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Abstract

Chronic wounds represent a significant problem to healthcare systems globally,

wound generated from burns and diabetic ulcers have a 20 % chance of becoming

chronic. In this thesis work was conducted to try and develop novel networks to act

as chronic wound treatment systems.

Initially Catalytic Chain Transfer Polymerization (CCTP) was utilized to develop low

molecular weight branched polymers with ω-vinyl end groups for use as novel 

gelators. Poly(methacrylic acid) (pMAA) was chosen as a building block due to its

anionic nature and possibilities in the region of drug delivery and wound care.

Branched acidic polymers of different molecular weights and degrees of branching

were synthesized with good control. In addition to this branched and linear species

of poly[(polyethylene glycol) methyl ether methacrylate] pPEGMEMA were

synthesized by the same technique. All polymers were investigated kinetically and

with multi-detector SEC to determine branching.

A poly(2-hydroxyethyl acrylate) hydrogel system was optimized by both thermal and

photo initiation prior to the addition of branched acid polymers. Branched acid

polymers exhibited a hardening effect upon thermally cured gels by rheology with a

corresponding decrease in swelling suggesting reduction in the mesh size due to

acting as gelators. However, in a photo-cure system the reverse effect was observed

with softening and increase in swelling signifying an increase in mesh size.

A poly(2-acrylamido-2-methylpropane sulfonic acid) (pAMPS) hydrogel system was

then utilized to study this effect with different degrees of branching and molecular

weights of polymers. Studies by rheology, swelling and compression indicate that the



xxiv

branched acid polymers were exhibiting a chain transfer effect from the ω-vinyl end 

group, inhibiting gel formation and therefore rendering them unsuitable for use as

gelators.

An inter-penetrating network (IPN) of pAMPS and a thermoplastic elastomer (TPU)

was formed by photo-curing a TPU film swollen in a solution of AMPS monomer and

initiator. This process yielded a versatile, highly absorbent and transparent network

which was able to rapidly absorb large quantities of fluids. Calcium testing and

adhesion testing show that this material has significant potential in the field of wound

dressings.
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1. Introduction; the synthesis of branched polymers

via radical polymerisation and the use of branched

polymers in wound care hydrogels

The work in this thesis describes the synthesis of branched acidic and neutral

polymers, by catalytic chain transfer polymerisation (CCTP), and their inclusion into

hydrophilic polymer networks for use in wound-healing bandages. Areas relating to

these materials will be discussed in this thesis.

A review of radical polymerisation will be conducted, beginning with free radical

polymerisation and moving on to consider controlled radical polymerisation (CRP)

before addressing the technique of choice – CCTP. Here we shall look at how it has

been developed and applied to date with a special emphasis upon the growth of

branched polymerisation using this technique. The motivation for the use of CCTP

will also be explained.

This discussion will then cover hydrogels, their initial discovery, their development

through time in addition to where the forefront in this technology now resides. The

application of hydrogel networks into wound care materials will be explored as well

as the wound healing process itself.
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1.1 Free Radical Polymerisation

Chain growth polymerisation (as opposed to step growth polymerisation) is a form

of polymerisation encompassing; free radical polymerisation (FRP), coordination

polymerisation, anionic and cationic polymerisation.1,2 It is characterised by the

addition of unsaturated monomeric species to an active chain end one at a time.

IUPAC define the chain growth polymerisation technique of (FRP) as;

“A chain polymerisation in which the kinetic chain carriers are radicals. Note:

Usually, the growing chain end bears an unpaired electron”3

1.1.1 History

Polymerisation can find its first roots in 1832, when Jöns Jacub Berzelius first coined

the word polymeric (derived from the Greek πoλυμερη´σ) to describe compounds 

with the same proportionate composition (empirical) but different numbers of

constituent atoms.4 In 1863 Berthelot described the conversion of monomers to

their respective “polymerides” as polymeric transformation, and through his work

is described as the first polymer chemist.5 Despite this, it was not until 1920 with

Staudinger’s formation of long chain molecules by a chain growth method,

theorised at the time to be due to free radical chemistry, that the study of polymer

chemistry began in earnest.6 This was followed by work in 1929 describing chain

termination via ring formation and work in 1931 describing the activation of

monomeric species prior to the very rapid addition of further monomeric species,

one by one, to the chain end.7,8 In 1937 Flory published his “the mechanism of vinyl

polymerisations”, a paper widely seen as being the cornerstone of modern FRP

kinetic theory.2
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Today, FRP accounts for just under half of the commercial polymers synthesised

and encountered on a day to day basis.5 This pervasiveness is a result of the high

tolerances the technique exhibits towards impurities and the ease of synthesis

when compared to the controlled radical polymerisation (CRP) techniques of

reversible addition-fragmentation chain transfer polymerisation (RAFT), atom

transfer radical polymerisation (ATRP), single electron transfer living radical

polymerisation (SET-LRP) and ionic polymerisations. Unfortunately the technique’s

facile use comes with poor control over the rates of reaction and the deactivation

of the reactive, non-selective, radical species, which subsequently leads to poor

control of polymer molecular weight and architecture.1

1.1.2 Mechanism

Scheme 1.1; Types of radical initiators including; the thermal initiator VA-044™,

Iron/peroxide redox initiation coupling and Irgacure 1173™ photo initiator.

Initiation of polymerisation in FRP usually involves the decomposition of a small-

molecule to form radical species. Different forms of external stimuli can be used to
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initiate this process including heat, redox reactions or irradiation with light at a

certain wavelength (Scheme 1.1).

Whatever the stimuli used for the generation of the initiating free radical, these

species go on to add to a first monomer unit causing the first step in the

polymerisation cycle – initiation, thus begetting a radical capable of propagation

(Scheme 1.2). Radicals formed from this initiation step go on to propagate

sequentially from the chain end radical with additional monomer units until either

the monomer is depleted or termination occurs through one of the mechanisms

described below. The rate of propagation is dependent upon the concentration of

monomer, radical and the propagation rate constant, which is in turn dependent

upon the type of monomer and the conditions of the reaction (Scheme 1.2).

Propagation is unable to alter the concentration of radicals – this occurs through

termination as discussed below.

Scheme 1.2; Reaction schemes and rate equations for initiator decomposition,

Initiation and propagation of monomer in FRP, where I2 is the initiator, I is the

initiator fragment, M is the monomer, P is the polymer and, kd, ki and kp are the

rate of initiator decomposition, initiation and propagation, respectively.
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Termination in free radical polymerisation is uncontrolled, leading to the synthesis

of polymers with very high polydispersities (Ð), when termination does occur it

results in the formation of “dead” deactivated chain ends and a decrease in the

concentration of radicals (unless more are subsequently generated by initiator

decomposition). Chain death can occur through three modes; combination,

disproportionation and chain transfer, the relative proportions of which are

determined by the monomer and solvent system in use as well as environmental

conditions, such as temperature (Scheme 1.3).
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-d[P.]/dt = kt,c[P.]2

-d[P.]/dt = kt,d[P.]2

-d[P.]/dt = ktr[P
.
n][CTA]

Combination

+P•
n
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Pn

Chain Transfer
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n
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Termination mechanisms

P•
m

+P•
n P•

m Pm+ H

Pn H + CTA•

Scheme 1.3; Reaction schemes and rate equations for termination and chain

transfer FRP where Pn and Pm are polymer chains consisting of n and m monomer

units respectively, Pn+m is a terminated polymer chain of n + m monomer units, Pn-

H is a polymer chain of n units terminated by H, Pm= is a polymer chain of m units

terminated by a double bond, CTA is a chain transfer agent (whether monomer,

solvent, polymer or an added species), and kt,c, kt,d and ktr are the rate constants

of termination by combination, disproportionation and chain transfer

respectively.

Termination through combination of two growing chain ends leads to the formation

of species with the sum of the two molecular weights (MW) of the respective

species; as a result this produces species with higher than average MW.

Termination through disproportionation occurs through the transfer of hydrogen

from one growing radical chain end to another, this results in the formation of an

unsaturated polymeric chain end and a saturated polymeric chain end. The rate

constants of termination are significantly higher than those of propagation but is

generally prevented from dominating due to the low concentrations of radicals,

however, at higher conversions when the monomer is depleted termination

becomes dominant.
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1.1.3 Chain Transfer

Chain transfer takes place in FRP when an atom (normally hydrogen) is transferred

from the propagating chain end to a chain transfer agent (CTA), which can be;

monomer, polymer, solvent, initiator or other species deliberately added to affect

chain transfer.2 Chain transfer has a direct impact upon the degree of

polymerisation (DPn), lowering the DPn through prematurely terminating the

polymer chain before it reaches the kinetic chain length. Normally chain transfer in

FRP has no effect upon the rate of polymerisation, only reducing the DPn, although

some cases do exist to the contrary where the relative rates of propagation, chain

transfer and reinitiation lead to a decreased rate of polymerisation (Table 1.1).1

kp:ktr ka:kp Resulting Chain Transfer Effect on Rp Effect on DPn

kp>>ktr ka≈kp Normal Chain transfer None Decrease

kp<<ktr ka≈kp Telomerisation None Large decrease

kp>>ktr ka<kp Retardation Decrease Decrease

kp>>ktr ka<kp Degradative chain transfer Large decrease Large decrease

Table 1.1: Effect of chain transfer on rate of polymerisation, Rp and DPn of

resulting polymers based on the relative rates of propagation, kp, transfer, ktr and

reinitiation, ka. Adapted from reference.9

Chain transfer, although often an undesirable side reaction, can be harnessed

through the addition of specific chain transfer agents to control the DPn of a

polymer without having to add large quantities of initiator. Thiols are the most

commonly used chain transfer agent in FRP (with a Cs of 1-10, the highest value

among conventional CTAs), as they readily transfer hydrogen to propagating

species, yielding a saturated chain end and a thiyl radical. The thiyl radical is then

capable of initiating further polymerisation. The consequences of this form of chain

transfer are; the inclusion of additional functionality (not always desirable) and the
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steady consumption of the CTA. In the ‘Strathclyde methodology’ thiol CTAs are

pushed to their limit to mitigate the effects of the Norrish-Trommsdorff, or gel

effect (localised increases in the viscosity of a polymers solution leading to overall

increase in rate of polymerisation potentially causing gelation) in FRP in the

presence of vinyl and divinyl monomers.10-13

1.2 Catalytic Chain Transfer Polymerisation (CCTP)

Catalytic chain transfer polymerisation (CCTP) is a method of harnessing the

simplicity of FRP and controlling the molecular weight of the polymers produced by

enhancing the rate of chain transfer. This is achieved through the addition of the

highly effective cobalt (II) macrocycles as CTA, the most effective of which is CoBF

(or one of its derivatives). The benefits of this method include; its simplicity (as

demonstrated by its industrial uptake), the formation of vinyl end groups with near

to 100 % fidelity, allowing for exploitation of this functionality, and, due to the high

chain transfer constant of the CTA, only very small amounts of the benign CTA are

required (ppm levels).

1.2.1 Initial development

Catalytic chain transfer was first discovered by Boris Smirnov and Alexander

Marchenko in 1975 as a result of research into the use of transition metal

compounds to catalyse the redox decomposition of peroxy initiators in free radical

polymerisations.14-19 Co (II) porphyrins (Figure 1.1 - 1) promoted by Ponomarev

based upon the structure of Vitamin B12 (2) were discovered to be effective at

controlling and limiting the molecular weight of polystyrene and PMMA formed

from free radical polymerisation via chain transfer.20 The added benefit of this
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method was the very low quantities of catalyst required to achieve this relative to

the conventional chain transfer agents. 14,15,17 The chain transfer constant (Cs) for

(1) in the free radical polymerisation of methyl methacrylate is 2.4x103 compared to

~40 in the case of a thiol chain transfer agent.21

Figure 1.1: (1) Cobalt tetramethoxy hematoporphyrin-IX (shown without neutral

axial ligands) and (2) Vitamin B12 with corryn ring as opposed to porphyrin ring.15

Further work assisted by the Enikolopyan group led to an understanding of the

fundamental mechanism of reaction in 1977, this is discussed below.

Initial research in the USSR dealt with; catalytic inhibition by aprotic solvents,22

mechanistic investigations,22 the development of cobaloxime compounds (3) as

potent second generation chain transfer catalysts,23,24 investigation into the

structural basis of activity,25,26 and kinetic studies into the formation of low

molecular weight polymers and oligomers.27,28 Further commercial development
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was stymied by the issuing of a USSR patent detailing ‘for office use only’ in 1980,

restricting research to the institution of the researcher.23,29

Figure 1.2; Cobaloxime general structure (unspecified neutral axial ligands

denoted by L) (3), CoBF general structure (4).

Take up of the technique by DuPont under Steven Ittel led to the development of

patents for air stable CCTP catalysts based upon cobaloximes with BF2 bridging

ligands (CoBF) (4), allowing for the ready commercialisation of CCTP for

methacrylates and styrene.30-33

The initial stage of publications generated in the Russian literature went largely

unnoticed outside of Russia and further patents from this period also led to this

technique being ignored in the west for a number of years.15,16,18,19,34 The next stage

of the development of CCT was to occur through industrial development. Issues at

this point were encountered with the perceived unreactivity of CCTP

macromonomers and the narrow range of monomers accessible to the technique

(being limited to α-methyl substituted monomers and styrene). 

In the early 1990s interest in CCTP was revived through the use of CCTP oligomers

as addition-fragmentation chain-transfer (AFCT) agents for the formation of

telechelic and diblock polymers through free radical polymerisation (Scheme 1.4).35-

37
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Scheme 1.4; Alternative proposed pathways for reaction with CCTP ω-vinyl 

terminated polymers, showing addition fragmentation chain transfer and

propagation. Figure adapted from reference.14

The late 1990s through to the 2000s saw industrial interest increase and with this a

corresponding increase in academic publication. This can be seen through a range

of patents issued from companies such as the Glidden Paint company (which

became part of ICI/Dulux and now Akzo), DuPont and ICI/Zeneca Specialities (later

to become a part of DSM). Glidden’s patents demonstrate the use of cobaloximes

(4) as catalysts, however, the patent was quite narrow in that it made very limited

claims only to the parent cobaloxime (3).38 The narrowness of the claim was

exploited by DuPont who expanded upon the range of cobaloxime functionalities

available. In turn DuPont also made a similar mistake in not filing broad enough

claims and an “error” in the wording of their patents, where they claimed “R” in
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structure 4 as phenyl but not aryl, led to its exploitation by ICI/Zeneca who further

developed a range of compounds where R is a substituted phenyl (aryl).

The development of cobaloximes first explored analogues of 3 which proved to be

cheaper to produce and with a higher chain transfer constant (Cs 2x104).14 These

were soon replaced by cobaloximes with a BF2 bridge as opposed to a H bridge (4),

this once again increased the chain transfer constant (Cs 4x104) whilst at the same

time increasing the stability of the complexes to acidic hydrolysis and oxidation to

Co(III).27,31

The use of (4) increased the utility of the catalysts and CCTP has now been used in a

wide range of applications both in fine chemicals (rheology modifiers,39

macromonomers as hair care additives40, paint and coatings, automotive refinish,

ink-jet inks, contact lenses) and in industrial applications (thermoformed sheets of

MMA for sinks, baths and shower trays).41

1.2.2 Mechanism

There are three proposed mechanisms for catalytic chain transfer polymerisation, a

technique that has been found to be truly catalytic through the recovery of the

regenerated cobalt complex.15,16,18,19 Two of the three techniques are characterised

by activation of a substrate by the cobalt complex prior to attack by the monomer;

the third involves a sequential reaction of two species with the metal centre

(Scheme 1.5). The matter of contention between the three mechanisms is the

action of hydrogen transfer in the initiation of a new propagating radical chain.
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Scheme 1.5; Proposed mechanisms for CCTP. Where Rn and R1 are the polymeric

and monomeric radicals respectively, M is the monomer, LCo(II) is the cobalt

chelate CTA and Pn= is a polymer with unsaturated chain end. Adapted from

reference.15

The first proposed mechanism (1) requires the formation of an intermediate Co

complex through reaction with the propagating radical followed by hydrogen

abstraction from the monomer by the complex to give a new propagating radical

chain.28,29 This mechanism was tested, and although the initial step has been

observed, the mechanism is improbable as the monomer is not directly involved in

the hydrogen abstraction step.42 The second mechanism (2) involves using a

Michaelis-Menton-type mechanism akin to enzymatic action.16 This mechanism

shows a dependence of the rate of chain transfer upon the concentration of

monomer, which was quickly disproved.34,43 The third proposed mechanism (3)

involves the disproportionation of the Co catalyst with a polymeric radical, yielding

a Co(III) hydride followed by the reinitiation of a monomer to form a new
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propagating chain. Although the LCo(III)H has never been observed in context,

kinetic studies by Smirnov and co-workers,18,19 and, later work carried out by

O’Driscoll and Gridnev in combination with well documented work on cobalt

hydrides,27,44-46 have led to general agreement on this mechanism.15,42,47-50

As with conventional chain transfer, the effect of CCTP is to reduce the molecular

weight without reducing the rate of polymerisation in the reaction. It differs from

conventional chain transfer in that the CTA is recovered in the process and is

capable of reinitiating polymerisation, as a result the mechanism can be displayed

as a catalytic cycle (Figure 1.3).

Figure 1.3; Mechanism for catalytic chain transfer of methacrylates cobalt

complex COBF.

There still remain a few unexplained anomalies in the proposed mechanism, caused

by the difficulty of analysing the active species due to the paramagnetism of the

catalyst, rendering NMR difficult. One such anomaly is that it is considered unlikely

that hydrogen abstraction occurs via β-hydride elimination, rather that abstraction 
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occurs via a radical pathway, and, is supported by kinetic isotope experiments by

Gridnev.51

1.2.3 Monomer and Catalysts

Monomer

When considering CCTP, monomers can be split into two categories; active and

inactive species. Active species will invariably have an α-methyl group (the 

exception being styrene), holding a H-atom that can easily be abstracted by the

catalyst complex. The steric bulk afforded by the α-methyl group, allows for the 

Co(III)-C bond formed to be labile, resulting in hydrogen abstraction and the

formation of Co(III)-H and an ω-vinyl terminated polymer chain.52 Conversely,

compounds without an α-methyl group, have secondary propagating radicals and 

lack the easily abstractable H-atom. This lends itself to the formation of a relatively

stable Co(III)-C bond – even observable by MALDI-TOF,49 removing active catalyst

from the catalytic cycle and reducing the Cs of the catalyst in the system.16,24,53

When an H-atom is abstracted in these systems, it is abstracted from the backbone,

rather than an α-methyl substituent, leading to the formation of an internal, or 

backbone, vinyl bond, which is less active for further modification.

Catalysts

Functioning CCTP species are always low-spin cobalt(II) complexes with octahedral

geometry (Oh), made up of a macrocyclic tetra chelate ligand with square planar

geometry, leaving two axial coordination sites available for action of catalysis.15,21,54

Cobalt (II) complexes can exist in either the high- or low-spin (Figure 1.4),

depending upon the ligand – although no empirical reasoning has been found for
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why certain macrocycles with oxygen or nitrogen atoms bonding give high- or low-

spin complexes with respect to their effect upon the band gap of the complex.

Figure 1.4; d-electron configuration of d7 Co(II) complexes in low (left) and high

spin (right) states.

Catalyst development from vitamin B12 and the introduction of porphyrin ligands

(Figure 1.1) were quickly optimised, first with the development of cobaloximes (Cs =

2 x 104),21 and then the introduction of hydrolytic stability with a BF2 bridging ligand

(4, Figure 1.2).15,32,33 The new cobaloximes, with significantly enhanced hydrolytic

stability in oxygenated and aqueous solutions, allowed the facile utilisation of CCTP

industrially as the catalyst could be handled in its solid form in air, with the added

advantage of even higher activity (Cs = 4 x 104).14,27 Solubility and stability of the

complexes to different industrial applications can be tuned through the axial and

equatorial R groups of the ligands, further increasing the range of their

applications.15,27,55

Measurement of catalyst efficiency

The activity of a CTA for any given system (monomer, solvent, temperature, CTA) is

given by the chain transfer constant (Cs) – defined as the ratio of the rate of chain

transfer to the rate of propagation (ktr/kp).37,56,57 Conventional CTAs such as thiols

have a Cs value of 1-10 for methacrylates, whereas CCTP catalysts like CoBF will

typically have Cs values in the region 104 for methyl methacrylate, thus requiring



Chapter 1: Introduction; the synthesis of branched polymers via radical
polymerisation and the use of branched polymers in wound care hydrogels

17

significantly lower concentrations of CTA in order to afford the same effect upon

MW. In CCTP Mayo plots are often used as a measure of the purity of the catalyst –

due to the paucity of available methods of characterisation – relative to known

systems (homopolymerisation of MMA with CoBF, giving a Cs of 4 x 104).58

1
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Equation 1.1: Mayo equation, where DPn is the number average degree of

polymerisation in the presence of CTA, DPn
0 is the number average degree of

polymerisation without CTA, Cs is the chain transfer constant, [S] and [M] are the

concentration of CTA and monomer respectively.15

The Mayo equation (Equation 1.1) used for the calculation of Cs is carried out

through a series of polymerisations conducted across a range of ratios of CTA to

monomer, including one with no CTA present, and stopped at low conversion

(generally < 10 %), to avoid the effects of reduced monomer concentration and

termination. From this can be extracted a linear plot of 1/DPn vs. [S]/[M] yielding a

slope with a value of Cs and an intercept of DPn
0 for that system. This system holds

for all but very low DPn (< 20) when a modified Mayo equation (Equation 1.2) must

be used due to the significant effects of the formation of monomeric product.43
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Equation 1.2; Modified Mayo equation for low DP, where DPn is the number

average degree of polymerisation in the presence of CTA, DPn
0 is the number

average degree of polymerisation without CTA, Cs is the chain transfer constant,

[S] and [M] are the concentration of CTA and monomer respectively.15

Number average DP can be calculated either from Mn
SEC

, or by division of Mw
SEC by

two times the monomer mass. Mw should only be used for systems where the Ɖ is 
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approximately 2 due to a high rate of chain transfer – as is the case with CCTP. Mw

is conventionally used in this case due to the high susceptibility of Mn to baseline

deviation, so rendering lower accuracy.59-61

1.2.4 Applications of CCTP polymers

The development of CCTP has been intrinsically linked with its industrial

applicability due to the early realisation that it could be used to control molecular

weight in free radical polymerisations. However, there has been development from

an academic perspective which this section will briefly address, as the industrial

aspect has already been discussed in the historic overview.

CCTP-generated macro-monomers have found a variety of uses in the academic

field. CCTP macromonomers have been copolymerised with acrylics and secondary

radical-generating monomers to form grafts and combs.36 Methacrylate CCTP

macromonomers have been shown to act as CTAs through a β-scission addition-

fragmentation mechanism,37,62,63 which has been used in the case of CCTP α-methyl 

styrene dimers to control the MW of free radical styrene polymerisation.64 This

feature has also been used to control the polymerisation temperature in the UV

curing of dental resins.65 More recently the generation of CCTP macromonomers as

CTAs has been used to generate narrow Ɖ block copolymers in a technique dubbed 

sulphur free RAFT.66

Telechelic polymers have also utilised the β-scission addition fragmentation 

mechanism in its action upon a CCTP derived poly(2-hydroxyethyl methacrylate)

dimer as a CTA in the synthesis of α,ω-dihydroxy telechelic poly(methyl 
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methacrylate).67 This subject area has been comprehensively investigated in the

literature.21,37,67,68

Macromonomers have also been utilised in combination with RAFT to form grafted

architectures. Well defined polymer chains were formed by RAFT prior to

termination by CCTP, yielding ω-vinyl terminated macromonomers with low Ɖ. 

These polymers were then copolymerised with acrylic monomer to give comb-like

and star-like structures. Copolymerisation of a macromonomer with a difunctional

acrylic has been used to form core-cross-linked star structures for use as rheological

modifiers, where the hydrophilicity of the chain tunes the solubility of the structure

in different solvents.39

1.3 Branched Polymers

Polymer topology has an important impact upon a number of properties of

polymers.69 Branched polymers have garnered substantial interest over the past 25

years due to their potential as viscosity and rheological modifiers, as well as their

high level of functionality and their potential to impart increased solubility.1,70,71

These properties have seen them taken up for applications such as; coatings,

resins,72,73 viscosity modifiers, 74,75 biomedical applications and even drug delivery

devices.76,77
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Figure 1.5; General structure of macromolecules of dendritic (left) and branched

(right) architecture.

Branched species can be divided into two broad classifications; dendrimers and

branched/hyperbranched polymers (Figure 1.5). Dendrimers, which are

characterised as being perfectly symmetric, ideally monodisperse, macromolecules

are very appealing to biomedical applications due to their high peripheral

functionality,78,79 however, their highly demanding synthetic protocols often lead to

high costs which limit their applicability. Branched and hyperbranched polymers

offer a more facile route towards highly functional polymers that can be

synthesised by one-pot processes with relatively simple purification requirements,

although, at the cost of being less well defined. This thesis focusses upon the

synthesis and use of highly branched polymers, therefore the following sections will

focus upon synthetic routes towards these species.
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1.3.1 Synthesis of branched polymers

Scheme 1.6; General reaction scheme depicting single monomer methodology

self-condensation reaction of AB2 monomers.

Classical synthesis of branched polymers involves the use of ABx monomers under

Flory’s single monomer methodology, whereby A groups only react with B groups,

and the relative reactivities of groups A and B are equal (Scheme 1.6).80 This

technique theoretically has the advantage that if an ideal selectivity between A and

B monomers is maintained, then cross-linking should be impossible, however, the

reality is that cross-linking cyclisation and side reactions between B groups do

occur.81 Unfortunately, there are very few step growth monomers commercially

available that fulfil this brief. A double monomer methodology was also developed

whereby both homopolymerisation and copolymerisation of ABx+By monomers is

permitted, this allows for the introduction of additional functionality as well as the

tuning of the length of branching in the polymer and, therefore, the topology.
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In this work only radical polymerisation techniques are used in the synthesis of

branched polymers, as a result, non-radical approaches will not be considered

further. Step growth (as opposed to chain growth) methods are widely used and

have had extensive uptake industrially and academically. As a result there are a

number of comprehensive, contemporary reviews on the subject.70,82-87

1.3.2 Network formation

Due to the inclusion of multifunctional monomers, necessary for the formation of

branched polymers, the synthesis of cross-linked networks should be briefly

considered. An infinite polymer network (in which the MW tends towards infinity)

can occur through two main techniques when considering branched polymers. The

first is cross-linking during polymerisation, the second is through post-

polymerisation modification. These networks have found many varied applications,

and will be considered later in this chapter.

Flory80,88-92 and Stockmayer93 laid the foundations for the mathematical

consideration of cross-linked gel networks, treating the free radical formation of

networks as being analogous to the step polymerisation of multi-functional

reactants.1 Unfortunately, this theory failed to anticipate the role of cyclisation in

gel formation and so tended to over predict the gel point.

Definition of the point of gelation in conventional free radical polymerisation (in the

absence of a CTA) has been investigated in a range of radical polymerisations where

the concentration of the diene is typically kept below 1 mol %. Systems where the

reactivity of the mono and di-vinyl monomer are relatively similar include MMA-

EGDMA94,95 and styrene-divinyl benzene.96 In these systems, the reactivity of the
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two is assumed to be equal so that for an A + BB polymerisation, the extent of the

reaction ρ of A double bonds is equal to the ρ for B double bonds. The extent of the 

reaction can therefore be written as ρ[A] and ρ[BB], where the total concentration 

of reacted BB units is ρ2[BB]. The cross-link number is simply the number of fully

reacted BB units and the critical gel-point occurs when the number of cross-links

per chain is equal to 1/2 (Equation 1.3).1

�� =
[�] + [�]

[�]���

Equation 1.3; Gel-point, ρc, for radical polymerisation of monofunctional

monomer A, and difunctional monomer BB, where [A] is the concentration of A

vinyl bonds, [B] is the concentration of B vinyl bonds and ��m is the weight average

degree of polymerisation.

At very low concentrations of BB (< 0.1 mol %), this equation proves accurate, as ��m

is defined as the weight average degree of polymerisation for the

homopolymerisation of A. This equation shows extensive cross-linking in a MMA-

EGDMA co-polymerisation, with EGDMA (< 0.5 wt. %) occurring at 12.5 %

conversion.97,98 However, it is shown that calculated values underestimate ρc at

higher concentrations of divinyl monomer BB, this is because, as with the Flory-

Stockmayer theory, the equation does not take into account the effects of

cyclisation and the reduced reactivity of pendent functionality relative to free

monomer species.94,99,100 These studies all show that with even very low

concentrations of divinyl monomer, a cross-linked gel network should be formed.

Multiple strategies have been investigated to overcome these limitations, to allow

for the formation of soluble branched species, the chain growth varieties of which

will be discussed herein.
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1.3.3 Branched polymers by chain growth

Self-condensing vinyl polymerisation (SCVP) was first reported by Fréchet et al in

1995, immediately opening the door to the application of chain growth strategies

for the synthesis of branched, soluble polymers.101 These techniques included self-

condensing ring opening polymerisation (SCROP), chain transfer and, RAFT and

ATRP driven SCVP.71

1.3.3.1 Self-Condensing Vinyl Polymerisation (SCVP)

SCVP is a process in which a monomer of AB2 character, where the B2 character is

the vinyl group through which chain growth can occur and A is an activatable group

from which vinyl polymerisation can be initiated.71,87 Fréchet’s initial method

involved the polymerisation 3-(1-chloroethyl)ethenyl benzene in the presence of

SnCl4 to act as a lewis acid for the initiation of cationic polymerisation. This method

yields branched polymers, but also gives high Ɖ and gelation at long reaction times 

due to the non-living nature of the reactions, despite the use of ABx functionality,

for which no gelation should occur.102 This method was improved through

copolymerisation with traditional vinyl monomers, which allows for the tuning of

the degree of branching.103,104 SCVP has since been developed to accommodate

group transfer polymerisation (GTP),105,106 atom transfer radical polymerisation

(ATRP),107-109 nitroxide mediated radical polymerisation (NMP)107 and reversible

fragmentation polymerisation (RAFT)110,111 with additional control being imparted

through the use of these ‘living’ techniques.
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Figure 1.6; Influential monomers in the development of SCVP with living

polymerisation techniques.

SCVP-NMP was used to create hyperbranched and star polymers using monomer

with a polymerisable styryl group and an initiating/propagating moiety comprised

of a nitroxide linked to a benzylic carbon atom (5 in Figure 1.6). This led to a readily

cleavable N-O bond for the formation of a propagating radical. Development of

monomer structure led to nitroxides integrated into the branch points of the

material, creating weak points that can be cleaved to form macroinitiators for the

further polymerisation close to branching points (6 in Figure 1.6).112,113

SCVP-ATRP initially made use of 7 in the presence of Cu(I)Br, however, this was

found to produce predominantly linear polymers (Figure 1.6).108,114 It was

discovered that a constant concentration of Cu(I) was required for the formation of

branched structures, subsequently high concentrations of initiator and the use of

Cu(0) was used, allowing for the constant oxidation of deactivated Cu(II) species.115

This method has the benefit of not having a ‘weak’ point in its structure (unlike

SCVP-NMP and –RAFT). The use of halide initiating species in ATRP has also allowed

for the copolymerisation of fluorinated monomers for the formation of fluorinated

hyperbranched polymers.116
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SCVP-RAFT was first used for the polymerisation of monomer incorporating a

polymerisable dithioester (8 in Figure 1.6) to produce branched styrene polymers

with a weak dithioester bond.111 This weakness was disposed of when 9 was

applied, in which the dithioester group was on the chain end in the polymerisation

of NIPAM (Figure 1.6).117,118 Modification of this technique allowed for the synthesis

of block, hyperbranched polymers with stimuli responsive properties.110

1.3.3.2 Conventional Chain Transfer

To monomer or polymer

Conventional chain transfer can take the form of; transfer to monomer, polymer or

a chain transfer agent (CTA). The simplest method is to harness chain transfer to

monomer i.e. polymerisation through monomers with non-stabilised radicals, such

as ethylene or vinyl acetate.71 Many monomers, including acrylates, undergo chain

transfer, although at a reduced rate in CRP, leading to an insignificant amount of

branching.119,120 In order to promote chain transfer, thiol functionality – ubiquitous

to chain transfer - was introduced onto co-monomers for the copolymerisation of

styrene with vinyl benzyl thiol to give highly branched polymers.121 Unfortunately

such monomers are inherently unstable due to their liability to undergo Michael

addition from the thiol group to the electron poor vinyl group. An alternative route,

investigated by Rimmer and co-workers, involves the introduction of chain transfer

to a co-monomer, used in the polymerisation of N-vinyl pryrrolidinone and vinyl

acetate (10 in Scheme 1.7).122
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Scheme 1.7; Copolymerisation with a branching comonomer, (10), which transfers

via abstraction of the 2-propyl hydrogen during the polymerisation of monomers

that propagate via non-stabilised radicals. Adapted from reference.71

Although this route represents an economical and effective route to the production

of highly branched polymers, the lack of control over polymerisation and end

groups limits its applicability.

Control of multifunctional monomer polymerisations using a conventional CTA

Normally, free radical polymerisation in the presence of even very low

concentrations of di-functional monomers (e.g. ethyleneglycol dimethacrylate or

divinyl benzene) would yield an insoluble, cross-linked network, with the cross-

linking concentration per chain exceeding unity.98 However, the application of thiols

as a CTA enables the copolymerisation of mono-vinyl monomer with low

concentrations of multi-vinyl monomers in a route now commonly known as the

“Strathclyde methodology” after the institution in which it was conceived by

Sherrington et al. (Scheme 1.8).13,123-128 The Strathclyde route occurs through a

reduction of molecules produced per kinetic chain length, thereby delaying the
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onset of gelation in free radical polymerisation in the presence of a multi-vinyl

monomer. This route provides a facile, cost-effective route to branched polymers,

yielding (some) polymers with thiol functionality. This method can also be used to

synthesise branched polymers in emulsion,129 however, there are multiple adverse

challenges described herein. The malodorous and toxic thiol CTA is non-catalytic

and so has to be used at equivalent concentrations, the degree of branching is

limited to low concentrations of multi-functional polymer meaning that truly-

hyperbranched polymers are not accessible. In addition to this the process is

limited to resonance stabilised, electron-deficient monomers as the thiol would

quench non-stabilised radicals.128 Finally, despite imparting thiol functionality, this

is not universal as this is only imparted to an optimum of 50 % of the chains, as

each chain transfer event will also terminate a chain with a hydrogen atom.

Scheme 1.8 ; Synthesis of branched vinyl polymer through copolymerisation of a

mono- and a di-vinyl monomer and chain transfer agent through the Strathclyde

route. Adapted from reference.71

Polymers produced by the “Strathclyde methodology” give poorly defined Ɖ and 

poor control over terminal functionality. In the work described in this thesis, a

similar FRP process is used with the application of a catalytic chain transfer agent
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(CCTA) to synthesise branched species with high vinyl functionality for application

as cross-linking agents in wound care materials.

1.3.4 Branched polymers by CCTP

Investigations into the synthesis of branched polymer by CCTP began in the 1980s

with the attempted homopolymerisation of triethylene glycol dimethacrylate

(TEGDMA) using a cobalt(II) hematoporphyrin tetramethyl ester complex as the

CCTA. Although soluble oligomers were observed, the resulting polymers were

inconsistent and were not fully characterised.130 This first attempt was followed by

the filing of a patent in 1986 by Abbey using TEGDMA and a Co(II) catalyst in situ,

unfortunately too much catalyst was used, resulting in mostly linear polymers.38,131

Over a decade later Guan published his first patent in this area for E.I. DuPont

Nemours and company in 1998, detailing homopolymerisation of a multitude of

different di- and tri-vinyl monomers as well as their copolymerisation with a range

of different mono-vinyl monomers.132 This was followed a number of years later by

its publication in the academic literature, where the polymers produced were noted

for their low solution viscosity, high vinyl group concentration and the monitoring

of the molecular weight through multi-detector SEC, in particular viscometry.133 A

mechanism of trimerization followed by cascade branching was also proposed at

the same time (Scheme 1.9). A subsequent paper showed good control over the

process and topology through a directly proportional increase in the Mw of the

polymers with increasing branching.69
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Scheme 1.9; Proposed mechanism for CCTP of EGDMA through cascade branching

postulated by Guan,133 leading to the formation of vinyl terminated polymers.

Work conducted around the same time by Sherrington et al. from the University of

Strathclyde, Viscotek and Ineos Acrylics compared the ‘Strathclyde methodology’ to

CCTP through the copolymerisation of MMA with tripropylene glycol diacrylate

(TPGDA). This work showed that the polymers produced by CCTP increased in Mw

with decreasing concentration of CCTA but the Mn did not. This, they reasoned, was

evidence of backbiting rather than branching.13 At a similar time a set of Russian

papers were released in which a Co(II) prophyrin complex was used to inhibit the

onset of the gel effect in the copolymerisation of styrene with dimethacrylates.134

This was followed by an attempt to use the alkyl substituent chain length of the
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methacrylate monomer to control polymerisations in bulk by hindering the radical

chain end, this ultimately only ever produced uncontrolled reactions.135,136

Further investigations by Sherrington, comparing CCTP to the ‘strathclyde

methodology’, concluded that the formation of insoluble polymers was due to the

occurrence of backbiting cyclisation reactions, postulating that greater control was

exhibited in the case of the ‘strathclyde methodology’.127 In this study the radius of

gyration, g’, was used to show the difference in branching, however, higher

concentrations of divinyl monomer were used in the ‘Strathclyde methodology’ and

so showing a higher degree of branching.

In 2006 Kurmaz published the homopolymerisation of EGDMA and other di-vinyl

monomers by CCTP.137 This work was subsequently affirmed by publications issued

by Haddleton, McEwan, and Smeets. Haddleton et al. published the

homopolymerisation of EGDMA followed by its functionalization by thiol Michael

addition, confirming the presence of a significant degree of branching within these

materials.138 Smeets then published a similar study functionalising pEGDMA

through reductive amination to form core-crosslinked, functionalised micelles.139

Both of these pieces of work were accompanied by multi-detector SEC, indicating

the formation of a high degree of branching, and, NMR and post-polymerisation

functionalization indicating high concentrations of vinyl functionality.
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1.4 Hydrogels

1.4.1 Definition and Classification

Hydrogels are swollen polymer networks derived from hydrophilic monomers

which, can retain very large volumes of water relative to their weight, yet remain

insoluble due to the presence of crosslinking; they also are characterised as being

soft and rubbery (as opposed to brittle and glass-like), with high flexibility (strain at

break) and low stiffness (modulus) in their material properties.140-142 These cross-

linkers can take one of two forms; chemical (or covalent) and physical crosslinking.

In simple, single component networks (monoliths) chemical cross-linked systems

are characterised as being tough (the ability to absorb relatively large amounts of

energy without fracturing) with greater consistency yet no self-healing properties.

Physical hydrogels are generally weaker due to being held together by inter-

molecular forces such as; ionic, Van-der-Vaals and hydrogen bonding. However,

physical gels have the capacity for greater stimuli responsive and self-healing

behaviour.143,144

Figure 1.7; Categorisation of a hydrogel network (left) as either a chemically (top

right) or a physically (bottom right) cross-linked network.

Hydrogels can be further defined according to the source of the monomeric units

into natural or synthetic networks. Since their initial development, hydrogels have
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been used in wound care dressings due to their abilities to absorb very large

volumes of fluids and contain water soluble active ingredients for delivery.141 The

focus of this project has been the development of a hydrogel for the purposes of

chronic wound care treatment.

1.4.2 Complex multi-component networks

Single network hydrogels characteristically have poor mechanical properties and

slow response to swelling, one method for enhancing these characteristics is to

form ‘alloys’ of different networks or inter-penetrating networks (IPNs). IPNs are

combinations of two (or more) cross-linked polymer networks, where at least one

of the networks is cross-linked or polymerised in the presence of the other.145-147

IPNs can be defined by their method of synthesis into; simultaneous IPNs –

synthesis simultaneously by orthogonal routes, or sequential IPNs – where a single

network is swollen into a solution, containing the second network’s monomer,

initiator with or without cross-linker prior to cure.145-148 When a cross-linker is

present for each network, then a fully-IPN results, if one network is without a cross-

linker, the network is defined as being a semi-IPN as the linear polymers are

considered to be embedded in the second network.149,150 These linear polymers can

in some cases be further selectively cross-linked to form fully-IPN.151,152 There have

been a wide range of IPNs developed utilising natural polymers including:

alginate,153-155 chitosan,156-158 starch,159,160 cellulose,161,162 gelatin,163,164 and silk

fibrin among many others,165,166 however, these materials demonstrate a high

degree of variability on the molecular level leading to them being difficult to
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reproduce consistently. These materials lie outside of the field of interest of this

thesis, as this investigation is concerned with purely synthetic IPNs.

Synthetic IPNs are made up of two synthetic networks, unlike networks that include

natural species, these materials are entirely reproducible, and can be tailor

designed and made.145 Natural hydrogels suffer from variations in properties due to

the inherent inconsistency of the monomeric units with respect to their structure.

Synthetic IPNs can be divided into two categories according to composition; entirely

non-ionic networks,167-169 and ionic IPNs, where one or both of the networks are

cationic,170,171 anionic172,173 or ampholytic.174,175 Synthetic networks have seen

applications in a variety of fields.

Both synthetic and natural IPNs have seen application in the field of wound care

dressings, IPNs with natural polymers make up the massive majority of these

materials, however, these sit outside of the remit of this work. Synthetic IPNs have

seen some development over the past two decades both industrially,176-179 and

academically,180-189 these materials have focused upon having a mildly hydrophobic

layer and a hydrophilic layer,180,187 with many attempting to incorporate

environmental stimuli responsive behaviour such as pH, temperature181,182 or

both.183,184 Most of the networks developed involve the use of a polyurethane layer

due to the ability to form mechanically tuneable and biocompatible sheets,

allowing for easy, sequential synthesis of an IPN through the use of polyurethane

sheets as the first network.176,177,181-185,190 Work in this thesis has attempted to take

this premise in combination with the biocompatible monomer 2-acrylamido-s-
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methylpropane sulfonic acid (AMPS) to form mechanically robust, mildly adhesive,

rapidly absorbent materials for a wound care application.

1.4.3 Branched polymers in hydrogels

Branched polymers are highly appealing species for inclusion into networks, this can

be attributed to their simple one pot synthesis, lack of chain entanglements, and,

high concentration of functional groups at the periphery, making them suitable for

further reaction and cross-linking.191 Branched polymers can be incorporated into

hydrogels as macromonomers through two mechanisms; physical non-covalent

attachment to form a supramolecular network,192 or through covalent bonding, to

act as permanent cross-linkers within an extended network.

Physical ‘supramolecular networks’ have been widely researched, affording the

benefits of being easily self-healing193-196 and stimuli-responsive197-199 due to the

transient nature of the cross-linking system which can occur through any

combination of; hydrophobic,200 hydrogen bonding,194 electrostatic interactions,201

host-guest interactions202 and metal coordination.203 These materials have seen

widespread research in the biomedical field204 as well as in drug delivery,205 3D

printing,206 oil recovery207 and tissue engineering.208

Development into the covalent inclusion of hyperbranched polymers into polymeric

networks has seen extensive application-driven research.209 Most of the research

has centred upon biomedical applications such as tissue engineering,210-213 drug

delivery,210 dental composites214 and biodegradable materials.215-217 Due to the

ease of synthesis of hyperbranched polymers (relative to dendrimers) a number of

commercial hyperbranched polymers have been developed and much of the recent
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research has centred upon the modification and application of these polymers.

Some of the favoured products include; Boltorn™ – a polyester,211,212,214,218

Hybrane™ – a polyesteramide,211,212,214 polyglycerol – a polyether210 and Epox™ – a

polyamide.214 Of particular interest to this work are examples making use of either

implicit vinyl functionality219 or branched polymers modified to give vinyl

functionality,210-214 and subsequently applied in free radical polymerisation.

In 2001 the research group of Carl-Eric Wilen investigated the copolymerisation of

unsaturated hyperbranched polyesters with styrene, vinyl acetate and methyl

methacrylate respectively. In this work it was found that due to solubility issues

vinyl acetate forms a biphasic system resulting in a lack of gelation, styrene forms

stars and weak gels, and, methyl methacrylate forms entangled and cross-linked

networks at higher concentrations of branched polymer than conventional cross-

linker. This was attributed to the lower solution viscosity caused by the branched

polymers, also allowing for a higher degree of conversion prior to gelation.219 In

2006 Hennink et al. functionalised hyperbranched polyglycerol with methacryoyl

groups and compared the effects of photo and thermal curing systems upon these

networks, finding excellent conversion and tuneable mechanical properties relative

to the degree of functionalization.210 A similar strategy was employed by Peinado et

al. in the photopolymerisation of functionalised polyesters and polyesteramides to

give methacrylate based networks with tuneable mechanical properties.211,212

Khademhosseini et al. tuned the functionality of polyesters in homo-

photopolymerisation to yield tuneable morphology and structural properties for the

controlled encapsulation and release of model drug dexamethasone acetate.213
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Most of these techniques require the post-synthetic modification of branched

polymers to give vinyl-terminated species. One of the benefits of CCTP is that highly

branched polymers can be produced in a one-pot synthesis with ω-vinyl end group 

functionality at very high fidelity.133,138 The work in this thesis aims to harness the

techniques described above to incorporate highly branched CCTP produced

methacrylate polymers into hydrogels as novel gelators.

1.5 Introduction to Hydrogels in wound healing

devices

1.5.1 Wound Healing Cycle

A wound can be defined as a situation when the integrity of any tissue is

compromised, whether that be a simple break in the epithelial layer or deeper

damage to subcutaneous tissue such as muscle, vessels, organs and bone.220

Wounds can follow two principle routes – the acute wound healing process through

which a wound will repair itself, or the chronic process whereby the wound fails to

progress through the regular stages of the healing process.

1.5.2.1 Acute wounds

Acute wounds are often classified as taking 5-10 days, or within 30 days to heal and

result in both functional and anatomical restoration. These wounds are

conventionally caused by loss of tissue or surgical procedure.221,222
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Figure 1.8; Acute wound healing cycle going through the phases of hemostasis,

inflammation, proliferation and maturation after trauma with a chronic wound

shown.223-225

The wound healing process is a continuous process divided up into arbitrary stages

to enable identification of the physiological processes occurring in the damaged

tissue.226 The process involves a cascade of precisely regulated steps, with chemical

and biological species appearing and disappearing at different stages.227,228 The

processes are combined into four time-dependent phases: (i) coagulation and

haemostasis, (ii) inflammation, (iii) proliferation and (iv) the extended process of

wound remodelling or maturation (Figure 1.8).

Haemostasis and coagulation take place in the wound immediately after the event

of injury, with the primary aim of preventing exsanguination through the creation

of a clot.220 Initially an insoluble plug made of fibrin is deposited; this process is

regulated by endothelial cells and thrombocytes to facilitate later stages of the
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process,221,229-231 and is aided by temporary vasoconstriction prior to passive

relaxation by hypoxia and acid hydrolysis.232 When platelets come into contact with

exposed collagen, clotting factors are released which cause aggregation of fibrin,

fibronectin, vitronectin and thrombospondin. This clot later forms the matrix

necessary for cell migration.221,230,231,233

Inflammation aims to form an immune barrier against the invasion of

microorganisms and is divided into an early (24 - 36 hours) and later phase (48 - 72

hours).220 In the early phase, neutrophil infiltration acts to prevent infection

through phagocytosis in order to maintain a bacterial balance in the wound site.

Neutrophils are attracted after injury by chemoattractive agents released by

platelets and bacteria, whereupon they adhere to endothelial cells, moving with the

blood flow and releasing proteolytic enzymes and oxygen derived free-radicals.

Once all contamination has been removed, neutrophils are extruded from the

wound site as slough and any remaining cellular fragments are broken down by

macrophages. In the later phase, macrophages are attracted to the wound site by

chemoattractive agents and continue the process of phagocytosis. Macrophages

also act as regulating cells, releasing tissue growth factors and other mediators,

encouraging the activation of fibroblasts and endothelial cells. Lymphocytes are

then attracted and serve an important role in collagenase regulation for collagen

development and the construction (and degradation) of the extracellular matrix.

Proliferation is primarily concerned with tissue repair, lasting about two weeks

from the third day of repair. During this phase a newly synthesised extracellular

matrix is deposited to replace the scab made of fibrin and fibronection, whilst at
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the same time undergoing fibroblast migration. This manifests itself as extensive

tissue granulation, but there are a number of processes occuring, as briefly

discussed herein. Fibroblast migration occurs through the proliferation of

fibroblasts to produce matrix proteins. Within a week enough ECM has been

generated and fibroblasts change phenotype to myofibroblasts and extend

pseudopodia to attach to fibronectin and collagen, causing wound contraction

followed by their apoptosis. Collagens, synthesised by the fibroblasts at this stage,

impart structure and rigidity within the ECM and are crucial to the final stage of

remodelling. Angiogenesis and remodelling is the process of growth and

development of blood vessels and tissue within the ECM. This occurs through the

creation of chemical concentration gradients so that the cells can move down

concentration gradients through chemotaxis. Cell mobility in this fashion requires

three actions: protrusion at the cell front, adhesion to attach the actin cytoskeleton

to substratum and finally traction allowing the cell to be propelled forward. The

final component of proliferation is epithelialisation – the growth of the external skin

layer through the migration of cells across the surface, followed by rapid mitosis to

create a new skin barrier on top of the wound site.

The final stage of recovery is the remodelling or maturation stage, this phase can

last up to 2 years (sometimes longer) and is responsible for the development of the

new epithelium and scar tissue. This process leads to an increase in the diameter of

collagen bundles, degradation of hyalauronic acid and fibronectin, causing an

increase in the tensile strength of the ECM. The matrix and collagen are gradually

remodelled from a highly disorganised, mechanically weak network through cyclic

degradation and synthesis to create an organised structure with higher density.
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Capillary growth continues and the density of fibroblasts and macrophages

decreases by apoptosis until a conclusion of steady state is reached at which blood

flow is reduced, cell count is diminished and a functional scar tissue covers the

wound site at roughly 80 % functionality relative to the original tissue.

1.5.2.2 Chronic wounds

Chronic wounds develop as a result of the normal (acute) wound care processes

breaking down, with a simple definition as being a break in the skin of long duration

(> 6 weeks) or frequent recurrence.234-236 With chronic wounds this process is

prolonged at one of these stages – usually inflammation - and the wound ceases to

heal. This is often due to infection, tissue hypoxia, release of excessive amounts of

inflammatory cytokines or, large levels of exudates, and is often accompanied by

further underlying medical issues.220,237 These conditions cause the wound to

regress and the inflammatory stage to be exaggerated, causing the perpetuation of

a non-healing state. These wounds proceed in an uncontrolled manner and

frequently lead to poor functional and anatomical recovery with relapse being

commonplace.220,238

1.5.3 Hydrogels as chronic wound care dressings

1.5.3.1 Chronic wound care

In 1960, after millennia of ignorance,239 the western world accepted that a moist

environment was critical for wound recovery.240 Moisture-retentive occlusive

wound-dressing environments were found to have twice the healing rate as

wounds left exposed to air.240 In contrast it was found that dry wound healing

environments caused further significant tissue death.241 Since the seminal



Chapter 1: Introduction; the synthesis of branched polymers via radical
polymerisation and the use of branched polymers in wound care hydrogels

42

publication by Winter, further, overwhelming evidence has accumulated and a

number of polymer based wound dressings have been designed and

commercialised to manage the wound environment (Table 1.2).239,242 These

dressings are shown to increase the rate and degree of re-epithelialisation,243

stimulate collagen synthesis,244 promote angiogenesis245 and relieve pain.246,247

Occlusive dressings create an effective barrier against external contaminations and

the ingress of foreign bodies. This significantly reduces infection rates relative to

non-occlusive dressings,248 with some materials having the added benefit of

reducing the pH of wound bed, therefore, making it inhospitable to microbial

growth.243

The ideal chronic wound dressing would be able to: remove excess exudate,

maintain a moist environment, protect against contaminant, cause no trauma upon

removal, leave no debris in the wound bed, relieve pain, provide thermal insulation

and induce no allergic reactions.249,250 Due to the complexity and range of types of

chronic wound, there is no single ‘ideal wound dressing’ material, however, a range

of different materials have been developed, each with a distinct profile for the ideal

environment of application, duration and weaknesses (Table 1.2).
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Product Advantages Disadvantages Indications Comment

Gauzes Inexpensive,
Accessible

Drying,
Poor barrier

Packing deep
wounds

Change every
12-24 hours

Films Moisture-
retentive
Transparent
Semiocclusive
Protects
wound from
contamination

No Absorption
Fluid trapping
Skin stripping

Wounds with
minimal
exudate
Secondary
dressing

Can leave in
place up to 7
days or until
fluid leaks

Hydrogels Moisture-
retentive
Nontraumatic
removal Pain
relief

May
overhydrate

Dry wounds
Painful
wounds

Change every
1-3 days

Hydrocolloids Long wear-
time
Absorbent
Occlusive
Protects
wound from
contamination

Opaque Fluid
trapping Skin
stripping
Malodorous
discharge

Wounds with
light to
moderate
exudate

Can leave in
place up to 7
days or until
fluid leaks

Alginates and
hydrofibers

Highly
absorbent
Hemostatic

Fibrous debris
Lateral wicking
(alginates
only)

Wounds with
moderate to
heavy exudate
Mild
hemostasis

Can leave in
place until
soaked with
exudate

Foams Absorbent
Thermal
insulation
Occlusive

Opaque
Malodorous
discharge

Wounds with
light to
moderate
discharge

Change every
3 days

Table 1.2; Summary of basic wound dressings. Adapted from reference.236

1.5.3.2 Hydrogels in chronic wound care

Hydrogels are defined as polymer networks swollen into an aqueous solvent, as a

direct result of this composition they are intrinsically capable of maintaining a moist

wound-healing environment.236,251 These materials are reported to be suitable for

wounds with low levels or no exudate such as: necrotic wounds, pressure ulcers,

burn wounds and dry chronic wounds.252,253 Use in wounds with high levels of

exudate can cause maceration of the damaged tissue (peri-wound tissue).254
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Hydrogels promote autolytic-debridement (a non-invasive removal of damaged

tissue) of slough and necrotic tissue through the rehydration and subsequent

separation of the damaged material from healthy material, this means debridement

can occur in patients where a ‘sharp’ debridement is not feasible.255 The low

adhesion associated with hydrogels allows for easy, painless removal with minimal

trauma to the wound bed. Hydrogels also benefit from having a cooling effect,

which is reported to give significant pain relief.256,257 Some examples of

commercially available hydrogels include; Intrasite™, Nu-gel™, Aquaform™

polymers, sheet dressings, hydrogel impregnated gauze and water based gels.

In this thesis a number of monolithic networks are studied and the effects of the

addition of branched polymers synthesised by CCTP are monitored with respect to

the material properties of the resulting networks. Beyond this a synthetic IPN is

studied in terms of its material properties with a wound care application in mind.
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2. Synthesis of Water Soluble Branched Polymers via

CCTP

This chapter investigates the synthesis of linear and branched hydrophilic polymers

prepared from MAA, PEGMEMA and relatively high concentrations of the cross-linker

EGDMA by Catalytic Chain Transfer Polymerisation (CCTP).1-3 Initially the theory of

branched polymers and the analysis of non-linear species by multi-detector SEC are

reviewed through the application of Universal Calibration generated by the coupling of

refractive index and viscometry detectors.4,5 This is followed by a presentation of

alternative methods for the analysis of branched polymers by techniques including

NMR and GC-FID.

Solution polymerisation was used to synthesise low MW linear polymers of MAA to act

as a standard for the synthesis and characterisation of low MW copolymers of MAA

and EGDMA.2,6 As investigations progressed to the synthesis of PEGMEMA branched

species, linear analogues are presented to form a standard for analysis of the branched

materials produced.
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2.1 Characterisation of branched polymers

2.1.1 Application of SEC to branched polymers

Branched and hyperbranched polymers where the branching is irregular represent a

significant analytical challenge. The irregular spacing of the branching points renders

the use of 1H NMR to determine conversion and degree of polymerisation through the

integration of backbone hydrogen environments challenging. Therefore a number of

different techniques are used to characterise these materials.

Conventional size exclusion chromatography (SEC) depends upon developing a

calibration from the peak molecular weights (Mp) of calibration standards with low

dispersity (Ɖ) of a range of molecular weights, these are then used to produce a plot of 

log molecular weight (log M) vs. retention volume (VR).7 A polynomial fit of the

calibrants across the molecular weight region allows for the calculation of the MW of

samples according to their VR.

Conventional SEC is ideal for the analysis of materials with a linear architecture that

have minimal interaction with the stationary phase. Unfortunately, it has substantial

flaws when it comes to the analysis of non-linear materials where the relationship

between MW and VR is less uniform.8,9 As the separation in SEC is not dependant on

MW but rather the hydrodynamic volume (Vh) of the polymer molecule, the calibration

standards would ideally be of the same architecture and composition as the sample, as

both of these variables have a significant impact upon Vh.7,8 As it is not always possible

to procure linear standards of a given polymer, or practical to expend large amounts of

time and resources synthesising them, most molecular weight values reported in the
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literature are apparent values relative to PS, PMMA or PEO calibrations, yielding mere

approximations of the real MW.

As, in this work, structures with varying degrees of branching and functionality but

similar MW are compared and, since these would have significantly different and

incomparable VR, other detectors are required in order to gain accurate results.8,9 Two

techniques widely used for this are; universal calibration and triple detection – both

make use of two or more detectors.5,10 Universal calibration makes use of a

concentration sensitive differential refractive index detector and viscometer, whereas

triple detection also makes use of light scattering in addition to those previously

mentioned. Unfortunately light scattering is inherently insensitive at low molecular

weights, due to low minimal scattering from smaller chains, triple detection is not

suitable in this instance and will not be discussed further.5

2.1.2 Universal calibration and triple detection SEC

Universal calibration as a method was first developed by Grubisic et al. in 1967 and

was established as a suitable method for the comparison of polymers of differing

functionality, topography and architecture.5 As mentioned above, universal calibration

makes use of two detectors – a concentration-sensitive detector (usually a differential

refractive index, DRI) and a viscometer (VISC). The assumption is that separation by

SEC is solely reliant on Vh, which is related to intrinsic viscosity (IV) and molecular

weight by the Einstein viscosity law (Equation 2.1).
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[�] = �
��
�

Equation 2.1; Einstein viscosity law where [η] is intrinsic viscosity, Vh is

hydrodynamic volume, M is molecular weight and K is a constant independent of

polymer structure in value.

Equation 2.1 shows that Vh can be described as the product of intrinsic viscosity [η] 

and molecular weight M, meaning that using log[η]M (as opposed to logM in 

conventional SEC) vs Vh would yield a universal calibration curve, shown convincingly

to be valid for non-linear polymer topologies as well as alternative functionalities

(Figure 2.1).

Figure 2.1; Universal calibration plot of log[η]M vs elution volume and its application 

to a number of architectures and functionalities. Adapted from reference.5

The viscometry detection used in the universal calibration can also be used to generate

Mark-Houwink plots which allow for a plot of log [η] vs. log MW Equation 2.2, the

gradient of which is α, this can provide a qualitative insight into the polymer

architecture. Furthermore, this is useful for qualitatively comparing branching as
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branched materials have a lower VR and, therefore, should have a lower [η] across any 

comparable MW range.

� = �[�]�

���� = ���� + � ���[�]

Equation 2.2; Mark-Houwink equation where M is molecular weight, [η] is the 

intrinsic viscosity and, K and α are the Mark-Houwink constants (top), log form of 

Mark-Houwink equation used in Mark-Houwink Plots (bottom).4

Equation 2.2 gives a simple, qualitative method for analysing the degree of branching

in a polymer relative to a linear standard; consistently branched polymers would

expect to see a lower IV across the whole of their molecular weight compared to a

linear equivalent due to consistently having a lower value of VR.4

The Mark-Houwink exponent α is derived from the slope of a Mark-Houwink plot 

(Equation 2.2), and gives an indication of the solvated conformation of the polymer in

a θ solvent – that being the solvent in which a polymer acts as an ideal chain (when the 

chemical potential of mixing between the solvent and the polymer chain is zero). The α 

value is related to the fractal dimensions (df) of the polymer or its level of complexity

relative to its dimensions. High α values approaching 1, are associated with low df

values, and symbolise a rigid rod conformation. Low α values approaching 0, are 

associated with high df values represent a hard sphere conformation (Table 2.1).4
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Architecture Fractal dimension

df

Mark-Houwink

exponent α 

Rigid rod 1 -

Linear random coil

(good solvent)
1.67 < df < 2 0.5 < α < 0.8 

Linear random coil

(ϴ conditions) 
2 0.5

Random branching

(good solvent)
2 < df < 2.27 0.33 < α < 0.5 

Random branching

(ϴ solvent) 
2.27 0.33

Hard sphere 3 0

Table 2.1; Relationship between fractal dimension, Mark-Houwink exponent α and 

polymer architecture.4

Linear polymers usually assume a random coil conformation, with value of α greater 

than 0.5, giving a constant increase in IV with increasing molecular weight. Increasing

the degree of branching within the same molecular weight region as the linear sample

would be expected to cause a decrease in the value of α (trending towards zero), as 

increasing the molecular weight would have less of an impact upon the value of VR and

the IV. If the value of α in a sample trends towards zero then this is indicative of a 

material acting more like a hard sphere and, therefore, more likely to have a significant

degree of branching.

2.1.3 Semi-quantitative descriptions of branching by SEC with

viscometry detection.

The mean-squared radius of gyration (Rg
2) is a representation of the chain size of a

polymer in solvent. Zimm and Stockmayer theorised that the Rg
2 would decrease with

increasing degrees of branching in polymers of the same molecular weight and,
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associated this reduction with the contraction factor, g.11,12 This is defined as the ratio

of radius of gyration of branched to linear polymers at the same molecular weight

(Equation 2.3).

� = �
���

��
�

������

�

�

Equation 2.3; Contraction factor g, where B and L denote the mean-square radius for

branched and linear samples, respectively. Subscript M means the branched and

linear species are of the same molecular weight.

Radius of gyration can only be measured by multi-angle light scattering (MALS), which

doesn’t give accurate results at low MW. Zimm and Klib discovered a contraction

factor (g’) could also be measured by viscometry detection and is defined as the ratio

of intrinsic viscosity of branched and linear species of the same molecular weight

(Equation 2.4).13 This does not give the same result as the contraction factor derived

from the radius of gyration, nor does it equate to intrinsic viscosities derived from

branched and linear species of the same retention volume. As a result, this technique

must be used in combination with universal calibration.

�� = �
[�]�
[�]�

�
�

Equation 2.4; Contraction factor g’ given as a ratio of the intrinsive viscosities ([η]) of 

branched (B) and linear (L) species at the same molecular weight (M).

This method cannot be used to generate absolute branched numbers, but it is able to

give an indication of the relative degree of branching in a series of branched polymers

relative to a linear species of the same functionality.14,15 Linear polymers will have a g’
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value of 1, therefore deviation from linearity caused by branching, generates a lower

value in g’.

2.2 Synthesis and optimisation of branched acid

polymers

2.2.1 Linear MAA homo-polymerisation and pseudo-mayo plots

Scheme 2.1; Catalytic chain transfer polymerisation of MAA in the presence of CoBF

Before synthesising branched polyacids, homo-polymerisation of MAA (Scheme 2.1),

was conducted in order to ascertain the chain transfer constant (Cs) of the

monomer/catalyst system according to the Mayo system (Equation 2.5). This is a

measure of the effectiveness of the chain transfer agent within the system. In order to

obtain this information, a mayo plot is constructed by conducting a series of

homopolymerisations at different catalyst to monomer ratios and stopping the

reaction at very low conversion (< 10 %) in order to gain a sample before termination

begins to affect the molecular weight.16-18 The slope of the resulting curve of 1/DP vs

[CoBF] / [MAA] yields the Cs for this particular system (Figure 2.2).

1

���
=

1

���
� + 	��

[�]

[�]

Equation 2.5; The Mayo equation – DPn is the degree of polymerisation, DPn
0 is the

degree of polymerisation with no CTA, Cs is the chain transfer constant for transfer to

CTA, [S] is the concentration of CTA and [M] is the concentration of monomer19
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Reaction [CoBF]

(mol)

[CoBF] / [MAA] Conversion

(%)a

Mw

(gmol-1)b

1/DP

1 1.28 x 10-4 6.00 x 10-5 5 2400 0.036

2 7.67 x 10 -5 4.88 x 10-5 3 3200 0.027

3 5.98 x 10-5 3.13 x 10-5 5 3900 0.022

4 2.99 x 10-5 1.56 x 10-5 7 6200 0.014

Table 2.2; Data for homopolymerisation of MAA, with varying [CoBF]/[MAA] ratios

used to construct a Mayo plot (Figure 2.2).a Measured by GC-FID. b Measured by

conventional SEC-DRI, with 2 x PLgel mixed D columns, calibrated with pMMA

standards, with DMF (5 mmol NH4BF4) as eluent.

Figure 2.2; SEC traces of pMAA homopolymers at different [MAA]:[CoBF] stopped at

low conversion (left). Pseudo-Mayo plot of 1/DP against [CoBF]/[MAA] ratios for

pMAA homopolymers (right).

A linear relationship between the reciprocal of degree of polymerisation and the CoBF

to monomer molar ratio can be observed from the pseudo-Mayo plot (Figure 2.2). The

resulting low value of the Cs can be attributed to the high rate of catalyst hydrolysis

caused by the presence of high concentrations of acid; this removes much of the

catalyst and so reduces its effectiveness in the reaction solution.2,20-22 This value is
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much better than a comparable system using a CoII chain transfer agent without the

BF2 bridging groups as these catalysts are far more susceptible to hydrolysis, even in

the solid form.2,19,21,23 The value obtained is comparable to that obtained previously by

Haddleton et al. in 2001 for pMAA, and shows that the catalyst is undergoing chain

transfer.2 The value of 1/DPn,0 was found to be 0.005 which translates to a DP of 200,

when factoring in that the ratio of monomer to initiator is 530:1 and, allowing for the

effects of reduced chain length due to chain transfer to monomer and solvent, this is a

realistic 1/DPn,0. Having defined the Cs of the catalyst in the system, this was used as a

starting point for the addition of a di-vinyl monomer to prepare branched polymers.

2.2.2 Branched MAA polymerisation by CCTP

Scheme 2.2; Copolymerisation of MAA and EGDMA via CCTP, initiated by VA-044

In this section, a series of branched acid polymers were synthesised with varying

concentrations of both the di-vinyl monomer - ethyleneglycol dimethacrylate (EGDMA)

– and chain transfer agent - CoBF - according to published conditions.2,20

2.2.2.1 Variation in the concentration of EGDMA

As the application of these branched hydrogels requires that the polymers be water

soluble in order to be included in the formulation of hydrogels, the concentration of

the sparingly water soluble EGDMA was kept below 15 mol % - above which more
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hydrophobic solvent systems are required in order to prevent gelation and, the

resulting polymers have very poor water solubility. Both divinyl monomer and the

resulting branched polymers show limited water solubility and crash out of solution,

leading to uncontrolled free radical polymerisation and cross-linking to form gels. As a

result, three polymers with varying concentrations of EGDMA from 0 to 15 wt. % were

synthesised with a constant concentration of CoBF. A series of polymers (5-8) were

produced (Table 2.3).

Reaction [Monomer]

/ [CoBF]

[EGDMA]

(mol %)

Mw
a

(gmol-1)

Ða Conversionb (%) Time

(h)

αa g’

MAA EGDMA Total

5 29500:1 0 5670 1.58 95 - 95 24 0.39 1

6 25000:1 5 12900 1.75 92 93 92 24 0.23 0.58

7 25000:1 10 58500 3.72 93 > 99 94 24 0.29 0.48

8 25000:1 15 gelled

Table 2.3; Data for p(MAA-co-EGDMA) with [EGDMA] set at 5 mol. %. a Measured by

SEC-UC with 2 x PLgel mixed D columns, calibrated with PMMA standards with DMF

(5 mmol NH4BF4) as eluent. b Measured by GC-FID

These reactions produce linear and branched polymers with high conversions as

measured by GC-FID (Figure 2.21), and a predictable increase in molecular weight and

Ɖ as di-vinyl monomer concentration increases (Figure 2.3). At 15 mol % of cross-linker

the reactions gelled as chain transfer was not sufficient to mitigate the effects of the

Norissh-Trommsdorff gel effect.24,25 Increasing the [CoBF] would decrease the kinetic

chain length of all the materials formed, reducing the Mw and Ɖ as the amount of chain 

transfer increases relative to propagation.
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Figure 2.3; SEC-DRI-VISC calculated molecular weight distributions (lower pane),

Mark-Houwink plots of IV vs MW (upper pane) for branched polymers of p(MAA-co-

EGDMA) compared to linear pMAA.

With increasing concentration of di-vinyl monomer relative to the total monomer

concentration a decrease in the hydrodynamic volume is observed relative to

molecular weight as measured by UC-SEC (Figure 2.3). This causes a decrease in the α 

value from 0.37 in the linear case to 0.23 and 0.29 in the branched cases. The

branched polymers also have a lower IV over comparable Mw values – indicative of a

smaller hydrodynamic volume. The lower α value associated with 6 relative to 7 and 4

(Figure 2.3) is theorised to be due to the low molecular weight of this material relative

to the other polymers synthesised and the similarity between 6 and 7 in α values is 

hypothesised to be due to similar degrees of branching despite different

concentrations of di-vinyl monomer.
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Figure 2.4; SEC-DRI-VISC derived g’ plots for branched polymers p(MAA-co-EGDMA) 6

and 7, compared to linear pMAA 4 as described in Equation 2.4.

The value of g’ can also be derived from comparison of the g’ in branched polymers

relative to a linear polymer at the same molecular weight when analysed by UC-SEC

(Figure 2.4). In this case the result of increasing the concentration of divinyl monomer

from zero to 10 % causes a significant decrease in the value of g’. This indicates that

species with a higher concentration of cross-linker have a significantly lower radius of

gyration, caused by an increase in the degree of branching.

2.2.2.2 Variation in the concentration of CoBF

The impact of reducing the concentration of chain transfer agent upon the Mw of

polymer with the same concentration of divinyl monomers was assessed by

maintaining the ratio of mono-vinyl to di-vinyl monomer constant at 95:5. It was

predicted that this would typically cause an increase in the Mw up to a gelation point

when cross-linking dominates over chain transfer. Four branched polyacids were

synthesised with increasing [MAA]/[CoBF] ratios (Table 2.4).
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Reaction [Monomer]

/ [CoBF]

[EGDMA]

(mol %)

Mw
a

(gmol-1)

Ða Conversionb

(%)

Time

(h)

αa

MAA EGDMA Total

9 20500:1 5 12900 1.75 93 95 93 24 0.23

6 25000:1 5 14200 2.83 92 93 92 24 0.27

10 29500:1 5 17600 2.43 99 90 92 24 0.27

11 32000:1 5 42600 3.12 98 99 98 24 0.35

Table 2.4; Data for P(MAA-co-EGDMA) with [EGDMA] set at 5 mol %. a Measured by

SEC-UC with 2 x PLgel mixed D columns, calibrated with PMMA standards with DMF

(5 mmol NH4BF4) as eluent. b Measured by GC-FID.

As predicted, the four polymers formed show an increase in Mw with decreasing

concentration of chain transfer agent (Figure 2.5). Within the range of concentrations

employed in this instance for the synthesis of branched polymers, no gelation was

observed, implying that chain transfer dominated over cross-linking within the

concentration range of 20500:1 to 32000:1.

Figure 2.5; SEC-DRI-VISC calculated molecular weight distributions (lower pane),

Mark-Houwink plots of IV vs MW (upper pane) for branched polymers of p(MAA-co-

EGDMA) compared to linear pMAA (4).
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Despite an increase in the Mw and Ɖ of the polymers formed, Figure 2.5 shows that

with decreasing concentration of CoBF there is a decrease in hydrodynamic volume at

comparable MW. This indicates a more homogenous distribution of di-vinyl monomer

through the polymer forming a less star-like, more tree-like polymer.  The increase in α 

values with decreasing concentration of CoBF is likely to be due to the effects of the

increasing molecular weight upon analysis by UC-SEC.26

2.2.2.3 Characterisation of the vinyl end group functionality

Due to the difficulties of quantifying the vinyl end groups through 1H NMR, Iodometry

through a bromination titration to yield a bromine index (BI) was carried out. This

technique has previously been used by Wan et al. for the quantification of residual

vinyl groups in cross-linked polystyrene spheres.20,27 The vinyl groups present in the

polymers were brominated by molecular bromine generated in situ from the reaction

of potassium bromate and potassium bromide, in the presence of acetic acid (Equation

2.6; and Scheme 2.3;).

����� + 5��� + 6����	 ⇌ 3��� + 6���� + 3���

Equation 2.6; Potassium bromate and potassium bromide in equilibrium with

molecular bromine.

Scheme 2.3; Bromination of vinyl groups with molecular bromine.

Excess bromine was subsequently reacted with potassium iodide and hydrochloric acid

to produce iodine (Equation 2.7), which is then titrated against sodium thiosulfate
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(Equation 2.8). The end point is clarified through the use of starch as an indicator

towards the end of the titration.

6�� + ����� + 6���	 ⇌ 2�� + ��� + 6��� + 3���

Equation 2.7; Reaction between potassium iodide, hydrochloric acid and excess

potassium bromate to form molecular iodine, potassium chloride and water.

�� + 2������� ⇌ 2���	 + �������

Equation 2.8; Reaction between molecular iodine and sodium thiosulphate, used in

the titration step.

The moles of bromine used in this reaction are used in the calculation of BI, which is

then used to calculate the moles of vinyl group per gram of polymer in solution

(Equation 2.9).

�� =
7990 ∙ (��−��) ∙ �

�

Equation 2.9; Calculation of bromine index (BI), where V1 and V2 are the volumes (in

mL) of Na2S2O3 titrated in the blank and sample solutions, respectively, c is the

concentration of the Na2S2O3 solution (moldm-3) and m is the mass of the polymer

used.

Linear and branched acidic polymers generated by CCTP were tested by iodometry for

their respective BI and mmol of vinyl groups per gram of polymer (Table 2.5). The

number of vinyl groups was expected to decrease with increasing Mw of linear and

lightly branched polymer, and to increase with increasing concentration of divinyl

monomer due to the formation of branching points with additional vinyl groups. The

results show considerable concentrations of vinyl groups in all compounds, comparing

favourably to previously reported measurements and essential for the work addressed

in later chapters. Unfortunately no clear relationship is seen between Mw of polymers
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and concentration of divinyl monomer on the one hand, and, BI and vinyl group

concentration on the other. This could be due to a high level of error within the

measurement system coupled with the effect of the high levels of variability in the

polymers themselves.

Compound Mw

(gmol-1)

[EGDMA]

(mol %)

BI

(mg / 100 g)

Vinyl groups

(mmolg-1)

1 5000 0 34200 1.71

2 5650 0 54100 2.71

3 6300 0 59300 2.97

4 9800 0 44300 2.21

9 12900 5 46500 2.33

6 14200 5 50500 2.53

10 17600 5 46100 2.31

11 42600 5 56500 2.83

7 58500 10 47700 2.39

Table 2.5; Bromine index (BI) and results of the calculation of the number of vinyl

groups per gram of compounds 1-11

Work conducted in this section into the synthesis of branched polymers has shown a

library of branched and linear acidic polymers synthesised through the

copolymerisation of MAA and EGDMA at different ratios and with different

concentrations of the CCTA CoBF. Characterisation of the polymers by universal SEC

indicates branching relative to the linear polymers, whereas, iodometry conducted

against brominated vinyl terminated polymers indicates substantial vinyl group

presence in these polymers. These polymers are subsequently used in Chapters 2 and

3, when investigating the effect they have upon the material properties of monolithic

hydrogels.
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2.3 Synthesis and optimisation of branched comb

polymers

One of the principle issues with the incorporation of MAA based species into materials

is the associated high Tg (transition from a glassy solid to a rubbery solid) of pMAA.

This can subsequently increase the Tg of the resulting materials rendering them more

brittle. As a result, in this work the synthesis of novel branched polymers made with

the neutral poly(ethyleneglycol)methyl ether methacrylate (PEGMEMA) monomer are

produced using CCTP.28,29

In this section the Cs of the CoBF/PEGMEMA system is investigated through synthesis

of linear polymers at different [CoBF]/[PEGMEMA] ratios and a pseudo-mayo plot is

formed from the results at low conversion. This is followed by the synthesis of a series

of linear and branched PEGMEMA polymers with comparable concentrations of

EGDMA to the branched acid series above at a range of concentrations of CoBF. The

results are analysed using 1H NMR to follow the kinetics of polymerisation in linear

pPEGMEMA, UC-SEC as well as iodometry to analyse the branching through

determination of the vinyl end group functionality.

2.3.1 Mayo-plot for measurement of Cs of PEGMEMA/CoBF

The Mayo equation (Equation 2.5) has two variables which can be changed – the

monomer and the chain transfer agent, both of these variables have a profound effect

upon the Cs of the system. In this case the monomer has been changed from an acid,

to a hydrophilic oligomeric monomer. Whereas methacrylic acid causes acid hydrolysis

of the catalyst through the course of the reaction, causing a decrease in the Cs of the
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system, this is not expected to occur with PEGMEMA. The mayo equation is again used

to show the effects of the change in the concentration of chain transfer agent (Table

2.6).

Reaction [CoBF]

(mol)

[CoBF] / [PEGMEMA] Conversion

(%)

Mn
b DP

12 7.60 x 10-5 4.00 x 10-5 8 4900 10.3

13 5.94 x 10-5 3.13 x 10-5 7 6200 13.0

14 2.97 x 10-5 1.56 x 10-5 8 10100 21.3

15 1.98 x 10-5 1.04 x 10-5 5 13500 28.4

Table 2.6; Data for homopolymerisation of PEGMEMA 12-15 with varying

concentrations of chain transfer agent.

Figure 2.6; SEC traces of p(PEGMEMA) homopolymers at different

[PEGMEMA]:[CoBF] stopped at low conversion (left). Mayo plot of 1/DP against

[CoBF]/[PEGMEMA] ratios for p(PEGMEMA) homopolymers 12-15 (right).

The pseudo-mayo plot for linear p(PEGMEMA) gives a straight line with a slope Cs of

2,100 (Figure 2.6) and a 1/DPn,0 of 0.01404 (DP of 71) calculated from the intercept.

This is significantly higher than the Cs observed from MAA with a value of 440 under

the same conditions (Figure 2.2). The DPn,0 is an accurate representation of the DP in
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the absence of CTA as this reflects reasonably the ratio of monomer to initiator. The

increase in the Cs between the two systems can be attributed to the absence of the

acidic monomer, causing acid hydrolysis of the catalyst.2 The value of 1/DPn,0 was

found to be 0.01493 which translates to a DPn,0 of 67.

2.3.2 Variation in the concentration of CoBF in linear combs

Scheme 2.4; Polymerisation of poly(ethylene glycol) methyl ether methacrylate via

CCTP, initiated by VA-044.

Initially, a series of low molecular weight linear pPEGMEMA were synthesised using a

binary combination of water and isopropanol (IPA) in order for the system to be

identical to that used with the divinyl monomer EGDMA and the MAA system; to

ensure that the reaction proceeds in a similar and controllable manner. This was

achieved through variation in the ratio of [PEGMEMA]/[CoBF].

Reaction [PEGMEMA]/[CoBF] Mw
a

(gmol-1)

Ða Conversion

(%)b

Time

(h)

αa

12 25000:1 4800 1.49 69 24 0.13

13 32000:1 5800 1.53 75 24 0.24

14 64000:1 9500 1.4 80 24 0.23

15 96000:1 12500 1.48 86 24 0.46

Table 2.7; Data for linear P(PEGMEMA) with variation of [CoBF]. a Measured by SEC

with 2 x PLgel mixed C columns, calibrated with PMMA standards with CHCl3 (2 mol

% TEA) as eluent. b Measured by 1H NMR
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Figure 2.7; Typical 1H NMR of p(PEGMEMA) synthesised by CCTP with characteristic

vinyl peaks between 5.6 and 6.4 ppm and the shift in the polymeric ester peak from

4.3 ppm to 4.15 ppm.

The conversion of monomer into polymer for catalytic chain transfer polymerisation is

often monitored by GC-FID due to the ease of identification of the monomer peaks and

the difficulties in distinguishing end groups of the monomer and polymer by 1H NMR.

In this case GC-FID was not possible due to the use of PEGMEMA which, as it exists as

an oligomer with a Ɖ, renders it difficult to monitor the reaction through this method. 

A’ A B C D
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One benefit of using PEGMEMA over the MAA monomer used above is the presence of

the ester bond (4.30 ppm), which, along with the polymeric ester peak (4.11 ppm) can

be used relative to the monomeric vinyl peak (6.14 ppm) to monitor the conversion of

the reaction by 1H NMR (Figure 2.7).

Figure 2.8; Comparison of conversion kinetics for linear pPEGMEMA synthesis by

CCTP monitored by 1H NMR (left). Total conversion of pPEGMEMA at different

[PEGMEMA]/[CoBF] ratios (right).

The polymerisation of PEGMEMA to form linear pPEGMEMA brushes was followed

using 1H NMR, the results show that the majority of the monomer is consumed within

5 hours, however, in order to obtain high conversion (>90 %) the reaction must be left

for over 16 hours (Figure 2.8). At high conversion the rate of polymerisation slows, this

can be attributed to a reduced concentration of initiator and monomer leading to

fewer active chain ends and reduction of collision frequency. It is noticeable that the

conversion decreases with increasing concentration of CoBF as chain transfer becomes

more efficient than propagation leading to the formation of lower molecular weight
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and monomeric products.3 The evolution of Mw of the pPEGMEMA through the

reaction was monitored by SEC up to 16 hours, (Figure 2.9 and Figure 2.10).

Figure 2.9; Evolution of molecular weight distributions through the

homopolymerisation of PEGMEMA 14 with [PEGMEMA]/[CoBF] at 64000 (left).

Evolution of the Mw and Ɖ, measured by conventional SEC, throughout 

polymerisation (right).

Figure 2.10; Evolution of molecular weight distributions through the

homopolymerisation of PEGMEMA 15 with [PEGMEMA]/[CoBF] at 96000 (left).

Evolution of the Mw and Ɖ, measured by conventional SEC, throughout 

polymerisation (right).

The kinetics of reactions 14 and 15 demonstrate the general trend of the kinetics

throughout this series of linear pPEGMEMA polymerisations (Figure 2.9, Figure 2.10).

It can be observed that there is no increase in Mw or Ɖ with time. This is because 
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typically in CCTP the rate of chain transfer is so high that the kinetic chain length is

obtained effectively immediately and resulting chain transfer prevents any increase in

Mw, polymeric products are rarely re-initiated through their terminal vinyl peak due to

the low favourability of reacting with the hindered polymeric vinyl group relative to

that of the monomer and the competing mechanism of chain transfer from the ω-vinyl 

group.16,30 Both Figure 2.9 and Figure 2.10 reveal a decrease in Mw with time. This is

caused by the [CoBF]/[PEGMEMA] ratio increasing with time as the monomer is

consumed, the consequence is an increase in chain transfer (relative to propagation)

and a small reduction in the Mw of the polymers being formed. This effect is not

substantial because of the rapid conversion of the majority of the monomer to

polymer. This effect is not observed in the synthesis of pMAA polymers by CCTP as the

CoBF is hydrolysed at a comparable rate to the consumption of monomer allowing the

ratio of [MAA]/[CoBF] to remains relatively constant with no molecular weight drift.20

Figure 2.11; Comparison of SEC molecular weight distributions for PEGMEMA

homopolymerisations 12-15 through the variation of [PEGMEMA]/[CoBF] ratio.
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The four linear polymers prepared in this section show a linear increase in Mw with a

decrease in the [PEGMEMA]/[CoBF] ratio demonstrating good control over the Mw of

the polymers formed by this process (Figure 2.11).

Figure 2.12; SEC-DRI-VISC calculated molecular weight distributions (bottom). Mark-

Houwink plots of IV vs MW (top) for p(PEGMEMA).

Compounds 12-15 were analysed using universal calibration from which Mark-

Houwink plots according to Equation 2.2, were derived (Figure 2.12). In this a clear

increase in the α value of the polymers with increasing Mw was shown. The α value 

increases from 0.13 through to 0.46 with the commensurate increase in the Mw of the

polymers. This can be explained by the difference in overall architecture between the

low molecular weight brush and a high molecular weight brush. A low molecular

weight brush more closely resembles a star shaped polymer, which would behave

more like a hard sphere than a rigid rod. As the molecular weight of a brush increases

it comes to resemble a rigid rod, causing the α value to increase (Figure 2.13).
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Figure 2.13; Representation of the effect of increase in DP upon morphology of brush

polymers. At low DP, star-like morphologies are observed with low α values, with 

increasing DP the species become more linear with proportionately higher α 

values.31

2.3.3 Variation in the concentration of EGDMA

Following the polymerisation of the linear species and the calculation of Cs for

PEGMEMA homopolymerisation, branching was introduced by incorporating EGDMA

as the di-vinyl monomer. As with the branched acid species discussed earlier, the limit

to the solubility of the branched polymer was found to be around 20 mol %. Three

polymers were synthesised at increasing [EGDMA] whilst maintaining a constant

concentration of the CCTA.
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Reaction [M]/[CoBF] [EGDMA]

(mol %)

Mw
a

(gmol-1)

Ða Time

(h)

αa

12 25000:1 0 4800 1.49 24 0.13

15 96000:1 0 12500 1.48 24 0.46

16 25000:1 5 8400 1.47 24 0.30

17 25000:1 10 9000 1.5 24 0.25

18 25000:1 15 10200 1.86 24 0.19

Table 2.8; Data for P(PEGMEMA-co-EGDMA) with variation of [EGDMA]. a Measured

by SEC with 2 x PLgel mixed C columns, calibrated with PMMA standards with CHCl3

(2 mol % TEA) as eluent.

The ester bond of monomeric EGDMA and PEGMEMA lie at the same 1H NMR shift due

to their chemical similarity. As a result of this, monitoring the conversions of these

polymers becomes unfeasible by 1H NMR as well as GC-FID, so the conversion of these

polymers was not monitored.

With increasing concentration of EGDMA an increase in the molecular weight and the

Ɖ of the polymer was observed. This is indicative of an increase in branching, as more 

branching points are incorporated into the species at higher [EGDMA]. It is possible in

the case of PEGMEMA to use a higher [EGDMA] relative to [CoBF], this is due to the

higher rate Cs of the system relative to the MAA system observed earlier. Branched

polymers with [EGDMA] up to 15 mol % were synthesised in comparison to the MAA

system where a maximum [EGDMA] of 10 mol % was observed before gelation was

occurred.
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Figure 2.14; Evolution of molecular weight distributions through the

copolymerisation of PEGMEMA (95 mol %) and EGDMA (5 mol %) 16 with [M]/[CoBF]

at 25000.

Figure 2.15; Evolution of molecular weight distributions through the

copolymerisation of PEGMEMA (90 mol %) and EGDMA (10 mol %) 17 with

[M]/[CoBF] at 25000.
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Figure 2.16; Evolution of molecular weight distributions through the

copolymerisation of PEGMEMA (85 mol %) and EGDMA (15 mo. %) 18 with [M]/

[CoBF] at 25000.

The effects of increasing concentration of EGDMA upon the evolution of molecular

weight as a function of time during the synthesis of branched pPEGMEMA polymers

was monitored (Figure 2.14, Figure 2.15 and Figure 2.16). In all materials an increase

in molecular weight is observed through the reaction as early on in the reaction low

molecular weight species are generated which, persist through the reaction. In these

materials it is seen that with low concentrations of divinyl monomer there is a small

increase in the Mw and Ɖ with time, but with increasing concentration of the dinvyl 

monomer, the increase in Mw and Ɖ with time becomes more pronounced (Figure

2.14, Figure 2.15 and Figure 2.16) – as was the case with the MAA-co-EGDMA system

(although to a lesser extent due to the reduction in the hydrolysis of the catalyst). This

effect is due to progressive inclusion of the divinyl monomer, creating irregular

branching points, which increases the Mw, but due to its irregularity, also increases the

Ɖ.  
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Figure 2.17; Comparison of SEC molecular weight distributions for copolymerisation

PEGMEMA and EGDMA with different concentrations of EGDMA at a [M]/[CoBF] of

25000. 15, 16, 17 and 18.

The expected trend where increasing the concentration of divinyl monomer whilst

maintaining the concentration of CCTA, causes an increase in Mw and an increase in Ɖ 

is observed (Figure 2.17). This effect is caused by the formation of low Mw species

early on in the reaction which persist through to the end, whilst at the same time

higher Mw species are being formed as the reaction continues with increasing cross-

linking (Figure 2.17).
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Figure 2.18; SEC-DRI-VISC calculated molecular weight distributions (bottom). Mark-

Houwink plots of IV vs MW (top) for p(PEGMEMA-co-EGDMA).

With increasing concentration of cross-linker, a decrease in the α value is observed 

relative to linear species of a similar MW (Figure 2.18). In this case species 16, 17 and

18 are compared to linear species 15 as its MW distribution is more appropriate than

that of linear species 11, which, as a result of having the same [PEGMEMA]/[CoBF]

ratio, has a much lower Mw. As seen in Table 2.8, 15 has an α value of 0.46, indicative 

of a randomly coiled species. Through species 16 – 18 there is a progressive decrease

in the α value caused by increasing degrees of branching. 18 exhibits an α value of 

0.19, approaching the region of measurements expected of a hard sphere – indicating

a high degree of branching.

2.3.4 Variation in the concentration of CoBF

The final set of tests to be conducted in this study involved the variation of

concentration of CTA with a fixed concentration of divinyl monomer at 5 mol %. This

divinyl monomer concentration was chosen as it renders the largest range of results
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with a divinyl monomer. As with the results represented in Table 2.7 the

[PEGMEMA]/[CoBF] ratio was varied from 25000:1 through to 96000:1 and the

resulting polymers were characterised via UC-SEC and 1H NMR.

Reaction [M]/[CoBF] [EGDMA]

(mol %)

Mw
a

(gmol-1)

Ða Conversionb

(%)

Time

(h)

αa

16 25000:1 5 8400 1.47 83 24 0.30

19 32000:1 5 13400 1.62 74 24 0.45

20 64000:1 5 18500 1.82 78 24 0.39

21 96000:1 5 23800 1.94 32 24 0.49

Table 2.9; Data for P(PEGMEMA-co-EGDMA) with variation of [CoBF]. a Measured by

SEC with 2 x PLgel mixed C columns, calibrated with PMMA standards with CHCl3 (2

% TEA) as eluent. b Measured by 1H NMR

Figure 2.19; Comparison of SEC molecular weight distributions for copolymerisation

PEGMEMA and EGDMA with different concentrations of EGDMA at a [M]/[CoBF] of

25000. 11,15,16 and 17.

As is observed with the synthesis of linear polymers, an increase in the

[PEGMEMA]/[CoBF] ratio causes an increase in the Mw and Ɖ due to a reduction in the 

frequency of chain transfer leading to higher molecular weight species and a broader
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range of Mw species being formed (Figure 2.19). As with the linear species (Figure

2.11) and species with a low degree of branching (Figure 2.17), Figure 2.19 shows that

with decreasing concentration of the CCTA the effect of decreasing Mw through the

course of the reaction becomes more pronounced. This is caused by an effective

decrease in the [PEGMEMA]/[CoBF] ratio, causing lower Mw species to be formed as a

result of an increase in the frequency of chain transfer and, therefore, reducing the

overall Mw.

Figure 2.20; SEC-DRI-VISC calculated molecular weight distributions (bottom). Mark-

Houwink plots of IV vs MW (Top) for p(PEGMEMA-co-EGDMA).

With increasing [PEGMEMA]/[CoBF] ratio there is no significant change in α, this 

indicates that all of these materials have a similar degree of branching regardless of

Mw (Figure 2.20).
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2.4 Conclusions

In this chapter a series of branched hydrophilic polymers were synthesised using CCTP

and characterised. First, a library of linear and branched polyacids was synthesised. A

pseudo-Mayo plot was generated for MAA and CoBF in a water/alcohol mixture to

demonstrate the level of effectiveness of the catalyst within the system (a Cs of 434

was found - comparable to previously published literature).2 Branched polyacids were

then synthesised with varying concentrations of divinyl monomer and CoBF. The linear

and branched materials were then characterised by GC-FID, NMR and SEC with

branching indicated by Mark-Houwink analysis showing a decrease in the

hydrodynamic volume as shown by a decrease in the Mark-Houwink parameter from

0.39 to 0.23 with increasing branching and a decrease in the hydrodynamic radius g’

from 1 to 0.48 with increasing branching relative to the linear pMAA species.

Following from this a library of linear and branched polyPEGs were synthesised in a

similar system. A pseudo-Mayo plot was conducted with the linear pPEGMEMA and

found to be more effective than the MAA system due to the lack of acid hydrolysis

with a Cs value of 2054. The kinetics of the reactions was monitored by 1H NMR and

SEC for linear combs and by SEC for branched polymers. Linear and branched materials

were then characterised by 1H NMR, and SEC; including Mark-Houwink plots to

demonstrate branching. A clear relationship between concentration of divinyl

monomer and decreasing α value was observed from 0.46 in the linear pPEGMEMA to 

0.19 in the highest branched species in a comparable molecular weight range.
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2.5 Experimental

2.5.1 Materials

All reagents were purchased from Aldrich and used as received unless otherwise

stated. 2,2’-azobis[2-[(2-imidazolin-2-yl)propane]dihydrochloride (VA-044) was

purchased from Alpha Labs and used as received. CoBF was synthesised via a method

previously reported.32,33

2.5.2 Instruments

1H- and 13C-NMR spectroscopy

All NMR spectra were recorded on either a Bruker Avance III HD 300 MHz, Bruker

Avance 300 MHz and a Bruker Avance III 400 MHz spectrometers as in D2O, CD3OD or

CDCl3 (with TMS) as indicated. Chemical shifts were calculated using the solvent

residual peaks for D2O and CD3OD as reference or TMS as reference in the case of

CDCl3.

Size Exclusion Chromatography (SEC)

Chloroform

CHCl3 SEC experiments were performed on Agilent 390-LC multi-detector suites

equipped with a PL-AS RT/MT autosampler, fitted with a PLgel 5µm guard column and

two PLgel 5µm Mixed C columns (with an exclusion limit of 2.0 x 106 gmol-1). All data

was collected and analysed using Agilent SEC software. Mobile phase was CHCl3 with 2

% triethylamine and a flow rate of 1mL.min-1 and an injection volume of 100 µl.

Column Sets were maintained at 30 oC.
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Dimethylformamide

DMF SEC experiments were performed on Agilent 390-LC multi-detector suites

equipped with a PL-AS RT/MT autosampler, fitted with a PLgel 5µm guard column and

two PLgel 5µm Mixed D columns (with an exclusion limit of 4.0 x 105 gmol-1). All data

was collected and analysed using Agilent SEC software. Mobile phase was DMF with 5

mmol NH4BF4 and a flow rate of 1mL.min-1 and an injection volume of 100 µl. Column

Sets were maintained at 50 oC.

Conventional SEC

A DRI detector was used for conventional calibration. Calibrations were created using

PMMA EasiVial standards (550-2,136,000 gmol-1) purchased from Agilent, with a

minimum of 9 points fitted with a third order calibration curve. Points with an error

greater than 10 % were not included in the final calibration.

SEC-DRI-VISC (universal calibration)

Final polymers were purified by precipitation and dried under vacuum prior to analysis

in DMF and CHCl3 in order to ensure accurate sample concentrations. An RI and a 4

capillary viscometer were used as detectors with an inter-detector delay calibrated

using a single PMMA narrow standard (Mp 90,250 gmol-1) of known concentration.

Column calibrations were created using PMMA EasiVial standards (690-1,944,000

gmol-1) analysed at known concentrations purchased from Agilent with a minimum of 9

points fitted with a third order calibration curve. g’ values were calculated using linear

PMAA (for analysis in DMF) and linear p(PEGMEMA) (for analysis in CHCl3) as

standards.

Gas Chromatography – Flame Ionisation Detector (GC-FID)
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GC-FID was performed using a Varian 450 fitted with a FactorFourTM capillary column

VF-1ms, of 15 m x 0.25mm I.D. and film thickness of 0.25 µm. Oven temperature was

programmed as follows: 40oC (hold for 1 min) at 25 oC min-1 to 200 oC. The injector was

operated at 200 oC with the FID at 220 oC. Nitrogen was used as the carrier gas at a

flow rate of 1mL min-1 and a split ratio of 1:100 was applied. An internal standard of

diethylene glycol was used to monitor conversion with the integral of the DEG peak

being used relative to the integral of the MAA and EGDMA peaks to determine total

and individual monomer conversion. Data was processed using Galaxie software

(version 1.9.302.530) before being transferred to Origin Pro (version 9.1) and

converted into graphical representations as seen below.

Figure 2.21: GC calculated conversion of MAA-co-EGDMA reaction with 10 mol %

EGDMA with a [M]:[CoBF] ratio of 25000:1 (left), GC calculated conversion of MAA-

co-EGDMA reaction with 5 mol % EGDMA with a [M]:[CoBF] ratio of 25000:1 (right).
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2.5.3 General Procedures

2.5.3.1 Homopolymerisations of MAA

A 500 mL round bottom flask was charged with MAA (164.96 g, 1.92 mol), H2O (175 mL), IPA

(175 mL) and diethyleneglycol (DEG, 5 mL), for use as an internal standard for GC-FID) and

equipped with a stirring bar and septum. This mixture was deoxygenated via bubbling with a

stream of nitrogen for a minimum of 1 hour. A 1 L 3-neck round bottom flask, equipped with

nitrogen inlet, septum and stirring bar, containing CoBF and VA-044 (0.6 g , 1.86 mmol), was

degassed with four vacuum/nitrogen-backfill cycles before the monomer/solvent mixture was

added via cannular under positive nitrogen pressure. The resulting reaction mixture was

allowed to stir under a positive pressure of nitrogen at ambient temperature until all solids

were dissolved, yielding a homogenous solution, at which point the vessel was placed in an oil

bath at 55 oC. After 24 hours, the reaction mixture was precipitated into ice cold acetonitrile

(10:1) before being dried under vacuum at ambient temperature.
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Reaction [MAA]/[CoBF] CoBF (mg) CoBF (mmol)

1 15000 49.2 1.28 x 10-4

2 25000 29.5 7.67 x 10-5

3 32000 23 5.98 x 10-5

4 64000 11.5 2.99 x 10-5

Table 2.10; Quantities of CoBF required for linear pMAA polymerisation.

2.5.3.2 Copolymerisations of MAA with EGDMA

A typical copolymerisation in water-IPA was adapted from the pMAA homopolymerisation

conditions described above. With varying wt. % of EGDMA and [monomer]/[CoBF] ratio.

Reaction EGDMA

(wt. %)

EGDMA

(mol %)

[monomer]/[CoBF] CoBF (mg) CoBF

(mmol)

5 10.8 5 20500 35.9 9.33 x 10-5

6 10.8 5 25000 29.5 7.67 x 10-5

7 10.8 5 29500 35 6.5 x 10-5

8 10.8 5 32000 23 5.99 x 10-5

9 21.6 10 25000 29.5 7.67 x 10-5

10 32.4 15 25000 29.5 7.67 x 10-5

Table 2.11; Quantities of CoBF required for branched p(MAA-co-EGDMA)

polymerisations
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2.5.3.3 Homopolymerisations of PEGMEMA

Stock solutions of CoBF in PEGMEMA were prepared using CoBF (2.4 mg, 6.23 x 10-3 mol) in

PEGMEMA (31.5 g, 0.105mol). PEGMEMA was freeze pump thawed four times in a Schlenk

tube then cannulated under nitrogen into the CoBF, degassed via vacuum/nitrogen cycles four

times. Stock solutions were then stored under nitrogen in a fridge for a maximum of 1 month.

Reaction [PEGMEMA]/[CoBF] CoBF (mg) CoBF (mmol)

11 25000 1.54 4 x 10-6

12 32000 1.2 3.12 x 10-6

13 64000 0.6 1.56 x 10-6

14 96000 0.4 1.04 x 10-6

Table 2.12; Quantities of CoBF required for linear pPEGMEMA polymerisations.

2.5.3.4 Copolymerisations of PEGMEMA with EGDMA

Stock solutions of CoBF in PEGMEMA wCharacteriere prepared using (2.4 mg, 6.23 x 10-3 mol)

CoBF in of PEGMEMA (35 g, 0.105 mol). PEGMEMA was freeze pump thawed in a Schlenk tube



Chapter 2: Synthesis of water soluble branched polymers via CCTP

94

then cannulated under nitrogen into the CoBF, degassed via vacuum/nitrogen cycles four

times. Stock solutions were then stored under nitrogen in a fridge for a maximum of 1 month.

Reaction EGDMA

(wt. %)

EGDMA

(mol %)

[monomer]/[CoBF] CoBF (mg) CoBF

(mmol)

15 3.36 5 25000 1.54 4 x 10-6

16 3.36 5 32000 1.2 3.12 x 10-6

17 3.36 5 64000 0.6 1.56 x 10-6

18 3.36 5 96000 0.4 1.04 x 10-4

19 6.84 10 25000 1.54 4 x 10-6

20 10.44 15 25000 1.54 4 x 10-6

Table 2.13; Quantities of CoBF required for branched pPEGMEMA polymerisations.

2.5.3.5 Iodometry bromination

Bromination-titration to yield bromine index (BI) was carried out as follows;

P(MAA-co-EGDMA) copolymer (0.2 g) was added to a solution of 9 mL of water, 0.5 mL

methanol and 0.5 mL glacial acetic acid in a Erlenmeyer flask. The solution was stirred

until dissolution of the copolymer before 50 mL of a solution containing KBrO3 (0.1392

g, 0.834 mmol) and KBr (0.4960 g, 4.165 mmol) in a ratio of 1:5 (total salt

concentration 0.1 M) was added. The mixture was stirred in the dark at room

temperature for up to 6 hours, at which point the bromination of the vinyl groups was

confirmed by 1H NMR.

When bromination was complete the solution was cooled in an ice-water bath, 2 mL

concentrated HCl added and the solution stirred for 30 minutes. Potassium iodide (1.5

g) was added and the solution stirred until homogeneous. This solution was titrated

with a 0.1 M sodium thiosulfate solution until pale yellow, at which point 0.5 mL of 1

1t. % solution of starch in water was added to give a black solution. Further sodium

thiosulfate was added, with the end point a colourless solution.
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A “blank” titration, containing no polymer but identical solutions, was also carried out

for use in calculation of BI.

Number of vinyl groups per gram was calculated using Bromine Index:

�� =
7990 ∙ (�� − ��) ∙ �

�

Where BI is the amount of bromine (mg) consumed by 100 g of polymer, V1 and V2 are

the volume of Na2S2O3 titrated in the blank and sample solutions, respectively; c is the

concentration of Na2S2O3 in moldm-3 and m is the mass of the polymer in grams.

2.5.4 Characterisation

Characterisation of 1-4. (1: linear PMAA with 15000 [MAA]/[CoBF]. 2: linear PMAA

with 25000 [MAA]/[CoBF]. 3: linear PMAA with 32000 [MAA]/[CoBF]. 4 (5): linear

PMAA with 64000 [MAA]/[CoBF].)

1H-NMR (300 MHz, CD3OD at 25 oC): δ 0.8-1.65 (backbone CH3), 1.75-2.30 (backbone

CH2), 2.35-2.70 (terminal back bone CH2=C), 5.55-5.75 (cis to terminal CO2H C=CHaHb),

6.20-6.25 (trans to terminal CO2H C=CHaHb).

Conventional SEC (gmol-1): 1: Mn 2400, Mw 2380, Ð 1.29. 2: Mn 2300, Mw 3160, Ð 1.17.

3: Mn 2740, Mw 3930, Ð 1.17. 4 (5): Mn 4500, Mw 6202, Ð 1.38.

SEC-DRI-VISC Universal Calibration (gmol-1): 1: Mn 3300, Mw 5000, Ð 1.34, α 0.22. 2: Mn

4230, Mw 5650, Ð 1.51, α 0.2. 3: Mn 4560, Mw 6250, Ð 1.37, α 0.21. 5: Mn 6940, Mw

9780, Ð 1.41, α 0.37. 

GC-FID (final conversion, %): 1: MAA 94 %, 2: MAA 98 %, 3: MAA 97 %, 4 (5): MAA 95

%.



Chapter 2: Synthesis of water soluble branched polymers via CCTP

96

Characterisation of 6-7. (6: P(MAA-co-EGDMA), 95/5 mol % MAA/EGDMA,

[monomer]/[CoBF] 2500. 7: P(MAA-co-EGDMA), 90/10 mol % MAA/EGDMA)

1H-NMR (300 MHz, CD3OD at 25 oC): δ 0.8-1.65 (backbone CH3), 1.7-2.35 (backbone

CH2), 2.4-2.7 (terminal backbone CH2=C), 4.05-4.35 (OCH2CH2O), 5.55-5.75 (cis to

terminal CO2H C=CHaCHb), 6.20-6.25 (trans to terminal CO2H C=CHaHb).

Conventional SEC (gmol-1): 5: Mn 3500, Mw 5702, Ð 1.65. 6: Mn 10000, Mw 18000, Ð 1.8.

SEC-DRI-VISC Universal Calibration (gmol-1): 5: Mn 7250, Mw 12900, Ð 1.75, α 0.23. 6:

Mn 15700, Mw 58500, Ð 3.72, α 0.29. 

GC-FID (final conversion, %): 5 MAA 91, EGDMA 96, total 92: 6: MAA 91, EGDMA 97.

91.

Characterisation of 9-11. (9: P(MAA-co-EGDMA), 95/5 mol % MAA/EGDMA,

[monomer]/[CoBF] 20500. 10: P(MAA-co-EGDMA), 95/5 mol % MAA/EGDMA

[monomer]/[CoBF]. 11: P(MAA-co-EGDMA), 95/5 mol %)

1H-NMR (300 MHz, CD3OD at 25 oC): δ 0.8-1.65 (backbone CH3), 1.7-2.35 (backbone

CH2), 2.4-2.7 (terminal backbone CH2=C), 4.05-4.35 (OCH2CH2O), 5.55-5.75 (cis to

terminal CO2H C=CHaCHb), 6.20-6.25 (trans to terminal CO2H C=CHaHb).

Conventional SEC (gmol-1): 9: Mn 6540, Mw 8760, Ð 1.34. 10: Mn 7960, Mw 13600, Ð 1.7.

11: Mn 7510, Mw 14500, Ð 1.93.

SEC-DRI-VISC Universal Calibration (gmol-1): 9: Mn 7370, Mw 12900, Ð 1.75, α 0.23. 10:

Mn 7240, Mw 17600, Ð 2.43, α 0.27. 11: Mn 13700, Mw 42600, Ɖ 3.12, α 0.35. 

GC-FID (final conversion, %): 9 MAA 91, EGDMA 96, total 92: 10: MAA 91, EGDMA 97.

91. 11 MAA, EGDMA, total.
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Characterisation of 12-15. (12: linear p(PEGMEMA) with 25000 [PEGMEMA]/[CoBF].

13: linear p(PEGMEMA) with 32000 [PEGMEMA]/[CoBF]. 14: linear p(PEGMEMA) with

64000 [PEGMEMA]/[CoBF]. 15: linear p(PEGMEMA) with 96000 [PEGMEMA]/[CoBF]).

1H-NMR (300 MHz, CD3OD at 25 oC): δ 0.85-1.35 (backbone CH3), 2.81-2.15 (backbone

CH2), 3.36 (terminal PEG CH3), 3.51-3.78 (PEG backbone CH2), 4.06-4.23 (PEGMEMA

and EGDMA ether CH2), 4.29 (monomeric and terminal ether CH2), 5.56-5.79 (cis to

terminal CO2PEGMA C=CHaHb), 6.07-6.36 (trans to terminal CO2PEGMA C=CHaHb).

Conventional SEC (gmol-1): 12: Mn 3230, Mw 4790, Ð 1.49. 13: Mn 3800, Mw 5800, Ð

1.53. 14: Mn 5910, Mw 9510, Ð 1.4. 15: Mn 7430, Mw 12500, Ð 1.48.

SEC-DRI-VISC Universal Calibration (gmol-1): 12: Mn 3280, Mw 4330, Ð 1.32, α 0.13. 13:

Mn 4670, Mw 5520, Ð 1.18, α 0.24. 14: Mn 5920, Mw  10900, Ð 1.85, α 0.23. 15: Mn 9540,

Mw 14700, Ð 1.54, α 0.46. 

Characterisation of 16-21. (15: p(PEGMEMA -co-EGDMA), 95/5 mol % PEGMEMA

/EGDMA, [monomer]/[CoBF] 25000. 16: p(PEGMEMA -co-EGDMA), 95/5 mol %

PEGMEMA/EGDMA, [monomer]/[CoBF] 32000. 16: p(PEGMEMA-co-EGDMA), 95/5 mol

% PEGMEMA/EGDMA, [monomer]/[CoBF] 64000. 18: p(PEGMEMA-co-EGDMA), 95/5

mol % PEGMEMA/EGDMA, [monomer]/[CoBF] 96000. 19: p(PEGMEMA-co-EGDMA),

90/10 mol % PEGMEMA/EGDMA, [monomer]/[CoBF] 25000. 20: p(PEGMEMA-co-

EGDMA), 85/15 mol % PEGMEMA/EGDMA, [monomer]/[CoBF] 25000).

1H-NMR (300 MHz, CHCl3 at 25 oC):δ 0.85-1.35 (backbone CH3), 2.81-2.15 (backbone

CH2), 3.36 (terminal PEG CH3), 3.51-3.78 (PEG backbone CH2), 4.06-4.23 (PEGMEMA

and EGDMA ether CH2), 4.29 (monomeric and terminal ether CH2), 5.56-5.79 (cis to

terminal CO2PEGMA C=CHaHb), 6.07-6.36 (trans to terminal CO2PEGMA C=CHaHb).
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Conventional SEC (gmol-1): 15: Mn 5750, Mw 8440, Ð 1.47. 16: Mn 8260, Mw 13400, Ð

1.62. 17: Mn 10200, Mw 18500, Ð 1.82. 18: Mn 12300, Mw 23800, Ð 1.94. 19: Mn 6020,

Mw 9030, Ð 1.5. 20: Mn 5510, Mw 10200, Ð 1.86.

SEC-DRI-VISC Universal Calibration (gmol-1): 15: Mn 6300, Mw 9300, Ð 1.47, α 0.30. 16:

Mn 5100, Mw  18500, Ð 3.63, α 0.45 17: Mn 13300, Mw 25600, Ð 1.93, α 0.39. 18: Mn

21300, Mw 35600, Ð 1.67, α 0.49. 19: Mn 7400, Mw 11900, Ð 1.6, α 0.25. 20: Mn 7600,

Mw 19400, Ð 1.56, α 0.19. 
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3. Synthesis and Characterisation of pHEA hydrogels

This chapter details the development of hydrogels synthesised from 2-hydroxyethyl

acrylate (HEA). The aim was to synthesise hydrogels from HEA for potential to be used

in wound care in combination with the branched polymers discussed in chapter 2.

These polymers with their vinyl functionality are synthesised using the technique of

catalytic chain transfer polymerisation (CCTP).

2-Hydroxyethyl acrylate is a well understood, hydrophilic monomer which, unlike its

methacrylate analogue – 2-hydroxyethyl methacrylate (HEMA) – is water soluble in

both monomeric and polymeric forms.1 This can give rise to a gel that can swell to

absorb far larger quantities of fluids than a pHEMA gel which has been used for such

applications as contact lenses and other biological applications due to its medically

approved status.2 Thermal polymerisation was initially employed to form hydrogels

and optimise the monomer and initiator concentrations before the selected gel system

was transferred to photo-curing due to the reduced costs associated with a faster

curing process and more consistent gel formation. Both of these systems are then

utilised for the addition of branched polymers synthesised by CCTP and the monitoring

of the swelling and rheological material properties.
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3.1 Background

3.1.1 Hydrogel Swelling

Wound-care materials have to be capable of absorbing large quantities of exudate in

order to keep the wound-site well drained and prevent the formation of biofilms.3-8 As

a result of this the extent to which a material can take up fluid and the rate or

mechanism by which it does so are important factors in their design. There are two

main areas for consideration in swelling; the thermodynamics of the swelling process,

which is dependent upon the internal structure of the gel and the kinetics of the

swelling process itself.9,10

Thermodynamics

The maximum extent to which a network can take up water is defined as the

equilibrium degree of swelling, this is the point at which there is zero difference in the

chemical potential between fluid inside and outside of the network. There are three

other important factors; the first is the polymer volume fraction in the swollen state

(v2,s), the second is the molecular weight in the polymer chain between two cross-

linking points (Mc) and the third is the mesh size (ζ) sometimes referred to as the 

correlation distance between two cross-link sites (Figure 3.1). v2,s is a measure of the

amount of fluid imbibed by the network, Mc is a measure of the average degree of

crosslinking and within the network and ζ is a measure of the average space between 

chains and crosslinking sites available for solute diffusion – a measure often used in

the study of drug delivery. As this work is not concerned with drug delivery or targeted

molecular diffusion, it was decided that the specific knowledge of v2,s, ζ and Mc was not

required.9
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Figure 3.1; Cross-linked network showing cross-linking points, chains, average chain

mesh size (ζ) and average distance between cross-linking points (Mc)

Swelling to equilibrium of a non-ionic gel (as is the case with pHEA) can be analysed

using the Flory-Rehner theory.11 This thermodynamic theory states that; a cross-linked

network immersed in a fluid and allowed to reach equilibrium with its surroundings is

subject to opposing forces; the entropic force of mixing (ΔGmixing) and the enthalpic

force associated with the elasticity of the polymer chains (ΔGelastic). At the equilibrium

degree of swelling, these two forces are equal and are defined in Equation 3.1 relative

to the compatibility of the mixing of the network and the solvent (ΔGmixing) which is

often defined by the polymer-solvent interaction parameter Χ1.

∆������ = ∆�������� + ∆�������

Equation 3.1; Relationship between the total Gibbs free energy of relative to the

energy of elasticity and mixing.11

If Equation 3.1 is differentiated with respect to the number of solvent molecules whilst

keeping temperature and pressure constant, Equation 3.2 is given where Δµ is the 

chemical potential of the penetrating solvent.

μ� − μ�,� = �μ������� + �μ������

Equation 3.2; Chemical potential of the network at equilibrium described by the

chemical potential of the solvent in the polymer network (µ1) and the chemical

potential of the pure solvent µ1,0.

ζ

Mc



Chapter 3: Synthesis and characterisation of pHEA hydrogels

104

When the network is at equilibrium, the chemical potential inside and outside of the

gel must be equal and so the forces of mixing and elasticity must balance. When these

two forces are equated an expression for the determination of Mc of a neutral network

can be written (Equation 3.3), this is derived from the heat and entropy of mixing in

the case of Δµmixing and from the theory of rubber elasticity for Δµelastic. 12,13

1

��
=

2

��
−
�� ��� � ����1 − ��,�� + ��,� + ����,�

� �

��,�

�
� −

��,�

2

Equation 3.3; Definition of Mc from; the molecular weight of the polymer chains

prepared under identical conditions without cross-linker (Mn), the specific volume of

the polymer (v), the molar volume of water (V1), v2,s and the polymer-solvent

interaction parameter (Χ1).

Equation 3.3 is a useful starting point, but Peppas and Merrill modified this to account

for the relaxation of the polymer chains in the presence of water during the process of

preparation (Equation 3.4). This modification accommodates the volume fraction of

the chains during cross-linking and effectively predicts the MC between crosslinks in

neutral networks.

1

��
=

2

��
−
�� ��� � ����1 − ��,�� + ��,� + ����,�

� �

��,� ��
��,�

��,�
�

�
�
− �

��,�

2��,�
��

Equation 3.4; Definition of Mc taking into account the polymer volume fraction in

relaxed state (v2,r).

As some of the networks that will be tackled in this work are ionic, these networks

have to be dealt with separately. Ionic networks require an additional free energy term

ΔGionic, making the whole endeavour much more complex (Equation 3.5).14,15
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∆������ = ∆�������� + ∆������� + ∆������

Equation 3.5; Relationship between the total Gibbs free energy of relative to the

energy of elasticity, mixing and ionic interactions in an ionic network.

Equation 3.5 can be differentiated as with Equation 3.1 to give Equation 3.6. The

additional complexity coming as a result of the addition of the extra term is necessary

as it takes into account the degree of ionisation of the polymer chains and the

ionisation strength of the medium.

μ� − μ�,� = ∆μ������� + ∆μ������ + ∆μ�����

Equation 3.6; Chemical potential of the network at equilibrium described by the

chemical potential of the solvent in the polymer network (µ1) and the chemical

potential of the pure solvent µ1,0.

As a result of the strong dependency upon ionic strength not only of the charged

network but of an ionic media, the analogous expressions for Equation 3.4 for anionic

and cationic networks prepared in the presence of a solvent are substantially more

complex (Equation 3.7 and Equation 3.8).

��
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�
��,�
�

�
� �

��
10��� − ��

�

�

= ����1 − ��,�� + ��,� + ����,�
� �

+ �
��
���

� �1 −
2��

��
� ��,� ��

��,�

��,�
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�

− �
��,�

2��,�
��

Equation 3.7; Expression for the swelling of anionic networks where I is the ionic

strength and Ka is the dissociation constant for acid.16
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Equation 3.8; Expression for the swelling of cationic networks where Kb is the

dissociation constant for base.

When combined, these equations allow for the quantification of the structure of both

neutral and ionic networks.

Kinetics

There are three principle mechanisms for the process of swelling – or transition of a

network from an unsolvated glassy or rubbery state to a relaxed rubbery state – this

transition is highly dependent upon the thermal properties of the network.

In rubbery networks – those that exhibit a Tg well below the temperature of the

medium – a form of transport labelled as Fickian or Case 1 is observed. In this mode

the chains have a high degree of mobility and the water can penetrate easily into the

network, this means that the limiting step in swelling is the osmotic diffusion of water

into the system. The rate of diffusion Rdiff is significantly lower than the rate of

relaxation Rrelax (Rdiff << Rrelax). This manifests as a linear increase in the network weight

as a function of the square root of time.10,17

In glassy networks – those that exhibit a Tg well above the temperature of the medium

– a form of transport labelled as non-Fickian or Case 2 is observed. In this mode the

chains have a low degree of mobility and water ingresses slowly into the network. In
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this case the limiting step to swelling is the chain mobility rather than osmotic diffusion

and the relationship relative to time is linear.10,17,18

The final form of transport is known as Anomalous transport, this occurs when the

rates of diffusion and relaxation are comparable. The modelling of this behaviour

generally makes use of Fick’s law with modified parameters for non-Fickian behaviour.

The relationship relative to time in this case varies from the square root of time to a

linear relationship.19

Power law equations are the most common way of determining the mechanism of

diffusion in a polymeric network.20,21 The simplest of these can be seen in Equation

3.9;

��

��
= ���

Equation 3.9; Power law equation describing the diffusion mechanism of polymeric

networks. Mt describes the swollen mass at time t, M∞ describes the equilibrium

swollen mass, k and n are characteristic of the solvent polymer system where n is the

diffusional exponent.

By determining the diffusional coefficient, n, the mechanism for solute diffusion can be

deduced. When n = 0.5 Fickian diffusion is intimated, 0.5 < n < 1.0 indicates anomalous

transport and n = 1.0 indicates non-Fickian (relaxation controlled) transport is implied.

Although Equation 3.9 is effective at describing the majority of swelling behaviour of a

network, it fails above Mt/M∞ = 0.60. Above 0.60 the integral of the Berens-

hopfenberg differential equation (Equation 3.10) is applied.22
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��

��
= (1 − ������)

Equation 3.10; Integral of the Berens-Hopfenberg differential equation where k2

(min-1) is the relaxation rate constant (for the network) and A is a constant.

From Equation 3.10 a plot of ln(1-Mt/M∞) versus t at times later than Mt/M∞ = 0.60

can be used to determine the mechanism of network diffusion.22

3.1.2 Hydrogel Rheology

Rheology is used to define viscoelastic properties across a vast range of materials.

Rheology is derived from the Greek rheos meaning stream and is precisely defined as;

“The study of the deformation and flow of matter, especially the non-Newtonian flow

of liquids and the plastic flow of solids”.23

An applied measure of stress causes a response in both in terms of deformation and

elastic recovery of that deformation upon the removal of the stress. The level of

deformation (or energy required to deform the material by a set amount) and elastic

recovery depend upon the state and properties of the material. A liquid would be

expected to deform without recovery displaying viscous properties either in a

Newtonian or non-Newtonian manner. A solid would be expected to deform before

recovering some of the deformation when force is removed exhibiting an elastic

response. Some materials, however, exhibit viscoelastic behaviour – somewhere

between a liquids viscous behaviour and a solids elastic behaviour.23,24

Stress and Strain

Stress (σ) on a material is defined as the Force (F) applied per unit of initial area (A0)

(Equation 3.11), this in turn elicits a deformation or strain (γ) defined as the ratio of 
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the change in dimensions relative to the original dimensions (Equation 3.12). As a

result of this ratio there are no units for strain and it is normally expressed as a

percentage.

� =
�

��

Equation 3.11; Definition of stress (σ) as a function of Force (F) in Newtons per area 

of sample (A0)

� =
��

��

Equation 3.12; Definition of Strain (γ) as a function of the ratio of change of x 

direction relative to y direction.

A rotational rheometer (Figure 3.2) is slightly more complex as the shear force is a

displacement gradient acting parallel to the fixed face unlike a tensile deformation

which is applied perpendicular to the fixed face. In the shear model, when one plate

moves distance, dx, the sample is subjected to strain γ, the velocity of the plate Vx and

a shear rate (Equation 3.13).

V� =
��

��

Equation 3.13; Definition of the velocity of the plate (Vx) as a function of the ratio of

change in x direction (dx) relative to time (dt).

�ℎ���	����	� =
�(
��
��

)

��

Equation 3.14; Definition of the shear rate (γ) as a function of the ratio of change in 

dimensions relative to change in time.
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Figure 3.2; A parallel plate set up for a rotational rheometer (left), Shear stress as

applied in an idealised cross-sectional parallel plate geometry (right).

The shear modulus of a material G can be defined as the ratio of stress to strain

(Equation 3.15). This is analogous to the expression of the viscosity of a liquid (η) 

which can similarly be defined as the ratio of stress to strain rate (Equation 3.16).

�ℎ���	�������	� =
�

�
=

(
�
��

)

tan�

At low amplitude tan α ≈ α and so the shear modulus can be defined as 

�ℎ���	�������	� =
�

�
=

�

���

Equation 3.15; Definition of the shear modulus (G) as a function of stress and strain

� = ��

Equation 3.16; Relationship between viscosity (η) stress and strain

Measurements can either be stress determined – where the strain resulting from

stress is measured, or it can often be more appropriate to measure the force required

to commit to a certain degree of strain – a strain controlled instrument. The modulus

and viscosity of a material should always be measured in the linear viscoelastic region

(LVER explained below) to ensure consistency in results.
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Viscous and elastic response.

Materials are able to act as either a solid or a liquid depending upon the time scale of

their response. At extremely long time scales a solid material may act as a liquid (1065

years for rock), conversely at extremely short time scales a liquid may act as a solid

(10-8 s for water).25 As a consequence most materials can be defined as viscoelastic

within their own time scales. The LVER of a material is the region in which the modulus

is independent of the magnitude of the strain – where there is a directly proportional

and linear relationship between the stress applied and the strain resulting from the

application of said stress (Figure 3.3).23

Figure 3.3; Stress vs strain graph showing the LVER, arrow indicates end of the LVER

(left). G’ vs Strain graph showing LVER, arrow indicates end of the LVER (right).

Viscous flow requires the flow of energy through friction and heat, however elasticity

involves the storage of energy thus allowing the material to recover the deformation

once force is removed.26 In oscillatory rheology a sinusoidal wave is applied with a

time-varying maximum strain (or amplitude, γM), where oscillatory – or angular –
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frequency (ω) is applied using a parallel plate. If the material is perfectly elastic then 

the resulting stress wave will be exactly in phase with the strain wave (for example;

steel at low strain). Conversely, if the rate of change of the sinusoidal wave oscillation

of stress is a maximum and the strain wave is zero (for example glycerol), this

describes a purely viscous system where the stress wave will be exactly 90° out-of-

phase from the imposed deformation. The difference in the stress and strain wave can

be described using the phase angle (δ) which varies between 0 and 90° as shown in 

Figure 3.4.

Figure 3.4; Sinusoidal waves of stress and strain created by an oscillatory rheometer

upon a viscoelastic fluid with phase angle δ and amplitude γM.

The phase angle is a reflection of the ratio of the elastic (in phase) component to the

viscous (out of phase component), these components yield an in-phase shear storage

modulus G’ and an out-of-phase shear loss modulus G’’ which can be defined by

Equation 3.17;
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�∗ =
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Equation 3.17; Complex shear modulus G* resolved to the storage and loss moduli

with τ* representing the complex stress and γM representing the maximum

amplitude.

Rather than express the phase angle as δ it is more regularly discussed in terms of the 

loss tangent or tan δ, which is defined as the ratio of the viscous and elastic 

components as shown in Equation 3.18;

tan � =
�′′

�′

Equation 3.18; Loss tangent as a function of the phase angle δ or the dynamic loss 

and storage moduli G’’ and G’ respectively.

In this case when tan δ >> 1 then the material is behaving as a liquid, when tan δ << 1 

then it is behaving as a solid.

The method of rheology can be applied to polymer gels to determine the rigidity of the

material in the linear viscoelastic region explained above. This gives an understanding

of the workability and toughness of the material under different conditions i.e. levels

of cross-liking, levels of hydration and so forth.24,27

3.1.3 pHEA hydrogels

Due to its toxicity 2-hydroxyethyl acrylate (HEA) has seen very limited uptake as a

hydrogel in any applications, to the best of my knowledge there has been a very

limited number of papers published utilising HEA in hydrogels.1,28-31 2-Hydroxyethyl

methacrylate, unlike its acrylate congener has a long history of use in hydrogels,

however, it suffers from a chronic lack of solubility in the polymeric form, HEA
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however, has no such problems and as a polymer has seen application due to its

hydrophilicity.

3.2 Synthesis and Characterisation of pHEA hydrogels

Hydrogels are highly desirable due to their material properties and also because of the

ease at which they can be formed from simple monomeric precursor materials, in

facile one step processes. Free radical polymerisation is by far the most common

method for the synthesis of hydrogels, in particular chemical hydrogels. Free radical

initiation is normally initiated through thermal, redox or photo based reactions. In this

work thermal and photo polymerisations are optimised and employed in the synthesis

of pHEA hydrogels using the latent EGDA impurity found in standard monomer supply.

Thermal initiation is instigated through a process in which the thermal energy of the

environment (in this case an oven) in which the initiating species is located exceeds the

bond dissociation energy of the molecule, this leads to homolytic bond cleavage and

the generation of two radical species (Scheme 3.1).
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Scheme 3.1; Mechanism of thermal initiation and propagation of HEA monomer

The most significant variables that require tuning in the thermal system are;

• Casting and curing system

• Concentration of cross-linker

• Monomer: solvent ratio

• Type of initiator

• Concentration of initiator

• Temperature of initiation

A sealed casting system into silicon moulds was chosen due to ease of use and the

concentration of cross-linker was fixed by the monomer mixture provided at 0.5 mol %

of monomer concentration and remained stable for over 2 months over the course of
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the study as monitored by GC-FID. A water soluble azo initiator was desirable in this

system due to the relatively low costs of azo initiators, their widespread use across

industry and their ease of use, handling and storage. From the range of water soluble

azide initiators available, VA-044 (Scheme 3.1) has a half-life of 10 hours at 44oC,30

allowing for a relatively slow rate of initiation, in order to prevent the build-up of an

exotherm that would potentially lead to the early onset of the gel effect encapsulating

unreacted monomer and reducing yield.32

3.2.1 Optimisation of thermal polymerisation of pHEA hydrogels

Figure 3.5; Thermal polymerisation of 2-hydroxyethyl acrylate

Since hydrogels synthesised using 2-hydroxyethyl acrylate (HEA) are not widely

reported in the literature, the first study required was to optimise the conditions of

gelation.1 Initially thermal polymerisation was explored as a facile route to develop

consistent hydrogels that could easily be up-scaled within an industrial scenario to

save cost. The two crucial elements identified for initial optimisation with an open cast

and cure technique were the concentration of the monomer and initiator respectively.

The cross-linker concentration was kept at a constant 0.5 mol % relative to monomer

throughout. Initially the concentration of initiator was varied between 0.25 and 1 wt.
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% relative to the monomer at a fixed monomer concentration of 30 wt. % of the total

content however, in this system no gelation was observed below 0.5 wt. % initiator.

The monomer solutions were allowed to polymerise at 60 °C for 16 hours allowing for

the initiator (VA-044) to be better utilised in the available conditions.

Reaction [Monomer]

(wt. %)

[Initiator]

(wt. %)a

Degree of Swelling

(%)b

G’ from amplitude

sweep (Pa)c

G’ from frequency

sweep (Pa)d

1 30 0.5 1250 (±60) 10040 (±100) 8940 (±1090)

2 30 1.0 1220 (±260) 10200 (±380) 8810 (±1010)

3 40 0.5 1070 (±110) 17430 (±990) 15600 (±6200)

4 50 0.5 1110 (±130) 25600 (±1630) 18420 (±2840)

Table 3.1; Showing material properties of hydrogels; a wt. % relative to monomer, b

swelling from wet samples, dry weight determined gravimetrically, c G’ at 1% strain

and 10 Hz, d G’ at 1 Hz.

Hydrogels produced using this method were initially tested by two methods; swelling

to equilibrium in deionised water and definition of their linear viscoelastic regions by

small oscillation shear rheology. Monitoring the kinetics of the swelling process with

variation of initiator concentration revealed a process of swelling to equilibrium taking

just over 2 hours. This relatively slow rate of uptake in comparison to the networks

described in Chapter 5 is indicative of a swelling process controlled primarily by the

rate of relaxation of the polymer network into the solvent rather than solvent uptake

into the network. This would be described as non-Fickian where there is a non-linear

relationship between a plot of Mt/M∞ vs t1/2 as described in Equation 3.9 and is

confirmed in previous work by Pissis et al.1,28 This is caused primarily by the nano-scale

pore size of the networks and the observation that sorption is dominated by the

entropic process of mixing the networks to an optimal random coil state rather than

the enthalpic elasticity component.28
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Figure 3.6; Water swelling kinetics for pHEA using two different initial concentrations

of initiator.

When testing the effect of variation of the concentration of initiator upon rate and

degree of swelling there are two observations; firstly there is no discernible difference

in mean equilibrium degree of swelling or rate of swelling, secondly the hydrogels

produced at 1 wt. % of initiator exhibited a far higher degree of error associated with

the readings (Figure 3.6). The first observation shows that these materials must have

very similar average mesh sizes, an observation backed up by the rheology data (Figure

3.7) where, an increase in the elasticity modulus would have implied a decrease in the

mesh size due to increased rigidity. However, the significant degree of error associated

with the increase in concentration of initiator suggests that the materials produced

with 1 wt. % of initiator may be have significant variation in internal structure and so

would be inferior in quality and consistency. One reason for this is that with higher

concentrations of initiator, there is a much higher initial concentration of radicals

leading to a far higher initial rate of polymerisation and an exotherm associated with
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this can caused the formation of macro-defects on the surface of the gel, this can

significantly affect the rate of fluid uptake on the surface of the gels.

Figure 3.7; The LVER of pHEA hydrogels relative to frequency between 0.1 and 200 Hz

with a fixed strain of 1 % at 25 °C (left), the LVER relative to amplitude between 0.1

and 1000 % strain at 1 Hz and 25 °C (right).

Rheological examination of the materials formed from variation in the concentration

of initiator show no discernible impact upon the values of the elasticity modulus G’ of

the pHEA gels, which supports the idea that there has been no overall impact upon the

average pore size (Figure 3.7). With a larger pore size one would expect to observe a

decrease in the value of G’ as the rigidity of the material decreases, conversely, an

increase in the value of G’ would indicate a decrease in the pore size.

Having determined that an initiator concentration of 0.5 wt. % relative to the

monomer gave the most consistent results the concentration of the monomer was

then varied to determine the optimum concentration. With pHEMA the hydrogels are

normally limited to high polymer weight contents of 40 wt. % or above due to the

hydrophobicity of pHEMA (which can lead to precipitation of polymer from the
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reaction solution prior to gelation and effectively terminating the chain end),2,33 pHEA

hydrogels are not so constrained. Initial testing showed that above 20 wt. % hydrogels

could be formed using this thermal polymerisation method (Figure 3.8). Materials with

concentrations of 30, 40 and 50 wt. % of monomer relative to total reaction mixture

were also tested to observe the effects upon properties in this system.

Figure 3.8; The effect upon swelling of variation in the concentration of monomer

relative to water.

A decrease in the equilibrium degree of swelling was observed with increasing

concentration of the HEA monomer from 30 to 40 wt. % (Figure 3.8) indicating that

there is a corresponding decrease in the mesh size, limiting the uptake of fluid into the

networks. These networks were also studied for their response to shear force by

rheology in order to define the relative rigidity and stability of the materials.
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Figure 3.9; Frequency sweep of pHEA hydrogels at different monomer concentrations

defining the LVER (left), amplitude sweep of pHEA hydrogels at different monomer

concentrations defining the LVER (right).

The impact of the change in the weight % of monomer in the hydrogels upon the LVER

of the resulting hydrogels defined with respect to frequency and amplitude under

ambient conditions was plotted (Figure 3.9), from this two principle observations can

be made. Firstly with increasing weight content of monomer in the hydrogels an

increase in the value of G’ was observed, secondly there is an increase in the error at

higher weight content polymer in the hydrogel. The first observation can be explained

as an increase in rigidity directly corresponds to a decrease in the pore size of the

hydrogel.26 The second observation derives from the presence of macro defects on the

surface of the hydrogel, visible with the naked eye, representing regions of

heterogeneity in the samples and therefore inconsistency between samples. For this

reason and swelling results the 50 wt. % monomer content in hydrogel was discarded.
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30 wt. % was chosen as the optimal monomer content due to the greater

reproducibility observed in the material in both swelling and rheology.

Having optimised the composition of the thermal polymerisation of HEA to form a gel,

the next step was the addition of CCTP p(MAA-co-EGDMA) polymers as an additive and

a cross-linker.

3.2.2 Addition of branched polyacids

It has previously been found that the addition of MAA-based polymer has improved

the effectiveness of a network for drug delivery due to their ionic character and their

pH sensitivity,34-36 it has also been found that dendritic and branched materials can

have a positive influence upon a networks’ material properties.37,38 This research

desired to use branched acidic polymers synthesised by catalytic chain transfer

polymerisation (CCTP) as an active additive in the hydrogels optimised above. The

synthesis and characterisation of these polymers can be found in Chapter 2. The initial

branched material chosen for this experiment was the low molecular weight (<20 kDa)

species A shown in Table 3.2.

Compound [Monomer]/

[CoBF]

[EGDMA]

(mol %)

Mwα

(gmol-1)

Ða αa Conversion

(%)b

A 20500:1 5 12900 1.75 0.23 93

Table 3.2; Characterisation of the branched acid used in hydrogel. a Measured by

SEC-UC with 2 x PLgel mixed D columns, calibrated with PMMA standards with DMF

(5 mmol NH4BF4) as eluent. b Measured by GC-FID.

Compound A was added to the previously optimised pHEA hydrogel prior to curing, the

initial tests looked at the effect of variation of the concentration of the branched
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polymer upon swelling and rheological results, the results of which can be seen in

Table 3.3.

Reaction [Branched acid

polymer] wt. %a

Degree of Swelling

(%)b

G’ from frequency

sweep (Pa)c

1 0 1250 (±60) 8940 (±1090)

5 0.5 920 (±10) 14300 (±2300)

6 1 870 (±10) 9990 (±7180)

7 2.5 780 (±10) 7240 (±5210)

8 5 607 (±90) 5390 (±6400)

Table 3.3; Material properties of synthesised hydrogels; a wt. % relative to total

[monomer], b swelling from wet samples, dry weight determined gravimetrically, c G’

at 1% strain and 1 Hz.

As the swelling profile in deionised water followed the same general kinetic trends as

the materials shown in Figure 3.8 with no significant deviation in its relationship to

time (indicating a non-Fickian swelling profile),9 Figure 3.10 and Table 3.3 are only

concerned with showing the final equilibrium swelling ratios at 150 hours. These

results show that with increasing concentration of branched acid polymer there is a

decrease in the degree of swelling (Figure 3.10). This is indicative of the branched

polymers utilising their ω-vinyl functionality to act as cross-linkers and thus decrease 

the mesh size of the networks which in turn decreases the equilibrium swelling ratio

achievable by these materials. Increasing the concentration of branched polymer

clearly has a significant effect upon the degree of swelling (Figure 3.10) with a reduced

equilibrium degree of swelling corresponding with a decrease in the value of G’

implying that a decrease in the mesh size isn’t the only cause as this would cause an

increase in the value of G’. The reduction in the value of G’ can be attributed to the

parallel increase in the rate of chain transfer creating more heterogeneous networks.



Chapter 3: Synthesis and characterisation of pHEA hydrogels

124

Figure 3.10; Effect of concentration of branched polyacid upon the equilibrium

degree of swelling of the hydrogel

Due to the inclusion of methacrylic acid, it was also considered possible that a pH

responsive characteristic could be imparted to the materials from the acid’s

ionisation.39,40 pMAA has a pKa of 4.66, above the pH of 4.66 significant ionisation can

lead to a large increase in ionic repulsion. This manifests in materials through an

increase in the degree of swelling above this pH.39,41 This effect was investigated by

subjecting the materials with a fixed concentration of branched acid (0.5 wt. %) to

different pH of buffer solution and swelling to equilibrium and comparing to a control

without branched acid (Figure 3.11).
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Figure 3.11; Effect of increasing pH upon the degree of swelling of pHEA hydrogels

with and without branched polyacid included.

Addition of hydrogels with 0.5 wt. % A to solutions with different pH buffer solutions

shows that with a pH < 6, the material containing branched acid remains comparable

to the material without branched acid, above a pH of 6 there is a significant relative

increase in the degree of swelling of the material with the branched acid relative to the

material without (Figure 3.11). This is most likely due to ionisation of the methacrylic

acid leading to greater uptake of free water through coordination to the acid groups

according to Equation 3.7.

The effect of adding the branched acid polymer upon the rheological characteristics of

the gels was also studied. Cured networks with branched acid polymer at 0.5 wt. %

were compared to networks without branched acid polymer through a frequency and

amplitude sweep used to define the viscoelastic region of the materials. The results of

which can be seen in Table 3.3 and Figure 3.12.
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Figure 3.12; Comparison of optimised pHEA hydrogel vs hydrogel with 0.5 wt. % of

branched polymer content (left), linear viscoelastic region (right).

The addition of the branched acid polymer significantly increases the value of G’ within

the LVER as defined by frequency and amplitude at 1 Hz and 1 % strain (Figure 3.12).

This lends credence to the hypothesis that the branched acid polymers are acting as

cross-linking agents in these networks as an increase in the value of G’ shows an

increase in the rigidity of the material, which in turn is indicative that the materials

have a decreased mesh size.

Unfortunately increasing the concentration of branched acid polymers above 5 wt. %

of total monomer content creates inhomogeneous materials and also significantly

increases the degree of error in the rheological measurements. It was thought to be as

a result of chain transfer from to the ω-vinyl groups generated by CCTP – something 

that has been previously observed.42 This effect is explored more thoroughly in

Chapter 4.
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3.2.3 Photo polymerisation of pHEA hydrogels

Scheme 3.2; Photopolymerisation of 2-hydroxyethyl acrylate

Thermally initiated polymerisation of hydrogels can be an inherently slow process that

typically require temperatures above ambient conditions, leading to evaporation of

solvent. In order to counteract this, a photo-polymerisation system was developed and

optimised for the synthesis of pHEA monoliths and then compared to the thermal

networks previously developed. Previous work by Guan, indicated the potential

applications of branched polymers generated by CCTP for photo-curing processes, as a

result, it was thought the higher radical concentrations associated with photo-

polymerisation may lead to the inclusion of the branched polymers in the curing

process as gelators.43 Branched polymers of the species A were then added to observe

differences in the effects of their addition in comparison to the thermal system, the

results of the testing of these materials can be seen in Table 3.4.
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Reaction Polymerisation

system

[Branched acid

polymer]

wt. %a

Degree of

Swelling (%)b

G’ from frequency

sweep (Pa)c

1 Thermal 0 1250 (± 60) 8940 (± 1090)

5 Thermal 0.5 920 (± 10) 14300 (± 2310)

9 Photo 0 1400 (± 40) 950 (± 120)

10 Photo 0.5 1450 (± 40) 210 (± 50)

11 Photo 1 3420 (± 30) 260 (±30)

Table 3.4; Showing material properties of hydrogels; a wt. % relative to monomer, b

swelling from wet samples, dry weight determined gravimetrically, c G’ at 1% strain

and 10 Hz, δ G’ at 1 Hz.  

Initially the reaction system was adapted for photo-polymerisation; a similar set-up

was utilised with open cast moulding and premixing of the reactants in the absence of

light, this was followed by photo-polymerisation of the same volume of reactants using

a light hammer™ UV source. The light hammer™ is designed to emit UV light across a

very broad range of wavelengths (between 250 and 400 nm) at relatively high intensity

(200 watts/cm); the consequence of this being that it requires a very short period of

time for gelation to occur with these materials. Another consequence of this is that far

lower concentrations of initiator can be utilised to bring this reaction to gelation. In

this case the initiator Irgacure™ 1173 was utilised at an optimised concentration of

0.14 wt. %.44-46
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Figure 3.13; Effect of concentration of branched polyacid upon the equilibrium

degree of swelling of the hydrogel

Initial comparison of 1 and 9 showed that 9 exhibited significantly lower mass loss

through the process of polymerisation due to water evaporation (Figure 3.13). There

was also no visible evidence of the macro defects that persisted even in the fully

optimised thermal networks. Comparison of the swelling profiles of the respective

materials shows that the photo-polymerised system reaches a much higher degree of

swelling than the thermal system although at a similar rate (Figure 3.13). This indicates

two things; firstly the mesh size of the photopolymerised system is larger, caused by

the lack of evaporation of the solvent from the network during gelation, inhibiting the

onset of gelation and preventing the formation of a greater degree of entanglement

and smaller mesh sizes; the second is that nothing has inherently changed in the

mechanism of uptake and swelling – indicating no significant chemical change to the

networks.



Chapter 3: Synthesis and characterisation of pHEA hydrogels

130

Figure 3.14; Comparison of optimised thermal polymerised pHEA hydrogel vs

optimised photo polymerised pHEA hydrogel via frequency sweep between 0.1 and

200 Hz (left), comparison of optimised thermal pHEA hydrogel vs optimised photo

pHEA hydrogel via amplitude sweep between 0.1 and 1000 % (right).

Investigation of the changes in the LVER of the two materials as shown in Figure 3.14

shows that 9 has a significantly lower value of G’ than 1 indicating a softer material.

This can be simply explained through the higher concentration of water in the cured

gels leading to a softer, less rigid material. A second observation from the rheology

profiles of the LVER is that despite differences in the value of G’ there appears to be

very little change to the limits of the LVER.

After establishing the relative effects of changing the method of gelation, it seemed

appropriate to see what effect this would have upon the addition of branched acid

polymers to these networks. The same branched acid (A) shown in Table 3.2 was

chosen at the same concentrations as reactions 5, 6, 7 and 8 with the same

methodology used of premixing of branched acids with the monomer solution in the

absence of light. In the event, no gelation was observed at concentrations of branched
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polymer above 1 wt. %, materials 10 and 11 were compared to network 9 with respect

to their swelling and rheological properties.

Figure 3.15; Effect of concentration of branched acid polymer upon the swelling in

deionised water of photo-polymerised pHEA networks with error.

The swelling profile for 9, 10 and 11 shown in Figure 3.15 is surprising in that it

represents a departure from the properties seen in the swelling of the thermal

networks with branched acid additive. These results show that with an increase in the

concentration of branched acid polymer, initially there is no sizeable effect upon the

degree of swelling with 10 showing a similar profile and equilibrium degree of swelling

to 9 however, with the addition of higher concentrations of the branched acid polymer

a much higher equilibrium degree of swelling is observed. This is the opposite of the

trend observed with the increase in branched acid content in the thermal networks 5 –

8. These results indicate that the increased concentration of branched acid polymer

has a significant effect in increasing the water uptake of the networks through a

combination of increased mesh size and increased hydrophilicity. Once again this has
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no effect upon the kinetics of the swelling process, with swelling to equilibrium

occurring over the same time period implying that no significant change has occurred

to the chemical nature of the gel or its affinity to the solvent system.

The observed effect is confirmed by the rheological properties with the addition of

branched polymer showing a decrease in the rigidity of the materials within the LVER

as shown in Figure 3.16.

Figure 3.16; Comparison of frequency sweeps across the LVER for optimised photo

polymerised pHEA hydrogel vs hydrogel with 0.5 wt. % and 1.0 wt. % of branched

polymer (left), linear viscoelastic region within the context of an amplitude sweep

(right).

The combination of these results appears to point to the occurrence of chain transfer

to the CCTP ω-vinyl end groups of the branched acid polymers causing extensive chain 

termination competing with cross-linking and so reducing the cross-linking density

within the networks. The result of this is that there is an increase in the pore and mesh

size of the networks which reduces the rigidity of the networks at any specific degree

of swelling but also increases the amount of water the networks can take up.
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3.3 Conclusions

A monolithic hydrophilic network was synthesised with HEA through thermal

polymerisation. This monolith was first optimised with respect to its monomer and

initiator concentration and characterised using swelling and rheology to define the

networks. The optimal thermal set up for this network was determined to be a 30 wt.

% content of monomer relative to total content and 0.5 wt. % of initiator relative to

monomer content. To this optimised network a branched acidic polymer synthesised

via CCTP with MAA and EGDMA as the cross-linker is applied to functionalise and

cross-link the network.

With the thermally polymerised network the branched CCTP polymer has the

effect of a cross-linker; decreasing the degree of swelling and increasing the rigidity of

the networks according the rheology. Unfortunately the presence of macro-defects in

these networks led to a switch to a photo-curing system.

The photo-cured pHEA networks were developed and compared to the thermal

networks where the materials properties showed an increase in pore size with an

increase in the degree of swelling and decrease in the rigidity of the networks, this is

caused by the decrease amount of water that evaporates during the process of

polymerisation in the photo-system.

Finally the branched acid polymer was also added to this network to observe and

compare the effects relative to the thermally cured network. In this system it was

observed that branched acid polymer increased the degree of swelling, decreased the

rigidity of the materials and prevented gelation at high concentrations. This indicates

that the branched acid polymer’s ω-vinyl end groups are causing chain transfer 
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competing with cross-linking and increasing the mesh size and inevitably inhibiting

gelation entirely. These concepts are explored further in Chapter 4.

3.4 Experimental

3.4.1 Materials

Reagents were purchased from Sigma Aldrich and used as received, unless otherwise

stated. 2,2’-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride (VA-044) was

purchased from Alpha Labs and used as received.

3.4.2 Instruments

Rheometer

All rheology experiments were conducted upon a Malvern Kinexus Ultra with a Julabo

cry-compact circulator CF41 temperature control unit. 20 mm stainless steel parallel

plate geometry was used at 37 °C and with a force gap of 1N. Samples were cut to 20

mm using a 20 mm wad punch. The instrument was controlled in a CS-autostrain

mode. A minimum of three experiments was conducted for each material. The data

was exported as a CSV format and analysed in OriginPro 9.1.

Oven

All thermal gelation experiments were carried out in a Thermo Scientific Heratherm

oven OGS180 at 55 °C. Materials were allowed to gel for 16 hours then cooled for 2

hours at room temperature prior to further analysis.

Light Hammer™
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All photo gelation experiments were carried out on a Light Hammer 6 equipped with a

broad spectrum H bulb and the speed of the conveyer belt unit set at 5 m/min. The H

bulb operates between 250 and 400 nm at an optimal intensity of 200 watts/cm.

3.4.3 Thermal method for the synthesis of pHEA networks

A typical thermal gelation would occur according to the following procedure.

A 100 mL round bottom flask equipped with a septum and stirrer bar was charged with

2-hydroxyethyl acrylate (6 g, HEA, 0.052 mol), 14 g of water and degassed for a

minimum of 1 hour prior to the addition of VA-044 (0.03 g, 9.28 x 10-5 mol) under a

blanket of nitrogen. The solution continued to be degassed with stirring until all the

initiator has dissolved. The solution was then deposited into the silicone 4 cm diameter

cylindrical silicone moulds in 3 mL aliquots by syringe before being covered by an

acrylic cover and placed in the oven at 55 °C for 16 hours. After gelation the moulds

were removed from the oven and allowed to cool for 2 hours before removing the

covering. The materials were stored at 10 °C for up to 1 month.

Reaction HEA VA-044 Water

(g) (mol) (g) (mol) (g) (wt. %)

1 6 0.052 0.03 9.28 x 10-5 14 30

2 6 0.052 0.06 1.85 x 10-4 14 30

3 8 0.069 0.03 9.28 x 10-5 12 40

4 10 0.087 0.03 9.28 x 10-5 10 50

3.4.4 Photo method for the synthesis of pHEA networks

A typical photo gelation would occur according to the following procedure.
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A 100 mL round bottom flask equipped with a septum and stirrer bar was charged with

2-hydroxyethyl acrylate (6 g, HEA, 0.052 mol), 14 g of water and degassed for a

minimum of 1 hour prior to the addition of Irgacure 1173 (0.01077 g, 6.56 x 10-5 mol)

in the absence of light. The solution was then dispensed into the silicone moulds in 3

mL aliquots by syringe in the absence of light before being passed under a Light

Hammer™ 5 times at a rate of 5 mmin-1. After gelation the moulds were covered

immediately and allowed to cool. The materials were stored at 10 °C for up to 1

month.

Reaction HEA VA-044 Water

(g) (mol) (g) (mol) (g) (wt. %)

1 6 0.052 0.03 9.28 x 10-5 14 30

2 6 0.052 0.06 1.85 x 10-4 14 30

3 8 0.069 0.03 9.28 x 10-5 12 40

4 10 0.087 0.03 9.28 x 10-5 10 50

3.4.5 Synthesis of pHEA networks with branched acid polymers

A typical thermal gelation would occur according to the following procedure.

A 100 mL round bottom flask equipped with a septum and stirrer bar was charged with

2-hydroxyethyl acrylate (6 g, HEA, 0.052 mol), branched polymer (0.05 g, 0.004 mmol),

14 g of water and degassed for a minimum of 1 hour prior to the addition of VA-044

(0.03 g, 9.28 x 10-5 mol) under a blanket of nitrogen. The solution continued to be

degassed with stirring until all the initiator has dissolved. The solution was then

dispensed into the silicon moulds in 4 mL aliquots by syringe before being covered by

an acrylic cover and placed in the oven at 55 oC for 16 hours. After gelation the moulds

were removed from the oven and allowed to cool before removing the covering.
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Reaction HEA VA-044 Branched acid (A) Water

(g) (mol) (g) (mol) (g) (mol) (g) (wt. %)

5 6 0.052 0.03 9.28 x 10-5 0.05 0.004 14 30

6 6 0.052 0.03 9.28 x 10-5 0.1 0.008 14 30

7 6 0.052 0.03 9.28 x 10-5 0.25 0.020 14 30

8 6 0.052 0.03 9.28 x 10-5 0.5 0.040 14 30

3.4.6 Swelling

Upon cooling gels were removed from the silicon mould, placed inside a pre-weighed

100 mL screw top jar, weighed then immersed in deionised water for 5 days with

changing of water to allow for removal of unreacted material and weighing of mass

every 12 hours over the 5 day period. After the 5 day period the gels were removed

from solution and dried in a vacuum oven at 40 °C over phosphorous pentoxide (P2O5)

for 72 hours prior to weighing the dried mass of the gels. A minimum of three repeats

was conducted for each material.

3.4.7 Rheology

Cured samples were cut to a 20 mm diameter and 3 mm thick using a 20 mm diameter

wad punch. Samples were loaded at 25 °C with and a preload of 1 N was applied and

allowed to equilibrate. Frequency sweeps were conducted between 0.1 and 200 Hz

with a displacement of 1 %. Amplitude sweeps were conducted between 0.1 and 1000

% at a frequency of 1 Hz. The data was exported as a CSV format and analysed in

OriginPro 9.1.
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4. Synthesis and Characterisation of pAMPS Based

Hydrogels for Wound Care

This chapter is concerned with the study of the effects of the addition of branched and

linear polymers synthesised by catalytic chain transfer polymerisation (CCTP) to

hydrogels of known quality, for application in the field of wound care.1,2 Initially the

theory of the rubber elasticity as it pertains to the compression of hydrogels will be

examined.3-6 This is followed by a brief review of the scanning electron microscopy

(SEM) techniques used when imaging hydrogels.7-9

Photo-polymerisation for the synthesis of hydrogels is a facile and rapid technique

using 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as the principle monomer.

The occurrence of chain transfer to the CCTP branched polymer additives is observed

to inhibit the formation of strong, cohesive gels except at very low concentrations of

the CCTP additive.
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4.1 Background

In order to analyse the effects of variation in network precursor constituents upon the

properties of the networks formed, the materials need to be tested in multiple

dimensions. These include the expansion or swelling of the networks into a solvent and

shear testing, as shown in Chapter 3.6,9-14 There are, however, other techniques that

allow for a more comprehensive picture to be assembled, these include; uniaxial

mechanical testing (either compression or tensile) and SEM to characterise the effects

upon the morphology of the materials formed.

4.1.1 Compression

Compression testing represents a tried and understood technique for determining the

network characteristics of swollen and unswollen polymer networks. Not only can it be

used to determine the relative stiffness of a material, it can also be used for the

determination of cross-linking density (ve) and effective molecular weight between

cross-link points (Mc). In order to determine the relative stiffness and toughness of the

materials developed, the compression modulus of cylindrical swollen samples was

measured from the linear region of response between stress and strain, typically

within the first 15 % of strain.7,15,16 Unlike rheology, which measures the ability of the

polymer network and chains to slide past one another under dynamic stress,

compression measures the ability of the network and chains to resist being compacted

into a smaller volume under a consistent uniaxial force.7,9 The experiments were

performed through a stress-strain test applied with a constant rate of strain from a

preloaded stress of 0.1 N and monitored through a force feed-back loop of the applied

stress required to apply the strain.



Chapter 4: Synthesis and characterisation of pAMPS based hydrogels for wound care

142

Rubber Elasticity Theory

For the compression testing of pAMPS networks, the Mooney-Rivlin equation was

applied (Equation 4.1) as derived from rubber elasticity theory with a stress

deformation function for swollen gels.7,15,17

� = � �� −
1

��
�

Equation 4.1; Compressed Mooney-Rivlin equation of rubber elasticity. σ is the stress 

or force per cross-sectional area, E is the Young’s modulus derived from the linear

region of association between stress and strain, λ is the deformation ratio. 

Although the overall result shows an exponential increase in force required to displace

a hydrogel by a required strain, the initial 20 % of strain regularly gives a linear – non-

strain dependent – response. This region allows for the definition of the modulus (E)

within a linear region of relationship between stress and strain. This along with the

break point provides us with a relative idea of toughness in these materials. Higher E

values indicate a stiffer material with a greater elastic response, whereas lower E

values represent less rigid softer materials with a ‘dampened’ response.

The value of E combined with an understanding of the fraction of polymer network in

the relaxed (prepared) state (v2,r) and the swollen state (v2,s) can give an understanding

of the ve.18,19
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�����,�

�
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�

Equation 4.2; Relationship between effective cross-linking density ve, the Young’s

modulus E, gas constant R, temperature T, fraction of polymer network in relaxed

state v2,r and fraction of polymer network in the swollen state v2,s.
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From ve can be derived Mc with an understanding of the polymer network density ρp

(Equation 4.3).20

�� =
��

��
�

Equation 4.3; Relationship between effective molecular weight between cross-link

points Mc, the polymer density ρp and the effective cross-linking density ve.

4.1.2 Scanning electron microscopy

Scanning electron microscopy (SEM) is the most widely used and established technique

for the visualisation of the morphology of polymer networks.8,21,22 Importantly, the

impact of the freezing and drying technique used to form the dehydrated network

(xerogel) can have a significant impact upon the morphology visualised.23,24 The most

common forms of freezing are; refrigeration, instantaneous freezing and critical point

drying, all followed by lyophilisation to sublime off the solid water. The speed and

nature of the freezing process leads to the formation of different morphologies due to

the nature of the ice crystals formed. With rapid low temperature freezing – i.e.

instantaneous immersion in liquid nitrogen, ice is formed as a vitreous mass, this

means that ice crystals have minimal impact upon the observed morphology due to an

even sublimation process, conversely, with slow freezing processes, large ice crystals

can be formed leading to a significant effect upon the observed morphology.23-25 An

alternative method (generally used for biosamples) for xerogel formation is critical

point drying, representing another effective method for rapid drying of substrate

through water displacement with a transitional solvent (usually acetone), followed by

replacement with liquid CO2, followed by heating for rapid removal, however, as this

technique is relatively time consuming and complex, it was not used in this work.24,26-28
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4.2 Synthesis and characterisation of monolithic pAMPS

hydrogels

The AMPS monomer is well suited for use in wound-care, with many already proven

applications within the biomedical field in its monolithic form.1,2,29 Commercially it is

used for its properties as a soft, hydrophilic and above all biocompatible material with

the capacity for a high degree of swelling.1,2 The aims of this research were; to

investigate the properties of gels formed through the photopolymerisation of the

AMPS monomer with variation of cross-linker and then to investigate the impact that

the addition of branched and linear polymers synthesised in Chapter 2 would have

upon the materials properties of the hydrogels formed.

4.2.1 pAMPS hydrogels formed with a conventional di-vinyl

cross-linker

Prior to the addition of the vinyl terminated macromonomers generated by CCTP the

pAMPS hydrogel system was tested to see the effect of the addition of different

concentrations of the cross-linker poly(ethylene glycol) diacrylate (PEGDA) upon the

material properties of the gel.13,30,31 This brief study was designed to act as a baseline

for comparison when branched polymers generated in Chapter 2 – with their potential

to act as cross-linking agents – are added into these hydrogels. The addition of the

branched polymers with their ω-vinyl end group functionality is anticipated to cause 

crosslinking which should have an effect upon the value of compression modulus,

rheological elasticity modulus and their swelling properties as the branched polymers
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impact the mesh size (see Chapter 3).32-37 To this end this study creates a comparison

to a system that is well understood.

Samples with PEGDA concentrations varying between 0.1 and 1 mol % of the total

monomer concentration were tested in triplicate through swelling into a simulated

body fluid (Table 4.1), followed by mechanical analysis by compression and rheology

(Figure 4.4) with additional observation by SEM (Figure 4.5) in order to observe the

impact upon the network morphology.

Reaction

[X-linker]

(mol % of

monomer)

Equilibrium

degree of

swelling (%)a

Compression

modulus E’ (MPa)

Rheology Elasticity

modulus G’ (Pa)

1 0.14 3390 (±60) 5.3 x 10-3 (± 2 x 10-4) 950

2 0.25 3250 (±50) 11 x 10-3 (± 1 x 10-3) 1910

3 0.5 2230 (±110) 29.5 x 10-3 (± 4 x 10-4) 2810

4 1 1470 (±70) 59.2 x 10-3 (± 7 x 10-4) 5510

Table 4.1: Mechanical data for the synthesis of pAMPS monoliths with varying

concentrations of PEGDA cross-linker. a Swollen in SBF for 72 hours at 25 °C.

The trends caused by changing the concentration of cross-linker show that with

increasing concentration of PEGDA, the equilibrium degree of swelling in these gels

clearly decreases in a directly proportionate manner (Figure 4.1 and Table 4.1). This is

caused by a decrease in the chain length between cross-linker points, in turn

decreasing the mesh size – the volume between chains occupied by solvent.4,15 The

swelling profile of pAMPS monoliths shows a clear tendency towards non-Fickian

(relaxation limited) swelling, with a slow, directly time dependent rate of swelling

being indicative of this model.5,6,11
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Figure 4.1; Effect of concentration of cross linker PEGDA upon the swelling kinetics of

the hydrogel (left). Effect of concentration of cross-linker PEGDA upon the

equilibrium degree of swelling (right).

This is confirmed by a study of the compression strength and modulus of these

hydrogels at fixed degree of swelling of 10 wt. % (solid component / total mass). The

stress strain curves show a decrease in the break point with increasing concentration

of cross-linker, this is accompanied by an increase in the elasticity modulus derived

from the first 20 % of strain associated with the linear region of fully elastic behaviour

(Figure 4.2). With increasing concentration of cross-linker a proportionate increase in

the elasticity modulus is observed (Figure 4.3), according to Equation 4.2, this increase

in modulus caused by the increase in ve and the corresponding decrease in the Mc

(Equation 4.3). As with the swelling this confirms that the increase in the

concentration of cross-linker is causing a decrease in the mesh size of the gels,

accompanied by an increase in their rigidity and decrease in their elasticity, this is

confirmed when manipulating the gels, those with higher concentrations of cross-

linker are stiffer and more brittle.7
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Figure 4.2; Compression to break point of pAMPS gels with PEGDA cross-linker (left),

Compression in the linear response region used to calculate modulus E’ (right).

Figure 4.3; Compression modulus E’ as a function of cross-linker concentration.

The effect of changing the concentration of cross-linker upon material properties was

also analysed by rheology, which monitors the effects of dynamic shear force (as

opposed to uniaxial force in compression) upon a network. In these tests, the
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frequency of oscillation was varied, whilst maintaining constant amplitude in order to

monitor the viscoelastic region (Figure 4.4).

Figure 4.4: Definition of the LVER of monolithic pAMPS hydrogels by a rheological

frequency sweep (left). Relationship between cross-linker concentration and elastic

modulus (right).

As with compression, with an increase in the concentration of cross-linker there is a

proportional increase in the elasticity modulus G’ (Figure 4.4). At higher frequencies

the elasticity modulus increases for all gels due to their inability to recover sufficiently

at that time interval.9,38

Imaging of these samples by SEM at a constant wt. % and under controlled conditions

of 90 wt. % water prior to freezing and lyophilisation were conducted by SEM (Figure

4.5).
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Figure 4.5: SEM images of pAMPS monoliths Clockwise from top left; A – 0.14 wt. %

cross-linker x 100 magnification, B – 0.14 wt. % cross-linker x 1000 magnification, C –

1.0 wt. % cross-linker x 100 magnification, D – 1.0 wt. % cross-linker x 1000

magnification.

A random 3D, phase separated structure, on the 100 µm scale, possibly caused by the

formation of the ice crystals in the freeze-dry process is seen (Figure 4.5). However, on

the surface of the gels there is a random pore structure with diameters in the range of

10 µm at the 0.14 wt. % cross-linker used in 1 (B). This observable network

morphology decreases in size with increasing concentration of cross-linker, with D

showing a substantially tighter network at the 1.0 wt. % cross-linker concentration

used in 4.

From this initial study a clear understanding of the impact of the change of cross-linker

concentration upon the material properties of a hydrogel has been gained. Increasing

the concentration of cross-linker increases the elasticity of the materials and decreases

A B

DC
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equilibrium swelling ratio. Both of these are indicators of a complementary decrease in

pore size (see Chapter 3). This can act as a comparison for the addition of branched

acids generated in Chapter 2 to the model monolith 1.

4.3 Variation in the concentration of branched acid

monomer

Catalytic chain transfer polymerisation (CCTP) is a method of free radical

polymerisation that makes use of an extremely potent catalytic chain transfer agent

(CCTA) to generate low molecular weight polymers without having to resort to either

very high concentrations of initiator or thiol CTAs with concentrations approaching

equivalency.39,40 This technique has been used for the synthesis of branched polymers

with high concentrations of di-vinyl monomer, something that has previously been

very difficult to achieve.41 One of the consequences of the mechanism of CCTP is the

formation of ω-vinyl functionality on the chain ends of the polymers formed, this has 

allowed for the formation of branched polymers with ω-vinyl functionality with very 

high fidelity.42,43 In this work, the utilisation of this ω-vinyl functionality in branched 

polymers was used in an attempt to create a novel cross-linker for use in free radical

gelation.44

4.3.1 Branched acid polymer as a gelator

Following from the establishment of a baseline for the behaviour of pAMPS monoliths

at different cross-linker concentrations, a series of tests were performed varying the

concentration of a branched acid polymer (the same procedure used in Chapter 3),

followed by variation of the molecular weight and degree of branching in the branched
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polymer. The addition of hydrophilic CCTP branched macromonomers was initially

attempted with a branched acid of relatively low molecular weight and degree of

branching – that seen in Table 4.3.

Compound [Monomer]/[CoBF] [EGDMA]

(mol %)

Mw
a

(gmol-1)

Ða Αa Conversion

(%)b

A 20500:1 5 12900 1.75 0.23 93

Table 4.2: Characterisation data for MAA/EGDMA branched polymer. a derived from

triple detection SEC (DMF) 0.2 mgmL-1, 1 mLmin-1 flow rate, mixed D columns. b

derived from GC-GID relative to DEG reference.

Initial investigations focused upon attempting to use the branched acid

macromonomer as the sole gelator, removing the PEGDA from consideration. A series

of tests were performed, in the absence of the di-vinyl PEGDA cross-linker, increasing

the concentration of A (Table 4.2), however, at no point was gelation observed.

Addition of other branched polymers yielded similar results. This appears to confirm

the results from the photo-polymerised pHEA hydrogels (discussed in Chapter 3) with

two contributing factors leading to the inhibition of gelation;

1) The relatively low concentration vinyl groups on the macromonomers in

comparison to a conventional cross-linker.

2) The occurrence of chain transfer from propagating radicals to the catalytic

chain transfer vinyl end groups competing with the propagation and cross-

linking mechanism. This leads to the formation of shorter than kinetic chain

lengths terminated by the CCTP polymers.45,46

As a result of these discoveries and in order to test this hypothesis, the CCTP branched

polymers were subsequently added in the presence of PEGDA cross-linker at the
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concentration used for material 1. This was used in order to investigate in what way

these materials would impact the network morphology.

4.3.2 Addition of branched acid polymer as an additive.

The initial study compared the impact of concentrations of compound A between 0.1

and 1 wt. % upon the material properties of the hydrogels produced. It was quickly

discovered that above 1 wt. % gelation did not occur due to what was interpreted as

the dominating impact of chain transfer to the CCTP ω-vinyl end groups.  

Reaction

[X-linker]

(mol % of

monomer)

Equilibrium

degree of

swelling (%)a

Compression modulus

E’ (MPa)

Rheology

Modulus G’

(Pa)

1 0 3390 (± 60) 7 x 10-3 (± 2 x 10-4) 950

5 0.1 3380 (± 10) 5.6 x 10-3 (± 5 x 10-4) 770

6 0.25 3250 (± 40) 8.06 x 10-3 (± 5 x 10-5) 1010

7 0.5 3100 (± 200) 5.4 x 10-3 (± 2 x 10-4) 720

8 1 2720 (± 70) 6.9 x 10-3 (± 5 x 10-4) 320

Table 4.3: swelling and compression data for the synthesis of pAMPS hydrogels with

varying concentrations of PEGDA cross-linker. a swollen for 72 hours in SBF at 25 °C.

The effect of increasing the concentration of compound A results in a decrease in the

equilibrium degree of swelling (Table 4.3 and Figure 4.6). Although this is observable,

it is significantly less than the effect of varying the degree of the PEGDA cross-linker. If

A is acting as a chemical cross-linker, the decrease in the degree of swelling can be

explained through the increase in the concentration of the cross-linker causing an

increase in ve, the reduced impact could be explained through the lower concentration

of vinyl end groups relative to the di-vinyl cross-linker (per gram) causing a reduced

impact upon the degree of swelling.
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Figure 4.6: Swelling to equilibrium of pAMPS hydrogel with different concentrations

of branched acid as additive (left). Equilibrium degree of swelling relative to

concentration of branched acid branched acid polymer and cross-linker (right).

Despite this there is no observable increase in compression modulus E’ with increasing

concentration of compound A. As the pore size is directly related to the value of E’

(Equation 4.2) this implies that, although we see inclusion of compound A, it is not

acting as a chemical crosslinking agent and so the decrease in the equilibrium degree

of swelling should be attributable to other effects such as hydrogen bonding and ionic

attractions – caused by the macromonomer filling the space within the mesh without

contributing to a reduction in the dimensions of the mesh.18,19
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Figure 4.7; Compression of pAMPS hydrogels with different concentrations of

branched acid polymer as additive (left). Compression modulus E’ as a function of

total cross-linker concentration in both pAMPS and pAMPS with branched polymers

(right).

Figure 4.8: Rheology of pAMPS hydrogels with different concentrations of branched

acid polymer as additive (left). Elastic modulus G’ as a function of total cross-linker

concentration in both pAMPS and pAMPS with branched polymers (right).

Analysis of the testing of these materials by rheology also indicates that there is no

significant increase in elasticity of the materials with increasing concentration of A. In
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fact, the value of G’ within the LVER appears to decrease with increasing concentration

of A (Figure 4.8).

Three things have been observed in this section indicating that compound A is ill suited

as a cross-linker, these are;

1) No gelation is observed when attempting to use compound A as the sole cross-

linker.

2) Above a critical wt % compound A prevents the formation of a gel even in the

presence of a regular cross-linker.

3) No observable increase in E’ (compressive modulus) is observed with increasing

concentration of compound A and no increase in rheological elasticity modulus is

observed.

A reasonable hypothesis for why compound A has this affect would be that the size of

the molecule makes it unfavourable for propagation from it. This is both due to its

increased bulk at the reaction site creating steric hindrance and the large bulk of the

molecule meaning that diffusion through the solution is less rapid thereby reducing

collision rate. Although this is the case, there is good reason to suggest that compound

A is being reacted with and included in the hydrogel structure as firstly it has a

noticeable impact upon the equilibrium degree of swelling as it inhibits gelation. This

implies that initiator or active chain ends react with the compound A’s vinyl end

groups but then fail to propagate onwards or do so at a seriously reduced rate, most

likely due to the large steric bulk of the compound and the action of chain transfer.
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4.4 Variation of the degree of branching and molecular

weight

In this section a systematic study of the effects of variation of the degree of branching

and molecular weight of the branched acids synthesised and characterised in Chapter

2 (shown again in Table 4.4) upon the properties of the pAMPS monolith shown above.

The degree of branching is varied so that linear, lightly branched and more highly

branched polymers can be compared. Following this, the effects of the molecular

weight of branched and linear poly acids is investigated with respect to their degree of

swelling, compression and rheological results (Table 4.4). The concentration of the

branched and linear acid is kept to 0.5 wt. % of the total monomer concentration in

order to allow for gelation.
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Compound [Monomer]/

[CoBF]

[EGDMA]

(mol %)

Mw
α

(gmol-1)

Ðα αα Conversion

(%)β 

B 25000:1 0 5000 1.51 0.22 > 99

C 64000:1 0 9780 1.41 0.28 > 99

A 20500:1 5 12900 1.75 0.23 93

D 25000:1 5 17600 2.43 0.27 95

E 32000:1 5 42600 3.12 0.35 95

F 25000:1 10 50900 5.46 0.31 97

Table 4.4: Characterisation data for MAA/EGDMA branched polymer. α derived from

triple detection SEC (DMF) 0.2 mgmL-1, 1 mLmin-1 flow rate, mixed D columns. β

derived from GC-FID relative to DEG reference.

4.4.1 Variation in the degree of branching

Initially the effect of varying the degree of branching in the branched acids was

investigated making use of three branched acids with three different concentrations of

EGDMA but varying molecular weights; B – linear pMAA, D – branched MAA-co-

EGDMA with 5 mol % EGDMA, F – branched MAA-co-EGDMA with 10 mol % EGDMA.

Reaction
Branched

acid used.

Equilibrium

degree of swelling

(%)a

Compression modulus

E’ (MPa)

Rheology

modulus G’

(MPa)

9 B 4240 (± 90) 4.3 x 10-3(± 5 x 10-4) 260

7 D 3100 (± 200) 5.4 x 10-3 (± 2 x 10-4) 620

10 F 2570 (± 20) 7.6 x 10-3(± 3 x 10-4) 540

Table 4.5: Swelling, compression and rheology data for the synthesis of pAMPS

hydrogels with varying concentrations of PEGDA cross-linker.a Swollen in SBF for 72

hours at 25 °C

Swelling results show that with an increase in branching there is a decrease in the

equilibrium degree of swelling, however, there were some complications. Firstly, the

linear pMAA gives a far higher degree of swelling, even relative to the baseline pAMPS

monolith. This is theorised to be due to the relatively high concentration of ω-vinyl end 
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groups causing chain transfer to dominate without the occurrence of cross-linking to

multiple chain ends. As a result, the mesh size of the network increases causing an

increase in the equilibrium degree of swelling. The second result of interest is the time

scale required to reach equilibrium swelling – in the initial time networks 9, 7 and 10

take up water at a faster rate than the pAMPS monolith. This is possibly due to the

increased hydrophilicity of the network, when the branched acids are incorporated.

Figure 4.9: Swelling to equilibrium of hydrogels with branched acid polymers

incorporated at 0, 5 and 10 mol % cross-linker (left). Initial rate of swelling of the

same hydrogels (right).

The compression results agree with the results from the swelling analysis, where the

value of E’ increases with increasing branching across networks 9, 7 and 10 – indicating

a decrease in the cross-link density with increasing branching (Figure 4.10). This also

manifests in the point of break, with networks 7 and 10 showing significantly lower

points of break due to their increased rigidity. In addition to this, once again the linear

species B in network 9 decreases the value of E’ relative to the network 1 – the pAMPS

monolith – again due to chain transfer to the ω-vinyl end group generated by CCTP. 
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Figure 4.10; Compression of hydrogels with different degrees of branching in the

branched acid content (left). Linear region from which the compression modulus E’ is

calculated (right).

From this work it is seen that with increasing degree of branching in the branched acid

polymer, an increase in the rigidity and a decrease in the equilibrium degree of

swelling indicate the prevalence of a cross-linking mechanism over the chain transfer

mechanism. However, with the linear acid the chain transfer process appears to

dominate in the absence of multiple ω-vinyl groups imparted by the branching of the 

acids.
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Figure 4.11; Rheology of hydrogels with different degrees of branching in the

branched acid content (left). Elastic modulus G’ as a function of the degree of

branching in the branched polymer additive relative to the pAMPS baseline (right).

In contrast to the results observed by compression and swelling, rheology indicates a

different model (Figure 4.11). With the addition of the CCTP polymers, a decrease in

the value of G’ is observed, most significantly with the linear polymer, with the

branched polymers imparting a higher degree of stiffness relative to the linear

polymer, but still lower than the pAMPS without additive. This could be due to a

reduced occurrence of chain transfer due to reduced overall vinyl group

concentrations available for chain transfer in these higher molecular weight species.

4.4.2 Variation in the Mw of branched acid

To test this model further, the impact of molecular weight – and therefore ω-vinyl 

group density – is investigated in both linear and branched acids upon the networks

they are incorporated into. If the model above is correct then lower molecular weight

linear polymers would show a increased equilibrium degree of swelling and decreased
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value of E’, in branched polymers, higher lower molecular weight species would have

the reverse effect.

Reaction
Branched

acid used.

Equilibrium degree

of swelling (%)a

Compression modulus

E’ (MPa)

Rheology

modulus G’

(MPa)

9 B 4240 (± 90) 4.34 x 10-3(±5 x 10-4) 260

11 C 4200 (± 60) 3.48 x 10-3(±3 x 10-4) 770

12 A 4240 (± 90) 5.35 x 10-3 (±2 x 10-4) 120

7 D 3100 (± 200) 6.63 x 10-3 (±8 x 10-5) 620

13 F 2760 (± 6) 5.25 x 10-3 (±4 x 10-4 ) 540

Table 4.6; Swelling, compression and rheology data for the synthesis of pAMPS

hydrogels with varying concentrations of PEGDA cross-linker. a Swollen in SBF for 72

hours at 25 °C.

The impact of the addition of branched acid polymers of different degrees of branching

upon the observable internal morphology of the hydrogel networks was studied by

SEM (Figure 4.12). With the addition of linear CCTP generated pMAA (B) significant

deviation is seen from the morphology generated by a conventionally generated

monolith. A greater degree of heterogeneity, with smaller defects or holes observable

within the pore structure (Figure 4.12 - C). With the addition of a branched acid (D),

the same effect is observable, but to a lesser degree (Figure 4.12 - E). This could

confirm the observations previously identified in that linear polymers, with a higher

vinyl concentration, cause a greater degree of chain transfer termination than the

branched polymers, causing a greater degree of disruption to the internal morphology

of the networks.
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Figure 4.12: SEM images of pAMPS monoliths with branched acids. Clockwise from

top left; A conventional monolith x 100 magnification, B conventional monolith x

1000 magnification, C conventional monolith + 0.5 wt. % of B x 100 magnification, D

conventional monolith + 0.5 wt. % of B x 1000 magnification, E conventional

monolith + 0.5 wt. % of D x 100 magnification, F conventional monolith + 0.5 wt. % of

D x 1000 magnification.

Initially linear pMAA was tested in the form of reactions 9 and 11 relative to the

network in the absence of branched polymer – 1. Between 9 and 11 the molecular

weight was effectively doubled and, therefore, the concentration of ω-vinyl end 

groups significantly reduced. Swelling these networks showed once again that the

A B

DC

FE
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linear polymers when incorporated into a pAMPS network, significantly increase the

degree of swelling over that of the pAMPS monolith. Again this is exhibiting the effects

of chain transfer upon the networks (Figure 4.13).

Figure 4.13: Swelling to equilibrium of AMPS hydrogels with different molecular

weights of linear pMAA (left). Initial swelling rate of the same hydrogels (right).

Compression of networks 1, 9 and 11 shows that, the branched polymers exhibit a

decrease in the value of E’ representing a decrease in their rigidity and an increase in

the cross-link density of the networks. Interestingly the impact of increasing the

molecular weight, thereby decreasing the concentration of ω-vinyl end groups is also 

observable with a significant increase in the value of E’ from 11 to 9 as the molecular

weight of the linear pMAA included increases. This is due to the decrease in the

concentration of the ω-vinyl end groups, causing a decrease in the occurrence of chain 

transfer, allowing the effective cross-link density to increase, increasing the rigidity and

E’ closer to that exhibited by the model system 1 (Figure 4.14).
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Figure 4.14; Compression of hydrogels with different molecular weights of linear

pMAA (left). Linear region from which the compression modulus E’ is calculated

(right).

Figure 4.15: Rheology of hydrogels with different molecular weights of linear pMAA

(left). Elasticity modulus G’ in the LVER in each case (right).

Measurement by rheology with respect to the effect of variation of frequency upon

the modulus of the material confirmed the results displayed in Figure 4.14, increasing
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vinyl concentration, caused by decreasing molecular weight causes a decrease in

modulus relative to the pAMPS network without linear pMAA additive (Figure 4.15).

After varying the molecular weight of linear pMAA, the next step was to vary the

molecular weight of the branched polymers at a fixed concentration of divinyl

monomer EGDMA. This was achieved by varying the concentration of the chain

transfer agent CoBF relative to the total monomer concentration. Three species were

selected at 5 mol % EGDMA relative to the total monomer concentration at three

different ratios of CoBF to Monomer. These were 20500:1, 25000:1 and 32000:1 with

networks A, D and F respectively. The addition of the branched acid polymers as

previously discovered has the effect of decreasing the equilibrium degree of swelling

and increasing the value of E’, due to causing a decrease in the pore size. This effect is

most noticeably observed with addition of A in network 12 and then D in 7 decreasing

the degree of swelling from the baseline network 1 (Figure 4.16).

Figure 4.16: Swelling to equilibrium of AMPS hydrogels with different molecular

weights of branched acidic polymers (left). Initial swelling rate of the same hydrogels

(right).
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This is further confirmed with an observed increase in E’ relative to 1 (Figure 4.17),

however, it is observed that with further increases in molecular weight of branched

polymer an increase in the value of E’ is not seen. This can be explained by the

decreasing number of ω-vinyl end groups available and the decreasing concentration 

of branched polymer as molecular weight increases whilst concentration in wt. %

relative to AMPS remains the same. This means that with increasing molecular weight

a decrease in the impact upon the value of E’ should be observed (Figure 4.17).

Figure 4.17; Compression of hydrogels with different molecular weights of branched

polyacids (left). Linear region from which the compression modulus E’ is calculated

(right).

This is contrary to what is observed by rheology, with a decrease in the shear modulus

being observed upon the addition of the branched material and no significant trend in

the impact of molecular weight upon the stiffness of the material (Figure 4.17).



Chapter 4: Synthesis and characterisation of pAMPS based hydrogels for wound care

167

Figure 4.18: Rheology of hydrogels with different molecular weights of linear pMAA

(left). Elasticity modulus G’ in the LVER in each case (right).

In this work the impact of the molecular weight of the branched acidic polymer

additives upon the material properties of the gels they are added to were investigated.

Initially the linear polymers were added at different molecular weights and a trend of

increasing molecular weight of linear polymers was observed to decrease the impact of

chain transfer to the ω-vinyl groups, however, in all cases a decrease in E’ with 

decreasing Mw and increase in equilibrium degree of swelling was observed. After this

the molecular weight of branched polymers was changed, maintaining the

concentration of PEGDA within the polymers. It was observed that at higher molecular

weight the effectiveness of the polymers as a cross-linker was reduced relative to

lower molecular weight branched acid polymers, attributed to a decrease in the molar

concentration of branched species.47
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4.5 Conclusions

In this chapter a thorough investigation of the effect of linear and branched acid

polymers generated by catalytic chain transfer upon pAMPS monoliths is reported. A

fine balancing act between chain transfer and cross-linking has been shown to occur.

In the presence of linear pMAA polymers with ω-vinyl groups but no capacity to cause 

cross-linking, chain transfer is observed to have a significant effect upon the networks,

causing an increase in mesh size and, as a result increasing the equilibrium degree of

swelling and decreasing the compression modulus.

With the addition of branched polymers a cross-linking effect was observed. This effect

is not as significant as with a typical low molecular weight gelator, however, it is

observed that with an increased degree of branching a decrease in the degree of

swelling and an increase in the compression modulus is observed, contrary to the

effects of higher molecular weight. However, these branched polymers are not a viable

gelator in their own right, due to both their high molecular weights and the chain

transfer caused by their presence. This means that gelation is not viable with these

species alone.
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4.6 Experimental

4.6.1 Materials

Reagents were purchased from Sigma Aldrich and used as received, unless otherwise

stated.

4.6.2 Instruments

Universal Testing Machine

Compression testing was performed on a Shimadzu Autograph AGS-X universal

mechanical tester equipped with a 500 N load cell and compressive testing geometry

consisting of two parallel stainless steel plates. A preload of 0.1 N was applied at 25 °C.

The data was exported as a CSV format and analysed in OriginPro 9.1.

Oven

All thermal gelation experiments were carried out in a Thermo Scientific Heratherm

oven OGS180 at 55 °C. Materials were allowed to gel for 16 hours prior to cooling and

further analysis.

Light Hammer™

All photo gelation experiments were carried out on a Light Hammer™ 6 equipped with

a broad spectrum H bulb and the speed of the conveyer belt unit set at 5 m/min. The H

bulb operates between 250 and 400 nm at an optimal intensity of 200 watts/cm.

SEM

A Hitachi 3030M desktop SEM was used on all samples at x 100 and x 1000

magnification.
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Rheometer

All rheology experiments were conducted upon a Malvern Kinexus Ultra with a Julabo

cry-compact circulator CF41 temperature control unit. 40 mm stainless steel parallel

plate geometry was used at 25 °C and with a force gap of 1N. Samples were cut to 40

mm using a 40 mm wad punch. The instrument was controlled in a CS-autostrain

mode. A minimum of three experiments was conducted for each material. The data

was exported as a CSV format and analysed in OriginPro 9.1.

4.6.3 pAMPS hydrogel synthesis

Typical synthesis of pAMPS hydrogels;

2-Acrylamido-2-methyl-1-propansulfonic acid (AMPS, 30.16 wt. %) was mixed with

poly(ethylene glycol) diacrylate (Mn 575, 0.14 wt. %) in deionised water (69.84 wt. %)

for 10 minutes prior to the addition of 1-hydroxydimethyl phenyl ketone (0.014 wt. %)

in the absence of light. The reaction mixture was stirred for 10 minutes and then

reacted in silicon moulds under a UV source for 7 passes and until gelation was

observed. Gels were then stored in their moulds inside sealable plastic bags for a

maximum of a week prior to use.

Reaction Concentration

(wt. %)

Mass added (g)

1 0.14 0.1077

2 0.25 0.2154

3 0.5 0.4308

4 1 0.8616

Concentrations and masses of cross-linker used for variable cross-linker

experimentation
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4.6.4 Addition of branched acid macromonomer

Hydrogels were synthesised as above but with the branched acid hydrogel added with

the monomer and the cross-linker as in the following instances;

Reaction Branched

acid

Concentration

(wt. %)

Mass added

(g)

5 A 0.5 0.4308

6 B 0.5 0.4308

7 C 0.5 0.4308

8 D 0.14 0.4308

9 D 0.25 0.2154

10 D 0.5 0.4308

11 D 1 0.8616

12 E 0.5 0.4308

13 F 0.5 0.4308

14 G 0.5 0.4308

4.6.5 Swelling

20 mm diameter hydrogel disks are cut out using a 20 mm diameter wad punch and

are immersed in 250 mL of simulated body fluid for 96 hours at 25 °C. The wet mass of

the gels is measured at regular time points of 0.5, 1, 2, 5, 24, 48 and 96 hours by

extracting the hydrogel from the jar, removing excess water with filter paper and

weighing. At 96 hours the dry mass of the gels is determined gravimetrically by drying

in an oven at 80 oC for 48 hours. Samples were tested with three replicates.

4.6.6 Compression

20 mm diameter disks of hydrogels are swollen to 90 wt. % water in deionised water

for 16 hours. A 20 mm diameter disk of this swollen gel is cut using a 20 mm diameter



Chapter 4: Synthesis and characterisation of pAMPS based hydrogels for wound care

172

wad punch and is preloaded on a compression tester with 0.1 N using a 500N load cell

at 25 °C before being subjected to a constant rate of strain at 1 mm min-1 until break is

detected. Samples were tested with five replicates.

4.6.7 SEM

20 mm diameter disks of hydrogels are swollen to 90 wt. % water in deionised water

for 16 hours, the resulting gel is then instantaneously frozen in liquid nitrogen for 10

minutes prior to being lyophilised for 72 hours or until fully dry. The hydrogels are then

freeze-fractured with liquid nitrogen, mounted vertically and viewed with a Hitachi

3030M desktop SEM at x 100 and x 1000 magnification.

4.6.8 Rheology

20 mm diameter disks of hydrogels are swollen to 90 wt. % water in deionised water

for 16 hours. A 40 mm diameter disk of this swollen gel is cut using a 40 mm wad

punch and then preloaded onto the rheometer with a 1 N force gap at 25 oC with 40

mm parallel plates. A frequency sweep was performed between 0.1 and 200 Hz at 1 %

strain, a strain sweep was performed with a fresh sample between 0.1 and 200 %

strain at 1 Hz. Each test was conducted with three replicates.
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5. Synthesis and characterisation of inter-penetrating

networks; incorporating polyurethanes

This chapter details the synthesis and development of novel inter-penetrating network

(IPN) for potential application in wound-care. IPNs are made up of two orthogonal

networks physically intertwined in a single space, these materials have for some time

been seen as a way to combine the properties of two networks to prepare a tailor

made material for a particular application.1 In this instance, the targeted application

was chronic skin wounds and their treatment with hydrogels (see Chapter 1).2-6 For this

application a fast, high swelling and versatile material is required in order absorb

excess exudate and maintain a moist wound environment.3,4,7 In this chapter the

pAMPS networks discussed in Chapter 4 are combined with a hydrophilic commercial

polyurethane film (Tecophilic 2000 - TPU) to generate a fully inter-penetrating

network.1,8-10 The level of cross-linker and the relative quantities of the two monomers

are varied and compared to the monolithic networks through swelling (both

directional and in terms of fluid uptake), rheology, and the ability of the materials to

actively absorb calcium ions in order to promote granulation in the networks.11-15
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5.1 Interpenetrating networks in wound care and

material characterisation

As mentioned in Chapter 1, there are a number of different types of interpenetrating

networks that have been developed with wound care in mind.1,16 Some of these

species have natural polymers included in one or both of the networks, with the

remaineder being made up of networks developed entirely from synthetically derived

monomers. Here, the focus lies on synthetic networks where, one of the networks is

polyurethane. Networks have been developed from a wide range of monomers

however; the principle focus for applications has been in the biomedical field. In the

early development of polyurethane-based IPNs, the focus was upon epoxide, styrene

and (meth)acrylate polymerisation however, in recent years the focus has coallesed

around a selection of hydrophilic monomers. In the late 1990’s polyurethane /

polyaniline networks were developed unfortunately, despite reasonable mechanical

results, the high toxicity of aniline led to these networks being marginalised.17,18

Polyurethane (PU)/pHEMA has been the subject of extensive studies by the

Karabanova group.19 Early work focused upon the mechanical properties of these

networks, but this soon developed into studies on the homogeneity of the

networks.20,21 Findings through DMTA and DSC analysis showed phase separation of

the two networks, in recent years this group has focused upon the attachment of silica

nanoparticles for biomedical applications.22,23

The Atsushi group has astutely focussed upon the development of the PU/pNIPAM

IPNs, this system benefits from NIPAMs LCST of 32 oC and its biocompatibility. Initial

development was followed by research into the tuning of cell adhesion through the
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variation of the LCST of pNIPAM followed, by the development of a dual responsive

system through the addition of acrylic acid with butyl acrylate to impart pH responsive

character.24-26 This system has been further developed for the inclusion and delivery of

silver nanoparticles for antibacterial applications.27

Other monomer systems that have attracted some interest include: acrylamides; both

in the academic28,29 and patent literature,30-32 acrylic acid; in the academic26,33 and

patent literature,34 and PEG; in the academic35 and patent literature.30-32 One

monomer that has been developed comprehensively as a monolith as described in

Chapter 4 is AMPS however, this monomer has not seen inclusion in any IPNs. The

benefits of AMPS are its biocompatibility and its ability to absorb large quantities of

water. These properties have seen pAMPS monoliths applied in the biomedical sector

for wound care.8,9,36

The techniques used to test hydrogels for wound care are designed to simulate and

exceed the conditions that the hydrogel would be exposed to at the wound site. To

this end the equilibrium degree of swelling and rate of swelling in an excess of a

simulated bodily fluid is used, as are stress tests in multiple dimensions in order to

ascertain the strength or workability of the material. A good understanding of the

hydrogel’s adhesion is also necessary in order to determine if the removal of the gel is

likely to cause discomfort in the process. This is all without considering the additional

factor of delivery and release of specific compounds from the wound site.

5.1.1 Hydrogel adhesion in wound care

The study of the adhesion strength of a hydrogel to the wound environment is an

essential component of characterisation as, if the hydrogel adheres too strongly to the
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wound site then pain or injury may occur during the process of dressing changes.

Despite extensive publication in this field on the subject of hydrogels for application in

wound-care there is as yet no standardized procedure with a range of different

industrial standard techniques being used as guidance (Table 5.1).37

Standard Type of test Substrate Adhesive type

ASTM F225838 Tensile Soft tissue Surgical adhesives
or sealants

ASTM F225638 T-peel in tensile
mode

Soft target tissue Surgical adhesive

ASTM F245838 Tensile Fresh or frozen
porcine skin

Surgical adhesive

ASTM F225538,39 Lap Shear Soft tissue Surgical adhesive
ASTM D6195 Loop tack test in

tensile mode
Steel and tape Pressure sensitive

tape adhesives
ASTM D100240,41 Lap Shear in tensile

mode
Steel Metal bonding

adhesives
ASTM D1876 T-peel in tensile

mode
Flexible substrate
and adhesive

Wide spread usage

ASTM D333042 180 o peel test in
tensile mode

As appropriate Pressure sensitive
tape adhesive

ASTM D903 180 o peel test As appropriate Tape adhesive
BS EN 1939:200337 180 o peel test Stainless steel or

own backing
Tape adhesive

Table 5.1; A selection of methods that have been used in the testing of network

adhesion for wound care hydrogels.

From the tests shown in Table 5.1, the tack test is predicted to be the most

appropriate for the application of a wound care hydrogel. In a tack test a probe is

lowered onto the surface of the hydrogel with a given preload and then withdrawn.

The hydrogel is fixed to a bottom plate so that the force of removal does not cause any

slippage. The surface substrate of the probe is crucial as this dictates the level and type

of interaction with the material. Historically steel substrates have been used to test the

force of adhesion; however, this has been shown to be inadequate due to the disparity

in materials properties between steel surfaces and organic tissue.37 A tack test

measures the ‘tackiness’ or “stickability” of a surface to a substrate through a vertical
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lift of the substrate from the surface. In this test the two most important

measurements are the peak force – the maximum amount of force required during the

process of removal – and the area under the force curve – this denotes the total work

done. As porcine skin is difficult to work with, store and maintain in consistency, an

alternative substrate was considered. A silex silicone sponge product with a high

degree of flexibility offered a potential replacement to living tissue. Previous studies

into the relevant silicone sponge have shown comparable tensile and compressive

results which often have a significant effect upon the adhesive properties of a

material, these materials are also often used when a soft, easily deformable elastic

material is required in combination with pressure sensitive adhesives, from this criteria

it was decided to use a silicone sponge sheet as a testing substrate.43

5.1.2 Hydrogel calcium adsorption

An important aspect incorporated into many modern wound healing materials is the

ability to either deliver materials into the wound site or specifically take up harmful

substances from the site. Although delivery is attractive in that it can encourage

growth through substances such as growth factors or alternatively kill bacterial

infections e.g. through the delivery of silver nanoparticles or antibiotics, these

methods can be costly to produce materials on the large scale.2,44-47 The delivery of

materials into a wound site usually requires further expensive clinical trials as the

material is no longer a non-invasive dressing but a drug delivery agent. The alternative

is to target or ensure that the dressing material is able to take up species that are

specifically inhibiting the healthy wound healing process – one such species being

calcium ions.
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Calcium is useful in the initial stages of a normal or acute wound healing process, it is

released in hemostasis and inflammation as a cell signalling agent and has been known

to regulate a number of processes for some time including; growth factor regulation,

cellular mitosis, neutrophil exocytosis, superoxide production and remodelling of the

embryonic epithelium.11,48 Although calcium is important in the process of mitosis, the

removal of calcium or the inhibition of its production in the wound site can increase

the rate of granulation.11,49 As inhibition again requires the delivery of material into the

wound site, it was decided to investigate as to whether or not the materials developed

here were capable of active uptake.

5.2 Synthesis and characterisation of inter-penetrating

network hydrogels

An IPN of AMPS and the polyurethane Tecophillic 2000 TM was generated by photo-

initiated free radical polymerisation of the AMPS monomer in the presence of the

swollen polyurethane film. This material was subsequently tested for its material

properties as well as its ability to interact mechanically in the wound site.

5.2.1 Swelling into simulated body fluid

Wound dressings are expected to absorb a large quantity of exudate in order to

remove waste material from the wound site and prevent it from acting as a platform

for infection. To this end the IPNs were swollen to equilibrium in a fluid designed to

mimic the sodium and calcium concentrations in the blood – a simulated body fluid.

The swelling kinetics of the materials was recorded in triplicate until the equilibrium

degree of swelling was observed. In the initial tests, the concentration of the PEGDA
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cross-linker was varied and the resulting IPN swelling profiles were compared to a

monolithic AMPS hydrogel and the swollen TPU film swollen under the same

conditions as shown in Table 5.2, Figure 5.1 and Figure 5.2.

Table 5.2; Swelling data for hydrogel networks. a Concentration in AMPS monomer

solution, with IPNs the TPU is swollen into this. b Swollen from cured samples, dry

mass obtained by gravimetry. c Ratio of degree of swelling at equilibrium in diameter

relative to the degree of swelling in height – relative to cured samples.

In Chapter 4 a comprehensive study of the swelling characteristics of the pAMPS

monolithic networks at variable concentration of cross-linker was presented. It was

shown that one of the most significant determining characteristics of the rate and

mechanism of fluid uptake are the thermal properties of the network. In the case of

pAMPS the Tg lies well above room temperature (108 °C) leading to a glassy network

with a relatively slow rate of water uptake.50 As the Tg of the TPU is significantly lower

than room temperature (-49.6 °C), it should have a marked impact upon the rate of

swelling of the IPNs as this helps to create a rubbery network.51,52

Material Network;
[PEGDA] wt.

%a

Equilibrium Degree
of swelling (%)b

Volume Ratio of
Swelling (X/Y:Z)c

A Monolith 0.14 3390 (±60) 1.049 (± 0.007)
B Monolith 0.25 3250 (±50) 1.097 (± 0)
C Monolith 0.5 2230 (± 110) 0.990 (± 0)
D Monolith 1 1480 (±80) 1.027 (± 0)
E IPN 0.14 2550 (± 160) 0.822 (± 0)
F IPN 0.25 2090 (± 70) 0.895 (± 0.006)
G IPN 0.5 1830 (± 90) 1.002 (± 0.004)
H IPN 1 1550 (± 70) 0.886 (± 0.001)
I Monolith TPU 930 (± 20) -
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Figure 5.1; Swelling to equilibrium of IPNs at different cross-linker concentrations in

comparison to pAMPS and TPU networks (left), initial five hours of swelling (right).

Observation of the swelling behaviour of the IPN hydrogels in comparison to its

constituent monoliths of TPU and pAMPS hydrogel showed two notable sets of

behaviour (Figure 5.1). The IPNs all show a far more rapid rate of fluid uptake in

comparison to the monolithic networks, with equilibrium being reached within an hour

in comparison to the 2 day time period required for the monolith to reach equilibrium

at comparable concentrations of cross-linker. This difference can be attributed to two

factors: firstly to the impact of the inclusion of the lower Tg TPU, which, having a

significantly lower Tg imparts a rubbery-like (higher chain flexibility) character to the

networks and allows for a far more rapid uptake of water.53 Secondly there is an

increased hydrophilicity in the networks reletaive to the TPU monolith due to the

inclusion of the pAMPS,, creating a greater osmotic effect..54,55
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Figure 5.2; Equilibrium degree of swelling of IPNs at different concentrations of

cross-linker in comparison to monoliths.

There is a characteristic decrease in the degree of swelling with increasing

concentration of PEGDA cross-linker in the second AMPS network caused by a

decrease in the mesh size within that network (Figure 5.2). Despite the fact that the

PEGDA cross-linker is at a significantly reduced concentration relative to the total dry

mass of the network, it continues to have a significant impact upon the equilibrium

degree of swelling.

The higher degree of swelling seen in the IPNs relative to the TPU monolith can be

explained through the inclusion of a high degree of the more hydrophilic, highly

swelling pAMPS material (Figure 5.3). The lower degree of swelling in the IPN relative

to the pAMPS monolith can be explained as the entanglement of the second network

in the first network contributes to a relative increase in the cross-linking density in the

gel.1,56,57
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Figure 5.3; Swelling to equilibrium of IPNs with different concentrations of AMPS

monomer relative to AMPS and TPU monoliths (left), Equilibrium degree of swelling

as a function of AMPS content in IPN (right).

Increasing the concentration of the AMPS monomer relative to the TPU within the

network, gives an increase in the equilibrium degree of swelling without there being an

impact upon the rate of swelling (Figure 5.3). This means that the TPU is still acting as

the framework and imparting the ‘rubbery like’ characteristics necessary for rapid

swelling, whereas, the AMPS is imparting increased hydrophilicity – allowing for a

higher mass uptake of ordered, coordinated water as opposed to disordered free

water, due to the increased osmotic effect. The non-linear increase in the degree of

swelling can probably be explained by an exponential increase in the amount of cross-

linking caused by increased connectivity through the polyurethane matrix. DSC

appears to show that there is no shift in the Tg of the pAMPS network, in a

homogeneous network the Tg of the TPU and pAMPS would be expected to merge and

create a ssingle Tg, The absence of this phenomenon indicates a heterogeneous
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network has been formed where the pAMPS and TPU reside in separate domains

(Figure 5.12). This allows the TPU to continue to act as the framework imparting the

rubbery like characteristics that allow for the rapid uptake of water due to this domain

of the IPN residing beneath its Tg.

r

Figure 5.4; SEM micrographs of pAMPS monolith at x 100 magnification (1) and x

1000 magnification (2).

SEM micrographs of the pAMPS network (A) show a macroporous network with

multiple levels of detail (Figure 5.4).58 At x 100 magnifications the dehydrated network

can be seen to have two levels of porosity, those pores on the 100 μm scale and those 

on the 10 μm scale previously reported, this is complemented at the x 1000 

magnification scale, showing a porous structure on the 10 μm scale.58,59 The

macroporosity of these materials lends itself to low mechanical strength but very high

water uptake levels as described in Chapter 4. These networks show a random pore

structure with no directionality lending itself to a lack of anisotropy in swelling

behaviour.

1 2



Chapter 5: Synthesis and characterisation of inter-penetrating networks; incorporating
polyurethanes

186

Figure 5.5; SEM micrographs of TPU network at x 100 magnification (A) and x 1000

magnification (B)

SEM micrographs of the TPU network (I) show an open cell type network (Figure 5.5).

Very little directionnality is observed in either the X/Y or Z direction with cells on a 10

µm scale diameter being observable by SEM. These samples were prepared by swelling

to 90 wt. % in water, rapidly freezing in liquid nitrogen followed by lyophilising. This

type of network with its open cell-like structure is ideal for the formation of an IPN as it

allows for the second network precursor to permeate through the first network and

form a fully integrated IPN.

1 2
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Figure 5.6; SEM micrographs of AMPS/TPU IPN: pAMPS/TPU IPN at x 100

magnification (1), IPN AMPS amorphous domain at x 100 magnification (2), IPN

vitreous domain at x 100 magnification (3), IPN amorphous domain at x 5000

magnification (4), IPN vitreous domain at x 5000 magnification (5).

2
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Microscopy of the IPN of the TPU and pAMPS at different magnifications shows the

presence of two distinct domains (Figure 5.6). A textured porous domain and a

vitreous domain are observable, this difference in domains is indicative of a

heterogeneous mixture of the two components of the system with phase separation

occurring, as seen by DSC (Figure 5.12).19-21 This is readily observable at the lowest

level of magnification where the two domains can be seen to contrast directly (1,

Figure 5.6). From observations of the constituent networks, the porous domain is

similar in structure to the pAMPS monolith (Figure 5.4), the vitreous domain is similar

in appearance to the TPU (Figure 5.5). These results of heterogeneity are confirmed by

the DSC results (Figure 5.12).

Anisotropy (or directional dependence) in the swelling of wound care materials is seen

as a valuable property as it can mean that the materials can be controlled with respect

to the direction they swell into, which makes the design of the bandaging layer

securing the dressing to the site much less challenging.60-62 This property is related to

the internal morphology of the materials, where random structures tend to show little

or no anisotropy but materials with some degree of internal order demonstrate

varying degrees of directionality.63 As can be seen from the SEM images of the

monolithic pAMPS hydrogel, (Figure 5.4) there is no readily discernible internal order

to the morphology of the pAMPS monolith. This is reflected in its swelling where the

ratio of XY to Z axis swelling (explained in Figure 5.8) remains close to the value of 1,

indicating no anisotropy in its swelling (Figure 5.7). This is in contrast to the IPN, which

appears to show a degree of internal order as seen in (1, Figure 5.6). 1 appears to

show lateral layers of vitreous TPU (2 and 3) regions, interspersed with the randomly

structured pAMPS like regions (4 and 5), very similar to that seen in Figure 5.4. This



Chapter 5: Synthesis and characterisation of inter-penetrating networks; incorporating
polyurethanes

189

appears to have a significant impact upon the anisotropy of the swelling of these

materials (Figure 5.7).

Figure 5.7; Effect of cross-linker concentration upon volume degree of swelling (with

error shown) in pAMPS/TPU IPNs and pAMPS monoliths (left), Effect of cross-linker

concentration upon anisotropy of swelling (with error shown) in pAMPS/ TPU IPNs

and pAMPS monoliths (right).

A small degree of anistropy is observable upon the swelling of the IPN network, with

an XY/Z ratio of close to 0.8 in some cases (Figure 5.7). This implies a small but

significant preference to swelling in the Z direction rather than the XY direction. This is

probably caused by the heterogenous structures observed in Figure 5.6. This is

possibly caused by two things: firstly the layering of pAMPS upon the surface of the

network from the swelling process, secondly it is possibly caused by the curing process

moving from the surface down into the bulk of the material.
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Figure 5.8; Photograph of colourless, transparent pAMPS monolith hydrogel (left),

Diagram of discussed axis of hydrogel networks (right).

Having determined the swelling characteristics of the IPN networks as having a

significantly more rapid degree of swelling than pAMPS monoliths and exhibiting a

combination of behaviours from the TPU and pAMPS monoliths, the next step was to

investigate the mechanical characteristics of the networks.

5.2.2 Rheology of cured gels

As the samples are too thin for compression, even in their swollen state, and too soft

for use in the tensile grips available to us, rheology was determined to be the best

available method for studying the elasticity of the networks. The pAMPS networks

developed in Chapter 4 were compared to the IPNs at different concentrations of the

cross-linker in the pAMPS network. Frequency sweep experiments were conducted

within the linear visco-elastic region (LVER) with respect to amplitude, and compared

to frequency sweeps at the same amplitude for the pAMPS monoliths. This will help to

gain an understanding of the relative stiffness and rigidity of the two materials at

different concentrations of cross-linker.13,62,64 A full explanation of the theory of gel

rheology can be found in Chapter 3. The results from the rheology have been tabulated

in Table 5.3.

X/Y axis

Z axis
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Material
designation

Network
[PEGDA] wt.

%a G’ (Pa) b Tan(δ) b

A pAMPS Monolith 0.14 953 0.14
B pAMPS monolith 0.25 1913 0.20
C pAMPS monolith 0.5 2812 0.36
D pAMPS monolith 1 5506 0.25
E pAMPS/TPU IPN 0.14 744 0.50
F pAMPS/TPU IPN 0.25 2001 0.30

Table 5.3; Impact of change in concentration of cross-linker PEGDA upon the

elasticity modulus of pAMPS monoliths and pAMPS/TPU IPNs. a wt. % as a

percentage of total monomer and dry weight content, b G’ and tan δ recorded at 1 

Hz, 1 % strain, 25 °C with 40 mm parallel plates and 90 wt. % water content.

Definition of the pAMPS monoliths by rheology show that an increase in cross-linker

concentration causes an increase in the elasticity modulus as the mesh size decreases

and the materials become more rigid (Figure 5.9 and Chapter 4). G’ increases at higher

frequency due to the inability to recover quickly from deformation.13 The value of tan

δ also increases with increasing cross-linker concentration, showing a smaller different 

between the viscous and elastic moduli, indicating a more elastic material, this is

occurring as the material is becoming more rigid.
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Figure 5.9; Rheological comparison of LVER pAMPS monoliths at different cross-

linker concentrations (left), relationship between cross-linker concentration and

elasticity modulus in LVER (right).

Figure 5.10; Rheological comparison of LVER between a pAMPS monolith and a

pAMPS/TPU IPNs at similar cross-linker concentrations within the pAMPS network,

0.1 - 100 Hz at 1 % strain, 40 mm parallel plates, 25 oC

When comparing the IPN to the pAMPS monolith, the same concentration of cross-

linker was used in the AMPS network. The results show very comparable values of G’

at the same frequency although the IPN shows a slight frequency dependency even in

this region, this indicates that the two materials are very similar with respect to their

rigidity (Figure 5.10). This is likely to be due to the amplitude being too high for the

network to respond to strain in a linear manner. The second value of note from Figure

5.10 is that the value of tan δ is substantially higher for the IPN. This implies that the 

‘in phase’ and ‘out of phase’ components are substantially closer leading to a less

solid-like material that is better able to flow. The IPN is also able to respond in a linear
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fashion to higher frequencies demonstrating that it is able to relax at a faster rate at

this amplitude.

Figure5.11; Rheological comparison of LVER pAMPS/TPU IPNs at different cross-

linker concentrations (left), Comparison of the relationship between cross-linker

concentration in the IPN network and in the pAMPS monolith (right).

The impact of increasing the concentration of cross-linker in the AMPS network upon

the rheological profile of the network is to increase the elasticity modulus, G’, as the

material becomes more rigid (Figure5.11). There is also a decrease in the value of tan

δ, indicating a network with a reduced capacity to flow. Both of these can typically be 

explained through the reduction in the mesh size in the AMPS network.

Characterisation of IPN networks at higher concentrations of cross-linker proved to be

challenging as the material samples proved too brittle to handle, thereby indicating the

impact the divinyl cross linker in the pAMPS network has upon the material properties

of the gel.
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Investigations into the rheological properties of the IPN has shown that the pAMPS

monolithic networks and the IPN formed with the TPU have very similar rheological

domains and properties with very comparable moduli under the same conditions. This

was expected due to the very high percentage composition of AMPS in the IPN

network (86 %).

5.2.3 Thermal properties of IPNs

The thermal properties of a network can yield much information on the nature and

homogeneity of the structure as well as their processibility and handling at different

temperatures. This is important for wound care materials as a temperature transition

within room to body temperature range (10 – 37 °C) could have a serious impact upon

the practicality of their use and storage. To this end differential scanning calorimetry

(DSC) and dynamic mechanical thermal analysis (DMTA) are utilised to show how the

IPN responds to thermal stimuli relative to the monolithic networks.

DSC of the TPU, pAMPS and the IPN show a Tm point associated with the TPU, as would

be expected this doesn’t shift with inclusion in the IPN (Figure 5.12). A Tg is visible for

the pAMPS network at 72 °C, this is substantially lower than the reported values for

pAMPS of around 150 °C, this is probably due to the reduction in chain mobility caused

by cross-linking inteo a network., the Tg is not observed to shift substantially upon

inclusion into the IPN. A Tg for the TPU is not visible in the expected range of -50 °C.

This could be due to the thermal history associated with the handling of the TPU, I

propose that a second heat-cool-heat cycle would probably have observed a Tg for the

TPU. From the fact that the Tg for the pAMPS component of the network does not

shift, this is indicative that the two networks remain in separate, heterogeneous
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domains post-polymerisation and so I propose that no significant increase in the Tg of

the TPU component of the network would be observed upon inclusion in the IPN>

Figure 5.12; First heat cycle of pAMPS monolith with endo down and the first

derivative showing the Tg visible at 72 °C (top), first heat cycle of TPU monolith with
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no Tg visible (middle), first heat cycle of IPN with first derivative showing clearly the

presence of the pAMPS Tg at 77 °C (bottom)

5.2.4 Adhesion of cured gels

The adhesive properties of a dressing for use in chronic wound care have a significant

impact upon their practicality. Materials with a relatively high level of adhesion may

not only cause significant discomfort upon their removal but also damage any

granulated tissue that may be forming upon the wound site.65

To this end, this study was designed to investigate the amount of force required to

remove a hydrogel from a wound-like surface by a tack-like test. Most tests used to

examine adhesion are not designed to be bio-mimetic and use steel plates as

described by ASTM E-62 and ASTM F2255-05.38,39 It has, however, been shown that

there is no empirical relationship between the adhesive properties of steel and skin,

nor can comparisons be drawn between series of materials tested on steel relative to

skin.37 A silicon foam layer was used to coat the surface of a plastic dolly design (seen

in) and the hydrogel was loaded onto a lower plate. The dolly was then lowered onto

the lower plate and a preloading force of 1 N was applied and allowed to stabilise to

counter slippage. The upper plate was then pulled off the lower plate and the force

required to remove the plate with displacement was observed.
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Figure 5.13; Rig used for adhesion testing (left), Dolly applied to surface of gel

(Centre), Dolly after removal from surface of gel (right).

Figure 5.14; Orientation of TPU network (blue) and pAMPS network (red) in an IPN

relative to adhesion force and dolly (top), Orientation of pAMPS monolith relative to

force and dolly (bottom).

Initially pAMPS monoliths were tested at 90 wt. % water at different degrees of cross-

linking, this was followed by testing of the IPNs with variation in cross-linker

concentration in the pAMPS network, the results of which can be seen in Table 5.4.

Force

Dolly

Substrate

IPN

Force

Dolly

Substrate

pAMPS

network
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Material Network [Cross-linker] wt. % Peak Force (N) Work Done (Nmm-2)

A Monolith 0.14 0.25 (± 0.009) 14.7 (± 0.5)
B Monolith 0.25 0.24 (± 0.012) 13.7 (± 0.3)
C Monolith 0.5 0.05 (± 0.009) 3.11 (± 0.004)
D Monolith 1 0.06 (± 0.005) 3.9 (± 0.002)
E IPN 0.14 0.95 (± 0.02) 56 (± 2)
F IPN 0.25 0.91 (± 0.08) 55 (± 5)
G IPN 0.5 0.38 (± 0.02) 23 (± 2)
H IPN 1.0 0.25 (± 0.01) 14.7 (± 0.5)

Table 5.4; Results of adhesion testing of materials including peak force and work

done.

An increase of concentration of cross-linker in the materials, results in a decrease in

the adhesion peak force and work done in both the AMPS monolith and the IPN (Table

5.4). This can be attributed to the increase in rigidity caused by an increase in the

concentration of cross-linker which is a symptom of the corresponding decrease in the

mesh size of the networks.

Across all concentrations of cross-linker there is a much higher degree of adhesion and

peak force associated with the IPNs (Figure 5.15). This higher level of adhesion

between the substrate and the sample is likely to be due to the inclusion of the

polyurethane network and the resulting increase in internal order caused by the curing

of the pAMPS network in the presence of the TPU network (Figure 5.14).
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Figure 5.15; Comparison of work done to remove tack dolly from sample between

IPNs and pAMPS monoliths at different cross-linker concentrations in the pAMPS

networks (left), Comparison of peak force between IPNs and monoliths at different

cross-linker concentrations (right).

A comparison between a pAMPS/TPU IPN and a pAMPS monolith at the same

concentration of cross-linker within the pAMPS network shows two notable

differences between the two networks; firstly the IPN network has a (relatively)

ordered presence within the network, the second is that there is a significantly lower

concentration of pAMPS per volume than in the pAMPS monolith – due to the volume

occupied by the TPU (Figure 5.14). The effect of this is to significantly reduce the

cross-linking density of the pAMPS network in the IPN relative to the monolith. This

effect is exacerbated by the occurrence of chemical cross-linking only in the pAMPS

domains lying between the TPU domains meaning there is a reduced amount of

crosslinking in the vertical dimension. The result of this is that the network is less rigid

in the vertical dimension leading to a degree of anisotropy (Figure 5.7) and is able to
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deform by a greater amount in the Z direction than the pAMPS monolith, this leads to

removal of the dolly from the surface of the network requiring a greater degree of

force. In both cases the force required to separate the dolly from the network does not

exceed those reported in the literature of skin care devices tested on either steel or

skin.37

5.3 Calcium uptake of cured gels

As discussed previously in this chapter, the absorption of calcium was identified as a

valuable characteristic worth studying due to the impact of calcium upon a chronic

wound environment.11,12,48

In order to study the concentration of calcium, cured networks were swollen into

solutions with a known concentration of calcium (2.5 mmolL-1) and the calcium uptake

into the hydrogels was detected through the change in the concentration of calcium in

the solution. The final concentration of calcium was also adjusted according to the

volume degree of swelling of each network. As the calcium ion is divalent (Ca2+) and as

such is considered a ‘hard’ ion, it was desirable to investigate the effects of ionic

strength of the monomer in the network upon calcium uptake. AMPS is considered a

‘hard’ ion due to the highly polar sulfonate group, so a soft oxyanion in the form of

sodium acrylate (Na-AA) and acrylic acid (AA) were chosen in both the monolithic and

IPN form to act as a comparison.

Network
pH of monomer
solutiona Calcium uptake (mg/g)

Calcium uptake
(mg/mol)

pAMPS monolith 8.14 0.64 (± 0.05) 486 (± 4)

TPU monolith NA 0 0

pAA monolith 2.55 0.14 (± 0.01) 34 (± 0.8)
pNa-AA monolith 8.52 0.71 (± 0.11) 222 (± 6)
TPU/AMPS IPN 8.14 1 (± 0.11) 1367 (± 223)
TPU/(Na-AA) IPN 8.52 1.52 (± 0.14) 743 (± 140)
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Table 5.5; Results of calcium absorption in both mg of calcium absorbed per g of dry

content in the network and per mol of AMPS in the network.a Solution pH measured

of the monomer solution before curing using a broker pH probe.

Six networks were tested; pAMPS monolith, p(Na-AA) monolith, pAMPS IPN and p(Na-

AA) IPN and TPU film. A pAA monolith was also tested in order to investigate the

effects of pH upon calcium absorption. Initially the monoliths were tested for their

calcium uptake, it was thought that an acrylate anion would coordinate calcium more

strongly than the acrylamide, however, it was found that pAA hydrogels had a

significantly lower uptake than pAMPS hydrogels. This was thought to be a function of

pH and indeed the acrylic acid salt – sodium acrylate – at similar pH to the AMPS

monomer solution (pH 8.1) showed a far higher degree of uptake – this is thought to

be because the charge is less shielded. Per gram of hydrogel the pAMPS gel showed a

lower degree of calcium uptake, however, the sodium acrylate molecular weight being

far lower showed that per mol of monomer the pAMPS network has a significantly

higher degree of uptake. pAMPS has a significantly higher degree of uptake due to the

greater degree of electrostatic attraction between the sulfonate group on the AMPS

repeating unit and the strong charge of the Ca2+, this contrasts to the weaker dipole on

the sodium acrylate group. The pH dependency observed with the pAA vs p(Na-AA)

monoliths can be explained by the dipole being more shielded upon the acid, reducing

the electrostatic attraction between the acid and the metal ions (Figure 5.16).66
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Figure 5.16; Ca2+ uptake in mg per g of dry hydrogel for six different networks (top),

Ca2+ uptake in mg per mol of monomer in the network for 6 different networks

(bottom).

A comparison of the networks with respect to their calcium uptake both per gram of

solid in the network and per mol of monomer in the network was undertaken (Figure

5.16). When the IPNs were tested for their uptake, despite the decreased

concentration of polar network and, decreased equilibrium degree of swelling, there

was observed a significant increase in the calcium uptake, both in mg per g and mol

per g. A similar trend was observed with the pAMPS network showing a significantly

higher uptake of calcium per mol of AMPS monomer in the network. As the most

significant change between the two systems was addition of the TPU network, this

network was tested and was found to have no capacity for the absorption of calcium

above the effects of its own equilibrium change in volume.
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From these results, it seems that the most likely cause for the increased calcium

uptake of the IPNs over their respective monolithic systems is caused by the difference

in the morphology of the networks. The layered system of the IPNs could be creating a

significantly higher surface area, over which a higher degree of absorption can occur

per gram of monomer. This could be tested through the use of pelleted TPU to form

IPNs with a more random internal structure with respect to the TPU phase.
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5.4 Conclusions

The monolithic pAMPS hydrogel studied in Chapter 4 acted as the platform for the

synthesis of a novel fully inter-penetrating network using a biocompatible

polyurethane film as the first network swollen into a solution of pAMPS with cross-

linker and initiator and then UV cured. Variation in the concentration of cross-linker

PEGDA relative to monomer pAMPS in the second network was found to have a

significant impact upon the material properties of the gel formed.

The swelling of the material was found to decrease with increasing concentration of

cross-linker in the pAMPS network. Swelling was found to be far more rapid than the

single network, with equilibrium being effectively reached within an hour in most

cases. Anistropic swelling in the Z axis was also found to occur to a greater degree than

swelling in the X/Y axis. These differences are thought to be caused by the the

comination of the pAMPS network within the TPU network and the curing process

leaving a heterogenously distributed morphology.

The rheological characteristic also confirmed these observations with increasing cross-

linker concentration, causing an increase in the value of G’ in the LVER denoting a

decrease in the pore size of the network. The calcium uptake of the IPN networks were

compared to PU and pAMPS monoliths and found to have a significantly higher degree

of uptake – creating promise for their potential for targeted absorption. The adhesive

properties of the IPN were shown to have a higher degree of adhesion in the

experimental system tested here.

The combination of these studies points to a promising material for future use in the

biomedical field.
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5.5 Experimental

5.5.1 Materials

All reagents were purchased from Aldrich and used as received unless otherwise

stated. TecophilicTM 2000 polyurethane film was obtained from Lubrizol.

5.5.2 Equipment

Rheometer

All rheology experiments were conducted upon a Malvern Kinexus Ultra with a Julabo

cry-compact circulator CF41 temperature control unit. 20 mm stainless steel parallel

plate geometry was used at 37 oC and with a force gap of 1N. The instrument was

controlled in a CS-autostrain mode. A minimum of three experiments were conducted

for each material.

Oven

All thermal gelation experiments were carried out in a Thermo Scientific Heratherm

oven OGS180 at 55 °C. Materials were allowed to gel for 16 hours prior to cooling and

further analysis.

Light Hammer™

All photo gelation experiments were carried out on a Light Hammer 6 equipped with a

broad spectrum H bulb and the speed of the conveyer belt unit set at 5 m/min. The H

bulb operates between 250 and 400 nm at an optimal intensity of 200 watts/cm.

Scanning Electron Microscope

A Hitachi TM3030plus portable desktop SEM was used for all SEM imaging.
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Differential Scanning Calorimeter

A Mettler Toledo STARe instrument under nitrogen and equipped with an autosampler

was used in order to carry out single heat-cool-heat cycles between -100 °C and 150 °C

with a heating rate of 10 °Cmin-1 and a cooling rate of 10 °Cmin-1. The samples were

crimped in standard aluminium pans. Experiments were analysed by STARe software

prior to being exported to OriginPro for graphical represenation.

Plate Reader

A Biotek Synergy HTX multi-mode plate reader was used to measure the absorbance of

samples in 96 well plates at 575 nm.

5.5.3 Tecophilic 2000 TPU with pAMPS inter-penetrating

network synthesis

A typical synthesis was carried out as follows;

To prepare the AMPS monomer solution; a solution of AMPS (23.2 g, 0.11 mol), water

(53.7 mL), PEGDA (0.1077g, 1.23 x 10-4 mol) was added to a 125 mL foil lined powder

jar equipped with a stirrer bar. To this was added Irgacure 1173 (0.01077 g, 0.01 mL,

6.56 x 10-5 mol) in the absence of light and stirred until fully dissolved. To this AMPS

monomer solution was added Tecophilic 2000 TPU (10 x 20 mm disks, 0.15 g) in the

absence of light and allowed to swell for 16 hours. The swollen material was then

weighed and sandwiched between layers of transparent PET sheeting and subjected to

a Light Hammer 6 UV source (200 watts/cm, nm) for 7 cycles at 5 m / min. The cured

materials were then weighed and sealed in sample bags and stored at ambient

temperature.
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Reaction PEGDA
(g)

PEGDA
(mmol)

AMPS
(g)

AMPS
(mol)

Water
(g)

Irgacure
1173 (g)

Irgacure
1173
(mmol)

Total mass
of TPU (g)

1 0.1077 0.123 23.2 0.111 53.7 0.01077 6.56 1.5
2 0.2154 0.246 23.2 0.111 53.7 0.01077 6.56 1.5
3 0.4308 0.502 23.2 0.111 53.7 0.01077 6.56 1.5
4 0.7539 1.00 23.2 0.111 53.7 0.01077 6.56 1.5
5 0.1077 1.23 17.4 0.084 59.5 0.01077 6.56 1.5
6 0.1077 1.23 11.6 0.056 65.3 0.01077 6.56 1.5
7 0.1077 1.23 5.8 0.028 71.1 0.01077 6.56 1.5

5.5.4 Swelling to equilibrium in simulated body fluid

Networks were taken as prepared and immersed in an excess of simulated body fluid

(described below) at room temperature. Measurements of mass were taken on a four

point weighing scale at times: 0.5, 1, 2, 5, 24, 48 and 72 hours when the sample was

taken out of solution, patted with filter paper to remove excess fluid and weighed. At

72 hours, and upon equilibrium swelling. The swollen networks were dried in an oven

at 105 °C for 16 hours before the dried weight was taken.67-69

Degree of swelling was calculated using the following equation;53

������	��	��������	(%) =
�� −��

��
× 100

In order to determine the volume degree of swelling the networks were measured in

their cured state with Vernier calipers in both their diameter and depth. At equilibrium

degree of swelling the networks were again measured for their diameter and depth.

The simulated body fluid was made up of sodium chloride (8.2985 g, 142 mmolL-1) and

calcium chloride (0.2775 g, 2.5 mmolL-1) made up to 1 L with deionized water in a 1 L

volumetric flask.

All analyses were carried out in triplicate.
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5.5.5 Imaging by Scanning Electron Microscopy

Cured samples were swollen in deionised water to 90 wt. % water content before

being frozen at -15 oC for 16 hours. Networks were then lyophilised for 72 hours prior

to mounting and analysis. Imaging was performed using a desktop Hitachi TM3030 plus

in SE mode at x 100 and x 1000 magnification.

5.5.6 Rheology of gels

Rheology experiments were performed on a Malvern Kinexus Ultra + rheometer

equipped with a Peltier plate and hood cartridge. A geometry of 40 mm parallel plates

were used with a force gap of 1 N between the plates. All experiments were

performed at 25 oC. The instrument was controlled in strain control mode. Cured

samples were swollen to 90 wt. % water content before being cut with a 40 mm

diameter wad punch. Frequency sweeps were performed between 0.1 and 1000 Hz at

1 % γ degree of strain. Amplitude sweeps were performed between 0.1 and 1000 % γ 

at a frequency of 1 Hz.

All results were carried out in triplicate.

5.5.7 Measurement of adhesive properties

Cured samples were swollen to 90 wt. % water content (in deionised water) prior to

being cut with a 20 mm diameter wad punch. A preload of 1 N was applied and

allowed to stabilise at a constant force of 1 N to counteract creep. The upper plate

was then removed at a rate of 20 mm/min off the lower plate and the force required

to remove the upper plate was measured. All measurements were conducted a

minimum of 5 times with samples showing clear signs of defects – jumps, local maxima

– being discarded.
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5.5.8 Measurement of Calcium uptake of cured gels

Calcium assays were conducted according to the Calcium colorimetric assay kit

provided by Sigma-Aldrich.

Cured networks were immersed into 100 mL of simulated body fluid. A 100 µL sample

was taken at time 0 h and upon the reaching of equilibrium swelling at 72 hours a

further 100 µL sample was taken. 20 µL of each sample were added separate wells in a

96 well plate and topped up with MilliQue water to 50 µL. 90 µL of a chromogenic

reagent was added to each plate followed by 60 µL of Calcium Assay Buffer and then

mixed gently. The plate was left to incubate for 20 minutes at room temperature in a

dark room before measuring the absorbance at 575 nm using a Biotek Synergy HTX

multi-mode plate reader.

All analyses were carried out in triplicate.
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