
A0(1− f0) (1− flyso)Vulung

Vlung
+
αA0f0flysoVulung

Vlung2

)
=

V0Āb0
Vb

+ (1− V0)

(
Ā0(1− f0) (1− flyso)Vulung

Vlung
+
αĀ0f0flysoVulung

Vlung2

)
(3.107)

Ab0
Vb

=
Āb0
Vb

(3.108)

CL
(
A0(1−f0)
Vlung

− Ab0
Vb

)

Vb
=
CL

(
Ā0(1−f0)
Vlung

− Āb0
Vb

)

Vb
(3.109)

CL




CLAb0
Vb

−A0CL(1−f0)
Vlung

−A0CL2(1−f0)
Vlung

+
A0CL2f0
Vlung2

Vlung
−

CL

(
A0(1−f0)
Vlung

−Ab0
Vb

)

Vb




Vb
=

CL




CLĀb0
Vb

− Ā0CL(1−f0)
Vlung

− Ā0CL2(1−f0)
Vlung

+
Ā0CL2f0
Vlung2

Vlung
−

CL

(
Ā0(1−f0)
Vlung

− Āb0
Vb

)

Vb




Vb
(3.110)

which have only one solution, namely

A0 = Ā0 (3.111)

Ab0 = Āb0 (3.112)

CL = CL (3.113)

CL2 = CL2 (3.114)

and we therefore have that

θ4 = θ̄4 (3.115)

meaning that the model (3.58) is structurally globally identifiable.

In summary, all four lung models have been shown to be structurally globally

identifiable.
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Figure 3.4: The five-compartment lung model.

3.2.3 Five-compartment lung PK-model

In this section a structural identifiability analysis on a five-compartment model is

performed. This particular model, presented in Hendrickx et al. [2016] together with

the structural identifiability analysis, aims to describe the PK-profile of a drug in

the five following compartments; central A1, lung A2, lung deep A3, tissue A4 and

tissue deep A5, Figure 3.4. The purpose of this model was to use the PK-profile in

rats following local delivery in the lung for prediction of lung and plasma PK-profiles

in humans.

The model with an intravenous (IV) dosing has the following model structure
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Ȧ1(t) = −CLA1(t)

V1
− CLD12fu1A1(t)

V1
− CLD14fu1A1(t)

V1
+

CLD12fu2A2(t)

V2
+
CLD14fu4A4(t)

V4
+ u1(t)

Ȧ2(t) = k32A3(t) +
CLD12fu1A1(t)

V1
− fu2CLD12A2(t)

V2
− fu2CLD23A2

V2

Ȧ3(t) =
CLD23fu2A2(t)

V2
− k32A3(t)

Ȧ4(t) =
CLD14fu1A1(t)

V1
− CLD14fu4A4(t)

V4
− CLD45fu4A4(t)

V4
+ k32A5(t)

Ȧ5(t) =
CLD45fu4A4(t)

V4
− k32A5(t)

Ai(0) = 0 i = 1, .., 5

(3.116)

with observations

y1(t) =
A2(t) +A3(t)

V2

y2(t) =
A1(t)

V1

(3.117)

while the model with an intratracheal (IT) dosing has the following model structure

Ȧ1(t) = −CLA1(t)

V1
− CLD12fu1A1(t)

V1
− CLD14fu1A1(t)

V1
+

CLD12fu2A2(t)

V2
+
CLD14fu4A4(t)

V4

Ȧ2(t) = k32A3(t) +
CLD12fu1A1(t)

V1
− fu2CLD12A2(t)

V2
− fu2CLD23A2

V2
+ u2(t)

Ȧ3(t) =
CLD23fu2A2(t)

V2
− k32A3(t)

Ȧ4(t) =
CLD14fu1A1(t)

V1
− CLD14fu4A4(t)

V4
− CLD45fu4A4(t)

V4
+ k32A5(t)

Ȧ5(t) =
CLD45fu4A4(t)

V4
− k32A5(t)

Ai(0) = 0 i = 1, . . . , 5

(3.118)

with observations

y1(t) =
A2(t) +A3(t)

V2

y2(t) =
A1(t)

V1
.

(3.119)
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The unknown parameter vector for both models is given by

θ = (V1, V2, V4, fu4, CL, fu1, fu2, CLD12, CLD14, CLD45, k32, CLD23). (3.120)

Before applying any structural identifiability analysis techniques, it can be concluded

directly from a visual inspection of the model structure that the two parameters

fu4 and V4 can not be uniquely determined and the model is therefore structurally

unidentifiable. This is because the two unidentifiable parameters always appear

together as a fraction fu4

V4
. Therefore, the following reparametrisation

β =
fu4

V4
(3.121)

will be used in the subsequent structural identifiability analysis.

The Taylor series expansion approach and the input-output form approach

were both applied to the models (3.116) and (3.118) in an effort to analyse them

from a structural perspective. However, the symbolic computations proved to be

infeasible and because of this no conclusion could be drawn using this approach.

Instead, the EAR approach (Karlsson et al. [2012]) was used. This was

performed in Mathematica (Wolfram Research Inc. [2016]) and the Mathematica

code and the computations can be found in Appendix B. The analysis showed that

the five-compartment model with either IV dosing (3.116) or IT dosing (3.118) are

structurally unidentifiable. The unidentifiable model parameter vector was found

to be

(CLD12, CLD14, CLD23, CLD45, fu1, fu2, β). (3.122)

However, the analysis with the EAR approach also showed that the two models are

structurally unidentifiable with one degree of freedom, i.e., if one of the unidentifiable

parameters in (3.122) is known then the model becomes at least structurally locally

identifiable. In this particular case, the parameter fu1, i.e., the free fraction of drug

in the plasma, can be measured from seperate experiments and can therefore be
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considered to be known in the structural identifiability analysis.

It can therefore be concluded that the five-compartment lung model with

either IV dosing (3.116) or IT dosing (3.118) is at least structurally locally identifi-

able with the reparametrisation (3.121) and under the assumption of the parameter

fu1 being known.

3.2.4 Input estimation

In Träg̊ardh et al. [2017], methods are presented that can be used to estimate the

time-profile of an input function to a nonlinear system given a known model struc-

ture, known model parameters and a known output function and these methods are

exemplified. The structural identifiability analysis that was included in this work is

presented below.

The structural identifiability of two PK-models presented in Gao and Jusko

[2012] and Li et al. [2015] has been considered. The structural identifiability analysis

in this paper has been performed using two approaches: The EAR approach (Karls-

son et al. [2012]) and the Taylor series expansion approach (Pohjanpalo [1978]). The

EAR approach was used to analyse the model structure itself and the Taylor series

expansion approach was used to analyse the uniquenes of the input function to the

system.
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Gao and Jusko model

The structural identifiability analysis was done only of the PK-model in Gao and

Jusko [2012]. The structure of the PK-model with IV administration is given by

Ċ(t) =
u(t)

Vc
− (kel + kpt)C(t) + ktp

AT (t)

Vc

− kon(Rtot −RC(t))C(t) + koffRC(t)

ȦT (t) = kptC(t)VC − ktpAT (t)

ṘC(t) = kon(Rtot −RC(t))C(t)− (koff + kint)RC(t)

C(0) = 0

AT (0) = 0

RC(0) = 0

(3.123)

with observation

y(t) = C(t) (3.124)

where C(t) is the drug concentration in the central compartment, AT (t) is the

drug amount in a peripheral compartment, RC(t) is the concentration of the drug-

receptor complex, and u(t) is the unknown input. The unknown parameter vector

is

θ1 = (Vc, kel, kpt, ktp, kon, koff , kint, Rtot). (3.125)
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The structure of the PK-model with subcutaneous (SC) administration is given by

ẋsc = −kaxsc

Ċ(t) =
kaxsc
Vc
− (kel + kpt)C(t) + ktp

AT (t)

Vc

− kon(Rtot −RC(t))C(t) + koffRC(t)

ȦT (t) = kptC(t)VC − ktpAT (t)

ṘC(t) = kon(Rtot −RC(t))C(t)− (koff + kint)RC(t)

xsc(0) = FD

C(0) = 0

AT (0) = 0

RC(0) = 0

(3.126)

with observation

y(t) = C(t) (3.127)

and with the unknown parameter vector

θ2 = (Vc, kel, kpt, ktp, kon, koff , kint, Rtot, ka, F ) (3.128)

and a known dose D.

Structural identifiability results

Three different dose administrations were considered: intravenous (IV) infusion, IV

bolus dose and subcutaneous (SC) administration. The details of the analysis using

the EAR approach can be found in Appendix D. The following are the results from

the structural identifiability analysis using the EAR approach:

• The PK-model (3.123) with IV infusion is at least structurally locally identi-

fiable.

• The PK-model (3.123) with bolus IV dose is at least structurally locally iden-

tifiable.
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• The PK-model (3.126) with SC administration is structurally unidentifiable

with one degree of freedom. The structurally unidentifiable parameters are F

and Vc while the remaining model parameters can still be determined.

Since all of the model parameters, except for F and ka, are shared between the IV

case and the SC case two different methods can be applied to make the structurally

unidentifiable SC model (3.126) structurally identifiable:

1. Fix the parameter Vc to the estimated value from the IV case.

2. Consider both models together in a joint inference problem.

In the paper Gao and Jusko [2012] the bioavailability parameter F was fixed

to a value which solves the structural identifiability issue. However, this was not

done as a direct result of a structural identifiability analysis.

Identifiability of the input function

Before applying the methods developed by Träg̊ardh et al. [2017] with the purpose

to estimate the time-profile of the input function to a nonlinear system it must first

be determined whether the input function is identifiable, i.e., whether there exists a

unique time-profile for the input to a model for every given set of model parameters,

model structure and output function.

To analyse whether the input function in the PK-model in Gao and Jusko

[2012] is identifiable or not the Taylor series expansion approach, (Pohjanpalo [1978]),

was used. By computing the Taylor series expansion around t = 0 of the output

function

y(t) = C(t) (3.129)

using Mathematica (Wolfram Research Inc. [2016]) the following coefficients are
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obtained

y(0) = 0 (3.130)

ẏ(0) = u(0) (3.131)

ÿ(0) = u(0) (− (kel + kpt))− u(0)konRtot + u̇(0) (3.132)

y(3)(0) = − (kel + kpt) (u(0) (− (kel + kpt))− u(0)konRtot + u̇(0))

− konRtot (u(0) (− (kel + kpt))− u(0)konRtot + u̇(0)) +

u(0)koffkonRtot + u(0)kptktp + ü(0) (3.133)

y4(0) = koffkonRtot (−u(0) (kel + kpt) + u(0) (kint − koff)− u(0)konRtot + u̇(0))

− (kel + kpt) ((kel + kpt) (u(0)kel + u(0)konRtot + u(0)kpt − u̇(0)) +

konRtot (u(0)kel + u(0)konRtot + u(0)kpt − u̇(0)) + u(0)koffkonRtot+

u(0)kptktp + ü(0))− konRtot((kel + kpt) (u(0)kel + u(0)konRtot

+ u(0)kpt − u̇(0)) + konRtot(u(0)kel + u(0)konRtot

+ u(0)kpt − u̇(0)) + u(0)koffkonRtot + u(0)kptktp + ü(0))−

kptktp (u(0)kel + u(0)konRtot + u(0)kpt + u(0)ktp − u̇(0)) +

3u(0)2k2
onRtot + u(3)(0) (3.134)

...

The unknown terms in the equations above are

(u(0), u̇(0), ü(0), u(3)(0), . . . ) (3.135)

since the model parameters, the output function y(0) and its higher order derivatives

are assumed to be known in this analysis. Because of the structure of this particular

model the u(n−1)(0) term will always enter linearly in the expression (see last term

respectively) for each y(n)(0) where n = 1, 2, . . . In other words, from ẏ(0) we can

determine u(0). In ÿ(0) all terms are known, including now also u(0), and because

of this we can determine u̇(0), and so on. We therefore have a triangular structure
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of the higher order derivatives and from which it can be concluded that

(u(0), u̇(0), ü(0), u(3)(0), . . . ) (3.136)

can be determined from the output function y(t).

Next the Taylor series expansion of the input signal u(t) around t = 0 is

considered. The input signal u(t) has the following Taylor series expansion

u(t) = u(0) + u(1)(0)
t

1!
+ u(2)(0)

t2

2!
+ · · ·+ u(k)(0)

tk

k!
+ . . . (3.137)

Since it has been shown that all of the coefficients in the Taylor series expansion of

u(t) can be determined it can be concluded that the input function u(t) is identifiable

since the coefficients in a Taylor series expansions of a function uniquely determines

that function for this particular model structure.

Li et al.

A second model that was considered in Träg̊ardh et al. [2017] was a similar PK-

model presented in Li et al. [2015]. The structural identifiability of this model was
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also analysed. The model has the following structure

ȧ1(t) = −ktra1(t)

ȧ2(t) = −ktr(a1(t)− a2(t))

ȧ3(t) = −ktr(a2(t)− a3(t))

ȧ4(t) = −ktr(a3(t)− a4(t))

ȧ5(t) = −ktr(a4(t)− a5(t))

ȧ6(t) = kaa5(t)− Q

V1
a6(t)− CL

V1
a6(t) +

Q

V2
a7(t)− kona8(t)a6(t)

+ koffa9(t)V1

ȧ7(t) =
Q

V1
a6(t)− Q

V2
a7(t)

ȧ8(t) = ksyn − kdega8(t)− kona8(t)
a6(t)

V1
+ koffa9(t)

ȧ9(t) = kona8(t)
a6(t)

V1
− koffa9(t)− kinta9(t)

a1(0) = (1− F1 − F2 − F3)FD

a2(0) = F1FD

a3(0) = F2FD

a4(0) = F3FD

a5(0) = 0

a6(0) = 0

a7(0) = 0

a8(0) =
ksyn
kdeg

a9(0) = 0

with observation

y(t) =
a6(t)

V1
(3.138)
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and with the unknown parameter vector

θ = (F, F1, F2, F3, ktr, ka, kon, koff , ksyn, kdeg, kint, Q,CL, V1, V2) (3.139)

and a known dose D.

The structural identifiability analysis using the EAR approach, the details

of which can be seen in Appendix D, showed that the PK-model in Li et al. [2015]

was structurally unidentifiable with one degree of freedom. From the EAR analysis

it can be concluded that if any one of the following parameters

(CL,F, F1, F2, F3, Q, V1, V2) (3.140)

is assumed to be known, or can be measured separately experimentally, then the

model (3.138) becomes at least structurally locally identifiable.

3.3 Summary

Conclusive results for all of the models analysed were obtained. The 16 analysed

PD-models were all shown to be structurally unidentifiable, but by fixing either one

of the two parameters Rtot or ke all models become structurally globally identifiable.

Given that such models are routinely used in practice, it is quite remarkable that

no formal structural identifiability analysis of these models have been published

previously. These results ensure the theoretical soundness of the models from a

structural identifiability perspective.

All versions of the lung slice model were shown to be structurally globally

identifiable. The models are quite complex with several parameters. However,

although no formal analysis was done, the fact that most of the model parameters

could be derived directly using experimental measurements or literature data, thus

leaving only 2-4 unknown parameters, helped with the structural identifiability a

great deal.

The five-compartment lung PK-model was shown to be at least structurally
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locally identifiable after a reparametrisation and fixing a particular parameter. Both

the Taylor series expansion and the input-output approaches were applied, but the

subsequent symbolic computations proved to be too computationally demanding.

Because of this, the EAR approach was applied instead. The reason why the EAR

approach was applied after the Taylor series expansion approach and the input-

output form approach has to do with the arguably main downside of the EAR

approach. While the Taylor series expansion approach and the input-output form

approach can be used to show whether a model is either structurally globally/lo-

cally identifiable, the EAR approach can only be used to show whether a model

is either at least structurally locally identifiable or structurally unidentifiable. Be-

fore analysing the model, a visual inspection of the model equations can be used to

conclude that the original model was structurally unidentifiable since a ratio of two

parameters appeared only together. It was also shown using the EAR approach that

even after reparametrising the fraction, the model was still structurally unidentifi-

able. A subset of the model parameters was identified, of which, if any one of the

parameters of that subset was fixed, then the model becomes at least structurally

locally identifiable. In this way, the five-compartment lung PK-model is an excellent

example to illustrate that some structural identifiability issues can be found with

a simple visual inspection while other identifiability issues can only be found using

more sophisticated methods.

In terms of the input estimation models analysed, while the PK-model (3.123)

in Gao and Jusko [2012] with either IV infusion or IV bolus dosing of the drug was

found to be at least structurally locally identifiable, the PK-model (3.126) with SC

administration of the drug was structurally unidentifiable. However, it was found

that the structural identifiability problem for the SC administration model can be

avoided if i) the estimates of the model parameters from the IV administration model

are fixed when estimating the additional parameters in the SC administration model

or ii) the parameters in the IV and the SC model are estimated simultaneously. The

latter would be the preferable choice as this approach will most likely decrease the

uncertainty of the shared parameters in terms of practical identifiability since more
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information will be used.

It was also shown using the Taylor series expansion approach that the time-

profile of the input function can (theoretically) be determined uniquely if the model

parameters and the time-profile of the output function are known. This is an impor-

tant result as this shows that the input estimation methods presented in Träg̊ardh

et al. [2017] are therefore applicable to the PK-model considered.
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Chapter 4

Structural Identifiability and

Indistinguishability in

Mixed-Effects Models

4.1 Introduction

The definitions of structural identifiability and indistinguishability as given in Sec-

tion 2.4.2 and Section 2.5.2 are only applicable to models written in a non-mixed-

effects state-space form (2.4). Furthermore, existing structural identifiability and

indistinguishability analysis techniques are only applicable to such systems. The

reason why is because mixed-effects models include a statistical submodel, result-

ing in a distribution of trajectories, rather than a single trajectory, of the output

function(s).

In parallel to the development of methods for structural identifiability anal-

ysis of dynamic systems the concept of parameter identifiability has at the same

time been of interest in a more purely statistical context, (Paulino and de Bra-

ganca Pereira [1994]; Picci [1977]; Martin and Quintana [2002]; Allman et al. [2009];

Koopmans and Reiersøl. [1950]; Goodman [1974]). In this thesis, structural identi-

fiability of mixed-effects models has in some sense been treated as a combination of
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the two, as it is both a structural and a statistical problem. Since examples of struc-

tural identifiability analysis of dynamical systems have been introduced in Chapter

3, a simple conceptual example of the identifiability problem of a statistical model

will now be given.

Consider the simple statistical model

Z = X1 +X2 (4.1)

where Z is observed and X1 and X2 are random variables with normal distributions

given by

X1 ∼ N(µ1,
√
ω1) (4.2)

X2 ∼ N(µ2,
√
ω2). (4.3)

where µ1 and µ2 are the expected values and ω1 and ω2 are the variances. Since

both X1 and X2 are normally distributed it follows that Z is a random variable with

a normal distribution with the following parametrisation

Z ∼ N(µ1 + µ2,
√
ω1 + ω2). (4.4)

However, if only Z can be observed none of the statistical parameters

{µ1, µ2, ω1, ω2} (4.5)

can be uniquely determined and the statistical model (4.1) is therefore unidentifiable.

Instead, only the sum

µZ = µ1 + µ2 (4.6)

and the square root of the sum of the variance parameters

ωZ =
√
ω1 + ω2 (4.7)
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Figure 4.1: An unidentifiable statistical model. The distributions of X1 and X2 in A
are different than the distribution of X̄1 X̄2 in B since the statistical parameters have
different numerical values. The distribution of the sum Z of the random variables
X1 +X2 and X̄1 + X̄2 respectively however is identical in A and B. Therefore, the
distribution of Z does not uniquely determine the underlying statistical parameters
{µ1, µ1, ω1, ω2}.

can be determined from Z. In Figure 4.1, the distributions of Z,X1 and X2 are

shown with two different sets of numerical values for the statistical parameters. The

numerical values used in Figure 4.1A are

µ1 = −2 (4.8)

µ2 = 2 (4.9)

ω1 =
√

1.5 (4.10)

ω2 =
√

0.5 (4.11)

and in Figure 4.1B

µ̄1 = −5 (4.12)

µ̄2 = 5 (4.13)

ω̄1 =
√

0.5 (4.14)

ω̄2 =
√

1.5. (4.15)

Clearly, the numerical values in the two cases are different. But still, as can be seen,

while the distributions of X1 and X2 in Figure 4.1A are not the same as in Figure

4.1B, the distribution of Z is the same for the two cases.
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In this chapter the concepts of structural identifiability and structural indis-

tinguishability are extended to include mixed-effects models also written in the form

(2.5). The new mathematical definitions of structural identifiability and structural

indistinguishability for mixed-effects models developed and introduced in this thesis

are given in Section 4.2.1 and 4.2.2 respectively. These definitions can be regarded

as generalisations of the previous definitions for fixed-effects models as they collapse

to the previous definitions when the variances of all model parameters are set to

zero, resulting in identical individual trajectories of the output function.

With respect to these new definitions, several methods have also been devel-

oped within this thesis that are applicable to study the structural identifiability and

indistinguishability of mixed-effects models. Methods for structural identifiability

applicable to mixed-effects models are presented in Sections 4.3.1–4.3.6. Methods

for structural indistinguishability applicable to mixed-effects models are presented

in Sections 4.4.1–4.4.3.

In some sense, the reason why structural identifiability is often mentioned as

a prerequisite for successful parameter estimation is because one considers whether it

is possible to determine the model parameters uniquely or otherwise with respect to

ideal experimental conditions. If it is not possible to determine the model parameters

under ideal conditions, doing so under less than ideal conditions will obviously never

be possible, hence the use of the term prerequisite. For a non-mixed-effects model,

ideal experimental conditions means noise-free and time-continuous measurements,

i.e., infinite number of measurements. For a mixed-effects model, ideal experimental

conditions means, in addition to noise-free and time-continuous measurements, also

an infinite number of subjects which is assumed in the following sections.
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4.2 Structural Identifiability and Indistinguishability in

Mixed-Effects Models

4.2.1 Definition of Structural Identifiability: Mixed-Effects Models

As mixed-effects models yields individual trajectories the structural identifiability

concept needs to be extended to distributions of output functions, i.e., different

parameter values may result in different or identical distributions.

Definition 4. Let p(y, t) denote the distribution of the output signals y at time t.

Similar to the non-mixed-effects state-space case, let the generic parameter vector

and matrix {θ,Ω} belong to a feasible parameter space {θ,Ω} ⊂ Θ, consider the

following two sets of parameters {θ,Ω} and {θ̄, Ω̄}. If p(y{θ,Ω}, t) = p(y{θ̄,Ω̄}, t)

for all t implies that {θ,Ω} = {θ̄, Ω̄} in a neighbourhood N ⊂ Θ then the model

is structurally locally identifiable, and if N = Θ the model is structurally globally

identifiable. For an unidentifiable parameter, θi ∈ θ, or ωi ∈ Ω, every neighbour-

hood N around θi, or ωi, has a parameter vector/matrix θ̄, or Ω̄, where θi 6= θ̄i, or

ωi 6= ω̄i, that gives rise to the same distribution of identical input-output relations.

Note that if Ω = 0 where 0 is the null-matrix, i.e., a matrix with all entries being

zero, then the definition of structural identifiability in mixed-effects models collapses

to the definition for the non-mixed-effects state-space case.

4.2.2 Definition of Structural Indistinguishability: Mixed-Effects

Models

Definition 5. Consider two systems Σ(θ,Ω) and Σ̄(θ̄, Ω̄) where

Σ(θ,Ω) =





ẋi(t) = f(xi(t),ui(t),φi)

yi(t) = h(xi(t),ui(t),φi)

x(0) = x0(φi)

φi = g(θ,η,Ci)

η ∼ N(0,Ω)

(4.16)
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and

Σ̄(θ̄, Ω̄) =





˙̄xi(t) = f̄(x̄i(t),ui(t), φ̄i)

ȳi(t) = h̄(x̄i(t),ui(t), φ̄i)

x̄(0) = x̄0(φ̄i)

φ̄i = ḡ(θ̄, η̄, C̄i)

η̄ ∼ N(0, Ω̄).

(4.17)

where i denotes the i:th individual and where xi(t) ∈ Rn and x̄i(t) ∈ Rn is the

state, ui(t) ∈ Rr and ūi(t) ∈ Rr is the input, yi(t) ∈ Rm and ȳi(t) ∈ Rm is the

output, θ ∈ Θ ⊂ Rq and θ̄ ∈ Θ̄ ⊂ Rd where Θ ⊂ Rq and Θ̄ ⊂ Rd is the set of

possible parameter values in a feasible parameter space.

Let p(y, t) denote the distribution of the output signal at time t. The two

systems Σ(θ,Ω) and Σ̄(θ̄, Ω̄) are said to be output indistinguishable, denoted by

Σ(θ,Ω) ∼ Σ̄(θ̄, Ω̄) if p(y{θ,Ω}, t) = p(ȳ{θ̄,Ω̄}, t) for all t. If for generic {θ,Ω}
there exists a {θ̄, Ω̄} such that Σ(θ,Ω) ∼ Σ̄(θ̄, Ω̄) and if for generic {θ̄, Ω̄} there

exists a {θ,Ω} such that Σ̄(θ̄, Ω̄) ∼ Σ(θ,Ω) then the models are called structurally

indistinguishable.

4.3 Structural Identifiability analysis approaches

In this section five different methods applicable to the study of study structural iden-

tifiability of mixed-effects models will be presented that have been developed within

this thesis. Two of the developed methods are called the repeated measurement

approach and the augmented system approach and are published in Janzén et al.

[2015]. The other three methods are extended approaches of methods applicable to

non-mixed-effects models. These include the Laplace transform approach, published

in Janzén et al. [2016a], and modified versions of the Taylor series approach and the

input-output approach published in Janzén et al. [2016b].
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4.3.1 Repeated measurement approach

If a model is structurally unidentifiable it means that a subset of the model pa-

rameters can take on an uncountable number of different values while the output

function y from the model remains unchanged. However, it is more common that

more than one parameter is unidentifiable in a structurally unidentifiable model. It

is quite common for a structurally unidentifiable model to have structurally identi-

fiable combinations of the given model parameters, e.g., sums, products or ratios.

For instance, in the example with the simple one-compartment model (2.11) we

could conclude from the input-output relation (2.15) that the two model parame-

ters {θ2, θ3} are unidentifiable, but the product θ2θ3 is identifiable.

If a non-mixed-effects model with structurally identifiable combinations of

parameters is defined in a mixed-effects framework, i.e., random effects are in-

troduced to the model parameters, it follows that those combinations would have

structurally identifiable distributions. The repeated measurement approach is to

determine under what conditions more can be said about the identifiability of the

underlying statistical parameters if the non-mixed-effects state-space model is de-

fined in a mixed-effects framework. To state the problem more formally, consider

Z = λ(Φ) (4.18)

where Φ is a vector containing a subset of the model parameters φi with postulated

parameterised distributions and Φ ∈ Rp, Z ∈ Rq, q ≤ p and λ(·) is in general a

nonlinear function of the model parameters, e.g., products, sums or ratios of two

or more parameters. The repeated measurement approach determines under what

conditions the original parameterised distributions of Φ are determined by a lower or

equal dimensional distribution of Z. By considering the structural identifiability of a

mixed-effects model in this way there exist several previously established statistical

theorems that can be used to answer this question. These theorems are restated

below.

Theorem 1. Radhakrishna [1971] Suppose P1, P2 and P3 are three independent
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real-valued random variables. Consider the two linear forms:

Z1 = a1P1 + a2P2 + a3P3 (4.19)

Z2 = b1P1 + b2P2 + b3P3 (4.20)

such that the ratios ai : bi 6= aj : bj for i 6= j. If the characteristic function of (Z1, Z2)

does not vanish, then the joint distribution of (Z1, Z2) determines the distribution

of P1, P2 and P3 up to a change of location.

Theorem 2. Radhakrishna [1971] In an extension of Theorem 1, consider p linear

functions Zi, 1 ≤ i ≤ p, of n independent variables Pi. The smallest number

p of linear functions Zi, 1 ≤ i ≤ p such that the joint distribution specifies the

distribution of each random variable Pi, 1 ≤ i ≤ n, can be calculated from the

following relation
p(p− 1)

2
< n ≤ p(p+ 1)

2
(4.21)

Theorem 3. Rao [1992] Suppose P1, P2 and P3 are three independent positive

random variables. Let

Z1 =
P1

P3
(4.22)

Z2 =
P2

P3
(4.23)

If the characteristic function of (log Z1, log Z2) does not vanish then the distribution

of (Z1,Z2) determines the distributions of P1, P2 and P3 up to a change of scale.

Theorem 4. Szekely and Rao [2000] Let P1, P2,..., Pn be independent random

variables. Given the moments E[P sj ] where s = 1,2,..., m and j = 1,2,..., n the joint

distribution function of the linear forms

Zi =

n∑

j=1

aijPi, i = 1, 2, ...k (4.24)

with an arbitrary nonvanishing joint characteristic function uniquely determines the
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distributions of P1, P2,..., Pn if and only if

n ≤


k +m

m+ 1


 . (4.25)

Theorems 1–4 provide some general conditions on how the model parame-

ters belonging to a distribution affect structural identifiability. The process in the

repeated measurement approach is therefore

• Determine what combinations of parameters that can be uniquely determined,

i.e, sums, products, ratios etc. In more simple cases, this can be done by vi-

sual inspection. Alternatively, derive the exhaustive summary (Walter [1982];

Chapman and Godfrey [1985]) and apply the subsequent extensions presented

in Sections 4.3.3–4.3.6.

• Once the identifiable combinations of parameters have been identified the ap-

plicability of statistical theorems such as Theorem 1–4 should be checked. If

any of the theorems can be applied then the identifiability of the model follows

directly from what that particular theorem states.

A practical example of a structural identifiability analysis using the repeated mea-

surement approach is given in Section 5.2.1.

4.3.2 Augmented system approach

One approach when studying a system is to transform the system to an alternative

representation from which the subsequent analysis is simplified compared to the

original system. A well-known example of this is to take Laplace transforms of a

linear differential equation and transform from the time domain to the s-domain,

which often simplifies solving the original differential equation.

The idea behind the augmented system approach is to represent the model

in a different form in order to simplify/enable the structural identifiability analysis

of the mixed-effects system.
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The augmented system approach augments the original mixed-effects system

(2.5) in such a way that the model parameters in the original mixed-effects system

are differential equations with zero time-derivative and with initial conditions as

random variables in the augmented system. The augmented system is written in

a random differential equation (RDE) form (Soong [1973]) where the randomness

enters only through the random variables as the initial conditions. Having the

mixed-effects model rewritten in a RDE form allows for utilisation of existing theory

for RDE systems, see Theorem 5, to study structural identifiability in the original

mixed-effects system.

Theorem 5. Soong [1973] Consider the random system described by

ẋ(t) = f(x(t), t) (4.26)

x(t0) = x0 (4.27)

where the initial condition vector x0 has elements that are random variables and

p0(x0) is the joint density function of the initial condition x0. The general solution

takes the form

x(t) = q(x0, t) (4.28)

If q(·) is continuous in x0, has continuous partial derivatives with respect to x0 and

defines a one-to-one mapping, then the inverse transform can be written as

x0 = q−1(x, t) (4.29)

The joint density function p(x, t) of x(t) is then given by

p(x, t) = p0[x0 = q−1(x, t)] | J | (4.30)

where J =
∣∣∣∂x0
∂x

∣∣∣.

The joint density function p(x, t) in (4.30) in Theorem 5 describes the dis-

tribution of all states x(t) at all times t. If each state is observed the structural
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identifiability problem is then to determine whether p(x, t) is uniquely determined

by (4.30) in Theorem 5.

However, in the analysis of the augmented system all models states will never

be observed. If that was the case, then the model parameters would be observed

directly since they are defined as states in the augmented system, thus making a

structural identifiability analysis unnecessary to begin with. It is therefore necessary

to describe the distribution of individual states. In Soong [1973] it is stated that

the distribution of a single state from a RDE system can be described by

E[xmi (t)] =

∫ ∞

−∞
qmi (x0, t)p0(x0)dx0 (4.31)

where m denotes the order of a statistical moment. If the output function is a direct

observation of some state x1(t) as

y(t) = x1(t) (4.32)

then the distribution of the output function can be described as

E[ym(t)] = E[xm1 (t)] =

∫ ∞

−∞
qm1 (x0, t)p0(x0)dx0 (4.33)

where m denotes the order of a statistical moment. To see whether the distribution

of the output function y is uniquely determined by {θ,Ω} an alternative parameter

vector and covariance matrix {̄θ, Ω̄} can be introduced. By equating

E[ym(t,θ,η)] = E[ym(t, θ̄, η̄)] (4.34)

where m = 1, 2, . . . , and solving for {θ,Ω} the structural identifiability of the origi-

nal mixed-effects model can be determined. An example of a structural identifiability

analysis using the augmented system approach is provided in Section 5.2.2.
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4.3.3 Functions of random variables

The three remaining methods applicable to study the structural identifiability of

mixed-effects models developed within this thesis are related to functions of random

variables Zk(θ,η). In this section it will be shown how the uniqueness of the pa-

rameters involved in such functions can be studied with respect to the distribution

of Zk(θ,η). These functions are then shown in this thesis to be related to struc-

tural identifiability and structural indistinguishability of mixed-effects models via

the exhaustive summary (Walter [1982]).

Let

Z(θ,η) =




Z1(θ,η)

Z2(θ,η)
...


 (4.35)

be a vector of functions of random variables. In the analysis, full knowledge of all

of the statistical moments and covariances of Z(θ,η) is assumed. This follows from

the assumption of having ideal experimental conditions, i.e., noise-free, continuous-

time measurements from an infinite number of subjects. The question is whether

the statistical moments and covariance matrix of Z(θ,η) uniquely determine {θ,Ω}
or otherwise.

By computing different orders m of the statistical moments and covariances

of Z(θ,η), introducing alternative parameters {θ̄, Ω̄} and equating the statistical

moments and covariances as

E[Zm(θ,η)] = E[Zm(θ̄, η̄)] (4.36)

Cov(Z(θ,η)) = Cov(Z(θ̄, η̄)) (4.37)

and solving for θ and Ω the uniqueness or otherwise of the model parameters can be

determined. Note that by E[Zm(θ,η)] means the m:th statistical moment element-

wise in Z(θ,η) in this context.

As an example of how the uniqueness of the model parameters can be studied,

consider the case of two functions of random variables, Z1 and Z2. The two functions
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in this particular example are both lognormally distributed functions of random

variables with an associated full covariance matrix Ω

Z =


Z1

Z2


 =


θ1e

η1

θ2e
η2


 (4.38)

(4.39)

with the random effects vector

η = (η1, η2) (4.40)

which is normally distributed as

η ∼ N(0,Ω) (4.41)

with the covariance matrix

Ω =


 ω1 ω12

ω12 ω2


 (4.42)

with unknown parameter vector

θ = (θ1, θ2, ω1, ω2, ω12). (4.43)

The first statistical moments of Z are

E[Z] =


θ1e

ω1
2

θ2e
ω2
2


 . (4.44)
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The covariance matrix for Z is given by

Cov(Z) = E[ZZT ]− E[Z]E[Z]T =

=


 E[Z2

1 ]− E[Z1]2 E[Z1Z2]− E[Z1]E[Z2]

E[Z1Z2]− E[Z1]E[Z2] E[Z2
2 ]− E[Z2]2


 (4.45)

where the diagonal elements, i.e., the variances of Z1 and Z2, are given by

E[Z2
1 ]− E[Z1]2 = θ2

1e
2ω1 − θ2

1e
ω1 (4.46)

E[Z2
2 ]− E[Z2]2 = θ2

2e
2ω2 − θ2

2e
ω2 (4.47)

and the off-diagonal elements, i.e., the covariances between Z1 and Z2, are given by

E[Z1Z2]− E[Z1]E[Z2] = θ1θ2e
1
2

(2ω12+ω1+ω2) − θ1θ2e
ω1
2

+
ω2
2 . (4.48)

By introducing an alternative parameter vector and matrix {θ̄, Ω̄} and equating

the statistical moments and covariance as in (4.36)–(4.37) from (4.44)–(4.48) the

following equation system is obtained:

θ1e
ω1
2 = θ̄1e

ω̄1
2 (4.49)

θ2
1e

2ω1 − θ2
1e
ω1 = θ̄2

1e
2ω̄1 − θ̄2

1e
ω̄1 (4.50)

θ2e
ω2
2 = θ̄2e

ω̄2
2 (4.51)

θ2
2e

2ω2 − θ2
2e
ω2 = θ̄2

2e
2ω̄2 − θ̄2

2e
ω̄2 (4.52)

θ1θ2e
1
2

(2ω12+ω1+ω2) − θ1θ2e
ω1
2

+
ω2
2 = θ̄1θ̄2e

1
2

(2ω̄12+ω̄1+ω̄2) − θ̄1θ̄2e
ω̄1
2

+
ω̄2
2 (4.53)
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which has only one solution, namely

θ1 = θ̄1 (4.54)

θ2 = θ̄2 (4.55)

ω1 = ω̄1 (4.56)

ω2 = ω̄2 (4.57)

ω12 = ω̄12. (4.58)

This means that

{θ,Ω} = {θ̄, Ω̄} (4.59)

and the distribution of Z uniquely determines the parameters {θ,Ω}.
To study the structural identifiability of a mixed-effects system using func-

tions of random variables, the corresponding exhaustive summary σ(θ) (Walter

[1982]) for the mixed-effects system must be found. The exhaustive summary is a

vector which contains all information about the model parameters that can be ex-

tracted from the knowledge of the input and output signal (Walter and Lecourtier

[1982]). The functions of random variables can be generated from the exhaustive

summary for the corresponding non-mixed-effects system, i.e., where

Ω = 0. (4.60)

Once the functions of the random variables for the mixed-effects system have been

found the structural identifiability of the mixed-effects system can be considered.

In Sections 4.3.4–4.3.6 it will be shown how the functions of random variables

for the mixed-effects system can be found using established techniques for structural

identifiability analysis of non-mixed-effects systems.
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4.3.4 The Laplace transform approach

The Laplace transform approach to study structural identifiability of non-mixed-

effects systems was covered in Section 2.4.3. In this section, functions of random

variables are combined with the exhaustive summary generated from the moment

invariants from the transfer function coefficient of the corresponding non-mixed-

effects model to study the structural identifiability of the corresponding mixed-

effects model.

To reiterate, the Laplace transformation approach is only applicable to linear

models of the form

ẋ(t,θ) = A(θ)x(t) +B(θ)u(t)

x(0,θ) = 0

y(t,θ) = C(θ)x(t)

(4.61)

where A(θ), B(θ) and C(θ) are the system matrices. By calculating the Laplace

transform of the system the input-output relation can be described by

Y (s) = G(s)U(s) (4.62)

where

G(s) = C(θ)(sI −A(θ))−1B(θ) (4.63)

is the transfer function matrix of the system. For simplicity, but without loss of

generality, assume that the system only has one output function. The elements of

the transfer function matrix can be written in the following form

G(s) =
b1(θ)sn−1 + · · ·+ bn−1(θ)s+ bn(θ)

sn + a1(θ)sn−1 + · · ·+ an−1(θ)s+ an(θ)
. (4.64)

The coefficients of the powers of s in the numerator and denominator are called

the system’s moment invariants and are unique with respect to the input-output
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relationship. Let

σ(θ) =




a1(θ)
...

an(θ)
...

b1(θ)
...

bn(θ)




. (4.65)

be the exhaustive summary and σk(θ) denote the k:th element in σ(θ). By equating

and solving

σk(θ) = σk(θ̄) k = 1, 2, . . . (4.66)

the structural identifiability of the non-mixed-effects system can be studied. Under

the assumption of an infinite number of subjects, the moment invariants become

distributed over the population with respect to the statistical sub-model. Therefore,

in a mixed-effects system, the functions of random variables are given by

Zk(θ,η) = σk(θ,η) k = 1, 2, . . . , N (4.67)

Using (4.36)–(4.37) with (4.67) the structural identifiability of the mixed-effects

model can be studied.

4.3.5 Taylor series expansion approach

Mathematical definition

The Taylor series expansion approach to study structural identifiability in non-

mixed-effects models was outlined in Section 2.4.3. Again, the Taylor series expan-

sion of the output function yi from subject i is given by
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yi(t,θ) = yi(0,θ) + y
(1)
i (0,θ)

t

1!
+ y

(2)
i (0,θ)

t2

2!
+ · · ·+ y

(k)
i (0,θ)

tk

k!
+ . . . (4.68)

In a mixed-effects modelling framework under ideal conditions, i.e., an infinite num-

ber of subjects, there is an infinite number of trajectories yi(t,p) where i = 1, . . . ,∞.

From this it follows that there are an infinite number of each coefficient in this Tay-

lor series expansion. This means that each coefficient has a distribution which is

dependent on the statistical sub-model in the mixed-effects model. Since the tra-

jectory from each subject is measured, we also know what the distribution of each

coefficient is.

Since all coefficients in the Taylor series expansion are unique for a particular

model output, the uniqueness of the model parameters can be determined from these

coefficients. The exhaustive summary is therefore the coefficients in the Taylor series

expansion and by equating these as

σ1(θ) = y(0,θ) (4.69)

σk+1(θ) = y(k)(0,θ) k = 1, 2, . . . (4.70)

σi(θ) = σi(θ̄) i = 1, 2, . . . (4.71)

and solving for θ the structural identifiability of the state-space model can be de-

termined.

In the mixed-effects case, again under the assumption of an infinite num-

ber of subjects, the coefficients σi(θ) become distributed over the population. This

distribution depends on the underlying statistical sub-model. Therefore, the coeffi-

cients in the Taylor series expansion can, in the mixed-effects case, be regarded as

functions of random variables and is given by

Zi(θ,η) = σi(θ,η) i = 1, 2, . . . . (4.72)

By combining (4.36)–(4.37) with the exhaustive summary from the Taylor series co-
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efficients (4.72) the structural identifiability of mixed-effects models can be studied.

Upper bounds Taylor series expansion

As mentioned in Section 2.4.3, there exist upper bounds on how many terms of higher

order derivatives of the output function(s) need to be computed in order to show

that a model is structurally unidentifiable. The upper bounds for a mixed-effects

models is related to the bounds for the non-mixed-effects model in the following

way. When studying the structural identifiability of a mixed-effects model we are

studying the distribution of the exhaustive summary σ(θ) of the corresponding non-

mixed-effects model. If the bounds are higher in the mixed-effects case we would

instead study the distribution of σ∗(θ), a vector containing redundant information

on θ at the individual level. The distributions of σ∗(θ) would therefore contain

redundant information about {θ,Ω}. If the bounds instead are lower for the mixed-

effects case, then we study the distribution of σ∗∗(θ), a vector containing some, but

not all information, on θ that is required to deduce structural identifiability from

the output at an individual level. In other words, neither σ∗(θ) nor σ∗∗(θ) are

exhaustive summaries. Therefore, the upper bounds for the Taylor series expansion

in the non-mixed-effects case are the same as for the mixed-effects case.

4.3.6 Input-output form approach

Mathematical definition

A third way of generating the exhaustive summary of a system and extending it

to functions of random variables is to rewrite the model in an input-output form.

Starting with a state-space system, this can be done by iteratively differentiating the

output function y and substituting in place of all of the model states x, (Bearup et al.

[2013]). A system rewritten in an input-output form has the following differential

algebraic polynomial form

l∑

k=1

σk(θ)gk(y, ẏ, ÿ, . . . ) = 0. (4.73)
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Together with the initial conditions of the system, (4.73) determines uniquely the

solution of the model output, Bearup et al. [2013]. Therefore, by setting up the

equation system

σk(θ) = σk(θ̄) k = 1, 2, . . . , l (4.74)

y(0,θ) = y(0, θ̄) (4.75)

...

y(k)(0,θ) = y(k)(0, θ̄) k = 1, 2, . . . , n− 1 (4.76)

and solving for θ the structural identifiability of the system can be determined. Note

that for this to be true the terms in

gk(y, ẏ, ÿ, . . . ) (4.77)

must all be linearly independent. Generating the input-output form often requires

handling of relatively complex analytical expressions and in practice it is therefore

often neseccary to use software with symbolic computation capabilities, e.g., Maple

(MapleSoft [2015]) or Mathematica (Wolfram Research Inc. [2016]).

In a mixed-effects model, using the same reasoning as for the Laplace trans-

form and the Taylor series approaches, the input-output form (4.73) becomes

l∑

k=1

σk(θ,η)gk(y, ẏ, ÿ, . . . ) = 0. (4.78)

and the full set of functions of random variables is therefore given by

Zk(θ,η) = σk(θ,η) k = 1, 2, . . . , l (4.79)

Zl+1(θ,η) = y(0,θ,η) (4.80)

...

Zl+1+r(θ,η) = y(r)(0,θ,η) r = 1, 2, . . . , n− 1. (4.81)
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Again, by using (4.36)–(4.37) with (4.79)–(4.81) the structural identifiability of

mixed-effects models can be studied.

4.4 Structural Indistinguishability methods

As mentioned above, structural identifiability is a special case of structural indis-

tinguishability. Therefore, it should perhaps be no surprise that techniques for

structural identifiability analysis of non-mixed-effects models can be modified to

study the structural indistinguishability of non-mixed-effects models. The same is

true for some of the methods developed here for structural identifiability analysis of

mixed-effects models, namely the methods which study the distribution of the ex-

haustive summary of a model: Laplace transform approach, Taylor series expansion

approach and the input-output approach. These methods can be modified slightly

to study structural indistinguishability of mixed-effects model as well. In general,

for linear models all models can be found that have the same input-output relation.

However, for nonlinear models only pair-wise comparisons are possible.

4.4.1 Laplace transform approach

To determine whether two mixed-effects models are indistinguishable, or to find all

linear mixed-effects models with the same input-output relation, their corresponding

non-mixed-effect model is first considered. In this section a pair-wise comparison

will be taken into consideration. By Laplace transform the non-mixed-effects version

of the two systems their moment invariants σA(θ) and σB(θ̄) can be computed.

In a mixed-effects setting, these moment invariants becomes functions of random

variables as

ZA(θ,η) = σA(θ,η) (4.82)

ZB(θ̄, η̄) = σB(θ̄, η̄). (4.83)

To determine whether two models are structurally indistinguishable the functions of

random variables derived from the moment invariants of the two models are equated
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as

E[Zm
A (θ,η)] = E[Zm

B (θ̄, η̄)] (4.84)

where k = 1, . . . , N with the m:th statistical moment. If a generic relation between

{θ,Ω} and {θ̄, Ω̄} can be deduced from (4.84) then the two models are structurally

indistinguishable. If such a relation cannot be deduced the two mixed-effects mod-

els are structurally distinguishable. Note that with using the Laplace transform

approach only structural indistinguishability between linear models can be studied.

4.4.2 Taylor series expansion approach

For two non-mixed-effects models to be structurally indistinguishable all coefficients

in the Taylor series expansion are equal. For two mixed-effects models to be struc-

turally indistinguishable the distribution of all coefficients in the Taylor series expan-

sion from the two models must be equal. Therefore, to see whether two mixed-effects

models are structurally indistinguishable or not using the Taylor series expansion

approach the following is done. First, coefficients in the Taylor series expansion of

the two corresponding non-mixed-effects models are computed

σ1(θ) = y(0,θ) (4.85)

σk+1(θ) = y(k)(0,θ) k = 1, 2, . . . (4.86)

σ̄1(θ̄) = ȳ(0, θ̄) (4.87)

σ̄k+1(θ̄) = ȳ(k)(0, θ̄) k = 1, 2, . . . (4.88)

From these coefficients the functions of random variables are derived. By equating

these functions as

E[Zm(θ,η)] = E[Z̄
m

(θ̄, η̄)] (4.89)

where k = 1, . . . , N with the m:th statistical moment the structural indistinguisha-

bility of two mixed-effects models can be studied. Again, if there is a generic relation
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between {θ,Ω} and {θ̄, Ω̄} the two mixed-effects models are structurally indistin-

guishable.

4.4.3 Input-Output form approach

Lastly, the input-output approach can also be modified to study structural indis-

tinguishability of mixed-effects models. Again, the non-mixed-effects version of the

two mixed-effects models are first considered. These models can be rewritten in an

input-output form as

l∑

k=1

σk(θ)gk(y, ẏ, ÿ, . . . ) = 0 (4.90)

l∑

k=1

σ̄k(θ̄)gk(ȳ, ˙̄y, ¨̄y, . . . ) = 0. (4.91)

From here the functions of random variables can be derived from the coefficients

σk(θ) and σ̄k(θ̄). By equating these functions as

E[Zm(θ,η)] = E[Z̄
m

(θ̄, η̄)] (4.92)

where k = 1, . . . , N with the m:th statistical moment the structural indistinguisha-

bility of two mixed-effects models can be studied. If a generic relation between

{θ,Ω} and {θ̄, Ω̄} can be established then the two mixed-effects models are struc-

turally indistinguishable.

Upper bounds statistical moments

Similar as for the case with upper bounds for the Taylor series expansion, upper

bounds of the order of statistical moment m are relevant in this context. This is

because structural local identifiability or unidentifiability cannot be proven until

the upper bound is reached. For function of random variables that have standard

distributions, e.g., normal distribution or lognormal distribution, the upper bound

is m = 2 since such distributions are fully characterized by their first two moments,
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i.e., mean and variance. However, for non-standard distributions finding the upper

bound is often a non-trivial problem.

4.5 Summary

Mathematical definitions of structural identifiability and structural indistinguisha-

bility have prior to this work only existed for non-mixed-effects models. In this

chapter, these two concepts have been generalised to include mixed-effects models

as well. Based on these two more general definitions, several analytical methods

have been presented in this chapter that are applicable to mixed-effects models.

Five different methods to analyse the structural identifiability of mixed-

effects models have been presented. Three of these methods are extensions of pre-

viously established techniques for non-mixed-effects models: the Laplace transform

approach, the Taylor series approach and the input-output approach. It is worth

emphasizing that the input-output form of a model can be generated in several ways

as described in Section 2.4.3.

In the non-mixed-effects case, structural identifiability is a special case of

structural indistinguishability. With respect to the two new definitions, this is also

true in the mixed-effects case. The Laplace transform approach, the Taylor series

approach and the Input-Output approach can therefore be modified to be applicable

to study structural indistinguishability of mixed-effects models as well. Again, the

input-output form of a model can be generated in several ways offering additional

ways of studying the structural indistinguishability of mixed-effects models.

Of the presented methods in this thesis it is perhaps the Laplace transform

approach, the Taylor series approach and the input-iutput form approach that are

the most readily applicable. While the Laplace transform approach is only applicable

to linear systems, the Taylor series approach and the input-output form approach

are applicable to nonlinear systems. These methods are applicable to models with

both either diagonal or non-zero off-diagonal covariance matrix Ω and any arbitrary

form of distribution of the random effects η.
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The concepts of structural identifiability and structural indistinguishability

have been generalised. Two more general mathematical definitions have been pre-

sented which collapse to the old definition of identifiability and indistinguishability

when all variance parameters of the random effects in a mixed-effects modelling

framework are set to zero. Based on these new definitions, five novel approaches

have been developed and are presented in this chapter.

The repeated measurement approach is perhaps the least applicable in its

current form. It relies on certain combinations of random effects, i.e., random vari-

ables, to appear. If such combinations do appear, the idea is to apply previously

existing theorems from statistics where the identifiability problem is also recognised.

Such theorems are presented in this chapter and outlines what can be derived about

the underlying statistical parameters.

The augmented system approach is more applicable than the repeated mea-

surement approach however arguably the biggest downside of this approach is the

requirement of finding the system solution. This is often not possible which limits

the applicability.

In the next chapter examples of structural identifiability analysis of mixed-

effects models will be provided to show how the methods presented in this chapter

work in practice.
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Chapter 5

Structural Identifiability

analysis of Mixed-Effects

Models: Case studies

5.1 Introduction

In this chapter the structural identifiability analysis methods applicable to mixed-

effects models that are presented in Chapter 4 are applied to a set of mixed-effects

models. The particular mixed-effects models that have been analysed have been

chosen for two main reasons.

Firstly, the purpose of this chapter is to illustrate how the developed methods

work in practice. Because of this, models have been chosen where the subsequent

analytical analysis was not too complicated, i.e., relatively simple symbolic expres-

sions.

Secondly, some of the models are routinely used in modelling efforts in phar-

maceutical research and development projects and the results from the analysis of

the models is therefore of direct interest to the pharmaceutical community.

All of the developed methods will be applied to at least one model to test

their relative ease of application and to see if any implications arises out of the
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application.

5.2 Structural identifiability analysis

5.2.1 Repeated measurement approach

The outline of the repeated measurement approach was provided in Section 4.3.1

and will be exemplified here using a simple tumour growth model as an example.

Simple tumour growth model

Figure 5.1: Two tumor growth models with one shared parameter P3 representing
the rate of natural cell death. The cell division rate P1 and P2 in the two models
are different due to drug intervention.

This example involves two simple models with one shared parameter, Figure

5.1. The models represent tumour growth and have the following structures

q̇A(t) = (P1 − P3)qA(t)

qA(0) = qA0

(5.1)
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with observation

y1(t) = qA(t) (5.2)

and

q̇B(t) = (P2 − P3)qB(t)

qB(0) = qB0

(5.3)

with observation

y2(t) = qB(t) (5.4)

with unknown parameter vector

θ = (P1, P2, P3) (5.5)

where

Pi = eηi (5.6)

and

ηi ∈ N(0,
√
ωi), (5.7)

i.e., a lognormal distribution of all three parameters has been postulated as this is

a common shape of distribution in biology in general (Grönholm and Annila [2007])

and it also ensures positivity. In the model it was, for simplicity, assumed that P1

= P2 = P3 = 1 but the identifiability result still holds for all positive numerical

values of these parameters. The parameters P1 and P2 represent the growth rate of

the tumour with no drug present and with drug present respectively, parameter P3

is the rate of natural cell death, qA(t) tracks the tumour growth without the drug

and qB(t) tracks the tumour growth with the drug present. This model can be used

to study anti-proliferation effects of a drug. Note that the parameter P3 is shared

between the two models. Also note that as a consequence of fixing the expected

values of the parameters P1, P2 and P3 to 1 the tumour sizes qA(t) and qB(t) are on
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average constant since the derivatives q̇A(t) and q̇B(t) are on average zero.

Already by visual inspection it is clear that the two functions of random

variables

Z1 = P1 − P3 (5.8)

Z2 = P2 − P3 (5.9)

are identifiable, i.e., the statistical moments of Z1 and Z2 are uniquely determined

by the distributions of the output functions y1 and y2. The question is whether the

distribution of Z1 and Z2 determine the statistical parameters

{ω1, ω2, ω3} (5.10)

of P1, P2 and P3 uniquely. If the model parameters in the two models are estimated

in two separate inference problems the models are structurally unidentifiable. How-

ever, if the model parameters in the two models are considered in a joint inference

problem the equations are of such a form precisely stated in Theorem 1 in Chapter

4. The theorem states that if Z1 and Z2 have such forms then it follows directly

that all statistical moments of {P1, P2, P3} up to the first moment are uniquely de-

termined, i.e., the shape of the distribution of {P1, P2, P3} can be determined but

not their mean (population parameter). In this particular simple illustrative exam-

ple the first statistical moment, i.e., the mean, was assumed to be known as it was

set to 1. Therefore, if the model parameters from the two models are estimated

simultaneously, both models are structurally globally identifiable.

5.2.2 Augmented systems approach

The augmented systems approach was presented in Section 4.3.2 and will here be

exemplified using a simple one-parameter model.
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Simple one-parameter model

Consider the following linear model with only one state compartment and an un-

known dose parameter ZD

ẋ1(t) = −x1(t)

x1(0) = ZD

(5.11)

with observation

y(t,θ) = x1(t) (5.12)

and with the probability distribution function

p0(ZD) =
e
− (ZD−µD)2

2ω2
D√

2πωD
.

(5.13)

Note that this particular model already has the parameter as an initial condition,

namely ZD. The dose parameter ZD is considered to be a normally distributed

random variable, e.g.,

ZD ∼ N(µD, ωD) (5.14)

with p0(ZD) denoting its probability distribution with the unknown parameter vec-

tor

θ = (µD, ωD). (5.15)

The model (5.11) has the solution

y(t,θ) = ZDe
−t. (5.16)
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The first and second statistical moments of the observation function y(t,θ) are,

using eq. (4.33), given by

E[y(t,θ)] = E[x1(t)] =

∫ ∞

−∞
ZDe

−t e

[
− (ZD−µD)2

2ω2
D

]

√
2πωD

dZD =

= e−tµD (5.17)

E[y2(t,θ)] = E[x2
1(t)] =

∫ ∞

−∞
(ZDe

−t)2 e

[
− (ZD−µD)2

2ω2
D

]

√
2πωD

dZD =

= e−2t
(
µ2
D + ω2

D

)
(5.18)

The last step in the identifiability analysis is to determine whether the distribution

of the output function y(t,θ) uniquely determines the statistical parameters θ. By

introducing an alternative parameter vector θ̄ and equating the statistical moments

of the output function as

E[yn(t,θ)] = E[yn(t, θ̄)] (5.19)

then solving for θ the structural identifiability of the mixed-effects model (5.11) can

be determined. This yields the following two equations

e−tµD = e−tµ̄D (5.20)

e−2t
(
µ2
D + ω2

D

)
= e−2t

(
µ̄2
D + ω̄2

D

)
(5.21)

for which there is only one solution, namely

µD = µ̄D (5.22)

ωD = ω̄D. (5.23)

This means that

θ = θ̄ (5.24)
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and the mixed-effects model (5.11) is therefore structurally globally identifiable.

5.2.3 Laplace transform approach

The Laplace transform approach to study the structural identifiability of mixed-

effects models was presented in Section 4.3.4. In this section, the Laplace transform

approach will be applied to a set of compartmental models to exemplify how the

method works in practice.

Two-compartment model

The model, the structure of which is illustrated in Figure 5.2, is given by the fol-

lowing system of equations

Figure 5.2: Two-compartment model with four unknown model parameters with a
linear elimination from compartment 1.

ẋ1 = −(θ12 + θ10)x1 + θ21x2

ẋ2 = θ12x1 − θ21x2

x1(0) = D

x2(0) = 0

(5.25)

with observation

y =
x1

θV
(5.26)
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with the unknown parameter vector

θ = (θ10, θV , θ12, θ21) (5.27)

and a known dose parameter D as initial condition for x1.

First the structural identifiability of the non-mixed-effects model will be con-

sidered. By taking Laplace transforms of the system the following transfer function

can be generated

G(s) =

s
θV

+ θ21
θV

s2 + (θ12 + θ10 + θ21)s+ θ10θ21
(5.28)

from which the following moment invariants can be derived

b1(θ) =
1

θV
, (5.29)

b2(θ) =
θ21

θV
, (5.30)

a1(θ) = θ10θ21, (5.31)

a2(θ) = θ12 + θ10 + θ21. (5.32)

Introducing an alternative parameter θ̄ and equating the corresponding moment

invariants yields the following equation system

1

θV
=

1

θ̄V
, (5.33)

θ21

θV
=
θ̄21

θ̄V
, (5.34)

θ10θ21 = θ̄10θ̄21, (5.35)

θ12 + θ10 + θ21 = θ̄12 + θ̄10 + θ̄21. (5.36)

From (5.33) it is easy to see that

θV = θ̄V . (5.37)
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Using (5.37) in (5.34) yields a single solution, namely

θ21 = θ̄21. (5.38)

Using (5.38) in (5.35) yields a single solution, namely

θ10 = θ̄10. (5.39)

Combining (5.38)–(5.39) yields a single solution, namely

θ10 = θ̄10. (5.40)

In summary, we have that

θ = θ̄ (5.41)

and the non-mixed-effects two-compartment model (5.25) is therefore structurally

globally identifiable.

Considering a mixed-effects version of the two-compartment model (5.25),

random effects with lognormal distribution are added to all structural model pa-

rameters in this particular example in order to ensure positivity. The functions of

random variables derived from the moment invariants are therefore as follows

Z1 =
1

θV eηV
(5.42)

Z2 =
θ21e

η21

θV eηV
(5.43)

Z3 = θ10e
η10θ21e

η21 (5.44)

Z4 = θ12e
η12 + θ10e

η10 + θ21e
η21 (5.45)

where the random effects vector

η = (ηV , η10, η12, η21) (5.46)
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is normally distributed as

η ∼ N(0,Ω) (5.47)

with a diagonal covariance matrix

Ω =




ωV 0 0 0

0 ω10 0 0

0 0 ω12 0

0 0 0 ω21




(5.48)

where the elements in Ω are unknown variance parameters. Even though the most

simple covariance matrix Ω has been used for this particular example, structural

identifiability of mixed-effects models with off-diagonal elements in the covariance

matrix can also be studied which will be shown in later examples.

Since the function of random variables of the mixed-effects model are known,

it can be studied whether their distribution determine the underlying parameters

uniquely or otherwise by equating the statistical moments, e.g.,

E[Zmi (θ,η)] = E[Zmi (θ̄, η̄)] (5.49)

where i = 1, 2, 3, 4 and m = 1, 2. Considering Z1, the following equations are

obtained for m = 1 and m = 2

e
ωV
2

θV
=
e
ω̄V
2

θ̄V
(5.50)

eωV (eωV − 1)

θ2
V

=
eω̄V (eω̄V − 1)

θ̄2
V

(5.51)
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for which only one solution exists, namely

θV = θ̄V (5.52)

ωV = ω̄V . (5.53)

Considering Z2, and using the previous results (5.52)–(5.53), the following equations

are obtained

θ21e
ω21

2
+
ωV
2

θV
=
θ̄21e

ω̄21
2

+
ωV
2

θV
(5.54)

θ2
21e

ω21+ωV (eω21+ωV − 1)

θ2
V

=
θ̄2

21e
ω̄21+ωV (eω̄21+ωV − 1)

θ2
V

(5.55)

for which there is only one solution, namely

θ21 = θ̄21 (5.56)

ω21 = ω̄21. (5.57)

Considering Z3, and using the previous results (5.56)–(5.57), the following equations

are obtained

θ10θ21e
ω10

2
+
ω21

2 = θ̄10θ21e
ω̄10

2
+
ω21

2 (5.58)

θ2
10θ

2
21e

ω10+ω21
(
eω10+ω21 − 1

)
= θ̄2

10θ
2
21e

ω̄10+ω21
(
eω̄10+ω21 − 1

)
(5.59)

for which there is only one solution, namely

θ10 = θ̄10 (5.60)

ω10 = ω̄10. (5.61)

Lastly, considering Z4, and using the previous results (5.56)–(5.57) and (5.60)–
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(5.61), the following equations are obtained

θ12e
ω12

2 + θ10e
ω10

2 + θ21e
ω21

2 = θ̄12e
ω̄12

2 + θ10e
ω10

2 + θ21e
ω21

2 (5.62)

θ2
12e

ω12 (eω12 − 1) + θ2
10e

ω10 (eω10 − 1) + θ2
21e

ω21 (eω21 − 1) = (5.63)

θ̄2
12e

ω̄12
(
eω̄12 − 1

)
+ θ2

10e
ω10 (eω10 − 1) + θ2

21e
ω21 (eω21 − 1) (5.64)

for which there is only one solution, namely

θ12 = θ̄12 (5.65)

ω12 = ω̄12. (5.66)

It has therefore been shown that

{θ,Ω} = {θ̄, Ω̄} (5.67)

which means that the corresponding mixed-effects model is also structurally globally

identifiable.

5.2.4 Taylor series expansion approach

Linear one-compartment model

To exemplify the Taylor series expansion approach to study the structural identifia-

bility of mixed-effects models consider the following linear one-compartment model

ẋ1 = −θ10x1

x1(0) = D
(5.68)

with observation

y = θcx1 (5.69)
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and unknown parameter vector

θ = (θ10, θc) (5.70)

and known initial condition, i.e., D. The first and second coefficients in the Taylor

series expansion around t = 0 are given by

y(0) = θcD (5.71)

ẏ(0) = −θ10θcD. (5.72)

Introducing lognormally distributed random effects on the structural parameters θc

and θ10 to ensure positivity, the following two functions of random variables are

derived

Z1 = θce
ηcD (5.73)

Z2 = θ10e
η10θce

ηcD (5.74)

The random effects vector

η = (ηc, η10) (5.75)

is assumed to be normally distributed as

η ∼ N(0,Ω) (5.76)

with a full covariance matrix

Ω =


ω10 ω10c

ω10c ωc


 . (5.77)
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The vector of all unknown parameters in the mixed-effects model is therefore

γ = (θ10, θc, ω10, ωc, ω10c). (5.78)

By introducing two alternative parameter vectors θ̄ and η̄ and equating

E[Zm1 (θ,η)] = E[Zm1 (θ̄, η̄)] (5.79)

for m = 1, 2 the following moment equations are obtained

Dθce
ωc
2 = Dθ̄ce

ω̄c
2 (5.80)

D2θ2
ce
ωc (eωc − 1) = D2θ̄2

ce
ω̄c
(
eω̄c − 1

)
(5.81)

for which there is only one solution, namely

θc = θ̄c (5.82)

ωc = ω̄c. (5.83)

Let

Z =


Z1

Z2


 (5.84)

and consider the covariance matrix of Z which is given by

Cov(Z) = E[ZZT ]− E[Z]E[Z]T =

=


 E[Z2

1 ]− E[Z1]2 E[Z1Z2]− E[Z1]E[Z2]

E[Z1Z2]− E[Z1]E[Z2] E[Z2
2 ]− E[Z2]2


 .

By equating

E[Z2(θ,η)] = E[Z2(Z(θ̄, η̄))] (5.85)
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and

Cov(Z(θ,η)) = Cov(Z(θ̄, η̄)) (5.86)

the following equations can be obtained,

θ10θce
1
2

(ωc+2ω10c+ω10) = θ̄10θce
1
2

(ωc+2ω̄10c+ω̄10) (5.87)

θ2
10
√
ω10θ

2
ce
ωc+2ω10c+ω10

(
eωc+2ω10c+ω10 − 1

)(
ω2

10c

√
ωc − ω2

10c
ω10
− ωc

√
ω10

(
ω10ωc − ω2

10c

))

(
ω10ωc − ω2

10c

)
3/2

=

θ̄2
10

√
ω̄10θ

2
ce
ωc+2ω̄10c+ω̄10

(
eωc+2ω̄10c+ω̄10 − 1

)(
ω̄2

10c

√
ωc − ω̄2

10c
ω̄10
− ωc

√
ω̄10

(
ω̄10ωc − ω̄2

10c

))

(
ω̄10ωc − ω̄2

10c

)
3/2

(5.88)

θ10θ
2
ce
ωc+ω10c+

ω10
2
(
eωc+ω10c − 1

)
= θ̄10θ

2
ce
ωc+ω̄10c+

ω̄10
2
(
eωc+ω̄10c − 1

)
. (5.89)

By using a software package with support for symbolic computation such as Mathe-

matica (Wolfram Research Inc. [2016]) or Maple (MapleSoft [2015]), it can be shown

that the equations above have a unique solution, namely

θ10 = θ̄10 (5.90)

ω10 = ω̄10 (5.91)

ω10c = ω̄10c. (5.92)

All of the parameters in the model have therefore been shown to be uniquely iden-

tifiable, i.e.,

{θ,Ω} = {θ̄, Ω̄}, (5.93)

and the mixed-effects model (5.68) is therefore structurally globally identifiable.
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5.2.5 Input-output form approach

Linear one-compartment model

In this example a one-compartment model with linear elimination and unknown

scaling parameters for both the input u and output y is considered. The model

structure is given by

ẋ1 = −θ10x1 + θFu

x1(0) = 0
(5.94)

with observation

y = θcx1 (5.95)

with unknown parameter vector

θ = (θc, θ10, θF ). (5.96)

By calculating the time derivative of the output signal y and substituting it in

place for the model state x1, the model (5.94) can be rewritten in the following

input-output form

ẏ + θ10y − θcθFu = 0. (5.97)

The mixed-effects version of model (5.94) considered in this example has the follow-

ing random effects vector

η = (η10, ηc, ηF ) (5.98)

which is normally distributed as

η ∼ N(0,Ω) (5.99)
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with a diagonal covariance matrix

Ω =




ω10 0 0

0 ωc 0

0 0 ωF


 . (5.100)

The exhaustive summary σ of the model (5.94) consists of the coefficients in

the input-output form (5.97), i.e.,

σ = (θ10, θcθF ) (5.101)

from which the functions of random variables for the mixed-effects model when the

random effects enter lognormally can be derived, namely

Z1(θ,η) = θ10e
η10 (5.102)

Z2(θ,η) = θce
ηcθF e

ηF . (5.103)

Calculating and equating the first and second statistical moments of Z1 as

E[Zm1 (θ,η)] = E[Zm1 (θ̄, η̄)] (5.104)

for m = 1, 2 yields

θ10e
ω10

2 = θ̄10e
ω̄10

2 (5.105)

θ2
10e

ω10 (eω10 − 1) = θ̄2
10e

ω̄10
(
eω̄10 − 1

)
(5.106)

which have only one solution, namely

θ10 = θ̄10 (5.107)

ω10 = ω̄10. (5.108)
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Calculating and equating the first and second statistical moments of Z2 as

E[Zm2 (θ,η)] = E[Zm2 (θ̄, η̄)] (5.109)

for m = 1, 2 yields

θcθF e
1
2

(ωc+ωF ) = θ̄cθ̄F e
1
2

(ω̄c+ω̄F ) (5.110)

θ2
cθ

2
F e

ωc+ωF
(
eωc+ωF − 1

)
= θ̄2

c θ̄
2
F e

ω̄c+ω̄F
(
eω̄c+ω̄F − 1

)
. (5.111)

With the two substitutions

βθ = θcθF (5.112)

βω = ωc + ωF (5.113)

the equation system for the statistical moments of Z2 can be rewritten as

βθe
1
2
βω = β̄θe

1
2
β̄ω (5.114)

β2
θe
βω
(
eβω − 1

)
= β̄2

θe
β̄ω
(
eβ̄ω − 1

)
(5.115)

which has only one solution, namely

βθ = β̄θ (5.116)

βω = β̄ω. (5.117)

The distribution of Z2 is lognormal and therefore the first two statistical moments

fully characterise Z2. Because of this, it can be concluded that only the product θcθF

and the sum ωc + ωF are globally identifiable, but not the individual contribution

from those parameters. The mixed-effects model (5.94) is therefore structurally

unidentifiable.
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Figure 5.3: Nonlinear two-compartment model with a linear and a nonlinear elimi-
nation from compartment 1.

Nonlinear two-compartment model

To demonstrate that structural identifiability of more complex mixed-effects models

than those analysed so far can be studied with the techniques developed within this

thesis, a nonlinear two-compartment model will now be analysed, Figure 5.3. There

are two routes of elimination from this model. These eliminations are both from

compartment 1 and comprise a nonlinear and parallel linear elimination. The model

has the following structure

ẋ1 = −(
θV max

θED50 + x1
+ θe + θ12)x1 + θ21x2

ẋ2 = θ12x1 − θ21x2

x1(0) = D

x2(0) = 0,

(5.118)

with observation

y = θcx1 (5.119)

and unknown parameter vector

θ = (θ12, θ21, θe, θc, θV max, θED50) (5.120)
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and known initial conditions, i.e., D and zero. The model rewritten in an input-

output form using Maple (MapleSoft [2015]) is given by

ÿy2 + θeθ21y
3 + 2 y2θ21θcθeθED50 + y2θ21θcθV max + y2ẏθe + y2ẏθ21 + y2ẏθ12+

yθc
2θ21θED50

2θe + 2 ÿθcθED50y + 2 yθ12ẏθED50θc + yθc
2θ21θED50θV max+

2 yθ21ẏθED50θc + 2 yθeẏθED50θc + ÿθED50
2θc

2 + θc
2θeθED50

2ẏ+

θc
2θ12θED50

2ẏ + θc
2θ21θED50

2ẏ + θc
2θV maxθED50ẏ = 0 (5.121)

and the initial condition for the output function is

y(0) = θcD (5.122)

ẏ(0) = −θc(
θV max

θED50 +D
+ θe + θ12)D. (5.123)

The coefficients in the input-output relation (5.121) and the initial conditions (5.122)

are given by

σ1(θ) = θ2
ED50θ

2
c (5.124)

σ2(θ) = θ21θe (5.125)

σ3(θ) = 2θED50θc (5.126)

σ4(θ) = θcθ21θV max + 2θcθ21θeθED50 (5.127)

σ5(θ) = θ2
cθ21θeθ

2
ED50 + θ2

cθ21θV maxθED50 (5.128)

σ6(θ) = θ12 + θe + θ21 (5.129)

σ7(θ) = 2θcθED50θ21 + 2θcθED50θe + 2θcθED50θ12 (5.130)

σ8(θ) = θ2
cθ

2
ED50θ12 + θ2

cθ
2
ED50θe + θ2

cθED50θV max + θ2
cθ

2
ED50θ21 (5.131)

σ9(θ) = θcD (5.132)

σ10(θ) = −θc(
θV max

θED50 +D
+ θe + θ12)D. (5.133)
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Introducing the following random effects vector

η = (η12, η21, ηe, ηc, ηV max, ηED50) (5.134)

which is normally distributed as

η ∼ N(0,Ω) (5.135)

with a diagonal covariance matrix

Ω =




ω12 0 0 0 0 0 0

0 ω21 0 0 0 0 0

0 0 0 ωe 0 0 0

0 0 0 0 ωc 0 0

0 0 0 0 0 ωV max 0

0 0 0 0 0 0 ωED50




(5.136)
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in a lognormal fashion to all structural parameters θ to ensure positivity yields the

following functions of random variables

Z1 = (θED50e
ηED50)2(θce

ηc)2 (5.137)

Z2 = θ21e
η21θkee

ηe (5.138)

Z3 = 2θED50e
ηED50θce

ηc (5.139)

Z4 = θce
ηcθ21e

η21θV maxe
ηVmax + 2θce

ηcθ21e
η21θee

ηeθED50e
ηED50 (5.140)

Z5 = (θce
ηc)2θ21e

η21θee
ηe(θED50e

ηED50)2 + (θce
ηc)2θ21e

η21θV maxθED50e
ηED50

(5.141)

Z6 = θ12e
η12 + θee

ηe + θ21e
η21 (5.142)

Z7 = 2θce
ηcθED50e

ηED50θ21e
η21 + 2θce

ηcθED50e
ηED50θee

ηe+

2θce
ηcθED50e

ηED50θ12e
η12 (5.143)

Z8 = (θce
ηc)2θ2

ED50θ12e
η12 + (θce

ηc)2(θED50e
ηED50)2θee

ηe+

(θce
ηc)2θED50e

ηED50θV maxe
ηVmax + (θce

ηc)2(θED50e
ηED50)2θ21e

η21 (5.144)

Z9 = θce
ηcD (5.145)

Z10 = −θceηc(
θV maxe

ηVmax

θED50eηED50 +D
+ θee

ηe + θ12e
η12)D. (5.146)

The first and second moments of Z9 are given by

E[Z9(θ,η)] = Dθce
ωc
2 (5.147)

E[Z2
9 (θ,η)] = D2θ2

ce
ωc (eωc − 1) . (5.148)

The equation system derived from the first and second moment in equation (5.147)–

(5.148) is

Dθce
ωc
2 = Dθ̄ce

ω̄c
2 (5.149)

D2θ2
ce
ωc (eωc − 1) = D2θ̄2

ce
ω̄c
(
eω̄c − 1

)
(5.150)
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which have only one solution, namely

θc = θ̄c (5.151)

ωc = ω̄c. (5.152)

The first and second moments of Z3 are given by

E[Z3(θ,η)] = 2θcθED50e
1
2

(ωc+ωED50) (5.153)

E[Z2
3 (θ,η)] = 4θ2

cθ
2
ED50e

ωc+ωED50
(
eωc+ωED50 − 1

)
. (5.154)

Using (5.151)–(5.152) and solving the first and second moments of Z3 yields

2θcθED50e
1
2

(ωc+ωED50) = 2θcθ̄ED50e
1
2

(ωc+ω̄ED50) (5.155)

4θ2
cθ

2
ED50e

ωc+ωED50
(
eωc+ωED50 − 1

)
= 4θ2

c θ̄
2
ED50e

ωc+ω̄ED50
(
eωc+ω̄ED50 − 1

)
(5.156)

which gives only one solution, namely

θED50 = θ̄ED50 (5.157)

ωED50 = ω̄ED50. (5.158)
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The first and second moments of Z8 are given by

E[Z8(θ,η)] = θ2
cθED50e

2ωc+
ωED50

2 (θED50e
3ωED50

2 (θ12e
ω12

2 +

θ21e
ω21

2 + θee
ωe
2 ) + θVmaxe

ωVmax
2 ) (5.159)

E[Z2
8 (θ,η)] = θ4

cθ
2
ED50e

4ωc+ωED50(θ2
ED50e

3ωED50(θ2
12e

ω12(e4ωc+4ωED50+ω12 − 1)

+ 2θ12e
ω12

2

(
e4(ωc+ωED50) − 1

)(
θ21e

ω21
2 + θee

ωe
2

)
+

θ2
21e

ω21
(
e4ωc+4ωED50+ω21 − 1

)
+

2θ21θe

(
e4(ωc+ωED50) − 1

)
e

1
2

(ω21+ωe)+

θ2
ee
ωe
(
e4ωc+4ωED50+ωe − 1

)
)+

2θED50θVmax

(
e4ωc+2ωED50 − 1

)
e

1
2

(3ωED50+ωVmax)

(
θ12e

ω12
2 + θ21e

ω21
2 + θee

ωe
2

)
+

θ2
Vmaxe

ωVmax
(
e4ωc+ωED50+ωVmax − 1

)
). (5.160)

The first and second moments of Z6 are given by

E[Z6(θ,η)] = θ12e
ω12

2 + θ21e
ω21

2 + θee
ωe
2 (5.161)

E[Z2
6 (θ,η)] = θ2

12e
ω12 (eω12 − 1) + θ2

21e
ω21 (eω21 − 1) + θ2

ee
ωe (eωe − 1) . (5.162)

Using the previous results (5.151)–(5.152) and (5.157)–(5.158) the following equation

can be generated from (5.159)

θ2
cθED50e

2ωc+
ωED50

2 (θED50e
3ωED50

2 (θ12e
ω12

2 + θ21e
ω21

2 + θee
ωe
2 ) + θVmaxe

ωVmax
2 ) =

θ̄2
c θ̄ED50e

2ω̄c+
ω̄ED50

2 (θ̄ED50e
3ω̄ED50

2 (θ̄12e
ω̄12

2 + θ̄21e
ω̄21

2 + θ̄ee
ω̄e
2 ) + θ̄Vmaxe

ω̄Vmax
2 )

(5.163)

115



which can be simplified to give

(
θ12e

ω12
2 + θ21e

ω21
2 + θee

ωe
2

)
+
θVmaxe

ωVmax
2

θED50e
3ωED50

2

=

(
θ̄12e

ω̄12
2 + θ̄21e

ω̄21
2 + θ̄ee

ω̄e
2

)
+
θ̄Vmaxe

ω̄Vmax
2

θED50e
3ωED50

2

. (5.164)

From the equation generated from (5.161) the relation

E[Z6(θ,η)] = E[Z6(θ̄, η̄)] (5.165)

can be used to simplify (5.164) further to give:

θV maxe
ωVmax

2 = θ̄V maxe
ω̄V max

2 . (5.166)

Using (5.151)–(5.152), (5.157)–(5.158) and (5.161), the equation system arising from

E[Z2
8 (θ,η)] = E[Z2

8 (θ̄, η̄)] (5.167)

has been omitted since the expression is very large, but which yields

θV maxe
ωVmax

2 = θ̄V maxe
ω̄V max

2 (5.168)

E[Z2
8 (θ,η)] = E[Z2

8 (θ̄, η̄)] (5.169)

and has only one solution

θV max = θ̄V max (5.170)

ωV max = ω̄V max. (5.171)
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The first and second moments of Z5 are given by

E[Z5(θ,η)] =θ2
cθED50θ21e

1
2

(4ωc+ωED50+ω21)(θED50θee
1
2

(3ωED50+ωe) + θVmaxe
ωVmax

2 )

(5.172)

E[Z2
5 (θ,η)] =θ4

cθ
2
ED50θ

2
21e

4ωc+ωED50+ω21 (5.173)

(θ2
ED50θ

2
ee

3ωED50+ωe
(
e4ωc+4ωED50+ω21+ωe − 1

)
+

2θED50θeθVmax

(
e4ωc+2ωED50+ω21 − 1

)

e
1
2

(3ωED50+ωe+ωVmax)+

θ2
Vmaxe

ωVmax
(
e4ωc+ωED50+ω21+ωVmax − 1

)
). (5.174)

The first and second moments of Z2 are given by

E[Z2(θ,η)] = θ21θee
1
2

(ω21+ωe) (5.175)

E[Z2
2 (θ,η)] = θ2

21θ
2
ee
ω21+ωe

(
eω21+ωe − 1

)
. (5.176)

Using (5.151)–(5.152), (5.157)–(5.158), (5.170)–(5.171) and (5.175) the equation sys-

tem

E[Z5(θ,η)] = E[Z5(θ̄, η̄)] (5.177)

E[Z2
5 (θ,η)] = E[Z2

5 (θ̄, η̄)] (5.178)

has the unique solution

θ21 = θ̄21 (5.179)

ω21 = ω̄21. (5.180)

Using (5.179)–(5.180) the following equation system

E[Z2(θ,η)] = E[Z2(θ̄, η̄)] (5.181)

E[Z2
2 (θ,η)] = E[Z2

2 (θ̄, η̄)] (5.182)
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has the unique solution

θe = θ̄e (5.183)

ωe = ω̄e. (5.184)

Finally, we make use of (5.179)–(5.180) and (5.183)–(5.184) and solve

E[Z6(θ,η)] = E[Z6(θ̄, η̄)] (5.185)

E[Z2
6 (θ,η)] = E[Z2

6 (θ̄, η̄)] (5.186)

which has the unique solution

θ12 = θ̄12 (5.187)

ω12 = ω̄12. (5.188)

From (5.151)–(5.152),(5.157)–(5.158), (5.170)–(5.171), (5.179)–(5.180), (5.183)–(5.184)

and (5.187)–(5.188) it can be concluded that

{θ,Ω} = {θ̄, Ω̄} (5.189)

which means that the mixed-effects model (5.118) is structurally globally identifi-

able.

5.3 Summary

The methods for structural identifiability analysis applicable to mixed-effects models

developed within this thesis have all been applied to mixed-effects models to show

how they work in practice. It has been shown that all developed methods can be used

to conclude whether a mixed-effects model is structurally identifiable or otherwise.

It has been shown that the three approaches related to the exhaustive sum-

mary; the Laplace transform approach, the Taylor series expansion approach and

the Input-Output approach, can be applied to mixed-effects models with any form
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of distribution of the random effects η and any structure of the covariance matrix

Ω.

In the repeated measurement approach the idea is to use already existing

statistical theorems that are based on certain expressions of parameter to appear in

order to determine whether or not the model is identifiable. Although not shown

here, the elements in the vector containing the exhaustive summary can be used to

find such parameter expressions as well.

It is not possible to say which approach that should be considered the best in

general. In terms of ease of application the repeated measurement approach comes

out on top. This is because no computations are needed at all in this approach since

previously established statistical theorems are applied instead. However, the method

does require the model equations to be in such a form as stated in the theorems which

limits the applicability of the approach. The augmented system approach is more

generally applicable compared to the repeated measurement approach since it does

not rely on the model equations being in a particular form. The downside with the

augmented system approach is that it is necessary to find the system solution which

is not always possible. The Laplace transform approach is limited to structural

identifiability analysis on linear models. The Taylor series expansion approach and

the input-output approach are both applicable to nonlinear systems and are thus in

this sense the most applicable methods presented in this thesis to study structural

identifiability of mixed-effects models. Analytical structural identifiability analysis

techniques for mixed-effects models prior to this thesis have not appeared in the

literature, the analysed models in this chapter are the first mixed-effects models

ever to be analysed in this way.
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Chapter 6

Structural identifiability for

mixed-effects models and its

dependency on the statistical

sub-model

6.1 Introduction

In a mixed-effects model there is a statistical sub-model. When defining the statisti-

cal sub-model for a particular model structure there are three different components

that need to be specified. Firstly, it needs to be specified which structural parameters

θ should have an associated random effect η. Secondly, the form of the distribution

of the different random effects needs to be defined. Perhaps the most commonly

used form of distribution for random effects when modelling pharmaceuticals is a

lognormal distribution. This is both to ensure positivity and because many biolog-

ical processes are in fact lognormally distributed, see Grönholm and Annila [2007].

Thirdly, the structure of the associated covariance matrix Ω needs to be defined,

i.e., which of the random effects have a relation via a covariance parameter.

Because of the additional statistical sub-model, and the multiple choices that
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come with it, it is not obvious whether structural identifiability analysis results from

the corresponding non-mixed-effects model are directly translatable to the mixed-

effects model. In other words, it is not obvious whether a structurally unidentifiable

model, or a structurally locally identifiable in the non-mixed-effects case, is always

unidentifiable or locally identifiable similarily in the mixed-effects case.

In this chapter the developed structural identifiability analysis techniques

presented in Chapter 4 will be used to study how structural identifiability results

for non-mixed-effects models may translate to the mixed-effects case. In particular,

the following three aspects will be studied

• Where the random effects enter into the structural model

• The form, i.e., the distribution, of the random effects

• The structure of the associated covariance matrix Ω.

The results and insights presented in this chapter have been collected together in

the paper Janzén et al. [2016c].

6.2 Combining a structurally identifiable structural sub-

model and a statistical submodel

Before studying more complex cases the most trivial case should first be discussed,

namely when a structurally globally identifiable structural sub-model is combined

with a globally identifiable statistical sub-model. Such a combination always results

in a structurally globally identifiable mixed-effects model.

To realise this, consider first a structurally globally identifiable non-mixed-

effects model, i.e., the structural sub-model only. In such a model, each structural

parameter is by definition uniquely determined by the model output. If such a model

is applied to an infinite number of subjects, where each subject is treated as a sepa-

rate inference problem, a distribution for each structural parameter will be obtained.

Since each structural parameter from every subject is uniquely determined it follows

directly that the distribution of those parameters also is uniquely determined. If a
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structurally globally identifiable statistical sub-model, i.e., a parametrised distribu-

tion, is used to describe the distribution of the structural parameters it means that

the distribution determines the statistical parameters uniquely. Examples of such

distributions that are commonly used in practice are normal and lognormal distri-

butions. To exemplify this, consider a simple one-compartment non-mixed-effects

model, i.e., a structural sub-model given as

ẋ = −θ1x

x(0) = D
(6.1)

with observation

y = θ2x (6.2)

and unknown parameter vector

θ = (θ1, θ2). (6.3)

and a known dose parameter D. The first two coefficients in the Taylor series

expansion of the output function y are given by

y(0,θ) = θ2D (6.4)

ẏ(0,θ) = −θ1θ2D. (6.5)

Introducing an alternative parameter vector θ and equating the first two coefficients

as

y(0,θ) = y(0, θ̄) (6.6)

ẏ(0,θ) = ẏ(0, θ̄) (6.7)
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yields only one solution, namely

θ1 = θ̄1 (6.8)

θ2 = θ̄2. (6.9)

The structural sub-model is therefore structurally globally identifiable. Now con-

sider the addition of a globally identifiable statistical sub-model in which a normal

distribution is postulated for parameter θ1 and a lognormal distribution for param-

eter θ2. The mixed-effects model has therefore the following structure

ẋ = −(θ1 + η1)x

x(0) = D
(6.10)

with observation

y = θ2e
η2x (6.11)

with the unknown structural parameter vector

θ = (θ1, θ2). (6.12)

The random effects vector η is given by

η = (η1, η2) (6.13)

which is normally distributed as

η ∼ N(0,Ω) (6.14)

with a diagonal covariance matrix

Ω =


ω1 0

0 ω2


 . (6.15)
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The functions of random variables derived from equations (6.4)–(6.5) are given by

Z1 = θ2e
η2D (6.16)

Z2 = (θ1 + η1)θ2e
η2D (6.17)

Equating

E[Zm1 (θ,η)] = E[Zm1 (θ̄, η̄)] (6.18)

E[Zm2 (θ,η)] = E[Zm2 (θ̄, η̄)] (6.19)

for m = 1, 2 yields the following equations

θ2e
ω2
2 = θ̄2e

ω̄2
2 (6.20)

θ2
2e
ω2(eω2 − 1) = θ̄2

2e
ω̄2(eω̄2 − 1) (6.21)

θ1θ2e
ω2
2 = θ̄1θ̄2e

ω̄2
2 (6.22)

θ2
2e
ω2
(
(eω2 − 1)θ2

1 + ω1e
ω2
)

= θ̄2
2e
ω̄2
(
(eω̄2 − 1)θ̄2

1 + ω̄1e
ω̄2
)

(6.23)

for which only one solutions exist, namely

θ1 = θ̄1 (6.24)

θ2 = θ̄2 (6.25)

ω1 = ω̄1 (6.26)

ω2 = ω̄2. (6.27)

The mixed-effects version of model (6.1) is therefore structurally globally identifi-

able, which was expected since both the structural sub-model and the statistical

sub-model were identifiable. This result is summarised in Conjecture 1.

Conjecture 1. If a structurally globally identifiable non-mixed-effects model in

the form (2.4) is combined with an identifiable statistical sub-model the subsequent

mixed-effects model is always structurally globally identiable.
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Figure 6.1: The one-compartment absorption model with linear absorption and
elimination.

6.3 The effect on structural identifiability of where ran-

dom effects enter into the structural model

Two different models will be used to exemplify the dependence of where the random

effects enter the structural model has on whether the model is structurally iden-

tifiable or otherwise. Before considering mixed-effects models, the corresponding

non-mixed-effects models will be considered. The following examples are given as

case studies.

Example: One-compartment absorption model

The one-compartment absorption model, Figure 6.1, has the following structure

ẋ1 = −θax1

ẋ2 = θax1 − θex2

x1(0) = D

x2(0) = 0

(6.28)

with observation

y =
x2

θV
(6.29)

with the unknown parameter vector
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θ = (θe, θa, θV ) (6.30)

and a known dose parameter D. By taking Laplace transforms and generating the

transfer function for this linear system the following system moment invariants can

be derived

σ1 =
θa
θV

(6.31)

σ2 = θa + θe (6.32)

σ3 = θaθe. (6.33)

Equating

σk(θ) = σk(θ̄) (6.34)

for k = 1, 2, 3 and solving for θ results in the following two solutions

θa = θ̄a (6.35)

θe = θ̄e (6.36)

θV = θ̄V (6.37)

and

θa = θ̄e (6.38)

θe = θ̄a (6.39)

θV =
θ̄aθ̄V
θ̄e

. (6.40)

The non-mixed-effects one-compartment absorption model (6.28) is therefore struc-

turally locally identifiable with two solutions.
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Example: Linear three compartment model

The second example model that will be used to illustrate that it matters where the

random effects enter into the structural model with respect to structural identifi-

ability is a linear three-compartment model. The non-mixed-effects model, Figure

6.2A, is known to be locally identifiable with two solutions and has the following

structure

ẋ1 = −(θ12 + θ13 + θ10)x1 + θ21x2 + θ31x3

ẋ2 = θ12x1 − θ21x2

ẋ3 = θ13x1 − θ31x3

x1(0) = D

x2(0) = 0

x3(0) = 0

(6.41)

with observation

y = x1 (6.42)

with known initial conditions and with the unknown model parameter vector

θ = (θ12, θ13, θ21, θ31, θ10). (6.43)

By taking Laplace transforms the transfer function of the model can be computed

G(s) =
s2 + β1s+ β2

s3 + β3s2 + β4s+ β5
(6.44)

with the macro parameters

β1 = θ21 + θ31 (6.45)

β2 = θ31θ21 (6.46)

β3 = θ10 + θ12 + θ13 + θ21 + θ31 (6.47)

β4 = θ21(θ10 + θ13) + θ31(θ10 + θ12 + θ21) (6.48)

β5 = θ10θ21θ31 (6.49)
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from which the following system moment invariants can be derived

σ1 = θ21θ31 (6.50)

σ2 = θ21 + θ31 (6.51)

σ3 = θ10θ21θ31 (6.52)

σ4 = θ10θ21 + θ10θ31 + θ12θ31 + θ13θ21 + θ21θ31 (6.53)

σ5 = θ10 + θ12 + θ13 + θ21 + θ31. (6.54)

By introducing an alternative parameter vector θ̄ and equating the moment invari-

ants as

σk(θ) = σk(θ̄) (6.55)

for k = 1, . . . , 5 it can be shown that the system has the following two solutions for

the parameters

θ12 = θ̄12 (6.56)

θ13 = θ̄13 (6.57)

θ21 = θ̄21 (6.58)

θ31 = θ̄31 (6.59)

θ10 = θ̄10 (6.60)

and

θ12 = θ̄13 (6.61)

θ13 = θ̄12 (6.62)

θ21 = θ̄31 (6.63)

θ31 = θ̄21 (6.64)

θ10 = θ̄10. (6.65)
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Figure 6.2: The linear three-compartment model. The non-mixed-effects model is
A and the mixed-effects models are B and C. In B the random effect has entered
via the flow from compartment 2 to 1. In C the random effect has entered via the
elimination from compartment 1.

Notice that because of the symmetry (only a labelling difference) in the model

structure, the parameters

{θ12, θ21, θ13, θ31} (6.66)

are locally identifiable with two solutions while the parameter θ10 is globally iden-

tifiable.

The one-compartment absorption model and the three-compartment model

provided in these examples will now be considered in a mixed-effects framework

where one random effect will enter the structural model in two different ways.

6.3.1 Random effects render a structurally locally identifiable model

to become a globally identifiable mixed-effects model

In this section random effects are added to the structural model of the two examples

models such that the models change from being structurally locally identifiable to

structurally globally identifiable via their inclusion.
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One-compartment absorption model

If two random effects are introduced to the structural parameters θV and θe the

following system of functions of random variables is obtained

Z1 =
θa

θV eηV
(6.67)

Z2 = θa + θee
ηe (6.68)

Z3 = θaθee
ηe (6.69)

with the random effects vector η which is normally distributed as

η ∼ N(0,Ω) (6.70)

with a diagonal covariance matrix

Ω =


ωV 0

0 ωe


 . (6.71)

The first and second statistical moments of Z1 are

E[Z1] =
θae

ωV
2

θV
(6.72)

E[Z2
1 ] =

θ2
ae
ωV (eωV − 1)

θ2
V

. (6.73)

Equating

E[Zm1 (θ,η)] = E[Zm1 (θ̄, η̄)] (6.74)

for m = 1, 2 yields the following equations

θae
ωV
2

θV
=
θ̄ae

ω̄V
2

θ̄V
(6.75)

θ2
ae
ωV (eωV − 1)

θ2
V

=
θ̄2

ae
ω̄V (eω̄V − 1)

θ̄2
V

(6.76)
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for which there is only one solution, namely

θa
θV

=
θ̄a
θ̄V

(6.77)

ωV = ω̄V . (6.78)

The first and second statistical moments of Z3 are

E[Z3] = θaθee
ωe
2 (6.79)

E[Z2
3 ] = θ2

aθ
2
ee
ωe (eωe − 1) (6.80)

Equating

E[Zm3 (θ,η)] = E[Zm3 (θ̄, η̄)] (6.81)

for m = 1, 2 yields the following equations

θaθee
ωe
2 = θ̄aθ̄ee

ω̄e
2 (6.82)

θ2
aθ

2
ee
ωe (eωe − 1) = θ̄2

a θ̄
2
ee
ω̄e
(
eω̄e − 1

)
(6.83)

for which the following solution can be derived

θaθe = θ̄aθ̄e (6.84)

ωe = ω̄e (6.85)

The first and second statistical moments of Z2 are given by

E[Z2] = θa + θee
ωe
2 (6.86)

E[Z2
2 ] = θ2

ee
ωe (eωe − 1) . (6.87)
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Equating

E[Zm2 (θ,η)] = E[Zm2 (θ̄, η̄)] (6.88)

for m = 1, 2 yields the following equations

θa + θee
ωe
2 = θ̄a + θ̄ee

ω̄e
2 (6.89)

θ2
ee
ωe (eωe − 1) = θ̄2

ee
ω̄e
(
eω̄e − 1

)
(6.90)

which has, using previous results, only one solution, namely

θe = θ̄e (6.91)

θa = θ̄a. (6.92)

Using (6.91) with (6.75) it is also clear that

θV = θ̄V . (6.93)

All model parameters including the statistical ones have thus been shown to be

uniquely determined by the distribution of Z1, Z2 and Z3, i.e.,

{θ,Ω} = {θ̄, Ω̄}. (6.94)

The structurally locally identifiable non-mixed-effects one-compartment absorption

model (6.28) is therefore structurally globally identifiable if two lognormally dis-

tributed random effects ηe and ηV are associated with the structural parameters θe

and θV .

Linear three-compartment model

By introducing a random effect η21, with a lognormal distribution to ensure posi-

tivity, for the locally identifiable parameter θ21 we now have a mixed-effects model,

Figure 6.2B. Using the system’s moment invariants from the corresponding non-
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mixed-effects model, Figure 6.2A, we obtain the following set of functions of random

variables

Z1 = θ21e
η21θ31 (6.95)

Z2 = θ21e
η21 + θ31 (6.96)

Z3 = θ10θ21e
η21θ31 (6.97)

Z4 = θ10θ21e
η21 + θ10θ31 + θ12θ31 + +θ13θ21e

η21 + θ21e
η21θ31 (6.98)

Z5 = θ10 + θ12 + θ13 + θ21e
η21 + θ31 (6.99)

where

η21 ∼ N(0,
√
ω21). (6.100)

The first two statistical moments of Z1 are given by

E[Z1] = θ21e
ω21

2 θ31 (6.101)

E[Z2
1 ] = θ2

21e
ω21 (eω21 − 1) θ2

31. (6.102)

By equating and solving

E[Zm1 (θ,η)] = E[Zm1 (θ̄, η̄)] (6.103)

for m = 1, 2 the following equations are obtained

θ21e
ω21

2 θ31 = θ̄21e
ω̄21

2 θ̄31 (6.104)

θ2
21e

ω21 (eω21 − 1) θ2
31 = θ̄2

21e
ω̄21
(
eω̄21 − 1

)
θ̄2

31 (6.105)

from which we can derive that

ω21 = ω̄21 (6.106)

θ21θ31 = θ̄21θ̄31. (6.107)
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The second statistical moment of Z2 is given by

E[Z2
2 ] = θ2

21e
ω21 (eω21 − 1) . (6.108)

Equating and solving

E[Z2
2 (θ,η)] = E[Z2

2 (θ̄, η̄)] (6.109)

yields the following equation

θ2
21e

ω21 (eω21 − 1) = θ̄2
21e

ω̄21
(
eω̄21 − 1

)
(6.110)

which has, using previous results (6.106), only one solution, namely

θ21 = θ̄21. (6.111)

Using equation (6.111) it can be concluded from equation (6.107) that

θ31 = θ̄31. (6.112)

The first statistical moment of Z3 is given by

E[Z3] = θ10θ21e
ω21

2 θ31. (6.113)

Equating

E[Z3(θ,η)] = E[Z3(θ̄, η̄)] (6.114)

yields the following equation

θ10θ21e
ω21

2 θ31 = θ̄10θ̄21e
ω̄21

2 θ̄31 (6.115)
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which has, using previous results, only one solution, namely

θ10 = θ̄10. (6.116)

The first and second statistical moments for Z4 and Z5 are given by

E[Z4] = θ31 (θ10 + θ12) + θ21e
ω21

2 (θ10 + θ13 + θ31) (6.117)

E[Z2
4 ] = θ2

21e
ω21 (eω21 − 1) (θ10 + θ13 + θ31)2 (6.118)

E[Z5] = θ10 + θ12 + θ21

(
e
ω21

2 + 1
)

+ θ31 (6.119)

E[Z2
5 ] = θ2

21e
ω21 (eω21 − 1) . (6.120)

Equating and solving

E[Zmk (θ,η)] = E[Zmk (θ̄, η̄)] (6.121)

for k = 1, 2 and m = 1, 2 yields the following equations

θ31 (θ10 + θ12) + θ21e
ω21

2 (θ10 + θ13 + θ31) = θ̄31

(
θ̄10 + θ̄12

)
+ θ̄21e

ω̄21
2
(
θ̄10 + θ̄13 + θ̄31

)

(6.122)

θ2
21e

ω21 (eω21 − 1) (θ10 + θ13 + θ31)2 = θ̄2
21e

ω̄21
(
eω̄21 − 1

) (
θ̄10 + θ̄13 + θ̄31

)2

(6.123)

θ10 + θ12 + θ21

(
e
ω21

2 + 1
)

+ θ31 = θ̄10 + θ̄12 + θ̄21

(
e
ω̄21

2 + 1
)

+ θ̄31

(6.124)

θ2
21e

ω21 (eω21 − 1) = θ̄2
21e

ω̄21
(
eω̄21 − 1

)
(6.125)

for which, using previous results, only one solution, namely

θ12 = θ̄12 (6.126)

θ13 = θ̄13. (6.127)
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It has been shown that all model parameters can be uniquely determine, i.e.,

{θ,Ω} = {θ̄, Ω̄}. (6.128)

The mixed-effects model is therefore structurally globally identifiable. This is be-

cause by introducing a random effect on a locally identifiable parameter the sym-

metry for this particular model is broken and the two states x2 and x3 become

distinguishable.

6.3.2 Random effects on globally identifiable parameters do not

affect the structural identifiability of the mixed-effects model

In this section random effects are added to the structural model of the two example

models in such a way that the structural identifiability of the models is not affected.

One-compartment absorption model

If only one random effect is added the structural parameter θV in the one-compartment

absorption model (6.28) the following functions of random variable can be derived

Z1 =
θa

θV eηV
(6.129)

Z2 = θa + θe (6.130)

Z3 = θaθe. (6.131)

The first and second statistical moments of Z1 are given by

E[Z1] =
θae

ωV
2

θV
(6.132)

E[Z2
1 ] =

θ2
ae
ωV (eωV − 1)

θ2
V

. (6.133)

Equating

E[Zm1 (θ,η)] = E[Zm1 (θ̄, η̄)] (6.134)
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for m = 1, 2 yields the following equations

θae
ωV
2

θV
=
θ̄ae

ω̄V
2

θ̄V
(6.135)

θ2
ae
ωV (eωV − 1)

θ2
V

=
θ̄2

ae
ω̄V (eω̄V − 1)

θ̄2
V

(6.136)

for which there is only one solution, namely

θa
θV

=
θ̄a
θ̄V

(6.137)

ωV = ω̄V . (6.138)

Since neither Z2 or Z3 contain a random variable all statistical moments higher

than one are equal to zero. The remaining expressions are therefore in the same

form as for the non-mixed-effects case, i.e., there are still two solutions for the

structural parameters. Therefore, with a lognormally distributed random effect only

on the structural parameter θV the mixed-effects model is still structurally locally

identifiable.

Linear three-compartment model

Here a random effect η10 is added to the structural parameter θ10, which is globally

identifiable in the non-mixed-effects case. From the mixed-effects model, Figure

6.2C, the following functions of random variables can be derived

Z1 = θ21θ31 (6.139)

Z2 = θ21 + θ31 (6.140)

Z3 = θ10e
η10θ21θ31 (6.141)

Z4 = θ10e
η10θ21 + θ10e

η10θ31 + θ12θ31 + θ13θ21 + θ21θ31 (6.142)

Z5 = θ10e
η10 + θ12 + θ13 + θ21 + θ31 (6.143)
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where

η10 ∼ N(0,
√
ω10). (6.144)

The first statistical moments of Z1 and Z3 are given by

E[Z1] = θ21θ31 (6.145)

E[Z2
1 ] = 0 (6.146)

E[Z3] = θ10e
ω10

2 θ21θ31 (6.147)

E[Z2
3 ] = θ2

10e
ω10 (eω10 − 1) θ2

21θ
2
31. (6.148)

Equating

E[Z1(θ,η)] = E[Z1(θ̄, η̄)] (6.149)

and

E[Zm4 (θ,η)] = E[Zm4 (θ̄, η̄)] (6.150)

for m = 1, 2 yields the following equations

θ21θ31 = θ̄21θ̄31 (6.151)

θ10e
ω10

2 θ21θ31 = θ̄10e
ω̄10

2 θ̄21θ̄31 (6.152)

θ2
10e

ω10 (eω10 − 1) θ2
21θ

2
31 = θ̄2

10e
ω̄10
(
eω̄10 − 1

)
θ̄2

21θ̄
2
31 (6.153)

from which it can be concluded that

θ10 = θ̄10 (6.154)

ω10 = ω̄10 (6.155)

θ21θ31 = θ̄21θ̄31. (6.156)
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Since the parameters θ10 and ω10 can be determined uniquely, and since no other

random effects are present in the model, the structure of the remaining expressions

for the parameters in the equations is the same as in the non-mixed-effects case with

the moment invariants. This means that the remaining parameters

{θ12, θ13, θ21, θ31} (6.157)

are locally identifiable with two solutions. It can therefore be concluded that if

there is a single random effect on the structural parameter θ10 the mixed-effects

model is still structurally locally identifiable. This is because by introducing the

random effect on an already globally identifiable parameter the symmetry is not

broken leaving the two states x2 and x3 to be still indistinguishable.

Conjecture 2. Let Σln(θ) denote a structurally locally identifiable non-mixed ef-

fects system of the form (2.4) with n possible solutions. Let θgi denote a vector of

all globally identifiable parameters in Σln(θ). For all n, if any distribution is postu-

lated for any member of θgi by introducing random effects then the corresponding

mixed-effects model will still be structurally locally identifiable.

6.4 The effect on structural identifiability of the form

of the random effects

In this section two examples are provided which show how different forms for the

random effects may affect whether or not a mixed-effects model is structurally iden-

tifiable. The example model used here is the one-compartment absorption model,

Figure 6.3 with a bioavailability parameter θF which is used to model the uptake

and elimination of a pharmaceutical drug with, for instance, an oral administration.

The non-mixed-effects version of the one-compartment absorption model has the
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Figure 6.3: The one-compartment absorption model with linear absorption and
elimination and a bioavailability parameter θF .

following structure

ẋ1 = −θax1 (6.158)

ẋ2 = θax1 − θex2 (6.159)

x1(0) = θFD (6.160)

x2(0) = 0 (6.161)

with observation

y =
x2

θV
(6.162)

with unknown parameter vector

θ = (θa, θe, θF , θV ) (6.163)

and with the parameter D known. With some constraint on θa and θe, such as

θa > θe, it has been shown, for instance in Lavielle and Aarons [2015], that the

following model parameters

{θV
θF
, θa, θe} (6.164)
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are globally identifiable, but the model itself is structurally unidentifiable since only

the ratio θV
θF

is identifiable. We will now examine what happens to the structural

identifiability of the mixed-effects model when different forms of random effects are

introduced to the parameters θV and θF .

6.4.1 Single random effect on unidentifiable parameter

In this first example, a single random effect ηV will be added to the one-compartment

model resulting in a lognormal distribution of the volume parameter. In the mixed-

effects setting the identifiable ratio θV
θF

then becomes the following random variable

function Z

Z =
θV e

ηV

θF
(6.165)

where the random effect ηV is normally distributed as

ηV ∼ N(0,
√
ωV ) (6.166)

The first two statistical moments of Z are

E[Z] =
θV e

ωV
2

θF
(6.167)

E[Z2] =
θ2
V e

ωV (eωV − 1)

θ2
F

. (6.168)

By substituting the population parameters as

βθ =
θV
θF

(6.169)

and equating the statistical moments as

E[Zm(θ, ηV )] = E[Zm(θ̄, η̄V )] (6.170)
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for m = 1, 2 the following equations are obtained

βθe
ωV
2 = β̄θ̄e

ω̄V
2 (6.171)

β2
V e

ωV (eωV − 1) = β̄2
V e

ω̄V (eω̄V − 1) (6.172)

which have the following solutions

βθ = β̄θ (6.173)

ωV = ω̄V . (6.174)

The following parameter combinations are therefore uniquely determined

{θV
θF
, ωV } (6.175)

and the mixed-effects model is therefore structurally unidentifiable since still only

the ratio can be determined.

6.4.2 With two lognormal random effects the mixed-effects model

remains unidentifiable

In the second example the one-compartment absorption model with both random

effects being lognormally distributed is considered. The identifiable ratio θV
θF

in a

mixed-effects setting becomes the following random variable function Z

Z =
θV e

ηV

θF eηF
(6.176)

with the random effects vector

η = (ηV , ηF ) (6.177)
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being normally distributed as

η ∼ N(0,Ω) (6.178)

with a diagonal covariance matrix Ω, i.e., there is no covariance between ηV and

ηF . The first two statistical moments of Z are

E[Z] =
θV e

ωF
2

+
ωV
2

θF
(6.179)

E[Z2] =
θ2
V e

ωF+ωV (eωF+ωV − 1)

θ2
F

. (6.180)

The function Z is a ratio of two lognormally distributed random variables. Because

of this, Z is also lognormally distributed. Therefore, only the first two statisti-

cal moments need to be considered as they fully characterise the distribution of Z

(Borovkov [2013]). This results in two equations with four unknowns. By substi-

tuting the population parameters and the variance parameters as

βθ =
θV
θF

(6.181)

βω = ωV + ωF (6.182)

and equating the statistical moments as

E[Zm(θ,η)] = E[Zm(θ̄, η̄)] (6.183)

for m = 1, 2 the following equations are obtained

βθe
βω
2 = β̄θe

β̄ω
2 (6.184)

β2
θe
βω
(
eβω − 1

)
= β̄2

θe
β̄ω
(
eβ̄ω − 1

)
(6.185)
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which has only one solution, namely

βθ = β̄θ (6.186)

βω = β̄ω. (6.187)

It has therefore been shown that still only the ratio of the population parameters

and the sum of the variance parameters

{θV
θF
, ωV + ωF } (6.188)

are identifiable. The one-compartment absorption model (6.158) with two lognor-

mally distributed random effects associated with θV and θF is therefore structurally

unidentifiable.

To illustrate this analytical result numerically, the one-compartment absorp-

tion model (6.158) with two lognormally distributed random effects was simulated

using two different parameter sets, see Table 6.1 for the particular values that were

used.

Table 6.1: Parameter values that were used for the one-compartment absorption
mixed-effects model (6.158) with two lognormally distributed random effects.

Parameter set θa θe θF θV ωF ωV
A 1 0.5 0.8 1.2 0.8 0.2

B 1 0.5 0.48 0.72 0.2 0.8

Note that the parameter values in Table 6.1 were chosen so that the ratio of θV
θF

and

the sum ωV + ωF are equal for the two parameter sets respectively following from

the results in (6.188), i.e.,

1.2

0.8
=

0.72

0.48
=

3

2
(6.189)

0.8 + 0.2 = 0.2 + 0.8 = 1. (6.190)

The simulation of the model using these particular parameter values can be seen in
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Figure 6.4. As expected from the analytical analysis, both the simulation for the

typical subject and the distribution of the output for parameter set A and B are

identical.

Figure 6.4: Two simulations of the one-compartment absorption model with two
lognormally distributed random effects on θV and θF using 50000 subjects. The
parameter values that were used are given in Table 6.1. The thick line is the simu-
lation for the typical subject and the shaded area is the 95-percentile, both of which
are identical in A and B and thus illustrating the analytical result.

6.4.3 Lognormal and logit-normal random effects renders the mixed-

effects model identifiable

In this example, the one-compartment absorption model (6.158) is considered with

a lognormally distributed random effect on θV and a logit-normally distributed

random effect on θF . Postulating a logit-normal distribution of the biodistribution

parameter θF makes more sense in a biological context since bioavailability is defined

between 0 ≤ θF ≤ 1. The corresponding function of random variables is

Z =
θV e

ηV

1

1+
1−θF
θF e

ηF

(6.191)

with the random effects vector

η = (ηV , ηF ) (6.192)
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being normally distributed as

η ∼ N(0,Ω) (6.193)

with a diagonal covariance matrix Ω.

In contrast to (6.176), the function of random variables (6.191) is not log-

normally distributed. We therefore consider the first four statistical moments of

(6.191) since we have four unknown parameters

γ = (θV , θF , ωV , ωF ). (6.194)

The first four statistical moments of Z4 are given by

E[Z] = θV e
ωV
2

(
(1− θF ) e

ωF
2

θF
+ 1

)
(6.195)

E[Z2] = θ2
V e

2ωV

(
(θF − 1) 2e2ωF

θ2
F

− 2 (θF − 1) e
ωF
2

θF
+ 1

)
(6.196)

E[Z3] = θ3
V e

9ωV
2

(
−(θF − 1) 3e

9ωF
2

θ3
F

+
3 (θF − 1) 2e2ωF

θ2
F

− 3 (θF − 1) e
ωF
2

θF
+ 1

)

(6.197)

E[Z4] =
θ4
V e

8ωV ((θF − 1) 4e8ωF − 4θF (θF − 1) 3e
9ωF

2 )

θ4
F

+

θ4
V e

8ωV (6θ2
F (θF − 1) 2e2ωF − 4θ3

F (θF − 1) e
ωF
2 + θ4

F ))

θ4
F

. (6.198)

The structural identifiability of the model was considered by generating the Jacobian

matrix for the first four statistical moments

J =




∂E[Z]
∂θF

∂E[Z]
∂θV

∂E[Z]
∂ωF

∂E[Z]
∂ωV

∂E[Z2]
∂θF

∂E[Z2]
∂θV

∂E[Z2]
∂ωF

∂E[Z2]
∂ωV

∂E[Z3]
∂θF

∂E[Z3]
∂θV

∂E[Z3]
∂ωF

∂E[Z3]
∂ωV

∂E[Z4]
∂θF

∂E[Z4]
∂θV

∂E[Z4]
∂ωF

∂E[Z4]
∂ωV



. (6.199)

The explicit expressions for the elements in the Jacobian matrix have been omitted
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due to the expressions being too large. The Mathematica code for generating the

statistical moments and the Jacobian (6.199) and the subsequent analysis can be

found in Appendix E. It follows however that J has full rank, i.e., the columns are

linearly independent, meaning that the mixed-effects model with lognormally and

logit-normally distributed random effects is at least locally identifiable (Pohjanpalo

and Wahlström [1982]). This is an analytical confirmation of the results presented

in Lavielle and Aarons [2015] where the same one-compartment absorption model

is considered with the same parameter distributions assumed, but is analysed using

a numerical approach.

In general, it has been shown in this example that two unidentifiable model

parameters will never become identifiable by postulating a lognormal distribution

of both parameters when they appear as a fraction. However, by postulating one

lognormal distribution and one logit-normal distribution the symmetry is broken

and the model becomes structurally identifiable.

Conjecture 3. Let Σu(θ) denote a structurally unidentifiable non-mixed effects

system in the form (2.4). Let θu denote a vector of all unidentifiable parameters

in Σu(θ). If a distribution is postulated for only one of the members in θu using

some random effect η then the corresponding mixed-effects model is still structurally

unidentifiable. If more than one member of θu is postulated to have some distribu-

tion using random effects η then the corresponding mixed-effects model can either

remain unidentifiable, or become structurally locally/globally identifiable.

6.5 The covariance matrix

In this section the impact of what form the covariance matrix has on structural

identifiability will be studied. It is easy to show that if two variance parameters

are globally identifiable it follows that any parameter representing the covariance

between them is also identifiable.

A perhaps more interesting question is what happens with the structural

identifiability of a model when otherwise unidentifiable variance parameters have
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a non-zero covariance with some other structurally globally identifiable variance

parameter. It will be shown that the parameter space for an unidentifiable variance

parameter is restricted by its covariance with an identifiable variance parameter.

6.5.1 Covariance restricts the parameter space for the variance pa-

rameters

Suppose there exists a model structure from which the following two functions of

random variables can be derived

Z1 = θ1e
η1θ2e

η2 (6.200)

Z2 = θ3e
η3 (6.201)

with the random effects vector

η = (η1, η2, η3) (6.202)

normally distributed as

η ∼ N(0,Ω) (6.203)

and a non-zero off-diagonal covariance matrix

Ω =




ω1 0 ω13

0 ω2 0

ω13 0 ω3


 , (6.204)

i.e., there is a covariance between η1 and η3 represented with the covariance param-

eter ω13. The first two statistical moments of Z2 are given by

E[Z2] = θ3e
ω3
2 (6.205)

E[Z2
2 ] = θ2

3e
ω3 (eω3 − 1) . (6.206)
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By equating

E[Zm2 (θ,η)] = E[Zm2 (θ̄, η̄)] (6.207)

for m = 1, 2 the following two equations are obtained

θ3e
ω3
2 = θ̄3e

ω̄3
2 (6.208)

θ2
3e
ω3 (eω3 − 1) = θ̄2

3e
ω̄3
(
eω̄3 − 1

)
(6.209)

which have only one solution, namely

θ3 = θ̄3 (6.210)

ω3 = ω̄3. (6.211)

The statistical moments of Z1 are given by

E[Z1] = θ1θ2e
ω1
2

+
ω2
2 (6.212)

E[Z2
1 ] = θ2

1θ
2
2e
ω1+ω2

(
eω1+ω2 − 1

)
. (6.213)

Using the following substitution

βθ = θ1θ2 (6.214)

βω = ω1 + ω2 (6.215)

and equating the statistical moments of Z1 as

E[Zm1 (θ,η)] = E[Zm1 (θ̄, η̄)] (6.216)

for m = 1, 2 the following equations are obtained

βθe
βω
2 = β̄θe

β̄ω
2 (6.217)

β2
θe
βω(eβω − 1) = β̄2

θe
β̄ω(eβ̄ω − 1) (6.218)
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which have only one solution, namely

βθ = β̄θ (6.219)

βω = β̄ω. (6.220)

This means that only the product

θ1θ2 (6.221)

and the sum

ω1 + ω2 (6.222)

are identifiable. The covariance between Z1 and Z2 is given by

Cov(Z1(θ,η)Z2(θ,η)) = E[Z1Z2]− E[Z1]E[Z2] = θ1θ2θ3e
1
2

(ω1+ω2+ω3) (eω13 − 1) .

(6.223)

It has previously been shown in (6.216)–(6.222) that the product θ1θ2 and the sum

ω1 + ω2 are uniquely determined by the distribution of Z1. Since θ3 and ω3 can

be determined uniquely, it follows that also both the product θ1θ2θ3 and the sum

ω1 +ω2 +ω3 can be determined uniquely. Therefore, it follows directly from (6.223)

that the covariance parameter ω13 is globally identifiable.

Now the covariance matrix Ω itself is considered. By definition, a covari-

ance matrix is always positive semi-definite. A well-known property of a positive

semi-definite matrix is that the principal minors are greater than or equal to zero

(Woerdeman [1962]). From this property the following relations hold

ω1ω2 ≥ 0 (6.224)

ω2ω3 ≥ 0 (6.225)

ω1ω3 ≥ ω2
13 (6.226)
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where the last relation ω1ω3 ≥ ω2
13 can be rewritten as

−√ω1 ≤
ω13√
ω3
≤ √ω1. (6.227)

An alternative route to deriving (6.227) is to consider the determinant of the covari-

ance matrix Ω which is greater than or equal to zero for all positive semi-definite

matrices. To summarise, the following equality and inequality constraints for the

variance and covariance parameters hold for this case

ω13√
ω3
≤ √ω1 (6.228)

0 ≤ ω2 (6.229)

0 ≤ ω3 (6.230)

0 ≤ ω13 (6.231)

C = ω1 + ω2 (6.232)

where C, ω13 and ω3 are globally identifiable and ω1 and ω2 are unidentifiable. This

means that, even though both ω1 and ω2 are unidentifiable, upper and lower bounds

for the values that they can take exist.

6.5.2 Covariance restricts the parameter space for the variance pa-

rameters to unique values

In the previous section it was shown how general properties of the covariance ma-

trix Ω can be used to derive restrictions on the parameter space for the variance

parameters. In this section, a special case of parameter space restriction will be

considered, namely when the variance parameters are restricted to unique values.

Assume that a model structure exists from which the following functions of
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random variables can be derived

Z1 = θ1e
η1θ2e

η2 (6.233)

Z2 = θ3e
η3 (6.234)

Z3 = θ4e
η4 (6.235)

with the random effects vector

η = (η1, η2, η3, η4) (6.236)

normally distributed as

η ∼ N(0,Ω) (6.237)

with the off-diagonal covariance matrix

Ω =




ω1 0 ω13 0

0 ω2 0 ω24

ω13 0 ω3

0 ω24 0 ω4



. (6.238)

In this case, there is covariance between the variance parameters ω1 and ω3 repre-

sented by the covariance parameter ω13, and covariance between the variance pa-

rameters ω2 and ω4 represented by ω24. Using the same approach as in the previous

section it can be shown that the parameters in the vector

γ = (θ3, θ4, ω3, ω4, ω13, ω24) (6.239)

are globally identifiable, and that the sum ω1 + ω2 is globally identifiable.

By computing the principal minors of the covariance matrix Ω, and using

the previous results (6.228)–(6.232), the following equality and inequality relations
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for the variance and covariance parameters are obtained

ω2
13

ω3
≤ ω1 (6.240)

ω2
24

ω4
≤ ω2 (6.241)

0 ≤ ω3 (6.242)

0 ≤ ω4 (6.243)

0 ≤ ω13 (6.244)

0 ≤ ω24 (6.245)

C = ω1 + ω2. (6.246)

where C, ω3, ω4, ω13 and ω24 are globally identifiable.

This particular semialgebraic set has a single solution if and only if the

identifiable sum of ω1 +ω2 is in a special case equal to the sum of the lower bounds

of ω1 and ω2 while ω3 6= 0 and ω4 6= 0. Whether or not this equality holds depends

on the particular data set that is used. By equating the sum of the lower bounds

with the variance parameters the following equality is obtained

ω2
13

ω3
+
ω2

24

ω4
= ω1 + ω2. (6.247)

By subtracting (6.247) from (6.240) and (6.241) the following two inequalities are

obtained

−ω
2
24

ω4
≤ −ω2 (6.248)

−ω
2
13

ω3
≤ −ω1. (6.249)

By combining (6.240) and (6.241) with (6.248) and (6.249) it can be shown that

ω1 =
ω2

13

ω3
(6.250)

ω2 =
ω2

24

ω4
. (6.251)
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Figure 6.5: The parameter space of unidentifiable variance parameters ω1 and ω2 is
restricted by related identifiable variance and covariance parameters.

Since the parameters

{ω13, ω24, ω3ω4} (6.252)

are globally identifiable then so are ω1 and ω2 for this particular case. Figure 6.5

exemplifies the extent of how different numerical values of the identifiable variance

parameters restricts the parameter space of the unidentifiable parameters in this

case.

6.6 Summary

In this chapter some of the methods developed for studying structural identifiability

in mixed-effects models that have been developed within this thesis and presented

in Chapter 4 have been used to explore how structural identifiability analysis results

for non-mixed-effects model translate to the mixed-effects case.

In particular, the question regarding whether structural identifiability results

for a non-mixed-effects model also hold for a mixed-effects model have been explored.

This has been done by using examples with the same structural model, but with

different statistical sub-models.

From the provided examples it is clear that structural identifiability of mixed-

effects models is dependent on the statistical sub-model. It has been shown that the

structural identifiability of a mixed-effects model is dependent on which structural
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parameters have associated random effects. It has also been shown that for some

forms for the distribution of the random effects, a mixed-effects model is structurally

unidentifiable while for other forms of distribution for the random effects the model

is structurally identifiable. In addition, it has been shown that covariance between

unidentifiable variance parameters and an identifiable variance parameter restricts

the parameter space for the unidentifiable variance parameter.

To conclude, structural identifiability results for non-mixed-effects models

do not necessarily translate to the mixed-effects case. It has been shown using

examples that, depending on where the random effects enter the structural model,

the postulated form of the distribution of the random effects and the structure

of the covariance matrix, introducing random effects to a non-mixed-effects model

may render a locally identifiable model to become globally identifiable, or even an

unidentifiable model to become either locally or globally identifiable, see Figure 6.6.

The conditions for these different scenarios have been summarised in Conjectures

1–3.

Figure 6.6: Flowchart of how structural identifiability changes when introducing
an identifiable statistical sub-model to a non mixed-effects model. An unidenti-
fiable non mixed-effects model can become locally/globally identifible, or remain
unidentifiable depending on the statistical sub-model. A locally identifiable non
mixed-effects model can become globally identifiable, or remain locally identifiable,
depending on the statistical sub-model. A globally identifiable model will remain
globally identifiable.

If the data contains a large variability between subjects it is often necessary

to use mixed-effects modelling. There are several advantages of using such mod-

els over a distinct number of non-mixed-effects model such as obtaining individual
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parameter estimates, estimation of population variability and better handling of

sparsely sampled and noisy data. In this chapter it has been shown that the issue

of structural identifiability can now also be added as a potential advantage of using

mixed-effects models since it may in some cases solve structural identifiability issues.
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Chapter 7

Structural indistinguishability

analysis of mixed-effects models:

Case studies

7.1 Introduction

As discussed in Chapter 2, structural identifiability and structural indistinguisha-

bility are closely related. Because of this, some of the techniques to study structural

identifiability of non-mixed-effects models can be modified in order to study struc-

tural indistinguishability. In this thesis it has been shown that this holds true for

mixed-effects models as well.

In this chapter structural indistinguishability analysis of a set of mixed-effects

models is performed to show how the methods developed work in practice. Two

examples of pair-wise mixed-effects models will be analysed from a structural in-

distinguishability perspective. In both examples each of the three methods Laplace

transform, Taylor series expansion and the input-output form approach previously

presented in Chapter 4 are applied.

First the model structures of the example models are given in Section 7.1.1–

7.1.2. These models are then analysed in the subsequent sections.
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Figure 7.1: Model structures of the two structurally indistinguishable linear two-
compartment models: model A and model B.

7.1.1 Example 1: Two two-compartment models

In this first example two linear two-compartment models denoted by model A and

model B, Figure 7.1, are considered. The only difference in a structural sense be-

tween the two models is from which compartment the elimination occurs. The

statistical sub-model is the same for models A and B in the sense that there is only

one random effect, η10 or η̄20, and this random effect is associated only with the

elimination parameter, θ10 or θ̄20, in the two models.

In model A, the drug is eliminated from compartment 1 and has the following

model structure

ẋ1 = −(θ12 + θ10e
η10)x1 + θ21x2

ẋ2 = θ12x1 − θ21x2

x1(0) = D

x2(0) = 0

(7.1)

with observation

y = x1 (7.2)
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with known initial conditions and with the following unknown structural parameter

vector

θ = (θ10, θ12, θ21) (7.3)

with the random effect η10 being normally distributed as

η10 ∼ N(0,
√
ω10) (7.4)

where ω10 is the unknown variance parameter.

In model B (7.5) the drug is instead eliminated from compartment 2 and has

the following model structure

ẋ1 = −θ̄12x1 + θ̄21x2

ẋ2 = θ̄12x1 − (θ̄21 + θ̄20e
η̄20)x2.

x1(0) = D

x2(0) = 0

(7.5)

with observation

y = x1 (7.6)

with known initial conditions and with the following unknown structural parameter

vector

θ̄ = (θ̄10, θ̄12, θ̄21) (7.7)

and with the random effect η̄20 being normally distributed as

η̄20 ∼ N(0,
√
ω̄20) (7.8)

where ω̄20 is the unknown variance parameter. In Section 7.2 it will be shown that
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these two non-mixed-effects are structurally indistinguishable but that the mixed-

effects versions analysed are structurally distinguishable..

7.1.2 Example 2: Two three-compartment models

In the first example, the two models had different structural sub-models but the same

statistical sub-model. In this second example the two models in Figure 7.2, model C

and model D are mathematically equivalent where the only difference between them

is the labelling of compartment 2 and 3. It is therefore expected that the subsequent

analysis would show that model C and model D are indistiguishable given that the

methods applied are sound. For model C, a random effect η31 is associated with the

structural parameter θ31, while for model D the random effect η̄21 is associated with

the structural parameter θ̄21. The model structure for model C is therefore given

by

ẋ1 = −(θ12 + θ13 + θ10)x1 + θ21x2 + θ31e
η31x3

ẋ2 = θ12x1 − θ21x2

ẋ3 = θ13x1 − θ31e
η31x3

x1(0) = D

x2(0) = 0

x3(0) = 0

(7.9)

with observation

y = x1 (7.10)

with known initial conditions and with the unknown structural model parameter

vector

θ = (θ12, θ13, θ21, θ31, θ10) (7.11)
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with the random effect η31 being normally distributed as

η31 ∼ N(0,
√
ω31) (7.12)

where ω31 is the unknown variance parameter. The structure for model D is given

by

ẋ1 = −(θ̄12 + θ̄13 + θ̄10)x1 + θ̄21e
η̄21x2 + θ̄31x3

ẋ2 = θ̄12x1 − θ̄21e
η̄21x2

ẋ3 = θ̄13x1 − θ̄31x3

x1(0) = D

x2(0) = 0

x3(0) = 0

(7.13)

with the observation

y = x1 (7.14)

with known initial conditions and with the unknown model parameter vector

θ̄ = (θ̄12, θ̄13, θ̄21, θ̄31, θ̄10). (7.15)

with the random effect η̄21 being normally distributed as

η̄21 ∼ N(0,
√
ω̄21) (7.16)

where ω̄21 is the unknown variance parameter.

These two linear mixed-effects models will now be analysed from a structural

indistinguishability perspective using the following three methods: The Laplace

transform approach, the Taylor series approach and the input-output form approach.
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Figure 7.2: Model structures of the two linear three-compartment mixed-effects
models C and model D.

7.2 Laplace transform approach

In this section the Laplace transform approach, outlined in section 4.4.1, will be

applied to analyse whether the two pairs of mixed-effects models A-B and C-D are

structurally indistinguishable respectively. In order for two mixed-effects models to

be structurally indistinguishable the distribution of the system moment invariants

must be equal.

7.2.1 Example 1

The transfer function for the structural sub-model of model A (7.1) is given by

G(s) =
s+ θ21

s2 + (θ10 + θ12 + θ21)s+ θ10θ21
. (7.17)

The transfer function for the structural sub-model of model B (7.5) is given by

Ḡ(s) =
s+ θ̄21 + θ̄20

s2 + (θ̄20 + θ̄21 + θ̄12)s+ θ̄12θ̄20
. (7.18)

From the transfer functions G(s) and Ḡ(s) in (7.17) and (7.18) the system moment

invariants can be derived from their respective coefficients. Model A (7.1) has the
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following system moment invariants:

σ1 = θ21 (7.19)

σ2 = θ21θ10 (7.20)

σ3 = θ10 + θ12 + θ21. (7.21)

The moment invariants for model B (7.5) are given by

σ̄1 = θ̄20 + θ̄21 (7.22)

σ̄2 = θ̄12θ̄20 (7.23)

σ̄3 = θ̄12 + θ̄21 + θ̄20. (7.24)

To analyse whether the non-mixed-effects versions of model A and model B are struc-

turally indistinguishable or otherwise their system moment invariants are equated

as

σ1 = σ̄1 (7.25)

σ2 = σ̄2 (7.26)

σ3 = σ̄3 (7.27)

and thus generating the following equation system

θ21 = θ̄20 + θ̄21 (7.28)

θ21θ10 = θ̄12θ̄20 (7.29)

θ10 + θ12 + θ21 = θ̄12 + θ̄21 + θ̄20. (7.30)

Combining equation (7.28) with (7.29) yields

θ10 =
θ̄12θ̄20

θ̄20 + θ̄21
. (7.31)
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Combining equations (7.28)–(7.29) yields

θ12 = θ̄21 −
θ̄12θ̄20

θ̄20 + θ̄21
=

θ̄12θ̄21

θ̄20 + θ̄21
. (7.32)

A generic relation, equations (7.28),(7.31)–(7.32), between the parameters from the

two non-mixed-effects version of model A and model B can be derived and the two

models are therefore structurally indistinguishable.

Now the mixed-effects version model A (7.1) will be considered. The corre-

sponding functions of random variables are given by

Z1 = θ21 (7.33)

Z2 = θ21θ10e
η10 (7.34)

Z3 = θ10e
η10 + θ12 + θ21. (7.35)

The functions of random variables for model B (7.5) are given by

Z̄1 = θ̄20e
η̄20 + θ̄21 (7.36)

Z̄2 = θ̄12θ̄20e
η̄20 (7.37)

Z̄3 = θ̄12 + θ̄21 + θ̄20e
η̄20 . (7.38)

By equating the second statistical moments of Z1 and Z̄1 as

E[Z2
1 ] = E[Z̄2

1 ] (7.39)

the following relation is obtained:

0 = θ̄2
20e

ω̄20
(
eω̄20 − 1

)
(7.40)

which only holds if at least one of the following relations is true

ω̄20 = 0 (7.41)
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or

θ̄20 = 0. (7.42)

In other words, since at least one of the above relations must hold in order for

the distributions of Z1 and Z2 to be equal, no non-zero generic parameter relation

between model A (7.1) and model B (7.5) can be established for this particular choice

of statistical sub-model. Therefore, it can be concluded that the two mixed-effects

models A (7.1) and B (7.5) are structurally distinguishable.

7.2.2 Example 2

Since the structural sub-model is the same for model C (7.9) and model D (7.13),

the transfer function for both models is also the same, namely

G(s) =
s2 + β1s+ β2

s3 + β3s2 + β4s+ β5
. (7.43)

with the macro parameters

β1 = θ21 + θ31 (7.44)

β2 = θ31θ21 (7.45)

β3 = θ10 + θ12 + θ13 + θ21 + θ31 (7.46)

β4 = θ21(θ10 + θ13) + θ31(θ10 + θ12 + θ21) (7.47)

β5 = θ10θ21θ31 (7.48)

165



The system moment invariants are given by

σ1 = θ21θ31 (7.49)

σ2 = θ21 + θ31 (7.50)

σ3 = θ10θ21θ31 (7.51)

σ4 = θ10θ21 + θ10θ31 + θ12θ31 + +θ13θ21 + θ21θ31 (7.52)

σ5 = θ10 + θ12 + θ13 + θ21 + θ31. (7.53)

By including the statistical sub-model, the functions of random variables for model

C (7.9) are given by

Z1 = θ21θ31e
η31 (7.54)

Z2 = θ21 + θ31e
η31 (7.55)

Z3 = θ10θ21θ31e
η31 (7.56)

Z4 = θ10θ21 + θ10θ31e
η31 + θ12θ31e

η31 + θ13θ21 + θ21θ31e
η31 (7.57)

Z5 = θ10 + θ12 + θ13 + θ21 + θ31e
η31 (7.58)

and for model D (7.13) the functions of random variables are given by

Z̄1 = θ̄21e
η̄21 θ̄31 (7.59)

Z̄2 = θ̄21e
η̄21 + θ̄31 (7.60)

Z̄3 = θ̄10θ̄21e
η̄21 θ̄31 (7.61)

Z̄4 = θ̄10θ̄21e
η21 + θ̄10θ̄31 + θ̄12θ̄31 + +θ̄13θ̄21e

η̄21 + θ̄21e
η̄21 θ̄31 (7.62)

Z̄5 = θ̄10 + θ̄12 + θ̄13 + θ̄21e
η̄21 + θ̄31. (7.63)

By equating the first and second statistical moments of Z1 and Z̄1 as

E[Z1] = E[Z̄1] (7.64)

E[Z2
1 ] = E[Z̄2

1 ] (7.65)
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the following two equations are obtained

θ21θ31e
ω31

2 = θ̄21θ̄31e
ω̄21

2 (7.66)

θ2
21θ

2
31e

ω31 (eω31 − 1) = θ̄2
21θ̄

2
31e

ω̄21
(
eω̄21 − 1

)
(7.67)

from which it can be shown that the two variance parameters must be equal, i.e.,

ω31 = ω̄21 (7.68)

and that the following relation must hold

θ21θ31 = θ̄21θ̄31. (7.69)

By equating the second statistical moments of Z2 and Z̄2 as

E[Z2
2 ] = E[Z̄2

2 ] (7.70)

the following equation is obtained

θ2
31e

ω31(eω31 − 1) = θ̄2
21e

ω̄21(eω̄21 − 1) (7.71)

which has, using the previous result (7.68), the following unique solution

θ31 = θ̄21. (7.72)

Combining the two equations (7.72) and (7.69) yields

θ21 = θ̄31. (7.73)

Equating the first statistical moments of Z3 and Z̄3 as

E[Z3] = E[Z̄3] (7.74)
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yields the following equation

θ10θ21θ31e
ω31

2 = θ̄10θ̄21θ̄31e
ω̄21

2 (7.75)

which by using the previous results (7.68), (7.72) and (7.73) can be shown to have

the following unique solution

θ10 = θ̄10. (7.76)

Equating the second statistical moment of Z4 and Z̄4

E[Z2
4 ] = E[Z̄2

4 ] (7.77)

yields the following equation

(θ10 + θ12 + θ21)2 θ2
31e

ω31 (eω31 − 1) = θ̄2
21e

ω̄21
(
eω̄21 − 1

) (
θ̄10 + θ̄13 + θ̄31

)2
(7.78)

which, using the previous results (7.68), (7.72), (7.73) and (7.76) can be shown to

have the following unique solution

θ12 = θ̄13. (7.79)

Lastly, equating the first statistical moment of Z5 and Z̄5 as

E[Z2
5 ] = E[Z̄2

5 ] (7.80)

yields the following equation

θ10 + θ12 + θ13 + θ21 + θ31e
ω31

2 = θ̄10 + θ̄12 + θ̄13 + θ̄21e
ω̄21

2 + θ̄31 (7.81)

which, using the previous results (7.68), (7.72), (7.73), (7.76) and (7.79) can be
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Figure 7.3: Simulation of model (7.9) and (7.13) using the parameter values in Table
7.1. The thick line is the simulation for the typical subject and the shaded area is
the 95-percentile, both of which are identical in A and B and thus illustrating the
analytical result that the two mixed-effects models are only different in terms of
labelling and therefore structurally indistinguishable.

shown to have the following unique solution

θ13 = θ̄12. (7.82)

In summary, if the following generic parameter relations hold

θ10 = θ̄10 (7.83)

θ12 = θ̄13 (7.84)

θ21 = θ̄31 (7.85)

θ13 = θ̄12 (7.86)

θ31 = θ̄21 (7.87)

ω31 = ω̄21. (7.88)

then the output function from the two models C (7.9) and D (7.13) are identical

and they are therefore structurally indistinguishable. A numerical example of this

analytical result can be seen in Figure 7.3 using the parameter values in Table 7.1.
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Table 7.1: Parameter values used when simulating the two mixed-effects models
(7.9) and (7.13). The simulations can be seen in Figure 7.3.

Model θ10 θ12 θ13 θ21 θ31 ω31 ω21

A 0.09 0.3 0.5 0.9 0.6 5 -

B 0.09 0.5 0.3 0.6 0.9 - 5

7.3 Taylor series expansion approach

In this section the Taylor series expansion approach, outlined in Section 4.4.2, will

be applied to analyse whether the two pairs of mixed-effects models A-B and C-D

are structurally indistinguishable respectively.

For two non-mixed-effects models to be structurally indistinguishable all co-

efficients in the Taylor series expansion must be equal. For two mixed-effects models

this means that the distribution of the coefficients in the Taylor series expansion

from two models must be equal in order for them to be structurally indistinguishable.

7.3.1 Example 1

The first two coefficients in the Taylor series expansion for Model A (7.1) are given

by

y(0) = D (7.89)

ẏ(0) = D (−θ10 − θ12) . (7.90)

The first two coefficients in the Taylor series expansion for model B (7.5) are given

by

y(0) = D (7.91)

ẏ(0) = −Dθ̄12. (7.92)
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The corresponding functions of random variables are therefore given by

Z1 = D (7.93)

Z2 = D (−θ10e
η10 − θ12) (7.94)

Z̄1 = D (7.95)

Z̄2 = −Dθ̄12. (7.96)

By computing the second statistical moments of Z2 and Z̄2 and equating them as

E[Z2
2 ] = E[Z̄2

2 ] (7.97)

the following relation is obtained:

D2θ2
10e

ω10 (eω10 − 1) = 0 (7.98)

which is only true if at least one of the following relations

ω10 = 0 (7.99)

θ12 = 0 (7.100)

hold given that D 6= 0. Therefore no non-zero generic parameter relations can be

derived between the two mixed-effects models and they are therefore structurally

distinguishable.

7.3.2 Example 2

Since the structural sub-model is the same for models C and D the Taylor series

expansion coefficients are the same for both models. The first three coefficients are
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given by

y(0) = D (7.101)

ẏ(0) = D (−θ10 − θ12 − θ13) (7.102)

ÿ(0) = D (−θ10 − θ12 − θ13)2 +Dθ12θ21 +Dθ13θ31. (7.103)

The functions of random variables derived from the first three coefficients in the

Taylor series expansion of model C are given by

Z1 = D (7.104)

Z2 = D (−θ10 − θ12 − θ13) (7.105)

Z3 = D (−θ10 − θ12 − θ13)2 +Dθ12θ21 +Dθ13θ31e
η31 . (7.106)

The functions of random variables derived from the first three coefficients in the

Taylor series expansion of model D (7.13) are given by

Z̄1 = D (7.107)

Z̄2 = D
(
−θ̄10 − θ̄12 − θ̄13

)
(7.108)

Z̄3 = D
(
−θ̄10 − θ̄12 − θ̄13

)2
+Dθ̄12θ̄21e

η̄21 +Dθ̄13θ̄31. (7.109)

By equating the second statistical moments of Z3 and Z̄3 as

E[Z2
3 ] = E[Z̄2

3 ] (7.110)

the following equation is obtained

D2θ2
13θ

2
31e

ω31 (eω31 − 1) = D2θ̄2
12θ̄

2
21e

ω̄21
(
eω̄21 − 1

)
. (7.111)
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It has been previously shown that the linear three compartment model is structurally

locally identifiable where one of the solutions is given by

θ13 = θ̄12 (7.112)

θ31 = θ̄21. (7.113)

Since the structural sub-model is the same in both cases a structural identifiability

result is the same as a structural indistinguishability result. Using this relation

together with (7.111) it is clear that the two variance parameters must be equal,

i.e.,

ω31 = ω̄21. (7.114)

A generic parameter relation between model C and D exists and it can therefore be

concluded that they are structurally indistinguishable.

7.4 Input-Output approach

In this section the input-output approach, outlined in Section 4.4.3, is applied to

analyse whether the two pairs of mixed-effects models A-B and C-D are structurally

indistinguishable respectively. For two mixed-effects models to be structurally in-

distinguishable the distribution of all coefficients in the input-output relation must

be equal.

7.4.1 Example 1

Model A (7.1) rewritten in an input-output form together with the initial conditions

yields the following expressions

ÿ + (θ12 + θ10 + θ21)ẏ + θ21θ10y = 0 (7.115)

y(0) = D (7.116)
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and

ẏ(0) = −D(θ12 + θ10). (7.117)

Model B (7.5) rewritten in an input-output form together with the initial conditions

yields the following expressions

ÿ + (θ̄12 + θ̄21 + θ̄20)ẏ + θ̄20θ̄12y = 0 (7.118)

y(0) = D (7.119)

ẏ(0) = −Dθ̄12. (7.120)

The corresponding functions of random variables for model A are given by

Z1 = θ12 + θ10e
η10 + θ21 (7.121)

Z2 = θ21θ10e
η10 (7.122)

Z3 = θ12 + θ10e
η10 . (7.123)

The corresponding functions of random variables for model B are given by

Z̄1 = θ̄12 + θ̄21 + θ̄20e
η̄20 (7.124)

Z̄2 = θ̄20e
η̄20 θ̄12 (7.125)

Z̄3 = θ̄12. (7.126)

Computing the second statistical moments of Z3 and Z̄3 and equating them as

E[Z2
3 ] = E[Z̄2

3 ] (7.127)

yields the following relation

θ2
10e

ω10 (eω10 − 1) = 0 (7.128)
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which only holds if either

ω10 = 0 (7.129)

or

θ10 = 0 (7.130)

hold. Again, since no generic parameter relationship can be derived between model

A (7.1) and model B (7.5) it can be concluded that the two models are structurally

distinguishable.

7.4.2 Example 2

Model C (7.9) and model D (7.13) have the same structural sub-model and therefore

also the same input-output form, namely

y(3) + (θ21 + θ10 + θ12 + θ13 + θ31)ÿ + (θ21θ13 + θ21θ10 + θ21θ31 + θ31θ12 + θ31θ10)ẏ+

θ21θ31θ10y = 0.

(7.131)

The initial conditions for both model C (7.9) and model D (7.13) are given by

y(0) = D (7.132)

ẏ(0) = −D(θ12 + θ10 + θ13) (7.133)

ÿ(0) = D
(
(θ12 + θ10 + θ13)2 + θ12θ21 + θ13θ31

)
. (7.134)
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The functions of random variables for model C (7.9) are given by

Z1 = θ21 + θ10 + θ12 + θ13 + θ31e
η31 (7.135)

Z2 = θ21θ13 + θ21θ10 + θ21θ31e
η31 + θ31e

η31θ12 + θ31e
η31θ10 (7.136)

Z3 = θ21θ31e
η31θ10 (7.137)

Z4 = θ12 + θ10 + θ13 (7.138)

Z5 = (θ12 + θ10 + θ13)2 + θ12θ21 + θ13θ31e
η31 . (7.139)

The functions of random variables for model D (7.13) are given by

Z̄1 = θ̄21e
η̄21 + θ̄10 + θ̄12 + θ̄13 + θ̄31 (7.140)

Z̄2 = θ̄21e
η̄21 θ̄13 + θ̄21e

η̄21 θ̄10 + θ̄21e
η21 θ̄31 + θ̄31θ̄12 + θ̄31θ̄10 (7.141)

Z̄3 = θ̄21e
η̄21 θ̄31θ̄10 (7.142)

Z̄4 = θ̄12 + θ̄10 + θ̄13 (7.143)

Z̄5 = (θ̄12 + θ̄10 + θ̄13)2 + θ̄12θ̄21e
η̄21 + θ̄13θ̄31. (7.144)

Computing the second statistical moments of Z1 and Z̄1 and equating them yields

the following relationships

θ2
31e

ω31 (eω31 − 1) = θ̄2
21e

ω̄21
(
eω̄21 − 1

)
. (7.145)

Computing the second statistical moments of Z5 and Z̄5 and equating them yields

the following relationships

θ2
13θ

2
31e

ω31 (eω31 − 1) = θ̄2
12θ̄

2
21e

ω̄21
(
eω̄21 − 1

)
. (7.146)

Combining (7.145) and (7.146) yields the following solution

θ13 = θ̄12. (7.147)
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Computing the first and second statistical moments of Z3 and Z̄3 and equating them

yields the following relationship

θ10θ21θ31e
ω31

2 = θ̄10θ̄21θ̄31e
ω21

2 (7.148)

θ2
10θ

2
21θ

2
31e

ω31 (eω31 − 1) = θ̄
2
10θ̄

2
21θ̄

2
31e

ω̄21
(
eω̄21 − 1

)
. (7.149)

which has the following single solution

ω31 = ω̄21 (7.150)

Combining (7.146), (7.147) and (7.150) yields

θ31 = θ̄21. (7.151)

Computing the first statistical moments of Z4 and Z̄4 and equating them yields the

following relationship

θ12 + θ10 + θ13 = θ̄12 + θ̄10 + θ̄13. (7.152)

Computing the first statistical moments of Z1 and Z̄1 and equating them yields the

following relationship

θ21 + θ10 + θ12 + θ13 + θ31e
ω31

2 = θ̄21e
ω̄21

2 + θ̄10 + θ̄12 + θ̄13 + θ̄31. (7.153)

Combining the previous results (7.150), (7.151), (7.147) and (7.152) yields the fol-

lowing solution

θ21 = θ̄31 (7.154)

Combining (7.150), (7.151) and (7.154) in (7.148) yields

θ10 = θ̄10. (7.155)
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Combining (7.147) and (7.155) in (7.152) yields

θ12 = θ̄13. (7.156)

Therefore, the following generic parameter relations between model C (7.9)

and model D (7.13) hold

θ12 = θ̄13 (7.157)

θ13 = θ̄12 (7.158)

θ21 = θ̄31 (7.159)

θ31 = θ̄21 (7.160)

θ10 = θ̄10 (7.161)

ω31 = ω̄21 (7.162)

and the two mixed-effects models are structurally indistinguishable.

7.5 Summary

Three methods developed within this thesis to study the structural indistinguisha-

bility of mixed-effects models have been applied to two example cases where a pair-

wise indistinguishability analysis has been performed. Although both structural

sub-models that were analysed are linear, the methods can be applied to nonlinear

structural sub-models as well. In a non-mixed-effects case, it is possible to exhaus-

tively generate all linear models that are structructurally indistinguishable. However

in the mixed-effects case it is not known whether this is possible for mixed-effects

models where the structural sub-model is linear.

In the first example, the structural sub-model is different for model A (7.1)

and model B (7.5) while the statistical model is the same in the sense that the

single random effect is associated with the structural parameter representing the

rate of elimination in both models. A structural indistinguishability analysis was
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performed with the three developed methods which all yielded the same conclusion,

namely that model A (7.1) and model B (7.5) are structurally distinguishable since

no generic parameter relation exists between the two models.

In the second example, the structural sub-models in model C (7.9) and model

D (7.13) are identical while the statistical sub-models are different. The structural

indistinguishability analysis with all three methods concluded that model C (7.9)

and model D (7.13) are structurally indistinguishable as a generic parameter relation

between them could be derived.

From the examples presented, it is clear that structural indistinguishability

results do not necessarily translate from the non-mixed-effects case to the mixed-

effects case. In the non-mixed-effects case model A (7.1) and model B (7.5) are

structurally indistinguishable. However, by introducing a random effect to the elim-

ination parameter in the two models the two models become structurally distinguish-

able, i.e., the two models have transformed from being structurally indistinguish-

able to structurally distinguishable. This is an important insight as it illustrates

the importance of performing structural indistinguishability analysis on the whole

mixed-effects model and not only on the structural sub-model.

Finally, similar to non-mixed-effects models, depending on the method used

the difficulty of showing whether or not two mixed-effects models are structurally in-

distinguishable may vary in complexity and tractability. For some models analysed

by the Taylor series approach, it may become apperent early in the analysis that no

non-zero generic relation between the parameters from the analysed models can be

established, e.g., it is apperant already in the first or second coefficient in the Taylor

series expansion. But for the same set of models but applying the input-output ap-

proach might give an inconclusive result if the generating the input-output form of

the different models is computionally intractable. However, depending on the struc-

ture of the analysed models, it could also be the other way around, i.e., computing

the necessary coefficients in the Taylor series expansion approach is computionally

intractable but the input-output form can be generated. In addition, the Laplace

transform approach is limited to analyse structural indistinguishability between lin-
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ear models.
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Chapter 8

Conclusions

8.1 Introduction

As has been discussed previously, structural identifiability is an important concept

when modelling dynamical systems. In a biological system the majority of the dif-

ferent parts often interact with each other in a highly nonlinear way. This makes

mathematical modelling a highly appropriate and often necessary approach in order

to be able to characterise the key components within the system of interest. In a

PKPD context, such characteristics often include numerical estimates of the model

parameters following parameter estimation when fitting the model to experimen-

tal data. These numerical estimates often have a biological interpretation such as

bioavailability, saturation levels, the clearance rate of a drug from the body etc.

In PKPD modelling projects, it is not uncommon to use such parameter values as

a guide to further improve the formulation of a pharmaceutical drug under devel-

opment. Unfortunately, structural identifiability is often overlooked when making,

or attempting to make, such interpretations of the model parameters even though

there are numerous published methods on the topic. The main reason why this is

the case is most likely because performing such an analysis often requires a different

skill set than those necessary to undertake the modelling.

For mixed-effects models, no analytical approaches to study structural iden-

tifiability prior to this thesis existed. In other words, it has not been possible to
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study whether the unknown parameters in a mixed-effects model can be uniquely

determined or otherwise. The lack of such methods in turn means that there has

been no way of knowing, except for possibly including some prior biological knowl-

edge about the system, e.,g., upper/lower limits or relations between some of the

model parameters, whether parameters in a given mixed-effects model have valid

biological interpretation or not.

The following bullet points summarise the outcomes and insights from this

thesis in relation to the aims and objectives as declared in Section 1.1.

• Formal, more general, definitions of structural identifiability and structural

indistinguishability have been introduced which include mixed-effects models

formulations.

• Analytical methods applicable to the study of structural identifiability and

structural indistinguishability of mixed-effects models have been developed.

• A set of mixed-effects models has for the first time been analysed analytically

in both a structural identifiability and structural indistinguishability context

using the developed methods.

• By analysing mixed-effects models using the developed methods it has been

shown that neither structural identifiability nor indistinguishability results

necessarily translate from the non-mixed-effects case to the mixed-effects case.

• It has been shown that the identifiability of a mixed-effects model is dependent

on all three components of the statistical sub-model, i.e., where the random

effects enter into the structural sub-model, the form of the distribution of the

random effects and the structure of the corresponding covariance matrix.

• A set of non-mixed-effects models has been analysed using previously estab-

lished structural identifiability analysis techniques. This was done in collab-

oration with the other IMPACT EU projects in which the models were then

used.
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In this thesis, the concepts of structural identifiability and indistinguishabil-

ity have been generalised to include mixed-effects models. Following on from these

new, more general definitions, a set of analytical methods applicable to the study

of mixed-effects models has been developed. The strengths and limitations of these

methods will be discussed in detail below. In addition, suggestions for future work

will be provided.

8.2 Methods introduced

The repeated measurement approach presented in Section 4.3.1 and Theorems 1–4

relies on certain structures or combinations of model parameters appearing in the

model identifiability analysis. In models where these structures do not exist the

repeated measurement approach can not be used to study structural identifiability.

It is also necessary that the parameter estimation includes parallel models with some

parameters shared, such as in (5.1) and (5.3) in Section 5.2.1. In modelling patient

variability, another scenario could be, for instance, a difference in the distribution of

the bioavailability parameter F between males or females while the remaining model

parameters belong to the same distribution for both males and females. Finally,

Theorems 1–4 assume that the random variables are independent and therefore

offer no insight into how to handle covariance between the model parameters.

Augmenting the original system to a random differential equation system

form is in some sense a more general approach to the structural identifiability prob-

lem for mixed-effects models compared to the repeated measurement approach. This

is due to the following three reasons:

i) In the augmented system approach the problem of structural identifiability

can instead be regarded as an observability problem. If the augmented system is

observable, then the original system is structurally identifiable since all of the model

parameters are included in the initial conditions.

ii) In contrast to the repeated measurement approach, any model structure

may be considered. This includes any form of covariance between any two random
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effects.

iii) In contrast to the repeated measurement approach, if the model struc-

ture is unidentifiable the augmented system approach still informs on which param-

eters are identifiable/unidentifiable and also on the parameter combinations that

are structurally identifiable. However, it is worth noting that, even for very simple

model structures, the expressions to be evaluated quickly grow in complexity. In

addition, this method requires finding the system solution q(·) which may become

computationally very expensive.

The Laplace transform, the Taylor series expansion and the input-output

form approaches for the study of the structural identifiability of mixed-effects models

are similar in the sense that they are all used to generate functions of random

variables via generating an exhaustive summary. However, there are a few differences

between the approaches that should be mentioned.

The Laplace transform approach is only applicable to linear systems while

the Taylor series expansion and the input-output form approaches are applicable to

both linear and nonlinear systems. The Taylor series expansion suffers from com-

putational problems even for relatively simple model structures. The input-output

approach can handle more complex model structures than the Taylor series ap-

proach, but there is still a limit as to how complex the models can be in order for an

analytical approach to be feasible. With the input-output approach it is necessary

to check for linear independence among the terms in the input-output relationship.

This can be done by computing the relevant Wronskian determinant (Denis-Vidal

et al. [2001]), a potentially computationally demanding task. A structural identifia-

bility analysis for a mixed-effects system is often more computationally demanding

than its corresponding non-mixed-effects system since the use of random effects in-

troduces the covariance matrix Ω with unknown variance parameters, and with a

non-diagonal covariance matrix, additional unknown covariance parameters. Never-

theless, the presented methods are still useful since many mixed-effects models used

within the pharmaceutical industry are relatively simple in structure and dimension

as illustrated by the many examples presented in this thesis.
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All methods presented in this thesis analyzes mixed-effects model analyti-

cally. The advantage with an analytical approach, compareed to a numerical ap-

proach, is that the outcome from a structural identifiability or indistinguishability

analysis is proven mathematically. With a numerical approach, there is always a po-

tential risk of generating false results both due to approximations and introduction

of small error in matrices computations as well as the fact that only a finite number

of observations can be considered, compared to the analytical case where an infite

number of observations is assumed. In Shivva et al. [2013], a numerical approach to

study structural identifiability in mixed-effects models is presented. Their method

is based on an information theoretic approach applicable to mixed-effects models

centered around the Fisher information matrix (Mentre et al. [1997]; Retout and

Mentre [2003]). In order to compare and contrast this numerical approach to ana-

lytical approaches presented in this thesis, the Bateman model analyzed in Shivva

et al. [2013] was considered. However, the analysis was inconclusive since one of

the functions of random variables generated from the exhaustive summary had a

non-standard distribution, meaning that no upper limit on how many higher or-

ders of statistical moments are necessary to prove structural local identifiability or

unidentifiability was known. A number of higher orders of statistical moments were

derived but the subsequent algebraic computation was too demanding computer

memory wise. This is therefore a good example of where a numerical approach

could be of use if analytical approaches prove to be computationally infeasible. It

should still be noted that, in contrast to the analytical approaches presented in this

thesis, in the approach presented in Shivva et al. [2013] there is no obvious way in

the case of unidentifiability to i) Show what additional measurements and/or inputs

are required to achieve identifiability ii) Derive the functional form of identifiable

combinations of parameters.
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8.3 Structural identifiability and indistinguishability does

not necessarily translate from non-mixed-effects mod-

els to mixed-effects models

An important insight regarding both structural identifiability and structural in-

distinguishability that has come out of this thesis is the fact that results from such

analysis of non-mixed-effects models do not necessarily translate to the mixed-effects

case.

In the simplest case, i.e., combining a structurally globally identifiable struc-

tural sub-model and an identifiable statistical sub-model, intuition tells us that the

resulting mixed-effects model must also be structurally globally identifiable. This

follows directly from the fact that if an infinite number of subjects have a unique pa-

rameter solution, i.e., a structurally globally identifiable structural sub-model, then

there exists a unique distribution that describes all of the individual parameters

for which the parameterisation is uniquely identifiable. However, if a structurally

locally or unidentifiable structural sub-model is combined with an identifiable statis-

tical sub-model then the question as to whether the resulting mixed-effects models is

structurally globally, locally or unidentifiable becomes non-trivial. By exploiting the

methods developed in this thesis it has been possible to show using examples that

even if a structural sub-model is locally identifiable or unidentifiable the resulting

mixed-effects model can be structurally globally or locally identifiable depending on

the statistical sub-model used. These insights are collected in Conjectures 1–3 in

Chapter 6.

Similarily, by using the methods developed in this thesis it was possible to

analyse mixed-effects models in an indistinguishability context. By using examples,

it was shown that structural sub-models which are structurally indistinguishable

may become distinguishable in a mixed-effects framework depending on where the

random effects enter the system. It was also shown that two mixed-effects models

with identical structural sub-models, but with different statistical sub-models, can

still be structurally indistinguishable.
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8.4 Future potential impact

The new, more general, definition of structural identifiability and indistinguisha-

bility and the developed methods introduced in this thesis open up the possibility

of studying the structural identifiability of mixed-effects models analytically. This

could potentially have a big impact on modelling in the pharmaceutical industry

since such types of models are routinely used. Knowing whether the structural and

variance parameters are structurally identifiable or otherwise increases the confi-

dence in the model parameter estimates, leaving only the experimental data as a

source of uncertainty for the model parameters. This is perhaps especially impor-

tant when modelling PKPD-relationships since parameters in such models are often

subject to biological interpretations, e.g., clearance (CL) or potency (EC50) of a

pharmaceutical drug. The presented methods should thus ideally also be integrated

into the model development process as well as experimental design in order to offer

support while answering various experimental questions, e.g., “what to measure?”

or “what administration routes to use in order to ensure structural identifiability?”.

The methods presented in this thesis are generic by nature, i.e., not limited

to population modelling in pharmacology. The methods can be applied to models

used in any field where mixed-effects modelling is used, e.g., ecology.

8.4.1 Experimental design and model building

As mentioned in the introduction of the thesis and in Figure 2.4, structural identi-

fiability and indistinguishability analysis should be an integrated part of the exper-

imental design and model building.

This is because a structural identifiability analysis shows whether the model

parameters can be uniquely determined or otherwise from a particular experiment

design. If the model parameters can be determined uniquely then it is theoretically

sound to draw biological interpretations and conclusions from the parameter esti-

mates. If an identifiability analysis has shown that some of the model parameters

cannot be determined given a particular experimental setup, alternative input and
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output functions can be considered in a new identifiability analysis and the results

from such an analysis could then inform the experimental design. Alternatively,

such an analysis could also inform the model building in order to achieve identifia-

bility, e.g., showing that some of the model parameters must be fixed to literature

values if they cannot be determined in that particular model structure, or that the

complexity of the model needs to be reduced. In practice, since there is a limitation

on how both the input and output can be designed, the outcome from an identifia-

bility analysis could potentially affect both the experimental design and the model

building.

For structural indistinguishability the analysis includes a set of candidate

models all representing the biological system of interest. Often, the candidate models

corresponds to the different hyphothesis of the underlying structure of the system.

Such an analysis informs whether a particular experimental setup is sufficient in a

structural sense in order to be able to distinguish between the different candidate

models.

How structural identifiability and indistinguishability can be used for both

experimental design and model building for non-mixed-effects models holds true

also for mixed-effects models. In terms of model building, it has been shown in

this thesis that unidentifiable non-mixed-effects models can become identifiable as

mixed-effects models. Taking the one-compartment absorption model as an example,

the mixed-effects version with a logit-distribution of the bioavailability parameter

should be chosen over the non-mixed-effects model. In addition to what structural

model to use, a modeller needs to in a mixed-effects framework decide on how

to design the statistical sub-model; what population parameters should have an

associated random effect, what postulated form of distribution should the different

random effects have and what structure of the covariance matrix should be used. The

approaches presented in this thesis are to be considered as a tool for model building

of the statistical model as well as the structural model. Different combinations of

structural models and statistical sub-models together with different sets of input

and output functions can be considered using the methods presented in this thesis
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and they can thus help influence and decide on both experimental design and the

model building in such a way that experiments are done in an optimal way with

regards to learning as much as possible on the system of interest.

8.5 Future work

A future research topic that has arisen out of this work is with regard to the possible

existence of upper and lower bounds on the order of the statistical moments of the

functions of random variables needed in order to determine structural identifiability.

Consider the case of some function of random variables Zi being either normally, or

lognormally distributed. The first two moments fully characterise the distribution

and the upper and lower bound is therefore two. This was the case in the last exam-

ple in Section 5.2.5 where both of the functions of random variables (5.102)–(5.103)

are lognormally distributed and therefore only the first two statistical moments were

considered. As the required relevant upper bound for structural identifiability was

reached it was possible to conclude that the model is structurally unidentifiable.

For a non-standard distribution for Zi, the lower bound is the same as the number

of unknown parameters in Zi, given that those unknown parameters do not appear

in any other Zj where j 6= i. However, deriving an upper bound for non-standard

distributions will almost certainly require dividing them up into different groups of

distributions, a task for ongoing research. A consequence of having unknown upper

bounds is that it makes proving that a model is structurally unidentifiable impos-

sible, since the upper bound for the required number of moments is not known. A

natural topic for future work following from this thesis is therefore to further study

the potential existence of upper bounds of different distributions, in order to be able

to prove structural unidentifiability of mixed-effects models.

Regarding the translatability of identifiability and indistinguishability results

when going from a non-mixed-effects model to a mixed-effects model three conjec-

tures, Conjectures 1–3, summarised the insights of the work on this topic in this

thesis. However, these conjectures are based on the examples provided and therefore
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providing a more general mathematical proof for these is a natural topic for future

work.

For linear non-mixed-effects models, there are approaches available to gen-

erate all model structures that are structurally indistinguishable (Bonate [2011]).

Future work related to this might be to explore whether or not it is possible to gen-

erate all linear mixed-effects models that are structurally indistinguishable. Such

research could perhaps be first limited to only consider models where the random

effect ηi enters linearly into the structural sub-model, i.e.,

φi = θ + ηi (8.1)

and once that special case is understood then to start considering when the random

effects ηi enter into the structural sub-model in a nonlinear fashion, e.g.,

φi = θeηi . (8.2)

In Chapter 4.3.2 the augmented system approach was presented as a way of

analysing mixed-effects models in a structural identifiability context. A potential

avenue that was left unexplored in this thesis which is related to this approach

is observability. For non-mixed-effects models written in an extended state-space

form, i.e., the model parameters are written as states with zero time-derivatives,

observability implies identifiability. In the augmented system approach all model

parameters are written in such an extended state-space form. Due to this, expanding

the observability concept to mixed-effects models could therefore potentially offer

yet another approach to study the structural identifiability of mixed-effects models.

In the augmented system approach presented in this thesis in Chapter 4.3.2,

the system is rewritten in an extended state-space form. Therefore, although no

explicit approach is presented, it is still worth mentioning that an alternative to

considering the moments of the output function y(t) is to instead combine existing

observability tests such as the Observability Rank Criterion (Hermann and Krener

[1977]) together with the joint density function of the initial conditions p0(x0) to
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determine whether the system is observable or not and therefore determine whether

the system is structurally identifiable or otherwise.
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Appendix A

Pharmacodynamic model

The following Maple-code was used to analyse the 16 pharmacodynamic models in

Chapter 3.
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Forsman Code
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(1)(1)

(3)(3)

(7)(7)

(2)(2)

(4)(4)

(6)(6)

(5)(5)

Model 2 (sigmoid, augmented, m is here the parameter in the exponent in 
the original system.)
Defining the system as:

Collecting the coefficients and setting up expression with alternative parameter vector

Setting up the equations for the inital conditions

Calculating the derivative of output function y, then evaluating the expressions for the initial 
conditions
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(9)(9)

(8)(8)

(10)(10)

(11)(11)

Introducing alternative parameter vector and finalizing the expression for the initial conditions

Summary: The model is globally identifiable.
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Appendix B

Five-compartment lung model

The Mathematica code used for analysing the five-compartment lung PK model can

be found below.
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Structural Identifiability Analysis 
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model

David Janzén

PhD Candidate

University of Warwick
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IV dosing

deqIV = 

A1'[t] ⩵
A2[t]

V2
* fu2 * CLD12 +

A4[t] * fu4

V4
* CLD14 -

A1[t]

V1
* CL -

A1[t]

V1
* fu1 * CLD12 -

A1[t]

V1
* fu1 * CLD14 + u[t],

A2'[t] ⩵ K32 * A3[t] + CLD12 * fu1 *
A1[t]

V1
-

A2[t]

V2
* fu2 * CLD12 -

A2[t]

V2
* fu2 * CLD23 ,

A3'[t] ⩵ fu2 * CLD23 *
A2[t]

V2
- K32 * A3[t],

A4'[t] ⩵

K32 * A5[t] + CLD14 * fu1 *
A1[t]

V1
-
A4[t] * fu4

V4
* CLD14 -

A4[t] * fu4

V4
* CLD45,

A5'[t] ⩵ CLD45 *
A4[t] * fu4

V4
- K32 * A5[t]

;

IT dosing
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deqIT = 

A1'[t] ⩵
A2[t]

V2
* fu2 * CLD12 +

A4[t] * fu4

V4
* CLD14 -

A1[t]

V1
* CL -

A1[t]

V1
* fu1 * CLD12 -

A1[t]

V1
* fu1 * CLD14,

A2'[t] ⩵ K32 * A3[t] + CLD12 * fu1 *
A1[t]

V1
-
A2[t]

V2
* fu2 * CLD12 -

A2[t]

V2
* fu2 * CLD23 + u[t],

A3'[t] ⩵ fu2 * CLD23 *
A2[t]

V2
- K32 * A3[t],

A4'[t] ⩵

K32 * A5[t] + CLD14 * fu1 *
A1[t]

V1
-
A4[t] * fu4

V4
* CLD14 -

A4[t] * fu4

V4
* CLD45,

A5'[t] ⩵ CLD45 *
A4[t] * fu4

V4
- K32 * A5[t],

;

Solving and simulating the system

using arbitrary chosenmodel parameters

params = {V1 → 1, V2 → 1, V4 → 2, fu4 → 11, CL → 1, fu1 → 1,

fu2 → 1, CLD12 → 1, CLD14 → 1, CLD45 → 1, K32 → 1, CLD23 → 1};

ic = {A1[0] ⩵ 1, A2[0] ⩵ 0, A3[0] ⩵ 0, A4[0] ⩵ 0, A5[0] ⩵ 0};

sol = NDSolve[{deqIV, ic} /. params /. u[t] → Piecewise[{{1, t < 1}}],

{A1, A2, A3, A4, A5}, {t, 0, 10}][[1]];

Plot[Evaluate[{A1[t], A2[t], A3[t], A4[t], A5[t]} /. sol],

{t, 0, 10}, PlotLegends → {A1, A2, A3, A4, A5}]
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The system seems to be properly defined.

Defining output function, model states,

initial conditions andmodel parameters

2     five-comp_lung_model.nb
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modelStates = {A1, A2, A3, A4, A5};

ic = {A1[0] ⩵ 0, A2[0] ⩵ 0, A3[0] ⩵ 0, A4[0] ⩵ 0, A5[0] ⩵ 0};

observationVectorReal = 
A2[t] + A3[t]

V2
,
A1[t]

V1
;

modelParameters =

{V1, V2, V4, fu4, CL, fu1, fu2, CLD12, CLD14, CLD45, K32, CLD23};

Structural Identifiability Analysis

IV dosing

iad = IdentifiabilityAnalysis[

{{deqIV, ic}, observationVectorReal}, modelStates, modelParameters, t, u]

IdentifiabilityAnalysisData[False, <>]

summaryIV = {iad["NonIdentifiableParameters"], iad["DegreesOfFreedom"]}

{{CLD12, CLD14, CLD23, CLD45, fu1, fu2, fu4, V4}, 2}

This shows that the model is structurally unidentifiable with IV dosing.

IT dosing

iad = IdentifiabilityAnalysis[

{{deqIT, ic}, observationVectorReal}, modelStates, modelParameters, t, u]

summaryIT = {iad["NonIdentifiableParameters"], iad["DegreesOfFreedom"]}

IdentifiabilityAnalysisData[False, <>]

{{CLD12, CLD14, CLD23, CLD45, fu1, fu2, fu4, V4}, 2}

This shows that the model is structurally unidentifiable with IT dosing.

A direct inspection of the model equations shows that the parameters fu4 and V4  always appears 

as a ratio fu4/V4 and should therefore be replaced with a new parameter fu4V4.

IV dosing : reperametrised

five-comp_lung_model.nb     3
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deqReparamIV = 

A1'[t] ⩵
A2[t]

V2
* fu2 * CLD12 + A4[t] * fu4V4 * CLD14 -

A1[t]

V1
* CL -

A1[t]

V1
* fu1 * CLD12 -

A1[t]

V1
* fu1 * CLD14 + u[t],

A2'[t] ⩵ K32 * A3[t] + CLD12 * fu1 *
A1[t]

V1
-

A2[t]

V2
* fu2 * CLD12 -

A2[t]

V2
* fu2 * CLD23 ,

A3'[t] ⩵ fu2 * CLD23 *
A2[t]

V2
- K32 * A3[t],

A4'[t] ⩵

K32 * A5[t] + CLD14 * fu1 *
A1[t]

V1
- A4[t] * fu4V4 * CLD14 - A4[t] * fu4V4 * CLD45,

A5'[t] ⩵ CLD45 * A4[t] * fu4V4 - K32 * A5[t]

;

IT dosing : reperametrised

deqReparamIT = 

A1'[t] ⩵
A2[t]

V2
* fu2 * CLD12 + A4[t] * fu4V4 * CLD14 -

A1[t]

V1
* CL -

A1[t]

V1
* fu1 * CLD12 -

A1[t]

V1
* fu1 * CLD14,

A2'[t] ⩵ K32 * A3[t] + CLD12 * fu1 *
A1[t]

V1
-
A2[t]

V2
* fu2 * CLD12 -

A2[t]

V2
* fu2 * CLD23 + u[t],

A3'[t] ⩵ fu2 * CLD23 *
A2[t]

V2
- K32 * A3[t],

A4'[t] ⩵

K32 * A5[t] + CLD14 * fu1 *
A1[t]

V1
- A4[t] * fu4V4 * CLD14 - A4[t] * fu4V4 * CLD45,

A5'[t] ⩵ CLD45 * A4[t] * fu4V4 - K32 * A5[t],

;

Defining output function, model states,

initial conditions and reparameterizedmodel

modelStates = {A1, A2, A3, A4, A5};

ic = {A1[0] ⩵ 0, A2[0] ⩵ 0, A3[0] ⩵ 0, A4[0] ⩵ 0, A5[0] ⩵ 0};

observationVectorReal = 
A2[t] + A3[t]

V2
,
A1[t]

V1
;

modelParameters2 =

{V1, V2, fu4V4, CL, fu1, fu2, CLD12, CLD14, CLD45, K32, CLD23};

Structural Identifiability Analysis

4     five-comp_lung_model.nb
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IV dosing

iad = IdentifiabilityAnalysis[{{deqReparamIV, ic}, observationVectorReal},

modelStates, modelParameters2, t, u]

IdentifiabilityAnalysisData[False, <>]

summaryReparamIV = {iad["NonIdentifiableParameters"], iad["DegreesOfFreedom"]}

{{CLD12, CLD14, CLD23, CLD45, fu1, fu2, fu4V4}, 1}

This shows that the reparametrized model is structurally unidentifiable with IV dosing.

IT dosing

iad = IdentifiabilityAnalysis[{{deqReparamIT, ic}, observationVectorReal},

modelStates, modelParameters2, t, u]

summaryIT = {iad["NonIdentifiableParameters"], iad["DegreesOfFreedom"]}

IdentifiabilityAnalysisData[False, <>]

{{CLD12, CLD14, CLD23, CLD45, fu1, fu2, fu4V4}, 1}

This shows that the reparametrized model is structurally unidentifiable with IT dosing.

If any of the parameters {CLD12,CLD14,CLD23,CLD45,fu1,fu2,fu4V4} is fixed then the model is at 

least locally structurally identifiable. For instance, if the parameter fu1 is set to 1 we get the following 

system

IV dosing, fu1 = 1

deqReparamIVfu1fixed = 

A1'[t] ⩵
A2[t]

V2
* fu2 * CLD12 + A4[t] * fu4V4 * CLD14 -

A1[t]

V1
* CL -

A1[t]

V1
* CLD12 -

A1[t]

V1
* CLD14 + u[t],

A2'[t] ⩵ K32 * A3[t] + CLD12 *
A1[t]

V1
-
A2[t]

V2
* fu2 * CLD12 -

A2[t]

V2
* fu2 * CLD23 ,

A3'[t] ⩵ fu2 * CLD23 *
A2[t]

V2
- K32 * A3[t],

A4'[t] ⩵

K32 * A5[t] + CLD14 *
A1[t]

V1
- A4[t] * fu4V4 * CLD14 - A4[t] * fu4V4 * CLD45,

A5'[t] ⩵ CLD45 * A4[t] * fu4V4 - K32 * A5[t]

;

IT dosing

five-comp_lung_model.nb     5
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deqReparamITfu1fixed = 

A1'[t] ⩵
A2[t]

V2
* fu2 * CLD12 +

A4[t] * fu4V4 * CLD14 -
A1[t]

V1
* CL -

A1[t]

V1
* CLD12 -

A1[t]

V1
* CLD14,

A2'[t] ⩵ K32 * A3[t] + CLD12 *
A1[t]

V1
-
A2[t]

V2
* fu2 * CLD12 -

A2[t]

V2
* fu2 * CLD23 + u[t],

A3'[t] ⩵ fu2 * CLD23 *
A2[t]

V2
- K32 * A3[t],

A4'[t] ⩵

K32 * A5[t] + CLD14 *
A1[t]

V1
- A4[t] * fu4V4 * CLD14 - A4[t] * fu4V4 * CLD45,

A5'[t] ⩵ CLD45 * A4[t] * fu4V4 - K32 * A5[t],

;

Defining output function, model states,

initial conditions and reparameterizedmodel

modelStates = {A1, A2, A3, A4, A5};

ic = {A1[0] ⩵ 0, A2[0] ⩵ 0, A3[0] ⩵ 0, A4[0] ⩵ 0, A5[0] ⩵ 0};

observationVectorReal = 
A2[t] + A3[t]

V2
,
A1[t]

V1
;

modelParameters2fu1fixed =

{V1, V2, fu4V4, CL, fu2, CLD12, CLD14, CLD45, K32, CLD23};

Structural Identifiability Analysis

IV dosing

iad = IdentifiabilityAnalysis[

{{deqReparamIVfu1fixed, ic}, observationVectorReal},

modelStates, modelParameters2fu1fixed, t, u]

IdentifiabilityAnalysisData[True, <>]

summaryReparamIVfu1fixed =

{iad["NonIdentifiableParameters"], iad["DegreesOfFreedom"]}

{{}, 0}

This shows that the reparametrized model with fu1 fixed is at least structurally locally identifiable 

with IV dosing.

IT dosing

6     five-comp_lung_model.nb
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iad = IdentifiabilityAnalysis[

{{deqReparamITfu1fixed, ic}, observationVectorReal},

modelStates, modelParameters2fu1fixed, t, u]

summaryIT = {iad["NonIdentifiableParameters"], iad["DegreesOfFreedom"]}

IdentifiabilityAnalysisData[True, <>]

{{}, 0}

This shows that the reparametrized model with fu1 fixed is at least structurally locally identifiable 

with IT dosing.

five-comp_lung_model.nb     7
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Appendix C

Example code

The following Mathematica code is an example of how a structural identifiability

analysis of a mixed-effects model can done.
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Two-compartment model in a mixed-effect framework

This model is known to be globally identifiable in a deterministic form.

Am = 88-HΘk12 + Θk1eL, Θk21<, 8Θk12, -Θk21<<;

Bm = 881<, 80<<;

Cm = 8Θc1, 0<;

nmb = 2;

G = Simplify@Cm.Inverse@s * IdentityMatrix@nmbD - AmD.BmD;

momentInvariantsnumerator = CoefficientList@Numerator@GD, sD;

momentInvariantsdenominator = CoefficientList@Denominator@GD, sD;

parametervector = 8Θc1, Θk1e, Θk12, Θk21<;

replacevector = 8Θc1 ® Θc1b, Θk1e ® Θk1eb, Θk12 ® Θk12b, Θk21 ® Θk21b<;

momentInvariantsnumeratorb = momentInvariantsnumerator �. replacevector;

momentInvariantsdenominatorb = momentInvariantsdenominator �. replacevector;

Solve@8momentInvariantsnumerator@@DD, momentInvariantsdenominator@@DD< �

8momentInvariantsnumeratorb@@DD,

momentInvariantsdenominatorb@@DD<, parametervectorD
88Θc1 ® Θc1b, Θk1e ® Θk1eb, Θk12 ® Θk12b, Θk21 ® Θk21b<<

The population parameters are structurally globally identifiable. The moment invariants, as calcu-

lated above, are

momentInvariant1 = Θc1;

momentInvariant2 = Θc1 Θk21;

momentInvariant3 = Θk1e Θk21;

momentInvariant4 = Θk12 + Θk1e + Θk21;

Z1 = TransformedDistribution@Θc1 * Exp@Ηc1D,

8Ηc1< é MultinormalDistribution@80<, 88ΩC1<<DD;

Z2 = TransformedDistribution@Θc1 * Exp@Ηc1D * Θk21 * Exp@Ηk21D,

8Ηc1, Ηk21< é MultinormalDistribution@80, 0<, 88ΩC1, 0<, 80, ΩK21<<DD;

Z3 = TransformedDistribution@Θk1e * Exp@Ηk1eD * Θk21 * Exp@Ηk21D,

8Ηk1e, Ηk21< é MultinormalDistribution@80, 0<, 88ΩK1e, 0<, 80, ΩK21<<DD;

Z4 = TransformedDistribution@Θk1e * Exp@Ηk1eD + Θk12 * Exp@Ηk12D + Θk21 * Exp@Ηk21D,

8Ηk1e, Ηk12, Ηk21< é MultinormalDistribution@
80, 0, 0<, 88ΩK1e, 0, 0<, 80, ΩK12, 0<, 80, 0, ΩK21<<DD;

ExpectedValueZ1 = Mean@Z1D;

Assuming@8ΩbarC1 > 0<, Simplify@
Solve@ExpectedValueZ1 � 8ExpectedValueZ1 �. 8ΩC1 ® ΩbarC1<<, ΩC1, RealsDDD

88ΩC1 ® ΩbarC1<<

Conclusion: The variance of parameter c1 is globally identifiable as only positive values are 

allowed.

Note: Not solving for ΩC1 as it has been shown above to be globally identifiable.
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Solve@ExpectedValueZ2 � 8ExpectedValueZ2 �. 8ΩK21 ® ΩbarK21<<, ΩK21, RealsD
88ΩK21 ® ΩbarK21<<

Conclusion: The variance of parameter k21 is globally identifiable as only positive values are 

allowed.

Note: Not solving for Ωk21 as it has been shown above to be globally identifiable.

ExpectedValueZ3 = Mean@Z3D;

Solve@ExpectedValueZ3 � 8ExpectedValueZ3 �. 8ΩK1e ® ΩbarK1e<<, ΩK1e, RealsD
88ΩK1e ® ΩbarK1e<<

Conclusion: The variance of parameter k1e is globally identifiable as only positive values are 

allowed.

Note: Not solving for Ωk1e or Ωk21 as they have been shown above to be globally identifiable.

ExpectedValueZ4 = Mean@Z4D;

Assuming@8ΩbarK12 > 0<, Simplify@
Solve@ExpectedValueZ4 � 8ExpectedValueZ4 �. 8ΩK12 ® ΩbarK12<<, ΩK12, RealsDDD

88ΩK12 ® ΩbarK12<<

Conclusion: The variance of parameter k12 is globally identifiable as only positive values are 

allowed.

Summary: All population parameters and their variances are structurally globally 

identifiable.

2     example_code.nb
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Appendix D

Input estimation

This is the Mathematica code used to generate the identifiability results for the

input estimation section in Chapter 3.
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Structural Identifiability Analysis 
of PK-model Jusko et al.

David Janzén

PhD Candidate

University of Warwick

d.l.i.janzen@warwick.ac.uk

Structural Identifiability Analysis: Bolus dose

Definingmodel structure, output function,

model states, initial conditions andmodel parameters

deqJuskoBolusIV = 

Cc'[t] ⩵ -(kel + kpt) * Cc[t] + ktp *
AT[t]

Vc
- kon * (Rtot - RC[t]) * Cc[t] + koff * RC[t],

AT'[t] ⩵ kpt * Cc[t] * Vc - ktp * AT[t],

RC'[t] ⩵ kon * (Rtot - RC[t]) * Cc[t] - (koff - kint) * RC[t]

;

modelStates = {Cc, AT, RC};

icBolusIV = Cc[0] ⩵
Dose

Vc
, AT[0] ⩵ 0, RC[0] ⩵ 0;

modelParameters = {kel, kpt, ktp, Vc, kon, koff, kint, Rtot};

observationVectorReal = {Cc[t]};

Structural Identifiability Analysis

iad = IdentifiabilityAnalysis[

{{deqJuskoBolusIV, icBolusIV}, observationVectorReal} /.

{Dose → RandomReal[{0, 50}]}, modelStates, modelParameters, t, u]

IdentifiabilityAnalysisData[True, <>]

Conclusion: The model is at least structurally locally identifiable. 

Structural Identifiability Analysis: IV infusion 

Definingmodel structure, output function,

model states, initial conditions andmodel parameters
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deqJuskoIV = 

Cc'[t] ⩵

u[t]

Vc
- (kel + kpt) * Cc[t] + ktp *

AT[t]

Vc
- kon * (Rtot - RC[t]) * Cc[t] + koff * RC[t],

AT'[t] ⩵ kpt * Cc[t] * Vc - ktp * AT[t],

RC'[t] ⩵ kon * (Rtot - RC[t]) * Cc[t] - (koff - kint) * RC[t]

;

modelStates = {Cc, AT, RC};

icIV = {Cc[0] ⩵ 0, AT[0] ⩵ 0, RC[0] ⩵ 0};

modelParameters = {kel, kpt, ktp, Vc, kon, koff, kint, Rtot};

observationVectorReal = {Cc[t]};

Structural Identifiability Analysis

iad = IdentifiabilityAnalysis[{{deqJuskoIV, icIV}, observationVectorReal} /.

{Dose → RandomReal[{0, 50}]}, modelStates, modelParameters, t, u]

IdentifiabilityAnalysisData[True, <>]

summaryIVnobolus = {iad["NonIdentifiableParameters"], iad["DegreesOfFreedom"]}

{{}, 0}

Conclusion: The model is at least structurally locally identifiable. 

Structural Identifiability Analysis: SC

Definingmodel structure, output function,

model states, initial conditions andmodel parameters

deqJuskoSC = 

Cc'[t] ⩵
ka * xsc[t]

Vc
- (kel + kpt) * Cc[t] +

ktp *
AT[t]

Vc
- kon * (Rtot - RC[t]) * Cc[t] + koff * RC[t],

AT'[t] ⩵ kpt * Cc[t] * Vc - ktp * AT[t],

RC'[t] ⩵ kon * (Rtot - RC[t]) * Cc[t] - (koff - kint) * RC[t],

xsc'[t] ⩵ -ka * xsc[t]

;

modelStatesSC = {Cc, AT, RC, xsc};

icSC = {Cc[0] ⩵ 0, AT[0] ⩵ 0, RC[0] ⩵ 0, xsc[0] ⩵ F * Dose};

modelParametersSC = {kel, kpt, ktp, Vc, kon, koff, kint, Rtot, F, ka};

observationVectorReal = {Cc[t]};

2     Jusko et al - Identifiability analysis.nb
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Structural Identifiability Analysis

iad = IdentifiabilityAnalysis[

{{deqJuskoSC, icSC}, observationVectorReal} /. {Dose → RandomReal[{0, 50}]},

modelStatesSC, modelParametersSC, t, u]

IdentifiabilityAnalysisData[False, <>]

summaryIVnobolus = {iad["NonIdentifiableParameters"], iad["DegreesOfFreedom"]}

{{F, Vc}, 1}

Conclusion: The parameter F and V are unidentifiable and the model is therefore unidentifiable.

If either F or V are fixed, the model is at least structurally locally identifiable. Since all model parame-

ters are shared between the IV and SC experiments the volume parameter V can be fixed, see 

below

modelParametersSCFfix = {kel, kpt, ktp, kon, koff, kint, F, Rtot, ka};

Structural Identifiability Analysis

iad = IdentifiabilityAnalysis[{{deqJuskoSC, icSC}, observationVectorReal} /.

{Dose → RandomReal[{0, 50}], Vc → RandomReal[{0, 50}]},

modelStatesSC, modelParametersSCFfix, t, u]

IdentifiabilityAnalysisData[True, <>]

Conclusion: With parameter V known from the IV experiment all model parameters are at least 

structurally locally identifiable.

Jusko et al - Identifiability analysis.nb     3
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Structural Identifiability Analysis of 

extended release model Li et al.
David Janzén

PhD Candidate

University of Warwick

d.l.i.janzen@warwick.ac.uk

Case 1: All model parameters assumed unknown

Defining output function, model states,

initial conditions and model parameters

deqLi = :
a1'@tD � -ktr * a1@tD,

a2'@tD � ktr * Ha1@tD - a2@tDL ,

a3'@tD � ktr * Ha2@tD - a3@tDL,

a4'@tD � ktr * Ha3@tD - a4@tDL,

a5'@tD � ktr * a4@tD - ka * a5@tD,

a6'@tD � ka * a5@tD -

Q

V1

* a6@tD -

CL

V1

* a6@tD +

Q

V2

* a7@tD - kon * a8@tD * a6@tD + koff * a9@tD * V1,

a7'@tD �

Q

V1

* a6@tD -

Q

V2

* a7@tD,

a8'@tD � ksyn - kdeg * a8@tD - kon * a8@tD *

a6@tD
V1

+ koff * a9@tD,

a9'@tD � kon * a8@tD *

a6@tD
V1

- koff * a9@tD - kint * a9@tD

>;

modelStates = 8a1, a2, a3, a4, a5, a6, a7, a8, a9<;

ic = :a1@0D � H1 - F1 - F2 - F3L * F * amtDose,

a2@0D � F1 * F * amtDose, a3@0D � F2 * F * amtDose, a4@0D � F3 * F * amtDose,

a5@0D � 0, a6@0D � 0, a7@0D � 0, a8@0D �

ksyn

kdeg

0, a9@0D � 0>;

observationVectorReal = :
a6@tD

V1

>;

modelParametersAllUnknown =

8F, F1, F2, F3, ktr, ka, V1, V2, Q, CL, ksyn, kdeg, koff, kon, kint<;211



Structural Identifiability Analysis

iad = IdentifiabilityAnalysis@
88deqLi, ic<, observationVectorReal< �. 8amtDose ® RandomInteger@81, 100<D<,

modelStates, modelParametersAllUnknown, t, uD
IdentifiabilityAnalysisData@False, <>D

summary = 8iad@"NonIdentifiableParameters"D, iad@"DegreesOfFreedom"D<
88CL, F, F1, F2, F3, Q, V1, V2<, 1<

Conclusion: The model is unidentifiable with one degree of freedom.

Case 2: Fixing known parameters

Defining output function, model states,

initial conditions and model parameters

modelStates = 8a1, a2, a3, a4, a5, a6, a7, a8, a9<;

ic = :a1@0D � H1 - F1 - F2 - F3L * F * amtDose,

a2@0D � F1 * F * amtDose, a3@0D � F2 * F * amtDose, a4@0D � F3 * F * amtDose,

a5@0D � 0, a6@0D � 0, a7@0D � 0, a8@0D �

ksyn

kdeg

0, a9@0D � 0>;

observationVectorReal = :
a6@tD

V1

>;

fixedParam = 8V1 ® RandomReal@D, V2 ® RandomReal@D, Q ® RandomReal@D,

CL ® RandomReal@D, ksyn ® RandomReal@D, kdeg ® RandomReal@D,

koff ® RandomReal@D, kon ® RandomReal@D, kint ® RandomReal@D<;

modelParameters = 8F, F1, F2, F3, ktr, ka<;

Structural Identifiability Analysis

iad = IdentifiabilityAnalysis@
88deqLi, ic<, observationVectorReal< �. fixedParam,

modelStates, modelParameters, t, uD
IdentifiabilityAnalysisData@True, <>D

summary = 8iad@"NonIdentifiableParameters"D, iad@"DegreesOfFreedom"D<
88<, 0<

Conclusion: The model is at least structurally locally identifiable.

2     Li_et_al_identifiability_analysis.nb
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Appendix E

Structural identifiability for

mixed-effects models and its

dependency on the statistical

sub-model

This is the Mathematica code used for generating the identifiability results for Chap-

ter 6 to show that the form of the distribution of the random effects affects the

structural identifiability of the mixed-effects model.
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The form of the random effects 

matter
David Janzén

PhD Candidate

University of Warwick

d.l.i.janzen@warwick.ac.uk

One-compartment absorption model

Z1 = TransformedDistributionB
ΘV * Exp@ΗVD
ΘF * Exp@ΗFD

,

8ΗF, ΗV< é MultinormalDistribution@80, 0<, 88ΩF, 0<, 80, ΩV<<DF;

Computing the first two statistical moments of Z1

Mean@Z1D

ã

1

2

HΩF+ΩVL
ΘV

ΘF

Variance@Z1D

ãΩF+ΩV H-1 + ãΩF+ΩVL Θ
V

2

Θ
F

2

The ratio 
F

V
and the sum ΩF+ΩV are structurally globally identifiable but the model is structurally 

unidentifiable. An alternative way of showing that the system Z1 is structurally unidentifiable is to 

compute the Jacobian of the system and show that the Jacobian matrix is rank deficient.

Computing the first four statistical moments of Z1

moment1Z1 = Moment@Z1, 1D

ã

1

2

HΩF+ΩVL
ΘV

ΘF

moment2Z1 = Moment@Z1, 2D

ã2 HΩF+ΩVL Θ
V

2

Θ
F

2
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moment3Z1 = Moment@Z1, 3D

ã

9

2

HΩF+ΩVL
Θ

V

3

Θ
F

3

moment4Z1 = Moment@Z1, 4D

ã8 HΩF+ΩVL Θ
V

4

Θ
F

4

Computing the Jacobian of the above system (Z1) and checking its 

rank

jacZ1 = D@8moment1Z1, moment2Z1, moment3Z1, moment4Z1<, 88ΘV, ΘF, ΩV, ΩF<<D;

MatrixRank@jacZ1D
2

Conclusion: The Jacobian does not have full rank, meaning that the model is structurally unidentifi-

able. Next the identifiability of the model is studied when using a logit-normal distribution of parame-

ter F by checking the rank of the Jacobian of the system.
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ΘV * Exp@ΗVD
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Computing the first four statistical moments of Z2

moment1Z2 = Moment@Z2, 1D
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Computing the Jacobian of the above system (Z2) and checking its 

rank

jacZ2 = D@8moment1Z2, moment2Z2, moment3Z2, moment4Z2<, 88ΘV, ΘF, ΩV, ΩF<<D;

MatrixRank@jacZ2D
4

Conclusion: The Jacobian has full rank,meaning that the model (Z2) is at least locally identifiable.
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S. Audoly, G. Bellu, L. D’Angiò, M. P. Saccomani, and C. Cobelli. Global identifia-

bility of nonlinear models of biological systems. IEEE transactions on bio-medical

engineering, 48:55–65, 2001.

E. August and A. Papachristodoulou. A new computational tool for establish-

ing model parameter identifiability. Journal of computational biology, 16:875–85,

2009.

217



E. Balsa-Canto, A. Alonso, and J. Banga. An iterative identification procedure for

dynamic modeling of biochemical networks. BMC Systems Biology, 4:11, 2010.
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to test global identifiability of biological and physiological systems. Computer

methods and programs in biomedicine, 88:52–61, 2007.

E. Boger. Lung-Targeted Receptor Occupancy by Drug Inhalation: an Experimental

and Computational Evaluation. PhD thesis, University of Warwick, 2016.

P. L. Bonate. Pharmacokinetic-Pharmacodynamic Modeling and Simulation.

Springer, second edition, 2011.

Alexandr A. Borovkov. Probability theory. Springer, 2013.

M. J. Chapman and K. R. Godfrey. Some extensions to the exhaustive-modeling

approach to structural identifiability. Mathematical Biosciences, 77:305–323, 1985.

M. J. Chapman, K. R. Godfrey, M. J. Chappell, and N. D. Evans. Structural

identifiability for a class of non-linear compartmental systems using linear/non-

linear splitting and symbolic computation. Mathematical Biosciences, 183:1–14,

2003.

218



M. J. Chappell and K. R. Godfrey. Global identifiability of the parameters on

nonlinear systems with specified inputs: A comparison of methods. Mathematical

biosciences, 102:41–73, 1990.

M.J. Chappell and R.N. Gunn. A procedure for generating locally identifiable repa-

rameterisations of unidentifiable non-linear systems by the similarity transforma-

tion approach. Mathematical Biosciences, 148:21–41, 1998.

A. Cheung, O. Majid, J. W.T. Yates, and L. Aarons. Structural identifiability anal-

ysis and reparameterisation (parameter reduction) of a cardiovascular feedback

model. European journal of pharmaceutical sciences, 46:259–271, 2012.

A. Cheung, J. Yates, and L. Aarons. The design and analysis of parallel experiments

to produce structurally identifiable models. Journal of Pharmacokinetics and

Pharmacodynamics, 40:93–100, 2013.

O. Chis, J. R. Banga, and E. Balsa-Canto. Structural identifiability of systems

biology models: A critical comparison of methods. Plos onE, 6:e27755, 2011a.

O. Chis, Julio R. Banga, and E. Balsa-Canto. Methods for checking structural

identifiability of nonlinear biosystems: A critical comparison. Preprints of the

18th IFAC world congress, pages 10585–10590, 2011b.

OT. Chis, A.F Villaverde, and J.R Banga E Balsa-Canto. On the relationship

between sloppiness and identifiability. Mathematical Biosciences, 282:147–161,

2016.

R. F. W. De Cock, C. Piana, E. H. J. Krekels, M. Danhof, K. Allegaert, and C. A. J.

Knibbecorresponding. The role of population pk–pd modelling in paediatric clin-

ical research. European Journal of Clinical Pharmacology, 67:5–16, 2010.

J. Collins and P. King. Indistinguishability and identifiability analysis of linear

compartmental models. Mathematical Biosciences, 103:77–95, 1991.

M. Davidian. Nonlinear models for repeated measurement data. Chapman and Hall,

1995.

219



L. Denis-Vidal and G. Joly-Blanchard. Equivalence and identifiability analysis of

uncontrolled nonlinear dynamical systems. Automatica, 40:287–292, 2004.

L. Denis-Vidal, G. Joly-Blanchard, and C. Noiret. Some effective approaches to

check the identifiability of uncontrolled nonlinear systems. Mathematics and Com-

puters in Simulation, 57:35–44, 2001.

M. C. Eisenberg and M. A.L. Hayashi. Determining identifiable parameter combi-

nations using subset profiling. Mathematical Biosciences, 256:116–126, 2014.

N.D. Evans and M.J. Chappell. Extensions to a procedure for generating locally

identifiable reparameterisations of unidentifiable systems. Mathematical Bio-

sciences, 168:137–159, 2000.

N.D. Evans, M.J. Chappell, M.J. Chapman, and K.R. Godfrey. Structural indis-

tinguishability between uncontrolled (autonomous) nonlinear analytic systems.

Automatica, 40:1947–1953, 2004.

N.D. Evans, H. Moyse, D. Lowe, D. Briggs, R. Higgins, D. Mitchell, D. Zehnder,

and M.J Chappell. Structural identifiability of surface binding reactions involving

heterogeneous analyte : application to surface plasmon resonance experiments.

Automatica, 49:48–57, 2013.

K. Forsman. Constructive Commutative Algebra in Nonlinear Control Theory. PhD
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