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Abstract

In this paper we prove the well-posedness for a stochastic partial differential

equation (SPDE) whose solution is a probability-measure-valued process. We

allow the coefficients to depend on the median or, more generally, on the γ-

quantile (or some its useful extensions) of the underlying distribution. Such

SPDEs arise in many applications, for example, in auction system described in

[2]. The well-posedness of this SPDE does not follow by standard arguments

because the γ-quantile is not a continuous function on the space of probability

measures equipped with the weak convergence.
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1 Introduction

1.1 Statement of the problem and the main result

In 2012 Dan Crisan, Thomas G. Kurtz and Yoonjung Lee described a model of

asset price determination by an infinite collection of competing traders in their

article “Conditional distributions, exchangeable particle systems, and stochas-

tic partial differential equations”. In this model each trader’s valuation of the

assets is the solution of a stochastic differential equation (SDE). Existence of

a solution for the infinite exchangeable system of SDEs is proven in [2], and it

was noted that uniqueness of this solution is an interesting problem. Our goal

in this paper is the well-posedness of the SPDE satisfied by the de Finetti mea-

sure of an infinite exchangeable system of valuations. We will give motivation

and explanation in more detail in Section 1.3.

We start with some notions. Let us denote by ∇ the gradient with respect

to the spatial variable x ∈ Rd, by ‖u‖L the norm of functions in L1

(
Rd
)
, by

δx the Dirac measure at x ∈ Rd, by |v| the Euclidean norm of a vector v ∈ Rd.

For any γ ∈ (0, 1) and any continuous positive integrable function u on R

let us define the quantile Qγ(u) as the number satisfying∫ Qγ(u)

−∞
u(x) dx = γ‖u‖L.

In a special case when γ = 1/2, the value Qγ(u) is called the median of u. In

finances, the values of Qγ(u) for small γ determine the so-called Value at Risk

(VaR) (see [6]).

More generally, for any vector γ = (γ1, . . . , γd) with all γk ∈ (0, 1) and

any continuous positive integrable function u on Rd, let us define the quantile

vector Qγ(u) =
(
Q1
γ, . . . , Q

d
γ

)
(u) with the coordinates uniquely specified by

the equations ∫
A
Qγ (u)

k

u(x) dx = γk‖u‖L, k = 1, . . . , d,

where

A
Qγ(u)
k =

{
x ∈ Rd : xk ≤ Qk

γ(u)
}
.
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Finally, for any vector γ = (γ1, . . . , γd) with all γk ∈ (0, 1) and
∑
γk < 1,

and any continuous positive integrable function u on Rd, let us define the

vector Q̃γ(u) =
(
Q̃1
γ, . . . , Q̃

d
γ

)
(u) with the coordinates uniquely specified by

the equations ∫
A
Q̃γ (u)

k

u(x) dx = γk‖u‖L, k = 1, . . . , d,

where

A
Q̃γ(u)
k =

{
x ∈ Rd : xk − Q̃k

γ(u) ≥ 0 ∨max
l 6=k

(
xl − Q̃l

γ(u)
)}

and a ∨ b = max(a, b). The following diagram helps to visualise sets A
Q̃γ(u)
k

when dimension d = 2.

x1

x2

Q̃γ(u)

A
Q̃γ(u)
1

A
Q̃γ(u)
2

Vector Q̃γ(u) was introduced in [2] (the intuition behind it is given in Section

1.3), and we shall call it the CKL-quantile, named after the authors of [2]. In

dimension d = 1, Q̃γ(u) = Q1−γ(u), i.e. quantile and CKL-quantile coincide.

In this paper we shall study the well-posedness of the following second

order SPDE

ut(x) = u0(x) +

∫ t

0

Ls(Qγ(us))us(x) ds

+

∫ t

0

((β(s, x),∇)us(x) + α(s, x)us(x)) ◦dWs, t ∈ (0, T ],

(1)

where Lt is an operator of the form

Lt(q)u =
1

2

(
σ̄σ̄T (t, x, q)∇,∇

)
u+ (g(t, x, q),∇)u+ d(t, x, q)u,

Wt is a standard 1-dimensional Brownian motion, functions α(t, x) and β(t, x)
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are, respectively, 1-dimensional and d × 1 vector-valued continuous functions

on [0, T ] × Rd satisfying Condition (E.1)k below for some k ≥ 4, functions

d(t, x, q), g(t, x, q) and σ̄(t, x, q) are, respectively, 1-dimensional, d× 1 vector-

valued and d × d′′ matrix-valued continuous functions on [0, T ] × Rd × Rd

satisfying Condition (E.2) below. Differential ◦dWt in equation (1) is the

Stratonovich differential. We will consider this equation for both quantile

Qγ(ut) and CKL-quantile Q̃γ(ut).

Condition (E.1)k. Functions α(t, x), βi(t, x) are continuous and bounded on

[0, T ]×Rd, (k+ 2)-times differentiable in x and continuously differentiable in

t with bounded derivatives.

Condition (E.2). A square matrix-valued function σ̄σ̄T (t, x, q) is uniformly

elliptic, i.e. there exists some constant m > 0 such that

m−1|ξ|2 ≤
(
σ̄σ̄T (t, x, q)ξ, ξ

)
≤ m|ξ|2

holds for all ξ, x, q ∈ Rd and t ∈ [0, T ]. Functions σ̄il(t, x, q), gi(t, x, q),

d(t, x, q) are continuous and bounded on [0, T ]×Rd ×Rd, twice continuously

differentiable in x with bounded derivatives, twice continuously differentiable

in q, and uniformly Lipschitz continuous in q.

Let ut ∈ L1

(
Rd
)
∩C2

(
Rd
)

be a positive continuous C2-semimartingale (see

definitions in the fifth paragraph of Section 1.2). Suppose ut is continuous in

L1

(
Rd
)
. In Appendix E we show that both quantile Qγ(ut) and CKL-quantile

Q̃γ(ut) are continuous in t. Then it is called a solution with the initial value

u0 if it satisfies equation (1) for any x ∈ Rd and t ∈ (0, T ] a.s.

Throughout this paper we will use the Stratonovich integrals only. It allows

us to deal with the stochastic analysis for irregular functionals of time (e.g.

semimartingales) in the same way as the deterministic analysis for regular

(smooth) functionals of time, due to the Itô’s formula for the Stratonovich

differential.

As an auxiliary problem we shall consider the equation

ut(x) = u0(x) +

∫ t

0

Ls(qs)us(x) ds

+

∫ t

0

((β(s, x),∇)us(x) + α(s, x)us(x)) ◦dWs, t ∈ (0, T ],

(2)
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with a given d-dimensional continuous semimartingale qt. In Section 2 we will

show that if u0 ∈ L1

(
Rd
)
∩ C

(
Rd
)

is a bounded strictly positive function

on Rd, then there exists a unique bounded solution ut(x) of equation (2)

such that it is a continuous C3-process (see definitions in the fifth paragraph

of Section 1.2). Moreover, by Proposition 2.8 this solution ut(x) is strictly

positive. Under the following Condition (E.3) and ‖u0‖L = 1, we will show

in motivational Section 1.3 that ut(x) is the density function of some measure

vt ∈ P
(
Rd
)
. (See system (14) and equation (17).)

Condition (E.3). Functions σ̄, g, d, α and β satisfy

1

2

d∑
i,j=1

∂2
(
σ̄σ̄T

)ij
∂xi∂xj

(t, x, q) + d(t, x, q) =
d∑
i=1

∂gi

∂xi
(t, x, q),

α(t, x) =
d∑
i=1

∂βi

∂xi
(t, x)

for all x, q ∈ Rd and t ∈ [0, T ].

The preservation of the L1-norm of ut will be used in Proposition 2.11.

For the following uniqueness theorems we need Sobolev spaces. Recall that

Sobolev spaces Hk
1

(
Rd
)

are defined as the spaces of integrable functions on

Rd with all derivatives up to and including order k being well defined in the

distribution sense and being again integrable functions. The norm ‖u‖Hk
1 (Rd)

is defined as the sum of L1-norms of u and all its partial derivatives up to and

including order k.

Theorem 1.1. For a given T > 0 and vector γ = (γ1, . . . , γd) with all γk ∈
(0, 1), consider equation (1) in case of the quantile vector Qγ. Assume that

Conditions (E.1)k, (E.2) and (E.3) hold for some k ≥ 4. Then for any bounded

strictly positive u0 ∈ H2
1

(
Rd
)
∩C

(
Rd
)
, there exists a unique bounded solution

ut(x) of equation (1) with initial condition u0, such that it is a continuous

C3-process.

Theorem 1.2. For a given T > 0, vector γ = (γ1, . . . , γd) with all γk ∈ (0, 1)

and
∑
γk < 1, and dimension d ≤ 3, consider equation (1) in case of the

CKL-quantile vector Q̃γ. Assume that Conditions (E.1)k, (E.2) and (E.3)
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hold for some k ≥ 4. Then for any bounded strictly positive u0 ∈ H2
1

(
Rd
)
∩

C
(
Rd
)
, there exists a unique bounded solution ut(x) of equation (1) with initial

condition u0, such that it is a continuous C3-process.

The smooth dependence of the solution of equation (1) on initial data will

be considered in Section 4. Also, in Section 5, we will prove the well-posedness

of equation (1) in the case of multidimensional Wt and some additional restric-

tions on α and β.

Remark. The restriction on the dimension d ≤ 3 in Theorem 1.2 is due to

the inability to prove Proposition B.1 in Appendix B for d ≥ 4.

Some of the simplified versions of equation (1) has been considered before.

The well-posedness and sensitivity analysis for equation (1) with α(x), β(x),

σ̄(x) depending only on x and g(t, x, [u]), d(t, x, [u]) depending in a smooth way

on the underlying function u (not on its quantile) was developed in [9]. The

well-posedness for equation (1) in case of the quantile vector Qγ and α, β = 0

was done in [7].

In Section 1.2 we will recall the basic definitions and notions of stochas-

tic calculus such as stochastic integrals, differential equations and stochastic

flows. These results are taken from [11] and adapted to our needs for solving

equation (2). Section 1.3 is devoted to motivations for considering our equa-

tion (1). We have already mentioned before that SPDEs of this type arise

in [2] as an application to finances, so in this section we will briefly review

the introductory and the multiple assets sections of that article, and rewrite

some of the SPDEs in the Stratonovich form. While the existence of a solution

to system (13) is proven in [2], Theorem 1.2 provides the uniqueness of the

solution to system (14), which is a special case of system (13). In Section

2.1 we will adapt the Hiroshi Kunita’s method of stochastic characteristics for

solving SPDEs to equation (2). Also we will prove some essential properties

of stochastic characteristics that are used in further sections. In Section 2.2

we will generalize some of the propositions from [7] to the case of equation

(1) for both quantile Qγ(ut) and CKL-quantile Q̃γ(ut). Section 3 contains

the proof of Theorems 1.1 and 1.2. In Section 4 we will make the sensitivity

analysis of the solution of equation (1) with respect to initial data. The case

of multidimensional Wt will be considered in Section 5.
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1.2 Preliminaries

In this section we will recall the basic definitions and notions of stochastic

calculus adapted to our needs in this paper.

Quadratic variational processes

Let Xt, t ∈ [0, T ] be a continuous stochastic process, ∆ = {0 = t0 < . . . < tl =

T} be a partition of the interval [0, T ] and let |∆| = maxk(tk+1 − tk). Define

a continuous process 〈X〉∆t associated with the partition ∆ by

〈X〉∆t =
l−1∑
k=0

(
Xt∧tk+1

−Xt∧tk
)2
,

where t∧s = min(t, s). This process is called the quadratic variational process

or simply the quadratic variation of Xt associated with the partition ∆.

Let {∆n} be a sequence of partitions with |∆n| → 0. Suppose that the

limit of
{
〈X〉∆n

t

}
exists in probability for every t and it is independent of

the choice of sequences {∆n} a.s. Then it is called the quadratic variational

process or simply the quadratic variation of Xt and is denoted by 〈X〉t or by

〈Xt〉.
The quadratic variation does not exist for any continuous stochastic pro-

cess.

Theorem 1.3 (Theorem 2.2.5 in [11]). Let Mt be a continuous localmartin-

gale. Then there exists a continuous increasing process 〈M〉t such that 〈M〉∆t
converges uniformly to 〈M〉t in probability.

Theorem 1.4 (Theorem 2.2.10 in [11]). Let Xt be a continuous semimartin-

gale. Then 〈X〉∆t converges uniformly to 〈M〉t in probability as |∆| → 0, where

Mt is the localmartingale part of Xt.

Let Mt and Nt be continuous localmartingales. Define the joint quadratic

variation of Mt and Nt associated with the partition ∆ = {0 = t0 < . . . < tl =

T} by

〈M,N〉∆t =
l−1∑
k=0

(
Mt∧tk+1

−Mt∧tk
)(
Nt∧tk+1

−Nt∧tk
)
. (3)

10



Theorem 1.5 (Theorem 2.2.11 in [11]). 〈M,N〉∆t converges uniformly to a

continuous process of bounded variation in probability as |∆| → 0.

The limit is denoted by 〈M,N〉t or 〈Mt, Nt〉 and is called the joint quadratic

variation of Mt and Nt.

Finally, the joint quadratic variation 〈X, Y 〉∆t of continuous semimartin-

gales Xt and Yt associated with the partition ∆ is defined in the same way as

(3).

Theorem 1.6 (Theorem 2.2.14 in [11]). 〈X, Y 〉∆t converges uniformly in prob-

ability to a continuous process of bounded variation 〈X, Y 〉t. If Mt and Nt are

the parts of localmartingales of Xt and Yt, respectively, then 〈X, Y 〉t coincides

with 〈M,N〉t.

The above process 〈X, Y 〉t is called the joint quadratic variation of Xt and

Yt.

Stochastic integrals and Itô’s formula

Let Mt and ft be a continuous localmartingale and a continuous (Ft)-adapted

process respectively, and let ∆ = {0 = t0 < . . . < tl = T} be a partition of

[0, T ]. Define

L∆
t ≡

l−1∑
k=0

ft∧tk
(
Mt∧tk+1

−Mt∧tk
)
.

It is shown in [11] that L∆
t converges uniformly in probability to a continuous

localmartingale as |∆| → 0. This limit is denoted by
∫ t

0
fs dMs and is called

the Itô’s integral of ft by dMt.

Let Xt be a continuous semimartingale decomposed as Xt = Mt+At, where

Mt is a continuous localmartingale and At is a continuous process of bounded

variation. For an arbitrary continuous (Ft)-adapted process ft we define the

Itô’s integral by dXt:∫ t

0

fs dXs ≡
∫ t

0

fs dMs +

∫ t

0

fs dAs.

It is a continuous semimartingale.
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Let us define another stochastic integral by the differential ◦dXt:∫ t

0

fs ◦dXs = lim
|∆|→0

l−1∑
k=0

1

2

(
ft∧tk+1

+ ft∧tk
)(
Xt∧tk+1

−Xt∧tk
)
.

If this limit converges in probability, it is called the Stratonovich integral of fs

by ◦dXs.

Theorem 1.7 (Theorem 2.3.5 in [11]). If ft is a continuous semimartingale,

the Stratonovich integral is well defined. Further it satisfies∫ t

0

fs ◦dXs =

∫ t

0

fs dXs +
1

2
〈f,X〉t.

Finally, let us recall the celebrated Itô’s formula.

Theorem 1.8 (Theorem 2.3.11 in [11]). Let Xt =
(
X1
t , . . . , X

d
t

)
be a con-

tinuous semimartingale. If F
(
x1, . . . , xd

)
is a C2-function, then F (Xt) is a

continuous semimartingale and satisfies the formula

F (Xt)− F (X0) =
d∑
i=1

∫ t

0

Fxi(Xs) dX
i
s +

1

2

d∑
i,j=1

∫ t

0

Fxixj(Xs) d
〈
X i, Xj

〉
s
.

Furthermore if F is a C3-function, then we have

F (Xt)− F (X0) =
d∑
i=1

∫ t

0

Fxi(Xs) ◦dX i
s.

Stochastic differential equations

Let β(x, t) =
(
β1(x, t), . . . , βd(x, t)

)
be a continuous function on Rd × [0, T ],

continuously differentiable in t with bounded derivatives. Let Wt be a stan-

dard 1-dimensional Brownian motion. Then
∫ t

0
β(x, s) dWs is a continuous

martingale for every x ∈ Rd. In the third paragraph of Section 2.1.1 we will

show that
∫ t

0
β(x, s) dWs can be rewritten in an explicit form∫ t

0

β(x, s) dWs = −
∫ t

0

∂β

∂s
(x, s)Ws ds+ β(x, t)Wt.
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Therefore, we see that
∫ t

0
β(x, s) dWs is a continuous martingale with values

in C = C
(
Rd : Rd

)
.

First of all let us recall Itô’s stochastic differential equation based on∫ t
0
β(x, s) dWs. The term “based on” comes from [11], where stochastic in-

tegrals and stochastic differential equations are defined for a more general

class of continuous semimartingales with spatial parameters. Assume that

βi(x, t) are differentiable in x, βi(x, t) and all their derivatives are bounded

functions on Rd × [0, T ]. Let t0 ∈ [0, T ] and x0 ∈ Rd be given. A continuous

Rd-valued process ϕt, t ∈ [t0, T ] adapted to (Ft) is called a solution of Itô’s

stochastic differential equation based on
∫ t

0
β(x, s) dWs starting at x0 at time

t0 if it satisfies

ϕt = x0 +

∫ t

t0

β(ϕs, s) dWs. (4)

By Theorem 3.4.1 in [11], for each t0 and x0, Itô’s equation (4) has a unique

solution.

Next let us recall the notion of Stratonovich stochastic differential equation

based on
∫ t

0
β(x, s) dWs. Assume that βi(x, t) are 3-times differentiable in x,

βi(x, t) and all their derivatives are bounded functions on Rd × [0, T ]. Let

t0 ∈ [0, T ] and x0 ∈ Rd be given. A continuous Rd-valued semimartingale ϕt,

t0 ≤ t ≤ T is called a solution of Stratonovich stochastic differential equation

based on
∫ t

0
β(x, s) dWs starting at x0 at time t0 if it satisfies

ϕt = x0 +

∫ t

t0

β(ϕs, s) ◦dWs. (5)

By Theorem F.3 in Appendix F, for each t0 and x0, Stratonovich equation (5)

has a unique solution.

Backward integrals and backward equations

In this paragraph we shall recall backward stochastic integrals and backward

stochastic differential equations. The arguments are completely parallel to

those of (forward) stochastic integrals and stochastic differential equations.

The only difference is that these are defined to the backward direction.

A family {Fs,t : 0 ≤ s ≤ t ≤ T} of sub σ-fields of F is called a filtra-

tion with two parameters if it contains all null sets and satisfies Fs,t ⊂ Fs′,t′ ,
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⋂
ε>0 Fs,t+ε = Fs,t and

⋂
ε>0 Fs−ε,t = Fs,t for all s′ ≤ s ≤ t ≤ t′. A continuous

process M̂t is called a backward martingale adapted to (Fs,t) if it is integrable,

M̂t − M̂s is Fs,t-measurable and satisfies E
[
M̂r − M̂t

∣∣∣Fs,t

]
= M̂s − M̂t for

any r ≤ s ≤ t. A backward localmartingale is defined similarly to the (for-

ward) localmartingale. Let X̂t be a continuous process such that X̂t − X̂s is

(Fs,t)-adapted. If X̂t can be written as the sum of a continuous backward lo-

calmartingale and a process of bounded variation, then it is called a backward

semimartingale.

For example, let Wt be a standard 1-dimensional Brownian motion. For

s < t, let Fs,t be the least sub σ-field of F containing all null sets and⋂
ε>0 σ(Wu −Wv : s − ε ≤ u, v ≤ t + ε). Then Wt is a continuous backward

martingale adapted to (Fs,t).

Now let Xt be a continuous backward semimartingale. Let us fix an arbi-

trary time t, and let fs, s ∈ [0, t] be a continuous (Fs,t)-adapted process. If

the right hand side of the following formula converges in probability, then it

is called the backward Itô’s integral of fs by d̂Xs∫ t

s

fr d̂Xr = lim
|∆|→0

n−1∑
k=0

ftk+1∨s
(
Xtk+1∨s −Xtk∨s

)
,

where ∆ = {0 = t0 < . . . < tn = t}, t ∨ s = max(t, s). It is a continuous

backward semimartingale with respect to s. Suppose that fs is a continuous

backward semimartingale. Since the right hand side of the following formula

converges in probability, it is called the backward Stratonovich integral of fs

by d̂Xs. ∫ t

s

fr ◦d̂Xr = lim
|∆|→0

n−1∑
k=0

1

2

(
ftk+1∨s + ftk∨s

)(
Xtk+1∨s −Xtk∨s

)
.

The backward Itô’s and Stratonovich integrals are related by∫ t

s

fr ◦d̂Xr =

∫ t

s

fr d̂Xr −
1

2
〈f,X〉s,t ,

where 〈 , 〉s,t denotes the joint quadratic variation for the time interval [s, t].

Let ft and Xt be continuous forward-backward semimartingales. While the
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forward Stratonovich integral
∫ t

0
fs ◦dXs is a continuous forward semimartin-

gale with respect to t and the backward Stratonovich integral
∫ t
s
fr ◦ d̂Xr is

a continuous backward semimartingale with respect to s, these two integrals

coincide when s = 0.

Next, a continuous (Fs,t0)-adapted process ϕs, s ∈ [0, t0] with values in

Rd is called the solution of the backward Itô’s stochastic differential equation

based on
∫ t

0
β(x, s) dWs starting at x0 at time t0 if it satisfies

ϕs = x0 −
∫ t0

s

β(ϕr, r) d̂Wr.

The solution of the backward Stratonovich stochastic differential equation is

defined similarly.

Semimartingales with spatial parameters

In this paragraph let us recall the definition of continuous semimartingales

according to their regularity with respect to the spatial parameter.

We can regard a family of real valued processes F (x, t) with parameter

x ∈ Rd as a random field with double parameters x and t. If F (x, t, ω) is a

continuous function of x a.s. for any t, we can regard F (·, t) as a stochastic

process with values in C = C
(
Rd : R

)
or a C-valued process. If F (x, t, ω) is

m-times continuously differentiable with respect to x a.s. for any t, it can be

regarded as a stochastic process with values in Cm or a Cm-valued process. In

the case where F (x, t) is a continuous process with values in Cm, it is called a

continuous Cm-process.

Let α = (α1, . . . , αd) be a multi index of non-negative integers and |α| =

α1 + . . .+ αd. Set

Dα
xf =

∂|α|f

(∂x1)α1 . . . (∂xd)αd
.

A family of continuous localmartingales M(x, t), x ∈ Rd is said to be

a continuous localmartingale with values in Cm or a continuous Cm-local-

martingale if M(x, t) is a continuous Cm-process, and for each α with |α| ≤ m,

Dα
xM(x, t), x ∈ Rd is a family of continuous localmartingales.

Let F (x, t), x ∈ Rd be a family of continuous semimartingales decomposed

as F (x, t) = M(x, t) + B(x, t), where M(x, t) is a continuous localmartingale
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and B(x, t) is a continuous process of bounded variation. A family of contin-

uous semimartingales F (x, t), x ∈ Rd is said to belong to the class Cm or sim-

ply to be a Cm-semimartingale if M(x, t) is a continuous Cm-localmartingale,

B(x, t) is a continuous Cm-process and Dα
xB(x, t), x ∈ Rd, |α| ≤ m are all

processes of bounded variation. A continuous backward Cm-semimartingale is

defined similarly.

Stochastic flows

In this paragraph let us recall the definition of the stochastic flow of home-

omorphisms and diffeomorphisms on the Euclidean space. Let ϕs,t(x, ω),

s, t ∈ [0, T ], x ∈ Rd be a continuous Rd-valued random field. Then for any s, t

and almost all ω, ϕs,t(ω) ≡ ϕs,t(·, ω) defines a continuous map from Rd into

itself. It is called a stochastic flow of homeomorphisms if there exists a subset

N ⊂ Ω of probability 1 such that for any ω ∈ N , the family of continuous

maps {ϕs,t(ω) : s, t ∈ [0, T ]} defines a flow of homeomorphisms, i.e. it satisfies

the following properties:

1. ϕs,u(ω) = ϕt,u(ω)◦ϕs,t(ω) holds for all s, t, u where ◦ denotes the com-

position of maps,

2. ϕs,s(ω) = identity map for all s,

3. the map ϕs,t(ω) : Rd → Rd is an onto homeomorphism for all s, t.

Further ϕs,t(ω) is called a stochastic flow of Ck-diffeomorphisms, if it satisfies

the following condition

4. ϕs,t(x, ω) is k-times differentiable with respect to x for all s, t and the

derivatives are continuous in (s, t, x).

1.3 Motivation

In mathematical finance the price process for an asset is modeled by a stochas-

tic process {St, t ≥ 0}, and an important objective is to find a good model for

asset prices. A famous example is Brownian motion introduced by Bachelier in

1900 (see [1]) as a model for the price fluctuations on the Paris stock market.

In 1964, Samuelson (see [18]) suggested the use of geometric Brownian motion

16



as a suitable model. Since then a number of other stochastic processes have

been used to model price processes.

Let us consider an asset pricing model, where the price of a single asset is

determined through a continuous-time auction system. Assume that N traders

compete for n units of the asset, where n < N . Each trader owns either one

share or no shares. At any point in time, the traders submit their bid prices,

and those who submit the highest n bids each own a share. Denote the log of

the bid price (or valuation) of the i-th trader at time t by X i
t , and the log of

the stock price by SNt . Throughout this section, by bid price or stock price we

will understand the log of these prices omitting the word “log”. Based on the

rules of this auction system, the market clearing condition for the equilibrium

stock price SNt is given by:

N∑
i=1

1{Xi
t≥SNt } = n

(Demand) = (Supply).

If we denote the empirical measure of
{
X1
t , . . . , X

N
t

}
by

vNt =
1

N

N∑
i=1

δXi
t
,

then the market clearing condition rewrites as

vNt
[
SNt ,∞

)
=

n

N
.

As N tends to infinity and n
N
→ 1−α, for some α ∈ (0, 1), the stock price

St = lim
N→∞

SNt

becomes the α-quantile process V α
t of the measure

vt = lim
N→∞

vNt

that is the limit of the empirical distribution vNt of the bid prices.

Let us consider the following geometric mean-reverting process as a model
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for X i
t :

X i
t = X i

0 + β

∫ t

0

(
Ss −X i

s

)
ds+ σWt + σ̄Bi

t,

where β, σ and σ̄ are some positive constants. In this example, each investor

takes the stock price as a signal for the value of the asset and adjusts his or

her valuation upward if it is below the stock price and downward if it is above.

The parameter β evaluates the mean reversion rate toward St. The higher

this parameter value is, the faster the positions tend to mean-revert. The

Brownian motion Wt models the common market noise, while the Brownian

motion Bi
t models the trader’s own uncertainty.

More generally, let us consider the following system

X i
t = X i

0 +

∫ t

0

f
(
X i
s, V

α
s

)
ds+

∫ t

0

σ
(
X i
s, V

α
s

)
dWs +

∫ t

0

σ̄
(
X i
s, V

α
s

)
dBi

s, (6)

where, asymptotically (as the number of traders N tends to infinity), the stock

price V α
t should be determined by

V α
t = inf {x ∈ R : vt(−∞, x] ≥ α} (7)

and

vt = lim
m→∞

1

m

m∑
i=1

δXi
t
. (8)

We assume that {X i
0} is exchangeable and require the solutions {X i

t} to be

exchangeable so that the limit in formula (8) exists by de Finetti’s theorem (see

Theorem 2.2 in [4]). The process Wt is a d′-dimensional standard Brownian

motion, common to all diffusions, while the processes {Bi
t}i≥1 are mutually

independent 1-dimensional standard Brownian motions.

Systems of this type in the case when the coefficients are Lipschitz functions

of v in the Wasserstein metric on P
(
Rd
)

have been considered in [12]–[14].

It is shown in [2] that v is a solution of the stochastic partial differential

equation

〈ϕ, vt〉 = 〈ϕ, v0〉+

∫ t

0

〈L(Ss)ϕ, vs〉 ds+

∫ t

0

〈σ(·, Ss)ϕ′, vs〉 dWs, (9)
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where 〈ϕ, vt〉 denotes

〈ϕ, vt〉 =

∫
R

ϕ(x)vt(dx)

and

L(S)ϕ =
1

2

(
σ(x, S)2 + σ̄(x, S)2

) d2ϕ

dx2
+ f(x, S)

dϕ

dx
.

Conditions. Assume that the coefficients f : R × R → R, σ : R × R →
Rd′ , σ̄ : R×R→ R satisfy the following

1. f, σ, σ̄ are continuous functions, uniformly Lipschitz in the first argu-

ment1,

2. σ̄(x, y) is positive,

3. There exists a constant K such that f, σ, σ̄ are bounded by K(1+|x|+|y|).

The following existence theorem is proven in [2].

Theorem 1.9. Suppose that Conditions above hold, that {X i
0} is exchange-

able2, and that E(|X i
0|) <∞. Then there exists a weak solution for the system

(6)–(8) such that {X i} is exchangeable and v satisfies the stochastic partial

differential equation (9).

However, the authors do not have a general uniqueness theorem for equa-

tion (6) (it is not covered by the theory developed in this paper either) and

they explicitly state that this is an interesting and important problem.

Now we extend the asset price model (6)–(8) to a market with multiple

assets. In order to specify the model, we need to identify an appropriate market

clearing condition. Suppose there are d assets and N competing traders. Each

trader owns at most one unit of one of the assets. If the prices of the assets

are s1, . . . , sd and the value that the i-th trader places on the k-th asset is xi,k,

then the i-th trader will buy the k-th asset provided

xi,k − sk ≥ 0 ∨max
l 6=k

(xi,l − sl). (10)

1There exists a constant c1 such that |f(x1, y) − f(x2, y)| ≤ c1|x1 − x2| holds for all
x1, x2, y ∈ R with a similar inequality holding for σ and σ̄.

2Let X =
{
Xi
}∞
i=1

be a sequence of real-valued random variables. We say that X is

exchangeable if, for every finite set {k1, . . . , kj} of distinct indices,
(
Xk1 , . . . , Xkj

)
is equal

in distribution to
(
X1, . . . , Xj

)
. (See Definition 2.1 in [4].)
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Suppose there are nk units of the k-th asset and
∑d

k=1 nk < N . Then the

prices should be set so that the assets can be allocated to the traders in such a

way that each unit of the k-th asset goes to a trader whose valuations satisfy

(10) and each trader with valuations satisfying xi,k− sk > 0∨maxl 6=k(xi,l− sl)
receives a unit of asset k. Define

Ask =

{
i : xi,k − sk ≥ 0 ∨max

l 6=k
(xi,l − sl)

}
and

As0 = {i : xi,k ≤ sk, k = 1, . . . , d} .

Each trader who receives asset k must have index in Ask, and each trader

who does not receive any asset must have index in As0. Denote n0 = N −∑d
k=1 nk, then the classical marriage theorem states that this allocation can

be performed if and only if for each I ⊂ {0, . . . , d},

#
⋃
k∈I

Ask ≥
∑
k∈I

nk. (11)

Assume that N tends to infinity, nk
N
→ ak and

1

N

N∑
i=1

δxi ⇒ v ∈ P
(
Rd
)
.

Now for each s ∈ Rd, let

Ask =

{
x ∈ Rd : xk − sk ≥ 0 ∨max

l 6=k

(
xl − sl

)}
, k = 1, . . . , d,

and

As0 =
{
x ∈ Rd : xk ≤ sk, k = 1, . . . , d

}
.

The continuous version of the market clearing condition (11) becomes

v

(⋃
k∈I

Ask

)
≥
∑
k∈I

ak. (12)

Lemma 3.1 in [2] states that for each v ∈ P
(
Rd
)
, there exists s ∈ Rd such
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that for each I ⊂ {0, . . . , d}, inequality (12) holds.

Let us consider the following infinite system

X i
t = X i

0 +

∫ t

0

f
(
X i
s, Ss

)
ds+

∫ t

0

σ
(
X i
s, Ss

)
dWs +

∫ t

0

σ̄
(
X i
s, Ss

)
dBi

s, (13)

where each X i
t is a d-dimensional stochastic process and St is the vector of

prices determined by the requirement that

vt

(⋃
k∈I

AStk

)
≥
∑
k∈I

ak.

That is, for the i-th trader, X i
t gives the valuations at time t of the d assets,

and

vt = lim
n→∞

1

n

n∑
i=1

δXi
t

gives the distribution of valuations by the infinite collection of traders. In

system (13), Ws and Bi
s are d′ and d′′-dimensional standard Brownian motions.

Existence of a solution is proven in [2]. Also it is shown that vt has a

strictly positive density ut which ensures that St is uniquely determined by vt

(St is the CKL-quantile Q̃a(ut) of the density function ut), and vt satisfies the

stochastic partial differential equation

〈ϕ, vt〉 = 〈ϕ, v0〉+

∫ t

0

〈L(Ss)ϕ, vs〉 ds+

∫ t

0

〈
∇ϕTσ(·, Ss), vs

〉
dWs,

where

L(S)ϕ =
1

2

((
σσT + σ̄σ̄T

)
(x, S)∇,∇

)
ϕ+ (f(x, S),∇)ϕ.

However, the authors do not have a general uniqueness theorem for system

(13), it is not covered by the theory developed in this paper either.
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Finally, let us consider the following special case of system (13)

X i
t = X i

0 +

∫ t

0

(
d∑
j=1

∂

∂xj

(
d′′∑
l=1

σ̄·lσ̄jl

)(
X i
s, Ss

)
+

1

2

d∑
j=1

d′∑
k=1

βjk
∂β·k

∂xj
(
X i
s

)
− g

(
X i
s, Ss

))
ds−

∫ t

0

β
(
X i
s

)
dWs +

∫ t

0

σ̄
(
X i
s, Ss

)
dBi

s.

(14)

The corresponding equation on the measure vt becomes

〈ϕ, vt〉 = 〈ϕ, v0〉+

∫ t

0

〈L(Ss)ϕ, vs〉 ds−
∫ t

0

〈
∇ϕTβ, vs

〉
dWs, (15)

where

L(S)ϕ =
1

2

((
ββT (x) + σ̄σ̄T (x, S)

)
∇,∇

)
ϕ+

(
d∑
j=1

∂

∂xj

(
d′′∑
l=1

σ̄·lσ̄jl

)
(x, S)

+
1

2

d∑
j=1

d′∑
k=1

βjk
∂β·k

∂xj
(x)− g(x, S),∇

)
ϕ.

The evolution of density ut satisfies the dual equation to (15)

ut(x) = u0(x) +

∫ t

0

L
(
Q̃a(us)

)∗
us(x) ds

+

∫ t

0

(
d∑
i=1

βi·(x)
∂us
∂xi

(x) +
d∑
i=1

∂βi·

∂xi
(x)us(x)

)
dWs,

(16)

where L(S)∗ is the dual operator to L(S)

L(S)∗u =
1

2

d∑
i,j=1

(
d′′∑
l=1

σ̄ilσ̄jl(x, S) +
d′∑
k=1

βikβjk(x)

)
∂2u

∂xi∂xj

+
d∑
i=1

(
d∑
j=1

d′∑
k=1

(
βik

∂βjk

∂xj
(x) +

1

2
βjk

∂βik

∂xj
(x)

)
+ gi(x, S)

)
∂u

∂xi

+

(
−1

2

d∑
i,j=1

∂2

∂xi∂xj

(
d′′∑
l=1

σ̄ilσ̄jl

)
(x, S) +

1

2

d∑
i,j=1

d′∑
k=1

∂

∂xi

(
βik

∂βjk

∂xj

)
(x)
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+
d∑
i=1

∂gi

∂xi
(x, S)

)
u.

Assume that ut is a continuous C1-semimartingale. In Appendix D we show

that using the Stratonovich integral, equation (16) can be written as

ut(x) = u0(x) +

∫ t

0

(
L
(
Q̃a(us)

)∗
− L̃

)
us(x) ds

+

∫ t

0

(
d∑
i=1

βi·(x)
∂us
∂xi

(x) +
d∑
i=1

∂βi·

∂xi
(x)us(x)

)
◦dWs,

(17)

where

L̃u =
1

2

d∑
i,j=1

(
d′∑
k=1

βikβjk(x)

)
∂2u

∂xi∂xj

+
d∑

i,j=1

d′∑
k=1

(
βik

∂βjk

∂xj
(x) +

1

2
βjk

∂βik

∂xj
(x)

)
∂u

∂xi

+
1

2

d∑
i,j=1

d′∑
k=1

∂

∂xi

(
βik

∂βjk

∂xj
(x)

)
u.
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2 Auxiliary results

2.1 Method of stochastic characteristics

In this section we will adapt the Hiroshi Kunita’s method of stochastic char-

acteristics for solving SPDEs to equation (2). Also we will make analysis of

stochastic characteristics that will be extensively used in further sections.

2.1.1 First order stochastic partial differential equations

Preliminaries

Let us first recall the theory of the deterministic partial differential equation

of the first order. Consider the initial value problem of the following linear

equation of the first order

∂ut
∂t

(x) = (β(x, t),∇)ut(x) + α(x, t)ut(x), u0 = f, (18)

where α(x, t) and βi(x, t) are continuous bounded functions on Rd × [0, T ],

continuously differentiable in x with bounded derivatives. The theory of lin-

ear partial differential equations of the first order tells us that the problem

of integrating equation (18) can be reduced to the characteristic system of

ordinary differential equations

dxi

dt
= −βi(x, t), du

dt
= α(x, t)u. (19)

Indeed, let

(x, u) =

(
ϕt(c1), c2 exp

{∫ t

0

α(ϕs(c1), s) ds

})
be the solution of equation (19) starting from (c1, c2) at t = 0. Then the solu-

tion of equation (18) is represented by means of the solution of the associated

characteristic equation in form c2 = f(c1) or

ut(x) = f
(
ϕ−1
t (x)

)
exp

{∫ t

0

α
(
ϕs
(
ϕ−1
t (x)

)
, s
)
ds

}
,

where ϕ−1
t is the inverse map of the map ϕt : Rd → Rd.

In this section we shall study the initial value problem of the linear SPDE
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of the first order given by

ut(x) = f(x)+

∫ t

0

((β(x, s),∇)us(x)+α(x, s)us(x))◦dWs, t ∈ (0, T ], (20)

where α(x, t) and βi(x, t) are continuous functions on Rd × [0, T ], and Wt is

a standard 1-dimensional Brownian motion. A continuous C1-semimartingale

ut(x), x ∈ Rd, t ∈ [0, T ] is called a (global) solution up to time T with the

initial value f if it satisfies equation (20) for any x and t a.s. Hiroshi Kunita

developed a general theory with local solutions for nonlinear equations, but we

will be interested only in global solutions for linear equations.

Assume that the coefficients α(x, t) and βi(x, t) satisfy Condition (E.1)k for

some k ≥ 3. Using the characteristic system of stochastic differential equations

developed in [11], we will solve linear equation (20).

Existence and uniqueness of solutions

The stochastic characteristic system associated with equation (20) is defined

by a system of Stratonovich stochastic differential equations of the form

ϕs,t(x) = x−
∫ t

s

β(ϕs,r(x), r) ◦dWr, (21)

where β(x, t) =
(
β1(x, t), . . . , βd(x, t)

)T
and

ηs,t(x, u) = u+

∫ t

s

ηs,r(x, u)α(ϕs,r(x), r) ◦dWr. (22)

By Theorem F.3 in Appendix F, for each s ∈ [0, T ] and (x, u) ∈ Rd ×R this

system of Stratonovich stochastic differential equations has a unique solution

(ϕs,t(x), ηs,t(x, u)), t ∈ [s, T ] starting at (x, u) at time s. By Theorem 4.6.53

in [11] this solution has a modification (ϕs,t(x), ηs,t(x, u)), 0 ≤ s ≤ t ≤ T

such that it is a forward stochastic flow of Ck-diffeomorphisms, and it is also

a Ck-semimartingale.

Since ηs,t satisfies the linear equation (22), we can find its solution straight

3We first rewrite the stochastic characteristic system using the Itô’s integral (rewritten
system is presented in Appendix D), and then apply the theorem.
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away

ηs,t(x, u) = u exp

{∫ t

s

α(ϕs,r(x), r) ◦dWr

}
.

Let f(x) be a function of the class Ck+1 corresponding to the initial value

of equation (20). We denote ϕ0,t(x) by ϕt(x). The Jacobian matrix ∂ϕt(x)

is always non-singular and the inverse ψt(x) ≡ ϕ−1
t (x) is defined for all t ∈

[0, T ], x ∈ Rd. Then by Theorem 6.1.9 in [11] equation (20) has a unique

global solution which is a continuous Ck-semimartingale, and it is represented

by

ut(x) = f(ψt(x)) exp

{∫ t

0

α(ϕs(y), s) ◦dWs

∣∣∣
y=ψt(x)

}
. (23)

Note that α(ϕs(y), s) is a continuous semimartingale by the Itô’s formula (The-

orem 1.8), and therefore the Stratonovich integral in formula (23) is well de-

fined. By Theorem 4.4.4 in [11] the inverse ϕt,s = ϕ−1
s,t satisfies the backward

Stratonovich equation

ϕt,s(x) = x+

∫ t

s

β(ϕt,r(x), r) ◦d̂Wr, s < t. (24)

Note that ψt(x) = ϕt,0(x). Then formula (23) can be rewritten by

ut(x) = f(ϕt,0(x)) exp

{∫ t

0

α(ϕt,s(x), s) ◦d̂Ws

}
.

Explicit solution of the stochastic characteristic system

First of all let us denote

µs,t(x) =

∫ t

s

α(ϕs,r(x), r) ◦dWr, s < t,

µt,s(x) = −
∫ t

s

α(ϕt,r(x), r) ◦d̂Wr, s < t.

In this paragraph we will find ϕs,t, ϕt,s and rewrite µs,t, µt,s in an explicit form

using Doss–Sussman method (see [3], [16], [19]). Also we will find some useful

properties of these stochastic characteristics. Note that in this paragraph we

are dealing only with the standard 1-dimensional Brownian motion Wt.

For every z ∈ [0, T ], consider the following autonomous system of ordinary
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differential equations (ODEs) of the first order

∂h

∂t
(y, z, t) = −β(h(y, z, t), z), h(y, z, 0) = y. (25)

For the well-posedness of this Cauchy problem we need the following condition

on function β(x, s)

1. for every s ∈ [0, T ], β(·, s) is Lipschitz continuous in x, i.e. there exists

some constant L(s) > 0 such that |β(x1, s)− β(x2, s)| ≤ L(s)|x1 − x2|
holds for all xi ∈ Rd.

This condition follows from the boundedness of functions βi and their first

order derivatives ∂βi

∂xj
on Rd × [0, T ]. Then for every (y, z) ∈ Rd × [0, T ] there

exists a unique solution h(y, z, t), t ∈ R of system (25).

Proposition 2.1. Let functions βi(x, s), x ∈ Rd, s ∈ [0, T ] satisfy Condition

(E.1)k for some k ≥ 3, and let h(y, z, t) be the unique solution of equation

(25). Then

1. h(y, z, t) is continuously differentiable in z,

2. for every z ∈ [0, T ], h(·, z, t) is a flow of Ck+1-diffeomorphisms on Rd,

3. for arbitrary T1 > 0, all partial derivatives of function h(y, z, t) with

respect to (y, z) and function h(y, z, t)− y are bounded on Rd × [0, T ]×
[−T1, T1],

4. there exists C > 0 such that

|h(y, z, t2)− h(y, z, t1)| ≤ C|t2 − t1|

holds for all (y, z, t1, t2) ∈ Rd × [0, T ]×R2,

5. for arbitrary T1 > 0, there exists C > 0 such that∣∣∣∣∂hi∂yk
(y, z, t2)− ∂hi

∂yk
(y, z, t1)

∣∣∣∣ ≤ C|t2 − t1|

holds for all (y, z, t1, t2) ∈ Rd × [0, T ]× [−T1, T1]2.
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Proof. We know from the theory of ODEs (see Theorem 1.5.3 in [10]) that if

βi, ∂βi

∂xj
and ∂βi

∂s
are continuous on Rd × [0, T ], then h(y, z, t) is continuously

differentiable in z, and the derivatives ∂hi

∂z
satisfy

∂

∂t

∂hi

∂z
(y, z, t) = −

d∑
j=1

∂βi

∂xj
(h(y, z, t), z)

∂hj

∂z
(y, z, t)− ∂βi

∂s
(h(y, z, t), z),

∂hi

∂z
(y, z, 0) = 0.

(26)

Let C > 0 be the bound from Condition (E.1)k. Then the coefficients in linear

equation (26) are uniformly in (y, z) ∈ Rd× [0, T ] bounded functions of t ∈ R

max

(∣∣∣∣−∂βi∂xj
(h(y, z, t), z)

∣∣∣∣ , ∣∣∣∣−∂βi∂s
(h(y, z, t), z)

∣∣∣∣) ≤ C.

Therefore, the solution ∂h
∂z

(y, z, t) has no more than uniform exponential growth

in t ∣∣∣∣∂hi∂z
(y, z, t)

∣∣∣∣ ≤ edC|t| − 1

d
,

yielding the boundedness on Rd × [0, T ]× [−T1, T1].

Also we know from the theory of ODEs (see Theorem 1.5.3 in [10]) that

if βi(·, s) and ∂βi

∂xj
(·, s) are continuous on Rd, then h(y, z, t) is continuously

differentiable in y, and the derivatives ∂hi

∂yk1
satisfy

∂

∂t

∂hi

∂yk1
(y, z, t) = −

d∑
j=1

∂βi

∂xj
(h(y, z, t), z)

∂hj

∂yk1
(y, z, t),

∂hi

∂yk1
(y, z, 0) =

0, if i 6= k1,

1, if i = k1.

(27)

The chain property

h(y, z, t+ s) = h(h(y, z, t), z, s) (28)

follows from the existence and uniqueness of a solution to equation (25), and

the inverse h−1(y, z, t) = h(y, z,−t). Thus for every z ∈ [0, T ], h(·, z, t) is a

flow of C1-diffeomorphisms on Rd.
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Similarly to equation (26), the solution ∂h
∂yk1

(y, z, t) of linear equation (27)

has no more than uniform exponential growth in t∣∣∣∣ ∂hi∂yk1
(y, z, t)

∣∣∣∣ ≤ edC|t| − 1

d
+ 1, (29)

yielding the boundedness on Rd × [0, T ]× [−T1, T1].

The existence of higher order derivatives of function h(y, z, t) and their

boundedness on Rd × [0, T ]× [−T1, T1] can be proven in the same way.

Finally,

|h(y, z, t2)− h(y, z, t1)| =
∣∣∣∣−∫ t2

t1

β(h(y, z, s), z) ds

∣∣∣∣ ≤ C|t2 − t1|

holds for all (y, z, t1, t2) ∈ Rd × [0, T ]×R2, and by (29)

∣∣∣∣∂hi∂yk
(y, z, t2)− ∂hi

∂yk
(y, z, t1)

∣∣∣∣ =

∣∣∣∣∣−
∫ t2

t1

d∑
j=1

∂βi

∂xj
(h(y, z, r), z)

∂hj

∂yk
(y, z, r) dr

∣∣∣∣∣
≤ dC

(
edCT1 − 1

d
+ 1

)
|t2 − t1|

holds for all (y, z, t1, t2) ∈ Rd × [0, T ]× [−T1, T1]2.

Note that by Proposition 2.1(2) the Jacobian matrix ∂h
∂y

is always non-

singular.

Corollary 2.2. 1. Assume the same conditions as in Proposition 2.1. Then

function

h̃(y, z, t) =

(
∂h

∂y

)−1(
∂h

∂z

)
(y, z, t) (30)

is k-times continuously differentiable in y, and for arbitrary T1 > 0,

h̃(y, z, t) and all its partial derivatives are bounded on Rd × [0, T ] ×
[−T1, T1].

2. In addition to (1), assume that function α(x, t), x ∈ Rd, t ∈ [0, T ] satis-

fies Condition (E.1)k for some k ≥ 3. Then function

h̄(y, z, t) =

∫ t

0

α(h(y, z, r), z) dr (31)
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is (k + 1)-times continuously differentiable in y, continuously differen-

tiable in z, and for arbitrary T1 > 0, h̄(y, z, t) and all its partial deriva-

tives are bounded on Rd × [0, T ]× [−T1, T1].

3. Under the assumptions above, the function

ĥ(y, z, t) =

((
∂h̄

∂y

)
h̃− ∂h̄

∂z

)
(y, z, t) (32)

is k-times continuously differentiable in y, and for arbitrary T1 > 0,

ĥ(y, z, t) and all its partial derivatives are bounded on Rd × [0, T ] ×
[−T1, T1].

Proof. 1. The proof becomes straightforward if we notice the following for-

mula for the inverse of the Jacobian matrix ∂h
∂y(

∂h

∂y

)−1

(y, z, t) =

(
∂h

∂y

)
(h(y, z, t), z,−t),

which can be proven by differentiation with respect to y of equation (28)

for s = −t and equation (25).

2. The second statement about h̄(y, z, t) follows directly from Proposition

2.1.

3. The third statement about ĥ(y, z, t) follows directly from 1 and 2.

For every s ∈ [0, T ] and almost all ω (when Wt(ω) is continuous), let us

consider the following system of ODEs

∂

∂t
Ds,t(x) = −h̃(Ds,t(x), t,Wt −Ws), t ∈ [0, T ],

Ds,s(x) = x,
(33)

where the function h̃(y, z, t) is given by formula (30). Note that Wt −Ws ∈[
−2W T , 2W T

]
for all s, t ∈ [0, T ], where W T = maxt∈[0,T ] |Wt|. Then by

Corollary 2.2(1) the function

f(t, y) = −h̃(y, t,Wt −Ws) (34)
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and its first order derivatives with respect to y are bounded on [0, T ] × Rd.

Thus there exists a unique solution Ds,t(x), t ∈ [0, T ] of system (33). Moreover,

this solution is a process of bounded variation.

Let us extend the solution Ds,t(x) by adding

Dd+1
s,t (x) =

∫ t

s

ĥ(Ds,r(x), r,Wr −Ws) dr, (35)

where function ĥ(y, z, t) is given by formula (32).

Proposition 2.3. 1. Let functions βi(x, t), x ∈ Rd, t ∈ [0, T ] satisfy Con-

dition (E.1)k for some k ≥ 3, and let Ds,t(x) be the unique solution of

equation (33). Then Ds,t(x) is k-times continuously differentiable in x,

function Ds,t(x)−x and all partial derivatives of Ds,t(x) are bounded on

[0, T ]2 ×Rd. Moreover, there exists a positive constant C such that

|Ds,t2(x)−Ds,t1(x)| ≤ C|t2 − t1|,
∣∣∣∣∂Di

s,t2

∂xk
(x)−

∂Di
s,t1

∂xk
(x)

∣∣∣∣ ≤ C|t2 − t1|

hold for all (s, t1, t2, x) ∈ [0, T ]3 ×Rd.

2. In addition to (1), assume that function α(x, t), x ∈ Rd, t ∈ [0, T ] sat-

isfies Condition (E.1)k for some k ≥ 3. Then Dd+1
s,t (x) is k-times con-

tinuously differentiable in x, Dd+1
s,t (x) and all its partial derivatives are

bounded on [0, T ]2 × Rd. Moreover, there exists a positive constant C

such that ∣∣Dd+1
s,t2

(x)−Dd+1
s,t1

(x)
∣∣ ≤ C|t2 − t1|

holds for all (s, t1, t2, x) ∈ [0, T ]3 ×Rd.

Proof. 1. We know from the theory of ODEs (see Theorem 1.5.3 in [10])

that if f i(t, y) defined by (34) and ∂f i

∂yj
(t, y) are continuous on [0, T ]×Rd,

then Ds,t(x) is continuously differentiable in x, and the derivatives
∂Dis,t
∂xk1
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satisfy

∂

∂t

∂Di
s,t

∂xk1
(x) = −

d∑
j=1

∂h̃i

∂yj
(Ds,t(x), t,Wt −Ws)

∂Dj
s,t

∂xk1
(x),

∂Di
s,s

∂xk1
(x) =

0, if i 6= k1,

1, if i = k1.

(36)

Let C > 0 be the bound from Corollary 2.2(1). Then the coefficients in

linear equation (36) are uniformly in (s, x) bounded functions of t ∈ [0, T ]∣∣∣∣∣−∂h̃i∂yj
(Ds,t(x), t,Wt −Ws)

∣∣∣∣∣ ≤ C.

Therefore, the solution ∂Ds,t
∂xk1

(x) has no more than uniform exponential

growth in t ∣∣∣∣∂Di
s,t

∂xk1
(x)

∣∣∣∣ ≤ edC|t−s| − 1

d
+ 1,

yielding the boundedness on [0, T ]2 ×Rd.

The existence of higher order derivatives of function Ds,t(x) and their

boundedness on [0, T ]2 ×Rd can be proven in the same way.

Finally,

|Ds,t2(x)−Ds,t1(x)| =
∣∣∣∣−∫ t2

t1

h̃(Ds,r(x), r,Wr −Ws) dr

∣∣∣∣ ≤ C|t2 − t1|,∣∣∣∣∂Di
s,t2

∂xk
(x)−

∂Di
s,t1

∂xk
(x)

∣∣∣∣ =

∣∣∣∣∣−
∫ t2

t1

d∑
j=1

∂h̃i

∂yj
(Ds,r(x), r,Wr −Ws)

∂Dj
s,r

∂xk
(x) dr

∣∣∣∣∣
≤ dC

(
edCT − 1

d
+ 1

)
|t2 − t1|

hold for all (s, t1, t2, x) ∈ [0, T ]3 ×Rd.

2. Let C > 0 be the bound from Corollary 2.2(3). Then

∣∣Dd+1
s,t2

(x)−Dd+1
s,t1

(x)
∣∣ =

∣∣∣∣∫ t2

t1

ĥ(Ds,r(x), r,Wr −Ws) dr

∣∣∣∣ ≤ C|t2 − t1|
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holds for all (s, t1, t2, x) ∈ [0, T ]3×Rd. The rest of the proposition follows

directly from Corollary 2.2(3).

Let us denote

ϕs,t(x) = h(Ds,t(x), t,Wt −Ws), s < t. (37)

By a direct computation of differentials we can prove that it is the solution of

equation (21). Indeed, by the Itô’s formula (Theorem 1.8) and (33), (30), (25)

we have

ϕjs,t(x)− xj = hj(Ds,t(x), t,Wt −Ws)− hj(Ds,s(x), s,Ws −Ws)

=

∫ t

s

d∑
i=1

∂hj

∂yi
(Ds,r(x), r,Wr −Ws) dD

i
s,r(x)

+

∫ t

s

∂hj

∂z
(Ds,r(x), r,Wr −Ws) dr

+

∫ t

s

∂hj

∂t
(Ds,r(x), r,Wr −Ws) ◦dWr

= −
∫ t

s

βj(ϕs,r(x), r) ◦dWr.

Similarly, we can prove that

ϕt,s(x) = h(Dt,s(x), s,Ws −Wt), s < t (38)

is the solution of equation (24).

Next, let us prove the following new formula of µs,t

µs,t(x) = Dd+1
s,t (x) + h̄(Ds,t(x), t,Wt −Ws), s < t. (39)

By (35), (32), the Itô’s formula (Theorem 1.8) and (31) we have for s < t

Dd+1
s,t (x) + h̄(Ds,t(x), t,Wt −Ws)

=

∫ t

s

((
∂h̄

∂y

)
h̃− ∂h̄

∂z

)
(Ds,r(x), r,Wr −Ws) dr
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+

∫ t

s

d∑
i=1

∂h̄

∂yi
(Ds,r(x), r,Wr −Ws) dD

i
s,r(x)

+

∫ t

s

∂h̄

∂z
(Ds,r(x), r,Wr −Ws) dr +

∫ t

s

∂h̄

∂t
(Ds,r(x), r,Wr −Ws) ◦dWr

=

∫ t

s

α(ϕs,r(x), r) ◦dWr = µs,t(x).

Similarly, we can prove the following new formula of µt,s

µt,s(x) = Dd+1
t,s (x) + h̄(Dt,s(x), s,Ws −Wt), s < t. (40)

The following two propositions are important results which will be used in

further section.

Proposition 2.4. Let functions α(x, t), βi(x, t), x ∈ Rd, t ∈ [0, T ] satisfy

Condition (E.1)k for some k ≥ 3. Then the functions ϕs,t(x)− x, µs,t(x) and

all partial derivatives up to and including order k of ϕs,t(x) and µs,t(x) are

bounded on [0, T ]2 × Rd. Moreover, there exists a positive constant C such

that

|ϕs,t2(x)− ϕs,t1(x)| ≤ C(|Wt2 −Wt1|+ |t2 − t1|),∣∣∣∣∂ϕis,t2∂xk
(x)−

∂ϕis,t1
∂xk

(x)

∣∣∣∣ ≤ C(|Wt2 −Wt1|+ |t2 − t1|)

hold for all (s, t1, t2, x) ∈ [0, T ]3 ×Rd. As a consequence, the Jacobian

det

(
∂ϕs,t(x)

∂x

)
is bounded on [0, T ]2 × Rd, and moreover, there exists a positive constant C

such that∣∣∣∣det

(
∂ϕs,t2
∂x

(x)

)
− det

(
∂ϕs,t1
∂x

(x)

)∣∣∣∣ ≤ C(|Wt2 −Wt1|+ |t2 − t1|)

holds for all (s, t1, t2, x) ∈ [0, T ]3 ×Rd.

Proof. By Propositions 2.1 and 2.3(1), there exists C > 0 such that for all
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(s, t1, t2, x) ∈ [0, T ]3 ×Rd

|ϕs,t2(x)− ϕs,t1(x)| ≤ |h(Ds,t2(x), t2,Wt2 −Ws)− h(Ds,t2(x), t2,Wt1 −Ws)|

+|h(Ds,t2(x), t2,Wt1 −Ws)− h(Ds,t2(x), t1,Wt1 −Ws)|

+|h(Ds,t2(x), t1,Wt1 −Ws)− h(Ds,t1(x), t1,Wt1 −Ws)|

≤ C|Wt2 −Wt1|+ C|t2 − t1|+ C|t2 − t1|.

Then the function ϕs,t(x)− x is bounded on [0, T ]2 ×Rd.

Using formulas (37), (38) we can represent all partial derivatives of ϕs,t(x)

in terms of partial derivatives of h(y, z, t) with respect to y and partial deriva-

tives of Ds,t(x). Partial derivatives of h(y, z, t) are bounded by Proposition

2.1(3), and partial derivatives of Ds,t(x) are bounded by Proposition 2.3(1).

Therefore, all partial derivatives up to and including order k of ϕs,t(x) are

bounded on [0, T ]2 ×Rd.

The boundedness of the function µs,t(x) and its partial derivatives follows

directly from formulas (39), (40), Proposition 2.3 and Corollary 2.2(2).

Also, by Propositions 2.1 and 2.3(1), there exists C > 0 such that for all

(s, t1, t2, x) ∈ [0, T ]3 ×Rd we have∣∣∣∣∂ϕis,t2∂xk
(x)−

∂ϕis,t1
∂xk

(x)

∣∣∣∣
≤
∣∣∣∣∂hi∂y

(Ds,t2(x),t2,Wt2−Ws)
∂Ds,t2

∂xk
(x)− ∂hi

∂y
(Ds,t2(x),t2,Wt2−Ws)

∂Ds,t1

∂xk
(x)

∣∣∣∣
+

∣∣∣∣∂hi∂y
(Ds,t2(x),t2,Wt2−Ws)

∂Ds,t1

∂xk
(x)− ∂hi

∂y
(Ds,t1(x),t1,Wt1−Ws)

∂Ds,t1

∂xk
(x)

∣∣∣∣
≤ C|t2 − t1|+ C

∣∣∣∣∂hi∂y
(Ds,t2(x), t2,Wt2 −Ws)−

∂hi

∂y
(Ds,t1(x), t1,Wt1 −Ws)

∣∣∣∣ ,
where∣∣∣∣∂hi∂y

(Ds,t2(x), t2,Wt2 −Ws)−
∂hi

∂y
(Ds,t1(x), t1,Wt1 −Ws)

∣∣∣∣
≤
∣∣∣∣∂hi∂y

(Ds,t2(x), t2,Wt2 −Ws)−
∂hi

∂y
(Ds,t2(x), t2,Wt1 −Ws)

∣∣∣∣
+

∣∣∣∣∂hi∂y
(Ds,t2(x), t2,Wt1 −Ws)−

∂hi

∂y
(Ds,t2(x), t1,Wt1 −Ws)

∣∣∣∣
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+

∣∣∣∣∂hi∂y
(Ds,t2(x), t1,Wt1 −Ws)−

∂hi

∂y
(Ds,t1(x), t1,Wt1 −Ws)

∣∣∣∣
≤ C|Wt2 −Wt1|+ C|t2 − t1|+ C|t2 − t1|.

Proposition 2.5. Let functions α(x, t), βi(x, t), x ∈ Rd, t ∈ [0, T ] satisfy

Condition (E.1)k for some k ≥ 3. Then

sup
x∈Rd

|ϕt,0(x)− ϕs,0(x)| −−→
t→s

0, sup
x∈Rd

|µt,0(x)− µs,0(x)| −−→
t→s

0.

Proof. By Propositions 2.1, 2.3(1) and 2.4 we have

sup
x∈Rd

|ϕt,0(x)− ϕs,0(x)| = sup
y∈Rd

|ϕs,0(y)− ϕs,0(ϕs,t(y))|

= sup
y∈Rd

|h(Ds,0(y), 0,−Ws)− h(Ds,0(ϕs,t(y)), 0,−Ws)|

≤ sup
y∈Rd

∣∣∣∣∂h∂y (y, 0,−Ws)

∣∣∣∣ sup
x∈Rd

∣∣∣∣∂Ds,0

∂x
(x)

∣∣∣∣ sup
y∈Rd

|y − ϕs,t(y)| −−→
t→s

0.

(41)

Next, using formula

µt,0(x) = −µ0,t(ϕt,0(x)) = −Dd+1
0,t (ϕt,0(x))− h̄(D0,t(ϕt,0(x)), t,Wt),

we estimate

sup
x∈Rd

|µt,0(x)− µs,0(x)| ≤ sup
x∈Rd

∣∣h̄(D0,t(ϕt,0(x)), t,Wt)− h̄(D0,s(ϕs,0(x)), s,Ws)
∣∣

+ sup
x∈Rd

∣∣Dd+1
0,t (ϕt,0(x))−Dd+1

0,s (ϕs,0(x))
∣∣ .

Then, by Corollary 2.2(2), Proposition 2.3 and (41), the right hand side of

inequality above goes to 0 when t→ s

sup
x∈Rd

∣∣Dd+1
0,t (ϕt,0(x))−Dd+1

0,s (ϕs,0(x))
∣∣

≤ sup
x∈Rd

(∣∣Dd+1
0,t (ϕt,0(x))−Dd+1

0,s (ϕt,0(x))
∣∣+
∣∣Dd+1

0,s (ϕt,0(x))−Dd+1
0,s (ϕs,0(x))

∣∣)

36



≤ C|t− s|+ C sup
x∈Rd

|ϕt,0(x)− ϕs,0(x)| −−→
t→s

0,

sup
x∈Rd

∣∣h̄(D0,t(ϕt,0(x)), t,Wt)− h̄(D0,s(ϕs,0(x)), s,Ws)
∣∣

≤ sup
x∈Rd

∣∣h̄(D0,t(ϕt,0(x)), t,Wt)− h̄(D0,t(ϕt,0(x)), t,Ws)
∣∣

+ sup
x∈Rd

∣∣h̄(D0,t(ϕt,0(x)), t,Ws)− h̄(D0,t(ϕs,0(x)), t,Ws)
∣∣

+ sup
x∈Rd

∣∣h̄(D0,t(ϕs,0(x)), t,Ws)− h̄(D0,s(ϕs,0(x)), t,Ws)
∣∣

+ sup
x∈Rd

∣∣h̄(D0,s(ϕs,0(x)), t,Ws)− h̄(D0,s(ϕs,0(x)), s,Ws)
∣∣

≤ C|Wt −Ws|+ C sup
x∈Rd

|ϕt,0(x)− ϕs,0(x)|+ C|t− s|+ C|t− s| −−→
t→s

0.

2.1.2 Second order stochastic partial differential equations

Preliminaries

In this section we shall study the initial value problem of the second order

linear SPDE

ut(x) = f(x) +

∫ t

0

Ls(qs)us(x) ds

+

∫ t

0

((β(x, s),∇)us(x) + α(x, s)us(x)) ◦dWs, t ∈ (0, T ],

(42)

where Lt is an operator of the form

Lt(q)u =
1

2

(
σ̄σ̄T (x, t, q)∇,∇

)
u+ (g(x, t, q),∇)u+ d(x, t, q)u, (43)

with a given d-dimensional continuous semimartingale qt.

We assume that the coefficients α(x, t) and βi(x, t) in equation (42) satisfy

Condition (E.1)k for some k ≥ 4, and the coefficients of the operator Lt

satisfy Condition (E.2). A continuous C2-semimartingale ut(x) is then called

a solution with the initial value f if it satisfies equation (42) for any x and t

a.s.

Remark. Condition (E.1)k for some k ≥ 4 provides four times continuous
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differentiability of the functions ϕs,t(x), µs,t(x) defined in the previous section

(see Proposition 2.4). This will allow us to prove twice continuous differentia-

bility of the functions a(x, t, q), b(x, t, q), c(x, t, q) in formula (51) (see Lemma

2.6). Meanwhile, Lemma 2.6 will be used in the proof of Theorems 1.1 and 1.2

in Section 3.

We shall rewrite equation (42) using the Itô’s integral. Define a second

order operator L̃t by

L̃tu =
1

2

d∑
i,j=1

βi(x, t)βj(x, t)
∂2u

∂xi∂xj

+
d∑
i=1

(
1

2

d∑
j=1

βj(x, t)
∂βi

∂xj
(x, t) + βi(x, t)α(x, t)

)
∂u

∂xi

+
1

2

(
d∑
i=1

βi(x, t)
∂α

∂xi
(x, t) + (α(x, t))2

)
u.

(44)

In Appendix D we show that using the Itô’s integral, equation (42) can be

written as

ut(x) = f(x) +

∫ t

0

(
Ls(qs) + L̃s

)
us(x) ds

+

∫ t

0

((β(x, s),∇)us(x) + α(x, s)us(x)) dWs.

(45)

Conversely let ut(x) be a continuous C2-process satisfying the equation

represented by the Itô’s integrals:

ut(x) = f(x) +

∫ t

0

As(qs)us(x) ds

+

∫ t

0

((β(x, s),∇)us(x) + α(x, s)us(x)) dWs.

(46)

If ut(x) is a C2-semimartingale, it is represented by equation (42), replacing

Ls(qs) by As(qs)− L̃s where L̃s is defined by equation (44).

Note that the second order part of the operator Lt in equation (42) and

that of the operator At = Lt + L̃t in equation (45) are different because

βi(x, t)βj(x, t) are not identically 0. Conversely, solutions of the equations
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with the common second order part and the common random first order part

can have different properties if one is written by the Stratonovich integral

and the other is written by the Itô’s integral. In the case At = L̃t, equa-

tion (46) represented by the Itô’s integrals is a second order equation, but the

same equation represented by the Stratonovich integrals is just a first order

equation. Moreover if the coefficient aij(x, t) of the operator At is less than

βi(x, t)βj(x, t), equation (46) does not have a solution, since the second or-

der part of the same equation represented by the Stratonovich integrals is no

longer non-negative definite.

For this reason, we will solve the equation represented by the Stratonovich

integrals.

Existence and uniqueness of solutions

In this paragraph we will show how to construct a solution of linear equation

(42) under Condition (E.1)k for some k ≥ 4 and Condition (E.2).

Note that the right hand side of equation (42) consists of the random first

order part and the deterministic second order part
∫ t

0
Ls(qs)us(x) ds. The first

order part can be regarded as a perturbation term adjoined to the second order

part. We will show that the well-posedness of equation (42) can be reduced to

the well-posedness of a certain deterministic second order equation, which is

a modification of the equation ∂ut/∂t = Lt(qt)ut affected by the perturbation

term.

We first consider the first order part. Let wt(f) be the solution of the first

order equation (42) where Lt(qt) ≡ 0. Then by Theorem 6.1.9 in [11] it is

represented by

wt(f)(x) = ξt,0(x)f(ϕt,0(x)), (47)

where ϕt,0 is the inverse of the stochastic flow ϕ0,t which was defined in the

previous section, and

ξt,0(x) = exp

{∫ t

0

α(ϕt,s(x), s) ◦d̂Ws

}
= exp {−µt,0(x)} . (48)

We may consider that for almost all ω, wt is a linear map on Ck
(
Rd : R

)
. It
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is one to one and onto. The inverse map is given by

w−1
t (f)(x) = ξt,0(ϕ0,t(x))−1f(ϕ0,t(x)) = ξ0,t(x)−1f(ϕ0,t(x)), (49)

where

ξ0,t(x) = exp

{∫ t

0

α(ϕ0,s(x), s) ◦dWs

}
.

Define the operator Lwt (q) by w−1
t Lt(q)wt. Then we can prove by a direct

computation that Lwt (q) is a second order differential operator represented by

Lwt (q)f =
1

2
(a(x, t, q)∇,∇)f + (b(x, t, q),∇)f + c(x, t, q)f. (50)

Here aij, bi, c are smooth functions with random parameter ω defined by

aij(x, t, q) =

(
d∑

k,l=1

(
σ̄σ̄T

)kl
(y, t, q)∂k

(
ϕit,0
)
(y)∂l

(
ϕjt,0
)
(y)

)∣∣∣∣∣
y=ϕ0,t(x)

,

bi(x, t, q) =

(
1

2

d∑
k,l=1

(
σ̄σ̄T

)kl
(y, t, q)

(
∂k∂l

(
ϕit,0
)
(y)− 2∂k(µt,0)(y)∂l

(
ϕit,0
)
(y)
)

+
d∑

k=1

gk(y, t, q)∂k
(
ϕit,0
)
(y)

)∣∣∣∣∣
y=ϕ0,t(x)

,

c(x, t, q) =

(
1

2

d∑
k,l=1

(
σ̄σ̄T

)kl
(y, t, q)

(
∂k(µt,0)(y)∂l(µt,0)(y)− ∂k∂l(µt,0)(y)

)

−
d∑

k=1

gk(y, t, q)∂k(µt,0)(y) + d(y, t, q)

)∣∣∣∣∣
y=ϕ0,t(x)

,

(51)

where ∂k = ∂/∂xk. Indeed, by equations (47), (49) and (43) we have

Lwt (q)f(x) = w−1
t Lt(q)wtf(x) = ξt,0(ϕ0,t(x))−1Lt(q)wtf(ϕ0,t(x)), (52)
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Lt(q)wtf(x) =
1

2

d∑
k,l=1

(
σ̄σ̄T

)kl
(x, t, q)∂k∂l(ξt,0(x)f(ϕt,0(x)))

+
d∑

k=1

gk(x, t, q)∂k(ξt,0(x)f(ϕt,0(x)))

+ d(x, t, q)ξt,0(x)f(ϕt,0(x)).

(53)

Partial derivatives in equation (53) are calculated by

∂k(ξt,0(x)f(ϕt,0(x))) = ξt,0(x)
d∑
i=1

∂i(f)(ϕt,0(x))∂k
(
ϕit,0
)
(x)

+ ∂k(ξt,0)(x)f(ϕt,0(x)),

(54)

∂k∂l(ξt,0(x)f(ϕt,0(x))) = ξt,0(x)
d∑

i,j=1

∂i∂j(f)(ϕt,0(x))∂k
(
ϕit,0
)
(x)∂l

(
ϕjt,0
)
(x)

+
d∑
i=1

∂i(f)(ϕt,0(x))
(
ξt,0(x)∂k∂l

(
ϕit,0
)
(x) + ∂l(ξt,0)(x)∂k

(
ϕit,0
)
(x)

+ ∂k(ξt,0)(x)∂l
(
ϕit,0
)
(x)
)

+ ∂k∂l(ξt,0)(x)f(ϕt,0(x)).

(55)

Substituting equations (54), (55) into (53), and equation (53) into (52), we

obtain formulas (51).

Lemma 2.6. A square matrix-valued function a(x, t, q) is uniformly elliptic,

functions aij(x, t, q), bi(x, t, q), c(x, t, q) are continuous and bounded on Rd ×
[0, T ]×Rd, twice continuously differentiable in x with bounded derivatives, and

uniformly Lipschitz continuous in q. (If we denote by M,χ the bound and the

Lipschitz constant, then we may choose χ ≥ dM/3.)

Proof. First of all, let us prove the uniform ellipticity of a(x, t, q). Denote

C(x, t) =

(
∂ϕt,0
∂x

)T
(ϕ0,t(x)).

Then we can rewrite formula (51) for a as

a(x, t, q) = CT(x, t)
(
σ̄σ̄T

)
(ϕ0,t(x), t, q)C(x, t).

41



By Proposition 2.4, all elements of matrices C(x, t) and its inverse

C−1(x, t) =

((
∂ϕt,0
∂x

)T)−1

(ϕ0,t(x)) =

((
∂ϕt,0
∂x

)−1
)T

(ϕ0,t(x)) =

(
∂ϕ0,t

∂x

)T
(x)

are bounded functions on Rd× [0, T ]. Then there exists some constant Mϕ > 0

such that the norms

‖C(x, t)‖Rd→Rd ≤Mϕ,
∥∥C−1(x, t)

∥∥
Rd→Rd ≤Mϕ

for all (x, t) ∈ Rd × [0, T ]. Therefore

(a(x, t, q)ξ, ξ) ≤ m|C(x, t)ξ|2 ≤ m‖C(x, t)‖2|ξ|2 ≤ mM2
ϕ|ξ|2,

(a(x, t, q)ξ, ξ) ≥ m−1|C(x, t)ξ|2 ≥ m−1 |ξ|2

‖C−1(x, t)‖2
≥ m−1 |ξ|2

M2
ϕ

hold for all ξ, x, q ∈ Rd and t ∈ [0, T ], i.e. a(x, t, q) is uniformly elliptic.

The rest of the Lemma follows directly from Condition (E.2) and Propo-

sition 2.4.

Consider the following deterministic second order equation

ut(x) = f(x) +

∫ t

0

Lws (qs)us(x) ds, t ∈ (0, T ]. (56)

A continuous C2-process ut(x) is then called a solution with the initial value

f if it satisfies equation (56) for any x and t a.s. By Theorems 1.1 and 1.3

in [15], if f ∈ C
(
Rd
)

is a bounded function on Rd, then equation (56) has a

unique bounded solution ut(x). Moreover by Theorem 1.2 in [15], this solution

is a continuous C3-process.

The following lemma shows the relationship between the solutions of equa-

tions (42) and (56).

Lemma 2.7 (Lemma 6.2.3 in [11]). Let ut(x) be a continuous C3-process and

C2-semimartingale. It is a solution of equation (42) if and only if u′t(x) ≡
w−1
t (ut)(x) is a solution of equation (56).

Let f ∈ C
(
Rd
)

be a bounded function on Rd and let ut(x) be the unique
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bounded solution of equation (56), then by Lemma 6.2.3 in [11], wt(ut)(x)

is the unique bounded solution of equation (42) such that it is a continuous

C3-process.

2.2 Supporting propositions

The well-posedness for equation (1) in case of the quantile vectorQγ and α, β =

0 was done in [7]. In this section we will present a number of propositions that

are generalizations of the propositions from [7] to the case of both the quantile

vector Qγ and the CKL-quantile vector Q̃γ, and arbitrary α, β satisfying

Condition (E.1)k.

Recall that the heat kernel of the standard heat equation in Rd with a

diffusion coefficient σ > 0 is defined by

Gσ(t, x) =
(
2πtσ2

)−d/2
exp

{
− x2

2tσ2

}
.

Note that
∫
Rd Gσ(t, x) dx = 1 for all σ, t > 0.

Consider the general heat equation

∂ut
∂t

(x) = Ltut(x), (57)

where

Ltu(x) =
1

2
(a(t, x)∇,∇)u(x) + (b(t, x),∇)u(x) + c(t, x)u(x).

The following fact about two-sided estimates for heat kernels is well known

(see [7], [15]).

Proposition 2.8. Suppose that a is uniformly elliptic with ellipticity constant

m, a, b, c are continuous in t, a is twice continuously differentiable in x and

b, c are continuously differentiable in x, a, b, c and all their derivatives are

bounded by some constant M . Then there exist positive constants σi, Ci, i =

1, 3, depending only on m,M, T such that the Green function (or heat kernel)

of equation (57) (i.e. its solution G(t, x, s, ξ) with the initial condition δξ at
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time s) is well defined, differentiable in x, ξ and satisfies

C1Gσ1(t− s, x− ξ) ≤ G(t, x, s, ξ) ≤ C2Gσ2(t− s, x− ξ), (58)

max

(∣∣∣∣ ∂∂ξG(t, x, s, ξ)

∣∣∣∣ , ∣∣∣∣ ∂∂xG(t, x, s, ξ)

∣∣∣∣) ≤ C3(t− s)−1/2G(t, x, s, ξ) (59)

for all x, ξ ∈ Rd and 0 ≤ s < t ≤ T .

Let positive m,M, T be given. For every t ∈ [0, T ], denote by Um,M,t(u0)

the set of solutions ut(x) of the Cauchy problems of all equations (57) satisfying

the conditions of Proposition 2.8 with a given initial condition u0. Also denote

Um,M,(0,T ](u0) =
⋃

t∈(0,T ]

Um,M,t(u0).

The following two propositions are generalized versions of Propositions 3.2

and 3.3 in [7].

Proposition 2.9. Let positive m,M, T be given. Under the assumptions of

Proposition 2.4, for any u0, v0 ∈ L1

(
Rd
)

and ε > 0 there exists K > 0 such

that for all ut ∈ Um,M,[0,T ](u0 + hv0), h ∈ [0, 1]∫
|x|≥K

|wt(ut)(x)| dx ≤ ε,

where wt is defined by (47).

Proof. Let Cw be the bound from Proposition 2.4. By Proposition 3.2 in [7]

there exists K1 > 0 such that for all u1
t ∈ Um,M,[0,T ](u0)∫

|x|≥K1

∣∣u1
t (x)

∣∣ dx ≤ ε

2
exp{−Cw}C−1

w .

Note that |x| ≥ K1 + Cw yields |ϕt,0(x)| ≥ K1. Therefore∫
|x|≥K1+Cw

∣∣wt (u1
t

)
(x)
∣∣ dx ≤ ∫

|ϕt,0(x)|≥K1

ξt,0(x)
∣∣u1
t (ϕt,0(x))

∣∣ dx
≤ exp{Cw}

∫
|y|≥K1

∣∣u1
t (y)

∣∣ | det(∂ϕ0,t(y))| dy ≤ ε

2
.
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Similarly, there exists K2 > 0 such that for all u2
t ∈ Um,M,[0,T ](v0)∫

|x|≥K2+Cw

∣∣wt (u2
t

)
(x)
∣∣ dx ≤ ε

2
.

For any ut ∈ Um,M,[0,T ](u0 + hv0), h ∈ [0, 1] let u1
t and u2

t be the solutions of

the corresponding Cauchy problem starting with u0 and v0 respectively. Then∫
|x|≥max(K1,K2)+Cw

|wt (ut) (x)| dx ≤
∫
|x|≥K1+Cw

∣∣wt (u1
t

)
(x)
∣∣ dx

+ h

∫
|x|≥K2+Cw

∣∣wt (u2
t

)
(x)
∣∣ dx ≤ ε.

Proposition 2.10. Let positive m,M, T be given. Under the assumptions of

Proposition 2.4, for any strictly positive u0 ∈ C
(
Rd
)

and K > 0 there exists

θ > 0 such that for all ut ∈ Um,M,[0,T ](u0) and |x| ≤ K

wt(ut)(x) ≥ θ,

where wt is defined by (47).

Proof. Let Cw be the bound from Proposition 2.4. By Proposition 3.3 in [7]

there exists θ0 > 0 such that for all ut ∈ Um,M,[0,T ](u0) and |x| ≤ K + Cw

ut(x) ≥ θ0.

Note that |x| ≤ K yields |ϕt,0(x)| ≤ K + Cw. Therefore, for all ut ∈
Um,M,[0,T ](u0) and |x| ≤ K

wt(ut)(x) = ξt,0(x)ut(ϕt,0(x)) ≥ exp{−Cw}θ0.

Combining these two facts we obtain the following proposition which is a

generalization of Proposition 3.4 in [7].

Proposition 2.11. Let T > 0 and γ = (γ1, . . . , γd) with all γj ∈ (0, 1) be

given. Assume that conditions of Proposition 2.4 hold. Consider equation (57)
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under the assumptions of Proposition 2.8 with given m,M and the additional

condition that wt(ut) preserves the L1-norm, where mapping wt is given by

(47). Then for any strictly positive u0 ∈ C
(
Rd
)
∩ L1

(
Rd
)

and any non-

negative v0 ∈ C
(
Rd
)
∩ L1

(
Rd
)
, there exist K, θ > 0 such that for all ut ∈

Um,M,(0,T ](u0 + hv0), h ∈ [0, 1]

max
j

∣∣Qj
γ(wt(ut))

∣∣ ≤ K, (60)

inf

{
wt(ut)(x) : max

j

∣∣xj∣∣ ≤ K

}
≥ θ. (61)

The set of functions satisfying conditions (60)–(61) is convex. Moreover, if∑
γj < 1, then for any strictly positive u0 ∈ C

(
Rd
)
∩ L1

(
Rd
)

and any non-

negative v0 ∈ C
(
Rd
)
∩ L1

(
Rd
)
, there exist K, θ > 0 such that for all ut ∈

Um,M,(0,T ](u0 + hv0), h ∈ [0, 1]

max
j

∣∣∣Q̃j
γ(wt(ut))

∣∣∣ ≤ K, (62)

inf

{
wt(ut)(x) : max

j

∣∣xj∣∣ ≤ 2dK

}
≥ θ. (63)

Proof. Let us pick up an ε > 0 such that

ε < min (γ1, . . . , γd, 1− γ1, . . . , 1− γd) ‖u0‖L.

By Proposition 2.9 there exists K > 0 such that for all ut ∈ Um,M,(0,T ](u0+hv0),

h ∈ [0, 1] ∫
|x|≥K

wt(ut)(x) dx ≤ ε. (64)

The following inequalities prove (60).∫
|x|≥K

wt(ut)(x) dx ≤ ε < γi(‖u0‖L + h‖v0‖L) =

∫
A
Qγ (wt(ut))

i

wt(ut)(x) dx,∫
|x|≥K

wt(ut)(x) dx ≤ ε < (1− γi)(‖u0‖L + h‖v0‖L)

=

∫
Rd\AQγ (wt(ut))i

wt(ut)(x) dx.
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Existence of θ > 0 such that estimate (61) holds follows directly from Propo-

sition 2.10. Obviously, the set of functions satisfying conditions (60)–(61) is

convex.

Suppose
∑
γj < 1. Let us pick up an ε > 0 such that

ε < min
(
γ1, . . . , γd, 1−

∑
γj

)
‖u0‖L,

and then choose K > 0 such that (64) holds for all ut ∈ Um,M,(0,T ](u0 + hv0),

h ∈ [0, 1]. The following inequalities prove (62).∫
|x|≥K

wt(ut)(x) dx ≤ ε <
(
1−

∑
γj

)
(‖u0‖L + h‖v0‖L)

=

∫
A
Q̃γ (wt(ut))
0

wt(ut)(x) dx,∫
|x|≥K

wt(ut)(x) dx ≤ ε < γi(‖u0‖L + h‖v0‖L) =

∫
A
Q̃γ (wt(ut))

i

wt(ut)(x) dx.

Existence of θ > 0 such that estimate (63) holds follows directly from Propo-

sition 2.10.

The next proposition shows the Lipschitz continuity of both the quantile

Qγ and the CKL-quantile Q̃γ in L1-norm.

Proposition 2.12. Let T > 0 and γ = (γ1, . . . , γd) with all γj ∈ (0, 1) be

given. Assume that conditions of Proposition 2.4 hold. Consider equation (57)

under the assumptions of Proposition 2.8 with given m,M and the additional

condition that wt(ut) preserves the L1-norm, where mapping wt is given by

(47). Then for any strictly positive u0 ∈ C
(
Rd
)
∩ L1

(
Rd
)

and any non-

negative v0 ∈ C
(
Rd
)
∩ L1

(
Rd
)
, there exists C4 > 0 such that for all u1

t , u
2
t ∈

Um,M,(0,T ](u0 + hv0), h ∈ [0, 1] (u1
t , u

2
t must be chosen for the same h and at

the same time t)

∣∣Qγ

(
wt
(
u2
t

))
−Qγ

(
wt
(
u1
t

))∣∣ ≤ C4

∥∥u2
t − u1

t

∥∥
L
.

Moreover, if the dimension d ≤ 3 and
∑
γj < 1, then for any strictly positive

u0 ∈ C
(
Rd
)
∩ L1

(
Rd
)

and any non-negative v0 ∈ C
(
Rd
)
∩ L1

(
Rd
)
, there
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exists C4 > 0 such that for all u1
t , u

2
t ∈ Um,M,(0,T ](u0 + hv0), h ∈ [0, 1]∣∣∣Q̃γ

(
wt
(
u2
t

))
− Q̃γ

(
wt
(
u1
t

))∣∣∣ ≤ C4

∥∥u2
t − u1

t

∥∥
L
.

Proof. Let Cw be the bound from Proposition 2.4. Then for all u1
t , u

2
t ∈

Um,M,(0,T ](u0 + hv0), h ∈ [0, 1]

∥∥wt(u2
t

)
− wt

(
u1
t

)∥∥
L
≤ Cw exp{Cw}

∥∥u2
t − u1

t

∥∥
L
. (65)

Let u1
t , u

2
t ∈ Um,M,(0,T ](u0 + hv0), h ∈ [0, 1]. Consider the following contin-

uous positive integrable function

vs(x) =
(
wt
(
u1
t

)
+ s

(
wt
(
u2
t

)
− wt

(
u1
t

)))
(x), s ∈ [0, 1].

In Appendix E we prove that the function q(s) = Qγ (vs) is continuous in s.

Also it satisfies the equation∫
{x∈Rd : xj≤qj(s)}

(
wt
(
u1
t

)
+ s
(
wt
(
u2
t

)
− wt

(
u1
t

)))
(x) dx = γj(‖u0‖L + h‖v0‖L).

Considering the difference of the equation above at points s + ∆s and s, we

see that qj(s) is differentiable and satisfies

q′j(s) = −

(∫
Rd−1

(
wt
(
u1
t

)
+ s
(
wt
(
u2
t

)
− wt

(
u1
t

)))
(x)
∣∣
xj=qj(s)

∏
k 6=j

dxk

)−1

×
∫
{x∈Rd : xj≤qj(s)}

(
wt
(
u2
t

)
− wt

(
u1
t

))
(x) dx.

Let us choose K, θ > 0 from Proposition 2.11. Then by (60) we deduce that

point xj = qj(s) lies in [−K,K], and therefore, by (61) and (65), we have

∣∣Qj
γ

(
wt
(
u2
t

))
−Qj

γ

(
wt
(
u1
t

))∣∣ = |qj(1)− qj(0)| ≤ sup
s

∣∣q′j(s)∣∣
≤ Cw exp{Cw}

θKd−1

∥∥u2
t − u1

t

∥∥
L
.

Now assume that the dimension d ≤ 3 and
∑
γj < 1, and let u1

t , u
2
t ∈
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Um,M,(0,T ](u0 + hv0), h ∈ [0, 1]. Then the function

q(s) = Q̃γ

(
wt
(
u1
t

)
+ s

(
wt
(
u2
t

)
− wt

(
u1
t

)))
, s ∈ [0, 1]

is continuous in s by the same arguments as above, and satisfies the equation

γj(‖u0‖L + h‖v0‖L)

=

∫
{x∈Rd : xj−qj(s)≥0∨maxi 6=j(xi−qi(s))}

(
wt
(
u1
t

)
+ s
(
wt
(
u2
t

)
− wt

(
u1
t

)))
(x) dx.

Considering the difference of the equation above at points s + ∆s and s, we

will get a system of linear equations on ∆qi/∆s∫ +∞

qj(s)

∫ xj−qj(s)+qk(s)

−∞

(
wt
(
u2
t

)
− wt

(
u1
t

))
(x)
∏
k 6=j

dxkdxj + ¯̄o(1)

=
∑

i=1,...,d
i 6=j

(
∆qj
∆s
− ∆qi

∆s

)(∫ +∞

qj(s)

∫ xj−qj(s)+qk(s)

−∞

(
wt
(
u1
t

)
+ s
(
wt
(
u2
t

)
− wt

(
u1
t

)))
(x)
∣∣
xi=xj−qj(s)+qi(s)

∏
k 6=j
k 6=i

dxkdxj + ¯̄o(1)

)

+
∆qj
∆s

(∫ qk(s)

−∞

(
wt
(
u1
t

)
+ s
(
wt
(
u2
t

)
− wt

(
u1
t

)))
(x)
∣∣
xj=qj(s)

∏
k 6=j

dxk + ¯̄o(1)

)
.

(66)

Note that, all coefficients converge as ∆s → 0. Then by Proposition A.2, for

small enough ∆s, this system has a unique solution that also converges as

∆s → 0. Let us choose K, θ > 0 from Proposition 2.11. Then by (62) and

Proposition B.1, all qi(s) lie in [−(2d−1)K, (2d−1)K], and therefore, by (63),

we have∫ qk(s)

−∞

(
wt
(
u1
t

)
+ s
(
wt
(
u2
t

)
− wt

(
u1
t

)))
(x)
∣∣
xj=qj(s)

∏
k 6=j

dxk ≥ θKd−1.

We do not have to solve the limiting equation for q′j(s) explicitly, but instead
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we can apply Proposition A.2. It gives us

∣∣q′j(s)∣∣ ≤ 1

θKd−1

∥∥wt(u2
t

)
− wt

(
u1
t

)∥∥
L
,

and therefore, by (65), we have∣∣∣Q̃j
γ

(
wt
(
u2
t

))
− Q̃j

γ

(
wt
(
u1
t

))∣∣∣ = |qj(1)− qj(0)| ≤ sup
s

∣∣q′j(s)∣∣
≤ Cw exp{Cw}

θKd−1

∥∥u2
t − u1

t

∥∥
L
.

Proposition 2.13. In terms and assumptions of Proposition 2.12, wt(ut) is

continuous in L1

(
Rd
)
. Therefore (see Appendix E), both quantile Qγ(wt(ut))

and CKL-quantile Q̃γ(wt(ut)) are continuous in t.

Proof. Let us fix time s. By Proposition 2.4, there exists C > 0 such that

‖wt(ut)− ws(us)‖L
≤ ‖ξt,0ut(ϕt,0)− ξt,0us(ϕs,0)‖L + ‖ξt,0us(ϕs,0)− ξs,0us(ϕs,0)‖L
≤ sup

x∈Rd

ξt,0(x)‖ut(ϕt,0)− us(ϕt,0)‖L + sup
x∈Rd

ξt,0(x)‖us(ϕt,0)− us(ϕs,0)‖L

+ sup
x∈Rd

|ξt,0(x)− ξs,0(x)|‖us(ϕs,0)‖L

≤ C‖ut − us‖L + C‖us(ϕt,0(ϕ0,s))− us‖L + C sup
x∈Rd

|ξt,0(x)− ξs,0(x)|.

We will show that the right hand side of inequality above goes to 0 when t→ s.

By Propositions 2.4 and 2.5 we have

sup
x∈Rd

|ξt,0(x)− ξs,0(x)| = sup
x∈Rd

exp{−µs,0(x)} |exp{−µt,0(x) + µs,0(x)} − 1|

≤ C

(
exp

{
sup
x∈Rd

| − µt,0(x) + µs,0(x)|
}
− 1

)
−−→
t→s

0.

Next, by the strong continuity of the propagators solving equation (56) in

L1 we have

‖ut − us‖L −−→
t→s

0.
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Finally, let an arbitrary ε > 0 be given. By Proposition 3.2 in [7], there

exists K > 1 such that ∫
|x|≥K−1

|us(x)| dx ≤ ε

C2
w + 2

,

where Cw is the bound from Proposition 2.4. By Proposition 2.5 there exists

δ > 0 such that

sup
x∈Rd

|ϕt,0(ϕ0,s(x))− x|
d∑

k=1

sup
|y|≤K+1

∣∣∣∣∂us∂yk
(y)

∣∣∣∣ ∫
|x|≤K

1 dx ≤ ε

C2
w + 2

,

ϕt,0(ϕ0,s(x)) ∈ U1(x) =
{
y ∈ Rd : |y − x| < 1

}
hold for all t ∈ (s− δ, s+ δ) and x ∈ Rd. Then for all t ∈ (s− δ, s+ δ) we have

‖us(ϕt,0(ϕ0,s))− us‖L

=

∫
|x|≥K

|us(ϕt,0(ϕ0,s(x)))− us(x)| dx+

∫
|x|≤K

|us(ϕt,0(ϕ0,s(x)))− us(x)| dx

≤ C2
w

ε

C2
w + 2

+
ε

C2
w + 2

+

∫
|x|≤K

d∑
k=1

sup
y∈U1(x)

∣∣∣∣∂us∂yk
(y)

∣∣∣∣ |ϕt,0(ϕ0,s(x))− x| dx

≤ ε (C2
w + 1)

C2
w + 2

+ sup
x∈Rd

|ϕt,0(ϕ0,s(x))− x|
d∑

k=1

sup
|y|≤K+1

∣∣∣∣∂us∂yk
(y)

∣∣∣∣ ∫
|x|≤K

1 dx ≤ ε.

Therefore

‖us(ϕt,0(ϕ0,s))− us‖L −−→
t→s

0.

Let us recall a proposition from [7] that shows Lipschitz continuity, in

L1-norm, of the solutions to diffusion equations with respect to functional

parameters.

Proposition 2.14. Consider two equations (57), specified by two families of

operators L1
t , L

2
t with the coefficients a1, b1, c1 and a2, b2, c2 respectively, each

satisfying the assumptions of Proposition 2.8 with given m,M . Assume that all

coefficients ai, bi, ci are twice continuously differentiable in x (with all deriva-

tives bounded). Let T > 0 be given. Then there exists C5 > 0 depending on
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the bounds for the derivatives and m,M, T such that, for any t0 ∈ [0, T ] and

any ut0 ∈ H2
1

(
Rd
)
, the solutions u1

t , u
2
t , t ∈ [t0, T ] of the corresponding Cauchy

problems satisfy the estimate

∥∥u1
t − u2

t

∥∥
L
≤ C5(t− t0) sup

x∈Rd

r∈[t0,t]

(|a1(r, x)− a2(r, x)|+ |b1(r, x)− b2(r, x)|

+ |c1(r, x)− c2(r, x)|)‖ut0‖H2
1(Rd).

Finally, we give the last proposition that yields the bounds for H2
1

(
Rd
)

norms of the solutions to diffusion equations.

Proposition 2.15. Let T > 0 be given. Consider equation (57) under the

assumptions of Proposition 2.8 with given m,M . Assume that coefficients

a, b, c are twice continuously differentiable in x (with all derivatives bounded).

Then there exists C > 0 depending on the bounds for the derivatives and

m,M, T such that, for any u0 ∈ H2
1

(
Rd
)
, solution ut ∈ Um,M,(0,T ](u0) satisfies

‖ut‖H2
1(Rd) ≤ C‖u0‖H2

1(Rd).

For the proof, see Appendix C.
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3 Proof of Theorems 1.1 and 1.2

Proof of the theorems. Let us pick up a u0. For almost every ω (when Wt(ω) is

continuous) consider equations (56) on [0, T ]×Rd with different d-dimensional

continuous stochastic processes qt. By Lemma 2.6 all these equations (56)

satisfy assumptions of Proposition 2.8. Let us choose K > 0 from Proposition

2.11.

Let C
(
[0, T ],Rd

)
denote the Banach space of Rd-valued continuous func-

tions on [0, T ] with the usual norm ‖q‖ = supt |qt|, and let C(K) be the cube of

side 2K centred at the origin. For any q0 ∈ C(K) let Cq0 ([0, T ], C(K)) denote

the convex subset of C
(
[0, T ],Rd

)
consisting of curves with q0 given and with

values in C(K). Let

q0 = Qγ(u0).

For a given curve q ∈ Cq0 ([0, T ], C(K)) let ut[q](x) denote the solution at time

t of equation (56) with the initial data u0(x). Let us define

Φt[q] = Qγ(wt(ut[q])).

By Proposition 2.13, we conclude that Φt[q] depends continuously on t. Conse-

quently, applying Proposition 2.11 we deduce that the mapping q → Φ[q] is a

mapping from Cq0 ([0, T ], C(K)) to itself. It is clear that bounded C3-process

ut(x) solves equation (1) if and only if qt = Qγ(ut) is a fixed point of this

mapping and is a continuous semimartingale. Thus well posedness of equation

(1) is reduced to the problem of existence and uniqueness of this fixed point.

Denote

τ0 =
1

2

(
3χC4C5‖u0‖H2

1

)−1

,

where χ is the Lipschitz constant from Lemma 2.6, and C4, C5 are the con-

stants from Propositions 2.12, 2.14 respectively. Consider mapping Φ on

Cq0 ([0, τ0], C(K)). Let q1, q2 be two curves in Cq0 ([0, τ0], C(K)) and Φ[q1],Φ[q2]

their respective images. Then by Propositions 2.12, 2.14 we get

∣∣Φt

[
q1
]
− Φt

[
q2
]∣∣ ≤ C4

∥∥ut[q1
]
− ut

[
q2
]∥∥

L

≤ 3χC4C5t ‖u0‖H2
1

sup
r∈[0,t]

∣∣q1
r − q2

r

∣∣ ≤ 1

2
sup
r∈[0,t]

∣∣q1
r − q2

r

∣∣ ,
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i.e. Φ is a contraction on a closed set, and therefore, there exists a unique fixed

point q̃ in Cq0 ([0, τ0], C(K)).

Denote

C0 = C2

(
1 + dC3τ

−1/2
0 + d2C3τ

−1
0

)
‖u0‖L, τ =

1

2
(3χC4C5C0)−1 .

Using induction by n, we will show that Φ has a unique fixed point in Bn =

Cq0 ([0, τ0 + nτ ], C(K)). We will see below that this uniform jump τ is possible,

because by Proposition 2.8, we have the uniform upper bound

‖ut‖H2
1
≤ C0 (67)

for all ut ∈ Um,M,[τ0,T ](u0).

Suppose for some n ≥ 1, mapping Φ has a unique fixed point q̃ on Bn−1.

We need to prove the existence and uniqueness of a fixed point of Φ on Bn.

Consider restriction of mapping Φ on invariant Cq̃ ([0, τ0 + nτ ], C(K)), the con-

vex subset of Bn consisting of curves that coincide with q̃ on [0, τ0 + (n −
1)τ ]. It is easy to deduct that any fixed point in Bn must be an element of

Cq̃ ([0, τ0 + nτ ], C(K)). Let q1, q2 be two curves in Cq̃ ([0, τ0 + nτ ], C(K)) and

Φ[q1],Φ[q2] their respective images. Then by Propositions 2.12, 2.14 and (67)

we get

∣∣Φt

[
q1
]
− Φt

[
q2
]∣∣ ≤ C4

∥∥ut[q1
]
− ut

[
q2
]∥∥

L

≤ 3χC4C5C0(t− τ0 − (n− 1)τ) sup
r∈[τ0+(n−1)τ,t]

∣∣q1
r − q2

r

∣∣
≤ 1

2
sup
r∈[0,t]

∣∣q1
r − q2

r

∣∣ ,
i.e. restricted Φ is a contraction on a closed set, and therefore, there exists

a unique fixed point ˜̃q in Cq̃ ([0, τ0 + nτ ], C(K)), which is also a unique fixed

point in Bn.

Let us recursively define a sequence {qn}∞n=1 of elements in Cq0 ([0, T ], C(K))

as

qn+1
t = Φt[q

n]
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with the first element q1
t ≡ q0. Then the limit

q̃ = lim
n→∞

qn

is the unique fixed point of the mapping Φ. By Proposition 4.1 in [2], all qnt

and q̃t are continuous semimartingales.

The proof is complete.
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4 Sensitivity analysis

Consider equation (1) under the assumptions of Theorem 1.1 and its perturbed

version

ut(x) = u0(x) +

∫ t

0

Lws (Qγ(ws(us)))us(x) ds, t ∈ (0, T ]. (68)

Let ut ∈ L1

(
Rd
)
∩ C2

(
Rd
)

be a positive continuous C2-process, such that

wt(ut) is continuous in L1

(
Rd
)
. Then it is called a solution with the initial

value u0 if it satisfies equation (68) for any x ∈ Rd and t ∈ (0, T ] a.s.

Let us fix a bounded strictly positive u0 ∈ H2
1

(
Rd
)
∩C

(
Rd
)

and a bounded

non-negative v0 ∈ H2
1

(
Rd
)
∩ C

(
Rd
)
. In previous sections we proved that for

all h ∈ [0, 1] equation (68) has a unique bounded solution ut[u0 + hv0](x) with

the initial value u0 + hv0.

The objective of this section is to study the sensitivity of the solutions ut

and wt(ut) of equations (68) and (1) with respect to initial data, that is

δut[u0]

δu0(v0)
(x) =

∂

∂h

∣∣∣∣
h=0+

ut[u0 + hv0](x), (69)

δwt(ut[u0])

δu0(v0)
(x) =

∂

∂h

∣∣∣∣
h=0+

wt(ut[u0 + hv0])(x)

= ξt,0(x)
∂

∂h

∣∣∣∣
h=0+

ut[u0 + hv0](ϕt,0(x)) = wt

(
δut[u0]

δu0(v0)

)
(x).

(70)

Basic definitions for the variational derivatives of functionals on measures and

some of their elementary properties can be found in [8].

By formula (70) we deduce that the existence of the variational derivative

of the solution of equation (1) is equal to the existence of the variational

derivative of the solution of equation (68).

Theorem 4.1. Consider equation (1) under the assumptions of Theorem 1.1.

Assume that the first order derivatives with respect to q of the coefficients

of the operator Lt are bounded. Then for any bounded strictly positive u0 ∈
H2

1

(
Rd
)
∩C

(
Rd
)

and any bounded non-negative v0 ∈ H2
1

(
Rd
)
∩C

(
Rd
)
, the

variational derivative (70) exists.
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Let positive Cw, C2, K, θ, C4, C5, C be the constants from Propositions

2.4, 2.8, 2.11, 2.12, 2.14, 2.15. Note that we may choose C5 ≥ C2C and

C4 ≥ Cw exp{Cw}/
(
θKd−1

)
. Recall how for every h ∈ [0, 1] we construct

a unique bounded solution of equation (68) with the initial value u0 + hv0.

Denote

τ0 =
1

2

(
3χC4C5

(
‖u0‖H2

1
+ ‖v0‖H2

1

))−1

, q0(h) = Qγ(u0 + hv0),

where χ is the Lipschitz constant from Lemma 2.6. Let us recursively define

a sequence {qn(h)}∞n=1 of elements in the set Cq0(h)

(
[0, τ0],Rd

)
with the first

element q1
t (h) ≡ q0(h). Denote by unt,h the solution of

unt,h(x) = u0(x) + hv0(x) +

∫ t

0

Lws (qns (h))uns,h(x) ds, t ∈ (0, τ0]

and define

qn+1
t (h) = Qγ

(
wt
(
unt,h
))
.

In Section 3 we showed that qn(h) converges to some element q(h), which

corresponds to the solution ut[u0 + hv0], t ∈ [0, τ0] of equation (68) with the

initial value u0 + hv0.

Let us find the recursive formula for ∂
∂h
qn(h). We start with the first

element q1(h). Differentiation with respect to h of equation∫
{x∈Rd : xk≤q0,k(h)}

(u0(x) + hv0(x)) dx = γk(‖u0‖L + h‖v0‖L)

gives us

∂

∂h
q0,k(h) =

(
γk‖v0‖L −

∫
{x∈Rd : xk≤q0,k(h)}

v0(x) dx

)

×

(∫
Rd−1

(u0(x) + hv0(x))
∣∣∣
xk=q0,k(h)

∏
i 6=k

dxi

)−1

.

Next, we will express ∂
∂h
qn+1(h) in terms of ∂

∂h
qn(h). Assume that coeffi-

cients aij, bi, c in operator Lwt are continuously differentiable in q with bounded
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derivatives. Then unt,h(x) is continuously differentiable in h, and

∂

∂t

∂

∂h
unt,h(x) = Lwt (qnt (h))

∂

∂h
unt,h(x) +

1

2

d∑
i,j=1

∂

∂h
aij(t, x, qnt (h))

∂2

∂xi∂xj
unt,h(x)

+
d∑
i=1

∂

∂h
bi(t, x, qnt (h))

∂

∂xi
unt,h(x) +

∂

∂h
c(t, x, qnt (h))unt,h(x).

Applying Duhamel’s principle, we get

∂

∂h
unt,h(x) =

∫
Rd

G(t, x, 0, ξ)[qn(h)]v0(ξ) dξ +

∫ t

0

d∑
k=1

∂

∂h
qnr,k(h)

×
∫
Rd

G(t, x, r, ξ)[qn(h)]

(
1

2

d∑
i,j=1

∂aij

∂qk
(r, ξ, qnr (h))

∂2unr,h
∂ξi∂ξj

(ξ)

+
d∑
i=1

∂bi

∂qk
(r, ξ, qnr (h))

∂unr,h
∂ξi

(ξ) +
∂c

∂qk
(r, ξ, qnr (h))unr,h(ξ)

)
dξdr.

(71)

By formula (47) we deduce

∂

∂h
wt
(
unt,h
)

(x) = wt

(
∂

∂h
unt,h

)
(x).

Differentiation with respect to h of equation∫
{x∈Rd : xk≤qn+1

t,k (h)}
wt
(
unt,h
)

(x) dx = γk
∥∥wt(unt,h)∥∥L = γk(‖u0‖L + h‖v0‖L)

gives us

∂

∂h
qn+1
t,k (h) =

(
γk‖v0‖L −

∫
{x∈Rd : xk≤qn+1

t,k (h)}
wt

(
∂

∂h
unt,h

)
(x) dx

)

×

(∫
Rd−1

wt
(
unt,h
)

(x)
∣∣∣
xk=qn+1

t,k (h)

∏
i 6=k

dxi

)−1

.

(72)

Denote

B =
2 (1 + Cw exp{Cw}C2) ‖v0‖L

θKd−1
.
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Using induction by n we will show that for all t ∈ [0, τ0], h ∈ [0, 1]

max
k

∣∣∣∣ ∂∂hqnt,k(h)

∣∣∣∣ ≤ B. (73)

The basis is obvious. Suppose (73) holds for some n ≥ 1. From (71) we deduce∫
Rd

∣∣∣∣ ∂∂hunt,h(x)

∣∣∣∣ dx ≤ C2‖v0‖L + dMBC2

∫ t

0

∥∥unr,h∥∥H2
1

dr

≤ C2‖v0‖L + dMBC2τ0C
(
‖u0‖H2

1
+ ‖v0‖H2

1

)
= C2‖v0‖L +

B

2C4

dM

3χ

C2C

C5

≤ C2‖v0‖L +
B

2

θKd−1

Cw exp{Cw}
.

Then from (72) we deduce∣∣∣∣ ∂∂hqn+1
t,k (h)

∣∣∣∣ ≤ 1

θKd−1

(
‖v0‖L + Cw exp{Cw}

∫
Rd

∣∣∣∣ ∂∂hunt,h(x)

∣∣∣∣ dx)
≤ 1

θKd−1

(
‖v0‖L + Cw exp{Cw}

(
C2‖v0‖L +

B

2

θKd−1

Cw exp{Cw}

))
= B.

We are going to show that ∂
∂h
qnt,k(h) converges uniformly in h ∈ [0, 1] for all

t, k. Then by Theorem 7.17 in [17], we will deduce that qt,k(h) is differentiable

in h, and therefore, variational derivative (69) exists.

Let us fix t, k. Theorem 7.8 in [17] states that ∂
∂h
qnt,k(h) converges uniformly

in h ∈ [0, 1] if and only if for every ε > 0 there exists an integer N such that

m ≥ N , n ≥ N , h ∈ [0, 1] implies∣∣∣∣ ∂∂hqmt,k(h)− ∂

∂h
qnt,k(h)

∣∣∣∣ ≤ ε.

Denote by an+1, bn+1 the numerator and denominator of the right hand side
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of formula (72). Then by (73) we have∣∣∣∣ ∂∂hqn+1
t,k (h)− ∂

∂h
qnt,k(h)

∣∣∣∣ =

∣∣∣∣an+1 − an
bn+1

− ∂

∂h
qnt,k(h)

bn+1 − bn
bn+1

∣∣∣∣
≤ 1

θKd−1

(∣∣∣∣∣
∫ qn+1

t,k (h)

qnt,k(h)

I3

(
xk
)
dxk

∣∣∣∣∣+ I4

)
+

B

θKd−1

(
I1

(
qn+1
t,k (h)

)
+
∣∣I2

(
qn+1
t,k (h)

)
− I2

(
qnt,k(h)

)∣∣) ,
(74)

where

I1

(
xk
)

=

∣∣∣∣∣
∫
Rd−1

wt
(
unt,h
)
(x)
∏
i 6=k

dxi −
∫
Rd−1

wt
(
un−1
t,h

)
(x)
∏
i 6=k

dxi

∣∣∣∣∣ ,
I2

(
xk
)

=

∫
Rd−1

wt
(
un−1
t,h

)
(x)
∏
i 6=k

dxi,

I3

(
xk
)

=

∫
Rd−1

wt

(
∂

∂h
unt,h

)
(x)
∏
i 6=k

dxi,

I4 =

∣∣∣∣∣
∫
{x∈Rd : xk≤qnt,k(h)}

(
wt

(
∂

∂h
unt,h

)
(x)− wt

(
∂

∂h
un−1
t,h

)
(x)

)
dx

∣∣∣∣∣ .
To estimate the right hand side of (74) we need the following upper bounds

I1

(
xk
)
≤
∫
Rd−1

∣∣wt(unt,h)(x)− wt
(
un−1
t,h

)
(x)
∣∣∏
i 6=k

dxi

≤ exp{Cw}
∫
Rd−1

∣∣∣∣∫ t

0

U t,s
n−1

(
Lns − Ln−1

s

)
U s,0
n (u0 + hv0)(ϕt,0(x)) ds

∣∣∣∣∏
i 6=k

dxi

≤ exp{Cw}C2

∫ t

0

∫
Rd

∣∣(Lns − Ln−1
s

)
U s,0
n (u0 + hv0)(ξ)

∣∣
×
∫
Rd−1

Gσ2(t− s, ϕt,0(x)− ξ)
∏
i 6=k

dxi dξ ds,

∣∣I ′2(xk)∣∣ ≤ exp{Cw}Cw
∫
Rd−1

(
d∑
j=1

∣∣∣∣∣∂un−1
t,h

∂xj
(ϕt,0(x))

∣∣∣∣∣+ un−1
t,h (ϕt,0(x))

)∏
i 6=k

dxi

≤ exp{Cw}CwC2

(
C3t

−1/2d+ 1
)
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×
∫
Rd

(u0 + hv0)(ξ)

∫
Rd−1

Gσ2(t, ϕt,0(x)− ξ)
∏
i 6=k

dxi dξ,

∣∣I3

(
xk
)∣∣ ≤ exp{Cw}C2

∫
Rd

v0(ξ)

∫
Rd−1

Gσ2(t, ϕt,0(x)− ξ)
∏
i 6=k

dxi dξ

+ exp{Cw}C2dMB

∫ t

0

∫
Rd

(
d∑

i,j=1

∣∣∣∣ ∂2unr,h
∂ξi∂ξj

(ξ)

∣∣∣∣+
d∑
i=1

∣∣∣∣∂unr,h∂ξi
(ξ)

∣∣∣∣
+ unr,h(ξ)

)∫
Rd−1

Gσ2(t− r, ϕt,0(x)− ξ)
∏
i 6=k

dxi dξ dr,

I4 ≤ exp{Cw}Cw
∫
Rd

∣∣∣∣ ∂∂hunt,h(x)− ∂

∂h
un−1
t,h (x)

∣∣∣∣ dx
≤ 3χ exp{Cw}CwC5τ0‖v0‖H2

1

∥∥qn(h)− qn−1(h)
∥∥

+ τ0C2CM exp{Cw}Cw
(
‖u0‖H2

1
+ ‖v0‖H2

1

)∥∥∥∥ ∂∂hqn(h)− ∂

∂h
qn−1(h)

∥∥∥∥ .
Using these estimates we finally obtain∥∥∥∥ ∂∂hqn+1(h)− ∂

∂h
qn(h)

∥∥∥∥+
∥∥qn+1(h)− qn(h)

∥∥ ≤
c1τ0

∥∥∥∥ ∂∂hqn(h)− ∂

∂h
qn−1(h)

∥∥∥∥+ c2τ0

∥∥qn(h)− qn−1(h)
∥∥

for some constants c1, c2. Therefore, variational derivative (69) exists for a

small τ0. The global result follows from the usual iteration procedure.
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5 Multidimensional Wt

In this section we shall study the well-posedness of the following second order

SPDE

ut(x) = u0(x) +

∫ t

0

Ls(Qγ(us))us(x) ds+

∫ t

0

(β,∇)us(x) ◦dWs, t ∈ (0, T ],

(75)

where Lt is an operator of the form

Lt(q)u =
1

2

(
σ̄σ̄T (t, x, q)∇,∇

)
u+ (g(t, x, q),∇)u+ d(t, x, q)u,

Wt is a standard d′-dimensional Brownian motion, β is a d × d′ matrix of

constants, functions d(t, x, q), g(t, x, q) and σ̄(t, x, q) are, respectively, 1-di-

mensional, d× 1 vector-valued and d× d′′ matrix-valued continuous functions

on [0, T ]×Rd ×Rd satisfying Conditions (E.2) and (E.3).

Theorem 5.1. For a given T > 0 and vector γ = (γ1, . . . , γd) with all γk ∈
(0, 1), consider equation (75) in case of the quantile vector Qγ. Assume that

Conditions (E.2) and (E.3) hold. Then for any bounded strictly positive u0 ∈
H2

1

(
Rd
)
∩ C

(
Rd
)
, there exists a unique bounded solution ut(x) of equation

(75) with initial condition u0, such that it is a continuous C3-process.

Theorem 5.2. For a given T > 0, vector γ = (γ1, . . . , γd) with all γk ∈ (0, 1)

and
∑
γk < 1, and dimension d ≤ 3, consider equation (75) in case of the

CKL-quantile vector Q̃γ. Assume that Conditions (E.2) and (E.3) hold. Then

for any bounded strictly positive u0 ∈ H2
1

(
Rd
)
∩C

(
Rd
)
, there exists a unique

bounded solution ut(x) of equation (75) with initial condition u0, such that it

is a continuous C3-process.

The stochastic characteristic system of equation (75) with Ls ≡ 0 is given

by

ϕs,t(x) = x− β × (Wt −Ws) , ηs,t(x, u) = u.

Note that function ϕs,t(x)−x is bounded on [0, T ]2×Rd, the Jacobian matrix

(∂ϕs,t(x)) is the identity matrix and

ϕt,0(x)− ϕs,0(x) = β × (Wt −Ws) −−→
t→s

0,
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i.e. Propositions 2.4 and 2.5 hold in multidimensional case too. Then the proofs

of Theorems 5.1 and 5.2 are identical to those in the case of 1-dimensional Wt

with some simplifications.

Remark. In the general case of a function β(t, x), we cannot prove Proposi-

tions 2.4 and 2.5 in the same way as in Section 2.1.1 because the correspond-

ing stochastic characteristic system on ϕs,t does not have an explicit solution

(Doss–Sussman method is not applicable). Although, it might be possible to

apply techniques developed in [5] to get similar results.
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A Auxiliary propositions of linear algebra

In this appendix we will present two auxiliary propositions. The first Proposi-

tion A.1 is used in the proof of the second Proposition A.2, while Proposition

A.2 is used in the proof of Proposition 2.12 for assessing the solution of equa-

tion (66).

Definition. If A is a square matrix, then the minor of the entry in the i-th

row and j-th column (also called the (i, j)-th minor) is the determinant of the

submatrix formed by deleting the i-th row and j-th column.

Proposition A.1. Consider a square matrix A = (aij)
d
i,j=1 with aii > 0, aij < 0

if i 6= j, and
∑d

j=1 a
i
j > 0 for all i = 1, . . . , d. Let M i

j(A) be the (i, j)-th minor

of A. Then (−1)i+jM i
j(A) > 0 for all i, j = 1 . . . , d.

Proof. We will prove the statement by induction on d. Case d = 2 is obvious.

Assuming that the statement is true for d−1, we need to prove it for dimension

d.

Let A = (aij)
d
i,j=1 be the matrix from the proposition. Denote by B =(

bkl
)d−1

k,l=1
the submatrix of A formed by deleting the i-th row and j-th column,

then M i
j(A) = detB.

First of all, we will prove that M i
i (A) > 0. Matrix B satisfies the propo-

sition for dimension d− 1, in particular,
∑d−1

l=1 b
k
l > 0 for all k = 1, . . . , d− 1.

Then by our induction hypothesis we have

(−1)k+1Mk
1 (B) > 0.

If we add to the first column of B all other columns, then Laplace’s formula

gives us

M i
i (A) = detB =

d−1∑
k=1

(−1)k+1Mk
1 (B)

d−1∑
l=1

bkl > 0.
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Next we will prove that (−1)i+jM i
j(A) > 0 for all i < j.

B =



1 ... i−1 i i+1 ... j−1 j ... d−1

1 a1
1 ... a1

i−1 a1
i a1

i+1 ... a1
j−1 a1

j+1 ... a1
d...

...
...

...
...

...
...

...

i−1 ai−1
1 ... ai−1

i−1 ai−1
i ai−1

i+1 ... ai−1
j−1 ai−1

j+1 ... ai−1
d

i ai+1
1 ... ai+1

i−1 ai+1
i ai+1

i+1 ... ai+1
j−1 ai+1

j+1 ... ai+1
d...

...
...

...
...

...
...

...

j−2 aj−1
1 ... aj−1

i−1 aj−1
i aj−1

i+1 ... aj−1
j−1 aj−1

j+1 ... aj−1
d

j−1 aj1 ... aji−1 aji aji+1 ... ajj−1 ajj+1 ... ajd
j aj+1

1 ... aj+1
i−1 aj+1

i aj+1
i+1 ... aj+1

j−1 aj+1
j+1 ... aj+1

d...
...

...
...

...
...

...
...

d−1 ad1 ... adi−1 adi adi+1 ... adj−1 adj+1 ... ad
d


Denote by C a matrix formed by consecutive interchanging of columns i and

i+ 1, i+ 1 and i+ 2, . . . , j − 2 and j − 1 in matrix B.

C =



1 ... i−1 i ... j−2 j−1 j ... d−1

1 a1
1 ... a1

i−1 a1
i+1 ... a1

j−1 a1
i a1

j+1 ... a1
d...

...
...

...
...

...
...

...

i−1 ai−1
1 ... ai−1

i−1 ai−1
i+1 ... ai−1

j−1 ai−1
i ai−1

j+1 ... ai−1
d

i ai+1
1 ... ai+1

i−1 ai+1
i+1 ... ai+1

j−1 ai+1
i ai+1

j+1 ... ai+1
d...

...
...

...
...

...
...

...

j−2 aj−1
1 ... aj−1

i−1 aj−1
i+1 ... aj−1

j−1 aj−1
i aj−1

j+1 ... aj−1
d

j−1 aj1 ... aji−1 aji+1 ... ajj−1 aji ajj+1 ... ajd
j aj+1

1 ... aj+1
i−1 aj+1

i+1 ... aj+1
j−1 aj+1

i aj+1
j+1 ... aj+1

d...
...

...
...

...
...

...
...

d−1 ad1 ... adi−1 adi+1 ... adj−1 adi adj+1 ... ad
d


All elements cj−1

l in (j− 1)-st row of matrix C are less than 0, and apart from

(j − 1)-st row this matrix satisfies the proposition for dimension d− 1, i.e. by

our induction hypothesis we have

(−1)j−1+lM j−1
l (C) > 0.
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Then Laplace’s formula gives us

(−1)i+jM i
j(A) = (−1)i+j detB = (−1)i+j(−1)j−i−1 detC

= −
d−1∑
l=1

(−1)j−1+lM j−1
l (C)cj−1

l > 0.

Finally, we will prove that (−1)i+jM i
j(A) > 0 for all i > j.

B =



1 ... j−1 j ... i−2 i−1 i ... d−1

1 a1
1 ... a1

j−1 a1
j+1 ... a1

i−1 a1
i a1

i+1 ... a1
d...

...
...

...
...

...
...

...

j−1 aj−1
1 ... aj−1

j−1 aj−1
j+1 ... aj−1

i−1 aj−1
i aj−1

i+1 ... aj−1
d

j aj1 ... ajj−1 ajj+1 ... aji−1 aji aji+1 ... ajd
j+1 aj+1

1 ... aj+1
j−1 aj+1

j+1 ... aj+1
i−1 aj+1

i aj+1
i+1 ... aj+1

d...
...

...
...

...
...

...
...

i−1 ai−1
1 ... ai−1

j−1 ai−1
j+1 ... ai−1

i−1 ai−1
i ai−1

i+1 ... ai−1
d

i ai+1
1 ... ai+1

j−1 ai+1
j+1 ... ai+1

i−1 ai+1
i ai+1

i+1 ... ai+1
d...

...
...

...
...

...
...

...

d−1 ad1 ... adj−1 adj+1 ... adi−1 adi adi+1 ... ad
d


Denote by C a matrix formed by consecutive interchanging of rows j and j+1,

j + 1 and j + 2, . . . , i− 2 and i− 1 in matrix B.

C =



1 ... j−1 j ... i−2 i−1 i ... d−1

1 a1
1 ... a1

j−1 a1
j+1 ... a1

i−1 a1
i a1

i+1 ... a1
d...

...
...

...
...

...
...

...

j−1 aj−1
1 ... aj−1

j−1 aj−1
j+1 ... aj−1

i−1 aj−1
i aj−1

i+1 ... aj−1
d

j aj+1
1 ... aj+1

j−1 aj+1
j+1 ... aj+1

i−1 aj+1
i aj+1

i+1 ... aj+1
d...

...
...

...
...

...
...

...

i−2 ai−1
1 ... ai−1

j−1 ai−1
j+1 ... ai−1

i−1 ai−1
i ai−1

i+1 ... ai−1
d

i−1 aj1 ... ajj−1 ajj+1 ... aji−1 aji aji+1 ... ajd
i ai+1

1 ... ai+1
j−1 ai+1

j+1 ... ai+1
i−1 ai+1

i ai+1
i+1 ... ai+1

d...
...

...
...

...
...

...
...

d−1 ad1 ... adj−1 adj+1 ... adi−1 adi adi+1 ... ad
d


All elements ci−1

l in (i− 1)-st row of matrix C are less than 0, and apart from
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(i− 1)-st row this matrix satisfies the proposition for dimension d− 1, i.e. by

our induction hypothesis we have

(−1)i−1+lM i−1
l (C) > 0.

Then Laplace’s formula gives us

(−1)i+jM i
j(A) = (−1)i+j detB = (−1)i+j(−1)i−j−1 detC

= −
d−1∑
l=1

(−1)i−1+lM i−1
l (C)ci−1

l > 0.

Proposition A.2. Consider the following system of linear equations

gj =
∑

i=1,...,d
i 6=j

(xj − xi)bji + xjcj, j = 1, . . . , d, (76)

where bji , cj > 0. There exists a unique solution (x1, . . . , xd) of system (76),

and for all j = 1, . . . , d the following holds

|xj| ≤
max(|g1|, . . . , |gd|)

min(c1, . . . , cd)
.

Proof. Denote by aij = −bij for i 6= j and aii = ci+
∑

j 6=i b
i
j, matrix A = (aij)

d
i,j=1,

M i
j is a (i, j)-th minor of A. Then our system becomes Ax = g.

If we add to the j-th column of A all other columns, then Laplace’s formula

gives us

detA =
d∑
i=1

(−1)i+jM i
jci. (77)

By Proposition A.1 we conclude that detA > 0.

By Cramer’s rule the (j, i)-th element of A−1 is equal to (−1)i+jM i
j/ detA.

Then

xj =
d∑
i=1

(
A−1

)j
i
gi =

d∑
i=1

(−1)i+jM i
jgi/ detA.
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Finally, applying Proposition A.1 and equation (77) we obtain our estimate

|xj| =

∣∣∣∑d
i=1(−1)i+jM i

jgi

∣∣∣∑d
i=1(−1)i+jM i

jci
≤
∑d

i=1(−1)i+jM i
j |gi|∑d

i=1(−1)i+jM i
jci
≤ max(|g1|, . . . , |gd|)

min(c1, . . . , cd)
.
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B Estimate for the CKL-quantile Q̃γ of linear

combinations of two functions

The objective of this appendix is to prove a proposition, which helps us to

estimate CKL-quantiles of linear combinations of two functions. We use this

proposition in the proof of Proposition 2.12.

Proposition B.1. Let dimension d ≤ 3 and γ = (γ1, . . . , γd) be given, such

that all γj ∈ (0, 1) and
∑
γj < 1. Then for any strictly positive u, v ∈ C

(
Rd
)
∩

L1

(
Rd
)

with

max
j

(∣∣∣Q̃j
γ(u)

∣∣∣ , ∣∣∣Q̃j
γ(v)

∣∣∣) ≤ K

and any h ∈ (0, 1), we have

max
j

∣∣∣Q̃j
γ((1− h)u+ hv)

∣∣∣ ≤ (2d− 1)K.

Proof. For each s ∈ Rd, let

Asj =

{
x ∈ Rd : xj − sj ≥ 0 ∨max

i 6=j
(xi − si)

}
, j = 1, . . . , d,

and

As0 =
{
x ∈ Rd : xj ≤ sj, j = 1, . . . , d

}
.

The following diagram helps to visualise sets Asj when dimension d = 2.

x1

x2

s

As1

As2

As0

Note that Asj may intersect, for example, s ∈ Asj for all j = 0, . . . , d.

At first, let us make some observations on Asj . Let a, b be two points in

Rd.
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1. If for some j = 0, . . . , d, b ∈ Aaj , then Abj ⊂ Aaj .

2. If for some j = 0, . . . , d, b ∈ Aaj and a ∈ Abj, then a = b.

For the proof, see Lemma B.2.

Note that if Q̃γ(u) = Q̃γ(v), then for any h ∈ (0, 1), CKL-quantile of a

linear combination Q̃γ((1− h)u+ hv) coincides with Q̃γ(u) and Q̃γ(v).

Denote a = Q̃γ(u), b = Q̃γ(v) and c = Q̃γ((1 − h)u + hv). From the

positiveness of u and v we conclude that for any j = 0, . . . , d, c cannot be in

Aaj and Abj simultaneously, and for any j = 0, . . . , d, a and b cannot be in Acj

simultaneously, unless the case a = b, which has been considered before.

Let us consider the following five cases which we will be referring to in the

sequel.

Case 0.1 c ∈ Aa0, b ∈ Ac0. In this case we have

cj ≤ aj, bj ≤ cj, j = 1, . . . , d.

Then maxj |cj| ≤ K.

Case 0.2(i) c ∈ Abi , a ∈ Aci . In this case we have

ci − bi ≥ 0, ci − bi ≥ cj − bj, j = 1, . . . , d,

ai − ci ≥ 0, ai − ci ≥ aj − cj, j = 1, . . . , d.

Then |ci| ≤ K, and aj − ai + ci ≤ cj ≤ bj − bi + ci, i.e. |cj| ≤ 3K.

Case 0.3 c ∈ Aa1, b ∈ Ac1. In this case we have

c1 − a1 ≥ 0, c1 − a1 ≥ cj − aj, j = 1, . . . , d,

b1 − c1 ≥ 0, b1 − c1 ≥ bj − cj, j = 1, . . . , d.

Then |c1| ≤ K, and bj − b1 + c1 ≤ cj ≤ aj − a1 + c1, i.e. |cj| ≤ 3K.

Note that the three cases above hold for any dimension d ≥ 1.

Case 1.1 d = 3, c ∈ Aa0, c ∈ Ab1, a ∈ Ac2, b ∈ Ac3. In this case we have for all

j = 1, . . . , d

cj ≤ aj, a2 − c2 ≥ aj − cj, b3 − c3 ≥ bj − cj.
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Then aj−a2+c2 ≤ cj ≤ aj and bj−b3+c3 ≤ cj ≤ aj. Sufficient condition

for |cj| ≤ 5K is either −3K ≤ c2, or −3K ≤ c3. Our objective in the

sequel is to prove one of these lower bounds. There are three possible

cases:

1. Aa3A
b
1A

c
1 6= ∅. Let x be any point in Aa3A

b
1A

c
1. In this case we have

x3 − a3 ≥ x1 − a1, x1 − c1 ≥ x3 − c3, c1 − b1 ≥ 0.

Then −3K ≤ a3 − a1 + b1 ≤ a3 − a1 + c1 ≤ x3 − x1 + c1 ≤ c3.

2. Aa0A
b
2A

c
0 6= ∅. Let x be any point in Aa0A

b
2A

c
0. In this case we have

x2 − b2 ≥ 0, x2 ≤ c2.

Then −K ≤ b2 ≤ x2 ≤ c2.

3. Aa3A
b
1A

c
1 = ∅ and Aa0A

b
2A

c
0 = ∅. Denote AaiA

b
jA

c
k by Bijk, and

xijk =

∫
Bijk

u(x) dx, yijk =

∫
Bijk

v(x) dx.

By Lemma B.2 we have

Ac0 ⊂ Aa0, Ac1 ⊂ Ab1,

Aa2 ⊂ Ac2, Ab3 ⊂ Ac3.

This means that the following sets are subsets of hyperplanes in R3,

therefore, they have Lebesgue measure zero

AaiA
c
0, i 6= 0, AbjA

c
1, j 6= 1,

Aa2A
c
k, k 6= 2, Ab3A

c
k, k 6= 3.

We can deduce that among 64 sets Bijk at most 28 can be of positive

Lebesgue measure (for example, all setsB1j0 have Lebesgue measure

zero because they lie in the set Aa1A
c
0 which has Lebesgue measure
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zero). These 28 sets have indices

000 ��020 ��100 ��120 ��200 ��220 ��300 ��320

��001 ��021 ��101 ��121 ��201 ��221 ��301 ��321

002 022 102 122 202 222 302 322

003 023 103 123 ��203 ��223 303 323

010 ��030 ��110 ��130 ��210 ��230 ��310 ��330

011 ��031 111 ��131 ��211 ��231 ��311 ��331

012 ��032 112 ��132 212 ��232 312 ��332

013 033 113 133 ��213 ��233 313 333


Let us group all xijk and yijk with the indices above into the fol-

lowing

x1 = x000 + x010, y1 = y000,

x2 = x011, y2 = y002 + y102 + y202 + y302,

x3 = x002 + x012 + x022, y3 = y003 + y103 + y303,

x4 = x003 + x013 + x023 + x033, y4 = y010,

x5 = x111, y5 = y011 + y111,

x6 = x102 + x112 + x122, y6 = y012 + y112 + y212 + y312,

x7 = x103 + x113 + x123 + x133, y7 = y013 + y113 + y313,

x8 = x202 + x212 + x222, y8 = y022 + y122 + y222 + y322,

x9 = x302 + x312 + x322, y9 = y023 + y123 + y323,

x10 = x303 + x313 + x323 + x333, y10 = y033 + y133 + y333.

From the definition of points a, b, c these variables xi, yi satisfy

x8 = γ2,

x9 + x10 = γ3,

y8 + y9 = γ2,

y10 = γ3,

(1− h)(x3 + x6 + x8 + x9) + h(y2 + y6 + y8) = γ2,

(1− h)(x4 + x7 + x10) + h(y3 + y7 + y9 + y10) = γ3.

(78)
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Using system (78) we get

(1− h)(x3 + x4 + x6 + x7) + h(y2 + y3 + y6 + y7)

= γ2 + γ3 − (1− h)(x8 + x9 + x10)− h(y8 + y9 + y10) = 0.

(79)

Because of non-negativity of xijk and yijk equation (79) yields

x3 = x4 = x6 = x7 = y2 = y3 = y6 = y7 = 0.

Next let us prove that c2 ≥ −K by contradiction. Suppose c2 <

−K. Denote

C =
[
c2 − 3K, c2 − 2K

]
×
[
c2,−K

]
×
[
c2 − 3K, c2 − 2K

]
.

It is a subset of B002. Indeed, let x ∈ C, then

x1 − a1 ≤ c2 − 2K − a1 ≤ −3K − a1 ≤ 0,

x2 − a2 ≤ −K − a2 ≤ 0,

x3 − a3 ≤ c2 − 2K − a3 ≤ −3K − a3 ≤ 0,

i.e. x ∈ Aa0. Similarly we have x ∈ Ab0. Finally,

x2 − c2 ≥ 0 ≥ a2 − a1 − 2K ≥ c2 − c1 − 2K ≥ x1 − c1,

x2 − c2 ≥ 0 ≥ a2 − a3 − 2K ≥ c2 − c3 − 2K ≥ x3 − c3,

i.e. x ∈ Ac2.

This inclusion of a compact set C into B002 leads to

0 <

∫
C

u(x) dx ≤
∫
B002

u(x) dx = x002 ≤ x3 = 0,

contradiction.

Case 1.2 d = 3, c ∈ Aa1, c ∈ Ab2, a ∈ Ac0, b ∈ Ac3. In this case we have for all

j = 1, . . . , d

c1 − a1 ≥ cj − aj, c2 − b2 ≥ cj − bj, aj ≤ cj.
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Then aj ≤ cj ≤ aj−a1+c1 and aj ≤ cj ≤ bj−b2+c2. Sufficient condition

for |cj| ≤ 5K is either c1 ≤ 3K, or c2 ≤ 3K. Our objective in the sequel

is to prove one of these upper bounds. There are three possible cases:

1. Aa3A
b
2A

c
2 6= ∅. Let x be any point in Aa3A

b
2A

c
2. In this case we have

x3 − a3 ≥ x2 − a2, x2 − c2 ≥ x3 − c3, b3 − c3 ≥ 0.

Then c2 ≤ x2 − x3 + c3 ≤ a2 − a3 + c3 ≤ a2 − a3 + b3 ≤ 3K.

2. Aa1A
b
0A

c
1 6= ∅. Let x be any point in Aa1A

b
0A

c
1. In this case we have

x1 − c1 ≥ 0, x1 ≤ b1.

Then c1 ≤ x1 ≤ b1 ≤ K.

3. Aa3A
b
2A

c
2 = ∅ and Aa1A

b
0A

c
1 = ∅. Denote AaiA

b
jA

c
k by Bijk, and

xijk =

∫
Bijk

u(x) dx, yijk =

∫
Bijk

v(x) dx.

By Lemma B.2 we have

Ac1 ⊂ Aa1, Ac2 ⊂ Ab2,

Aa0 ⊂ Ac0, Ab3 ⊂ Ac3.

This means that the following sets are subsets of hyperplanes in R3,

therefore, they have Lebesgue measure zero

AaiA
c
1, i 6= 1, AbjA

c
2, j 6= 2,

Aa0A
c
k, k 6= 0, Ab3A

c
k, k 6= 3.

We can deduce that among 64 sets Bijk at most 28 can be of positive

Lebesgue measure (for example, all setsB0j1 have Lebesgue measure

zero because they lie in the set Aa0A
c
1 which has Lebesgue measure
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zero). These 28 sets have indices

000 020 100 120 200 220 300 320

��001 ��021 ��101 121 ��201 ��221 ��301 ��321

��002 ��022 ��102 122 ��202 222 ��302 ��322

��003 ��023 103 123 203 223 303 323

010 ��030 110 ��130 210 ��230 310 ��330

��011 ��031 111 ��131 ��211 ��231 ��311 ��331

��012 ��032 ��112 ��132 ��212 ��232 ��312 ��332

��013 ��033 113 133 213 233 313 333


Let us group all xijk and yijk with the indices above into the fol-

lowing

x1 = x000 + x010 + x020, y1 = y000 + y100 + y200 + y300,

x2 = x100 + x110 + x120, y2 = y103 + y203 + y303,

x3 = x111 + x121, y3 = y010 + y110 + y210 + y310,

x4 = x122, y4 = y111,

x5 = x103 + x113 + x123 + x133, y5 = y113 + y213 + y313,

x6 = x200 + x210 + x220, y6 = y020 + y120 + y220 + y320,

x7 = x222, y7 = y121,

x8 = x203 + x213 + x223 + x233, y8 = y122 + y222,

x9 = x300 + x310 + x320, y9 = y123 + y223 + y323,

x10 = x303 + x313 + x323 + x333, y10 = y133 + y233 + y333.

From the definition of points a, b, c these variables xi, yi satisfy

x1 = γ0,

x9 + x10 = γ3,

y1 + y2 = γ0,

y10 = γ3,

(1− h)(x1 + x2 + x6 + x9) + h(y1 + y3 + y6) = γ0,

(1− h)(x5 + x8 + x10) + h(y2 + y5 + y9 + y10) = γ3.

(80)
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Using system (80) we get

(1− h)(x2 + x5 + x6 + x8) + h(y3 + y5 + y6 + y9)

= γ0 + γ3 − (1− h)(x1 + x9 + x10)− h(y1 + y2 + y10) = 0.

(81)

Because of non-negativity of xijk and yijk equation (81) yields

x2 = x5 = x6 = x8 = y3 = y5 = y6 = y9 = 0.

Next let us prove that c1 ≤ K by contradiction. Suppose c1 > K.

Denote

C =
[
K, c1

]
× [−2K,−K]× [−2K,−K].

It is a subset of B110. Indeed, let x ∈ C, then

x1 − a1 ≥ K − a1 ≥ 0 ≥ −K − a2 ≥ x2 − a2,

x1 − a1 ≥ K − a1 ≥ 0 ≥ −K − a3 ≥ x3 − a3,

i.e. x ∈ Aa1. Similarly we have x ∈ Ab1. Finally,

x1 ≤ c1,

x2 ≤ −K ≤ a2 ≤ c2,

x3 ≤ −K ≤ a3 ≤ c3,

i.e. x ∈ Ac0.

This inclusion of a compact set C into B110 leads to

0 <

∫
C

u(x) dx ≤
∫
B110

u(x) dx = x110 ≤ x2 = 0,

contradiction.

Assume that a 6= b, a 6= c and b 6= c. Let us prove the proposition for all

dimensions d ∈ {1, 2, 3}.

1. d = 1. In this case As1 = [s,+∞), As0 = (−∞, s]. Then c must be

between a and b.
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2. d = 2. There are two possible cases:

(a) Suppose c ∈ Aa0 or c ∈ Ab0. By symmetry we may think c ∈ Aa0,

then c 6∈ Ab0 and a 6∈ Ac0. By symmetry we may think c ∈ Ab1, then

b 6∈ Ac1. There are two possible cases:

i. b ∈ Ac0. See Case 0.1.

ii. b ∈ Ac2, then a ∈ Ac1. See Case 0.2(1).

(b) Suppose c 6∈ Aa0 and c 6∈ Ab0. By symmetry we may think c ∈ Aa1,

c ∈ Ab2, then a 6∈ Ac1 and b 6∈ Ac2. There are two possible cases:

i. a ∈ Ac0, then b ∈ Ac1. See Case 0.3.

ii. a ∈ Ac2. See Case 0.2(2).

3. d = 3. There are two possible cases:

(a) Suppose c ∈ Aa0 or c ∈ Ab0. By symmetry we may think c ∈ Aa0,

then c 6∈ Ab0 and a 6∈ Ac0. By symmetry we may think c ∈ Ab1, then

b 6∈ Ac1. There are two possible cases:

i. b ∈ Ac0. See Case 0.1.

ii. b 6∈ Ac0. By symmetry we may think b ∈ Ac3, then a 6∈ Ac3.

There are two possible cases:

A. a ∈ Ac1. See Case 0.2(1).

B. a 6∈ Ac1. By symmetry we may think a ∈ Ac2. See Case 1.1.

(b) Suppose c 6∈ Aa0 and c 6∈ Ab0. By symmetry we may think c ∈ Aa1,

c ∈ Ab2, then a 6∈ Ac1 and b 6∈ Ac2. There are three possible cases:

i. a ∈ Ac0, then b 6∈ Ac0. There are two possible cases:

A. b ∈ Ac1. See Case 0.3.

B. b 6∈ Ac1. By symmetry we may think b ∈ Ac3. See Case 1.2.

ii. a ∈ Ac2. See Case 0.2(2).

iii. a 6∈ Ac0 and a 6∈ Ac2. By symmetry we may think a ∈ Ac3, then

b 6∈ Ac3. There are two possible cases:

A. b ∈ Ac0. This case is similar to case 3(b)iB.

B. b ∈ Ac1. See Case 0.3.
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Remark. If Proposition B.1 holds for some dimension d ≥ 4, then Theorem

1.2 also holds for that d.

Remark. To prove Proposition B.1 for d ≥ 4, one needs to consider additional

three cases

1. c ∈ Aa1, c ∈ Ab2, a ∈ Ac3, b ∈ Ac4,

2. c ∈ Aa0, c ∈ Ab1, a ∈ Ac2, b ∈ Ac3, Aa3A
b
1A

c
1 = ∅ and Aa0A

b
2A

c
0 = ∅,

3. c ∈ Aa1, c ∈ Ab2, a ∈ Ac0, b ∈ Ac3, Aa3A
b
2A

c
2 = ∅ and Aa1A

b
0A

c
1 = ∅.

Lemma B.2. Let a, b be two points in Rd.

1. If for some j = 0, . . . , d, b ∈ Aaj , then Abj ⊂ Aaj .

2. If for some j = 0, . . . , d, b ∈ Aaj and a ∈ Abj, then a = b.

Proof. Suppose b ∈ Aa0, and let x ∈ Ab0, then for all j = 1, . . . , d

xj ≤ bj ≤ aj,

i.e. x ∈ Aa0 and Ab0 ⊂ Aa0.

Suppose for some j = 1, . . . , d, b ∈ Aaj , and let x ∈ Abj, then

xj − aj = xj − bj + bj − aj ≥ 0,

and for all i 6= j

xj − aj = xj − bj + bj − aj ≥ xi − bi + bi − ai = xi − ai,

i.e. x ∈ Aaj and Abj ⊂ Aaj .

Suppose b ∈ Aa0 and a ∈ Ab0, then for all j = 1, . . . , d

bj ≤ aj, aj ≤ bj,

i.e. a = b.
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Suppose for some j = 1, . . . , d, b ∈ Aaj and a ∈ Abj, then

bj − aj ≥ 0, aj − bj ≥ 0,

i.e. aj = bj. Then for all i 6= j

0 = bj − aj ≥ bi − ai, 0 = aj − bj ≥ ai − bi,

i.e. ai = bi and a = b.
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C Proof of Proposition 2.15

First of all, we need a lemma.

Lemma C.1. For any c ∈ R

∞∑
n=0

cn

Γ
(
n
2

+ 1
)

converges, where

Γ(z) =

∫ +∞

0

tz−1 exp{−t} dt.

Proof. Note that

lim
k→∞

(
c2k+2

Γ(k + 2)

/
c2k

Γ(k + 1)

)
= lim

k→∞

c2

k + 1
= 0,

lim
k→∞

(
c2k+1

Γ
(
k + 3

2

) / c2k−1

Γ
(
k + 1

2

) ) = lim
k→∞

c2

k + 1
2

= 0.

Then, our series converges because it can be represented as a sum of two

converging (by d’Alembert ratio test) series

∞∑
n=0

cn

Γ
(
n
2

+ 1
) =

∞∑
k=0

c2k

Γ(k + 1)
+
∞∑
k=1

c2k−1

Γ
(
k + 1

2

) .

Proof of Proposition 2.15. Recall that the solution to the Cauchy problem for

equation (57) can be written in terms of its Green function as

ut(x) =

∫
Rd

G(t, x, 0, ξ)u0(ξ) dξ.

From the upper bound in (58) we get

‖ut‖L ≤ C2

∫
Rd

|u0(ξ)|
∫
Rd

Gσ2(t, x− ξ) dx dξ = C2‖u0‖L. (82)

Next, let C
(

[0, T ],
(
L1

(
Rd
))d)

denote the Banach space of all continu-

ous mappings [0, T ] →
(
L1

(
Rd
))d

with norm ‖v‖ = supt∈[0,T ] ‖vt‖L, and let
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Cv0

(
[0, T ],

(
L1

(
Rd
))d)

denote its convex subset, consisting of mappings with

v0 = ∇u0 given. For a given v ∈ Cv0
(

[0, T ],
(
L1

(
Rd
))d)

denote

Φk
t [v](x) =

∫
Rd

G(t, x, 0, ξ)vk0(ξ) dξ +

∫ t

0

∫
Rd

G(t, x, r, ξ)
∂

∂ξk
c(r, ξ)ur(ξ)dξdr

−
∫ t

0

∫
Rd

1

2

d∑
i,j=1

∂

∂ξj

(
G(t, x, r, ξ)

∂

∂ξk
aij(r, ξ)

)
vir(ξ)dξdr

+

∫ t

0

∫
Rd

G(t, x, r, ξ)
d∑
i=1

∂

∂ξk
bi(r, ξ)vir(ξ)dξdr.

Note that Φ[v] is also an element of Cv0

(
[0, T ],

(
L1

(
Rd
))d)

with

‖Φt[v]‖L =
d∑

k=1

∥∥Φk
t [v]
∥∥
L
≤ C4 + C5

∫ t

0

‖vr‖L
(
(t− r)−1/2 + C6

)
dr, (83)

where

C4 = C2‖v0‖L + d(C2)2MT‖u0‖L,

C5 =
1

2
d2C2C3M, C6 =

d+ 2

dC3

.

We may think that the constants C2 and C3 in Proposition 2.8 are bigger than

1 and d+2
d

correspondingly, so that C4 > ‖v0‖L and C6 < 1.

For arbitrary v1, v2 ∈ Cv0
(

[0, T ],
(
L1

(
Rd
))d)

coinciding on [0, t0] we have

∥∥Φt

[
v1
]
− Φt

[
v2
]∥∥

L
≤ C5

∫ t

t0

∥∥v1
r − v2

r

∥∥
L

(
(t− r)−1/2 + C6

)
dr

≤ C5

(
2(t− t0)1/2 + C6(t− t0)

)
sup
r∈[t0,t]

∥∥v1
r − v2

r

∥∥
L
.

When t0 = 0, we see that Φ is a contraction for small enough T . Note that

the constants C5, C6 do not depend on the initial condition v0, therefore, the

global contraction (contraction for any given T > 0) follows from the usual

iteration procedure.
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Denote the following integrals In(t)

I0(t) ≡ 1,

In+1(t) = C5

∫ t

0

In(r)
(
(t− r)−1/2 + C6

)
dr.

There is a well known fact that the family of operators

Tαf(t) =
1

Γ(α)

∫ t

0

f(s)(t− s)α−1 ds, α > 0

is a semigroup in C(R). Then we can find an upper bound for In(t) on [0, T ].

In(t) = C5

(√
πT 1

2
+ C6T1

)
In−1(t) = . . . = (C5)n

(√
πT 1

2
+ C6T1

)n
I0(t)

= (C5)n
n∑
k=0

(
n

k

)(√
π
)k

(C6)n−k
tn−

k
2

Γ
(
n− k

2
+ 1
) ≤ (2C5T

√
π)

n

Γ
(
n
2

+ 1
) .

Denote by Φn the n-th iteration of Φ applied initially on v0. By a straight-

forward induction and (83) we deduce that

‖Φn
t ‖L ≤ C4

n∑
k=0

Ik(t).

Then for a fixed point v = limn→∞Φn we have

‖vt‖L = lim
n→∞

‖Φn
t ‖L ≤ C4

∞∑
n=0

In(t) ≤ C4

∞∑
n=0

(2C5T
√
π)

n

Γ
(
n
2

+ 1
) . (84)

Finally, we are going to prove that ∇u is a fixed point of Φ. By differenti-

ation of equation (57), we conclude that vt = ∇ut satisfies

∂

∂t
vkt (x) = Ltv

k
t (x) +

1

2

d∑
i,j=1

∂

∂xk
aij(t, x)

∂

∂xj
vit(x)

+
d∑
i=1

∂

∂xk
bi(t, x)vit(x) +

∂

∂xk
c(t, x)ut(x), k = 1, . . . , d,
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or its mild form

vkt (x) =

∫
Rd

G(t, x, 0, ξ)vk0(ξ) dξ +

∫ t

0

∫
Rd

G(t, x, r, ξ)

(
∂

∂ξk
c(r, ξ)ur(ξ)

+
1

2

d∑
i,j=1

∂

∂ξk
aij(r, ξ)

∂

∂ξj
vir(ξ) +

d∑
i=1

∂

∂ξk
bi(r, ξ)vir(ξ)

)
dξdr.

(85)

Note that∣∣∣∣G(t, x, r, ξ)
∂

∂ξk
aij(r, ξ)vir(ξ)

∣∣∣∣ ≤ C2Gσ2(t− r, x− ξ)MC3r
−1/2ur(ξ)

ξj→∞−−−→ 0,

then using integration by parts in (85), we conclude that v = ∇u is a fixed

point of Φ. Therefore, estimate (84) gives us

d∑
k=1

∥∥∥∥ ∂ut∂xk

∥∥∥∥
L

≤

(
C2

d∑
k=1

∥∥∥∥∂u0

∂xk

∥∥∥∥
L

+ d(C2)2MT‖u0‖L

)
∞∑
n=0

(d2C2C3MT
√
π)

n

Γ
(
n
2

+ 1
)

≤ C7

(
d∑

k=1

∥∥∥∥∂u0

∂xk

∥∥∥∥
L

+ ‖u0‖L

)
.

Upper bound for L1-norms of second order derivatives of ut(x) can be found

in the same way.

d∑
k,l=1

∥∥∥∥ ∂2ut
∂xk∂xl

∥∥∥∥
L

≤

(
C2

d∑
k,l=1

∥∥∥∥ ∂2u0

∂xk∂xl

∥∥∥∥
L

+ d2C2MT

(
3C7

(
d∑

k=1

∥∥∥∥∂u0

∂xk

∥∥∥∥
L

+‖u0‖L

)
+ C2‖u0‖L

))
∞∑
n=0

(2d2C2C3MT
√
π)

n

Γ
(
n
2

+ 1
)

≤ C8

(
d∑

k,l=1

∥∥∥∥ ∂2u0

∂xk∂xl

∥∥∥∥
L

+
d∑

k=1

∥∥∥∥∂u0

∂xk

∥∥∥∥
L

+ ‖u0‖L

)
.
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D Rewrite of Itô’s and Stratonovich SDEs

In this appendix we will rewrite a second order Itô’s SPDE using the Strato-

novich integral and a system of Stratonovich SDEs using the Itô’s integral.

First of all, let us rewrite the following equation

dut(x) = Ltut(x) dt+
d′∑
k=1

(
d∑
i=1

βik(t, x)
∂ut
∂xi

(x) + αk(t, x)ut(x)

)
dW k

t , (86)

where Lt is an operator of the form

Ltu =
1

2
(a(t, x)∇,∇)u+ (b(t, x),∇)u+ c(t, x)u.

Denote F k
t (x) =

∫ t
0
αk(s, x) dW k

s , then by Theorem 3.2.5 in [11] the Itô’s dif-

ferentials in equation (86) satisfy

αk(t, x)ut(x) ◦dW k
t − αk(t, x)ut(x) dW k

t

= ut(x) ◦dF k
t (x)− ut(x) dF k

t (x)

=
1

2
d
〈
F k
t (x), ut(x)

〉
=

1

2
d

〈∫ t

0

αk(s, x) dW k
s , u0(x) +

∫ t

0

Lsus(x) ds

+
d′∑
l=1

∫ t

0

(
d∑
j=1

βjl(s, x)
∂us
∂xj

(x) + αl(s, x)us(x)

)
dW l

s

〉

=
1

2
αk(t, x)

(
d∑
j=1

βjk(t, x)
∂ut
∂xj

(x) + αk(t, x)ut(x)

)
dt.

Similarly we have

βik(t, x)
∂ut
∂xi

(x) ◦dW k
t − βik(t, x)

∂ut
∂xi

(x) dW k
t

=
1

2
βik(t, x)

∂

∂xi

(
d∑
j=1

βjk(t, x)
∂ut
∂xj

(x) + αk(t, x)ut(x)

)
dt.
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Substituting these relations into equation (86), we can rewrite it as

dut(x) =
(
Lt − L̃t

)
ut(x) dt+

d′∑
k=1

(
d∑
i=1

βik(t, x)
∂ut
∂xi

(x) + αk(t, x)ut(x)

)
◦dW k

t ,

where

L̃tu =
1

2

d∑
i,j=1

(
d′∑
k=1

βik(t, x)βjk(t, x)

)
∂2u

∂xi∂xj

+
d∑
i=1

(
1

2

d∑
j=1

d′∑
k=1

βjk(t, x)
∂βik

∂xj
(t, x) +

d′∑
k=1

βik(t, x)αk(t, x)

)
∂u

∂xi

+
1

2

(
d∑
i=1

d′∑
k=1

βik(t, x)
∂αk

∂xi
(t, x) +

d′∑
k=1

(
αk(t, x)

)2

)
u.

Remark. Let us consider the following system

dϕs,t = −β(ϕs,t, t) ◦dWt,

dηs,t = ηs,tα(ϕs,t, t) ◦dWt,

where β(x, t) =
(
β1(x, t), . . . , βd(x, t)

)T
. Assume that the coefficients α(x, t)

and βi(x, t) satisfy Condition (E.1)k for some k ≥ 3. Then by Theorem 3.2.5

in [11] this system can be rewritten in

dϕs,t = −β(ϕs,t, t) dWt +
1

2

d∑
j=1

∂β

∂xj
(ϕs,t, t)β

j(ϕs,t, t) dt,

dηs,t = ηs,tα(ϕs,t, t) dWt +
1

2
ηs,t

(
−

d∑
j=1

∂α

∂xj
(ϕs,t, t)β

j(ϕs,t, t) + α2(ϕs,t, t)

)
dt.
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E Continuity of quantiles

Let ut ∈ L1

(
Rd
)
∩C

(
Rd
)

be a positive continuous function of (t, x). Suppose

ut is continuous in L1

(
Rd
)
. In this appendix we will prove that both quantile

Qγ(ut) and CKL-quantile Q̃γ(ut) are continuous in t.

Note that for both quantile Qγ(u) and CKL-quantile Q̃γ(u), for any s, t

and l ∈ {1, . . . , d} the following inequality holds

1

2

∣∣∣∣∣
∫
A
Qγ (us)

l

us(x) dx−
∫
A
Qγ (ut)

l

us(x) dx

∣∣∣∣∣
=

1

2

∣∣∣∣∣
∫
A
Qγ (ut)

l

(ut(x)− us(x)) dx+ γl‖us‖L − γl‖ut‖L

∣∣∣∣∣
≤ 1

2

∣∣∣∣∣
∫
A
Qγ (ut)

l

(ut(x)− us(x)) dx

∣∣∣∣∣+
1

2
γl
∣∣‖us‖L − ‖ut‖L∣∣ ≤ ‖ut − us‖L.

Let us first prove by contradiction that the quantile Qγ(ut) is continuous

in t. Suppose it is not continuous at some time t0, i.e. for some k ∈ {1, . . . , d}
there exists ε0 > 0 such that for any δ > 0

∣∣Qk
γ(ut)−Qk

γ(ut0)
∣∣ ≥ ε0

for some t ∈ (t0 − δ, t0 + δ). Denote a = Qγ(ut), b = Qγ(ut0). Then we have

‖ut − ut0‖L ≥
1

2

∣∣∣∣∣
∫
Abk

ut0(x) dx−
∫
Aak

ut0(x) dx

∣∣∣∣∣
≥ 1

2
min

(∫
{x∈Rd : xk∈(bk−ε0,bk)}

ut0(x) dx,

∫
{x∈Rd : xk∈(bk,bk+ε0)}

ut0(x) dx

)
= ε1 > 0,

which is a contradiction with continuity of ut in L1

(
Rd
)
.

Next, let us prove by contradiction that the CKL-quantile Q̃γ(ut) is also

continuous in t. Suppose it is not continuous at some time t0, i.e. for some
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k ∈ {1, . . . , d} there exists ε0 > 0 such that for any δ > 0∣∣∣Q̃k
γ(ut)− Q̃k

γ(ut0)
∣∣∣ ≥ ε0

for some t ∈ (t0 − δ, t0 + δ). Denote a = Q̃γ(ut), b = Q̃γ(ut0) and

X1l =
{
x ∈ Rd : xl ∈

(
bl, bl + ε0

)
, xi ≤ bi, i 6= l

}
,

X2l =
{
x ∈ Rd : xl ∈

(
bl − ε0, b

l
)
, xi ≤ bi − ε0, i 6= l

}
.

Our goal is to show that

‖ut − ut0‖L ≥
1

2
min
l

(∫
X1l

ut0(x) dx,

∫
X2l

ut0(x) dx

)
= ε1 > 0,

which is a contradiction with continuity of ut in L1

(
Rd
)
. Consider two possible

cases:

1. ak ≥ bk + ε0. Let a ∈ Abl for some l ∈ {1, . . . , d}, then by Lemma B.2,

Aal ⊂ Abl . Note that X1l ⊂ Abl and Aal ∩X1l = ∅. Indeed, if x ∈ X1l, then

xl − bl > 0 ≥ xi − bi, i 6= l

and

xl − al < bl + ε0 − al ≤ bk + ε0 − ak ≤ 0.

Therefore

‖ut − ut0‖L ≥
1

2

∣∣∣∣∣
∫
Abl

ut0(x) dx−
∫
Aal

ut0(x) dx

∣∣∣∣∣ ≥ 1

2

∫
X1l

ut0(x) dx.

2. ak ≤ bk − ε0. Let b ∈ Aal for some l ∈ {1, . . . , d}, then by Lemma B.2,

Abl ⊂ Aal . Note that X2l ⊂ Aal and Abl ∩X2l = ∅. Indeed, if x ∈ X2l, then

xl − al > bl − ε0 − al ≥ bk − ε0 − ak ≥ 0,

xl − al > bl − ε0 − al ≥ bi − ε0 − ai ≥ xi − ai, i 6= l.
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Therefore

‖ut − ut0‖L ≥
1

2

∣∣∣∣∣
∫
Abl

ut0(x) dx−
∫
Aal

ut0(x) dx

∣∣∣∣∣ ≥ 1

2

∫
X2l

ut0(x) dx.
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F Auxiliary results from [11]

In this appendix, we will state all the results used from [11], and make sure

that all the conditions under which they work are satisfied.

Theorem F.1 (Theorem 3.4.1 in [11]). Let F (x, t) be a continuous semi-

martingale with values in C
(
Rd : Rd

)
with local characteristic belonging to

the class B0,1
b . Then for each t0 and x0, the stochastic differential equation

ϕt = x0 +

∫ t

t0

F (ϕs, ds)

has a unique solution.

In terms and assumptions of the third paragraph of Section 1.2, let us check

that we can apply Theorem F.1 to equation (4), where

F (x, t) =

∫ t

0

β(x, s) dWs.

Here F (x, t) is a continuous martingale with values in C
(
Rd : Rd

)
. According

to the definitions in [11], the matrix

{
βi(x, t)βj(y, t)

}d
i,j=1

is called the local characteristic of F (x, t). It is said to belong to the class B0,1
b

if for every i = 1, . . . , d

∫ T

0

( sup
x∈Rd

|βi(x, t)|
1 + |x|

)2

+

 sup
x,x′∈Rd

x 6=x′

|βi(x, t)− βi(x′, t)|
|x− x′|


2 dt <∞,

which follows from the boundedness of βi(x, t) and all its derivatives. There-

fore, for each t0 and x0, Itô’s equation (4) has a unique solution.

Theorem F.2 (Theorem 3.2.5 in [11]). Assume that F (x, t) is a continuous

C1-semimartingale with local characteristic belonging to the class
(
B2,δ, B1,0

)
for some δ > 0 and ft is a continuous semimartingale. Then the Stratonovich

integral of ft based on the kernel F (x, t) is well defined. It is related to the
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Itô’s integral by the formula

∫ t

0

F (fs, ◦ds) =

∫ t

0

F (fs, ds) +
1

2

d∑
j=1

〈∫ t

0

∂F

∂xj
(fs, ds), f

j
t

〉
.

In terms and assumptions of Theorem F.3 below, let us check that the

continuous C1-martingale

F (x, t) =

∫ t

0

βi(x, s) dWs (87)

satisfies the conditions of Theorem F.2 for δ = 1. According to the definitions

in [11], βi(x, t)βi(y, t) is called the local characteristic of F (x, t). It is said to

belong to the class B2,1 if for any compact subset K of Rd

∫ T

0

(sup
x∈K

|βi(x, t)|
1 + |x|

)2

+
∑

1≤|α|≤2

(
sup
x∈K

∣∣Dα
xβ

i(x, t)
∣∣)2

+
∑
|α|=2

 sup
x,x′∈K
x 6=x′

|Dα
xβ

i(x, t)−Dα
xβ

i(x′, t)|
|x− x′|


2 dt <∞,

which follows from the boundedness of βi(x, t) and all its derivatives.

Theorem F.3 (Custom version of Theorem 3.4.7 in [11]). Let β(x, t) =(
β1(x, t), . . . , βd(x, t)

)
be a continuous bounded function on Rd×[0, T ], 3-times

differentiable in x and continuously differentiable in t with bounded derivatives.

Let Wt be a standard 1-dimensional Brownian motion. Then for each t0 and

x0, the Stratonovich equation

ϕt = x0 +

∫ t

t0

β(ϕs, s) ◦dWs (88)

has a unique solution. Further the solution satisfies Itô’s equation

ϕt = x0 +

∫ t

t0

β(ϕs, s) dWs +
1

2

∫ t

t0

{
d∑
j=1

βj(ϕs, s)
∂β

∂xj
(ϕs, s)

}
ds. (89)

Remark. Theorem 3.4.7 in [11] considers maximal solutions, while in Theo-
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rem F.3 we deal with global solutions only.

Proof. Consider Itô’s stochastic differential equation (89). Let us check that

it satisfies the conditions of Theorem F.1, where

F (x, t) =

∫ t

0

β(x, s) dWs +
1

2

∫ t

0

{
d∑
j=1

βj(x, s)
∂β

∂xj
(x, s)

}
ds

is a continuous C
(
Rd : Rd

)
-valued semimartingale. Denote

bi(x, t) =
1

2

d∑
j=1

βj(x, t)
∂βi

∂xj
(x, t).

According to the definitions in [11], the pair({
βi(x, t)βj(y, t)

}d
i,j=1

,
{
bi(x, t)

}d
i=1

)
is called the local characteristic of F (x, t). It is said to belong to the class B0,1

b

if for every i = 1, . . . , d

∫ T

0

( sup
x∈Rd

|βi(x, t)|
1 + |x|

)2

+

 sup
x,x′∈Rd

x 6=x′

|βi(x, t)− βi(x′, t)|
|x− x′|


2 dt <∞,

∫ T

0

 sup
x∈Rd

|bi(x, t)|
1 + |x|

+ sup
x,x′∈Rd

x 6=x′

|bi(x, t)− bi(x′, t)|
|x− x′|

 dt <∞,

which follow from the boundedness of βi(x, t) and all their derivatives. There-

fore, for each t0 and x0, Itô’s equation (89) has a unique solution ϕt, t ∈ [t0, T ].

Since ϕt is a continuous semimartingale, the Stratonovich integral in (88) is

well defined. Applying Theorem F.2 to (87), we have

∫ t

t0

β(ϕs, s) ◦dWs =

∫ t

t0

β(ϕs, s) dWs +
1

2

d∑
j=1

〈∫ t

t0

∂β

∂xj
(ϕs, s) dWs, ϕ

j
t

〉
=

∫ t

t0

β(ϕs, s) dWs
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+
1

2

d∑
j=1

〈∫ t

t0

∂β

∂xj
(ϕs, s) dWs,

∫ t

t0

βj(ϕs, s) dWs

〉

=

∫ t

t0

β(ϕs, s) dWs +
1

2

d∑
j=1

∫ t

t0

∂β

∂xj
(ϕs, s)β

j(ϕs, s) ds

= ϕt − x0.

Therefore, Stratonovich equation (88) has a solution. The uniqueness of the

solution of equation (88) is also reduced to the uniqueness of the solution of

equation (89).

Theorem F.4 (Theorem 4.6.5 in [11]). Assume that the local characteristic

of the continuous C-semimartingale F (x, t) belongs to the class Bk,δ
b for some

k ≥ 1 and δ > 0. Then the solution of Itô’s stochastic differential equation

based on F has a modification ϕs,t, 0 ≤ s ≤ t ≤ T such that it is a forward

stochastic flow of Ck-diffeomorphisms. Further it is a Ck,ε-semimartingale for

any ε < δ.

Let function β(x, t) =
(
β1(x, t), . . . , βd(x, t)

)T
satisfy Condition (E.1)k for

some k ≥ 3. Consider the following Itô’s equation

ϕs,t(x) = x−
∫ t

s

β(ϕs,r(x), r) dWr+
1

2

∫ t

s

{
d∑
j=1

βj(ϕs,r(x), r)
∂β

∂xj
(ϕs,r(x), r)

}
dr.

(90)

Let us check that it satisfies the conditions of Theorem F.4 for δ = 1, where

F (x, t) = −
∫ t

0

β(x, r) dWr +
1

2

∫ t

0

{
d∑
j=1

βj(x, r)
∂β

∂xj
(x, r)

}
dr.

Denote

bi(x, t) =
1

2

d∑
j=1

βj(x, t)
∂βi

∂xj
(x, t).

According to the definitions in [11], the pair({
βi(x, t)βj(y, t)

}d
i,j=1

,
{
bi(x, t)

}d
i=1

)
is called the local characteristic of F (x, t). It is said to belong to the class Bk,1

b
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if for every i = 1, . . . , d

∫ T

0

( sup
x∈Rd

|βi(x, t)|
1 + |x|

)2

+
∑

1≤|α|≤k

(
sup
x∈Rd

∣∣Dα
xβ

i(x, t)
∣∣)2

+
∑
|α|=k

 sup
x,x′∈Rd

x 6=x′

|Dα
xβ

i(x, t)−Dα
xβ

i(x′, t)|
|x− x′|


2 dt <∞,

∫ T

0

 sup
x∈Rd

|bi(x, t)|
1 + |x|

+
∑

1≤|α|≤k

sup
x∈Rd

∣∣Dα
x b

i(x, t)
∣∣

+
∑
|α|=k

sup
x,x′∈Rd

x 6=x′

|Dα
x b

i(x, t)−Dα
x b

i(x′, t)|
|x− x′|

 dt <∞,
which follow from the boundedness of βi(x, t) and all their derivatives. There-

fore, the solution of Itô’s equation (90) has a modification ϕs,t, 0 ≤ s ≤ t ≤ T

such that it is a forward stochastic flow of Ck-diffeomorphisms, and it is also

a Ck-semimartingale.

Condition (D.1)k,δ.
(
F 1, . . . , F d+1

)
is a continuous Ck-semimartingale with

local characteristic belonging to the class
(
Bk+1,δ
b , Bk,δ

b

)
.

Theorem F.5 (Theorem 6.1.9 in [11]). Assume that
(
F 1, . . . , F d+1

)
of the

linear equation

u(x, t) = f(x) +
d∑
i=1

∫ t

0

F i(x, ◦ds) ∂u
∂xi

(x, s) +

∫ t

0

F d+1(x, ◦ds)u(x, s)

satisfies Condition (D.1)k,δ for some k ≥ 3 and δ > 0. If the initial function is

of Ck,δ, the linear equation has a unique global solution which is a continuous

Ck,ε-semimartingale for some ε > 0. It is represented by

u(x, t) = f(ψt(x)) exp

{∫ t

0

F d+1(ϕs(y), ◦ds)
∣∣∣
y=ψt(x)

}
,
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where ϕt is the solution of

ϕt(x) = x−
∫ t

0

F (ϕs(x), ◦ds)

and ψt is its inverse.

Assume that the coefficients βi(x, t) and α(x, t) in linear equation (20)

satisfy Condition (E.1)k for some k ≥ 3. Let us check that the corresponding

continuous Ck-martingales

F i(x, t) =

∫ t

0

βi(x, s) dWs, F d+1(x, t) =

∫ t

0

α(x, s) dWs

satisfy Condition (D.1)k,1. According to the definitions in [11], the pair({
βi(x, t)βj(y, t)

}d
i,j=1

, α(x, t)α(y, t)
)

is called the local characteristic of
(
F (x, t), F d+1(x, t)

)
. It is said to belong to

the class Bk+1,1
b if for every i = 1, . . . , d

∫ T

0

( sup
x∈Rd

|βi(x, t)|
1 + |x|

)2

+
∑

1≤|γ|≤k+1

(
sup
x∈Rd

∣∣Dγ
xβ

i(x, t)
∣∣)2

+
∑
|γ|=k+1

 sup
x,x′∈Rd

x 6=x′

|Dγ
xβ

i(x, t)−Dγ
xβ

i(x′, t)|
|x− x′|


2 dt <∞,

∫ T

0

( sup
x∈Rd

|α(x, t)|
1 + |x|

)2

+
∑

1≤|γ|≤k+1

(
sup
x∈Rd

|Dγ
xα(x, t)|

)2

+
∑
|γ|=k+1

 sup
x,x′∈Rd

x 6=x′

|Dγ
xα(x, t)−Dγ

xα(x′, t)|
|x− x′|


2 dt <∞,

which follow from the boundedness of βi(x, t), α(x, t) and all their derivatives.
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