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ABSTRACT 

This thesis is a topical review on the application of Surface and Topography Metrology in 

Firearm Evidence Identification and Engineering Surface Quality Control. It summarizes my 

research work at the National Institute of Standards and Technology (NIST) from 1987 to 

present, where I’m a Project Lead for the Forensic Topography and Surface Metrology since 

1997.    

I started my research in surface metrology since 1982 -- after my MS study at the Harbin 

Institute of Technology (HIT, Harbin, China) from 1978 to 1981. In 1985, I designed, 

manufactured and patented the Precision Random Profile Roughness Specimens in Beijing 

aimed to provide a reference standard for quality control of smooth engineering surfaces [1]. 

These specimens were manufactured with Ra values ranging from 0.015 µm to 0.1 µm -- less 

than 1/10 of the similar specimens developed by PTB (Physikalisch-Technische Bundesanstalt) 

in Germany. These specimens were successfully used by U.S. manufacturers for measurement 

unification and quality control of smooth engineering surfaces, and were included in ASME 

B46 surface standard in 1995.  

Microform metrology is a subfield of surface metrology that involves surface measurements of 

complex geometry features on the micrometer scale. In 1995, I led a team at NIST which 

established a Microform Calibration System with the lowest calibration uncertainty in the 

world for calibration of Rockwell hardness (HR) diamond indenters. Based on the precision 

calibration of HR indenters and the control of other influencing quantities, I proposed a 

“Metrological Approach” to unifying international HRC scales with metrological traceability. 

I led an international HRC comparison among five National Metrological Institutes (NMIs). 

The comparison results strongly supported the proposed Metrological Approach. I drafted a 

joint paper for five NMIs entitled “Establishing a worldwide unified Rockwell hardness scale 

with metrological traceability” which was published at the Metrologia 34, 1997 in Paris [4].  

Surface and topography metrology provides strong support to firearm evidence identifications. 

Based on my experience in developing surface standards, measurement systems, uncertainty 

and traceability procedures, I led a research team which developed the NIST Standard 



 

 

II 

Reference Material (SRM) Bullets and Cartridge Cases, and the NIST 2D/3D Topography 

Measurement System [5]. We formulated a National Traceability and Quality System using the 

SRM Bullets and Cartridge Cases to support ballistics identifications within the National 

Integrated Ballistics Information Network (NIBIN) in the United States [6]. I have recently 

invented a Congruent Match Cells (CMC) method for accurate ballistics identification and 

error rate estimation [7], which can serve as a statistical foundation for estimating error rates 

in firearm evidence identifications, thus emulating methods used for forensic identification of 

DNA evidences [8].   

Keywords: Surface metrology, microform, topography, roughness, Rockwell hardness, 

forensics, ballistics identification, congruent match cells, CMC.    
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Chapter 1. Introduction 

This thesis summarizes my research work at NIST’s projects in surface metrology, microform 

metrology and forensic topography metrology since 1987 to present. My major contributions 

in these filelds are shown in below, which are summarized in my eight key publications [1-8] 

and are submitted with my PhD thesis for review. 

Surface metrology for engineering surface quality control: 

 Designed and manufactured the Precision Random Profile Roughness Specimens for 

quality control of smooth engineering surfaces [1] with roughness Ra values ranging 

from 0.015 µm to 0.1 µm -- less than 1/10 of the similar specimens developed by PTB 

(Physikalisch-Technische Bundesanstalt) in Germany. These specimens were included 

in ASME B46 surface standards in 1995. 

 Proposed a Dynamic Control Chart for measurement quality control of engineering 

surfaces [2].  

Microform metrology for Rockwell hardness standardization: 

 Established a Microform Calibration System at NIST with the lowest calibration 

uncertainty in the world for calibration of Standard Rockwell Diamond Indenters' 

microform geometry [3], developed uncertainty assessment procedures [3] and 

conducted initial calibrations of National Rockewll Indenters for five National 

Metrological Institutes (NMIs) [4]. 

 Proposed a “Metrological Approach” to unifying international Rockwell C hardness 

(HRC) scales based on precision calibration of microform geometry of HRC indenters 

and other influence quantities with traceability to base unites of length, mass and time 

[4], instead of the “Performance Approach” used at that time based on performance 

comparisons and corrections on different national HRC scales [4].         

 Conducted international comparisons among five National Metrology Institutes (NMIs), 

drafted a joint paper entitled “Establishing a worldwide unified Rockwell hardness 

scale with metrological traceability” which was published at the Metrologia 34, 1997 

in Paris [4]. 

Topography metrology for firearm evidence identification and standardization: 
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 Designed NIST SRM (Standard Reference Material) 2460/2461Standard Bullets and 

Cartridge Cases, and NIST 2D/3D Topography Measurement System [5]; designed and 

led the manufacturing, inspection and certification process for the SRM Bulllets and 

Cartridge Cases [5]. 

 Proposed and led the National Ballistics Imaging Comparisons (NBIC) project for 

establlishing a Ttracceability and Quality System for ballistics measurement in the 

United States [6]. 

 Invented a Congruent Match Cells (CMC) method for accurate ballistics identfications 

and error rate estimation [7]; led the team and copmpleted the initial tests and error rate 

estimation; drafted a research paper which has passed NIST review for publication [8].  

The objectives of this chapter are four fold. First, it starts with an introduction on surface, 

microform and topography metrology, and reviews my major publications in these fields. 

Second, it discusses background and identifies the major challenges in these fields. Third, it 

suggests some practical solutions for these challenges and explains the aims of the thesis. At 

last, it presents the layout of the thesis structure and a brief discreption of each chapter.  

1.1. Foreword 

1.1.1. Surface metrology  

Metrology is the “science of measurement” [9]. Similarly, surface metrology is the science of 

surface measurement that involves a wide range of surface characterization represented by 2D 

and 3D surface parameters [10-12], measurement methods including the profile and areal 

method and instrumentation using contact and non-contact instruments based on different 

physical principles and engineering designs [10,11]. It also involves measurement traceability, 

quality control and uncertainty assessment procedures which may include the usage of different 

surface calibration and check standards, e.g. step height and surface roughness calibration and 

comparison specimens [1,13,14], using control charts with uncertainty and quality procedures 

[2,15]. 

1.1.2.  Microform metrology  

Microform metrology and topography metrology are subfields of surface metrology. 

Microform metrology involves surface measurements of complex geometry forms on the scale 

of micrometers, which may include a set of measurements on length, radius, angles, form and 
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alignment, as well as profile deviation and surface finish roughness [16]. A typical usage of 

microform metrology is the microform calibration of Standard Rockwell Hardness Diamond 

Indenters using the Microform Calibration System [3,17], which led to establishing a 

worldwide unified Rockwell C hardness scale with metrological traceability [4]. 

1.1.3.  Topography metrology 

Most metrics for describing surfaces are used to quantify the characteristics of a surface in 

vertical, horizontal or some combination of both dimensions [10-12]. However, topography 

metrology aims to compare the overall features of 2D profiles or 3D topographies and quantify 

the similarity of the compared profiles or topographies relative to each other [18,19]. The NIST 

2D/3D Topography Measurement System was developed from NIST’s Standard Reference 

Material (SRM) Bullet and Cartridge Case project [5,20,21]. The 2D profile comparison was 

also used for instrument characterization [22]; the 3D topography comparison was used for 

production quality control of the SRM cartridge cases [23]. Both the 2D and 3D topography 

measurements were used for firearm evidence identifications [24] and for establishment of 

measurement traceability and quality control for nationwide ballistics identifications [6,25,26].    

1.2. Background and Challenges  

1.2.1. Challenges to firearm evidence identifications in the United States 

Side-by-side image comparisons for firearm identification have a history of more than a 

hundred year [27]. However, the scientific foundation of firearm and toolmark identification 

has been challenged by recent court decisions. As stated in the 2008 and 2009 National 

Academies Report [28,29]: “The validity of the fundamental assumptions of uniqueness and 

reproducibility of firearms-related toolmarks has not yet been fully demonstrated…” and 

“Since the basis of all forensic identification is probability theory, examiners can never really 

assert a conclusion of an ‘identification to exclusion of all others in the world,’ but at best can 

only assert a very small (objective or subjective) probability of a coincidental match…” 

In order to response these fundamental challenges, a research plan with major research projects 

was developed by the Forensic Topography and Surface Metrology Project which was 

established at NIST in 1997. The major technical approaches are shown below (detailed 

information, significant accomplishments and impact will be described in Chapter 2): 
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 Developing reference standards -- NIST SRM (Standard Reference Material) 2460 

Bullets and SRM 2461 Cartridge Cases for instrument calibration, measurement 

traceability and quality control to support nationwide ballistics identifications [5]. 

 Developing a 2D/3D Ballistics Topography Measurement System. Most of the 

existing ballistics identification systems are primarily based on comparisons of optical 

images acquired by microscopes under different lighting conditions. The correlation 

accuracy depends on image quality, which is largely affected by lighting conditions 

such as the type of light source, lighting direction, intensity, material color and 

reflectivity, and image contrast [24]. Since ballistics signatures are surface topographies 

by nature [30], it is necessary to develop a 2D/3D Ballistics Topography Measurement 

System, which is independent of optical lighting conditions, for quantitative and 

objective ballistics topography measurements [24].  

 Developing a Traceability and Quality System to establish measurement traceability 

and quality control for nationwide firearm image measurements and identifications 

[6,25,26].         

 Developing a novel method for accurate ballistics identification and error rate 

report. Accurate ballistics identification depends not only on image quality, but also 

on the capability of correlation software to identify the “valid correlation areas” and to 

eliminate the “invalid correlation areas” [7,8,31] from calculations. Currently, the final 

determination of a match (identification) or non-match (exclusion) in ballistics 

correlation is based on visual comparisons by an examiner having the experience 

required to exclude invalid correlation areas. It is necessary to develop a quantitative 

and objective method, called the “Congruent Match Cells (CMC)” method, for accurate 

ballistics identifications and error rate reporting [7,8,31-33].  

1.2.2. Surface metrology for engineering surface quality control  

 Design, manufacturing and test of the Precision Random Profile Roughness 

Specimens  

Many engineering surfaces, especially those of smooth engineering surfaces 

manufactured by grinding, lapping, polishing and honing etc., are random surfaces or 

with random components on their surfaces. In 1965, Häsing at PTB (Physikalisch-

Technische Bundesanstalt, Germany) developed a random profile roughness specimen 
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to represent these types of random surfaces for quality control of medium machined 

engineering surfaces (Ra = 0.15 µm to 1.5 µm) [14]. With the development of modern 

science and technology, quality control for smooth engineering surfaces (Ra ≤ 0.1 µm) 

becomes increasingly important, not only because of their important engineering 

functions, but also their high production costs [13]. NIST frequently receives requests 

to provide Standard Reference Material (SRM) Precision Random Profile Roughness 

Specimens for smooth surface measurements and quality control in U.S. industry.  

 Development of a dynamic control chart for engineering surface quality control      

Reporting uncertainty is an important issue in surface metrology. A dynamic control 

chart is developed [2] using fixed and dynamic control limits for promoting the process 

of development and revising of uncertainty budgets and for verifying the developed 

measurement uncertainty. It can also be used for monitoring long term variation for 

measurement quality control [2]. These dynamic control charts have been used for 

quality control of national ballistics identifications and for establishing a Traceability 

and Quality System for the National Integrated Ballistics Information Network (NIBIN) 

in the United States [6]. 

1.2.3. Microform metrology for Rockwell hardness standardization   

Rockwell Hardness C (HRC) is the most widely used mechanical testing method for 

metal products. However, international HRC scales are not unified. In the 1990’s, I 

proposed a “Metrological Approach” to unifying international HRC scales [4], the key 

challenge being to establish a Microform Calibration System for precise calibration of 

the microform geometry of Standard Rockwell Diamond Indenters [3]; and to conduct 

international comparisons among National Metrological Institutes (NMIs) to verify the 

proposed Metrological Approach for establishing a worldwide unified Rockwell 

hardness scale with metrological traceability [4].   

1.3. The Aim of the Thesis 

In this Ph.D. thesis, I will present a Topical Review of my key publications to identify clearly the 

impact and key outcomes of my research works on: 

 Surface metrology for quality control of engineering surfaces;  
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 Microform metrology for establishing a worldwide unified a Rockwell hardness C 

(HRC) scale;  

 Topography metrology for firearm evidence identification and error rate estimation. 

This thesis covers my research work at NIST from 1987 to present. I’m currently a Senior 

Research Engineer, a Post-Doc. Research Adviser and Project Lead at the Engineering Physics 

Division (EPD) of Physical Measurement Laboratory (PML) at NIST. I received a M.S. degree 

in Mechanical Engineering from the Harbin Institute of Technology (HIT), Harbin, China, in 

1981. I came to NIST in 1987. From 1987 to 1997, my research was focused on surface and 

microform metrology, which were fundamental in precision engineering and advanced 

manufacturing. Since 1997, I have been working as the Project Lead and Post-Doc. Research 

Advisor for the Forensic Topography and Surface Metrology Project at NIST. I have published 

more than 150 papers, many are published in leading journals of U.S. and internationally, and 

celebrated in three NIST awards. 

My thesis discusses how to use the general knowledge and fundamental principles in surface 

metrology to support engineering surface quality control and firearm evidence identifications. 

This includes how to define a measurable quantity and develop a reference standard; how to 

establish a measurement system; how to construct a traceability and quality system; and how 

to evaluate measurement uncertainty for engineering surface control and firearm evidence 

identification. The thesis also presents a review on some of the state-of-the-art technologies 

used in National Metrology Institutes (NMI) and measurement institutions in surface and 

topography metrology. It compares the advantages and limitations of some techniques and 

provides case studies and applications in R&D related industries that will be beneficial to 

different fields in precision engineering and metrology, advanced manufacturing, and firearm 

evidence identification. 

The thesis is to be presented in accordance with the regulations for the Degree of Doctor of 

Philosophy by the High Degree Committee at the University of Warwick through the Ph.D. by 

Published Work Program of the Engineering School.  

1.4.  Outline of the Thesis 
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This thesis is outlined with a discussion on my recent research projects first, which is the 

topography measurements for firearm evidence identifications (from 1997 to present, see 

Chapter 2 and 3), then introduce my early research projects in surface metrology (from 1987 

to 1992, see Chapter 4) and microform metrology (from 1993 to 1997, see Chapter 5), followed 

by a summary in Chapter 6:  

 Chapter 1 starts with the background and challenges in surface, microform and 

topography metrology, and introduces my major published works in these fields.  

 Chapter 2 discusses topography metrology for firearm evidence identification and error 

rate estimation. This includes developments of the NIST Standard Reference Material 

(SRM) Bullets and Cartridge Cases, the NIST 2D/3D Ballistics Topography 

Measurement System, the National Traceability and Quality System for U.S. firearm 

evidence identifications, and the proposed error rate assessment procedure for firearm 

evidence identifications based on the Congruent Match Cells (CMC) method.   

 Chapter 3 describes the usage of 2D/3D topography measurements for instrument 

characterization and production quality control. 

 Chapter 4 describes the Precision Random Profile Roughness Specimens, which were 

designed and manufactured before I came to NIST, aimed at quality control of smooth 

engineering surfaces. The development and application of a Dynamic Control Chart for 

engineering surface quality control are also described. 

 Chapter 5 describes how to use Microform Metrology to establish worldwide unified 

Rockwell hardness scales with metrological traceability. This includes the proposed 

“Metrological Approach” and the NIST Microform Calibration System for microform 

calibration of Rockwell hardness diamond indenters, and the international comparison 

between five National Metrological Institutes (NMIs).  

 Finally, Chapter 6 summarizes my major contributions, impacts and proposed future 

works in the fields of Surface and Topography Metrology in Firearm Evidence 

Identification and Engineering Surface Quality Control.    
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Chapter 2. Topography Metrology for Firearm Evidence 

Identification and Error Rate Estimation in Forensic Science  

Accurate firearm evidence identifications depend on both the image quality and the capability 

of the correlation software to identify the “valid correlation areas” on the image of the firearm 

evidence for accurate firearm identification and error rate estimation [7,8]. This involves a 

ballistics calibration standard, a measurement and traceability system and correlation methods. 

My major contributions in this field are presented in the attached four key publications [5-8]:  

 Designed the Virtual/Physical Ballistics Signature Standard -- NIST SRM 2460 

Standard Bullets, designed and led the manufacturing process using numerically  

controlled (NC) diamond turning for manufacturing of the SRM bulllet [5]. 

 Proposed Cross Correlation Functions (CCF) for 2D/3D ballistics signature 

measurements, led the development and testing of the NIST 2D/3D Topography 

Measurement System, completed the measurement and certification of SRM bullets [5]. 

 Proposed electro-forming technique for SRM cartridge cases, proposed test of “decay 

factors” for optimization of the manufacture process [23].    

 Proposed and led the National Ballistics Imaging Comparisons (NBIC) project to 

establlish a Traceability and Quality System for ballistics measurement in the United 

States [6]. 

 Invented a Congruent Match Cells (CMC) method for accurate ballistcs identfications 

and error rate estimation [7]; led the programing, testing and error rate estimation;  

drafted a research paper which has passed NIST review for publication [8].  

 

2.1. Response to the Fundamental Challenge in Firearm Evidence 

Identifications in the United States  

When bullets are fired and cartridge cases are ejected from a firearm, the parts of the firearm 

that make forcible contact with them create unique, characteristic tool marks on their surfaces 

called “ballistic signatures” [30]. Striation signatures (2D profile tool marks) on a bullet are 

caused by its passage through the gun barrel (see Fig.2-1 left [34]). Impression signatures (3D 

topography tool marks) on a cartridge case are caused by impact with the gun parts: firing pin, 
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breech face and ejector during firing (see Fig.2-1 right [34]). Both the 2D striation and 3D 

impression signatures are unique to the firearm [30]. By microscopically comparing these 

ballistic signatures, firearm examiners can determine whether a pair of bullets or cartridge cases 

were fired or ejected from the same firearm. Ballistics examiners can then connect a recovered 

firearm or other firearm evidence to criminal acts [30]. 

 

Fig.2-1. Bullet signature is a 2D profile signature (left), cartridge case signatures include 

those from firing pin A, breech face B and ejector mark C, all are 3D topography 

signatures (right) [34]. 

Side-by-side image comparisons using optical microscopes for ballistic identifications have 

more than a hundred years’ history [27]. Since the late 1980s, different automated ballistics 

identification systems have been developed. These systems typically include a digitized optical 

microscope, a signature analysis station and correlation software [34]. In 1998, the National 

Integrated Ballistics Information System (NIBIN) [35] was established in the United States 

which currently included more than 150 local stations using the Integrated Ballistics 

Identification System (IBIS) [34] for ballistics identification and information sharing.  

As a national metrology institute in the United States, NIST was requested to provide technical 

support on measurements and standards to NIBIN’s nationwide ballistics identifications and 

measurement quality control. That includes developing reference standards and 2D/3D 

ballistics topography measurement system, formulating a traceability and quality system, and 

developing a novel method for accurate ballistics identification and error rate report. 
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2.2. NIST SRM 2460/2461 Standard Bullets and Cartridge Cases Project 

2.2.1. Basic technical requirements 

As a reference standard for ballistics signature measurements and firearm evidence 

identifications, basic technical requirements for NIST SRM 2460/2461 Standard Bullets and 

Cartridge Cases are specified as [5]: 

 Real firearm surface characteristics: The bullet and cartridge case signatures must 

be obtained from real bullets and cartridge cases, which are duplicated on the surface 

of the physical standards -- the SRM Bullets and Cartridge Cases, with high fidelity. 

The shape, size, material and color of the physical Standard Bullets and Cartridge Cases 

should be as close as possible to those of the real bullets and cartridges.  

 Repeatability and reproducibility: As a measurement standard, the profile signatures 

on the SRM Bullets and Cartridge Cases must show such a high degree of repeatability 

and reproducibility that when these SRM Bullets and Cartridges are distributed 

nationwide for checking instrument calibrations, they actually play the same function 

as a single SRM Bullet or SRM Cartridge does. Repeatability here means that the 

profile signatures are essentially identical over different SRMs produced at the same 

time. Reproducibility means that the profile signatures are highly uniform among 

different SRMs produced over time.   

 Measurement traceability: The profile and topography measurements for SRM 

Bullets and Cartridges performed at the NIST Surface Calibration Laboratory must be 

traceable to the SI unit of length. By using these SRM Bullets and Cartridges, ballistics 

signature measurements using optical techniques, performed at local forensic 

laboratories, can be traced to the Bureau of Alcohol Tobacco and Firearms’ (ATF) 

image standard established at ATF’s National Laboratory Center using the SRM 

Bullets and Cartridge Cases.     

 Information technology: It is advantageous to base the SRM Bullets on information 

technology. Thus, the digitized profile signatures may be stored in a computer and used 

to produce and re-produce the identical SRM Bullets at any time. 

Considering the above technical requirements, the SRM 2460 Standard Bullets are designed as 

both a virtual and a physical bullet signature standard. 
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2.2.2. Establishment of a virtual bullet signature standard 

The SRM Bullets are designed with six land engraved areas (LEA) which are the most popular 

used by handguns. The virtual standard of the bullet profile signatures is a set of six digitized 

profile signatures stored in a computer. The ATF’s National Laboratory Center and the Federal 

Bureau of Investigation’s (FBI) Central Laboratory provided NIST with a total of six master 

bullets -- three from each agency (Fig.2-2) [5], all were fired from different guns under 

 
Fig.2-2. Six master bullets from ATF (top row) and FBI (bottom row), each of which was 

traced on a selected land engraved area. The six digitized bullet signatures were stored in 

a computer as the virtual bullet signature standard. 

 

Fig.2-3. The virtual bullet signature standard consists of six digitized bullet profile 

signatures measured by a stylus instrument on six master bullets fired at the ATF and 

FBI. The virtual standard profiles shown above are modified profiles after curvature 

removal and Gaussian filtering with a short-wavelength cutoff of λs = 0.0025 mm and a 

long wavelength cutoff of λc = 0.25 mm [5].  The vertical scale is in µm; the horizontal 

scale is in mm. 
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standardized firing conditions. These master bullets underwent profile measurements at the 

NIST Surface Calibration Laboratory using a commercial stylus instrument. Each bullet was 

traced on one selected land engraved area (LEA). The resulting set of six digitized bullet profile 

signatures was used as the virtual standard for fabrication, and as a reference standard for 

measurement, of the SRM bullets [5]. The virtual standard profiles shown in Fig.2-3 are 

modified profiles after curvature removal and Gaussian filtering with a short-wavelength cutoff 

of λs = 0.0025 mm and a long wavelength cutoff of λc = 0.25 mm. 

2.2.3. Manufacturing of the physical standard -- SRM 2460 Standard Bullets 

The Engineering Physics Division at NIST has a long history of developing surface roughness 

specimens [36-38]. In 1998, a virtual/physical random profile surface roughness specimen was 

developed at NIST using a numerically controlled (NC) diamond turning process at the NIST’s 

instrument shop [39]. Based on the same NC diamond turning technique for manufacturing 

random profile roughness specimens, the SRM standard bullets were developed [5]. 

The SRM Standard Bullets were manufactured by Mr. R. Clary of NIST using a Numerically 

Controlled (NC) diamond turning machine at the NIST Instrument Shop (Fig.2-4) [5]. The  

 

Fig.2-4. The SRM Standard Bullets were manufactured by Mr. R. Clary of NIST using a 

Numerically Controlled (NC) diamond turning machine at NIST’s Instrument Shop. 20 

bullets were cut at the same manufacturing set up. 
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Fig.2-5. Manufacturing setup for SRM 2460 Standard Bullets: each bullet was fastened 

to a cylinder, which was mounted on a “V” block set on an aluminum wheel. 20 SRM 

bullets were manufactured at the same time. The cutting diameter was 22.5″ (572 mm). 

SRM bullets are made of oxygen-free, high conductivity (OFHC) copper rod with about a 1 

mm thick pure-copper coating to avoid the crystal boundary effect on the micro surface 

topography during diamond cutting [5]. Fig.2-5 shows the manufacturing setup on a NC 

diamond turning machine. The bullets were fastened to cylinders, which were mounted on V-    

blocks set on an aluminum wheel (Fig.2-5). Twenty SRM bullets were manufactured at the 

same setup (Fig.2-4). After cutting one signature, the cylinders were rotated 60° to cut the next 

signature until all six signatures were completed. There was a 5° tilt for the “V” block’s 

alignment with the rotation direction of the aluminum wheel, so that a 5° twist in the bullet 

signature land could be made on the SRM bullets. That gave the SRM bullet a shape close to 

that of the master (see Fig.2-2) [5].  

The manufacturing setup and cutting conditions are: the cutting diameter is 22.5" (572mm); 

the rotation speed is 300 rpm, or about 540 m-min-1; the cutting depth is 10 μm; the cutting 

feed rate is 120 μm per minute or 0.4 µm per rotation. There are about 20 cuts to finish each 

signature, or about a total of 0.2 mm cutting depth for each signature. The diamond cutting tool 

is a natural diamond with a 2 μm nominal tip radius, which doesn’t show significant change 

after the cutting of all signatures [5].  



14 
 

A SRM Bullet is shown in Fig.2-6. Six land engraved areas (LEA) are machined on the bullet 

surface by a NC diamond turning machine. Each LEA has a unique bullet signature in 

accordance with the virtual bullet signature standard (see Fig.2-3), but the SRM bullets are 

intended to be essentially identical to one another. The bullet’s LEAs are produced with a 5 

right hand twist, which makes the SRM 2460 resemble a real 9 mm Luger type bullet. The 

SRM 2460 Standard Bullet is mounted on a blue stub for initial setup on a microscope (Fig.2-

6).  

 

Fig.2-6. A NIST SRM 2460 Standard Bullet mounted on a blue stub for initial setup on a 

microscope. 

2.2.4.  SRM 2461 standard cartridge cases 

The electro-forming technique has a long history for replication of surface specimens: a master 

specimen is put into a tank with electrolytes to produce a negative replica on the surface of the 

master. By repeating the same process on the negative replica, a positive replica is replicated 

with same surface topography as the master specimen [38]. The electro-forming technique was 

used for production of SRM 2461 Standard Cartridge Cases. In order to ensure that the SRM 

Cartridges are produced with virtually the same surface topography with the master, it is 

necessary to test the decay factors of the replication process, and design an optimum plan for 

the production of a large amount of SRM Cartridges with maximum uniformity of surface 

topography. Detailed information about the decay factor test can be found in Chapter 3.2 and 

Ref. 23. 

For the NIST SRM 2461 Standard Cartridge Cases project, it was planned to produce 256 SRM 

Cartridges from the same ATF master with the similarity factor CCFmax [18, to be discussed in 
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Section 2.3.1] higher than 95 %. Based on the decay factors, we calculated the topography 

decays for two production plans. The first one, called “16 × 16”, uses the ATF master to make 

16 negative replicas, and then, uses each negative replica to make 16 SRM Cartridges. The 

CCFmax for the last SRM Cartridges is calculated as (97.37 ± 0.20) % [23]. The uncertainty (k 

= 1) is a Type A standard uncertainty derived from the parameter fitting. The second plan, 

called “4 × 4 × 4 × 4”, uses the ATF master to make 4 negative replicas; and then, uses each 

negative replica to make 4 positive replicas; again, uses each positive replica to make 4 negative 

replicas; and finally, uses each negative replica to make 4 SRM Cartridges. The CCFmax for the 

last SRM Cartridge is calculated as CCFmax = (96.01 ± 0.25) % (also k = 1) [23]. Both plans 

can produce 256 SRM Cartridges with CCFmax values higher than 95 %. 

Based on the production plan, 137 SRM 2461 Cartridge Cases were produced and certified for 

forensics / crime scene investigations [40]. Fig.2-7 (left) shows a SRM 2461 Standard Cartridge 

Case which is mounted on a brass cylinder holder. Fig.2-7 (right) shows the three certified 

areas of the SRM Cartridge Case: breech face impression (BF), firing pin impression (FP), and 

ejector mark (EM).  

 

Fig.2-7. Left -- a NIST SRM 2461 Cartridge case mounted on a brass cylinder holder. 

Right -- optical micrograph shows the three certified areas of the SRM: breech face 

impression (BF), firing pin impression (FP), and ejector mark (EM). 
 

2.3. NIST 2D/3D Ballistics Topography Measurement System 

Visual comparisons of SRM Bullets and Cartridges showed that their ballistics signatures can 

be manufactured with high uniformity. However, minor differences on the 2D and 3D 

topography comparisons could be observed. It is therefore important to define a traceable 
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parameter to quantify the topography difference, and to develop a 2D/3D Topography 

Measurement System for measuring 2D/3D ballistics signature differences.  This parameter is 

particularly important for the production, inspection and quality control of the SRM Bullets 

and Cartridges, as well as for the firearm evidence identification systems. 

2.3.1. Cross correlation function maximum CCFmax and signature difference Ds 

It was proposed to adapt the signal processing functions of auto-correlation and cross-

correlation for the bullet signature comparisons [18,19]. Because the ballistics signatures can 

be considered as random profiles, their auto-correlation functions (ACF) decay with increase 

in the absolute value of the shift distance. This statistical property is very useful for ballistics 

signature comparisons to quantify the similarity of ballistics signatures. When two bullet 

profile signatures are compared with each other, one is taken as the reference signature A and 

the other is the compared signature B [18]:  

 If the two profile signatures are exactly the same, A = B, their ACF achieves the 

maximum value (1.00) when the shift distance is zero (Fig.2-8 left). 

 If two compared profile signatures A and B have essentially the same pattern but small 

differences in the profile details, then A  B. For example, when two bullets are fired 

from the same gun, their profile signatures have the same pattern with strong 

correlation. With the shift distance set to the maximum correlation position, their CCF 

will have a maximum value but not as large as 1.00, because there are small differences 

between these two correlated profile signatures (Fig. 2-8 middle). 

 

Fig.2-8. Bullet signature comparisons between identical bullet signatures B = A (left), 

between similar bullet signatures, B  A (middle) and between dissimilar bullet 

signatures, B  A (right). 
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 If signatures A and B come from bullets fired from different guns, there should be only 

small correlation between the two bullet signatures, B ≠ A. With the shift distance 

changing, only random variations appear on the CCF curve without a clear correlation 

peak (Fig. 2-8 right). 

From the cross-correlation function (CCF) we calculate a parameter called CCFmax, which is 

the maximum value of the CCF when the two compared profiles are correlated at the maximum 

correlation position (or in phase). Although the CCFmax can be used for the profile signature 

comparison, it is not a unique parameter. Based on the definition of the cross-correlation 

function [41], if two compared signatures have the same shape but different vertical scales, 

their CCFmax is still 100 % even if they are two different signatures. Therefore, a unique 

parameter, signature difference Ds, is proposed for quantifying the profile signature differences 

[18,19]. It is calculated as follows: 

 At the shift where the CCFmax between signature B and A occurs, construct a new 

profile ZB – A (X), which is equal to the difference of the compared profile signature ZB 

(X) and the reference profile signature ZA (X): 

    ZB – A (X) = ZB (X) – ZA (X).      (2-1) 

 Calculate the Rq value, root-mean-square roughness [10,11], for the new profile  

ZB – A (X).  We call this parameter Rq(B - A). 

 Calculate the signature difference Ds between signatures B and A defined as: 

     ,(A)q/)AB(q 22 RRDs       (2-2) 

where Rq2(A) is the mean-square roughness of the reference signature ZA (X), used here 

as a comparison reference. From Eqs.2-1 and 2-2, it can be seen that when two 

compared profile signatures are exactly the same, ZB – A (X) = 0, then )AB(q2 R  = 0, 

and Ds = 0. 

Since there is a liner relationship between Ds and CCFmax: Ds = 2 (1 – CCFmax) [21], in most 

cases, only CCFmax is used for 2D and 3D ballistics signature comparisons.       

2.3.2. 2D ballistics signature measurement system and measurement results for SRM 

bullets 

Based on the proposed parameter and algorithm, the NIST Ballistics Signature Measurement 

System was developed for the measurement of SRM 2460 Standard Bullets [20,21]. The  
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Fig.2-9. Measurement setup for the NIST Bullet Signature Measurement System. 1: 

Diamond stylus; 2: Standard Bullet; 3: Bullet holder; 4: Rotary stage; 5: Horizontal 

rotary stage; 6: X-Y stage. 

measurement setup is shown in Fig.2-9. A commercial stylus instrument is used for bullet 

signature measurements. For each measurement, a diamond stylus (item 1 in Fig.2-9) traces a 

land impression of the standard bullet 2. The nominal value of tip radius of the diamond stylus 

is 2 μm. The nominal contact force is 0.001 N (about 100 mgf). The traversing speed is 0.5 

mm/s. The vertical resolution is 0.01 μm, and the horizontal resolution is 0.25 μm.   

The standard bullet 2 is set on a bullet holder 3, which is mounted on a rotary stage 4. The 

rotary stage is set on another horizontal rotary stage 5, which is rotated about 5° left around the 

vertical Z-axis, so that the bullet signature with a 5° right twist can be measured perpendicular 

to the land. Both the rotary stage 4 and the horizontal rotary stage 5 are set on an X–Y stage 6. 

This allows for the adjustment of the X–Y position of the bullet. After measuring the first land 

by scanning the diamond tip in the X-direction, the bullet 2 is rotated 60° by the rotary stage 4, 

so that the next land is measured. This is repeated for all six lands. Finally, the measurement 

profiles are input into the bullet signature measurement program for analysis. 

The bullet signature measurement program is based on the proposed parameters and algorithm 

as discussed above [18,19]. A screen output of the bullet signature measurement program is 

shown in Fig.2-10. The top profile is the virtual bullet signature standard, or “Signature A”, 

which is one of the six modified surface profiles from the bullet signatures of the six master 
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bullets fired at ATF and FBI, as shown in Fig.2-3. The virtual signature standard is used to 

control the tool path of the numerically controlled diamond turning machine to produce the 

SRM bullets. It is also used as a reference standard for the measurements of the bullet signatures 

of the SRM bullets. The second profile in Fig.2-10 shows the measured bullet signature, or 

“Signature B”, which in this case is a modified surface profile from the No. 1 land impression 

of the SRM 2460-001 Standard Bullet. At the maximum cross-correlation position of the two 

profiles, a correlation peak shows CCFmax = 99.55 % (see Fig. 2-10). At this position, a new 

signature, B – A (see the bottom profile in Fig.2-10), is constructed, which is equal to the 

difference between the two compared signatures B – A. Then the signature difference is 

calculated by Eq.2-2, Ds = 0.92 %. Detailed information on the measurement program can be 

found in Ref. 42.  

 

Fig.2-10. User screen for bullet signature measurement between the land 1 of SRM 2460-

001 Standard Bullet (Signature B, as shown on the second profile from the top) and the 

virtual standard (Signature A, as shown on the top). The cross-correlation function 

CCFmax = 99.55 %, the signature difference Ds = 0.92 %. The units of the top and bottom 

vertical scales are μm. The unites of the lateral scales are mm. 
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Measurement results show that the manufactured bullet signatures are very close to the virtual 

bullet signature standard. For example, Fig. 2-11 shows the histogram of CCFmax values from 

240 signature measurements of 40 SRM Bullets, each measured at six lands with 2 mm width. 

All CCFmax values are higher than 95 %. Considering that CCFmax = 100 % (and Ds = 0) means 

that the measured bullet signature is exactly the same as the virtual bullet signature standard 

(point by point), the measurement results have demonstrated a high reproducibility for both the 

bullet signature measurement system and the manufacturing process of the SRM Bullets. Based 

on NIST Technical Note 1297 [43], an uncertainty analysis procedure was used for reporting 

the measurement results for both CCFmax and Ds values with 95 % confidence level [44].  

 

Fig.2-11. CCFmax distribution for 240 bullet signatures of 40 SRM Bullets. All CCFmax 

values are higher than 95 %, most are even higher than 99 %. CCFmax = 100 % means 

that the measured bullet signature is exactly the same as the virtual bullet signature 

standard (point by point). 

2.3.3. 3D ballistic signature measurement system and measurement results for SRM 

cartridge cases 

A 3D Topography Measurement System for the SRM Cartridge Cases was developed to 

calculate the 3D versions of the above parameters [18,19]. A Nanofocus confocal microscope 

was used for measurements of SRM Cartridge Cases (Fig.2-12). The measurement field is 1.6 

mm and 0.8 mm using 10× and 20× lens; the X/Y resolution is about 3.13 µm and 1.56 µm and 

the Z resolution is 20 nm and 10 nm for 10x and 20x lens, respectively.  
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Fig.2-12. A Nanofocus confocal microscope was used for 3D measurements of SRM 

Cartridge Cases. 

The areal cross-correlation function, ACCF [11,12], was used for quantitative measurement of 

the 3D topography differences of the SRM cartridges. Fig.2-13 shows a firing pin signature 

comparison between two prototype SRM Standard Cartridges S/N 001 and 002, which were 

electroformed replicas from the same master cartridge provided by the Bureau of Alcohol, 

Tobacco, Firearms and Explosives (ATF) and ideally should be identical. The firing pin 

signatures were imaged by a Nanofocus confocal microscope (Fig.2-12). The resulting 3D 

surface topographies from the two prototype Standard Cartridge Cases are shown on the top of 

Fig.2-13. These two surface topographies are Gaussian-filtered by λc = 0.25 mm long 

wavelength cutoff and registered along the X- and Y-directions and rotated around the Z-axis 

until the maximum correlation position is found, see bottom images left and center. This 

registration is accomplished via an affine and rigid (rotation and translation) image registration 

method, as described by Bergen, et al [45]. The multi-scale registration scheme was described 

further by Heeger [46] and implemented by Heeger as a suite of MATLAB functions [47] that 

were integrated into our 3D topography measurement software codes. Once registered, the 3D 

CCFmax is calculated to be 99.29 % (Fig.2-13). Meanwhile, a topography difference Z(B – A) is 

calculated at this position and shown in the bottom right in Fig.2-13. The signature difference 

between the two 3D topographies is calculated from Eq.2-2 (3D version) to be 

,(A)q/)AB(q 22 SSDs  = 1.34 % (Fig.2-13). 
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Fig.2-13. Topography correlation of firing pin images between prototype SRM Cartridge 

Cases #001 (top, left, used here as a reference) and #002 (top, right). The bottom row 

shows filtered and registered images for #001 (left) and #002 (middle) cartridges and the 

topography difference (right). CCFmax = 99.29 %, Ds =1.34 %. 

2.3.4. Advantages of using CCFmax and Ds parameters for 2D/3D topography 

measurements in ballistics identifications and surface metrology  

Based on the cross correlation function maximum CCFmax, a novel surface parameter called 

signature difference, Ds (or topography difference for 3D), is proposed for 2D and 3D ballistics 

signature measurements and comparisons. This parameter and algorithm can be generally used 

for 2D and 3D surface topography measurement and comparison in forensic science, surface 

metrology and other areas. These parameters for 2D and 3D topography measurement and 

comparison have several features [5,18,19]: 

 They are easy to understand and use, and are traceable to the length standard. 

 The same metric can be used for measurement and comparison of both 2D profiles and 

3D topographies. 
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  Because surface information of all 2D or 3D data points is used for comparison, the 

parameters have high sensitivity, and can yield high repeatability and reproducibility. 

 Although this parameter was developed for the NIST SRM Standard Bullets and 

Cartridge Case Project, it can be generally used for 2D profiles and 3D topographies 

measurement and comparisons in surface metrology and other areas. 

 For the collection of all 2D profile and 3D topography measurements and comparisons, 

the minimum signature difference is Ds = 0, which occurs when, and only when, these 

two profiles or topographies are exactly the same. This means that when any two 

compared 2D profiles or 3D topographies have a signature difference of Ds = 0, these 

two profiles or topographies must be exactly the same (point by point). 

2.4. Establish Traceability and Quality System for Nationwide Ballistics 

Measurements and Identifications 

2.4.1. Establish traceability for nationwide ballistics measurements  

NIST in collaboration with ATF has developed the SRM 2460 Standard Bullets and SRM 2461 

Standard Cartridge Cases to support ballistics signature measurements and correlations for the 

National Integrated Ballistics Information Network (NIBIN) in the United States [5]. NIST has 

also developed a 2D and 3D Topography Measurement and Correlation System for ballistics 

signature measurements [5,18-21]. In 2008, NIST and ATF proposed to establish a National 

Ballistics Measurement Traceability and Quality System using these physical standards and 

measurement system.  

According to the International vocabulary of metrology -- Basic and general concepts and 

associated terms (VIM) [9], metrological traceability is defined as  

“property of a measurement result whereby the result can be related to a reference through 

a documented unbroken chain of calibrations, each contributing to the measurement 

uncertainty.”  

From the above definition, three key steps for establishing metrological traceability for 

ballistics measurements are [25]: 
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 Establish a reference standard for ballistics signature measurements [5]. The NIST 

SRM Bullets and Cartridge Cases are used as a reference for both the topography 

measurements at NIST and the imaging correlations for NIBIN acquisitions at AFT. 

 Establish an unbroken chain of calibrations from the national laboratories -- NIST and 

the National Laboratory Center of ATF -- to local laboratories and customers using the 

SRM Bullets and Cartridge Cases as reference standards. The unbroken chain of 

calibration covers both topography measurements at NIST and image correlations at 

ATF/NIBIN. For topography measurements, the measurement traceability is 

established using the virtual/physical SRM standard and the proposed parameters Ds 

and CCFmax [5,18,19]. For image correlation systems like IBIS, the traceability is 

established by image acquisitions of SRM Bullets and Cartridge cases at local IBIS 

sites, and correlations with the image standard, termed the “Golden Images” (see 

Figs.2-14 and 2-15) established at the National Laboratory Center of ATF [6,26]. 

 Evaluate measurement uncertainty and establish a control chart with control limits for 

quality control of both the topography measurements and imaging correlations [6].  

 

Fig.2-14. The “Golden Image” of six Land Engraved Areas (LEA) of the SRM 2460 

Standard Bullet. 
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Fig.2-15. The “Golden Image” of the breech face (left), firing pin (middle) and ejector 

mark (right) of the SRM 2461 Standard Cartridge Case. 

A flow diagram for the establishment of a traceability and quality system using the SRM bullets 

is shown in Fig.2-16 [6]. The six master bullets were profiled by NIST as shown by branch 1. 

The resulting set of six digitized 2D profile signatures was used as the virtual standard (see 

Fig.2-16 and Fig.2-3) that determined the tool path of a numerically controlled diamond turning 

machine at NIST to produce the physical standard of the SRM Bullets. One of them, numbered 

SRM 2460-001, was kept at NIST as a check standard for measurement quality assurance, as 

shown in branch 2 of Fig.2-16. Since 2003, this check standard has been routinely measured 

and correlated with the virtual standard more than 35 times and has demonstrated high 

measurement reproducibility: all the 2D correlation values CCFmax are higher than 99 % [6]. 

Fig.2-17 shows the control chart for 35 measurements of LEA 1 of the NIST check standard 

SRM 2460 Standard Bullet S/N 001. The top line shows the 35 correlation results of CCFmax, 

the bottom line represents the specified (or the fixed) control limit of 95 %. The middle line is 

a “Dynamic Control Limit” based on the measured data, which was proposed by us and used 

at NIST for quality assurance of surface calibrations [2]. The Dynamic Control Chart will be 

discussed in Section 4.2.  

Another SRM Bullet, numbered SRM 2460-002, was sent to the National Laboratory Center 

of ATF as a reference standard. After the topography measurements at NIST, all the SRM 

Bullets were imaged at the National Laboratory Center of ATF using their reference IBIS 

system [34] under standard operating conditions [44]. A set of the best images with the highest 

correlation scores was selected as the “Golden Image” (see Fig.2-14).  By acquiring images of 

the SRM Bullets at local IBIS sites, and correlating the images with the Golden Image, 

differences in IBIS operating conditions and operators between the local IBIS sites and 
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Fig.2-16. Establishment of a Traceability and Quality System for NIBIN acquisitions and 

correlations. 

 

Fig.2-17. A control chart with fixed and dynamic control limits for NIST check standard 

SRM 2460 Standard Bullet #001 LEA #1. 
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the National Laboratory Center of ATF can be detected. This system, therefore, can enable 

both the topography measurements of ballistics signatures at NIST to be traceable to the virtual 

standard and the SI unit of length, and the image correlations at local IBIS sites to be traceable 

to the Golden Images of ATF’s National Laboratory Center. 

A similar approach is used for SRM Cartridge Cases. Fig.2-15 shows the Golden Image 

established at the ATF’s National Laboratory Center for the breech face (left), firing pin 

(middle) and ejector mark (right) of the SRM Cartridge Cases. The proposed traceability and 

quality system for SRM Cartridge Cases also includes traceable 3D topography measurements 

at NIST and image acquisitions and correlations for NIBIN. 

2.4.2. Establish a quality system for nationwide ballistics identifications -- The National 

Ballistics Imaging Comparison (NBIC) Project  

During the 2008 NIBIN Users Congress held on June 17th and 18th in Orlando, FL, a protocol 

for the National Ballistics Imaging Comparison (NBIC) Project was initiated at the first 

NIST/ATF Workshop, and agreed upon by ballistics experts across the U.S. The project goal 

is to establish a Traceability and Quality System for ballistics signature correlations in U.S. 

crime laboratories within the NIBIN. NIST SRM 2460 Bullets and 2461 Cartridge Cases were 

used as reference standards. By repeating tests of the SRM Bullets and Cartridge Cases at local 

IBIS sites, and correlating the images with the Golden Images established at the ATF, control 

charts and control limits were developed for quality assurance of ballistics acquisitions and 

correlations in NIBIN. The quality assurance system can then be used for detecting and 

exploring any quality problems arising from operators’ acquisition procedures, IBIS systems 

and correlation networks, as well as from the SRM standards themselves [6].  

All participants agreed to use their IBIS for image acquisitions and correlations of their SRM 

Bullet and SRM Cartridge Case. These tests had three phases [6]: 

 Phase 1 -- Measurement repeatability tests: Ten repeat tests in one or two days on a 

single SRM Bullet and Cartridge Case by the same IBIS operator under the same 

measurement setup and the same instrument calibration. Detailed measurement setup 

and calibration procedure can be found in [6,40,44]. 
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 Phase 2 -- Short term measurement reproducibility tests: Four weekly tests (including 

one from the Phase 1 tests) on the same SRM Bullet and Cartridge Case by the same 

IBIS operator under multiple measurement setups and multiple instrument calibrations. 

 Phase 3 -- Long term measurement reproducibility tests: 12 monthly tests (including 

one from the Phase 1 tests) on the same SRM Bullet and Cartridge Case by the same 

IBIS operator under multiple measurement setups and multiple instrument calibrations. 

In summary, the protocol called for 24 acquisitions of both a SRM Bullet and a Cartridge Case 

for each participant over the course of about a year. The correlation scores were entered on a 

spreadsheet designed by NIST for statistical analyses, from which control charts and control 

limits were developed for the proposed Traceability and Quality System [6]. 

19 ballistics examiners from 13 IBIS sites in the United States participated in this project from 

July 2008 to July 2009. The first set of test data was sent to NIST in September 2008. Based 

on the data analyses, a feedback report was sent to the participating examiners in October 2008, 

and discussed at the second NIST/ATF workshop held in New Orleans on January 8th, 2009. 

After October 2008, significant improvements were observed for some IBIS sites that 

previously had low IBIS scores before the feedback report.  

The second set of test data was sent to NIST between February and March, 2009. The final set 

of test data was sent to NIST in September 2009. After statistical analyses, some control charts 

and control limits were developed for the proposed Traceability and Quality System.  

The third NIST/ATF Workshop was held from March 23rd to 24th, 2010 in St. Louis to review 

the overall project and summarize the control charts and control limits [6]. A research paper 

summarizing this project was published in 2012 [6]. 

NIST SRM Bullets and Cartridge Cases [5], combined with the use of Control Charts and 

Control Limits developed by us [2], are powerful tools for quality assurance of NIBIN 

acquisitions and correlations. During the NBIC project, several quality problems related to the 

operator and acquisition procedure, the IBIS software and correlation network, as well as the 

SRM Cartridges themselves, have been successfully identified and corrected. Detailed 

information can be found in Ref. 6. 
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2.5. Congruent Matching Cells (CMC) Method -- Theory and Application 

in Forensic Evidence Identification and Error Rate Estimation 

2.5.1.  Background 

Side-by-side toolmark image comparisons for firearm identification have more than a century’s 

history [27]. However, the scientific foundation of firearm and toolmark identification has been 

challenged by recent court decisions. As stated in the 2008 and 2009 National Academies 

Report [28,29]: “The validity of the fundamental assumptions of uniqueness and reproducibility 

of firearms-related toolmarks has not yet been fully demonstrated…” and “Since the basis of 

all forensic identification is probability theory, examiners can never really assert a conclusion 

of an ‘identification to exclusion of all others in the world,’ but at best can only assert a very 

small (objective or subjective) probability of a coincidental match…” 

The legal standard for the acceptance of scientific evidence contained in the U.S. Supreme 

Court decision, called the Daubert standard [28], “places high probative weight on quantifiable 

evidence that can be tested empirically and for which known or potential error rates may be 

estimated, such as identification using DNA markers.” [28] However, as stated in the 2009 

National Academies Report [29], “But even with more training and experience using newer 

techniques, the decision of the toolmark examiner remains a subjective decision based on 

unarticulated standards and no statistical foundation for estimation of error rates…”  

Since 1980’s, estimates for the probability of a coincidental match have been used for 

supporting DNA identifications [29]. “The courts already have proven their ability to deal with 

some degree of uncertainty in individualizations, as demonstrated by the successful use of DNA 

analysis (with its small, but nonzero, error rate)” [29]. It is therefore a fundamental challenge 

in forensic science to establish a scientific foundation and a statistical procedure for 

quantitative error rate reports to support firearm identifications, in the same way that reporting 

procedures have been established for forensic identification of DNA evidences [29].     

Our project team has been working on the topography measurement methods and physical 

standards for ballistic surface characterization [5,6,18-21]. I invented a novel analytical 

approach in 2013, known as the Congruent Matching Cells (CMC) method [7,31] for ballistic 

identifications. Basic concepts of the CMC method are discussed in the following sections. 
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2.5.2.  Basic concepts for the CMC method  

(A)    Valid and invalid correlation region 

The correlated surfaces of fired bullets and ejected cartridge cases include “valid” and “invalid” 

correlation regions [7,31]. The valid correlation region contains individual characteristics [27] 

of the ballistics signature that can be used effectively for identification. The invalid correlation 

region does not contain individual characteristics of the ballistics signature, and therefore, 

should be eliminated from ballistics identification [7,31]. Invalid correlation areas can occur, 

for example, due to insufficient contact between the firearm surface and the bullet or cartridge 

case during firing.   

Fig.2-18 demonstrates a correlation of two surface topographies A and B originating from the 

same firearm. The valid correlation region is represented by the superscript (+); the invalid 

correlation region is represented by (–). In Fig.2-18, the union symbol “∪” [48] is used to 

represent the union of two sets of images; the intersection symbol “∩” [48] is used to 

  

 

Fig.2-18a shows the valid correlation regions (A+ and B+) and invalid correlation regions 

(A– and B–) for individual topographies A and B originating from the same firearm.  

Fig.2-18b shows the common valid correlation regions [𝐀+ ∩ 𝐁+] and invalid correlation 

regions [(𝐀+ ∩ 𝐁−) ∪ (𝐀− ∩ 𝐁+) ∪ (𝐀− ∩ 𝐁−)]  for a pairwise correlated topography 

[𝐀 ∩  𝐁]. 
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represent the intersection (or overlap) of two sets of images. For the individual topography A 

and B, each contains both the valid and invalid correlation regions (Fig.2-18a): 

A =  A+ ∪  A−,  

B =  B+ ∪  B−.     (2-3) 

For a pair-correlated topography [A ∩  B] (Fig.2-18b): 

[A ∩  B] = [A+ ∩  B+] ∪ [(A+ ∩  B−) ∪ (A− ∩  B+) ∪ (A− ∩  B−)],        (2-4) 

where [A+ ∩ B+]  represents the common valid correlation region, [(A+ ∩  B−) ∪ (A− ∩

 B+) ∪ (A− ∩  B−)] represents the invalid correlation region. 

 (B) Correlation cells 

The correlation cell is designed for accurate ballistic identifications of 3D topography 

signatures. A correlation cell is a basic correlation unit with 1) a “sufficiently small” cell size 

so that a mosaic of cells can effectively represent the valid correlation region and separate it 

from the invalid correlation region; and 2) a “sufficiently large” cell size to contain a significant 

number of peaks and valleys for accurate topography correlations. Both are important for 

effective and accurate ballistic identifications. By using the correlation cells, the valid 

correlation region can be identified and the invalid correlation region can be eliminated from 

correlation. Thus, the correlation accuracy can be increased (see Section 2.5.4). 

 

Fig.2-19a shows a pair of topographies [𝐀 ∩  𝐁]  correlated over the whole region 

including both the valid and the invalid correlation regions. Fig.2-19b shows that the use 

of correlation cells can eliminate part of the invalid correlation region and increase 

correlation accuracy. Fig. 2-19c shows the use of smaller correlation cells that can further 

eliminate the invalid correlation region and increase correlation accuracy. 
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Fig.2-19a shows a pairwise correlated topography [A ∩  B] including both valid correlation 

regions [A+  ∩  B+] (as shown by two inside demarcated regions) and an invalid correlation 

region [(A+  ∩  B−) ∪ (A−  ∩  B+) ∪ (A−  ∩  B−)] (as shown by the remaining region). If the 

correlation is conducted over the whole region, the correlation accuracy represented by the 

cross correlation function maximum CCFmax [18] is likely to be low, because of the large 

invalid correlation region involved into correlation (see Fig.2-19a). If the correlation region 

can be divided into correlation cells (see shadowed regions in Fig.2-19b), the cell correlations 

can be used to identify the valid correlation regions and eliminate the invalid correlation region; 

the correlation accuracy can thus be increased. If the cell size can be further reduced to a 

“sufficiently small” but still contains “sufficiently large” topography information for ballistics 

identification (see shadowed regions in Fig.2-19c), the correlation accuracy can be further 

increased [7,31].   

(C) Cell size 

As stated previously, a correlation cell must be “sufficiently small” for high correlation 

accuracy; but must be “sufficiently large” to contain enough topography features for accurate 

ballistics identification. In practice, the cell size is experimentally optimized -- not too small 

and not too large, either may result in low correlation accuracy.    

The cell size also depends on the size and shape of the correlated topographies. If the 

correlation region is large and flat, such as the breech face impression of the cartridge cases, 

the cell size may be relatively large. If the correlation region is small and contains curvatures, 

such as the firing pin impression; or if the correlated region contains complex shapes, such as 

some ejector mark impressions, the cell size may necessarily be smaller. 

As a starting point for test of the 9 mm caliber cartridge cases, it is suggested that the cell size 

for breech face correlations be in the range of (0.25 mm × 0.25 mm) to (0.5 mm × 0.5 mm).  

Those estimates imply that the number of cells is in the range of about 50 to 200 for the 

correlations of breech face of 9 mm cartridge cases [7,31].  

(D)  Identification of the valid and invalid correlation regions using correlation cells 

If topographies A and B, originating from the same firearm, are registered at their maximum 

correlation position (Fig.2-20), the registered cell pairs located in their common valid 
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correlation regions (as shown by the solid cell pairs A1, A2, A3… and B1, B2, B3…) are 

necessarily characterized by [7,31]:  

 High pairwise topography similarity quantified by the cross correlation function 

maximum CCFmax [18]; 

 Similar registration angles θ for all correlated cell pairs in topography A and B; and 

 A “congruent” x-y spatial distribution pattern for the correlated cell arrays A1, A2, A3… 

and B1, B2, B3… or nearly so.  

 

Fig.2-20. Assuming that A and B originate from the same firearm, there are three sets of 

correlation cells A1, A2, A3 and B1, B2, B3 located in three valid correlation regions 

[𝐀+  ∩  𝐁+] (as shown by three inside enclosed regions). The other cell pairs a', a", a'"… 

and b', b", b'"… are located in the invalid correlation region [(𝐀+  ∩  𝐁−) ∪ (𝐀−  ∩  𝐁+) ∪
(𝐀−  ∩  𝐁−)] (as shown by the remaining region). Correlation cells in topography A are 

used as reference cells for correlation with cells arrays in topography B. 

On the other hand, if the registered cell pairs come from the invalid correlation regions of A 

and B (such as the dotted cells a', a", a'"… and b', b", b'"… in Fig.2-20), or if the samples 

originated from different firearms, their cross correlation function values CCFmax are likely to 

be low, and their cell arrays are likely to show significant difference in x-y distribution patterns 

and registration angles θ. 

2.5.3. The proposed “Congruent Matching Cells (CMC)” method  

Congruent matching cell pairs, or CMCs, are therefore determined by three sets of 

identification parameters: cross correlation value CCFmax, registration angle θ, and translation 

distances in x and y with corresponding thresholds TCCF, Tθ, Tx and Ty. The correlated cell pairs 

are considered CMCs -- that is, part of a congruent matching cell pattern -- when their 

correlation value CCFmax is greater than a chosen threshold TCCF and their registration angle θ 
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and x, y registration positions, relative to a common reference position, are within the chosen 

threshold limits Tθ, Tx and Ty.  

How many CMC pairs are required so that the overall surface topographies can be identified 

as matching? As a starting point, we use a numerical identification criterion C equal to 6, taking 

a lead from the method of Consecutively Matching Striae (CMS) developed by Biasotti and 

Murdock for identification of bullet striation signatures [49-51]. This method has been used 

internationally for bullet and striated toolmark identifications since 1984 [50].  

As a start point for test, the numerical criterion for Consecutively Matching Striae (CMS) 

method, C = 6, is adopted for the proposed Congruent Matching Cells (CMC) method [7,31]: 

At least C (assuming C = 6 as a start point for test) Congruent Matching Cell (CMC) 

pairs show high correlation values represented by CCFmax > TCCF; show the 

“congruent” distribution pattern represented by the same spatial x-y registration 

positions within the threshold Tx and Ty; and show the same registration phase angle θ 

within the threshold Tθ. 

2.5.4. Validation tests for the proposed CMC method 

An initial validation test of the CMC method was conducted using a set of cartridge cases that 

had achieved prominence in the firearms identification community when it was produced for a 

study of visual firearm identifications by ballistics examiners initiated by Fadul et al. at the 

Miami-Dade Crime Laboratory [52]. The set contains 40 cartridge cases ejected from handguns 

with 10 consecutively manufactured pistol slides (3 slides were used to fire 3 cartridge cases 

each, 4 slides were used to fire 4 cartridge cases each, and 3 slides were used to fire 5 cartridge 

cases each). The slide is a component of a semi-automatic pistol firing mechanism that absorbs 

the recoil impact of the cartridge case onto its breech face. Thus, the surface topography of the 

slide is impressed onto the breech face of the cartridge case upon impact. Ballistics correlations 

involving a population of consecutively manufactured gun parts represent the most challenging 

scenario for testing the capability to accurately identify bullets or cartridge cases as being fired 

or ejected from the same firearm, because of the increased possibility of the firearm’s 

matching-characteristics of the persistent manufacturing gun parts that could be the basis for 

false identifications [52]. The surfaces of the slides were finished by sand blasting, a process 
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used by some firearm manufacturers which produces highly random 3D surface topographies 

[53]. The objective then for topography measurement and analysis is to distinguish the 

individual characteristics of the surface impressions from any underlying similarities in 

consecutively manufactured slides resulting from earlier phases of the manufacturing process, 

and therefore, yielding a correct conclusion of identification or exclusion with error rate 

estimation.    

The breech face impression topographies on the cartridge cases were measured by a disk 

scanning confocal microscope (Fig.2-12) and were correlated using the CMC method. A total 

of 780 correlations (= (40 × (40 – 1)) / 2) were performed, comprising 63 (= 3×3 + 4×6 + 3×10) 

known matching (KM) and 717 (= 780 – 63) known non-matching (KNM) image pair 

comparisons [8,32]. Note that these correlations are not completely independent because each 

image of the 40 cartridge cases may correlate with KM and KNM images with different sample 

sizes, but the total sample size is same. 

The original images have a nominal pixel spacing of 3.125 µm, but the pixel spacing is 

increased to 6.25 µm for fast correlation tests. The root mean square instrument noise in the 

vertical direction was approximately 3 nm. Before correlating, the images were trimmed to 

extract the breech face impression of interest. The images were bandpass filtered to reduce 

noise with short wavelengths cutoff λs = 0.016 mm and to remove surface form and waviness 

with long wavelengths cutoff λc = 0.25 mm, thus highlighting individual characteristics. The 

cell size for the set of correlation tests was chosen to be 470 µm by 470 µm, and the range of 

relative cell registration angles was restricted to ±30° with respect to their initial orientation 

[8].  

One set of validation test results is shown in Fig.2-21. The nominal number, Nnom, of compared 

cell pairs for each topography correlation equals 49 (for a 7 × 7 cell array). The number N of 

compared effective cell pairs for each correlation, i.e. cell pairs containing a reasonable number 

of pixels, depends on the common domain of each topography pair. On average for this study, 

26 cell pairs were correlated for each image correlation. The cell size a, the pixel spacing, and 

the thresholds TCCF, Tθ, Tx and Ty are shown on the upper right side of Fig.2-21. The number of 

congruent matching cell pairs (CMCs) for the 63 KM topography pairs ranges from 9 to 26; 

while the number of CMCs for all 717 KNM topography pairs ranges from 0 to 2. 
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Fig.2-21. Relative frequency distribution of CMC numbers for KM and KNM image 

pairs. For the 63 KM cartridge pairs, the CMC ranges from 9 to 26. For the 717 KNM 

cartridge pairs, the CMC ranges from 0 to 2. The curves represent the statistical fitting 

of theoretical binomial distributions ΨCMC (blue) calculated by Eq.2-6 and the values of 

ΦCMC (red) calculated by Eq.2-8. Note that the distribution models are discrete 

histograms, with the connecting lines drawn for visualization. 

Of the 717 KNM image pairs, 651 pairs have CMC = 0 (no congruent matching cells). There 

are only five non-matching topography pairs that have two congruent matching cells, i.e. CMC 

= 2 (Fig.2-21), one of them is shown in Fig.2-22A. For the 63 KM topography pairs, only one 

topography pair has CMC as low as 9 (Fig.2-21), this topography pair is shown in Fig.2-22B. 

All the other KM topography pairs have CMC number ranging from 11 to 26 (Fig.2-21) [8]. 

There is a significant separation between the KM and KNM distributions without an overlap 

(Fig.2-21). Additional tests using different correlation parameters and slightly different 

versions of correlation software also show similar results without an overlap [32,33]. In 

standard binary classifier terms the results indicate both high sensitivity and specificity [54] 

and suggest the feasibility of using the CMC method for firearm identifications. The 

identification accuracy can likely be improved further by optimizing the image processing, 

cells size, parameter threshold values, and by using finer registration intervals [8,32,33]. 
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Fig.2-22. Depiction of congruent matching cells for two sets of correlated topography 

pairs: for the 717 KNM topography pairs, only five pairs have a CMC value as high as 2, 

one of these image pairs is shown in (A). For the 63 KM topography pairs, only one has a 

CMC value as low as 9, that pair is shown in (B).  

2.5.5. Error rate estimation using the CMC method 

The large number of correlation cells associated with the multiple correlation parameters for 

each correlated cell pair of the CMC method lead to a statistical approach to calculating error 

rates, that is, the probability that a positive identification is actually false (false positive) and 

the probability that an exclusion from identification is actually false (false negative). Two types 

of error rates are of interest. The cumulative error rate represents the expected error rate for a 

large number of statistical samples with similar characteristics. The individual error rate 

represents the probability of a coincidental conclusion for a particular comparison result, for 

example, the probability of a correlation of CMC = 15 yielding “match” conclusion is actually 

originated from a non-matching image pair [7,8]. 

The initial approach proposed to estimate error rates was to make the approximation that the 

probability of a false positive (P1) is the same for all non-matching cell pairs, and that the 

probability of a false negative (P2) is the same for all matching cell pairs [8]. P1 and P2 are 

estimated from experimental distributions of correlated cell pairs of KM and KNM 

topographies [7,8]. Fig.2-23 shows the experimental frequency distributions of correlated cell  
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Fig.2-23. Experimental relative frequency distributions of the correlated cell pairs for the 

KM (pink) and KNM (blue) topographies with respect to different identification 

parameters: A) CCFmax with a threshold TCCF = 50%; B) θ with Tθ = ±6º; C) x with Tx = 

±20 pixels (or ±0.125 mm); and D) y with Ty = ±20 pixels (or ±0.125 mm). The KM (63 

pairs) and KNM (717 pairs) distributions are each scaled to their particular sample size. 

pairs for KM (pink) and KNM (blue) topographies with respect to four specification parameters 

CCFmax (Fig.2-23A), registration angle θ (Fig.2-23B) and registration distances in x and in y 

(Fig.2-23C and D) [8]. The thresholds TCCF, Tθ, Tx, and Ty are also shown. Although there are 

large overlaps between the KM and KNM cell distributions for each parameter CCFmax, θ, x 

and y, combining all four parameters yields a significant separation between the CMC 

distributions of KM and KNM image pairs (Fig.2-21). 

The combined false positive and false negative probabilities, P1 and P2, for each correlated cell 

pair can be estimated by a combination of the experimental false positive and false negative 

identification probabilities associated with each of the four identification parameters (CCFmax, 

θ, x and y), taking into account of any cross-correlations between them. For the finite 40 

cartridge data set here, P1 and P2 can be estimated by conditional probabilities one parameter 

at a time [7,8]. First, the number of KNM cell pairs that pass the TCCF threshold (CCFmax > 
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50%) are counted and compared with the total number of correlated cell pairs to derive the 

individual probability P1(CCF) (see Tab.2-1). Then only the cell pairs passed the TCCF test are 

included in the probability distribution for the next test of parameter θ, from which the 

conditional probability P1(θ|CCF) is estimated, and so on. The individual false positive and false 

negative identification probabilities associated with all thresholds estimated in this way are 

shown in Tab.2-1. 

Tab.2-1. The combined false positive and false negative identification probabilities, P1 and 

P2, for each correlated cell pair are estimated from the individual false positive and false 

negative identification probabilities of each identification parameter, which are estimated 

from the experimental distributions of the correlated cell pairs of the KM and KNM 

topographies by a conditional probability test method. 

 

Correlation parameters   Individual false positive and false negative 

and thresholds identification probabilities 

CCFmax, TCCF  > 50%  P1(CCF) =  0.0782 P2(CCF) = 0.2322 

θ,           Tθ  < ±6°  P1(θ|CCF) =  0.2673 P2(θ|CCF) =  0.0200 

X,           Tx < ±125 μm (±20 Pixels) P1(x|CCF,θ) =  0.3604 P2(x|CCF,θ) =  0.0098 

Y,           Ty < ±125 μm (±20 Pixels) P1(y|CCF,θ,x) =  0.5000 P2(y|CCF,θ,x) =  0.0049 

Combined false positive and false negative 

identification probability  
      

P1 and P2 P1 =  0.003765 P2 =  0.2586 

 

The overall identification probabilities P1 and P2 can be estimated by combining the conditional 

probabilities described above. The combined false identification probability P1 for each KNM 

cell pair is the probability that all four individual identification parameters are positive, that is, 

the CCFmax result is above the threshold and the three spatial parameters are within the chosen 

threshold limits. P1 can be estimated by:  

𝑃1 = ∏ 𝑃1(𝑖) = 𝑃1(𝐶𝐶𝐹)

𝑖=4

𝑖=1

×𝑃1(𝜃|𝐶𝐶𝐹)×𝑃1(𝑥|𝜃,𝐶𝐶𝐹)×𝑃1(𝑦|𝑥,𝜃,𝐶𝐶𝐹).                (2-5a) 
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Conversely, the combined false exclusion probability P2 for each KM cell pair is the probability 

that any of the four individual identification parameters (and/or their combinations) incorrectly 

yields a non-matching result: 

𝑃2 = 1 − ∏[1 − 𝑃2(𝑖)]  

𝑖=4

𝑖=1

= 1 − [(1 − 𝑃2(𝐶𝐶𝐹))×(1 − 𝑃2(𝜃|𝐶𝐶𝐹))×(1 − 𝑃2(𝑥|𝜃,𝐶𝐶𝐹))

×(1 − 𝑃2(𝑦|𝑥,𝜃,𝐶𝐶𝐹))]                                                                         (2-5b) 

The probabilities, P1 and P2, for individual cells are then inserted into a binomial distribution 

model to estimate the cumulative false positive and false negative error rates for the entire set 

of cartridge cases. Fig.2-24 shows a schematic diagram of a conceptual model for two CMC 

distribution density (probability mass) functions, ΦCMC and ΨCMC, for KM and KNM 

topography pairs, respectively. The distribution density ΨCMC for KNM correlations with CMC 

variable h can be modeled with the binomial distribution (N, P1) [55], with probability mass 

function: 

                         𝜓(𝐶𝑀𝐶=ℎ) = 𝐶𝑁
ℎ ∙ (𝑃1)ℎ ∙ (1 − 𝑃1)𝑁−ℎ ,                                         (2-6) 

 

Fig.2-24. Schematic diagram of the CMC distribution functions for correlated KM and 

KNM topographies, ΦCMC and ΨCMC. The regions E1 and E2 under the curves represent 

cumulative false positive (false identification) and false negative (false exclusion) error 

rates. For each individual “matching” identification determined by h ≥ C and each “non-

matching” exclusion determined by g < C, there are likelihoods for both “True” and 

“False” conclusions as demonstrated by the black dotted bars and the red bars, 

respectively. 
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where 𝐶 𝑁 
ℎ  = N!/((N – h)! h!) is the number of combinations of  h  out of N elements. For the 

P1 value estimated earlier, the ΨCMC distribution curve is plotted in Fig.2-21 (blue line with 

CMC ranging from 0 to 2).  

The cumulative false positive error rate E1 is given by the sum of the probability mass function 

ΨCMC for CMC values between C and N:  

𝐸1 = ∑ 𝜓(𝐶𝑀𝐶)

𝐶𝑀𝐶 = 𝑁

𝐶𝑀𝐶 = 𝐶

= 𝜓(𝐶𝑀𝐶=𝐶) + 𝜓(𝐶𝑀𝐶=𝐶+1) + ⋯ + 𝜓(𝐶𝑀𝐶=𝑁)

= 1 − (𝜓(𝐶𝑀𝐶=0) + 𝜓(𝐶𝑀𝐶=1) + ⋯ + 𝜓(𝐶𝑀𝐶=𝐶−1)),                                  (2-7) 

where the cumulative false positive error rate E1 is determined by three factors: the effective 

number of correlation cells N in a correlation; the numerical identification criterion C of the 

CMC method (C = 6); and the combined false positive identification probability P1 of each 

correlated cell pair estimated from Eq.2-5a.  

Similarly, the distribution of ΦCMC for KM images (Fig.2-24) with CMC variable g can also be 

modeled with the binomial distribution (N, 1 – P2) [7,8,55], with probability mass function 

                𝜑
(𝐶𝑀𝐶=𝑔)

= 𝐶𝑁
𝑔

∙ (1 − 𝑃2)𝑔 ∙ (𝑃2)𝑁−𝑔.                                              (2-8) 

For the P2 value estimated earlier, the ΦCMC distribution curve is plotted in Fig.2-21 (red line 

with CMC ranging from 9 to 26). The cumulative false negative error rate E2 is the sum of the 

discrete probability mass function ΦCMC for CMC values between 0 and (C – 1): 

𝐸2 = ∑ 𝜑(𝐶𝑀𝐶)

𝐶𝑀𝐶 = 𝐶−1

𝐶𝑀𝐶 = 0

= 𝜑(𝐶𝑀𝐶=0) + 𝜑(𝐶𝑀𝐶=1) + ⋯ 𝜑(𝐶𝑀𝐶=𝐶−1).             (2-9) 

Based on Eqs.2-7 and 2-9, the cumulative false positive and false negative error rates E1 and 

E2 are estimated using the average effective cell number N = 26 and the combined false positive 

and false negative identification probabilities P1 and P2 (Tab.2-1). The results are shown in 

Tab.2-2. For the 717 KNM comparisons, the cumulative false positive error rate is E1 = 6.2× 

10-10, which represents the sum of φCMC values between 6 and N. The cumulative false negative 

error rate is E2 = 7.4×10-09, which represents the sum of the ψCMC values between 0 and 5.   
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Tab.2-2. Estimated cumulative false positive and false negative error rates E1 and E2 

based on the set of 780 cartridge image pairs with average effective cells N = 26. Also 

shown are the individual identification probabilities R1 at selected CMC values of 9 and 

26 and the individual exclusion probabilities R2 at selected CMC values of 0 and 2. The 

maximum individual identification (false positive) probability is R1 (CMC = 9) = 2.3×10-10. 
 
         

CMC         E1       E2 φ(CMC)  ψ(CMC)  R1(CMC)  R2(CMC)  

              

0   
 

5.3×10-16 0.91   5.2×10-17 

2   
 

1.4×10-12 4.2×10-03   3.0×10-11 

CMC < 6  7.4×10-09         

9     2.2×10-05 4.5×10-16 2.3×10-10  

26     0.00042 9.3×10-64 2.5×10-59  

CMC ≥ 6   6.2×10-10           

  

2.5.6. Surface and topography metrology support firearm evidence identification 

The field of firearms identification is more than 100 years old and the field of surface metrology 

is at least 80 years old, but the combination of the two -- using surface topography 

measurements and correlations for identification of fired bullets and cartridge cases -- has only 

been around for about 15 years. The combined field is so new that current firearm 

identifications at crime labs for bullets or cartridge cases are still performed manually by 

experts in optical (side-by-side) comparison microscopes, and the conclusion of a “match” or 

‘non-match” is mainly based on experts’ experience. Nevertheless, this interdisciplinary field 

brings a vision that one day firearm related investigations and identifications might be 

accomplished or affirmed through database searches using topography data of the ballistics 

evidence and automated correlation programs. Further, a conclusion that certain firearm 

evidence is a match or a non-match could include an uncertainty (or error rate) report. 

Reporting error rate for firearm identification is a fundamental challenge in forensic science 

[28,29]. NIST researchers have developed for the first time a statistical foundation and a 

practical method to estimate an error rate [7,8], demonstrated on a set of cartridge cases ejected 

from handguns with consecutively manufactured pistol slides [8,32,33]. Although small, this 

type of sample presents a challenging and pioneer test for firearms identifications and experts. 
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The CMC method has been tested by a different set of consecutively manufactured firearms 

with large sample size (95 slides with 4465 image pairs) with good correlation results [8].   

It must be emphasized that the estimated error rate numbers are specific to the particular set of 

firearms and are not meant to be applicable to other firearm scenarios. However, the error rate 

assessment procedures can be adapted, with refinements and model adjustments for specific 

situations, to provide scientific support and error rate estimates for other firearm identification 

scenarios [8], including large scale databases, in a manner similar to the Coincidental Match 

Probability (CMP) procedures developed for DNA identifications [29].  

The CMC method may also serve as a foundation for manufacturers to develop the Next 

Generation Ballistic Identification Systems characterized by high accuracy and error rate 

reporting, which would represent a decided advance over current automated ballistic 

identification systems. In September 2013, a U.S. manufacturer, Leeds Forensic Systems, Inc. 

located in Minneapolis, MN, sent an email to NIST: “We feel, the Error Rate Software based 

on the Congruent Matching Cell theory could revolutionize the science of firearms 

comparison, and we wanted a license to sell it…” [56]. Based on the NIST invented CMC 

method, the Leeds Forensic Systems, Inc. has developed the next generation ballistics 

identification system called CaseHitterTM, which has been demonstrated at the 2015 

Association of Firearm and Tool-mark Examiners (2015 AFTE) meeting in May 2015, Dallas, 

TX.  At the cover page of the software, it shows: “This software is based on the CMC 

(Congruent Match Cells) method and Error Rate Procedure invented by NIST.”  

It can be expected when ballistic examiners input topography or optical intensity images into 

a program that automatically conducts correlations using the CMC method, and displays the 

correlation conclusion (matching or non-matching) with an error rate report [8]. The NIST 

invented CMC method and statistical procedure can provide a scientific foundation and a 

practical method to estimate error rates for ballistic identifications in court proceedings. An 

error rate procedure could also be used for laboratory assessment and accreditation in 

accordance with the ISO 17025 standard [57] and ASCLD/LAB procedures [58].  
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Chapter 3. Other Applications of 2D and 3D Topography 

Measurements 

Besides firearm evidence identifications, 2D and 3D topography measurements can also be 

used in other fields such as instrument characterization and production quality control. This 

chapter introduces my work using 2D topography measurements for instrument comparison of 

four surface instruments based on different techniques, and 3D topography measurements for 

determining the “decay factor” of the electro-forming technique for surface duplication and for 

production quality control of SRM Standard Cartridge Cases.  

3.1. 2D Topography Metrology for Instrument Characterization 

A traditional question in surface metrology is: when different surface instruments are used to 

measure the same surface, do they get the same results? And if not, why? [1] 

Fig.3-1 shows signature profiles of the No. 1 land impression on the SRM 2460-001 Standard 

Bullet measured by four instruments with different techniques (profile 2 to 5), and compared 

with the profile of the virtual standard traced on the ATF’s master bullet by a stylus instrument 

(profile 1) [22]. Profile 2 is traced by a stylus instrument, and correlated with the virtual 

standard (profile 1). The correlation result is CCFmax = 99.6 %. Profile 3 is traced by an 

interferometric microscope; the correlation result is CCFmax = 92.1 %. Profile 4 is traced by a 

Nipkow disk confocal microscope, the correlation result is CCFmax = 99.0 %. Profile 5 is traced 

by a laser scanning confocal microscope, the correlation result is CCFmax = 95.3 %. The CCFmax 

differences came from many factors [22], of which the instrument noise and image stitching 

technique of different instruments were certainly important factors for instrument 

characterization. 

It was suggested that the reference standards, comparison parameter and measurement system 

developed from the NIST Standard Bullets and Cartridge Cases project could be generally used 

in surface metrology for 2D and 3D topography comparisons and instrument characterization. 

However, it must be noted that the repeatability and reproducibility tests mentioned above were 

performed by three different operators at three different laboratories.  The method divergence 

and environment variations are certainly among the factors which affect the test results [22]. 
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Fig.3-1. The signature profile of the #1 land impression of SRM 2460-001 Standard Bullet 

was measured by four techniques (profile 2 to 5) and correlated with the profile of the 

virtual standard traced by a stylus instrument on the ATF’s master bullet (profile 1). 

Profile 2 was traced by the stylus instrument, CCFmax = 99.6 %. Profile 3 was traced by 

an interferometric microscope, CCFmax = 92.1 %. Profile 4 was traced by a Nipkow disk 

confocal microscope, CCFmax = 99.0 %. Profile 5 was traced by a laser scanning confocal 

microscope, CCFmax = 95.3 %. 

  

3.2. 3D Topography Measurements for Determination of the Decay Factor 

for Surface Duplication Using Electro-Forming Technique   

In order to ensure that the SRM Cartridge Cases are produced with virtually the same surface 

topography as the master, it is necessary to test the decay factors of the replication process, and 

design an optimum plan for the production of a large amount of SRM Cartridges with 

maximum uniformity of surface topography [23]. 

Two decay factors, called the horizontal and vertical decay factors α and β, are defined and 

tested. The horizontal decay factor α is defined for quantifying topography decay among 

specimens replicated one after the other from the same master. The vertical decay factor β is 

defined for quantifying topography decay among specimens produced from one generation to 

the next [23]. 

Twenty-six replica cartridge cases were replicated from the same master cartridge provided by 

ATF. 17 of these cartridges (#001 to #017) were replicated from the same negative replica, and 
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were used for the tests of the horizontal decay factor α (Fig.3-2). The remaining nine positive 

replica cartridges (#019 to #035) were nine successive generations from the same master, and 

were used for the tests of the vertical decay factor β (Fig.3-2) [23]. 

 

Fig.3-2. Design for horizontal and vertical decay factor tests. 

Fig.3-3(a) shows the test result for the horizontal decay factor α. The No. 1 replica was used as 

a reference, against which the successive 16 casings were correlated. A linear least squares 

fitting was used for approximating the exponential decay function. The resulting horizontal 

decay function is [23]: 

 

Fig.3-3. Horizontal (a) and vertical (b) decay factor test results. 
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Hd (i) = – 0.0157 % × (i – 1) + 99.26 % CCFmax (i = 2 to 17).  (3-1) 

Where i represents the number of the replica casing (from 2 to 17); α is 0.0157 % CCFmax per 

replication. The term 99.26 % CCFmax approximates the pre-exponential factor which biased 

slightly from the perfect topography with 100 % CCFmax. The cross correlation function 

maximum, CCFmax, is used here as a quantitative parameter for the similarity of topography 

comparisons [18,19].      

Fig.3-3(b) shows the test result for the vertical decay factor β of the nine generations of replica 

cartridges. The first replica (No. 19) was used as a reference, against which the successive eight 

generation cartridges were correlated. There was a damage shown on the surface of the sixth-

generation replica (No. 29). Thus, the CCFmax value (CCFmax = 96.84 %, see Fig.3-4) had 

significant difference from the others. This data was considered as flawed data and was 

removed from the tests. The remaining seven cartridges are correlated with the reference. After 

linear least squares fitting, the vertical decay function is [23]: 

Vd (j) = – 0.0855 % × (j – 1) + 99.40 % CCFmax  (j = 2 to 8).   (3-2) 

Where j represents the generation number of the replica casings (from 2 to 8); β is 0.0855 % 

CCFmax per generation. 

From Eqs.3-2 and 3-3, it can be seen that the vertical decay factor, β = 0.0855 %, is more than 

five times as large as the horizontal decay factor, α = 0.0157 %. Therefore, it is important to 

reduce the generation-to-generation replications as much as possible during the production 

process.      

For the NIST SRM 2461 Standard Cartridge Case project, it was planned to produce 256 SRM 

casings from the same ATF master casing with CCFmax higher than 95 %. Based on the decay 

factors, we estimated the topography decays for two production plans. The first one, called “16 

× 16”, uses the ATF master to make 16 negative replicas, and then, uses each negative replica 

to make 16 SRM casings. The CCFmax for the last SRM casing is estimated as (97.37 ± 0.20) % 

[23]. The uncertainty (k = 1) is a Type A standard uncertainty derived from the parameter fitting 

to the data of Fig.3-3.  The second plan, called “4 × 4 × 4 × 4”, uses the ATF master to produce 

4 negative replicas; and then, uses each negative replica to make 4 positive replicas; again, uses 

each positive replica to make 4 negative replicas; and finally, uses each negative replica to 
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make 4 SRM casings. The CCFmax for the last SRM casing is calculated as CCFmax = (96.01 ± 

0.25) % (also k = 1) [23]. Both plans can produce 256 SRM casings with CCFmax values higher 

than 95 %.  

Based on the production plan, 137 SRM 2461 cartridge cases were produced so far and certified 

for forensics / crime scene investigations [40].  Fig.2-7 (left) shows a SEM 2461 standard 

cartridge case which is mounted on a brass cylinder holder. Fig.2-7 (right) shows a SRM 

cartridge case (left) and three certified areas (right) of the breech face impression (BF), firing 

pin impression (FP), and ejector mark (EM).   

3.3. 3D Topography Measurements for Production Quality Control of 

SRM Cartridge Cases    

When the 3D topography measurement system was used for determining the “decay factors” 

of the replication process of the SRM Standard Cartridge Cases, it was found that there was 

one set of correlation data from the #29 replica showed questionable results (see Fig.3-4). For 

the No. 29 replica, the CCFmax value (96.84 %) showed significant difference (out of ±2σ range) 

from the others, because there was a damage showing on the surface of the No. 29 replica. This 

data was considered as flawed data and was removed from the tests. Fig.3-5 shows a 

comparison between the No. 29 replica’s image and the reference image of the No. 1 cartridge.  

 

Fig.3-2. The No. 29 replica showed significant difference from the others, the CCFmax 

value is 96.84 %. 
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There is a surface defect on the surface of No. 029 replica casing, as shown at the middle and 

right images of the bottom row, resulting the CCFmax value dropping to 96.84 %.  

When comparing Fig.3-5 with Fig.2-13 which shows a comparison of No. 2 vs. No. 1 cartridges 

with CCFmax = 99.29, it can be seen that the CCFmax value is very sensitive to the surface defect, 

and therefore, this suggests that the CCFmax parameter and the topography measurements can 

be used for test of surface defects for quality control of production lines [19]. 

 

Fig.3-3. Topography correlation of firing pin images between prototype SRM Cartridge 

001 (top, left, used here as a reference) and 029 (top, right). The bottom row shows filtered 

images for 001 (left) and 029 (middle) cartridge and the topography difference (right). A 

surface defect on 029 cartridge can be seen in the bottom row of middle and right images. 

Thus, CCFmax decreased to 96.84 %, and Ds increased to 6.09 %. 
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Chapter 4. Surface Metrology for Engineering Surface 

Quality Control 

Surface metrology bridges manufacturing process and functional performance of engineering 

surfaces. Engineering surface quality control involves a control loop consisting of surface 

manufacturing, surface texture measurements, and engineering function [59,60]. The function 

of engineering surfaces could be optimized by designing their surface texture and specifying 

characteristic parameters and control values through controlled experiments, and selecting 

material, manufacturing processes, and quality procedures to meet the optimized engineering 

function [12,13]. Both the surface calibration standards and measurement control procedure 

play an important role in engineering surface quality control. 

This chapter introduces my contributions in engineering surface quality control:  

 Designed and manufactured the Precision Random Profile Roughness Specimens for 

quality control of smooth engineering surfaces [1]. These specimens were made with 

roughness Ra values ranging from 0.015 µm to 0.1 µm -- less than 1/10 of the Ra values 

of the similar specimens developed by PTB in Germany. These specimens were 

included in the ASME B46 [62] surface standard in 1995. 

 Proposed a Dynamic Control Chart for measurement quality control of engineering 

surfaces [2].  

4.1. Design, Manufacture and Test of the Precision Random Profile 

Roughness Specimens 

4.1.1.  Background  

Many engineering surfaces, especially those of smooth engineering surfaces manufactured by 

grinding, lapping, polishing, honing et al. with Ra ≤ 0.1 μm, have random profiles or with 

random components on their surface profiles. Random profiles have wide amplitude 

distributions (usually Gaussian) and wide spatial frequency distributions [1,13]. As a result, 

measurements of these surfaces with different instruments could produce varying results if the 

spectral responses of the instruments differ significantly [1,13]. In 1965, Häsing at PTB 

(Physikalisch-Technische Bundesanstalt, Germany) developed the random profile roughness 

specimens to represent these types of surfaces [14]. These specimens are made with a 
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measuring area having a unidirectional random profile manufactured by a grinding process. 

The random profile is repeated every 4 mm, a period equal to the evaluation length of the 

measurement. Therefore, the measured random profile is always essentially constant within the 

measuring area, irrespective of the measuring positions on the specimen [14]. These specimens 

consist of a set of three pieces, with Ra values of 1.5 μm, 0.5 μm, and 0.15 μm, which could be 

used for the quality control of medium machined engineering surfaces within the same Ra 

range.  The PTB specimens were written into the International Standard ISO 5436 [61] and the 

U.S. National Standard ASME B46 [62].   

4.1.2.  PTB random profile specimens for engineering surface quality control  

With PTB random profile roughness specimens, stylus instruments can be subjected to a 

summary test covering all stages from the stylus tip to the indication of the measured value. 

These roughness specimens play an important role in getting agreement for engineering surface 

measurement among various instruments.  Hillmann [63] reported that “a couple of years ago 

(before 1989), differences in measured surface parameters of 40% and more were ascertained 

in national and international comparison measurements. Now (in 1989), the differences 

between measurements carried out within the framework of the German Calibration Service 

amount to only a few percent; in an audit of the European Communities less than 15% was 

attained.” Hillmann's recommendations included the use of both the well-defined measurement 

conditions and well characterized roughness specimens [63]. 

4.1.3.  The precision random profile roughness specimen 

The PTB standards are limited to Ra values > 0.15 μm. However, smooth engineering surfaces 

with Ra ≤ 0.1 μm play an increasingly important role both in industry and research. With the 

development of modern science and technology, the quality control for smooth engineering 

surfaces (Ra ≤ 0.1 µm) becomes increasingly important, not only because of their important 

engineering functions, but also the high production costs [1,13]. NIST’s Surface and 

Nanostructure Metrology Group of the Engineering Physics Division frequently received 

requests from U.S. industry to provide Standard Reference Material (SRM) Precision Random 

Profile Roughness Specimens to support smooth surface measurements for U.S. industry. In 

1985, I developed the Precision Random Profile Roughness Specimens in Beijing with Ra 

ranging from 0.01 µm, 0.05 µm to 0.1 µm, these specimens were written into the U.S. National 

Standard ASME B46-1995 [62] in 1995.   
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Fig.4-1. The Precision Random Profile Roughness Specimen.   

 

The Precision Random Profile Roughness Specimens were designed with the following 

characteristics (see Fig.4.1) [1]: 

a) The profile repetition is 0.4 mm and 1.25 mm; the roughness average Ra range is from 

0.01 µm, 0.05 µm to 0.1 µm, which is less than 10 % of the Ra range of PTB specimens. 

b) A smooth reference surface with Ra less than 0.005 µm is located on the mean lines of 

the random profiles (see Fig.4-1), which can provide a reference datum for roughness 

measurements and profile comparisons for smooth engineering surfaces [1,13]. 

c) The micro hardness (HV ≥ 800) [1] is higher than the PTB specimens (HV ≥ 700) [14]. 

That is helpful for the high precision measurements and long term of use of these 

specimens. 

The prototype Precision Random Profile Roughness Specimens were initially designed, 

patented and manufactured by myself in 1985 using a guided-lapping process, and was 

published in 1988 [1] (see Fig4-1). Those specimens are similar to PTB random profile 

roughness specimens but have small values of Ra roughness. The measuring areas are 

composed of several (4-8) identical unidirectional random profile surfaces side by side, and 

their profile repetitions -- 0.4 mm and 1.25 mm -- are equal to the recommended evaluation 

lengths for measuring them [62]. The specimens are a set of four pieces having Ra values of 
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0.1 μm, 0.05 μm, and 0.025 μm (these three with profile repetition of 1.25 mm) and 0.012 μm 

(with profile repetition of 0.4 mm). There are also two smooth reference surfaces located at 

opposite ends of the measuring area (see Fig.4-1). The smooth reference surfaces were made 

to be situated on the mean lines of the random roughness profiles with the surface finish 

roughness Ra ≤ 0.005 μm and flatness ≤ 0.01 μm [1]. The reference surfaces provide a 

mechanical measuring datum for a skid to move on. By this means, the mechanical noise of the 

stylus instrument can be reduced [1]. Lines of intersection between the smooth reference 

surfaces and the measuring area also provide a datum for the start and end positions of the 

random profiles. It makes the comparison possible between the profile graphs obtained with 

various instruments [1]. 

PTB roughness specimens, with their relatively longer peak spacing do not yield Ra results that 

are sensitive to the stylus size [63]. However, my specimens, with mean peak spacing less than 

10 μm, are very sensitive to the stylus size [1,13], and therefore, could be used for checking 

stylus condition in surface measurements. To obtain agreement between results on my 

specimens measured with various instruments, the reference conditions, especially the stylus 

size, should be carefully adhered to. Like the PTB specimens, my specimens simulate the 

situation of measuring smooth engineering surfaces and provide a means of exposing the 

problems and obtaining agreement when stylus and other instruments are used for measuring 

smooth engineering surfaces [1,13]. 

4.1.4.  The replica of the precision random profile roughness specimen 

The replicas of my specimens were made by the electro-forming technique which showed 

almost identical surface topography between the replicas and the master specimens [38].  Those 

replica specimens have been used in U.S. and internationally for smooth engineering surface 

quality control.  In 2009, an engineer of GE Aviation sent an email to NIST [64]:  

“In September 2005 GE Aviation received 4 surface finish calibration samples from NIST -- 

with surface Ra's between 0.5 micro-inches (about 0.0125 μm) to 3.9 micro-inches (about 

0.0975μm). These samples were used to perform a gauge R&R (repeatability and 

reproducibility) study within GE engineering between a Mitutoyo profilometer, a Taylor 

Hobson profilometer, and a Wyko optical profiler and verified that all devices gave equivalent 

results.  The samples were used as calibration for verifying measurements taken on deep roller 
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burnished compressor hardware with single digit micro-inch Ra finishes. The NIST samples 

were used to perform a gauge R&R study between Cincinnati-based GE engineering surface 

finish measurement devices (Mitutoyo profilometer and Wyko optical profiler), Wilmington, 

NC-based surface finish measurement devices (Mitutoyo profilometer with standard stylus 

length, Mitutoyo profilometer with 3X stylus length ("daddy long-legs"), and Hooksett, NH-

based surface finish measurement devices (Hommel profilometer).” [64]  

“Using the surface finish calibration samples provided by NIST gave GE engineering 

confidence that we could measure surface finishes down in the single digit micro-inch Ra range 

(about 0.025 μm), and allowed us to verify that we could measure the surface finish on the 

same part at 3 different locations and report the same result at all locations.  The NIST samples 

allowed GE engineering to expand our measurement capabilities and eliminate gauge R&R 

issues between various manufacturing shops, and I would like to say thanks to NIST for 

donating these samples as they were invaluable for helping us to clear up surface finish 

measurement issues we were having at the time.” [64] 

Besides smooth engineering surface quality control, the Precision Random Profile Roughness 

Specimens have also been used in other research projects including “Stylus profiling at high 

resolution and low force” [65]; "Stylus flight in surface profiling" [66]; “NIST virtual/physical 

random profile roughness calibration standards” [39] and “Experimental test of blind tip 

reconstruction for scanning probe microscopy” [67], all received significant results.  It has been 

frequently referred by literatures including Prof. T.R. Thomas’ renowned book “Rough 

Surfaces” in 1999 [68]. 

4.2.  Development of a Dynamic Control Chart for Engineering Surface 

Quality Control 

4.2.1.  Uncertainty for NIST surface roughness and step height calibrations   

Reporting measurement uncertainty is usually the last step in a measurement procedure. It is a 

time-consuming process, and mistakes for either over- or under-estimated uncertainties may 

occur. In the Surface and Nanostructure Metrology Group of the Engineering Physics Division 

of NIST, a standardized procedure for reporting uncertainty of measurements for NIST surface 

roughness and step height calibrations was developed in the early of 1990’s, and revised in 
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2010 [15,69]. A set of check standards covering a range of step heights from 0.02937 µm to 

22.90 µm and roughness values, Ra, ranging from 0.3 µm to 3 µm was repeatedly measured 

for measurement quality control. We have analyzed the historical control charts using dynamic 

control limits [2]. The analyzed results support the uncertainty procedure and provide useful 

information for future revision.   

4.2.2.  Proposed dynamic control chart 

The upper and lower dynamic control limits, µ ± 2, are calculated from the updated mean, µ, 

and the updated standard deviation, , using the measurement history for a check standard. 

These values are then compared with the upper and lower fixed control limits, y ± CL, which 

are calculated from the reference value, y, assigned to the check standard, and the control limits, 

CL, which are calculated using the uncertainty components of both the calibration and the 

check standard, which affect the variation of repeated measurements of the check standard [15, 

69]. When the dynamic control limits are close (but not over) to the fixed control limits, it 

indicates that the measurement reproducibility for the check standard supports the estimated 

uncertainty estimation of the uncertainty budget. Otherwise, the specific components of the 

uncertainty budget may be either over- or under-estimated, and they may need to be revised 

[2]. 

A dynamic control chart with both fixed and dynamic control limits is shown in Fig.4-2. This 

was developed for NIST step-height calibrations using a stylus instrument [15,69]. A 0.09065 

µm step (expanded uncertainty of 0.00044 m, k = 2) was used as a calibration standard for 

instrument calibration, and a 0.02937 µm step (expanded uncertainty of 0.00042 m, k = 2) 

was used as a check standard for measurement quality control. There are 28 control 

measurements of the check standard carried out from 1993 to 2004. The fixed upper and lower 

control limits, y ± CL, are calculated from the equation: 

    y ± CL = y ± 2 u(CL)      (4-1) 

where y is the reference value of the step height, 0.02937 µm, determined by interferometric 

and stylus measurements, and u(CL) is the combined standard uncertainty of the fixed control 

limits which is calculated from the relevant, mostly random, components of uncertainty budget 

for the measurement process [69], which include uncertainty components from instruments and 
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standards -- both the calibration standard (0.09065 µm step) and the check standard (0.02937 

µm step) -- which affect the variation range of the check measurements. For the report of 

uncertainty for NIST step height calibrations, four sources of standard uncertainty are included 

in the uncertainty budget [15,69]:  

 

Fig.4-2. A dynamic control chart shows both fixed and dynamic control limits (CL).  The 

0.02937 µm step check standard was repeatedly measured by a stylus instrument 

calibrated by a 0.09065 µm calibration standard. The dashed line represents the reference 

value of 0.02937 µm of the check standard. 

 (1) Geometrical nonuniformity and surface finish of the step-height or calibration ball 

master used to calibrate the instrument. This leads to an uncertainty in stylus 

measurements of the master to obtain the calibration constant(s) for the instrument. 

 (2) Variations in the calibration constant(s) due to (a) noise in the stylus instrument 

transducer, (b) surface topography in the reference datum of the stylus instrument, 

(c) sampling and digitizing processes in the controller, and (d) round-off in the 

software computations. 

(3) Variations in the measured Ra values due to nonlinearity in the instrument 

transducer.  
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(4) Uncertainty in the average height of the step-height master or in the radius of the 

calibration ball as determined from interferometric and other measurements of those 

objects. 

Fig.4-2 shows a dynamic control chart of 0.02937 µm step height check standard using 0.09065 

µm step height as a calibration standard. Both the fixed and dynamic control limits (CL) are 

shown. The 0.02937 µm step check standard was repeatedly measured by a stylus instrument 

calibrated by a 0.09065 µm calibration standard.  The dashed line represents the reference value 

of 0.02937 µm check standard.    

A dynamic control chart with both fixed and dynamic control limits is a useful tool for 

promoting the process of developing and refining the uncertainty budget and verifying the 

measurement uncertainty. It can also be used for monitoring the long-term variation for 

measurement quality control. When a draft uncertainty procedure is first developed, the Type 

A and Type B uncertainty components may not be carefully investigated, and their sensitivity 

coefficients may not be well established. Thus, the measurement uncertainty may be either 

over- or under-estimated. By repeatedly measuring a check standard from time to time, a 

dynamic control chart with both fixed and dynamic control limits can be established (Fig.4-2).  

If the upper and lower dynamic control limits µ ± 2 are close to but still within that of the 

fixed control limits y ± 2u(CL), that indicates the measurement reproducibility for the check 

standard supports the estimated components of the uncertainty procedure. Otherwise, if the 

dynamic control limits are too small or too large -- larger than the fixed control limits, that 

indicates the uncertainty procedure may need to be revised.  

The measurement reproducibility obtained from the measurements of the check standard may 

take days, months or even years -- if it is necessary to monitor the long-term variations for a 

measurement system including the calibration and check standard, measurement instrument, 

measurement environment and operators. During that period, the uncertainty procedure may 

have been continually revised [2]. 

From Fig.4-2, it can be seen that after about ten measurements, the dynamic control limits, µ 

± 2, are getting stable and are close to but still within the fixed control limits, y ± 2u(CL). This 

indicates that the check measurements support the estimated components of the uncertainty 

procedure [15,69]. The dynamic control limits also show a small trend of downward drift after 
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the year of 2001. It may be just a random variation, because the results of check measurements 

are still within the range of the fixed control limits. On the other hand, it may show the 

beginning stage of a long-term downward drift, which needs to be continually monitored, and 

possibly corrected. After the initial draft of this paper in 2006 [2], this check standard was re-

measured for three times. Measurement results have confirmed that there is a downward drift 

for the 0.02937 µm step height check standard. As a temporary step of correction, we have 

expanded the uncertainty component u(c)1 to reflect the change of the 0.02937 µm check 

standard. For the long run, we plan to replace it with a new check standard. 

The Dynamic Control Charts have also been successfully used in the National Ballistics 

Imaging Comparison (NBIC) Project for establishing a Traceability and Quality System for 

nationwide ballistics identifications in the United States, and received significant results [6]. 
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Chapter 5. Microform Metrology for Rockwell Hardness 

Standardization 

Rockwell Hardness C (HRC) is the most widely used mechanical testing method for metal 

products. However, HRC scales in different countries were not unified, which was evolved an 

international “Technical Barrier to Trade” (TBT). Since 1980’s, three NMIs in EC countries    

-- Italy, Germany and France established an “EC Common HRC Scale” by averaging and 

correction of three different national scales [70-72]. The unified EC HRC scale challenged 

HRC tests in the United States. However, the EC HRC common scale couldn’t be adapted as a 

US national standard, since the unified EC HRC scale lacks metrological traceability, stability, 

reproducibility and transparency [4].  

The development of ISO 9000 quality standards [73] provided a strong motivation to establish 

a worldwide unified Rockwell hardness C (HRC) scale. Before 1990’s. there were no national 

standards for HRC tests in the U.S. In 1993, NIST initialized a new project for Rockwell 

hardness standardization. In 1995, I proposed a “Metrological Approach” to unifying 

international HRC scales based on the precision calibrations of the influence quantities for 

HRC tests -- including those from the testing machine, diamond indenter and testing cycle, and 

to ensure the calibration of all influence quantities traceable to three base unites -- length, mass 

and time [4].        

My major contributions in this NIST project are: 

 Established a Microform Calibration System at NIST with the lowest calibration 

uncertainties in the world for calibration of the Rockwell diamond indenters [3]; 

developed an uncertainty procedure [3] and calibrated the microform geometry of 

National Standard Rockwell Diamond Indenters for five National Metrology Institutes 

(NMIs) [4]. 

 Proposed a “Metrological Approach” to unifying international Rockwell hardness C 

tests based on the precision calibration of the influence quantities traceable to base unite, 

instead of the “Performance Approach” used at that time in EC countries based on 

performance comparisons and corrections of different national hardness scales [4].         
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 Conducted international comparisons on microform measurements of Rockwell 

indenters and HRC hardness tests in five NMIs in U.S., Italy, Germany, China and 

Japan, which strongly supported the Metrological Approach to unifying international 

Rockwell hardness tests. I drafted a research paper entitled “Establishing a Worldwide 

Rockwell Hardness Scale with Metrological Traceability” which was published it at the 

Metrologia 34, 1997 in Paris [4]. 

 

5.1. Challenges to Establishing a Worldwide Unified HRC Scale 

5.1.1. Background   

Rockwell hardness scales are empirical, and as such are defined by reference standards 

(standard testing machines and standard Rockwell hardness diamond indenters) and reference 

testing conditions. A Rockwell scale is established by the performance of a standard diamond 

indenter with a nominal geometry as shown in Fig.5-1 (for HRC, HRD, HRA, HR45N, HR30N 

and HR15N scales) using a standard testing machine and a standardized testing cycle. For many 

years, efforts in Rockwell hardness standardization have mainly concentrated on three aspects 

[4]: 

(A) To develop standard machines and direct verification techniques; 

(B) To develop standard diamond indenters and calibration techniques; 

(C) To control the testing cycle and to develop a standardized common testing cycle. 

 

Fig.5-1. Rockwell diamond indenter with a nominal geometry of 200 μm tip radius and 

120° cine angle (for HRC, HRD, HRA, HR45N, HR30N and HR15N scales). 

(A) Standard hardness machine 

Since the 1940's, standard hardness machines have been developed at different 

laboratories [74-77]. More recently deadweight and laser-type standard machines, developed 

at IMGC (Italy) [76], NIM (China) [77], and NIST (U.S., a new version of IMGC machine), 

have shown measurement repeatability better than 0.1 HRC (2) [76,77]. 

 

± 100 µm – 450 µm     + 450 µm 

r = 200 µm 

φ = 120˚ 

±90 µm – 460 µm to –110 µm  +110 µm to +460 µm  

(Windows for NIST calibration) 
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(B) Standardized testing cycle 

Different testing cycles result in significant differences in Rockwell hardness tests [78]. 

Currently used testing cycles show large variations among National Metrology Institutes 

(NMIs) and between NMIs and industries [78]. To establish a worldwide unified HRC scale, it 

is necessary that the NMIs use a standardized common testing cycle, including the standardized 

loading velocity and holding times with narrow, but acceptable tolerances.  

(C) Standard diamond indenters 

From the 1950's to the 1980's, different measurement techniques were developed for the 

geometric measurements of the diamond indenters [79-82]. However, the expanded 

measurement uncertainties for the 200 m tip radii were reported to be in the range of 

micrometers [79,80,82], or sometimes even larger [81]. Significant differences in geometry 

and hardness performance existed among different national indenters [71]. In addition, many 

complex features of the diamond indenters, such as surface roughness and form errors, could 

not be explored and quantified. International comparisons of HRC tests using national indenters 

showed a variation range of 0.9 HRC [70]. The non-unified testing cycles along with the non-

unified microform geometries of the national indenters are largely responsible for these 

differences. The former is mainly a standardization issue; the solution would be an international 

agreement on a standardized common testing cycle for worldwide unified HRC scales. The 

latter is a metrology issue; the solution is based on precision metrology to establish high quality 

standard Rockwell indenters [4,83]. Ideally, these standard indenters should be characterized 

by high geometric uniformity, high hardness performance uniformity, interchangeability and 

reproducibility [4,84].  

 

5.1.2. Previous standardization efforts 

Since the 1950's, the influences of indenters' geometry in Rockwell hardness tests were 

analyzed theoretically and empirically [85-88]. After the work of Yamamoto, Yano 

et al. [80,88], a systematic correction method based on geometry measurements was 

implemented at NRLM (Japan) for hardness measurements using a set of collective national 

indenters. This system has been used in Japan for the control of the uniformity of the national 

hardness scale since the 1960's [88].  
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Since the 1980's, HRC scales have been locally unified in European Community countries by 

averaging national scales based on three national hardness machines with their indenters [72]. 

Although the national indenters were chosen on the basis of geometrical measurements and the 

machines were of the metrological type, the inter-comparisons showed bias among three 

national scales which were averaged and unified as an EC common HRC scale [72]. 

In China, a laser deadweight standard machine was established at NIM in 1980 [77]. Since 

1986, the national HRC scale was established through performance comparisons traceable to 

the established EC common scale [89]. 

In the U.S., private companies have maintained their own internal scales using "historical" 

hardness blocks [90], probably with unknown biases between these scales and an ideal scale.  

As these "historical" blocks were used up, they were replaced by new blocks, possibly 

compromising the consistency of these scales over time. To remedy this state of affairs, 

development of a standard testing machine for Rockwell hardness was undertaken and 

completed at NIST in the 1990's, with ongoing development of Standard Rockwell Diamond 

Indenters and metrological traceability which was completed in the late of 1990’s. 

5.1.3. Requirements for a worldwide unified Rockwell scale 

Ideally, a worldwide unified Rockwell scale should be characterized by [4]:   

(A) Metrological traceability: The reference standards are established traceable to basic 

unites with tightly controlled tolerances and acceptably small measurement 

uncertainties. These include the force and displacement calibrations for the standard 

hardness machines, and the microform calibrations for the standard diamond indenters. 

The Rockwell scale established in accordance with these references standards will show 

metrological traceability without significant bias to an ideal scale.  

(B) Stability and reproducibility: Stability and reproducibility of the reference standards 

and Rockwell scales are ensured by traceable measurements. Each standard (machine 

or indenter) can be replaced by other qualified standards. The reproduced reference 

standards can perform the same function as the original ones without causing the 

common scale to drift outside the certification range. 

(C) Transparency and independency: The procedures, techniques and reference 

standards used for establishing the common scale should be well known and could be 
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independently reproduced by another laboratory to create and maintain the same HRC 

hardness scale without systematical bias. 

5.1.4. Establishing a worldwide unified HRC scale using geometrically calibrated 

standard indenters 

The worldwide unified scale could be achieved by establishing the reference standards 

(standard machines and standard indenters) through traceable measurements, and standardizing 

the testing cycles. High accuracy standard machines were developed based on force and 

displacement calibrations [76,77]. Stylus and laser interferometry techniques have been used 

for the microform measurements of diamond indenters. These techniques have largely reduced 

the measurement uncertainties. By using a laser interferometer with a tailored wavefront, 

expanded measurement uncertainties of 1.5 m for the tip radii and 0.018° for the cone 

angles were reported at MPA NRW [91]. By using a commercial stylus instrument with a set 

of calibration and check standards, expanded measurement uncertainties of 0.4 m for the tip 

radii and 0.01° for the cone angles were reported at NIST [3,4,92,]. The complex geometric 

features of Rockwell diamond indenters, including the profile deviations from the least-squares 

radii, the cone flank straightness, the holder axis alignment error, the surface roughness and 

surface defects, can also be explored and quantified [3,4,92,]. 

It is possible to establish a worldwide unified scale based on these newly developed 

measurement techniques, instead of on performance comparisons and corrections to offset the 

significant differences of diamond indenters. The key point is to prove that geometrically 

calibrated standard indenters could significantly improve the hardness measurement 

consistency to an acceptable degree; and that these standard indenters could be produced by 

different manufacturers and calibrated by different measurement techniques.  

A joint study by five National Metrological Institutes (NMIs) responsible for national Rockwell 

standards at that time was conducted [4]. The inter-comparison results showed that: with 

closely controlled geometries, the hardness tests for these indenters showed a performance 

variation range of approximately 0.2 HRC [4].  

A general conclusion is that the use of geometrically calibrated and performance verified 

standard indenters in different national standard machines with a standardized testing cycle 
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could enable the establishment of a common HRC scale within an expanded uncertainty of 

approximately 0.2 HRC (±2σ). This common scale could be independently established in 

different NMIs with metrological traceability and reproducibility and without significant bias 

to the ideal scale [4]. 

5.2. Characteristics of Working Grade, Calibration Grade, and the 

Proposed Standard Grade Rockwell Diamond Indenters 

5.2.1. Geometric properties of Rockwell hardness diamond indenters 

The Rockwell hardness diamond indenter is a diamond cone with 120° cone angle blended in 

a tangential manner with a spherical tip of 200 m radius (Fig.5-1). The geometric properties 

affect the hardness performance of the indenters. The geometric parameters of the Rockwell 

diamond indenters include [4]: 

(A) The parameters for the spherical tip surface, which include: 

- the mean radius; 

- the maximum and the minimum radius in different measurement sections; 

- the form errors of the spherical tip, which can be characterized by the maximum 

profile peak and profile valley deviations from the least-squares shape. 

(B) The parameters for the cone surface, which include: 

- the mean cone angle; 

  - the maximum and the minimum cone angle in different measurement sections; 

- the form errors of the cone surface which can be characterized by the maximum 

cone flank straightness error. 

(C) The holder axis alignment error. 

(D) The surface roughness and surface defects. 

5.2.2. Proposed standard grade Rockwell diamond indenters 

Technical requirements for geometric tolerances and performance uniformities of the standard 

indenters have been proposed by NIST [84]. The geometric tolerances of the proposed standard 

indenters are designed for a hardness performance variation range of 0.15 HRC to an ideal 

scale [84]. 
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The performance variation range of 0.15 HRC discussed above is close to the combined 

random variation range of the standard machine and standard blocks [84]. Any performance 

tests of the diamond indenters must include the random variations of the standard machine, as 

well as the random non-uniformity of the standard blocks. For the standard machines, the 

random repeatability has been reported as no more than 0.1 HRC (2σ) [76,77,83]. For the 

standard blocks, the non-uniformity tested at NIST showed a total range of less than (0.15) 

HRC in seven indentations. Therefore, if geometrically qualified standard indenters show a 

performance variation range within 0.15 HRC (including random variations of standard 

machine and standard blocks), it is reasonable to conclude that the hardness performances of 

these standard indenters would have been unified without significant systematic bias among 

them. The Rockwell scale established using these standard indenters in a standard machine 

with a standardized testing cycle would then have metrological traceability and reproducibility 

without significant bias to the ideal scale. Following this approach, the expanded uncertainty 

of the common Rockwell hardness C scale calculated by a quadratic sum between different 

national laboratories could be expected to be about 0.2 HRC [4].   

5.3. Hardness Comparison Tests between a Common Indenter and Five 

Different National Indenters 

A key point is to demonstrate that geometrically calibrated and qualified standard indenters, 

which could be produced by different manufacturers and calibrated by different measurement 

techniques, can enable hardness measurement consistency to an acceptable degree. First, as a 

baseline, we estimate the existing hardness variation range among five NMIs’ national 

indenters in U.S., Italy, Germany, Japan and China with respect to a common indenter. Then, 

we compare the geometry measurements and hardness tests of 16 diamond indenters made by 

two different manufacturers. The geometric parameters of these indenters are measured by two 

different techniques, and are close to meeting the technical requirements for the proposed 

Standard Rockwell Hardness Diamond Indenters [4]. 

A common indenter and a single set of hardness blocks with nominal hardness values of (30, 

40, 50 and 60) HRC were tested by five Rockwell hardness machines in five NMIs using the 

same nominal testing cycle [4]. At each laboratory, each block was first tested by four 

indentations using a common indenter. The mean values of the four indentations are compared 
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in Fig.5-2. The zero line comes from the average of the five national laboratories. In this report 

[4], the total variation range of hardness tests in the whole testing scale is reported, rather than 

the ranges at different hardness levels. The testing results show good agreement with a total 

range of (–0.19 to +0.16) HRC. This is because the national hardness machines were directly 

verified by traceable measurements of the force and displacement, and all national laboratories 

used similar testing cycles for this study [4]. The small variations shown in Fig.5-2 mainly 

represent the small differences among five NMIs’ national standard machines and testing 

cycles, as well as the possible non-uniformity of the standard blocks. 

 

Fig.5-2. A common indenter was tested by five national machines using similar testing 

cycles, the variation range is (-0.19 to +0.16) HRC.  

 

The hardness tests were repeated using the five NMI’s national indenter. The variation range 

increased to (-0.29 to +0.38) HRC (see Fig.5-3), which represents the combined variation range 

of five different national indenters, national machines and testing cycles, which mainly 

represents the performance differences of the existing five national indenters augmented 

somewhat by the random errors arising from the subtraction of two sets of measurements. 
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Fig.5-3. Five national indenters were tested by five national machines using similar testing 

cycles, the variation range is (-0.29 to +0.38) HRC. 

5.4. Comparisons of Geometric Measurements and Hardness Performance 

Tests 

Nine Rockwell diamond indenters made by diamond manufacturer A were measured both by 

a stylus instrument at NIST [4,92] and by a laser interferometer at MPA NRW [91]. The 

window size is ± (450 to 100) μm for cone angle calibrations and ± 100 μm for tip radius 

calibrations. The geometric measurement results for the mean tip radii and the mean cone 

angles are compared for the two instruments as shown in Tab.5-1 [4]. NIST's expanded 

uncertainty is a combination of geometrical non-uniformity of the measured indenter and the 

expanded measurement uncertainty, which is 0.4 m for the tip radius and 0.01° for the cone 

angle [3,4]. The NIST expanded uncertainty represents a 95% confidence interval. For the 

MPA NRW results, the combined expanded uncertainties reported are 2 m for the mean radii 

and 0.067° for the mean cone angles, which include the expanded measurement uncertainties 

of 1.5 m and 0.018°respectively, both are with a coverage factor of k = 2 [4,91]. 
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Tab.5-1. Measurement comparisons using a stylus instrument at NIST and a laser 

interferometer at MPA NRW 

 

Two other indenters measured at NIST previously [84] were added to the set of nine. One of 

them was made by a different manufacturer B from the other ten indenters made by 

manufacturer A. The total of 11 indenters showed a range of mean radii from 198.34 m to 

202.90 m, and a range of mean cone angles from 119.94° to 120.07° (Tab.5-1), according to 

the measurement results with the stylus instrument. These indenters nearly meet the technical 

requirements for the proposed standard indenters [84]. 

All 11 indenters were tested by the NIST standard deadweight machine using the same testing 

cycle. Four HRC hardness blocks with nominal hardness values of (25, 35, 50 and 60) HRC 
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were used for the tests. For each hardness test, four indentations were made on the same block. 

The mean values of the four indentations are compared in Fig.5-4. The zero line comes from 

the average of the 11 indenters. The total performance variation range is (–0.17 to +0.23) HRC 

from (25 to 60) HRC for all 11 indenters, including the variation of the testing machine and the 

non-uniformity of the hardness blocks. These results suggest that the improved standard 

indenters could produce a hardness measurement uniformity of 0.2 HRC. Another set of tests 

using nine indenters made by two manufacturers also showed similar results [4]. That suggests 

that standard indenters could be produced by different manufacturers with sufficient 

consistency both in geometry parameters and hardness performance.  

 

Fig.5-4. Performance comparisons of 11 indenters, the variation range is (-0.17 to +0.23) 

HRC. 

5.5. Establishing a Worldwide Unified Rockwell Hardness Scale with 

Metrological Traceability 

A worldwide unified Rockwell scale should be characterized by metrological traceability, 

stability and reproducibility [4]. It could be achieved by establishing the reference standards 

(standard machines and standard indenters) through traceable measurements and by unifying 

the reference testing conditions. The standard machines and standard indenters could be 
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independently established in different NMIs. Different direct verification techniques with 

tightly-controlled tolerances and measurement uncertainties could be used to ensure the 

metrological traceability and reproducibility for these reference standards and reference 

conditions [4].  

Standard Rockwell Diamond Indenters have high uniformity in both microform geometry and 

hardness performance, and to be interchangeable and reproducible. Standard indenters could 

be produced by different manufacturers and calibrated by different measurement techniques. 

Stylus and laser interferometry techniques have shown significantly improved measurement 

agreements over previous techniques. In order to achieve a higher measurement agreement, the 

window sizes of the two approaches need to be unified [4]. 

Geometric measurements and hardness tests among five NMIs show that a common indenter 

used in five national standard machines to test a common set of hardness blocks yielded a 

hardness variation range of (–0.19 to +0.16) HRC. Five NMI’s national indenters exhibited a 

hardness performance variation range of (–0.33 to +0.44) HRC [4]. A set of 11 indenters was 

measured by a stylus instrument; nine of them were also measured by a laser interferometer. 

These indenters show consistent geometry and are close to meeting the technical requirements 

of the proposed standard indenters. The hardness tests for the 11 indenters show a variation 

range of (–0.17 to +0.23) HRC. These results suggest that the proposed standard indenters 

could possibly obtain a performance uniformity range of approximately ±0.2 HRC [4]. A 

worldwide unified scale requires a standardized common testing cycle which could produce a 

hardness measurement reproducibility range of approximately 0.2 HRC when using a 

common indenter in different national standard hardness machines [4]. 

By using the geometrically calibrated and performance verified standard indenters in different 

national standard machines with a standardized common testing cycle, it can be expected to 

establish a worldwide common HRC scale with an expanded uncertainty of approximately 0.2 

HRC. Unlike the EC common HRC scale established by performance comparisons and 

corrections on different national HRC scales [72], the proposed worldwide common scale 

would have metrological traceability and reproducibility without significant bias with respect 

to the ideal scale [4]. The proposed approach can also be used for unifying other HR scales 

using conical diamond indenters (HRD, HRA, HR45N, HR30N, and HR15N) [4].  
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Note: The project entitled Establishing a Metrological Approach to Unifying International 

Rockwell Hardness Scales has celebrated three NIST awards, in which Song and his collogues 

were recognized “For development of a metrology-based Rockwell C Hardness Scale which 

will reduce trade barriers and has made the U.S. a world leader in the field.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 
 

Chapter 6. Summary, Impact and Outlook 

As a concluding part of the thesis, this chapter is intended to sumarize my contributions in 

surface and topographuy metrology in different fields of firearm evidence identificaiton, 

enginering surface quality control and Rockwell hardness standardization. In each field, the 

major projects and accomplishments, delieveables and impacts are conclusively reviewed, 

followed by a discussion of the outlook and future work using surrfce and topography 

metrology in the new challinging projects at NIST. 

The Ph.D. thesis summarizes my 30-year’s research work at the National Institute of Standards 

and Technology -- it emphasizes on how to use the general knowledge and fundamental 

principles in surface metrology to support engineering surface quality control and firearm 

evidence identifications. This includes how to define a measurable quantity and develop a 

reference standard; how to establish a measurement system; how to construct a traceability and 

quality system; and how to evaluate measurement uncertainty for engineering surface control 

and firearm evidence identification. The thesis also presents a review on some of the state-of-

the-art technologies used in National Metrology Institutes (NMI) and measurement institutions 

in surface and topography metrology. It compares the advantages and limitations of some 

techniques and provides case studies and applications in R&D related industries that will be 

beneficial to different fields in precision engineering and metrology, advanced manufacturing, 

and firearm evidence identification.  

6.1. Major Research Projects, Accomplishments and Deliverables 

6.1.1. Topography metrology for firearm evidence identification and error date 

estimation   

Since 1997, as a Project Lead, I have been working with my Project Team of Forensic 

Topography and Surface Metrology at NIST. We have completed important research projects 

to provide support in measurements and standards for U.S firearm evidence identification. My 

major accomplishments and deliverables are: 

 Designed the NIST SRM 2460 Standard Bullet and SRM 2461 Standard Cartridge 

Cases and the manufacturing process [5], led the team and completed the manufacturing 
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and delivered 40 SRM 2460 Standard Bullets [44] and 135 SRM 2461 Standard 

Cartridge Cases [40]. 

 Proposed a unique parameter, Topography Difference Ds, for 2D/3D topography 

comparisons [18,19], led the team and developed NIST 2D/3D Topography 

Measurement System for firearm evidence identifications [5,20,21]. 

 Proposed and led a National Ballistics Imaging Comparison (NBIC) project, formulated 

a Traceability and Quality System for National Integrated Ballistics Information 

Network (NIBIN) in the United States [6]. 

 Invented a Congruent Match Cells (CMC) method for accurate firearm evidence 

identification and error rate estimation [7,8], led the team and conducted programming, 

initial validation tests [32,33] and initial error rate estimation [8]. 

 Proposed the usages of 2D topography comparisons for instrument characterization [22] 

and 3D topography comparisons for production quality control [19,23]. 

6.1.2. Surface metrology for engineering surface quality control   

My major accomplishments and deliverables from the surface metrology projects for 

engineering surface quality control include: 

 Designed and manufactured the Precision Random Profile Roughness Specimens with 

Ra ranging from 0.01 µm to 0.1 µm for quality control of smooth engineering surfaces 

[1]. 

 Designed the Dynamic Control Chart with dynamic control limits for quality control of 

surface and topography measurements [2]. 

6.1.3. Microform metrology for establishing a worldwide unified Rockwell hardness C 

scales with metrological traceability   

My major accomplishments and deliverables from the microform metrology project include: 

 Proposed a “Metrological Approach” based on the precision calibration of the 

microform geometry of Rockwell diamond indenters for establishing a worldwide 

unified Rockwell C hardness scales with metrological traceability [4]. 

 Established the NIST Microform Calibration System with calibration and check 

standards [3], developed calibration and uncertainty procedures for the microform 

calibration of Rockwell diamond indenters [3]. 
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 Conduced microform geometry and hardness performance measurement comparisons 

at five National Metrological Institutes (NMI’s) in U.S., Italy, Germany, Japan and 

China. The comparison results strongly supported the NIST proposed Metrological 

Approach for establishing a worldwide unified Rockwell hardness C scales with 

metrological traceability [4]. 

6.2. Impacts 

6.2.1. Topography metrology supports firearm evidence identification 

The scientific foundation of firearm and toolmark identification has been challenged by recent 

court decisions and by the 2008 and 2009 National Academies Report [28,29], “The validity of 

the fundamental assumptions of uniqueness and reproducibility of firearms-related toolmarks 

has not yet been fully demonstrated…” and “Since the basis of all forensic identification is 

probability theory, examiners can never really assert a conclusion of an ‘identification to 

exclusion of all others in the world,’ but at best can only assert a very small (objective or 

subjective) probability of a coincidental match…” 

The Forensic Topography and Surface Metrology Project at NIST established in 1997 

addressed this challenge by using their expertise in surface and topography metrology to 

support firearm evidence identification in the United States. We developed SRM Bullets and 

Cartridges Cases [5,40,44], which have been used as reference standards in forensic 

laboratories of U.S. and other eight countries. We proposed a unique parameter to quantify 

2D/3D topography comparisons [5,18]. We developed a 2D/3D ballistics correlation program 

[20,21] and formulated a nationwide Traceability and Quality System for firearm evidence 

identifications in the U.S. [6,25,26]. 

Based on the Congruent Match Cells (CMC) method invented by me [7,31], I led our team and 

developed correlation programs for accurate firearm evidence identifications [32,33]. We have 

also developed an error rate procedure and conducted the first set of error rate estimation [7,8]. 

The proposed CMC method and error rate procedure can serve as a foundation for 

manufacturers to develop Next Generation Ballistic Identification Systems characterized by 

high correlation accuracy and error rate reporting, which would represent a decided advance 

over current automated ballistic identification systems. An error rate procedure could also be 
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used for laboratory assessment and accreditation in accordance with the ISO 17025 standard 

[57] and ASCLD/ LAB procedures [58]. 

Based on the CMC method, our research team is working with U.S. manufactures to develop 

the Next Generation Ballistics Identification System characterized by high correlation accuracy 

and correlation speed, and by directly providing a correlation conclusion (identification or 

exclusion) with error rate report. A U.S. manufacture, Leeds Forensic Systems, Inc., located in 

Minneapolis, MN, sent an email to NIST on September 30th, 2013: 

 “We feel the Error Rate Software based on the Congruent Matching Cell theory could 

revolutionize the science of firearms comparison, and we wanted a license to sell it…” [56] 

 At the exhibition booth of 2015 Association of Firearm and Tool-mark Examiners annual 

meeting (2015 AFTE) held in Dallas, TX, two U.S. companies Leeds Forensic Systems, Inc. 

and X-wave Innovation Inc. (XII) have demonstrated their commercial product called 

“CaseHitter” for Next Generation Ballistics Identification System which used the NIST 

invented CMC method for firearm evidence identification and error rate reporting. At the cover 

page of the CaseHitter program, it stated that: 

 “This software is based on the CMC (Congruent Match Cells) method and the Error Rate 

Procedure invented by NIST.”     

6.2.2. Surface metrology supports engineering surface quality control 

I developed the Precision Random Profile Roughness Specimens for quality control of smooth 

engineering surfaces [1]. The replicas of my specimens were made by the electro-forming 

technique which showed almost identical surface topography between the replicas and the 

master specimens [38]. Those replica specimens have been used in U.S. and internationally for 

smooth engineering surface quality control.  In 2009, an engineer of GE Aviation sent an email 

to NIST [64]:  

 “…Using the surface finish calibration samples provided by NIST gave GE engineering 

confidence that we could measure surface finishes down in the single digit micro-inch Ra range 

(about 0.025 μm), and allowed us to verify that we could measure the surface finish on the 

same part at 3 different locations and report the same result at all locations.  The NIST samples 

allowed GE engineering to expand our measurement capabilities and eliminate gauge R&R 
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issues between various manufacturing shops, and I would like to say thanks to NIST for 

donating these samples as they were invaluable for helping us to clear up surface finish 

measurement issues we were having at the time.” [64] 

Besides smooth engineering surface quality control, the Precision Random Profile Roughness 

Specimens have also been used in other research projects including “Stylus profiling at high 

resolution and low force” [65]; "Stylus flight in surface profiling" [66]; “NIST virtual/physical 

random profile roughness calibration standards” [39] and “Experimental test of blind tip 

reconstruction for scanning probe microscopy” [67], and received significant results.  It has 

been frequently referred by literatures including Prof. T.R. Thomas’ renowned book “Rough 

Surfaces” in 1999 [68]. 

I proposed to develop the Dynamic Control Chart [2] which has been used for NIST step height 

and surface roughness calibrations for many years and for establishing a traceability and quality 

system for NIBIN (National Integrated Ballistics Information Network) in the United States 

[6]. 

6.2.3. Microform metrology supports international Rockwell hardness standardization  

I proposed a Metrological Approach to unifying international HRC scales [4]. I led a team at 

NIST and established a Microform Calibration System for precise calibration of the microform 

geometry of Rockwell diamond indenters [3,4,16,17], which holds the highest calibration 

accuracy in the world for the microform calibration of Rockwell diamond indenters. A group 

of Standard Rockwell Diamond Indenters were calibrated at NIST, by which international 

comparisons in fine NMIs (National Metrology Institutes) were conducted. The comparison 

results strongly support the NIST proposed Metrological Approach to unifying the international 

Rockwell hardness scale. A joint report of the five NMI’s entitled “Establishing a worldwide 

unified Rockwell hardness scale with metrological traceability” was published in the journal 

of Metrologia [4]. 

Based on the calibration results for the microform geometry of Rockwell diamond indenters, 

we proposed to revise the technical specification of ISO standard for the straightness of cone 

flank of Rockwell diamond indenters which has been accepted in the newly issued ISO 6508-

3:2015(E) standard entitled “Metallic materials — Rockwell hardness test — Part 3: 

Calibration of reference blocks.” [93] Since 1990’s, we initialized a SRM Rockwell Diamond 
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Indenters project to support U.S. manufacturing industries. we cooperated with the best 

diamond indenter manufacturers in U.S. and internationally, received and calibrated more than 

70 Rockwell diamond indenters. However, since the old ISO standard initially published in 

1986 (ISO 715-1986) and revised in 2005 (ISO/ 6508-3-2005) specified a very tight tolerance 

for the cone flank straightness (0.5 μm for maximum), few of the NIST calibrated indenters 

can meet this specification. Since the late 1990’s, based on the microform calibrations and 

finite element simulations, we suggested to relax the tolerance range for cone flank straightness 

from “0.5 μm for maximum” to “0.5 μm for average and 0.7 μm for maximum”, and specifying 

the window size and location for calibration of Rockwell indenters [94-96]. We continually 

presented our research results at the CIPM Working Group for Hardness (WGH) and the ISO 

TC 164 committee meetings, as well as by conference presentations and journal publications 

[94-96]. Our suggestions have been adapted by the newly issued ISO standard in 2015 [93]. 

We are working on microform calibrations and hardness performance tests and considering the 

initiation of a new project to develop SRM Rockwell Hardness Diamond Indenters in 

conformance with the revised ISO standard to support U.S. manufacturers.   

This project progress was frequently reported by NIST Monthly Highlights [97] and Material 

Matters [98]. Based on the significant contributions to U.S. and international Rockwell 

hardness standardization, the project team has celebrated three NIST awards, in which Song 

and his colleagues were recognized [99]:  

“…for development of a metrology-based Rockwell C Hardness Scale which will reduce 

trade barriers and has made the U.S. a world leader in the field.” 

6.3. Future Work 

I’m currently leading the NIST efforts in the future research projects in the fields of firearm 

evidence identifications, engineering surface quality control and Rockwell hardness 

standardization which include: 

6.3.1. Proposed future projects for firearm evidence identifications 

 Develop a new identification criteria for the Congruent Match Cells (CMC) 

method  
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Current CMC identification criterion is based on the Consecutively Matching Striae 

(CMS) method developed by Biasotti and Murdock [49-51]. It is proposed to include a 

weighting function to correlations cells based on the effective correlation pixels, and to 

develop a Normalized Congruent Match Area (NCMA) method and identification 

criteria to increase the correlation accuracy. 

 Develop other congruent match methods for forearm evidence identification and 

error rete estimation 

That includes the Congruent Match Cross-sections (CMX) method for firing pin 

correlations [100,101]; the Congruent Match Profile Segments (CMPS) method for 

bullet signature identifications [102,103]; and the Congruent Match Features (CMF) 

method for breech face, firing pin and ejector mark image correlations. 

 Develop a procedure for reporting Likelihood Ratio (LR) for ballistics 

identifications 

Based on the error rate procedure for ballistics identifications invented at NIST [7,8,31], 

develop a procedure for reporting Likelihood Ratio (LR) for ballistics identifications, 

thus emulating methods used for forensic identification of DNA evidences.  

6.3.2. Proposed NIST Small Business Innovation Research (SBIR) project for 

development of precision random profile roughness specimens 

In 2012, the NIST Small Business Innovation Research (SBIR) project was proposed for 

development of Precision Random Profile Roughness Specimens to support engineering 

surface quality control for smooth engineering surfaces [104]. The proposed SBIR project aims 

to develop NIST SRM Precision Random Profile Roughness Specimens, which are intended 

for use as calibration and check standards for stylus and optical instruments to measure smooth 

engineering surfaces. From this SBIR project, the proposed NIST SRM 2076-2078 Precision 

Random Profile Roughness Specimens will be developed for quality control of smooth 

engineering surfaces, which will greatly support U.S. manufacturing industry.   

6.3.3. Proposed NIST SRM 2809 standard Rockwell hardness diamond indenters  

Since 1990’s, NIST initialized a SRM Rockwell Diamond Indenters project to support U.S. 

manufacturing industries. Researchers of NIST are now working on microform calibrations 

and hardness performance tests and considering the initiation of a new project to develop SRM 
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Rockwell Diamond Indenters in conformance with the revised ISO standard to support U.S. 

manufacturers. 
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