A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/93324

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

Parity of ranks of Jacobians of hyperelliptic curves of genus 2
by
Céline Maistret

Thesis
Submitted to the University of Warwick for the degree of

Doctor of Philosophy

Mathematics Institute

September 2017

WARWICK
THE UNIVERSITY OF WARWICK

Contents

Acknowledgments

Declarations iv
Abstract v
Chapter 1 Introduction 1
Chapter 2 Background Material 7
2.1 Hyperelliptic curves and their Jacobians 7
2.1.1 Hyperelliptic curves 7
2.1.2 Jacobians of hyperelliptic curves 8
2.1.3 Jacobians of hyperelliptic curves of genus 2 9
2.2 Richelot Isogenies and Richelot Construction 11
$2.3 \quad$ Parity and p-parity conjectures 14
Chapter 3 Parity of the 2^{∞} Selmer rank 17
3.1 Introduction 17
3.2 Parity of the 2^{∞} Selmer rank of Richelot Jacobians 18
3.2.1 Parity of the 2^{∞} Selmer rank and isogenies 19
3.2.2 Local factorization of the parity of the 2^{∞} Selmer rank 20
3.3 Computation of local invariants at infinite places 25
3.4 Computation of local invariants at semistable finite places $v \nmid 2$ 29
3.5 Computation of local invariants at finite places $v \mid 2$ 38
3.6 Example of computation of the parity of the 2^{∞} Selmer rank 41
Chapter 4 2-parity conjecture for $C_{2} \times D_{4}$ Jacobians 42
4.1 2-parity theorem 42
$4.2 \quad C_{2} \times D_{4}$ Richelot curves and Jacobians 46
$4.3 \quad C_{2} \times D_{4}$ invariant polynomials 46
4.4 A conjecture on local discrepancy for $C_{2} \times D_{4}$ Jacobians 47
$4.5 \quad C_{2} \times D_{4}$ curves at infinite places 48
$4.6 \quad C_{2} \times D_{4}$ curves at finite places $v \mid 2$ 53
$4.7 \quad C_{2} \times D_{4}$ curves at finite places $v \nmid 2$ 53
Chapter 5 Richelot isogeny in odd residue characteristic 87
5.1 Introduction 87
5.2 Algebraic identities of a $C_{2} \times D_{4}$ Richelot curve 89
5.3 Proof of Tables 4.4 to 4.34 91
5.3.1 C is of type 2 91
5.3.2 C is of type $1_{2 a}$ 93
$5.3 .3 \quad C$ is of type $I_{2 a, 2 b}$ 97
5.3.4 $\quad C$ is of type $U_{2 a, 2 b, 2 n}$ 115
5.3.5 C is of type 1×1 125
Chapter 6 Proof of local discrepancy conjecture 130
6.1 Introduction 130
6.2 Properties of $C_{2} \times D_{4}$ invariants 132
6.3 Standard properties of Hilbert Symbols 133
6.4 Local discrepancy at infinite places 134
6.4.1 C has 0, 1 or 2 real connected components 137
$6.4 .2 \quad C$ has 3 real connected components 140

| 6.5 | Local discrepancy at finite places $v \mid 2$ |
| :--- | :--- | :--- | 142

6.6 Local discrepancy at finite places $v \nmid 2$ 144
6.6.1 C is of type 2 148
$6.6 .2 \quad C$ is of type $1_{2 a}$ 149
6.6.3 C is of type $I_{2 a, 2 b}$. 152
$6.6 .4 \quad C$ is of type $U_{2 a, 2 b, 2 n}$ 163
6.6.5 C is of type 1×1. 168
Chapter 7 Conclusion 174
7.1 Forthcoming result 174
7.2 Work in progress 174
7.3 Obstructions to generalization 175
Appendix A Isogenies between abelian varieties with split totally toric reduction (by Adam Morgan) 176

Acknowledgments

I am deeply grateful to Vladimir Dokchitser for his guidance and constant support throughout this project, and for the uncountable meetings that contributed to fashioning this thesis. I am also very thankful to Tim Dokchitser, Vladimir Dokchitser and Adam Morgan for our common project which has been of considerable help and has had a great influence on my work. I thank Adam Morgan for his appendix to this work. I am grateful to John Cremona for his help through many valuable discussions. Lastly, I would like to thank the professors and my fellow PhD students in the department for a dynamic, enjoyable and fruitful work environment, and numerous instructive discussions.

Declarations

The results presented in this thesis are, to the best of the author's knowledge, entirely new, unless otherwise stated. Section 3.4 in Chapter 3 is a joint work with T. and V. Dokchitser and A. Morgan. The appendix is a work of A. Morgan.

Abstract

A consequence of the Birch and Swinnerton-Dyer conjecture is that the parity of the rank of abelian varieties is expected to be given by their global root numbers. This is known as the parity conjecture. Assuming the finiteness of the Shafarevich-Tate groups, the parity conjecture is equivalent to the p-parity conjecture for all prime p, that is the p^{∞} Selmer rank is expected to be given by the global root number.

In this thesis we study the parity of the 2^{∞} Selmer rank of Jacobians of hyperelliptic curves of genus 2 defined over number fields. This forces us to assume the existence of a Richelot isogeny (the analogue of a 2-isogeny for elliptic curves) to provide an expression for the parity of their 2^{∞} Selmer rank as a sum of local factors Λ_{v} modulo 2. Based on a joint work with T. and V. Dokchitser and A. Morgan on arithmetic of hyperelliptic curves over local fields, this makes the parity of the 2^{∞} Selmer rank of such semistable Jacobians computable in practice.

By introducing a set of polynomial invariants in the roots of the defining polynomials of the underlying curves of a specific family of Jacobians, we provide an expression for the local discrepancy existing between the local factors Λ_{v} and the local root numbers, and prove the 2-parity conjecture in this case.

One outcome of this result it that, using the theory of regulator constants, one can lift the assumption on the existence of an isogeny and prove the parity conjecture for a class of semistable Jacobians of genus 2 curves assuming finiteness of their Shafarevich-Tate group (see [17]).

Chapter 1

Introduction

This thesis studies the parity of ranks of Jacobians of genus 2 curves defined over a number field \mathcal{K} that admit a Richelot isogeny. Curves of genus 2 can be written as

$$
C / \mathcal{K}: y^{2}=f(x)
$$

where $f(x)$ is a separable polynomial in $\mathcal{K}[x]$ of degree 6 . A Richelot isogeny is the analogue of a 2-isogeny for elliptic curves, and the condition for the Jacobian J of C to admit such an isogeny is that the Galois group of $f(x)$ preserves a factorization into three quadratics. This work involves investigating the arithmetic of such curves and their Jacobians over both local fields and number fields.

By the Mordell-Weil theorem, the group of rational points of an abelian variety A defined over a number field \mathcal{K} is finitely generated. The main arithmetic invariant of A / \mathcal{K} is its rank, denoted $\operatorname{rk}(A / \mathcal{K})$ and defined to be the number of generators of infinite order in this group. At present, computing the rank of abelian varieties in general remains an open problem. However, the Birch and SwinnertonDyer conjecture, formulated in the 1960's, predicts that the rank of an abelian variety is given by the order of vanishing of its L-function at $s=1$.

Conjecture 1.0.1 (Birch and Swinnerton-Dyer conjecture). Granting analytic continuation of $L(A / \mathcal{K}, s)$ to the whole of \mathbb{C},

$$
r k(A / \mathcal{K})=\operatorname{ord}_{s=1} L(A / \mathcal{K}, s) .
$$

Now, the conjectural functional equation for the L-function of A / \mathcal{K} relates $L(A / \mathcal{K}, s)$ to $L(A / \mathcal{K}, 2-s)$ in such a way that $L(A / \mathcal{K}, s)$ is either (essentially) symmetric or anti-symmetric about $s=1$. In particular, the sign in the functional equation controls the parity of the order of vanishing of $L(A / \mathcal{K}, s)$ at $s=1$. This yields the "Birch and Swinnerton-Dyer conjecture modulo 2 ", that is the parity of $r k(A / \mathcal{K})$ is given by this sign. In addition, it is expected that this sign equals the
global root number $\omega(A)$ of A, an invariant defined independently of any conjecture. The Birch and Swinnerton-Dyer conjecture modulo 2 then yields the parity conjecture.

Conjecture 1.0.2 (Parity conjecture).

$$
(-1)^{r k(A / \mathcal{K})}=\omega(A)
$$

One outcome of this work is that if the Shafarevich-Tate group of J is finite, then the parity conjecture holds whenever C is semistable with some extra conditions. In an ongoing work, we use the theory of regulator constants to remove the assumption that J admits a Richelot isogeny. We also expect to be able to remove the extra technical conditions on C.

Assuming finiteness of the Shafarevich-Tate group of A, for each prime p, the rank of A / \mathcal{K} is equal to its p^{∞} Selmer rank, denoted $r k_{p}(A / \mathcal{K})$ (the rank expected from knowing all the p^{n} Selmer groups for $n \geq 1$). In particular, for all prime p, the parity conjecture is then equivalent to a more accessible conjecture: the p-parity conjecture.

Conjecture 1.0.3 (p-parity conjecture).

$$
(-1)^{r k_{p}(A / \mathcal{K})}=\omega(A / \mathcal{K})
$$

The two central results of this thesis are an explicit formula for the parity of the 2^{∞} Selmer rank (Theorem 3.2.16) and the proof of the 2-parity conjecture for a class of $C_{2} \times D_{4}$ Jacobians (Corollary 4.4.12). These are Jacobians of curves C such that the Galois group of $f(x)$ defining C is a subgroup of $C_{2} \times D_{4}$. The latter amounts to the Galois group of $f(x)$ preserving a factorization into three quadratics and fixing one of the quadratic factors.

Principally polarized abelian surfaces are either Jacobians of genus 2 hyperelliptic curves, products of two elliptic curves or Weil restrictions of an elliptic curve defined over a quadratic field extension (see Theorem 3.1. in [18]). In the last two cases, the parity of their rank is given by that of the underlying elliptic curves, which has been thoroughly studied by Monsky, Dokchitser, Dokchitser, Nekovar and Cesnavicius among other contributors. This is why we restrict our attention to Jacobians of genus 2 curves.

Our approach to control the parity of the 2^{∞} Selmer rank follows that of Cassels and Fisher (see [16] [Appendix] and [2]). Assuming finiteness of the ShafarevichTate groups of abelian varieties, Cassels-Tate-Milne showed (see [25] §1.7) that both statements in the Birch and Swinnerton-Dyer conjecture are invariant under isogeny. As a result, if the abelian variety considered admits an isogeny, it is sometimes possible to show that its rank is at least one, and more generally to determine its parity
(see §1.3 in [8] for an example using elliptic curves). In particular, the same result can be achieved unconditionally of the finiteness of $\amalg(A / \mathcal{K})$ for the p^{∞} Selmer rank of abelian varieties admitting a suitable isogeny.

In order to study the 2^{∞} Selmer rank of Jacobians of genus 2 curves using this approach, the following features associated to a Richelot isogeny make it the right candidate. Similarly to the case of a 2-isogeny on an elliptic curve, a Richelot isogeny splits multiplication by 2 at the level of the Jacobian and its existence can be checked from the Galois group of the polynomial defining the underlying curve. Namely, if $G a l(f) \subseteq C_{2}^{3} \rtimes S_{3}$ then J admits a Richelot isogeny. In addition, the codomain \hat{J} of J is also the Jacobian of a genus 2 curve \hat{C}, and a model for \hat{C} is given by the Richelot construction. Since unlike for elliptic curves, we need to distinguish the curve C from its Jacobian J, these features are very relevant for us as our method to study the arithmetic of Jacobians of genus 2 curves is via the study of that of their underlying curves. More precisely, we will express all the arithmetic invariants of J that we study in terms of the polynomial $f(x)$ defining C (see Sections 3.3, 3.4, 3.5).

Considering Jacobians admitting a Richelot isogeny, our first step is to provide a formula that computes the parity of their 2^{∞} Selmer rank. The main obstacle here is the order of the finite part of their Shafarevich-Tate group. For principally polarized abelian varieties of dimension >1, this order is either a square or twice a square as pointed out by Poonen and Stoll in [32]. Fortunately, in this article, the authors also provide a way to tell these two cases appart when the variety is a Jacobian. Using their result, we express the parity of $r k_{2}(J)$ as the following sum over places v of \mathcal{K}

$$
r k_{2}(J / \mathcal{K}) \equiv \sum_{v} \Lambda_{v} \bmod 2
$$

where Λ_{v} involves invariants of both J and \hat{J} such as their Tamagawa numbers and the deficiency of C and \hat{C} (see Definition 3.2.7).

At odd finite places and for semistable Jacobians, the local factors Λ_{v} can be computed thanks to a joint work with T. and V. Dokchitser and A. Morgan presented in [14]. For finite places above 2 , we take a slightly different approach and use a result of A. Morgan presented in the appendix. While it provides a way to compute the parity of the 2^{∞} Selmer rank in practice, this formula can also be used to prove theoretical results. In particular, we use it to prove the 2-parity conjecture in this case.

Since the global root number is defined as a product of local root numbers, the 2-parity conjecture now becomes equivalent to the statement

$$
\prod_{v} \lambda_{v}=\prod_{v} \omega_{v}, \text { where } \lambda_{v}=(-1)^{\Lambda_{v}} \text { and } \prod_{v} \omega_{v}(J / \mathcal{K})=\omega(J / \mathcal{K}) .
$$

It does not come as a surprise to find that the local terms λ_{v} and ω_{v} are not equal in general but differ by a term which vanishes when taking product over all places. This was already the case for elliptic curves and abelian varieties for odd primes. However, it follows that finding the exact expression for this local discrepancy represents the crux in the proof of the 2-parity conjecture.

As suggested by the proof of the 2-parity conjecture for elliptic curves, using a product of Hilbert Symbols involving invariant polynomials in the roots of the defining polynomial of the underlying curve seemed like a possible answer to match the local discrepancy, particularly thanks to the product formula for Hilbert Symbols. Only, λ_{v} and ω_{v} are sensitive to reduction types and specific Galois actions on the special fibre of J (this is by definition of local root numbers, Tamagawa numbers and deficiency, see Section 3.4). Therefore the sought invariants are expected to respond accordingly to different reduction types. However, in the case of a semistable elliptic curve, there are essentially five cases to consider (excluding infinite places for simplicity): good reduction, split multiplicative and non-split multiplicative reduction, where the last two cases also depend on the particular 2-isogeny chosen. One can then study these cases carefully and find the three invariant polynomials in the roots of the defining polynomial of the elliptic curve that control the local discrepancy (see $\S 7$ in [9]). But for a Jacobian of dimension 2, there are roughly 150 cases to consider, excluding infinite places, which complicate the hunt. We tried several methods and proceeded via trial and error using specific families of genus 2 curves and examining infinite places and finite places alternatively. Eventually, under the condition that the Galois group of $f(x)$ be a subgroup of $C_{2} \times D_{4} \subseteq C_{2}^{3} \rtimes S_{3}$, we found a set of invariant polynomials $A_{1}, . ., A_{17}$ (see Section 4.3) which, paired in Hilbert Symbols to form the local term E_{v} as shown below, correctly match the local discrepancy between λ_{v} and ω_{v} at all infinite places and finite places of semistable reduction (with a specific condition at 2-adic places):
$E_{v}=\left(-1, A_{1}\right)\left(A_{2}, A_{3}\right)\left(A_{4}, A_{5}\right)\left(A_{6}, A_{7}\right)\left(A_{8}, A_{9}\right)\left(A_{10}, A_{11}\right)\left(A_{12}, A_{13}\right)\left(A_{14}, A_{15}\right)\left(A_{16}, A_{17}\right)$.

Moreover, the condition $\operatorname{Gal}(f) \subseteq C_{2} \times D_{4}$ was acceptable for us since $C_{2} \times D_{4}$ is the 2-Sylow subgroup of S_{6} which was the requirement for our application toward the parity conjecture (see Chapter 7).

Lastly, having produced these invariants experimentally, it remained to prove that they indeed match the discrepancy at all places in order to claim that the 2-parity conjecture holds for this family. Unfortunately at the moment, the "conceptual" meaning of these invariants is still mysterious. We therefore found the algebraic relations that they satisfy in order to, using a case by case analysis, compute and compare the local factor, local discrepancy and local root number at each place and for each reduction type. The exhaustivity of our list of cases and the fact
that we found the product of local factor and Hilbert Symbols to be equal to the local root number in each case, constitutes our proof of the 2-parity conjecture.

This work is presented as follows. In Chapter 2, we start by recalling some background material on hyperelliptic curves and their Jacobians. After recalling the definition of Richelot isogenies and the Richelot construction, we give an overview of the p-parity and parity conjectures followed by a summary of the known cases.

The first part of Chapter 3 then relates the parity of the 2^{∞} Selmer rank to the existence of an isogeny and provides a local factorization for the 2^{∞} Selmer rank of the Jacobian of a genus 2 curve admitting a Richelot isogeny. In its second part, Chapter 3 presents how to express each local factor in terms of the polynomial defining the underlying curve, considering infinite places, odd finite places and finite places above 2. Each computation is illustrated by an example and, combining all local computations, this chapter ends by providing an example of the computation of the parity of the 2^{∞} Selmer rank for an explicit Jacobian.

In Chapter 4, we introduce the specific family of $C_{2} \times D_{4}$ Jacobians and define the invariants that form the term of local discrepancy. We then tabulate the local computations at each place and for each reduction type that compose our proof of the 2-parity for $C_{2} \times D_{4}$ Jacobians.

Chapters 5 and 6 provide a detailed proof of these local computations. Chapter 5 addresses the computation of each local factor and root number while Chapter 6 deals with the computation of the local discrepancy in each case.

Chapter 7 concludes this work and is followed by an appendix containing a result of A. Morgan concerning isogenies between abelian varieties with split totally toric reduction which is used in Chapter 5 when considering computations at finite places above 2.

Notation

The following notation will be used throughout the entire thesis.
\mathcal{K} number field
$\overline{\mathcal{K}} \quad$ algebraic closure of \mathcal{K}
$M_{\mathcal{K}} \quad$ set of places of \mathcal{K}
$v \quad$ a place in $M_{\mathcal{K}}$
$\mathcal{K}_{v} \quad$ completion of \mathcal{K} at v
$p \quad$ a prime in \mathbb{Q}
$K \quad$ finite extension of \mathbb{Q}_{p}
$\mathcal{O}_{K} \quad$ ring of integers of K
$\bar{K} \quad$ algebraic closure of K
$K^{n r} \quad$ maximal unramified extenstion of K
$\pi \quad$ uniformizer of K
$v \quad$ normalized valuation of K
$k \quad$ residue field of K
$\bar{k} \quad$ algebraic closure of k

Some sections introduce a large number of new definitions and conventions. For clarity, each introduction of chapters is followed by the list of specific notations used in the chapter.

Chapter 2

Background Material

2.1 Hyperelliptic curves and their Jacobians

2.1.1 Hyperelliptic curves

By a hyperelliptic curve C over a number field \mathcal{K} given by $C / \mathcal{K}: y^{2}=f(x)$ of genus g, where $f(x) \in \mathcal{K}[x]$ is of degree $2 g+1$ or $2 g+2$ with no multiple roots, we mean the pair of affine patches

$$
U_{x}: y^{2}=f(x), \quad U_{t}: v^{2}=t^{2 g+2} f\left(\frac{1}{t}\right)
$$

glued together along the maps $x=\frac{1}{t}$ and $y=\frac{v}{t^{g+1}}$. We refer to the points at infinity (i.e. $C \backslash U_{x}$) for the points with $t=0$ on U_{t}. Explicitly, denoting $c \in \mathcal{K}^{\times}$the leading term of $f(x)$, if $f(x)$ is of degree $2 g+1$ then

$$
U_{x}: y^{2}=c \prod_{i=1}^{2 g+1}\left(x-r_{i}\right), \quad U_{t}: v^{2}=t c \prod_{i=1}^{2 g+1}\left(t r_{i}-1\right)
$$

and we denote $P_{\infty}=(0,1)$ the only point on C^{\prime} with $t=0$. Otherwise if $f(x)$ is of degree $2 g+2$ then

$$
U_{x}: y^{2}=c \prod_{i=1}^{2 g+2}\left(x-r_{i}\right), \quad U_{t}: v^{2}=c \prod_{i=1}^{2 g+2}\left(t r_{i}-1\right)
$$

and we denote $P_{\infty}^{ \pm}=(0, \pm \sqrt{c})$ the two points on U_{t} with $t=0$. We refer to [35] for an introduction to the arithmetic of Hyperelliptic curves.

2.1.2 Jacobians of hyperelliptic curves

Let C be a hyperelliptic curve of genus g defined over \mathcal{K} by

$$
C: y^{2}=f(x)
$$

where $f(x) \in \mathcal{K}[x]$ is a polynomial of degree $2 g+1$ or $2 g+2$ with no multiple root.
Definition 2.1.1 (Hyperelliptic involution). Let $P=\left(x_{P}, y_{P}\right)$ be a point on $C(\overline{\mathcal{K}})$. We call $\bar{P}=\left(x_{P},-y_{P}\right)$ its conjugate under the hyperelliptic involution.

Definition 2.1.2 (Divisors). A divisor D on C is a formal sum

$$
\sum_{P \in C} n_{P} P
$$

where $n_{P} \in \mathbb{Z}$ and $n_{P}=0$ for all but finitely many points $P \in C(\overline{\mathcal{K}})$. The integer n_{P} is called the multiplicity of P in D and $\operatorname{deg}(D)=\sum_{P \in C} n_{P}$ denotes the degree of D.

Divisors of a curve C are elements of the free abelian group on the set of points $P \in C(\overline{\mathcal{K}})$. We denote $\operatorname{Div}(C)$ the group of divisors on C.

Definition 2.1.3 (Rational divisors). A divisor

$$
D=\sum_{P \in C(\mathcal{F})} n_{p} P
$$

for some finite Galois extension $\mathcal{F} / \mathcal{K}$, is said to be \mathcal{K}-rational or defined over \mathcal{K} if

$$
D^{\sigma}=D \text { for all } \sigma \in G a l(\mathcal{F} / \mathcal{K})
$$

Definition 2.1.4 (Principal Divisors). Let f be a non zero rational function on C.
Define the divisor of f

$$
[f]=\sum_{P \in C} \operatorname{ord}_{P}(f) P
$$

where the multiplicity of P in $[f]$ is given by the order of vanishing of f at P in terms of a local uniformizer. Divisors given by a function f on C are called principal divisors and we denote by $\operatorname{Princ}(C)$ the subgroup of principal divisors. As a rational function, f has as many zeroes as it has poles. Consequently, principal divisors have degree 0 .

Definition 2.1.5 (Picard group). The Picard group is defined to be

$$
\operatorname{Pic}(C)=\operatorname{Div}(C) / \operatorname{Princ}(C)
$$

In particular, two divisors differing by a principal divisor are in the same divisor class and are said to be linearly equivalent. The Picard group inherits a notion of degree from $\operatorname{Div}(C)$ and we denote by $\operatorname{Pic}^{j}(C)$ the set of elements of $\operatorname{Pic}(C)$ of degree j.

Definition 2.1.6 (Jacobian of C). The Jacobian of C is defined as

$$
J=P i c^{0}(C)
$$

Points on J are classes of divisors of degree 0 on C.

Theorem 2.1.7 ([26], Theorem 1.1, Proposition 2.1). The Jacobian of a curve of genus g is an abelian variety of dimension g.

Theorem 2.1.8 (Mordell-Weil). The group of \mathcal{K}-rational points of J is finitely generated. Hence

$$
J(\mathcal{K}) \simeq \mathbb{Z}^{r k(J / \mathcal{K})} \oplus J(\mathcal{K})_{\text {tors }}
$$

where $\operatorname{rk}(J / \mathcal{K})<\infty$ is called the rank of J / \mathcal{K} and the group of torsion $J(\mathcal{K})_{\text {tors }}$ is finite.

Our main goal is to compute the parity of $r k(J / \mathcal{K})$ in the case of Jacobians of dimension 2. Our approach involves the use of an isogeny on J whose kernel is composed of 2 -torsion elements. We therefore review briefly how to construct 2 torsion points on J from the roots of the defining polynomial of C. For a detailed exposition on torsion elements on Jacobians of genus 2 curves we refer to [5], Chapter 8.

2.1.3 Jacobians of hyperelliptic curves of genus 2

Let C be a hyperelliptic curve of genus 2 defined over \mathcal{K} by

$$
C: y^{2}=f(x)
$$

where $f(x) \in \mathcal{K}[x]$ is a polynomial of degree \oint^{1} with no multiple root.

Points on $C(\overline{\mathcal{K}})$ and $J(\overline{\mathcal{K}})$
A point $D \in J(\overline{\mathcal{K}})$ can be given as a divisor on C of the form

$$
D=P+Q-P_{\infty}^{+}-P_{\infty}^{-}
$$

[^0]for some $P, Q \in C(\overline{\mathcal{K}})$ and where $P_{\infty}^{+}, P_{\infty}^{-}$denote the two points at infinity of C. We will use the notation $D=[P, Q]$ to denote the point D on $J(\overline{\mathcal{K}})$. Note that a point $P \in C(\overline{\mathcal{K}})$ and its image \bar{P} through the hyperelliptic involution are the points of intersection of a vertical line and $f(x)$. In particular, the principal divisor $D=[P, \bar{P}]$ can be chosen as a representative for the class of $0 \in J(\overline{\mathcal{K}})$.

Addition on J

Choose four points $P, P^{\prime}, Q, Q^{\prime}$ in general position on $C(\overline{\mathcal{K}})$. Then there exists a curve $y=p(x)$, where $p(x)$ is a polynomial of degree 3 , passing through $P, P^{\prime}, Q, Q^{\prime}$ and intersecting C in two more points S, S^{\prime} (see Figure 2.1).

The principal divisor

$$
[y-p(x)]=P+P^{\prime}+Q+Q^{\prime}+S+S^{\prime}-3 P_{\infty}^{+}-3 P_{\infty}^{-}
$$ yields

$$
\left[P, P^{\prime}\right]+\left[Q, Q^{\prime}\right]=-\left[S, S^{\prime}\right]
$$

Since $[S, R]=\left[S^{\prime}, R^{\prime}\right]=0$, we obtain

$$
\left[P, P^{\prime}\right]+\left[Q, Q^{\prime}\right]=\left[R, R^{\prime}\right] .
$$

Figure 2.1: $y^{2}=f(x)$ and $y=p(x)$

This prompts the following Lemma.
Lemma 2.1.9. Each non zero element of $J(\overline{\mathcal{K}})[2]$ may be uniquely represented by the following pairs of points of $C(\overline{\mathcal{K}})$. Let $x_{1}, . ., x_{6} \in \overline{\mathcal{K}}$ be the roots of $f(x)$, then

$$
J(\overline{\mathcal{K}})[2]=\left\{\left[T_{i}, T_{k}\right], i \neq k\right\} \cup\{0\}, \quad T_{i}=\left(x_{i}, 0\right) \in C(\overline{\mathcal{K}}) .
$$

Proof. See [5], §8.1 and proof of Lemma 8.1.3. in [34].
The sequent sections and results rely on the existence of an isogeny on J whose kernel is a subgroup of $J(\overline{\mathcal{K}})[2]$. Using this last Lemma, we conveniently avoid considering an algebraic model for J and simply define its 2-torsion elements from the roots of the defining polynomial of its underlying curve C. Moreover as shown in Chapter 3, this identification allows us to study the local arithmetic of J from that of C.

2.2 Richelot Isogenies and Richelot Construction

We recall here the notion of a Richelot isogeny. Defined for Jacobians of genus 2 curves, they split multiplication by 2 at the level of the Jacobian. Their codomain is the Jacobian of a curve, a model of which is conveniently given by the Richelot construction. Similarly to the case of elliptic curves, their kernel consists of a subgroup of 2 -torsion and we show using Lemma 2.1 .9 how to guarantee the existence of such an isogeny from the Galois group of the defining polynomial of the underlying curve. Our exposition follows that of [4] to which we refer for the proofs. Other expositions of Richelot isogenies can be found in [5] and (34].

Richelot and Richelot dual polynomials

Definition 2.2.10. 1) Given two polynomials $P(x), Q(x) \in \mathcal{K}[x]$ of degree at most 2, we define the Richelot operator [,] by

$$
[P(x), Q(x)]=P^{\prime}(x) Q(x)-Q^{\prime}(x) P(x)
$$

where ${ }^{\prime}$ refers to the differentiation with respect to x.
2) We say that a polynomial $G(x) \in \mathcal{K}[x]$ of degree 5 or 6 is a Richelot polynomial over \mathcal{K} if we can fix a factorization

$$
G(x)=G_{1}(x) G_{2}(x) G_{3}(x)
$$

where for $i=1,2,3$, the polynomials $G_{i}(x)$ are of degree at most 2 , defined over $\overline{\mathcal{K}}$ individually and over \mathcal{K} as a set ${ }^{2}$
3) If $G(x)$ is a Richelot polynomial over \mathcal{K}, write

$$
G_{i}(x)=g_{i 2} x^{2}+g_{i 1} x+g_{i 0}=g_{i}\left(x-\alpha_{i}\right)\left(x-\beta_{i}\right), \quad i=1,2,3
$$

for its factorization over $\overline{\mathcal{K}}$ and define

$$
\Delta_{G}=\operatorname{det}\left(\left(g_{i j}\right)_{0 \leq i, j \leq 2}\right)
$$

Definition 2.2.11. 1) To a Richelot polynomial $G(x)$ with fixed factorization $G(x)=G_{1}(x) G_{2}(x) G_{3}(x)$ such that $\Delta_{G} \neq 0$, we associate its Richelot dual polynomial $F(x)$ given by

$$
F(x)=\prod_{i=1}^{3} F_{i}(x), \quad \text { with } F_{i}(x)=\frac{1}{\Delta_{G}}\left[G_{i+1}(x), G_{i+2}(x)\right]
$$

[^1]where addition of indices is performed modulo 3 . Note that by construction, $F(x)$ is a Richelot polynomial over \mathcal{K} with given factorization $F_{1}(x) F_{2}(x) F_{3}(x)$.
2) Write
$$
F_{i}(x)=f_{i 2} x^{2}+f_{i 1} x+f_{i 0}=f_{i}\left(x-A_{i}\right)\left(x-B_{i}\right), \quad i=1,2,3,
$$
for the factorization of $F(x)$ over $\overline{\mathcal{K}}$ and define
$$
\Delta_{F}=\operatorname{det}\left(\left(f_{i j}\right)_{0 \leq i, j \leq 2}\right)
$$

We will keep the above notation for the roots of $G_{i}(x)$ and $F_{i}(x)$ throughout the entire thesis. The quantity Δ_{G} is essential to the Richelot construction due to the following definitions. We also note that although Δ_{G} might not be defined over \mathcal{K}, its square Δ_{G}^{2} is.

Richelot and Richelot dual curves

Definition 2.2.12. 1. We say that a hyperelliptic curve C / \mathcal{K} of genus 2 is a Richelot curve over \mathcal{K} if it is given by

$$
C: y^{2}=G(x), \text { together with the factorization } G(x)=G_{1}(x) G_{2}(x) G_{3}(x)
$$

as a Richelot polynomial over \mathcal{K} such that $\Delta_{G} \neq 0$.
2. To a Richelot curve C / \mathcal{K}, we associate its Richelot dual curve \hat{C} / \mathcal{K} given by

$$
\hat{C}: \Delta_{G}^{2} y^{2}=F(x),
$$

where $F(x)$ is the Richelot dual polynomial of $G(x)$ with respect to the given factorization.

Remark 2.2.13 (Richelot dual polynomial). Our definition of the Richelot dual polynomial differs from that of [5] and [34] but agrees with that of (4). This is because we insist that $F(x)=F_{1}(x) F_{2}(x) F_{3}(x)$ be a Richelot polynomial, that is, the set $\left\{F_{1}(x), F_{2}(x), F_{3}(x)\right\}$ be Galois stable. However, this has no incidence on the definition of the dual curve \hat{C} as the following change of variable $x \mapsto x, \quad y \mapsto \frac{y}{\Delta_{G}^{2}}$ is an isomorphism over \mathcal{K} between our curve \hat{C} and that given in 5 .

Remark 2.2.14 (Galois group of Richelot polynomials). Let $G(x) \in \mathcal{K}[x]$ a polynomial of degree 5 or 6 . Denote by \mathcal{K}_{G} its splitting field. Then the conditions for $G(x)$ to be a Richelot polynomial over \mathcal{K} (and hence for C to be a Richelot curve) can be rephrased as

$$
\operatorname{Gal}\left(\mathcal{K}_{G} / \mathcal{K}\right) \subseteq C_{2}^{3} \rtimes S_{3} \subset S_{6},
$$

where the three copies of C_{2} are given by the permutations of roots of quadratic factors $G_{i}(x)$, themselves acted upon by S_{3}.

Proposition 2.2.15. Let C / \mathcal{K} be a Richelot curve with fixed quadratic factorization $G(x)=G_{1}(x) G_{2}(x) G_{3}(x)$. Let J be its Jacobian. Keeping notation as in Definition 2.2.11, for each pair of points $\left(P_{i}, Q_{i}\right) \in C(\overline{\mathcal{K}})^{2}$, with $P_{i}=\left(\alpha_{i}, 0\right), Q_{i}=\left(\beta_{i}, 0\right), i=$ $1,2,3$, consider the associated 2 -torsion elements of $J(\overline{\mathcal{K}})$

$$
D_{i}=\left[P_{i}, Q_{i}\right] \in J(\overline{\mathcal{K}})[2] .
$$

Then
i) the subgroup $H=\left\{0, D_{1}, D_{2}, D_{3}\right\} \subset J(\overline{\mathcal{K}})[2]$ is defined over \mathcal{K},
ii) H is a maximal isotropic subrgroup of $J(\mathcal{K})[2]$ with respect to the 2-Weil pairing.

Proof. (i) Follows from the definition of a Richelot polynomial.
(ii) A subgroup H of $J(\mathcal{K})[2]$ is maximal isotropic with respect to the 2-Weil pairing if and only if it is composed of 2-torsion points of J given by two distinct Weierstrass points of C (see [34 Lemma 8.1.4). The result follows from the definition of D_{1}, D_{2}, D_{3} and the fact that C being a hyperelliptic curve implies that the $G_{i}(x) s$ are necessarily coprime.

Richelot isogenies

Definition 2.2.16. Let C / \mathcal{K} be a Richelot curve with fixed quadratic factorization $G(x)=G_{1}(x) G_{2}(x) G_{3}(x)$. Let J be its Jacobian. Consider the 2-torsion points of $J(\overline{\mathcal{K}})$ defined by the quadratic factorization of $G(x)$

$$
D_{i}=\left[P_{i}, Q_{i}\right] \in J(\overline{\mathcal{K}})[2],
$$

where $P_{i}=\left(\alpha_{i}, 0\right), Q_{i}=\left(\beta_{i}, 0\right), i=1,2,3$ as in Definition 2.2.11. Then the isogeny over \mathcal{K} for J whose kernel is the subgroup $H=\left\{0, D_{1}, D_{2}, D_{3}\right\} \subseteq J(\mathcal{K})[2]$ is called a Richelot isogeny.
We say that a Jacobian admits a Richelot isogeny over \mathcal{K} if its underlying curve is a Richelot curve over \mathcal{K}.

Theorem 2.2.17. Let C / \mathcal{K} be a Richelot curve with fixed factorization $G(x)=$ $G_{1}(x) G_{2}(x) G_{3}(x)$ for its Richelot polynomial. Let \hat{C} / \mathcal{K} be its Richelot dual curve and let ϕ denote the associated Richelot isogeny on J. Then

$$
\phi: J \rightarrow \hat{J},
$$

where \hat{J} is the Jacobian of \hat{C} and, denoting ϕ^{t} the dual isogeny of ϕ, we have $\phi \circ \phi^{t}$ is multiplication by 2.

Proof. This is Definition 8.4.10, Corollary 8.4.9 and Theorem 8.4.11 of [34].

2.3 Parity and p-parity conjectures

We refer to [8] for an overview of the parity and p-parity conjectures for elliptic curves and present here a review of the situation for abelian varieties. Complementary references include [36] and [37]. Let A / \mathcal{K} be an abelian variety over a number field. By the Mordell-Weil theorem, the group of rational points $A(\mathcal{K})$ of A is finitely generated, so that

$$
A(\mathcal{K}) \simeq \mathbb{Z}^{r k(A / \mathcal{K})} \oplus A(\mathcal{K})_{\text {tors }},
$$

where $r k(A / \mathcal{K})<\infty$ is called the rank of A / \mathcal{K} and the group of torsion $A(\mathcal{K})_{\text {tors }}$ is finite. The rank of A is predicted by the following conjecture.

Conjecture 2.3.18 (Birch and Swinnerton-Dyer [3], Tate [36]). Granting analytic continuation of the L-function of A / \mathcal{K} to \mathbb{C},

$$
r k(A / \mathcal{K})=\operatorname{ord}_{s=1} L(A / \mathcal{K}, s),
$$

where ord $d_{s=1}$ denotes the order of vanishing of $L(A / \mathcal{K}, s)$ at $s=1$.
Once the analytic continuation of the L-function of A / \mathcal{K} to \mathbb{C} is assumed, it is also predicted that the completed L-function of A / \mathcal{K} satisfies the following functional equation.

Conjecture 2.3.19.

$$
L^{*}(A / \mathcal{K}, s)=W(A) L^{*}(A / \mathcal{K}, 2-s), \quad W(A) \in\{ \pm 1\} .
$$

A direct consequence of this functional equation is that the parity of the order of vanishing of $L(A / \mathcal{K}, s)$ at $s=1$ is given by the sign $W(A)$, i.e.

$$
(-1)^{o r d_{s=1} L(A / \mathcal{K}, s)}=W(A) .
$$

Therefore, combining with the prediction on the rank of A / \mathcal{K} given by the Birch and Swinnerton-Dyer conjecture, we obtain the following prediction for the parity of $\operatorname{rk}(A / \mathcal{K})$.

Conjecture 2.3.20 (Birch and Swinnerton Dyer Modulo 2).

$$
(-1)^{r k(A / \mathcal{K})}=W(A) .
$$

Moreover, it is known for elliptic curves in some cases that the sign in the functional equation above equals the global root number of the curve. In general,
this fact remains a conjecture.
Conjecture 2.3.21. The sign $W(A)$ in the conjectural functional equation of $L^{*}(A / \mathcal{K})$ is equal to the global root number $\omega(A)$ of A :

$$
W(A)=\omega(A) \underset{\operatorname{def}}{=} \prod_{v} \omega_{v}(A),
$$

where $\omega_{v}(A)$ denotes the local root number of A at the place v of $M_{\mathcal{K}}$.
This justifies the prediction on the parity of $r k(A / \mathcal{K})$ given by the parity conjecture.

Conjecture 2.3.22 (Parity conjecture). The parity of the rank of an abelian variety is given by its global root number:

$$
(-1)^{r k(A / \mathcal{K})}=\omega(A) .
$$

Definition 2.3.23 (p^{∞} Selmer rank). Recall that for each prime p, the p-primary part of $\amalg(A / \mathcal{K})$ can be written as

$$
Ш\left[p^{\infty}\right]=\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{\delta_{p}} \times Ш_{0}\left[p^{\infty}\right], \quad\left|Ш_{0}\left[p^{\infty}\right]\right|<\infty .
$$

We define the p^{∞} Selmer rank of A / \mathcal{K} to be

$$
r k_{p}(A / \mathcal{K})=r k(A / \mathcal{K})+\delta_{p} .
$$

In particular, assuming that $\amalg(A / \mathcal{K})$ is finite, the rank of A / K equals its p^{∞} Selmer rank for all primes p. This yields the p-parity conjecture.

Conjecture 2.3.24 (p-parity conjecture).

$$
(-1)^{r k_{p}(A / \mathcal{K})}=\omega(A)
$$

Thanks to the work of Monsky, Nekovar, Dokchitser, Dokchitser, Cesnavicius, Coates, Fukaya, Kato, Sujatha, Kramer, Tunnell and Morgan among other contributors, on the p-parity conjecture, the following cases of the parity conjecture have been proven:

1. for elliptic curves E / \mathbb{Q} assuming $\amalg(E)\left[p^{\infty}\right]$ finite for some p (see [27] for $p=2,[29$, [21], 11] for odd primes),
2. for elliptic curves E / \mathcal{K}, where \mathcal{K} is a totally real field, assuming $\amalg(E)\left[p^{\infty}\right]$ finite for some p and mild constraints (see [30] and [12]),
3. for elliptic curves E / \mathcal{K} admitting a p-isogeny, assuming $\amalg(E)\left[p^{\infty}\right]$ finite (see [9] and (6]),
4. for elliptic curves $E / \mathcal{K}(\sqrt{d}), E$ defined over $\mathcal{K}, d \in \mathcal{K}^{\times} \backslash \mathcal{K}^{\times 2}, \amalg(E / \mathcal{K}(\sqrt{d}))\left[2^{\infty}\right]$ finite (see [23], [22] and [12]),
5. for elliptic curves E / \mathcal{K} assuming $\amalg(E / F)\left[2^{\infty}\right], \amalg(E / F)\left[3^{\infty}\right]$ finite, where $F=\mathcal{K}(E[2])$ (see [11] and [12]),
6. for Jacobian varieties $A / \mathcal{K}(\sqrt{d}), A=\operatorname{Jac}(C), C$ semistable hyperelliptic curve over $\mathcal{K}, d \in \mathcal{K}^{\times} \backslash \mathcal{K}^{\times 2}, ~ \amalg(A / \mathcal{K}(\sqrt{d}))\left[2^{\infty}\right]$ finite, and mild constraints (see [28]),
7. for principally polarized abelian varieties A / \mathcal{K} admitting an isogeny $\Phi: A \rightarrow$ A^{\prime} s.t. $\Phi^{*} \Phi=[p]$, assuming $\amalg(A)\left[p^{\infty}\right]$ finite, p odd and mild constraints (see [7]).

One of the main motivation for this work was the proof of the fifth case. It relies on the fact that the 2 -parity conjecture holds for elliptic curves over $\mathcal{K}(E[2])$, and make use of the theory of regulator constants to prove a result on the parity of the rank of E / \mathcal{K}. The same method can be applied to Jacobians of dimension 2 but first, it is crucial to prove the 2-parity conjecture for those.

Chapter 3

Parity of the 2^{∞} Selmer rank

3.1 Introduction

In this chapter we develop an explicit formula for the parity of the 2^{∞} Selmer rank of Jacobians of genus 2 curves admitting a Richelot isogeny. The first section explains how to use the existence of a Richelot isogeny to express the parity of the 2^{∞} Selmer rank in terms of local factors as follows.

Theorem 3.1.1 (Theorem 3.2.16). Let C / \mathcal{K} be a hyperelliptic curve of genus 2 such that its Jacobian J admits a Richelot isogeny ϕ. Denote by \hat{C} and \hat{J} the corresponding curve and isogenous Jacobian. Denote ω_{v}^{o}, $\hat{\omega}_{v}^{o}$ the Néron exterior forms at the place v of \mathcal{K} for J and \hat{J} respectively. Then

$$
r k_{2}(J / \mathcal{K}) \equiv \sum_{v \in M_{\mathcal{K}}} \Lambda_{v} \bmod 2 \quad \text { with }
$$

$\Lambda_{v}=\operatorname{ord}_{2}\left(\frac{\hat{n} \cdot m_{v}}{|\operatorname{ker}(\varphi)| \cdot n \cdot \hat{m}_{v}}\right)$ for $v \mid \infty, \quad \Lambda_{v \nmid \infty}=\operatorname{ord}_{2}\left(\frac{c_{v} \cdot m_{v}}{\hat{c}_{v} \cdot \hat{m}_{v}}\left|\frac{\phi^{*} \hat{\omega}_{v}^{o}}{\omega_{v}^{o}}\right|_{v}\right)$ for $v \nmid \infty$,
where n, \hat{n} are the number of \mathcal{K}_{v}-connected components of J and \hat{J}, φ is the restriction of ϕ to the identity component of $J\left(\mathcal{K}_{v}\right), c_{v}$ and \hat{c}_{v} the Tamagawa numbers of J and \hat{J}, and $m_{v}=2$ if C is deficient at v (see Definition 3.2.7), $m_{v}=1$ otherwise, and similarly for \hat{m}_{v}.

In the second section, we describe how to express the invariants involved in Theorem 3.2.16 above in terms of the polynomial defining C, when the given Jacobian is semistable. Part of this work is joint with T. and V. Dokchitser and A. Morgan and is presented in the articles [15] and [14]. We only provide here a summary of the results needed and refer to the articles for the proofs. It follows that the parity of the 2^{∞} Selmer rank is computable in this case and an example of such a computation is given in the last section.

List of notation for this chapter

C	Richelot curve defined over \mathcal{K} with the given factorization $y^{2}=G(x)=G_{1}(x) G_{2}(x) G_{3}(x)$
c	leading term of $G(x)$
J	Jacobian of C admitting a Richelot isogeny ϕ
\hat{C}	Richelot dual curve defined over \mathcal{K} by
	$\Delta_{G}^{2} y^{2}=F(x)=F_{1}(x) F_{2}(x) F_{3}(x)$ (see Section 2.2
ℓ	leading term of $F(x)$
\hat{J}	Jacobian of \hat{C}
$\delta_{i}, i=1,2,3$	discriminant of $G_{i}(x)$
$\hat{\delta_{i}, i=1,2,3}$	discriminant of $F_{i}(x)$
$\alpha_{i}, \beta_{i}, i=1,2,3$	roots of $G_{i}(x)$
$A_{i}, B_{i}, i=1,2,3$	roots of $F_{i}(x)$
$P_{i}, Q_{i}, i=1,2,3$	Weierstrass points $P_{i}=\left(\alpha_{i}, 0\right), Q_{i}=\left(\beta_{i}, 0\right)$
$D_{i}, i=1,2,3$	$D_{i}=\left[P_{i}, Q_{i}\right] \in k e r(\phi)$,
n_{v}, \hat{n}_{v},	number of connected components of $J\left(\mathcal{K}_{v}\right)$ and $\hat{J}\left(\mathcal{K}_{v}\right)$ when $v \mid \infty$
m_{v}	$m_{v}=2$ if C is deficient at $v, m_{v}=1$ otherwise $($ see Definition 3.2 .7$)$
$\phi_{\mathbb{R}}$	map induced by ϕ on $J\left(\mathcal{K}_{v}\right)$ when $\mathcal{K}_{v} \cong \mathbb{R}$
φ	restriction of $\phi_{\mathbb{R}}$ to the identity component of $J\left(K_{v}\right)$ when $K_{v} \cong \mathbb{R}$
c_{v}, \hat{c}_{v}	Tamagawa numbers of J and \hat{J} at v when $v \nmid \infty$
$\hat{\omega}$	a fixed choice of a non-zero exterior form for \hat{J}
ω	the pullback of $\hat{\omega}$ through $\phi: \omega=\phi^{*} \hat{\omega}$

3.2 Parity of the 2^{∞} Selmer rank of Richelot Jacobians

Recall that for an elliptic curve E / \mathcal{K} with an isogeny ϕ of degree p over \mathcal{K}, one can express the parity of its p^{∞} Selmer $\operatorname{rank}(-1)^{r k_{p}(E / \mathcal{K})}$ as the product of power of p in

$$
\frac{\left|\operatorname{coker}\left(\phi_{v}: E\left(\mathcal{K}_{v}\right) \rightarrow E\left(\mathcal{K}_{v}\right)\right)\right|}{\left|\operatorname{ker}\left(\phi_{v}: E\left(\mathcal{K}_{v}\right) \rightarrow E\left(\mathcal{K}_{v}\right)\right)\right|}
$$

for all places v of \mathcal{K} as shown in [16][Appendix]. In [11] and [7, DokchitserDokchitser and Coates-Fukaya-Kato-Sujatha gave generalizations of the above to abelian varieties. In the latter, the authors prove that, for odd primes p and under mild restrictions at places v dividing p, the p-parity conjecture holds for principally polarized abelian varieties A admitting a suitable isogeny. When $p=2$ however, the key problem to extend their result is that the order of $Ш(A)$ could be twice a square. In [32], Poonen and Stoll provide a way to compute whether the order of the Shafarevich-Tate group of Jacobians is a square or twice a square in terms of local invariants. This is why the use of Richelot isogenies on the Jacobians J that
we study is crucial. Since it guarantees that the codomain of J is also a Jacobian, it let us control the parity of the 2^{∞} Selmer rank in this case.
In this section, we recall how to express the parity of the 2^{∞} Selmer rank of an abelian variety of dimension g admitting an isogeny of degree 2^{g} to then provide a formula for the parity of their 2^{∞} Selmer rank.

3.2.1 Parity of the 2^{∞} Selmer rank and isogenies

Let A, B be abelian varieties over \mathcal{K}. Recall the following definitions and results presented in [11] (Section 4.1) concerning the isogeny invariance of the BSD-quotient for Selmer groups.

Definition 3.2.2. For an isogeny $\phi: A \rightarrow B$ over \mathcal{K}, let
$Q(\phi)=\left|\operatorname{coker}\left(\phi: A(\mathcal{K}) / A(\mathcal{K})_{\text {tors }} \rightarrow B(\mathcal{K}) / B(\mathcal{K})_{\text {tors }}\right)\right| \times\left|\operatorname{ker}\left(\phi: Ш(A)_{\text {div }} \rightarrow Ш(B)_{\text {div }}\right)\right|$,
where $\amalg(A)_{d i v}$ denotes the divisible part of $\amalg(A)$.
Lemma 3.2.3. $Q(\phi)$ as defined above satisfies the following properties:

1. If $\phi: A \rightarrow B$ and $\phi^{\prime}: B \rightarrow C$ are isogenies then $Q\left(\phi^{\prime} \phi\right)=Q\left(\phi^{\prime}\right) Q(\phi)$,
2. If $\phi: A \rightarrow A$ is multiplication by p then $Q(\phi)=p^{r k_{p}(A / \mathcal{K})}$.

Theorem 3.2.4. Let $A, B / \mathcal{K}$ be abelian varieties given with exterior forms ω_{A}, ω_{B}. Suppose $\phi: A \rightarrow B$ is an isogeny and $\phi^{t}: B^{t} \rightarrow A^{t}$ its dual. Let $Ш_{0}(A / \mathcal{K})$ be $Ш(A / \mathcal{K})$ modulo its divisible part and

$$
\Omega_{A}=\prod_{v \mid \propto_{\text {real }}} \int_{A\left(\mathcal{K}_{v}\right)}\left|\omega_{A}\right| \cdot \prod_{v \mid \infty_{\text {complex }}} \int_{A\left(\mathcal{K}_{v}\right)}\left|\omega_{A} \wedge \bar{\omega}_{A}\right| .
$$

For two exterior forms ω_{1}, ω_{2}, writing $\frac{\omega_{1}}{\omega_{2}}=\lambda \in \mathcal{K}$ whenever $\omega_{1}=\lambda \omega_{2}$, set

$$
C(A / \mathcal{K})=\prod_{v \nmid \infty} c_{v}\left|\frac{\omega}{\omega_{v}^{o}}\right|_{v},
$$

where c_{v} and ω_{v}^{o} are respectively the local Tamagawa number and the Néron exterior form at a finite place v of \mathcal{K}, and similarly for B, then:

$$
\frac{\left|B(\mathcal{K})_{\text {tors }}\right|\left|B^{t}(\mathcal{K})_{\text {tors }}\right| C(A / \mathcal{K}) \Omega_{A}}{\left|A(\mathcal{K})_{\text {tors }}\right|\left|A^{t}(\mathcal{K})_{\text {tors }}\right| C(B / \mathcal{K}) \Omega_{B}} \prod_{p \mid \text { deg } \phi} \frac{\left|Ш_{0}(A)\left[p^{\infty}\right]\right|}{\left|Ш_{0}(B)\left[p^{\infty}\right]\right|}=\frac{Q\left(\phi^{t}\right)}{Q(\phi)} .
$$

Lemma 3.2.5. Let A / \mathcal{K} be a principally polarized abelian variety admitting an isogeny $\phi: A \rightarrow \hat{A}$ so that \hat{A} is principally polarized. Write ϕ^{t} for the dual of ϕ and suppose that $\phi \phi^{t}=[p]$. Then, keeping notation as in Theorem 3.2.4.

$$
(-1)^{r k_{p}(A)}=\lambda(A), \quad \text { where } \lambda(A)=(-1)^{\operatorname{ord}_{p}\left(\frac{C(A) \Omega_{A}}{C(\hat{A}) \Omega_{\hat{A}}} \Pi_{p \mid d \operatorname{deg} \phi} \frac{\left.\left|\Pi_{0}(A)\right|\right]^{\infty} \| \mid l}{\left|\Pi_{0}(\hat{A})\right| p \infty| |}\right) .}
$$

Proof. Using properties 1 and 2 of Lemma 3.2 .3 we have

$$
\frac{Q\left(\phi^{t}\right)}{Q(\phi)}=\frac{Q\left(\phi^{t}\right) Q(\phi)}{Q(\phi)^{2}}=\frac{Q\left(\phi^{t} \phi\right)}{Q(\phi)^{2}}=\frac{p^{r k_{p}(A)}}{Q(\phi)^{2}} .
$$

Hence by Theorem 2.23. this yields

$$
\frac{p^{r k_{p}(A)}}{Q(\phi)^{2}}=\frac{\left|\hat{A}_{\text {tors }}\right|\left|\hat{A}_{\text {tors }}^{t}\right| C(A) \Omega_{A}}{\left|A_{\text {tors }}\right|\left|A_{\text {tors }}^{t}\right| C(\hat{A}) \Omega_{\hat{A}}} \prod_{p \mid \text { deg } \phi} \frac{\left|Ш_{0}(A)\left[p^{\infty}\right]\right|}{\left|Ш_{0}(\hat{A})\left[p^{\infty}\right]\right|} .
$$

The result follows since $\left|\hat{A}_{\text {tors }}\right|=\left|\hat{A}_{\text {tors }}^{t}\right|$ and $\left|A_{\text {tors }}\right|=\left|A_{\text {tors }}^{t}\right|$.
The conditions required by Lemma 3.2.5 are satisfied by Jacobians of genus 2 curves admitting a Richelot isogeny. Richelot isogenies are such that their codomain is the Jacobian of a genus 2 curve, a model of which is given explicitly (see Section 2.2). In particular, Richelot isogenies have principally polarized codomains and are of degree 4. It therefore follows from Lemma 3.2 .5 that the parity of the 2^{∞} Selmer rank of a Jacobian admitting a Richelot isogeny can be expressed as follows.

Theorem 3.2.6. Let A / \mathcal{K} be the Jacobian of a genus 2 curve admitting a Richelot isogeny. Then

$$
\left.(-1)^{r k_{2}(A)}=\lambda(A), \quad \text { where } \lambda(A)=(-1)^{\text {ord }_{2}\left(\frac { C (A) \Omega _ { A } } { C (A) \Omega _ { A } } \left[\prod _ { 0 } (A) \left[\left[^{\infty} \|_{0}(A) \mid 2^{\infty}\right\rfloor| |\right.\right.\right.}\right) .
$$

Proof. Follows from Lemma 3.2.5 and by definition of Richelot isogenies (see Theorem 2.2.17).

3.2.2 Local factorization of the parity of the 2^{∞} Selmer rank

Let J / \mathcal{K} be a Jacobian admitting a Richelot isogeny and denote by \hat{J} its codomain. Then by Theorem 3.2.6 we have

$$
(-1)^{r k_{2}(J)}=\lambda(J), \quad \text { where } \lambda(J)=(-1)^{\text {ord }_{2}\left(\frac{C(J) \Omega_{J}}{C(J) \Omega_{J}} \frac{\mid \amalg_{0}(J)\left[\left[^{2}\right)\right]}{\mid \Pi_{0}\left(\bar{J}\left[2^{\infty}\right] \mid\right.}\right) .}
$$

We now wish to express $\lambda(J)$ as a product of local terms. Note that Theorem 3.2.4 already gives a partial result by defining $C(J) \Omega_{J}$ and $C(\hat{J}) \Omega_{\hat{J}}$ in this way. Using a
results of Poonen and Stoll presented in [32], we factor the term $\frac{\left|Ш_{0}(J)\left[2^{\infty}\right]\right|}{\left|\amalg \Pi_{0}(J)\left[2^{\infty}\right]\right|}$ in $\lambda(J)$ as a product of local factors. We then refine the formula obtained for $\lambda(J)$ using local invariants of both J and \hat{J} as well as their underlying curves C and \hat{C}.

Odd Jacobians and deficient places

Recall that for an abelian variety $A / \mathcal{K}, \amalg(A / \mathcal{K})\left[p^{\infty}\right]$ is of the form $\left(\mathbb{Q}_{p} / \mathbb{Z}_{p}\right)^{\delta_{p}} \times$ $Ш_{0}(A / \mathcal{K})\left[p^{\infty}\right]$ where $Ш_{0}(A / \mathcal{K})\left[p^{\infty}\right]$ is a finite p-group (see e.g. [8]). A consequence of the Cassels-Tate pairing for elliptic curves E / \mathcal{K} is that $Ш_{0}(E / \mathcal{K})\left[p^{\infty}\right]$ is of square order. For general principally polarized abelian varieties however, its order could be twice a square.
In particular, a Jacobian J of a curve is said to be odd if the finite part of $\amalg(J)$ has order twice a square, is said to be even otherwise. Thanks to a result of Poonen and Stoll in [32] it is possible to know whether J is odd or even by studying the deficiency of its underlying curve.

Definition 3.2.7. If C is a curve of genus g over a local field \mathcal{K}_{v}, we say that C is deficient if it has no \mathcal{K}_{v}-rational divisor of degree $g-1$.
If C is a curve of genus g over a global field \mathcal{K}, then a place v of \mathcal{K} is called deficient if C / \mathcal{K}_{v} is deficient.

Remark 3.2.8. For genus 2 curves, this is equivalent to saying that C does not have a \mathcal{L}-rational point in any extension $\mathcal{L} / \mathcal{K}$ of odd degree.

Definition 3.2.9. For a curve C and a local field \mathcal{K}_{v} as above, we define

$$
m_{v}(C)= \begin{cases}2 & \text { if } v \text { is deficient for } C \\ 1 & \text { otherwise }\end{cases}
$$

Theorem 3.2.10. [32]/Corollaries 9, 12]
If N is the number of deficient places of C then $\left|Ш_{0}(J / \mathcal{K})\right|=2^{N} \cdot r=\prod_{v} m_{v} \cdot r$, where r is a square integer.

This prompts the following factorization for $\lambda(J)$.
Lemma 3.2.11. Let J / \mathcal{K} be a Jacobian admitting a Richelot isogeny ϕ over \mathcal{K} and denote by \hat{J} its codomain. Then

$$
\lambda(J)=(-1)^{\operatorname{ord}_{2}\left(\frac{C(J) \Omega_{J}}{C\left(\hat{j} \Omega_{\hat{J}}\right.}\right)} \prod_{v \in M_{\mathcal{K}}}(-1)^{o r d_{2}\left(\frac{m_{v}(C)}{m_{v}(C)}\right)} .
$$

Proof. This follows from Definition 3.2.9, Theorems 3.2 .6 and 3.2 .10 as they yield

$$
\frac{\left|Ш_{0}(J)\left[2^{\infty}\right]\right|}{\left|Ш_{0}(\hat{J})\left[2^{\infty}\right]\right|}=\prod_{v \in M_{\mathcal{K}}} \frac{m_{v}(C)}{m_{v}(\hat{C})} r, \quad r \in \mathbb{Q}^{\times 2} .
$$

Infinite places

Definition 3.2.12. Let J / \mathcal{K} be a Jacobian admitting a Richelot isogeny ϕ over \mathcal{K}. For $v \in M_{\mathcal{K}}$ such that $v \mid \infty$, we let ϕ_{v} denote the map induced by ϕ on $J\left(\mathcal{K}_{v}\right)$ and define

$$
\varphi: J\left(\mathcal{K}_{v}\right)^{0} \rightarrow \hat{J}\left(\mathcal{K}_{v}\right)^{0}
$$

the restriction of the map ϕ_{v} to the identity component $J\left(\mathcal{K}_{v}\right)^{0}$ of $J\left(\mathcal{K}_{v}\right)$.
Lemma 3.2.13. Let J / \mathcal{K} be a Jacobian admitting a Richelot isogeny ϕ over \mathcal{K}. Let $\hat{\omega}$ be a choice of exterior form for \hat{J} and choose $\omega=\phi^{*} \hat{\omega}$ as an exterior form for J. Keeping notation as in Theorem 3.2.4, we have

$$
\frac{\Omega_{J}}{\Omega_{\hat{J}}}=\prod_{v \mid \infty} \frac{n\left(\hat{J}\left(\mathcal{K}_{v}\right)\right)}{|\operatorname{ker}(\varphi)| n\left(J\left(\mathcal{K}_{v}\right)\right)}
$$

where $n\left(J\left(\mathcal{K}_{v}\right)\right)$ and $n\left(\hat{J}\left(\mathcal{K}_{v}\right)\right)$ denote the number of connected components of $J\left(\mathcal{K}_{v}\right)$ and $\hat{J}\left(\mathcal{K}_{v}\right)$ respectively.

Proof. As in Lemma 7.4 in [13], we have

$$
\begin{aligned}
\frac{\Omega_{J}}{\Omega_{\hat{J}}} & =\prod_{v \mid \infty} \frac{\left|\operatorname{ker}\left(\phi: J\left(\mathcal{K}_{v}\right) \rightarrow \hat{J}\left(\mathcal{K}_{v}\right)\right)\right|}{\left|\operatorname{coker}\left(\phi: J\left(\mathcal{K}_{v}\right) \rightarrow \hat{J}\left(\mathcal{K}_{v}\right)\right)\right|}\left|\frac{\omega}{\phi^{*} \hat{\omega}}\right|_{v} \\
& =\prod_{v \mid \infty} \frac{\left|\operatorname{ker}\left(\phi: J\left(\mathcal{K}_{v}\right) \rightarrow \hat{J}\left(\mathcal{K}_{v}\right)\right)\right|}{\left|\operatorname{coker}\left(\phi: J\left(\mathcal{K}_{v}\right) \rightarrow \hat{J}\left(\mathcal{K}_{v}\right)\right)\right|}
\end{aligned}
$$

by our choice of exterior forms. Now, denote $\psi: J\left(\mathcal{K}_{v}\right) / J\left(\mathcal{K}_{v}\right)^{0} \rightarrow \hat{J}\left(\mathcal{K}_{v}\right) / \hat{J}\left(\mathcal{K}_{v}\right)^{0}$ the map induced by ϕ_{v} on $J\left(\mathcal{K}_{v}\right) / J\left(\mathcal{K}_{v}\right)^{0}$ and consider the following morphism of short exact sequences.

As a consequence of ϕ having finite kernel and cokernel, and by the Snake Lemma we have

$$
\frac{|\operatorname{ker}(\varphi)||\operatorname{ker}(\psi)|\left|\operatorname{coker}\left(\phi_{v}\right)\right|}{\left|\operatorname{ker}\left(\phi_{v}\right)\right||\operatorname{coker}(\varphi)||\operatorname{coker}(\psi)|}=1, \text { and hence } \frac{\left|\operatorname{coker}\left(\phi_{v}\right)\right|}{\left|\operatorname{ker}\left(\phi_{v}\right)\right|}=\frac{|\operatorname{coker}(\varphi)||\operatorname{coker}(\psi)|}{|\operatorname{ker}(\varphi)||\operatorname{ker}(\psi)|} .
$$

Now denoting $n\left(J\left(\mathcal{K}_{v}\right)\right)=\left|J\left(\mathcal{K}_{v}\right) / J\left(\mathcal{K}_{v}\right)^{0}\right|$ and $n\left(\hat{J}\left(\mathcal{K}_{v}\right)\right)=\left|\hat{J}\left(\mathcal{K}_{v}\right) / \hat{J}\left(\mathcal{K}_{v}\right)^{0}\right|$ the number of connected components of $J\left(\mathcal{K}_{v}\right)$ and $\hat{J}\left(\mathcal{K}_{v}\right)$ respectively, the third column yields :

$$
\frac{|\operatorname{ker}(\psi)| n\left(\hat{J}\left(\mathcal{K}_{v}\right)\right)}{n\left(J\left(\mathcal{K}_{v}\right)\right)|\operatorname{coker}(\psi)|}=1
$$

Hence

$$
\frac{\left|\operatorname{coker}\left(\phi_{v}\right)\right|}{\left|\operatorname{ker}\left(\phi_{v}\right)\right|}=\frac{|\operatorname{coker}(\varphi)| n\left(\hat{J}\left(\mathcal{K}_{v}\right)\right)}{|\operatorname{ker}(\varphi)| n\left(J\left(\mathcal{K}_{v}\right)\right)}
$$

The result follows since $\operatorname{Im}(\varphi)$ is both open and closed in $\hat{J}\left(\mathcal{K}_{v}\right)^{0}$ therefore φ is surjective.

Finite places

Let v be a finite place of $\mathcal{K}, \hat{\omega}$ be a choice of exterior form for \hat{J} and choose $\omega=\phi^{*} \hat{\omega}$ as an exterior form for J. Denote ω_{v}^{o} and $\hat{\omega}_{v}^{o}$ their associated Néron exterior form at v. For two exterior forms ω_{1}, ω_{2}, write $\frac{\omega_{1}}{\omega_{2}}=\lambda \in \mathcal{K}$ whenever $\omega_{1}=\lambda \omega_{2}$.

Lemma 3.2.14. For the choices of exterior form as above

$$
\left|\frac{\omega}{\omega_{v}^{o}}\right| v\left|\frac{\hat{\omega}_{v}^{o}}{\hat{\omega}}\right|_{v}=\left|\frac{\phi^{*} \hat{\omega}_{v}^{o}}{\omega_{v}^{o}}\right|_{v}
$$

Proof. There exists $r \in \mathcal{K}$ such that $\hat{\omega}_{v}^{o}=r \hat{\omega}$, hence

$$
\left|\frac{\omega}{\omega_{v}^{o}}\right|_{v}\left|\frac{\hat{\omega}_{v}^{o}}{\hat{\omega}}\right|_{v}=|r|_{v}\left|\frac{\phi^{*} \hat{\omega}}{\omega_{v}^{o}}\right|_{v}=|r|_{v} \frac{\left|\phi^{*} \frac{1}{r} \hat{\omega}_{v}^{o}\right|_{v}}{\left|\omega_{v}^{o}\right|_{v}}=\left|\frac{\phi^{*} \hat{\omega}_{v}^{o}}{\omega_{v}^{o}}\right|_{v} .
$$

Lemma 3.2.15. Let J / \mathcal{K} be a Jacobian admitting a Richelot isogeny ϕ over \mathcal{K} and denote \hat{J} its codomain. Fix $\hat{\omega}$ as a choice of exterior form for \hat{J} and choose $\omega=\phi^{*} \hat{\omega}$ as an exterior form for J. Then keeping notation as in Theorem 3.2.4.

$$
\frac{C(J)}{C(\hat{J})}=\prod_{v \nmid \infty} \frac{c_{v}}{\hat{c}_{v}}\left|\frac{\phi^{*} \hat{\omega}_{v}^{o}}{\omega_{v}^{o}}\right|_{v},
$$

where c_{v} and \hat{c}_{v} denote the Tamagawa numbers of J and \hat{J} at the finite place $v \in M_{\mathcal{K}}$.
Using Theorem 3.2.6 together with Lemmata 3.2.11, 3.2.13 and 3.2.15, we obtain the following factorization for the parity of the 2^{∞} Selmer rank of Jacobians admitting a Richelot isogeny.

Theorem 3.2.16. Let C / \mathcal{K} be a hyperelliptic curve of genus 2 such that its Jacobian J admits a Richelot isogeny ϕ. Denote by \hat{C} and \hat{J} the corresponding curve and isogenous Jacobian. Denote $\hat{\omega}_{v}^{o}$, ω_{v}^{o} the Néron exterior forms at the place v of \mathcal{K} for J and \hat{J} respectively. Then

$$
r k_{2}(J / \mathcal{K}) \equiv \sum_{v \in M_{\mathcal{K}}} \Lambda_{v} \bmod 2,
$$

with
where n, \hat{n} are the number of \mathcal{K}_{v}-connected components of J and \hat{J}, φ is the restriction of ϕ to the identity component of $J\left(\mathcal{K}_{v}\right), c_{v}$ and \hat{c}_{v} the Tamagawa numbers of J and \hat{J}, and $m_{v}=2$ if C is deficient at $v, m=1$ otherwise, and similarly for \hat{m}_{v}.

Proof. This is clear from previous Lemmata and since $\operatorname{ord}_{2}\left(|a|_{v}\right)=1$ for all places $v \nmid 2$ and all $a \in \mathcal{K}$.

Corollary 3.2.17. Let C / \mathcal{K} be a hyperelliptic curve of genus 2 such that its Jacobian J admits a Richelot isogeny ϕ. Denote by \hat{C} and \hat{J} the corresponding curve and isogenous Jacobian. Using notation as in Theorem 3.2.16, we have

$$
(-1)^{r k_{2}(J / \mathcal{K})}=\prod_{v \in M_{\mathcal{K}}} \lambda_{v} \text {, with } \lambda_{v}=(-1)^{\Lambda_{v}} \text {. }
$$

3.3 Computation of local invariants at infinite places

In this section we discuss how to express the local factor λ_{v} given by Theorem 3.2 .16 in terms of basic properties of the defining polynomial of C when v is an infinite place. In this case, the local factor λ_{v} is given by

$$
\lambda_{v}=(-1)^{\operatorname{ord}_{2}\left(\frac{\hat{n} \cdot m_{v}}{|\operatorname{lker}(\varphi)| n \cdot \hat{m}_{v}}\right)}
$$

where n, \hat{n} denote the number of connected components of $J\left(\mathcal{K}_{v}\right)$ and $\hat{J}\left(\mathcal{K}_{v}\right), \varphi$ is the restriction of ϕ to the identity component of $J\left(K_{v}\right), m_{v}=2$ if C is deficient for $v, m_{v}=1$ otherwise and similarly for \hat{m}_{v}.

Case $\mathcal{K}_{v}=\mathbb{C}$
Lemma 3.3.18. Let C be a Richelot curve and denote J its Jacobian. Then $\lambda_{v}=1$ for places v of \mathcal{K} with $\mathcal{K}_{v}=\mathbb{C}$.

Proof. In this case $\lambda_{v}=1$ trivially as $n=\hat{n}=m_{v}=\hat{m}_{v}=1$ and $|\operatorname{ker}(\varphi)|=4$.

Case $\mathcal{K}_{v}=\mathbb{R}$
Using a result of Gross and Harris in [19], we compute the number of real connected components of J and \hat{J} from the number of real connected components of their underlying curves. The computation of m_{v} and \hat{m}_{v} follows from the definition of the deficiency of a curve at the place v (see Remark 3.2.8). Finally we explain how to compute $|\operatorname{ker} \varphi|$ from the defining polynomial of C.

Proposition 3.3.19. [19][Proposition 3.2.2 and 3.3]
Let $n(C(\mathbb{R})$) denote the number of connected components on $C(\mathbb{R})$. Then

$$
n(J(\mathbb{R}))= \begin{cases}2^{n(C(\mathbb{R}))-1} & \text { if } n(C(\mathbb{R}))>0 \\ 1 & \text { if } n(C(\mathbb{R}))=0\end{cases}
$$

Proposition 3.3.20. Let C be a Richelot curve with given quadratic factorization $G(x)=G_{1}(x) G_{2}(x) G_{3}(x)$ and denote by c the leading term of $G(x)$. Let $\delta_{1}, \delta_{2}, \delta_{3}$ denote the discriminants of the quadratic factors $G_{1}(x), G_{2}(x), G_{3}(x)$ respectively. Then C is deficient over \mathbb{R}, i.e. $m_{\mathbb{R}}=2$ if and only if either

- $\delta_{i} \in \mathbb{R}, \delta_{i}<0, \forall i \in\{1,2,3\}$ and $c<0$ or,
- up to reordering, $\delta_{1}<0, \delta_{2}=\overline{\delta_{3}}$ and $c<0$.

Proof. This is clear from the definition of deficiency (see Definition 3.2.7), since a curve C of genus 2 is deficient over \mathbb{R} if and only if $C(\mathbb{R})=\emptyset$ (see Remark 3.2.8).

Proposition 3.3.21. A divisor $D_{i}=\left[P_{i}, Q_{i}\right] \in \operatorname{ker}(\phi)$ is in $\operatorname{ker}(\varphi)$ if and only if the points $P_{i}, Q_{i} \in C$ satisfy either
i) $P_{i}=\overline{Q_{i}}$, or
ii) P_{i}, Q_{i} lie on the same connected component of $C(\mathbb{R})$.

Proof. Recall that $\varphi: J(\mathbb{R})^{0} \rightarrow \hat{J}(\mathbb{R})^{0}$ denotes the restriction of $\phi_{\mathbb{R}}$ to the identity component of $J(\mathbb{R})$. In particular, a divisor $D \in J(\mathbb{R})$ belongs to $\operatorname{ker}(\varphi)$ if $D \in$ $\operatorname{ker}(\phi) \cap J(\mathbb{R})^{0}$. But since

$$
\operatorname{ker}(\phi)=\left\{0, D_{1}=\left[P_{1}, Q_{1}\right], D_{2}=\left[P_{2}, Q_{2}\right], D_{3}=\left[P_{3}, Q_{3}\right]\right\}
$$

it follows that a divisor $D_{i}=\left[P_{i}, Q_{i}\right] \in \operatorname{ker}(\varphi)$ if D_{i} and 0 share the same connected component on $J(\mathbb{R})$. Equivalently, $D_{i}=\left[P_{i}, Q_{i}\right] \in \operatorname{ker}(\varphi)$ if P_{i}, Q_{i} can be deformed continuously into two points on C defining $0 \in J$ (those two points being the intersections of $C(\mathbb{R})$ with a vertical line). This is clearly the case when P_{i}, Q_{i} are real points and both lie on the same component on $C(\mathbb{R})$. On the other hand, consider the case $P_{i}=\overline{Q_{i}}$. If C has no real point then $J(\mathbb{R})$ has only one component and we are done. Otherwise we can assume that $f(x)$ has at least a real root, say r and let $T=(r, 0)$ be the associated real point on $C(\mathbb{R})$. Pick any continuous path from P_{i} to T on $C(\mathbb{C})$, i.e. a continuous function $F:[0,1] \rightarrow C(\mathbb{C})$, with $F(0)=P_{i}$ and $F(1)=T$. Then $G(t)=\overline{F(t)}$ is a continuous path on $C(\mathbb{C})$ from \bar{P}_{i} to T. Hence $D(t)=[F(t), G(t)]$ is a continuous path on $J(\mathbb{R})$ from D_{i} to $[T, T]=0$. Lastly, if P_{i}, Q_{i} are real points but lie on different components of $C(\mathbb{R})$, then there is no such continuous path $D(t)$ from D_{i} to 0 and hence $D_{i} \notin \operatorname{ker}(\varphi)$.

Computation of \hat{n} and \hat{m}

It remains to compute the number of real connected components of \hat{J} as well as the real deficiency of \hat{C}. From Propositions 3.3 .19 and 3.2.9, it is enough to compute the discriminants of the quadratic factors of the defining polynomial of \hat{C}. For that purpose, let C be a Richelot curve with given quadratic factorization $G(x)=$ $G_{1}(x) G_{2}(x) G_{3}(x)$ and denote by $\delta_{1}, \delta_{2}, \delta_{3}$ the discriminants of the quadratic factors $G_{1}(x), G_{2}(x), G_{3}(x)$ respectively. Let α_{i}, β_{i} denote the roots of $G_{i}(x)$.
Consider the dual curve \hat{C} with quadratic factorization $F(x)=F_{1}(x) F_{2}(x) F_{3}(x)$ and denote by $\hat{\delta_{1}}, \hat{\delta_{2}}, \hat{\delta_{3}}$ the discriminants of $F_{1}(x), F_{2}(x), F_{3}(x)$ respectively. Henceforth, addition of indices is performed modulo 3.

Definition 3.3.22. We define the cross-ratio of the four real numbers $\alpha_{i}, \beta_{i}, \alpha_{j}, \beta_{j} \in$ \mathbb{R} to be

$$
\kappa_{i, j}=\frac{\left(\alpha_{i}-\alpha_{j}\right)\left(\beta_{i}-\beta_{j}\right)}{\left(\beta_{i}-\alpha_{j}\right)\left(\alpha_{i}-\beta_{j}\right)}
$$

Proposition 3.3.23. The number of real roots of $F(x)$ is given as follows.
i) if $\delta_{i} \in \mathbb{R}$ and $\delta_{i+1}, \delta_{i+2} \notin \mathbb{R}$, i.e. $\delta_{i+1}=\overline{\delta_{i+2}}$ then

$$
\hat{\delta}_{i} \in \mathbb{R}, \quad \hat{\delta}_{i+1}, \hat{\delta}_{i+2} \notin \mathbb{R} \text { with } \hat{\delta}_{i+1}=\overline{\hat{\delta}_{i+2}}
$$

ii) if $\delta_{i}, \delta_{i+1} \in \mathbb{R}$ then

$$
\hat{\delta}_{i+2} \in \mathbb{R} \text { and } \hat{\delta}_{i+2}<0 \Leftrightarrow \kappa_{i, i+1}<0 .
$$

Proof. This follows directly from the formal computation of the discriminants $\hat{\delta_{1}}, \hat{\delta_{2}}, \hat{\delta_{3}}$ which gives

$$
\hat{\delta_{i}}=\frac{4}{\Delta_{G}^{2}}\left(\alpha_{i+1}-\alpha_{i+2}\right)\left(\alpha_{i+1}-\beta_{i+2}\right)\left(\beta_{i+1}-\alpha_{i+2}\right)\left(\beta_{i+1}-\beta_{i+2}\right), \quad i=1,2,3 .
$$

Convention

Let C be a Richelot curve with given quadratic factorization $G(x)=G_{1}(x) G_{2}(x) G_{3}(x)$. In view of Propositions 3.3.19, 3.3 .20 and 3.3 .21 , in order to compute $\lambda_{\mathbb{R}}$ we need to understand how the roots of $G(x)$ are distributed on the real line. We use the following convention to represent real roots of $G(x)$ on the real line: each dot - $\begin{gathered}\text { represents a root of } G(x) \text { with the following shaping/colouring: }\end{gathered}$ red circles represent the real roots of $G_{1}(x)$ (respectively $F_{1}(x)$), blue diamonds that of $G_{2}(x)$ (respectively $F_{2}(x)$) and purple stars the real roots of $G_{3}(x)$ (respectively $\left.F_{3}(x)\right)$. A line between two roots α, β means that the points $P=(\alpha, 0)$ and $Q=(\beta, 0)$ belong to the same connected component of $C(\mathbb{R})$. It is understood that the broken lines on the outside of the roots meet at infinity so that exterior roots belongs to the same real component.

Remark 3.3.24. 1) The condition on the cross ratio of roots in the second case of Proposition 3.3 .23 can be easily seen from their real picture as it involves their interlacing on the real line. As an example, if the real roots of $G_{1}(x), G_{2}(x)$ are distributed as follows $\bullet \bullet$ or \bullet then $\kappa_{1,2}>0$ so that $\hat{\delta_{3}}>0$. Otherwise, if they are as follows \bullet then $\kappa_{1,2}<0$ so that $\hat{\delta_{3}}<0$.
2) The order of $|\operatorname{ker}(\varphi)|$ is immediate from the real picture as it suffices to count the number of same colour/shape roots that are linked by a line.

Example 3.3.25. Let $G_{1}(x)=x^{2}-16, G_{2}(x)=x^{2}+x+\frac{17}{4}$ and $G_{3}(x)=x^{2}-2 x+9$ so that we have the following Richelot curve over \mathbb{Q}.

$$
C: y^{2}=G(x)=\left(x^{2}-16\right)\left(x^{2}+x+\frac{17}{4}\right)\left(x^{2}-2 x+9\right)
$$

Figure 3.1: $y^{2}=G(x)$

Here $\delta_{1}=64, \delta_{2}=-16, \delta_{3}=-32$ so that C has only one real connected component. Hence C is not deficient over \mathbb{R}. The real roots of $G(x)$ in Figure 3.1 are only that of $G_{1}(x)$ so that they necessarily share the unique real connected component. The corresponding picture is the simple one $-\odot-$.

Therefore the divisor D_{1} corresponding to the quadratic $G_{1}(x)$ is on the real identity component of J and hence in $\operatorname{ker}(\varphi)$. Finally, since $\delta_{2}, \delta_{3} \in \mathbb{R}$, it follows that $\beta_{2}=\overline{\alpha_{2}}, \beta_{3}=\overline{\alpha_{3}}$ so that $D_{2}, D_{3} \in \operatorname{ker}(\varphi)$ and $|\operatorname{ker}(\varphi)|=4$.

Example 3.3.26. Let $G_{1}(x)=\frac{6}{131} x^{2}-\frac{19}{2} x-\frac{35}{2}, G_{2}(x)=2 x^{2}-50 x+32$ and $G_{3}(x)=x^{2}+\frac{81}{2} x+16$ so that we have the following Richelot curve over \mathbb{Q}.

$$
C: y^{2}=G(x)=\left(\frac{6}{131} x^{2}-\frac{19}{2} x-\frac{35}{2}\right)\left(2 x^{2}-50 x+32\right)\left(x^{2}+\frac{81}{2} x+16\right)
$$

Here $\delta_{1}=\frac{1201}{17161}, \delta_{2}=2244, \delta_{3}=\frac{6305}{4}$ so that C has three real connected components. In particular, C is not deficient over \mathbb{R}. Note that the leading coefficient of $G(x)$ is positive. Computing the real roots of $G(x)$ we obtain the following picture . Hence, in this example, none of the divisors defined by the quadratic polynomials of $G(x)$ share the same real component with the identity of J. Therefore $|\operatorname{ker}(\varphi)|=1$.

Remark 3.3.27. The sign of the leading term of $G(x)$ determines how the Weierstrass points of C are paired on real connected components. As an example, consider the same polynomial as in Example 3.3 .26 but change the sign of its leading term to be negative. The picture becomes $-\bullet \bullet$.

Computation of $\lambda_{\mathbb{R}}$: Example

As in Example 3.3.25, let $G_{1}(x)=x^{2}-16, G_{2}(x)=x^{2}+x+\frac{17}{4}$ and $G_{3}(x)=x^{2}-2 x+9$ so that we have the following Richelot curve over \mathbb{Q}.

$$
C: y^{2}=G(x)=\left(x^{2}-16\right)\left(x^{2}+x+\frac{17}{4}\right)\left(x^{2}-2 x+9\right)
$$

We have seen that $\delta_{1}, \delta_{2}, \delta_{3} \in \mathbb{R}$ with $\delta_{1}>0$ and $\delta_{2}, \delta_{3}<0$. Hence $n(C(\mathbb{R}))=1$ so that by Proposition 3.3.19, $n(J(\mathbb{R}))=1$ and by Proposition 3.3.20, $m_{\mathbb{R}}=1$. From Proposition 3.3 .23 it follows that $\hat{\delta_{1}}, \hat{\delta_{2}}, \hat{\delta_{3}} \in \mathbb{R}$ with $\hat{\delta_{1}}, \hat{\delta_{2}}, \hat{\delta_{3}}>0$ so that $n(\hat{C}(\mathbb{R}))=$ 3. Therefore $n(\hat{J}(\mathbb{R}))=4$ and $\hat{m}_{\mathbb{R}}=1$. Finally, we found that $|\operatorname{ker}(\varphi)|=4$ so that

$$
\lambda_{\mathbb{R}}=(-1)^{o r d_{2}\left(\frac{1.1}{4.4 .1}\right)}=1 .
$$

3.4 Computation of local invariants at semistable finite places $v \nmid 2$

In this section, considering odd finite places, we explain how to extract a criterion for the semistability of C, and when C is semistable, the Tamagawa number of J and the deficiency of C from the p-adic properties of the roots of the defining polynomial of C. Since it will be used in later chapters, we also include how to extract the local root number of J. The results presented in this section are primarily a summary of existing results of V. Dokchitser and A. Morgan in [1], T. and V. Dokchitser in [10] and a joint work with T. and V. Dokchitser and A. Morgan in [14] and [15]. We refer to the articles for the proofs.

In the latter article, working over a field K with a discrete valuation, we discuss the semistable types of hyperelliptic curves and introduce the notion of a cluster picture for those. We also propose a naming convention which extends that of Namikawa-Ueno for genus 2 curves in [38] that will be used here. In [14], we discuss the arithmetic of hyperelliptic curves over local fields of odd residue characteristics from their cluster pictures. Results of particular interest for us include a criterion to decide whether a hyperelliptic curve C is semistable and an explicit description of the special fibre of its minimal regular model including the action of Galois on its components. Our computation of deficiency for C follows from that description. Table 3.1 below lists the reduction types of a class of semistable genus 2 curves 1 including the computation of Tamagawa numbers, deficiency and local root numbers. This table will be used as a reference in later sections when computing invariants of semistable Richelot curves and Jacobians. We end this section by providing examples to illustrate the use of these results.

[^2]
Notation

In this section, K will denote a finite extension of \mathbb{Q}_{p} for an odd prime p. We write $v(x)$ for the normalized p-adic valuation of $x \in \overline{\mathbb{Q}}_{p}, \pi$ for a choice of uniformiser of K, k for the residue field of K and $G_{K}=\operatorname{Gal}\left(\overline{\mathbb{Q}_{p}} / K\right)$. Let C / K be a hyperelliptic curve of genus g given by

$$
C: y^{2}=f(x)=c \prod_{r \in R}(x-r),
$$

where

$$
R \subset \overline{\mathbb{Q}_{p}}, \quad c \in K^{\times}, \quad \operatorname{deg}(f)=2 g+1 \text { or } 2 g+2 \quad(\neq 1,2,4) .
$$

and write J for its Jacobian.

Cluster pictures

Definition 3.4.28. A cluster of roots \mathfrak{s} is a non-empty subset of R of the form

$$
\mathfrak{s}=\left\{r \in R \mid v\left(r-z_{\mathfrak{s}}\right) \geq d\right\}=R \cap \operatorname{Disc}\left(z_{\mathfrak{s}}, d\right),
$$

with $z_{\mathfrak{s}} \in \overline{\mathbb{Q}_{p}}, d \in \mathbb{Q}$. We call $d_{\mathfrak{s}}=\min _{r, r^{\prime} \in \mathfrak{s}} v\left(r-r^{\prime}\right)$ the depth of \mathfrak{s}. The set of clusters for the roots of $f(x)$ is called the Cluster picture of C.

As a convention, we draw the roots $r \in R$ by means of the little symbol \bullet, and clusters by circling the roots (we do not circle single roots). We indicate the depth of a cluster at the bottom right of the circle.

Examples

1) Let $C: y^{2}=x(x-1)(x-2)(x-3)(x-4)(x-5)$ and choose $p=13$. Then $R=\{0,1,2,3,4,5\}$ and the only cluster of roots for C is R itself. It has depth 0 and is represented by $\bullet \bullet \bullet \bullet$.
2) Let $C: y^{2}=x(x-13)(x-2)(x-3)(x-4)(x-5)$ and choose $p=13$. Then $R=\{0,13,2,3,4,5\}$ and the cluster picture of C consists of 2 clusters: R of depth 0 and $\{0,13\}$ of depth 1 . The Cluster picture of C is

There is terminology associated to cluster pictures which we will use in this work. We include a little glossary for future reference.

Glossary

root	cluster of size 1		
child of \mathfrak{s}	$\mathfrak{s}^{\prime}<\mathfrak{s}$ maximal subcluster of \mathfrak{s}		
parent of \mathfrak{s}^{\prime}	cluster \mathfrak{s} in which \mathfrak{s}^{\prime} is maximal		
even	cluster of even size		
cluster of odd size		\quad	even cluster with only even children
:---			
unbereven			
twin			
cluster of size 2			
$\|\mathfrak{s}\|>2$ and if $\|\mathfrak{s}\|=2 g+2$			
then \mathfrak{s} is not the union of children			
of size $2,2 g$ or $1,1,2 g$ or odd,odd			

Semistability criterion

Theorem 3.4.29. The curve C / K is semistable if and only if the following hold:
(i) $K(R) / K$ has ramification degree at most 2 ,
(ii) Every cluster of size >1 is inertia invariant,
(iii) Every principal cluster \mathfrak{s} has $d_{\mathfrak{s}} \in \mathbb{Z}$ and $\nu_{\mathfrak{s}} \in 2 \mathbb{Z}$, where

$$
\nu_{\mathfrak{s}}=v(c)+|\mathfrak{s}| d_{\mathfrak{s}}+\sum_{r \notin \mathfrak{s}} v\left(z_{\mathfrak{s}}-r\right) .
$$

Semistable reduction of genus 2 curves, Tamagawa numbers, deficiency and local root numbers

Table 3.1 tabulates a class of semistable genus 2 curves by reduction types. Precisely, we are considering curves of genus 2 given by $C / K: y^{2}=G(x)$, where $G(x)$ has good reduction $\bmod \pi$ or has one, two or three double roots, or two triple roots within which no deeper double roots occur (the latter corresponding to the case of the Jacobian of C having good reduction while C has bad reduction). These cases essentially cover the semistable cases of C except for the missing cases of having double roots inside triple roots.

Each type is given using a cluster picture together with its action of G_{K}, the Tamagawa number of the corresponding Jacobian, the local deficiency and the local root number.

Table 3.1: Semistable reduction type in genus 2
Notation: $n, m, r \in \mathbb{Z}$, and in the last two rows $d \equiv n \equiv m \bmod 2$.
In the third column: $\tilde{n}=2$ if $2 \mid n$ and $\tilde{n}=1$ if $2 \nmid n$,
$D=\operatorname{gcd}(m, n, r) ; N=n m+n r+m r$.

Type	C	c_{v}	m_{v}	ω_{v}
2	$\bigcirc \bigcirc 000$	1	1	1
1_{n}^{+}	$0000_{\frac{n}{2}}^{+} 0_{0}$	n	1	-1
1_{n}^{-}	$00000_{\frac{n}{2}}^{-}$	\tilde{n}	1	1
$I_{n, m}^{+,+}$	$\bullet \bullet \bullet 0_{\frac{n}{2}}^{+} \circlearrowleft 0_{\frac{m}{2}}^{+}{ }_{0}$	$n \mathrm{~m}$	1	1
$I_{n, m}^{+,-}$	$\left.\bigcirc \bigcirc 0_{\frac{n}{2}}^{+} \bigcirc\right)_{\frac{m}{2}}^{-}$	$n \tilde{m}$	1	-1
$I_{n, m}^{-,-}$	$\left.0 \bullet \bigcirc)_{\frac{n}{2}}^{-} \bigcirc\right)_{\frac{m}{2}}^{-}{ }_{0}$	$\tilde{n} \tilde{m}$	1	1
$I_{n \sim n}^{+}$	$\bigcirc \bigcirc)_{\frac{\pi}{2}}^{+} \bigcirc 0_{\frac{n}{2}}{ }_{0}$	n	1	-1
$I_{n \sim n}^{-}$	$00)_{\frac{n}{2}}^{-} 0^{\frac{n}{2}}{ }_{0}$	\tilde{n}	1	1
$U_{n, m, r}^{+}$	$\bigcirc 0_{\frac{n}{2}} \circlearrowleft 0_{\frac{m}{2}} \circlearrowleft 0_{\frac{r}{2}}{ }_{0}^{+}$	N	1	1
$U_{n, m, r}^{-}$	$\bigcirc 0_{\frac{n}{2}} \bigcirc 0_{\frac{m}{2}} \bigcirc 0_{\frac{r}{2}}{ }_{0}^{-}$	$\widetilde{N / D} \times \widetilde{D}$	$\begin{cases}2 & n, m, r \text { odd } \\ 1 & \text { else }\end{cases}$	1
$U_{n-n, r}^{+}$	(0) $\left.{ }_{\frac{n}{2}} \bigcirc 0\right)_{\frac{n}{2}}(1)_{\frac{r}{2}}{ }_{0}^{+}$	$n+2 r$	1	-1
$U_{n \sim n, r}^{-}$	$\bigcirc 0_{\frac{n}{2}} \bigcirc O_{\frac{n}{2}}{\bigcirc 0^{2}}^{\frac{1}{2}}{ }_{0}^{-}$	n	$\begin{cases}2 & r \text { odd } \\ 1 & \text { else }\end{cases}$	-1
$U_{n \imath n \sim n}^{+}$	$\bigcirc 0_{\frac{n}{2}} \bigcirc 0_{\frac{n}{2}} \bigcirc 0_{\frac{n}{2}}{ }_{0}^{+}$	3	1	1
$U_{n \sim n \sim n}^{-}$	$\left.00_{\frac{\pi}{2}} \bigcirc 0\right)_{\frac{\pi}{2}} \bigcirc 0_{\frac{n}{2}}{ }_{0}^{-}$	1	$\begin{cases}2 & n \text { odd } \\ 1 & \text { else }\end{cases}$	1
$1 \times_{\frac{n+m}{2}} 1$	$000{ }_{n} 000_{m}$	1	1	1
$1 \tilde{\times}_{n} 1$	$000-000{ }_{n}$	1	$\begin{cases}2 & n \text { odd } \\ 1 & \text { else }\end{cases}$	1

Convention

This table can be used as follows. Consider a semistable genus 2 curve $C / K: y^{2}=$ $G(x)$. Denote $c \in K$ the leading term of $G(x)$. By the semistability criterion 3.4.29, either $v(c) \in 2 \mathbb{Z}$ or, if $v(c)$ is odd, then C corresponds to the last two rows of the table ${ }^{2}$. In the former case we apply a change of variable if necessary to obtain $v(c)=0$. Then reducing $G(x) \bmod \pi$, we find C to be in the first block of Table 3.1 if $G(x)$ has good reduction; second, third and fourth block if $G(x)$ has one, two or three double roots $\bmod \pi$ respectively. Lastly, if $G(x)$ has two triple roots then the cluster picture of C corresponds to the last block of Table 3.1 ${ }^{1}$. In each case, it remains to find the specific row corresponding to C. In a cluster picture, we draw a line between two clusters when they are permuted by G_{K}. This action can be identified from the field of definition of the roots contained in the clusters. Finally, the sign on top of the clusters are given by Proposition 3.4.30. These signs indicate the action of G_{K} on the components of the special fibre of the minimal regular model of C corresponding to the nodes on the reduced curve given by the twin clusters, or the action of G_{K} on the two components with three transversal intersections in the case of three double roots. A " + " on the top right corner of a twin means that G_{K} acts trivially on its corresponding components and a " - " means that it permutes them. This is the equivalent of having split or non-split multiplicative reduction on an elliptic curve. Finally, in the last two rows of Table 3.1, the depths displayed are "relative depths", i.e. the valuations of the differences of the roots inside the size three clusters are $n+d$ and $m+d$.

Proposition 3.4.30. Let C be a semistable hyperelliptic curve of genus 2. Let $r_{1}, \ldots, r_{6} \in \overline{\mathbb{Q}}_{p}$ be the roots of $G(x) \in K[x]$ defining C and $c \in K$ be the leading term of $G(x)$.
i) If C is of type $1_{n}^{ \pm}$or $I_{n, m}^{ \pm, \pm}$($I_{n}^{ \pm, \pm}{ }_{n}^{ \pm}$resp.), let \mathfrak{t} be a twin cluster in the cluster picture of C and choose a root r in \mathfrak{t}. Then the sign of \mathfrak{t} is + if and only if

$$
T_{r}=c \prod_{r_{i} \notin \mathfrak{t}}\left(r-r_{i}\right) \in K^{\times 2}\left(F^{\times 2} \text { resp. }\right),
$$

where F / K is a quadratic unramified extension.
ii) If C is of type $U_{n, m, r}^{ \pm}$, then C is of type $U_{n, m, r}^{+}$if and only if $c \in K^{\times 2}$.

Proof. This is a reformulation of Theorem 5.6 in [14] adapted to the semistable cases of genus 2 curves.

[^3]
Deficiency of C

It follows from Remark 1 in [32] that C is deficient at a finite place if and only if the order of the $\operatorname{Gal}(\bar{k} / k)$-orbit of each irreducible component of the special fibre of the minimal regular model of C is even. In [14, starting with the cluster picture of a semistable curve C / K, we give an explicit description of the special fibre of the minimal regular model of C as well as the Galois action on its components. We refer to the article for the precise statements and proof but we note that this is enough to recover the deficiency of C at that place.

Tamagawa numbers for J

Tamagawa numbers for Jacobians of genus 2 curves at a semistable place are computed in [1]. In the last block of Table 3.1, J has good reduction and hence its Tamagawa number is 1 .

Local root number

The local root numbers for semistable abelian varieties are explicitly given from their Weil-Deligne representation in [10] [Proposition 3.23]. In particular $\omega_{v}(J / K)=$ $(-1)^{t}$, where t is the multiplicity of 1 as an eigenvalue of Frobenius on the toric part of the Galois representation ${ }^{4}$. The Weil-Deligne representation for semistable Jacobians of hyperelliptic curves of genus g at odd places are computed in [14].

Remark 3.4.31. The cluster picture associated to a hyperelliptic curve $C: y^{2}=$ $f(x)$ is not canonical. Indeed, applying a Mobius transformation to the roots of $f(x)$ might change their p-adic configuration and hence the new model of $f(x)$ would produce a different cluster picture. However, as shown in [15], these different pictures share the same equivalence class for which there is a canonical representative (the only cluster picture such that the maximal cluster is of size $2 g+2$ and is the only cluster of size $>g+1$, and there are either 0 or 2 clusters of size $g+1$). This representative is called a balanced cluster picture (see Definition 3.37 in [15).

In particular, two semistable curves

$$
C_{1}: y^{2}=c_{1} \prod_{i=1, . ., 6}\left(x-r_{i}\right), \quad C_{2}: y^{2}=c_{2} \prod_{i=1, . ., 6}\left(x-r_{i}^{\prime}\right),
$$

such that the cluster pictures of C_{1} and C_{2} are equivalent, share the same special fibre, Tamagawa number, deficiency and root number. For genus 2, Table 3.2 gives a list of all possible cluster pictures in each class as well as its balanced representative (orange star cluster pictures are balanced). Strictly speaking, the process of

[^4]rebalancing also takes into consideration the depth of the clusters. We chose not to display the depths of clusters in Table 3.2 in order to keep its length reasonable.

Type 2

Type $U_{n, m, r}$

Type $1 \times I_{n}$

Type 1×1

Table 3.2: Cluster pictures for semistable types of genus 2 curves with balanced representative

Balanced cluster pictures: example

Let $p>5, n>0$ and consider the curve C / \mathbb{Q}_{p} given by

$$
y^{2}=(x-1)(x-2)\left(x-5+p^{n}\right)\left(x-5+2 p^{n}\right)\left(x-5+3 p^{n}\right)\left(x-5+4 p^{n}\right) .
$$

The cluster picture associated to C is $00-000_{n}$. Apply the following changes of variables:

1) $x_{1}=x+5 \Rightarrow C: y^{2}=\left(x_{1}+4\right)\left(x_{1}-3\right)\left(x_{1}+p^{n}\right)\left(x_{1}+2 p^{n}\right)\left(x_{1}+3 p^{n}\right)\left(x_{1}+4 p^{n}\right)$
2) $x_{1}=p^{n} x_{2} \Rightarrow C: y^{2}=p^{4 n}\left(p^{n} x_{2}+4\right)\left(p^{n} x_{2}-3\right)\left(x_{2}+1\right)\left(x_{2}+2\right)\left(x_{3}+3\right)\left(x_{2}+4\right)$
3) $y=p^{2 n} y_{1} \Rightarrow C: y_{1}^{2}=\left(p^{n} x_{2}+4\right)\left(p^{n} x_{2}-3\right)\left(x_{2}+1\right)\left(x_{2}+2\right)\left(x_{3}+3\right)\left(x_{2}+4\right)$
4) $x_{2}=\frac{1}{x_{3}} \Rightarrow C: y_{1}^{2}=\left(p^{n} \frac{1}{x_{3}}+4\right)\left(p^{n} \frac{1}{x_{3}}-3\right)\left(\frac{1}{x_{3}}+1\right)\left(\frac{1}{x_{3}}+2\right)\left(\frac{1}{x_{3}}+3\right)\left(\frac{1}{x_{3}}+4\right)$
5) $y_{2}=y_{1} x_{3}^{3} \Rightarrow C: y_{2}^{2}=\left(4 x_{3}+p^{n}\right)\left(3 x_{3}+p^{n}\right)\left(x_{3}+1\right)\left(x_{3}+2\right)\left(x_{3}+3\right)\left(x_{3}+4\right)$,
to find that the new cluster picture for C is \qquad

Semistability criterion: examples

1) Let $C: y^{2}=x(x-p)(x-2)(x-3)(x-4)(x-5)$ and choose $p>5$. (i) and (ii) in Theorem 3.4 .29 are trivially satisfied. The only principal cluster in the cluster picture of C is R and

$$
\nu_{R}=v(1)+6 \times 0+0=0,
$$

hence C semistable.
2) Let $C: y^{2}=p x(x-p)(x-2)(x-3)(x-4)(x-5)$ and choose $p>5$. This is similar to our first example, except

$$
\nu_{R}=v(p)+6 \times 0+0=1,
$$

hence C is not semistable.
3) Let $C: y^{2}=x(x-p)(x+p)(x-1+p)\left(x-1+p^{2}\right)\left(x-1+2 p^{2}\right)$ and choose $p>5$. (i) and (ii) in Theorem 3.4.29 are trivially satisfied. Clusters in the cluster picture of C are R of depth $1, \mathfrak{s}_{1}=\{0, p,-p\}$ and $\mathfrak{s}_{2}=\left\{1-p, 1-p^{2}, 1-2 p^{2}\right\}$ both of depth 1. Only \mathfrak{s}_{1} and \mathfrak{s}_{2} are principal and

$$
\nu_{\mathfrak{s}_{1}}=v(1)+3 \times 1+0=3, \quad \nu_{\mathfrak{s}_{2}}=v(1)+3 \times 1+0=3,
$$

hence C is not semistable.
4) Let $C: y^{2}=p x(x-p)(x+p)(x-1+p)\left(x-1+p^{2}\right)\left(x-1+2 p^{2}\right)$ and choose $p>5$. This is similar to Example 3) except

$$
\nu_{\mathfrak{s}_{1}}=v(p)+3 \times 1+0=4, \quad \nu_{\mathfrak{s}_{2}}=v(p)+3 \times 1+0=4
$$

hence C is semistable.

Cluster pictures: examples

1) Consider the curve defined over \mathbb{Q}_{131} as

$$
C: y^{2}=f(x)=\frac{-131}{2}\left(-3 x^{2}+\frac{19}{2} x+\frac{35}{2}\right)\left(2 x^{2}-50 x+32\right)\left(x^{2}+\frac{81}{2} x+16\right),
$$

Computing the roots of $f(x)$ gives the following cluster picture
 particular since $v(c)=1, C$ is semistable. The line between the two clusters of size 3 indicates that the roots of $f(x)$ are defined over an unramified extension of \mathbb{Q}_{131} so that their respective clusters are permuted by Frobenius.
2) Let $p>5$ and consider the hyperelliptic curve

$$
C: y^{2}=x\left(x-p^{3}\right)(x-1)(x-2)(x-3)(x-4) .
$$

The reduced curve is $\tilde{C}: \tilde{y}^{2}=\tilde{x}^{2}(\tilde{x}-1)(\tilde{x}-2)(\tilde{x}-3)(\tilde{x}-4)$ so that the cluster picture of C without signs is \qquad
The special fibre of the minimal regular model of C consists of a hexagon of \mathbb{P}_{1} 's, obtained by blowing up the singularity at the node of \tilde{C}. It follows from Proposition 3.4.30 that if $24 \in \mathbb{Q}_{p}^{\times 2}$ then $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ acts trivially on them (equivalently, both slopes of the tangents at the node of \tilde{C} are defined over \mathbb{F}_{p}) and the cluster picture

Otherwise, $\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$ permutes the components (both slopes are defined over $\mathbb{F}_{p^{2}}$)
and the cluster picture is $\bullet \bullet \bullet 0_{3}$.

Computation of λ_{v} : Example

Keeping the same example as in Section 3.3, consider the following Richelot curve defined over \mathbb{Q} by

$$
C: y^{2}=\left(x^{2}-16\right)\left(x^{2}+x+\frac{17}{4}\right)\left(x^{2}-2 x+9\right),
$$

and its Richelot dual

$$
\hat{C}: y^{2}=\frac{-131}{2}\left(-3 x^{2}+\frac{19}{2} x+\frac{35}{2}\right)\left(2 x^{2}-50 x+32\right)\left(x^{2}+\frac{81}{2} x+16\right) .
$$

In order to determine the parity $r k_{2}(J / \mathbb{Q})$ using Theorem 3.2.16, we need to compute λ_{p} for J / \mathbb{Q} at each prime p. By first computing both discriminants of C and \hat{C} we find that the odd finite places of bad reduction of C are $p=3,5,11,13,17,97,1201$ and similarly for \hat{C} with the addition of $p=131$. Hence, outside of this set of primes, $\lambda_{p}=1$. For the primes of bad reduction, we compute the cluster pictures of C and \hat{C}, and use the results above to compute $c_{p}, m_{p}, \hat{c}_{p}$ and \hat{m}_{p}.

For $p=3,17$, we find that the cluster picture of C is \square
00000_{1}^{+}.

For $p=3$ we find the cluster picture of \hat{C} to be $\left.00000_{\frac{1}{2}}^{+}\right)_{-1}$. As in Remark 3.4 .31 , this is equivalent to the cluster picture $00000 \frac{1}{2} 0_{0}^{+}$.

For $p=17$, the cluster picture for \hat{C} is
It follows from Table 3.1 that $c_{p}=2, m_{p}=1$ and $\hat{c}_{p}=1, \hat{m}_{p}=1$ so that $\lambda_{p}=-1$.
For $p=5,11,13,97,1201$, we find that the cluster picture of C is
00000_{1}^{-} and that of \hat{C} is $0000 \frac{1}{2}$. It follows that $c_{p}=2, m_{p}=1$ and $\hat{c}_{p}=1, \hat{m}_{p}=1$ so that $\lambda_{p}=-1$.

For $p=131, C$ has good reduction while the cluster picture of \hat{C} is
 It follows that $c_{p}=1, m_{p}=1$ and $\hat{c}_{p}=1, \hat{m}_{p}=2$ so that $\lambda_{p}=-1$.

3.5 Computation of local invariants at finite places $v \mid 2$

In the case of places v dividing 2 , we take a different approach to control λ_{v}. Indeed, at these places, it is very difficult to compute the Tamagawa numbers and the minimality of the Néron differential for all reduction types. Rather, we come back to the initial definition of λ_{v} and compute

$$
\operatorname{ord}_{2} \frac{\left|\operatorname{coker}\left(\phi_{v}: J\left(K_{v}\right) \rightarrow J\left(K_{v}\right)\right)\right|}{\left|\operatorname{ker}\left(\phi_{v}: J\left(K_{v}\right) \rightarrow J\left(K_{v}\right)\right)\right|} \frac{m_{v}(C)}{m_{v}(\hat{C})}
$$

First we note that if the curve C has totally split toric reduction at v then it is not deficient (see Section 3.4) and similarly for \hat{C}. We therefore construct a family of curves having totally split toric reduction at v and prove, using a result of A . Morgan presented in the appendix, that $\lambda_{v}=1$ for their Jacobians.

Lemma 3.5.32. Let K / \mathbb{Q}_{2} be a finite extension and let C / K be a hyperelliptic curve of genus 2 given by

$$
C: y^{2}+y h(x)=f(x), \text { with }
$$

$$
h(x)=h_{2} x^{2}+h_{1} x+h_{0}, \quad f(x)=c_{6} x^{6}+c_{5} x^{5}+c_{4} x^{4}+c_{3} x^{3}+c_{2} x^{2}+c_{1} x+c_{0}
$$

for $h_{i}, c_{i} \in \mathcal{O}_{K}, 0 \leq i \leq 6$. If

$$
c_{0} \equiv c_{1} \equiv c_{2} \equiv h_{0} \equiv 0 \bmod \pi, \text { and } \quad h_{1} \equiv h_{2} \equiv c_{4} \equiv c_{6} \equiv c_{5} \equiv c_{3} \equiv 1 \bmod \pi
$$

then J has totally split toric reduction at v.

Proof. This follows from computing partial derivatives of $g(x, y)=y^{2}-y h(x)-f(x)$ to find two singularities on C at the points $(0,0)$ and $(1,0)$. Since $g(x, y) \equiv(y+x(x+$ $\left.1)^{2}\right)\left(y+x^{2}(x+1)\right) \bmod \pi$, it follows that the reduction of this chart consists of two genus 0 components intersecting at the two points $(0,0)$ and $(1,0)$. Computing the Taylor series of $g(x, y) \bmod \pi$ around singularities $(0,0),(1,0)$, one finds $x y+y^{2}+$ higher order terms and $y^{2}+(x+1) y+$ higher order terms respectively. Considering the second affine chart by letting $x=\frac{1}{t}$ and $y=\frac{v}{t^{3}}$ and computing partial derivatives as above, we find that the point at infinity given by $t=0, v=1$ is singular. As above, the reduction of this chart is given by two genus 0 curves intersecting at two points, one of them being the point at infinity. It follows that the reduction of the model of the curve given by these two charts consists of two $\mathbb{P}_{1} \mathrm{~s}$ intersecting transversally in the three points $(0,0),(1,0)$ and $(t=0, v=1)$. Moreover, Frobenius acts trivially on the homology of the special fibre and hence the reduction is totally split toric.

Corollary 3.5 .33 . The curve
$C_{2}: y^{2}+y\left(x^{2}+x+2\right)=f_{2}(x), \quad f_{2}(x)=x^{6}+x^{5}-135 x^{4}+821 x^{3}-4414 x^{2}+2988 x+734$
admits a Richelot isogeny and has totally split toric reduction at 2 .
Proof. The curve C_{2} has totally split toric reduction at 2 from Lemma 3.5.32. In order to show that C_{2} admits a Richelot isogeny, we perform the following change of variable over \mathbb{Q}_{2} :

$$
X=x, \quad Y=y-\frac{1}{2} h(X), \quad h(x)=x^{2}+x+2
$$

to obtain

$$
C_{2}: Y^{2}=(X-1)(X+15)\left(X^{2}-9 X-\frac{7}{4}\right)\left(X^{2}-4 X+28\right)
$$

and the existence of a Richelot isogeny follows from the factorization of the right hand side.

Proposition 3.5.34. Let $n, m, d, k, r \in \mathcal{O}_{K}$ and define the following family of curves

$$
\begin{aligned}
& \mathcal{C}: y^{2}=f(x)=G_{1}(x) G_{2}(x) G_{3}(x), \text { with } G_{1}(x)=x^{2}-(8+4 n)^{2}, \\
& G_{2}(x)=x^{2}+x(-2 m-23)+\frac{441}{4}-2 d+14 m, \quad G_{3}(x)=x^{2}+x(-8 k-18)+105+8 r+56 k
\end{aligned}
$$

Then the curves in \mathcal{C} have totally split toric reduction.
Proof. Follows from performing the change of variable $X=x+7, Y=y+\frac{1}{2} h(X)$
with $h(x)=x^{2}+x+2$ to find that reducing $\bmod \pi, f(x) \equiv f_{2}(x)$ so that all curves $C \in \mathcal{C}$ have totally split toric reduction by Corollary 3.5.33.

Corollary 3.5.35. The family \mathcal{C} can be given by mean of congruences on coefficients as follows:

$$
\mathcal{F}: y^{2}=\left(x^{2}-\left(4 t_{1}\right)^{2}\right)\left(x^{2}+t_{2} x+t_{3}\right)\left(x^{2}+t_{4} x+t_{5}\right)
$$

where

$$
t_{1} \in \mathcal{O}_{K}, \quad t_{2} \equiv 1 \bmod 2, \quad t_{3}-\frac{1}{4} \equiv 0 \bmod 2, \quad t_{4}=-2 \bmod 8, \quad t_{5} \equiv 1 \bmod 8
$$

Proof. This follows from letting

$$
\begin{gathered}
t_{1}=\frac{8+4 n}{4}, t_{2}=-2 m-23, t_{3}=\frac{441}{4}-2 d+14 m \\
t_{4}=-8 k-18, t_{5}=105+8 r+56 k
\end{gathered}
$$

One recovers $n, m, d, k, r \in \mathcal{O}_{K}$ as follows $n=t_{1}-2, \quad m=\frac{t_{2}+23}{2}, \quad d=\frac{t_{3}}{2}-\frac{1}{8}-55-7 m, \quad k=\frac{t_{4}+18}{8}, \quad r=\frac{t_{5}-1}{8}-13-7 k$.

Theorem 3.5.36. Let K / \mathbb{Q}_{2} be a finite extension and suppose that $C \in \mathcal{C}$ is given by

$$
C: y^{2}=G_{1}(x) G_{2}(x) G_{3}(x),
$$

such that $G_{2}(x), G_{3}(x)$ are both irreducible in K. Then $\lambda_{v}=1$ for C.
Proof. From Corollary 3.5 .33 and Proposition 3.5.34, all curves $C \in \mathcal{C}$ have totally split toric reduction and admit a Richelot isogeny. Therefore, since from Remark 1 in [32], it follows that C is deficient at a finite place if and only if the order of the $\operatorname{Gal}(\bar{k} / k)$-orbit of each irreducible component of the special fibre of the minimal regular model of C is even, none of the curves C are deficient over K. Similarly for \hat{C} since they have isogenous Jacobians so that \hat{C} also has totally split toric reduction. It follows by definition of λ_{v} that

$$
\lambda_{v}=(-1)^{\operatorname{ord}_{2} \frac{\left|c o k e r\left(\phi_{v}: J\left(K_{v}\right) \rightarrow J\left(K_{v}\right)\right)\right|}{\left|\operatorname{ker}\left(\phi_{v}: J\left(K_{v}\right) \rightarrow J\left(K_{v}\right)\right)\right|} .}
$$

Moreover, from Proposition A.0.9 and Remark A.0.11, we have that

$$
\frac{\left|\operatorname{coker}\left(\phi_{v}: J\left(K_{v}\right) \rightarrow J\left(K_{v}\right)\right)\right|}{\left|\operatorname{ker}\left(\phi_{v}: J\left(K_{v}\right) \rightarrow J\left(K_{v}\right)\right)\right|}=2^{2\left[K: \mathbb{Q}_{2}\right]},
$$

since when $G_{2}(x), G_{3}(x)$ are irreducible over K we necessarly have $|J(K)[2]|=4=$
$|\operatorname{ker}(\phi)|$.
Therefore $\lambda_{v}=1$.

Computation of λ_{v} : Example

It is readily verified that our curve

$$
C: y^{2}=\left(x^{2}-16\right)\left(x^{2}+x+\frac{17}{4}\right)\left(x^{2}-2 x+9\right),
$$

belongs to the family \mathcal{F} above and that both $G_{2}(x)$ and $G_{3}(x)$ are irreducible over \mathbb{Q}_{2}. Therefore $\lambda_{2}(J)=1$ by Theorem 3.5.36.

3.6 Example of computation of the parity of the 2^{∞} Selmer rank

We now compute the parity of the 2^{∞} Selmer rank of the Jacobian of

$$
C: y^{2}=\left(x^{2}-16\right)\left(x^{2}+x+\frac{17}{4}\right)\left(x^{2}-2 x+9\right)
$$

using Theorem 3.2.16. Let $S=\{3,5,11,13,17,97,1201,131\}$ be the set of odd primes of bad reduction for C and \hat{C}. It follows from the set of examples above that

$$
\lambda_{\mathbb{R}}(J)=1, \quad \lambda_{p}=1 \forall p \notin S, \quad \lambda_{p}=-1 \forall p \in S .
$$

Therefore

$$
(-1)^{r k_{2}(J)}=1,
$$

so that $r k_{2}(J)$ is even.

Chapter 4

2-parity conjecture for $C_{2} \times D_{4}$ Jacobians

4.1 2-parity theorem

In this chapter we prove the 2-parity conjecture for a particular family of semistable Richelot Jacobians. Namely for these we show

$$
(-1)^{r k_{2}(J)}=\omega(J)
$$

where $\omega(J)$ denotes the global root number (see Conjecture 2.3.21). From the results of Chapter 3, we are now able to compute the parity of the 2^{∞} Selmer rank for semistable Richelot Jacobians (with conditions at 2-adic places as in Section 3.5). This is achieved by factorizing $(-1)^{r k_{2}(J)}$ as a product of computable local terms λ_{v}. In order to prove the 2-parity conjecture, one would hope to prove that at each place v, the local term λ_{v} equals the local root number ω_{v}, so that the conjecture follows by taking product over all places. However, as suggested by the proof of the 2-parity conjecture for elliptic curves in [9], these terms do not agree locally but their discrepancy is given by a product of Hilbert Symbols involving some specific invariant polynomials in the roots of the defining polynomial of the curve. The main step of the proof is therefore to find the suitable set of invariants which, correctly paired in Hilbert Symbols, match the local discrepancy between λ_{v} and ω_{v}. We found such a set under the condition that the Galois group of the Richelot polynomial of C is a subgroup of $C_{2} \times D_{4}$. In this case we conjecture the following.

Conjecture 4.1.1 (Conjecture 4.4.10). Let C / \mathcal{K} be a Richelot curve given by

$$
C: y^{2}=f(x), \quad \text { such that } \quad G a l(f) \subseteq C_{2} \times D_{4},
$$

and denote J its Jacobian. Then for all places v of \mathcal{K}

$$
\lambda_{v}(J)=E_{v}(J) \cdot \omega_{v}(J)
$$

for the explicit product of Hilbert Symbols $E_{v}(J)$ given in Definition 4.3.9, and whenever the invariants involved in E_{v} are non-zero.

Definition 4.1.2 $\left(C_{2} \times D_{4}\right.$ curve). A Richelot polynomial of the form

$$
G(x)=G_{1}(x) G_{2}(x) G_{3}(x) \in \mathcal{K}[x], \text { where } \quad G_{1}(x)=c\left(x-\alpha_{1}\right)\left(x+\alpha_{1}\right) \in \mathcal{K}[x]
$$

is called a $C_{2} \times D_{4}$ polynomia $\sqrt{1}$. This factorization is equivalent to

$$
G a l(G(x)) \subseteq C_{2} \times D_{4} \subset C_{2}^{3} \rtimes S_{3} \subset S_{6}
$$

A Richelot curve given by a $C_{2} \times D_{4}$ polynomial is called a $C_{2} \times D_{4}$ curve and its Jacobian a $C_{2} \times D_{4}$ Jacobian.

Theorem 4.1.3 (Theorem 4.4.11). Let C / \mathcal{K} be a Richelot curve and let J denote its Jacobian. Suppose the following:
i) C is a $C_{2} \times D_{4}$ curve,
ii) the cluster picture of C at odd finite places is one of Table 3.1,
iii) for $v \mid 2, C \in \mathcal{C}$ as in Section 3.5 ,
iv) none of the $C_{2} \times D_{4}$ invariants defined in Definition 4.3.9 for C are zero.

Then Conjecture 4.4 .10 is true for C at all places v of \mathcal{K}. In particular, in this case

$$
\prod_{v \in M_{\mathcal{K}}} \lambda_{v}(J)=\prod_{v \in M_{\mathcal{K}}} \omega_{v}(J)
$$

hence the 2-parity conjecture holds.
Corollary 4.1.4. Let C be hyperelliptic curve of genus 2 defined over \mathbb{Q} given by

$$
C: y^{2}=f(x)=\left(x^{2}-4 a\right) g(x), \quad a \in \mathbb{Z}, \quad g(x) \in \frac{\mathbb{Z}}{2}[x]
$$

such that $\operatorname{Gal}(g) \subseteq D_{4}$ and preserves the factorization $g(x)=\left(x^{2}+t_{2} x+t_{3}\right)\left(x^{2}+\right.$ $t_{4} x+t_{5}$). Suppose that
i) for every odd prime p, the reduction of $f(x) \bmod p$ has no root of multiplicity ≥ 3,

[^5]ii) at $p=2$, the two quadratics are irreducible over \mathbb{Q}_{2} and $t_{i} \in \mathbb{Q}_{2}, i=2,3,4,5$ with
$$
t_{2} \equiv 1 \bmod 2, \quad t_{3}-\frac{1}{4} \equiv 0 \bmod 2, \quad t_{4}=-2 \bmod 8, \quad t_{5} \equiv 1 \bmod 8 .
$$

Then

$$
(-1)^{r k_{2}(J)}=\omega(J) .
$$

Proof. C is a $C_{2} \times D_{4}$ curve (see Definition 4.1.2), at odd places the cluster picture of C is one of Table 3.1, at $v \mid 2, C \in \mathcal{C}$ as in Proposition 3.5 .34 and finally because $C \in \mathcal{C}$, none of the $C_{2} \times D_{4}$ invariants are zero (see Section 6.5).

In the first section, we define the dual curve of a $C_{2} \times D_{4}$ curve and set up our notation. We then introduce the set of invariants which form the term of discrepancy $E_{v}(J)$ in the second section. For a lack of a more efficient method to prove that $\lambda_{v}=E_{v} \omega_{v}$ for all places v of \mathcal{K}, we proceed with a case by case analysis. We use the results of Sections 3.3, 3.4, Theorem 3.5 .36 and Section 3.4 to compute and tabulate λ_{v}, ω_{v} for infinite places, odd finite places and places above 2 respectively. We also compute E_{v} at all places using the definitions of the invariants and properties of Hilbert Symbols. The proof of Theorem 3.2.6 is then immediate from these computations as it shows that $\lambda_{v}=E_{v} \omega_{v}$ in all cases. The number of cases is however quite significant and moreover, the definitions of λ_{v} and E_{v} in terms of invariants make their computations heavy on notation and rather tedious. Consequently, we chose to place them in separate subsequent chapters for clarity.

List of notation for this chapter

$G_{1}(x)$	$c\left(x-\alpha_{1}\right)\left(x+\alpha_{1}\right)$ with $\alpha_{1}^{2} \in K$
$G_{i}(x), i=2,3$	$\left(x-\alpha_{i}\right)\left(x-\beta_{i}\right)$
$G(x)$	$G_{1}(x) G_{2}(x) G_{3}(x)$
\mathcal{L}	Splitting field of $G(x)$
c	leading term of $G(x)$
C	$C_{2} \times D_{4}$ curve defined over K with the given factorization $y^{2}=G(x)=G_{1}(x) G_{2}(x) G_{3}(x)$
J	$C_{2} \times D_{4}$ Jacobian of C
ϕ	Richelot isogeny on J given by the factorization of $G(x)$
$L_{1}(x)$	$L_{1}(x)=\frac{1}{\Delta_{G}}\left[G_{2}(x), G_{3}(x)\right]=\ell_{1}\left(x-A_{1}\right)\left(x-B_{1}\right)$
$\ell_{1}=\frac{u_{1}}{\Delta_{G}}$	leading term of $L_{1}(x)$ with $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$
$L_{i}(x), i=2,3$	$L_{i}(x)=\left[G_{i+1}(x), G_{i+2}(x)\right]=\ell_{i}\left(x-A_{i}\right)\left(x-B_{i}\right)$
$L(x)$	$L_{1}(x) L_{2}(x) L_{3}(x)$
$\ell=\ell_{1} \ell_{2} \ell_{3}$	leading term of $L(x)$
\hat{C}	dual curve of C defined over K with the given factorization $y^{2}=L(x)=L_{1}(x) L_{2}(x) L_{3}(x)$
\hat{J}	$C_{2} \times D_{4}$ Jacobian of \hat{C}
$\delta_{i}, i=1,2,3$	discriminant of $G_{i}(x)$
$\hat{\delta}_{i}, i=1,2,3$	discriminant of $L_{i}(x)$
$\alpha_{i}, \beta_{i}, i=1,2,3$	roots of $G_{i}(x)$
$A_{i}, B_{i}, i=1,2,3$	roots of $L_{i}(x)$
$P_{i}, Q_{i}, i=1,2,3$	Weierstrass points $P_{i}=\left(\alpha_{i}, 0\right), Q_{i}=\left(\beta_{i}, 0\right)$
$D_{i}, i=1,2,3$	Element of $\operatorname{ker}(\phi), D_{i}=\left[P_{i}, Q_{i}\right]$
n_{v}, \hat{n}_{v},	number of connected components of $J\left(\mathcal{K}_{v}\right)$ and $\hat{J}\left(\mathcal{K}_{v}\right)$ when $v \mid \infty$
m_{v}	$m_{v}=2$ if C is deficient at $v, m_{v}=1$ otherwise
\hat{m}_{v}	$\hat{m}_{v}=2$ if \hat{C} is deficient at $v, \hat{m}_{v}=1$ otherwise
$\phi_{\mathbb{R}}$	map induced by ϕ on $J(\mathbb{R})$
φ	restriction of $\phi_{\mathbb{R}}$ to the identity component of $J(\mathbb{R})$
c_{v}, \hat{c}_{v}	Tamagawa numbers of J and \hat{J} at v when $v \nmid \infty$
$(., .)_{v}$	Hilbert Symbol at v
- -	α_{1}, β_{1} in the cluster picture of C (A_{1}, B_{1} is that of $\left.\hat{C}\right)$
\checkmark	α_{2}, β_{2} in the cluster picture of $C\left(A_{2}, B_{2}\right.$ is that of $\left.\hat{C}\right)$
甥	α_{3}, β_{3} in the cluster picture of $C\left(A_{3}, B_{3}\right.$ is that of $\left.\hat{C}\right)$

$4.2 \quad C_{2} \times D_{4}$ Richelot curves and Jacobians

Via the Richelot construction described in Section 2.2, we form the $C_{2} \times D_{4}$ dual curve \hat{C} of a $C_{2} \times D_{4}$ curve.

Definition 4.2.5. [$C_{2} \times D_{4}$ dual curve] The $C_{2} \times D_{4}$ dual curve of a $C_{2} \times D_{4}$ curve is given by

$$
\hat{C}: y^{2}=L(x)=L_{1}(x) L_{2}(x) L_{3}(x),
$$

where

$$
L_{1}(x)=\frac{1}{\Delta_{G}}\left[G_{2}(x), G_{3}(x)\right], \quad L_{2}(x)=\left[G_{3}(x), G_{1}(x)\right], \quad L_{3}(x)=\left[G_{1}(x), G_{2}(x)\right] .
$$

Remark 4.2.6. The definition of the $L_{i}(x)$ s above slightly differs from that of the $F_{i}(x)$ s in Definition 2.2.11. We chose the above construction for $C_{2} \times D_{4}$ curves since it eases the computations performed in the remaining of this thesis. This is without loss of generality, since as noted in Remark 2.2.13, both definitions yields isomorphic curves over \mathcal{K}. However, the set $\left\{L_{1}(x), L_{2}(x), L_{3}(x)\right\}$ is no longer Galois stable. Indeed if for $\sigma \in \operatorname{Gal}(\overline{\mathcal{K}} / \mathcal{K}), \sigma\left(G_{2}(x)\right)=G_{3}(x)$, then $\sigma\left(L_{2}(x)\right)=-L_{3}(x)$. This could be fixed by letting

$$
L_{1}(x)=-\frac{1}{\Delta_{G}}\left[G_{2}(x), G_{3}(x)\right], \quad L_{2}(x)=\left[G_{1}(x), G_{3}(x)\right], \quad L_{3}(x)=\left[G_{1}(x), G_{2}(x)\right] .
$$

We chose not to do so for computational reasons.
Remark 4.2.7. The choice of $G_{1}(x)$ to be defined over \mathcal{K} is of course arbitrary. However, it follows that for the remaining of this work, the roots of $G_{1}(x)$ will be considered as "special" (and so will be their corresponding red circle symbols - - in the cluster pictures of C). Indeed, we broke the symmetry of the quadratic factorization of $G(x)$ by centering the roots of $G_{1}(x)$ around 0 . The action of $\operatorname{Gal}(\mathcal{L} / \mathcal{K})$ on them will be limited compared to that on the roots of $G_{2}(x)$ and $G_{3}(x)$ (represented by blue diamond and purple star symbols \downarrow () .

$4.3 \quad C_{2} \times D_{4}$ invariant polynomials

Definition 4.3.8. Let $G(x)$ be a $C_{2} \times D_{4}$ polynomial over \mathcal{K} and $\mathcal{L} / \mathcal{K}$ its splitting field. In addition to the leading terms of $G(x)$ and $L(x), c$ and $\ell=\ell_{1} \ell_{2} \ell_{3}$, we associate the following set of $\operatorname{Gal}(\mathcal{L} / \mathcal{K})$-invariant polynomials in the roots of $G(x)$:
$I_{20}=\frac{1}{2^{3}}\left(\delta_{2}+\delta_{3}\right)$,
$I_{21}=\left(\alpha_{2}+\beta_{2}\right)\left(\alpha_{3}+\beta_{3}\right)$,
$I_{22}=\frac{1}{2}\left(\Delta_{G}^{2} \ell_{1}^{2}-\delta_{2}-\delta_{3}\right)=\left(\alpha_{2}-\alpha_{3}\right)\left(\beta_{2}-\beta_{3}\right)+\left(\beta_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right)$,
$I_{23}=4 c^{2} \alpha_{1}^{2}$,
$I_{40}=\frac{1}{2^{6}}\left(\delta_{2}-\delta_{3}\right)^{2}$,
$I_{41}=16\left(\alpha_{2} \beta_{2} \alpha_{3} \beta_{3}+\alpha_{1}^{2}\left(\alpha_{1}^{2}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}+\left(\alpha_{2}+\beta_{2}\right)\left(\beta_{3}+\alpha_{3}\right)\right)\right)$,
$I_{42}=4\left(2 \alpha_{1}^{2}-\alpha_{2}^{2}-\beta_{2}^{2}\right)\left(2 \alpha_{1}^{2}-\alpha_{3}^{2}-\beta_{3}^{2}\right)$,
$\left.I_{43}=\delta_{2}\left(\alpha_{2}^{2}+\beta_{2}^{2}-2 \alpha_{1}^{2}\right)+\delta_{3}\left(\alpha_{3}^{2}+\beta_{3}^{2}-2 \alpha_{1}^{2}\right)\right)$,
$I_{44}=\delta_{2} \delta_{3}=\left(\alpha_{2}-\beta_{2}\right)^{2}\left(\alpha_{3}-\beta_{3}\right)^{2}$,
$I_{45}=4\left(\beta_{3}-\beta_{2}\right)\left(\alpha_{3}-\beta_{2}\right)\left(\alpha_{2}-\beta_{3}\right)\left(\alpha_{2}-\alpha_{3}\right)$,
$\left.I_{60}=4 \hat{\delta_{3}}\left(\alpha_{2}^{2}+\beta_{2}^{2}-2 \alpha_{1}^{2}\right)+4 \hat{\delta_{2}}\left(\alpha_{3}^{2}+\beta_{3}^{2}-2 \alpha_{1}^{2}\right)\right)$,
$I_{80}=\frac{1}{c^{4}} \hat{\delta_{2}} \hat{\delta_{3}}$,
Each invariant is of the form $I_{i, j}$, where i denotes the degree of $I_{i, j}$ in the roots of $G(x)$ and j indicates the number of this invariant of degree i.

Definition 4.3.9 (Local discrepancy). Let (.,. $)_{v}$ denote the Hilbert Symbol at a place v of \mathcal{K}. For each place $v \in M_{\mathcal{K}}$, let

$$
\begin{gathered}
H_{1}=\left(-1, I_{22} I_{41} I_{43} I_{60}\right)_{v}, \quad H_{2}=\left(I_{20},-I_{40} I_{44}\right)_{v}, \quad H_{3}=\left(I_{40}, \ell I_{60} I_{43}\right)_{v}, \\
H_{4}=\left(c, I_{23} I_{44} I_{80}\right)_{v}, \quad H_{5}=\left(I_{23}, I_{41}\right)_{v}, \quad H_{6}=\left(I_{45},-\ell I_{22} I_{21}\right)_{v}, \\
H_{7}=\left(I_{44}, 2 I_{22} I_{42} I_{43}\right)_{v}, \quad H_{8}=\left(I_{80},-2 I_{41} I_{42} I_{60}\right)_{v}, \quad H_{9}=\left(I_{42},-I_{60} I_{43}\right)_{v},
\end{gathered}
$$

and define

$$
E_{v}=\prod_{i=1}^{9} H_{i} .
$$

4.4 A conjecture on local discrepancy for $C_{2} \times D_{4}$ Jacobians

Conjecture 4.4.10 (Local discrepancy conjecture). Let C / \mathcal{K} be a $C_{2} \times D_{4}$ curve and J its Jacobian. Then at all places v of \mathcal{K}

$$
\lambda_{v}(J)=E_{v}(J) \cdot \omega_{v}(J),
$$

where λ_{v} is given in Corollary 3.2.17, E_{v} in Definition 4.3.9, and $\omega_{v}(J)$ denotes the local root number of J, whenever the invariants involved in E_{v} are non-zero.

Theorem 4.4.11. Let C / \mathcal{K} be a Richelot curve and let J denote its Jacobian. Suppose the following:
i) C is a $C_{2} \times D_{4}$ curve,
ii) the cluster picture of C at odd finite places is one of Table 3.1.
iii) for $v \mid 2, C \in \mathcal{C}$ as in Section 3.5,
iv) none of the $C_{2} \times D_{4}$ invariants for C are zero (see Definitions 4.3.8 and 4.3.9). Then the local discrepancy conjecture 4.4.10 is true for J.

Corollary 4.4.12. The 2 -parity conjecture holds for Jacobians satisfying the conditions of Theorem 4.4.11.

Proof. This is immediate from Theorems 3.2 .16 and 4.4 .11 since $\prod_{v \in M_{\mathcal{K}}} E_{v}=1$ by the product formula for Hilbert Symbols.

The proof of Theorem 4.4.11 consists of a case by case analysis. Starting with infinite places of K, we consider all possible configurations of the real roots of $G(x)$ as in Section 3.3 and compute λ_{v}, E_{v} and ω_{v}. Then considering finite places v of \mathcal{K} such that $v \mid 2$, we prove that $\lambda_{v}=E_{v} \omega_{v}$ for $C \in \mathcal{C}$. Finally, for odd finite places $v \in M_{\mathcal{K}}$, we consider all reduction types for C at v using cluster pictures as in Section 3.4 with all possible Richelot isogenies (equivalently, $C_{2} \times D_{4}$ quadratic factorization for $G(x))$ associated to this reduction type. For each case, we compute λ_{v}, E_{v} and ω_{v}. The results are presented in the next sections via a set of tables and one can readily see that in all cases $\lambda_{v}=E_{v} \omega_{v}$ as required. Chapters 5 and 6 consist of the proofs of the computations presented in the tables.

$4.5 \quad C_{2} \times D_{4}$ curves at infinite places

Lemma 4.5.13. Let C be a Richelot curve and denote by J its Jacobian. Then $\omega_{v}=1$ for places v of \mathcal{K} with $\mathcal{K}_{v} \simeq \mathbb{R}$ or $\mathcal{K} \simeq \mathbb{C}$.

Proof. This follows from Lemma 2.1 in [33] since C is of genus 2 so that J is of dimension 2.

Theorem 4.5.14. Let C be a $C_{2} \times D_{4}$ curve and let J be its Jacobian. Then Conjecture 4.4.10 holds for complex places of K.

Proof. At complex places, $\omega_{v}=1$ by Lemma 4.5 .13 and $E_{v}=1$ trivially. The result follows since $\lambda_{v}=1$ by Lemma 3.3.18.

Lemma 4.5.15. Let C be a $C_{2} \times D_{4}$ curve given by $C: y^{2}=G(x)$ and let J be its Jacobian. Then, for real places v of $\mathcal{K}, \lambda_{v}, E_{v}$ and ω_{v} are invariant under the change of variable $x \mapsto-x$.

Proof. Let $r_{1}, . ., r_{6}$ be the roots of $G(x)$. Applying the above change of variable yields $r_{i} \mapsto-r_{i}, i=1,2,3,4,5,6$. It follows from Propositions 3.3.19, 3.3.23, 3.3.20 and 3.3.21 that λ_{v} is invariant under this change of variable. ω_{v} is trivially invariant from Lemma 4.5.13 and so is E_{v} since all $C_{2} \times D_{4}$ invariants involved in its definition are of even degrees.

Notation

In this section, we fix a real place $v \in M_{\mathcal{K}}$. For a given $C_{2} \times D_{4}$ curve C, we wish to compute $\lambda_{\mathbb{R}}, E_{\mathbb{R}}$. In particular, we need to compute the number of real connected components of J and \hat{J}, the real deficiency of C and \hat{C} as well as $|\operatorname{ker}(\varphi)|$. From Section 3.3, we know that this is possible once we know the real/complex configuration of the roots of $G(x)$. We therefore consider all possible configurations and compute $\lambda_{\mathbb{R}}, E_{\mathbb{R}}$ in each case. The results are tabulated below. Except for $E_{\mathbb{R}}$ whose proof is presented in Section 6.4, the computations are clear from the results of Section 3.3.

Table convention

In a given table, each row corresponds to a particular configuration of the real/complex roots of $G(x)$. The first column names the case considered, the second column gives the configuration of the roots. We used the symmetry between the roots of $G_{2}(x)$ and $G_{3}(x)$ (blue diamonds and purple stars in the real picture), and without loss of generality, always placed the roots of $G_{2}(x)$ on the left of that of $G_{3}(x)$ in the real pictures. The third, fourth, fifth and sixth columns specify the signs of the leading terms of $G(x)$ and $L(x)$ as well as the signs of $I_{23}=\delta_{1}, I_{44}=\delta_{2} \delta_{3}, I_{45}=\Delta_{G}^{2} \hat{\delta}_{1}$ and $I_{80}=\hat{\delta_{2}} \hat{\delta_{3}}$. The vertical double lines represent the end of the input data. We note that the double lines do not occur at the same place in all tables. This is because in some cases, the leading term of $L(x)$ and I_{45} are part of the input data, while in some other cases, they are fixed by the real configuration of the roots of $G(x)$. The next columns after the vertical double lines give the number of real connected components of J and \hat{J}, the order of $\operatorname{ker}(\varphi)$ and the real deficiency of C and \hat{C}. Finally the three last columns list $\lambda_{\mathbb{R}}, E_{\mathbb{R}}$ and $\omega_{\mathbb{R}}$.

Naming convention

Tables are indexed by real/complex roots configurations. The names start with the number of complex roots: $6 \mathrm{C}, 4 \mathrm{C}, 2 \mathrm{C}, 6 \mathrm{R}$ for $6,4,2$, complex roots and 6 real roots respectively. The number indicates different configurations within the same case, the capital letters A, B vary with the sign of the leading term c of $G(x)$ and the small letter vary with the sign of other invariants.

Theorem 4.5.16. Let C be a $C_{2} \times D_{4}$ curve. Then Conjecture 4.4.10 holds for real places of K whenever the $C_{2} \times D_{4}$ invariants involved in E_{v} are non-zero.

Proof. Follows from Tables 4.1, 4.2 and 4.3 since in all cases we find $\lambda_{v}=E_{v} \omega_{v}$. The exhaustivity of the cases addressed in these tables follows from Lemma 4.5.15.

Table 4．1：$G(x)$ has $6,4,2$ complex roots．

Isogeny	$C(\mathbb{R})$	c	ℓ	I_{23}	I_{44}	I_{45}	I_{80}	n	n	$\|\operatorname{ker}(\varphi)\|$	$m_{\mathbb{R}}$	$\hat{m}_{\mathbb{R}}$	$\lambda_{\mathbb{R}}$	$\omega_{\mathbb{R}}$	$E_{\mathbb{R}}$
6C1A	$\delta_{1}, \delta_{2}, \delta_{3} \in \mathbb{R}_{<0}$	＋	\pm	－	＋	＋	＋	1	4	4	1	1	1	1	1
6C1B	$\delta_{1}, \delta_{2}, \delta_{3} \in \mathbb{R}_{<0}$	－	\pm	－	＋	＋	＋	1	4	4	2	1	－1	1	－1
6 C 2 Aa	$\delta_{1} \in \mathbb{R}_{<0}, \quad \delta_{2}=\overline{\delta_{3}}$	＋	\pm	－	＋	－	＋	1	1	2	1	1	－1	1	－1
6 C 2 Ab	$\delta_{1} \in \mathbb{R}_{<0}, \quad \delta_{2}=\overline{\delta_{3}}$	＋	＋	－	＋	＋	＋	1	1	2	1	1	－1	1	－1
6 C 2 Ac	$\delta_{1} \in \mathbb{R}_{<0}, \quad \delta_{2}=\overline{\delta_{3}}$	＋	－	－	＋	＋	＋	1	1	2	1	2	1	1	1
6 C 2 Ba	$\delta_{1} \in \mathbb{R}_{<0}, \quad \delta_{2}=\overline{\delta_{3}}$	－	\pm	－	＋	－	＋	1	1	2	2	1	1	1	1
6 C 2 Bb	$\delta_{1} \in \mathbb{R}_{<0}, \quad \delta_{2}=\overline{\delta_{3}}$	－	＋	－	＋	＋	＋	1	1	2	2	1	1	1	1
6 C 2 Bc	$\delta_{1} \in \mathbb{R}_{<0}, \quad \delta_{2}=\overline{\delta_{3}}$	－	－	－	＋	＋	＋	1	1	2	2	2	－1	1	－1
4C1A	$\cdots \delta_{2}, \delta_{3} \in \mathbb{R}_{<0}$	＋	\pm	＋	＋	＋	＋	1	4	4	1	1	1	1	1
4C1B	$\bigcirc \delta_{2}, \delta_{3} \in \mathbb{R}_{<0}$	－	\pm	＋	＋	＋	＋	1	4	4	1	1	1	1	1
4C2A	\checkmark－$\delta_{1}, \delta_{3} \in \mathbb{R}_{<0}$	＋	\pm	－	－	＋	＋	1	4	4	1	1	1	1	1
4C2B	\checkmark－$\delta_{1}, \delta_{3} \in \mathbb{R}_{<0}$	－	\pm	－	－	＋	＋	1	4	4	1	1	1	1	1
4C3a	$\bullet \delta_{2}=\overline{\delta_{3}}$	\pm	\pm	＋	＋	－	＋	1	1	2	1	1	－1	1	－1
4C3b	$\bigcirc \delta_{2}=\overline{\delta_{3}}$	\pm	＋	＋	＋	＋	＋	1	1	2	1	1	－1	1	－1
4C3c	$\bullet \delta_{2}=\overline{\delta_{3}}$	\pm	－	＋	＋	＋	＋	1	1	2	1	2	1	1	1
2 C 1 A	\rightarrow－－$\delta_{1}<0$	＋	\pm	－	＋	＋	$+$	2	4	2	1	1	1	1	1
2C1B	\rightarrow 合一思 $\delta_{1}<0$	－	\pm	－	＋	＋	＋	2	4	4	1	1	－1	1	－1
2C2A	\longrightarrow－－$\delta_{1}<0$	＋	\pm	－	＋	－	＋	2	2	2	1	1	－1	1	－1
2C2B	－－－$\delta_{1}<0$	－	\pm	－	＋	－	＋	2	2	2	1	1	－1	1	－1
2C3A	\rightarrow－－$\delta_{1}<0$	＋	\pm	－	＋	＋	＋	2	4	4	1	1	－1	1	－1
2C3B	$\xrightarrow{\text {－}}$－$\delta_{1}<0$	－	\pm	－	＋	＋	＋	2	4	2	1	1	1	1	1
2C4A	$\longrightarrow \diamond \delta_{3}<0$	＋	\pm	＋	－	＋	＋	2	4	2	1	1	1	1	1
2C4B	$\bullet \bullet \delta_{3}<0$	－	\pm	＋	－	＋	＋	2	4	4	1	1	－1	1	－1
2C5A	$\longrightarrow \diamond \delta_{3}<0$	＋	\pm	＋	－	＋	－	2	2	2	1	1	－1	1	－1
2C5B	$\bullet \bullet \delta_{3}<0$	－	\pm	$+$	－	$+$	－	2	2	2	1	1	－1	1	－1
2C6aA	$\longrightarrow \diamond$－$\quad \delta_{3}<0$	＋	\pm	＋	－	＋	＋	2	4	4	1	1	－1	1	－1
2 C 6 aB	$\bullet \diamond \delta_{3}<0$	－	\pm	＋	－	＋	＋	2	4	2	1	1	1	1	1
2C6bA	$\longrightarrow \bullet$－$\quad \delta_{3}<0$	＋	\pm	＋	－	＋	＋	2	4	4	1	1	－1	1	－1
2C6bB	\diamond－\quad－$\delta_{3}<0$	－	\pm	＋	－	＋	＋	2	4	2	1	1	1	1	1

Table 4.2: $G(x)$ has 6 real roots

Isogeny	$C(\mathbb{R})$	c	ℓ	I_{23}	I_{44}	I_{45}	I_{80}	n	\hat{n}	$\|\operatorname{ker}(\varphi)\|$	$m_{\mathbb{R}}$	$\hat{m}_{\mathbb{R}}$	$\lambda_{\mathbb{R}}$	$\omega_{\mathbb{R}}$	$E_{\mathbb{R}}$
6R1A	$\rightarrow 0$ -	+	\pm	$+$	+	$+$	$+$	4	4	1	1	1	1	1	1
6R1B	\cdots -	-	\pm	+	+	+	+	4	4	4	1	1	1	1	1
6R2A	\rightarrow -	+	\pm	+	+	-	+	4	2	1	1	1	-1	1	-1
6R2B	\cdots - - - -	-	\pm	+	+	-	+	4	2	2	1	1	1	1	1
6R3A	\rightarrow -	+	\pm	+	+	+	+	4	4	2	1	1	-1	1	-1
6R3B	\cdots - - -	-	\pm	+	+	+	+	4	4	2	1	1	-1	1	-1
6R4A	\rightarrow -	+	\pm	+	+	+	-	4	2	1	1	1	-1	1	-1
6R4B	$\cdots \cdots$ -	-	\pm	+	+	+	-	4	2	2	1	1	1	1	1
6R5A	\rightarrow -	+	\pm	+	+	-	-	4	1	1	1	1	1	1	1
6R5B	\cdots -	-	\pm	+	+	-	-	4	1	1	1	1	1	1	1
6R6A	\rightarrow -	+	\pm	+	+	+	-	4	2	2	1	1	1	1	1
6R6B	\bullet - \rightarrow -	-	\pm	+	+	+	-	4	2	1	1	1	-1	1	-1
6R7A	\rightarrow -	+	\pm	+	+	+	+	4	4	2	1	1	-1	1	-1
6R7B	$\stackrel{\text { - }}{\text { - }}$ - -	-	\pm	$+$	+	+	+	4	4	2	1	1	-1	1	-1
6R8aA	\rightarrow - - - - - - - -	+	+	+	+	-	-	4	1	1	1	1	1	1	1
6R8aB	\cdots -	-	+	+	+	-	-	4	1	1	1	1	1	1	1
6R8bA	\rightarrow - - - - - -	+	-	+	+	-	-	4	1	1	1	2	-1	1	-1
6R8bB	\cdots -	-	-	+	+	-	-	4	1	1	1	2	-1	1	-1
6R9A	$\xrightarrow{-}$ -	+	\pm	+	+	+	+	4	1	1	1	1	1	1	1
6R9B	\cdots - - - - -	-	\pm	+	+	+	+	4	1	1	1	1	1	1	1
6R10A	\rightarrow - - - - -	+	\pm	+	+	+	-	4	2	2	1	1	1	1	1
6R10B	$\cdots \stackrel{\text { - }}{ }$ - - -	-	\pm	+	+	+	-	4	2	1	1	1	-1	1	-1
6R11A		+	\pm	+	+	-	-	4	1	1	1	1	1	1	1
6R11B	$\cdots \stackrel{\text { - }}{\text { - }}$	-	\pm	+	+	-	-	4	1	1	1	1	1	1	1
6R12A	\rightarrow - - - - - - - -	+	\pm	+	+	+	-	4	2	1	1	1	-1	1	-1
6R12B		-	\pm	+	+	+	-	4	2	2	1	1	1	1	1
6R13A	\rightarrow -	+	\pm	+	+	+	+	4	4	4	1	1	1	1	1
6R13B	\bullet - - -	-	\pm	+	+	+	+	4	4	1	1	1	1	1	1
6R14A	\rightarrow - - - - -	+	\pm	+	+	-	+	4	2	2	1	1	1	1	1

Table 4.3: $G(x)$ has 6 real roots

Isogeny	$C(\mathbb{R})$	c	ℓ	I_{23}	I_{44}	I_{45}	I_{80}	n	\hat{n}	$\|\operatorname{ker}(\varphi)\|$	$m_{\mathbb{R}}$	$\hat{m}_{\mathbb{R}}$	$\lambda_{\mathbb{R}}$	$\omega_{\mathbb{R}}$	$E_{\mathbb{R}}$
6R14B	$\xrightarrow{\text { - }}$ -	-	\pm	+	+	-	+	4	2	1	1	1	-1	1	-1
6R15A	\rightarrow -	+	\pm	+	+	+	-	4	2	1	1	1	-1	1	-1
6R15B	\cdots - -	-	\pm	+	+	+	-	4	2	2	1	1	1	1	1
6R16A	\rightarrow -	+	\pm	+	+	+	+	4	4	2	1	1	-1	1	-1
6R16B	$\stackrel{\text { ¢ }}{\text { - }}$ - -	-	\pm	+	+	+	+	4	4	2	1	1	-1	1	-1
6R17A	\rightarrow -	+	\pm	+	+	-	+	4	2	2	1	1	1	1	1
6R17B	$\stackrel{\text { - }}{\text { - }}$ -	-	\pm	$+$	+	-	+	4	2	1	1	1	-1	1	-1
6R18A	$\rightarrow 0$ - - - -	+	\pm	+	+	+	+	4	4	4	1	1	1	1	1
6R18B	$\stackrel{\text { - }}{\text { - }}$ -	-	\pm	+	+	$+$	+	4	4	1	1	1	1	1	1
6R19A	\rightarrow - ${ }_{\text {- }}^{\text {- }}$	+	\pm	+	+	+	-	4	2	1	1	1	-1	1	-1
6R19B	$\stackrel{\text { - }}{\text { - }}$ - - -	-	\pm	+	+	+	-	4	2	2	1	1	1	1	1
6R20A	\rightarrow -	+	\pm	+	+	-	-	4	1	1	1	1	1	1	1
6R20B	$\stackrel{\text { - }}{\text { - }}$ -	-	\pm	+	+	-	-	4	1	1	1	1	1	1	1
6R21A	$\rightarrow 0-{ }^{-}$	+	\pm	+	+	+	-	4	2	2	1	1	1	1	1
6R21B	$\stackrel{\text { - }}{\text { - }}$ -	-	\pm	+	+	+	-	4	2	1	1	1	-1	1	-1
6R22A	\rightarrow - ${ }_{\text {- }}^{\text {- }}$	+	\pm	+	+	+	+	4	1	1	1	1	1	1	1
6R22B	$\stackrel{\text { - }}{\text { - }}$ - - -	-	\pm	+	+	+	+	4	1	1	1	1	1	1	1
6R23aA	$\rightarrow 0-$ -	+	+	+	+	-	+	4	1	1	1	1	1	1	1
6R23aB	$\stackrel{\text { ®- }}{\text { - }}$ -	-	+	+	+	-	+	4	1	1	1	1	1	1	1
6R23bA	\rightarrow -	+	-	+	+	-	+	4	1	1	1	2	-1	1	-1
6R23bB	$\stackrel{\text { - }}{\text { - }}$ - -	-	-	+	+	-	+	4	1	1	1	2	-1	1	-1
6R24A	\rightarrow - - - - -	+	\pm	+	+	+	+	4	4	2	1	1	-1	1	-1
6R24B	$\stackrel{\text { - }}{\text { - }}$ - ${ }_{\text {- }}$	-	\pm	+	+	+	+	4	4	2	1	1	-1	1	-1
6R25A	$\rightarrow \stackrel{\text { - }}{ }$ -	+	\pm	+	+	+	+	4	4	1	1	1	1	1	1
6R25B	$\stackrel{\square}{*}$	-	\pm	+	+	+	+	4	4	4	1	1	1	1	1
6R26A	\rightarrow -	+	\pm	+	+	-	+	4	2	1	1	1	-1	1	-1
6R26B	$\stackrel{\text { - }}{\text { - }}$ -	-	\pm	+	+	-	+	4	2	2	1	1	1	1	1
6R27A	\rightarrow -	+	\pm	+	+	+	+	4	4	2	1	1	-1	1	-1
6R27B	$\stackrel{\text { - }}{*}$ -	-	\pm	+	+	+	+	4	4	2	1	1	-1	1	-1

4.6 $\quad C_{2} \times D_{4}$ curves at finite places $v \mid 2$

In order to use the results of Section 3.5, we impose the condition that our $C_{2} \times D_{4}$ curves belong to the family \mathcal{C} given in Proposition 3.5 .34 at 2 -adic places. Theorem 3.5.36 yields $\lambda_{v}=1$ in this case. Moreover, E_{v} and ω_{v} are as follows.

Lemma 4.6.17. $E_{v}=1$ for all curves $C \in \mathcal{C}$.
Proof. See Section 6.5.
Lemma 4.6.18. $\omega_{v}=1$ for all curves $C \in \mathcal{C}$.
Proof. By Corollary $3.5 .33, J$ has split totally toric reduction. The result follows from [10] [Proposition 3.23].

Theorem 4.6.19. Conjecture 4.4.10 holds for places $v \mid 2$ such that $C \in \mathcal{C}$.
Proof. Clear from Theorem 3.5.36 and Lemmata 4.6.17, 4.6.18.

4.7 $\quad C_{2} \times D_{4}$ curves at finite places $v \nmid 2$

Notation

In this section, we fix a finite place $v \in M_{\mathcal{K}}$ such that $v \nmid 2$ and denote by K the completion \mathcal{K}_{v} of \mathcal{K} at v. We let \mathcal{O}_{K} be the ring of integers of K, choose a uniformizer π and denote by v the corresponding normalized valuation. Let $G a l_{K}$ denote the Galois group of \bar{K} over K, Frob the Frobenius automorphism and I_{K} the inertia subgroup.

For a given $C_{2} \times D_{4}$ curve C, we wish to compute λ_{v}, E_{v} and ω_{v}. By Theorem 3.2.16, this means computing Tamagawa numbers at v for J and \hat{J}, deficiency at v for C and \hat{C}, E_{v} and ω_{v}. As proven in Chapters 5 and 6 , this can be done once we know the cluster picture of C at v and its $C_{2} \times D_{4}$ factorization together with some specific local data. We therefore consider all the possible semistable reduction types of C over the local field K together with each possible $C_{2} \times D_{4}$ factorization and compute λ_{v}, E_{v} and ω_{v} in each case. The results are tabulated below.

Table convention

Each table corresponds to a specific reduction type with a specific $C_{2} \times D_{4}$ factorization. In a given table, each row corresponds to a particular Galois action and values of extra invariants. The first column names the case considered, the second column gives the corresponding cluster picture for C (using without loss of generality the symmetry between the roots of $G_{2}(x)$ and $G_{3}(x)$, blue diamonds and purple stars), the Tamagawa number of J and the deficiency for C. The third, fourth and fifth
columns specify the valuations of the leading terms of $G(x)$ and $L(x)$ as well as the valuation of Δ_{G}. The last column before the vertical double lines gives conditions on invariants of C that determine the Galois action on the cluster pictures of C and \hat{C}. We use the dash symbol "-" to mean that the value of a given invariant is not determined by the case considered. The vertical double lines represent the application of the Richelot isogeny. The next column after the vertical double line therefore gives the balanced representative of the cluster picture of \hat{C}, the Tamagawa number of \hat{J} and the deficiency of \hat{C}. Finally the three last columns compute λ_{v}, E_{v} and ω_{v}.

Tables are indexed by reduction types for C, where for a given type, each $C_{2} \times D_{4}$ factorization for $G(x)$ is given a particular number, followed by a letter which indicates a specific Galois action. Type 2 cases are called GR for Good Reduction, type $1_{2 a}$ cases are called ON for One Node, type $I_{2 a, 2 b}$ cases TN for Two Nodes, type $U_{2 a, 2 b, 2 n}$ are called U for Ubereven and types 1×1 are called TC for Two Cusps. The following example illustrates this construction.

Example 4.7.20.

Let C / K be a $C_{2} \times D_{4}$ curve with factorization $G(x)=G_{1}(x) G_{2}(x) G_{3}(x)$ such that $G(x)$ has 2 double roots $\bmod \pi$. Following notation in Section 3.4, possible types for C are A) $I_{2 a, 2 b}^{+,+}$, B) $I_{2 a, 2 b}^{+,-}$, C) $I_{2 a, 2 b}^{-,+}$, D) $\left.I_{2 a, 2 b}^{-,-}, ~ E\right) ~ I_{2 a^{\sim} 2 a}^{+}$and F) $I_{2 a \sim 2 a}^{-}$for some $a, b \in \frac{1}{2} \mathbb{Z}$ (all curves considered are assumed to be semistable; $2 a, 2 b \in \mathbb{Z}$ follows directly from the semistability criterion 3.4.29). First note that Tamagawa numbers for J, \hat{J} and deficiency for C and \hat{C} depend on the exact type of C. We therefore have to consider all types and give the conditions on C to differentiate them. In types $A, B, C, D, G a l_{K}$ acts trivially on clusters, while in types E and F, Frob permutes both clusters (see Table 3.1). To distinguish these types one needs to know the field of definition of the roots of $G(x)$. The signs in the types are given by the field of definition of the slopes of the tangents at the nodes on the reduced curve, which can be computed using Proposition 3.4.30.

Now the double roots of $G(x) \bmod \pi$ can be distributed among the 6 roots of its 3 quadratic factors. With the restriction that $G_{1}(x) \in K[x]$ by construction, this yields several cases to consider, each of them giving a different reduction type (cluster picture) for \hat{C} and therefore different values for λ_{v}, E_{v} and ω_{v}. All possibilities in that specific case are listed, defined and computed in Tables 4.9 to 4.22 ,

As an example, consider the curve $C / \mathbb{Q}_{17}: y^{2}=G_{1}(x) G_{2}(x) G_{3}(x)$, with

$$
G_{1}(x)=\left(x-17^{2}\right)\left(x+17^{2}\right), G_{2}(x)=\left(x-3+17^{6}\right)\left(x-3-17^{6}\right), G_{3}(x)=(x-1)(x-4)
$$

Here, $G(x)$ has two double roots when reduced modulo 17. These concern the roots $\alpha_{1},-\alpha_{1}$ of $G_{1}(x)$, say \mathfrak{t}_{1} is the twin cluster around the two red circles, and the roots α_{2}, β_{2} of $G_{2}(x)$, say \mathfrak{t}_{2} is the twin cluster around the blue diamonds. By Proposition
3.4.30 the sign of \mathfrak{t}_{1} is + since $T_{\alpha_{1}} \equiv 15 \bmod 17 \in \mathbb{F}_{17}^{\times 2}$, and the sign of \mathfrak{t}_{2} is + since $T_{\alpha_{2}} \equiv 16 \bmod 17 \in \mathbb{F}_{17}^{\times 2}$. The cluster picture of C is
 C is of type $I_{4,12}^{+,+}$(case TN1A in Table 4.9 below). It follows from the Richelot construction that

$$
\begin{gathered}
L_{1}(x)=\frac{1}{2913111186232305} x^{2}+1165244474459512 x-2913111186148784 \\
L_{2}(x)=5 x^{2}-167050 x+417605, \quad L_{3}(x)=-6 x^{2}-1165244474292462 x-501126
\end{gathered}
$$

Computing the roots of $L(x)$, we find that the cluster picture of \hat{C} is so that \hat{C} is of type $I_{8,24}^{+,+}$. Using Table 3.1 it is now possible to compute λ_{v} and ω_{v}. Moreover, from the cluster picture of C and the local data associated to this case, i.e. $v\left(\Delta_{G}\right)=0, T_{\alpha_{1}}, T_{\alpha_{2}} \in K^{\times 2}$, one can compute E_{v} (see Case TN1A in Chapter 6 for the computation).

Theorem 4.7.21. Let C be a $C_{2} \times D_{4}$ curve and v a place of \mathcal{K} of odd residue characteristic. If the cluster picture of C is one of Table 3.1, then Conjecture 4.4.10 holds for C at v whenever the $C_{2} \times D_{4}$ invariants involved in E_{v} are non-zero.

Proof. Follows since Tables 4.4 to 4.33 list all possible cases for $C_{2} \times D_{4}$ curves with the required cluster pictures and since in all cases we find $\lambda_{v}=E_{v} \omega_{v}$.
Table 4．4：C is of type 2，GR1

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$\left(A_{1}-B_{1}\right)^{2}$	\hat{C}	λ_{v}	w_{v}	E_{v}
GR1A	$\begin{aligned} & c_{v}=1, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ -\end{array}\right.$	0	－	$\hat{c}_{v}=1, \quad \hat{m}_{v}=1$	1	1	1
GR1B	$\begin{gathered} \text { • } \quad \begin{array}{c} \text { m } \\ c_{v}=1, \quad m_{v}=1 \end{array} \end{gathered}$	0	$\left\{\begin{array}{l}\equiv \mathrm{F}(2) \\ \equiv r(2)\end{array}\right.$	$2 r$	$\in K^{\times 2}$	$\begin{aligned} & \begin{array}{l} \quad \hat{m}_{v}=1 \\ \hat{c}_{v}=1, \\ \hline \end{array} \\ & \hline \end{aligned}$	1	1	1
GR1C	$\begin{gathered} \bullet \bullet m_{v}=1 \end{gathered}$	0	$\left\{\begin{array}{l}\equiv \mathrm{F}(2) \\ \equiv r(2)\end{array}\right.$	$2 r$	$\notin K^{\times 2}$	$\underbrace{\longrightarrow ⿴ 囗 十 七_{r+1}^{*}}_{\hat{c}_{v}=1, \quad \hat{m}_{v}=r+1}$	$(-1)^{r}$	1	$(-1)^{r}$

Notation：$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$ ．
Table 4.5: C is of type $1_{2 a}$, ON1

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{1}}$	\hat{C}	λ_{v}	w_{v}	E_{v}
ON1A	$\begin{aligned} & c_{v}^{+}=2 a, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ \equiv 0(2)\end{array}\right.$	0	$\in K^{\times 2}$	$\hat{c}_{v}=4 a, \quad \hat{m}_{v}=1$	-1	-1	1
ON1B	$\begin{aligned} & \overbrace{a}^{-} \\ & c_{v}=\widetilde{2 a}, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ \equiv 0(2)\end{array}\right.$	0	$\notin K^{\times 2}$	$\hat{c}_{v}=2, \quad \hat{m}_{v}=1$	$(-1)^{2 a}$	1	$(-1)^{2 a}$
ON1C	$\begin{aligned} & c_{v}^{+}=2 a, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ \equiv r(2)\end{array}\right.$	$2 r$	$\in K^{\times 2}$	$\hat{c}_{v}=4 a, \quad \hat{m}_{v}=1$	-1	-1	1
ON1D	$\begin{aligned} & c_{v}=\widetilde{2 a}, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ \equiv r(2)\end{array}\right.$	$2 r$	$\notin K^{\times 2}$	$\hat{c}_{v}=2, \quad \hat{m}_{v}=1$	$(-1)^{2 a}$	1	$(-1)^{2 a}$

[^6]$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$.
Table 4.6: C is of type $1_{2 a}$, ON2

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{2}}$	\hat{C}	λ_{v}	w_{v}	E_{v}
ON2A	$\begin{aligned} & c_{v}=2 a, \quad m_{v}=1 \\ & c_{0} \bullet \bullet \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ -\end{array}\right.$	0	$\in K^{\times 2}$	$\begin{aligned} & \hat{c}_{2 a}^{+} \bullet \\ & \hat{c}_{v}=4 a, \quad \hat{m}_{v}=1 \end{aligned}$	-1	-1	1
ON2B	$\begin{aligned} & c_{v}^{-} \text {• } \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ -\end{array}\right.$	0	$\notin K^{\times 2}$		$(-1)^{2 a}$	1	$(-1)^{2 a}$
ON2C	$\begin{aligned} & m_{v}^{+} \text {• } \\ & c_{v}=2 a, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -\end{array}\right.$	$2 r$	$\in K^{\times 2}$	$\hat{c}_{v}=4 a, \quad \hat{m}_{v}=1$	-1	-1	1
ON2D	$\begin{aligned} & c_{v}^{-} \bullet \widetilde{2 a}, \quad m_{v}=1 \\ & c_{0} \bullet \cdots \end{aligned}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -\end{array}\right.$	$2 r$	$\notin K^{\times 2}$	- $\hat{c}_{v}=2, \quad \hat{m}_{v}=1$	$(-1)^{2 a}$	1	$(-1)^{2 a}$

Notation: $T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$.
Table 4.7: C is of type $1_{2 a}$, ON3

| Isogeny | C | $v(c)$ | $\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$ | $v\left(\Delta_{G}^{2}\right)$ | $T_{\alpha_{2}}$ | \hat{C} | λ_{v} | w_{v} |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |E_{v}

Notation: $T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\beta_{2}\right)\left(\alpha_{2}-\beta_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$.
Table 4.8: C is of type $1_{2 a}$, ON4

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{1}}$	\hat{C}	λ_{v}	w_{v}	E_{v}
ON4A	$c_{v}=2 a, \quad m_{v}=1$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	$\in K^{\times 2}$	$\hat{c}_{v}=a, \quad \hat{m}_{v}=1$	-1	-1	1
ON4B	$c_{v}=2, \quad m_{v}=1$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	$\notin K^{\times 2}$	$\hat{c}_{v}=\widetilde{a}, \quad \hat{m}_{v}=1$	$(-1)^{a}$	1	$(-1)^{a}$

Notation: $T_{\alpha_{1}}=2 c \alpha_{1}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$.
Table 4.9: C is of type $I_{2 a, 2 b}$, TN1

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{1}}, T_{\alpha_{2}}$	\hat{C}	λ_{v}	w_{v}	E_{v}
TN1A	$\begin{aligned} & \bullet \bullet_{a}^{+}{ }_{b}^{+}{ }_{0}^{+} \\ & c_{v}=4 a b, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ -\end{array}\right.$	0	$\in K^{\times 2}, \in K^{\times 2}$	$\begin{aligned} & \bullet \mathbf{\omega}_{2 a}^{+} \bullet \mathbf{\omega}_{2 b}^{+} \bullet \\ & \hat{c}_{v}=16 a b, \quad \hat{m}_{v}=1 \end{aligned}$	1	1	1
TN1B		0	$\left\{\begin{array}{l}\equiv 0 \\ -\end{array}\right.$	0	$\notin K^{\times 2}, \in K^{\times 2}$	$\begin{aligned} & \underbrace{-}_{2 a} \mathbf{\omega}_{2 a}^{-} \oplus \mathbf{D}_{2 b}^{+} \bullet \\ & \hat{c}_{v}=8 b, \quad \hat{m}_{v}=1 \end{aligned}$	$(-1)^{2 a+1}$	-1	$(-1)^{2 a}$
TN1C	$\begin{gathered} \bigoplus_{a}^{+} m_{v}^{-}=1 \\ c_{v}=2 a \tilde{2 b}, \quad m_{v} \end{gathered}$	0	$\left\{\begin{array}{l}\equiv 0 \\ -\end{array}\right.$	0	$\in K^{\times 2}, \notin K^{\times 2}$	$\begin{aligned} & \boldsymbol{\omega}_{2 a}^{+} \bullet \mathbf{\omega}_{2 b}^{-} \bullet \\ & \hat{c}_{v}=8 a, \quad \hat{m}_{v}=1 \end{aligned}$	$(-1)^{2 b+1}$	-1	$(-1)^{2 b}$
TN1D	$\begin{aligned} & c_{v}^{-}=\widetilde{2 a} \tilde{2 b}, \quad m_{v}=1 \\ & c_{v}^{-} \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ -\end{array}\right.$	0	$\notin K^{\times 2}, \notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{2 a}^{-} \mathbf{o}_{2 b}^{-} \bullet \\ & \hat{c}_{v}=4, \quad \hat{m}_{v}=1 \end{aligned}$	$(-1)^{2 a+2 b}$	1	$(-1)^{2 a+2 b}$

Notation: $T_{\alpha_{1}}=c\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right), T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$.
Table 4.10: C is of type $I_{2 a, 2 b}$, TN1

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{1}}, T_{\alpha_{2}}$	\hat{C}	λ_{v}	w_{v}	E_{v}
TN1E	$c_{v}=4 a b, \quad m_{v}=1$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$2 r>0$	$\in K^{\times 2}, \in K^{\times 2}$	$\hat{c}_{v}=16 a b, \quad \hat{m}_{v}=1$	1	1	1
TN1F	$c_{v}=\widetilde{2 a} 2 b, \quad m_{v}=1$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$2 r>0$	$\notin K^{\times 2}, \in K^{\times 2}$	$\hat{c}_{v}=8 b, \quad \hat{m}_{v}=1$	$(-1)^{2 a+1}$	-1	$(-1)^{2 a}$
TN1G	$c_{v}=2 a \widetilde{2 b}, \quad m_{v}=1$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$2 r>0$	$\in K^{\times 2}, \notin K^{\times 2}$	$\hat{c}_{v}=8 a, \quad \hat{m}_{v}=1$	$(-1)^{2 b+1}$	-1	$(-1)^{2 b}$
TN1H	$\begin{aligned} & \overbrace{a}^{-} \widetilde{\vartheta_{v}^{-}} \\ & c_{v}=\widetilde{2 a} \tilde{2 b}, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$2 r>0$	$\notin K^{\times 2}, \notin K^{\times 2}$	$\hat{c}_{v}=4, \quad \hat{m}_{v}=1$	$(-1)^{2 a+2 b}$	1	$(-1)^{2 a+2 b}$

Notation: $T_{\alpha_{1}}=c\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right), T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$.
Table 4.11: C is of type $I_{2 a, 2 b}$, TN2

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{2}}, T_{\alpha_{3}}$	$\left(A_{1}-B_{1}\right)^{2}$	\hat{C}	λ_{v}	w_{v}	E_{v}
TN2A	$\begin{aligned} & c_{a}^{+} \mathbf{m}_{b}^{+} \bullet 0_{0} \\ & c_{v}=4 a b, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ 0\end{array}\right.$	0	$\in K^{\times 2}, \in K^{\times 2}$	$\in K^{\times 2}$	$\begin{aligned} & \bigoplus_{2 a}^{+} \bullet \underbrace{+}_{2 b} \mapsto \\ & \hat{c}_{v}=16 a b, \quad \hat{m}_{v}=1 \end{aligned}$	1	1	1
TN2B	$\begin{aligned} & \omega_{a}^{-}{ }_{0}^{+} \mathbf{v}_{b}^{+} \bullet 0_{0} \\ & c_{v}=\widetilde{2 a} 2 b, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ 0\end{array}\right.$	0	$\notin K^{\times 2}, \in K^{\times 2}$	$\in K^{\times 2}$	$\begin{aligned} & \hat{c}_{2 a}^{-} \odot \underbrace{+}_{2 b} \\ & \hat{c}_{v}=8 b, \quad \hat{m}_{v}=1 \end{aligned}$	$(-1)^{2 a+1}$	-1	$(-1)^{2 a}$
TN2C	$\begin{aligned} & { }_{c}^{-\widetilde{2 a}{ }^{-} \mathbf{D}_{b}^{-} \bullet} \quad m_{v}=1 \\ & c_{v}=\widetilde{0} \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ 0\end{array}\right.$	0	$\notin K^{\times 2}, \notin K^{\times 2}$	$\in K^{\times 2}$	$\begin{aligned} & \hat{c}_{2 a}^{-} \omega_{2 b}^{-} \quad \hat{m}_{v}=1 \\ & 0 \end{aligned}$	$(-1)^{2 a+2 b}$	1	$(-1)^{2 a+2 b}$
TN2D	$\begin{aligned} & c_{v}=2 a, \quad m_{v}=1 \\ & c_{v} \bullet 0_{0} \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ 0\end{array}\right.$	0	-, -	$\notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{2 a}^{+} \bullet \overbrace{2 a} \\ & \hat{c}_{v}=4 a, \quad \hat{m}_{v}=1 \end{aligned}$	-1	-1	1
TN2E		0	$\left\{\begin{array}{l}\equiv 0 \\ 0\end{array}\right.$	0	-, -	$\notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{2 a}^{-} \quad \hat{m}_{2}=2, \quad \hat{m}_{v}=1 \\ & \hat{c}_{v} \end{aligned}$	$(-1)^{2 a}$	1	$(-1)^{2 a}$

Table 4.12: C is of type $I_{2 a, 2 b}$, TN2

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{2}}, T_{\alpha_{3}}$	$\left(A_{1}-B_{1}\right)^{2}$	\hat{C}	λ_{v}	w_{v}	E_{v}
TN2F		0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$2 r$	$\in K^{\times 2}, \in K^{\times 2}$	$\in K^{\times 2}$	\square \square $\hat{c}_{v}=16 a b, \quad \hat{m}_{v}=1$	1	1	1
TN2G	$\begin{aligned} & c_{v}=\widetilde{2 a} 2 b, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$2 r$	$\notin K^{\times 2}, \in K^{\times 2}$	$\in K^{\times 2}$	\square $\hat{c}_{v}=8 b, \quad \hat{m}_{v}=1$	$(-1)^{2 a+1}$	-1	$(-1)^{2 a}$
TN2H	$\square_{a}^{-} \underbrace{-}_{b} \bullet 0_{0}$ $c_{v}=\widetilde{2 a 2} \widetilde{2 b}, \quad m_{v}=1$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$2 r$	$\notin K^{\times 2}, \notin K^{\times 2}$	$\in K^{\times 2}$	\square $\hat{c}_{v}=4, \quad \hat{m}_{v}=1$	$(-1)^{2 a+2 b}$	1	$(-1)^{2 a+2 b}$
TN2I		0	$\left\{\begin{array}{l}\equiv r \\ -r\end{array}\right.$	$2 r$	-, -	$\notin K^{\times 2}$		$(-1)^{r+1}$	-1	$(-1)^{r}$
TN2J	$\begin{aligned} & c_{v}=\tilde{2 a}, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$2 r$	-, -	$\notin K^{\times 2}$		$(-1)^{2 a+r}$	1	$(-1)^{2 a+r}$

Notation: $T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right), T_{\alpha_{3}}=c\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)\left(\alpha_{3}-\beta_{2}\right)$, $\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$.
Table 4.13: C is of type $I_{2 a, 2 b}$, TN3

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{1}}, T_{\alpha_{2}}$	\hat{C}	λ_{v}	w_{v}	E_{v}
TN3A	$\begin{aligned} & c_{v}=4 a b, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ 0\end{array}\right.$	0	$\in K^{\times 2}, \in K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}^{+}=4 a b, \quad \hat{m}_{v}=1 \\ & \hat{c}_{2}^{+} \rightarrow \omega_{0} \end{aligned}$	1	1	1
TN3B		0	$\left\{\begin{array}{l}\equiv 0(2) \\ 0\end{array}\right.$	0	$\notin K^{\times 2}, \in K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=2 b, \quad \hat{m}_{v}^{+}=1 \end{aligned}$	$(-1)^{2 a+1}$	-1	$(-1)^{2 a}$
TN3C		0	$\left\{\begin{array}{l}\equiv 0(2) \\ 0\end{array}\right.$	0	$\in K^{\times 2}, \notin K^{\times 2}$	$\begin{aligned} & \text { O } \quad \begin{array}{l} -\frac{b}{2} \\ \hat{c}_{v}=4 a \tilde{b}, \quad \hat{m}_{v}=1 \end{array} \end{aligned}$	$(-1)^{b+1}$	-1	$(-1)^{b}$
TN3D	$\begin{aligned} & c_{v}^{-} \widetilde{\overbrace{a}^{-}} \widetilde{2 b}, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ 0\end{array}\right.$	0	$\notin K^{\times 2}, \notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=2 \tilde{b}, \quad \hat{m}_{v}=1 \end{aligned}$	$(-1)^{2 a+b}$	1	$(-1)^{2 a+b}$

Notation: $T_{\alpha_{1}}=c\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right), T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$.
$\omega_{a} \bullet \bullet_{0} \bullet$
Table 4.14: C is of type $I_{2 a, 2 b}$, TN4

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{3}}, T_{\alpha_{1}}$	\hat{C}	λ_{v}	w_{v}	E_{v}
TN4A	$c_{v}=4 a b, \quad m_{v}=1$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	$\in K^{\times 2}, \in K^{\times 2}$	$\hat{c}_{v}=4 a b, \quad \hat{m}_{v}=1$	1	1	1
TN4B	$\begin{aligned} & c_{v}=\widetilde{2 a} 2 b, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	$\notin K^{\times 2}, \in K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=2 b, \quad \hat{m}_{v}^{+}=1 \end{aligned}$	$(-1)^{2 a+1}$	-1	$(-1)^{2 a}$
TN4C	$\begin{aligned} & c_{v}=4 a, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	$\in K^{\times 2}, \notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=4 a \tilde{b}, \quad \hat{m}_{v}=1 \\ & -\quad-\quad \end{aligned}$	$(-1)^{b+1}$	-1	$(-1)^{b}$
TN4D	$\begin{aligned} & c_{v}=2 \widetilde{2 a}, \quad m_{v}^{-}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	$\notin K^{\times 2}, \notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=2 \tilde{b}, \quad \hat{m}_{v}=1 \end{aligned}$	$(-1)^{2 a+b}$	1	$(-1)^{2 a+b}$

Notation: $T_{\alpha_{3}}=c\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)\left(\alpha_{3}-\beta_{2}\right), T_{\alpha_{1}}=2 c \alpha_{1}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$.
Table 4.15: C is of type $I_{2 a, 2 b}$, TN5

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{1}}, T_{\alpha_{3}}$	${ }^{\text {C }}$	λ_{v}	w_{v}	E_{v}
TN5A	$\begin{aligned} & \overbrace{a}^{+} \rightarrow m_{b}^{+} \bullet \text { a } \\ & c_{v}=4 a b, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	$\in K^{\times 2}, \in K^{\times 2}$	$\begin{aligned} & \hat{c}_{\frac{1}{2}}^{+} \boldsymbol{v}_{\frac{a}{2}}^{+} \\ & \hat{c}_{v}=a b, \quad \hat{m}_{v}=1 \end{aligned}$	1	1	1
TN5B	$c_{v}=4 b, \quad m_{v}=1$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	$\notin K^{\times 2}, \in K^{\times 2}$	$\hat{c}_{v}=\tilde{a} b, \quad \hat{m}_{v}=1$	$(-1)^{a+1}$	-1	$(-1)^{a}$
TN5C	$\begin{aligned} & \omega_{a}^{+} \quad m_{b}^{-} \bullet \text { a } \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	$\in K^{\times 2}, \notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{\frac{b}{2}}^{-} \tilde{c}_{\frac{a}{2}}^{+} \\ & \hat{c}_{v}=a \tilde{b}, \quad \hat{m}_{v}=1 \end{aligned}$	$(-1)^{b+1}$	-1	$(-1)^{b}$
TN5D	$\begin{aligned} & c_{v}=4, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	$\notin K^{\times 2}, \notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{\frac{1}{2}}^{-} \mathbf{c}_{\frac{a}{2}}^{-} \\ & \hat{c}_{v}=\tilde{a} \tilde{b}, \quad \hat{m}_{v}=1 \end{aligned}$	$(-1)^{a+b}$	1	$(-1)^{a+b}$

Notation: $T_{\alpha_{1}}=c 2 \alpha_{1}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right), T_{\alpha_{3}}=c\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)\left(\alpha_{3}-\beta_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$.
Table 4.16: C is of type $I_{2 a, 2 b}$, TN6

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{1}}, T_{-\alpha_{1}}$	$\left(A_{2}-A_{3}\right)^{2}$	\hat{C}	λ_{v}	w_{v}	E_{v}
TN6A		0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	$\in K^{\times 2}, \in K^{\times 2}$	$\in K^{\times 2}$		1	1	1
TN6B		0	$\left\{\begin{array}{l}\equiv 0 \\ - \\ -\end{array}\right.$	0	$\notin K^{\times 2}, \in K^{\times 2}$	$\in K^{\times 2}$		$(-1)^{a+1}$	-1	$(-1)^{a}$
TN6C		0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	$\notin K^{\times 2}, \notin K^{\times 2}$	$\in K^{\times 2}$		$(-1)^{a+b}$	1	$(-1)^{a+b}$
TN6D		0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	-, -	$\notin K^{\times 2}$		-1	-1	1
TN6E		0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	0	-, -	$\notin K^{\times 2}$	$\underbrace{\text { and }}$	$(-1)^{a}$	1	$(-1)^{a}$

Notation: $T_{\alpha_{1}}=2 c \alpha_{1}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\beta_{3}\right), T_{-\alpha_{1}}=-2 c \alpha_{1}\left(-\alpha_{1}-\alpha_{2}\right)\left(-\alpha_{1}-\beta_{2}\right)\left(-\alpha_{1}-\beta_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$.
Table 4.17: C is of type $I_{2 a, 2 b}$, TN7

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{2}}, T_{\beta_{2}}$	$\left(A_{2}-B_{2}\right)^{2}$	\hat{C}	λ_{v}	w_{v}	E_{v}
$\begin{aligned} & \text { TN7A } \\ & a<b \end{aligned}$	$\begin{aligned} & c_{a}^{+}{ }_{c}^{+}{ }_{b}^{+} \bullet 0_{0} \\ & c_{v}=4 a b, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ 0\end{array}\right.$	$2 a$	$\in K^{\times 2}, \in K^{\times 2}$	$\in K^{\times 2}$	$\underbrace{}_{\hat{c}_{v}=4 a b, \quad \hat{m}_{v}=1}$	1	1	1
$\begin{aligned} & \text { TN7B } \\ & a<b \end{aligned}$		0	$\left\{\begin{array}{l}\equiv 0 \\ 0\end{array}\right.$	$2 a$	$\notin K^{\times 2}, \in K^{\times 2}$	$\notin K^{\times 2}$	$\underbrace{}_{\hat{c}_{v}=2 b, \quad \hat{m}_{v}=1}$	$(-1)^{2 a+1}$	-1	$(-1)^{2 a}$
$\begin{aligned} & \text { TN7C } \\ & a<b \end{aligned}$		0	$\left\{\begin{array}{l}\equiv 0 \\ 0\end{array}\right.$	$2 a$	$\in K^{\times 2}, \notin K^{\times 2}$	$\notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=2 a, \quad \hat{m}_{v}=b+a+1 \end{aligned}$	$(-1)^{a+b+1}$	-1	$(-1)^{a+b}$
$\begin{aligned} & \text { TN7D } \\ & a<b \end{aligned}$	$\begin{aligned} & c_{v}=\widetilde{2 a} \widetilde{2 b}, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ 0\end{array}\right.$	$2 a$	$\notin K^{\times 2}, \notin K^{\times 2}$	$\in K^{\times 2}$		$(-1)^{a+b}$	1	$(-1)^{a+b}$

Notation: $T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\beta_{2}\right)\left(\alpha_{2}-\beta_{3}\right), T_{\beta_{2}}=c\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{2}-\alpha_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x, \quad D=\operatorname{gcd}(2 a, b-a)$.
Table 4.18: C is of type $I_{2 a, 2 a}$, TN7

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{2}}, T_{\beta_{2}}$	$\left(A_{2}-B_{2}\right)^{2}$	\hat{C}	λ_{v}	w_{v}	E_{v}
TN7E		0	$\left\{\begin{array}{l}\equiv 0(2) \\ 0(2)\end{array}\right.$	$2 a$	$\in K^{\times 2}, \in K^{\times 2}$	$\in K^{\times 2}$	$\begin{aligned} & \boldsymbol{v}_{a}^{+} \rightarrow \oplus_{a}^{+} \bullet 0_{0} \\ & \hat{c}_{v}=4 a^{2}, \quad \hat{m}_{v}=1 \end{aligned}$	1	1	1
TN7F	$\begin{aligned} & c_{a}^{-}{ }_{a}^{+} \bullet 0_{a}^{+} \\ & c_{v}=2 a, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ 0(2)\end{array}\right.$	$2 a$	$\notin K^{\times 2}, \in K^{\times 2}$	$\notin K^{\times 2}$	$\begin{gathered} \hat{c}_{v}=2 a, \quad \hat{m}_{v}=1 \end{gathered}$	$(-1)^{2 a+1}$	-1	$(-1)^{2 a}$
TN7G	$\begin{aligned} & c_{v}=\widetilde{2 a 2 a}, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ 0(2)\end{array}\right.$	$2 a$	$\notin K^{\times 2}, \notin K^{\times 2}$	$\in K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=c_{v}, \quad \hat{m}_{v}=1 \end{aligned}$	1	1	1
TN7H	$\begin{aligned} & c_{a}+m_{v}^{+}{ }_{c}=2 a, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ 0(2)\end{array}\right.$	$2 a$	-, -	$\in K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}^{-}=2 a \tilde{a}, \quad \hat{m}_{v}=1 \\ & \hat{c}_{0}^{+} \bullet 0_{0} \end{aligned}$	$(-1)^{2 a+1}$	-1	$(-1)^{2 a}$
TN7I	$\begin{aligned} & c_{a}=\tilde{2 a}, \quad m_{v}=1 \\ & c_{v}-0_{0} \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ 0(2)\end{array}\right.$	$2 a$	-, -	$\notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=\tilde{2 a}, \quad \hat{m}_{v}=1 \end{aligned}$	1	1	1

Notation: $T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\beta_{2}\right)\left(\alpha_{2}-\beta_{3}\right), T_{\beta_{2}}=c\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{2}-\alpha_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$.
Table 4．19：C is of type $I_{2 a, 2 a}$ ，TN7

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{2}}, T_{\beta_{2}}$	$\left(A_{2}-B_{2}\right)^{2}$	\hat{C}	λ_{v}	w_{v}	E_{v}
TN7J	$\begin{gathered} c_{v} \mathbf{c}_{a}^{+} a_{a}^{+} m_{v}^{+} \bullet 0_{0} \\ \hline \end{gathered}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$\begin{gathered} 2 r+2 a \\ r>0 \end{gathered}$	$\in K^{\times 2}, \in K^{\times 2}$	$\in K^{\times 2}$		1	1	1
TN7K	$\begin{aligned} & \omega_{0}=2 \tilde{a} a, \quad m_{v}=1 \\ & c_{v}^{+} \bullet 0_{0}^{+} \end{aligned}$	0	$\left\{\begin{array}{l}\equiv r \\ =r \\ -r\end{array}\right.$（2）	$\begin{gathered} 2 r+2 a \\ r>0 \end{gathered}$	$\notin K^{\times 2}, \in K^{\times 2}$	$\notin K^{\times 2}$		$(-1)^{2 a+r+1}$	－1	$(-1)^{2 a+r}$
TN7L	$\underbrace{0_{0}^{-} \bullet 0_{0}^{-}}_{c_{v}=\widetilde{2 a 2 a}, \quad m_{v}=1}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$\begin{gathered} 2 r \\ \begin{array}{c} r \\ r \end{array}>0.2 a \end{gathered}$	$\notin K^{\times 2}, \notin K^{\times 2}$	$\in K^{\times 2}$	$\begin{array}{ccc} \hat{c}_{v}=c_{v}, & \hat{m}_{v}=1 \\ \hline ⿴ 囗 十 心 \end{array}$	1	1	1
TN7M	$\underbrace{+}_{c_{v}=2 a, m_{v}=1}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$\begin{gathered} 2 r \\ r \\ r \end{gathered}$	－，－	$\in K^{\times 2}$		$(-1)^{2 a+1}$	－1	$(-1)^{2 a}$
TN7N	$\underbrace{\omega_{0}^{2} \bullet 0_{0}}_{c_{v}=\tilde{2 a}, m_{v}=1}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$\begin{aligned} & 2 r+2 a \\ & r \gg 0 \end{aligned}$	－，－	$\notin K^{\times 2}$		$(-1)^{r}$	1	$(-1)^{r}$

Notation：$T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\beta_{2}\right)\left(\alpha_{2}-\beta_{3}\right), T_{\beta_{2}}=c\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{2}-\alpha_{3}\right)$ ，
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$ ．
Table 4.20: C is of type $I_{2 a, 2 b}$, TN8

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{1}}, T_{-\alpha_{1}}$	$\left(A_{1}-B_{1}\right)^{2}$	\hat{C}	λ_{v}	w_{v}	E_{v}
$\begin{aligned} & \text { TN8A } \\ & a<b \end{aligned}$	$\begin{aligned} & \underbrace{+}_{a} \bullet \overbrace{b}^{+} \text {• } \\ & c_{v}=4 a b, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ -\end{array}\right.$	$2 a$	$\in K^{\times 2}, \in K^{\times 2}$	$\in K^{\times 2}$		1	1	1
$\begin{aligned} & \text { TN8B } \\ & a<b \end{aligned}$	$\begin{aligned} & c_{v}=4 b, \quad m_{v}=1 \\ & c_{0}^{-} \bullet \overbrace{b}^{+} \\ & 0 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ -\end{array}\right.$	$2 a$	$\notin K^{\times 2}, \in K^{\times 2}$	$\notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=2 b, \quad \hat{m}_{v}=1 \end{aligned}$	-1	-1	1
$\begin{aligned} & \text { TN8C } \\ & a<b \end{aligned}$	$\begin{aligned} & c_{v}^{+} \bullet 4 a, \quad m_{v}=1 \\ & c_{v} \bullet \overbrace{b}^{-} \\ & 0 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ -\end{array}\right.$	$2 a$	$\in K^{\times 2}, \notin K^{\times 2}$	$\notin K^{\times 2}$		$(-1)^{a+b+1}$	-1	$(-1)^{a+b}$
$\begin{aligned} & \text { TN8D } \\ & a<b \end{aligned}$	$\begin{aligned} & c_{v} \bullet 4, \quad m_{v}=1 \\ & c_{v} \oplus \overbrace{b}^{-} \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ -\end{array}\right.$	$2 a$	$\notin K^{\times 2}, \notin K^{\times 2}$	$\in K^{\times 2}$		$(-1)^{a+b}$	1	$(-1)^{a+b}$

Notation: $T_{\alpha_{1}}=2 c \alpha_{1}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right), T_{-\alpha_{1}}=-2 c \alpha_{1}\left(-\alpha_{1}-\alpha_{2}\right)\left(-\alpha_{1}-\alpha_{3}\right)\left(-\alpha_{1}-\beta_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x, \quad D=\operatorname{gcd}(2 a, b-a)$.
Table 4.21: C is of type $I_{2 a, 2 a}$, TN8

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{1}}, T_{-\alpha_{1}}$	$\left(A_{1}-B_{1}\right)^{2}$	${ }^{\text {C }}$	λ_{v}	w_{v}	E_{v}
TN8E	$\begin{aligned} & \underbrace{+}_{a} \bullet \overbrace{a}^{+} \\ & c_{v}=4 a^{2}, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	$2 a$	$\in K^{\times 2}, \in K^{\times 2}$	$\in K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=4 a^{2}, \quad \hat{m}_{v}=1 \end{aligned}$	1	1	1
TN8F	$\begin{gathered} c_{a}^{-} \bullet \overbrace{a}^{+} \\ c_{v}=4 a, \quad m_{v}=1 \end{gathered}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	$2 a$	$\notin K^{\times 2}, \in K^{\times 2}$	$\notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=2 a, \quad \hat{m}_{v}=1 \end{aligned}$	-1	-1	1
TN8G	$\begin{gathered} c_{v}=4, \quad m_{v}=1 \end{gathered}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	$2 a$	$\notin K^{\times 2}, \notin K^{\times 2}$	$\in K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=c_{v}, \quad \hat{m}_{v}=1 \end{aligned}$	1	1	1
TN8H	$\begin{aligned} & c_{a}^{+} \bullet{ }_{a}=2 a, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	$2 a$	$-,-$	$\in K^{\times 2}$	$\begin{gathered} \hat{c}_{v}=4 a, \quad \hat{m}_{v}=1 \\ \hat{c}_{a}^{+} \end{gathered}$	-1	-1	1
TN8I	$\underbrace{}_{0}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	$2 a$	-, -	$\notin K^{\times 2}$	$\underbrace{}_{0}$	1	1	1

Notation: $T_{\alpha_{1}}=2 c \alpha_{1}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right), T_{-\alpha_{1}}=-2 c \alpha_{1}\left(-\alpha_{1}-\alpha_{2}\right)\left(-\alpha_{1}-\alpha_{3}\right)\left(-\alpha_{1}-\beta_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x, \quad D=\operatorname{gcd}(2 a, b-a)$.
Table 4.22: C is of type $I_{2 a, 2 a}$, TN8

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$T_{\alpha_{1}}, T_{-\alpha_{1}}$	$\left(A_{1}-B_{1}\right)^{2}$	\hat{C}	λ_{v}	w_{v}	E_{v}
TN8J	$\begin{aligned} & \underbrace{+}_{a} \bullet \underbrace{+}_{a} \text { • } \\ & c_{v}=4 a^{2}, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$\begin{gathered} 2 r+2 a \\ r>0 \end{gathered}$	$\in K^{\times 2}, \in K^{\times 2}$	$\in K^{\times 2}$	$\hat{c}_{v}=4 a^{2}, \quad \hat{m}_{v}=1$	1	1	1
TN8K	$\begin{aligned} & \underbrace{-}_{a} \underbrace{-}_{a}+m_{v}^{+}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$\begin{gathered} 2 r+2 a \\ r>0 \end{gathered}$	$\notin K^{\times 2}, \in K^{\times 2}$	$\notin K^{\times 2}$	$\hat{c}_{v}=2 a, \quad \hat{m}_{v}=\widetilde{r+1}$	$(-1)^{r+1}$	-1	$(-1)^{r}$
TN8L	$\begin{aligned} & c_{v}=4, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$\begin{gathered} 2 r+2 a \\ r>0 \end{gathered}$	$\notin K^{\times 2}, \notin K^{\times 2}$	$\in K^{\times 2}$	$\hat{c}_{v}=c_{v}, \quad \hat{m}_{v}=1$	1	1	1
TN8M	$\begin{gathered} c_{a}^{+} \bullet 2 a, \quad m_{v}=1 \\ c_{v}=2 \end{gathered}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$\begin{gathered} 2 r \\ r \end{gathered}+2 a$	-, -	$\in K^{\times 2}$	$\hat{c}_{v}=4 a, \quad \hat{m}_{v}=1$	-1	-1	1
TN8N	$\begin{aligned} & c_{v}=2, \quad m_{v}=1 \\ & c_{a}^{-} \bullet \overbrace{a} \end{aligned}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$\begin{gathered} 2 r+2 a \\ r>0 \end{gathered}$	-, -	$\notin K^{\times 2}$	$\hat{c}_{v}=2, \quad \hat{m}_{v}=\widetilde{r+1}$	$(-1)^{r}$	1	$(-1)^{r}$

Notation: $T_{\alpha_{1}}=2 c \alpha_{1}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right), T_{-\alpha_{1}}=-2 c \alpha_{1}\left(-\alpha_{1}-\alpha_{2}\right)\left(-\alpha_{1}-\alpha_{3}\right)\left(-\alpha_{1}-\beta_{3}\right)$,
$\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x, \quad D=\operatorname{gcd}(2 a, b-a)$.

Table 4.23: C is of type $U_{2 a, 2 b, 2 n}$, U1

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	c	$\left(A_{1}-B_{1}\right)^{2}$	C	λ_{v}	w_{v}	E_{v}
U1A		0	$\left\{\begin{array}{l}0 \\ 0\end{array}\right.$	0	$\in K^{\times 2}$	$\in K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=4 N, \quad \hat{m}_{v}=1 \\ & \\ & \hline \end{aligned}$	1	1	1
U1B		0	$\left\{\begin{array}{l}0 \\ 0\end{array}\right.$	0	$\notin K^{\times 2}$	$\in K^{\times 2}$	$\begin{aligned} & \hat{c}_{2 a}=4, \quad \hat{m}_{v}=1 \\ & \hat{c}_{2 n} \bullet \omega_{2 n} \\ & \hline \end{aligned}$	$(-1)^{N}$	1	$(-1)^{N}$
U1C		0	$\left\{\begin{array}{l}0 \\ 0\end{array}\right.$	0	$\in K^{\times 2}$	$\notin K^{\times 2}$	$\begin{aligned} & \underbrace{}_{2 a} \mathbf{v}_{2 b} \bullet \overbrace{2 b}^{+} \\ & \hat{c}_{v}=4 b+8 a, \quad \hat{m}_{v}=1 \end{aligned}$	-1	-1	1
U1D	$\begin{gathered} c_{v}=2 b, \\ m_{v}=2 a+1 \end{gathered}$	0	$\left\{\begin{array}{l}0 \\ 0\end{array}\right.$	0	$\notin K^{\times 2}$	$\notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=4 b, \quad \hat{m}_{v}=1 \\ & \hat{m}_{2 a} \odot \omega_{2 b} \odot \sigma_{0} \end{aligned}$	$(-1)^{2 a+1}$	-1	$(-1)^{2 a}$

[^7]Table 4.24: C is of type $U_{2 a, 2 b, 2 n}$, U 2

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	c	δ_{2}, δ_{3}	\hat{C}	λ_{v}	w_{v}	E_{v}
U2A		0	$\left\{\begin{array}{l}0 \\ 0\end{array}\right.$	0	$\in K^{\times 2}$	$\in K^{\times 2}$	$\begin{gathered} \hat{c}_{v}=N, \quad \hat{m}_{v}=1 \end{gathered}$	1	1	1
U2B	$c_{v}=4, \quad m_{v}=1$	0	$\left\{\begin{array}{l}0 \\ 0\end{array}\right.$	0	$\notin K^{\times 2}$	$\in K^{\times 2}$	$\hat{c}_{v}=\widetilde{N / D} \cdot \widetilde{D}, \quad \hat{m}_{v}=d$	$(-1)^{N}$	1	$(-1)^{N}$
U2C	$c_{v}=2 a+4 n, \quad m_{v}=1$	0	$\left\{\begin{array}{l}0 \\ 0\end{array}\right.$	0	$\in K^{\times 2}$	$\notin K^{\times 2}$		-1	-1	1
U2D	$\begin{gathered} c_{v}=2 a, \quad m_{v}=1 \end{gathered}$	0	$\left\{\begin{array}{l}0 \\ 0\end{array}\right.$	0	$\notin K^{\times 2}$	$\notin K^{\times 2}$	$\begin{aligned} & \hat{c}_{\frac{n}{2}}=a, \quad \hat{m}_{v}=\widetilde{n+1} \\ & \hat{c}_{v} \end{aligned}$	$(-1)^{n+1}$	-1	$(-1)^{n}$

$D=\operatorname{gcd}(a, b, n), N=a b+a n+b n, d=2$ if a, b, n are odd, $d=1$ otherwise.
Table 4.25: C is of type $U_{2 a, 2 b, 2 n}$, U3

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	c	δ_{2}, δ_{3}	\hat{C}	λ_{v}	w_{v}	E_{v}
$\begin{aligned} & \text { U3A } \\ & a<b \end{aligned}$	$\underbrace{+}_{\substack{ \\c_{v}=N, \quad m_{v}=1}}$	0	$\left\{\begin{array}{l}\equiv 0 \\ 0\end{array}\right.$	$2 a$	$\in K^{\times 2}$	$\in K^{\times 2}$	$\frac{\hat{c}_{v}=N, \quad \hat{m}_{v}=1}{\underbrace{}_{a+2 n} \bullet \bullet_{\frac{b-a}{a}}}+$	1	1	1
$\begin{gathered} \text { U3B } \\ a<b \end{gathered}$	$\begin{aligned} & c_{v}=\widetilde{N / D} \cdot \widetilde{D}, \quad m_{v}=d \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0 \\ 0\end{array}\right.$	$2 a$	$\notin K^{\times 2}$	$\in K^{\times 2}$		$(-1)^{2 n+a+b}$	1	$(-1)^{2 n+a+b}$

[^8] $\hat{D}=\operatorname{gcd}(2 a, b-a), \hat{d}=2$ if $2 a, b-a$ are odd, $\hat{d}=1$ otherwise .
Table 4.26: C is of type $U_{2 a, 2 b, 2 n}$, U3

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	c	δ_{2}, δ_{3}	C	λ_{v}	w_{v}	E_{v}
U3C	$\underbrace{\omega_{a} \bullet_{n} \underbrace{+}_{0}}_{c_{v}=N, \quad m_{v}=1}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ \equiv 0(2)\end{array}\right.$	$2 a$	$\in K^{\times 2}$	$\in K^{\times 2}$	$\underbrace{+}_{\hat{c}_{v}=N, \quad \hat{m}_{v}=1}$	1	1	1
U3D	$\underbrace{}_{c_{v}=\widetilde{N / D} \cdot \widetilde{D}, \quad m_{v}=d}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ \equiv 0\end{array}\right.$	$2 a$	$\notin K^{\times 2}$	$\in K^{\times 2}$	$\begin{gathered} \hat{c}_{v}^{-} \widetilde{2 a}(2 a+4 n), \hat{m}_{v}=1 \\ \hat{c}_{v}^{-} \end{gathered}$	$(-1)^{2 n}$	1	$(-1)^{2 n}$
U3E	$\begin{aligned} & c_{a} \underbrace{}_{a} \bullet_{a} \bullet_{n}^{+} \\ & c_{v}=2 a+4 n, \quad m_{v}=1 \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ \equiv 0 \text { (2) }\end{array}\right.$	$2 a$	$\in K^{\times 2}$	$\notin K^{\times 2}$	$\underbrace{\hat{c}_{v}=2 a(2 a+4 n), \quad \hat{m}_{v}=1}_{a}+$	$(-1)^{2 a+1}$	-1	$(-1)^{2 a}$
U3F		0	$\left\{\begin{array}{l}\equiv 0(2) \\ \equiv 0\end{array}\right.$	$2 a$	$\notin K^{\times 2}$	$\notin K^{\times 2}$	$\begin{gathered} \hat{c}_{v}^{+}=(2 a+4 n) 2 a, \hat{m}_{v}=1 \\ \hat{c}_{a+2 n}^{-} \end{gathered}$	$(-1)^{2 n+2 a+1}$	-1	$(-1)^{2 n+2 a}$

Notation: $\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$,
$D=\operatorname{gcd}(2 a, 2 n), N=4 a^{2}+8 a n, d=2$ if $2 a, 2 n$ are odd, $d=1$ otherwise.
Table 4.27: C is of type $U_{2 a, 2 b, 2 n}$, U3

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	c	δ_{2}, δ_{3}	C	λ_{v}	w_{v}	E_{v}
U3G		0	$\left\{\begin{array}{l}\equiv r \\ -r\end{array}(2)\right.$	$\begin{gathered} 2 a+2 r \\ r>0 \end{gathered}$	$\in K^{\times 2}$	$\in K^{\times 2}$		1	1	1
U3H		0	$\left\{\begin{array}{l}\equiv r \\ =r \\ -r\end{array}\right.$	$\begin{gathered} 2 a+2 r \\ r>0 \end{gathered}$	$\notin K^{\times 2}$	$\in K^{\times 2}$		$(-1)^{2 n}$	1	$(-1)^{2 n}$
U3I		0	$\left\{\begin{array}{l}\equiv r \\ -r\end{array}(2)\right.$	$\begin{gathered} 2 a+2 r \\ r>0 \end{gathered}$	$\in K^{\times 2}$	$\notin K^{\times 2}$		$(-1)^{2 a+1}$	-1	$(-1)^{2 a}$
U3J	$\begin{aligned} & c_{a}=2 a, \quad m_{v}=d \\ & c_{0} \bullet_{n} \end{aligned}$	0	$\left\{\begin{array}{l}\equiv \begin{array}{l}\text { a } \\ -r\end{array}(2) \\ \end{array}\right.$	$\begin{gathered} 2 a+2 r \\ r>0 \end{gathered}$	$\notin K^{\times 2}$	$\notin K^{\times 2}$		$(-1)^{2 n+2 a+1}$	-1	$(-1)^{2 n+2 a}$

Notation: $\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$,
$D=\operatorname{gcd}(2 a, 2 n), N=4 a^{2}+8 a n, d=2$ if $2 a, 2 n$ are odd, $d=1$ otherwise.
Table 4.28: C is of type $U_{2 a, 2 b, 2 n}$, U4

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	c	δ_{1}, δ_{2}	\hat{C}	λ_{v}	w_{v}	E_{v}
$\underset{a<b}{\mathrm{U} 4 \mathrm{~A}}$	\rightarrow \rightarrow $c_{v}=N, \quad m_{v}=1$	0	$\left\{\begin{array}{l}\equiv 0 \\ -\end{array}\right.$	$2 a$	$\in K^{\times 2}$	$\in K^{\times 2}$		1	1	1
$\begin{gathered} \mathrm{U} 4 \mathrm{~B} \\ a<b \end{gathered}$		0	$\left\{\begin{array}{l}\equiv 0 \\ -\end{array}\right.$	$2 a$	$\notin K^{\times 2}$	$\in K^{\times 2}$		$(-1)^{2 n+a+b}$	1	$(-1)^{2 n+a+b}$

$D=\operatorname{gcd}(2 a, 2 b, 2 n), N=4 a b+4 a n+4 b n, \hat{D}=\operatorname{gcd}(2 a, b-a)$.
Table 4.29: C is of type $U_{2 a, 2 b, 2 n}$, U4

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	c	δ_{1}, δ_{2}	${ }^{\text {C }}$	λ_{v}	w_{v}	E_{v}
U4C	$\begin{gathered} c_{v}=N, \quad m_{v}=1 \end{gathered}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	$2 a$	$\in K^{\times 2}$	$\in K^{\times 2}$	$\underbrace{+}_{\hat{c}_{v}=N, \quad \hat{m}_{v}=1}$	1	1	1
U4D		0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	$2 a$	$\notin K^{\times 2}$	$\in K^{\times 2}$	$\begin{gathered} \hat{c}_{v}=4, \quad \hat{m}_{v}=1 \end{gathered}$	$(-1)^{2 n}$	1	$(-1)^{2 n}$
U4E		0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	$2 a$	$\in K^{\times 2}$	$\notin K^{\times 2}$		-1	-1	1
U4F	$\begin{aligned} & c_{v}=2 a, \quad m_{v}=\overparen{2 n+1} \end{aligned}$	0	$\left\{\begin{array}{l}\equiv 0(2) \\ -\end{array}\right.$	$2 a$	$\notin K^{\times 2}$	$\notin K^{\times 2}$	$\begin{gathered} \hat{c}_{v}=2 a, \quad \hat{m}_{v}=1 \end{gathered}$	$(-1)^{2 n+1}$	-1	$(-1)^{2 n}$

Notation: $\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$,
$D=\operatorname{gcd}(2 a, 2 n), N=4 a^{2}+8 a n$.
Table 4.30: C is of type $U_{2 a, 2 b, 2 n}, \mathrm{U} 4$

Isogeny	C	$v(c)$	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	c	δ_{1}, δ_{2}	\hat{C}	λ_{v}	w_{v}	E_{v}
U4G	$\underbrace{c_{v}=N, \quad m_{v}=1}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$\begin{gathered} 2 a+2 r \\ r>0 \end{gathered}$	$\in K^{\times 2}$	$\in K^{\times 2}$		1	1	1
U4H	\square $\begin{gathered} c_{v}=\widetilde{N / D} \cdot \widetilde{D}, \\ m_{v}=\widetilde{2 n+1} \end{gathered}$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$\begin{gathered} 2 a+2 r \\ r>0 \end{gathered}$	$\notin K^{\times 2}$	$\in K^{\times 2}$		$(-1)^{2 n}$	1	$(-1)^{2 n}$
U4I	$c_{v}=2 a+4 n, \quad m_{v}=1$	0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$\begin{gathered} 2 a+2 r \\ r>0 \end{gathered}$	$\in K^{\times 2}$	$\notin K^{\times 2}$	$\hat{c}_{v}=2(2 a+4 n), \quad \hat{m}_{v}=1$	-1	-1	1
U4J		0	$\left\{\begin{array}{l}\equiv r(2) \\ -r\end{array}\right.$	$\begin{gathered} 2 a+2 r \\ r>0 \end{gathered}$	$\notin K^{\times 2}$	$\notin K^{\times 2}$		$(-1)^{2 n+1}$	-1	$(-1)^{2 n}$

Notation: $\tilde{x}=2$ if $2 \mid x$ and $\tilde{x}=1$ if $2 \nmid x$,
$D=\operatorname{gcd}(2 a, 2 n), N=4 a^{2}+8 a n$.
Table 4.31: C is of type $1 \times 1, \mathrm{TC} 1$
$\because \bullet \underbrace{}_{0} 0_{0}$

Isogeny	C	$v(c)$	δ_{1}	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$\left(A_{1}-B_{1}\right)^{2}$	\hat{C}	λ_{v}	w_{v}	E_{v}
TC1		$\equiv a \equiv b(2)$	-	$\left\{\begin{array}{l}v(c) \\ -v(c)\end{array}\right.$	$2 v(c)$	-		1	1	1

$\rightarrow 0_{a}$ - 图
Table 4.32: C is of type $1 \times 1, \mathrm{TC} 2$

Isogeny	C	$v(c)$	δ_{1}	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$\left(A_{1}-B_{1}\right)^{2}$	${ }^{\text {C }}$	λ_{v}	w_{v}	E_{v}
TC2A	$\begin{gathered} c_{v}=1, \quad m_{v}=1 \end{gathered}$	$\equiv a \equiv b(2)$	$\in K^{\times 2}$	$\left\{\begin{array}{l}v(c) \\ -v(c)\end{array}\right.$	$2 v(c)$	$\in K^{\times 2}$	$\begin{aligned} & \hat{c}_{v}=1, \quad \hat{m}_{v}=1 \end{aligned}$	1	1	1
TC2B	$c_{v}=1, \quad m_{v}=\widetilde{a+1}$	$\equiv a(2)$	$\notin K^{\times 2}$	$\left\{\begin{array}{l}v(c) \\ -v(c)\end{array}\right.$	$2 v(c)$	$\notin K^{\times 2}$	$\begin{array}{r} \hat{c}_{v}=1, \quad \hat{m}_{v}=\overparen{a}_{a+1} \end{array}$	1	1	1

Table 4．33：C is of type 1×1, TC3

Isogeny	C	$v(c)$	δ_{1}	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$\left(A_{1}-B_{1}\right)^{2}$	\hat{C}	λ_{v}	w_{v}	E_{v}
$\begin{aligned} & \text { TC3A } \\ & a<b \end{aligned}$	$\begin{aligned} & \because \underbrace{}_{a} \bullet \text { ® }_{b} \\ & c_{v}=1, \quad m_{v}=1 \end{aligned}$	$\equiv a \equiv b(2)$	$\in K^{\times 2}$	$\left\{\begin{array}{l} v(c)+2 a-b \\ -b-v(c) \end{array}\right.$	$2(a+b+v(c))$	－	$\begin{aligned} & \bullet \bullet \leftrightarrow \omega_{\frac{b-a}{2}} \\ & \hat{c}_{v}=1, \quad \hat{m}_{v}=1 \end{aligned}$	1	1	1
$\begin{aligned} & \text { TC3B } \\ & a<b \end{aligned}$		$\equiv a \equiv b(2)$	$\in K^{\times 2}$	$\left\{\begin{array}{l} v(c)+2 a-b-r \\ -b-v(c)-r \end{array}\right.$	$\begin{gathered} 2(a+b+v(c)+r) \\ r>0 \end{gathered}$	$\in K^{\times 2}$		1	1	1
$\begin{aligned} & \mathrm{TC3C} \\ & a<b \end{aligned}$	$\underset{c_{v}=1,}{ } \quad m_{v}=1$	$\equiv a \equiv b(2)$	$\in K^{\times 2}$	$\left\{\begin{array}{l} v(c)+2 a-b-r \\ -b-v(c)-r \end{array}\right.$	$\begin{gathered} 2(a+b+v(c)+r) \\ r>0 \end{gathered}$	$\notin K^{\times 2}$	$\begin{aligned} & \bullet \leftrightarrow ⿴ 囗 十 ⿱ ⿱ 卄 一 八 巳 r^{b-a} \\ & \hat{c}_{v}=1, \quad \hat{m}_{v}=r+1 \end{aligned}$	$(-1)^{r}$	1	$(-1)^{r}$
TC3D		$\equiv a(2)$	$\in K^{\times 2}$	$\left\{\begin{array}{l} \equiv 0(2) \\ v\left(u_{1}\right)-2 a-v(c) \end{array}\right.$	$2(2 a+v(c))$	－	$\begin{aligned} & \bullet \bullet \leftrightarrow \omega_{0} \\ & \hat{c}_{v}=1, \quad \hat{m}_{v}=1 \end{aligned}$	1	1	1
TC3E	$\begin{aligned} & \quad \bullet m_{v}=a \rightarrow \mathbf{D}_{a} \\ & c_{v}=1, \quad m_{0} \end{aligned}$	$\equiv a(2)$	$\notin K^{\times 2}$	$\left\{\begin{array}{l}\equiv 0(2) \\ v\left(u_{1}\right)-2 a-v(c)\end{array}\right.$	$2(2 a+v(c))$	－	$\begin{aligned} & \bullet \bullet \hat{m}_{v}=1 \\ & \hat{c}_{v}=1, \end{aligned}$	$(-1)^{a}$	1	$(-1)^{a}$

Table 4.34: C is of type 1×1, TC3

Isogeny	C	$v(c)$	δ_{1}	$\left\{\begin{array}{l}v(\ell) \\ v\left(\ell_{1}\right)\end{array}\right.$	$v\left(\Delta_{G}^{2}\right)$	$\left(A_{1}-B_{1}\right)^{2}$	\hat{C}	λ_{v}	w_{v}	E_{v}
TC3F		$\equiv a(2)$	$\in K^{\times 2}$	$\left\{\begin{array}{l} \equiv r(2) \\ v\left(u_{1}\right)-2 a-v(c)-r \end{array}\right.$	$\begin{gathered} 2(2 a+v(c)+r) \\ \quad r>0 \end{gathered}$	$\in K^{\times 2}$	$\begin{array}{ll} \hat{c}_{v}=1, & \hat{m}_{v}=1 \end{array}$	1	1	1
TC3G		$\equiv a(2)$	$\in K^{\times 2}$	$\left\{\begin{array}{l} \equiv r(2) \\ v\left(u_{1}\right)-2 a-v(c)-r \end{array}\right.$	$\begin{gathered} 2(2 a+v(c)+r) \\ r>0 \end{gathered}$	$\notin K^{\times 2}$		$(-1)^{r}$	1	$(-1)^{r}$
TC3H	$\begin{aligned} & \because \omega_{a} \bullet \mathbf{v a}_{a} \\ & c_{v}=1, \quad m_{v}=a+1 \end{aligned}$	$\equiv a(2)$	$\notin K^{\times 2}$	$\left\{\begin{array}{l} \equiv r(2) \\ v\left(u_{1}\right)-2 a-v(c)-r \end{array}\right.$	$\begin{gathered} 2(2 a+v(c)+r) \\ r>0 \end{gathered}$	$\in K^{\times 2}$	$\begin{array}{ll} \begin{array}{ll} \bullet \bullet_{r} & \hat{m}_{v}=1 \\ \hat{c}_{v}=1, & \\ \hline \end{array} \\ \hline \end{array}$	$(-1)^{a}$	1	$(-1)^{a}$
TC3I	$\underbrace{\overbrace{a} \bullet \mathbf{\omega}_{a}}_{c_{v}=1, \quad m_{v}=a+1}$	$\equiv a(2)$	$\notin K^{\times 2}$	$\left\{\begin{array}{l} \equiv r(2) \\ v\left(u_{1}\right)-2 a-v(c)-r \end{array}\right.$	$\begin{gathered} 2(2 a+v(c)+r) \\ \quad r>0 \end{gathered}$	$\notin K^{\times 2}$	$\underbrace{\omega_{r}}_{\hat{c}_{v}=1, \quad \hat{m}_{v}=\overrightarrow{r+1}}$	$(-1)^{a+r}$	1	$(-1)^{a+r}$

Chapter 5

Richelot isogeny in odd residue characteristic

5.1 Introduction

In this chapter, we prove the results presented in Tables 4.4 to 4.34 . Each of these tables takes a cluster picture for C with extra local data as an input and displays the cluster picture of \hat{C} together with the Tamagawa numbers of J and \hat{J}, the deficiency of C and \hat{C} as well as λ_{v} and ω_{v} as an output (it also displays E_{v} which is treated in Chapter (6). Table 3.1 in Section 3.4 computes Tamagawa numbers, deficiency and root numbers for semistable curves (Jacobians) of genus 2 from their cluster pictures. Therefore it remains to compute the cluster picture of \hat{C} to obtain λ_{v} in each case. As introduced in Section 2.2, the Richelot construction is entirely explicit. In particular, we can compute the valuations of differences of the roots of \hat{C}, and hence the cluster picture of \hat{C}, from the valuations of the differences of the roots of $G(x)$ (that is from the cluster picture of C). We first present the properties of the Richelot construction that allow us to do such computations before presenting all computations case by case.

List of notation for this chapter

Henceforth addition of indices is performed modulo 3 .

K	local field with odd residue characteristic
π	uniformiser of K
v	normalized valuation of K
$G_{1}(x)$	$c\left(x-\alpha_{1}\right)\left(x+\alpha_{1}\right)$ with $\alpha_{1}^{2} \in K$
$G_{i}(x), i=2,3$	$\left(x-\alpha_{i}\right)\left(x-\beta_{i}\right)$
$G(x)$	$G_{1}(x) G_{2}(x) G_{3}(x)$
L	Splitting field of $G(x)$
c	leading term of $G(x)$
C	$C_{2} \times D_{4}$ curve defined over K with the given factorization $y^{2}=G(x)=G_{1}(x) G_{2}(x) G_{3}(x)$
J	Jacobian of C
ϕ	Richelot isogeny on J given by the factorization of $G(x)$
$L_{1}(x)$	$L_{1}(x)=\frac{1}{\Delta_{G}}\left[G_{2}(x), G_{3}(x)\right]=\ell_{1}\left(x-A_{1}\right)\left(x-B_{1}\right)$
$\ell_{1}=\frac{u_{1}}{\Delta_{G}}$	leading term of $L_{1}(x)$ with $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$
$L_{i}(x), i=2,3$	$L_{i}(x)=\left[G_{i+1}(x), G_{i+2}(x)\right]=\ell_{i}\left(x-A_{i}\right)\left(x-B_{i}\right)$
$L(x)$	$L_{1}(x) L_{2}(x) L_{3}(x)$
$\ell=\ell_{1} \ell_{2} \ell_{3}$	leading term of $L(x)$
\hat{C}	$C_{2} \times D_{4}$ dual curve of C defined over K by $y^{2}=L(x)=L_{1}(x) L_{2}(x) L_{3}(x)$
\hat{J}	Jacobian of \hat{C}
$\delta_{i}, i=1,2,3$	discriminant of $G_{i}(x), \delta_{1}=4 c^{2} \alpha_{1}^{2}, \delta_{2}=\left(\alpha_{2}-\beta_{2}\right)^{2}, \delta_{3}=\left(\alpha_{3}-b_{3}\right)^{2}$
$\hat{\delta}_{i}, i=1,2,3$	discriminant of $L_{i}(x), \hat{\delta}_{i}=\ell_{i}^{2}\left(A_{i}-B_{i}\right)^{2}$
$\alpha_{i}, \beta_{i}, i=1,2,3$	roots of $G_{i}(x)$
$A_{i}, B_{i}, i=1,2,3$	roots of $L_{i}(x)$
$x \equiv y$	$x \equiv y \bmod \pi$
$x \equiv \square y$	$x \equiv y z$ where z is a square element in K^{\times}
$x=\square y$	$x=y z$ where z is a square element in K^{\times}
Frob	Frobenius automorphism in $\operatorname{Gal}(\bar{K} / K)$
I_{K}	inertia subgroup of $\operatorname{Gal}(\bar{K} / K)$
- -	α_{1}, β_{1} in the cluster picture of $C\left(A_{1}, B_{1}\right.$ is that of $\left.\hat{C}\right)$
\checkmark	α_{2}, β_{2} in the cluster picture of $C\left(A_{2}, B_{2}\right.$ is that of $\left.\hat{C}\right)$
-	α_{3}, β_{3} in the cluster picture of $C\left(A_{3}, B_{3}\right.$ is that of $\left.\hat{C}\right)$

5.2 Algebraic identities of a $C_{2} \times D_{4}$ Richelot curve

Proposition 5.2.1. Let $G(x)$ be a $C_{2} \times D_{4}$ polynomial and $L(x)$ the defining polynomial of its associated $C_{2} \times D_{4}$ dual curve as in Definition 4.2.5. Then for $i=2,3$,
i) $\Delta_{L}=-2 \Delta_{G}$,
ii) $\hat{\delta_{1}}=\ell_{1}^{2}\left(A_{1}-B_{1}\right)^{2}=\frac{4}{\Delta_{G}^{2}}\left(\alpha_{2}-\beta_{3}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\beta_{2}-\alpha_{3}\right)\left(\beta_{2}-\beta_{3}\right)$,
ii) $\hat{\delta}_{i}=\ell_{i}^{2}\left(A_{i}-B_{i}\right)^{2}=4 c^{2}\left(\alpha_{i+1}-\beta_{i+2}\right)\left(\alpha_{i+1}-\alpha_{i+2}\right)\left(\beta_{i+1}-\alpha_{i+2}\right)\left(\beta_{i+1}-\beta_{i+2}\right)$,
and the discriminants of $G(x)$ and $L(x)$ are given by

$$
\text { iii) } \operatorname{Disc}(G(x))=\frac{1}{2^{12}} \delta_{1} \delta_{2} \delta_{3} \hat{\delta}_{1}^{2}{\hat{\delta_{2}}}^{2}{\hat{\delta_{3}}}^{2},
$$

iv) $\operatorname{Disc}(L(x))=\Delta_{G}^{12} \delta_{1}^{2} \delta_{2}^{2} \delta_{3}^{2} \hat{\delta}_{1} \hat{\delta}_{2} \hat{\delta}_{3}$.

Proof. Follow from direct computations.
Proposition 5.2.2. Let $G(x), L(x) \in \mathcal{K}[x]$ be as in Proposition 5.2.1 above. Then applying the $C_{2} \times D_{4}$ construction to $L(x)$ as in Definition 4.2.5 gives

$$
H(x)=\prod_{i=1}^{3} H_{i}(x), \quad H_{i}(x)=-2 \Delta_{G} G_{i}(x), \quad i=1,2,3 .
$$

In particular $H(x)=-8 \Delta_{G}^{3} G(x)$.
Proof. Clear from computation.
Corollary 5.2.3. The discriminants $\delta_{1}, \delta_{2}, \delta_{3}$ associated to the Richelot factorization of $G(x)$ satisfy for $i=2,3$

$$
\begin{aligned}
\Delta_{G}^{2} \delta_{1} & =\Delta_{G}^{2} c^{2}\left(\alpha_{1}-\beta_{1}\right)^{2} \\
& =\ell_{2}^{2} \ell_{3}^{2}\left(A_{2}-B_{3}\right)\left(A_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\left(B_{2}-B_{3}\right) \\
\Delta_{G}^{2} \delta_{i} & =\Delta_{G}^{2}\left(\alpha_{i}-\beta_{i}\right)^{2} \\
& =\ell_{i+1}^{2} \ell_{i+2}^{2}\left(A_{i+1}-B_{i+2}\right)\left(A_{i+1}-A_{i+2}\right)\left(B_{i+1}-B_{i+2}\right)\left(B_{i+1}-B_{i+2}\right) .
\end{aligned}
$$

Proof. It follows from Proposition 5.2.2 that for $i=1,2,3$, the discriminants of $H_{i}(X)$ are equal to $4 \Delta_{G}^{2} \delta_{i}$. Now the result follows from applying Proposition 5.2.1 to $L(x)$ and $H(x)$.

Proposition 5.2.4. The $C_{2} \times D_{4}$ dual curve of \hat{C} is isomorphic to C and is given by

$$
\hat{\hat{C}}: y^{2}=4 G(x) .
$$

Proof. We have that $\hat{C}: y^{2}=L(x)$. It suffices to apply the Richelot construction to $L(x)=L_{1}(x) L_{2}(x) L_{3}(x)$ to get $\left[L_{1}(x), L_{2}(x)\right]=-2 G_{3}(x), \quad\left[L_{1}(x), L_{3}(x)\right]=-2 G_{2}(x), \quad\left[L_{2}(x), L_{3}(x)\right]=-2 \Delta_{G} G_{1}(x)$, and $\Delta_{L}=-2 \Delta_{G}$. Now, by definition $\hat{C}: \Delta_{L} y^{2}=-8 \Delta_{G} G(x)$, so that $\hat{\hat{C}}: y^{2}=$ $4 G(x)$, as required.

The following results follow either by definition, direct computations or properties given above.

Proposition 5.2.5. Keeping notation for the roots of $G(x)$ and $L(x)$ as in Section 2.2. we have

1. $\delta_{1}=4 c^{2} \alpha_{1}^{2}, \quad \delta_{2}=\left(\alpha_{2}-\beta_{2}\right)^{2}, \quad \delta_{3}=\left(\alpha_{3}-\beta_{3}\right)^{2}$,
2. $\Delta_{G}=-c\left(\alpha_{1}^{2}\left(\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}\right)+\alpha_{2} \beta_{2}\left(\alpha_{3}+\beta_{3}\right)\right.$ $\left.+\alpha_{3} \beta_{3}\left(-\alpha_{2}-\beta_{2}\right)\right)$,
3. $\ell_{1}=\frac{u_{1}}{\Delta_{G}}=\frac{\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}}{\Delta_{G}}, \quad \ell_{2}=c\left(\alpha_{3}+\beta_{3}\right), \quad \ell_{3}=c\left(-\alpha_{2}-\beta_{2}\right)$,
4. $\hat{\delta}_{1}=\ell_{1}^{2}\left(A_{1}-B_{1}\right)^{2}=\frac{4}{\Delta_{G}^{2}}\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right)\left(\beta_{2}-\alpha_{3}\right)\left(\beta_{2}-\beta_{3}\right)$,
5. $\hat{\delta_{2}}=\ell_{2}^{2}\left(A_{2}-B_{2}\right)^{2}=4 c^{2}\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right)\left(\beta_{3}-\alpha_{1}\right)\left(\beta_{3}+\alpha_{1}\right)$,
6. $\hat{\delta_{3}}=\ell_{3}^{2}\left(A_{3}-B_{3}\right)^{2}=4 c^{2}\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\beta_{2}\right)\left(-\alpha_{1}-\alpha_{2}\right)\left(-\alpha_{1}-\beta_{2}\right)$,
7. $\Delta_{G}^{2} \delta_{1}=\ell_{2}^{2} \ell_{3}^{2}\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)$,
8. $\delta_{2}=\ell_{3}^{2} \ell_{1}^{2}\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)$,
9. $\delta_{3}=\ell_{1}^{2} \ell_{2}^{2}\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)$.
10. $\operatorname{Disc}(G(x))=\frac{\Delta_{G}^{4}}{2^{22}} \delta_{1} \delta_{2} \delta_{3} \hat{\delta}_{1}^{2} \hat{\delta}_{2}^{2} \hat{\delta}_{3}^{2}$,
11. $\operatorname{Disc}(L(x))=\Delta_{G}^{4} \delta_{1}^{2} \delta_{2}^{2} \delta_{3}^{2} \hat{\delta}_{1} \hat{\delta}_{2} \hat{\delta}_{3}$,
12. $c u_{1}+\ell_{2}+\ell_{3}=0$.

Remark 5.2.6. $\Delta_{G} \neq 0$ by definition of a Richelot curve (see Definition 2.2.12),

We will use extensively Proposition 5.2.5 in the proofs below. Therefore we will use P. k to refer to Propostion 5.2.5.k.

5.3 Proof of Tables 4.4 to 4.34

Remark 5.3.7. 1) In the following proofs, we do not include formal computations that can be readily verified using a computer algebra. All of these computations have been performed using Maple and can be made available if needed.
2) In the cluster pictures displayed in the following section, we denote the depth of a cluster relatively to that of its parent. For instance, in the cluster picture

, we have $v\left(\alpha_{1}-\beta_{1}\right)=v\left(\alpha_{1}-\alpha_{2}\right)=v\left(\alpha_{1}-\beta_{2}\right)=v\left(\alpha_{1}-\alpha_{3}\right)=$
$v\left(\alpha_{1}-\beta_{3}\right)=n_{2}, v\left(\alpha_{2}-\beta_{1}\right)=v\left(\alpha_{2}-\beta_{2}\right)=v\left(\alpha_{2}-\beta_{3}\right)=v\left(\alpha_{3}-\beta_{1}\right)=v\left(\alpha_{3}-\beta_{2}\right)=$ $v\left(\alpha_{3}-\beta_{3}\right)=n_{1}+n_{2}$ and $v\left(\beta_{1}-\beta_{2}\right)=v\left(\beta_{1}-\beta_{3}\right)=v\left(\beta_{2}-\beta_{3}\right)=2 r+n_{1}+n_{2}$.

Lemma 5.3.8. If C is of type 2, $1_{n}, I_{a, b}$ or $U_{a, b, n}$ as in Table 3.1 then $v(c) \in 2 \mathbb{Z}$.
Proof. Clear from the semistability criterion 3.4 .29
Corollary 5.3.9. If C is type 2, $1_{n}, I_{a, b}$ or $U_{a, b, n}$ as in Table 3.1 then without loss of generality $v(c)=0$. If C is of type $1 \times_{\frac{n+m}{2}} 1$ then without loss of generality $v(c)=0$ or $v(c)=1$.

Proof. The first case follows from Lemma 5.3.8. If C is of type $1 \times_{\frac{n+m}{2}} 1$ then by semistability criterion $v(c) \equiv n \equiv m \bmod 2$.

5.3.1 C is of type 2

Lemma 5.3.10. Suppose that C is of type 2, i.e. its given Weiertrass model has unit discriminant. Then the same hold for \hat{C} if and only if $v\left(\Delta_{G}^{2}\right)=0$.

Proof. By Corollary 5.3.9, we have $v(c)=0$. Since C is of type 2 we have that $v(\operatorname{Disc}(G(x))=0$, and by P. 10

$$
v\left(\delta_{i}\right)=0, \quad \forall i=1,2,3, \quad v\left(\Delta_{G}^{2} \hat{\delta_{1}}\right)=v\left(\hat{\delta_{2}}\right)=v\left(\hat{\delta_{3}}\right)=0 .
$$

It follows from P. 11 that $v\left(\operatorname{Disc}(L(x))=0\right.$ if and only if $v\left(\Delta_{G}^{2}\right)=0$. In particular, \hat{C} has good reduction if and only if $v\left(\Delta_{G}^{2}\right)=0$.

Proof of Table 4.4

By Corollary 5.3.9 we have $v(c)=0$. We note that since J has good reduction, it follows that \hat{J} also has good reduction. Therefore, if \hat{C} has bad reduction, it is of type $1 \times_{n} 1$ or $1 \tilde{x}_{n} 1$ for some $n \neq 0$.
Case GR1A. Here $v\left(\Delta_{G}^{2}\right)=0$, therefore \hat{C} is of type 2 by Lemma 5.3.10. From
P.4, P. 5 and P. 6 we have $v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=-2 v\left(u_{1}\right)$,

$$
v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right)
$$

and P.7, P. 8 and P. 9 give
$v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)$,
$v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=-2 v\left(u_{1}\right)-2 v\left(\ell_{3}\right)$,
$v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=-2 v\left(u_{1}\right)-2 v\left(\ell_{2}\right)$.
If $v(\ell)=0$ then the cluster picture of $L(x)$ is the balanced one given in Table 4.4. Otherwise if $v(\ell) \neq 0$ then $v\left(\ell_{i}\right)=0$ for some $i=1,2,3$, for otherwise P. 2 and P. 12 would yield $v\left(\Delta_{G}^{2}\right)>0$. Assume without loss of generality that $v\left(\ell_{1}\right)=n \neq 0$. Then $n \in 2 \mathbb{Z}$ by semistability criterion 3.4 .29 and the cluster picture for $L(x)$ is
$\bigcirc)_{-n}$, which is equivalent to the claimed balanced cluster picture as shown in Table 3.2.
Cases GR1B/GR1C. Since $v\left(\Delta_{G}^{2}\right)=2 r>0, \hat{C}$ has bad reduction by Lemma 5.3.10. From P.4, P. 5 and P. 6 we have $v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=-2 v\left(u_{1}\right)$,

$$
v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right)
$$

and P.7, P. 8 and P. 9 give
$v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=2 r-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)$,
$v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=2 r-2 v\left(u_{1}\right)-2 v\left(\ell_{3}\right)$,
$v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=2 r-2 v\left(u_{1}\right)-2 v\left(\ell_{2}\right)$.
If $v\left(u_{1}\right)=v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ then the cluster picture for \hat{C} is that of Table 4.4. Otherwise, if $v\left(u_{1}\right)=n_{1}>0$ then by P. 2 and P.12, we have $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)$, say
$v\left(\ell_{2}\right)=n$. We obtain the following cluster picture for \hat{C}
 which is equivalent to the claimed balanced cluster picture as shown in Table 3.2. Similarly if $v\left(\ell_{2}\right), v\left(\ell_{3}\right)>0$.
Frobenius action. If $\left(A_{1}-B_{1}\right)^{2} \notin K^{\times 2}$, then Frob permutes A_{1} and B_{1} and hence permutes both clusters yielding the required automorphism.

5.3.2 C is of type $1_{2 a}$

Proof of Table 4.5

$\underline{\text { Case ON1A/B. Here } v\left(\Delta_{G}^{2}\right)=0 \text {, and }}$

$$
v\left(\delta_{1}\right)=2 a, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=0, v\left(\hat{\delta_{1}}\right)=0, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=0,
$$

so that P.4, P. 5 and P. 6 yield

$$
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(\ell_{1}\right), \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right)
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 a-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right), \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right), \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right) .
\end{gathered}
$$

If $v\left(\ell_{1}\right)=v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ then without loss of generality, let $v\left(A_{2}-A_{3}\right)=2$ a so that the cluster picture of \hat{C} is that of Table 4.5 for ON1A/B. Otherwise, since $v\left(\Delta_{G}^{2}\right)=0$, either $v\left(\ell_{1}\right)=n>0$ and $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ or without loss of generality, $v\left(\ell_{2}\right)=n>0$ and $v\left(\ell_{1}\right)=v\left(\ell_{3}\right)=0$. Then in the first case, one readily verifies
using the valuations above that the cluster picture for \hat{C} is
 And similarly, in the second case if $v\left(\ell_{2}\right)=n>0$ then the cluster picture for \hat{C}
is
 n. In both cases, these cluster pictures are in the equivalence class of

Case ON1C/D. Here $v\left(\Delta_{G}^{2}\right)=2 r>0$ so that $v\left(\ell_{1}\right)=v\left(u_{1}\right)-r$, and

$$
v\left(\delta_{1}\right)=2 a, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=0, v\left(\hat{\delta_{1}}\right)=0, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=0,
$$

so that P.4, P. 5 and P. 6 yield

$$
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(u_{1}\right), \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right),
$$

P.7, P. 8 and P. 9 give

$$
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 a+2 r-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right),
$$

$$
\begin{aligned}
& v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=2 r-2 v\left(u_{1}\right)-2 v\left(\ell_{3}\right), \\
& v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=2 r-2 v\left(u_{1}\right)-2 v\left(\ell_{2}\right) .
\end{aligned}
$$

If $v\left(u_{1}\right)=v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ then without loss of generality, let $v\left(A_{2}-A_{3}\right)=2$ a so that the cluster picture of \hat{C} is that of Table 4.5 for ON1C/D. Otherwise, note that since $v\left(\Delta_{G}^{2}\right)>0$, we have $v\left(u_{1}\right), v\left(\ell_{2}\right), v\left(\ell_{3}\right)>0$ (for otherwise, this forces others double roots $\bmod \pi$ a contradiction to the cluster picture of C).
Write $v\left(u_{1}\right)=n_{1}, v\left(\ell_{2}\right)=n_{2}, v\left(\ell_{3}\right)=n_{3}$. Assume that $n_{2}<n_{3}$, then $r=n_{1}=n_{2}$
and the cluster picture for \hat{C} is

Assume that $n_{3}<n_{2}$, then $r=n_{1}=n_{3}$ and the cluster picture for \hat{C} is

Assume that $n_{3}=n_{2}$ and $r=n_{1}=n_{3}$. Then the cluster picture for \hat{C} is

Assume that $n_{3}=n_{2}$ and $n_{1}>n_{3}=r$. Then the cluster picture for \hat{C} is

In all cases, the cluster pictures obtained are in the equivalence class of
 as required.
Frobenius action. By Proposition 3.4.30, the reduction at the node at α_{1} is split if and only if $T_{\alpha_{1}}=c\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right) \equiv{ }_{\square} 1$.

Proof of Table 4.6

Case ON2A/B. Here $v\left(\Delta_{G}^{2}\right)=0$, and

$$
v\left(\delta_{1}\right)=0, v\left(\delta_{2}\right)=2 a, v\left(\delta_{3}\right)=0, v\left(\hat{\delta}_{1}\right)=0, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=0,
$$

so that P.4, P. 5 and P. 6 yield

$$
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(\ell_{1}\right), \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right),
$$

and P.7, P. 8 and P. 9 give

$$
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right),
$$

$$
\begin{gathered}
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=2 a-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right), \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right) .
\end{gathered}
$$

If $v\left(\ell_{1}\right)=v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ then without loss of generality, let $v\left(A_{3}-A_{1}\right)=2$ a so that the cluster picture of \hat{C} is that of Table 4.6 for ON2A/B. Otherwise, since $v\left(\Delta_{G}^{2}\right)=0$, either $v\left(\ell_{1}\right)=n>0$ and $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ or without loss of generality, $v\left(\ell_{2}\right)=n>0$ and $v\left(\ell_{1}\right)=v\left(\ell_{3}\right)=0$. Then in the first case, one readily verifies
using the valuations above that the cluster picture for \hat{C} is
 And similarly, in the second case if $v\left(\ell_{2}\right)=n>0$ then the cluster picture for \hat{C}
is

In both cases, these cluster pictures are in the equivalence class of $\bullet_{2 a} \bullet \diamond \omega_{0}$ as required.
$\underline{\text { Case ON2C/D. Here } v\left(\Delta_{G}^{2}\right)=2 r>0 \text { so that } v\left(\ell_{1}\right)=v\left(u_{1}\right)-r \text {, and }}$

$$
v\left(\delta_{1}\right)=0, v\left(\delta_{2}\right)=2 a, v\left(\delta_{3}\right)=0, v\left(\hat{\delta_{1}}\right)=0, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=0,
$$

so that P.4, P. 5 and P. 6 yield

$$
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(u_{1}\right), \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right),
$$

P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 r-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right), \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=2 a+2 r-2 v\left(u_{1}\right)-2 v\left(\ell_{3}\right), \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=2 r-2 v\left(u_{1}\right)-2 v\left(\ell_{2}\right) .
\end{gathered}
$$

If $v\left(u_{1}\right)=v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ then without loss of generality, let $v\left(A_{3}-A_{1}\right)=2$ a so that the cluster picture of \hat{C} is that of Table 4.6 for ON2C/D. Otherwise, note that since $v\left(\Delta_{G}^{2}\right)>0$, we have $v\left(u_{1}\right), v\left(\ell_{2}\right), v\left(\ell_{3}\right)>0$ (for otherwise, this forces others double roots $\bmod \pi$ a contradiction to the cluster picture of $C)$.
Write $v\left(u_{1}\right)=n_{1}, v\left(\ell_{2}\right)=n_{2}, v\left(\ell_{3}\right)=n_{3}$. Assume that $n_{2}<n_{3}$, then $r=n_{1}=n_{2}$
and the cluster picture for \hat{C} is

Assume that $n_{3}<n_{2}$, then $r=n_{1}=n_{3}$ and the cluster picture for \hat{C} is

Assume that $n_{3}=n_{2}$ and $r=n_{1}=n_{3}$. Then the cluster picture for \hat{C} is

Assume that $n_{3}=n_{2}$ and $n_{1}>n_{3}=r$. Then the cluster picture for \hat{C} is

In all cases the cluster pictures obtained are in the equivalence class of
 as required.
Frobenius action. By Proposition 3.4.30, the reduction at the node at α_{2} is split if and only if $T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right) \equiv \square 1$.

Proof of Table 4.7

Case ON3A/B. Computing ℓ_{1} we find that $v\left(\ell_{1}\right)=0$ with $v\left(\Delta_{G}^{2}\right)=0$. From the definition of the isogeny, either $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K$ or Frob permutes δ_{2} and δ_{3} so that $\operatorname{Frob}\left(\alpha_{2}\right)=\alpha_{3}, \operatorname{Frob}\left(\alpha_{3}\right)=\alpha_{2}$ and similarly for β_{2}, β_{3}

$$
v\left(\delta_{1}\right)=0, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=0, v\left(\hat{\delta_{1}}\right)=a, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=0,
$$

so that P.4, P. 5 and P. 6 yield

$$
v\left(A_{1}-B_{1}\right)^{2}=a, \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right),
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right), \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{3}\right), \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{2}\right) .
\end{gathered}
$$

It follows that $v\left(A_{1}-B_{1}\right)=\frac{a}{2}$ and if $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ then the cluster picture of \hat{C} is that of Table 4.7 for ON3A/B. Otherwise, if $v\left(\ell_{2}\right)=n_{2}>0$ then $v\left(\ell_{3}\right)=0$. Indeed, by definition of ℓ_{2} we have $\beta_{3} \equiv-\alpha_{2}$. By definition of ℓ_{3}, if $v\left(\ell_{3}\right)>0$ then $\beta_{2} \equiv-\alpha_{2}$, a contradiction since $\beta_{3} \not \equiv \beta_{2}$. Therefore we obtain the following cluster

pictures are in the equivalence class of $\bigcirc ๑_{\frac{a}{2}} \diamond \omega_{0}$ as required.
Frobenius action. By Proposition 3.4.30, the reduction at the node at α_{2} is split
if and only if $T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\beta_{2}\right)\left(\alpha_{2}-\beta_{3}\right) \equiv{ }_{\square} 1$.

Proof of Table 4.8

Case ON4A/B. Computing ℓ_{1} we find that $v\left(\Delta_{G}^{2}\right)=0$. From the definition of the isogeny, $\alpha_{1}, \alpha_{2}, \beta_{2} \in K v\left(\alpha_{1}-\alpha_{2}\right)=a \in \mathbb{Z}$ and

$$
v\left(\delta_{1}\right)=0, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=0, v\left(\hat{\delta_{1}}\right)=0, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=a,
$$

so that P.4, P. 5 and P. 6 yield

$$
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(\ell_{1}\right), \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=a-2 v\left(\ell_{3}\right),
$$

and P.7, P. 8 and P. 9 give

$$
\begin{aligned}
& v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right), \\
& v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right), \\
& v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right) .
\end{aligned}
$$

It follows that $v\left(A_{3}-B_{3}\right)=\frac{a}{2}$ and if $v\left(\ell_{1}\right)=v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ then the cluster picture of \hat{C} is that of Table 4.8 for ON4A/B. Otherwise, since $v\left(\Delta_{G}\right)=0$ it follows from Lemma 6.2.2.5, that either $v\left(\ell_{1}\right)=n>0$ and $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ or without loss of generality, $v\left(\ell_{2}\right)=n>0$ and $v\left(\ell_{1}\right)=v\left(\ell_{3}\right)=0$. Therefore we obtain the following cluster picture for \hat{C} :
 both cases, these cluster pictures are in the equivalence class of
 required.
Frobenius action. By Proposition 3.4.30, the reduction at the node at α_{1} is split if and only if $T_{\alpha_{1}}=2 c \alpha_{1}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right) \equiv \square 1$.

5.3.3 C is of type $I_{2 a, 2 b}$

Proof of Tables 4.9 and 4.10

By definition of the isogeny we have

$$
v\left(\delta_{1}\right)=2 a, v\left(\delta_{2}\right)=2 b, v\left(\delta_{3}\right)=0, v\left(\hat{\delta_{1}}\right)=0, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=0
$$

$\alpha_{1} \equiv 0 \not \equiv \alpha_{2}, \alpha_{3}, \beta_{3}$. This yields $v\left(\ell_{3}\right)=0$ since $\ell_{3} \equiv-2 c \alpha_{2}$.
Case TN1A/B/C/D. Here $v\left(\Delta_{G}\right)=0$.

From P.4, P. 5 and P. 6 we have

$$
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(\ell_{1}\right), \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=0
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 a-2 v\left(\ell_{2}\right) \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=2 b-2 v\left(\ell_{1}\right) \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right) .
\end{gathered}
$$

If $v\left(\ell_{1}\right)=v\left(\ell_{2}\right)=0$ then without loss of generality, let $v\left(A_{2}-A_{3}\right)=2 a$ and $\left(A_{1}-B_{3}\right)=2 b$ so that the cluster picture of \hat{C} is that of Table 4.9 for TN1A/B/C/D. Otherwise, since $v\left(\Delta_{G}^{2}\right)=0$, either $v\left(\ell_{1}\right)=n>0$ and $v\left(\ell_{2}\right)=0$ or $v\left(\ell_{2}\right)=n>0$ and $v\left(\ell_{1}\right)=0$. Then in the first case, one readily verifies using the valuations above that the cluster picture for \hat{C} is
 And similarly, in the second case if $v\left(\ell_{2}\right)=n>0$ then the cluster picture for \hat{C} is
 cases, these cluster pictures are in the equivalence class of
 required.
$\underline{\text { Case } \mathbf{T N} 1 \mathbf{E} / \mathbf{F} / \mathbf{G} / \mathbf{H}}$. Here $v\left(\Delta_{G}\right)=r>0$ so that $v\left(\ell_{1}\right)=v\left(u_{1}\right)-r$. Note that here $\alpha_{1} \equiv 0 \not \equiv \alpha_{2} \equiv \beta_{2} \bmod \pi$. In particular, computing $\ell_{2}, \ell_{3}, u_{1}$, one finds that $\ell_{3} \equiv-2 c \beta_{2}$ and hence $v\left(\ell_{3}\right)=0$. Since $v\left(\Delta_{G}^{2}\right)>0$ we find that if $v\left(\ell_{2}\right)>0$ or equivalently $v\left(u_{1}\right)>0$ then $\alpha_{3} \equiv 0 \bmod \pi$ a contradiction to the cluster picture of C. Hence $v\left(u_{1}\right)=v\left(\ell_{2}\right)=0$.
From P.4, P. 5 and P. 6 we have

$$
v\left(A_{1}-B_{1}\right)^{2}=0, \quad v\left(A_{2}-B_{2}\right)^{2}=0, \quad v\left(A_{3}-B_{3}\right)^{2}=0
$$

and P.7, P. 8 and P. 9 give

$$
\begin{aligned}
& v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 r+2 a \\
& v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=2 r+2 b \\
& \quad v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=2 r
\end{aligned}
$$

Thus without loss of generality, let $v\left(A_{2}-A_{3}\right)=2 a+r$ and $\left(A_{1}-B_{3}\right)=2 b+r$ so that the cluster picture of \hat{C} is that of Table 4.9 for TN1E/F/G/H.

Frobenius action. By Proposition 3.4.30, the reduction at the node at α_{1} is split if and only if $T_{\alpha_{1}}=c\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right) \equiv \square 1$ and the reduction at the node at α_{2} is split if and only if $T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right) \equiv \square 1$. It follows that C is of type $I_{a, b}^{+,+}, I_{a, b}^{-,+}, I_{a, b}^{+,-}, I_{a, b}^{-,-}$in $\mathrm{TN} 1 \mathrm{~A} / \mathrm{B} / \mathrm{C} / \mathrm{D}$ respectively. Similarly for \hat{C}, using Proposition 3.4 .30 at the nodes A_{2} and A_{1}, one finds that \hat{C} is of type $I_{2 a, 2 b}^{+,+}, I_{2 a, 2 b}^{-,+}, I_{2 a, 2 b}^{+,-}, I_{2 a, 2 b}^{-,-}$in TN1A/B/C/D respectively. Finally, since $G(x)$ is a $C_{2} \times D_{4}$ polynomial, we have that $\delta_{1} \in K$ so that $F r o b$ does not permute any clusters in the cluster picture of C and similarly for \hat{C}.

Proof of Tables 4.11 and 4.12

By definition of the isogeny

$$
v\left(\delta_{1}\right)=0, v\left(\delta_{2}\right)=2 a, v\left(\delta_{3}\right)=2 b, v\left(\hat{\delta_{1}}\right)=0, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=0
$$

Reducing invariants, we find that $u_{1} \equiv \square\left(\alpha_{3}-\beta_{2}\right)^{2}$ so that $v\left(u_{1}\right)=0$.
Case TN2A/B/C/D/E. Here $v\left(\Delta_{G}\right)=0$ hence $v\left(\ell_{1}\right)=0$.
From P.4, P. 5 and P. 6 we have

$$
v\left(A_{1}-B_{1}\right)^{2}=0, \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right)
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right) \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=2 a-2 v\left(\ell_{3}\right) \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=2 b-2 v\left(\ell_{2}\right)
\end{gathered}
$$

If $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ then without loss of generality, let $v\left(A_{1}-A_{3}\right)=2 a$ and $\left(A_{1}-\right.$ $\left.A_{2}\right)=2 b$ so that the cluster picture of \hat{C} is that of Table 4.11 for TN2A/B/C/D/E. Otherwise, computing ℓ_{2} and ℓ_{3} and reducing $\bmod \pi$ we find that $\ell_{2} \equiv 2 c \alpha_{3}$ and $\ell_{3} \equiv-2 c \beta_{2}$. It follows from the isogeny that $\alpha_{3} \not \equiv \beta_{2}$ therefore either $v\left(\ell_{2}\right)>0$ and $v\left(\ell_{3}\right)=0$ or conversely $v\left(\ell_{3}\right)>0$ and $v\left(\ell_{2}\right)=0$. In the first case, one readily verifies
using the valuations above that the cluster picture for \hat{C} is

And similarly, in the second case, the cluster picture for \hat{C} is
 In both cases, these cluster pictures are in the equivalence class of
 as required.
Case TN2E/F/G/H. Here $v\left(\Delta_{G}\right)=r>0$ hence $v\left(\ell_{1}\right)=-r$. Computing ℓ_{2}
and ℓ_{3} and reducing $\bmod \pi$ we find that $\ell_{2} \equiv 2 c \alpha_{3}$ and $\ell_{3} \equiv-2 c \beta_{2}$. But since $v\left(\Delta_{G}\right)=r>0$, we also have $\alpha_{1}^{2} \equiv \alpha_{3} \beta_{2}$. It follows from the cluster picture of C that $\alpha_{1} \not \equiv 0$ so that $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$.
From P.4, P. 5 and P. 6 we have

$$
v\left(A_{1}-B_{1}\right)^{2}=0, \quad v\left(A_{2}-B_{2}\right)^{2}=0, \quad v\left(A_{3}-B_{3}\right)^{2}=0
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 r \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=2 r+2 a \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=2 r+2 b .
\end{gathered}
$$

Thus without loss of generality, let $v\left(A_{1}-A_{3}\right)=2 a+r$ and $\left(A_{1}-A_{2}\right)=2 b+r$ so that the cluster picture of \hat{C} is that of Table 4.12 for TN2F/G/H/I/J.
Frobenius action. By Proposition 3.4.30, the reduction at the node at α_{2} is split if and only if $T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right) \equiv \square 1$ and the reduction at the node at α_{3} is split if and only if $T_{\alpha_{3}}=c\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)\left(\alpha_{3}-\beta_{2}\right) \equiv \square 1$. It follows that C is of type $I_{2 a, 2 b}^{+,+}, I_{2 a, 2 b}^{-,+}, I_{2 a, 2 b}^{-,-}$in TN1A/B/C respectively. Similarly for \hat{C}, using Proposition 3.4.30 at the nodes A_{1} and B_{1}, one finds that \hat{C} is of type $I_{4 a, 4 b}^{+,+}, I_{4 a, 4 b}^{-,+}, I_{4 a, 4 b}^{-,-}$in TN1A/B/C respectively. Computing $\left(A_{1}-B_{1}\right)^{2}$ and reducing $\bmod \pi$ one finds that $\left(A_{1}-B_{1}\right)^{2} \equiv\left(\alpha_{3}-\beta_{2}\right)^{2}$ so that $\left(A_{1}-B_{1}\right)^{2} \in K^{\times 2}$ in these 3 cases.

In TN2D/E, Frob permutes δ_{2} and δ_{3} (by semistability criterion, I_{K} acts trivially on clusters of size >1). It follows that $T_{\alpha_{2}}, T_{\alpha_{3}} \in K\left(\delta_{2}\right) \subseteq K^{n r}$. For TN2D, we let $T_{\alpha_{2}}, T_{\alpha_{3}} \in K\left(\delta_{2}\right)^{\times 2}$ so that C is of type $I_{2 a \sim 2 a}^{+}$. For TN2E, we let $T_{\alpha_{2}}, T_{\alpha_{3}} \notin K\left(\delta_{2}\right)^{\times 2}$ so that C is of type $I_{2 a^{\sim} 2 a}^{-}$. Since $\left(A_{1}-B_{1}\right)^{2} \equiv\left(\alpha_{3}-\beta_{2}\right)^{2}$, it follows that $\left(A_{1}-B_{1}\right)^{2} \notin K^{\times 2}$ in both cases. Finally, using Proposition 3.4.30 at the nodes A_{1} and B_{1} one finds that $T_{A_{1}}$ and $T_{B_{1}}$ are congruent to $T_{\alpha_{2}}, T_{\alpha_{3}} \bmod \pi$. Therefore \hat{C} is of types $I_{4 a \sim 4 a}^{+}$and $I_{4 a \sim 4 a}^{-}$respectively.

Cases TN2F/G/H are similar to TN2A/B/C. However, cases TN2I/J are different since \hat{C} is deficient for v if r is odd.

Proof of Table 4.13

Case TN3A/B/C/D. By definition of the isogeny

$$
v\left(\delta_{1}\right)=2 a, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=0, v\left(\hat{\delta_{1}}\right)=b, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=0
$$

$\alpha_{1} \equiv 0 \not \equiv \alpha_{2}, \beta_{2}, \alpha_{3}$ and $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K^{n r}$ so that $b \in \mathbb{Z}$. Reducing invariants, we find that

$$
\Delta_{G} \equiv-\alpha_{3}^{2}\left(\beta_{2}-\beta_{3}\right), \quad \ell_{1} \equiv \frac{-1}{c \alpha_{3}^{2}}, \quad \ell_{2} \equiv c\left(\alpha_{3}+\beta_{3}\right), \quad \ell_{3} \equiv-c\left(\alpha_{3}+\beta_{2}\right),
$$

so that $v\left(\Delta_{G}\right)=v\left(\ell_{1}\right)=0$ and if $v\left(\ell_{2}\right)>0\left(v\left(\ell_{3}\right)>0\right.$ respectively $)$ then $v\left(\ell_{3}\right)=0$ $\left(v\left(\ell_{2}\right)=0\right.$ respectively).
From P.4, P. 5 and P. 6 we have

$$
v\left(A_{1}-B_{1}\right)^{2}=b, \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right),
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 a-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right), \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=0-2 v\left(\ell_{3}\right), \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=0-2 v\left(\ell_{2}\right) .
\end{gathered}
$$

If $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ then without loss of generality, let $v\left(A_{2}-A_{3}\right)=2 a$ so that the cluster picture of \hat{C} is that of Table 4.13 for TN3A/B/C/D. Otherwise, if $v\left(\ell_{2}\right)=n>0$ and $v\left(\ell_{3}\right)=0$ or conversely $v\left(\ell_{3}\right)=n>0$ and $v\left(\ell_{2}\right)=0$ one readily verifies using the valuations above that the cluster picture for \hat{C} is

class of $\underbrace{\bullet \omega_{2 a} \omega_{0}}_{\frac{b}{2}}$ as required.
Frobenius action. By Proposition 3.4.30, the reduction at the node at α_{1} is split if and only if $T_{\alpha_{1}}=c\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right) \equiv \square 1$ and the reduction at the node at α_{2} is split if and only if $T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right) \equiv \square$. It follows that C is of type $I_{2 a, 2 b}^{+,+}, I_{2 a, 2 b}^{-,+}, I_{2 a, 2 b}^{+,-}, I_{2 a, 2 b}^{-,-}$in TN3A/B/C/D respectively. Similarly for \hat{C}, using Proposition 3.4.30 at the nodes A_{1} and A_{2}, one finds that the reduction at the node at A_{1} is split if and only if $\ell\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(A_{1}-\right.$ $\left.A_{3}\right)\left(A_{1}-B_{3}\right) \equiv T_{\alpha_{2}} \equiv \square 1$. Finally, the reduction at the node at A_{2} is split if and only if $\ell\left(A_{2}-A_{1}\right)\left(A_{2}-B_{1}\right)\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right) \equiv T_{\alpha_{1}} \equiv \square 1$. Therefore \hat{C} is of type $I_{b, 4 a}^{+,+}, I_{b, 4 a}^{-,+}, I_{b, 4 a}^{+,-}, I_{b, 4 a}^{-,-}$in TN3A/B/C/D respectively. Finally, since $G(x)$ is a $C_{2} \times D_{4}$ polynomial, we have that $\delta_{1} \in K$ so that $F r o b$ does not permute any clusters in the cluster picture of C and similarly for \hat{C}.

Proof of Table 4.14

Case TN4A/B/C/D. By definition of the isogeny

$$
v\left(\delta_{1}\right)=0, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=2 a, v\left(\hat{\delta_{1}}\right)=0, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=b
$$

$\alpha_{1}, \alpha_{2}, \beta_{2} \in K$ so that $b \in \mathbb{Z}$. Reducing invariants, we find that
$\Delta_{G} \equiv c\left(\alpha_{1}-\alpha_{3}\right)^{2}\left(\alpha_{1}+\beta_{2}\right), \quad u_{1} \equiv \alpha_{1}+\beta_{2}-2 \alpha_{3}, \quad \ell_{2} \equiv 2 c \alpha_{3}, \quad \ell_{3} \equiv-c\left(\alpha_{1}+\beta_{2}\right)$,
so that $v\left(\Delta_{G}\right)=v\left(\ell_{3}\right)=0$ and $v\left(\ell_{1}\right)=v\left(u_{1}\right)$. Moreover, by Lemma 6.2.2.5., if $v\left(\ell_{1}\right)>0\left(v\left(\ell_{2}\right)>0\right.$ respectively $)$ then $v\left(\ell_{2}\right)=0\left(v\left(\ell_{1}\right)=0\right.$ respectively $)$.
From P.4, P. 5 and P. 6 we have

$$
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(\ell_{1}\right), \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=b
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=-2 v\left(\ell_{2}\right) \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right) \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=2 a-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right) .
\end{gathered}
$$

If $v\left(\ell_{1}\right)=v\left(\ell_{2}\right)=0$ then without loss of generality, let $v\left(A_{1}-A_{2}\right)=2 a$ so that the cluster picture of \hat{C} is that of Table 4.14 for TN4A/B/C/D. Otherwise, if $v\left(\ell_{1}\right)=n>0$ and $v\left(\ell_{2}\right)=0$ or conversely $v\left(\ell_{2}=n\right)>0$ and $v\left(\ell_{1}\right)=0$ one readily verifies using the valuations above that the cluster picture for \hat{C} is

$\underbrace{}_{2 a}$. In both cases, these cluster pictures are in the equivalence
class of $\underbrace{}_{2 a} \bullet$ as required.
Frobenius action. By Proposition 3.4.30, the reduction at the node at α_{3} is split if and only if $T_{\alpha_{3}}=c\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)\left(\alpha_{3}-\beta_{2}\right) \equiv \square 1$ and the reduction at the node at α_{1} is split if and only if $T_{\alpha_{1}}=2 c \alpha_{1}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right) \equiv \square 1$. It follows that C is of type $I_{2 a, 2 b}^{+,+}, I_{2 a, 2 b}^{-,+}, I_{2 a, 2 b}^{+,-}, I_{2 a, 2 b}^{-,-}$in TN4A/B/C/D respectively. Similarly for \hat{C}, using Proposition 3.4 .30 at the nodes A_{3} and A_{1}, one finds that the reduction at the node at A_{1} is split if and only if $\ell\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(A_{3}-\right.$ $\left.A_{2}\right)\left(A_{3}-B_{2}\right) \equiv T_{\alpha_{1}} \equiv \square 1$. Finally, the reduction at the node at A_{1} is split if and only if $\ell\left(A_{1}-B_{1}\right)\left(A_{1}-B_{2}\right)\left(A_{1}-A_{3}\right)\left(A_{1}-B_{3}\right) \equiv T_{\alpha_{3}} \equiv \square 1$. Therefore \hat{C} is of type
$I_{b, 4 a}^{+,+}, I_{b, 4 a}^{-,+}, I_{b, 4 a}^{+,-}, I_{b, 4 a}^{-,-}$in TN4A/B/C/D respectively.

Proof of Table 4.15

Case TN5A/B/C/D. By definition of the isogeny

$$
v\left(\delta_{1}\right)=0, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=0, v\left(\hat{\delta_{1}}\right)=b, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=a
$$

$\alpha_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K$ so that $a, b \in \mathbb{Z}$. Reducing invariants, we find that

$$
v\left(\Delta_{G}\right)=0, \quad \ell_{2} \equiv c\left(\alpha_{3}+\beta_{3}\right), \quad \ell_{3} \equiv-c\left(\alpha_{1}+\alpha_{3}\right),
$$

In particular, $v\left(\ell_{3}\right)=0$.
From P.4, P. 5 and P. 6 we have

$$
v\left(A_{1}-B_{1}\right)^{2}=b, \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=a-2 v\left(\ell_{3}\right),
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right), \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{3}\right), \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=2 v\left(\ell_{2}\right) .
\end{gathered}
$$

If $v\left(\ell_{2}\right)=0$ then $v\left(A_{1}-B_{1}\right)=\frac{b}{2}$ and $v\left(A_{3}-B_{3}\right)=\frac{a}{2}$ so that the cluster picture of \hat{C} is that of Table 4.15 for TN5A/B/C/D. Otherwise, if $v\left(\ell_{2}\right)=n>0$ then one readily verifies using the valuations above that the cluster picture for \hat{C} is
 required.
Frobenius action. By Proposition 3.4.30, the reduction at the node at α_{1} is split if and only if $T_{\alpha_{1}}=c 2 \alpha_{1}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right) \equiv \square 1$ and the reduction at the node at α_{3} is split if and only if $T_{\alpha_{3}}=c\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)\left(\alpha_{3}-\beta_{3}\right) \equiv{ }_{\square} 1$. It follows that C is of type $I_{a, b}^{+,+}, I_{a, b}^{-,+}, I_{a, b}^{+,-}, I_{a, b}^{-,-}$in TN5A/B/C/D respectively. Similarly for \hat{C}, using Proposition 3.4.30 at the nodes A_{1} and A_{3}, one finds that the reduction at the node at A_{1} is split if and only if $\ell\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(A_{1}-\right.$ $\left.A_{3}\right)\left(A_{1}-B_{3}\right) \equiv T_{\alpha_{3}} \equiv \square$. Finally, the reduction at the node at A_{3} is split if and only if $\ell\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(A_{3}-A_{2}\right)\left(A_{3}-B_{2}\right) \equiv T_{\alpha_{1}} \equiv \square 1$. Therefore \hat{C} is of type $I_{b, a}^{+,+}, I_{b, a}^{-,+}, I_{b, a}^{+,-}, I_{b, a}^{-,-}$in TN5A/B/C/D respectively.

Proof of Table 4.16

Case TN6A/B/C/D/E. By definition of the isogeny

$$
v\left(\delta_{1}\right)=0, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=0, v\left(\hat{\delta_{1}}\right)=0, v\left(\hat{\delta_{2}}\right)=b, v\left(\hat{\delta_{3}}\right)=a,
$$

$\alpha_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K^{n r}$ for otherwise I_{K} would permute both clusters, a contradiction to the semistability criterion 3.4 .29 . Hence $a, b \in \mathbb{Z}$. Reducing invariants, we find that

$$
v\left(\Delta_{G}\right)=v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0 .
$$

In particular, we have $v\left(\ell_{1}\right)=v\left(u_{1}\right)$.
From P.4, P. 5 and P. 6 we have

$$
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(u_{1}\right), \quad v\left(A_{2}-B_{2}\right)^{2}=b, \quad v\left(A_{3}-B_{3}\right)^{2}=a,
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=0, \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(u_{1}\right), \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=2 v\left(u_{1}\right) .
\end{gathered}
$$

If $v\left(u_{1}\right)=0$ then $v\left(A_{2}-B_{2}\right)=\frac{b}{2}$ and $v\left(A_{3}-B_{3}\right)=\frac{a}{2}$ so that the cluster picture of \hat{C} is that of Table 4.16 for TN6A/B/C/D/E. Otherwise, if $v\left(u_{1}\right)=n>0$ then one readily verifies using the valuations above that the cluster picture for \hat{C} is

required.
Frobenius action. Computing roots and invariants and reducing $\bmod \pi$ we see that $\left(A_{2}-A_{3}\right)^{2} \equiv \square \alpha_{1}^{2}$. It follows that Frob acts trivially on clusters for TN6A/B/C, while permuting them for TN6D/E. By Proposition 3.4.30, the reduction at the node at α_{1} is split if and only if $T_{\alpha_{1}}=2 c \alpha_{1}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\beta_{3}\right) \equiv \square 1$ and the reduction at the node at $-\alpha_{1}$ is split if and only if $T_{-\alpha_{1}}=-2 c \alpha_{1}\left(-\alpha_{1}-\right.$ $\left.\alpha_{2}\right)\left(-\alpha_{1}-\beta_{2}\right)\left(-\alpha_{1}-\beta_{3}\right) \equiv \square 1$. It follows that C is of type $I_{2 a, 2 b}^{+,+}, I_{2 a, 2 b}^{-,+}, I_{2 a, 2 b}^{-,-}$in TN6A/B/C respectively. Similarly for \hat{C}, using Proposition 3.4 .30 at the nodes A_{3} and A_{2}, one finds that the reduction at the node at A_{3} is split if and only if $T_{A_{3}}=\ell\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(A_{3}-A_{2}\right)\left(A_{3}-B_{2}\right) \equiv T_{\alpha_{1}} \equiv \square 1$. Finally, the reduction at the node at A_{2} is split if and only if $T_{A_{2}} \equiv \ell\left(A_{2}-A_{1}\right)\left(A_{2}-B_{1}\right)\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right) \equiv$ $T_{-\alpha_{1}} \equiv \square 1$. Therefore \hat{C} is of type $I_{a, b}^{+,+}, I_{a, b}^{-,+}, I_{a, b}^{-,-}$in TN6A/B/C respectively. For TN6D/E we have $\alpha_{1}^{2} \notin K^{\times 2}$ and hence since $\left(A_{2}-A_{3}\right)^{2} \equiv \square \alpha_{1}^{2}$, it follows
that Frob permutes both clusters in the cluster picture of \hat{C}. For TN6D, we let $T_{\alpha_{1}}, T_{-\alpha_{1}} \in K\left(\delta_{2}\right)^{\times 2}=K\left(\delta_{3}\right)^{\times 2}$ so that C is of type $I_{2 a^{\sim}}^{+} 2 a$. Moreover as noted above, since $T_{A_{3}} \equiv \square T_{\alpha_{1}}$ and $T_{A_{2}} \equiv \square T_{-\alpha_{1}}$, it follows that \hat{C} is of type $I_{a^{\sim} a}^{+}$. Similarly, for TN6E, so that C is of type $I_{2 a^{\sim}}^{-} 2 a$ and $I_{a^{\sim} a}^{-}$.

Proof of Tables 4.17, 4.18 and 4.19

By definition of the isogeny

$$
v\left(\delta_{1}\right)=0, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=0, v\left(\hat{\delta_{1}}\right)=a+b, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=0
$$

Without loss of generality, assume $a \leq b$. Write

$$
\alpha_{3}=\alpha_{2}+a_{3} \pi^{a}, \quad \beta_{3}=\beta_{2}+b_{3} \pi^{b}, \quad a_{3}, b_{3} \in \mathcal{O} \stackrel{\times}{\bar{K}}
$$

By definition of $\Delta_{G}, \ell_{1}, \ell_{2}, \ell_{3}$ we have

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{3}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)+b_{3} \pi^{b-a}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)+a_{3} b_{3} \pi^{b}\left(\alpha_{2}+\beta_{2}\right)\right) \\
u_{1}=-a_{3} \pi^{a}-b_{3} \pi^{b}, \quad \ell_{2}=c\left(\alpha_{2}+\beta_{2}+a_{3} \pi^{a}+b_{3} \pi^{b}\right), \quad \ell_{3}=-c\left(\alpha_{2}+\beta_{2}\right)
\end{gathered}
$$

It follows that if $a<b$ then $v\left(\Delta_{G}\right)=a, \quad v\left(u_{1}\right)=a$. In particular, $v\left(\ell_{1}\right)=0$ and $v(\ell) \in 2 \mathbb{Z}$.

$$
\text { If } a=b \text { then }
$$

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{3}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)+b_{3}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)+a_{3} b_{3} \pi^{a}\left(\alpha_{2}+\beta_{2}\right)\right) \\
u_{1}=-\pi^{a}\left(a_{3}+b_{3}\right), \quad \ell_{2}=c\left(\alpha_{2}+\beta_{2}+\pi^{a}\left(a_{3}+b_{3}\right)\right), \quad \ell_{3}=-c\left(\alpha_{2}+\beta_{2}\right)
\end{gathered}
$$

Therefore

$$
\begin{gathered}
v\left(\Delta_{G}\right)=a+r, \quad r=v\left(a_{3}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)+b_{3}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)+a_{3} b_{3} \pi^{a}\left(\alpha_{2}+\beta_{2}\right)\right) \\
v\left(u_{1}\right)=a+n_{1}, \quad n_{1}=v\left(a_{3}+b_{3}\right) \\
v\left(\ell_{2}\right)=v\left(\alpha_{2}+\beta_{2}+\pi^{a}\left(a_{3}+b_{3}\right)\right), \quad v\left(\ell_{3}\right)=v\left(\alpha_{2}+\beta_{2}\right)
\end{gathered}
$$

In particular, $v\left(\ell_{1}\right)=n_{1}-r$.
Case TN7A/B/C/D : Here we let $a<b$ so that $v\left(\Delta_{G}\right)=a, v\left(u_{1}\right)=a$ and $v\left(\ell_{1}\right)=0 . v\left(\ell_{2}\right)=0$ if $v\left(\ell_{3}\right)=0$ or $v\left(\ell_{2}\right) \geq \min \left\{a, v\left(\ell_{3}\right)\right\}$ and by semistability criterion 3.4.29, we have $v(\ell) \in 2 \mathbb{Z}$.

From P.4, P. 5 and P. 6 we have

$$
v\left(A_{1}-B_{1}\right)^{2}=a+b-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=a+b-2 a=b-a
$$

$$
v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right)
$$

and P.7, P. 8 and P. 9 give

$$
\begin{aligned}
& v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=2 a-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right), \\
& v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=-2 v\left(\ell_{3}\right) \\
& v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=-2 v\left(\ell_{2}\right)
\end{aligned}
$$

If $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ then we have, without loss of generality, let $v\left(A_{2}-A_{3}\right)=$ $v\left(B_{2}-B_{3}\right)=a$ and $v\left(A_{1}-B_{1}\right)=\frac{b-a}{2}$ so that the cluster picture of \hat{C} is that of Table 4.17 for TN7A/B/C/D. Otherwise, if $v\left(\ell_{3}\right)=n_{3}>0$ with $n_{3}>a$, then $v\left(\ell_{2}\right)=a$ and the cluster picture for \hat{C}

If $v\left(\ell_{3}\right)=n_{3}>0$ with $n_{3}<a$, then $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)$ and the cluster picture for

If $v\left(\ell_{3}\right)=n_{3}>0$ with $n_{3}=a$, then if $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=a$, the cluster picture

All are in the equivalence class of

Frobenius action. By Proposition 3.4.30, the reduction at the node at α_{2} is split if and only if $T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\beta_{2}\right)\left(\alpha_{2}-\beta_{3}\right) \equiv \square 1$ and the reduction at the node at β_{2} is split if and only if $T_{\beta_{2}}=c\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{2}-\alpha_{3}\right) \equiv \square 1$. It follows that C is of type $I_{2 a, 2 b}^{+,+}, I_{2 a, 2 b}^{-,+}, I_{2 a, 2 b}^{+,-} I_{2 a, 2 b}^{-,-}$in TN7A/B/C/D respectively.

Now computing invariants, one finds that $\left(A_{2}-B_{2}\right)^{2} \equiv \square\left(\alpha_{2}+\beta_{2}\right)^{2} T_{\alpha_{2}} T_{\beta_{2}}$. Here $\left(\alpha_{2}+\beta_{2}\right)^{2} \in K^{\times 2}$, it follows that $\left(A_{2}-B_{2}\right)^{2} \in K^{\times 2}$ for TN7A/D and $\left(A_{2}-\right.$ $\left.B_{2}\right)^{2} \notin K^{\times 2}$ for TN7B/C. Also, using Proposition 3.4.30, one finds that \hat{C} is of type $U^{+}\left(U^{-}\right.$respectively) if $\ell \in K^{\times 2}\left(\ell \notin K^{\times 2}\right.$ respectively). Computing ℓ yields $\ell \equiv \square c\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)\left(\alpha_{2}+\beta_{2}\right)^{2} \equiv T_{\beta_{2}}$. Therefore $\ell \in K^{\times 2}$ for TN7A/B and $\ell \notin K^{\times 2}$ for TN7C/D. This yields that \hat{C} is of type $U_{2 a, 2 a, b-a}^{+}$for TN7A, $U_{2 a \sim}^{+} 2 a, b-a$ for TN7B, $U_{2 a^{\sim} 2 a, b-a}^{-}$for TN7C, $U_{2 a, 2 a, b-a}^{-}$for TN7D.

Remark 5.3.11. Since $\alpha_{2} \equiv \alpha_{3}$ and $\beta_{2} \equiv \beta_{3}$, it follows that $2 a$ odd $\Leftrightarrow 2 b$ odd.
Tamagawa numbers and deficiency : λ_{v} is clear for computations of Tamagawa
numbers and deficiency given in Table 3.1 except for TN7C/D.Therefore, for TN7C we have

$$
(-1)^{\operatorname{ord}_{2}\left(\frac{c_{v}}{\hat{c}_{v}}\right)}=1 \Leftrightarrow b \equiv 1 \bmod 2, \quad(-1)^{\text {ord }_{2}\left(\frac{m_{v}}{\tilde{m}_{v}}\right)}=1 \Leftrightarrow b-a \equiv 1 \bmod 2
$$

which yields that $\lambda_{v}=-1$ if and only if $b \equiv a \bmod 2$ as required.
For TN7D we use the following lemma.

Lemma 5.3.12.

1. For $a, b \in \mathbb{Z}$. If $b-a$ is odd then $d=\operatorname{gcd}(2 a, b-a)$ is odd and $\frac{4 a b}{d}$ is even. If $b-a$ is even then d is even and $\frac{4 a b}{d}$ is even.
2. For $a, b \in \frac{1}{2} \mathbb{Z}$ with $2 a, 2 b$ odd. If $b-a$ odd then $d=\operatorname{gcd}(2 a, b-a)$ is odd and $\frac{4 a b}{d}$ is odd. If $b-a$ even then d is odd and $\frac{4 a b}{d}$ is odd.

Proof. 1)The first claim is clear. If $b-a$ is even with a, b odd then 2 divides exactly once $2 a$, and hence d. On the other hand, 4 divides exactly once $4 a b$ so that $\frac{4 a b}{d}$ is even. Finally if $b-a$ is even with a, b even write $a=2^{n} a^{\prime}$ and $b=2^{m} b^{\prime}$ with $n \leq m$. Then 2^{n} divides exactly d and $4 a b=2^{n+m+2} a^{\prime} b^{\prime}$ so that $\frac{4 a b}{d}$ is even.
2) This is clear since $4 a b$ is odd and d is odd.

Hence, if $a, b \in \mathbb{Z}$ then $c_{v}=4, m_{v}=1$ and
if $b-a$ is even then $\hat{c}_{v}=4$ and $\hat{m}_{v}=1$,
if $b-a$ is odd, then , $\hat{c}_{v}=2$ and $\hat{m}_{v}=2$. Therefore in this case
$(-1)^{\text {ord }_{2}\left(\frac{c_{v}}{\hat{c}_{v}}\right)}=1 \Leftrightarrow b-a \equiv 0 \bmod 2, \quad(-1)^{\text {ord }_{2}\left(\frac{m_{v}}{\tilde{m}_{v}}\right)}=1 \Leftrightarrow b-a \equiv 0 \bmod 2$.

If $a, b \in \frac{1}{2} \mathbb{Z}$ then $c_{v}=1, m_{v}=1$ and
if $b-a$ is even then $\hat{c}_{v}=1$ and $\hat{m}_{v}=1$,
if $b-a$ is odd, then , $\hat{c}_{v}=1$ and $\hat{m}_{v}=2$. Therefore in this case

$$
(-1)^{\text {ord }_{2}\left(\frac{c_{v}}{\tilde{c}_{v}}\right)}=1, \quad(-1)^{\text {ord }_{2}\left(\frac{m_{v}}{\tilde{m}_{v}}\right)}=1 \Leftrightarrow b \equiv 0 \bmod 2 .
$$

Therefore, $\lambda_{v}=1$ if and only if $2 a \equiv b-a \bmod 2$, equivalently if $b-a \equiv 0 \bmod 2$ as required.

Case TN7E/F/G/H/I: Here $a=b$ but we let $v\left(\Delta_{G}\right)=2 a$ so that $v\left(\ell_{1}\right)=n_{1}$. Also, $v\left(\ell_{2}\right)=0$ if $v\left(\ell_{3}\right)=0$ or $v\left(\ell_{2}\right) \geq \min \left\{a, v\left(\ell_{3}\right)\right\}$ and by semistability criterion 3.4.29, we have $v(\ell) \in 2 \mathbb{Z}$. Recall that in this case

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{3}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)+b_{3}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)+a_{3} b_{3} \pi^{a}\left(\alpha_{2}+\beta_{2}\right)\right), \\
u_{1}=-\pi^{a}\left(a_{3}+b_{3}\right), \quad \ell_{2}=c\left(\alpha_{2}+\beta_{2}+\pi^{a}\left(a_{3}+b_{3}\right)\right), \quad \ell_{3}=-c\left(\alpha_{2}+\beta_{2}\right) .
\end{gathered}
$$

Therefore

$$
\begin{gathered}
v\left(\Delta_{G}\right)=a \quad v\left(a_{3}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)+b_{3}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)+a_{3} b_{3} \pi^{a}\left(\alpha_{2}+\beta_{2}\right)\right)=0 \\
v\left(u_{1}\right)=a+n_{1}, \quad n_{1}=v\left(a_{3}+b_{3}\right) \\
v\left(\ell_{2}\right)=v\left(\alpha_{2}+\beta_{2}+\pi^{a}\left(a_{3}+b_{3}\right)\right), \quad v\left(\ell_{3}\right)=v\left(\alpha_{2}+\beta_{2}\right)
\end{gathered}
$$

In particular, $v\left(\ell_{1}\right)=n_{1}$.
From P.4, P. 5 and P. 6 we have

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=2 a-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=2 a-2 a-2 n_{1}=-2 n_{1} \\
v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right)
\end{gathered}
$$

and P.7, P. 8 and P. 9 give

$$
\begin{aligned}
& v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=2 a-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right) \\
& v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=-2 n_{1}-2 v\left(\ell_{3}\right) \\
& v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=-2 n_{1}-2 v\left(\ell_{2}\right)
\end{aligned}
$$

If $n_{1}=v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ then, without loss of generality, let $v\left(A_{2}-A_{3}\right)=v\left(B_{2}-\right.$ $\left.B_{3}\right)=a$ so that the cluster picture of \hat{C} is that of Table 4.18 for TN7E/F/G/H/I. Otherwise, assume that $n_{1}=0$ then
if $v\left(\ell_{3}\right)=n_{3}>0$ with $n_{3}>a$, then $v\left(\ell_{2}\right)=a$ and the cluster picture for \hat{C}

If $v\left(\ell_{3}\right)=n_{3}>0$ with $n_{3}<a$, then $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)$ and the cluster picture for

If $v\left(\ell_{3}\right)=n_{3}>0$ with $n_{3}=a$, then if $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=a$, the cluster picture
for \hat{C} is
 J_{-a}, and if $v\left(\ell_{2}\right)>v\left(\ell_{3}\right)=a$, the cluster picture for \hat{C} is

Finally, if $n_{1}>0$ then since $v\left(\Delta_{G}\right)=a$ we have $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ and the cluster picture of \hat{C} is

All are in the equivalence class of $\omega_{a} \bullet_{0}$ as required.
Frobenius action. By Proposition 3.4.30, the reduction at the node at α_{2} is split if and only if $T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{2}-\beta_{2}\right)\left(\alpha_{2}-\beta_{3}\right) \equiv \square 1$ and the reduction at the node at β_{2} is split if and only if $T_{\beta_{2}}=c\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)\left(\beta_{2}-\alpha_{2}\right)\left(\beta_{2}-\alpha_{3}\right) \equiv \square 1$. It follows that C is of type $I_{2 a, 2 a}^{+,+}, I_{2 a, 2 a}^{-,+}, I_{2 a, 2 a}^{-,-}$in TN7E/F/G respectively.

Now computing invariants, one finds that $\hat{\delta_{2}} \equiv \square \hat{\delta_{3}} \equiv \square T_{\alpha_{2}} T_{\beta_{2}}$. It follows that $\hat{\delta_{2}}, \hat{\delta_{3}} \in K^{\times 2}$ for TN7F and $\hat{\delta_{2}}, \hat{\delta_{3}} \notin K^{\times 2}$ for TN7E/G. Similarly for \hat{C}, using Proposition 3.4 .30 at the nodes A_{2} and A_{B}, one finds that the reduction at the node at A_{2} is split multiplicative if and only if $T_{A_{2}}=\ell\left(A_{2}-A_{1}\right)\left(A_{2}-B_{1}\right)\left(A_{2}-B_{2}\right)\left(A_{2}-\right.$ $\left.B_{3}\right) \equiv \square 1$. Finally, the reduction at the node at B_{2} is split multiplicative if and only if $T_{B_{2}} \equiv \ell\left(B_{2}-A_{1}\right)\left(B_{2}-B_{1}\right)\left(B_{2}-A_{2}\right)\left(B_{2}-A_{3}\right) \equiv \square$. However, computing $T_{A_{2}}, T_{B_{2}}$ we have that $T_{A_{2}} T_{B_{2}} \equiv \square \delta_{2} \equiv \delta_{3}$. Therefore \hat{C} is of type $I_{2 a, 2 a}^{+,+}, I_{2 a}^{+}+{ }_{2 a}$, $I_{2 a, 2 a}^{-,-}$in $\mathrm{TN} 7 \mathrm{E} / \mathrm{F} / \mathrm{G}$ respectively.

Remark 5.3.13. It could be argued that for TN7G, since $T_{A_{2}} T_{B_{2}} \equiv \square \delta_{2} \equiv \delta_{3} \equiv 1$, we could have $T_{A_{2}}, T_{B_{2}} \in K^{\times 2}$. However, this is not possible since the order of Frob on the components of both special fibers of C and \hat{C} is preserved (e.g. because it can be read of the local factor of the L-function). That is, for TN7E, Frob acts trivially on the components of the special fiber of C, therefore its action is also trivial on that of \hat{C}. Similarly, for TN7G, Frob has order 2 on both $2 a$-gone of the special fiber of C. It follows that Frob has order 2 on both $2 a$-gone of the special fiber of \hat{C} and hence that \hat{C} is of type $I_{2 a, 2 a}^{-,-}$.

Finally, for TN7H : Let $t_{\alpha_{2}}^{+}, t_{\alpha_{2}}^{-}$, (respectively $t_{\beta_{2}}^{+}, t_{\beta_{2}}^{-}$) denote the square roots of $T_{\alpha_{2}}$, (resp. $T_{\beta_{2}}$); i.e. $\left(t_{\alpha_{2}}^{+}\right)^{2}=\left(t_{\alpha_{2}}^{-}\right)^{2}=T_{\alpha_{2}}$. Since C is of type $I_{2 a 2 a}^{+,+}$, it follows that Frob has order 2 on $t_{\alpha_{2}}^{+}, t_{\beta_{2}}^{+}$. Hence, without loss of generality, let Frob $\left(t_{\alpha_{2}}^{+}\right)=t_{\beta_{2}}^{+}$, $\operatorname{Frob}\left(t_{\beta_{2}}^{+}\right)=\left(t_{\alpha_{2}}^{+}\right)$and $\operatorname{Frob}\left(t_{\alpha_{2}}^{-}\right)=t_{\beta_{2}}^{-}, \operatorname{Frob}\left(t_{\beta_{2}}^{-}\right)=\left(t_{\alpha_{2}}^{-}\right)$. Since, as above

$$
d \ell_{2} \equiv d \ell_{3} \equiv \square T_{\alpha_{2}} T_{\beta_{2}}
$$

and

$$
T_{\alpha_{2}} T_{\beta_{2}}=\left(t_{\alpha_{2}}^{+}\right)^{2}\left(t_{\beta_{2}}^{+}\right)^{2}=\left(t_{\alpha_{2}}^{+} t_{\beta_{2}}^{+}\right)^{2}
$$

with $\operatorname{Frob}\left(t_{\alpha_{2}}^{+} t_{\beta_{2}}^{+}\right)=t_{\alpha_{2}}^{+} t_{\beta_{2}}^{+}$, it follows that $t_{\alpha_{2}}^{+} t_{\beta_{2}}^{+} \in K^{\times}$and $d \ell_{2}, d \ell_{3} \in K^{\times 2}$.
Also, using P. 8 we have that $\delta_{2}=4 \ell_{1}^{2} \ell_{3}^{2}\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)$. Write $\alpha_{3}=a_{3} \pi^{a}+\alpha_{2}$ and $\beta_{3}=b_{3} \pi^{a}+\beta_{2}$, then either $\operatorname{Frob}\left(\alpha_{2}\right)=\beta_{2}$ and $\operatorname{Frob}\left(\alpha_{3}\right)=$ β_{3} in which case $\operatorname{Frob}\left(a_{3}\right)=b_{3}, \operatorname{Frob}\left(b_{3}\right)=a_{3}$ or $\operatorname{Frob}\left(\alpha_{2}\right)=\beta_{3}$ and $\operatorname{Frob}\left(\alpha_{3}\right)=\beta_{2}$ in which case $\operatorname{Frob}\left(a_{3}\right)=-b_{3}, \operatorname{Frob}\left(b_{3}\right)=-a_{3}$. In both cases, $\delta_{2} \equiv{ }_{\square} T_{A_{2}} T_{B_{2}}$, with $T_{A_{2}}, T_{B_{2}} \in K$. Since $\delta_{2} \equiv \delta_{3} \notin K^{\times 2}$ it follows that, without loss of generality, $T_{A_{2}} \in K^{\times 2}$ and $T_{B_{2}} \notin K^{\times 2}$. Therefore, \hat{C} is of type $I_{2 a, 2 a}^{-,+}$as required.

For TN7F : Here Frob has order 4 on $t_{\alpha_{2}}^{+}$, hence we have $\operatorname{Frob}\left(t_{\alpha_{2}}^{+}\right)=t_{\beta_{2}}^{+}$, $\operatorname{Frob}\left(t_{\beta_{2}}^{+}\right)=t_{\alpha_{2}}^{-}, \operatorname{Frob}\left(t_{\alpha_{2}}^{-}\right)=t_{\beta_{2}}^{-}, \operatorname{Frob}\left(t_{\beta_{2}}^{-}\right)=t_{\alpha_{2}}^{+}$. It follows that $\operatorname{Frob}\left(t_{\alpha_{2}}^{+} t_{\beta_{2}}^{+}\right)=$ $t_{\beta_{2}}^{+} t_{\alpha_{2}}^{-}$so that $t_{\alpha_{2}}^{+} t_{\beta_{2}}^{+} \notin K$ and $\hat{\delta_{2}} \equiv \hat{\delta_{3}} \equiv T_{\alpha_{2}} T_{\beta_{2}}=\left(t_{\alpha_{2}}^{+} t_{\beta_{2}}^{+}\right)^{2} \notin K^{\times 2}$. It follows that $\operatorname{Frob}\left(T_{A_{2}}\right)=T_{B_{2}}$ and using P. 8 as above we have $T_{A_{2}} T_{B_{2}} \equiv \square \delta_{2} \equiv \delta_{3} \notin K^{\times 2}$. Writing $T_{A_{2}} T_{B_{2}}=\left(t_{A_{2}}\right)^{2}\left(t_{B_{2}}\right)^{2}=\left(t_{A_{2}} t_{B_{2}}\right)^{2}$, it follows that $t_{A_{2}} t_{B_{2}} \notin K$ and therefore \hat{C} is of type $I_{2 a^{*}}^{-,+2 a}$.
Case TN7J/K/L/M/N: Here $a=b$ but we let $v\left(\Delta_{G}\right)=a+r>a$. Recall that

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{3}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)+b_{3}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)+a_{3} b_{3} \pi^{a}\left(\alpha_{2}+\beta_{2}\right)\right), \\
u_{1}=-\pi^{a}\left(a_{3}+b_{3}\right), \quad \ell_{2}=c\left(\alpha_{2}+\beta_{2}+\pi^{a}\left(a_{3}+b_{3}\right)\right), \quad \ell_{3}=-c\left(\alpha_{2}+\beta_{2}\right) .
\end{gathered}
$$

In particular, $v\left(\ell_{1}\right)=a+n_{1}-r$ where $v\left(a_{3}+b_{3}\right)=n_{1}$. Note that since $v\left(\Delta_{G}\right)>a$ we have $a_{3}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right) \equiv-b_{3}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)$. Now if $v\left(\ell_{3}\right)>0$ or $v\left(u_{1}\right)>a$ this yields another congruence between roots, contradicting the cluster picture of C. Therefore $v\left(\ell_{3}\right)=v\left(\ell_{2}\right)=n_{1}=0$.
From P.4, P. 5 and P. 6 we have

$$
\begin{aligned}
v\left(A_{1}-B_{1}\right)^{2}= & 2 a-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=2 a-2(a+r)-2(-r)=0, \\
& v\left(A_{2}-B_{2}\right)^{2}=0, \quad v\left(A_{3}-B_{3}\right)^{2}=0,
\end{aligned}
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=2(a+r), \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=2 r, \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=2 r .
\end{gathered}
$$

Thus we have the following cluster picture
 as required.
Frobenius action, Tamagawa numbers and deficiency. Follows from the previous case, except for TN7K/N where deficiency is different but readily computable from Table 3.1.

Proof of Tables 4.20, 4.21 and 4.22

By definition of the isogeny

$$
v\left(\delta_{1}\right)=0, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=0, v\left(\hat{\delta_{1}}\right)=0, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=a+b,
$$

Since $G(x)$ is a $C_{2} \times D_{4}$ polynomial, we have $\delta_{1} \in K$, therefore $\alpha_{1}, \alpha_{2}, \beta_{2} \in K^{n r}$ for otherwise I_{K} would permute both clusters, a contradiction to the semistability criterion 3.4.29. Hence $a, b \in \mathbb{Z}$. Without loss of generality, assume $a \leq b$. Write

$$
\alpha_{2}=\alpha_{1}+a_{2} \pi^{a}, \quad \beta_{2}=-\alpha_{1}+b_{2} \pi^{b}, \quad a_{2}, b_{2} \in \mathcal{O}_{\bar{K}}^{\times}
$$

By definition of $\Delta_{G}, \ell_{1}, \ell_{2}, \ell_{3}$ we have

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{2}\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right)+b_{2} \pi^{b-a}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)-a_{2} b_{2} \pi^{b}\left(\alpha_{3}+\beta_{3}\right)\right) \\
u_{1}=a_{2} \pi^{a}+b_{2} \pi^{b}-\alpha_{3}-\beta_{3}, \quad \ell_{2}=c\left(\alpha_{3}+\beta_{3}\right), \quad \ell_{3}=-c\left(a_{2} \pi^{a}+b_{2} \pi^{b}\right)
\end{gathered}
$$

It follows that if $a<b$ then $v\left(\Delta_{G}\right)=a, \quad u_{1}=a_{2} \pi^{a}-\alpha_{3}-\beta_{3}, \quad v\left(\ell_{3}\right)=a$.
If $a=b$ then

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{2}\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right)+b_{2}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)-a_{2} b_{2} \pi^{a}\left(\alpha_{3}+\beta_{3}\right)\right) \\
u_{1}=\pi^{a}\left(a_{2}+b_{2}\right)-\alpha_{3}-\beta_{3}, \quad \ell_{2}=c\left(\alpha_{3}+\beta_{3}\right), \quad \ell_{3}=-c \pi^{a}\left(a_{2}+b_{2}\right)
\end{gathered}
$$

Therefore

$$
\begin{gathered}
v\left(\Delta_{G}\right)=a+r, \quad r=v\left(a_{2}\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right)+b_{2}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)-a_{2} b_{2} \pi^{a}\left(\alpha_{3}+\beta_{3}\right)\right) \\
v\left(\ell_{3}\right)=a+r_{3}, \quad r_{3}=v\left(a_{2}+b_{2}\right) \\
v\left(u_{1}\right)=v\left(\pi^{a}\left(a_{2}+b_{2}\right)+\alpha_{3}+\beta_{3}\right), \quad v\left(\ell_{2}\right)=v\left(\alpha_{3}+\beta_{3}\right)
\end{gathered}
$$

In particular, $v\left(\ell_{1}\right)=v\left(u_{1}\right)-a-r$.
Case TN8A/B/C/D: Here we let $a<b$ so that $v\left(\Delta_{G}\right)=a, v\left(\ell_{3}\right)=a$ and $v\left(\ell_{1}\right)=$ $v\left(u_{1}\right)-a . v\left(u_{1}\right)=0$ if $v\left(\ell_{2}\right)=0$ or $v\left(u_{1}\right) \geq \min \left\{a, v\left(\ell_{2}\right)\right\}$ and by semistability criterion 3.4.29, we have $v(\ell) \in 2 \mathbb{Z}$. From P.4, P. 5 and P. 6 we have

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=-2 a-2 v\left(u_{1}\right)+2 a=-2 v\left(u_{1}\right) \\
v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=a+b-2 v\left(\ell_{3}\right)=a+b-2 a=b-a
\end{gathered}
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right) \\
=2 a-2 v\left(\ell_{2}\right)-2 a=-2 v\left(\ell_{2}\right) \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=-2 v\left(u_{1}\right)+2 a-2 a=-2 v\left(u_{1}\right), \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=-2 v\left(u_{1}\right)+2 a-2 v\left(\ell_{2}\right) .
\end{gathered}
$$

If $v\left(\ell_{2}\right)=0$ then $v\left(u_{1}\right)=0$ and we have, without loss of generality, let $v\left(A_{1}-A_{2}\right)=$ $v\left(B_{1}-B_{2}\right)=a$ and $v\left(A_{3}-B_{3}\right)=\frac{b-a}{2}$ so that the cluster picture of \hat{C} is that of Table 4.20 for TN8A/B/C/D. Otherwise,
if $v\left(\ell_{2}\right)=n_{2}>0$ with $n_{2}>a$, then $v\left(u_{1}\right)=a$ and the cluster picture for \hat{C}

If $v\left(\ell_{2}\right)=n_{2}>0$ with $n_{2}<a$, then $v\left(u_{1}\right)=v\left(\ell_{2}\right)$ and the cluster picture for

If $v\left(\ell_{2}\right)=n_{2}>0$ with $n_{2}=a$, then if $v\left(u_{1}\right)=v\left(\ell_{2}\right)=a$, the cluster picture

All are in the equivalence class of $\bullet_{a} \bullet \overbrace{b})_{\frac{b-a}{2}}$ as required.
Frobenius action. By Proposition 3.4.30, the reduction at the node at α_{1} is split if and only if $T_{\alpha_{1}}=2 c \alpha_{1}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right) \equiv \square 1$ and the reduction at the node at $-\alpha_{1}$ is split if and only if $T_{-\alpha_{1}}=-2 c \alpha_{1}\left(-\alpha_{1}-\alpha_{2}\right)\left(-\alpha_{1}-\alpha_{3}\right)\left(-\alpha_{1}-\beta_{3}\right) \equiv \square 1$. It follows that C is of type $I_{2 a, 2 b}^{+,+}, I_{2 a, 2 b}^{-,+}, I_{2 a, 2 b}^{+,-} I_{2 a, 2 b}^{-,-}$in TN8A/B/C/D respectively.

Now computing invariants, one finds that $\left(A_{1}-B_{1}\right)^{2} \equiv \square\left(\alpha_{3}+\beta_{3}\right)^{2} T_{\alpha_{1}} T_{-\alpha_{1}}$. Here $\left(\alpha_{3}+\beta_{3}\right)^{2} \in K^{\times 2}$, it follows that $\left(A_{1}-B_{1}\right)^{2} \in K^{\times 2}$ for TN8A/D and $\left(A_{1}-\right.$ $\left.B_{1}\right)^{2} \notin K^{\times 2}$ for TN8B/C. Also, using Proposition 3.4.30, one finds that \hat{C} is of type $U^{+}\left(U^{-}\right.$respectively) if $\ell \in K^{\times 2}\left(\ell \notin K^{\times 2}\right.$ respectively). Computing ℓ yields $\ell \equiv \square c\left(\alpha_{1}+\beta_{3}\right)\left(\alpha_{1}+\alpha_{3}\right) \equiv T_{-\alpha_{1}}$. Therefore $\ell \in K^{\times 2}$ for TN8A/B and $\ell \notin K^{\times 2}$ for TN8C/D. This yields that \hat{C} is of type $U_{2 a, 2 a, b-a}^{+}$for TN8A, $U_{2 a}^{+}{ }_{2} 2 a, b-a ~ f o r ~ T N 8 B$, $U_{2 a}^{-}{ }^{\sim} 2 a, b-a$ for TN8C, $U_{2 a, 2 a, b-a}^{-}$for TN8D.
Tamagawa numbers and deficiency:
λ_{v} is clear for computations of Tamagawa numbers and deficiency given in Table 3.1 except for TN8D. Here $D=\operatorname{gcd}(2 a, b-a)$ with $2 a \in 2 \mathbb{Z}$. Hence $D \equiv$ $b-a \bmod 2$. It follows that if $b-a$ is odd, then $\frac{4 a^{2}}{D}$ is even so that $\hat{c}_{v}=2$, Otherwise, $\frac{4 a^{2}}{D}$ is even and D is even, hence $\hat{c}_{v}=4$. Therefore $\lambda_{v}=(-1)^{b-a}$.
Case TN8E/F/G/H/I : Here $a=b$ but we let $v\left(\Delta_{G}\right)=2 a$. Recall that if $a=b$

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{2}\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right)+b_{2}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)-a_{2} b_{2} \pi^{a}\left(\alpha_{3}+\beta_{3}\right)\right), \\
u_{1}=\pi^{a}\left(a_{2}+b_{2}\right)-\alpha_{3}-\beta_{3}, \quad \ell_{2}=c\left(\alpha_{3}+\beta_{3}\right), \quad \ell_{3}=-c \pi^{a}\left(a_{2}+b_{2}\right) .
\end{gathered}
$$

Therefore

$$
\begin{gathered}
v\left(\Delta_{G}\right)=a+r, \quad r=v\left(a_{2}\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right)+b_{2}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)-a_{2} b_{2} \pi^{a}\left(\alpha_{3}+\beta_{3}\right)\right), \\
v\left(\ell_{3}\right)=a+n_{3}, \quad r_{3}=v\left(a_{2}+b_{2}\right), \\
v\left(u_{1}\right)=v\left(\pi^{a}\left(a_{2}+b_{2}\right)+\alpha_{3}+\beta_{3}\right), \quad v\left(\ell_{2}\right)=v\left(\alpha_{3}+\beta_{3}\right) .
\end{gathered}
$$

In particular, we set $r=0$ so that $v\left(\ell_{1}\right)=v\left(u_{1}\right)-a$ and $v\left(u_{1}\right)=0$ if $v\left(\ell_{2}\right)=0$, otherwise if $v\left(\ell_{2}\right)=n_{2}>0$, then $v\left(u_{1}\right) \geq \min \left\{n_{2}, a\right\}$. By semistability criterion 3.4.29, we have $v(\ell) \in 2 \mathbb{Z}$. From P.4, P. 5 and P. 6 we have

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=-2 a-2 v\left(u_{1}\right)+2 a+2 r=-2 v\left(u_{1}\right), \\
v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \quad v\left(A_{3}-B_{3}\right)^{2}=2 a-2 a-2 n_{3}=-2 n_{3},
\end{gathered}
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=-2 v\left(\ell_{2}\right)-2 n_{3}, \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=-2 v\left(u_{1}\right)-2 n_{3}, \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=-2 v\left(u_{1}\right)+2 a-2 v\left(\ell_{2}\right) .
\end{gathered}
$$

If $n_{3}=v\left(\ell_{2}\right)=v\left(u_{1}\right)=0$ then we have, without loss of generality, let $v\left(A_{1}-\right.$ $\left.A_{2}\right)=v\left(B_{1}-B_{2}\right)=a$ so that the cluster picture of \hat{C} is that of Table 4.21 for TN8E/F/G/H/I. Otherwise, assume that $n_{3}=0$, then
if $v\left(\ell_{2}\right)=n_{2}>0$ with $n_{2}>a$, then $v\left(u_{1}\right)=a$ and the cluster picture for \hat{C}

If $v\left(\ell_{2}\right)=n_{2}>0$ with $n_{2}<a$, then $v\left(u_{1}\right)=v\left(\ell_{2}\right)$ and the cluster picture for

If $v\left(\ell_{2}\right)=n_{2}>0$ with $n_{2}=a$, then if $v\left(u_{1}\right)=v\left(\ell_{2}\right)=a$, the cluster picture for \hat{C} is
$\bigcirc \underbrace{}_{-a}$ and if $v\left(u_{1}\right)>v\left(\ell_{2}\right)=a$, the cluster picture for \hat{C} is

Finally, if $n_{3}>0$ then since $v\left(\Delta_{G}\right)=a$ we have $v\left(u_{1}\right)=v\left(\ell_{2}\right)=0$ and the cluster picture of \hat{C} is

All are in the equivalence class of $\because \rightarrow \square_{a}$ as required.
Frobenius action. By Proposition 3.4.30, the reduction at the node at α_{1} is split if and only if $T_{\alpha_{1}}=2 c \alpha_{1}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right) \equiv \square 1$ and the reduction at the node at $-\alpha_{1}$ is split if and only if $T_{-\alpha_{1}}=-2 c \alpha_{1}\left(-\alpha_{1}-\alpha_{2}\right)\left(-\alpha_{1}-\alpha_{3}\right)\left(-\alpha_{1}-\beta_{3}\right) \equiv \square 1$. It follows that C is of type $I_{2 a, 2 a}^{+,+}, I_{2 a, 2 a}^{-,+}, I_{2 a, 2 a}^{-,-}$in TN8E/F/G respectively.

Now computing invariants, one finds that $\left(A_{1}-B_{1}\right)^{2} \equiv \square T_{\alpha_{1}} T_{-\alpha_{1}}$. It follows that $\left(A_{1}-B_{1}\right)^{2} \in K^{\times 2}$ for TN8F and $\left(A_{1}-B_{1}\right)^{2} \notin K^{\times 2}$ for TN8E/G. Similarly for \hat{C}, using Proposition 3.4 .30 at the nodes A_{1} and B_{1}, one finds that the reduction at the node at A_{1} is split if and only if $T_{A_{1}}=\ell\left(A_{1}-B_{1}\right)\left(A_{1}-B_{2}\right)\left(A_{1}-A_{3}\right)\left(A_{1}-\right.$ $\left.B_{3}\right) \equiv \square 1$. Finally, the reduction at the node at B_{1} is split if and only if $T_{B_{1}} \equiv$ $\ell\left(B_{1}-A_{1}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-A_{3}\right)\left(B_{1}-B_{3}\right) \equiv \square 1$. However, computing $T_{A_{1}}, T_{B_{1}}$ we have that $T_{A_{1}} T_{B_{1}} \equiv \square \delta_{2} \equiv \delta_{2}$. Therefore \hat{C} is of type $I_{2 a, 2 a}^{+,+}, I_{2 a \sim 2 a}^{+,+}, I_{2 a, 2 a}^{-,-}$in TN8E/F/G respectively. We note that the same remark as in Remark 5.3.13 can be done about TN8G. Finally, for TN8H/I, the proof follows directly from that of TN7H/I.
$\underline{\text { Case } \mathbf{T N} 8 \mathbf{J} / \mathbf{K} / \mathbf{L} / \mathbf{M} / \mathbf{N}}$: Here $a=b$ but we let $v\left(\Delta_{G}\right)=a+r>a$. Recall that

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{2}\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right)+b_{2}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)-a_{2} b_{2} \pi^{a}\left(\alpha_{3}+\beta_{3}\right)\right) \\
u_{1}=\pi^{a}\left(a_{2}+b_{2}\right)-\alpha_{3}-\beta_{3}, \quad \ell_{2}=c\left(\alpha_{3}+\beta_{3}\right), \quad \ell_{3}=-c \pi^{a}\left(a_{2}+b_{2}\right)
\end{gathered}
$$

In particular, $v\left(\ell_{1}\right)=v\left(u_{1}\right)-a-r, v\left(\ell_{3}\right)=a+r_{3}$, where $v\left(a_{3}+b_{3}\right)=r_{3}$. Note that since $v\left(\Delta_{G}\right)>a$ we have $a_{2}\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right) \equiv-b_{2}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)$. Now if $v\left(\ell_{2}\right)>0$ or $r_{3}>0$ this yields another congruence between roots, contradicting the cluster picture of C. Therefore $r_{3}=v\left(\ell_{2}\right)=v\left(u_{1}\right)=0$.

From P.4, P. 5 and P. 6 we have

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=-2 a-2 r-2 v\left(u_{1}\right)+2 a+2 r=0 \\
v\left(A_{2}-B_{2}\right)^{2}=-0, \quad v\left(A_{3}-B_{3}\right)^{2}=2 a-2 a-2 r_{3}=0
\end{gathered}
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=2 r \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=2 r \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=2 r
\end{gathered}
$$

Thus we have the following cluster picture

The Frobenius action, Tamagawa numbers and deficiency follows from the previous case, except for TN8K/N where deficiency is different but readily computable from Table 3.1 .

5.3.4 C is of type $U_{2 a, 2 b, 2 n}$

Proof of Tables 4.23

Case U1A/B/C/D: By definition of the isogeny

$$
v\left(\delta_{1}\right)=2 a, v\left(\delta_{2}\right)=2 b, v\left(\delta_{3}\right)=2 n, v\left(\hat{\delta_{1}}\right)=0, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=0
$$

By definition of $\Delta_{G}, \ell_{1}, \ell_{2}, \ell_{3}$ we have

$$
\Delta_{G} \equiv-2 c \alpha_{2} \alpha_{3}\left(\alpha_{2}-\alpha_{3}\right), \quad u_{1} \equiv 2\left(\alpha_{2}-\alpha_{3}\right), \quad \ell_{2} \equiv 2 c \alpha_{3}, \quad \ell_{3} \equiv-2 c \alpha_{2}
$$

and $\ell \equiv \square c$. Since $G(x)$ is a $C_{2} \times D_{4}$ polynomial, we have $\alpha_{1} \equiv 0 \not \equiv \alpha_{2} \not \equiv \alpha_{3}$ so that $v\left(\Delta_{G}\right)=v\left(u_{1}\right)=v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$. From P.4, P. 5 and P. 6 we have

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=0, \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right)=0 \\
v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right)=0
\end{gathered}
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 a+2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=2 a \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=2 b-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=2 b \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=2 n-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=2 n
\end{gathered}
$$

It follows that, without loss of generality, $v\left(A_{2}-A_{3}\right)=2 a, v\left(A_{1}-B_{3}\right)=2 b$ and $v\left(B_{1}-A_{2}\right)=2 n$ so that the cluster picture of \hat{C} is that of Table 4.23 for U1A/B/C/D.
Frobenius action. Since $G(x)$ is a $C_{2} \times D_{4}$ polynomial, we have $\delta_{1} \in K$, therefore either $\delta_{2}, \delta_{3} \in K$ or Frob swaps δ_{2}, δ_{3}. In particular in that case, $b=n \in \mathbb{Z}$ (otherwise I_{K} swaps the two clusters in the cluster picture of C which contradicts the semistability criterion 3.4 .29 .

By Proposition 3.4.30, C is of type U^{+}if and only if $c \in K^{\times 2}$. Since $\ell \equiv \square c$, it follows that \hat{C} is of type U^{+}whenever C is. Moreover, computing A_{1}, B_{1}, one finds that $\left(A_{1}-B_{1}\right)^{2} \equiv\left(\alpha_{2}-\alpha_{3}\right)^{2}$. It follows that C is of type $U_{2 a, 2 b, 2 n}^{+}, U_{2 a, 2 b, 2 n}^{-}$, $U_{2 a, 2 b^{2} 2 b}^{+}, U_{2 a, 2 b^{\sim} 2 b}^{-}$for $\mathrm{U} 1 \mathrm{~A} / \mathrm{B} / \mathrm{C} / \mathrm{D}$ respectively and that \hat{C} is of type $U_{4 a, 4 b, 4 n}^{+}$, $U_{4 a, 4 b, 4 n}^{-}, U_{4 a, 4 b \sim 4 b}^{+}, U_{4 a, 4 b^{\sim} 4 b}^{-}$for $\mathrm{U} 1 \mathrm{~A} / \mathrm{B} / \mathrm{C} / \mathrm{D}$ respectively.
Tamagawa numbers and deficiency: Tamagawa numbers, deficiency and λ_{v}
are clear from Table 3.1, except for U1B. Here $N=4 a b+4 a n+4 b n$ and $D=$ $\operatorname{gcd}(2 a, 2 b, 2 n)$. We have the following :
if $2 a, 2 b, 2 n$ are odd, then N is odd, D is odd and $\frac{N}{D}$ is odd so that $c_{v}=1$ and $m_{v}=2$,
if $2 a, 2 b, 2 n$ are even, then N is even, D is even and $\frac{N}{D}$ is even so that $c_{v}=4$ and $m_{v}=1$,
if one of $2 a, 2 b, 2 n$ is odd, then N is even, D is odd and $\frac{N}{D}$ is even so that $c_{v}=2$ and $m_{v}=1$,
if two of $2 a, 2 b, 2 n$ are odd, then N is odd, D is odd and $\frac{N}{D}$ is odd so that $c_{v}=1$ and $m_{v}=1$. It then follows that $\lambda_{v}=-1$ if and only if one or three of $2 a, 2 b, 2 n$ is odd, which is the same as N is odd.

Proof of Tables 4.24

Case U2A/B/C/D: By definition of the isogeny

$$
v\left(\delta_{1}\right)=0, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=0, v\left(\hat{\delta_{1}}\right)=n, v\left(\hat{\delta_{2}}\right)=b, v\left(\hat{\delta_{3}}\right)=a,
$$

By definition of $\Delta_{G}, \ell_{1}, \ell_{2}, \ell_{3}$ we have

$$
\Delta_{G} \equiv 2 \alpha_{1} c\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}+\beta_{2}\right), \quad u_{1} \equiv 2 \alpha_{1}, \quad \ell_{2} \equiv-c\left(\alpha_{1}-\beta_{2}\right),
$$

and $\ell_{3} \equiv-c\left(\alpha_{1}+\beta_{2}\right), \quad \ell \equiv c$. Since $\alpha_{1} \not \equiv 0$, we have $v\left(\Delta_{G}\right)=v\left(u_{1}\right)=v\left(\ell_{2}\right)=$ $v\left(\ell_{3}\right)=0$. From P.4, P. 5 and P. 6 we have

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=n-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=n, \quad v\left(A_{2}-B_{2}\right)^{2}=b-2 v\left(\ell_{2}\right)=b, \\
v\left(A_{3}-B_{3}\right)^{2}=2 a-2 v\left(\ell_{3}\right)=a,
\end{gathered}
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=0, \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=0, \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=0 .
\end{gathered}
$$

It follows that $v\left(A_{1}-B_{1}\right)=\frac{n}{2}, v\left(A_{2}-B_{2}\right)=\frac{b}{2}$ and $v\left(A_{3}-B_{3}\right)=\frac{a}{2}$ so that the cluster picture of \hat{C} is that of Table 4.24 for U2A/B/C/D.
Frobenius action. Since $G(x)$ is a $C_{2} \times D_{4}$ polynomial, we have either $\delta_{1} \in K^{\times 2}$ and $\delta_{2}, \delta_{3} \in K$ or $\delta_{1} \notin K^{\times 2}$ and $\delta_{2}, \delta_{3} \notin K$. In particular in both case, $a, b, n \in \mathbb{Z}$ (otherwise I_{K} swaps the two clusters in the cluster picture of C which contradicts the semistability criterion 3.4.29).

By Proposition 3.4.30, C is of type U^{+}if and only if $c \in K^{\times 2}$. It follows that C is of type $U_{2 a, 2 b, 2 n}^{+}, U_{2 a, 2 b, 2 n}^{-}, U_{2 a, 2 b^{\sim} 2 b}^{+}, U_{2 a, 2 b^{\sim} 2 b}^{-}$for U2A/B/C/D respectively. Moreover, since $\delta_{2} \equiv\left(\alpha_{1}-\beta_{2}\right)^{2}$ and $\delta_{3} \equiv\left(\alpha_{1}+\beta_{2}\right)^{2}$ and $\ell \equiv \square c$, it follows that \hat{C} is of type U^{+}whenever C is so that \hat{C} is of type $U_{a, b, n}^{+}, U_{a, b, n}^{-}, U_{a, b^{\sim} b}^{+}, U_{a, b^{\sim} b}^{-}$for U2A/B/C/D respectively.
Tamagawa numbers and deficiency: Tamagawa numbers, deficiency and λ_{v} are clear from Table 3.1, except for U2B. Here $N=a b+a n+b n$ and $D=\operatorname{gcd}(a, b, n)$. We have the following :
if a, b, n are odd, then N is odd, D is odd and $\frac{N}{D}$ is odd so that $c_{v}=1$ and $m_{v}=2$, if a, b, n are even, then N is even, D is even and $\frac{N}{D}$ is even so that $c_{v}=4$ and $m_{v}=1$,
if one of a, b, n is odd, then N is even, D is odd and $\frac{N}{D}$ is even so that $c_{v}=2$ and $m_{v}=1$,
if two of a, b, n are odd, then N is odd, D is odd and $\frac{N}{D}$ is odd so that $c_{v}=1$ and $m_{v}=1$. It then follows that $\lambda_{v}=-1$ if and only if one or three of a, b, n is odd, which is the same as N is odd.

Proof of Tables 4.25, 4.26 and 4.27

By definition of the isogeny

$$
v\left(\delta_{1}\right)=2 n, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=0, v\left(\hat{\delta_{1}}\right)=a+b, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=0
$$

where $2 a, 2 b, 2 n \in \mathbb{Z}$.
Write

$$
\alpha_{1}=a_{1} \pi^{n}, \quad \alpha_{3}=\alpha_{2}+a_{3} \pi^{a}, \quad \beta_{3}=\beta_{2}+b_{3} \pi^{b}
$$

for some $a_{1}, a_{3}, b_{3} \in \mathcal{O} \frac{\times}{\bar{K}}$. By definition of $\Delta_{G}, \ell_{1}, \ell_{2}, \ell_{3}$ we have

$$
\begin{aligned}
\Delta_{G} & =c \pi^{a}\left(a_{3}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)+b_{3} \pi^{b-a}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)+a_{3} b_{3} \pi^{b}\left(\alpha_{2}+\beta_{2}\right)\right) \\
u_{1} & =\pi^{a}\left(a_{3}+b_{3} \pi^{b-a}\right), \quad \ell_{2}=c\left(\pi^{a}\left(a_{3}+b_{3} \pi^{b-a}\right)+\alpha_{2}+\beta_{2}\right), \quad \ell_{3}=-c\left(\alpha_{2}+\beta_{2}\right)
\end{aligned}
$$

Case U3A/B: Here $a<b$ hence

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{3}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)\right)+o\left(\pi^{a}\right) \\
u_{1}=\pi^{a} a_{3}+o\left(\pi^{a}\right), \quad \ell_{2}=\alpha_{2}+\beta_{2}+o\left(\pi^{a}\right), \quad \ell_{3}=-c\left(\alpha_{2}+\beta_{2}\right) .
\end{gathered}
$$

Therefore $v\left(u_{1}\right)=v\left(\Delta_{G}\right)=a$ so that $v\left(\ell_{1}\right)=0$ and $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)$.
From P.4, P. 5 and P. 6 we have

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=a+b-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=b-a, \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right) \\
v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right)
\end{gathered}
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 n+2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right) \\
=2 n+2 a-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right) \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=-2 v\left(\ell_{3}\right) \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=-2 v\left(\ell_{2}\right)
\end{gathered}
$$

Assume that $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$. It follows that $v\left(A_{1}-B_{1}\right)=\frac{b-a}{2}$ and without loss of generality $v\left(A_{2}-A_{3}\right)=a$ and $v\left(B_{2}-B_{3}\right)=a+2 n$ so that the cluster picture of \hat{C} is that of Table 4.25 for U3A/B. On the other hand,
if $v\left(\ell_{3}\right)=n_{3}>a$ then $v\left(\ell_{2}\right)=a$ and the cluster picture for \hat{C} is

If $v\left(\ell_{3}\right)=n_{3} \leq a$ and $v\left(\ell_{2}\right)=n_{3}$ and the cluster picture for \hat{C} is

If $v\left(\ell_{3}\right)=a$ and $v\left(\ell_{2}\right)=n_{2}>n_{3}$ then the cluster picture for \hat{C} is

All are in the equivalence class of $\left.\omega_{a+2 n} \odot\right)^{\frac{b-a}{2}}$, as required.
Frobenius action. First note that since $G(x)$ is a $C_{2} \times D_{4}$ polynomial, if $\delta_{2}, \delta_{3} \notin K$ then $2 a$ is odd if and only if $2 b$ is odd. By Proposition 3.4.30, C is of type U^{+}if and only if $c \in K^{\times 2}$. It follows that C is of type $U_{2 a, 2 b, 2 n}^{+}, U_{2 a, 2 b, 2 n}^{-}$for U3A/B respectively. Moreover, since $\ell=c\left(\alpha_{2}+\beta_{2}\right)^{2} \beta_{2}^{2}+o(\pi)$, it follows from the cluster picture of C that \hat{C} is of type U^{+}whenever C is so that \hat{C} is of type $U_{2 a, 2 a+4 n, b-a}^{+}$, $U_{2 a, 2 a+4 n, b-a}^{-}$for U3A/B respectively.
Tamagawa numbers and deficiency : Tamagawa numbers, deficiency and λ_{v} are clear from Table 3.1, except for U4B. Here $N=4 a b+4 a n+4 b n$ and $D=$ $\operatorname{gcd}(2 a, 2 b, 2 n), \hat{D}=\operatorname{gcd}(2 a, b-a)$. We have either i) $2 a, 2 b, 2 n$ are odd; or ii) $2 a, 2 b$ are odd and $2 n$ is even; or iii) $2 a, 2 b$ are even and $2 n$ is odd; or iv) $2 a, 2 b, 2 n$ are
even.
i) N is odd, D is odd and $\frac{N}{D}$ is odd so that $c_{v}=1$ and $m_{v}=1 ; \hat{D}$ is odd so that $\hat{c}_{v}=1$ and $\hat{m}_{v}=2$ if and only if $b-a$ is odd.
ii) N is odd, D is odd and $\frac{N}{D}$ is odd so that $c_{v}=1$ and $m_{v}=2 ; \hat{D}$ is odd so that $\hat{c}_{v}=1$ and $\hat{m}_{v}=2$ if and only if $b-a$ is odd.
iii) N is even, D is odd and $\frac{N}{D}$ is even so that $c_{v}=2$ and $m_{v}=1 ; \hat{D}$ is even if and only if $b-a$ is even so that $\hat{c}_{v}=4$ if and only if $b-a$ is even, and $\hat{m}_{v}=1$.
iv) N is even, D is even and $\frac{N}{D}$ is even so that $c_{v}=4$ and $m_{v}=1 ; \hat{D}$ is even if and only if $b-a$ is even so that $\hat{c}_{v}=4$ if and only if $b-a$ is even, and $\hat{m}_{v}=1$.
It follows that $\lambda_{v}=1$ if and only if $2 n \equiv b-a \bmod 2$, equivalently, $\lambda_{v}=(-1)^{2 n+b+a}$ as required.
Case U3C/D/E/F: Here $a=b$ but we let $v\left(\Delta_{G}\right)=a$ hence

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{3}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)+b_{3}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)+a_{3} b_{3} \pi^{b}\left(\alpha_{2}+\beta_{2}\right)\right) \\
\left.u_{1}=\pi^{a}\left(a_{3}+b_{3}\right), \quad \ell_{2}=c\left(\pi^{a}\left(a_{3}+b_{3}\right)\right)+\alpha_{2}+\beta_{2}\right), \quad \ell_{3}=-c\left(\alpha_{2}+\beta_{2}\right)
\end{gathered}
$$

Write $v\left(a_{3}+b_{3}\right)=n_{1}$ so that $v\left(\ell_{1}\right)=n_{1}$ and note that since $v\left(\Delta_{G}\right)=a$, we have either $n_{1}=0$ and $v\left(\ell_{2}\right) \geq v\left(\ell_{3}\right)$, or $n_{1}>0$ and $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$.
From P.4, P. 5 and P. 6 we have

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=2 a-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=-2 n_{1}, \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right) \\
v\left(A_{3}-B_{3}\right)^{2}=-2 v\left(\ell_{3}\right)
\end{gathered}
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 n+2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right) \\
=2 n+2 a-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right) \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=-2 n_{1}-2 v\left(\ell_{3}\right), \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=-2 n_{1}-2 v\left(\ell_{2}\right) .
\end{gathered}
$$

Assume that $n_{1}=v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$. It follows that $v\left(A_{1}-B_{1}\right)=0$ and without loss of generality $v\left(A_{2}-A_{3}\right)=a$ and $v\left(B_{2}-B_{3}\right)=a+2 n$ so that the cluster picture of \hat{C} is that of Table 4.26 for $\mathrm{U} 3 \mathrm{C} / \mathrm{D} / \mathrm{E} / \mathrm{F}$. On the other hand, assume that $n_{1}=0$ then
if $v\left(\ell_{3}\right)=n_{3}>a$ then $v\left(\ell_{2}\right)=a$ and the cluster picture for \hat{C} is

If $v\left(\ell_{3}\right)=n_{3} \leq a$ and $v\left(\ell_{2}\right)=n_{3}$ and the cluster picture for \hat{C} is

If $v\left(\ell_{3}\right)=a$ and $v\left(\ell_{2}\right)=n_{2}>n_{3}$ then the cluster picture for \hat{C} is

All are in the equivalence class of $\omega_{a+2 n} \bullet 0_{0}$, as required.

Frobenius action.

For U3C/D, by Proposition 3.4.30, C is of type U^{+}if and only if $c \in K^{\times 2}$. It follows that C is of type $U_{2 a, 2 b, 2 n}^{+}, U_{2 a, 2 b, 2 n}^{-}, U_{2 a^{\sim} 2 a, 2 n}^{+}, U_{2 a}^{-} \tilde{2 a, 2 n}$ for U3C/D/E/F respectively. Also, for U3C/D, given the cluster picture of C we have either, $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K$ or I_{K} permutes α_{2} and α_{3} as well as β_{2} and β_{3}. In particular $I_{K}\left(\delta_{2}\right)=\delta_{3}$ and by Hensel's lemma, $\delta_{2}, \delta_{3}, \alpha_{2}^{2}, \beta_{2}^{2} \in K^{\times 2}$. Moreover, $\left(A_{2}-B_{2}\right)^{2} \in$ $K^{\times 2}$ and by Proposition 3.4.30, we find that the reduction of \hat{C} at the node A_{2} is split if and only if $T_{A_{2}}=\ell\left(A_{2}-A_{1}\right)\left(A_{2}-B_{1}\right)\left(A_{2}-B_{2}\right)^{2} \in K^{\times 2}$. Similarly, the reduction of \hat{C} at the node B_{2} is split if and only if $T_{B_{2}}=\ell\left(B_{2}-A_{1}\right)\left(B_{2}-B_{1}\right)\left(B_{2}-A_{2}\right)^{2} \in$ $K^{\times 2}$. Now, computing $T_{A_{2}}, T_{B_{2}}$, one finds that $T_{A_{2}} \in K^{\times 2} \Leftrightarrow c \delta_{2} \in K^{\times 2}$ and $T_{B_{2}} \in K^{\times 2} \Leftrightarrow c \in K^{\times 2}$. Therefore \hat{C} is of type $I_{2 a, 2 a+4 n}^{+,+}$and $I_{2 a, 2 a+4 n}^{-,-}$for U3C/D respectively. Finally, for U3E/F, we have that $\delta_{2}, \delta_{3} \notin K^{\times 2}$ so that \hat{C} is of type $I_{2 a, 2 a+4 n}^{-,+}$and $I_{2 a, 2 a+4 n}^{+,-}$respectively.
Tamagawa numbers and deficiency: Tamagawa numbers, deficiency and λ_{v} are clear from Table 3.1, except for U3D/H. Here $N=4 a^{2}+8 a n$ so that N is odd if and only if $2 a$ is odd, and $D=\operatorname{gcd}(2 a, 2 n)$. We have either i) $2 a, 2 n$ are odd; or ii) $2 a$ is odd and $2 n$ is even; or iii) $2 a$ is even and $2 n$ is odd; or iv) $2 a, 2 n$ are even.
i) N is odd, D is odd and $\frac{N}{D}$ is odd so that $c_{v}=1$ and $m_{v}=2 ; \hat{c}_{v}=1$ and $\hat{m}_{v}=1$.
ii) N is odd, D is odd and $\frac{N}{D}$ is odd so that $c_{v}=1$ and $m_{v}=1 ; \hat{c}_{v}=1$ and $\hat{m}_{v}=1$.
iii) N is even, D is odd and $\frac{N}{D}$ is even so that $c_{v}=2$ and $m_{v}=1 ; \hat{c}_{v}=4$ and $\hat{m}_{v}=1$.
iv) N is even, D is even and $\frac{N}{D}$ is even so that $c_{v}=4$ and $m_{v}=1 ; \hat{c}_{v}=4$ and $\hat{m}_{v}=1$.
It follows that $\lambda_{v}=1$ if and only if $2 n \equiv 0 \bmod 2$, equivalently, $\lambda_{v}=(-1)^{2 n}$ as required.
$\underline{\text { Case U3G/H/I/J: Here } a=b \text { and we let } v\left(\Delta_{G}\right)=a+r>a \text { hence }}$

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{3}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)+b_{3}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)+a_{3} b_{3} \pi^{b}\left(\alpha_{2}+\beta_{2}\right)\right), \\
u_{1}=\pi^{a}\left(a_{3}+b_{3}\right), \quad \ell_{2}=c\left(\pi^{a}\left(a_{3}+b_{3}\right)+\alpha_{2}+\beta_{2}\right), \quad \ell_{3}=-c\left(\alpha_{2}+\beta_{2}\right) .
\end{gathered}
$$

Write $v\left(a_{3}+b_{3}\right)=n_{1}$ so that $v\left(\ell_{1}\right)=n_{1}-r$ and $v\left(\ell_{2}\right) \geq v\left(\ell_{3}\right)$. Note that since $v\left(\Delta_{G}\right)>a$ we have $a_{3}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right) \equiv-b_{3}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)$. Now if $v\left(\ell_{3}\right)>0$ or $v\left(u_{1}\right)>a$ this yields another congruence between roots, contradicting the cluster picture of C. Therefore $v\left(\ell_{3}\right)=v\left(\ell_{2}\right)=n_{1}=0$.

From P.4, P. 5 and P. 6 we have

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=2 a-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=0, \quad v\left(A_{2}-B_{2}\right)^{2}=0, \\
v\left(A_{3}-B_{3}\right)^{2}=-0,
\end{gathered}
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 n+2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=2 n+2 a+2 r, \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=2 r, \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=2 r .
\end{gathered}
$$

Thus the cluster picture of \hat{C} is that of Table 4.27 for U3G/H/I/J.
Frobenius action. Follows directly from cases U3C/D/E/F.

Proof of Tables 4.28, 4.29 and 4.30

By definition of the isogeny

$$
v\left(\delta_{1}\right)=0, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=2 n, v\left(\hat{\delta_{1}}\right)=0, v\left(\hat{\delta_{2}}\right)=0, v\left(\hat{\delta_{3}}\right)=a+b,
$$

where $a, b, 2 n \in \mathbb{Z}$ (since $G(x)$ is a $C_{2} \times D_{4}$ polynomial $\delta_{1} \in K$, and if $a, b \notin \mathbb{Z}, I_{K}$ permutes both clusters, a contradiction to the semistability criterion 3.4.29). Write

$$
\alpha_{2}=\alpha_{1}+a_{2} \pi^{a}, \quad \beta_{2}=-\alpha_{1}+b_{2} \pi^{b}, \quad \beta_{3}=\alpha_{3}+b_{3} \pi^{n}
$$

for some $a_{2}, b_{2}, b_{3} \in \mathcal{O} \frac{\times}{K}$. By definition of $\Delta_{G}, \ell_{1}, \ell_{2}, \ell_{3}$ we have

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{2}\left(\alpha_{1}+\alpha_{3}\right)^{2}+a_{2} b_{3} \pi^{n}\left(\alpha_{1}+\alpha_{3}\right)+b_{2} \pi^{b-a}\left(\alpha_{1}-\alpha_{3}\right)^{2}\right. \\
\left.-b_{2} b_{3} \pi^{b-a+n}\left(\alpha_{1}-\alpha_{3}\right)-2 a_{2} b_{2} \alpha_{3} \pi^{b}-a_{2} b_{2} b_{3} \pi^{b+n}\right), \\
\left.u_{1}=\pi^{a}\left(a_{2}+b_{2} \pi^{b-a}\right)-2 \alpha_{3}-b_{3} \pi^{n}, \quad \ell_{2}=c\left(2 a_{3}+b_{3} \pi^{n}\right)\right), \quad \ell_{3}=-c \pi^{a}\left(a_{2}+b_{2} \pi^{b-a}\right) .
\end{gathered}
$$

Case U4A/B: Here $a<b$ hence

$$
\Delta_{G}=c \pi^{a}\left(a_{2}\left(\alpha_{1}+\alpha_{3}\right)^{2}\right)+o(\pi)
$$

$$
\left.u_{1}=-2 \alpha_{3}-b_{3} \pi^{n}+o\left(\pi^{a}\right), \quad \ell_{2}=c\left(2 a_{3}+b_{3} \pi^{n}\right)\right), \quad \ell_{3}=-c \pi^{a}\left(a_{2}\right)+o\left(\pi^{a}\right)
$$

Therefore $v\left(\ell_{3}\right)=v\left(\Delta_{G}\right)=a$ and $v\left(u_{1}\right) \geq \min \left\{v\left(\ell_{2}\right), a\right\}$.
From P.4, P. 5 and P. 6 we have

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=-2 a-2 v\left(u_{1}\right)+2 a=-2 v\left(u_{1}\right), \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right) \\
v\left(A_{3}-B_{3}\right)^{2}=a+b-2 v\left(\ell_{3}\right)=b-a
\end{gathered}
$$

and P.7, P. 8 and P. 9 give
$v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=-2 v\left(\ell_{2}\right)$,
$v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=-2 v\left(u_{1}\right)$,
$v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=2 n-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=2 n+2 a-2 v\left(u_{1}\right)-2 v\left(\ell_{2}\right)$.
Assume that $v\left(u_{1}\right)=v\left(\ell_{2}\right)=0$. It follows that $v\left(A_{3}-B_{3}\right)=\frac{b-a}{2}$ and without loss of generality $v\left(A_{1}-A_{2}\right)=a$ and $v\left(B_{1}-B_{2}\right)=a+2 n$ so that the cluster picture of \hat{C} is that of Table 4.28 for $\mathrm{U} 4 \mathrm{~A} / \mathrm{B}$. On the other hand,
if $v\left(\ell_{2}\right)=n_{2}>a$ then $v\left(u_{1}\right)=a$ and the cluster picture for \hat{C} is

if $v\left(\ell_{2}\right)=n_{2} \leq a$ and $v\left(u_{1}\right)=n_{2}$ and the cluster picture for \hat{C} is

if $v\left(\ell_{2}\right)=a$ and $v\left(u_{1}\right)=n_{1}>n_{2}$ then the cluster picture for \hat{C} is

All are in the equivalence class of $\because a{ }_{a+2 n} \quad \frac{b-a}{2}$, as required.
Frobenius action. First note that since $G(x)$ is a $C_{2} \times D_{4}$ polynomial, $a, b \in \mathbb{Z}$ for otherwise I_{K} would permute α_{1} and α_{2} a contradiction. By Proposition 3.4.30, C is of type U^{+}if and only if $c \in K^{\times 2}$. It follows that C is of type $U_{2 a, 2 b, 2 n}^{+}, U_{2 a, 2 b, 2 n}^{-}$ for U4A/B respectively. Moreover, since $\ell=\square c \alpha_{3}^{2}\left(\alpha_{1}+\alpha_{3}\right)^{2}+o(\pi)$, it follows from the cluster picture of C that \hat{C} is of type U^{+}whenever C is so that \hat{C} is of type $U_{2 a, 2 a+4 n, b-a}^{+}, U_{2 a, 2 a+4 n, b-a}^{-}$for U4A/B respectively.
Tamagawa numbers and deficiency : Tamagawa numbers, deficiency and λ_{v} are clear from Table 3.1, except for U4B. Here $2 a, 2 b \in 2 \mathbb{Z}, N=4 a b+4 a n+4 b n$ and $D=\operatorname{gcd}(2 a, 2 b, 2 n)$. It follows that $m_{v}=\hat{m}_{v}=1$ and that $c_{v}=2$ if $2 n$ is odd, $c_{v}=4$ otherwise. Similarly, $\hat{c_{v}}=2$ if $b-a$ is odd, $\hat{c}_{v}=4$ otherwise. It follows that
$\lambda_{v}=1$ if and only if $2 n \equiv b-a \bmod 2$, equivalently, $\lambda_{v}=(-1)^{2 n+b+a}$ as required.
Case U4C/D/E/F: Here $a=b$ but we let $v\left(\Delta_{G}\right)=a$ hence

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{2}\left(\alpha_{1}+\alpha_{3}\right)^{2}+a_{2} b_{3} \pi^{n}\left(\alpha_{1}+\alpha_{3}\right)+b_{2}\left(\alpha_{1}-\alpha_{3}\right)^{2}\right. \\
\left.-b_{2} b_{3} \pi^{n}\left(\alpha_{1}-\alpha_{3}\right)-2 a_{2} b_{2} \alpha_{3} \pi^{b}-a_{2} b_{2} b_{3} \pi^{a+n}\right), \\
\left.u_{1}=\pi^{a}\left(a_{2}+b_{2}\right)-2 \alpha_{3}-b_{3} \pi^{n}, \quad \ell_{2}=c\left(2 a_{3}+b_{3} \pi^{n}\right)\right), \quad \ell_{3}=-c \pi^{a}\left(a_{2}+b_{2}\right) .
\end{gathered}
$$

Write $v\left(a_{2}+b_{2}\right)=n_{3}$ so that $v\left(\ell_{3}\right)=a+n_{3}$ and note that since $v\left(\Delta_{G}\right)=a$, we have either $n_{3}=0$ and $v\left(u_{1}\right) \geq v\left(\ell_{3}\right)$, or $n_{3}>0$ and $v\left(u_{1}\right)=v\left(\ell_{2}\right)=0$.
From P.4, P. 5 and P. 6 we have

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=-2 v\left(u_{1}\right), \quad v\left(A_{2}-B_{2}\right)^{2}=-2 v\left(\ell_{2}\right), \\
v\left(A_{3}-B_{3}\right)^{2}=a+b-2 v\left(\ell_{3}\right)=-n_{3},
\end{gathered}
$$

and P.7, P. 8 and P. 9 give

$$
\begin{aligned}
& v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=-2 v\left(\ell_{2}\right)-2 n_{3}, \\
& v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=-2 v\left(u_{1}\right)-2 n_{3} \\
& v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=2 n+2 a-2 v\left(u_{1}\right)-2 v\left(\ell_{2}\right) .
\end{aligned}
$$

Assume that $v\left(u_{1}\right)=v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$. It follows that $v\left(A_{3}-B_{3}\right)=0$ and without loss of generality $v\left(A_{1}-A_{2}\right)=a$ and $v\left(B_{1}-B_{2}\right)=a+2 n$ so that the cluster picture of \hat{C} is that of Table 4.29 for $\mathrm{U} 4 \mathrm{C} / \mathrm{D} / \mathrm{E} / \mathrm{F}$. On the other hand, assume that $n_{3}=0$ then
if $v\left(\ell_{2}\right)=n_{2}>a$ then $v\left(u_{1}\right)=a$ and the cluster picture for \hat{C} is

if $v\left(\ell_{2}\right)=n_{2} \leq a$ and $v\left(u_{1}\right)=n_{2}$ and the cluster picture for \hat{C} is

if $v\left(\ell_{2}\right)=a$ and $v\left(u_{1}\right)=n_{1}>a$ then the cluster picture for \hat{C} is

All are in the equivalence class of

Frobenius action.
By Proposition 3.4.30, C is of type U^{+}if and only if $c \in K^{\times 2}$. It follows
that C is of type $U_{2 a, 2 b, 2 n}^{+}, U_{2 a, 2 b, 2 n}^{-}, U_{2 a^{\sim} 2 a, 2 n}^{+}, U_{2 a \tilde{2} a, 2 n}^{-}$for U4C/D/E/F respectively. Also, for U4C/D, given the cluster picture of C we have $\alpha_{1} \alpha_{2}, \beta_{2} \in K$ and $\beta_{3} \equiv \alpha_{3}$, hence $\delta_{1}, \delta_{2}, \alpha_{3}^{2} \in K^{\times 2}$. Moreover, by Proposition 3.4.30, we find that the reduction of \hat{C} at the node A_{1} is split if and only if $T_{A_{1}}=\ell\left(A_{1}-B_{1}\right)\left(A_{1}-B_{2}\right)\left(A_{1}-A_{3}\right)\left(A_{1}-\right.$ $\left.B_{3}\right) \in K^{\times 2}$. Similarly, the reduction of \hat{C} at the node B_{1} is split if and only if $T_{B_{1}} \equiv \ell\left(B_{1}-A_{1}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-A_{3}\right)\left(B_{1}-B_{3}\right) \in K^{\times 2}$. Now, computing $T_{A_{1}}, T_{B_{1}}$, one finds that $T_{A_{1}} \in K^{\times 2} \Leftrightarrow c \alpha_{1}^{2} \delta_{2} \in K^{\times 2}$ and $T_{B_{1}} \in K^{\times 2} \Leftrightarrow c \in K^{\times 2}$. Therefore \hat{C} is of type $I_{2 a, 2 a+4 n}^{+,+}$and $I_{2 a, 2 a+4 n}^{-,-}$for U4C/D respectively. Finally, for U4E/F, we have that $\delta_{1}, \delta_{2} \notin K^{\times 2}$ so that \hat{C} is of type $I_{2 a, 2 a+4 n}^{-,+}$and $I_{2 a, 2 a+4 n}^{+,-}$respectively. Tamagawa numbers and deficiency: Tamagawa numbers, deficiency and λ_{v} are clear from Table 3.1 since $2 a \in 2 \mathbb{Z}$.
Case U4G/H/I/J: Here $a=b$ and we let $v\left(\Delta_{G}\right)=a+r>a$ hence

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{2}\left(\alpha_{1}+\alpha_{3}\right)^{2}+a_{2} b_{3} \pi^{n}\left(\alpha_{1}+\alpha_{3}\right)+b_{2}\left(\alpha_{1}-\alpha_{3}\right)^{2}\right. \\
\left.-b_{2} b_{3} \pi^{n}\left(\alpha_{1}-\alpha_{3}\right)-2 a_{2} b_{2} \alpha_{3} \pi^{b}-a_{2} b_{2} b_{3} \pi^{a+n}\right), \\
\left.u_{1}=\pi^{a}\left(a_{2}+b_{2}\right)-2 \alpha_{3}-b_{3} \pi^{n}, \quad \ell_{2}=c\left(2 a_{3}+b_{3} \pi^{n}\right)\right), \quad \ell_{3}=-c \pi^{a}\left(a_{2}+b_{2}\right) .
\end{gathered}
$$

Write $v\left(a_{2}+b_{2}\right)=r_{3}$ so that $v\left(\ell_{3}\right)=a+r_{3}$. Note that since $v\left(\Delta_{G}\right)>a$ we have $a_{2}\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right) \equiv-b_{2}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)$. Now if $v\left(\ell_{2}\right)>0$ or $r_{3}>0$ this yields another congruence between roots, contradicting the cluster picture of C. Therefore $r_{3}=v\left(\ell_{2}\right)=v\left(u_{1}\right)=0$.

From P.4, P. 5 and P. 6 we have

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=0, \quad v\left(A_{2}-B_{2}\right)^{2}=0, \\
v\left(A_{3}-B_{3}\right)^{2}=0,
\end{gathered}
$$

and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 n+2 v\left(\Delta_{G}\right)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=2 r, \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=2 r, \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=2 n+2 a+2 r .
\end{gathered}
$$

Thus the cluster picture of \hat{C} is that of Table 4.30 for U4G/H/I/J.
Frobenius action. Follows directly from cases U4C/D/E/F.
Tamagawa numbers and deficiency: Follows directly from cases U4C/D/E/F.

5.3.5 $\quad C$ is of type 1×1

Proof of Tables 4.31, 4.32, 4.33
Since C is if type 1×1 or $1 \tilde{\times} 1$, it follows from the semistability criterion 3.4.29 that $v(c) \equiv a \equiv b \bmod 2$.
Case TC1. Since $\beta_{1}=-\alpha_{1}$, it follows that $\alpha_{1} \equiv \beta_{1} \equiv \alpha_{2} \equiv 0 \not \equiv \beta_{2} \equiv \alpha_{3} \equiv$ $\beta_{3} \bmod \pi$. Reducing invariants we find

$$
\begin{gathered}
\ell \equiv 2 c \bmod \pi, \quad \ell_{1} \equiv \frac{-1}{c \beta_{2}^{2}} \bmod \pi, \quad \ell_{2} \equiv 2 c \beta_{2} \bmod \pi, \quad \ell_{3} \equiv-c \beta_{2} \bmod \pi \\
\Delta_{G} \equiv c \beta_{2}^{3} \bmod \pi
\end{gathered}
$$

hence $v\left(\Delta_{G}\right)=v(c)=v(\ell)$. Now

$$
v\left(\delta_{1}\right)=2 a+2 c, v\left(\delta_{2}\right)=0, v\left(\delta_{3}\right)=2 b, v\left(\hat{\delta_{1}}\right)=2 b-2 c, v\left(\hat{\delta_{2}}\right)=2 c, v\left(\hat{\delta_{3}}\right)=2 a+2 c,
$$

so that P.4, P. 5 and P. 6 yield

$$
v\left(A_{1}-B_{1}\right)^{2}=2 b, \quad v\left(A_{2}-B_{2}\right)^{2}=0, \quad v\left(A_{3}-B_{3}\right)^{2}=2 a,
$$

and P.7, P. 8 and P. 9 give

$$
\begin{aligned}
& v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 a, \\
& v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=0, \\
& v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=2 b,
\end{aligned}
$$

from which we obtain the cluster picture for \hat{C}.
Frobenius action. If Frob swaps α_{2} and β_{2} then by the cluster configuration, it must swap δ_{1} and δ_{3}. This is a contradiction since $G(x)$ is a $C_{2} \times D_{4}$ polynomial. Similarly for $L(x)$ so that the action of $F r o b$ on the cluster picture follows.
Cases TC2A/B. Since $\beta_{1}=-\alpha_{1}$, it follows that $\alpha_{1} \not \equiv 0 \bmod \pi$. Reducing invariants we find

$$
\begin{gathered}
\ell \equiv 2 c \bmod \pi, \quad \ell_{1} \equiv \frac{1}{2 c \alpha_{1}^{2}} \bmod \pi, \quad \ell_{2} \equiv-2 c \alpha_{1} \bmod \pi, \quad \ell_{3} \equiv-2 c \alpha_{1} \bmod \pi, \\
\Delta_{G} \equiv 8 c \alpha_{1}^{3} \bmod \pi, \quad \delta_{1} \equiv 4 c^{2} \alpha_{1}^{2} \bmod \pi, \quad \hat{\delta_{1}} \equiv \frac{1}{c^{2} \alpha_{1}^{2}} \bmod \pi
\end{gathered}
$$

and the valuations and Frobenius action of clusters follow.
Since

$$
v\left(\delta_{1}\right)=2 v(c), \quad v\left(\delta_{2}\right)=2 a, \quad v\left(\delta_{3}\right)=2 b,
$$

$$
v\left(\hat{\delta_{1}}\right)=-2 v(c), \quad v\left(\hat{\delta_{2}}\right)=2 b+2 v(c), \quad v\left(\hat{\delta_{3}}\right)=2 a+2 v(c)
$$

P.4, P. 5 and P. 6 yield

$$
v\left(A_{1}-B_{1}\right)^{2}=0, \quad v\left(A_{2}-B_{2}\right)^{2}=2 b, \quad v\left(A_{3}-B_{3}\right)^{2}=2 a
$$

and P.7, P. 8 and P. 9 give

$$
\begin{aligned}
& v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=0 \\
& v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=2 a \\
& v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=2 b
\end{aligned}
$$

from which we obtain the cluster picture for \hat{C}.
Cases TC3. Since $\beta_{1}=-\alpha_{1}$, it follows that $\alpha_{1} \not \equiv 0 \bmod \pi$. Write

$$
\alpha_{2}=\alpha_{1}+a_{2} \pi^{a}, \quad \alpha_{3}=\alpha_{1}+a_{3} \pi^{a}, \quad \beta_{2}=-\alpha_{1}+b_{2} \pi^{b}, \quad \beta_{3}=-\alpha_{1}+b_{3} \pi^{b}
$$

where $a_{2}, a_{3}, b_{2}, b_{3} \in \mathcal{O}_{\bar{K}}^{\times}$. It follows that $\delta_{1} \equiv 4 c^{2} \alpha_{1}^{2} \bmod \pi, \quad \delta_{2} \equiv \delta_{3} \equiv 4 \alpha_{1}^{2} \bmod \pi$,so that $v\left(\delta_{1}\right)=2 v(c), \quad v\left(\delta_{2}\right)=v\left(\delta_{3}\right)=0$ and

$$
v\left(\hat{\delta_{1}}\right)=a+b-2 v\left(\Delta_{G}\right), \quad v\left(\hat{\delta_{2}}\right)=2 v(c)+a+b, \quad v\left(\hat{\delta_{3}}\right)=2 v(c)+a+b
$$

and

$$
\begin{gathered}
u_{1}=\pi^{a}\left(a_{2}-a_{3}\right)+\pi^{b}\left(b_{2}-b_{3}\right), \quad \ell_{2}=c\left(a_{3} \pi^{a}+b_{3} \pi^{b}\right), \quad \ell_{3}=-c\left(a_{2} \pi^{a}+b_{2} \pi^{b}\right) \\
\Delta_{G}=c \pi^{a+b}\left(2 \alpha_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)+a_{2} a_{3} \pi^{a}\left(b_{3}-b_{2}\right)+b_{2} b_{3} \pi^{b}\left(a_{3}-a_{2}\right)\right)
\end{gathered}
$$

Case TC3A. Here $a<b$ and $v\left(\Delta_{G}\right)=v(c)+a+b$. Therefore

$$
v\left(\ell_{1}\right)=-b-v(c), \quad v\left(\ell_{2}\right)=a+v(c), \quad v\left(\ell_{3}\right)=a+v(c)
$$

P.4, P. 5 and P. 6 yield

$$
v\left(A_{1}-B_{1}\right)^{2}=a+b-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=b-a
$$

$v\left(A_{2}-B_{2}\right)^{2}=a+b+2 v(c)-2 v\left(\ell_{2}\right)=b-a, \quad v\left(A_{3}-B_{3}\right)^{2}=a+b+2 v(c)-2 v\left(\ell_{3}\right)=b-a$, and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)+2 v(c)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=2 b-2 a \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=2 b-2 a
\end{gathered}
$$

$$
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=2 b-2 a .
$$

Hence the cluster picture for \hat{C} is that of the isogeny TC3A.
Case TC3B/C. Here $a<b$ and $v\left(\Delta_{G}\right)=v(c)+a+b+r$, with $r>0$. Therefore

$$
v\left(\ell_{1}\right)=-b-v(c)-r, \quad v\left(\ell_{2}\right)=a+v(c), \quad v\left(\ell_{3}\right)=a+v(c),
$$

P.4, P. 5 and P. 6 yield

$$
v\left(A_{1}-B_{1}\right)^{2}=a+b-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=b-a,
$$

$v\left(A_{2}-B_{2}\right)^{2}=a+b+2 v(c)-2 v\left(\ell_{2}\right)=b-a, \quad v\left(A_{3}-B_{3}\right)^{2}=a+b+2 v(c)-2 v\left(\ell_{3}\right)=b-a$, and P.7, P. 8 and P. 9 give

$$
\begin{gathered}
v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)+2 v(c)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=2 b-2 a+2 r, \\
v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=2 r+2 b-2 a, \\
v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=2 r+2 b-2 a .
\end{gathered}
$$

Hence the cluster picture for \hat{C} is that of the isogeny TC3B/C.
Frobenius action. Given the cluster picture for \hat{C}, it follows that Frob permutes both clusters if and only if $\left(A_{1}-B_{1}\right)^{2} \notin K^{\times 2}$.
$\underline{\text { Case TC3D }} \mathbf{E} / \mathbf{F} / \mathbf{G} / \mathbf{H} / \mathbf{I}$. Here $a=b$ so that

$$
\begin{gathered}
u_{1}=\pi^{a}\left(a_{2}-a_{3}+b_{2}-b_{3}\right), \quad \ell_{2}=c \pi^{a}\left(a_{3}+b_{3}\right), \quad \ell_{3}=-c \pi^{a}\left(a_{2}+b_{2}\right), \\
\Delta_{G}=c \pi^{2 a}\left(2 \alpha_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)+\pi^{a}\left(a_{2} a_{3}\left(b_{3}-b_{2}\right)+b_{2} b_{3}\left(a_{3}-a_{2}\right)\right) .\right.
\end{gathered}
$$

Let $n_{1}=v\left(a_{2}-a_{3}+b_{2}-b_{3}\right), n_{2}=v\left(a_{3}+b_{3}\right), n_{3}=v\left(a_{2}+b_{2}\right)$ so that $v\left(u_{1}\right)=$ $a+n_{1}, v\left(\ell_{2}\right)=a+n_{2}, v\left(\ell_{3}\right)=a+n_{3}$.
$\underline{\text { Case TC3D/E. Here we set } v\left(\Delta_{G}\right)=v(c)+2 a \text {. Therefore }}$

$$
v\left(\ell_{1}\right)=n_{1}-a-v(c), \quad v\left(\ell_{2}\right)=n_{2}+a+v(c), \quad v\left(\ell_{3}\right)=n_{3}+a+v(c),
$$

and since $v\left(\Delta_{G}\right)=v(c)=2 a$, it follows that if $n_{i}>0$ then $n_{i+1}=n_{i+2}=0$ for $i=1,2,3$ and where addition of indices is performed modulo 3 .
P.4, P. 5 and P. 6 yield

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=2 a-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=-2 n_{1}, \\
v\left(A_{2}-B_{2}\right)^{2}=2 a+2 v(c)-2 v\left(\ell_{2}\right)=-2 n_{2}, \quad v\left(A_{3}-B_{3}\right)^{2}=2 a+2 v(c)-2 v\left(\ell_{3}\right)=-2 n_{3},
\end{gathered}
$$

and P.7, P. 8 and P. 9 give

$$
\begin{aligned}
& v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)+2 v(c)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=-2 n_{2}-2 n_{3}, \\
& v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=-2 n_{1}-2 n_{3}, \\
& v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=-2 n_{1}-2 n_{2} .
\end{aligned}
$$

If $n_{1}=n_{2}=n_{3}=0$ then the cluster picture for \hat{C} is that of the isogenies TC3D/E. Otherwise, without loss of generality, let $n_{1}>0$. As noted above this implies $n_{2}=n_{3}=0$ so that the cluster picture for \hat{C} is
 which is in the equivalence class of $\bullet \diamond \omega_{0}$ as required.
Case TC3F/G/H/I. Here $a=b$ and $v\left(\Delta_{G}\right)=v(c)+a+b+r$, with $r>0$. Therefore

$$
v\left(\ell_{1}\right)=n_{1}-a-v(c)-r, \quad v\left(\ell_{2}\right)=n_{2}+a+v(c), \quad v\left(\ell_{3}\right)=n_{3}+a+v(c),
$$

P.4, P. 5 and P. 6 yield

$$
\begin{gathered}
v\left(A_{1}-B_{1}\right)^{2}=2 a-2 v\left(\Delta_{G}\right)-2 v\left(\ell_{1}\right)=-2 n_{1}, \\
v\left(A_{2}-B_{2}\right)^{2}=2 a+2 v(c)-2 v\left(\ell_{2}\right)=-2 n_{2}, \quad v\left(A_{3}-B_{3}\right)^{2}=2 a+2 v(c)-2 v\left(\ell_{3}\right)=-2 n_{3},
\end{gathered}
$$

and P.7, P. 8 and P. 9 give
$v\left(\left(A_{2}-A_{3}\right)\left(A_{2}-B_{3}\right)\left(B_{2}-A_{3}\right)\left(B_{2}-B_{3}\right)\right)=2 v\left(\Delta_{G}\right)+2 v(c)-2 v\left(\ell_{2}\right)-2 v\left(\ell_{3}\right)=2 r-2 n_{2}-2 n_{3}$,
$v\left(\left(A_{3}-A_{1}\right)\left(A_{3}-B_{1}\right)\left(B_{3}-A_{1}\right)\left(B_{3}-B_{1}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{3}\right)=2 r-2 n_{1}-2 n_{3}$,
$v\left(\left(A_{1}-A_{2}\right)\left(A_{1}-B_{2}\right)\left(B_{1}-A_{2}\right)\left(B_{1}-B_{2}\right)\right)=-2 v\left(\ell_{1}\right)-2 v\left(\ell_{2}\right)=2 r-2 n_{2}-2 n_{2}$.
If $n_{1}=n_{2}=n_{3}=0$ then the cluster picture for \hat{C} is that of the isogenies TC3F/G/H/I.
Otherwise, if $n_{i}>0$ then $n_{i+1}=n_{i+2}$ for $i=1,2,3$ and where addition on indices is performed modulo 3. Assume first that $n_{i+1}=n_{i+2}=0$ and without loss of
generality, let $i=1$. Then the cluster picture of \hat{C} is
 if $n_{2}=n_{3}>0$ the cluster picture of \hat{C} is

the cluster pictures are in the same equivalence class of
 quired.

Frobenius action. Given the cluster pictures for C and \hat{C}, it follows that Frob permutes clusters if and only if $\delta_{1} \notin K^{\times 2},\left(A_{1}-B_{1}\right)^{2} \notin K^{\times 2}$ respectively.

Chapter 6

Proof of local discrepancy conjecture

6.1 Introduction

In this chapter we compute the term of local discrepancy E_{v} associated to a $C_{2} \times D_{4}$ curve and prove the last columns of Tables 4.1 to 4.34. Recall from Definition 4.3.9 that, in addition to the leading terms of $G(x)$ and $L(x), c$ and $\ell=\ell_{1} \ell_{2} \ell_{3}$, we associated the following $C_{2} \times D_{4}$ polynomial invariants to $G(x)$
$I_{20}=\frac{1}{2^{3}}\left(\delta_{2}+\delta_{3}\right)$,
$I_{21}=\left(\alpha_{2}+\beta_{2}\right)\left(\alpha_{3}+\beta_{3}\right)$,
$I_{22}=\frac{1}{2}\left(\Delta_{G}^{2} \ell_{1}^{2}-\delta_{2}-\delta_{3}\right)=\left(\alpha_{2}-\alpha_{3}\right)\left(\beta_{2}-\beta_{3}\right)+\left(\beta_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right)$,
$I_{23}=4 c^{2} \alpha_{1}^{2}$,
$I_{40}=\frac{1}{2^{6}}\left(\delta_{2}-\delta_{3}\right)^{2}$,
$I_{41}=16\left(\alpha_{2} \beta_{2} \alpha_{3} \beta_{3}+\alpha_{1}^{2}\left(\alpha_{1}^{2}+\alpha_{2} \beta_{2}+\alpha_{3} \beta_{3}+\left(\alpha_{2}+\beta_{2}\right)\left(\beta_{3}+\alpha_{3}\right)\right)\right)$,
$I_{42}=4\left(2 \alpha_{1}^{2}-\alpha_{2}^{2}-\beta_{2}^{2}\right)\left(2 \alpha_{1}^{2}-\alpha_{3}^{2}-\beta_{3}^{2}\right)$,
$I_{43}=\delta_{2}\left(\alpha_{2}^{2}+\beta_{2}^{2}-2 \alpha_{1}^{2}\right)+\delta_{3}\left(\alpha_{3}^{2}+\beta_{3}^{2}-2 \alpha_{1}^{2}\right)$,
$I_{44}=\delta_{2} \delta_{3}=\left(\alpha_{2}-\beta_{2}\right)^{2}\left(\alpha_{3}-\beta_{3}\right)^{2}$,
$I_{45}=\Delta_{G}^{2} \hat{\delta}_{1}=4\left(\beta_{3}-\beta_{2}\right)\left(\alpha_{3}-\beta_{2}\right)\left(\alpha_{2}-\beta_{3}\right)\left(\alpha_{2}-\alpha_{3}\right)$,
$I_{60}=4 \hat{\delta_{3}}\left(\alpha_{2}^{2}+\beta_{2}^{2}-2 \alpha_{1}^{2}\right)+4 \hat{\delta_{2}}\left(\alpha_{3}^{2}+\beta_{3}^{2}-2 \alpha_{1}^{2}\right)$, $I_{80}=\frac{1}{c^{4}} \hat{\delta_{2}} \hat{\delta_{3}}$,
and for each place v of \mathcal{K}, we defined the following Hilbert symbols at v

$$
\begin{gathered}
H_{1}=\left(-1, I_{22} I_{41} I_{43} I_{60}\right), \quad H_{2}=\left(I_{20},-I_{40} I_{44}\right), \quad H_{3}=\left(I_{40}, \ell I_{60} I_{43}\right), \\
H_{4}=\left(c, I_{23} I_{44} I_{80}\right), \quad H_{5}=\left(I_{23}, I_{41}\right), \quad H_{6}=\left(I_{45},-\ell I_{22} I_{21}\right), \\
H_{7}=\left(I_{44}, 2 I_{22} I_{42} I_{43}\right), \quad H_{8}=\left(I_{80},-2 I_{41} I_{42} I_{60}\right), \quad H_{9}=\left(I_{42},-I_{60} I_{43}\right),
\end{gathered}
$$

and formed the following product

$$
E_{v}=\prod_{i=1}^{9} H_{i} .
$$

Throughout the entire chapter, we assume that none of the $I_{i, j}, c$ and ℓ are zero. In Sections 4.5 4.7, we claimed that E_{v} correctly matches the local discrepancy between the local factors λ_{v} and the local root numbers ω_{v}. In this chapter, we explicitly compute E_{v} for each case and prove the claim.
We first derive a few properties of the $C_{2} \times D_{4}$ invariants involved that will prove essential in the computations of E_{v}. We also include a few properties concerning Hilbert Symbols at finite places.

List of notation for this chapter

K	local field of odd residue characteristic
\mathcal{O}_{K}	ring of integers of K
$K^{n r}$	maximal unramified extension
k	residue field
π	uniformiser of K
v	normalized valuation on K
$(.,)$.	Hilbert Symbol at v
c	leading term of $G(x)$
$\ell_{1}=\frac{u_{1}}{\Delta_{G}}$	leading term of $L_{1}(x)$
$\ell=\ell_{1} \ell_{2} \ell_{3}$	with $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$
$\delta_{i}, i=1,2,3$	leading term of $L(x)$
$\hat{\delta}_{1}$	discriminant of $G_{i}(x)$
$\hat{\delta}_{i}, i=2,3$	discriminant of $\frac{1}{\Delta_{G}} L_{1}(x)$
$\alpha_{i}, \beta_{i}, i=1,2,3$	discriminant of $L_{i}(x)$
$A_{i}, B_{i}, i=1,2,3$	roots of $G_{i}(x)$
$x \equiv y$	roots of $L_{i}(x)$
$x \equiv y$ mod π	
$x \equiv \square y$	$x \equiv y z$ where z is a square element in K and $x, y, z \in \mathcal{O}_{K}^{\times}$
$x=\square y$	$x=y z$ where z is a square element in K
$F r o b$	Frobenius automorphism in $G a l(\bar{K} / K)$
I_{K}	inertia subgroup of $\operatorname{Gal}(\bar{K} / K)$

6.2 Properties of $C_{2} \times D_{4}$ invariants

We derive a series of Lemmata concerning interesting properties of $C_{2} \times D_{4}$ invariants. When readily verifiable by simple computations, the proofs are omitted.

Lemma 6.2.1.

1. $I_{20}^{2}=\frac{1}{16} I_{44}+I_{40}$,
2. $I_{21}=-\frac{1}{c^{2}} \ell_{2} \ell_{3}$ hence $\ell=-c^{2} \ell_{1} I_{21}$,
3. Let $A_{23}=\left(\alpha_{2}-\alpha_{3}\right)\left(\beta_{2}-\beta_{3}\right), \quad B_{23}=\left(\beta_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right)$,
so that $I_{45}=4 A_{23} B_{23}$ and $I_{22}=A_{23}+B_{23}$.
Then $I_{22}^{2}=I_{45}+I_{44}$ and $I_{22}=\frac{1}{2} u_{1}^{2}-\frac{1}{2}\left(\delta_{2}+\delta_{3}\right)$,
4. $I_{40}=\frac{u_{1}^{2}}{64} J_{40}^{2}$, for some $J_{40} \in K$
5. Let $A_{41 p}=8\left(\alpha_{2}+\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right)\left(\beta_{3}+\alpha_{1}\right)$,
$A_{41 m}=8\left(\alpha_{2}-\alpha_{1}\right)\left(\beta_{2}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\beta_{3}-\alpha_{1}\right)$. Then
$I_{41}=A_{41 p}+A_{41 m}$ and $I_{80}=A_{41 p} A_{41 m}$. Moreover
$I_{41}^{2}=16 I_{80}+16^{2} \alpha_{1}^{2} J_{41}^{2}=16 I_{80}+\frac{64}{c^{2}} I_{23} J_{41}^{2}$, for some $J_{41} \in K$
6. Let $A_{21}=\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)+\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)$, $A_{31}=\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right)+\left(\beta_{3}-\alpha_{1}\right)\left(\beta_{3}+\alpha_{1}\right)$. Then
(a) $I_{42}=4 A_{21} A_{31}$,
(b) $I_{60}=\frac{4}{c^{2}}\left(\hat{\delta_{2}} A_{31}+\hat{\delta_{3}} A_{21}\right)$,
(c) $I_{43}=\delta_{2} A_{21}+\delta_{3} A_{31}$.
(d) $A_{21}^{2}=\frac{\hat{\delta_{3}}}{c^{2}}+\delta_{2}\left(\alpha_{2}+\beta_{2}\right)^{2}$,
(e) $A_{31}^{2}=\frac{\hat{\delta_{2}}}{c^{2}}+\delta_{3}\left(\alpha_{3}+\beta_{3}\right)^{2}$,
7. $I_{43}^{2}-I_{42} I_{44}=u_{1}^{2} J_{43}^{2}$, for some $J_{43} \in K$.
8. $I_{60}^{2}-16 I_{42} I_{80}=u_{1}^{2} J_{60}^{2}$, for some $J_{60} \in K$.
9. $4 c \Delta_{G} u_{1}=c^{2} I_{45}+u_{1}^{2} I_{23}-4 c^{2}\left(\alpha_{2} \beta_{2}-\alpha_{3} \beta_{3}\right)^{2}$.
10. $J_{43}=\frac{\delta_{2} A_{21}-\delta_{3} A_{31}}{u_{1}}$.
11. $J_{60}=\frac{4}{c^{2}} \frac{\hat{\delta_{2}} A_{31}-\hat{\delta_{3}} A_{21}}{u_{1}}$
12. $J_{41}=\frac{A_{41 p}-A_{41 m}}{4 \alpha_{1}}$

Proof. 1. 2. 3. are clear from computations.
4. $J_{40}=\frac{\left(\alpha_{2}-\beta_{2}-\alpha_{3}+\beta_{3}\right)\left(\alpha_{2}-\beta_{2}+\alpha_{3}-\beta_{3}\right)}{\left(\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}\right)}$.
5. $J_{41}=\alpha_{1}^{2}\left(\alpha_{2}+\beta_{2}+\alpha_{3}+\beta_{3}\right)+\alpha_{2} \beta_{2}\left(\alpha_{3}+\beta_{3}\right)+\alpha_{3} \beta_{3}\left(\alpha_{2}+\beta_{2}\right)$.

6 . is clear from computation.
7. $J_{43}=\frac{-\alpha_{2}^{4}-\beta_{2}^{4}+\alpha_{3}^{4}+\beta_{3}^{4}-4 \alpha_{1}^{2} \alpha_{2} \beta_{2}-2 \alpha_{3}^{2} \alpha_{1}^{2}-2 \beta_{3}^{2} \alpha_{1}^{2}+4 \alpha_{1}^{2} \alpha_{3} \beta_{3}+2 \alpha_{2} \beta_{2}^{3}-2 \alpha_{3}^{3} \beta_{3}-2 \alpha_{3} \beta_{3}^{3}+2 \alpha_{2}^{3} \beta_{2}+2 \alpha_{2}^{2} \alpha_{1}^{2}+2 \beta_{2}^{2} \alpha_{1}^{2}+2 \beta_{3}^{2} \alpha_{3}^{2}-2 \beta_{2}^{2} \alpha_{2}^{2}}{\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}}$.
8. $J_{60}=\frac{a_{1}^{2} \beta_{3}^{4}-3 \alpha_{1}^{4} \beta_{3}^{2}+\alpha_{2}^{2} \beta_{2}^{4}+\alpha_{2}^{4} \beta_{2}^{2}-\alpha_{3}^{2} \beta_{3}^{4}+4 \alpha_{1}^{2} \alpha_{3}^{2} \beta_{3}^{2}-3 \alpha_{1}^{4} \alpha_{3}^{2}+3 \alpha_{1}^{4} \beta_{2}^{2}+3 \alpha_{2}^{2} \alpha_{1}^{4}-4 \alpha_{1}^{2} \alpha_{2}^{2} \beta_{2}^{2}-\alpha_{3}^{4} \beta_{3}^{2}+\alpha_{1}^{2} \alpha_{3}^{4}-\alpha_{1}^{2} \alpha_{2}^{4}-\alpha_{1}^{2} \beta_{2}^{4}}{\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}}$.

Note that all the denominators are u_{1}, and hence non-zero as otherwise $u_{1}=\ell_{1}=$ $\ell=0$.

Lemma 6.2.2. All the following expressions are equivalent ways to define Δ_{G}.

1. $\Delta_{G}=c\left(\left(\alpha_{1}+\beta_{2}\right)\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}\right)+\left(\alpha_{2}+\beta_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right)\right)$,
2. $\Delta_{G}=c\left(\left(\alpha_{1}+\beta_{2}\right)\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)+\left(\beta_{3}-\beta_{2}\right)\left(\left(\beta_{2}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)+\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right)\right)\right)$,
3. $\Delta_{G}=c\left(\left(\alpha_{1}+\beta_{2}\right)\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{2}-\alpha_{3}\right)+\left(\beta_{3}-\beta_{2}\right)\left(\alpha_{2}\left(\alpha_{3}-\beta_{2}\right)+\left(\beta_{2} \alpha_{3}-\alpha_{1}^{2}\right)\right)\right)$,
4. $\Delta_{G}=c\left(\left(\alpha_{1}+\alpha_{2}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\beta_{3}-\alpha_{1}\right)+\left(\beta_{2}-\alpha_{1}\right)\left(\left(\alpha_{1}-\beta_{3}\right)\left(\alpha_{2}-\alpha_{3}\right)+\left(\alpha_{3}+\alpha_{1}\right)\left(\alpha_{1}-\alpha_{2}\right)\right)\right)$.
5. $\Delta_{G}=c\left(\alpha_{1}^{2} u_{1}-\alpha_{2} \beta_{2} \ell_{2}-\alpha_{3} \beta_{3} \ell_{3}\right)$.

6.3 Standard properties of Hilbert Symbols

For convenience we recall some basic properties of Hilbert symbols. First recall that $(A, B)=1$ if A or B is a square and whenever A, B are both units for odd places.

Lemma 6.3.3. Let $A, B, C \in K^{\times}$. Then

1. $(A+B,-A B)=(A, B)$,
2. $(A, 1-A)=(A,-A)=1$,
3. $(A, B)(-A,-C)(B,-C)=1$ if $A+B+C=0$.

Lemma 6.3.4. Let K be a finite extension of \mathbb{Q}_{p} for an odd prime p. Let $A, B, C \in$ K^{\times}such that $A^{2}=B+C$. Write $A=u_{A} \pi^{a}, B=u_{B} \pi^{b}, C=u_{C} \pi^{c}$, where $u_{A}, u_{B}, u_{C} \in \mathcal{O}_{K}^{\times}$and $a, b, c \in \mathbb{Z}$. Then

1. if $v\left(A^{2}\right)>v(B)=v(C)$ then $(A,-B C)=1$,
2. if $v(B)>v\left(A^{2}\right)=v(C)$ then $(A,-B C)=(A,-B)$,
3. if $v(C)>v\left(A^{2}\right)=v(B)$ then $(A,-B C)=(A,-C)$,
4. if $v\left(A^{2}\right)=v(B)=v(C)$ then $(A,-B C)=\left(A,-u_{B} u_{C}\right)$.

Proof. 1. Since $v\left(A^{2}\right)>v(B)=v(C)$, we have $b=c$ and $u_{B}+u_{C}=u_{n} \pi^{n}$ for some $u_{n} \in \mathcal{O}_{K}^{\times}$and $n \in \mathbb{Z}_{>0}$. Hence $(A,-B C)=\left(A,-\pi^{2 b} u_{B} u_{C}\right)=\left(A,-u_{B} u_{C}\right)=$ $\left(A,-\left(u_{n} \pi^{n}-u_{C}\right) u_{C}\right)=\left(A, u_{C}^{2}\right)=1$.
2. We have $C=u_{A}^{2} \pi^{2 a}-u_{B} \pi^{b}$ and $2 a<b$ since $v(B)>v\left(A^{2}\right)=v(C)$. Hence
$(A,-B C)=(A,-B)\left(A, u_{A}^{2} \pi^{2 a}-u_{B} \pi^{b}\right)=(A,-B)\left(A, \pi^{2 a}\left(u_{A}^{2}-u_{B} \pi^{b-2 a}\right)\right)$ $=(A,-B)\left(A, u_{A}^{2}\right)=(A,-B)$.
3. Follows from ii).
4. Here $b=c$ as $v\left(A^{2}\right)=v(B)=v(C)$. Hence $(A,-B C)=\left(A,-u_{B} u_{C} \pi^{2 b}\right)=$ $\left(A,-u_{B} u_{C}\right)$.

6.4 Local discrepancy at infinite places

This section computes E_{v} at real places and proves the last columns of Tables 4.1, 4.2 and 4.3 . Since for two real numbers $a, b \in \mathbb{R}$ we have $(a, b)=-1$ if and only if $a, b \in \mathbb{R}_{<0}$, we are primally interested here in the signs of all invariants involved in $E_{\mathbb{R}}$. These signs are sometimes obvious from the definitions of the invariants and the configuration of the real roots considered. When this is the case, the sign appears in Tables 6.1, 6.2 and 6.3. On the other hand, when the signs can vary, its corresponding entry is left blank and we use the properties of the $C_{2} \times D_{4}$ invariants in Section 6.2 to prove that $E_{\mathbb{R}}$ gives the required result. This is done case by case in the second part of this section.

Table 6.1: Sign of $C_{2} \times D_{4}$ invariants over \mathbb{R}

Isogeny	I_{44}	I_{23}	I_{80}	I_{45}	I_{40}	I_{20}	I_{21}	I_{22}	I_{41}	I_{42}	I_{43}	I_{60}	c	ℓ	$E_{\mathbb{R}}$
6 C 1 A	+	-	+	+	+	-		+					+		1
6 C 1 B	+	-	+	+	+	-		+					-		-1
6 C 2 Aa	+	-	+	-	-		+			+			+		-1
6 C 2 Ab	+	-	+	+	-		+	-		+			+	+	-1
6 C 2 Ac	+	-	+	+	-		+	-		+			+	-	1
6 C 2 Ba	+	-	+	-	-		+			+			-		1
6 C 2 Bb	+	-	+	+	-		+	-		+			-	+	1
6 C 2 Bc	+	-	+	+	-		+	-		+			-	-	-1
$4 \mathrm{C} 1 \mathrm{~A} / \mathrm{B}$	+	+	+	+	+	-		+	+						1
$4 \mathrm{C} 2 \mathrm{~A} / \mathrm{B}$	-	-	+	+	+										1
4 C 3 a	+	+	+	-	-		+		+	+					-1
4 C 3 b	+	+	+	+	-		+		+	+				+	-1
4 C 3 c	+	+	+	+	-		+		+	+				-	1
2 C 1 A	+	-	+	+	+	+		+		+			+		1
2 C 1 B	+	-	+	+	+	+		+		+			-		-1
$2 \mathrm{C} 2 \mathrm{~A} / \mathrm{B}$	+	-	+	-	+	+				+					-1
2 C 3 A	+	-	+	+	+	+		-		+			+		-1
2 C 3 B	+	-	+	+	+	+		-		+			-		1
2 C 4 A	-	+	+	+	+								+		1
2 C 4 B	-	+	+	+	+								-		-1
$2 \mathrm{C} 5 \mathrm{~A} / \mathrm{B}$	-	+	-	+	+										-1
2 C 6 aA	-	+	+	+	+				+				+		-1
2 C 6 bA	-	+	+	+	+				-				+		-1
$2 \mathrm{C} 6 a B$	-	+	+	+	+				+				-		1
2 C 6 bB	-	+	+	+	+				-				-		1

Table 6.2: Sign of $C_{2} \times D_{4}$ invariants over \mathbb{R}

Isogeny	I_{44}	I_{23}	I_{80}	I_{45}	I_{40}	I_{20}	I_{21}	I_{22}	I_{41}	I_{42}	I_{43}	I_{60}	c	ℓ	$E_{\mathbb{R}}$
6R1A	+	+	+	+	+	+		+	+	+	+	+	+		1
6R1B	+	+	+	+	+	+		+	+	+	+	+	-		1
6R2A	+	+	+	-	+	+	+		+	+	+	+	+		-1
6R2B	+	+	+	-	+	+	+		+	+	+	+	-		1
6R3A	+	+	+	+	+	+	+	-	+	+	+	+	+		-1
6R3B	+	+	+	+	+	+	+	-	+	+	+	+	-		-1
6R4A	+	+	-	+	+	+		+					+		-1
6R4B	+	+	-	+	+	+		+					-		1
6R5A	+	+	-	-	+	+							+		1
6R5B	+	+	-	-	+	+							-		1
6R6A	+	+	-	+	+	+		-		+	-	-	+		1
6R6B	+	+	-	+	+	+		-		+	-	-	-		-1
6R7A	+	+	+	+	+	+		+	+	-			+		-1
6R7B	+	+	+	+	+	+		+	+	-			-		-1
6R8aA	+	+	+	-	+	+	+		+				+	+	1
6R8aB	+	+	+	-	+	+	+		+				-	+	1
6R8bA	+	+	+	-	+	+	+		+				+	-	-1
6R8bB	+	+	+	-	+	+	+		+				-	-	-1
6R9A	+	+	+	+	+	+		-	+				+		1
6R9B	+	+	+	+	+	+		-	+				-		1
6R10A	+	+	-	+	+	+		+					+		1
6R10B	+	+	-	+	+	+		+					-		-1
6R11A	+	+	-	-	+	+							+		1
6R11B	+	+	-	-	+	+							-		1
6R12A	+	+	-	+	+	+		-					+		-1
6R12B	+	+	-	+	+	+		-					-		1

Table 6.3: Sign of $C_{2} \times D_{4}$ invariants over \mathbb{R}

Isogeny	I_{44}	I_{23}	I_{80}	I_{45}	I_{40}	I_{20}	I_{21}	I_{22}	I_{41}	I_{42}	I_{43}	I_{60}	c	ℓ	$E_{\mathbb{R}}$
6R13A	+	+	+	+	+	+		+	+	+	-	-	+		1
6R13B	+	+	+	+	+	+		+	+	+	-	-	-		1
6R14A	+	+	+	-	+	+			+	+	-	-	+		1
6R14B	+	+	+	-	+	+			+	+	-	-	-		-1
6R15A	+	+	-	+	+	+		-		+	+	+	+		-1
6R15B	+	+	-	+	+	+		-		+	+	+	-		1
6R16A	+	+	+	+	+	+		+	-	+	+	+	+		-1
6R16B	+	+	+	+	+	+		+	-	+	+	+	-		-1
6R17A	+	+	+	-	+	+			-	+	+	+	+		1
6R17B	+	+	+	-	+	+			-	+	+	+	-		-1
6R18A	+	+	+	+	+	+		-	-	+	+	+	+		1
6R18B	+	+	+	+	+	+		-	-	+	+	+	-		1
6R19A	+	+	-	+	+	+		+					+		-1
6R19B	+	+	-	+	+	+		+					-		1
6R20A	+	+	-	-	+	+							+		1
6R20B	+	+	-	-	+	+							-		1
6R21A	+	+	-	+	+	+		-		+	-	-	+		1
6R21B	+	+	-	+	+	+		-		+	-	-	-		-1
6R22A	+	+	+	+	+	+		+	-				+		1
6R22B	+	+	+	+	+	+		+	-				-		1
6R23aA	+	+	+	-	+	+	-		-				+	+	1
6R23aB	+	+	+	-	+	+	-		-				-	+	1
6R23bA	+	+	+	-	+	+	-		-				+	-	-1
6R23cB	+	+	+	-	+	+	-		-				-	-	-1
6R24A	+	+	+	+	+	+		-	-	-			+		-1
6R24B	+	+	+	+	+	+		-	-	-			-		-1
6R25A	+	+	+	+	+	+		+	+	+	+	+	+		1
6R25B	+	+	+	+	+	+		+	+	+	+	+	-		1
6R26A	+	+	+	-	+	+	+		+	+	+	+	+		-1
6R26B	+	+	+	-	+	+	+		+	+	+	+	-		1
6R27A	+	+	+	+	+	+	+	-	+	+	+	+	+		-1
	+	+	+	+	+	+	-	+	+	+	+	-		-1	

6.4.1 C has 0,1 or 2 real connected components

Proof of Table 4.1

Cases 6C1A/B. $I_{22}>0$ follows from the expression of I_{22} given in Lemma 6.2.13.
Hence

$$
\begin{aligned}
E_{\mathbb{R}}= & \left(-1, I_{41} I_{43} I_{60}\right)(-1)(c,-1)\left(-1, I_{41}\right)\left(I_{42},-I_{60} I_{43}\right) \\
& =-(c,-1)\left(-I_{42}, I_{60}\right)\left(-I_{42}, I_{43}\right)\left(I_{42},-1\right)
\end{aligned}
$$

Hence if $I_{42}<0$ then $E_{\mathbb{R}}=(c,-1)=\operatorname{sign}(c)$ and we are done. Otherwise from Lemma 6.2.16, (a), we have $A_{21}, A_{31}>0$ or $A_{21}, A_{31}<0$. Assume the former, then
$I_{60}=\hat{\delta_{2}} A_{31}+\hat{\delta_{3}} A_{21}>0$ and $I_{43}=\delta_{2} A_{21}+\delta_{3} A_{31}<0$ which yields $E_{\mathbb{R}}=(c,-1)$. Finally if $A_{21}, A_{31}<0$ then $I_{60}=\hat{\delta_{2}} A_{31}+\hat{\delta_{3}} A_{21}<0$ and $I_{43}=\delta_{2} A_{21}+\delta_{3} A_{31}>0$ thus $E_{\mathbb{R}}=(c,-1)$ as required.
Cases 6C2Aa/b/c and 6C2Ba/b/c. $I_{21}=\left(\alpha_{2}+\beta_{2}\right)\left(\alpha_{3}+\beta_{3}\right)=\left(\alpha_{2}+\beta_{2}\right)\left(\overline{\alpha_{2}}+\right.$ $\left.\overline{\bar{\beta}_{2}}\right)=\left|\left(\alpha_{2}+\beta_{2}\right)\right|^{2}>0$ and $I_{42}=A_{21} \overline{A_{21}}=\left|A_{21}\right|^{2}>0$. It follows that

$$
E_{\mathbb{R}}=\left(-1, I_{22}\right)(-1, \ell)(-1, c)\left(I_{45},-I_{22} \ell\right) .
$$

We wish to prove that if $I_{45}>0$ then $E_{\mathbb{R}}=-\operatorname{sign}(\ell c)$, and if $I_{45}<0$ then $E_{\mathbb{R}}=-$ $\operatorname{sign}(c)$. Assume the latter, then $E_{\mathbb{R}}=-(c,-1)=-\operatorname{sign}(c)$ proving the result. Finally assume that $I_{45}>0$. By Lemma 6.2.13, it follows that $I_{22}<0$. Therefore in this case, $E_{\mathbb{R}}=-(-1, \ell)(c,-1)=-\operatorname{sign}(\ell c)$ as required.
Cases 4C1A/B. $I_{22}>0$ and $I_{41}>0$ follow from $\alpha_{2}=\bar{\beta}_{2}, \alpha_{3}=\overline{\beta_{3}}$ and Lemmata 6.2 .13 and 6.2.1 5 . This yields $E_{\mathbb{R}}=-\left(I_{43},-I_{42}\right)\left(I_{60},-I_{42}\right)\left(I_{42},-1\right)$. If $I_{42}<$ 0 then $E_{\mathbb{R}}=1$ and we are done. Otherwise from Lemma 6.2.16. (a), we have $A_{21}, A_{31}>0$ or $A_{21}, A_{31}<0$. Assume the former, then $I_{60}=\hat{\delta_{2}} A_{31}+\hat{\delta_{3}} A_{21}>0$ and $I_{43}=\delta_{2} A_{21}+\delta_{3} A_{31}<0$ which yields $E_{\mathbb{R}}=1$. Finally if $A_{21}, A_{31}<0$ then $I_{60}=\hat{\delta_{2}} A_{31}+\hat{\delta_{3}} A_{21}<0$ and $I_{43}=\delta_{2} A_{21}+\delta_{3} A_{31}>0$ so that $E_{\mathbb{R}}=1$ as required.
Cases 4C2A/B. Here

$$
\begin{gathered}
E_{\mathbb{R}}=\left(-1, I_{22} I_{41} I_{43} I_{60}\right)\left(I_{41},-1\right)\left(-1, I_{22} I_{42} I_{43}\right)\left(I_{42},-I_{60} I_{43}\right) \\
=\left(I_{42}, I_{60} I_{43}\right)\left(I_{60},-1\right)
\end{gathered}
$$

and $\delta_{3}<0$ and $\delta_{2}>0$. From Lemma 6.2.1] 6 we have $A_{21}>0$. Hence from Lemma 6.2.16 (a) and (b), if $I_{42}>0$ then $A_{31}>0$ and $I_{60}>0$ so that $E_{\mathbb{R}}=1$ as required. On the other hand, if $I_{42}<0$ then $A_{31}<0$ and $I_{43}>0$ from Lemma 6.2.1]6. (c). Therefore $E_{\mathbb{R}}=1$ proving the result.
Cases 4C3a/b/c. $I_{21}>0, I_{42}>0$ and $I_{41}>0$ follow from $\alpha_{2}=\overline{\alpha_{3}}, \beta_{2}=\overline{\beta_{3}}$ and Lemmata 6.2.15 and 6.2.16. This yields

$$
E_{\mathbb{R}}=\left(-1, I_{22}\right)(-1, \ell)\left(I_{45},-\ell I_{22}\right) .
$$

We wish to prove that if $I_{45}<0$ then $E_{\mathbb{R}}=-1$ and if $I_{45}>0$ then $E_{\mathbb{R}}=-\operatorname{sign}(\ell)$. This is clear if If $I_{45}<0$. On the other hand, if $I_{45}>0$ then by lemma 6.2.1] we have $I_{22}<0$, therefore $E_{\mathbb{R}}=-(-1, \ell)$ proving the result.
Cases 2C1/2/3. By definition of I_{42} we have $I_{42}>0$ since $\alpha_{1}^{2}<0$. Hence

$$
E_{\mathbb{R}}=(-1, c)\left(I_{22},-I_{45}\right)\left(I_{43},-1\right)\left(I_{60},-1\right)\left(I_{45},-\ell I_{21}\right) .
$$

Now it follows from Lemma 6.2.1] 6 (a), (b) and (c) that $\left(I_{43},-1\right)\left(I_{60},-1\right)=1$. There-
fore it remains to compute $(-1, c)\left(I_{22},-I_{45}\right)\left(I_{45},-\ell I_{21}\right)$.
Cases 2C1A/B. Here $I_{45}>0$ and $I_{22}>0$ hence $E_{\mathbb{R}}=\operatorname{sign}(c)$, as required.
Cases 2C2A/B. Here $I_{45}<0$ hence $E_{\mathbb{R}}=-(-1, c)\left(-1, \ell I_{21}\right)$. Lemma 6.2.12 yields $E_{\mathbb{R}}=-(-1, c)\left(-1,-\frac{u_{1}}{\Delta_{G}}\right)=\left(c u_{1} \Delta_{G},-1\right)$ since $u_{1}, \Delta_{G} \in \mathbb{R}$. It follows from Lemma 6.2.19 that $c u_{1} \Delta_{G}<0$ since $I_{23}, I_{45}<0$ and $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in \mathbb{R}$. Therefore $E_{\mathbb{R}}=-1$ as required.
Case 2C3A/B. Here $I_{45}>0$ and $I_{22}<0$ hence $E_{\mathbb{R}}=-\operatorname{sign}(c)$, as required.
Cases 2C4/5/6. In this cases we have

$$
E_{\mathbb{R}}=\left(I_{42},-I_{43} I_{60}\right)\left(I_{80},-I_{41} I_{42} I_{60}\right)\left(c,-I_{80}\right)\left(-1, I_{41} I_{60}\right)\left(-1, I_{42}\right)
$$

Cases 2C4A/B. Here $I_{80}>0$ therefore $\hat{\delta_{3}}>0$ and

$$
E_{\mathbb{R}}=\left(I_{42},-I_{43} I_{60}\right)(c,-1)\left(-1, I_{41} I_{60}\right)\left(-1, I_{42}\right)
$$

Using Lemma 6.2.16. (a), we have that $A_{21}>0$ hence if $I_{42}>0$ then $I_{60}>0$. On the other hand, if $I_{42}<0$ then $I_{43}>0$; both cases yield $E_{\mathbb{R}}=\left(I_{41},-1\right)(c,-1)$. Now from the expression given in Lemma 6.2.15 we have that $I_{41 p}, I_{41 m}>0$ hence $E_{\mathbb{R}}=(-1, c)$ as required.
Cases 2C5A/B. Here $I_{80}<0$ hence $\hat{\delta_{3}}<0$ and

$$
E_{\mathbb{R}}=-\left(I_{42},-I_{43} I_{60}\right)
$$

If $I_{42}>0$ then $E_{\mathbb{R}}=-1$ and we are done. Otherwise, from Lemma 6.2.16, (a), either $A_{21}>0, A_{31}<0$ or $A_{21}<0, A_{31}>0$. In the former case we have $I_{43}<0$ and $I_{60}>0$, while in the latter case we have $I_{43}>0$ and $I_{60}<0$. In both cases $-\left(I_{42},-I_{43} I_{60}\right)=-1$ as required.
Cases 2C6aA/B. Here $I_{80}>0$ therefore $\hat{\delta_{3}}>0$ and

$$
E_{\mathbb{R}}=\left(I_{42},-I_{43} I_{60}\right)(c,-1)\left(-1, I_{41} I_{60}\right)\left(-1, I_{42}\right)
$$

From Lemma 6.2.15 we have that $A_{41 p}, A_{41 m}>0$ for 2C6aA and 2C6aB hence $I_{41}>0$. Using Lemma 6.2.16. (a), we have that $A_{21}<0$ hence if $I_{42}>0$ then $A_{31}<0$ and $I_{60}<0$. On the other hand, if $I_{42}<0$ then $A_{31}>0$ and $I_{43}<0$. In both cases this yields $E_{\mathbb{R}}=-(-1, c)$ as required.
Cases 2C6bA/B. This is similar as for $2 \mathrm{C} 6 \mathrm{aA} / \mathrm{B}$ except that from Lemma 6.2.15 we have that $A_{41 p}, A_{41 m}<0$ and hence $I_{41}<0$. Using Lemma 6.2.16. (a), we have that $A_{21}>0$ hence if $I_{42}>0$ then $A_{31}>0$ and $I_{60}>0$. On the other hand, if $I_{42}<0$ then $A_{31}<0$ and $I_{43}>0$. In both cases this yields $E_{\mathbb{R}}=-(-1, c)$ as required.

6.4.2 C has 3 real connected components

Proof of Tables 4.2 and 4.3

From now on, all roots of $G(x)$ are real therefore $I_{44}, I_{23}, I_{20}, I_{40}>0$ and

$$
E_{v}=\left(-1, I_{22} I_{41} I_{43} I_{60}\right)\left(c, I_{80}\right)\left(I_{45},-\ell I_{22} I_{21}\right)\left(I_{80},-2 I_{41} I_{42} I_{60}\right)\left(I_{42},-I_{60} I_{43}\right) .
$$

Cases 6R1A/B. $E_{\mathbb{R}}=1$. Clear.
Cases 6R2A/B. $\quad E_{\mathbb{R}}=(-1,-\ell)=(-1, c)\left(-1, \frac{\Delta_{G}}{c} u_{1}\right)$. The result follows since $\frac{\Delta_{G}}{c} u_{1}<0$ from Lemma 6.2.2.
Cases 6R3A/B. $E_{\mathbb{R}}=-1$. Clear.
Case 6R4A/B. $E_{\mathbb{R}}=-(c,-1)\left(I_{42}, I_{43} I_{60}\right)\left(-1, I_{43}\right)$. From Lemma 6.2.166.(a) and by definition of 6 R 4 , we have that $A_{31}>0$ hence if $I_{42}>0$ then $I_{21}>0$ and $I_{43}>0$; whereas if $I_{42}<0$ then $I_{21}<0$ and $I_{60}>0$. Both case yield $\left(I_{42}, I_{43} I_{60}\right)\left(-1, I_{43}\right)=1$ so that $E_{\mathbb{R}}=-c(,-1)$ as required.
Cases 6R5A/B. $\quad E_{\mathbb{R}}=-\left(-1,-\ell I_{21}\right)\left(I_{42},-I_{43} I_{60}\right)\left(-1, I_{42}\right)\left(-1, I_{43}\right)(c,-1) . \quad$ By definition of 6 R 5 , we have $\hat{\delta_{3}}<0$ and by Lemma 6.2.16. (a), we have $A_{31}>0$. Hence if $I_{42}>0$ then $I_{43}>0$. On the other hand, if $I_{42}<0$ then $I_{60}<0$. Both cases yield $E_{\mathbb{R}}=-\left(-1,-\ell I_{21}\right)(c,-1)=-\left(-1, \frac{\Delta_{G}}{c} u_{1}\right)$. The result follows since $\frac{\Delta_{G}}{c} u_{1}<0$ from Lemma 6.2.2.
Cases 6R6A/B. $\quad E_{\mathbb{R}}=\left(I_{42},-I_{43} I_{60}\right)\left(-1, I_{42}\right)\left(-1, I_{43}\right)(c,-1) . \quad$ By definition of 6R6, we have $\hat{\delta_{3}}<0$ and by Lemma 6.2.16. (a), we have $A_{31}>0$. Hence if $I_{42}>0$ then $I_{43}>0$. On the other hand, if $I_{42}<0$ then $I_{60}>0$. Both cases yield $E_{\mathbb{R}}=(c,-1)$ as required.
Cases 6R7A/B. $E_{\mathbb{R}}=-1$. Clear.
Cases 6R8aA/B and 6R8bA/B. $I_{21}>0$ follows from $0<\beta_{2}-\alpha_{1}<\alpha_{2}+\beta_{2}$ and $0<\beta_{3}-a_{1}<\alpha_{3}+\beta_{3}$. Therefore

$$
E_{\mathbb{R}}=\left(-1,-\ell I_{21}\right)\left(I_{42},-I_{43} I_{60}\right)\left(-1, I_{43} I_{60}\right) .
$$

By definition of 6R8, we have $\hat{\delta_{2}}, \hat{\delta_{3}}<0$ hence by Lemma 6.2.16, if $I_{42}<0$ then $E_{\mathbb{R}}=(-1, \ell)$ and we are done. Otherwise, if $I_{42}>0$ with $A_{21}, A_{31}>0$ then $I_{43}>0$ and $I_{60}<0$. On the other hand, if $I_{42}>0$ with $A_{21}, A_{31}<0$ then $I_{43}<0$ and $I_{60}>0$. This yields $E_{\mathbb{R}}=-\left(-1,-\ell I_{21}\right)=(-1, \ell)$ as required.
Cases 6R9A/B. $E_{\mathbb{R}}=-\left(I_{42},-I_{43} I_{60}\right)\left(-1, I_{43} I_{60}\right)$. By definition of 6R9B, we have $\hat{\delta_{2}}, \hat{\delta_{3}}<0$ hence by Lemma 6.2.1 6 , if $I_{42}<0$ then $E_{\mathbb{R}}=1$ and we are done. Otherwise, if $I_{42}>0$ with $A_{21}, A_{31}>0$ then $I_{43}>0$ and $I_{60}<0$. On the other hand, if $I_{42}>0$ with $A_{21}, A_{31}<0$ then $I_{43}<0$ and $I_{60}>0$. Both cases yield $E_{\mathbb{R}}=1$ as required.
Cases 6R10A/B. $E_{\mathbb{R}}=-\left(-1, I_{43}\right)\left(I_{42}, I_{43} I_{60}\right)(c,-1)$. By definition of 6R10, we
have $\hat{\delta_{2}}<0, \hat{\delta_{3}}>0$ and $A_{21}<0$. Therefore, by Lemma 6.2.16, if $I_{42}>0$ then $I_{43}<0$ and $E_{\mathbb{R}}=(c,-1)$ and we are done. Otherwise, if $I_{42}<0$ then $A_{31}>0$ and $I_{60}<0$ so that $E_{\mathbb{R}}=(c,-1)$ as required.
Cases 6R11A/B. $E_{\mathbb{R}}=-\left(-1,-\ell I_{21}\right)\left(I_{42},-I_{43} I_{60}\right)\left(-1, I_{42}\right)\left(-1, I_{43}\right)(c,-1)$. By definition of 6R11, we have $\hat{\delta_{3}}<0$ and by Lemma 6.2.16. (a), we have $A_{31}<0$. Hence if $I_{42}>0$ then $I_{43}<0$. On the other hand, if $I_{42}<0$ then $I_{60}<0$. Both cases yield $E_{\mathbb{R}}=\left(-1,-\ell I_{21}\right)(c,-1)=\left(-1, \frac{\Delta_{G}}{c} u_{1}\right)$. The result follows since $\frac{\Delta_{G}}{c} u_{1}>0$ from Lemma 6.2.2.
Cases 6R12A/B. $E_{\mathbb{R}}=\left(-1, I_{43}\right)\left(I_{42}, I_{43} I_{60}\right)(c,-1)$. By definition of 6R12, we have $\hat{\delta_{2}}>0, \hat{\delta_{3}}<0$ and $A_{31}<0$. Therefore, by Lemma 6.2.16, if $I_{42}>0$ then $I_{43}<0$ and $E_{\mathbb{R}}=-(c,-1)$ and we are done. Otherwise, if $I_{42}<0$ then $A_{21}>0$ and $I_{60}<0$ so that $E_{\mathbb{R}}=-(c,-1)$ as required.
Cases 6R13A/B . $E_{\mathbb{R}}=1$. Clear.
Cases 6R14A/B. $E_{\mathbb{R}}=\left(-1,-\ell I_{21}\right)=(-1, c)\left(-1, \frac{\Delta_{G}}{c} u_{1}\right)$. Since $\frac{\Delta_{G}}{c} u_{1}>0$ from Lemma 6.2.2 we have $E_{\mathbb{R}}=(c,-1)$ as required.
Cases 6R15A/B. $\quad E_{\mathbb{R}}=\left(I_{42},-I_{43} I_{60}\right)\left(-1, I_{42}\right)\left(-1, I_{43}\right)(c,-1)$. By definition of 6R15, we have $\hat{\delta_{3}}<0$ and by Lemma 6.2.16, (a), we have $A_{31}<0$. Hence if $I_{42}>0$ then $I_{43}<0$. On the other hand, if $I_{42}<0$ then $I_{60}<0$. Both cases yield $E_{\mathbb{R}}=-(c,-1)$ as required.
Cases 6R16A/B. $E_{\mathbb{R}}=-\left(-1, I_{43} I_{60}\right)\left(I_{42}, I_{43} I_{60}\right)$. By definition of 6 R16, we have $I_{42}, I_{43}, I_{60}>0$. Therefore $E_{\mathbb{R}}=-1$ as required.
$\underline{\text { Cases 6R17A/B. }} E_{\mathbb{R}}=-\left(-1,-\ell I_{21}\right)=-(-1, c)\left(-1, \frac{\Delta_{G}}{c} u_{1}\right)$. Since $\frac{\Delta_{G}}{c} u_{1}<0$ from Lemma 6.2 .2 we have $E_{\mathbb{R}}=(c,-1)$ as required.
Cases 6R18A/B. $E_{\mathbb{R}}=1$. Clear.
Cases 6R19A/B. $E_{\mathbb{R}}=-\left(-1, I_{43}\right)\left(I_{42}, I_{43} I_{60}\right)(c,-1)$. By definition of 6 R19, we have $\hat{\delta_{2}}>0, \hat{\delta_{3}}<0$ and $A_{31}>0$. Therefore, by Lemma 6.2.16, if $I_{42}>0$ then $I_{43}>0$ and $E_{\mathbb{R}}=-(c,-1)$ and we are done. Otherwise, if $I_{42}<0$ then $A_{21}<0$ and $I_{60}>0$ so that $E_{\mathbb{R}}=-(c,-1)$ as required.
Cases 6R20A/B. $E_{\mathbb{R}}=-\left(-1, I_{43}\right)\left(I_{42}, I_{43} I_{60}\right)(c,-1)\left(-1,-\ell I_{21}\right)$. By definition of 6R20, we have $\hat{\delta_{2}}<0, \hat{\delta_{3}}>0$ and $A_{21}>0$. Therefore, by Lemma 6.2.16, if $I_{42}>0$ then $I_{43}>0$ and $E_{\mathbb{R}}=-(c,-1)\left(-1,-\ell I_{21}\right)$. Otherwise, if $I_{42}<0$ then $A_{31}<0$ and $I_{60}>0$ so that $E_{\mathbb{R}}=-(c,-1)\left(-1,-\ell I_{21}\right)$. Using that $\ell=-c^{2} \ell_{1} I_{21}$, this yields $E_{\mathbb{R}}=-\left(-1, c \ell_{1}\right)$. Moreover, $\ell_{1}=\frac{u_{1}}{\Delta_{G}}$ with $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$. By definition of 6R20 we have that $\alpha_{2}-\alpha_{3}<0$ since $\left|\alpha_{2}\right|>\left|\alpha_{3}\right|$. Also, $\beta_{2}-\beta_{3}<0$, hence $u_{1}<0$. Using Lemma 6.2.2, 2, we have that $c \Delta_{G}>0$ if

$$
\left|\left(\beta_{2}-\alpha_{1}\right)\left(\alpha_{3}-\alpha_{2}\right)\right|>\left|\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right)\right|
$$

But $\left|\beta_{2}-\alpha_{1}\right|>\left|-2 \alpha_{1}\right|$, hence it suffices to prove that

$$
\left|-2 \alpha_{1}\right|\left|\alpha_{3}-\alpha_{2}\right|>\left|\alpha_{2}+\alpha_{1}\right|\left|\alpha_{3}-\alpha_{1}\right|
$$

with $\alpha_{2}<\alpha_{1}<\alpha_{3}<-\alpha_{1}=\beta_{1}$. Let $\alpha_{1}=\alpha_{2}+b, \alpha_{3}=\alpha_{2}+b+e, \beta_{1}=\alpha_{2}+b+e+d$, with $b, e, d>0$. Then $\beta_{1}-\alpha_{1}=e+d, \alpha_{3}-\alpha_{2}=b+e, \alpha_{2}-\beta_{1}=-b-e-d, \alpha_{3}-\alpha_{1}=e$. Hence $\left|-2 \alpha_{1}\right|\left|\alpha_{3}-\alpha_{2}\right|=e^{2}+b e+e d+b d$ and $\left|\alpha_{2}+\alpha_{1}\right|\left|\alpha_{3}-\alpha_{1}\right|=e b+e^{2}+e d$. The result follows since $b d>0$.

Thus $c \Delta_{G}>0$ and $c \ell_{1}<0$ so that $E_{\mathbb{R}}=1$.
Cases 6R21A/B. $E_{\mathbb{R}}=\left(I_{42},-I_{43} I_{60}\right)\left(-1, I_{42}\right)\left(-1, I_{43}\right)(c,-1)$. By definition of 6R21, we have $\hat{\delta_{3}}<0$ and by Lemma 6.2.16, (a), we have $A_{31}>0$. Hence if $I_{42}>0$ then $I_{43}>0$. On the other hand, if $I_{42}<0$ then $I_{60}>0$. Both cases yield $E_{\mathbb{R}}=(c,-1)$ as required.
Cases 6R22A/B. $\quad E_{\mathbb{R}}=-\left(I_{42},-I_{43} I_{60}\right)\left(-1, I_{43} I_{60}\right)$. By definition of 6 R22, we have $\hat{\delta_{2}}, \hat{\delta_{3}}<0$ hence by Lemma 6.2.1 6 , if $I_{42}<0$ then $E_{\mathbb{R}}=1$ and we are done. Otherwise, if $I_{42}>0$ with $A_{21}, A_{31}>0$ then $I_{43}>0$ and $I_{60}<0$. On the other hand, if $I_{42}>0$ with $A_{21}, A_{31}<0$ then $I_{43}<0$ and $I_{60}>0$. Both cases yield $E_{\mathbb{R}}=1$ as required.
Cases 6R23aA/B and 6R23bA/B. $I_{21}>0$ follows from $\alpha_{2}+\beta_{2}<\beta_{2}-\alpha_{1}<0$ and $0<\beta_{3}-a_{1}<\alpha_{3}+\beta_{3} . \quad E_{\mathbb{R}}=-\left(-1,-\ell I_{21}\right)\left(I_{42},-I_{43} I_{60}\right)\left(-1, I_{43} I_{60}\right)$. By definition of 6 R23, we have $\hat{\delta_{2}}, \hat{\delta_{3}}<0$ hence by Lemma 6.2.16, if $I_{42}<0$ then $E_{\mathbb{R}}=\left(-1,-\ell I_{21}\right)=(-1, \ell)$ and we are done. Otherwise, if $I_{42}>0$ with $A_{21}, A_{31}>0$ then $I_{43}>0$ and $I_{60}<0$. On the other hand, if $I_{42}>0$ with $A_{21}, A_{31}<0$ then $I_{43}<0$ and $I_{60}>0$. Both cases yield $E_{\mathbb{R}}=\left(-1,-\ell I_{21}\right)=(-1, \ell)$ as required.
Cases 6R24A/B. $E_{\mathbb{R}}=-1$. Clear.
Cases 6R25A/B. $E_{\mathbb{R}}=\left(-1, I_{43} I_{60}\right)\left(I_{42}, I_{43} I_{60}\right)$. By definition of 6 R 25 , we have

Cases 6R26A/B. $E_{\mathbb{R}}=\left(-1,-\ell I_{21}\right)=(-1, c)\left(-1, \frac{\Delta_{G}}{c} u_{1}\right)$. Since $\frac{\Delta_{G}}{c} u_{1}<0$ from Lemma 6.2.2 we have $E_{\mathbb{R}}=-(c,-1)$ as required.
Cases 6R27A/B. $E_{\mathbb{R}}=-1$. Clear.

6.5 Local discrepancy at finite places $v \mid 2$

Fix a 2-adic place v of \mathcal{K}. Recall from Section 4.6 that we required our $C_{2} \times D_{4}$ curve to belong to the family \mathcal{C} given by

$$
\begin{gathered}
\mathcal{C}: y^{2}=f(x)=G_{1}(x) G_{2}(x) G_{3}(x) \\
G_{1}(x)=\left(x^{2}-(8+4 n)^{2}\right)
\end{gathered}
$$

$$
\begin{gathered}
G_{2}(x)=\left(x^{2}+x(-2 m-23)+\frac{441}{4}-2 d+14 m\right), \\
G_{3}(x)=\left(x^{2}+x(-8 k-18)+105+8 r+56 k\right),
\end{gathered}
$$

for $n, m, d, k, r \in \mathcal{O}_{K}$.
We wish to prove that $E_{v}=1$ for curves $C \in \mathcal{C}$ as claimed in Lemma 4.6.17. Recall the following results on Hilbert Symbols (see 9 [Lemma 15]).

Lemma 6.5.5. Let F / \mathbb{Q}_{p} be a finite extension. Then
(1) $(1+4 x, y)=1$ if $v(x)>0$ and $y \in F^{\times}$,
(2) $(1+4 x, y)=1$ if $p=2, v(x)=0$ and $y \in \mathcal{O}_{F}^{\times}$,

Let C be a $C_{2} \times D_{4}$ curve such that $C \in \mathcal{C}$ and consider the model for such curves given above. Computing its corresponding $C_{2} \times D_{4}$ invariants one finds that

$$
\begin{gathered}
I_{45} \equiv \square 1 \bmod 16, \quad I_{40}=\square 1, \\
I_{80}=1+4 t, \quad I_{41}=\square\left(1+4 t^{\prime}\right), \quad I_{42}=\square\left(1+4 t^{\prime \prime}\right),
\end{gathered}
$$

with $v(t), v\left(t^{\prime}\right), v\left(t^{\prime \prime}\right)>0$, so that by Lemma 6.5.5 we have

$$
E_{v}=\left(-1, I_{22} I_{43} I_{60}\right)\left(I_{20},-I_{44}\right)\left(I_{44}, 2 I_{22} I_{43}\right)
$$

Moreover

$$
\begin{gathered}
I_{22} \equiv \frac{1}{2}+4 d \bmod 8=\square(2+16 d) \bmod 32=\square 2(1+8 d), \\
I_{60} \equiv \frac{1}{2}+4\left(d+m^{2}\right) \bmod 8=\square\left(2+16\left(d+m^{2}\right)\right) \bmod 32=\square 2\left(1+8\left(d+m^{2}\right)\right),
\end{gathered}
$$

so that

$$
\left(-1, I_{22} I_{60}\right)=\left(I_{44}, 2 I_{22}\right)=1
$$

We therefore have that

$$
E_{v}=\left(I_{20},-I_{44}\right)\left(I_{43},-I_{44}\right)
$$

and we show that $E_{v}=1$.
By definition we have $I_{44}=\delta_{2} \delta_{3}, I_{20}=\frac{1}{2^{3}}\left(\delta_{2}+\delta_{3}\right)$ and $I_{43}=-\delta_{2} A_{21}-\delta_{3} A_{31}$ with $A_{21} A_{31}=I_{42}=\square$ and $A_{21}, A_{31} \in K$ since $G_{2}(x), G_{3}(x) \in K[x]$. Replacing invariants by their expression above and using twice Lemma 6.3.3 we have

$$
\begin{aligned}
E_{v}= & \left(\frac{1}{2^{3}}\left(\delta_{2}+\delta_{3}\right),-\delta_{2} \delta_{3}\right)\left(-\delta_{2} A_{21}-\delta_{3} A_{31},-\delta_{2} \delta_{3}\right), \\
& =\left(\frac{1}{2^{3}},-\delta_{2} \delta_{3}\right)\left(\delta_{2}, \delta_{3}\right)\left(-\delta_{2} A_{21},-\delta_{3} A_{31}\right) .
\end{aligned}
$$

But $A_{21}=\square A_{31}$, hence we can replace occurrences of A_{31} by A_{21} and obtain after simplification

$$
E_{v}=\left(-\delta_{2} \delta_{3},-\frac{A_{21}}{2^{3}}\right)=1
$$

since $-2 A_{21}=1 \bmod 8$.

6.6 Local discrepancy at finite places $v \nmid 2$

Recall that we consider a $C_{2} \times D_{4}$ curve $C: y^{2}=G_{1}(x) G_{2}(x) G_{3}(x)$ such that its cluster picture at places $v \nmid 2$ of \mathcal{K} is one of Table 3.1. In particular, the roots of $G_{1}(x), G_{2}(x), G_{3}(x)$ are integral and hence all the $I_{i, j}, \delta_{i}, \hat{\delta}_{i}, \Delta_{G}, u_{1}, \ell_{2}, \ell_{3}$ are integral (the only potentially non-integral invariant is $\ell_{1}=\frac{u_{1}}{\Delta_{G}}$). Also, it follows from the definition of the invariants that without loss of generality, we may assume $v(c)=0$ or $v(c)=1$. In this section, since $v \nmid 2$, we extensively use Hensel's Lemma to claim that $x \in K^{\times 2}$ if and only if x reduces to a non zero square element in k.

Lemma 6.6.6. If $v\left(A_{21}\right), v\left(A_{31}\right)>0$ and $v\left(I_{80}\right)=v\left(I_{44}\right)=0$ then $I_{80} \in K^{\times 2} \Leftrightarrow$ $I_{44} \in K^{\times 2}$.

Proof. Since $v\left(I_{80}\right)=v\left(I_{44}\right)=0$ and $I_{80}=\square \hat{\delta_{2}} \hat{\delta_{3}}$ and $I_{44}=\square \delta_{2} \delta_{3}$, it follows that $v\left(\delta_{2}\right)=v\left(\delta_{3}\right)=v\left(\hat{\delta_{2}}\right)=v\left(\hat{\delta}_{3}\right)=0$. From Lemma 6.2.16 (c), (d), we have $\hat{\delta_{2}} \equiv \square-\delta_{3}\left(\alpha_{3}+\beta_{3}\right)^{2}$ and $\hat{\delta_{3}} \equiv \square-\delta_{2}\left(\alpha_{2}+\beta_{2}\right)^{2}$. Hence $I_{80}=\square \hat{\delta_{2}} \hat{\delta_{3}} \equiv \square \delta_{2} \delta_{3} I_{21}^{2} \equiv \square$ $\delta_{2} \delta_{3}=\square I_{44}$ and the result follows.

Lemma 6.6.7. If $v\left(A_{21}\right) \neq v\left(A_{31}\right)$ then $A_{21}, A_{31} \in K$ and moreover $\delta_{2}, \delta_{3}, \hat{\delta_{2}}, \hat{\delta_{3}}, u_{1} \in$ K.

Proof. Since the action of $\sigma \in \operatorname{Gal}(\bar{K} / K)$ preserves distances between the roots, it follows that $\sigma\left(A_{21}\right) \neq A_{31}$ in this case. Therefore $\sigma\left(A_{21}\right)=A_{21}$ and $\sigma\left(A_{31}\right)=A_{31}$ which implies that $\sigma\left(\alpha_{i}\right)=\alpha_{i}$ or $\sigma\left(\alpha_{i}\right)=\beta_{i}$ for $\mathrm{i}=2,3$. In particular, it follows that σ fixes $\delta_{2}, \delta_{3}, \hat{\delta}_{2}, \hat{\delta_{3}}, u_{1}$.

From this point onwards, our results concern computations of Hilbert Symbols. We give an extra detailed proof for the first Lemma. For the remaining of this section, the reader might find helpful to keep the list of notation for this chapter, the list of invariants $I_{i, j}$, Lemma 6.2.1 and the properties of Hilbert Symbols of Section 6.3 at hand.

Lemma 6.6.8. If $v\left(I_{44}\right)=v\left(I_{80}\right)=v\left(I_{42}\right)=0$ then $\left(I_{43},-I_{40} I_{42} I_{44}\right)=\left(I_{60},-I_{40} I_{42} I_{80}\right)=$ 1.

Proof. Write $S_{43}^{2}=I_{43}^{2}-I_{42} I_{44}, S_{60}^{2}=I_{60}^{2}-16 I_{42} I_{80}$ as given in Lemmata 6.2.177 and 6.2.18. If $v\left(I_{43}^{2}\right)>v\left(I_{42} I_{44}\right)=v\left(S_{43}^{2}\right)$ then $\left(I_{43},-I_{40} I_{42} I_{44}\right)=1$ by Lemma
6.3.4. 1. If $v\left(I_{43}^{2}\right)=v\left(I_{42} I_{44}\right)=v\left(S_{43}^{2}\right)=0$ then $\left(I_{43},-I_{40} I_{42} I_{44}\right)=1$ trivially. Else, if $v\left(S_{43}^{2}\right)>v\left(I_{43}^{2}\right)=v\left(I_{42} I_{44}\right)=0$ then $\left(I_{43},-S_{43}^{2} I_{42} I_{44}\right)=\left(I_{43},-S_{43}^{2}\right)$ by Lemma 6.3.4. 3. In particular since $S_{43}^{2}=u_{1}^{2} S^{2}=\square I_{40}$ where $S \in K$ and since $v\left(I_{43}\right)=0$, we have $\left(I_{43},-S_{43}^{2}\right)=\left(I_{43},-u_{1}^{2}\right)$. Now, here $v\left(I_{44}\right)=v\left(I_{80}\right)=0$ so that $\alpha_{2} \not \equiv \beta_{2} \not \equiv \alpha_{3} \not \equiv \beta_{3}$ and hence inertia acts trivially on these roots. In particular, $v\left(u_{1}\right) \in \mathbb{Z}$ so that $v\left(u_{1}^{2}\right) \in 2 \mathbb{Z}$. Hence $\left(I_{43},-u_{1}^{2}\right)=1$. The proof is similar for $\left(I_{60},-I_{40} I_{42} I_{80}\right)$.

Lemma 6.6.9. If $v\left(I_{44}\right)=v\left(I_{80}\right)=0$ then

$$
H=\left(I_{43},-I_{40} I_{42} I_{44}\right)\left(I_{60},-I_{40} I_{42} I_{80}\right)\left(I_{42},-I_{80} I_{44}\right)=1 .
$$

In particular, this holds when C is of type 2.
Proof. Note that since $v\left(I_{44}\right)=v\left(I_{80}\right)=0, \alpha_{2} \not \equiv \beta_{2} \not \equiv \alpha_{3} \not \equiv \beta_{3}$ and hence inertia acts trivially on these roots so that $v\left(u_{1}^{2}\right), v\left(I_{40}\right) \in 2 \mathbb{Z}$ and $v\left(A_{21}\right), v\left(A_{31}\right) \in \mathbb{Z}$.

1) First assume that $v\left(I_{42}\right)=0$. Then $\left(I_{42},-I_{80} I_{44}\right)=1$ trivially since $v\left(I_{42}\right)=v\left(I_{44}\right)=v\left(I_{80}\right)=0$ and the result follows from Lemma 6.6.8.
2) Now let $v\left(I_{42}\right)>0$ with $v\left(A_{21}\right)>v\left(A_{31}\right) \geq 0$. Then by Lemma 6.6.7, we have $\delta_{2}, \delta_{3} \in K^{\times}$and $I_{40} \in K^{2}$ by Lemma 6.2.14 . Also, from Lemma 6.2.16.(b) and (c) we have $I_{60}=\square \hat{\delta_{2}} A_{31}+\hat{\delta_{3}} A_{21}$ and $I_{43}=\delta_{2} A_{21}+\delta_{3} A_{31}$. Hence $\left(I_{43},-I_{40} I_{42} I_{44}\right)\left(I_{60},-I_{40} I_{42} I_{80}\right)=\left(\delta_{3} A_{31},-I_{42} I_{44}\right)\left(\hat{\delta_{2}} A_{31},-I_{42} I_{80}\right)$ in this case. Using Lemma 6.2.166(a) and replacing in H yields

$$
H=\left(\delta_{3} A_{31},-A_{21} A_{31} \delta_{2} \delta_{3}\right)\left(\hat{\delta_{2}} A_{31},-A_{21} A_{31} \hat{\delta_{2}} \hat{\delta_{3}}\right)\left(A_{21} A_{31},-\hat{\delta_{2}} \hat{\delta_{3}} \delta_{2} \delta_{3}\right),
$$

which, once simplified using the multiplicativity property of Hilbert Symbols yields $H=\left(A_{21},-\delta_{2} \hat{\delta_{3}}\right)\left(A_{31},-\hat{\delta_{2}} \delta_{3}\right)$. Since $v\left(A_{21}\right)>0$, it follows from Lemma 6.2.16. (d) that $\hat{\delta_{3}} \equiv \square-\delta_{2}$ so that $-\delta_{2} \hat{\delta_{3}} \in K^{\times 2}$ and $\left(A_{21},-\delta_{2} \hat{\delta_{3}}\right)=1$. Lastly, If $v\left(A_{31}\right)=0$ then $\left(A_{31},-\hat{\delta_{2}} \delta_{3}\right)=1$ trivially and we are done, otherwise by Lemma 6.2.16. (e), it follows that $\hat{\delta_{2}} \equiv \square-\delta_{3}$ so that $-\hat{\delta_{2}} \delta_{3} \in K^{\times 2}$ and $\left(A_{31},-\hat{\delta_{2}} \delta_{3}\right)=1$.
3) Lastly, let $v\left(I_{42}\right)>0$ with $v\left(A_{21}\right)=v\left(A_{31}\right)>0$. Then $v\left(I_{42}\right) \in 2 \mathbb{Z}$ and by Lemma 6.6.6. we have $\left(I_{42},-I_{80} I_{44}\right)=1$ so that

$$
H=\left(I_{43},-I_{40} I_{42} I_{44}\right)\left(I_{60},-I_{40} I_{42} I_{80}\right) .
$$

It follows from Lemma 6.2.166.(b) and (c) that $v\left(I_{43}\right), v\left(I_{60}\right) \geq v\left(A_{21}\right)=v\left(A_{31}\right)$, and hence by Lemma 6.2.16. (a) we have $v\left(I_{42}\right) \leq v\left(I_{60}^{2}\right), v\left(I_{43}^{2}\right)$.
i) If $v\left(I_{42}\right)=v\left(I_{43}^{2}\right)=v\left(I_{60}^{2}\right)$. Write $I_{42}=\pi^{2 n} U_{42}$ for some $n \in \mathbb{Z}_{>0}$ and $U_{42} \in K^{\times}$. By Lemmata 6.2.17 and 6.2.1 8 , if $v\left(u_{1}^{2} J_{43}^{2}\right)=v\left(u_{1}^{2} J_{60}^{2}\right)=v\left(I_{43}^{2}\right)$ then
using Lemma 6.3.4 4 it follows that $\left(I_{43},-I_{40} I_{42} I_{44}\right)=\left(I_{43},-u_{1}^{2} U_{42} I_{44}\right)$ and that $\left(I_{60},-I_{40} I_{42} I_{80}\right)=\left(I_{60},-u_{1}^{2} U_{42} I_{80}\right)$. Since $v\left(I_{43}\right)=v\left(I_{60}\right)$, this yields

$$
H=\left(I_{43}, I_{44}\right)\left(I_{60}, I_{80}\right),
$$

and the result follows from Lemma 6.6.6. On the other hand, if $v\left(u_{1}^{2} J_{43}^{2}\right)>v\left(I_{43}^{2}\right)$ then by Lemma 6.3.4 2 we have that

$$
\left(I_{43},-I_{40} I_{42} I_{44}\right)=\left(I_{43},-u_{1}^{2}\right) .
$$

If in addition, $v\left(u_{1}^{2} J_{60}^{2}\right)>v\left(I_{60}^{2}\right)$ then by the same Lemma we have

$$
\left(I_{60},-I_{40} I_{42} I_{80}\right)=\left(I_{60},-u_{1}^{2}\right),
$$

so that

$$
\left(I_{43},-I_{40} I_{42} I_{44}\right)\left(I_{60},-I_{40} I_{42} I_{80}\right)=1,
$$

since $v\left(I_{43}\right)=v\left(I_{60}\right)$.
Finally, if $v\left(u_{1}^{2} J_{43}^{2}\right)>v\left(I_{43}^{2}\right)$ and $v\left(u_{1}^{2} J_{60}^{2}\right)=v\left(I_{60}^{2}\right)$ then writing $u_{1}^{2}=\pi^{2 b} U_{1}^{2}$ for some $b \in \mathbb{Z}$ and $U_{1} \in \mathcal{O} \frac{\times}{K}$, and using Lemma 6.3.4 2 and 4 , this yields

$$
\left(I_{43},-I_{40} I_{42} I_{44}\right)=\left(I_{43},-U_{1}^{2}\right), \quad\left(I_{60},-I_{40} I_{42} I_{80}\right)=\left(I_{60},-U_{1}^{2} U_{42} I_{80}\right) .
$$

Hence

$$
H=\left(I_{43},-U_{1}^{2}\right)\left(I_{60},-U_{1}^{2} U_{42} I_{80}\right)=\left(I_{60}, U_{42} I_{80}\right) .
$$

Write $A_{21}=\pi^{a} U_{21}$ and $A_{31}=\pi^{a} U_{31}$ for some $a \in \mathbb{Z}$ and $U_{21}, U_{31} \in \mathcal{O}_{\bar{K}}^{\times}$. Using Lemma 6.2.1 10, we have that $u_{1}^{2} J_{43}^{2}=\left(\delta_{2} A_{21}-\delta_{3} A_{31}\right)^{2}$ and since $v\left(\left(\delta_{2} A_{21}-\right.\right.$ $\left.\left.\delta_{3} A_{31}\right)^{2}\right)>v\left(I_{43}^{2}\right)$, it follows that $v\left(\delta_{2} U_{21}-\delta_{3} U_{31}\right)>0$. In particular $\delta_{2} U_{21} \equiv \delta_{3} U_{31}$. By Lemma 6.2.16. 1 we can write $U_{42}=U_{21} U_{31}$ so that

$$
U_{42} I_{80}=U_{21} U_{31} \hat{\delta_{2}} \hat{\delta_{3}} .
$$

Also, by Lemma 6.2.16. (d) and (e) we have

$$
\frac{\hat{\delta_{3}}}{c^{2}} \equiv-\delta_{2}\left(\alpha_{2}+\beta_{2}\right)^{2}, \quad \frac{\hat{\delta_{2}}}{c^{2}} \equiv-\delta_{3}\left(\alpha_{3}+\beta_{3}\right)^{2} .
$$

It follows that

$$
\begin{gathered}
U_{42} I_{80}=U_{21} U_{31} \hat{\delta_{2}} \hat{\delta_{3}} \equiv U_{21} U_{31} \delta_{2} \delta_{3}\left(\left(\alpha_{2}+\beta_{2}\right)\left(\alpha_{3}+\beta_{3}\right)\right)^{2} \\
\equiv \square U_{21} U_{31} \delta_{2} \delta_{3} \equiv U_{21}^{2} \delta_{2}^{2} \equiv \square 1 .
\end{gathered}
$$

The last congruence follows from the fact that $U_{21} \delta_{2} \in k$, therefore $U_{42} I_{80} \equiv \square 1$ and $\left(I_{60}, U_{42} I_{80}\right)=1$. The proof is similar if $v\left(u_{1}^{2} J_{60}^{2}\right)>v\left(I_{60}^{2}\right)$ and $v\left(u_{1}^{2} J_{43}^{2}\right)=v\left(I_{43}^{2}\right)$.
ii) If $v\left(I_{42}\right)=v\left(I_{43}^{2}\right)<v\left(I_{60}^{2}\right)$ then by Lemmata 6.2.18 and 6.3.4. 1 we have $\left(I_{60},-I_{40} I_{42} I_{80}\right)=1$ so that $H=\left(I_{43},-I_{40} I_{42} I_{44}\right)$. Using Lemma 6.3.4 3, we have

$$
H=\left(\delta_{2} A_{21}+\delta_{3} A_{31},-I_{40} A_{21} A_{31} \delta_{2} \delta_{3}\right)=\left(\pi^{a}\left(\delta_{2} U_{21}+\delta_{3} U_{31}\right),-U_{1}^{2} U_{21} U_{31} \delta_{2} \delta_{3}\right)
$$

Also, since $v\left(I_{43}^{2}\right)=v\left(I_{42}\right)$ it follows that $v\left(\delta_{2} U_{21}+\delta_{3} U_{31}\right)=0$ so that

$$
H=\left(\pi^{a},-U_{1}^{2} U_{21} U_{31} \delta_{2} \delta_{3}\right)
$$

Now, by Lemma 6.2.16. (d) and (e) we have $\hat{\delta_{2}}=\square-\delta_{3}\left(\alpha_{3}+\beta_{3}\right)^{2}$ and $\hat{\delta_{3}}=\square-\delta_{2}\left(\alpha_{2}+\right.$ $\left.\beta_{2}\right)^{2}$. Also, since $v\left(I_{43}^{2}\right)<v\left(I_{60}^{2}\right)$, using Lemma 6.2.16. (b) we have

$$
I_{60}=\square \hat{\delta_{2}} A_{31}+\hat{\delta_{3}} A_{21}=\pi^{a}\left(\hat{\delta_{2}} U_{31}+\hat{\delta_{3}} U_{21}\right), \quad \text { and } v\left(\hat{\delta_{2}} U_{31}+\hat{\delta_{3}} U_{21}\right)>0
$$

so that $\hat{\delta_{2}} U_{31} \equiv-\hat{\delta_{3}} U_{21}$. Therefore $U_{21} U_{31} \hat{\delta_{2}} \hat{\delta_{3}}=\square-U_{21}^{2}{\hat{\delta_{3}}}^{2}=\square-U_{21}^{2} \delta_{2}^{2}\left(\alpha_{2}+\beta_{2}\right)^{4}$. Hence

$$
H=\left(\pi^{a}, U_{1}^{2} U_{21}^{2} \delta_{2}^{2}\left(\alpha_{2}+\beta_{2}\right)^{4}\right)
$$

If $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K$ then $U_{1}^{2} U_{21}^{2} \delta_{2}^{2}\left(\alpha_{2}+\beta_{2}\right)^{4} \in K^{\times 2}$ and we are done. Otherwise $U_{1}^{2}, U_{21}^{2} \notin K^{\times 2}$ but their product is a square element in K hence $H=1$. The proof is similar if $v\left(I_{42}\right)=v\left(I_{60}^{2}\right)<v\left(I_{43}^{2}\right)$.
iii) If $v\left(I_{42}\right)<v\left(I_{60}^{2}\right), v\left(I_{43}^{2}\right)$ then since by Lemmata 6.2.17 and 6.2.18 we have $I_{43}^{2}=I_{42} I_{44}+I_{40} I$ for some $I \in K^{\times 2}$ and $I_{60}^{2}=16 I_{42} I_{80}+I_{40} I^{\prime}$ for some $I^{\prime} \in K^{\times 2}$, it follows from Lemma 6.3.4.1. that $H=1$.

Proposition 6.6.10. Suppose that $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K^{n r}$ and
i) $v\left(\Delta_{G}^{2}\right)=v\left(I_{23}\right)=v(c)=v\left(I_{45}\right)=0$ and $v\left(u_{1}^{2}\right)>0$; or
ii) $v\left(u_{1}\right), v\left(I_{23}\right) \neq 0$ and $v(c)=v\left(I_{45}\right)=0$. Then

$$
c^{2} I_{45} \equiv 4 c^{2}\left(\alpha_{2} \beta_{2}-\alpha_{3} \beta_{3}\right)^{2} \text { and }\left(\ell_{1}, u_{1}^{2} I_{45}\right)=1
$$

Proof. It follows from Lemma 6.2.1 9 that $c^{2} I_{45} \equiv 4 c^{2}\left(\alpha_{2} \beta_{2}-\alpha_{3} \beta_{3}\right)^{2}$ in this case.
i) Recall that $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$ and $\ell_{1}=\frac{u_{1}}{\Delta_{G}}$. Write $u_{1}=\pi^{a} c_{1}$ with $c_{1} \in \mathcal{O}_{\frac{\times}{K}}^{\times}, a \in \mathbb{Z}$ since we assumed $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K^{n r}$. We have

$$
\left(\ell_{1}, u_{1}^{2} I_{45}\right)=\left(\frac{\pi^{a} c_{1}}{\Delta_{G}}, \pi^{2 a} c_{1}^{2} I_{45}\right)=\left(\pi^{a}, c_{1}^{2} I_{45}\right)
$$

since $v\left(\Delta_{G}\right)=v\left(I_{45}\right)=0$. If $u_{1} \notin K$ then $\left(\alpha_{2} \beta_{2}-\alpha_{3} \beta_{3}\right)^{2}, c_{1}^{2} \notin K^{\times 2}$ so that $c_{1}^{2}\left(\alpha_{2} \beta_{2}-\alpha_{3} \beta_{3}\right)^{2} \in K^{\times 2}$ and hence $c_{1}^{2} I_{45} \in K^{\times 2}$. Conversely, if $u_{1} \in K$ then
$\left(\alpha_{2} \beta_{2}-\alpha_{3} \beta_{3}\right)^{2} \in K^{\times 2}$ and $c_{1}^{2} I_{45} \in K^{\times 2}$.
ii) Write $u_{1}=\pi^{a} c_{1}, \Delta_{G}=\pi^{b} u_{d}$ with $c_{1}, u_{d} \in \mathcal{O}_{\bar{K}}^{\times}$. We have $a \in \mathbb{Z}$ since we assumed $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K^{n r}$, from which it follows that $b \in \mathbb{Z}$ since $\ell_{1}=\frac{u_{1}}{\Delta_{G}} \in K$. If $c_{1} \notin K$ (equivalently $u_{d} \notin K$, as $\ell_{1} \in K$), then $\left(\alpha_{2} \beta_{2}-\alpha_{3} \beta_{3}\right) \notin K^{\times}$hence $I_{45} \notin K^{\times 2}$ and $c_{1}^{2} I_{45} \in K^{\times 2}$. Conversely, if $c_{1} \in K^{\times}$then $\left(\alpha_{2} \beta_{2}-\alpha_{3} \beta_{3}\right)^{2} \in K^{\times 2}$ and $I_{45}, c_{1}^{2}, c_{1}^{2} I_{45} \in K^{\times 2}$.

Now $\left(\frac{u_{1}}{\Delta_{G}}, u_{1}^{2} I_{45}\right)=\left(\pi^{a-b} \frac{c_{1}}{u_{d}}, \pi^{2 a} c_{1}^{2} I_{45}\right)=\left(\pi^{a-b}, c_{1}^{2} I_{45}\right)=1$ as required.

6.6.1 $\quad C$ is of type 2

Lemma 6.6.11. If C has good reduction then I_{K} acts trivially on $J[2]$ which implies $\alpha_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K^{n r}$.

Proof. This follows from Neron-Ogg-Shafarevich Theorem and the characterization of $J[2]$ in terms of $\alpha_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3}$ of Lemma 2.1.9.

Proof of Table 4.4

Since C is of type 2, it follows that $v\left(I_{23}\right)=v\left(I_{45}\right)=v\left(I_{44}\right)=v\left(I_{80}\right)=0$. Recall that either $v(c)=0$ or $v(c)=1$ so by semistability criterion 3.4.29, $v(c)=0$. Moreover $\alpha_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K^{n r}$ so that valuations of invariants are integers.

Using Lemmata 6.2.1/5, 6.2.1 3 and 6.2.111 and since $v\left(I_{40}\right) \in 2 \mathbb{Z}$ by Lemma 6.2.14 we have that $\left(I_{41},-I_{23} I_{80}\right)=\left(I_{22},-I_{45} I_{44}\right)=\left(I_{20},-I_{40} I_{44}\right)=1$ by Lemma 6.3.4 1. Also, $\left(2, I_{44}\right)=\left(-2, I_{80}\right)=1$ since $v \nmid 2$ and

$$
\left(I_{43},-I_{40} I_{42} I_{44}\right)\left(I_{60},-I_{40} I_{42} I_{80}\right)\left(I_{42},-I_{80} I_{44}\right)=1
$$

by Lemma 6.6.9. Therefore using definitions of invariants and simplifying gives

$$
E_{v}=\left(\ell, I_{40}\right)\left(I_{45},-\ell I_{21}\right)=\left(\ell_{1},\left(A_{1}-B_{1}\right)^{2}\right)\left(u_{1}^{2}, \ell_{2} \ell_{3}\right) .
$$

Case GR1A. If $v\left(\Delta_{G} \ell_{1}\right)=0$ then $E_{v}=\left(\ell_{2} \ell_{3}, u_{1}^{2}\right)$. If $v\left(\ell_{2} \ell_{3}\right)=0$ we are done. Otherwise, if $v\left(\ell_{2}\right) \neq v\left(\ell_{3}\right)$ then $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K$ and $u_{1}^{2} \in K^{\times 2}$ so that $E_{v}=1$. On the other hand, if $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)$ then $v\left(\ell_{2} \ell_{3}\right) \in 2 \mathbb{Z}$ and $E_{v}=1$.

If $v\left(\Delta_{G} \ell_{1}\right)>0$ then since $v\left(\Delta_{G} \ell_{1}\right)=u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$ we have that $v\left(u_{1}^{2}\right) \in 2 \mathbb{Z}$. Also recall that $v(\ell)=v\left(\ell_{1}\right)+v\left(\ell_{2}\right)+v\left(\ell_{3}\right)$ so that $v\left(\ell_{1}\right) \in 2 \mathbb{Z}$ since by semistability criterion 3.4.29, we have $v(\ell) \in 2 \mathbb{Z}$. Therefore $\left(u_{1}^{2}, \ell_{2} \ell_{3}\right)=1$ and $E_{v}=\left(\ell_{1},\left(A_{1}-B_{1}\right)^{2}\right)=1$.

If $v\left(\ell_{2} \ell_{3}\right)>0$ then by definition of Δ_{G} and since $v\left(\Delta_{G}\right)=0$, it follows that $v\left(\Delta_{G} \ell_{1}\right)=0$. If $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)$ then $v\left(\ell_{2} \ell_{3}\right) \in 2 \mathbb{Z}$ and $E_{v}=1$. Lastly, if $v\left(\ell_{2}\right) \neq v\left(\ell_{3}\right)$ then $u_{1}=\Delta_{G} \ell_{1} \in K$ so that $u_{1}^{2} \in K^{\times 2}$ and $E_{v}=1$.

Cases GR1B/GR1C. Assume first that $v\left(\Delta_{G} \ell_{1}\right)=0$. If $v\left(\ell_{2} \ell_{3}\right)=0$ then $E_{v}=$ $\left(\ell_{1},\left(A_{1}-B_{1}\right)^{2}\right)$. If $v\left(\ell_{2} \ell_{3}\right)>0$ with $v\left(\ell_{2}\right) \neq v\left(\ell_{3}\right)$ then $\Delta_{G} \ell_{1} \in K$. On the other hand, if $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)$ then $v\left(\ell_{2} \ell_{3}\right) \in 2 \mathbb{Z}$. In both cases, $E_{v}=\left(\ell_{1},\left(A_{1}-B_{1}\right)^{2}\right)$.

Assume now that $v\left(\Delta_{G} \ell_{1}\right)>0$. Then since $v\left(\Delta_{G} \ell_{1}\right)=u_{1}$, as above we have $v\left(u_{1}^{2}\right) \in 2 \mathbb{Z}$. Now, if $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)$ then $v\left(\ell_{2} \ell_{3}\right) \in 2 \mathbb{Z}$ and $\left(u_{1}^{2}, \ell_{2} \ell_{3}\right)=1$. Otherwise $u_{1} \in K$ and $u_{1}^{2} \in K^{2}$ so that $\left(u_{1}^{2}, \ell_{2} \ell_{3}\right)=1$. In both cases we have $E_{v}=\left(\ell_{1},\left(A_{1}-B_{1}\right)^{2}\right)$. The result follows since in this case $v\left(\ell_{1}\right) \equiv r \bmod 2$.

6.6.2 C is of type $1_{2 a}$

Proof of Tables 4.5, 4.6, 4.7 and 4.8

Cases ON1. From the definition of the isogeny, we have

$$
v\left(I_{23}\right)=2 a, \quad v(c)=v\left(I_{45}\right)=v\left(I_{80}\right)=v\left(I_{44}\right)=0
$$

Also, $\alpha_{2} \not \equiv \beta_{2} \not \equiv \alpha_{3} \not \equiv \beta_{3} \not \equiv 0$ so that inertia acts trivially on these roots and hence $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K^{\times n r}$. We have $\left(c, I_{80} I_{44}\right)=1$. Making repetitive use of Lemma 6.3 .4 . 1 , it follows from Lemma 6.2.1 1 that $v\left(I_{20}\right)=0$ since $v\left(I_{44}\right)=0$ so that $\left(I_{20},-I_{44} I_{40}\right)=\left(I_{20},-I_{40}\right)$, since $v\left(I_{45}\right)=v\left(I_{44}\right)=0$, it follows from Lemma 6.2.13 that $\left(I_{22},-I_{45} I_{44}\right)=1$, since $v\left(\delta_{1}\right)>v\left(I_{80}\right)=0$, it follows from Lemma 6.2.15 that $v\left(I_{41}\right)=0$ and hence $\left(I_{41},-I_{23} I_{80}\right)=\left(I_{41},-I_{23}\right)$. Therefore $E_{v}=\left(I_{23}, c I_{41}\right) H_{1} H_{2}$, with

$$
H_{1}=\left(I_{40}, I_{20} \ell\right)\left(I_{45}, \ell I_{21}\right), \quad H_{2}=\left(I_{42},-I_{44} I_{80}\right)\left(I_{43},-I_{40} I_{42} I_{44}\right)\left(I_{60},-I_{40} I_{42} I_{80}\right)
$$

From Lemma 6.6.9 we have that $H_{2}=1$. We show that $H_{1}=1$. By Lemma 6.2.14, we have $I_{40}=\square u_{1}^{2}$, where $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$ so that $\ell_{1}=\frac{u_{1}}{\Delta_{G}}=\square \Delta_{G} u_{1}$. Using this notation, we have $H_{1}=\left(\Delta_{G} u_{1}, u_{1}^{2} I_{45}\right)\left(\ell_{2} \ell_{3}, u_{1}^{2}\right)$.
Cases ON1A/B. Here $v\left(\Delta_{G}\right)=0$ hence $H_{1}=\left(\Delta_{G} u_{1}, u_{1}^{2} I_{45}\right)\left(\ell_{2} \ell_{3}, u_{1}^{2}\right)$.
If $v\left(u_{1}\right)=0$ then $H_{1}=\left(\ell_{2} \ell_{3}, u_{1}^{2}\right)$. If $v\left(\ell_{2}\right) \neq v\left(\ell_{3}\right)$ then $\operatorname{Frob}\left(\alpha_{2}\right)=\alpha_{2}$ or $\operatorname{Frob}\left(\alpha_{2}\right)=\beta_{2}$ and similarly for α_{3}. In particular $u_{1} \in K$ and $u_{1}^{2} \in \mathcal{O}_{K}^{\times 2}$; if $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)$ then $v\left(\ell_{2} \ell_{3}\right) \in 2 \mathbb{Z}$

If $v\left(u_{1}\right)>0$, since $v\left(\Delta_{G}\right)=0, v\left(\ell_{2}\right)=0$ or $v\left(\ell_{3}\right)=0$ or both from Lemma 6.2 .2 . 5. But also since $u_{1}=\ell_{2}+\ell_{3}$, we must have $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$. Moreover $v\left(u_{1}^{2}\right) \in 2 \mathbb{Z}$ since $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K^{\times n r}$. Hence $H_{1}=\left(\Delta_{G} u_{1}, u_{1}^{2} I_{45}\right)$. The result follows from Proposition 6.6.10, 2.
Cases ON1C/D. Here $v\left(\Delta_{G}\right)=r>0$. Since $\ell_{1}=\frac{u_{1}}{\Delta_{G}} \in K$, it follows that $r \in \mathbb{Z}$ and as above we have $H_{1}=\left(\Delta_{G} u_{1}, u_{1}^{2} I_{45}\right)$.

The result follows from Proposition 6.6.10.2.
Therefore $E_{v}=\left(I_{23}, c I_{41}\right)$. By definition of I_{41} we have that $c I_{41} \equiv \square T_{\alpha_{1}}$ so
that $E_{v}=1$ for ON1A/C and $E_{v}=(-1)^{2 a}$ for ON1B/D as claimed.
Cases ON2. From the definition of the isogeny, we have

$$
v\left(I_{44}\right)=2 a, \quad v(c)=v\left(I_{23}\right)=v\left(I_{80}\right)=v\left(I_{45}\right)=0
$$

Therefore $\left(c, I_{23} I_{80}\right)=1$. Reducing invariants $\bmod \pi$ yields

$$
I_{20} \equiv \square 2\left(\alpha_{3}-\beta_{3}\right)^{2}, \quad I_{40} \equiv \square I_{20}^{2} \equiv \square 1, \quad I_{45} \equiv \square\left(\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right)\right)^{2} \equiv \square 1
$$

and $v\left(I_{40}\right)=0$. It follows that $\left(I_{45},-\ell I_{21}\right)=1$ and from Lemma 6.2.11 that $\left(I_{20},-I_{44} I_{40}\right)=\left(I_{20},-I_{44}\right)$, with $v\left(I_{20}\right)=0$. Making repetitive use of Lemma6.3.4, since $v\left(I_{45}\right)=0$, it follows from Lemma 6.2.13 that $\left(I_{22},-I_{45} I_{44}\right)=\left(I_{22},-I_{44}\right)$ with $v\left(I_{22}\right)=0$; since $v\left(I_{23}\right)=v\left(I_{80}\right)=0$, it follows from Lemma 6.2.15 that $\left(I_{41},-I_{23} I_{80}\right)=1$. From the definition of the isogeny we have that $\delta_{2}, \delta_{3} \in K$ so that using the definition of I_{42} in Lemma 6.2.16. (a) we have $I_{42}=4 A_{21} A_{31}$ with $A_{21}, A_{31} \in K$ and $v\left(A_{21}\right)=0$. Using this notation, we have $E_{v}=\left(I_{44},-c I_{22} A_{21}\right) H$, with

$$
H=\left(I_{44},-2 I_{20} A_{31} I_{43}\right)\left(-I_{42},-I_{43} I_{60}\right)\left(I_{80}, I_{42} I_{60}\right)
$$

We show that $H=1$. Recall from Lemma 6.2.16.(b) and (c) that $I_{43}=\delta_{2} A_{21}+$ $\delta_{3} A_{31}$ and $I_{60}=\hat{\delta_{2}} A_{31}+\hat{\delta_{3}} A_{21}$.

If $v\left(I_{31}\right)=0$ then $v\left(I_{43}\right)=0$ and $\left(I_{60},-I_{42} I_{80}\right)=1$ by Lemmata 6.3.4 and 6.2 .18 . It follows that

$$
H=\left(I_{44},-2 I_{20} A_{31} I_{43}\right)=\left(I_{44}, 4\left(\alpha_{3}-\beta_{3}\right)^{4}\left(-\alpha_{3}^{2}-\beta_{3}^{2}+2 \alpha_{1}^{2}\right)^{2}\right)=1
$$

If $v\left(I_{31}\right)>0$ then using definitions of invariants we obtain

$$
H=\left(\delta_{2} \delta_{3}, \delta_{3} A_{31} I_{43}\right)\left(A_{21} A_{31},-\hat{\delta_{2}} \hat{\delta_{3}}\right)\left(I_{43},-A_{21} A_{31}\right)\left(\hat{\delta_{3}} A_{21},-A_{21} A_{31} \hat{\delta_{2}} \hat{\delta_{3}}\right)
$$

after reorganizing and simplifying we have

$$
=\left(\delta_{2}, \delta_{3} A_{31} I_{43}\right)\left(A_{31}, A_{21} I_{43}\right)\left(I_{43},-\delta_{3} A_{21}\right)
$$

Now since $I_{43}-\delta_{2} A_{21}-\delta_{3} A_{31}=0$ it follows from Lemma 6.3.3. 3 that

$$
\left(I_{43},-\delta_{2} A_{21}\right)\left(-I_{43}, \delta_{3} A_{31}\right)\left(-\delta_{2} A_{21}, \delta_{3} A_{31}\right)=1
$$

Hence

$$
\begin{aligned}
\left(I_{43},\right. & \left.-A_{21} \delta_{3}\right)\left(\delta_{2}, \delta_{3}\right)\left(A_{31}, A_{21}\right)\left(I_{43}, \delta_{2}\right)\left(I_{43}, A_{31}\right)\left(\delta_{2}, A_{31}\right) \\
& =\left(\delta_{2}, \delta_{3} A_{31} I_{43}\right)\left(A_{31}, A_{21} I_{43}\right)\left(I_{43},-\delta_{3} A_{21}\right)=1
\end{aligned}
$$

as required. Therefore $E_{v}=\left(I_{44},-c I_{22} A_{21}\right)$ and since $-c I_{22} A_{21} \equiv \square T_{a_{2}}$ it follows that $E_{v}=1$ for ON2A/C and $E_{v}=(-1)^{2 a}$ for ON2B/D.

Cases ON3. From the definition of the isogeny, we have

$$
v\left(I_{45}\right)=a, \quad v(c)=v\left(I_{23}\right)=v\left(I_{80}\right)=v\left(I_{44}\right)=0,
$$

Therefore $\left(c, I_{23} I_{80} I_{44}\right)=1$. Reducing invariants $\bmod \pi$ yields

$$
\ell_{1} \equiv \square c\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}+\alpha_{2}\right) \quad I_{40} \equiv \square\left(\beta_{2}-\beta_{3}\right)^{2},
$$

so that $v\left(\ell_{1}\right)=0$ and $v\left(I_{40}\right) \in 2 \mathbb{Z}$. Also from Lemma 6.2.1]3 we have that $v\left(I_{22}\right)=0$ and using Lemma 6.3.4, since $v\left(I_{23}\right)=v\left(I_{80}\right)=0$, it follows from Lemma 6.2.1 5 that $\left(I_{41},-I_{23} I_{80}\right)=1$, similarly since $v\left(I_{44}\right)=0$ and $v\left(I_{40}\right) \in 2 \mathbb{Z}$ we have $\left(I_{20},-I_{40} I_{44}\right)=1$. Moreover since $v\left(I_{40}\right) \in 2 \mathbb{Z}$,

$$
\left(I_{43},-I_{40} I_{42} I_{44}\right)\left(I_{60},-I_{40} I_{42} I_{80}\right)\left(I_{42},-I_{80} I_{44}\right)=1
$$

by Lemma 6.6.9. This yields $E_{v}=\left(I_{40}, \ell\right)\left(I_{45}, \ell I_{21} I_{22}\right)$. We show that $\left(I_{40}, \ell\right)=$ 1. Clearly, if $v\left(\ell_{2} \ell_{3}\right)=0$ we are done. Otherwise, if $v\left(\ell_{2}\right)>0$ then $v\left(\ell_{3}\right)=0$. Indeed, by definition of ℓ_{2} that yields $\beta_{3} \equiv-\alpha_{2}$. By definition of ℓ_{3}, if $v\left(\ell_{3}\right)>0$ then $\beta_{2} \equiv-\alpha_{2}$, a contradiction since $\beta_{3} \not \equiv \beta_{2}$. Now either $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K$ and $I_{40} \in K^{\times 2}$ and $\left(I_{40}, \ell\right)=1$, or from the definition of the isogeny, the roots α_{2} and α_{3} are permuted, similarly for β_{2} and β_{3}. In particular ℓ_{2} and $-\ell_{3}$ are permuted, a contradiction since their valuation is different. Therefore $E_{v}=\left(I_{45}, \ell I_{21} I_{22}\right)$ and since $\ell I_{21} I_{22}=\square T_{\alpha_{2} \alpha_{3}}$, it follows that $E_{v}=1$ for ON3A and $E_{v}=(-1)^{a}$ for ON3B as required.

Cases ON4. From the definition of the isogeny, we have

$$
v\left(I_{80}\right)=a, \quad v(c)=v\left(I_{23}\right)=v\left(I_{45}\right)=v\left(I_{44}\right)=0,
$$

and $\alpha_{1}, \alpha_{2}, \beta_{2} \in K$. Therefore $\left(c, I_{23} I_{44}\right)=1$ and since $I_{40}=\square\left(\alpha_{2}+\alpha_{2}-\alpha_{3}-\right.$ $\left.\beta_{3}\right)^{2}$ it follows that $v\left(I_{40}\right) \in K^{\times 2}$ and $\left(I_{40}, \ell I_{60} I_{43}\right)=1$. Computing Δ_{G} we find that $v\left(\Delta_{G}\right)=0$. Also from Lemma 6.2.11 we have that $v\left(I_{20}\right)=0$ so that and using Lemma 6.3.4, we have $\left(I_{20},-I_{44} I_{40}\right)=1$. Similarly, from Lemma 6.2.1]3 we have that $\left(I_{22},-I_{44} I_{45}\right)=1$; and from Lemma 6.2.15 we have that $v\left(I_{41}\right)=0$ and $\left(I_{41},-I_{23} I_{80}\right)=\left(I_{41}, I_{80}\right)$. Moreover, by definitions of the invariants we have $\left(I_{45},-\ell I_{21}\right)=\left(I_{45}, \ell_{1}\right)$. Recall that $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$ so that $\ell_{1}=\frac{u_{1}}{\Delta_{G}}$. Then, since $v\left(\Delta_{G}\right)=0,\left(I_{45}, \ell_{1}\right)=1$ if $v\left(u_{1}\right)=0$. Otherwise by Lemma 9.1 we have that
$\left(I_{45}, \ell_{1}\right)=1$. This yields

$$
E_{v}=\left(I_{80},-2 c I_{41} I_{42} I_{60}\right)\left(I_{43},-I_{42} I_{44}\right)\left(I_{60},-I_{42}\right)\left(I_{42},-I_{44}\right) .
$$

From the definition of the isogeny we have that $\delta_{2}, \delta_{3}, \hat{\delta_{2}}, \hat{\delta_{3}} \in K$ so that using the definition of I_{42} in Lemma 6.2.16. (a) we have $I_{42}=4 A_{21} A_{31}$ with $A_{21}, A_{31} \in K$, $I_{60}=\hat{\delta_{2}} A_{31}+\hat{\delta_{3}} A_{21}$ and $I_{43}=\delta_{2} A_{21}+\delta_{3} A_{31}$. Note that $v\left(\delta_{2}\right)=v\left(\delta_{3}\right)=v\left(\hat{\delta_{2}}\right)=$ $v\left(A_{21}\right)=0$.

If $v\left(A_{31}\right)=0$ then $v\left(I_{42}\right)=0$ so that $\left(I_{42},-I_{44}\right)=1$ and by Lemmata 6.3.4 and 6.2.17 7 we have $\left(I_{43},-I_{42} I_{44}\right)=1$. Also, in this case $I_{60} \equiv \hat{\delta_{2}} A_{31}$ and $v\left(I_{60}\right)=0$, hence $\left(I_{60},-I_{42}\right)=1$. This yields

$$
E_{v}=\left(I_{80},-2 c I_{41} A_{21} A_{31} \hat{\delta_{2}} A_{31}\right)=\left(I_{80},-2 c I_{41} A_{21} \hat{\delta_{2}}\right) .
$$

On the other hand, if $v\left(A_{31}\right)>0$ then $I_{43} \equiv \delta_{2} A_{21}$ and using this notation and the definitions of invariants and simplifying, we have

$$
\begin{gathered}
E_{v}=\left(\hat{\delta_{2}} \hat{\delta}_{3}, I_{60}\right)\left(\hat{\delta_{2}}, A_{31}\right)\left(\hat{\delta_{3}},-2 c I_{41} A_{21} A_{31}\right) \\
\left(\delta_{2} A_{21},-A_{21} A_{31} \delta_{2} \delta_{3}\right)\left(I_{60},-A_{21} A_{31}\right)\left(A_{31},-\delta_{2} \delta_{3}\right) .
\end{gathered}
$$

Since $I_{60}-\hat{\delta_{2}} A_{31}-\hat{\delta_{3}} A_{21}=0$ it follows from Lemma 6.3.3. 3 that

$$
\left(I_{60},-\hat{\delta_{2}} A_{31}\right)\left(-I_{60}, \hat{\delta_{3}} A_{21}\right)\left(-\hat{\delta_{2}} A_{31}, \hat{\delta_{3}} A_{21}\right)=1,
$$

which yields

$$
\left(I_{60}, \hat{\delta_{2}} \hat{\delta_{3}}\right)=\left(I_{60},-A_{21} A_{31}\right)\left(\hat{\delta_{3}} A_{21}, \hat{\delta_{2}} A_{31}\right) .
$$

Using this expression for $\left(I_{60}, \hat{\delta_{2}} \hat{\delta_{3}}\right)$ in E_{v} and simplifying again gives

$$
E_{v}=\left(\hat{\delta_{3}},-2 c I_{41} A_{21} \hat{\delta_{2}}\right)\left(A_{31},-\hat{\delta_{2}} \delta_{3}\right) .
$$

By Lemma 6.2.16. (e), since if $v\left(A_{31}\right)>0$ then we have $\hat{\delta_{2}} \equiv-\delta_{3}$. Hence $E_{v}=$ ($\hat{\delta_{3}},-2 c I_{41} A_{21} \hat{\delta_{2}}$) as in the previous case.

Since $-2 c I_{41} A_{21} \hat{\delta_{2}} \equiv \square T_{\alpha_{1} \alpha_{2}}$, it follows that $E_{v}=1$ for ON4A and $E_{v}=$ $(-1)^{a}$ for ON4B as required.

6.6.3 C is of type $I_{2 a, 2 b}$

Proof of Tables 4.9 to 4.22

Cases TN1. From the definition of the isogeny we see that $v\left(I_{23}\right)=2 a$ and $v\left(I_{44}\right)=$ $2 b$ with $v\left(\delta_{2}\right)=2 b \neq v\left(\delta_{3}\right)=0$. Hence $\delta_{2}, \delta_{3} \in K$ and $\hat{\delta_{2}}, \hat{\delta_{3}}, A_{21}, A_{31} \in K$. Reducing
invariants yields

$$
\begin{gathered}
I_{45} \equiv \square \hat{\delta_{2}} \equiv \square \hat{\delta_{3}} \equiv \square I_{40} \equiv \square 1, \quad I_{20} \equiv \square 2 \delta_{3}, \quad I_{22} \equiv \square 2\left(\alpha_{2}-\beta_{3}\right)\left(\alpha_{2}-\alpha_{3}\right), \\
A_{21} \equiv \square 2 \alpha_{2}^{2}, \quad A_{31} \equiv \square \alpha_{3}^{2}+\beta_{3}^{2} .
\end{gathered}
$$

It follows that $E_{v}=\left(I_{23}, c I_{41}\right)\left(I_{44}, c I_{22} A_{21}\right) H$, where $H=\left(I_{44}, 2 I_{20} I_{42} I_{43}\right)\left(-I_{42},-I_{43} I_{60}\right)$. We show that $H=1$.

If $v\left(A_{31}\right)=0$ then by Lemma 6.2.17, $v\left(I_{43}\right)=0$ and $I_{43} \equiv \square \delta_{3} A_{31}$ so that

$$
H=\left(I_{44}, \delta_{3}^{2} A_{31}^{2}\right)\left(I_{60},-A_{21} A_{31}\right)=\left(\hat{\delta_{2}} A_{31}+\hat{\delta_{3}} A_{21},-A_{21} A_{31}\right) .
$$

Using Lemma 6.3.3 1 and since $\hat{\delta_{2}}, \hat{\delta_{3}} \in K^{\times 2}$, this gives

$$
=\left(\hat{\delta_{2}} A_{31}+\hat{\delta_{3}} A_{21},-A_{21} A_{31} \hat{\delta_{2}} \hat{\delta_{3}}\right)=1
$$

If $v\left(A_{31}\right)>0$ then $I_{60} \equiv \square \hat{\delta_{3}} A_{21}$ and $\delta_{3} \equiv-\hat{\delta_{2}} \equiv \square-1$ from Lemma 6.2 .16 (e), so that

$$
H=\left(-\delta_{2},-A_{31} I_{43}\right)\left(A_{21} A_{31},-I_{43} A_{21}\right)\left(I_{43} A_{21},-1\right)
$$

But since $I_{43}=\delta_{2} A_{21}+\delta_{3} A_{31}$, it follows from Lemma 6.3.3, 3 that

$$
\begin{gathered}
1=\left(I_{43},-\delta_{2} A_{21}\right)\left(-I_{43}, \delta_{3} A_{31}\right)\left(-\delta_{2} A_{21}, \delta_{3} A_{31}\right) \\
=\left(I_{43},-\delta_{2} A_{21}\right)\left(-I_{43},-A_{31}\right)\left(-\delta_{2} A_{21},-A_{31}\right)=H,
\end{gathered}
$$

proving the result.
Therefore $E_{v}=\left(I_{23}, c I_{41}\right)\left(I_{44}, c I_{22} A_{21}\right)$. Now $c I_{41} \equiv \square T_{\alpha_{1}}$ and $c I_{22} A_{21} \equiv \square$ $T_{\alpha_{2}}$. It follows that $E_{v}=1$ for TN1A/E, $E_{v}=(-1)^{2 a}$ for TN1B/F, $E_{v}=(-1)^{2 b}$ for TN1C/G and $E_{v}=(-1)^{2 a+2 b}$ for TN1D/H as required.

Cases TN2. From the definition of the isogeny we see that $v\left(I_{23}\right)=v\left(I_{45}\right)=$ $v\left(I_{80}\right)=0$ and $v\left(I_{44}\right)=2 a+2 b$. Write $\beta_{2}=\alpha_{2}+a_{2} \pi^{a}$ and $\beta_{3}=\alpha_{3}+a_{3} \pi^{b}$, $a_{2}, a_{3} \in \mathcal{O}_{\bar{K}}^{\times}$. We have

$$
\begin{gathered}
I_{44} \equiv a_{2}^{2} a_{3}^{2} \pi^{2 a+2 b}, \quad I_{45} \equiv \square 1 \quad I_{40} \equiv \square u_{1}^{2} \equiv \square\left(\alpha_{2}-\alpha_{3}\right)^{2}, \\
I_{20} \equiv \square 2\left(a_{2}^{2} \pi^{2 a}+a_{3}^{2} \pi^{2 b}\right), \quad I_{22} \equiv \square 2\left(\alpha_{2}-\alpha_{3}\right)^{2}, \\
I_{42}=4 A_{21} A_{31} \equiv \square\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right), \quad I_{43} \equiv a_{2}^{2} \pi^{2 a} A_{21}+a_{3}^{2} \pi^{2 b} A_{31} .
\end{gathered}
$$

It follows that $v\left(I_{22}\right)=v\left(I_{42}\right)=0$. Also by Lemma 6.2.1 5 and using Lemma 6.3.4 we have that $\left(I_{41},-I_{23} I_{80}\right)=1$, and by Lemma 6.2 .18 , we have $\left(I_{60},-I_{40} I_{42} I_{80}\right)=$

1. This yields $E_{v}=\left(I_{20},-I_{40} I_{44}\right)\left(I_{43},-I_{40} I_{42} I_{44}\right)\left(I_{44}, 2 c I_{22} I_{42}\right)\left(\ell, I_{40}\right)$.
$\underline{\text { Cases TN2A/B/C/F/G/H: Here } \alpha_{2}, \alpha_{3} \in K_{v} \text { therefore }}$

$$
\begin{gathered}
I_{44} \equiv \pi^{2 a+2 b}, \quad I_{45} \equiv I_{40} \equiv \square 1, \quad I_{22} \equiv \square 2, \quad I_{20} \equiv \square 2\left(a_{2}^{2} \pi^{2 a}+a_{3}^{2} \pi^{2 b}\right), \\
A_{21} \equiv 2\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right), \quad A_{31} \equiv 2\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right), \quad I_{43} \equiv a_{2}^{2} \pi^{2 a} A_{21}+a_{3}^{2} \pi^{2 b} A_{31} .
\end{gathered}
$$

Hence $E_{v}=\left(I_{20},-I_{44}\right)\left(I_{43},-I_{42} I_{44}\right)\left(I_{44}, 2 c I_{22} I_{42}\right)$.
If $a<b$ then $I_{20} \equiv \square 2 \pi^{2 a}$ and $I_{43} \equiv \square \pi^{2 a} A_{21}$ so that

$$
E_{v}=\left(2 \pi^{2 a},-\pi^{2 a+2 b}\right)\left(A_{21} \pi^{2 a},-A_{21} A_{31} \pi^{2 a+2 b}\right)\left(\pi^{2 a+2 b}, c A_{21} A_{31}\right)
$$

Simplifying yields $E_{v}=\left(\pi^{2 a}, 2 c A_{21}\right)\left(\pi^{2 b}, 2 c A_{31}\right)$. Now the results follows since we have $T_{\alpha_{2}} \equiv \square 2 c A_{21}$ and $T_{\alpha_{3}} \equiv \square 2 c A_{31}$. Therefore $E_{v}=1$ for TN2A/F, $E_{v}=(-1)^{2 a}$ for TN2B/G and $E_{v}=(-1)^{2 a+2 b}$ for $\mathrm{TN} 2 \mathrm{C} / \mathrm{H}$ as required.

If $a=b$ then $I_{44} \in K_{v}^{2}$ so that $E_{v}=\left(I_{20},-1\right)\left(I_{43},-I_{42}\right)$ with

$$
I_{20} \equiv \pi^{2 a}\left(a_{2}^{2}+a_{3}^{2}\right) \text { and } I_{43} \equiv \pi^{2 a}\left(a_{2}^{2} A_{21}+a_{3}^{2} A_{31}\right)
$$

hence

$$
E_{v}=\left(\pi^{2 a}, A_{21} A_{31}\right)\left(a_{2}^{2}+a_{3}^{2},-1\right)\left(a_{2}^{2} A_{21}+a_{3}^{2} A_{31},-A_{21} A_{31}\right) .
$$

Now $\left(a_{2}^{2}+a_{3}^{2},-1\right)=\left(a_{2}^{2}+a_{3}^{2},-a_{2}^{2} a_{3}^{2}\right)=1$ and $\left(a_{2}^{2} A_{21}+a_{3}^{2} A_{31},-A_{21} A_{31}\right)=\left(a_{2}^{2} A_{21}+\right.$ $\left.a_{3}^{2} A_{31},-a_{2}^{2} a_{3}^{2} A_{21} A_{31}\right)=1$ by Lemma 6.3.3, therefore $E_{v}=\left(\pi^{2 a}, A_{21} A_{31}\right)$.

For TN2A (respectively TN2C), we have $T_{\alpha_{2}} \equiv \square c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right), T_{\alpha_{3}} \equiv \square$ $c\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right) \in K^{\times 2}\left(\notin K^{\times 2}\right.$ respectively) so that (in both cases) $\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\right.$ $\left.\alpha_{1}\right) \in K^{\times 2} \Leftrightarrow\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right) \in K^{\times 2}$. It follows that $A_{21} A_{31} \in K^{\times 2}$ and hence $E_{v}=1$ which proves the result.

For TN2B, we have $T_{\alpha_{2}} \equiv \square c\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right) \notin K^{\times 2}, T_{\alpha_{3}} \equiv \square v\left(\alpha_{3}-\right.$ $\left.\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right) \in K^{\times 2}$ so that $A_{21} A_{31} \notin K^{\times 2}$ and $E_{v}=(-1)^{2 a}$ as required.
Cases TN2D/E/I/J: Here $a=b$ and Frob swaps δ_{2} and δ_{3} and hence $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \notin$ K. Without loss of generality, let $\operatorname{Frob}\left(\alpha_{2}\right)=\alpha_{3}$ so that $\operatorname{Frob}\left(\beta_{2}\right)=\beta_{3}$. By Lemma 6.2 .14 . we have $v\left(I_{40}\right) \in 2 \mathbb{Z}$ since $v\left(u_{1}\right)=0$. Also, since $a=b$ we have $v\left(I_{44}\right) \in 2 \mathbb{Z}$ and as above

$$
I_{20} \equiv \pi^{2 a}\left(a_{2}^{2}+a_{3}^{2}\right), \quad I_{43} \equiv \pi^{2 a}\left(a_{2}^{2} A_{21}+a_{3}^{2} A_{31}\right), \quad I_{44} \equiv \square a_{2}^{2} a_{3}^{2}
$$

This yields $E_{v}=\left(I_{20},-I_{40} I_{44}\right)\left(I_{43},-I_{40} I_{42} I_{44}\right)\left(\ell, I_{40}\right)$.
If $2 a \in 2 \mathbb{Z}$, since $v\left(I_{42}\right)=0$, it follows from Lemma 6.2.177that $\left(I_{43},-I_{40} I_{42} I_{44}\right)=$

1. Hence $E_{v}=\left(\pi^{2 a}\left(a_{2}^{2}+a_{3}^{2}\right),-I_{40} a_{2}^{2} a_{3}^{2}\right)\left(\ell, I_{40}\right)$. Simplifying using Lemma 6.3.3 which gives $\left(a_{2}^{2}+a_{3}^{2},-a_{2}^{2} a_{3}^{2}\right)=\left(a_{2}^{2}, a_{3}^{2}\right)$ as above, yields $E_{v}=\left(\ell, I_{40}\right)$. Now, $\ell=\ell_{1} \ell_{2} \ell_{3}$ with $\ell_{1}=\frac{u_{1}}{\Delta_{G}}, \ell_{2} \equiv \square 2 c \alpha_{3}, \ell_{3} \equiv \square-2 c \alpha_{2}$. It follows that $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ and that
$v\left(\ell_{1}\right)=0$ for TND/E while $v\left(\ell_{1}\right)=-r$ for TNI/J.
Therefore $E_{v}=\left(\ell_{1}, u_{1}^{2}\right)$. For TN2D/E, $v\left(\ell_{1}\right)=0$ and $E_{v}=1$. For TN2I/J, $v\left(\ell_{1}\right)=-r$ so that $E_{v}=(-1)^{r}$ since $u_{1}^{2} \notin K^{\times 2}$ as required.

If $2 a$ is odd then using the above expression for the invariants yields

$$
\begin{gathered}
E_{v}=\left(\pi^{2 a}\left(a_{2}^{2}+a_{3}^{2}\right),-I_{40} I_{44}\right)\left(\pi^{2 a}\left(a_{2}^{2} A_{21}+a_{3}^{2} A_{31}\right),-I_{40} I_{42} I_{44}\right)\left(\ell, I_{40}\right) \\
\\
=\left(\ell, I_{40}\right)\left(\pi^{2 a}, I_{40}^{2} I_{44}^{2} I_{42}\right) H_{1} H_{2},
\end{gathered}
$$

where

$$
H_{1}=\left(a_{2}^{2}+a_{3}^{2},-I_{40} I_{44}\right), \quad H_{2}=\left(a_{2}^{2} A_{21}+a_{3}^{2} A_{31},-I_{40} I_{42} I_{44}\right) .
$$

If $v\left(a_{2}^{2}+a_{3}^{2}\right)>0$ then $v\left(I_{20}\right)>v\left(I_{44}\right)=v\left(I_{40}\right)$ by Lemma 6.2.1.1. Therefore $H_{1}=1$ by Lemma 6.3.4. Similarly for H_{2} since if $v\left(a_{2}^{2} A_{21}+a_{3}^{2} A_{31}\right)>0$ then $v\left(I_{43}\right)>v\left(I_{42} I_{44}\right)$ so that $H_{2}=1$ by Lemma 6.2.177.

Therefore $E_{v}=\left(\pi^{2 a}, I_{42}\right)\left(\ell, I_{40}\right)$.
Recall from Proposition 3.4.30 that $T_{\alpha_{2}}=c\left(\alpha_{2}-\alpha_{3}\right)\left(\alpha_{2}-\beta_{3}\right)\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\right.$ $\left.\alpha_{1}\right)$ and $T_{\alpha_{3}}=c\left(\alpha_{3}-\alpha_{2}\right)\left(\alpha_{3}-\beta_{2}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right)$. In particular in these cases, $\operatorname{Frob}\left(T_{\alpha_{2}}\right)=T_{\alpha_{3}}$ and $\operatorname{Frob}\left(T_{\alpha_{3}}\right)=T_{\alpha_{2}}$. Moreover,

$$
T_{\alpha_{2}} T_{\alpha_{3}} \equiv c^{2}\left(\alpha_{2}-\alpha_{3}\right)^{4}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}+\alpha_{1}\right)
$$

so that $T_{\alpha_{2}} T_{\alpha_{3}} \equiv \square I_{42}$.
Now, let $t_{\alpha_{2}}^{ \pm}$and $t_{\alpha_{3}}^{ \pm}$denote the square roots of $T_{\alpha_{2}}, T_{\alpha_{3}}$ respectively. By definition of TN2D/I, we have without loss of generality $\operatorname{Frob}\left(t_{\alpha_{2}}^{+}\right)=t_{\alpha_{3}}^{+}$and $\operatorname{Frob}\left(t_{\alpha_{3}}^{+}\right)=t_{\alpha_{2}}^{+}$. Therefore $T_{\alpha_{2}} T_{\alpha_{3}}=\left(t_{\alpha_{2}}^{+} t_{\alpha_{3}}^{+}\right)^{2} \in \mathcal{O}_{K}^{\times 2}$, and hence $I_{42} \in \mathcal{O}_{K}^{\times 2}$. On the other hand, by definition of TN2E/J, we have $\operatorname{Frob}\left(t_{\alpha_{2}}^{+}\right)=t_{\alpha_{3}}^{+}, \operatorname{Frob}\left(t_{\alpha_{3}}^{+}\right)=t_{\alpha_{2}}^{-}$, $\operatorname{Frob}\left(t_{\alpha_{2}}^{-}\right)=t_{\alpha_{3}}^{-}$and $\operatorname{Frob}\left(t_{\alpha_{3}}^{-}\right)=t_{\alpha_{2}}^{+}$. It follows that $T_{\alpha_{2}} T_{\alpha_{3}}=\left(t_{\alpha_{2}}^{+} t_{\alpha_{3}}^{+}\right)^{2} \notin \mathcal{O}_{K}^{\times 2}$, and hence $I_{42} \notin \mathcal{O}_{K}^{\times 2}$.

This yields $E_{v}=\left(\pi^{2 a}, I_{42}\right)=1$ for TN2D, $E_{v}=\left(\pi^{2 a}, I_{42}\right)=(-1)^{2 a}$ for TN2E, $E_{v}=\left(\pi^{2 a}, I_{42}\right)\left(\ell, I_{40}\right)=(-1)^{r}$ for TN2I, and $E_{v}=\left(\pi^{2 a}, I_{42}\right)\left(\ell, I_{40}\right)=$ $(-1)^{2 a+r}$ for TN2J as required.
Cases TN3. From the definition of the isogeny we see that $v\left(I_{23}\right)=2 a, v\left(I_{45}\right)=b$ and $v\left(I_{44}\right)=v\left(I_{80}\right)=0$. Also since $v\left(\alpha_{2}-\alpha_{3}\right) \neq v\left(\beta_{2}-\beta_{3}\right)$ and $\beta_{2} \not \equiv \beta_{3}$, it follows that $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K$ (since otherwise I_{K} would permutes α_{2} and α_{3} while Frob would permute β_{2} and β_{3}, a contradiction). In particular $b \in \mathbb{Z}, A_{21}, A_{31} \in K$ and $\delta_{2}, \delta_{3}, \hat{\delta_{2}}, \hat{\delta_{3}} \in K^{\times 2}$. Reducing invariants yields

$$
\begin{gathered}
I_{44} \equiv \square I_{40} \equiv \square I_{80} \equiv \square 1, \\
\ell_{1} \equiv \square \frac{-1}{c}, \quad I_{22} \equiv-\left(\alpha_{2}-\beta_{3}\right)\left(\alpha_{3}-\beta_{2}\right), \quad I_{41} \equiv \square \beta_{2} \beta_{3},
\end{gathered}
$$

so that $v\left(\ell_{1}\right)=v\left(I_{22}\right)=v\left(I_{41}\right)=0$. Now from Lemma 6.2.11 and using Lemma 6.3.4 we have that $\left(I_{20},-I_{40} I_{44}\right)=1$. Therefore $E_{v}=\left(I_{23}, c I_{41}\right)\left(I_{45},-\ell I_{22} I_{21}\right) H$, where $H=\left(-I_{42},-I_{43}\right)\left(-I_{42}, I_{60}\right)$. We show that $H=1$. Using definitions of invariants and since $A_{21}, A_{31} \in K$ and $\delta_{2}, \delta_{3}, \hat{\delta_{2}}, \hat{\delta_{3}} \in K^{\times 2}$, we can rewrite H as

$$
\begin{gathered}
=\left(-A_{21} A_{31},-A_{21} \delta_{2}-A_{31} \delta_{3}\right)\left(-A_{21} A_{31}, A_{21} \hat{\delta_{3}}+A_{31} \hat{\delta_{2}}\right) \\
=\left(-A_{21} A_{31} \delta_{2} \delta_{3},-A_{21} \delta_{2}-A_{31} \delta_{3}\right)\left(-A_{21} A_{31} \hat{\delta_{2}} \hat{\delta_{3}}, A_{21} \hat{\delta_{3}}+A_{31} \hat{\delta_{2}}\right) .
\end{gathered}
$$

Using Lemma 6.3.3. 1 we have $H=\left(A_{21} \delta_{2}, A_{31} \delta_{3}\right)\left(A_{21} \hat{\delta_{3}}, A_{31} \hat{\delta_{2}}\right)=1$.
Therefore $E_{v}=\left(I_{23}, c I_{41}\right)\left(I_{45},-\ell I_{22} I_{21}\right)$. Since $\ell=\ell_{1} \ell_{2} \ell_{3}$ and $I_{21}=-\ell_{2} \ell_{3}$, we have $E_{v}=\left(I_{23}, c I_{41}\right)\left(I_{45}, \ell_{1} I_{22}\right)$. Noting that $c I_{41} \equiv \square T_{\alpha_{1}}$ and $\ell_{1} I_{22} \equiv \square T_{\alpha_{2}}$, we obtain that $E_{v}=1$ for TN3A, $E_{v}=(-1)^{2 a}$ for TN3B, $E_{v}=(-1)^{b}$ for TN3C and $E_{v}=(-1)^{2 a+b}$ for TN3D as required.
Cases TN4. From the definition of the isogeny we see that $v\left(I_{44}\right)=v\left(\delta_{3}\right)=2 a$, $v\left(I_{80}\right)=v\left(\hat{\delta_{3}}\right)=b$ and $v\left(I_{23}\right)=v\left(I_{45}\right)=0$. Also $\alpha_{1}, \alpha_{2}, \beta_{2} \in K$. In particular $b \in \mathbb{Z}$ and $\delta_{2}, \delta_{3}, \hat{\delta_{2}}, \hat{\delta_{3}} \in K^{\times 2}$. Reducing invariants yields

$$
\begin{gathered}
I_{23} \equiv \square I_{45} \equiv \square I_{40} \equiv \square 1, \quad I_{20} \equiv \square 2, \quad I_{22} \equiv \square 2\left(\alpha_{3}-\alpha_{1}\right)\left(\alpha_{3}-\beta_{2}\right), \\
I_{41} \equiv \square \alpha_{1}\left(\alpha_{1}+\beta_{2}\right), \quad I_{42} \equiv \square 2\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}+\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right), \\
I_{43} \equiv \square-\left(\alpha_{1}+\beta_{2}\right)\left(\alpha_{1}-\beta_{2}\right), \quad I_{60} \equiv \square-2\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}+\alpha_{3}\right) .
\end{gathered}
$$

Therefore $E_{v}=\left(I_{44}, 2 c I_{20} I_{22} I_{42} I_{43}\right)\left(I_{80},-2 c I_{41} I_{42} I_{60}\right)$. Replacing invariants with their values above and clearing squares in K yields

$$
E_{v}=\left(I_{44}, c\left(\alpha_{3}-\beta_{2}\right)\left(\alpha_{1}+\beta_{3}\right)\right)\left(I_{80}, 2 c \alpha_{1}\left(\alpha_{1}-\beta_{2}\right)\right) .
$$

Noting that $c\left(\alpha_{3}-\beta_{2}\right)\left(\alpha_{1}+\beta_{3}\right) \equiv \square T_{\alpha_{3}}$ and $2 c \alpha_{1}\left(\alpha_{1}-\beta_{2}\right) \equiv T_{\alpha_{1}}$, we obtain that $E_{v}=1$ for TN4A, $E_{v}=(-1)^{2 a}$ for TN4B, $E_{v}=(-1)^{b}$ for TN4C and $E_{v}=(-1)^{2 a+b}$ for TN4D as required.
Cases TN5. From the definition of the isogeny we see that $v\left(I_{45}\right)=b, v\left(I_{80}\right)=$ $v\left(\hat{\delta_{3}}\right)=a$ and $v\left(I_{23}\right)=v\left(I_{44}\right)=0$. Also $\alpha_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K$. In particular $a, b \in \mathbb{Z}, A_{21}, A_{31} \in K$ and $I_{40}, \delta_{2}, \delta_{3}, \hat{\delta_{2}}, \hat{\delta_{3}} \in K^{\times 2}$. Reducing invariants yields

$$
I_{23} \equiv \equiv_{44} \equiv_{\square} I_{40} \equiv \square 1, \quad I_{41} \equiv \equiv_{1}\left(\alpha_{1}+\beta_{3}\right), \quad A_{21} \equiv_{\square}\left(\alpha_{3}+\alpha_{1}\right)\left(\alpha_{3}-\alpha_{1}\right) .
$$

Using Lemma 6.3.4 it follows from Lemma 6.2.1 1 that $\left(I_{20},-I_{40} I_{44}\right)=1$. Therefore

$$
E_{v}=\left(I_{45},-\ell I_{21} I_{22}\right)\left(I_{80},-2 c I_{41} I_{42} I_{60}\right)\left(-I_{42},-I_{43} I_{60}\right) .
$$

If $v\left(I_{31}\right)=0$ then by Lemma 6.2.166 (a), we have $v\left(I_{42}\right)=0$ and Lemmata
6.2 .17 and 6.3.4 yields $\left(I_{43},-I_{42} I_{44}\right)=0$. Also, by Lemma 6.2.16. (b), we have $I_{60} \equiv \hat{\delta_{2}} A_{31}$ so that

$$
\begin{gathered}
E_{v}=\left(I_{45},-\ell I_{21} I_{22}\right)\left(I_{80},-2 c I_{41} A_{21} A_{31}^{2} \hat{\delta_{2}}\right)\left(-A_{21} A_{31}, \hat{\delta_{2}} A_{31}\right) \\
E_{v}=\left(I_{45},-\ell I_{21} I_{22}\right)\left(I_{80},-2 c I_{41} A_{21} \hat{\delta_{2}}\right) .
\end{gathered}
$$

If $v\left(A_{31}\right)>0$ then by Lemma 6.2.166. (c) we have $I_{43} \equiv \delta_{2} A_{21} \equiv \square A_{21}$ and $\hat{\delta_{2}} \equiv \square-1$. Therefore
$E_{v}=\left(I_{45},-\ell I_{21} I_{22}\right)\left(I_{80},-2 c I_{41} A_{21} \hat{\delta_{2}}\right) H, \quad H=\left(I_{80}, \hat{\delta_{2}} A_{31} I_{60}\right)\left(-A_{21} A_{31},-A_{21} I_{60}\right)$.
We show that $H=1$. From Lemma 6.2.16. (b) we have that $I_{60}-\hat{\delta_{2}} A_{31}-\hat{\delta_{3}} A_{21}=0$, therefore using Lemma 6.3.3. 3 we have
$\left(I_{60},-\hat{\delta_{2}} A_{31}\right)\left(-I_{60}, \hat{\delta_{3}} A_{21}\right)\left(-\hat{\delta_{2}} A_{31}, \hat{\delta_{3}} A_{21}\right)=\left(I_{60}, A_{31}\right)\left(-I_{60}, \hat{\delta_{3}} A_{21}\right)\left(A_{31}, \hat{\delta_{3}} A_{21}\right)=1$
Now H can be re written as follows $H=\left(\hat{\delta_{3}}, \hat{\delta_{2}} A_{31} I_{60}\right)\left(-A_{21} A_{31},-A_{21} I_{60}\right)$, and we see that $H=\left(I_{60}, A_{31}\right)\left(-I_{60}, \hat{\delta_{3}} A_{21}\right)\left(A_{31}, \hat{\delta_{3}} A_{21}\right)=1$.

Therefore in both case we have $E_{v}=\left(I_{45},-\ell I_{21} I_{22}\right)\left(I_{80},-2 c I_{41} A_{21} \hat{\delta_{2}}\right)$. Noting that $-\ell I_{21} I_{22} \equiv \square T_{\alpha_{1}}$ and $-2 c I_{41} A_{21} \hat{\delta_{2}} \equiv \square T_{\alpha_{3}}$, we obtain that $E_{v}=1$ for TN5A, $E_{v}=(-1)^{a}$ for TN5B, $E_{v}=(-1)^{b}$ for TN5C and $E_{v}=(-1)^{a+b}$ for TN5D as required.
Cases TN6. From the definition of the isogeny we see that $v\left(I_{80}\right)=a+b$ and $v\left(I_{45}\right)=v\left(I_{23}\right)=v\left(I_{44}\right)=0$.
Cases TN6A/B/C. Here $\alpha_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K$. In particular $a, b \in \mathbb{Z}, A_{21}, A_{31} \in$ K and $I_{40}, I_{23}, \delta_{2}, \delta_{3} \in K^{\times 2}$. By Lemma 6.2.11 we have that $v\left(I_{20}\right)=0$ and Lemma 6.3.4 yields $\left(I_{20},-I_{40} I_{44}\right)=1$. Also, Lemma 6.2.1]3 yields $v\left(I_{22}\right)=0$ so that $\left(I_{22},-I_{44} I_{45}\right)=1$. Similarly, Lemma 6.2.17 gives $v\left(I_{43}\right)=0$ so that $\left(I_{43},-I_{40} I_{42} I_{44}\right)=1$. Finally, we have $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$. Reducing invariants yields

$$
\begin{gathered}
A_{21} \equiv \square-\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}+\beta_{2}\right), \quad A_{31} \equiv \square-\left(\alpha_{1}-\beta_{3}\right)\left(\alpha_{1}+\beta_{3}\right), \\
I_{45} \equiv 2 \alpha_{1}\left(\beta_{2}-\beta_{3}\right)\left(\alpha_{1}+\beta_{2}\right)\left(\alpha_{1}-\beta_{3}\right)
\end{gathered}
$$

so that $v\left(I_{42}\right)=0$ by Lemma 6.2.1|6. (a). Therefore

$$
E_{v}=\left(I_{45},-\ell I_{21}\right)\left(I_{80},-2 c I_{41} I_{42} I_{60}\right)\left(-I_{42}, I_{60}\right)\left(-1, I_{41}\right) .
$$

Recall that $\ell=\ell_{1} \ell_{2} \ell_{3}$ and $I_{21}=-\ell_{2} \ell_{3}$. It follows that $\left(I_{45},-\ell I_{21}\right)=\left(I_{45}, \ell_{1}\right)$. Recall that $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$ so that $\ell=\frac{u_{1}}{\Delta_{G}}$. In particular, we have $v\left(\Delta_{G}\right)=0$ and $u_{1} \equiv 2 \alpha_{1}+\beta_{2}-\beta_{3}$. If $v\left(u_{1}\right)=0$ then $\left(I_{45}, \ell_{1}\right)=1$. On the other hand, if $v\left(u_{1}\right)>0$
then by Lemma 9 we have $I_{45} \equiv \square 1$. Hence $\left(I_{45}, \ell_{1}\right)=1$ and

$$
E_{v}=\left(I_{80},-2 c I_{41} I_{42} I_{60}\right)\left(-I_{42}, I_{60}\right)\left(-1, I_{41}\right) .
$$

If $a<b$, by Lemma 6.2.1 6. (b) we have $I_{60} \equiv \hat{\delta_{3}} A_{21}$. Moreover, using Lemma 6.2 .15 we can write $I_{41} \equiv 2 u_{a} \pi^{a}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)$ for some $u_{a} \in \mathcal{O}_{K}^{\times}$. Replacing invariants by their value and simplifying yields

$$
\begin{gathered}
E_{v}=\left(\hat{\delta_{2}} \hat{\delta_{3}},-u_{a} \pi^{a}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right) A_{21} A_{31} \hat{\delta_{3}} A_{21}\right)\left(A_{21} A_{31}, \hat{\delta_{3}} A_{21}\right)\left(\pi^{2 a},-1\right) \\
=\left(\pi^{a}, c\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\beta_{3}\right)\right)\left(\pi^{b}, c\left(\alpha_{1}+\beta_{2}\right)\left(\alpha_{1}+\beta_{3}\right)\right) .
\end{gathered}
$$

Noting that $T_{\alpha_{1}} \equiv \square c\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\beta_{3}\right)$ and $T_{-\alpha_{1}} \equiv \square c\left(\alpha_{1}+\beta_{2}\right)\left(\alpha_{1}+\beta_{3}\right)$, we obtain that $E_{v}=1$ for TN6A, $E_{v}=(-1)^{a}$ for TN6B and $E_{v}=(-1)^{a+b}$ for TN6C as required.

If $a=b$ then $v\left(I_{80}\right) \in 2 \mathbb{Z}$ and $E_{v}=\left(I_{80}, I_{41} I_{60}\right)\left(I_{60},-I_{42}\right)\left(I_{41},-1\right)$. Using the definitions of invariants in Lemmata 6.2.16. (a), 6.2.15 and since $I_{80}=\hat{\delta_{2}} \hat{\delta_{3}}$, we may write

$$
\begin{gathered}
I_{80}=u_{a} u_{b} \pi^{2 a} \alpha_{1}^{2}\left(\alpha_{1}-\beta_{3}\right)\left(\alpha_{1}+\beta_{3}\right)\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}+\beta_{2}\right) \\
=u_{a} u_{b} \pi^{2 a} \alpha_{1}^{2} A_{21} A_{31}, \\
I_{41}=\alpha_{1} \pi^{a}\left(\left(u_{b}\left(\alpha_{1}+\beta_{2}\right)\left(\alpha_{1}+\beta_{3}\right)+u_{a}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\beta_{3}\right)\right),\right. \\
I_{60}=-2 \alpha_{1} \pi^{a}\left(u_{a}\left(\alpha_{1}-\beta_{2}\right)^{2}\left(\alpha+\beta_{2}\right)^{2}+u_{b}\left(\alpha_{1}-\beta_{3}\right)^{2}\left(\alpha_{1}-\beta_{2}\right)^{2}\right),
\end{gathered}
$$

for some $u_{a}, u_{b} \in \mathcal{O}_{K}^{\times}$. Hence replacing invariants by their values and simplifying using Lemma 6.3.3 gives

$$
\begin{gathered}
\left(\pi^{a}, A_{21} A_{31}\right)\left(u_{a}\left(\alpha_{1}-\beta_{2}\right)^{2}\left(\alpha+\beta_{2}\right)^{2}+u_{b}\left(\alpha_{1}-\beta_{3}\right)^{2}\left(\alpha_{1}-\beta_{2}\right)^{2},-u_{a} u_{b}\right) \\
\left(\left(u_{b}\left(\alpha_{1}+\beta_{2}\right)\left(\alpha_{1}+\beta_{3}\right)+u_{a}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\beta_{3}\right)\right),-u_{a} u_{b}\left(\alpha_{1}-\beta_{3}\right)\left(\alpha_{1}+\beta_{3}\right)\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}+\beta_{2}\right)\right) \\
=\left(\pi^{a}, A_{21} A_{31}\right) .
\end{gathered}
$$

Noting that $A_{21} A_{31} \equiv \square T_{\alpha_{1}} T_{-\alpha_{1}}$, it follows that $E_{v}=1$ for TN6A, $E_{v}=(-1)^{a}$ for TN6B and $E_{v}=(-1)^{2 a}=1$ for TN6C as required.
Cases TN6D/E. Here $\alpha_{1} \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \notin K$ and $a=b$. However, by semistability criterion 3.4.29, we have that $\alpha_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K^{n r}$ so that $v\left(I_{40}\right) \in 2 \mathbb{Z}$. Therefore, repeating the same arguments as above we have $\left(I_{20},-I_{40} I_{44}\right)=1,\left(I_{22},-I_{44} I_{45}\right)=1$ and $\left(I_{43},-I_{40} I_{42} I_{44}\right)=1$. This yields

$$
E_{v}=\left(I_{40}, \ell\right)\left(I_{45},-\ell I_{21}\right)\left(I_{41},-I_{23} I_{80}\right)\left(I_{60},-I_{40} I_{42} I_{80}\right) .
$$

Using notation for ℓ_{1} as above, and since $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$, we can simplify $\left(I_{40}, \ell\right)\left(I_{45},-\ell I_{21}\right)$ into $\left(u_{1}^{2}, u_{1}\right)\left(I_{45}, u_{1}\right)=\left(u_{1}^{2} I_{45}, u_{1}\right)$. Now, if $v\left(u_{1}\right)=0$ then $\left(u_{1}^{2} I_{45}, u_{1}\right)=1$. Otherwise, by Lemma 6.2 .19 we have $I_{45} \notin K^{\times 2}$. But $u_{1}^{2} \notin K^{\times 2}$, hence $u_{1}^{2} I_{45} \in K^{\times 2}$ and $\left(u_{1}^{2} I_{45}, u_{1}\right)=1$. It follows that $E_{v}=\left(I_{41},-I_{23} I_{80}\right)\left(I_{60},-I_{40} I_{42} I_{80}\right)$. Using the notation for I_{80}, I_{41}, I_{60} set up above, using Lemma 6.3 .3 and simplifying we have

$$
\begin{gathered}
E_{v}=\left(\pi^{a}\left(u_{b}\left(\alpha_{1}+\beta_{2}\right)\left(\alpha_{1}+\beta_{3}\right)+u_{a}\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\beta_{3}\right)\right),-\alpha_{1}^{2} u_{a} u_{b} \alpha_{1}^{2} A_{21} A_{31}\right) \\
\left(\pi^{a}\left(u_{a}\left(\alpha_{1}-\beta_{2}\right)^{2}\left(\alpha+\beta_{2}\right)^{2}+u_{b}\left(\alpha_{1}-\beta_{3}\right)^{2}\left(\alpha_{1}-\beta_{2}\right)^{2}\right),-I_{40} A_{21} A_{31} u_{a} u_{b} \alpha_{1}^{2} A_{21} A_{31}\right) \\
=\left(\pi^{a}, A_{21} A_{31}\right)\left(\pi^{a}, \alpha_{1}^{2} I_{40}\right)=\left(\pi^{a}, A_{21} A_{31}\right)\left(\pi^{a}, \alpha_{1}^{2} u_{1}^{2}\right)=1,
\end{gathered}
$$

since $u_{1}, \alpha_{1}^{2} \notin K^{\times 2}$. Therefore $E_{v}=\left(\pi^{a}, A_{21} A_{31}\right)$.
Recall that $A_{21} A_{31} \equiv \square T_{\alpha_{1}} T_{-\alpha_{1}}$. In particular in these cases, $\operatorname{Frob}\left(T_{\alpha_{1}}\right)=$ $T_{-\alpha_{1}}$ and $\operatorname{Frob}\left(T_{-\alpha_{1}}\right)=T_{\alpha_{1}}$. Now, let $t_{\alpha_{1}}^{ \pm}$and $t_{-\alpha_{1}}^{ \pm}$denote the square roots of $T_{\alpha_{1}}, T_{-\alpha_{1}}$ respectively. By definition of TN6D, we have without loss of generality $\operatorname{Frob}\left(t_{\alpha_{1}}^{+}\right)=t_{-\alpha_{1}}^{+}$and $\operatorname{Frob}\left(t_{-\alpha_{1}}^{+}\right)=t_{\alpha_{1}}^{+}$. Therefore $T_{\alpha_{1}} T_{-\alpha_{1}}=\left(t_{\alpha_{1}}^{+} t_{-\alpha_{1}}^{+}\right)^{2} \in$ $\mathcal{O}_{K}^{\times 2}$, and hence $I_{42} \in \mathcal{O}_{K}^{\times 2}$. On the other hand, by definition of TN6E, we have $\operatorname{Frob}\left(t_{\alpha_{1}}^{+}\right)=t_{-\alpha_{1}}^{+}, \operatorname{Frob}\left(t_{-_{\alpha_{1}}}^{+}\right)=t_{\alpha_{1}}^{-}, \operatorname{Frob}\left(t_{\alpha_{1}}^{-}\right)=t_{-\alpha_{1}}^{-}$and $\operatorname{Frob}\left(t_{-\alpha_{1}}^{-}\right)=t_{\alpha_{1}}^{+}$. It follows that $T_{\alpha_{1}} T_{-\alpha_{1}}=\left(t_{\alpha_{1}}^{+} t_{-\alpha_{1}}^{+}\right)^{2} \notin \mathcal{O}_{K}^{\times 2}$, and hence $I_{42} \notin \mathcal{O}_{K}^{\times 2}$.

This yields $E_{v}=\left(\pi^{a}, I_{42}\right)=1$ for TN6D, $E_{v}=\left(\pi^{a}, I_{42}\right)=(-1)^{a}$ for TN2E as required.

Cases TN7. From the definition of the isogeny we see that $v\left(I_{45}\right)=a+b$ and $v\left(I_{80}\right)=v\left(I_{23}\right)=v\left(I_{44}\right)=0$.
Write $\alpha_{3}=a_{3} \pi^{a}+\alpha_{2}$ and $\beta_{3}=b_{3} \pi^{b}+\beta_{2}$, with $2 a, 2 b \in \mathbb{Z}$ and $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$ so that $\ell_{1}=\frac{u_{1}}{\Delta_{G}}$. We have

$$
\begin{gathered}
\Delta_{G}=c\left(a_{3} \pi^{a}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)+b_{3} \pi^{b}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)+a_{3} b_{3} \pi^{a+b}\left(\alpha_{2}+\beta_{2}\right)\right), \\
\ell_{1}=-\left(a_{3} \pi^{a}+b_{3} \pi^{b}\right), \quad I_{21} \equiv\left(\alpha_{2}+\beta_{2}\right)^{2}, \quad \delta_{2} \equiv \delta_{3}, \quad I_{44} \equiv \delta_{2}^{2}, \quad \hat{\delta_{2}} \equiv \hat{\delta_{3}}, \quad I_{80} \equiv \hat{\delta}_{2}^{2}, \\
I_{45}=4 a_{3} b_{3} \pi^{a+b}\left(\alpha_{2}-\beta_{2}-b_{3} \pi^{b}\right)\left(\beta_{2}-\alpha_{2}-a_{3} \pi^{a}\right), \quad I_{20} \equiv \square \delta_{2}, \quad I_{22} \equiv-\delta_{2}, \quad I_{40}=\square u_{1}^{2}, \\
I_{41} \equiv 2\left(\left(\alpha_{1}+\alpha_{2}\right)^{2}\left(\alpha_{1}+\beta_{2}\right)^{2}+\left(\alpha_{2}-\alpha_{1}\right)^{2}\left(\beta_{2}-\alpha_{1}\right)^{2}\right), \quad I_{43} \equiv 2 \delta_{2} A_{21}, \quad I_{60} \equiv 2 \hat{\delta_{2} A_{21},} \\
A_{21} \equiv A_{31} \equiv\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)+\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right), \quad I_{42} \equiv \square A_{21}^{2},
\end{gathered}
$$

so that
$E_{v}=\left(I_{40}, \ell I_{20}\right)\left(I_{45},-I_{22} \ell I_{21}\right)\left(I_{41},-I_{23} I_{80}\right)\left(I_{42},-I_{44} I_{80}\right)\left(I_{43},-I_{40} I_{42} I_{44}\right)\left(I_{60},-I_{40} I_{42} I_{80}\right)$
and $\left(I_{41},-I_{23} I_{80}\right)=1$ by Lemmata 6.3.4 and 6.2.15 since $v\left(I_{41}\right) \geq 0=v\left(I_{80}\right)$.

Therefore

$$
E_{v}=\left(I_{40}, \ell I_{20}\right)\left(I_{45},-I_{22} \ell I_{21}\right)\left(I_{42},-I_{44} I_{80}\right)\left(I_{43},-I_{40} I_{42} I_{44}\right)\left(I_{60},-I_{40} I_{42} I_{80}\right)
$$

Replacing invariants by their reduced expression above gives

$$
E_{v}=\left(u_{1}^{2}, \ell \delta_{2}\right)\left(I_{45}, \delta_{2} \ell\left(\alpha_{2}+\beta_{2}\right)^{2}\right)\left(A_{21}^{2},-\delta_{2}^{2}{\hat{\delta_{2}}}^{2}\right)\left(2 \delta_{2} A_{21},-u_{1}^{2} A_{21}^{2} \delta_{2}^{2}\right)\left(2 \hat{\delta_{2}} A_{21},-u_{1}^{2} A_{21}^{2}{\hat{\delta_{2}}}^{2}\right)
$$

By definition of the isogeny, either $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K$ and $\left(\alpha_{2}+\beta_{2}\right)^{2}, A_{21}^{2} \in K^{\times 2}$, or $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \notin K$ but $\operatorname{Frob}\left(\alpha_{2}+\beta_{2}\right)=\left(\alpha_{2}+\beta_{2}\right)$ or $\operatorname{Frob}\left(\alpha_{2}+\beta_{2}\right)=\left(\alpha_{3}+\beta_{3}\right)$. Either way, $\left(\alpha_{2}+\beta_{2}\right)^{2}, A_{21}^{2} \in k^{\times 2}$ and hence $\left(\alpha_{2}+\beta_{2}\right)^{2}, A_{21}^{2} \in K^{\times 2}$. Therefore E_{v} simplifies to

$$
\left(u_{1}^{2}, \ell \delta_{2}\right)\left(I_{45}, \delta_{2} \ell\right)\left(2 \delta_{2} A_{21},-u_{1}^{2}\right)\left(2 \hat{\delta_{2}} A_{21},-u_{1}^{2}\right)=\left(u_{1}^{2}, \ell \delta_{2}\right)\left(I_{45}, \delta_{2} \ell\right)\left(\delta_{2}, u_{1}^{2}\right)\left(\hat{\delta_{2}}, u_{1}^{2}\right)
$$

Now since $I_{45}=u_{1}^{2}\left(A_{1}-B_{1}\right)^{2}$ it follows that $E_{v}=$

$$
\left(u_{1}^{2}, \ell \delta_{2}\right)\left(u_{1}^{2}\left(A_{1}-B_{1}\right)^{2}, \delta_{2} \ell\right)\left(\delta_{2}, u_{1}^{2}\right)\left(\hat{\delta_{2}}, u_{1}^{2}\right)=\left(\left(A_{1}-B_{1}\right)^{2}, \delta_{2} \ell\right)\left(\delta_{2}, u_{1}^{2}\right)\left(\hat{\delta_{2}}, u_{1}^{2}\right) .
$$

Cases TN7A/B/C/D. Here $v\left(u_{1}^{2}\right)=2 a, v\left(A_{1}-B_{1}\right)^{2}=b-a$ and α_{2}, β_{2} are fixed by Frobenius so that $\delta_{2} \in K^{\times 2}$. Therefore $E_{v}=\left(\left(A_{1}-B_{1}\right)^{2}, \delta_{2} \ell\right)\left(\hat{\delta_{2}}, u_{1}^{2}\right)$. Note that by the semistability criterion $3.4 .29, v(\ell) \in 2 \mathbb{Z}$.
TN7A. Since $\hat{\delta_{2}} \equiv \square T_{\alpha_{2}} T_{\beta_{2}} \equiv \square 1$, we have that $\left(\hat{\delta_{2}}, u_{1}^{2}\right)=1$.
Now $\ell \delta_{2} \equiv \frac{\left(\alpha_{2}+\beta_{2}\right)^{2}\left(\alpha_{2}-\beta_{2}\right)^{2}}{c\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)} \equiv \square T_{\beta_{2}} \equiv \square 1$. Hence $\left(\left(A_{1}-B_{1}\right)^{2}, \delta_{2} \ell\right)=1$ and $E_{v}=1$.
TN7B. Since $\hat{\delta_{2}} \equiv T_{\alpha_{2}} T_{\beta_{2}} \notin K^{\times 2}$, we have that $\left(\hat{\delta}_{2}, u_{1}^{2}\right)=(-1)^{2 a}$.
Now $\ell \delta_{2} \equiv \frac{\left(\alpha_{2}+\beta_{2}\right)^{2}\left(\alpha_{2}-\beta_{2}\right)^{2}}{c\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)} \equiv T_{\beta_{2}} \equiv \square$. Hence $\left(\left(A_{1}-B_{1}\right)^{2}, \delta_{2} \ell\right)=1$. Hence $E_{v}=(-1)^{2 a}$.
TN7C. Since $\hat{\delta_{2}} \equiv T_{\alpha_{2}} T_{\beta_{2}} \notin K^{\times 2}$, we have that $\left(\hat{\delta_{2}}, u_{1}^{2}\right)=(-1)^{2 a}$.
Now $\ell \delta_{2} \equiv \frac{\left(\alpha_{2}+\beta_{2}\right)^{2}\left(\alpha_{2}-\beta_{2}\right)^{2}}{c\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)} \equiv T_{\beta_{2}} \notin K^{\times 2}$. Hence $\left(\left(A_{1}-B_{1}\right)^{2}, \delta_{2} \ell\right)=1 \Leftrightarrow b-a$ is even. Therefore $E_{v}=1 \Leftrightarrow 2 a \equiv b-a \bmod 2$, equivalently $E_{v}=1 \Leftrightarrow a+b \equiv 0 \bmod 2$. TN7D. Since $\hat{\delta_{2}} \equiv T_{\alpha_{2}} T_{\beta_{2}} \equiv \square 1$, we have that $\left(\hat{\delta_{2}}, u_{1}^{2}\right)=1$.
Now $\ell \delta_{2} \equiv \frac{\left(\alpha_{2}+\beta_{2}\right)^{2}\left(\alpha_{2}-\beta_{2}\right)^{2}}{c\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)} \equiv T_{\beta_{2}} \notin K^{\times 2}$. Hence $\left(\left(A_{1}-B_{1}\right)^{2}, \delta_{2} \ell\right)=1 \Leftrightarrow b-a$ is even. Hence $E_{v}=1 \Leftrightarrow a+b \equiv 0 \bmod 2$.
Cases TN7E/F/G. Here $v\left(A_{1}-B_{1}\right)^{2}=0$ and α_{2}, β_{2} are fixed by Frobenius so that $\delta_{2} \in K^{\times 2}$. Let $v\left(u_{1}\right)=a+r_{1} \geq a$ as in the proof of Table 4.18 in Section 5.3.3. By definition, we have $v(\ell)=v\left(\ell_{1}\right)+v\left(\ell_{2}\right)+v\left(\ell_{3}\right)$ and by the semistability criterion 3.4.29, $v(\ell) \in 2 \mathbb{Z}$. Here $v\left(\ell_{1}\right)=r_{1}$. Either $r_{1}=0$ and $v(\ell)=v\left(\ell_{2}\right)+v\left(\ell_{3}\right) \in 2 \mathbb{Z}$ or $r_{1}>0$ and $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ so that $r_{1} \in 2 \mathbb{Z}$. Therefore $E_{v}=\left(\hat{\delta_{2}}, u_{1}^{2}\right)$ and $v\left(u_{1}\right)=a+r_{1} \equiv a \bmod 2$.
TN7E. Since $\hat{\delta_{2}} \equiv \square T_{\alpha_{2}} T_{\beta_{2}} \equiv \square 1$, we have that $E_{v}=\left(\hat{\delta_{2}}, u_{1}^{2}\right)=1$.
TN7F. Since $\hat{\delta_{2}} \equiv T_{\alpha_{2}} T_{\beta_{2}} \notin K^{\times 2}$, we have that $E_{v}=\left(\hat{\delta_{2}}, u_{1}^{2}\right)=1 \Leftrightarrow 2 a \equiv 0 \bmod 2$.

TN7G. Since $\hat{\delta_{2}} \equiv T_{\alpha_{2}} T_{\beta_{2}} \in K^{\times 2}$, we have that $E_{v}=\left(\hat{\delta_{2}}, u_{1}^{2}\right)=1$.
$\underline{\text { Cases TN7H/I. Here } v\left(A_{1}-B_{1}\right)^{2}=0 \text { and } \alpha_{2}, \beta_{2} \text { are not fixed by Frobenius, }}$ hence $\delta_{2} \notin K^{\times 2}$. Let $v\left(u_{1}\right)=a+r_{1} \geq a$, as for the cases TN7E/F/G, we have $v\left(u_{1}\right)=a+r_{1} \equiv a \bmod 2$. It follows that $E_{v}=\left(\delta_{2}, u_{1}^{2}\right)\left(\hat{\delta_{2}}, u_{1}^{2}\right)$ with $\left(\delta_{2}, u_{1}^{2}\right)=1 \Leftrightarrow$ $2 a \equiv 0 \bmod 2$.
TN7H. Following the proof of Table 4.18 in Section 5.3 .3 , we see that $\hat{\delta_{2}} \in K^{\times 2}$ and hence $E_{v}=\left(\delta_{2}, u_{1}^{2}\right)\left(\hat{\delta_{2}}, u_{1}^{2}\right)=\left(\delta_{2}, u_{1}^{2}\right)=1 \Leftrightarrow 2 a \equiv 0 \bmod 2$.
TN7I. Following the proof of Table 4.18 in Section 5.3.3, we see that $\hat{\delta_{2}} \notin K^{\times 2}$ and hence $E_{v}=\left(\delta_{2}, u_{1}^{2}\right)\left(\hat{\delta_{2}}, u_{1}^{2}\right)=\left(\delta_{2}, u_{1}^{2}\right)^{2}=1$.
Cases TN7J $/ \mathbf{K} / \mathbf{L} / \mathbf{M} / \mathbf{N}$: Here $v\left(A_{1}-B_{1}\right)^{2}=0$ and $v\left(\Delta_{G}\right)=2 r>2 a, v\left(u_{1}\right)=a$ so that $v\left(\ell_{1}\right)=-r$ and $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ as in Section 5.3.3. Therefore $E_{v}=$ $\left(\left(A_{1}-B_{1}\right)^{2}, \ell\right)\left(\delta_{2}, u_{1}^{2}\right)\left(\hat{\delta_{2}}, u_{1}^{2}\right)$. Note that from the cluster picture of \hat{C} we see that $\left(A_{1}-B_{1}\right)^{2} \in K^{\times 2} \Leftrightarrow\left(A_{2}-B_{2}\right)^{2} \in K^{\times 2} \Leftrightarrow \hat{\delta_{2}} \in K^{\times 2}$.
TN7J/L. Here $\left(A_{1}-B_{1}\right)^{2}, \delta_{2}, \hat{\delta_{2}} \in K^{\times 2}$. Hence $E_{v}=1$.
TN7K. Here $\delta_{2} \in K^{\times 2}$ and $\left(A_{1}-B_{1}\right)^{2}, \hat{\delta_{2}} \notin K^{\times 2}$ hence $E_{v}=\left(\left(A_{1}-B_{1}\right)^{2}, \ell\right)\left(\hat{\delta_{2}}, u_{1}^{2}\right)$, with $\left(\left(A_{1}-B_{1}\right)^{2}, \ell\right)=1 \Leftrightarrow r \equiv 0 \bmod 2$ and $\left(\hat{\delta_{2}}, u_{1}^{2}\right)=1 \Leftrightarrow 2 a \equiv 0 \bmod 2$. Therefore $E_{v}=1 \Leftrightarrow 2 a+r \equiv 0 \bmod 2$.
TN7M. Here $\delta_{2} \notin K^{\times 2}$ and $\left(A_{1}-B_{1}\right)^{2}, \hat{\delta_{2}} \in K^{\times 2}$ hence $E_{v}=\left(\delta_{2}, u_{1}^{2}\right)=1 \Leftrightarrow 2 a \equiv$ $0 \bmod 2$.
TN7N. Here $\left(A_{1}-B_{1}\right)^{2}, \delta_{2}, \hat{\delta_{2}} \notin K^{\times 2}$ hence $E_{v}=\left(\left(A_{1}-B_{1}\right)^{2}, \ell\right)\left(\delta_{2}, u_{1}^{2}\right)\left(\hat{\delta_{2}}, u_{1}^{2}\right)=$ $\left(\left(A_{1}-B_{1}\right)^{2}, \ell\right)\left(\delta_{2}, u_{1}^{2}\right)^{2}=1 \Leftrightarrow r \equiv 0 \bmod 2$.

Cases TN8. From the definition of the isogeny we see that $v\left(I_{80}\right)=a+b$ and $v\left(I_{45}\right)=v\left(I_{23}\right)=v\left(I_{44}\right)=0$.
Write $\alpha_{2}=\alpha_{1}+a_{2} \pi^{a}, \quad \beta_{2}=-\alpha_{1}+b_{2} \pi^{b}, \quad a_{2}, b_{2} \in \mathcal{O}_{\bar{K}}^{\times}$, with $a, b \in \mathbb{Z}$ (since otherwise I_{K} would permute both clusters in the cluster picture of C, which contradicts the semistability criterion 3.4 .29 . In particular, $v\left(u_{1}\right) \in \mathbb{Z}$ and $A_{21}, A_{31}, A_{41 p}, A_{41 m} \in$ K. Let $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$ so that $\ell_{1}=\frac{u_{1}}{\Delta_{G}}$. We have

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{2}\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right)+b_{2} \pi^{b-a}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)-a_{2} b_{2} \pi^{b}\left(\alpha_{3}+\beta_{3}\right)\right) \\
u_{1}=a_{2} \pi^{a}+b_{2} \pi^{b}-\alpha_{3}-\beta_{3}, \quad \ell_{2}=c\left(\alpha_{3}+\beta_{3}\right), \quad \ell_{3}=-c\left(a_{2} \pi^{a}+b_{2} \pi^{b}\right) \\
I_{23} \equiv \square \delta_{2} \equiv \square \alpha_{1}^{2}, \quad I_{44} \equiv \square \alpha_{1}^{2} \delta_{3}, \quad I_{80} \equiv \square-\alpha_{1}^{2} a_{2} b_{2} \pi^{a+b}+o\left(\pi^{a+b}\right) \\
I_{21}=\left(a_{2} \pi^{a}+b_{2} \pi^{b}\right)\left(\alpha_{3}+\beta_{3}\right), \quad A_{21}=2 \alpha_{1}\left(a_{2} \pi^{a}-b_{2} \pi^{b}\right)+o\left(\pi^{a}\right), \quad I_{40}=\square u_{1}^{2} \\
I_{41 p}=\alpha_{1} b_{2} \pi^{b}\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right), \quad I_{41 m}=-\alpha_{1} a_{2} \pi^{a}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right) \\
T_{\alpha_{1}} \equiv c\left(2 \alpha_{1}\right)^{2}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right), \quad T_{-\alpha_{1}}=c\left(2 \alpha_{1}\right)^{2}\left(-\alpha_{1}-\alpha_{3}\right)\left(-\alpha_{1}-\beta_{3}\right) \\
I_{45} \equiv \hat{\delta_{2} \equiv \square T_{\alpha_{1}} T_{-\alpha_{1}}} .
\end{gathered}
$$

Using Lemma 6.3.4 and Lemmata 6.2.1 3 and 6.2.11, we have $\left(I_{20},-I_{44}\right)=$ $\left(I_{22},-I_{44} I_{45}\right)=1$. After simplification, this yields
$E_{v}=\left(-1, I_{41} I_{43} I_{60}\right)\left(I_{23}, I_{41}\right)\left(I_{45},-\ell I_{21}\right)\left(I_{44}, I_{42} I_{43}\right)\left(I_{80},-2 c I_{41} I_{42} I_{60}\right)\left(I_{42},-I_{60} I_{43}\right)$ $=\left(-1, I_{41} A_{21}\right)\left(I_{23}, I_{41}\right)\left(I_{45},-\ell I_{21}\right)\left(I_{80},-2 c I_{41} A_{21}\right) H$, where

$$
H=\left(-1, I_{43} I_{60}\right)\left(\delta_{2} \delta_{3}, A_{21} A_{31} I_{43}\right)\left(\hat{\delta_{3}} \hat{\delta_{2}}, A_{31} I_{60}\right)\left(A_{21}, I_{60} I_{43}\right)\left(A_{31},-I_{60} I_{43}\right)=1
$$

We show that $H=1$. Since $I_{43}=\delta_{2} A_{21}+\delta_{3} A_{31}$ and $I_{60}=\hat{\delta_{2}} A_{31}+\hat{\delta_{3}} A_{21}$, regrouping and using Lemma 6.3.3, we obtain

$$
\begin{gathered}
E_{v}=\left(I_{43},-\delta_{2} \delta_{3} A_{21} A_{31}\right)\left(I_{60},-\hat{\delta_{2}} \hat{\delta_{3}} A_{21} A_{31}\right)\left(\delta_{2} \delta_{3}, A_{21} A_{31}\right)\left(A_{31}, \hat{\delta_{2}} \hat{\delta_{3}}\right) \\
=\left(\delta_{2} A_{21}, \delta_{3} A_{31}\right)\left(\delta_{2} A_{31}, \hat{\delta_{3}} A_{21}\right)\left(\delta_{2} \delta_{3}, A_{21} A_{31}\right)\left(A_{31}, \hat{\delta_{2}} \hat{\delta_{3}}\right)
\end{gathered}
$$

which gives $E_{v}=\left(A_{31},-\delta_{3}\right)$ after simplification. We are done by noting that if $v\left(A_{31}\right)>0$ then $\hat{\delta_{2}} \equiv \square-\delta_{3}$ by Lemma 6.2.16. (e), so that in this case, $-\delta_{3}$ is a square. Therefore $H=1$.

We also show that if $a=b$ then $v\left(I_{80}\right) \in 2 \mathbb{Z}$ and $\left(-1, I_{41} A_{21}\right)\left(I_{80},-2 c I_{41} A_{21}\right)=$ 1. We have $\left(-1, I_{41} A_{21}\right)\left(I_{80},-2 c I_{41} A_{21}\right)=\left(-1, I_{41} A_{21}\right)\left(I_{80}, I_{41} A_{21}\right)$, with $I_{41}=\alpha_{1} \pi^{a}\left(b_{2}\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right)-a_{2}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)\right), \quad A_{21}=2 \alpha_{1} \pi^{a}\left(a_{2}-b_{2}\right)$.

Now using Lemma 6.3.3

$$
\begin{aligned}
& \left(I_{41},-I_{80}\right)=\left(\alpha_{1} \pi^{a}, a_{2} b_{2}\right)\left(b_{2}\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right)-a_{2}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right), a_{2} b_{2} \hat{\delta_{2}}\right) \\
& \quad=\left(\alpha_{1} \pi^{a}, a_{2} b_{2}\right)\left(b_{2}\left(\alpha_{1}+\alpha_{3}\right)\left(\alpha_{1}+\beta_{3}\right), a_{2}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)\right)=\left(\alpha_{1} \pi^{a}, a_{2} b_{2}\right)
\end{aligned}
$$

Similarly,

$$
\left(A_{21},-I_{80}\right)=\left(2 \alpha_{1} \pi^{a}\left(a_{2}-b_{2}\right), a_{2} b_{2}\right)=\left(2 \alpha_{1} \pi^{a}, a_{2} b_{2}\right)
$$

Therefore $\left(I_{41} A_{21},-I_{80}\right)=1$.
Cases TN8A/D/E/F/G/J/L. Here $\alpha_{1}^{2} \equiv I_{23} \equiv \delta_{2} \equiv I_{45} \equiv \hat{\delta_{2}} \equiv \square 1$, hence $E_{v}=\left(-1, I_{41} A_{21}\right)\left(I_{80},-2 c I_{41} A_{21}\right)$.
Cases TN8A/D. Here $a<b$, hence

$$
A_{21}=2 \alpha_{1} a_{2} \pi^{a}, \quad I_{41}=-\alpha_{1} a_{2} \pi^{a}\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)
$$

so that

$$
E_{v}=\left(-1, I_{41} A_{21}\right)\left(I_{80},-2 c I_{41} A_{21}\right)=\left(I_{80},-2 c I_{41} A_{21}\right)
$$

We have $-2 g I_{41} A_{21} \equiv \square T_{\alpha_{1}}$ so that $E_{v}=1$ for TN8A, and $E_{v}=(-1)^{a+b}$ for TN8D.

Cases TN8E/F/G/J/L. Here $a=b$ hence $E_{v}=1$ for TN8E/F/G/J/L.
Cases TN8B/C/F/K. Here $\alpha_{1}^{2} \equiv \square I_{23} \equiv \delta_{2} \equiv \square 1$ but $T_{-\alpha_{1}} T_{\alpha_{1}}, I_{45}, \hat{\delta_{2}} \not \equiv \square 1$.
Hence

$$
E_{v}=\left(-1, I_{41} A_{21}\right)\left(I_{45},-\ell I_{21}\right)\left(I_{80},-2 c I_{41} A_{21}\right)
$$

Recall that $\ell=\ell_{1} \ell_{2} \ell_{3}, I_{21}=-\ell_{2} \ell_{3}$ and $\ell_{1}=\frac{u_{1}}{\Delta_{G}}$ so that hence $\left(I_{45},-\ell I_{21}\right)=$ $\left(I_{45}, \frac{u_{1}}{\Delta_{G}}\right)$.
Cases TN8B/C. Here $a<b, u_{1}=-\alpha_{3}-\beta_{3}+o\left(\pi^{a}\right), v\left(\Delta_{G}\right)=a$ so that $\left(I_{45},-\ell I_{21}\right)=\left(I_{45}, u_{1} \pi^{a}\right)=\left(I_{45}, u_{1}\right)\left(I_{45}, \pi^{a}\right)$, since $u_{1} \in K$. Also note that if $v\left(u_{1}\right)>0$ then $I_{45} \in K^{\times 2}$ hence $\left(I_{45},-\ell I_{21}\right)=\left(I_{45}, \pi^{a}\right)$. It follows that

$$
E_{v}=\left(-1, I_{41} A_{21}\right)\left(I_{80}, T_{\alpha_{1}}\right)\left(I_{45}, \pi^{a}\right)=\left(I_{80}, T_{\alpha_{1}}\right)\left(T_{\alpha_{1}} T_{-\alpha_{1}}, \pi^{a}\right)=\left(\pi^{a+b}, T_{-\alpha_{1}}\right)
$$

Therefore, $E_{v}=1$ for TN8B and $E_{v}=(-1)^{a+b}$ for TN8C as required.
Cases TN8F. Here $a=b$ but $v\left(\Delta_{G}\right)=2 a$. It follows directly from the TN8B/C cases that $E_{v}=1$.
Cases TN8K. Here $a=b$ and $v\left(\Delta_{G}\right)=2 a+2 r$, with $r>0$. We have $E_{v}=$ $\left(I_{45}, \frac{u_{1}}{\Delta_{G}}\right)=\left(I_{45}, \pi^{a+r}\right)\left(I_{45}, u_{1}\right)$. As in Section 5.3.3, we have $v\left(u_{1}\right)=a$. Therefore, $E_{v}=\left(I_{45}, \frac{u_{1}}{\Delta_{G}}\right)=\left(I_{45}, \pi^{a+r}\right)\left(I_{45}, \pi^{a}\right)=\left(I_{45}, \pi^{r}\right)$, and $E_{v}=(-1)^{r}$ for TN8K.
Cases TN8H/M. Here $I_{45} \equiv \square \hat{\delta_{2}} \equiv \square 1$ and $\alpha_{1}^{2} \equiv \square I_{23}, \not \equiv_{\square} 1$ so that

$$
E_{v}=\left(I_{23}, I_{41}\right)
$$

Using Lemma 6.2.15 and Lemma 6.3.4, we have that $E_{v}=1$ since $v\left(I_{80}\right) \in 2 \mathbb{Z}$.
$\underline{\text { Cases TN8I/N. Here } \alpha_{1}^{2} \equiv \square I_{23}, I_{45}, \not \equiv \square 1 \text { and } v\left(\Delta_{G}\right)=a \text { so that }, ~}$

$$
E_{v}=\left(I_{23}, I_{41}\right)\left(I_{45},-\ell I_{21}\right)
$$

as in the cases of TN8B/C and TN8K, it follows that $E_{v}=\left(I_{45},-\ell I_{21}\right)=\left(I_{45}, \frac{u_{1}}{\Delta_{G}}\right)$ and $E_{v}=1$ for TN8I but $E_{v}=(-1)^{r}$ for TN8N as required.

6.6.4 C is of type $U_{2 a, 2 b, 2 n}$

Proof of Tables 4.23 to 4.30

Cases U1. From the definition of the isogeny we see that $v\left(I_{23}\right)=2 a, v\left(I_{44}\right)=$ $2 b+2 n$ and $v\left(I_{45}\right)=v\left(I_{80}\right)=0$. By semistability criterion 3.4.29, we have $v(c)=0$.
Let $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$ so that $\ell_{1}=\frac{u_{1}}{\Delta_{G}}$.
Computing invariants and reducing $\bmod \pi$ we find that

$$
u_{1}^{2} \equiv \square\left(\alpha_{2}-\alpha_{3}\right)^{2}, \quad \ell_{1} \equiv \square-c \alpha_{2} \alpha_{3}, \quad I_{21} \equiv \square \alpha_{2} \alpha_{3},
$$

$$
\begin{gathered}
I_{80} \equiv \square I_{45} \equiv \square I_{41} \equiv \square I_{42} \equiv \square 1, \quad I_{22} \equiv \square 2\left(\alpha_{2}-\alpha_{3}\right)^{2}, \\
A_{21} \equiv \square 2 \alpha_{2}^{2}, \quad A_{31} \equiv \square 2 \alpha_{3}^{2} .
\end{gathered}
$$

Using Lemma 6.3.4 and Lemma 6.2.18, we have $\left(I_{60},-I_{40} I_{42} I_{80}\right)=1$. After simplification, this yields

$$
E_{v}=\left(-1, I_{43}\right)\left(I_{20},-I_{40} I_{44}\right)\left(I_{40}, c I_{43}\right)\left(c, I_{23} I_{44}\right)\left(I_{44}, 2 I_{22} I_{43}\right) .
$$

Cases U1A/B. Here $\delta_{2}, \delta_{3} \in K$ and $2 a, 2 b, 2 n \in \mathbb{Z}$. In particular, $I_{40} \in K^{\times 2}$, $I_{22} \equiv \square A_{21} \equiv \square A_{31} \equiv \square 2$. Therefore $E_{v}=\left(I_{43},-1\right)\left(I_{20},-I_{44}\right)\left(I_{44}, I_{43}\right)\left(c, I_{23} I_{44}\right)$. Write $\beta_{2}=\alpha_{2}+a_{2} \pi^{b}, \beta_{3}=\alpha_{3}+a_{3} \pi^{n}$. If $b<n$ we have

$$
I_{20}=\square 2 a_{2}^{2} \pi^{2 b}+o\left(\pi^{2 b}\right), \quad I_{43}=\square a_{2}^{2} \pi^{2 b}+o\left(\pi^{2 b}\right),
$$

so that $\left(I_{43},-1\right)\left(I_{20},-I_{44}\right)\left(I_{44}, I_{43}\right)=\left(\pi^{2 b},-1\right)\left(2 \pi^{2 b},-\pi^{2 b+2 n}\right)\left(\pi^{2 b+2 n}, \pi^{2 b}\right)=1$. On the other hand, if $b=n$ then $v\left(I_{44}\right) \in 2 \mathbb{Z}$ and it follows from Lemmata 6.2.11 and 6.2.177, using Lemma 6.3.4 that $\left(I_{43},-I_{44}\right)=\left(I_{20},-I_{44}\right)=1$. Therefore $E_{v}=$ $\left(c, I_{23} I_{44}\right)$.
For U1A, we have $c \in K^{\times 2}$ hence $E_{v}=1$. For U1B, we have $c \notin K^{\times 2}$ hence $E_{v}=-1$ if and only if one or three of $2 a, 2 b, 2 n$ are odd. Equivalently, $E_{v}=-1$ if and only if $4 a b+4 a c+4 b n$ is odd as required.
Cases U1C/D. Here $\delta_{2}, \delta_{3} \notin K$. In particular, $I_{22}, I_{40} \notin K^{\times 2}$ but $v\left(I_{44}\right), v\left(I_{40}\right) \in$ $2 \mathbb{Z}$. Therefore $\left(I_{22}, I_{44}\right)=1$ and by Lemmata 6.2.11 and 6.2.17, using Lemma 6.3.4 we have that $\left(I_{43},-I_{40} I_{44}\right)=\left(I_{20},-I_{40} I_{44}\right)=1$. Therefore $E_{v}=\left(c, I_{23}\right)$ and $E_{v}=1$ for U1C, while $E_{v}=-1$ if $2 a$ is odd, $E_{v}=1$ otherwise for U1D as required.
Cases U2. From the definition of the isogeny we see that $v\left(I_{45}\right)=n, v\left(I_{80}\right)=a+b$ and $v\left(I_{23}\right)=v\left(I_{44}\right)=0$. By semistability criterion 3.4.29, we may assume that $v(c)=0$. Let $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$ so that $\ell_{1}=\frac{u_{1}}{\Delta_{G}}$.
Computing invariants and reducing $\bmod \pi$ we find that

$$
\begin{gathered}
u_{1}^{2} \equiv 2 \alpha_{1}, \quad \ell_{1} \equiv \square c\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}+\beta_{2}\right), \quad I_{21} \equiv \square-\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}+\beta_{2}\right), \\
I_{22} \equiv \square-I_{21}, \quad I_{40} \equiv \square \delta_{1}, \quad A_{21} \equiv \square A_{31}, \quad I_{42} \equiv \square I_{44} \equiv \square 1 .
\end{gathered}
$$

Write $\alpha_{2}=\alpha_{1}+a_{2} \pi^{a}, \quad \alpha_{3}=-\alpha_{1}+a_{3} \pi^{b}, \quad \beta_{3}=\beta_{2}+b_{3} \pi^{n}$. Then

$$
\begin{gathered}
\hat{\delta_{2}}=\square-2 a_{3} \pi^{b} \alpha_{1} A_{21}, \quad \hat{\delta_{3}}=\square 2 a_{2} \pi^{a} \alpha_{1} A_{21}, \quad I_{80}=\square-a_{2} a_{3} \alpha_{1}^{2} \pi^{a+b}, \\
I_{41} \equiv \square \alpha_{1} a_{2} \pi^{b}\left(\alpha_{1}+\beta_{2}\right)^{2}-\alpha_{1} a_{2} \pi^{a}\left(\beta_{2}-\alpha_{1}\right)^{2} .
\end{gathered}
$$

Using Lemma 6.3.4 and Lemmata 6.2.11, 6.2.177, we have

$$
\left(I_{20},-I_{40} I_{44}\right)=\left(I_{43},-I_{40} I_{44} I_{42}\right)=1
$$

Also since $I_{22} \equiv \square-I_{21}$ and $\ell \equiv c$, we have $\left(I_{45},-\ell I_{21} I_{22}\right)=\left(I_{45}, \ell\right)=\left(I_{45}, c\right)$. After simplification, this yields $E_{v}=\left(c, I_{80} I_{45}\right)\left(I_{80},-2 I_{41} I_{60}\right)\left(I_{41},-I_{23}\right)\left(I_{60},-I_{40}\right)$. Cases U2A/B. Here $I_{23} \in K^{\times 2}$ and $\delta_{2}, \delta_{3} \in K$. In particular, $I_{40} \in K^{\times 2}$ and $E_{v}=\left(c, I_{80} I_{45}\right)\left(I_{80},-2 I_{41} I_{60}\right)\left(I_{41} I_{60},-1\right)$.
If $a<b$ we have $I_{60}=\square 2 a_{2}^{2} \alpha_{1} \pi^{a}, \quad I_{41}=\square-\alpha_{1} a_{2} \pi^{a}\left(\beta_{2}-\alpha_{1}\right)^{2}$, so that $-2 I_{41} I_{60} \equiv \square 1$ and $\left(I_{80},-2 I_{41} I_{60}\right)\left(I_{41} I_{60},-1\right)=1$.
On the other hand, if $a=b$ then $v\left(I_{80}\right) \in 2 \mathbb{Z}$ and it follows from Lemmata 6.2.18 and 6.2.15 , using Lemma 6.3 .4 that $\left(I_{41},-I_{80}\right)=\left(I_{60},-I_{80}\right)=1$. Therefore $E_{v}=$ $\left(c, I_{45} I_{80}\right)$.
For U2A, we have $c \in K^{\times 2}$ hence $E_{v}=1$. For U2B, we have $c \notin K^{\times 2}$, hence $E_{v}=-1$ if and only if one or three of a, b, n are odd. Equivalently, $E_{v}=-1$ if and only if $a b+a n+b n$ is odd as required.
Cases U2C/D. Here $I_{23} \notin K^{\times 2}, \delta_{2}, \delta_{3} \notin K$ and $a=b$ so that $v\left(I_{80}\right) \in 2 \mathbb{Z}$. We have $E_{v}=\left(c, I_{80} I_{45}\right)\left(I_{80},-2 I_{41} I_{60}\right)\left(I_{41},-I_{23}\right)\left(I_{60},-I_{40}\right)$. By Lemmata 6.2.1 8 and 6.2.15, using Lemma 6.3.4 we have that $\left(I_{41},-I_{40} I_{80}\right)=\left(I_{60},-I_{40} I_{80}\right)=1$. Therefore $E_{v}=\left(c, I_{45}\right)$ and $E_{v}=1$ for U2C, while $E_{v}=-1$ if n is odd, $E_{v}=1$ otherwise for U2D as required.
Cases U3. From the definition of the isogeny we see that $v\left(I_{45}\right)=a+b, v\left(I_{23}\right)=2 n$ and $v\left(I_{80}\right)=v\left(I_{44}\right)=0$. By semistability criterion 3.4.29, we may assume that $v(c)=0$. Let $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$ so that $\ell_{1}=\frac{u_{1}}{\Delta_{G}}$. Write

$$
\alpha_{1}=a_{1} \pi^{n}, \quad \alpha_{3}=\alpha_{2}+a_{3} \pi^{a}, \quad \beta_{3}=\beta_{2}+b_{3} \pi^{b}, \quad u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3},
$$

for some $a_{1}, a_{3}, b_{3} \in \mathcal{O}_{\bar{K}}^{\times}$, so that $\ell_{1}=\frac{u_{1}}{\Delta_{G}}$. By definition of $\Delta_{G}, \ell_{1}, \ell_{2}, \ell_{3}$ we have

$$
\begin{aligned}
\Delta_{G} & =c \pi^{a}\left(a_{3}\left(\beta_{2}-\alpha_{1}\right)\left(\beta_{2}+\alpha_{1}\right)+b_{3} \pi^{b-a}\left(\alpha_{2}-\alpha_{1}\right)\left(\alpha_{2}+\alpha_{1}\right)+a_{3} b_{3} \pi^{b}\left(\alpha_{2}+\beta_{2}\right)\right), \\
u_{1} & =\pi^{a}\left(a_{3}+b_{3} \pi^{b-a}\right), \quad \ell_{2}=c\left(\pi^{a}\left(a_{3}+b_{3} \pi^{b-a}\right)+\alpha_{2}+\beta_{2}\right), \quad \ell_{3}=-c\left(\alpha_{2}+\beta_{2}\right) .
\end{aligned}
$$

Reducing invariants $\bmod \pi$,

$$
\begin{gathered}
I_{21} \equiv \square 1, \quad \delta_{2} \equiv \delta_{3} \equiv \square I_{20}, \quad I_{44} \equiv \square 1, \quad I_{22} \equiv-\delta_{2}, \\
\hat{\delta_{2}} \equiv \hat{\delta_{3}} \equiv \square 1, \quad I_{80} \equiv \square 1, \quad I_{41} \equiv \hat{\delta_{2}} \bmod \pi, \\
I_{43} \equiv 2\left(\alpha_{2}^{2}+\beta_{2}^{2}\right) \delta_{2}, \quad I_{60} \equiv \square 2\left(\alpha_{2}^{2}+\beta_{2}^{2}\right), \quad I_{42} \equiv \square 1,
\end{gathered}
$$

so that $I_{43} I_{60} \equiv \delta_{2}$. Therefore $E_{v}=\left(I_{20}, I_{40}\right)\left(c, I_{23}\right)\left(I_{40}, \ell I_{60} I_{43}\right)\left(I_{45},-\ell I_{22}\right)$. Re-
placing invariants by their reduction $\bmod \pi$ and since $I_{40}=\square u_{1}^{2}, d \ell_{1}=\ell_{1}^{2}\left(A_{1}-B_{1}\right)^{2}$, this yields

$$
\begin{aligned}
E_{v} & =\left(u_{1}^{2}, \delta_{2}\right)\left(c, I_{23}\right)\left(u_{1}^{2}, \delta_{2}\right)\left(u_{1}^{2}, \ell\right)\left(u_{1}^{2}\left(A_{1}-B_{1}\right)^{2}, \ell \delta_{2}\right) \\
& =\left(c, I_{23}\right)\left(u_{1}^{2}, \delta_{2}\right)\left(\left(A_{1}-B_{1}\right)^{2}, \ell\right)\left(\left(A_{1}-B_{1}\right)^{2}, \delta_{2}\right)
\end{aligned}
$$

We have

$$
I_{45}=\square-a_{3} b_{3} \pi^{a+b}+o\left(\pi^{a+b}\right), \quad I_{23} \equiv a_{1}^{2} \pi^{2 n}
$$

Now if $a<b$ then $\ell \equiv \square c$. Otherwise, if $a=b$ then $v\left(A_{1}-B_{1}\right)=0$ and $\left(A_{1}-B_{1}\right)^{2} \in$ $K^{\times 2}$ so that $E_{v}=\left(c, I_{23}\right)\left(u_{1}^{2}, \delta_{2}\right)$.
Cases U3A. Here $a<b, c \in K^{\times 2}$ and $\delta_{2} \in K^{\times 2}$ hence $\ell \in K^{\times 2}$ and $E_{v}=1$.
Cases U3B. Here $a<b, c \notin K^{\times 2}$ and $\delta_{2} \in K^{\times 2}$ hence $\ell \notin K^{\times 2}$ and $E_{v}=$ $\left(c, I_{23}\right)\left(\left(A_{1}-B_{1}\right)^{2}, \ell\right)=(-1)^{a+b+2 n}$.
Cases U3C/G. Here $a=b, c \in K^{\times 2}$ and $\delta_{2} \in K^{\times 2}$ and $E_{v}=\left(c, I_{23}\right)\left(u_{1}^{2}, \delta_{2}\right)=1$.
Cases U3D/H. Here $a=b, c \notin K^{\times 2}$ and $\delta_{2} \in K^{\times 2}$ and $E_{v}=\left(c, I_{23}\right)=(-1)^{2 n}$.

Cases U3F/J. Here $a=b, c \notin K^{\times 2}$ and $\delta_{2} \notin K^{\times 2}$ and $E_{v}=\left(c, I_{23}\right)\left(u_{1}^{2}, \delta_{2}\right)=$ $(-1)^{2 n+2 a}$.
Cases U4. From the definition of the isogeny we see that $v\left(I_{80}\right)=a+b, v\left(I_{44}\right)=2 n$ and $v\left(I_{45}\right)=v\left(I_{23}\right)=0$. By semistability criterion 3.4.29, we have $v(c)=0$. Let $u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}$ so that $\ell_{1}=\frac{u_{1}}{\Delta_{G}}$. Write

$$
\alpha_{2}=\alpha_{1}+a_{2} \pi^{a}, \quad \beta_{2}=-\alpha_{1}+b_{2} \pi^{b}, \quad \beta_{3}=\alpha_{3}+b_{3} \pi^{n}, \quad u_{1}=\alpha_{2}+\beta_{2}-\alpha_{3}-\beta_{3}
$$

for some $a_{2}, b_{2}, b_{3} \in \mathcal{O}_{\frac{\times}{K}}^{\times}$, so that $\ell_{1}=\frac{u_{1}}{\Delta_{G}}$. By definition of $\Delta_{G}, \ell_{1}, \ell_{2}, \ell_{3}$ we have

$$
\begin{gathered}
\Delta_{G}=c \pi^{a}\left(a_{2}\left(\alpha_{1}+\alpha_{3}\right)^{2}+a_{2} b_{3} \pi^{n}\left(\alpha_{1}+\alpha_{3}\right)+b_{2} \pi^{b-a}\left(\alpha_{1}-\alpha_{3}\right)^{2}\right. \\
\left.-b_{2} b_{3} \pi^{b-a+n}\left(\alpha_{1}-\alpha_{3}\right)-2 a_{2} b_{2} \alpha_{3} \pi^{b}-a_{2} b_{2} b_{3} \pi^{b+n}\right) \\
\left.u_{1}=\pi^{a}\left(a_{2}+b_{2} \pi^{b-a}\right)-2 \alpha_{3}-b_{3} \pi^{n}, \quad \ell_{2}=c\left(2 a_{3}+b_{3} \pi^{n}\right)\right), \quad \ell_{3}=-c \pi^{a}\left(a_{2}+b_{2} \pi^{b-a}\right) .
\end{gathered}
$$

Reducing invariants $\bmod \pi$,

$$
\begin{gathered}
\delta_{2} \equiv I_{23} \equiv \square \alpha_{1}^{2}, \quad I_{20} \equiv \square 2 \alpha_{1}^{2}, \quad \hat{\delta_{2}} \equiv\left(\alpha_{1}-\alpha_{3}\right)^{2}\left(\alpha_{1}+\alpha_{3}\right)^{2} \equiv I_{45} \equiv \square 1, \\
I_{22} \equiv I_{60} \equiv A_{31} \equiv-2\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}+\alpha_{3}\right), \quad I_{40} \equiv \square 1, \\
A_{21}=a_{2} \pi^{a}\left(2 \alpha_{1}+a_{2} \pi^{a}\right)+b_{2} \pi^{b}\left(-2 \alpha_{1}+b_{2} \pi^{b}\right), \\
I_{41}=8 b_{2} \pi^{b}\left(2 \alpha_{1}+a_{2} \pi^{a}\right)\left(\alpha_{3}+\alpha_{1}\right)\left(\beta_{3}+\alpha_{1}\right)+8 a_{2} \pi^{a}\left(-2 \alpha_{1}+b_{2} \pi^{b}\right)\left(\alpha_{3}-\alpha_{1}\right)\left(\beta_{3}-\alpha_{1}\right) .
\end{gathered}
$$

It follows that
$E_{v}=\left(-1, I_{41} I_{43}\right)\left(I_{20}, I_{44}\right)\left(g, I_{44} I_{80}\right)\left(I_{41}, d g_{1}\right)\left(I_{44}, 2 I_{22} I_{42} I_{43}\right)\left(I_{80},-2 I_{41} I_{42} I_{60}\right)\left(I_{42},-I_{60} I_{43}\right)$.
Cases U4A/B: Here $a<b, I_{23} \equiv \delta_{2} \equiv \square \alpha_{1}^{2} \in K^{\times 2}$ therefore $I_{20} \equiv \square 2$ and

$$
E_{v}=\left(c, I_{44} I_{80}\right) H, \quad H=\left(-1, I_{41} I_{43}\right)\left(I_{44}, I_{22} I_{42} I_{43}\right)\left(I_{80},-2 I_{41} I_{42} I_{60}\right)\left(I_{42},-I_{60} I_{43}\right) .
$$

We show that $H=1$. Since $a<b$ we have $A_{21} \equiv 2 \alpha_{1} a_{2} \pi^{a}$ and $I_{41} \equiv \square-a_{2} \alpha_{1} \pi^{a}$. It follows that

$$
\begin{gathered}
E=\left(-1, I_{41} I_{43}\right)\left(\delta_{3}, A_{31}^{2} A_{21} I_{43}\right)\left(I_{80}, A_{21}^{2} A_{31}^{2}\right)\left(A_{21} A_{31},-A_{31} I_{43}\right) \\
=\left(-1, I_{41} I_{43}\right)\left(\delta_{3}, A_{21} I_{43}\right)\left(A_{21} A_{31},-A_{31} I_{43}\right) \\
=\left(-1, A_{21} \delta_{2} I_{43}\right)\left(\delta_{3}, A_{21} \delta_{2} I_{43}\right)\left(A_{21} \delta_{2},-A_{31} I_{43}\right)\left(I_{43}, A_{31}\right) \\
=\left(I_{43},-A_{31} \delta_{3}\right)\left(A_{21} \delta_{2}, \delta_{3} A_{31}\right)\left(A_{21} \delta_{2}, I_{43}\right)=1,
\end{gathered}
$$

by Lemma 6.3.3 since $I_{43}=\delta_{2} A_{21}+\delta_{3} A_{31}$. Hence $E_{v}=\left(c, I_{44} I_{80}\right)$. As required, we obtain that $E_{v}=1$ for U4A, since $c \in K^{\times 2}$ and $E_{v}=(-1)^{a+b+2 n}$ for U4B since $c \notin K^{\times 2}$.
Cases U4C/D/G/H. Here $a=b, \delta_{2} \equiv I_{23} \equiv \square \alpha_{1}^{2} \in K^{\times 2}$ so that

$$
E=\left(-I_{80}, I_{41} I_{42}\right)\left(I_{43},-1\right)\left(I_{44}, I_{22} I_{42} I_{43}\right)\left(I_{42}, I_{60} I_{43}\right) .
$$

Now $v\left(I_{80}\right) \in 2 \mathbb{Z}$ so that if we let $I_{80}=-\pi^{2 a} a_{2} b_{2}\left(\alpha_{1}-\alpha_{3}\right)^{2}\left(\alpha_{1}+\alpha_{3}\right)^{2}$, we have

$$
\left(-I_{80}, I_{41} I_{42}\right)=\left(a_{2} b_{2}, a_{2}-b_{2}\right)\left(a_{2} b_{2}, b_{2}\left(\alpha_{1}+\alpha_{3}\right)^{2}-a_{2}\left(\alpha_{3}-\alpha_{1}\right)^{2}\right)=1
$$

by Lemma 6.3.3 since $\left(\alpha_{3}+\alpha_{1}\right)^{2},\left(\alpha_{3}-\alpha_{1}\right)^{2} \in K^{\times 2}$. Therefore

$$
E_{v}=\left(c, I_{44} I_{80}\right)\left(-1, I_{43}\right)\left(I_{44}, I_{22} I_{42} I_{43}\right)\left(I_{42},-I_{60} I_{43}\right),
$$

with

$$
\left(I_{43},-\delta_{3} A_{31}\right)\left(I_{43}, A_{21} \delta_{2}\right)\left(\delta_{2} A_{21}, \delta_{3} A_{31}\right)=1,
$$

by Lemma 6.3.3 since $I_{43}=\delta_{2} A_{21}+\delta_{3} A_{31}$ as above. It follows that $E_{v}=\left(c, I_{44}\right)$ and $E_{v}=1$ for $\mathrm{U} 4 \mathrm{C} / \mathrm{G}$ as $c \in K^{\times 2}$ and $E_{v}=(-1)^{2 n}$ for U4D/H since $c \notin K^{\times 2}$ as required.
Cases U4E/F/I/J. Here $a=b, \delta_{2} \equiv I_{23} \equiv \square \alpha_{1}^{2} \notin K^{\times 2}$. Hence $E_{v}=\left(c, I_{44}\right) H_{1} H_{2}$, with

$$
H_{1}=\left(-I_{80}, I_{41} A_{21}\right)\left(\delta_{2}, A_{21}\right)\left(I_{41}, I_{23}\right),
$$

$$
H_{2}=\left(I_{43},-\delta_{2} A_{21}\right)\left(I_{43}, \delta_{3} A_{31}\right)\left(\delta_{3}, A_{21} \delta_{2}\right)\left(A_{21}, A_{31}\right) .
$$

On one hand, we can write H_{2} as $H_{2}=\left(I_{43},-\delta_{2} A_{21}\right)\left(I_{43}, \delta_{3} A_{31}\right)\left(\delta_{3} A_{31}, A_{21} \delta_{2}\right)$, so that $H_{2}=1$ by Lemma 6.3 .3 since $I_{43}-\delta_{2} A_{21}-\delta_{3} A_{31}=0$. On the other hand, using the expressions for I_{80}, I_{41} and A_{21} given above, we have

$$
\begin{gathered}
H_{1}=\left(a_{2} b_{2} \alpha_{1}^{2}, 2 \alpha_{1}^{2}\left(a_{2}-b_{2}\right)\left(b_{2}\left(\alpha_{3}+\alpha_{1}\right)^{2}-a_{2}\left(\alpha_{3}-\alpha_{1}\right)^{2}\right)\right) \\
=\left(a_{2} b_{2} \alpha_{1}^{2}, \alpha_{1}^{2}\left(a_{2}-b_{2}\right)\right)\left(a_{2} b_{2} \alpha_{1}^{2}, \alpha_{1}^{2}\left(b_{2}\left(\alpha_{3}+\alpha_{1}\right)^{2}-a_{2}\left(\alpha_{3}-\alpha_{1}\right)^{2}\right)\right)=1
\end{gathered}
$$

by Lemma 6.3.3. It follows that $E_{v}=\left(c, I_{44}\right)$ so that $E_{v}=1$ for U4E/I as $c \in K^{\times 2}$ and $E_{v}=(-1)^{2 n}$ for $\mathrm{U} 4 \mathrm{~F} / \mathrm{J}$, as $c \notin K^{\times 2}$.

6.6.5 $\quad C$ is of type 1×1

Proof of Tables 4.31 to 4.34

Case TC1. By definition of the isogeny and since J has good reduction, we have $\alpha_{2}, \beta_{2} \in K$ and $\alpha_{1}, \alpha_{3}, \beta_{3} \in K^{n r}$ by Lemma 6.6.11. In particular $a, b \in \mathbb{Z}$ and $a \equiv b \equiv v(c) \bmod 2$ by semistability criterion 3.4.29. Also, since $\beta_{1}=-\alpha_{1}$ it follows that $\alpha_{1} \equiv \alpha_{2} \equiv 0 \not \equiv \beta_{2} \equiv \alpha_{3} \equiv \beta_{3}$. Reducing invariants $\bmod \pi$ yields

$$
I_{20} \equiv I_{21} \equiv I_{42} \equiv_{\square} I_{60} \equiv \square 2, \quad I_{40} \equiv I_{43} \equiv_{\square} 1, \ell \equiv_{\square} 2 c,
$$

so that

$$
E_{v}=\left(-1, I_{22} I_{41}\right)\left(I_{44}, 2 c I_{22}\right)\left(I_{23}, c I_{41}\right)\left(I_{45},-c I_{22}\right)\left(I_{80},-2 c I_{41}\right) .
$$

Since the following valuations are even,

$$
\begin{gathered}
v\left(I_{23}\right)=2 a, \quad v\left(I_{45}\right)=2 b, \quad v\left(I_{44}\right)=2 b, \quad v\left(I_{80}\right)=2 a, \\
E_{v}=\left(I_{22},-I_{44} I_{45}\right)\left(I_{41},-I_{23} I_{80}\right)\left(c, I_{44} I_{45} I_{23} I_{80}\right) .
\end{gathered}
$$

Write $\alpha_{1}=a_{1} \pi^{a}, \quad \alpha_{2}=\alpha_{1}+a_{2} \pi^{a}, \quad \alpha_{3}=\beta_{2}+a_{3} \pi^{b}, \quad \beta_{3}=\beta_{2}+b_{3} \pi^{b}$, with $a_{1}, a_{2}, a_{3}, b_{3} \in \mathcal{O}_{K^{n r}}^{\times}$. We have

$$
\begin{gathered}
I_{22}=\beta_{2} \pi^{b}\left(a_{3}+b_{3}\right)+o\left(\pi^{b}\right), \quad I_{41}=\pi^{a} \beta_{2}\left(a_{1}+a_{2}\right)+o\left(\pi^{a}\right), \\
I_{44}=\square\left(a_{3}-b_{3}\right)^{2}+o\left(\pi^{b}\right), \quad I_{45}=\square-a_{3} b_{3}+o(1) \equiv \square-a_{3} b_{3}, \\
I_{80}=\square-a_{2}\left(2 a_{1}+a_{2}\right)+o\left(\pi^{b}\right), \quad I_{23}=\square a_{1}^{2} .
\end{gathered}
$$

Now if $v\left(I_{22}\right)>b$, then by Lemma 6.2.1] 3 and using Lemma 6.3.4, we have that $\left(I_{22},-I_{44} I_{45}\right)=1$. Also in this case $a_{3} \equiv-b_{3}$ so that $I_{44} I_{45}=\square 1$ and $\left(c, I_{44} I_{45}\right)=1$.

Similarly if $v\left(I_{41}\right)>a$ then by Lemma 6.2.15 and using Lemma 6.3.4, we have that $\left(I_{41},-I_{23} I_{80}\right)=1$. Also, in this case $a_{1} \equiv-a_{2}$ so that $I_{23} I_{80}=\square 1$ and $\left(c, I_{23} I_{80}\right)=1$. Finally assume that $v\left(I_{22}\right)=b, v\left(I_{41}\right)=a$. If $a \equiv 0 \bmod 2$ then since $a \equiv b \equiv v(c) \bmod 2$, we are done. Otherwise assume $a \equiv b \equiv v(c) \equiv 1 \bmod 2$. Then rewriting

$$
E_{v}=\left(c I_{22}, I_{44} I_{45}\right)\left(c I_{41}, I_{23} I_{80}\right)\left(I_{22} I_{41},-1\right)
$$

it is clear that $E_{v}=1$.
Case TC2. By definition of the isogeny and since J has good reduction, we have $\alpha_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K^{n r}$ by Lemma 6.6.11. In particular $a, b \in \mathbb{Z}$ and $a \equiv b \equiv$ $v(c) \bmod 2$ by semistability criterion 3.4 .29 , and $v\left(I_{44}\right)=v\left(I_{80}\right)=2(a+b) \in 2 \mathbb{Z}$. Reducing invariants $\bmod \pi$ yields

$$
\ell \equiv 2 c, \quad I_{23}=\square \alpha_{1}^{2}, \quad\left(A_{1}-B_{1}\right)^{2}=\square \alpha_{1}^{2}, \quad I_{21} \equiv \square-\alpha_{1}^{2}, \quad I_{22} \equiv \square 2 \alpha_{1}^{2}, I_{45} \equiv \square 1
$$

Also by Lemma 6.2.14, $I_{40}=\square u_{1}^{2}$ so that $I_{40} \equiv \square \alpha_{1}^{2}$. Therefore

$$
E_{v}=\left(I_{41},-\alpha_{1}^{2} I_{80}\right)\left(I_{43},-\alpha_{1}^{2} I_{44} I_{42}\right)\left(I_{60},-\alpha_{1}^{2} I_{80} I_{42}\right)\left(I_{20},-\alpha_{1}^{2} I_{44}\right)\left(c, I_{44} I_{80}\right)\left(I_{42},-I_{44} I_{80}\right)
$$

Let $a_{2}, b_{2}, a_{3}, b_{3} \in \mathcal{O}_{K^{n r}}^{\times}$and write

$$
\alpha_{2}=\alpha_{1}+a_{2} \pi^{a}, \quad \beta_{2}=\alpha_{1}+b_{2} \pi^{a}, \quad \alpha_{3}=-\alpha_{1}+a_{3} \pi^{b}, \quad \beta_{3}=-\alpha_{1}+\alpha_{3} \pi^{b}
$$

so that

$$
\begin{gathered}
I_{42}=\square-\alpha_{1}^{2} \pi^{a+b} U_{42} \text { with } U_{42}=\left(a_{3}+b_{3}\right)\left(a_{2}+b_{2}\right), \\
I_{44}=\pi^{2 a+2 b} U_{44} \text { with } U_{44}=\left(a_{2}-b_{2}\right)^{2}\left(a_{3}-b_{3}\right)^{2}, \\
I_{80}=\square \pi^{2 a+2 b} U_{80} \text { with } U_{80}=a_{2} b_{2} a_{3} b_{3} .
\end{gathered}
$$

If $a<b$ then $\alpha_{1} \in K^{\times}$since otherwise $\operatorname{Frob}\left(\alpha_{1}\right)=-\alpha_{1}$, a contradiction to the definition of the isogeny since $a \neq b$. Therefore we have

$$
\begin{gathered}
I_{20}=\square 2\left(a_{2}-b_{2}\right)^{2}+o\left(\pi^{2 a}\right), \quad I_{41}=\square 2 a_{2} b_{2}+o\left(\pi^{2 a}\right), \\
I_{43}=\square 2 \pi^{a} \alpha_{1}\left(a_{2}+b_{2}\right)\left(a_{2}-b_{2}\right)^{2}+o\left(\pi^{3 a}\right), \quad I_{60}=\square 2 \pi^{a} \alpha_{1} a_{2} b_{2}\left(a_{2}+b_{2}\right)+o\left(\pi^{3 a}\right)
\end{gathered}
$$

It follows that $\left(I_{41},-\alpha_{1}^{2} I_{80}\right)=\left(I_{20},-\alpha_{1}^{2} I_{44}\right)=1$ and since $v(c) \equiv a \bmod 2$ we can rewrite

$$
\begin{aligned}
& E_{v}=\left(\pi^{a}, I_{42}^{2} I_{44}^{2} I_{80}^{2}\right)\left(2 \alpha_{1}\left(a_{2}+b_{2}\right)\left(a_{2}-b_{2}\right)^{2},\left(a_{2}-b_{2}\right)^{2}\left(a_{3}-b_{3}\right)^{2}\left(a_{2}+b_{2}\right)\left(a_{3}+b_{3}\right)\right) \\
& \left(2 \alpha_{1} a_{2} b_{2}\left(a_{2}+b_{2}\right), a_{2} b_{2} a_{3} b_{3}\left(a_{2}+b_{2}\right)\left(a_{3}+b_{3}\right)\right)\left(-\left(a_{2}+b_{2}\right)\left(a_{3}+b_{3}\right),-a_{2} b_{2} a_{3} b_{3}\left(a_{2}-b_{2}\right)^{2}\left(a_{3}-b_{3}\right)^{2}\right)
\end{aligned}
$$

Since $v\left(\left(a_{2}-b_{2}\right)^{2}\left(a_{3}-b_{3}\right)^{2}\right)=1$, simplifying yields

$$
E_{v}=\left(a_{2}+b_{2},-a_{2} b_{2}\left(a_{2}-b_{2}\right)^{2}\right)\left(a_{3}+b_{3},-a_{3} b_{3}\left(a_{3}-b_{3}\right)^{2}\right) .
$$

Finally, assume that $v\left(a_{2}+b_{2}\right)>0$, then $a_{2} \equiv-b_{2}$ so that $-a_{2} b_{2}\left(a_{2}-b_{2}\right)^{2} \equiv a_{2}^{4} \equiv \square 1$ and similarly for $\left(a_{3}+b_{3}\right)$. Therefore $E_{v}=1$.
If $a=b$ then

$$
\begin{gathered}
I_{20}=\square 2\left(a_{2}-b_{2}\right)^{2}+2\left(a_{3}-b_{3}\right)^{2}, \quad I_{41}=\square 2 \alpha_{1}^{2} U_{41}+o\left(\pi^{2 a}\right) \text { with } U_{41}=\left(a_{2} b_{2}+a_{3} b_{3}\right), \\
I_{43}=\square 2 \alpha_{1} \pi^{a} U_{43}+o\left(\pi^{3 a}\right) \text { with } U_{43}=\left(a_{2}+b_{2}\right)\left(a_{2}-b_{2}\right)^{2}-\left(a_{3}+b_{3}\right)\left(a_{3}-b_{3}\right)^{2}, \\
I_{60}=\square 2 \alpha_{1}^{3} \pi^{a} U_{60}+o\left(\pi^{3 a}\right) \text { with } U_{60}=\left(a_{2} b_{2}\left(a_{2}+b_{2}\right)-a_{3} b_{3}\left(a_{3}+b_{3}\right)\right) .
\end{gathered}
$$

If $v\left(2\left(a_{2}-b_{2}\right)^{2}+2\left(a_{3}-b_{3}\right)^{2}\right)>0$ then $v\left(I_{20}\right)>2 a$ and $v\left(I_{20}^{2}\right)>v\left(I_{44}\right)$ hence by Lemmata 6.2.1 1 and 6.3 .4 we have $\left(I_{20},-\alpha_{1}^{2} U_{44}\right)=1$. Similarly, if $v\left(U_{41}\right)>0$ then $v\left(I_{41}\right)>2 a$ and $v\left(I_{41}^{2}\right)>v\left(I_{80}\right)$, therefore by Lemmata 6.2.15 and 6.3.4 we have $\left(I_{41},-\alpha_{1}^{2} I_{80}\right)=1$. Hence replacing invariants and simplifying yields

$$
E_{v}=\left(2 \alpha_{1} \pi^{a} U_{43}, U_{44} U_{42}\right)\left(2 \alpha_{1}^{3} \pi^{a} U_{60}, U_{80} U_{42}\right)\left(\pi^{a}, U_{44} U_{80}\right)\left(-\alpha_{1}^{2} U_{42},-U_{44} U_{80}\right) .
$$

Factoring out π^{a} we have $\left(\pi^{a}, U_{44}^{2} U_{42}^{2} U_{80}^{2}\right)=1$, hence simplifying gives

$$
E_{v}=\left(U_{43}, U_{44} U_{42}\right)\left(U_{60}, U_{80} U_{42}\right)\left(U_{42},-U_{44} U_{80}\right)
$$

If $\alpha_{1} \in K$ then by definition of the isogeny $\delta_{2}, \delta_{3} \in K$ and using Lemma 6.3.3. 1 we have

$$
\begin{gathered}
\left(U_{43}, U_{44} U_{42}\right)=\left(\left(a_{2}+b_{2}\right)\left(a_{2}-b_{2}\right)^{2},\left(a_{3}+b_{3}\right)\left(a_{3}-b_{3}\right)^{2}\right), \\
\left(U_{60}, U_{80} U_{42}\right)=\left(a_{2} b_{2}\left(a_{2}+b_{2}\right), a_{3} b_{3}\left(a_{3}+b_{3}\right)\right) \\
\left(U_{42},-U_{44} U_{80}\right)=\left(a_{2}+b_{2},-U_{44} U_{80}\right)\left(a_{3}+b_{3},-U_{44} U_{80}\right) .
\end{gathered}
$$

Factoring out and simplifying gives

$$
E_{v}=\left(a_{2}+b_{2},-a_{2} b_{2}\left(a_{2}-b_{2}\right)^{2}\right)\left(a_{3}+b_{3},-a_{3} b_{3}\left(a_{3}-b_{3}\right)^{2}\right) .
$$

Now if $v\left(a_{2}+b_{2}\right)>0$ then $a_{2} \equiv-b_{2}$ and $-a_{2} b_{2}\left(a_{2}-b_{2}\right)^{2} \equiv 4 a_{2}^{4} \equiv \square 1$, similarly if $v\left(a_{3}+b_{3}\right)>0$. Hence $E_{v}=1$.
If $\alpha_{1} \notin K$ then by definition of the isogeny $\delta_{2}, \delta_{3} \in K$ and $\operatorname{Frob}\left(\left(a_{2}+b_{2}\right)\right)=\left(a_{3}+b_{3}\right)$ it follows that $v\left(U_{42}\right) \in 2 \mathbb{Z}$ hence

$$
E_{v}=\left(U_{43}, U_{42} U_{44}\right)\left(U_{60}, U_{42} U_{8}\right)
$$

If $v\left(U_{43}\right)>0$ then $\left(a_{2}-b_{2}\right)^{2}\left(a_{2}+b_{2}\right) \equiv\left(a_{3}-b_{3}\right)^{2}\left(a_{3}+b_{3}\right)$, therefore $U_{42} U_{44} \equiv$ $\left(a_{2}-b_{2}\right)^{4}\left(a_{2}+b_{2}\right)^{2}$ so that $U_{42} U_{44} \in K^{\times 2}$.

If $v\left(U_{60}\right)>0$ then $a_{2} b_{2}\left(a_{2}+b_{2}\right) \equiv a_{3} b_{3}\left(a_{3}+b_{3}\right)$, therefore $U_{42} U_{8} \equiv\left(a_{2} b_{2}\right)^{2}\left(a_{2}+\right.$ $\left.b_{2}\right)^{2}$ so that $U_{42} U_{8} \in K^{\times 2}$. Both cases yield $E_{v}=1$.

Case TC3. By definition of the isogeny and since J has good reduction, we have $\alpha_{1}, \alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K^{n r}$ from Lemma 6.6.11, and $\alpha_{1} \not \equiv 0$. In particular $a, b \in \mathbb{Z}$ and $a \equiv b \equiv v(c) \bmod 2$ by semistability criterion 3.4.29. Here $v\left(I_{23}\right)=v\left(I_{44}\right)=0$ and $v\left(I_{45}\right)=a+b \in 2 \mathbb{Z}, v\left(I_{80}\right)=2 a+2 b \in 2 \mathbb{Z}$. Reducing invariants $\bmod \pi$ yields

$$
I_{23} \equiv \square \alpha_{1}^{2}, \quad I_{44} \equiv \square 1, \quad I_{20} \equiv \alpha_{1}^{2}, \quad I_{22} \equiv \square-\alpha_{1}^{2}
$$

Hence

$$
E_{v}=\left(-1, I_{41} I_{43} I_{60}\right)\left(I_{40}, \ell I_{20} I_{43} I_{60}\right)\left(I_{45},-\ell I_{21} I_{22}\right)\left(c I_{41}, I_{23}\right)\left(I_{80}, c I_{41} I_{42} I_{60}\right)\left(I_{42},-I_{43} I_{60}\right)
$$

Let $a_{2}, b_{2}, a_{3}, b_{3} \in \mathcal{O}_{\bar{K}}^{\times}$and write

$$
\alpha_{2}=\alpha_{1}+a_{2} \pi^{a}, \quad \beta_{2}=-\alpha_{1}+b_{2} \pi^{b}, \quad \alpha_{3}=\alpha_{1}+a_{3} \pi^{a}, \quad \beta_{3}=-\alpha_{1}+b_{3} \pi^{b}
$$

This yields

$$
\begin{gathered}
I_{45}=\square-\alpha_{1}^{2} \pi^{a+b} U_{45}, \text { with } U_{45}=\left(a_{2}-a_{3}\right)\left(b_{2}-b_{3}\right), \\
I_{80}=\square \pi^{2 a+2 b} U_{80} \text { with } U_{80}=a_{2} b_{2} a_{3} b_{3} .
\end{gathered}
$$

Cases TC3A/B/C. Here $a<b, \alpha_{1} \in K$ hence

$$
E_{v}=\left(I_{45}, \ell I_{21}\right)\left(I_{40}, \ell\right) H, \quad H=\left(-1, I_{41} I_{43} I_{60}\right)\left(I_{40}, I_{43} I_{60}\right)\left(I_{80}, c I_{41} I_{42} I_{60}\right)\left(I_{42},-I_{43} I_{60}\right)
$$

We show that $H=1$. Computing invariants we find

$$
\begin{gathered}
I_{21}=a_{2} a_{3} \pi^{2 a}+o\left(\pi^{2 a}\right), \quad I_{40}=\square \pi^{2 a}\left(a_{2}-a_{3}\right)^{2}+o\left(\pi^{2 a}\right), \\
I_{41}=\square 2 \pi^{2 a} a_{2} a_{3}, \quad I_{42}=\square \pi^{2 a} a_{2} a_{3}, \\
I_{43}=\square 2 \alpha_{1} \pi^{a}\left(a_{2}+a_{3}\right)+o\left(\pi^{a}\right), \quad I_{60}=\square \pi^{a+b}\left(-2 \alpha_{1} \pi^{a}\left(a_{2}^{2} b_{2}+a_{3}^{2} b_{3}\right)\right)+o\left(\pi^{2 a+b}\right) .
\end{gathered}
$$

Hence $\left(I_{43} I_{60},-I_{40} I_{42}\right)=\left(-\left(a_{2}+a_{3}\right)\left(a_{2}^{2} b_{2}+a_{3}^{2} b_{3}\right),-\left(a_{2}-a_{3}\right)^{2} a_{2} a_{3}\right)$, and $\left(I_{41},-I_{80}\right)=$ $\left(-I_{80}, I_{42}\right)=1$ since $v\left(I_{41}\right), v\left(I_{42}\right), v\left(I_{80}\right) \in 2 \mathbb{Z}$. Similarly $\left(I_{80}, c I_{60}\right)=\left(a_{2}^{2} b_{2}+\right.$ $\left.a_{3}^{2} b_{3}, a_{2} b_{2} a_{3} b_{3}\right)$. Simplifying yields

$$
H=\left(a_{2}^{2} b_{2}+a_{3}^{2} b_{3},-\left(a_{2}-a_{3}\right)^{2} a_{2}^{2} a_{3}^{2} b_{2} b_{3}\right)\left(a_{2}+a_{3},-\left(a_{2}-a_{3}\right)^{2} a_{2} a_{3}\right)
$$

i) If $a_{2}, a_{3}, b_{2}, b_{3} \in K$ then $\left(a_{2}-a_{3}\right)^{2} \in K^{\times 2}$ and by Lemma 6.3 .3 we have

$$
H=\left(a_{2}^{2} b_{2}, a_{3}^{2} b_{3}\right)\left(a_{2}, a_{3}\right)=1 .
$$

ii) If Frob permutes a_{2} and a_{3} as well as b_{2} and b_{3}, then $\left(a_{2}-a_{3}\right)^{2} \notin K^{\times 2}$. If $a_{2}+a_{3}$ and $a_{2}^{2} b_{2}+a_{3}^{2} b_{3}$ are units then $H=1$. Otherwise, if $v\left(a_{2}+a_{3}\right)>0$ then $a_{2} \equiv-a_{3}$ so that $-a_{2} a_{3}\left(a_{2}-a_{3}\right)^{2} \equiv 4 a_{2}^{4}$ hence $-a_{2} a_{3}\left(a_{2}-a_{3}\right)^{2} \in K_{v}^{2}$ and $H=1$. Finally, if $v\left(a_{2}^{2} b_{2}+a_{3}^{2} b_{3}\right)>0$, then $a_{2}^{2} b_{2} \equiv-a_{3}^{2} b_{3}$ so that $-a_{2}^{2} b_{2} a_{3}^{2} b_{3} \equiv \square b_{2}^{2}$. In particular $-a_{2}^{2} b_{2} a_{3}^{2} b_{3} \notin K_{v}^{2}$ since $\operatorname{Frob}\left(b_{2}\right)=b_{3}$, thus $-a_{2}^{2} b_{2} a_{3}^{2} b_{3}\left(a_{2}-a_{3}\right)^{2} \in K_{v}^{2}$ (as $\left.\left(a_{2}-a_{3}\right)^{2} \notin K_{v}^{2}\right)$ and $H=1$. Hence $E_{v}=\left(I_{40}, \ell\right)\left(I_{45}, \ell I_{21}\right)$.
Now, $\ell=-c^{2} \ell_{1} I_{21}=\square-\ell_{1} I_{21}$ so that $\ell I_{21}=\square-\ell_{1}$. Therefore

$$
E_{v}=\left(\left(a_{2}-a_{3}\right)^{2},-\ell_{1} I_{21}\right)\left(-\left(a_{2}-a_{3}\right)\left(b_{2}-b_{3}\right),-\ell_{1}\right)=\left(\ell_{1},-\left(a_{2}-a_{3}\right)^{3}\left(b_{2}-b_{3}\right)\right),
$$

since I_{21} and $\left(a_{2}-a_{3}\right)$ are units in K. For isogeny TC3A, we have $v\left(\ell_{1}\right) \in 2 \mathbb{Z}$ hence $E_{v}=1$ as required.
Finally, computing $\left(A_{1}-B_{1}\right)^{2}$ in this case, one finds

$$
\left(A_{1}-B_{1}\right)^{2}=\square \frac{-\left(a_{2}-a_{3}\right)\left(b_{2}-b_{3}\right)}{\left(a_{2}-a_{3}\right)^{2}}+o\left(\pi^{a+b}\right)
$$

hence $\left(A_{1}-B_{1}\right)^{2}=\square-\left(a_{2}-a_{3}\right)^{3}\left(b_{2}-b_{3}\right)$. It follows that since $\left(A_{1}-B_{1}\right)^{2} \in K^{2}$ in isogeny TC3B, $E_{v}=1$. Finally, $\left(A_{1}-B_{1}\right)^{2} \notin K^{\times 2}$ in isogeny TC3C, and $v\left(\ell_{1}\right) \equiv r \bmod 2$, therefore $E_{v}=(-1)^{r}$ as required.
$\underline{\text { Cases TC3D/E/F/G/H/I. Here } a=b \text { and } E_{v}=\left(I_{45}, \ell I_{21}\right)\left(I_{40},-\ell I_{20} I_{22}\right)\left(c I_{41}, I_{23}\right) H, ~}$ with

$$
H=\left(-1, I_{41} I_{43} I_{60}\right)\left(I_{40}, I_{43} I_{60}\right)\left(I_{80}, c I_{41} I_{42} I_{60}\right)\left(I_{42},-I_{43} I_{60}\right)
$$

We show that $H=1$. Computing invariants, we find

$$
\begin{gathered}
I_{21}=\square\left(a_{2}+b_{2}\right)\left(a_{3}+b_{3}\right), \quad I_{40}=\square\left(a_{2}+b_{2}-a_{3}-b_{3}\right)^{2}, \\
I_{41}=\square 2 \alpha_{1}^{2}\left(a_{2} a_{3}+b_{2} b_{3}\right)+o\left(\pi^{2 a}\right), \quad I_{42}=\square \alpha_{1}^{2}\left(a_{2}-b_{2}\right)\left(a_{3}-b_{3}\right)+o\left(\pi^{2 a}\right), \\
I_{43}=\square 2 \alpha_{1}^{3} \pi^{a} U_{43}+o\left(\pi^{a}\right) \text { with } U_{43}=\left(a_{2}-b_{2}+a_{3}-b_{3}\right), \\
I_{60}=\square-2 \alpha_{1} \pi^{a} U_{60}+o\left(\pi^{3 a}\right) \text { with } U_{60}=a_{2} b_{2}\left(a_{2}-b_{2}\right)+a_{3} b_{3}\left(a_{3}-b_{3}\right) .
\end{gathered}
$$

Also note that $v\left(I_{40}\right) \in 2 \mathbb{Z}$ hence $\left(\alpha_{1}^{2},-I_{40}\right)=1$.
Note that since either $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K$ or $\operatorname{Frob}\left(a_{2}-b_{2}\right)=\left(a_{3}-b_{3}\right)$, we have that $v\left(I_{42}\right) \in 2 \mathbb{Z}$. Using Lemma 6.3.3 and simplifying gives $\left(I_{41},-I_{80}\right)=\left(a_{2} a_{3}+\right.$ $\left.b_{2} b_{3},-a_{2} b_{2} a_{3} b_{3}\right)=1$, since if $v\left(I_{41}\right)>0$ then $a_{2} a_{3} \equiv-b_{2} b_{3}$ so that $-a_{2} b_{2} a_{3} b_{3} \equiv$ $\left(a_{2} a_{3}\right)^{2} \equiv \square$. Also $\left(I_{43},-I_{40} I_{42}\right)=\left(U_{43},-U_{40} U_{42}\right)=1$ since if $v\left(U_{43}\right)>0$ then
$v\left(I_{43}\right)>a$ thus $v\left(I_{43}^{2}\right)>v\left(I_{42} I_{44}\right)$ and the result follows from Lemma 6.3.4. Otherwise if $v\left(U_{43}\right)=0$ then the result follows since $v\left(U_{42}\right), v\left(U_{40}\right) \in 2 \mathbb{Z}$. Similarly, $\left(I_{42}, I_{80}\right)=1$. Finally, $\left(I_{60},-I_{40} I_{42} I_{80}\right)=\left(U_{60},-U_{40} U_{42} U_{80}\right)=1$ since if $v\left(U_{60}\right)>0$ then $v\left(I_{60}\right)>3 a$ thus $v\left(I_{60}^{2}\right)>6 a=v\left(I_{42} I_{80}\right)$ hence $\left(U_{60},-U_{40} U_{42} U_{80}\right)=1$ by Lemma 6.3.4. Otherwise, if $v\left(U_{60}\right)=0$ then the result follows since $v\left(U_{42}\right), v\left(U_{40}\right) \in$ $2 \mathbb{Z}$.
Therefore when $a=b, H=1$ and $E_{v}=\left(I_{45}, \ell I_{21}\right)\left(I_{40},-\ell I_{20} I_{22}\right)\left(c I_{41}, I_{23}\right)$.
Cases TC3D/F/G. Here $\alpha_{1} \in K$ so that $E_{v}=\left(I_{45}, \ell I_{21}\right)\left(I_{40}, \ell\right)$. As above, we have, $\ell=-c^{2} \ell_{1} I_{21}=\square-\ell_{1} I_{21}$ so that $\ell I_{21}=\square-\ell_{1}$. Recall that $I_{21}=-\ell_{2} \ell_{3}$. Hence $E_{v}=\left(-\left(a_{2}-a_{3}\right)\left(b_{2}-b_{3}\right),-\ell_{1}\right)\left(\left(a_{2}+b_{2}-a_{3}-b_{3}\right)^{2}, \ell_{1} \ell_{2} \ell_{3}\right)$. Moreover, computing the roots of $L_{1}(x)$, we find

$$
\left(A_{1}-B_{1}\right)^{2}=\square \frac{-\left(a_{2}-a_{3}\right)\left(b_{2}-b_{3}\right)}{\left(a_{2}+b_{2}-a_{3}-b_{3}\right)^{2}}=\square-\left(a_{2}-a_{3}\right)\left(b_{2}-b_{3}\right)\left(a_{2}+b_{2}-a_{3}-b_{3}\right)^{2},
$$

so that $E_{v}=\left(\left(A_{1}-B_{1}\right)^{2}, \ell_{1}\right)\left(\left(a_{2}+b_{2}-a_{3}-b_{3}\right)^{2},-\left(a_{2}+b_{2}\right)\left(a_{3}+b_{3}\right)\right)$.
For TC3D, we have $v\left(\ell_{1}\right)=v\left(u_{1}\right)-2 a-v(c)$. If $v\left(u_{1}\right)>0$ then $a_{2}+b_{2} \equiv a_{3}+b_{3}$ and hence $v\left(\ell_{2}\right)=v\left(\ell_{3}\right)=0$ (see Proof of Table 4.33 in Section 5.3.5). Moreover, in this case, $2 v\left(u_{1}\right) \in 2 \mathbb{Z}$ and $a_{2}-a_{3} \equiv-b_{2}+b_{3}$. It follows that $E_{v}=\left(\left(b_{2}-b_{3}\right)^{4}, u_{1}\right)=1$. Finally, if $v\left(u_{1}\right)=0$ then $\left(\left(A_{1}-B_{1}\right)^{2}, \ell_{1}\right)=1$. If $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K$ then $u_{1}^{2} \in K^{\times 2}$ and $E_{v}=1$. Otherwise $\operatorname{Frob}\left(\alpha_{2}\right)=\alpha_{3}$ and $\operatorname{Frob}\left(\alpha_{3}\right)=\alpha_{2}$ and similarly for β_{2}, β_{3}, so that $\operatorname{Frob}\left(\ell_{2}\right)=-\ell_{3}$. Therefore $v\left(I_{21}\right) \in 2 \mathbb{Z}$ and $E_{v}=\left(u_{1}^{2},-I_{21}\right)=1$.
For TC3F, we have $\left(A_{1}-B_{1}\right)^{2} \in K^{\times 2}$ hence $E_{v}=\left(\left(a_{2}+b_{2}-a_{3}-b_{3}\right)^{2},-\left(a_{2}+\right.\right.$ $\left.b_{2}\right)\left(a_{3}+b_{3}\right)$). If $v\left(a_{2}+b_{2}\right)=v\left(a_{3}+b_{3}\right)=0$ then $E_{v}=1$ as $v\left(u_{1}\right)^{2} \in 2 \mathbb{Z}$ and we are done. Otherwise either $\alpha_{2}, \beta_{2}, \alpha_{3}, \beta_{3} \in K$ and $u_{1}^{2} \in K^{\times 2}$ and we are done; or $\operatorname{Frob}\left(\ell_{2}\right)=-\ell_{3} \operatorname{and} v\left(a_{2}+b_{2}\right)=v\left(a_{3}+b_{3}\right)$ so that $\left.v\left(a_{2}+b_{2}\right)\left(a_{3}+b_{3}\right)\right) \in 2 \mathbb{Z}$ and $E_{v}=1$ as required.
For TC3G, we have $\left(A_{1}-B_{1}\right)^{2} \notin K^{\times 2}$. Now by definition of $\Delta_{G}, u_{1}, \ell_{2}, \ell_{3}$ (see Proof of Table 4.33 in Section 5.3.5), we have $\left.v\left(\ell_{2}\right)=v_{(} \ell_{3}\right)$ when $v\left(\Delta_{G}\right)>2 a$. Therefore, since $v\left(u_{1}\right)^{2} \in 2 \mathbb{Z}$ we have $E_{v}=\left(\left(A_{1}-B_{1}\right)^{2}, \ell_{1}\right)$. Moreover, by semistabilty criterion 3.4.29, we have that $v(\ell) \equiv r \bmod 2$. It follows that $v\left(u_{1}\right) \equiv v(c) \bmod 2$ and hence that $v\left(\ell_{1}\right) \equiv r \bmod 2$. Thus $E_{v}=(-1)^{r}$ as required.
Cases TC3E/H/I. Here $\alpha_{1} \in K$ so that $E_{v}=\left(I_{45},-\ell I_{21} I_{22}\right)\left(I_{40}, \ell\right)\left(c I_{41}, I_{23}\right)$.
Using Lemmata 6.3.4, 6.2.1] and 6.2.1]3 we have that $\left(I_{41}, I_{23}\right)=\left(I_{40}, I_{20}\right)=1$. Moreover replacing invariants by their reduced values as above yields $E_{v}=\left(I_{40}, \ell\right)\left(c, I_{23}\right)\left(I_{45}, \ell \alpha_{1}^{2} I_{21}\right)$ Since $I_{23} \equiv \square \alpha_{1}^{2}$ it follows that $E_{v}=\left(I_{45}, \ell I_{21}\right)\left(I_{40}, \ell\right)\left(\alpha_{1}^{2}, c\right)$. The behaviour of the first two Hilbert Symbols is given in the cases of TC3D/F/G. Hence since $v(c) \equiv a \bmod 2$, if follows that $E_{v}=(-1)^{a}$ for $\mathrm{TC} 3 \mathrm{E} / \mathrm{H}$, and $E_{v}=$ $(-1)^{a+r}$ for TC3I as required.

Chapter 7

Conclusion

7.1 Forthcoming result

The result on the 2-parity conjecture presented in Theorem 4.4.11 is used in a joint work with Vladimir Dokchitser in [17. Combined with the theory of regulator constants of [10, [11], it yields the following result on the parity conjecture in this setting.

Theorem 7.1.1. Let C / \mathcal{K} be a hyperelliptic curve of genus 2 over a number field given by

$$
C: y^{2}=f(x),
$$

and satisfying the conditions of Theorem 4.4.11. Let J denote its Jacobian, \mathcal{K}_{f} the splitting field of $f(x)$ and assume that $\amalg\left(J / \mathcal{K}_{f}\right)\left[p^{\infty}\right]$ is finite for $p=2,3,5$. Then the parity conjecture holds for J / K.

Remark 7.1.2. If $\mathcal{K} \subseteq \mathcal{L} \subseteq \mathcal{K}_{f}$ is an intermediate field with [$\left.\mathcal{K}_{f}: \mathcal{L}\right]$ a power of 2 then $\operatorname{Gal}\left(\mathcal{K}_{f} / \mathcal{L}\right) \subseteq C_{2} \times D_{4}$, as the latter is the Sylow 2-subgroup of S_{6}. In particular C / \mathcal{L} is a $C_{2} \times D_{4}$ curve. Thus Theorem 4.4.11 shows that the parity conjecture holds over all such fields \mathcal{L}. Combined with the theory of regulator constants, this is sufficient to deduce that the parity conjecture holds over \mathcal{K}.

7.2 Work in progress

We are currently working on improving Theorem 4.4.11, and hence Theorem 7.1.1, by removing some extra conditions. Namely, the following are work in progress: i) proving the local discrepancy conjecture 4.4 .10 when the reduction at finite odd places of the polynomial defining C has double roots inside two triple roots,
ii) showing that the term of the local discrepancy E_{v} is stable under the change of variables performed to balance a cluster picture as in [15] [Definition 3.41],
iii) controlling the term of the local discrepancy E_{v} when some $C_{2} \times D_{4}$ invariants vanish,
iv) weakening the conditions at 2 -adic places.

By proving i), we would prove the 2-parity conjecture for curves C with semistable balanced cluster picture. Adding ii) would then remove the balanced condition so that all semistable cluster pictures at odd finite places could be considered. Finally showing iii) would release the extra condition on non-vanishing of $C_{2} \times D_{4}$ invariants.

7.3 Obstructions to generalization

As mentioned in Section 3.2.1, the parity of the 2^{∞} Selmer rank of a principally polarized abelian variety admitting an isogeny through which multiplication by 2 factors, is given by Lemma 3.2.5. However, in order to express this parity as a sum of local terms, one needs to control the order of their Shafarevic-Tate group (up to squares). This is achievable using a result of Poonen and Stoll in [32], whenever both the variety and the codomain of the isogeny are Jacobians. This was true in our case thanks to the property of a Richelot isogeny. In higher dimension, it is not clear how to get a hold of the order of the Shafarevich-Tate group up to squares since the codomain of the isogeny may be a principally polarized abelian variety that is not a Jacobian. Furthermore, even if it were the case, curves of genus $g>2$ are not necessarily hyperelliptic so that we cannot explicitly control their local invariants as we have done here. And finally, even if they were hyperelliptic, finding the term of local discrepancy in order to prove the 2-parity conjecture in this case seems rather optimistic, unless a better conceptual understanding of the invariants involved is achieved.

Appendix A

Isogenies between abelian varieties with split totally toric reduction (by Adam Morgan)

Preliminaries

Definition A.0.1. Let A and B be abelian groups and $f: A \rightarrow B$ a homomorphism with finite kernel and cokernel. Then we define

$$
z(f):=|\operatorname{coker}(f)| /|\operatorname{ker}(f)|
$$

Lemma A.0.2. We have the following properties of z :
(i) Let A be a finite abelian group and $f: A \rightarrow A$ a homomorphism. Then $z(f)=1$.
(ii) Suppose we have a commutative diagram of abelian groups

whose rows are exact. Suppose further that f_{1}, f_{2} and f_{3} all have finite kernel and cokernel. Then $z\left(f_{2}\right)=z\left(f_{1}\right) z\left(f_{3}\right)$.
(iii) Let A be an abelian group, let $A=A_{0} \supseteq A_{1} \supseteq A_{2} \supseteq \ldots$ be a filtration on A with finite quotients and let $f: A \rightarrow A$ be a homomorphism having finite kernel and cokernel. Suppose further that f respects the filtration and that for each n the induced maps $f_{n}: A_{n} \rightarrow A_{n}$ have finite kernel and cokernel. Then we have $z(f)=z\left(f_{n}\right)$ for all $n \geq 0$.

Proof. (i). The first isomorphism theorem gives $A / \operatorname{ker}(A) \cong \operatorname{im}(A)$, with each of $A, \operatorname{ker}(A)$ and $\operatorname{im}(A)$ finite by assumption. In particular, we have

$$
|A|=|\operatorname{im}(A)||k \operatorname{ker}(A)|
$$

from which the result follows immediately.
(ii). Apply the snake lemma to the commutative diagram in the statement.
(iii). For each $n \geq 0$, apply parts (i) and (ii) to the commutative diagram

(the top and bottom rows induced by the natural inclusion $A_{n+1} \subseteq A_{n}$ and the map \bar{f}_{n} being induced by f_{n}).

The multiplicative group

Let K be a finite extension of \mathbb{Q}_{p} for some prime p, let $g \geq 1$ and let $M=\left(m_{i, j}\right) \in$ $\operatorname{Mat}_{g}(\mathbb{Z})$ be a full rank matrix. Write $f_{M}: \bar{K}^{\times g} \rightarrow \bar{K}^{\times g}$ for the map

$$
\mathbf{x}=\left(x_{i}\right) \longmapsto \mathbf{x}^{M}:=\left(\prod_{j=1}^{g} x_{j}^{m_{i, j}}\right)
$$

Lemma A.0.3. Write f_{K} for the restriction of f_{M} to a map $K^{\times g} \rightarrow K^{\times g}$. Then we have

$$
z\left(f_{K}\right)=\frac{|\operatorname{det}(M)|}{|\operatorname{det}(M)|_{K}},
$$

where here $|\cdot|_{K}$ denotes the usual normalised abolute value on K (sending a uniformiser π_{K} for K to $|k|^{-1}$ where k is the residue field of $\left.K\right)$ and $|\cdot|$ denotes the usual archimedean absolute value on \mathbb{Z}.

Proof. Write f_{0} for the map $\mathcal{O}_{K}^{\times g} \rightarrow \mathcal{O}_{K}^{\times g}$ induced by f. Let v_{K} denote the normalised valuation on K. We have a commutative diagram with exact rows

where the map $\overline{f_{K}}: \mathbb{Z}^{g} \rightarrow \mathbb{Z}^{g}$ induced by f is just left multiplication by the matrix M. Considering the Smith Normal Form of M over \mathbb{Z} gives $\left|\operatorname{coker}\left(\overline{f_{K}}\right)\right|=$
$|\operatorname{det}(M)|$ and since M has full rank, $\operatorname{ker}\left(\overline{f_{K}}\right)=0$. By A.0.2 (ii) we now have $z\left(f_{K}\right)=|\operatorname{det}(M)| z\left(f_{0}\right)$. Consider the filtration

$$
\mathcal{O}_{K}^{\times g} \supseteq\left(1+\pi_{K} \mathcal{O}_{K}\right)^{g} \supseteq\left(1+\pi_{K}^{2} \mathcal{O}_{K}\right)^{g} \supseteq \ldots
$$

which is preserved by f_{K} and has each successive quotient finite. Write f_{n} for the induced map on $\left(1+\pi_{K}^{n} \mathcal{O}_{K}\right)^{g}$. Then A.0.2(iii) gives $z\left(f_{0}\right)=z\left(f_{n}\right)$ for each $n \geq 1$. Taking $n \geq 1$ sufficiently large, the formal logarithm gives an isomorpism

$$
\left(1+\pi_{K}^{n} \mathcal{O}_{K}\right)^{g} \xrightarrow{\sim} \mathcal{O}_{K}^{g} .
$$

Since f_{n} is induced by the matrix $M \in \operatorname{Mat}_{g}(\mathbb{Z})$, the map f_{n} gets transported under this isomorphism to left multiplication by the matrix M on \mathcal{O}_{K}^{g}. Considering the Smith Normal Form of M over \mathcal{O}_{K} and again using the fact that M has full rank over \mathbb{Z} this gives $z\left(f_{n}\right)=|\operatorname{det}(M)|_{K}^{-1}$ which completes the proof.

Abelian varieties

Let K be a finite extension of \mathbb{Q}_{p} and A / K an abelian variety. Let $\phi: A \rightarrow B$ be an isogeny.

Suppose that A / K has split totally toric reduction. Then the same is true also of B. We have an isomorphism of $G_{K}:=\operatorname{Gal}(\bar{K} / K)$-modules

$$
A(\bar{K}) \cong \bar{K}^{\times g} / \Lambda_{A}
$$

for some lattice $\Lambda_{A} \subseteq K^{\times g}$ (see [31, Section 5.3] for a review of the uniformisation of abelian varieties with split totally toric reduction and the definition of a lattice inside $K^{\times g}$). The same is true for B with some lattice $\Lambda_{B} \subseteq K^{\times g}$. Note that the induced Galois action on Λ_{A} and Λ_{B} are trivial.

By [20, Theorem 3], there is a matrix $M(\phi) \in \operatorname{Mat}_{g}(\mathbb{Z})$ such that the isogeny $\phi: A \rightarrow B$ is induced by the map $\mathbf{x} \mapsto \mathbf{x}^{M(\phi)}$ on $\bar{K}^{\times g}$, and $M(\phi)$ sends Λ_{A} into Λ_{B}. We write ϕ_{Λ} for the induced map $\Lambda_{A} \rightarrow \Lambda_{B}$ of free \mathbb{Z}-modules of rank g. In summary, we have a G_{K}-equivariant commutative diagram

with exact rows. Since $H^{1}\left(K, \Lambda_{A}\right)=0=H^{1}\left(K, \Lambda_{B}\right)\left(G_{K}\right.$ is profinite whilst both Λ_{A} and Λ_{B} are torsion free with trivial action) we have the same diagram with $A(\bar{K})($ resp. $B(\bar{K}))$ replaced by $A(K)($ resp. $B(K))$ and $\bar{K}^{\times g}$ replaced by $K^{\times g}$.

We note that the isogeny ϕ determines the matrix $M(\phi)$. Indeed, since Λ_{A} and Λ_{B} are lattices, $\mathcal{O}_{\bar{K}}^{\times g} \subseteq \bar{K}^{\times g}$ injects into $\bar{K}^{\times g} / \Lambda_{A}\left(\right.$ resp. $\left.\bar{K}^{\times g} / \Lambda_{B}\right)$. Now since the maps $x \mapsto x^{n}$ for $n \in \mathbb{Z}$ are all distinct as endomorphisms of $\mathcal{O}_{\bar{K}}^{\times g}$ (consider their kernels), the same is true for that maps $\mathbf{x} \mapsto \mathbf{x}^{M}$ for all $M \in \operatorname{Mat}_{g}(\mathbb{Z})$ as endomorphisms of $\mathcal{O}_{\bar{K}}^{\times g}$, from which the claim follows.

Lemma A.0.5. Write ϕ_{K} for the map $A(K) \rightarrow B(K)$ on K-points induced by ϕ. The we have

$$
z\left(\phi_{K}\right)=\frac{\left|A[\phi] \cap A(\bar{K})_{0}\right||\operatorname{det}(M)|}{\operatorname{deg}(\phi)|\operatorname{det}(M)|_{K}} .
$$

(Here $A(\bar{K})_{0}$ denotes the points in $A(\bar{K})$ reducing to the identity component of the Neron model of A / K).

Proof. Consider first the diagram A.0.4. Applying A.0.2 we obtain

$$
\begin{equation*}
z\left(f_{M(\phi)}\right)=z\left(\phi_{\bar{K}}\right) z\left(\phi_{\Lambda}\right) \tag{A.0.6}
\end{equation*}
$$

where here $\phi_{\bar{K}}$ denotes the map $A(\bar{K}) \rightarrow B(\bar{K})$ on \bar{K}-points induced by ϕ. Now ϕ is surjective on \bar{K}-points and $\left|\operatorname{ker}\left(\phi_{\bar{K}}\right)\right|=\operatorname{deg}(\phi)$ by definition. In particular, $z\left(\phi_{\bar{K}}\right)=\operatorname{deg}(\phi)^{-1}$. Next, let $M(\phi)^{a}$ denote the adjugate matrix of $M(\phi)$, so that $M(\phi) M(\phi)^{a}=\operatorname{det}(M(\phi))=M(\phi)^{a} M(\phi)$. Now for any $0 \neq n \in \mathbb{Z}$, multiplication by n is surjective on $\bar{K}^{\times g}$. In particular, since $M(\phi)$ has non-zero determinant we see that $f_{M(\phi)}$ is surjective. Thus $z\left(f_{M(\phi)}\right)=\left|\operatorname{ker}\left(f_{M(\phi)}\right)\right|^{-1}$. Note also that with $n=\operatorname{det}(M(\phi))$ we have $k e r\left(f_{M(\phi)}\right) \subseteq \boldsymbol{\mu}_{n}^{g} \subseteq \bar{K}^{\times g}$.

We now have from A.0.6 that

$$
z\left(\phi_{\Lambda}\right)=\frac{\operatorname{deg}(\phi)}{\left|\operatorname{ker}\left(f_{M(\phi)}\right)\right|} .
$$

Let $\mathcal{A} / \mathcal{O}_{K}$ denote the Neron model of A / K and let $\mathcal{A}^{0} / \mathcal{O}_{K}$ denote the identity component of \mathcal{A}. Since A is assumed to have semistable reduction over K, the formation of \mathcal{A}^{0} commutes with base-change to any finite exctension L / K (though the same need not be true of the full Neron model). We have a commutative square

where both vertical arrows are isomorphisms and the horizontal arrows are injections (see [31, Figure 1] and the surrounding discussion).

The observation that $\operatorname{ker}\left(f_{M(\phi)}\right) \subseteq \boldsymbol{\mu}_{n}^{g}$ shows that $\operatorname{ker}\left(f_{M(\phi)}\right)=\operatorname{ker}\left(\left.f_{M(\phi)}\right|_{\mathcal{O}_{K}^{\times g}}\right)$ which by the above diagram is equal to $A(\bar{K})_{0}[\phi]=A[\phi] \cap A(\bar{K})_{0}$.

We conclude that

$$
\begin{equation*}
z\left(\phi_{\Lambda}\right)=\frac{\operatorname{deg}(\phi)}{\left|A[\phi] \cap A(\bar{K})_{0}\right|} . \tag{A.0.8}
\end{equation*}
$$

We now turn to the commutative diagram A.0.4 over K rather than \bar{K}. A.0.2 (ii) gives

$$
z\left(\phi_{K}\right)=\frac{z\left(\left.f_{M(\phi)}\right|_{K}\right)}{z\left(\phi_{\Lambda}\right)} .
$$

Combining this with A.0.8 and A.0.3 gives the result.

The main result

Suppose now that A is principally polarised with fixed principal polarisation λ defined over K, and suppose that the isogeny $\phi: A \rightarrow B$ is such that the kernel of ϕ is a maximal isotropic subspace of $A[2]$ with respect to the Weil pairing associated to λ. Note that in particular this forces $\operatorname{deg}(\phi)=2^{g}$. In particular, B is principally polarised also and the dual isogeny $\phi^{\vee}: B \rightarrow A$ is such that $\phi \phi^{\vee}=[2]=\phi^{\vee} \phi$ (see, for example, [24, Proposition 16.8]). Let $M\left(\phi^{\vee}\right)$ be the matrix associated to ϕ^{\vee}. Then we have $M(\phi) M\left(\phi^{\vee}\right)=2=M\left(\phi^{\vee}\right) M(\phi)$. In particular, the determinant of $M(\phi)$ is \pm a power of 2 . As before, $A(\bar{K})_{0}$ denotes the points in $A(\bar{K})$ reducing to the identity component of the Neron model of A / K

Proposition A.0.9. Write ϕ_{K} for the map $A(K) \rightarrow B(K)$ on K-points induced by ϕ. Then we have

$$
z\left(\phi_{K}\right)= \begin{cases}\frac{\left|A[\phi] \cap A(\bar{K})_{0}\right|^{2}}{2^{g}} & p>2 \\ \frac{\left|A[\phi] \cap A(\bar{K})_{0}\right|^{\left[K: Q_{2}\right]+2}}{2^{g}} & p=2 .\end{cases}
$$

In particular,

$$
\operatorname{ord}_{2} z\left(\phi_{K}\right) \equiv \begin{cases}g(\bmod 2) & p>2 \\ g+\left[K: \mathbb{Q}_{2}\right] \operatorname{ord}_{2}\left|A[\phi] \cap A(\bar{K})_{0}\right|(\bmod 2) & p=2 .\end{cases}
$$

Proof. As observed previously, the assumption on ϕ mean that the determinant of $M(\phi)$ is a power of 2 . In particular, we have

$$
|\operatorname{det}(M)|_{K}= \begin{cases}1 & p>2 \\ \frac{1}{|\operatorname{det}(M(\phi))|^{\left[K: Q_{2}\right]}} & p=2 .\end{cases}
$$

Thus in light of A.0.5 (and the fact that, as remarked previously, $\operatorname{deg}(\phi)=2^{g}$), it
suffices to show that we have

$$
|\operatorname{det}(M(\phi))|=\left|A[\phi] \cap A(\bar{K})_{0}\right| .
$$

Now $A[\phi] \cap A(\bar{K})_{0}$ is the kernel of the map $\mathbf{x} \mapsto \mathbf{x}^{M(\phi)}$ on $\mathcal{O}_{\bar{K}}^{\times}$. Since $M\left(\phi^{\vee}\right) M(\phi)=2$, this is contained in $\boldsymbol{\mu}_{2}^{g}$. Writing $\boldsymbol{\mu}_{2}^{g}$ additively, the map $\mathbf{x} \mapsto \mathbf{x}^{M(\phi)}$ on $\boldsymbol{\mu}_{2}^{g}$ is just left multiplication by the reduction modulo 2 of the matrix $M(\phi)$. Denote this matrix by \bar{M}. Then $\left|A[\phi] \cap A(\bar{K})_{0}\right|$ is just the size of the kernel of $\bar{M}: \mathbb{F}_{2}^{g} \rightarrow \mathbb{F}_{2}^{g}$.

Write $M(\phi)=U D V$ where $U, V \in G L_{g}(\mathbb{Z})$ and $D \in \operatorname{Mat}_{g}(\mathbb{Z})$ is diagonal (i.e. write $M(\phi)$ in Smith Normal form). Now $M(\phi) M\left(\phi^{\vee}\right)$ is twice the identity matrix. Thus

$$
2 V^{-1}=M\left(\phi^{\vee}\right) U D
$$

In particular, each coefficient of $M\left(\phi^{\vee}\right) U D$ is divisible by 2 , yet $\frac{1}{2} M\left(\phi^{\vee}\right) U D$ has determinant 1 . If one of the entries of D were divisible by 4 then 2 would divide each entry of some row of the integral matrix $\frac{1}{2} M\left(\phi^{\vee}\right) U D$, and hence its determinant, a contradiction. We deduce that each entry of D is divisible by 2 at most once. On the other hand, the determinant of $M(\phi)$ is a power of 2 (it divides 2^{g}) so we deduce that each entry on the diagonal of D is in the set $\{ \pm 1, \pm 2\}$. Noting that U and V are both invertible modulo 2 , we see that the number of ± 2 's appearing on the diagonal of D is equal to the \mathbb{F}_{2}-dimension of the kernel of \bar{M}. In particular, we deduce that

$$
\left|A[\phi] \cap A(\bar{K})_{0}\right|=2^{\operatorname{dim}_{\mathrm{F}_{2}} \operatorname{ker}(\bar{M})}=|\operatorname{det}(M(\phi))|
$$

as desired.
Remark A.0.10. Under the isomorphism $A(\bar{K})_{0} \cong \mathcal{O}_{\bar{K}}^{\times g}$, the subgroup $A(\bar{K})_{1}$ of points reducing to the identity corresponds to $\left(1+\pi_{K} \mathcal{O}_{K}\right)^{g}$. In particular, if $p=2$ then $\boldsymbol{\mu}_{2}^{g}$ lies in $\left(1+\pi_{K} \mathcal{O}_{K}\right)^{g}$ and so, when $p=2$, we may replace $\left|A[\phi] \cap A(\bar{K})_{0}\right|$ with the quantity $\left|A[\phi] \cap A(\bar{K})_{1}\right|$.

Remark A.0.11. Note that in the setup above, $A(\bar{K})_{0}[2]$ corresponds to $\{ \pm 1\}^{g}$ sitting inside $\mathcal{O}_{\bar{K}}^{\times g} \subseteq \bar{K}^{\times g}$ and is fixed by the action of $\operatorname{Gal}(\bar{K} / K)$. In particular, $A(\bar{K})_{0}[2]=A(K)_{0}[2]$. Suppose we have $|A(K)[2]|=2^{g}$. Then we must necessarily have $A(K)[2]=A(\bar{K})_{0}[2]$. In particular, under this assumption, we have $A[\phi] \cap$ $A(\bar{K})_{0}=A(K)[\phi]$.

Bibliography

[1] A. Betts. On the computation of Tamagawa numbers and Néron component groups of semistable hyperelliptic curves. Preprint, 2016.
[2] B.J. Birch. Conjectures concerning elliptic curves. Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, R.I., pages 106-112, 1965.
[3] B.J. Birch and H.P.F. Swinnerton-Dyer. Notes on elliptic curves i and ii. J.Reine Angew. Math, (no. 212), 1963-1965.
[4] N. Bruin and K. Doerksen. The arithmetic of genus two curves with (4,4)-split jacobians. Canad. J. Math. Vol. 63 (5), 2011.
[5] J.W.S. Cassels and E.V. Flynn. Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2. London Mathematical Society, Lecture Note Series 230, Cambridge University Press, 1996.
[6] K. Cesnavicius. The p-parity conjecture for elliptic curves with a p-isogeny. J. Reine Angew. Math. 719, pages 45-73, 2016.
[7] J. Coates, T. Fukaya, K. Kato, and R. Sujatha. Root numbers, Selmer groups, and non-commutative Iwasawa theory. J. Algebr. Geom., 19(1):19-97, 2010.
[8] T. Dokchitser. Notes on the parity conjecture. In Elliptic Curves, Hilbert Modular Forms and Galois Deformations, pages 201-249. Springer Basel, Basel, 2013.
[9] T. Dokchitser and V. Dokchitser. Parity of ranks for elliptic curves with a cyclic isogeny. Journal of Number Theory, Vol 128, 2008.
[10] T. Dokchitser and V. Dokchitser. Regulator constants and the parity conjecture. Inventiones mathematicae, 178(1):23, 2009.
[11] T. Dokchitser and V. Dokchitser. On the Birch-Swinnerton-Dyer quotients modulo squares. Annals of Mathematics, Princeton University and Institute for Advanced Study, Vol 172, 2010.
[12] T. Dokchitser and V. Dokchitser. Root numbers and parity of ranks of elliptic curves. Journal für die reine und angewandte Mathematik (Crelles Journal), 2011(658):39-64, 2011.
[13] T. Dokchitser and V. Dokchitser. Local invariants of isogenous elliptic curves. Transactions of the American Mathematical Society, 367(6):4339-4358, 2015.
[14] T. Dokchitser, V. Dokchitser, C. Maistret, and A. Morgan. Arithmetic of hyperelliptic curves over local fields. Preprint, 2017.
[15] T. Dokchitser, V. Dokchitser, C. Maistret, and A. Morgan. Semistable types of hyperelliptic curves. arXiv:1704.08338, 2017.
[16] V. Dokchitser. Root numbers of non-abelian twists of elliptic curves. Proceedings of the London Mathematical Society, 91(2):300-324, 2005.
[17] V. Dokchitser and C. Maistret. Parity of ranks of abelian surfaces. Preprint, 2017.
[18] J. González, J. Guàrdia, and V. Rotger. Abelian surfaces of gl2-type as jacobians of curves. Acta Arithmetica, 116(3):263-287, 2005.
[19] B. Gross and J. Harris. Real algebraic curves. Annales scientifiques de l'École Normale Supèrieure, 14(2):157-182, 1981.
[20] S. Kadziela. Rigid analytic uniformization of curves and the study of isogenies. Acta Applicandae Mathematicae, 99(2):185-204, 2007.
[21] B.D. Kim. The parity theorem of elliptic curves at primes with supersingular reduction. Compos. Math.143, pages 47-72, 2007.
[22] K. Kramer. Arithmetic of elliptic curves upon quadratic extension. Trans. Amer. Math. Soc. 264, pages 121-135, 1981.
[23] K. Kramer and J. Tunnel. Elliptic curves and local ϵ-factors. Compositio Math. 46, pages 307-352, 1982.
[24] J. S. Milne. Abelian varieties. In Arithmetic geometry (Storrs, Conn., 1984), pages 103-150. Springer, New York, 1986.
[25] J.S. Milne. Arithmetic Duality Theorems. BookSurge, LLC, second edition, 2006.
[26] J.S. Milne. Jacobian varieties. In Arithmetic Geometry (Storrs, Conn., 1984), pages 167-212, Springer, New York, 1986.
[27] P. Monsky. Generalizing the Birch-Stephens theorem. I: Modular curves. Math. Z. 221, pages 415-420, 1996.
[28] A. Morgan. 2-Selmer Parity for Hyperelliptic Curves in Quadratic Extensions. ArXiv e-prints, April 2015.
[29] J. Nekovar. Selmer complexes. Astérisque 310, 2006.
[30] J. Nekovar. On the parity of ranks of selmer groups iv. Compos. Math 145, 6:1351-1359, 2009.
[31] M. Papikian. Non-Archimedean uniformization and monodromy pairing. In Tropical and non-Archimedean geometry, volume 605 of Contemp. Math., pages 123-160. Amer. Math. Soc., Providence, RI, 2013.
[32] B. Poonen and M. Stoll. The Cassels-Tate pairing on polarized abelian varieties. Annals of Mathematics, 150, 1999.
[33] M. Sabitova. Root numbers of abelian varieties. Transactions of the American Mathematical Society, 359(9):4259-4284, 2007.
[34] B. Smith. Explicit Endomorphisms and Correspondence, phd thesis. 2005.
[35] M. Stoll. Arithmetic of Hyperelliptic Curves. Summer Semester 2014, University of Bayreuth.
[36] J. Tate. On the conjectures of Birch and Swinnerton-Dyer and a geometric analog. Seminaire N. Bourbaki, 306:415-440, 1964-66.
[37] J. Tate. Number theoretic background. In Automorphic Forms, Representations and L-Functions, Part 2. Proc. Symp. in Pure Math., vol. 33. AMS, Providence, pages 3-26. Borel, A., Casselman, W. (eds.), 1979.
[38] K. Ueno and Y. Namikawa. The complete classification of fibres in pencils of curves of genus two. Manuscripta mathematica, 9:143-186, 1973.

[^0]: ${ }^{1}$ If C is defined by a polynomial of degree 5 , it is always possible after a change of variable, to consider a model for C with a defining polynomial of degree 6

[^1]: ${ }^{2}$ i.e. the set $\left\{G_{i}(x), i=1,2,3\right\}$ is preserved by the action of $\operatorname{Gal}(\overline{\mathcal{K}} / \mathcal{K})$

[^2]: ${ }^{1}$ the list is not complete as we are not considering the types $1 \times I_{n}$ and $I_{n} \times I_{m}$ in this work. A complete version of this list can be found in 15 .

[^3]: ${ }^{2}$ or to one of the missing cases that can be found in Table 9 in 15
 ${ }^{3}$ See Remark 3.4.31 if the reduction of $G(x)$ is different from that given in Table 3.1

[^4]: ${ }^{4}$ when the cluster picture is balanced and the maximal cluster is not übereven, this amounts to counting the number of + on top of twins

[^5]: ${ }^{1}$ It is possible to centre the roots of a quadratic polynomial with a simple change of variable. Hence a Richelot polynomial can be made into a $C_{2} \times D_{4}$ by insisting that $G_{1}(x) \in \mathcal{K}[x]$ and performing that change of variable.

[^6]: Notation: $T_{\alpha_{1}}=c\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\beta_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{1}-\beta_{3}\right)$,

[^7]: $D=\operatorname{gcd}(2 a, 2 b, 2 n), N=4 a b+4 a n+4 b n, d=2$ if $2 a, 2 b, 2 n$ are odd, $d=1$ otherwise.

[^8]: $D=\operatorname{gcd}(2 a, 2 b, 2 n), N=4 a b+4 a n+4 b n, d=2$ if $2 a, 2 b, 2 n$ are odd, $d=1$ otherwise,

