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Abstract

Over the past three decades neuroimaging techniques in general and mag-
netic resonance imaging (MRI) in particular have made large contributions to the
understanding of human brain function and to the diagnosis and treatment of neu-
rological diseases. One area of wide-spread clinical use of MRI is in the assessment
of multiple sclerosis (MS). MS patients present with lesions – areas of decreased neu-
ronal conductivity, akin scarred tissue – that occur across the brain and spinal cord.
There has been growing interest to use quantitative measures of lesion incidence, ex-
act lesion location and the shape of lesions in the analysis of MRI-based lesion data.
Our objective is to address some of the limitations of current methods which rely on
particular assumptions about the data and mostly ignore any spatial correlation and
structure in the data. In this work we explore several ways of incorporating multiple
sources of information into models that can be used for classification and prediction
purposes. We compare and assess different machine learning and Bayesian spatial
models in a classification task based on MS lesion data. Furthermore, we propose an
extended doubly-stochastic spatial point process model based on Gamma random
fields that includes non-imaging data as well as location-specific measures attached
to xyz-coordinates, and use both simulated and real data to evaluate our methods.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) has transformed the study of the human brain,

and especially brain diseases, since the first human scan was carried out in 1977.

MRI relies on differences in the magnetic properties of molecules that make up brain

tissue. It is highly effective at detecting small anatomical structures and changes

in the physiology of brain tissue. The availability and wide-spread use of MRI

in the clinical setting continues to have a significant impact on the detection and

management of chronic diseases such as Alzheimer’s [Frisoni et al., 2010], autism

spectrum disorders [Chen et al., 2011] and multiple sclerosis (MS) [Bakshi et al.,

2008]. Measures of abnormalities derived from structural MRI are useful in the

context of early diagnosis, treatment planning and monitoring of disease progression.

Multiple sclerosis is characterised by the presence of lesions (also called

plaques) in the brain or spinal cord of a patient. MS lesions constitute small ar-

eas where the MRI intensity differs from the surrounding, normal-appearing tissue.

Lesions indicate an acute inflammation or permanent tissue damage leading to the

impediment of the transmission of electrical signals along neurons. In the context

of MS, MRI data is to a large extent only used in a qualitative way. Typically, a

neuroradiologist will study the images, slice by slice, and qualitatively grade the

number, size and location of lesions. This information and an examination of the

patient is used with clinical guidelines to diagnose and assess the disease. The only

quantitative measure that may be used is a lesion count, based on visual inspection.

However, there is increasing interest to use image analysis techniques to provide

more quantitative measures of lesion count and total lesion volume (also called lesion

“load”). Several studies have had moderate success using lesion load for classifica-

tion and prediction tasks [Aban et al., 2008; Morgan et al., 2010; MacKay Altman

et al., 2011]. Other studies have shown that conventional MRI measures have rather

1



low predictive value and therefore are poor indicators for determining the clinical

outcomes in MS [Loevblad et al., 2010].

Existing quantitative methods that are commonly used for the analysis of

MS lesions are, to a large extend, unable to exploit the richness of the imaging data.

A prominent method is based on the analysis of lesion probability masks that are

compared either cross-sectionally or longitudinally [Filli et al., 2012; Holland et al.,

2012] which makes it difficult to associate lesion locations with certain covariates of

interest. Furthermore, mass-univariate methods such as voxel-based lesion-symptom

mapping [Bates et al., 2003] are ill suited for the binary nature of lesion data and

cannot account for the underlying spatial structure. Finally, smoothing kernels are

commonly used to introduce a degree of spatial correlation in the data. However,

the smoothing of lesion masks by means of a Gaussian kernel [Kincses et al., 2011]

does not entirely eliminate the non-Gaussian nature of the data and requires an

arbitrary choice of smoothing parameter.

Motivated by these challenges, this thesis explores ways of increasing the

utilisation of available imaging data by combining quantitative measures derived

from MRI with clinical information. A particular focus of this work lies in the use of

statistical methods that rely upon or at least are informed by spatial data. We are

interested in the analysis of spatial point patterns that are a result of MRI data and

propose a Bayesian spatial point process approach that uses locations of individual

lesions to model point pattern data. We are drawn to the Bayesian approach due to

the very sparse, high-dimensional nature of the neuroimaging data. Bayesian meth-

ods also have the advantage of being able to incorporate prior knowledge, reducing

the complexity of the analysis and offering greater precision when sample sizes are

low.

This work offers several novel contributions. We make a direct comparison of

point process and machine learning methods for predicting disease subtype, finding

the point process model has superior performance even when based on much less rich

data. We extend the hierarchical Poisson/Gamma random field model to allow for

covariates and marks. We develop all of this work in the setting of three-dimensional,

multiple-class, multiple-realisation point process data, conduct thorough evaluations

on simulated data and apply the methods on two real datasets.

The thesis is organised as follows: In Chapter 2 we review the fundamentals of

structural magnetic resonance imaging and provide a medical background to multiple

sclerosis, including disease pathology, diagnosis, clinical subtypes, treatment and

the use of MRI in clinical assessments. The chapter further introduces the theory

of spatial point processes, with an emphasis on Cox processes in general and a

2



formulation based on a Poisson/Gamma random fields, a process derived from the

convolution of a kernel with a Gamma random field, in particular. The chapter

continues with a brief discussion of classification and prediction procedures with

respect to cross-validation and concludes with the presentation of two clinical data

sets that form the basis for the application of our models.

Chapter 4 concentrates on four different approaches to classification and

prediction of MS lesion data. The four models include a näıve Bayesian classifier,

a support vector machine approach based on a large feature set that encompasses

clinical as well as imaging data with a focus on geometric measures of individual

lesions, a Bayesian spatial generalised linear mixed model that relies on a probit

regression framework and, finally, a log-Gaussian Cox process model fitted to the

coordinates of the centres–of–mass of individual lesions.

Our main spatial point process model is a Poisson/Gamma random field

model that builds upon the work by Wolpert and Ickstadt [1998b] and Kang et al.

[2014a] and is presented in Chapter 5. In particular, we outline a hierarchical for-

mulation of the model that allows for the sharing of information between distinct

but related point processes, and then propose ways of extending the model. First,

we introduce external covariates, which are specific to a given realisation of a point

pattern. A second extension combines the spatial point process model with an addi-

tional mark process that carries location-specific attributes of each observed point.

We further apply and compare different model variants in a simulation study.

Chapter 6 focuses on the application of our spatial point process models

to two clinical data sets of patients with different types or stages of MS. Model

validation and assessment is done by means of cross-validation using a Bayesian

classification/prediction scheme as well as posterior inference on quantities of inter-

est. Finally, Chapter 7 concludes with a brief summary of the work presented and

some remarks on future work.
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Chapter 2

Background

In this chapter we lay out the background material relevant to the subsequent chap-

ters of the thesis. Section 2.1 covers the technical details of magnetic resonance

imaging, including image acquisition and processing methods. Section 2.2 provides

medical background on multiple sclerosis. Section 2.3 summarises the statistical

methodology underlying the spatial point process models and methods presented

later on in Chapter 5. In Section 2.4 we review some aspects of classification in-

cluding cross-validation and introduce a Bayesian importance sampling algorithm.

Finally, Chapter 3 introduces the two MS data sets that are the basis for model

applications in Chapter 4 and Chapter 6.

2.1 Neuroimaging: Magnetic Resonance Imaging

In magnetic resonance imaging (MRI) of the brain, a broad distinction is made

between functional and structural MRI. Functional MRI (fMRI) is used as a physio-

logical measure that tracks rapidly changing oxygen levels in the brain’s blood flow.

The technique is widely used to investigate neural activity in response to various

tasks. On the other hand, structural MRI (sMRI) is used to visualise details of

the anatomy which are unchanging on a short time scale. Due to the necessity of

capturing the brain’s activity within a limited time frame, the acquisition time of

fMRI is significantly shorter resulting in a lack of spatial resolution compared to

structural images.

The advance of non-invasive imaging techniques such as MRI has had a large

impact on the study of the human brain. Functional MRI in particular has become

ubiquitous in the popular press for studies of the brain. To give only a few examples,
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2.1. Neuroimaging: Magnetic Resonance Imaging

researchers have investigated the brain’s activity when being in love [Ortigue et al.,

2010], while composing music [Lu et al., 2015] or reading a suspense-novel [Lehne

et al., 2015] or simply while being at rest [Cole et al., 2010; Lee et al., 2013]. However,

structural MRI is the mainstay in clinical settings. It has become an important tool

to detect and visualise abnormalities in the physical appearance of the brain and

to track changes over time. Structural MRI is highly effective at identifying lesions

and therefore is widely used in the diagnosis and assessment of diseases like multiple

sclerosis, Alzheimer’s, epilepsy and schizophrenia.

MRI is by no account the only imaging technique that is currently used in

a clinical context, but for neurological disorders it is often the modality of choice.

Other procedures used include (i) Computed Tomography (CT) [Bar-Shalom et al.,

2003] which has fine spatial resolution but utilises x-rays and therefore has the

inherent disadvantage of exposure to ionising radiation. (ii) Positron Emission To-

mography (PET) [Alauddin, 2012], which uses gamma rays emitted by an injected

radioactive tracer, can have exquisite biological specificity but has relatively poor

spatial resolution and, of course, also entails exposure to ionising radiation. (iii)

Electroencephalography (EEG) measures electric currents on the surface of the scalp

which are a result of coherent electrical activity in the brain; EEG has good tempo-

ral, but poor spatial resolution which limits its usefulness for clinical applications.

(iv) Magnetoencephalography (MEG) is similar to EEG but captures magnetic fields

emitted by the brain’s electrical activity [Sakkalis, 2011]. (v) Less wide-spread tech-

niques include Near-Infrared Spectroscopy (NISR) which uses light to detect alter-

ations in the concentration of oxygenated and de-oxygenated haemoglobin [Murkin

and Arango, 2009], and Nuclear Magnetic Resonance (NMR) spectroscopy [Neema

et al., 2007].

Magnetic resonance imaging manipulates the alignment and subsequent re-

laxation of nuclear spins using a strong pulsed external magnetic field. There are

two basic types of imaging sequences that each reflect different relaxation properties

of the examined tissue after the nuclear spins have been aligned as a result of the

external magnetic field: T1-weighted MRI uses the spin-lattice relaxation time after

which the longitudinal component of the nuclear spins have fully returned to their

equilibrium orientation. The repetition time (TR) between consecutive pulses of

the external magnetic field must be short in order to achieve T1 weighting. Differ-

ent tissues exhibit different relaxation times. Most importantly, the T1 relaxation

time for water (mainly protons) is about five times larger than for fatty tissue. In

contrast, T2-weighted scans exploit the spin-spin relaxation time, i.e. the time it

takes for the transverse component of the signal to decay to 1/e of its initial value.
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This is achieved by using a long echo time (TE), that is the time between the radio-

frequency pulse and the echo signal, in the scanning protocol. A full review of the

physical principles of magnetic resonance imaging is beyond the scope of this the-

sis. An introductory treatment of the basics of MR physics can be found in Pooley

[2005]. For an excellent, detailed review, see for example Currie et al. [2013].

In addition to traditional MRI scans, a standard procedure for MS patients

involves the use of a contrast agent, such as Gadolinium, to improve the contrast

between lesions and normal brain tissue. Gadolinium is used in combination with

T1-weighted MRI to enhance visibility of acute inflammation which is associated

with breaches in the blood-brain-barrier [Filippi et al., 1996].

2.1.1 Preprocessing steps

After acquisition of an MRI scan, the data needs to be processed in order to be used

for any statistical analysis, especially when multiple scans and/or multiple subjects

are involved in the study. Several steps are commonly used to reduce artefacts,

align and standardise the data. Due to the fact that, in most acquisition types, the

full MRI is acquired slice-by-slice, time-dependent signals such as BOLD (blood-

oxygen-level dependent) contrast imaging, require slice timing corrections. This is

a standard preprocessing step for fMRI data, for example.

Spatial realignment is necessary to correct for head motion during a serial

image acquisition like fMRI and typically involves a rigid body transformation of

the whole image. Furthermore, spatial co-registration to a specific subject or equiv-

alently spatial normalisation to a common brain template is needed in order to

align data from multiple subjects who naturally differ in brain size and shape [Fris-

ton et al., 2007]. A standard target space for spatial normalisation is provided in

form of the atlas of the Montreal Neurological Institute (MNI). Additionally, spatial

smoothing of the data with a Gaussian kernel is often used in an attempt to correct

still existing misalignments after spatial normalisation. Smoothing decreases the

spatial resolution but can increase the signal-to-noise ratio and the Gaussianity of

the data.

Orientation and labelling conventions for MRI scans are displayed in the left

panel of Figure 2.1, showing the three standard anatomical views: coronal, sagittal

and axial. The coronal plane separates front and back (anterior and posterior,

labelled A and P in the image). The sagittal plane divides the brain into left and

right and the axial plane separates top and bottom (superior and inferior).
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2.2. Medical background: Multiple Sclerosis

Figure 2.1: Left panel : Example MRI of a standard brain template, showing coro-
nal (upper left), sagittal (upper right) and axial (bottom left) views. The crosshairs
indicate the origin in MNI space. Right panel : Example MRI of an MS patient with
and without colouring of lesions on a T2-weighted scan. The subject shown is part
of the GeneMSA data set.

2.2 Medical background: Multiple Sclerosis

Neuroanatomy distinguishes between three main physiological components of the

brain: white matter (WM), grey matter (GM) and cerebro-spinal fluid (CSF). White

matter consists of myelinated axons and forms the connections between various areas

of the brain. Its main function is to transmit electrical impulses. On the other

hand, GM consists predominantly of neuronal cell bodies and unmyelinated neurons

and makes up most of the cortical structure where brain functions such as sensory

and motor areas are located. The CSF plays a role in protecting the brain from

concussions as well as in regulating the cerebral blood flow. A typical neuron is

composed of a cell body (soma), dendrites which act as receiver of electrical signals

from other neurons and an axon which transmits impulses from the cell body to

other areas of the brain. Axons are also called nerve fibres and are surrounded by a

myelin (a kind of lipid) sheath.

Multiple Sclerosis (MS) is a chronic inflammatory and demyelinating disease

of the central nervous system that leaves behind scarred tissue in affected regions of

the brain and the spinal cord. MS predominantly occurs in the brain’s white matter

which provides the connections between neurons located in the grey matter. The

disease causes damage to the myelin sheath that insulates the nerve fibres and aides

the transmission of electric impulses across the brain as well as between the brain

and other parts of the body. The neurological damages manifests in form of lesions

that can occur across the brain and spinal cord. Lesions are areas of decreased
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neuronal conductivity which can take the form of temporal, acute inflammation

or chronic tissue damage. Depending on which nerves are affected the symptoms

vary considerably from patient to patient, including loss of vision, deprivation of

motor and sensory functions, fatigue, cognitive impairment, digestive and sexual

dysfunction, mood disorders and chronic pain; for a detailed medical description of

MS see for example [Cohen and Rae-Grant, 2010].

2.2.1 Disease pathology

The course of the disease is characterised by episodes of acute relapses where the

disease shows high activity and periods of remission during which patients present no

or significantly weaker clinical symptoms. In later stages, disease pathology usually

takes on a progressive form with increasing severity of symptoms and permanent

disability after ten to fifteen years [Cohen and Rae-Grant, 2010].

In general, lesions can be found throughout the brain with a higher dispo-

sition in white matter regions around the ventricles. A typical example of lesions

found on magnetic resonance imaging are shown in Figure 2.1. Recent studies have

also stressed the importance of demyelination and brain atrophy in grey matter

[Bendfeldt et al., 2012]. Lesions tend to have an ovoid configuration and in early

stages of the disease the lesions are typically thin and elongated.

The pathogenesis of MS is only partially understood. There is no clinical

consensus as to what causes the disease. Both T cell and B cell mechanisms1 have

been implicated as well as genetics (e.g. people of Northern European descent ap-

pear to be at higher risk [Goldenberg, 2012]) and environmental factors [Compston

and Coles, 2008]. However, a recent meta-analysis by Belbasis et al. [2015] has

shown that many studies relating MS to environmental risk factors may be incon-

clusive or even invalid, finding evidence only for the following factors: a biomarker of

the Epstein-Barr virus, infectious mononucleosis and smoking. Furthermore, patho-

genesis also differs significantly between individuals [Morales et al., 2006]. One of

the few common aspects across patients is that early stages of the disease are in

most cases characterised by acute inflammatory activity, whereas permanent neuro-

degeneration is dominant in late and purely progressive MS [Cohen and Rae-Grant,

2010] with symptoms mainly due to axonal loss [Ge, 2006].

Disease burden is often quantified in terms of lesion load, which indicates the

total lesion volume or number of lesions. A more general quantitative measure is

1B lymphocytes and T lymphocytes are types of white blood cells. T cells can be distinguished
by the presence of a T-cell receptor.
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2.2. Medical background: Multiple Sclerosis

brain atrophy, which is considered to describe the net accumulative disease burden

as the consequence of all types of pathological processes found in the brain. Further-

more, women are more often affected by the disease with a predominance of about

3:2 over male patients [Cohen and Rae-Grant, 2010].

2.2.2 Diagnosis and MS subtypes

First diagnostic criteria for multiple sclerosis were introduced by Schumacher et al.

[1965] and two decades later refined by Poser et al. [1983]. The most comprehensive

clinical criteria were introduced by McDonald et al. [2001] and are still called the

“McDonald criteria”. These guidelines set the standard for the diagnosis of MS.

According to the McDonald criteria, patients were grouped into five distinct clinical

categories (phenotypes) depending on disease progression, which differs significantly

between these subtypes of MS. The subtypes are: relapsing-remitting MS (RRMS),

primary-progressive MS (PPMS), secondary-progressive MS (SPMS), progressive-

relapsing MS (PRMS) and clinically isolated syndrome (CIS). The McDonald criteria

have been updated in 2005 [Polman et al., 2005] and again in 2010 [Polman et al.,

2011] to provide better measures of dissemination of lesions in time.

The McDonald criteria are designed for use by a practising physician. The

most current revision of the criteria occurred in 2013 and was published by [Lublin

et al., 2014]. One of the most important outcomes of the revised guidelines was that

PRMS, which affected about 5% of MS patients, was dropped as a distinct clinical

category. It was used to describe a disease course that is characterised by regular

relapses and a steady progression in symptom severity starting already at disease

onset. Additionally, the authors of the revised criteria have put a stronger emphasis

on disease activity, measured by clinical relapse rate and MRI findings as well as

disease progression, in their recommendations of clinical assessment of MS.

Among the four remaining subtypes, relapsing-remitting MS (RRMS) is the

most common type of multiple sclerosis, with about 70−80% of patients belonging to

this category when first diagnosed [Cohen and Rae-Grant, 2010]. Over the course of

the disease, most RRMS patients will eventually develop into the secondary progres-

sive type. Approximately 15−20% of patients show a gradually progressive course

already at disease onset [Cohen and Rae-Grant, 2010; Hurwitz, 2009]. This is the

primary-progressive type of MS (PPMS). In contrast to PPMS, where well-defined

episodes of acute disease activity are absent, RRMS is characterized by recurrent

attacks (so-called relapses), which can vary in frequency and severity. In between

relapses, patients display a stable baseline that can be free of any symptoms. How-
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ever, a relapse may never completely revert to normal and many patients are left

with a residual disability.

Secondary-progressive MS (SPMS) exhibits relapses as well, however, remis-

sion occurs only partially and the severity of symptoms increases gradually over

time. SPMS is most typically seen 10–15 years after the onset of RRMS [Cohen and

Rae-Grant, 2010], with 90% of patients initially diagnosed with RRMS eventually

developing into SPMS within 25 years [Ebers, 2001]. There is no distinct transition

between the two forms of MS. The relapse rate tends to decrease in SPMS with

additional incremental progression between relapses. Furthermore, lesion load tends

to be higher in SPMS than in RRMS [Rovaris et al., 2006].

The last disease subtype encompasses clinically isolated syndromes (CIS).

In the absent of any prior diagnoses and clinical symptoms, the first acute attack

is referred to as a clinically isolated syndrome [Hurwitz, 2009]. The neurological

episode is a sign of acute inflammation and must be consistent with demyelination

in the central nervous system to be categorised as CIS [Freedman et al., 2014].

Patients with CIS may or may not subsequently develop one of the other courses of

MS. In the 2013 revisions of the McDonald criteria, CIS has been recognised as the

first clinical presentation of a disease that could be MS. For it to be diagnosed as

clinically definite MS (CDMS), dissemination of demyelinating events in time must

also occur [Lublin et al., 2014]. A schematic comparison of disease progression for

different subtypes is given in Figure 2.2.

In addition, the 2014 guidelines for the first time included the category of ra-

diologically isolated syndrome (RIS). It describes the case where the patient presents

no clinical signs or symptoms but incidental imaging findings suggest inflammatory

demyelination. RIS is not considered an MS subtype per se since clinical evidence of

a demyelinating disease, which is a key criterion in current MS diagnosis, is absent.

However, based on location and morphology of lesions as detected on MRI, RIS may

suggest the presence of MS [Lublin et al., 2014].

In order to characterise the disease, several clinical outcome measures are

used in practice. The Expanded Disability Status Scale (EDSS) [Kurtzke, 1983;

Whitaker et al., 1995] was established more than 30 years ago and is widely used

but has been criticised for not being responsive or sensitive enough, especially with

respect to changes over time. Furthermore, the score is based on a standard – but

ultimately subjective – neurological exam which can lead to large variability between

raters [Cohen et al., 2012]. The EDSS score is predominantly used in clinical trials

to assess neurological disability on a scale of 0–10 in increments of 0.5 and includes
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2.2. Medical background: Multiple Sclerosis

Figure 2.2: Schematic depiction of disease progression for the four clinical subtypes
of multiple sclerosis. Left panel : Relapsing-remitting MS (RRMS) and secondary-
progressive MS (SPMS). Note that the transition from RRMS to SPMS is fluid
and occurs typically 10 to 15 years after disease onset. Right panel : Clinically
isolated syndrome (CIS), primary-progressive MS (PPMS) and progressive-relapsing
MS (PRMS). PRMS was dropped in the 2013 revisions of the McDonald criteria.
(Figure adapted from Cohen and Rae-Grant [2010]).

several sub-categories that are associated with various functional systems, such as

visual (VSLSC), sensory (SENSSC), mental (MNSC), pyramidal (PYRSC, measures

the ability to walk), cerebellar (CRBLSC, coordination), brain stem (BRSTMSC),

and bowel and bladder (BWLSC) functions.

The paced auditory serial addition task (PASAT) [Gronwall, 1977] is a cog-

nitive test, where a lower score indicates more severe impairment. It measures pro-

cessing speed, working memory and arithmetic ability. PASAT is reasonably reliable

but limited in scope and not specific to MS. New measures have been proposed, in-

cluding, for example, patient-reported outcomes or biomarker measurements [Cohen

et al., 2012].

2.2.3 Therapy

An early and accurate diagnosis is crucial for the efficacy of disease-modifying ther-

apy. There is no curative treatment available for MS, however, early therapy is

likely to reduce the frequency of relapses and slow the progression to more severe

disability [Loevblad et al., 2010]. In addition to the treatment of symptoms, disease-

modifying therapy is aimed at lowering MRI activity (i.e appearance of new lesions

or growth of existing lesions) and reducing the risk of permanent disability [Cohen

and Rae-Grant, 2010]. Among the four subtypes, disease-modifying therapy pre-

dominantly targets the RRMS course. Since the early 1990s several agents have

become available: Glatiramer acetate, Interferon beta, Mitoxantrone, Natalizumab,
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Fingolimod, Teriflunomide, Dimethyl fumarate, and Alemtuzumab as well as a con-

siderable range of off-label treatment options. All approved agents try to reduce

acute inflammation and appear to be more effective in early stages of the disease

[Torkildsen et al., 2016]. Therapy, when effective, is able to prolong the time to

subsequent attacks, reduce inflammation and formation of new lesions, and can help

to slow disability progression and cognitive impairment.

2.2.4 MRI criteria

Neuronal damage develops into lesions which can then be seen on magnetic res-

onance imaging. Although MRI is the main source of quantitative data for the

diagnosis of MS, the correlation between lesions and clinical symptoms is only de-

scribed as approximate. The reason for this may lie in neural plasticity and repair

mechanisms that can compensate for damage. Therefore, MRI scans may not fully

reflect functional changes in affected areas [Cohen and Rae-Grant, 2010].

Conventional MRI sequences that show different aspects of disease activ-

ity and for which MRI criteria have been developed include T2-weighted and T2-

weighted fluid-attenuated inversion recovery (FLAIR) images, as well as T1-weighted

scans, both with and without the addition of a contrast agent such as Gadolin-

ium (Gd). T1-weighted sequences display chronic or persistent hypo-intense lesions.

These so-called “black holes” indicate permanent axonal loss and neuronal damage.

However, studies about the correlation of black holes and disability have been con-

tradictory and the relationship with relapse rates is similarly inconsistent [Sahraian

et al., 2010]. In Gd-enhanced T1 images, the contrast agent Gadolinium is used

to augment the appearance of inflammatory lesions. Gd-enhanced images show

breaches of the blood-brain barrier that accompany acute MS attacks, for example

during a relapse, revealing regions where the disease is presently active. Finally,

T2-weighted scans are used to assess the cumulative disease burden, i.e. total lesion

load. Lesions appear hyper-intense on T2-weighted images. These sequences are also

used to detect the formation of new lesions. However, T2-weighted sequences lack

specificity as several other mechanisms such as edema, inflammation and gliosis (an

increase in the number of a certain kind of neuroglial cell) add to the development

of T2 lesions [Sahraian et al., 2010]. A summary of the different types of MS lesions

is provided in Table 2.1.

Following the 2001 revisions, the McDonald criteria incorporate data ob-

tained from magnetic resonance imaging to aid clinical diagnosis. However, this
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2.2. Medical background: Multiple Sclerosis

Table 2.1: Summary of MS lesion types.

Type Appearance on MRI Characteristics

T1 hypo-intense (dark) chronic, persistent “black holes”,
indication of permanent neuronal damage

T2 hyper-intense (bright) used for assessment of total lesion burden
T1-Gd contrast enhanced (bright) “active” lesions, indication of acute

inflammation

data is to a large extent only used in a qualitative way, assessing existence and gen-

eral dissemination of lesions in space and time. For example, the diagnostic standard

merely states that the presence of lesions in at least two of the typical anatomical

regions (periventricular, juxtacortical, infratentorial areas) of the central nervous

system or spinal cord is evidence for MS. The most common quantitative measure is

lesion load, i.e. the total lesion volume. Previous work on using lesion load for classi-

fication have been equivocal [Aban et al., 2008; Morgan et al., 2010; MacKay Altman

et al., 2011]. Other studies have shown that conventional MRI measures have rather

low predictive value and are therefore poor indicators for determining the clinical

outcomes in MS [Loevblad et al., 2010]. There exists a need for quantitative MRI

measures, for example to better understand the transition from RRMS to SPMS

[Rovaris et al., 2006], and a more quantitative analysis of the data contained in and

available through magnetic resonance imaging.

2.2.5 Quantitative analysis

Existing quantitative methods that are commonly used for the analysis of MS lesions

are to a large extend unable to reflect the full complexity of the data. These include

i) comparing lesion probability masks cross-sectionally or longitudinally [Filli et al.,

2012; Holland et al., 2012] which makes it difficult to associate lesion locations

with certain covariates of interest, ii) mass-univariate methods such as voxel-based

lesion-symptom mapping [Bates et al., 2003] which cannot account for the underlying

spatial structure, and iii) smoothing of lesion masks by means of a Gaussian kernel,

see e.g. [Kincses et al., 2011], which does not entirely eliminate the non-Gaussian

nature of the data and requires an arbitrary choice of smoothing parameter.

These limitations are the core motivation for this work, looking to apply

explicit spatial models to MRI-based lesion data.
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2.3 Methodological background: Spatial point processes

This section aims to provide some of the methodological background for the models

presented in Chapter 5.

Statistical methodology for point pattern data advanced rapidly in the second

half of the 20th century. One-dimensional non-homogeneous Poisson processes have

been used to model, for example, geomagnetic reversal data, the occurrence of coal-

mining disasters and arrivals at an intensive care unit (e.g. Lewis and Shedler [1979]

and references therein). Ongoing research and applications can be found across

many disciplines, including ecology and forestry [Ickstadt and Wolpert, 1999; Best

et al., 2000, 2002; Stoyan and Penttinen, 2000; Niemi and Fernández, 2010; Woodard

et al., 2010], geology, astronomy, material sciences and epidemiology [Velázquez

et al., 2016]. Research interests focus on diverse topics such as the distributions of

plant species [Illian et al., 2013; Renner et al., 2015], the occurrence of earthquakes

over a certain period of time [van Lieshout and Stein, 2012], and astronomical data

such as the distribution of stars or galaxies [Babu and Feigelson, 1996; Stoica, 2010].

Most of these example applications rely on summary statistics to analyse

point patterns. See the extensive literature on summary statistics for point process

applications, for example, Baddeley et al. [2000]; Gabriel and Diggle [2009]; Cronie

and Van Lieshout [2015]; Cronie and van Lieshout [2016]. However, our focus of

interest lies on estimating an underlying intensity function that is able to fully

describe the generation of observed point patterns.

In the following, we give a short overview of key concepts and topics relating

to the theory of spatial point processes with a particular emphasis on a Bayesian

point of view. The main source for this is Møller and Waagepetersen [2004]. Most

of the following material is covered in much greater detail in Daley and Vere-Jones

[2003]; Daley and Vere-Jones [2008]; Illian et al. [2008]; Møller and Waagepetersen

[2007]; Gelfand et al. [2010] and Diggle [2014].

A spatial point process Y is a random countable set of points {yi}∞i=1 in a

space S. We only consider Euclidean space here, i.e. S ⊆ Rd. Typically, the region

of interest for realisations of the point process will be a bounded subset B ⊂ S,

for example square kilometre of forest, a geographical region defined by political

or natural boundaries, or a section of the night sky. For our purposes, d=3 and B
represents the three-dimensional volume of the human brain. Furthermore, if the

points in Y are unique, the process is called simple.
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2.3. Methodological background: Spatial point processes

Let A be a bounded Borel set and let NY(A) denote the number of points

that fall into A. NY(A) is the counting measure, i.e. a finite integer-valued measure,

on A. Let y denote a single realisation of Y consisting of point locations yi. We

require that y is a locally finite subset of B, that is the cardinality n(·) of the set

{y ∩A} is finite. The space of locally finite point configurations Nlf provides the

range of Y, i.e.

Nlf = {y ⊆ B : n(y ∩A) <∞} , ∀ A ⊆ B. (2.1)

There are three distinct but equivalent ways to fully characterise a spatial

point process: by its void probabilities (only for simple processes), its finite dimen-

sional distributions and its generating functional.

The finite dimensional distributions are the joint distribution of the number

of points of Y belonging to bounded Borel sets A1, . . . , Ak, such that

P[NY(A1) = n1; . . . ;NY(Ak) = nk], n1, . . . , nk ∈ N0. (2.2)

The void probabilities are defined as v(A) = P[NY(A) = 0] and the generating

functional for a point process is akin to a probability generating function for a

non-negative, integer-valued random variable and is defined as

GY(u) = E
[
exp

{∫
S

lnu(ξ)dN(ξ)

}]
= E

∏
ξ∈y

u(ξ)

 , (2.3)

where u is a function from S to [0, 1] and ξ is a point in S such that u(ξ) ≤ 1.

Consider as an example u(ξ) = tI[ξ∈A] with 0 ≤ t ≤ 1, then the probability generating

functional for NY(A) is GY(u) = E[tNY(A)].

2.3.1 Spatial Poisson point processes

Poisson point processes are making up the foundations of spatial point process the-

ory. In their simplest variant they describe a random spatial point pattern with no

correlation or any kind of interaction between points. Their defining property is that

the number of points in any given region is a Poisson distributed random variable.

Additionally, given the number of points NY(A) that belong to the process Y and

are contained in region A ⊆ B, those points are distributed independently according

to a probability density that is proportional to an intensity function λ over that

region.

We define the intensity function λ : S → [0,∞) on space S ⊆ Rd and
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an intensity measure Λ(A) =
∫
A λ(ξ)dξ that is locally finite, i.e. Λ(A) < ∞ for all

bounded A ⊆ S and diffuse, i.e. Λ(ξ) = 0, for all points ξ ∈ S. A point process Y on

S ⊆ Rd is a Poisson point process with intensity function λ and intensity measure Λ

if the following to properties hold: (i) For any A ⊆ S such that Λ(A) is finite, NY(A)

is Poisson distributed with mean Λ(A). We write NY(A) ∼ Pois(Λ(A)). (ii) For any

disjoint A1, . . . , Ak ⊆ S, with k ≥ 2, the random variables NY(A1), . . . , NY(Ak) are

independent. If for a Poisson process Y it holds that

Λ(A) =

∫
A
λ(ξ)dξ (2.4)

with Λ(A) < ∞ for any bounded A ⊆ S and λ some non-negative function on S,

then we call Y a Poisson process with intensity function λ. The intensity is the

first-order moment measure and also called the rate function. Analogously, Λ is

sometimes called the integrated rate function. We denote Y ∼ PP(S, λ).

If the intensity function is constant (λ(ξ) = λ, for all ξ ∈ S), Y is called a

homogeneous or stationary process with rate λ. The special case of Y ∼ PP(S, 1)

is called the standard or unit rate Poisson process. The void probabilities for a

Poisson process are v(A) = exp {−Λ(A)} and the probability generating functional

is given by GY(u) = exp {(1− u(ξ))λ(ξ)dξ}. The density (i.e. the Radon-Nikodym

derivative) of the Poisson process with respect to Lebesgue measure does not exist,

but it does exist with respect to the unit rate Poisson process PP(B, 1) [Møller and

Waagepetersen, 2004]. The density is given by

π(y|λ) = exp

{
|B| −

∫
B
λ(ξ)dξ

}∏
y∈y

λ(y), (2.5)

which can be interpreted as the density of the sampling distribution of the data.

For most practical applications, a simple Poisson process is not sufficient

to describe the observed point patterns. The class of Cox processes is a natural

extension to the Poisson process. First introduced by Cox [1955], Cox processes are

also called doubly stochastic processes, relating to the way the intensity function

is modelled. Whereas the original Poisson process is based on a fixed parametric

intensity, in the case of a Cox process, the intensity function is expressed as the

realisation of a random variable or a random field.

Hence, let Z(ξ) be a non-negative random field on S such that Z(ξ) is locally

finite and integrable. If Y|Z ∼ Pois(S, Z), then Y is said to be a Cox process driven

by Z. The intensity function is simply the expectation over the random field, i.e.

λ(ξ) = E[Z(ξ)] and (2.4) still holds for the intensity measure. For simplicity, we
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2.3. Methodological background: Spatial point processes

will denote [Y|Λ] ∼ PP(S,Λ) as being a spatial Poisson process driven by random

intensity measure Λ [Møller et al., 1998]. Note that for disjoint bounded A1, A2 ⊂ S,

NY(A1) and NY(A2) are positively correlated.

Cox processes have the advantage of allowing greater flexibility than, e.g. a

parametric inhomogeneous Poisson process, and are better suited to model aggre-

gated point patterns. Additionally, one can incorporate prior knowledge into the

intensity function by using a Bayesian framework.

2.3.2 The log-Gaussian Cox process

One of the most commonly used Cox process models is the log-Gaussian Cox process

(LGCP) [Møller et al., 1998], where the intensity function is a realisation of a random

field Z. Assume that Z = lnλ is a Gaussian random field, that is a random pro-

cess whose finite dimensional distributions are Gaussian; hence Z ∼ GP[m(·), c(·, ·)]
[Rasmussen and Williams, 2006]. The distribution of (Y, Z) is completely deter-

mined by the mean and covariance function, which are given by m(r) = E[Z(r)] and

c(r, s) = Cov[Z(r), Z(s)], respectively. The intensity function of the LGCP is given

by

λ(r) = exp [m(r) + c(r, r)/2] , (2.6)

where, for our later applications, we will assume that c(r, s) is isotropic and trans-

lation invariant with the form c(r, s) = σ2 exp
[
−ρ||r − s||δ

]
. The exponential term

represents the power correlation function and δ ∈ [0, 2], which for δ=1 gives an ex-

ponential and for δ=2 a Gaussian correlation; σ2 denotes the variance and ρ>0 is a

correlation parameter.

Inference for an LGCP model is typically done under a Bayesian framework

and there exist several fast and computationally efficient ways to do posterior in-

ference on an LGCP: Markov chain Monte Carlo techniques [Møller et al., 1998],

elliptical slice sampling [Murray et al., 2009], integrated nested Laplace approxima-

tions (INLA) [Illian et al., 2012; Simpson et al., 2016], or variational Bayes [Jaakkola

and Jordan, 2000]. In Chapter 4, we use an MCMC approach, specifically Hamilto-

nian Monte Carlo (HMC) [Duane et al., 1987; Neal, 2012]. Several other techniques

have been proposed, each of which carries certain advantages and disadvantages.

For example, Riemann Manifold Hamiltonian Monte Carlo has been shown in a 2D

setting to be a more efficient sampling algorithm [Girolami and Calderhead, 2011];

however, adaptation to 3D problems is prohibitive as it requires the inversion of

a large matrix. Taylor and Diggle [2014] have found similar results when compar-

ing the Metropolis-adjusted Langevin algorithm (MALA) [Roberts and Rosenthal,
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1998], which uses the gradient of the target distribution to guide a random walk

update, to INLA.

2.3.3 Poisson/Gamma random fields

First introduced by Wolpert and Ickstadt [1998b], the Poisson/Gamma random field

(PGRF) model was extended by Kang et al. [2014b] to incorporate multiple groups

of related point patterns as well as multiple realisations of the underlying stochastic

point process.

The fundamental characteristic of the PGRF model is that the intensity

function is modelled as a convolution of a spatial kernel and a Gamma random field.

In this section we will describe the main building blocks of the model. First, we

recount the probability density of the Gamma distribution:

h(x;α, β) =
βα

Γ(α)
xα−1e−βx =

1

Γ(α)

(
α

µ

)α
xα−1 exp

(
−αx
µ

)
, (2.7)

with x ≥ 0 and α, β > 0. Mean and variance of the Gamma distribution are given

by

µ =
α

β
, σ2 =

α

β2
=
µ2

α
. (2.8)

A Gamma random field Γ(dx) has an inhomogeneous Gamma process distri-

bution, i.e. Γ(dx) ∼ Ga{α(dx), β(x)} with shape measure (also called base measure)

α(dx) and inverse scale function (or rate parameter) β(x) > 0. For Γ(dx) to be a

Gamma random field the following properties must hold: (i) for some set B and any

partition {Ak} such that B = ∪kAk, the random variables Γ(Ak) follow a Gamma

distribution with shape parameter α(Ak) =
∫
Ak
α(x)dx and mean α(Ak)/β(x) for

any x ∈ Ak; (ii) for disjoint sets Ak ∩ Al = ∅, k 6= l, the Gamma random variables

Γ(Ak) and Γ(Al) are mutually independent. Note that the shape measure is pro-

portional to the volume and a convenient choice may be to use Lebesgue measure.

For the rest of this thesis we take the inverse scale parameter β(x) to be constant

over space and thus assume β(x) ≡ β.

The Gamma random field can be seen as a set of indicator functions with

assigned Gamma distributed random variables. Realisations of Gamma random

fields are discrete and consist of a countably infinite number of point masses, so-

called jumps. Each jump location θm, m = 1, . . . ,∞, has an associated magnitude

(or jump height) ηm. Then, Γ(A) is given by summing up all contributions from

jumps belonging to A, i.e. Γ(A) =
∑∞

m=1 {ηm : θm ∈ A}. Note that Gamma random
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2.3. Methodological background: Spatial point processes

fields are closely related to Dirichlet random fields in so far as Dirichlet random fields

are normalised, i.e. given by Γ(A)/Γ(B).

The Poisson/Gamma random field (PGRF) model relies on a convolution

of a Gamma random field with a spatial kernel to describe the underlying Poisson

point process Y. Let Λ(dy) denote the intensity measure and let λ(y) denote the

intensity function associated with Y. Then Λ(dy) is a convolution of a spatial kernel

measure Kσ2(dy, x) with kernel size σ2 and a Gamma random field (i.e. a random

measure) Γ(dx).

In this work we will use a Gaussian kernel with kernel function kσ2(y, x) =

( 1
σ2 )d/2 exp

{
||y−x||2

2σ2

}
, where ||y−x|| denotes the Euclidean distance in d-dimensional

Euclidean space. Suppose a reference measure Π(dy), which in our case will be

Lebesgue measure, dominates both the kernel measure Kσ2(dy, x) as well as the

intensity measure Λ(dy). We haveKσ2(B, x) =
∫
B kσ2(y, x)dy and Λ(B) =

∫
B λ(y)dy.

Conditional on Λ(dy), the number of points in a given region A in Euclidean

space is a Poisson random variable NY(A) with random mean measure Λ(A) =∫
A λ(y)Π(dy), where λ(y) is a density with respect to some reference measure Π(dy).

An example application in 2D can be found in Best et al. [2000] wherein

the authors have used a Poisson/Gamma random field model to analyse the spatial

variation of environmental risk factors such as traffic pollution to assess their effect

on respiratory disorders in children.

2.3.4 Inverse Lévy measure construction of a Gamma random field

The inverse Lévy measure (ILM) construction provides an efficient method for sam-

pling from independent-increment random fields. For details and a proof, we refer

the reader to Theorem 1 and Corollary 2 in Wolpert and Ickstadt [1998b].

The idea of the construction algorithm is based on the Lévy-Khintchine for-

mula for infinitely-divisible distributions. One can use partial sums of independent

draws from a standard exponential distribution to generate successive jump heights

νm of a unit-rate Poisson process. The random measure Γ(dx) can be constructed

as an infinite sum over latent sources θm and associated magnitudes νm:

Γ(dx) =
∞∑
m=1

νmδθm(dx), (2.9)

where δθm(dx) stands for Kronecker’s delta-function.
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The ILM algorithm

The following sampling algorithm is adapted from Wolpert and Ickstadt [1998b];

Wolpert and Ickstadt [1998a]:

1. Fix a large integer M and choose a convenient reference distribution Π(dx) on

auxiliary space X such that the shape measure α(dx) has a density α(x) ≡
α(dx)
Π(dx) .

2. Generate M independent and identically distributed jump locations (latent

sources): θm
iid∼ α̃(dx) = α(dx)

α(B) .

3. Generate successive jumps of a standard Poisson process on R+: ζm =
m∑
l=1

el,

with el
iid∼ Exp(1) drawn from a standard exponential distribution.

4. Set jump heights (magnitudes): νm = 1
β E−1

1 { ζm
α(B)}.

The exponential integral function is given by E1(t) =
∫∞
t e−uu−1du. Note that

νm = sup{u ≥ 0 : ζ(u, θm) ≥ ζm}.

5. Set Γ(dx) ≡
M∑
m=1

νmδθm(dx).

The only approximation lies in the fact that M is finite, that is we cannot

sample an infinite number of jumps. However, the truncation error can be made ar-

bitrarily small by sampling a large number of latent points. Ideally, Π(dx) is chosen

in a way such that it is convenient to sample from it. A natural choice, for example,

would be Lebesgue measure.

2.3.5 Data augmentation: Auxiliary points

The following data augmentation scheme makes the Gamma random field conjugate

and allows for efficient posterior sampling via an MCMC algorithm based on Gibbs

sampling [Wolpert and Ickstadt, 1998a,b].

Considering that the distribution of points NY(dy) on B is a finite, integer-

valued measure, Wolpert and Ickstadt [1998a] propose to represent NY(B) as the

sum of a random number of unit point masses. It follows that the locations xl of

these point masses are not necessarily distinct. All data points {yl}Ll=1 ∈ Y are
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2.3. Methodological background: Spatial point processes

mutually independent and follow the same distribution

[Yl = yl|NY(B),Γ(dx), σ2
j ] ∼

Λ(dy)

Λ(B)
=

∫
BKσ2(dy, x)Γ(dx)

Λ(B)
. (2.10)

In order to resolve the mixture, for each yl ∈ Y draw an auxiliary random variable

Xl = xl ∈ B such that

[Xl|Yl = yl, NY(B),Γ(dx), σ2] ∼ kσ2(yl, x)Γ(dx)

λ(yl)
. (2.11)

The realised values {xl} of conditionally independent random variables {Xl} follow

discrete distributions

π(Xl = xl|NY(B),Γ(dx), σ2) = νmkσ2(yl, θl)/Λ(yl). (2.12)

which follows directly from the representation of the intensity measure as Λ(y) =
∞∑
m=1

νmkσ2y, θm(dx).

The augmented data representation implies that (X,Y) = {(xl, yl), yl ∈ Y}
is a Poisson point process on B × B and the joint process is given by

[X,Y|Γ(dx), σ2] ∼ PP{B × B,Kσ2(dy, x)Γ(dx)}. (2.13)

2.3.6 The independent PGRF model

Assume there exist a number of J distinct types (or groups) of point patterns,

indexed by j = 1, . . . , J ∈ N0. Let yj denote a single realisation of the point process

Yj defined on B ⊂ Rd, i.e. yj is the observed point pattern for type j. We assign a

Gamma random field Γj(dy) to each type j. For now, the Γj(dy) are independent

with common base measure Γ0(dx) and inverse scale parameters βj . Note that

the change in notation is necessary to be consistent with the formulation of the

hierarchical model in Chapter 5.

Suppose the intensity measures Λj(dy) and the finite kernel measuresKσ2
j
(dy, x)

are both dominated by a reference measure Π(dy) and take Π(dy) to be Lebesgue

measure. Hence, the intensity measure of the independent Poisson/Gamma random

field (IPGRF) model is given by

Λj(dy) =

∫
B
Kσ2

j
(dy, x)Γj(dx). (2.14)
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The random mean measure over a subset A ∈ B

Λj(A) =

∫
A
λj(y)Π(dy) (2.15)

is also defined by the density λj(y) with respect to some reference measure Π(dy).

Analogously, the smoothing kernel measure is given by

Kσ2
j
(A, x) =

∫
A
kσ2

j
(y, x)Π(dy). (2.16)

General model formulation

Each spatial point pattern2 is considered as an independent realisation of an indi-

vidual type of spatial point process. In the case of the IPGRF, the spatial point pro-

cesses underlying different types are assumed to be completely independent. Hence,

let Yj be a Poisson point process (a Cox process with realisations yj,i) with intensity

measure Λj(dy) such that

Yj |Λj iid∼ PP{B,Λj(dy)}, (2.17)

Λj(dy) =

∫
B
Kσ2

j
(dy, x)Γj(dx), (2.18)

Γj(dx) ∼ GRF{Γ0(dx), βj}, (2.19)

where GRF denotes the Gamma random field and Γj(dx) an independent-increment

infinitely-divisible random measure on an auxiliary space X .

Note that the authors of the original model [Wolpert and Ickstadt, 1998b;

Ickstadt and Wolpert, 1999] call this a hierarchical model in the sense that on the

first (lowest) stage of the hierarchy the number of points in a given region is modelled

as a Poisson random variable with random mean measure as given in (2.15), on the

second level the density Λ(dy) is modelled as a kernel mixture, and the third stage

includes prior distributions on the model parameters.

2.3.7 Multiple realisations

The analysis of neuroimaging data typically involves groups of patients. Taking the

example of brain lesions, every individual therefore has their own lesion-based point

2In later chapters, we will consider two real data applications of MS lesions where the locations
of individual lesions from different subjects will constitute different spatial point patterns.
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2.3. Methodological background: Spatial point processes

pattern. This implies that we have not just one but multiple realisations of the same

point process. If we consider different MS subtypes as separate point processes, then

each subject’s lesion locations constitute one realisation of the point process that is

associated with that particular type of MS.

In order to account for multiple independent realisations in our modelling

framework, assume that {yj,i}Nji=1 are Nj independent realisations of the same Pois-

son point process Yj . Denote yj,i,l as one observed point (i.e. lesion location) and

Li the number of points in subject i’s data. Thus write yj,i = {yj,i,l}Lil=1 and, for

the combined data belonging to group j, yj = {{yj,i,l}Lil=1}
Nj
i=1.

The data augmentation procedure of Subsection 2.3.5 can easily be modified

to incorporate multiple types of point patterns as well as multiple realisations per

type. This means that the joint process (Xj ,Yj) = {(xj,i,l, yj,i,l); yj,i,l ∈ Yj} is

a Poisson point process on B × B. Therefore, {(xi,yi)}Nji=1 are Nj independent

realisations of (Xj ,Yj), each consisting of a set of Li point-pairs {xj,i,l, yj,i,l}Lil=1.

The joint process is given by

[Xj ,Yj |Γj(dx), σ2
j ] ∼ PP{B × B,Kσ2

j
(dy, x)Γj(dx)}. (2.20)

Note that the first marginal of (2.20) recovers the distribution of Yj as in (2.17);

and similarly, the second marginal gives the distribution of the auxiliary process Xj .

The full joint distribution

By using the (truncated) inverse Lévy measure construction (presented in Subsec-

tion 2.3.4) to establish the Gamma random field Γj(dx) =
M∑
m=1

νj,mδθj,m(dx), the

joint distribution for the IPGRF model can then be written as

J∏
j=1

Nj∏
i=1

π(xj,i,yj,i|νj ,θj , σ2
j )× π(σ2

j )× π(νj |βj)× π(βj)× π(θj)


∝

J∏
j=1

Nj∏
i=1

exp

{
−

M∑
m=1

Kσ2
j
(B, θj,m)νj,m

} Lj,i∏
l=1

{
kσ2

j
(yj,i,l, xj,i,l)

M∑
m=1

νj,mIθj,m(xj,i,l)

}
×

J∏
j=1

[
exp {−E1(βjνj,M )}

M∏
m=1

1

νj,m
exp {−νj,mβj} × π(σ2

j )π(βj)

]
. (2.21)

Here, π(θj) is the density of θj with respect to the product of base measures∏
m Γ̃0(dx), with Γ̃0(dx) = Γ0(dx)

Γ0(B) . Further, the Γ0(dx) are assumed to be non-
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atomic and therefore we have π(θj) = 1. The densities of all other parameters are

with respect to a product of Lebesgue measures. Finally, π(xj,i,yj,i|νj ,θ, σ2
j ) is

the density of (Xj ,Yj) with respect to the unit rate Poisson process [Møller and

Waagepetersen, 2004].

Using the ILM procedure (Subsection 2.3.4) for each subtype separately, we

can construct the Gamma random fields as Γj(dx) ∼ GRF{Γ0(dx), βj}. Taking the

normalised probability measure Γ̃0(dx) = Γ0(dx)
Γ0(B) , let Γ0(dx) = Π(dx)

|B| , where Π(dx)

is Lebesgue measure and |B| =
∫
B Π(dx), then Γ̃0(dx) = Γ0(dx) and Γ̃0(B) = 1.

Therefore, Γ0(dx) are uniformly distributed over B which implies that a priori the

latent source locations θj,m are also uniformly distributed over B. Hence, denote the

joint distribution of the jump locations and jump sizes by

{(θjm, νjm)}Mm=1 ∼ invLévy{Γ0(dx), βj}. (2.22)

2.3.8 Marked point processes

A marked point process is a random sequence of ordered pairs (y, w) with points

y ∈ Rd (for our purposes y ∈ B ⊆ R3) and marks w in some continuous or discrete

mark space W. The number of points of the process Y is a random integer-valued

measure N(du) on the product space U = B×W consisting of random ordered pairs

(yn, wn). If we treat N(du) as a Poisson random field with mean λ(u)Π(du), it can

be expressed as

N(dy dw) ∼ Po(λ(y)Π(dy)φ(w)Π(dw)), (2.23)

where λ(y) is point process intensity function with respect to the reference measure

Π(dy) and φ(w) denotes a mark intensity function with respect to Π(dw).

For any Borel set A ∈ B and any Borel set C ∈ W, the expected number of

points in A with marks in C satisfies

E[Λ(A× C)] = Λ(A)Φ(C), (2.24)

where Φ denotes the mark measure. In case of a stationary (i.e. homogeneous)

point process, the intensity measure Λ can be expressed as λL(A) where L denotes

Lebesgue measure. In case of spatially independent marks, the marked point process

is said to have the random labelling property (see e.g. Møller and Waagepetersen

[2004] or Cronie and van Lieshout [2016]). The description above gives an outline

for a marked point process defined on a product space. Note that not all point
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2.4. Methodological background: Classification and prediction

processes that are defined on a product space need to be marked processes. A

counter-example would be a spatio-temporal process.

Marks can be either categorical or continuous in nature. In the case of cate-

gorical marks, the combined process is also referred to as a multi-type or multivariate

Poisson process. The simplest case is a bivariate process where the marks take on

labels of w ∈ {1, 2}. For multivariate Poisson processes, the random labelling prop-

erty entails that the marks are spatially independent, i.e. wj(y) = wj [Møller and

Waagepetersen, 2004]. More interesting is the case of continuous marks which are

able to reflect a quantity of interest with some local dependence, for example, the

height or diameter of a plant species or the size of a brain lesion.

Applications of marked point process have focused, for instance, on the anal-

ysis of long-leaf pine trees in a forest area of 200× 200 metres where each tree was

marked with its diameter at breast height [Rathbun and Cressie, 1994], and the

assessment of the individuality of fingerprints [Lim and Dass, 2011].

2.4 Methodological background: Classification and pre-

diction

2.4.1 Cross-validation

For any classification and prediction task, it is crucial to evaluate the performance

of the proposed model. A straightforward way of assessing the accuracy of model

predictions is to split the data into a training set and a test set. Ideally, this split

occurs before any analysis on the data has been carried out and the test set is not

touched until the final evaluation step. Meanwhile, the training set is used by the

classifier to learn about the structure of the data. For most applications, however,

the supply of data is limited. This is especially true in the case of neuroimaging

studies, where the collection of data is very expensive and time-consuming. Holding

out a large proportion of the total data set for validation purposes becomes pro-

hibitive as it would not leave enough data to successfully train the classifier. On the

other hand, a test set with too few data points would produce a very noisy estimate

of the prediction accuracy.

Cross-validation techniques try to maximise the amount of data in the train-

ing set whilst simultaneously aiming to minimise the variance of predictive per-

formance. An inherent drawback of cross-validation methods is the need to run

multiple instances of the same model. Assume we split the whole data set randomly

into k distinct, approximately equally sized groups. For each of the k folds, the data
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within that fold constitutes the test set that is used for prediction. The other k−1

folds make up the training data. Running the model k times, once for every pair

of training and test data, yields an estimate of the model’s classification accuracy.

Note that, although the test sets are unique, the training sets for two different folds

are highly correlated as they share the same data from k−2 folds. If one takes k

to be equal to the number of data points, the procedure reduces to leave-one-out

cross-validation (LOOCV), meaning that the test set comprises a single data point

only.

Models that rely on the optimisation of one or multiple parameter values re-

quire a further refinement of k-fold cross-validation: nested cross-validation. In or-

der to determine an optimal parameter value, one can again perform cross-validation

within the current training set. Importantly, only data from the training set may be

used to optimise a parameter. The parameter optimising cross-validation is nested

within the training set of the overall cross-validation routine, hence requiring a new

split of the training data into m folds.

Computation of the confusion matrix provides a means to quantify model per-

formance. It lists the proportion of correctly and incorrectly classified data points

according to true and predicted group label. The rows i and columns j of the

confusion matrix contain the true and predicted number of instances per group, re-

spectively. Entry (i, j) of the matrix therefore contains the number of instances from

group i that have been classified as belonging to group j. The overall classification

rate is given by the ratio of correctly identified instances to total number of data

points in the data set. Whenever sizes of the different classes in a data set are im-

balanced, a more informative measure of accuracy is the average classification rate

which constitutes the mean over the proportions of successfully predicted instances

per group, i.e. the mean of the main diagonal of the confusion matrix.

Cross-validation is a popular way of model evaluation. LOOCV exhibits

the smallest bias but also a larger variance than k-fold cross-validation [Molinaro

et al., 2005]. However, depending on the complexity of the model, other methods

of measuring model performance may be more suitable. In particular, permutation

tests are often preferable, since they produce an unbiased estimate of predictive

performance, especially for small sample data sets [Combrisson and Jerbi, 2015].

2.4.2 A Bayesian classifier for multi-type point patterns

Performing LOOCV on a Bayesian model like the HPGRF model of Chapter 5 is

computationally prohibitive as it would require to run a full MCMC simulation for
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2.4. Methodological background: Classification and prediction

each subject. Instead, we employ an importance sampling scheme and construct

a Bayesian classifier based on the estimated posterior predictive probabilities for

different groups in a multi-type point pattern. Similar approaches have been pro-

posed for general Bayesian models, for example in Gelfand et al. [1992]; Alqallaf

and Gustafson [2001]; Vehtari and Lampinen [2002]. The classification algorithm

presented in this section is adapted from Kang et al. [2014a].

Let Dn denote the full data set and D−k ≡ {D\yk} the set of data excluding

the kth realisation. Assume the data is split into j = 1, . . . , J different groups and

denote the individual group indicators by Gk. The posterior predictive probability

of yk belonging to type j is

P(Gk = j|yk,D−k) =
pj
∫
π(yk|Gk = j,Θ)π(Θ|D−k)dΘ

J∑
j′=1

pj′
∫
π(yk|Gk = j′,Θ)π(Θ|D−k)dΘ

=

∫
P(Gk = j|yk,D−k,Θ)π(Θ|yk,D−k)dΘ, (2.25)

using Bayes rule and the law of total probability. Prior information about the

prevalence of type j is contained in pj and Θ comprises all model parameters. The

density of a single realisation of the point process is provided by (2.5), which becomes

π(yk|Gk = j,Θ) = exp

{
|B| −

∫
B
λj(y|Θ)dy

} ∏
y∈yk

λj(y|Θ). (2.26)

Assuming draws from the posterior according to Θ(t) ∼ π(Θ|D−k), for t = 1, . . . , T ,

we denote the density at the tth sample by π
(t)
j ≡ π(yk|Gk = j,Θ(t)).

The estimate of the posterior predictive probability can therefore be ex-

pressed as

P̂(Gk = j|yk,D−k) =

pj
T∑
t=1

π
(t)
j

J∑
j′=1

[
pj′

T∑
t=1

π
(t)
j′

] , (2.27)

and the predicted group label is given by

Ĝk = arg max
j

(
pj

T∑
t=1

π
(t)
j

)
, (2.28)

which can be obtained by computing LOOCV predictive probabilities.

In order to avoid the need to run a separate Monte Carlo chain for every

realisation it is useful to reformulate the predictive probabilities in (2.25) as fol-
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lows: Denote with gk the true group-label of yk, then, for j ∈ {1, . . . , J} and

k ∈ {1, . . . , n},
P(Gk = j|yk,D−k) =

pjQjgk
J∑

j′=1

pj′Qj′gk

, (2.29)

with the discounted likelihood given by

Qjj′ =

∫
π(yk|Gk = j,Θ)

π(yk|Gk = j′,Θ)
π(Θ|Dn)dΘ. (2.30)

Using T draws from the posterior, the estimate of the discounted likelihood factor

can be computed as

Q̂jgk =
1

T

T∑
t=1

π(yk|Gk = j,Θ(t))

π(yk|Gk = gk,Θ(t))
. (2.31)

Note that with this formulation, Θ(t) is drawn from the complete data posterior, i.e.

Θ(t) ∼ π(Θ|Dn). The posterior predictive probabilities of (2.27) then become

P̂(Gk = j|yk,D−k) =
pjQ̂jgk

J∑
j=1

pj′Q̂j′gk

(2.32)

and the the predicted class is given by

Ĝk = arg max
j

(pjQ̂jgk). (2.33)

Proofs for the relations presented in this section can be found in the appendix of

Kang et al. [2014a].
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Chapter 3

Two clinical data sets

There exist two widely used file formats for MRI data: NIfTI, the newer and more

versatile format, and DICOM, which is still the standard for older scanners. De-

tails can be found for example in Poldrack et al. [2011]. A considerable range of

image analysis and processing software has become available, including the SPM

(http://www.fil.ion.ucl.ac.uk/spm) and FSL (https://fsl.fmrib.ox.ac.uk/

fsl) packages which we have used to preprocess the data.

The following sections describe in brief the two clinical data sets of patients

with multiple sclerosis that are the basis for model applications in Chapter 4 and

Chapter 6.

3.1 The GeneMSA data set

The GeneMSA data set is part of a large multi-centre case-control study initiated in

2003 and conducted by a consortium of leading researchers in MS: the University of

California in San Francisco, the Vrije Universiteit Medical Center in Amsterdam, the

University Hospital Basel in Switzerland, and the pharmaceutical company Glaxo

SmithKline (GSK). The full study analysed 551,642 SNPs in 978 cases and 883 con-

trols. The Medical Image Analysis Center (MIAC) in Basel carried out analysis and

processing of the MRI data. The study’s initial purpose was aimed at finding gene

expressions that can be related to multiple sclerosis. Although the study could iden-

tify new candidates for gene associations, the effect sizes were very small [Baranzini

et al., 2009].

The data set available for this thesis comprises the Basel cohort of the

GeneMSA study and consists of 248 subjects scanned on a Siemens Magnetom

Avanto syngo 1.5T scanner at the University Hospital in Basel, Switzerland. 3D-
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heavily T1-weighted magnetisation-prepared rapid gradient echo (MP-RAGE) im-

ages were acquired. The following image parameters were used in the acquisition

protocol: echo time 3 ms, time-to-repetition 20.8 ms, flip angle 12, matrix size

240×256, field of view 24.0×25.6 cm, voxel dimensions 1×1×1mm3). Additionally,

T1-weighted Gadolinium-enhanced sequences were acquired with image parameters:

echo time 8 ms, time-to-repetition 467 ms, matrix size 256×256×44, field of view

240×240×132 mm. Transaxial contiguous 3 mm dual-echo T2-weighted images were

acquired using turbo spin echo with image parameters as follows: echo time 14 ms,

time-to-repetition 3980 ms, flip angle 180, turbo factor 7, matrix size 192×256, field

of view 18.75×25 cm, voxel dimension 0.9766×0.9766×3.0 mm3. For more details

see Baranzini et al. [2009].

Lesions were independently identified and marked on T2-weighted images

by two neuro-pathologists using a semi-automatic procedure Kappos et al. [2006a].

Additionally, a third radiologist resolved any disparities. As a result, binary lesion

masks with a value of 1 (0) at each voxel indicating the presence (absence) of a lesion

were created in native space and then affine registered to MNI standard space at

1×1×1 mm3 resolution using trilinear interpolation. The transformed lesion masks

were thresholded at 0.5 to retain binary values. White matter lesion masks for T1-

weighted black-hole and T1-weighted Gd-enhanced images were created guided by

the previously outlined T2 lesions. Additionally, image segmentations into white

matter (WM), grey matter (GM) and cerebrospinal fluid (CSF) was carried out. In

order to preserve the original within-voxel volumes after non-linear transformation,

the segmented images were rescaled using the Jacobian determinants resulting from

spatial normalisation. A detailed account of the full image preprocessing pipeline

can be found in Bendfeldt et al. [2009] and Bendfeldt et al. [2012].

All patients were categorized into one of the five MS subtypes that had been

used until 2013, following to the diagnostic standard defined by McDonald et al.

[2001]. The cohort was classified as follows: 10 CIS, 172 RRMS, 13 PPMS, 43

SPMS, 10 PRMS. The data set also includes patient specific covariates such as

biological sex, age, disease duration, the seven subscores of the Expanded Disabil-

ity Status Scale (EDSS) and outcomes of the Paced Auditory Serial Addition Test

(PASAT). Figure 3.1 provides a visual overview in form of box plots of the lesion

count per subject against the five main covariates in the data set with the EDSS

subscores combined into a single clinical measure. The data from the full cohort of

248 subjects and five disease subtypes is used for model applications in Chapter 4.
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3.1. The GeneMSA data set

Following the 2013 revisions [Lublin et al., 2014] of the McDonald criteria and

the therein established clinical consensus to drop progressive-relapsing MS (PRMS)

as a distinct clinical subtype, we exclude the ten subjects classified as PRMS from

our analysis. Due to missing demographic data, we had to further exclude two

subjects (one CIS, one RRMS). Hence, our working data set comprises 238 MS

patients which have been classified into one of the four clinical disease subtypes as

follows: 10 with CIS, 172 with RRMS, 43 with SPMS, and 13 with PPMS.

Table 3.2 provides an overview of the main characteristics of the data set.

Computation of the correlation matrix of the five covariates shows high correlation

between age and disease duration and weak correlation between the other covariates.

A qualitative, visual inspection of point locations across the brain for each subtype

reveals no obvious differences in the spatial patterns—for example, large clusters

or centres of aggregation—between the groups, apart from the number of points

available in the data for each subtype. However, all types show a larger density of

points towards the central areas of the brain with fewer lesions occurring in cortical

regions (see also the plots of lesion locations in Figure 6.1 and Figure 6.2). This is

consistent with the fact that MS is predominantly a white matter disease.

Figure 3.2 shows an exploratory scatter plot of cube-root transformed median

lesion volumes per subject against each patient’s total lesion count. The average

lesion volume is relatively stable across subtypes. The largest discrepancy can be

observed for the CIS subtype, which is associated with early stages of the disease.

Subjects in this group on average tend to have fewer and smaller lesions than subjects

classified into one of the other subtypes.
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3.1. The GeneMSA data set

Figure 3.2: Exploratory analysis of the GeneMSA data set: Scatter plots of cube-
root transformed median lesion volume versus the number of lesions per subject
across the four remaining MS subtypes according to the revised McDonald criteria.
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3.2 The BENEFIT data set

The BENEFIT (Betaferon/Betaseron in Newly Emerging multiple sclerosis For Ini-

tial Treatment) study [Kappos et al., 2006a; Barkhof et al., 2007] was carried out in

2002–2005. It was a double-blind, placebo-controlled and randomised phase 3 study

that involved a total of 98 imaging centres and was financed by Bayer Healthcare.

The aim of the study was to evaluate the safety, tolerability and efficacy of the agent

interferon beta-1b (IFNβ-1b) in patients with initial signs of multiple sclerosis.

Criteria for inclusion in the study were a first demyelinating event suggestive

of MS and at least two clinically silent lesions on a T2-weighted MRI scan. Hence, all

subjects were classified into the CIS subtype of MS. The initial cohort comprised 468

subjects. Following a 5:3 ratio, patients were randomly assigned to the treatment

or placebo group. Treatment involved a dose of 250 µg IFNβ-1b subcutaneously

every other day [Kappos et al., 2006b]. Any subjects from the placebo group who,

over the course of the study, were subsequently diagnosed with clinically definite

MS (CDMS), were switched to active treatment. The study period extended over

24 months and entailed the collection of clinical scores at 3 to 6 months intervals as

well as MRI scans at the end of the study as well as follow up scans 3 years after

completion. The baseline MRI scans were taken at field strengths of 0.5–1.5T and

included transaxial contiguous 3-mm dual-echo T2-weighted and T1-weighted im-

ages. Clinical assessment of hyper-intense T2-lesions, Gadolinium-enhancing lesions

and hypo-intense T1 lesions was carried out at the Image Analysis Centre at the

Vrije Universiteit Medical Center in Amsterdam [Barkhof et al., 2007].

Outcomes of the BENEFIT study found an advantage of early treatment on

disability progression after three years [Barkhof et al., 2003; Kappos et al., 2007].

However, the difference between treatment and placebo groups did not remain sig-

nificant at the 5 year follow-up [Kappos et al., 2009]. The study authors mention

that crossover from placebo to active treatment may have masked some treatment

effects.

For the purposes of this thesis, we use clinical and imaging data at baseline

in conjunction with binary information about whether a patient converted to CDMS

during the study period. In collaboration with the Medical Image Analysis Center

in Basel, we have extracted the lesion masks from the data, transformed them from

the original DICOM format to more user friendly NIfTI images and registered them

to standard MNI space. Due to poor image quality (scans containing artefacts) and

some cases of missing data, about 25% of subjects from the original data set had to

be excluded from our analysis. The data used for this work comprises 364 patients,
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3.2. The BENEFIT data set

175 of whom converted to CDMS and 189 remained classified as CIS.

Box plots of how the number of lesions per subject depends on the three

demographic and clinical covariates that are available in the data set (sex, age and

EDSS score) are shown in Figure 3.4. Scatter plots of median lesion volume versus

lesion count are provided in Figure 3.3. On visual inspections, the two groups in the

data set, seem to exhibit very similar characteristics. One notable difference is the

number of lesions per subject, which tends, on average, to be larger in the CDMS

group.

Figure 3.3: Exploratory analysis of the BENEFIT data set: Scatter plots of cube-
root transformed median lesion volume versus the number of lesions per subject
for the two groups, clinically isolated syndrome (CIS) and clinically definite mul-
tiple sclerosis (CDMS). The Expanded Disability Status Scale (EDSS) is a clinical
measure of disease severity.
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3.2. The BENEFIT data set
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Chapter 4

Comparison of two machine

learning approaches and two

spatially informed models for

MS subtype classification

4.1 Introduction

The aim of this chapter is to investigate and compare several different classifica-

tion approaches and their application to the prediction of multiple sclerosis sub-

types. First, a näıve Bayesian classifier (NBC) (Section 4.2) provides a baseline

of minimally expected performance for the other models to compare to. We then

propose a machine learning approach based on support vector machines (SVMs)

(Section 4.3) that utilises a large number of quantitative features. These features,

alongside traditional demographic and clinical measures, include aspects of lesion

geometry, measured by Minkowski functionals, and statistics of intra-lesion MRI

intensities. Finally, we use two spatially informed models, a Bayesian spatial gener-

alised linear mixed model (BSGLMM) on voxel-wise lesion maps (Section 4.4) and

a log-Gaussian Cox process (LGCP) model on lesion location data (Section 4.5).

Each of the main models has its relative merits. The BSGLMM has the inter-

pretability of a traditional generalised linear regression model but can only account

for local spatial dependence; the LGCP explicitly accounts for spatial variation in

lesion location on a larger scale; and the SVM classifier can revert to using a combi-

nation of features from multiple MRI modalities, while the other two only operate on

a single type of MR image. Results from all classifiers are summarised in Section 4.6.
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4.2. A näıve Bayesian classifier

4.2 A näıve Bayesian classifier

In general, MR images cannot be directly used for statistical analysis. Several

preprocessing steps are usually necessary to prepare the data in a format that is

suitable for the model at hand. Due to the large amount of data (typically 105–

106 voxels per image) mass-univariate models are commonly used in neuroimaging

applications. A mass-univariate approach comprises a separate model fit at each

voxel, independently of all the rest. Although other models, for instance multivariate

techniques that consider multiple spatial locations jointly, can be entertained, mass-

univariate models are often preferred in practice because they are comparatively

easy to use and interpret.

A basic variant of a mass-univariate model is a näıve Bayesian classifier

(NBC) [Lewis et al., 1998]; for a neuroimaging application, see for example Yarkoni

et al. [2011]. The NBC comprises a simple binomial model at each voxel and for

each MS subtype. The binary, voxel-by-voxel lesion masks obtained from MRI scans

provide the array of input features to the NBC. Crucially, the NBC assumes mutual

independence between each element, i.e. each voxel. This assumption, of course,

does not reflect the true nature of the data, in which neighbouring voxels are highly

correlated.

With respect to the data application, we train the NBC on the full T1- and

T2-weighted lesion masks, respectively. We assign Jeffrey’s prior, Beta(0.5,0.5), to

the conditional probability of having a lesion at voxel v given a certain subtype.

In order to assess classification performance of the NBC we perform leave-one-out

cross-validation.

As a means of increasing classification performance, one can consider restrict-

ing the space of interest to a global lesion mask where only those voxels with an

incidence of two or more lesions over the whole data set are taken into account. Al-

though this reduces the dimensionality by excluding uninformative voxels, it should

be noted that the classifier is then unable to pick up on any new lesions outside the

mask.

Compared to any other model, the NBC is computationally very efficient,

even with extremely large numbers of features. However, ignorance about any spa-

tial dependence between neighbouring voxels constitutes a major drawback. In

particular, the classifier has no information about which voxels belong to the same

lesion.
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4.3 Support vector machines based on lesion-specific

features

Our goal for this section is to build a classifier based on support vector machines that

exploits a range of geometric features of individual MS lesions, alongside traditional

demographic and clinical measures. We use three-dimensional, binary lesion masks

from three available MRI modalities (T1, T2 and T1-Gd enhanced) as basis for the

computation of geometric characteristics.

In the remainder of this section, we first review the fundamentals of SVM

theory and then introduce measures of lesion geometry based on Minkowski func-

tionals which will form a large part of the input data to the classifier. The last part

summarises the available feature set and discusses feature reduction via principal

components analysis.

4.3.1 Support Vector Machines

Support vector machines (SVMs) are an established, supervised machine learning

technique and widely used across various disciplines, from neuroimaging [Mourao-

Miranda et al., 2005; Mwangi et al., 2012] and cancer research [Huang et al., 2017]

to chemistry [Invanciuc, 2007] and applications in remote sensing [Mountrakis et al.,

2011]. What makes SVMs particularly attractive is their generally good performance

in comparison to other classifiers as well as their relatively easy extension to non-

linear problems using kernels. In addition, careful tuning of regularisation and

kernel parameters make them less prone to over-fitting [Cawley and Talbot, 2007].

Linear SVMs are well suited for classification problems where the number of input

features is very large, potentially much larger than the number of samples in the

data set. However, as the number of features decreases non-linear SVM approaches

often perform better due to an increased flexibility in fitting the data. This comes

at the cost of having to estimate an additional parameter.

SVMs have been used successfully in diagnostic and prognostic settings based

on structural MRI data, including applications in Alzheimer’s disease [Davatzikos

et al., 2008], schizophrenia [Koutsouleris et al., 2012] and multiple sclerosis [Wey-

gandt et al., 2011; Bendfeldt et al., 2012]. A recent review of SVMs applied to

neurological conditions by Orrù et al. [2012] has found that SVMs have been used

successfully in several clinical applications that focused on disease diagnosis, pre-

diction of treatment success and prediction of transition to more severe stages of a

disease, respectively.
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4.3. Support vector machines based on lesion-specific features

Initially proposed by [Vapnik, 1979], SVM is a family of supervised machine

learning techniques that rely on optimising a convex cost function. Because it is a

non-parametric method, no assumption is made on the underlying data distribution.

The SVM algorithm tries to find a separating hyperplane that splits the data set into

two distinct classes. The optimal decision boundary is chosen such that the distance

between the data points of the two labelled groups and the hyperplane is maximised.

This also makes apparent a drawback of SVM in its original formulation: it can only

deal with two-class problems.

In the following, we review the essentials of SVM theory. Numerous text-

books are available which offer a more in-depth description, for example Campbell

[2002]; Bishop [2006]; Invanciuc [2007] or Vapnik [1999]. The rest of this section

is based in parts on Bishop [2006], Burges [1998] and Scholkopf and Smola [2002].

Let yi=±1 denote the class of data point xi ∈ Rd in feature space and w be a

d-dimensional vector of weights. The canonical representation of the decision hy-

perplane is given by 〈w,x〉 + b = 0, were 〈a,b〉 denotes the inner product. The

geometrical margin of the point xi, i.e. the distance to the hyperplane, can be writ-

ten as

m(w,b)(xi) =
yi
(
〈w,xi〉+ b

)
||w|| . (4.1)

Suppose the data is linearly separable, the goal is to find a decision function

f(x) = sgn
(
〈w,x〉+ b

)
(4.2)

that satisfies f(xi) = yi.

If the training data is not perfectly separable, i.e. a separating hyperplane

does not exist, one can allow for soft margins by introducing so-called slack variables

ξi. Additionally, soft margins take into account (or rather disregard) outliers that

may have an undesired impact on the location of the hyperplane. This modified

SVM algorithm seeks a linear classifier of the form f(x) = 〈w,x〉+ b that minimises

the objective function

1

2
||w||2 + C

m∑
i=1

ξi, (4.3)

subject to the linear constraints

yi
(
〈xi,w〉+ b

)
≥ 1− ξi and ξ > 0. (4.4)

The parameter C is a constant (the so-called box-constraint) that controls the

amount of overlap or misclassification. In the limit C→∞ no overlap is allowed
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and the classifier seeks a perfect separation between the two groups. The sup-

port vectors are given by the data points xi on the boundary, i.e. those for which

yi(〈xi,w〉+ b) = 1− ξi. This is a quadratic programming problem that is easier to

solve by introducing Lagrange multipliers αi and restating it in terms of the dual

Lagrangian of the initial problem

L(w, b, α) =
1

2

n∑
i=1

αi
[
yi
(
〈w,xi〉+ b

)
− 1 + ξi

]
. (4.5)

The Lagrangian must be minimised with respect to w and b and maximised

with respect to all αi’s. With the help of the Karush-Kuhn-Tucker theorem this

leads to the following constraints

αi
[
yi
(
〈w,xi〉+ b

)
− 1 + ξi

]
= 0 (4.6)

and

w =

n∑
i=1

αiyixi. (4.7)

The cases when αi>0 represent the support vectors. Using the expansion of the

weight vector in (4.7), the optimisation problem results in maximising

∑
i=1

αi −
1

2

∑
i=1

∑
j=1

αiαjyiyj〈xi,xj〉, (4.8)

subject to αi ≥ 0 and
∑
i=1

αiyi = 0.

Kernel functions

Apart from generic data sets of simple examples, perfect separation of the groups

usually cannot be obtained in the native parameter space. There are two aspects

of SVM that address this: The box-constraint C allows for a certain amount of

misclassification of data points during the optimisation procedure. On the other

hand, the kernel function produces a mapping of the inner product of data points

into high dimensional feature space. The motivation for using kernels is that, with

a suitable choice of kernel function, the data may become separable by finding an

optimal separating hyper-surface.

Maximising the target function (4.8) and evaluating the decision function

(4.1) requires expensive calculations of inner products in high-dimensional feature
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4.3. Support vector machines based on lesion-specific features

space. These computations can be reduced by using a positive definite kernel

such that 〈xi,xj〉 → K(xi,xj). This transformation is based on Mercer’s theorem

[Wasserman, 2006] and is known as the kernel trick [Scholkopf and Smola, 2002]. It

leads to the new decision function

f(x) = sgn

(
n∑
i=1

αiyiK(x,xi) + b

)
(4.9)

with the following target function to be maximised:

∑
i=1

αi −
1

2

∑
i=1

∑
j=1

αiαjyiyjK(xi,xj). (4.10)

For a detailed review of kernel methods see for instance Campbell [2002]. The

idea behind using kernels is based on the computational concept of hyperplanes. All

the calculations for the separating plane involve only inner products. Therefore,

non-linear kernels can use identical calculations and solution algorithms, and obtain

classifiers that are non-linear. The resulting classifiers are hyper-surfaces in some

space S, but the space S does not have to be identified or examined. There is no

single established kernel function for SVM. Frequently used kernels include radial

basis functions (RBF), given by

K(xi,xj) = exp

(
−||xi − xj ||2

2σ2

)
(4.11)

and sigmoid functions, also called the multilayer perceptron kernel (MLP) due to

its connection to neural networks, given by

K(xi,xj) = tanh
(
axTi xj + b

)
. (4.12)

Besides these two examples there exists a considerable range of more ad-

vanced kernel methods, see e.g. Sanchez [2003].

The RBF kernel can be interpreted as smoothing out each data point. The

corresponding transformed feature space is an infinite dimensional Hilbert space.

The particular advantage of the kernel trick is that the mapping to (potentially

infinite) new feature space is never actually carried out, only inner products of the

vectors in feature space are needed.

In an initial exploration study on MS lesion data, we found that radial basis

functions resulted in consistently higher accuracies than sigmoid functions. Linear

or polynomial kernels turned out to be unsuitable to capture the structure of data
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in feature space, yielding accuracies barely above chance level.

A majority voting scheme

Our goal is the application of SVM classifiers to a prediction task involving j=5

subtypes of MS. This requires an extension of the binary classification scheme of

ordinary SVM to a multi-class method [Hsu and Lin, 2002].

The simplest way to incorporate more than two classes is a one–versus–rest

approach, that is to train j different classifiers, each distinguishing between one

group and the union of all j−1 remaining groups. However, with this method the

problem arises that the classification becomes inconsistent and ambiguous if more

than one of the j classifier estimates returns a positive result.

Computationally more expensive but also more reliable is the one–versus–one

approach [Allwein et al., 2001] which involves the training of j(j−1)/2 classifiers,

one for each pair of classes. To which group a new or unseen data point belongs

is then determined by a majority voting scheme. In case of a draw the classifier

involving the two classes with the most votes decides.

4.3.2 Minkowski functionals and lesion geometry

First, we use binary lesion masks to identify individual lesions. Each lesion is de-

fined as a cluster, i.e. a collection of contiguous lesion-marked voxels defined by a

neighbourhood of order 26, which means that lesion voxels that share at least one

face, edge or corner are considered to belong to the same cluster. Lesion clustering

was performed using FSL’s cluster algorithm.

We then use Minkowski functionals to extract and quantify aspects of the

geometry of each lesion. Minkowski functionals are additive measures that yield

local as well as global information with respect to the morphology of an object.

In Rd there exist d+1 such measures. In standard three-dimensional Euclidean

space, Minkowski functionals are directly related to the geometric quantities volume,

surface area, mean breadth and the Euler-Poincaré (EP) characteristic [Arns et al.,

2001; Lang et al., 2001].

Due to their completeness property [Hadwiger, 1957; Arns et al., 2001] the

functionals can be generalized to configurations with singular edges, such as voxel-

based objects consisting of cubic or cuboid lattice grains, which means that they

can be directly calculated from MRI data. The volume of a lesion, for instance,

is trivially given by the number of voxels it encompasses. The other functionals
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4.3. Support vector machines based on lesion-specific features

are obtained by considering the interface associated with the vertices of each voxel.

Each vertex of the lattice is shared by eight neighbouring voxels yielding 28 possible

configurations. The number of possible configurations, in the case of isotropic voxel

size, reduces to 22 due to rotational invariance of the measures. The contribution

from different configurations to the (local) Minkowski functionals are then used to

compute the global measure for an object.

The measure of mean breadth is related to the integral of mean curvature

[Serra, 1988] and represents the mean extension of the lesion taken over all possible

rotations in three dimensions, and gives a pose-independent measure of breadth; a

more extensive discussion can be found in Arns et al. [2001] and Lang et al. [2001].

Finally, the Euler-Poincaré characteristic is the most basic Minkowski functional

and provides a connectivity parameter of the object [Arns et al., 2010]. For a single

cluster of voxels and polyhedra in general the EP number is classically defined as

χ=V−E+F , where V,E, F denote the number of vertices, edges and faces, respec-

tively. Equivalently, it is given by 1 minus the number of holes plus the number

of handles in the geometric object. Furthermore, the whole-brain sum of EP char-

acteristics of single lesions is closely related to the total lesion count. It should be

noted that there exist more generalised notions of the Euler-Poincaré characteris-

tic in algebraic topology, see e.g. [Spanier, 1966]. For a general discussion of high

dimensional Minkowski functionals we refer to, for example, Legland et al. [2007].

A simplification in the computation of Minkowski functionals can be achieved

when considering a restricted level of connectivity between neighbouring voxels. One

can reduce the full neighbourhood of 26 adjacent voxels by taking into account only

the 6 nearest neighbours on the lattice that share a face. Voxels that only have an

edge or a corner in common are in this case considered as disconnected.

4.3.3 The feature set

As an initial preprocessing step, after extracting the geometric characteristics of

each lesion from the MRI data, we take the cubic and square root of the volume

and area measures respectively [Sormani and Filippi, 2007]. Hence all geometric

features are comparable in scale. In order to reduce redundancy and to gain greater

sensitivity to (size-independent) lesion shape, we separate volumetric information

from the measures for surface area and mean breadth by using adjusted quantities

instead. Dividing surface area and mean breadth by their expected value, assuming

the lesion was a sphere, produces adjusted measures that reflect the topological

information contained in 1D (mean breadth), 2D (surface area) and 3D (volume)
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measures and indicate how far the shape of a lesion deviates from a perfect sphere.

The single measures for each lesion do not constitute features that can be

used in a classification algorithm, since each patient has a different number of lesions.

Based on lesion-specific values for each subject, we compute whole-brain summaries

to be used as input features, consisting of the sum total, mean, median, maximum,

minimum and standard deviation for each of lesion volume, surface area, mean

breadth and the EP characteristic.

The full feature set consists of the following: The non-image-based features

for each subject comprise the demographic characteristics sex, age as well as three

clinical measures: disease duration, PASAT and EDSS. The image-based features

encompass the geometry-derived measures described above as well as the fraction of

grey matter (GM) volume to whole brain volume and intra-lesion intensity measures.

The grey matter volume can be obtained from MRI scans by using segmentation

procedures that are available, for example, within the SPM software package. The

intra-lesion intensity measures are computed for each of the three MRI modalities

and whole-brain summaries (mean, median and standard deviation) of a subject’s

MRI intensities within lesions. Since intensities recorded on MR images are relative

not absolute, we normalise the intra-lesion intensities by the median intensity of the

respective scan. These intensity measures can be viewed as an attempt to capture

texture information about the lesions.

The feature set is constructed in a way to intentionally include a range of

partially redundant features. Previous studies have mainly focused on lesion count

or lesion load, however, with mixed results. For example, Mostert et al. [2010]

found that although the total number of T2 lesions has a small predictive value for

progression of disability in RLRM, it appears to be of little relevance in progressive

types of MS.

Whole-brain summary measures lose any information about the location of

individual lesions. In order to encode a minimum of spatial information into the

feature set, we consider splitting the whole-brain summary measures according to 13

regions of interest (ROI) based on white matter (WM) track segmentations derived

from the Johns-Hopkins brain atlas (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

Atlases) or 11 lobar ROI’s based on functional anatomy, respectively. A summary

overview of the employed segmentations is provided in Figure 4.1. Lesions that cross

the boundary of two or more regions are considered to belong to the region where

the majority of their constituent voxels are located.
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Figure 4.1: Visualisation of two brain parcellations into 11 regions of interest
largely based on functionality (top) and 13 regions of interest based on white matter
track segmentations (bottom) based on the Johns-Hopkins brain atlas. Shown are
the same axial and sagittal views for both parcellations.
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4.3.4 Principal component analysis

In order to reduce the amount of redundant feature information, we use principal

component analysis (PCA) to transform the high dimensional feature sets. PCA is

a widely used technique for dimensionality reduction and feature extraction. The

main principle of PCA is an orthogonal projection of the input data onto a lower

dimensional subspace. The projection is carried out in a way such that the variance

of the resulting principal components is maximised [Bishop, 2006].

Assume we have a feature set consisting of observations {xn}Nn=1, each con-

taining d measures of interest and therefore spanning a feature space F ⊂ Rd. Let X

denote the matrix of size N×d that contains the data and assume that X is centred

at mean zero. Then the covariance matrix is given by Σ = XᵀX/(N−1).

The goal is to project the feature set onto a subspace S of dimension p<d.

Define a unit vector u. In the case of p=1, the projection occurs onto a scalar

value uᵀxn and the variance of the projected data is given by uᵀΣu. In order to

maximise this variance with respect to the constraint that uᵀu = 1, we introduce

a Lagrange multiplier λ1 [Bishop, 2006]. Hence, maximising uᵀΣu + λ1(1 − uᵀu)

yields a stationary point at Σu = λ1u. This means that u is an eigenvector of Σ

and that λ1 = uᵀΣu.

The largest value for the variance uᵀΣu of the projected data is therefore

obtained by picking the eigenvector u with the largest eigenvalue λ1. The extension

from the one-dimensional scenario to the p-dimensional case is straightforward. The

projection is given by the p largest eigenvalues and their corresponding eigenvectors

of the covariance matrix Σ.

For the computation of the principal components it is useful to consider the

connection between singular-value decomposition and PCA. Since Σ is symmetric,

there exists a diagonal form such that Σ = VDVᵀ. The columns of V correspond to

the eigenvectors (principal directions) of the covariance matrix and D is a diagonal

matrix with eigenvalues λi in decreasing order on the main diagonal. Note that the

columns of the matrix product XV represent the principal components and the rows

of XV are the representation of the projected data in the p-dimensional subspace.

If we perform a singular value decomposition on the input data such that

X = USWᵀ, then the columns of W correspond to principal directions, the columns

of US are the principal components and the singular values si are related to the

eigenvalues of Σ through λi = s2
i /(N−1). Hence, in order to reduce the dimension-

ality of the feature space to p<d, retain the first p columns of U and the p×p upper

left square matrix in S. Finally, the N×p sized matrix of principal components is

given by UN×pSp×p.
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4.3. Support vector machines based on lesion-specific features

4.3.5 Model evaluation

We consider a model space consisting of seven different feature configurations. Ta-

ble 4.1 summarises the respective feature sets.

Table 4.1: Summary of feature sets for the SVM classifier. The following abbre-
viations are used: demographic and clinical attributes (DC), grey matter volume
ratio (GM), total lesion count (count), lesion volume (load), Euler-Poincaré number
(EP), geometric summary measures (GEO), intra-lesion intensity measures (INT),
whole-brain summaries (-brain), measures split by regions of interest (-ROI).

Model Features Total number of features

M1 DC 12
M2 DC, GM-brain, count, load 19
M3 GEO-brain 60
M4 GM-ROI, EP, load-ROI 27
M5 DC, GM-ROI, INT-brain 32
M6 DC, GM-ROI, GEO-ROI, INT-ROI 920
M7 DC, GM-brain, subset of GEO & INT∗ 51

∗T2 EP characteristic and median T2 volume by WM ROI’s, standard deviation of
T1 mean breadth, median of T2 mean breadth, T1 and T1-Gd mean intensity

For model evaluation we carry out stratified k-fold cross-validation (see Sub-

section 2.4.1), where k is determined by the number of elements in the smallest

class. In the GeneMSA data set, two groups (CIs and PRMS) consist only of ten

subjects, respectively; thus k=10 to ensure that each held-out fold contains at least

one subject from these groups. The elements of the other groups are then randomly

but equally distributed amongst the k sets. Within each cross-validation fold, a

three-dimensional parameter optimisation via grid search is performed on the SVM

box-constraint, the RBF kernel parameter and the number of principal components.

Furthermore, the evaluation of different parameter sets is done by means of nested

cross-validation, i.e. in order to ensure independence of the test fold, the training

data consisting of k−1 folds is once again split into a training (k−2 folds) and a test

set (1 fold). The overall classification accuracy of the model is estimated by using

the so far unseen data from the initially held out fold.
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4.4 A Bayesian Spatial Generalised Linear Mixed Model

The Bayesian Spatial Generalised Linear Mixed Model (BSGLMM) has first been

proposed by Ge et al. [2014]. In this section we present the cornerstones of the

model. For details we refer to the original paper.

As an extension of generalised linear mixed models, a spatial generalised lin-

ear mixed model has covariates x(s) and coefficients β(s) that are spatially depen-

dent and comprise the systematic component, η(s) = xT (s)β(s); for our purposes

s ∈ R3. The form of the systematic component includes any combination of spatially

constant or varying covariates and coefficients. For computational reasons [Ge et al.,

2014], we use the probit link function, Φ−1. Let sk denote the kth voxel (or lattice

site) and Yi(sk) ∈ {0, 1} denote a Bernoulli random variable for subject i=1, . . . , N ,

indicating the presence or absence of a lesion at voxel sk. For convenience, denote

the probability of observing a lesion at sk by pi(sk) ≡ P(Yi(sk)=1). Hence, the

random, link and systematic components in the BSGLMM are specified for subject

i and voxel k as follows

[Yi(sk)|pi(sk)] ∼ Bernoulli[pi(sk)], (4.13)

Φ−1 {E[Yi(sk)|pi(sk)]} = ηi(sk), (4.14)

ηi(sk) = xTi [α + β(sk)]. (4.15)

The parameters α represent fixed effects, whereas the elements of β(sk) are

spatially varying random effects. The three components, as given above, can be

jointly written as a spatial probit regression model with mixed effects:

Φ−1 {Pr[Yi(sk)=1|ηi(sk)]} = xTi [α + β(sk)]. (4.16)

In a fully Bayesian approach we use the following priors: The fixed effect

parameters α have flat, improper, uninformative priors. The spatial random effects

β(sk) have zero-centred multivariate conditional autoregressive model (MCAR) pri-

ors [Besag, 1993; Mardia, 1988], given by

[β(sk)|β(s−k)] ∼MVN
(∑

sr∈∂sk β(sr)

n(sk)
,

Σ

n(sk)

)
, (4.17)

where β = (β(s1), . . . , β(sN ))T and β(s−k) stands for β without the element β(sk);

∂sk denotes the set of neighbours of sk and n(sk) the number of neighbouring vox-

els. The full conditional posterior distribution of β(s) is multivariate normal with

hyperparameter Σ for which we assign an improper, uninformative Wishart prior,
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4.5. A Bayesian log-Gaussian Cox process model

such that Σ−1∼W (ν, I), with ν=20 degrees of freedom and an identity scale matrix.

By Brook’s lemma, the joint posterior is therefore proportional to

π[β|Σ] ∝ exp

{
−1

2

∑
sl∼sk

[β(sl)−β(sk)]
T Σ−1 [β(sl)−β(sk)]

}
. (4.18)

In the expression above, sl∼sk indicates two neighbouring voxels that share a com-

mon face. Note that the degree of spatial regularisation induced by the MCAR

prior, as parameterised by Σ, is not fixed, but rather is estimated from the data.

Our model comprises 11 subject-specific covariates plus clinical subtype (coded

as five dummy variables), sex, age, disease duration, seven EDSS subscores and the

PASAT score. Thus, the covariate vector xi has 16 components. Age, disease du-

ration, EDSS and PASAT scores are mean-centred and equal priors (πj = 1/J , for

j=1, . . . , J) are used for each of the five MS subtypes.

The posterior distribution is estimated via Markov chain Monte Carlo. We

use Bayes’ theorem and an importance sampling approach (cf. Subsection 2.4.2) to

obtain leave-one-out-cross-validation (LOOCV) without having to run the sampler

N times. An estimate of the predictive probability that subject i is categorised as

subtype j is obtained from a sample from the posterior, weighted to discount the

(independent) contribution of subject i to the likelihood; algorithmic details can be

found in the appendix of Ge et al. [2014].

In order to reduce the overall size of the images, over 2 million voxels, we sub-

sample every other voxel in each of the xyz-directions, resulting in binary images

with voxel size 2×2×2mm3 for a total of 274, 596 voxels.

One should note that the BSGLMM almost falls into the class of univariate

models in so far as it assumes that all voxels line up across subjects. Consequently, if

one would generate new data from the model it would produce lesions only in voxels

where lesions have been observed in the known data. Hence, it does not constitute

a truly generative model.

4.5 A Bayesian log-Gaussian Cox process model

We have covered spatial point process theory in Section 2.3 and introduced the

log-Gaussian Cox process (LGCP) in Subsection 2.3.2.

The log-intensity function of a LGCP is modelled as a linear combination

of spatially varying covariates and a Gaussian process (GP). The role of the GP

is to account for any random spatial variation and clustering that is not explained
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by the covariates. The basis of our input data are lesion locations of MS patients

in conjunction with subject-specific covariates that consist of clinical measures for

disease severity as well as demographic attributes. For most applications of point

process data, the observed point pattern is a single realisation of some underlying

process. In our case, the point patterns constitute multiple realisations of a point

process, where each realisation reflects the set of lesion locations of a single subject.

Due to the high dimensionality of our application, we use a sampling algo-

rithm based on Hamiltonian Monte Carlo (HMC). In brief, HMC is based on the

description of the dynamics of a physical system by a set of differential equations,

Hamilton’s equations [Duane et al., 1987]. The algorithm emulates the evolution

of a particle system which is characterised by time-dependent position (q) and mo-

mentum (p) vectors. In our case, q contains the model parameters of interest and

p is introduced via a d-dimensional Normal distribution Nd(0,M), where d is the

dimensionality of the problem and M the mass matrix. Numerical integration for

the HMC method is usually based on the leapfrog algorithm, which alternates be-

tween updates of the position and momentum vectors. For a general discussion

of the HMC algorithm we refer to Neal [2012]. Details of the sampling technique

and particular implementation that we have used can be found in Samartsidis et al.

[2017].

The intensity function of the LGCP is given in (2.6). Estimation of the

inverse scale parameter ρ of the process is challenging. Therefore, before fitting

the model, we estimate (and fix) ρ as well as the exponent δ for the distance via

a fit of c(r, s) to the pair-correlation-function of all data [Baddeley et al., 2000;

Møller and Waagepetersen, 2004]. This is done by means of minimum contrast

estimation [Møller and Waagepetersen, 2007]. Results are summarised in Table 4.2.

The remaining mean parameter is given a weekly informative prior proportional

to N (0, 108). The HMC algorithm is initialised with the mass matrix set to be

the identity. The number of leapfrog steps is fixed at 50 and the step size of the

integrator is adjusted during burn-in to achieve an acceptance rate of close to 65%,

as suggested by Neal [2012].

The calculation of the variance-covariance matrix in the intensity function

((2.6)) is computationally expensive. Møller et al. [1998] have used an algorithm

based on circulant embedding to reduce the computational cost. The main idea

behind this method the linear algebra result that the eigenvector decomposition of

a circulant matrix is equivalent to its discrete Fourier basis. Although the variance-

covariance matrix of the LGCP is not circulant, it can be embedded in a matrix

that is circulant. Computation of the square root, inversion and multiplication of
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4.6. Application: GeneMSA data

the matrix can thereby be accelerated by using the discrete Fourier transform (DFT)

and then manipulating the Fourier coefficients. At the end, the desired results can be

obtained by computing the inverse DFT and extracting the appropriate sub-matrix.

More details are given in Rue and Held [2005].

In order to evaluate the predictive performance of the model, We use LOOCV

and importance sampling, as described in Subsection 2.4.1. Note that the LGCP

benefits from a non-parametric framework and hence flexibility in modelling spatial

data. Furthermore, its relation to multivariate Gaussian distributions make it more

computationally tractable than many other point process models.

Table 4.2: Parameter estimates for the LGCP model, for T1-weighted and T2-
weighted lesion data, respectively. Estimates are based on minimum contrast esti-
mation.

T1-weighted lesion data.

CIS RRMS PPMS SPMS PRMS

δ 1.99 0.78 0.96 1.99 1.10
ρ 0.0057 0.0278 0.0013 0.0043 0.0011

T2-weighted lesion data.

CIS RRMS PPMS SPMS PRMS

δ 1.90 0.65 0.72 1.85 1.20
ρ 0.0067 0.0324 0.247 0.015 0.056

4.6 Application: GeneMSA data

In the following we present results from fitting the NBC, SVM, BSGLMM and LGCP

models discussed in the previous sections to the GeneMSA data set.

An important notice must be given regarding the data application in this

chapter: Most of this work has been carried out before the latest revision of the

McDonald criteria [Lublin et al., 2014] became available in 2014 and in which

progressive-relapsing MS (PRMS) was abandoned as a distinct clinical subtype of

MS. The GeneMSA data set used in this chapter has been classified according to the

previous guidelines and our analysis is based on the (now obsolete) assumption that

progressive-relapsing multiple sclerosis (PRMS) is a distinct subtype. A discussion

of the data set, including summary statistics is given in Section 3.1.
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In the remainder of this section, we first discuss the SVM feature set and

posterior inference results from the BSGLMM and LGCP models. Towards the

end of the section we summarise and compare the predictive performance, based on

five-way classification into MS subtypes, for all methods.

4.6.1 SVM feature inference

Ideally, as classification outcome varies depending on the combination of features

used as input, one would like to find the most informative subset of features. This

is hindered by a very large number of available features (>900 when considering

splitting all geometric summary measures by ROI) and the fact that an exhaustive

combinatorial search is computationally infeasible. Furthermore, this would likely

lead to over-fitting by selecting a feature set that is specifically suited for the avail-

able data set but is unlikely to generalise well to new data. On the other hand,

simply using all features does impede the classifier’s predictive ability, since a ma-

jority of features would be highly correlated and the feature set would contain a

large amount of redundant information. Consider, for example, the case of a pa-

tient having only one lesion, which, in the case of CIS patients, is not uncommon.

Apart from the fact that the measures over 12 out of 13 ROIs will be zero, summary

statistics such as mean and maximum lesion volume will be identical. Thus, feature

selection or feature reduction becomes a necessity when optimising the classification

procedure.

We consider two ways of reducing the number of input features. First, we

select a subset of possible feature combinations. The selection process is based on

expected clinical relevance of individual features as determined by neurologists at

the Medical Image Analysis Center in Basel. Additionally, we take the magnitude

of weights of the support vectors in a linear SVM classification into account. Prin-

cipally, the examination of weights of individual features for the support vectors

across different models can help inform which kinds of features are driving the clas-

sification procedure. A comparison of the magnitude of SVM weights provides a

qualitative assessment of relative importance of different input features.

Inspection of the weights resulting from a SVM classifier provides a way of

estimating the importance of different features. Since it is not possible to obtain an

analytic expression for the weights and thus separate them in the non-linear case,

any visualisation has to rely on weights based on linear SVMs. Even in the linear

case the plots are meant purely as a qualitative way of visualising the importance

of input variables relative to one another. No quantitative assessments should be
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4.6. Application: GeneMSA data

drawn directly from the magnitude of individual weights.

An example of a pairwise classifier discriminating between the PPMS and

SPMS subtypes is presented in Figure 4.2. An account of all ten pairwise SVM

classifiers and their respective weights for the full feature set based on whole brain

summaries is provided in Section B.1 of the appendix. The weights have been

standardised to the occurring maximum across all classifiers which is age in RRMS–

versus–SPMS. The relevance of different geometry and intensity based features varies

depending on which groups are involved in the classification. For instance, median

T2 lesion volume is very significant in RRMS–versus–PPMS, but much less so in

other classifiers. Interestingly, for the same classifier, median T2 lesion volume

positively correlates with RRMS whereas mean T2 lesion volume shows negative

correlation. Lesion volume also shows the largest significance of T1-Gd features for

any of the classifiers. And while GM volume is not of large importance to most

of the groups, it dominates the PPMS–versus–SPMS classifier. Also, T1 maximum

lesion area and mean breadth are prominent in three out of four classifiers concerning

RLRM.

The quadratic means (root–mean–square values) of SVM weights summarised

in Figure 4.3 allow for a comparison between different sorts of features and their

variability. The three demographic attributes sex, age and disease duration carry a

considerable amount of information about MS subtypes. Age and disease duration

play a strong role in almost all classifiers and are particularly good indicators for

CIS and SPMS. Age appears to be highly predictive of SPMS, which reflects the

common disease progression from RRMS to SPMS at later stages of MS, whereas

CIS commonly marks the beginning of the disease and is, as expected, negatively

correlated with age and disease duration. Intra-lesion intensities seem to be useful

for the classification of SPMS and PPMS but appear less relevant for the other

groups. For the smallest group, PRMS, median lesion volume of both T1- and

T2-weighted scans appear to be informative for classifications against RRMS and

PPMS. PRMS is also the only group that consistently positively correlates with

being male. Among the seven EDSS subscores, BRSTMSC and MNSC seem to

carry the highest amount of information as indicated by their larger weights in most

classifiers.

In summary, with regard to geometric lesion measures, a comparison across

different classifiers indicates that the median is in many cases a better measure

than the mean, that the maximum lesion volume, area or mean breadth for a single

lesion is more meaningful than the respective minimum, and that the Euler-Poincaré

characteristic is more significant than a simple lesion count. Data obtained from
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T1-Gd MRI seems of little predictive value, largely because many patients do not

present with active lesions that would be visible on a Gadolinium enhanced scan.

This suggests that a reduction in the feature set to a single Gd-based characteristic,

such as the Euler-Poincaré number, would be a reasonable choice.

Figure 4.2: Standardised SVM weights for the pairwise classifier involving PPMS
and SPMS. All weights have been standardised to the occurring maximum across
all classifiers which is age in RRMS-versus-SPMS.
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4.6. Application: GeneMSA data

Figure 4.3: Quadratic means of SVM weights for pairwise classifiers, using whole-
brain summary measures for all available features. For visualisation purposes, the
values are normalised such that the largest is equal to one.

4.6.2 Posterior probability and intensity maps

Figure 4.4 and Figure 4.5 show axial and sagittal slices, respectively, of empirical

lesion probabilities based on lesion occurrence and binary lesion masks (top), the

estimated mean posterior probabilities from the BSGLMM model fit (middle) as well

as the intensity of the LGCP (bottom). Lesion incidence for CIS differs significantly

from the other subtypes. This reflects the fact that CIS patients have the lowest

overall lesion load. In contrast, PRMS has the highest per-subject lesion load.

Standardised parameter estimates of subject-specific covariates sex, age, dis-

ease duration, PASAT and EDSS measures are given in Figure 4.6. PASAT scores

are negatively and EDSS scores positively correlated with lesion occurrence through-

out regions of high lesion counts, reflecting higher levels of disability (lower PASAT

and higher EDSS scores correspond to more severe MS). Note the strong positive

correlation of EDSS with lesion occurrence in the minor and major forceps.
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4.6. Application: GeneMSA data
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Figure 4.6: Standardised coefficient maps of subject-level covariates as obtained
from the BSGLMM model fit. Sex was coded as 0 (male), 1 (female). DD denotes
disease duration. The Paced Auditory Serial Addition Test (PASAT) and Expanded
Disability Status Scale (EDSS) are clinical scores of disease severity; lower PASAT
and higher EDSS scores indicate greater disability. Axial slice at z=+2, sagittal
slice at x=+20.

4.6.3 Prediction Accuracies

We evaluate the predictive performance of all four classification models by computing

the confusion matrices. Due to the large discrepancy in membership numbers of the

five MS subtypes, the average accuracy is more representative of each method’s

performance than the overall accuracy (see Subsection 2.4.1). Also note that chance

level of average accuracy lies at 20%.

Table 4.3 and Table 4.4 show confusion matrices for all models based on

T1 and T2 lesion data, respectively. In case of the SVM classifier, results for two

combinations of features from multiple imaging modalities are shown in the tables.

A comparison of classification performance reveals the superiority of the spatially

informed approaches while the näıve Bayesian approach performs only slightly above

chance level. The NBC results are based on employing a lesion mask (only voxels

with at least two lesions) on the full MRI data. In contrast, when using all voxels,

the NBC yields predictions where every single subject is classified into the largest

subtype, RRMS, resulting in an average accuracy exactly equal to chance.

The feature set for the SVM (M4) (see Table 4.1) classifier comprises GM

volume by lobar ROI’s, T1 and T2 lesion count and lesion volume by WM ROI’s

but excludes any demographic or clinical covariates. It reflects the performance

of SVM on lesion data when using only traditional measures such as lesion load

and count combined with brain atrophy as measured by GM volume-to-whole-brain

ratios. The achieved average classification accuracy of 39.4% is well above chance

level and indicates that not the covariates but instead the information contained in
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4.6. Application: GeneMSA data

MRI data is predominantly driving the predictions.

The feature configuration for SVM (M7) is the one that showed the highest

prediction accuracy among our selection of feature sets. The feature set includes

GM volume, median T2 lesion volume and T2 EP characteristic split into WM ROI’s

and the following whole brain summaries: standard deviation of T1 mean breadth,

median of T2 mean breadth, T1 and T1-Gd mean intra-lesion intensities; alongside

all available demographic and clinical covariates; resulting in an average accuracy

of 47.8%.

Although the SVM classifiers are performing better than a näıve mass-univariate

approach in terms of average classification accuracy, they struggle particularly with

predicting the PPMS and PRMS subtypes. As with the NBC, the majority of

misclassified subjects are categorised as belonging to the largest group, RRMS.

The BSGLMM shows strong prediction results with an average accuracy of

78% based on T1-weighted and 82% based on T2-weighted data. The BSGLMM

confusion matrices show that misclassification predominantly occurs into the CIS

subtype. Misclassified patients tend to have fewer and smaller lesions than those

that are correctly classified, which is consistent with the clinical presentation of

the CIS subtype. Note that classification results improve when using the empirical

proportions of group-membership instead of an equal prior, achieving 81.8% (85.5%)

average (overall) accuracy on T1 data and 83.7% (79.9%) on T2 data.

The LGCP model does not consider any covariates, which, one could expect,

might put it at a disadvantage when doing predictions. With respect to the T1 data,

the classifier of the LGCP model performs well on the largest subtype (RRMS) but

has difficulty with the two smallest groups (CIS, PPMS). This can at least in part

be attributed to the small number of data points available for these subtypes, e.g.

there are only eight CIS patients with T1 lesions in the data set. A further difficulty

arises from the fact that only about half as many lesions are visible on T1-weighted

images compared to T2-weighted scans. The comparatively much higher prediction

accuracy in the case of T2 lesions indicates that additional data would likely increase

model performance with respect to the T1 lesions.

Regarding the T2 data, the LGCP’s predictive accuracy reaches 84.7% over-

all and 74.7% when averaged across groups. Among the four models considered here,

the LGCP is also the closest to a generative model for lesion data, i.e. when simu-

lating new data, it would give much more realistic predictions than the BSGLMM

for instance, which assumes independent lesion data conditional on (spatially regu-

larised) coefficients.
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Table 4.3: Confusion matrices and prediction accuracies for different classifiers
based on T1 lesion data (except for SVM).

NBC: Overall & average accuracy: 0.580 & 0.219.

CIS RRMS PPMS SPMS PRMS

CIS 0.000 0.400 0.400 0.000 0.200
RRMS 0.018 0.799 0.018 0.128 0.037
PPMS 0.000 0.923 0.077 0.000 0.000
SPMS 0.024 0.756 0.049 0.122 0.049
PRMS 0.200 0.700 0.000 0.000 0.100

SVM (M4): Overall & average accuracy: 0.536 & 0.394.

CIS RRMS PPMS SPMS PRMS

CIS 0.454 0.364 0.000 0.182 0.000
RRMS 0.139 0.595 0.064 0.162 0.041
PPMS 0.077 0.385 0.231 0.308 0.000
SPMS 0.070 0.209 0.116 0.488 0.116
PRMS 0.000 0.500 0.000 0.300 0.200

BSGLMM: Overall & average accuracy: 0.654 & 0.783.

CIS RRMS PPMS SPMS PRMS

CIS 1.000 0.000 0.000 0.000 0.000
RRMS 0.348 0.598 0.030 0.024 0.000
PPMS 0.083 0.000 0.917 0.000 0.000
SPMS 0.216 0.054 0.027 0.703 0.000
PRMS 0.100 0.100 0.100 0.000 0.700

LGCP: Overall & average accuracy: 0.753 & 0.510.

CIS RRMS PPMS SPMS PRMS

CIS 0.250 0.375 0.125 0.125 0.125
RRMS 0.056 0.850 0.069 0.019 0.006
PPMS 0.167 0.333 0.333 0.083 0.083
SPMS 0.071 0.119 0.119 0.667 0.024
PRMS 0.111 0.222 0.111 0.111 0.445
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Table 4.4: Confusion matrices and prediction accuracies for different classifiers
based on T2 lesion data (except for SVM).

NBC: Overall & average accuracy: 0.592 & 0.280.

CIS RRMS PPMS SPMS PRMS

CIS 0.000 0.500 0.200 0.000 0.300
RRMS 0.012 0.781 0.018 0.116 0.073
PPMS 0.000 0.769 0.000 0.154 0.077
SPMS 0.024 0.585 0.024 0.220 0.146
PRMS 0.000 0.600 0.000 0.000 0.400

SVM (M7): Overall & average accuracy: 0.560 & 0.478.

CIS RRMS PPMS SPMS PRMS

CIS 0.818 0.182 0.000 0.000 0.000
RRMS 0.162 0.584 0.058 0.081 0.116
PPMS 0.000 0.231 0.308 0.231 0.231
SPMS 0.023 0.093 0.116 0.581 0.186
PRMS 0.000 0.400 0.200 0.300 0.100

BSGLMM: Overall & average accuracy: 0.748 & 0.823.

CIS RRMS PPMS SPMS PRMS

CIS 1.000 0.000 0.000 0.000 0.000
RRMS 0.238 0.713 0.006 0.043 0.000
PPMS 0.083 0.000 0.917 0.000 0.000
SPMS 0.162 0.000 0.054 0.784 0.000
PRMS 0.200 0.000 0.000 0.100 0.700

LGCP: Overall & average accuracy: 0.847 & 0.747.

CIS RRMS PPMS SPMS PRMS

CIS 0.600 0.100 0.300 0.000 0.000
RRMS 0.035 0.896 0.017 0.029 0.023
PPMS 0.154 0.154 0.692 0.000 0.000
SPMS 0.023 0.116 0.093 0.767 0.000
PRMS 0.111 0.111 0.000 0.000 0.778
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4.7 Discussion

In clinical applications, objective classification algorithms have the potential to im-

prove decision making in general and to aid in the prognosis of disease progression

or treatment outcomes.

In this chapter, we applied four different classifiers to a data set of multi-

ple sclerosis patients. The results indicate that MRI data of MS lesions contain

more information about the disease than currently utilised in clinical assessments.

We used several sources of information based on MRI data, geometric and texture

measures of individual lesions, demographic and clinical characteristics and spatial

information about each lesion’s centre–of–mass to classify each patient into one of

five MS subtypes. In general, this is a challenging prediction task, as the differences

between MS subtypes in terms of imaging phenotypes are subtle.

We found moderate classification accuracies for the näıve Bayesian and SVM

classifiers. In contrast, the Bayesian spatial generalised linear model and the log-

Gaussian Cox process model showed significantly better outcomes, an indication

that spatial information is crucial to a successful classification scheme.

Whether supervised MRI-based pattern recognition can achieve the level of

sensitivity and specificity needed in order to be integrated into clinical applications

remains an open question. A shift from single predictive models to ensembles of

classifiers may produce more generalisable results by averaging the decisions of nu-

merous predictive models; see for example Koutsouleris et al. [2010]. With regard to

MS, incorporating other characteristics and quantitative measures of interest such

as biomarkers [Tintoré et al., 2008] and genetic factors [Kelly et al., 1993] into the

models could further improve prediction accuracy.

Our application study has shown that widely used machine learning tech-

niques based on support vector machines perform worse than a spatial point process

model, even when combining the demographic characteristics and clinical scores

of a subject with a large set of lesion specific geometric and intra-lesion intensity

features.

In contrast to standard mass-univariate methods, the Bayesian spatial mod-

els discussed here exploit the spatial structure of MS lesion maps and take into

account the binary nature of lesion data without an arbitrary smoothing parame-

ter. The BSGLMM explicitly includes covariates and spatially varying coefficients.

Furthermore, it is able to provide spatial information, e.g. estimates for the spa-

tially varying effects of age, sex, disease duration, EDSS and PASAT, which current

empirical methods cannot.

66



4.7. Discussion

The use of affine registration to align subjects to a common space can have

negative consequences with respect to the BSGLMM model, because the rigid body

transformation limits the degree of alignment of different brains. A future direction

of this work could investigate whether the use of high-dimensional non-linear regis-

tration, which can better align brain structures across subjects, will improve upon

the current predictive accuracies and covariate maps of the BSGLMM. However, a

potential drawback of non-linear registration lies in the fact that lesion volumes may

not change proportionally as they do with affine registration. A model for binary

lesion data that accounts for local volume changes, as does Voxel Based Morphom-

etry [Ashburner and Friston, 2000] for example, would be able to avoid any effects

of potential shrinkage or expansion of individual lesions.

The main challenge of fitting a Cox process model such as the LGCP to

spatial point pattern data lies in estimating intractable likelihoods, which is most

commonly done via computationally intensive MCMC methods. An interesting ex-

tension of the spatial point process approach would be to incorporate subject- as well

as lesion-specific attributes into the model, thereby combining the separate kinds of

information that the four methods discussed here rely upon. Chapter 5 introduces

such an extension based on a Gamma random field approach and applications can

be found in Chapter 6.

Our formulation of the LGCP model does not account for any covariates

and instead solely relies on point locations as input data. One could expect that

utilising the information contained in subject-specific measures such as demographic

characteristics and clinical scores would further improve the model fit. Explanatory

variables can be incorporated into the log-Gaussian Cox process in a regression

framework as proposed, for example, by Samartsidis et al. [2017]. In order to specify

a log-linear model over the volume of the brain B, the authors model the subject-level

intensity function at each point y ∈ B according to: log λi(y) = β0 +
∑P

p=1 βp(y)zi,p;

where β0 is a baseline parameter and βp are the regression coefficients. A similar

approach could be used to extend our LGCP model.
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Chapter 5

Poisson/Gamma random field

models for spatial point data

5.1 Introduction

In Chapter 4 we examined how two machine learning techniques, a mass-univariate

approach and a Bayesian log-Gaussian Cox process model fared in predicting multi-

ple sclerosis subtypes based on different kinds of information present in the data. In

this chapter we consider a more flexible point process model, the Poisson/Gamma

random field (PGRF) model. Specifically, we propose and evaluate several exten-

sions of the basic, independent PGRF formulation found in Subsection 2.3.3. Our

aim is to combine the spatial information about lesion location that is fundamental

to point process models with subject- and lesion-specific attributes that are more

common to machine learning models.

This chapter builds on the main statistical theory of spatial Poisson pro-

cesses as summarised in Section 2.3 and is organised as follows: The hierarchical

extension of the independent PGRF model is outlined in Section 5.2. In Section 5.3

we propose a way to incorporate global covariates that contain attributes which are

unique to a given realisation of a point pattern, i.e. subject-level characteristics.

The focus of Section 5.4 is the inclusion of marks as a means of jointly modelling

point-specific attributes together with the traditional spatial point process. Specifics

of the implementation of the HPGRF model and its variants (including covariates

and/or marks) are discussed in Section 5.5. In Section 5.6 we compare and evaluate

different model variants on a simulated set of data. Finally, Section 5.7 contains

a discussion of the merits and limitations of the model and concludes with a brief

outlook on future work.
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5.2. The hierarchical PGRF model

5.2 The hierarchical PGRF model

We have described spatial point processes in general and the independent Pois-

son/Gamma random field model in particular in Section 2.3. Kang et al. [2014a]

proposed an extension to the PGRF model of Wolpert and Ickstadt [1998b] to in-

clude a hierarchy and therefore interdependence between several types of point pat-

terns. The authors jointly modelled fMRI data of five emotional states (sadness,

happiness, anger, fear, disgust). For our purposes, the different types of point pat-

terns correspond to different subtypes, disease categories or pathologies of multiple

sclerosis.

As laid out in Section 2.3 we consider a doubly stochastic (Cox) process, such

that the spatial intensity measure Λ(dy) is described by a density function that is a

positive random field. That is, each point process realisation is a realisation of an

inhomogeneous Poisson process with intensity function λ(y).

The hierarchical Poisson/Gamma random field (HPGRF) model belongs to

the class of non-parametric models which entails greater flexibility compared to

parametric models and only weak assumptions about the data. The hierarchical

structure of the HPGRF model can be interpreted analogous to a random-effects

model. The type-specific Gamma random fields are independently drawn realisations

of a shared, population level Gamma random field. This allows for the joint analysis

of multiple types of point patterns where one assumes a connection between different

groups/types and allows for the sharing of information—in the form of positive

correlations—across types, i.e. the population-level GRF provides a link between

the random intensities of individual types.

For each type j, the spatial Poisson point processes Yj is described by type-

specific Gamma random fields Γj(dx) which themselves are realisations of a common

population level Gamma random field Γ0(dx). The general model formulation can

be summarised by the following relations

Yj ∼ PP{B,Λj(dy)}, (5.1)

Γj(dx)
iid∼ GRF{Γ0(dx), τ}, (5.2)

Γ0(dx) ∼ GRF{α(dx), β}; (5.3)

with the type specific intensity measure expressed as

Λj(dy) =

∫
B
Kσ2

j
(dy, x)Γj(dx). (5.4)
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Both Γ0(dx) and Γj(dx) share the same support, i.e. latent sources (jump

locations) θm. The group specific Gamma random fields have magnitudes (jump

heights) ηj,m associated with these point locations. The ηj,m are Gamma distributed

with individual shape parameters νm for each jump location and a common inverse

scale parameter τ . We thus write [ηj,m|νm, τ ]
iid∼ Ga(νm, τ). The νm are themselves

part of the population level Gamma random field and represent the jump heights

for Γ0(dx) at each θm. This implies that the Gamma random fields for both levels

of the hierarchy can be expressed as

Γ0(dx) =
∞∑
m=1

νmδθm(dx), (5.5)

Γj(dx) =

∞∑
m=1

ηj,mδθm(dx). (5.6)

The population level GRF is parameterised by the base measure α(dx), which

we take to be Lebesgue measure, and rate parameter β. The construction of Γ0(dx)

follows the inverse Lévy measure algorithm as described in Section 2.3. We also

use the data augmentation scheme presented in Section 2.3 for estimation of the

posterior distribution. In summary, the complete model is formulated as follows:

[(Yj ,Xj)|{(ηj,m, θm)}Mm=1, σ
2
j ] ∼ PP

{
B × B,Kσ2

j
(dy, x)

M∑
m=1

ηj,mδθm(dx)

}
, (5.7)

[ηj,m|νm, τ ]
iid∼ Ga(νm, τ), (5.8)

{(θm, νm)}Mm=1 ∼ invLévy{α(dx), β}, (5.9)

where (Yj ,Xj) denotes the joint process resulting from the data augmentation

scheme. Evaluation of the population level intensity in case of multi-type point

patterns follows directly from the reweighted mean kernel measure

K̄(dy, x) =
1

J

J∑
j=1

Kσ2
j
(dy, x) (5.10)

and can be written as

Λ0(dy) =
J∑
j=1

E[Λj(dy)|Γ0, σ
2
j , τ ] =

1

τ

∫
B
K̄(dy, x)Γ0(dx). (5.11)
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5.3. Including covariates

Let (yj ,xj) = {{(yj,i,l, xj,i,l)}Lil=1}
Nj
i=1 denote all available realisations of the

augmented process (Yj ,Xj); in the case of lesion data (yj ,xj) corresponds to the

combined point locations of all subjects belonging to subtype j. Denote the vector

of jump locations θ = {θm}Mm=1, the group-specific magnitudes ηj = {ηj,m}Mm=1 and

the jump heights for the shared random field ν = {νm}Mm=1. The target distribution

is the joint density of {xj}Jj=1, {ηj}Jj=1, {σ2
j }Jj=1,θ,ν, τ and β, given {yj}Jj=1. It is

proportional to

J∏
j=1

{
π(yj ,xj |ηj ,θ, σ2

j )× π(σ2
j )× π(ηj |ν, τ)

}
× π(θ)× π(τ)× π(ν|β)× π(β)

∝
J∏
j=1

Nj∏
i=1

{
exp

[
−

M∑
m=1

Kσ2
j
(B, θm)ηj,m

]
×

Li∏
l=1

[
kσ2

j
(yj,i,l, xj,i,l)

M∑
m=1

ηj,mIθm(xj,i,l)

]}

×
J∏
j=1

{
π(σ2

j )
M∏
m=1

[
τνm

Γ(νm)
ηνm−1
j,m exp

(
− τηj,m

)]}

× π(τ)× exp
[
− E1(βνM )

] M∏
m=1

{
1

νm
exp

[
− νmβ

]}
× π(β). (5.12)

Note that π(yj ,xj |ηj ,θ, σ2
j ) is the density of (Yj ,Xj) with respect to a unit rate

Poisson process [Møller and Waagepetersen, 2004; Kang et al., 2014a]. π(θ) is a

density with respect to the product measure
∏M
m=1 α̃(dx) and we take π(θ) ∝ 1.

We further assume the base measure α(dx) to be Lebesgue measure. This means

that α(dx) is non-atomic and therefore the θm are distinct. The densities of the

other parameters are with respect to Lebesgue measure and Iθm(xj,i,l) denotes the

indicator function with Iθm(xj,i,l) = 1 if θm = xj,i,l and 0 otherwise.

5.3 Including covariates

Some of the benefits of model-based approaches, such as the independent and inter-

dependent variants of the Poisson/Gamma random field model, lie in their flexibility

and lack of strong prior assumptions about the structure of the data. However, with

respect to multiple realisations these models implicitly assume that the underlying

intensity function is exactly the same across all realisations. In the case of a cohort of

patients with MS, each patient’s lesion pattern represents an independent realisation

of a PGRF. The HPGRF model is able to capture differences between subgroups of

these point patterns, but systematic differences between separate realisations (i.e.

subjects) within a type or subgroup are not registered. With regard to lesion data,
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such differences can arise due to, for instance, demographic or clinical particularities

of individual patients.

Apart from the exact spatial location of objects or events, it is often desirable

to include further information. This additional information could, for example in

ecological studies, relate environmental factors such as soil properties or pollution

levels to the observed spatial distribution of certain plants. Diggle [1990] and Diggle

and Rowlingson [1994] proposed a multiplicative model for the intensity function

of the spatial point process with the goal to estimate elevated risk of disease due

to environmental factors. Spatial covariates have also been used for the analysis of

tropical rainforests [Burslem et al., 2001] or the habitats of koalas [Moore et al.,

2010; Illian et al., 2012]. All of these applications consider a single realisation of a

two-dimensional point process. In our case and with regard to neuroimaging data

in general, we are dealing with multiple realisations (i.e. subjects) and thus would

like to consider external covariates that are specific to each realisation.

We adopt a multiplicative approach similar to Diggle and Rowlingson [1994].

By introducing a scaling parameter to the intensity function the model can account

for deviations from the population mean when assuming standardised covariates.

We model contributions from subject-specific attributes to the intensity function

with a log-link dependence as in univariate Poisson regression models.

5.3.1 Poisson regression

Following the theory of Generalised Linear Models (GLM), see for example McCul-

lagh and Nelder [1989] for a detailed textbook reference, we assume the response

distribution to be in the exponential family. The canonical link function for a Pois-

son model is an exponential function. Let zj,i,p, for p = 1, . . . , P , denote the set of

covariates belonging to subject i of subtype j. Regression coefficients are denoted

as γp and shared across subjects as well as subtypes. Hence, the intensity function

for a single realisation can be written as

λj,i(y) = exp

 P∑
p=1

zj,i,pγp

∫
B
kσ2

j
(y, x)Γj(dx). (5.13)

Analogously, the intensity measure for a single realisation becomes

Λj,i(dy) = exp

 P∑
p=1

zj,i,pγj,p

Λ∗j (dy), (5.14)
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5.4. Marked hierarchical PGRF models

where the intensity measure Λ∗j (dy) is the same as in (5.4) of the original model, i.e.

Λ∗j (dy) =

∫
B
Kσ2

j
(dy, x)Γj(dx) =

∫
B
Kσ2

j
(dy, x)

M∑
m=1

νj,mδθj,m(dx). (5.15)

For multiple realisations, the intensity measure again is given by

Λj(dy) =

Nj∏
i=1

Λj,i(dy). (5.16)

Finally, the full joint density can be written as

π(·) ∝
J∏
j=1

Nj∏
i=1

exp

− exp

 P∑
p=1

zj,i,pγj,p

 M∑
m=1

Kσ2
j
(B, θm)ηj,m +

P∑
p=1

zj,i,pγj,p


×

Li∏
l=1

[
kσ2

j
(yj,i,l, xj,i,l)

M∑
m=1

ηj,mIθm(xj,i,l)

]}

×
J∏
j=1

{
π(σ2

j )
M∏
m=1

[
τνm

Γ(νm)
ηνm−1
j,m exp

(
− τηj,m

)]}

× π(τ)× exp
[
− E1(βνM )

] M∏
m=1

{
1

νm
exp

[
− νmβ

]}
× π(β). (5.17)

5.4 Marked hierarchical PGRF models

We have briefly introduced the concept of marked point processes at the end of

Section 2.3. In the present section, we first add a constant and spatially independent

mark process to the model described in Section 5.2 and then introduce the fully

spatially varying process where the mark distribution also depends on the underlying

spatial intensity.

We carefully draw the distinction between covariates and marks. Covariates

are general properties of a whole realisation, like a demographic variable of an MS

patient (e.g. age, gender), or large-scale non-local environmental properties (e.g. soil

properties, pollution levels). Marks are small-scale, local attributes of individual

objects or events, and in our setting are directly attached to a point location. Marks

may or may not be independent of the point process. For example, a simple marked

Cox process comprises a set of independent and identically distributed marks w

according to some density π(w) that are also independent from a Cox process with
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intensity function λ(y). Then the density of the joint process is simply given by

π(w)λ(y) [Møller and Waagepetersen, 2004]. Note that the HPGRF model can

already be regarded as a marked point process model in the sense of having attached

a categorical (type-specific) mark to each point location. In the following, we always

mean continuous, spatially dependent marks when referring to the“marked”process.

Marks that depend on the intensity function of the point process can be used

to model quantities that are correlated (positively or negatively) with the probability

of observing points in any given region. Diggle et al. [2010] have used intensity-

dependent marks in conjunction with preferential sampling in a geostatistics setting.

Other recent examples in the literature of models for point patterns that include

spatially dependent marks are Ho and Stoyan [2008]; Myllymäki and Penttinen

[2009]. In terms of MS lesion data, high rates of lesion incidence may be indicative of

areas of the brain where lesions are likely to persist and grow over time. Additionally,

several small lesions in early stages of MS may merge into fewer bigger lesions as the

disease progresses. Therefore, when modelling lesional point patterns, marks that

carry information about the size of individual lesions may be able to explain some

of the additional variance in the data.

5.4.1 The marked HPGRF model with additional covariates

In the previous section we have related point process intensities to subject-specific

attributes by introducing spatially non-varying covariates such as demographic data

or clinical scores. By associating a mark with each point we can also model point-

specific attributes.

For all of the following, we keep these non-spatial regressors as part of the

model. However, the model without covariates can easily be obtained by setting

all predictors zp ≡ 0. We call the non-marked, spatial point process part of the

model the ground process, as opposed to the combined or marked process, which

includes a mark distribution placed at each point yj,i,l ∈ Yj . We consider only

marks that are independently marked, following definition (3) in Cronie and van

Lieshout [2016] which defines a marked process as being independently marked if,

given the locations of the corresponding points of the ground process, the marks

are independent random variables with a distribution that depends only on the

point location (cf. definition 6.4III in Daley and Vere-Jones [2003]). Therefore, any

interaction in the marked process is due to interactions in the ground process. Note

that we are not assuming any interaction between marks themselves. From before,

the density for the ground process is given by (5.17).
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5.4. Marked hierarchical PGRF models

5.4.2 Assuming an independent mark distribution

If, in addition to the marks being independent of one another, the mark process with

marks w ∈ W does not depend on the spatial location, the combined process Y is

said to have the random labelling property [Cronie and van Lieshout, 2016]. If we

further assume that the marks are normally distributed, then wj,i,l are independent

Gaussian marks with a simple, spatially constant mark distribution with a type-

specific baseline aj and random fluctuations εj,i,l such that w(yj,i,l) ≡ wj,i,l = aj +

εj,i,l. For lesion l of subject i in type j, the random error ε(yj,i,l) ≡ εj,i,l has a

Gaussian distribution with mean 0 and variance σ2
w and we write

wj,i,l
iid∼ N (aj , σ

2
w). (5.18)

In our application of the model to MS lesion data, we take the mark on

each point to reflect individual, volume-adjusted lesion size V ∗l = V
1/3
l for lesion

l of a given subject. Assume that the mark distribution differs for different MS

subtypes j and denote prior distributions on the parameters aj by π(aj). The

mark space W comprises the non-negative real line up to the (adjusted) total brain

volume, i.e. w(y) ∈ [0, |B|1/3]. Note that realistic values of lesion volume are of

course much smaller than the total brain volume. To enforce positive mark values

one can model the marks instead as log-Gaussian random variables, resulting in

wj,i,l
iid∼ log-N (aj , σ

2
w). Denote the set of marks for type j as wj = {{wj,i,l}Lil=1}

Nj
i=1.

The joint likelihood is schematically given by π(yj ,wj) = π(yj)×π(wj), leading to

the following expression for the joint density:

π[·] ∝
J∏
j=1

Nj∏
i=1

exp

− exp

 P∑
p=1

zj,i,pγj,p

 M∑
m=1

Kσ2
j
(B, θm)ηj,m +

P∑
p=1

zj,i,pγj,p


×

Li∏
l=1

[
kσ2

j
(yj,i,l, xj,i,l)

M∑
m=1

ηj,mIθm(xj,i,l)

]}

×
J∏
j=1

{
π(σ2

j )

M∏
m=1

[
τνm

Γ(νm)
ηνm−1
j,m exp

(
− τηj,m

)]}
× π(τ)

× exp
[
− E1(βνM )

] M∏
m=1

{
1

νm
exp

[
− νmβ

]}
× π(β)

×
J∏
j=1


Nj∏
i=1

Li∏
l=1

1

σw
exp

[
−(lnwj,i,l − aj)2

2σ2
w

]
× π(aj)

× π(σ2
w), (5.19)

where the last line captures the contribution from marks and the others represent
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the ground process.

5.4.3 The intensity-marked HPGRF model

Ho and Stoyan [2008] introduced a density-dependent marked Cox process with

marks w on points y of a log-Gaussian Cox process as w(y) = a+ bλ(y) + ε(y). The

mark distribution therefore is spatially dependent and driven by the intensity of the

point process. The case of b>0 (b<0) results in the marks being large (small) in

regions of high point density.

Adapting the intensity-marked process to the HPGRF model, we make the

baseline parameter a and the interaction coefficient b type dependent. The log-

marks are modelled as lnwj,i,l = aj + bjλ(yj,i,l) + ε(yj,i,l) with the mark distribution

thus given as

wj,i,l|λ(yj,i,l) ∼ log-N
(
aj + bjλ(yj,i,l), σ

2
w

)
. (5.20)

Finally, the full joint density of the intensity marked hierarchical Poisson/Gamma

random field (imHPGRF) model is expressed as

π[·] ∝
J∏
j=1

Nj∏
i=1

exp

− exp

 P∑
p=1

zj,i,pγj,p

 M∑
m=1

Kσ2
j
(B, θm)ηj,m +

P∑
p=1

zj,i,pγj,p


×

Li∏
l=1

[
kσ2

j
(yj,i,l, xj,i,l)

M∑
m=1

ηj,mIθm(xj,i,l)

]}

×
J∏
j=1

{
π(σ2

j )
M∏
m=1

[
τνm

Γ(νm)
ηνm−1
j,m exp

(
− τηj,m

)]}
× π(τ)

× exp
[
− E1(βνM )

] M∏
m=1

{
1

νm
exp

[
− νmβ

]}
× π(β)

×
J∏
j=1


Nj∏
i=1

Li∏
l=1

1

σw
exp

[
−(lnwj,i,l − cj,i,l)2

2σ2
w

]
× π(aj)× π(bj)

× π(σ2
w),

(5.21)

where

cj,i,l ≡ aj +bjλj(yj,i,l) = aj +bj

exp

 P∑
p=1

zj,i,pγp

 M∑
m=1

kσ2
j
(yj,i,l, θm)ηj,m

 . (5.22)
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5.5. Posterior approximation and sampling algorithm

5.4.4 Variance-stabilised marks

The posterior estimation of mark parameters depends on a smooth estimate of the

underlying spatial field. A noisy (i.e. “bumpy”) estimate of the spatial intensity

makes it harder for the model to correctly estimate the mark parameters. An in-

creased variability in the spatial field drives the mark parameters closer to the grand

mean. Hence, the estimates of the mark parameters will show a bias. The estimate

of the baseline parameter a will become inflated and the coefficient b linking the

marks to the spatial intensity will be underestimated. In short, in almost all cases

we will observe that var(w|λ) ≤ var(w|λ̂).

A way to reduce this bias would be to use a square-root- or log-transform to

link the spatial intensity with the mark process; for example, by assuming a mark

distribution of the form

wj,i,l ∼ N (aj + bj log λj(yj,i,l)). (5.23)

or

wj,i,l ∼ log-N (aj + bj log λj(yj,i,l)). (5.24)

Note that such a model formulation would introduce a sign change in the interpre-

tation of the mark parameter b as the log-intensity function is always negative.

5.5 Posterior approximation and sampling algorithm

In this section, we briefly discuss the MCMC scheme to sample the model parame-

ters of the intensity-marked HPGRF model with additional covariates. Algorithmic

details of all update routines, including the non-marked HPGRF variants, are rele-

gated to Appendix A.

The MCMC algorithm that we use is essentially a Gibbs sampler. Most

updates are not conjugate which means that additional MCMC techniques such as

Metropolis-Hastings-within-Gibbs schemes or adaptive-rejection sampling are nec-

essary. A simple proposal distribution for the Metropolis-Hastings algorithm that

satisfies the detailed balance condition follows a multi-dimensional random walk.

By adjusting the width of the proposal distribution during burn-in, one can mod-

ify the step size, i.e. the distance between subsequent proposals, in order to more

effectively traverse the space of the posterior distribution and improve mixing. Ran-

dom walk Metropolis-Hastings updates carry a number of disadvantages with them,

most notably a high correlation between subsequent samples, potentially slow mix-
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ing and slow convergence to the target distribution. Still, for many high dimensional

Bayesian settings, this is the most viable option. We use Metropolis-Hastings-within-

Gibbs sampling paired with symmetric random walk proposals to draw from the full

conditional distributions for regression coefficients γp, latent sources θm, shared jump

heights νm and shared inverse scale parameter β of the Gamma random field, and

kernel variance σ2
j . Both inverse scale parameters β and τ are assigned Gamma

priors, making the update of the group-specific inverse scale parameter τ conjugate.

Conjugate priors are also used for the mark parameters, i.e a Normal prior on aj

and bj , and an inverse Gamma prior on σ2
w.

A natural (and simple) choice for base measure α(dx) of the Gamma ran-

dom field is to use Lebesgue measure. We normalise by the Lebesgue measure of the

subset B of Rn on which the point process is defined. In our case B ⊂ R3 and B is

equivalent to the human brain. We write α(dx) = Π(dx)/|B|, where Π(dx) denotes

Lebesgue measure and the Euclidean volume is given by |B| =
∫
B Π(dx). For the

inverse Lévy construction of the Gamma random field, this implies that α̃(B) = 1

and α̃(dx) = α(dx). The update for auxiliary points xj,i,l of the data augmenta-

tion scheme is directly given by the conditional distribution which assigns individual

points to a jump location θm. Conditional on the presence of one or more auxiliary

points at a given jump location, the θm are updated using a symmetric random walk

and a Metropolis-Hastings acceptance step. For jumps that do not share a location

with any auxiliary points, the update consists of a uniform draw over the whole do-

main. Group-specific jump heights ηj,m follow a Gamma distribution combined with

a term in non-closed form, hence a proposal is drawn from the Gamma distribution

and accepted according to the corresponding Metropolis-Hastings ratio.

All parameters are assigned vague or weakly informative priors. Specific

settings are given for the simulation study in Section 5.6 and for the real data

applications in Chapter 6. Conditional posterior distributions, updates and sampling

algorithms for all model parameters are provided in Appendix A.

5.6 Simulation study

In this section, we create a simulated data set to demonstrate how the HPGRF model

can incorporate additional information, both spatially dependent and independent,

alongside traditional point data to arrive at more accurate estimates for the intensity.
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5.6. Simulation study

5.6.1 Simulated spatial data

The synthetic data set is based on three-dimensional point patterns on a volume

V = [0, 100] × [0, 100] × [0, 20]. We simulate three groups (types) A,B and C of

points that share some areas of increased intensity. The true intensity functions for

the three types are mixtures of four three-dimensional Gaussian densities φ3(x;µ,Σ),

which are characterised by means µn and covariance structures Σn, for n=1, 2, 3, 4.

For each group j=A,B,C we draw Nj=30 realisations according to

Yj |µ,Σ ∼ PP {V, λj(x)dx} , (5.25)

where µ,Σ indicate the sets of parameters characterising the Gaussian densities.

The true intensities for the three groups are composed as follows:

λA(x) = ε+ α2φ3(x;µ2,Σ2) + α3φ3(x;µ3,Σ3),

λB(x) = ε+ α2φ3(x;µ2,Σ2) + α4φ3(x;µ4,Σ4),

λC(x) = ε+ α1φ3(x;µ1,Σ1) + α2φ3(x;µ2,Σ2) + α3φ3(x;µ3,Σ3). (5.26)

A homogeneous, non-zero background intensity is denoted by ε=20/|V|. The re-

Table 5.1: Parameter specification for simulated data sets.

n 1 2 3 4

αn 4 5 1 3
µn (60, 75, 10) (70, 30, 10) (40, 50, 10) (10, 20, 10)

Σn

30 15 10
15 15 5
10 5 5

  30 −10 −10
−10 40 5
−10 5 10

 20 −5 5
−5 10 −5
5 −5 5

 10 5 0
5 20 5
0 5 10



maining intensity parameters are summarised in Table 5.1. The ground truth ex-

hibits accumulation of points in four regions (see top row in Figure 5.3). All three

simulated types share clustering in region IV. Groups A and C have common clus-

tering in region II. Regions I and III show an increase in intensity only for group B

and group C, respectively. The event locations of the simulated data set are shown

in the second row of Figure 5.3.
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5.6.2 Simulated covariates

We simulate a set of three covariates for each realisation xj,i of the point process.

These covariates consist of one completely random covariate (z1), one highly infor-

mative covariate (z2) that is directly proportional to the log-count of points for that

realisation and one covariate (z3) that is correlated with the group to which the

point pattern belongs. Summary statistics of the simulated covariates are listed in

Table 5.2. The covariates are standardised to mean zero and standard deviation one

before running the model. Note that the spatial process provides the intercept in

the regression framework, thus there is no intercept needed in the design matrix.

Table 5.2: Summary statistics of simulated points and covariates.

A B C Total

Total # of points 621 824 935 2380
Mean # of points (SD) 20.70 (4.44) 27.47 (5.78) 31.17 (5.04) 26.44 (6.68)
Median # of points 21 28.5 32 26
IQR # of points [18, 23] [24, 30] [27, 34] [22, 32]
Mean z1 (SD) 1.59 (0.96) 1.69 (0.86) 1.60 (0.77) 1.63 (0.86)
Median z1 1.62 1.64 1.54 1.59
IQR z1 [0.85, 2.59] [0.85, 2.39] [0.95 ,2.15] [0.85, 2.40]
Mean z2 (SD) 0.16 (0.09) 5.12 (0.09) 10.15 (0.09) 5.14 (4.10)
Median z2 0.17 5.10 10.15 5.10
IQR z2 [0.06, 0.24] [5.04, 5.21] [10.07, 10.23] [0.24, 10.07]
Mean z3 (SD) 0.75 (0.06) 0.82 (0.06) 0.86 (0.04) 0.81 (0.07)
Median z3 0.76 0.84 0.87 0.81
IQR z3 [0.72, 0.78] [0.79, 0.85] [0.82, 0.88] [0.77, 0.87]

5.6.3 Simulated mark process

We use intensity-dependent Gaussian marks wj,i,l ≡ f(λ(xj,i,l)). The individual

mark values are sampled from a Normal distribution whose mean is characterised

by a spatially constant baseline parameter aj and an intensity-dependent term with

interaction strength bj such that

wj,i,l ∼ N
(
aj + bjλj(xj,i,l), σw

)
. (5.27)

The variance parameter σw is shared across the three types. Chosen parameter val-

ues for the simulation of the marks are listed in Table 5.6 and summary statistics
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are provided in Table 5.3. For illustration, an intensity map of the expected mark

value for a slice at z=10 is provided in Figure 5.4.

Table 5.3: Mean and standard deviation of simulated mark values per group.
Regions I–IV are defined in Figure 5.3.

Total I II III IV Rest

A 6.01 (2.80) 3.92 (0.62) 6.42 (2.64) 4.14 (0.95) 8.19 (2.89) 4.31 (1.04)
B 7.25 (2.73) 9.00 (2.87) 4.70 (1.23) 4.744 (0.78) 8.55 (2.42) 5.20 (1.01)
C 2.88 (1.01) 4.31 (1.62) 9.96 (5.36) 5.32 (1.66) 3.06 (1.01) 5.64 (4.10)

5.6.4 Simulation setup

Details of the MCMC updates are provided in Appendix A. We set the number of

jump locations for the approximation of the Gamma random field to M=5, 000 and

keep the size of the smoothing kernel fixed, setting σ2
j=4.0 for all three types. The

MCMC algorithm is run for a total number of 15, 000 iterations with a burn-in of

5, 000 iterations. After burn-in the chain is thinned to retain every 10th draw from

the posterior, resulting in 1, 000 posterior samples.

The prior specifications are as follows: For inverse scale parameters of the

Gamma random fields we use vague priors β ∼ G(0.001, 0.001) and τ ∼ G(0.001, 0.001).

In runs where the kernel variance is being estimated we assign an uninformative

uniform prior, σ−2
j ∼ U [0.01, 50], otherwise the parameter is held fixed. The mark

parameters are given broad Normal priors, aj ∼ N (0.1, 100), bj ∼ N (1.0, 2000).

Due to conjugacy the mark variance is assigned an inverse-Gamma prior, chosen

as σ2
w ∼ IG(5.0, 10.0). The variance parameters for any random walk Metropolis-

Hastings updates are initialised to ζ2
∗=0.01 and adjusted every 25 iterations dur-

ing burn-in, depending on the acceptance rate over the previous 100 iterations and

with optimal target acceptance rate of 44% for one-dimensional parameters [Gelfand

et al., 2010].

To run the imHPGRF model with this configuration on an Intel Core i7-3770

CPU with 3.40GHz takes over 100 hours. By employing OpenMP to parallelise parts

of the code and utilise up to six cores simultaneously, we could achieve a 3–4 fold

reduction, resulting in a total computation time of approximately 30 hours.
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5.6.5 Simulation results and model assessment

We carry out three separate runs to ensure convergence and stability of results.

The different starting positions are drawn from the prior configurations and in-

clude different seed numbers. We find that the same realisations are misclassified in

each run and that the 95% credible intervals of the posterior parameter estimates

overlap. The model parameters show good mixing behaviour (Figure 5.1) and the

autocorrelation function declines rapidly for most parameters (Figure 5.2). How-

ever, the interaction parameters b of the mark process as well as shared inverse scale

parameter β of the population-level Gamma random field exhibit some long-range

autocorrelations.
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5.6. Simulation study

In Figure 5.3 two-dimensional slices of the estimated posterior mean intensity

for the plain HPGRF model and the intensity-marked HPGRF are shown, respec-

tively. A two-dimensional map of estimated mark intensity is shown in Figure 5.4.

Figure 5.3: Top row : True spatial intensity maps for three simulated types A,B
and C of point pattern data. Regions I–IV indicate areas of high intensity. Second
row : Locations of simulated points for the three groups. he patterns show the
full data set (30 realisations for each of the three point processes), projected onto
the xy-plane. The total number of points is 2, 380 (A: 621, B: 824, C: 935). Third
row : Estimated posterior mean spatial intensity for the non-marked HPGRF model.
Bottom row : Estimated posterior mean spatial intensity for the marked imHPGRF
model. Slice shown at z=10.
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Figure 5.4: Top row : True expected intensity of the simulated mark process.
Bottom row : Estimated posterior mean intensity as a result of the imHPGRF model
fit. Slice shown at z=10.

The integrated mean posterior intensities provide an estimate for the ex-

pected number of points per type (see Table 5.4). The total number of points

constitutes a first order property of the process and comparing the posterior esti-

mate with the empirical count as provided by the data is a standard model check.

In the case of the imHPGRF model variant with covariates, 95% credible intervals

of mean posterior count estimates for each of the three groups A,B and C cover

53% (16/30), 37% (11/30) and 43% (13/30) of the simulated data, respectively.

We consider a second order posterior predictive test [Diggle, 2014; Baddeley

et al., 2005] that involves computation of the L-function [Møller and Waagepetersen,

2004, 2007; Illian et al., 2009]. Given an intensity λj and a realisation yj , the L-

function for distance r is computed as

L(r|yj , λj(y)) =

 3

4π|B|
∑

y∗1 ,y
∗
2∈yj

1[||y1,y2||≤r]

λj(y∗1) · λj(y∗2)

 1
3

, (5.28)

where y∗1 and y∗2 are individual points belonging to the same posterior realisation

y
(t)
j or initial data point yj,i. Illian et al. [2009] suggest to look at the differences
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5.6. Simulation study

Table 5.4: Data and mean posterior estimate of the average number of points in
each group. Posterior estimates are based on 1, 000 samples of the integrated spatial
intensity per type.

HPGRF

Empirical mean Posterior mean 95% CI

A 20.70 20.90 (19.17, 22.68)
B 27.47 27.64 (25.23, 30.03)
C 31.17 31.23 (29.21, 33.94)
Total 26.44 25.28 (21.47, 30.20)

imHPGRF

Empirical mean Posterior mean 95% CI

A 20.70 20.95 (19.41, 22.62)
B 27.47 27.62 (25.71, 29.44)
C 31.17 31.25 (29.42, 33.22)
Total 26.44 24.91 (21.31, 29.65)

imHPGRF with covariates

Empirical mean Posterior mean 95% CI

A 20.70 20.96 (19.25, 23.31)
B 27.47 27.59 (25.54, 29.78)
C 31.17 31.25 (29.47, 33.41)
Total 26.44 25.29 (21.98, 29.72)

∆j,i(r) ≡ L(r|yj,i, λ(t)
j (y)) − L(r|y(t)

j , λ
(t)
j (y)), where λ

(t)
j denotes the tth posterior

estimate of the intensity. Hence, ∆j,i(r) compares the L-functions of the input data

with the L-function of a posterior realisation, given the posterior estimate of the

intensity function at that sample draw. By calculating this difference between input

data and all posterior predictive samples t=1, . . . , T one obtains 95% credible inter-

vals for ∆j,i(r) at various distances. Ideally, the credible interval for each subject (or

simulated realisation) i contains zero, which would indicate that the model performs

well in explaining the data. We use a range of [0, 100] in steps of ∆r=1. For r≤20,

more than 85% of the simulated data have a credible interval that contains zero. For

distances greater than 20, 70% of all data points satisfy this condition. Overall, the

posterior predictive checks indicate that the model is able to reproduce the general

structure of the input data; see Figure 5.5.
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Figure 5.5: Results of the posterior predictive check for second order properties
of the point process. Shown are the proportion of realisations which have credible
intervals ∆j,i(r) that contain zero. The posterior predictive samples were generated
from 1,000 posterior draws of the intensity. Note: A small jitter was added to make
overlapping points distinguishable.

We further assess the performance of the model variants by computing the

integrated mean squared error (IMSE) and integrated weighted mean squared error

(IWMSE) given by the relations

IMSE =
1

J

J∑
j=1

∫
Z

[
λ̂j(y)− λj(y)

]2
dy,

IWMSE =
1

J

J∑
j=1

∫
Z
λj(y)

[
λ̂j(y)− λj(y)

]2
dy. (5.29)

In (5.29) above, λ̂j(y) denotes the estimated intensity function for type j while

λj(y) represents the true intensity. Note that the IWMSE increases the relative

contribution of regions with larger true intensity. The results are summarised in

Table 5.5. The imHPGF model with and without additional covariates exhibits an

lower overall IMSE and IWMSE than the un-marked HPGRF variants. The addition

of covariates has mixed effects as it slightly increases the discrepancy between fitted

and true intensity for group C in case of the HPGRF and for groups A and B in

case of the imHPGRF.

Posterior estimates of the mark parameters are summarised in Table 5.6.

The mark residuals are given by the deviation of estimated values ŵi from the truth

as given by the underlying process that generates the simulated data such that

rj,i,l = E[wj,i,l] − ŵj,i,l, for each mark value wj,i,l. The index l ranges from one to

Li, with Li being the number of points per realisation i in group j. The expectation

E[wj,i,l] is given by the mean of the true mark distribution in (5.27). The estimated
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values ŵj,i,l are mean posterior estimates of the mark process.

Standardised root-mean-squared errors (RMSE) are computed as (
∑

(wj,i,l−
ŵj,i,l)

2)1/2/(
∑

(wj,i,l− w̄j,i,l)2)1/2, where the sum runs over i and l for group-specific

estimates of the RMSE, and over all three indices for the total RMSE score. Values

smaller than one indicate that the addition of marks can explain some proportion

of the variance in the data (see Table 5.5). The marks appear to improve the model

fit for group C, which contains the highest intensity levels and therefore the largest

effect on the intensity-dependent mark process. Residuals of the estimated mark

process are shown in Figure 5.6. Histograms of mark residuals are shown in Fig-

ure 5.7. The two rows in the lower half of the figure show residuals with respect

to mark values that are based either on posterior estimates of the spatial intensity

(third row) or posterior estimates of the mark parameters (last row). This can help

to determine as to what extent a deviation in the estimated intensity from the true

intensity influences the mark process.

Figure 5.6: Mark residuals versus predicted mark values. The top row shows the
plain residuals rj,i,l. The bottom row shows standardised residuals based on the
estimated MCMC standard error.

A summary of posterior results for regression coefficients is listed in Table 5.7. The

coefficient γ1 of the random covariate is estimated close to zero. As expected, the

second covariate which was modelled as being directly dependent on the number

of points per realisation is found to be the most informative predictor. The third

simulated covariate is proportional to the group label and shows a weak positive

correlation with overall count, which is consistent with the average number of points

within the three different types of point pattern. Finally, confusion matrices for all

model variants are summarised in Table 5.8. The plain HPGRF already achieves a
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Figure 5.7: Histograms of mark residuals when applying the imHPGRF model
to the simulated data set. First row : Residuals with respect to the true spatial
intensity λ. Second row : Standardised residuals based on the estimated standard
error ŝ. Third row : Residuals with respect to the mean posterior estimate of the
spatial intensity λ̂. Bottom row : Residuals with respect to marks ŵ(y) that are
computed using the true spatial intensity but posterior mean estimates for the mark
parameters.

high classification accuracy of 93.3%. Inclusion of covariates and marks increases

the prediction accuracy to 95.6% and 98.9%, respectively.
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Table 5.6: Summary of ground truth and estimated posterior mean mark param-
eters, including 95% credible intervals.

Truth

A B C Shared

aj 4.0 5.0 3.0 /
bj 1500 1200 750 /
σw / / / 1.0

imHPGRF

A B C Shared

aj 5.42 [5.18, 5.61] 6.13 [5.89, 6.35] 3.54 [3.20, 3.84] /
bj 383 [308, 449] 430 [372, 478] 597 [546, 654] /
σw / / / 4.65 [4.05, 5.33]

imHPGRF with covariates

A B C Shared

aj 5.55 [5.37, 5.84] 6.35 [6.15, 6.57] 3.80 [3.46,3.99] /
bj 317 [255, 390] 386 [354, 417] 625 [582, 675] /
σw / / / 4.42 [3.96, 4.81]

Table 5.7: Summary of ground truth and mean posterior estimates of regression
coefficients, including 95% credible intervals.

Truth HPGRF + cov. imHPGRF + cov.

γ1 0.0 -0.016 [-0.050, 0.012] -0.017 [-0.035, 0.008]
γ2 2.0 1.283 [0.985, 1.633] 2.748 [1.879, 3.676]
γ3 0.2 0.182 [0.132, 0.226] 0.197 [0.157, 0.247]
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5.6. Simulation study

Table 5.8: Summary of confusion matrices and prediction accuracies for the sim-
ulation study. Rows correspond to truth.

HPGRF: Prediction accuracy: 0.933.

A B C

A 0. 97 (29) 0.03 (1) 0.0 (0)
B 0.17 (5) 0.83 (25) 0.0 (0)
C 0.0 (0) 0.0 (0) 1.0 (30)

HPGRF with covariates: Prediction accuracy: 0.956.

A B C

A 0.93 (28) 0.07 (2) 0.0 (0)
B 0.07 (2) 0.93 (28) 0.0 (0)
C 0.0 (0) 0.0 (0) 1.0 (30)

imHPGRF (with and without covariates): Prediction accuracy: 0.989.

A B C

A 1.0 (30) 0.0 (0) 0.0 (0)
B 0.03 (1) 0.97 (29) 0.0 (0)
C 0.0 (0) 0.0 (0) 1.0 (30)
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5.7 Discussion

In this chapter we focused on a particular class of Cox process models, namely

the Poisson/Gamma random field model, for multi-type spatial point patterns. We

presented an intensity-marked hierarchical point process model that is also able to

incorporate covariates unique to a given point pattern. Our imHPGRF model is

based on and extends the approaches of Wolpert and Ickstadt [1998b] and Kang

et al. [2014a]. The HPGRF model is able to share information between different

point patterns and can model more complicated multivariate spatial structures than

the PGRF of Wolpert and Ickstadt [1998b]. While the HPGRF model of Kang et al.

[2014a] accounts for positive correlations between different types of spatial point pat-

terns, it does not include any local or global information beyond the xyz-coordinates

of individual events. The imHPGRF model on the other hand combines the under-

lying spatial stochastic process with a potentially intensity-dependent mark process

that contains additional information about individual point locations.

We simulated three-dimensional spatial point patterns from three modified

Thomas processes [Van Lieshout and Baddeley, 2002]. The Thomas process belongs

to the family of Cox cluster processes and has the advantage that it is easy to

sample from it. Our real datasets based on MS lesion locations show accumulation

of points in brain areas with high white matter density. Choosing a process that

exhibits clustering for the simulation study therefore seems justified. Note that a

direct “simulation under the model” is not possible in our case, due to the non-

parametric nature and large number of latent variables of the model.

The simulation study carried out in this chapter demonstrated that modelling

the intensity function of a Cox process via the convolution of a Gamma random field

with a Gaussian kernel can successfully reproduce the true intensity in a sparse,

three-dimensional setting. Furthermore, adding covariates and marks can improve

posterior intensity estimates and aid in classification and prediction tasks. However,

in real data applications, the choice of how to model the mark structure and its

dependence on the spatial intensity function needs to take into account the particular

distribution of marks in the observed data. The Gaussian and log-Gaussian mark

dependencies that we have explored here, are likely to be ill suited in cases where

mark values show a lot of variation. Additionally, the intensity-dependent mark

model necessarily requires a good fit of the spatial intensity in order to be able to

estimate the mark parameters.

The implementation of the model is not straightforward and assessment of

convergence and fine-tuning of the MCMC algorithm needs to be done separately
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5.7. Discussion

for every application. Due to the large number of latent variables, convergence diag-

nostics for the imHPGRF model have to be selective. Alongside model parameters,

convergence of the intensity function can only be monitored at a finite number of

points. Even that is not a guarantee that the MCMC algorithm has fully converged.

At the same time, model-based methods like the imHPGRF allow for the quantifica-

tion of uncertainty through standard errors obtained from the posterior distribution

of any parameter of interest.

5.7.1 Limitations

An inherent limitation of any variant of the Poisson/Gamma random field model

lies in the truncation error when approximating the Gamma random field with a

finite number of jumps. Theoretically, this truncation error can be made arbitrarily

small by increasing the number of latent sources M . In practice, M usually needs

to be significantly larger than the total number of observed points in the data to

produce a good model fit. For constant base measure α(dx) and constant inverse

scale parameter β, the inverse Lévy measure algorithm generates jump heights θm

in strictly decreasing order [Wolpert and Ickstadt, 1998b]. In order to estimate the

truncation error, one can sample a random number Mε that represents the number of

jumps necessary until a previously chosen ε>0 would exceed the next jump height.

Then the expected truncation error obeys the bound E[Γ(B) − ΓMε(B)] ≤ εα(B)

[Wolpert and Ickstadt, 1998b].

The parameter estimates given in Table 5.6 show that, regardless of including

covariates or not, the imHPGRF model struggled to predict the true mark parameter

values. The intensity-dependent mark process falls short when trying to model

individual mark values that are far from the mean. These cases are not captured

well by the model as it tries to estimate a smooth spatial intensity function. Large

mark values would have to be the result of either a high baseline parameter, thereby

increasing all mark values or a very large interaction coefficient on the side of the

mark process; or, with respect to the Poisson point process, large local values in

the intensity, similar to spikes. Another reason for why the parameter estimates are

not very good may be attributed to the relatively small number of 30 point pattern

realisations per group that constitutes the simulated dataset. This choice was based

on the intent to mimic real data sets where usually only small sample sizes are

available for different disease subtypes. We would expect that a larger number of

training data would increase the accuracy of the parameter estimates.

The suboptimal results for the mark parameters have implications for the
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application of the model to real data sets. The simulation study indicates that the

model is better suited for applications with marks that are close to the overall mean,

especially when sample sizes are small. In cases with large discrepancies between

individual mark values or a large number of outliers, the estimation of parameters of

the mark process is likely to be very challenging. With respect to our applications

to lesion data (see the following chapter), we would expect that the use of cube-root

transformed lesion volumes as marks lies within the regime for which the model is

adequate.

A further drawback arises from the computational cost of large data sets. As

the number of point locations in the input data increases, the required amount of

jumps as well as the number of auxiliary points in the data augmentation scheme

grows. Both increases lead to a larger-than-linear inflation of computational burden

for the MCMC sampling algorithm. Additionally, a large domain over which the

point process is defined or, equivalently, a high spatial resolution of the estimated

intensity come at an exponentially increasing computational cost, particularly in

three-dimensional applications.

5.7.2 Further extensions

The role of covariates in our log-linear approach is to model a homogeneous effect

that shifts the intensity function away from the group mean. The magnitude of the

effect depends on subject-specific attributes which function as explanatory variables.

A different way to interpret this is to look at the Poisson/Gamma random field as

representing unobserved, spatially correlated covariates.

An interesting area for future work would be to introduce spatially varying

covariates. One way of doing so would be to model covariates additively. Instead of

subject-specific covariates with a log-link function, Ickstadt and Wolpert [1999] have

noted that the identity link would permit to add an underlying random field to the

intensity, which could be allowed to vary spatially. With respect to applications to

MS lesion data, a candidate for a location-specific covariate (in the sense of Ickstadt

and Wolpert [1999]) would be a white matter density map. Such an attribute is

defined over the whole space and is independent of any observed point location. Le-

sions predominantly occur in white matter regions and therefore, considering white

matter density as a baseline intensity could improve local estimation of the intensity.

Another approach could focus on covariates with a local effect, i.e. by making

the regression coefficients dependent on spatial location, thus assuming γ = γ(y), y ∈
B. While non-spatial regression coefficients γ may be assumed to follow a Normal
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5.7. Discussion

distribution, one could model the γ(y) as realisations of Gaussian random fields.

There are several ways of extending the modelling of marks. In addition

to the intensity dependence, the mark process of the imHPGRF model could also

depend on another spatially varying function:

wj,i,l = aj + bjλj(yj,i,l) + cκ(yj,i,l) + εj,i,l, (5.30)

where κ(y) denotes a location-dependent mark function defined on B. Even an

interacting intensity-marked HPGRF model with an additional, spatially informed

mark could be considered; for example, in the form of

wj,i,l = aj + bjλj(yj,i,l) + cjκ(yj,i,l) + djλj(yj,i,l)κ(yj,i,l) + εj,i,l, (5.31)

where an interaction term between the intensity function λ(y) and the spatially

dependent mark function κ(y) is included in the mark process. Increasingly complex

mark structures are more challenging to estimate and may require a large amount

of data.

Alternatively, one could consider the inclusion of multivariate marks or spa-

tially varying regression coefficients for global covariates. Another, potentially very

challenging extension would involve the incorporation of a spatio-temporal frame-

work into the HPGRF model. Spatio-temporal formulations of spatial point process

models involving Gaussian processes have been proposed in the literature [Gelfand

et al., 2010]. For the log-Gaussian Cox process, for example, the incorporation of a

temporal dimension leads to a spatio-temporal stochastic intensity function of the

form λ(y, t) = exp{G(y, t)} where G is a Gaussian process. Applications of such

models can be found in geostatistical and epidemiological settings, for example, the

monitoring of disease outbreaks [Diggle et al., 2013].
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Chapter 6

Application of spatial point

process models to MS lesion

data

This chapter explores the intensity-marked hierarchical Poisson/Gamma random

field model introduced in Chapter 5 as applied to two clinical data sets. The two

data sets, GeneMSA (Section 6.1) and BENEFIT (Section 6.2), comprise structural

MRI data on patients with different forms of MS. The GeneMSA data considers

different MS subtypes, while the BENEFIT data looks at conversion from a clinically

isolated syndrome to clinically definite MS. Details of the two data sets were given

in Chapter 3.

Data preprocessing

For both data sets, we base our analysis on lesion locations, precisely, the spatial

locations of the geometric centres-of-mass of individual lesions found in T2-weighted

MR images. After co-registration and normalisation of the images to standard MNI

space as described in Subsection 2.1.1, the same affine transformation was applied

to the lesion masks. The aligned lesion masks were thresholded at 0.5 to create

binary images of lesion occurrence for each patient. Individual lesions were defined

on the basis of a 26-order neighbourhood as computed with the cluster command in

the FSL software package.
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6.1. Application: GeneMSA data

6.1 Application: GeneMSA data

The goal of the analyses in this section is to perform inference on the differences

between MS subtypes and to assess the performance of our spatial point process

models when predicting the subtype of new or previously held-out data. Taking

into account the correlation between groups, induced by the hierarchical structure

of the model, we can identify regions of lesion occurrence that are common across

different subtypes. The shared, population-level intensity function on the top of the

hierarchy can provide insights as to the degree of commonality between groups. We

make use of the various types of data available for each MS patient by including

demographic attributes and clinical measures as covariates, as well as considering

individual lesion volume as intensity-dependent marks attached to the location of

their centre-of-mass.

Our main focus lies on the application of the intensity-marked hierarchical

Poisson/Gamma random field (imHPGRF) model that we have introduced in Sec-

tion 5.4. Hence, the results presented in the following sections are with respect to

the imHPGRF. In order to evaluate model performance we also use other PGRF

model variants.

6.1.1 Algorithmic details and posterior computation

We run the MCMC algorithm for a total of 16,000 iterations, discarding the first

6,000 as burn-in. Estimation of posterior quantities is based on 1,000 samples, using

every 10th iteration after burn-in and discarding the rest to decrease autocorrela-

tions between samples. We assume a Gaussian representation for the mark process.

The prior specifications are as follows: For inverse scale parameters of the Gamma

random fields we use vague priors β ∼ G(0.001, 0.001) and τ ∼ G(0.001, 0.001). In

runs where the kernel variance is being estimated we assign an uninformative uni-

form prior, σ−2
j ∼ U [0.01, 50], otherwise the parameter is held fixed. The mark

parameters are given broad Normal priors, aj ∼ N (0.1, 100), bj ∼ N (1.0, 1000).

Due to conjugacy the mark variance is assigned an inverse-Gamma prior; we choose

σ2
w ∼ IG(5.0, 10.0) based on an empirical analysis of expected cube-root transformed

lesion volume. The variance parameters for any random walk Metropolis-Hastings

updates are initialised to ζ2
∗=0.01 and adjusted every 25 iterations during burn-in,

depending on the acceptance rate over the previous 100 iterations and with optimal

target acceptance rate of 44% for one-dimensional parameters [Gelfand et al., 2010].

For the Bayesian classifier in the prediction part of the model, we assign equal
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prior probability to each MS subtype. Alternatively, one could use empirical priors

and thereby use prior information about discrepancies in expected group sizes.

The truncation parameter M for the evaluation of all Gamma random fields

is set to M=15, 000. This is sufficiently larger than the total number of data points

as recommended by Wolpert and Ickstadt [1998b]. In our experience, setting M to

roughly twice the number of points in the data keeps both the computational cost

and the truncation error reasonably small.

We performed three separate runs of the same imHPGRF model, initialised

with different seed numbers and different values for the prior hyper-parameters, to

ensure that the algorithm converges to the same posterior distribution. None of

the parameters have shown sensitive behaviour with regard to prior specifications.

The mean posterior estimates of the three separate runs overlap for all quantities of

interest and fall within the range of each other’s standard error. Finally, results and

posterior diagnostics indicate convergence of the MCMC algorithm for all model

variants.

6.1.2 Posterior results and prediction

Estimated mean posterior intensity maps per MS subtype are displayed in Fig-

ure 6.1 and Figure 6.2. The figures show an axial and a sagittal view of the brain,

respectively. For comparison, the empirical intensity based on binary lesion masks

is provided in the second row of each figure. The imHPGRF is able to capture ac-

curately regions of high lesion incidence and distinguish between the four subtypes.

The shared intensity estimate indicates regions of common clustering.

Some discrepancies between the empirical incidence rate and the posterior

estimates of the intensity function can be observed. For instance, the SPMS and

PPMS subtypes show higher intensities in the area around voxel [60,40] on the

empirical plots (see middle row of Figure 6.1) compared to the estimated intensity

functions. This difference could be a result of several patients in each of the two

subtypes having large lesions in this particular region. The empirical intensity is

based on the collation of the binary lesion masks of all subjects within a given

subtype. Many lesions overlapping at a particular location results in a high incidence

rate. On the other hand, the spatial intensity function of the imHPGRF model is

based on the coordinates of the centres-of-mass of lesions and takes lesion size only

into account via the mark process.
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6.1. Application: GeneMSA data
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6.1. Application: GeneMSA data

Median posterior estimates including 95% credible intervals for model pa-

rameters of interest are listed in Table 6.1 and Table 6.2. The baseline parameters

aj of the mark process reflect the mean of the mark distribution. The estimated

parameter values are similar to the average mark value as given by the data. At the

same time, estimates for the link parameters bj are relatively small and the credible

intervals for the CIS and PPMS types even include zero. This indicates a weak

dependence of the marks on the underlying spatial intensity. The model favours

estimation of the grand mean rather than local fluctuations in the mark process.

Consequently, most of the variation in mark values is transferred into the variance

parameter σ2
w.

Furthermore, the parameter estimation becomes more difficult for groups

with few data points. The estimates of mark parameters for the CIS and PPMS

subtypes exhibit larger posterior variances than their counterparts in the RRMS

and SPMS types. This indicates that a more accurate estimate of mark parameters

and thus a more pronounced distinction between different groups may be achievable

given more data points.

In Figure 6.3, residuals are shown for the estimated marks. The panels show

an overestimation of small mark values for all four groups. An clear underestimation

of the volume of large lesions that differ substantially from the average also occurs.

Overall, the model seems to favour the grand mean and is not able to capture some

of the variation in the mark distribution.

Table 6.1: Posterior parameter estimates for the imHPGRF model including co-
variates: Type-specific parameters. The mark parameters a and b represent the
mean and interaction strength with the spatial intensity of the mark distribution,
respectively.

CIS RRMS SPMS PPMS

aj (median) 2.93 2.82 2.85 3.07
aj (95% CI) [2.66, 3.22] [2.77, 2.87] [2.75, 2.94] [2.90, 3.24]
bj (median) 15.0 197.3 133.2 29.1
bj (95% CI) [-43.1, 71.8] [160.8, 231.7] [85.6, 174.2] [-22.5, 79.4]
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Figure 6.3: Mark residuals of posterior estimates of individual lesion volume with
respect to empirical data versus predicted values.

Figure 6.4: Covariate residuals from Poisson regression of posterior estimates of
lesion count per subject with respect to empirical data versus predicted values.
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6.1. Application: GeneMSA data

Table 6.2: Posterior parameter estimates for the imHPGRF model including co-
variates: Shared parameters common to all types. Regression coefficients for subject-
level covariates are denoted as γp, the corresponding covariate is indicated in brack-
ets. The mark variance is denoted by σ2

w.

Median 95% CI

σ2
w 2.28 [2.21, 2.35]
γ1 (sex) 0.001 [-0.021, 0.024]
γ2 (age) 0.033 [0.001, 0.062]
γ3 (disease duration) 0.028 [-0.004, 0.055]
γ4 (PASAT) 0.009 [-0.017, 0.033]
γ5 (EDSS) 0.036 [0.005, 0.071]

Posterior estimates of the regression coefficients γp for demographic and clin-

ical covariates (Table 6.2) indicate that EDSS score, followed by age and disease

duration, are most informative. Residuals based on the Poisson regression frame-

work and with respect to the predicted number of lesions per subject are shown in

Figure 6.4.

Confusion matrices and LOOCV prediction rates for the imHPGRF model

with covariates as well as other model variants are summarised in Table 6.3. The

independent PGRF model (IPGRF) estimates a separate intensity function for each

group of point pattern data, which, in principle, amounts to running the PGRF

model of Wolpert and Ickstadt [1998b] multiple times, once for each group. The

IPGRF lacks the hierarchical structure of the HPGRF models and no information

about clustering is shared across different classes.

The inclusion of lesion volume in the form of intensity-dependent marks does

not have a large effect on classification performance. The plain model (HPGRF)

achieves an average accuracy of 80.1%, while the marked model (imHPGRF) reaches

82.8%. Adding covariates again improves prediction performance. The imHPGRF

model plus covariates achieves an average classification accuracy of 87.6% and a

total accuracy of 85.7%.

Although one group (RRMS) is dominating in terms of subject numbers, the

model does a good job in predicting the subtype label for the two smallest classes

(CIS and PPMS). Clinically, RRMS and SPMS are closely related. Most patients

who are initially diagnosed with relapsing-remitting MS eventually develop into the

secondary-progressive course of the disease. This may be reflected in the confusion

of SPMS predominantly with RRMS in cases of wrongly predicted subtype. The
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reverse (RRMS being classified as SPMS) appears not to happen as often, as most

misclassified subjects with RRMS are categorised as CIS. A closer examination of

misclassified data shows that patients with few lesions (five or less) tend to be

labelled as CIS. On the other hand, patients wrongly predicted as having the SPMS

subtype have a disproportionally large number of lesions. This is consistent with

clinical findings and expectations of subtype characteristics.

Finally, when comparing individual posterior predictive probabilities for dif-

ferent subjects, the model displays much greater certainty about the ones that clas-

sified correctly. In most of these cases the predicted probability for the correct class

exceeds 90%, whereas for misclassified subjects the predictive probabilities are more

evenly split among all groups.
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6.1. Application: GeneMSA data

Table 6.3: Confusion matrices and prediction accuracies (see Subsection 2.4.1 for
a definition of overall and average accuracy) for different model variants. Note that
chance level is at 25% average accuracy and, at best, 72.3% overall accuracy which
would be obtained by classifying everything into the largest group, RRMS.

IPGRF: Overall & average acc.: 0.618 & 0.459.

CIS RRMS SPMS PPMS

CIS 0.20 (2) 0.10 (1) 0.60 (6) 0.10 (1)
RRMS 0.19 (33) 0.69 (118) 0.08 (13) 0.05 (8)
SPMS 0.09 (4) 0.40 (17) 0.49 (21) 0.02 (1)
PPMS 0.08 (1) 0.31 (4) 0.31 (2) 0.46 (6)

HPGRF: Overall & average acc.: 0.798 & 0.801.

CIS RRMS SPMS PPMS

CIS 0.90 (9) 0.10 (1) 0.0 (0) 0.0 (0)
RRMS 0.12 (21) 0.81 (140) 0.03 (5) 0.03 (6)
SPMS 0.05 (2) 0.23 (10) 0.72 (31) 0.0 (0)
PPMS 0.08 (1) 0.15 (2) 0.0 (0) 0.77 (10)

imHPGRF: Overall & average acc.: 0.811 & 0.828.

CIS RRMS SPMS PPMS

CIS 0.90 (9) 0.10 (1) 0.0 (0) 0.0 (0)
RRMS 0.13 (23) 0.82 (141) 0.02 (4) 0.02 (4)
SPMS 0.05 (2) 0.21 (9) 0.74 (32) 0.0 (0)
PPMS 0.0 (0) 0.15 (2) 0.0 (0) 0.85 (11)

imHPGRF with covariates: Overall & average acc.: 0.857 & 0.876.

CIS RRMS SPMS PPMS

CIS 1.0 (10) 0.0 (0) 0.0 (0) 0.0 (0)
RRMS 0.10 (17) 0.87 (149) 0.01 (1) 0.03 (5)
SPMS 0.05 (2) 0.16 (7) 0.79 (34) 0.0 (0)
PPMS 0.0 (0) 0.15 (2) 0.0 (0) 0.85 (11)
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6.1.3 Model assessment

Similar to what we did for the simulation study in the last chapter, we perform three

separate runs of the model with different starting positions randomly drawn from

priors within the parameter space and with different seed numbers. All three MCMC

chains display the same convergence behaviour, giving similar overall results.

Convergence of the MCMC algorithm is assessed via visual inspection of

traceplots of the model parameters. Traceplots, together with plots of the autocor-

relation function, for one run are shown in Section B.2 of the appendix. The figures

show very good mixing behaviour for all parameters when the width of the smooth-

ing kernel is held fixed. The autocorrelation drops rapidly within ten iterations.

Note that estimating the smoothing kernel variance σ2
j induces higher correlation

between samples and requires a longer burn-in as the σ2
j exhibit significantly slower

convergence behaviour. Type-specific parameters such as the mark parameters aj

and bj mix more slowly and show longer auto-correlations for the subtypes with the

largest number of data points, RRMS and SPMS.

As in Subsection 5.6.5, we again look at posterior predictive checks and

compute first and second order quantities that provide an indication of the validity

of the model. The integrated mean posterior intensities yield an estimate of the

expected number of points in each group. The results for the imHPGRF model are

summarised in Table 6.4. For all four subtypes, the posterior estimates are close

to the empirical mean number of points in the data set. In fact, the 95% credible

intervals cover all empirical means, indicating a good fit of the subtype-specific

spatial intensities.

As a second order statistic, we examine the L-function (cf. the expression in

(5.28)); in particular, the difference ∆j,i(r) between the L-function of a subject’s

point pattern and the posterior sample of a point pattern belonging to the same

subtype j. The distance parameter r ranges from 0 to 100 voxels in steps of 1 voxel,

corresponding to steps of 2mm and a maximum of 200mm. For each distance value

r one can compute the proportion of subjects whose 95% credible interval for ∆j,i(r)

includes zero, using 1, 000 posterior realisations. The credible intervals from over

80% of subjects cover zero for distances r≤25. For distances greater than that the

proportion remains above 60%, indicating a good overall fit of the model.
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6.1. Application: GeneMSA data

Table 6.4: Empirical data and posterior estimates of the average number of lesions
per subject for each MS subtype based on integrated spatial intensities.

CIS RRMS SPMS PPMS

Empirical mean 11.5 34.6 38.0 28.8
Posterior mean 12.6 33.9 41.6 30.6
95% CI [10.3, 14.7] [33.0, 34.9] [39.2, 44.4] [27.7, 33.9]

6.1.4 A GLM analysis

As a sanity check, we ignore the spatial locations and use a Generalised Linear

Model (GLM) [McCullagh and Nelder, 1989] to assess subject-specific covariates

independently from the fit of the spatial point process model. The response is

simply the number of lesions per subject. The covariates include biological sex,

age, disease duration, PASAT and EDSS scores. We fit a Poisson regression model

using the canonical exponential link function. The set of regressors include nuisance

parameters that indicate to which group any given subject belongs.

Results from the GLM analysis are listed in Table 6.5 and displayed in Fig-

ure 6.5. Overall, the number of lesions per subject shows a weak dependence on the

predictors. Among all covariates, EDSS appears to be the most indicative, followed

by disease duration and age. Biological sex and PASAT do not seem to be good

predictors with p-values larger than 0.01 in both cases. These results are consistent

with the coefficient estimates obtained from the imHPGRF model (see Table 6.2),

where EDSS and age were found to be the most informative characteristics.
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Figure 6.5: Results from fitting a GLM to the GeneMSA data set. The x-axes
show the (standardised) explanatory variables sex (female is coded positive), age,
disease duration (DD), Paced Auditory Serial Addition Task (PASAT), Expanded
Disability Status Scale (EDSS), respectively. The dependent variable is the number
of lesions per subject. Red crosses indicate the fitted values; blue circles indicate
true values.
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A caveat needs to be pointed out here. The GLM regression model is based

on aggregate measures of the whole population/dataset whereas the Poisson Gamma

random field models are specified on the level of individual subjects. A direct com-

parison of effect sizes and even the direction (i.e. signs of coefficients) of effects

between the two models is not possible; a problem that is generally known as the

ecological fallacy [Robinson, 1950]. One could therefore expect differences between

effects for groups based on the GLM analysis and effects for individuals based on

the point process models.

Table 6.5: Results from fitting a GLM to subject-specific covariates, including
standard errors on the regression coefficients. The number of lesions per subject
constitutes the dependent variable in a log-linear regression framework. PASAT
and EDSS are clinical scores measuring disease severity. DD stands for disease
duration, i.e. the time between the initial diagnosis and the MRI scan on which our
analysis is based. A negative coefficient for the covariate sex indicates a positive
correlation with being male.

Intercept Sex Age

Coefficient (s.e.) 3.496 (0.011) -0.026 (0.011) -0.099 (0.014)
p-value / 2.25 · 10−02 2.86 · 10−12

t-statistic / -2.28 -6.98

DD PASAT EDSS

Coefficient (s.e.) 0.157 (0.013) 0.017 (0.015) 0.167 (0.012)
p-value 5.08 · 10−32 1.42 · 10−01 8.61 · 10−41

t-statistic 11.78 1.47 13.37
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6.2. Application: BENEFIT data

6.2 Application: BENEFIT data

The BENEFIT data set consists of 364 patients with an initial diagnosis of a clini-

cally isolated syndrome (CIS), 175 (48%) of which developed clinically definite mul-

tiple sclerosis (CDMS) within the study period of 24 months. To date, no reliable

method exists to predict who will, and will not, develop CDMS. A recent study by

Wottschel et al. [2015] showed that a linear SVM classifier correctly predicted the

conversion (or non-conversion) to CDMS in 71% of patients after 12 months, and in

68% after 36 months, on the basis of different combinations of lesional and clinical

features.

The aim of this section is to apply our intensity-marked Poisson/Gamma

random field model to the data and try to predict conversion to CDMS within 24

months of the first clinical signs of the disease. Similar to the prediction of MS

subtype in the GeneMSA data set in Section 6.1, we use the coordinates of centres-

of-mass of individual lesions to estimate spatial intensity functions for converters

and non-converters. We compare the performance of the plain HPGRF model with

the imHPGRF model which includes lesion volume as location-specific marks as well

as both model variants with and without additional subject-specific covariates. An

overview of the data set is provided in Section 3.2.

6.2.1 Algorithmic details and posterior computation

We run the MCMC algorithm for a total of 16, 000 iterations, discarding the first

6, 000 as burn-in. Estimation of posterior quantities is based on 1, 000 samples,

using every 10th iteration after burn-in and discarding the rest. As in Section 6.1

we assume a Gaussian representation for the mark process. The prior specifications

are as follows: We assign vague priors to the Gamma random field parameters β ∼
G(0.001, 0.001) and τ ∼ G(0.001, 0.001). The mark parameters have broad Gaussian

priors aj ∼ N (0.1, 100), bj ∼ N (1.0, 1000) and σ2
w ∼ IG(5.0, 10.0) based on an

empirical analysis of expected cube-root transformed lesion volume. The variance for

any random walk Metropolis-Hastings update is initialised to ζ∗=0.1 and adjusted

every 25 iterations during burn-in. The adjustment depends on the acceptance

rate of update proposals as measured over the previous 100 iterations. The kernel

variance in the convolution with the Gamma random field is held fixed for both

groups at σ2
j=5.0. The Bayesian classifier charged with predicting conversion/non-

conversion uses equal prior probabilities for each of the two groups. The truncation

parameter M for the evaluation of all Gamma random fields is set to M=18, 000.
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6.2.2 Posterior results and prediction

Figure 6.6 and Figure 6.7 summarise results from fitting the imHPGRF model to the

BENEFIT data set. The two figures show an axial and a sagittal slice, respectively,

of the estimated mean posterior intensity function in real space and on the log-scale,

as well as lesion locations of the input data. As can be seen from the intensity maps

for CIS and CDMS, the point patterns of both groups appear very similar, a fact

that is also reflected in the high values of the shared intensity map.

Figure 6.6: Results from fitting the imHPGRF model to the BENEFIT data set.
The plots show an axial slice at z=+2. Intensity estimates are based on 1, 000
posterior samples. Top row : Lesion locations that fall within ±4mm of the current
slice and anatomical reference. Middle row : Estimated posterior mean intensities
for the two groups in the left and centre panel, estimated shared (population-level)
intensity in the panel on the right. Bottom row : Log-transform of the estimated
posterior mean intensities.
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6.2. Application: BENEFIT data

Figure 6.7: Results from fitting the imHPGRF model to the BENEFIT data set.
The plots show a sagittal slice at x=+10. Intensity estimates are based on 1, 000
posterior samples. Top row : Lesion locations that fall within ±4mm of the current
slice and anatomical reference. Middle row : Estimated posterior mean intensities
for the two groups in the left and centre panel, estimated shared (population-level)
intensity in the panel on the right. Bottom row : Log-transform of the estimated
posterior mean intensities.

Median posterior estimates of the main model parameters, including 95%

credible intervals, are presented in Table 6.6 and Table 6.7. Large values for the

baseline parameter a of the mark process for both groups and moderate values of the

coefficient b for the intensity-dependence indicate a weak correlation between spatial

intensity and the mark process. The credible intervals of the regression coefficients

cover zero for two out of the three subject-specific covariates. Only age appears to

be somewhat informative with respect to the number of lesions per patient.

Residuals from estimated mark values and the Poisson regression are shown in

Figure 6.8 and Figure 6.9, respectively. Similar to what we found for the GeneMSA

data set, the mark process tends to favour the grand mean, leading to an modest

overestimation of a majority of marks and a stark underestimation of few very

large mark values. The plots of Poisson regression residuals show on average a

slight overestimation of the number of lesions per subject. The mark residuals in
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Figure 6.8 show an overestimation of mark values for the majority of lesions. The

skewed distribution may indicate that, instead of using the lesion volume directly,

modelling the log lesion volume in the mark process may be a better choice. However,

with respect to the classification outcomes, we did not find an increase in prediction

accuracy when applying the log-Normal mark model.

Confusion matrices alongside classification rates as determined via LOOCV

are summarised in Table 6.8. We have applied independent, hierarchical and marked

variants of the Poisson/Gamma random field model to the data set. The hierarchi-

cal formulation is superior to the separate modelling of groups, since it can share

information across the groups. The inclusion of marks and covariates, however, ap-

pears to have little effect on the predictive accuracy of the classifier. The highest

achieved classification accuracy is 68.7%.

Table 6.6: Posterior parameter estimates for the imHPGRF model including co-
variates: Type-specific parameters. The mark parameters a and b represent the
mean and interaction strength with the spatial intensity of the mark distribution,
respectively.

CIS CDMS

aj (median) 3.97 3.86
aj (95% CI) [3.90, 4.08] [3.80, 3.94]
bj (median) 149.5 [92.4, 207.5]
bj (95% CI) 230.3 [182.1, 276.4]

Table 6.7: Posterior parameter estimates for the imHPGRF model including co-
variates: Shared parameters common to all types. Regression coefficients for subject-
level covariates are denoted as γp, the corresponding covariate is indicated in brack-
ets. The mark variance is denoted by σ2

w.

Median 95% CI

σ2
w 4.34 [4.22, 4.47]
γ1 (sex) 0.016 [-0.004, 0.035]
γ2 (age) -0.028 [-0.048, -0.009]
γ3 (EDSS) 0.006 [-0.013, 0.026]
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6.2. Application: BENEFIT data

Figure 6.8: Mark residuals of posterior estimates of individual lesion volume versus
predicted values.

Figure 6.9: Covariate residuals of posterior estimates of lesion count per subject
versus predicted values.
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Table 6.8: Confusion matrices for different model variants, listing average and
total classification accuracy for each variant.

IPGRF: Avg. acc. 56.4%, total acc. 56.9%.

CIS CDMS

CIS 0.68 (128) 0.32 (61)
CDMS 0.55 (96) 0.45 (79)

HPGRF: Avg. acc. 66.0%, total acc. 66.5%.

CIS CDMS

CIS 0.78 (147) 0.22 (42)
CDMS 0.46 (80) 0.54 (95)

imHPGRF: Avg. acc. 66.1%, total acc. 66.5%.

CIS CDMS

CIS 0.77 (145) 0.23 (44)
CDMS 0.45 (78) 0.55 (97)

imHPGRF with covariates: Avg. acc. 68.3%, total acc. 68.7%.

CIS CDMS

CIS 0.78 (148) 0.22 (41)
CDMS 0.42 (73) 0.58 (102)

6.2.3 Model assessment

Convergence of the MCMC algorithm is assessed via visual inspection of traceplots

of the model parameters. Traceplots, together with plots of the autocorrelation func-

tion, are shown in Figure B.9 and Figure B.10, respectively. The figures show good

mixing behaviour for all parameters. The longest autocorrelation can be observed

for the group-specific inverse scale parameter τ of the Gamma random fields. Based

on the thinned MCMC chain, the autocorrelation for τ falls below the confidence

bounds after five to ten samples. For all other parameters, subsequent samples are

already uncorrelated.

We performed three separate runs of the same imHPGRF model with dif-

ferent starting positions drawn from priors to evaluate convergence of the MCMC
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6.2. Application: BENEFIT data

algorithm. None of the parameters have shown sensitive behaviour with regard to

prior specifications. The mean posterior estimates of the three separate runs overlap

for all quantities of interest and fall within the range of each other’s standard error

which indicates convergence of the Monte Carlo chain.

We compute first and second order posterior predictive checks using 1, 000

samples from the posterior. A comparison of the estimated number of points per

group, based on the integrated mean posterior intensity function, with the data is

given in Table 6.9. The model fit is very close to the empirical mean for both groups.

The second order statistic based on differences in L-functions also indicates a good

model fit. We compute the 95% credible intervals of ∆j,k(r) for distances r ranging

from 0 to 100 voxels in steps of 1, corresponding to a maximum distance of 200mm.

The proportion of subject whose credible interval covers zero lies above 80% for

distances r≤40mm and remains above 65% for r>40mm.

Table 6.9: Empirical data and posterior estimates of the average number of lesions
per subject for CIS and CDMS groups based on integrated spatial intensities.

CIS CDMS

Empirical mean 25.5 34.7
Posterior mean 25.9 34.6
95% CI [25.2, 26.7] [33.7, 35.4]

6.2.4 A GLM analysis

Finally, results from fitting a GLM to three subject-level covariates, biological sex,

age and EDSS, are summarised in Table 6.10 and visualised in Figure 6.10. The

set of regressors for the log-linear model include a nuisance parameter indicating

group membership. The signs of regression coefficients in the GLM are consistent

with our estimates using the imHPGRF model. The most informative covariate in

both cases appears to be age. However, note that this comparison is only valid if

inferences on the group level and the individual show the same effects, as pointed

out in Subsection 6.1.4 based on the concept of the ecological fallacy.
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Figure 6.10: Results from fitting a GLM to the BENEFIT data set. The x-axes
show the standardised explanatory variables sex (female is coded positive), age and
Expanded Disability Status Scale (EDSS). The dependent variable is the number of
lesions per subject. Red crosses indicate the fitted values; blue circles indicate true
values.

Table 6.10: Summary of results from fitting a GLM to subject-specific covariates,
including standard errors (s.e.) for coefficient estimates.

Intercept Sex Age EDSS

Coefficient (s.e.) 3.391 (0.010) 0.043 (0.011) -0.094 (0.010) 0.062 (0.010)
p-values / 1.52 · 10−05 1.07 · 10−21 1.30 · 10−10

t-statistic / 4.33 -9.57 6.42

6.3 Discussion

In this chapter we have applied our hierarchical Poisson/Gamma random field mod-

els to two clinical data sets of patients with multiple sclerosis. To our knowledge, this

is the first application of spatial point process models to MRI lesion data. Common

ways of analysing neuroimaging data rely on mass-univariate approaches on usually

do not take into account any spatial structure of the data. Furthermore, existing

methods do not allow for the rich inference that is possible with a generative model

like the HPGRF. The estimated intensity function in the imHPGRF model first

and foremost is informed by the point locations in the data, but also depends on

external covariates and marks attached to each point. We have used the intensity

function to predict and classify new or previously unseen lesion patterns into one of

several disease subtypes. Apart from classification tasks, the model allows for the

interpretation of the intensity function from a clinical point of view. Differences in

intensity between disease subtypes or otherwise distinct groups of patients have the

potential to better understand, for example, which areas of the brain show an ac-

cumulation of lesions; and, furthermore, which groups share a higher rate of lesions

in a particular region.
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6.3. Discussion

Despite our focus on neuroimaging data, note that the methods presented

in this thesis are directly generalisable to any other multi-type point pattern prob-

lem, with the exception of repulsive point processes. The framework of the family of

Poisson/Gamma random field models only allows for the modelling of positive corre-

lations between the number of points. Repulsive interactions between neighbouring

points would have to be incorporated separately, for example, in the marks. This

implies also a shortcoming of the model with respect to lesion data, or generally,

any point pattern data where the points resemble finite dimensional objects. In its

current formulation, the model assumes that two points belonging to the same reali-

sation can be located arbitrarily close to one another. Modelling the mark process in

a way that would accommodate something like an exclusion radius could therefore

be able to better reflect the true nature of the data.

There are several ways of changing and extending the analysis of these multi-

ple sclerosis data sets. In its present form the HPGRF model cannot accommodate

point pattern data belonging to the same subject but resulting from different imaging

modalities. As discussed in Subsection 2.2.4, there are three principal types of MRI

acquisition for imaging MS lesions, “black holes” on T1-weighted MRI, T2-weighted

hyper-intense lesions and T1-weighted Gadolinium-enhanced lesions. These lesions

vary both in their appearance (including shape, size, count and location) and clinical

interpretation. Integration of multi-modality data into the model, for example by

adding another level to the hierarchy, has the potential to produce more accurate

estimates of the intensity function.

The application of our point process model to the GeneMSA data set has

shown that predictive performance can be high even with very sparse point patterns

and small group sizes for some of the target classes. In the application, we have

used individual, cube-root transformed lesion volume as marks and modelled them

with a Normal distribution which is straightforward to interpret. However, other

distributions may be more suitable. For example, a log-Gaussian distribution would

account for the fact that lesion volume is strictly positive. Yet, when applying a

log-Gaussian mark structure to modelling of the GeneMSA data set, we have not

found any substantial differences in the intensity estimates or prediction accuracy

compared to the model with Gaussian marks. Similarly, changing the mark structure

in the analysis of the BENEFIT data set to account for a log-dependency did not

produce different results.

One could also utilise other attributes about individual lesions as marks. For

example, various measures of lesion geometry, similar to the ones we have used to

train an SVM classifier in Chapter 4, can be computed from MRI lesion masks.
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Other measures of interest could include texture features derived from MR intensi-

ties. For a comprehensive account of these attributes, one could further extend the

model to include multi-variate marks.

We have also looked into using variance-stabilised marks as described in

Subsection 5.4.4 where the marks are modelled via a log-dependence on the spatial

intensity. The log-transform has the benefit of smoothing the posterior estimate of

the intensity. However, we found that it only modestly affected the estimation of

the the mark process.

A general benefit of non-parametric models is that they make only weak as-

sumptions about the structure of the data. In our applications of the imHPGRF

model, we fixed the kernel parameters σ2
j rather than estimate them alongside the

other model parameters. There are several reasons for doing this. First, holding the

kernel variance fixed significantly reduces the computational cost of each iteration by

allowing to pre-compute and re-use the values for the integrated kernel function over

the whole brain. Second, a fixed kernel width prevents the model from estimating

“grainy” intensity functions, which may be the natural tendency in cases where few

data points are available; while a good fit, these intensity functions may be difficult

to interpret. However, and depending on the application, if one can assume that

there are stark discrepancies on different spatial scales between the point processes

of different types, then estimating the kernel variance parameter is likely to pro-

duce better results. During our exploration of various settings for the HPGRF and

imHPGRF models, we have found that estimating the smoothing kernel separately

for each subtype generally does not improve model performance.

The imHPGRF model with covariates performs similarly to the log-Gaussian

Cox process model in Chapter 4 (87.6% average classification accuracy for the imH-

PGRF model versus 85.1% for the LGCP model). Although, it must be noted, in

the application of the LGCP, the data comprised an additional subtype which the

model had to estimate.

As already noted, one drawback of our model, and, in fact, three-dimensional

point process models in general, is the computational cost which scales non-linearly

with the size of input data. Employing tools for parallel programming such as

OpenMP is a way of reducing the time necessary to run the MCMC algorithm.

Additionally, implementation of the code for use on one or even multiple GPUs

has a large potential to reduce execution time as many parameter updates as well

as voxel-by-voxel intensity computations can principally be carried out in parallel.

However, transferring the current CPU code would be a non-trivial task.

Finally, methods for preliminary analysis of point pattern data could include
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basic clustering techniques to determine, for instance, how many classes the clus-

tering algorithm can detect using simple distance measures. One could also use

kernel density estimation [van Lieshout and Stein, 2012] as a possibly easier way of

modelling the underlying spatial intensity.

The application studies in this chapter have shown that the HPGRF model

is able to accurately estimate an underlying intensity function that can generate

point patterns like the ones observed in the data. The addition of a mark process

had only limited effects in the two applications of MS lesion data. The cube-root

transformed lesion volume that we used here as marks may not be as informative as

we had expected. The inclusion of demographic and clinical covariates per subject

slightly improved predictive performance in the BENEFIT data set and more so

in the GeneMSA application. In both cases, age appeared to be among the most

informative predictors for conversion to CDMS and MS subtype, respectively.

There is certainly potential to further improve these methods. An interesting

extension with respect to lesion data would be to include a white matter density

map as a spatially varying covariate. Furthermore, a spatio-temporal framework

that accounts for follow-up scans and changes in a subject’s lesion pattern over

time may be able to aid decision making in a clinical setting, for example, in the

prediction of disease progression or treatment outcomes.

121



Chapter 7

Conclusions

7.1 Contributions

In this thesis we have explored various approaches to modelling MRI lesion data

in patients with multiple sclerosis, with a particular emphasis on Bayesian spatial

point process models.

In Chapter 4 we have contrasted two machine learning methods with a pro-

bit regression model and a spatial point process model. The machine learning ap-

proaches included a simple náıve Bayes classifier and support vector machines that

utilised a rich feature set of MRI-based measures as well as non-imaging attributes.

The mass-univariate regression model relied on voxel-by-voxel binary lesion masks

and the spatial point process model used locations of lesion centres to estimate the

intensity function of a doubly-stochastic Poisson process. The success of the point

process approach in the prediction task may be unexpected as it does not take into

account any patient-specific information other than the coordinates of individual

lesions. Traditionally, demographic attributes and clinical scores are heavily relied

upon in the clinical management of MS. Although less successful, the machine learn-

ing approach showed that a quantitative assessment of lesions on MRI data can be

improved by considering geometry-based measures.

In Chapter 5 we have presented novel extensions to the Poisson/Gamma

random field model [Wolpert and Ickstadt, 1998b; Kang et al., 2014a]. The re-

sults of a simulation study suggest that the method can successfully model three-

dimensional sparse multi-type point patterns, including external covariates and

location-dependent marks. Additionally, by using a Bayesian importance sampling

approach, the model can be used to accurately predict different types of point pat-

tern with only a moderate increase in computational cost.
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7.1. Contributions

Motivated by the limited use of spatial data resulting from magnetic reso-

nance imaging in the assessment of multiple sclerosis, in Chapter 6 we apply our

spatial point process model to two clinical data sets of MS patients. The model per-

forms well, even with small sample sizes. However, there is room for improvement

with regard to which covariates and lesion-specific attributes are most informative

when used in combination with the point pattern data. Only few models have been

proposed that fit both an underlying point process and a dependent mark process

to point pattern data [Ho and Stoyan, 2008; Myllymäki and Penttinen, 2009]. To

our knowledge, none of these have been applied to three-dimensional point patterns

and joint models of global covariates, continuous marks and point locations have

not been considered.

An advantage of our Poisson/Gamma random field model over kernel-based

methods lies in the fact that the PGRF does not require the fixing of an (arbitrary)

kernel size as smoothing parameter. Our model formulation explicitly allows for the

estimation of the kernel variance that is used in the convolution with the Gamma

random field. Additionally, the Bayesian framework allows for a wide range of infer-

ences on quantities of interest and model assessment based on posterior predictive

probabilities. With regard to MS lesion data, the probabilistic formulation of the

PGRF model inherently accounts for the random occurrence of lesions across the

brain and therefore is likely to be a more accurate representation of the unobserved

data-generating process than parametric methods.

For some applications it may be useful to include a general offset or baseline

for the intensity function. For instance, by splitting the intensity function into a

smoothly varying baseline intensity and a residual stochastic process, the baseline

intensity can be used to model the overall expected incidence rate in the population.

The remaining spatial variation would be explained by the stochastic process. The

intensity offset could be estimated from the data, for example, with the help of kernel

smoothing techniques. [Diggle et al., 2005] have used an approach like this to create

a spatio-temporal model of surveillance data on gastroenteric disease. The baseline

intensity is used to model the normal incidence rate, whereas the stochastic process

models deviations from the expected number of cases of the disease. By employing

a critical threshold, this model can be used to detect abnormal fluctuations in the

stochastic part of the intensity function, which in turn may warrant a public health

intervention.

We did not include an offset for the intensity for several reasons. First, any

choice of kernel width is to some extent arbitrary and it is unclear which values
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would be appropriate since MRI data already contain an implicit smoothing as a

result of the acquisition process. Furthermore, for certain areas in the brain, e.g. in

the deep grey matter, we would not expect to find many lesions due to the general

disease pathology of multiple sclerosis. On the other hand, incorporating a spatial

mask that would exclude such areas could result in losing valuable information from

any discarded points. Additionally, a large kernel smoother could bias the model,

especially for groups, i.e. disease subtypes, for which sample size is small. Finally,

smoothing could lead to cases where local differences in the incidence rate may not

be picked up by the model.

7.2 Future work

The analysis of neuroimaging data remains an interesting and challenging area of

statistical research. The development of new methodology and the advancement of

existing approaches has important implications for the evaluation and treatment of

neurological diseases such as MS. The methods presented in this work can be a basis

for ways of extending the use of quantitative measurements based on MRI data in

clinical practice. The use of spatial information in particular has the potential to

inform clinical decision making in the management of MS. In addition, our spatial

point process models are not limited to a specific type of application but are directly

applicable to multi-type point pattern data in general.

The hierarchical PGRF model considers multiple types of point pattern and

multiple realisations of each point process. In future work we would like to extend

the model structure by introducing additional levels to the hierarchy. This could be

particularly useful in neuroimaging applications for which multiple sources of point

pattern data exist, for example, different MRI modalities.

An interesting idea that we have not pursued in this work but one that may

have considerable merit in neuroimaging applications in which the objects that give

rise to individual points have a non-trivial geometry is to model each object (lesion)

with multiple points instead of only one, each point carrying a radius. In the simplest

formulation, each lesion would be represented by a collection of spheres; in a more

elaborate version, spherical harmonics could be used to account for more complex

shapes. A categorical mark on each point could carry the information which points

belong to the same lesion.

Other lines of research could focus on the incorporation of a spatio-temporal

framework, making our current point process models available to applications in

which changes over time are of particular interest. Clinical assessment, prognosis
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7.2. Future work

and the monitoring of disease progression and treatment outcomes are only one area

where the inclusion of time would naturally be of importance.

A direct extension that could be considered is the addition of other marks

to the imHPGRF model in order to account for a multivariate mark structure, for

example, marks based on intra-lesion intensity measures, hence including more and

different sources of information about individual point locations. A direction of work

concerning computational cost and the problem of poor scaling of the algorithm with

very large data sets would be the implementation on a GPU. Currently, our models

use some degree of parallelisation through the use of OpenMP. However, we believe

the potential of GPU’s to carry out parallel computations on a much larger scale

would lead to a substantial further reduction in running time.

125



Appendix A

imHPGRF supplements

A.1 Posterior computation

In the following we denote with π(θ|·) the full conditional posterior distribution

of any parameter θ given all other parameters of the model. We employ a Gibbs

sampling scheme, updating the model parameters consecutively for each iteration

of the Monte Carlo algorithm. Details of each parameter update are given below

and include Metropolis-within-Gibbs sampling, random walk Metropolis-Hastings

updates as well as direct draws from standard distributions in cases where conjugate

priors can be used.

The sampling algorithms presented in this section are with respect to the

intensity-marked HPGRF model with global covariates as described in Section 5.4.
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A.1. Posterior computation

The joint posterior density is given in (5.21) and, for completeness, repeated here:

π[·] ∝
J∏
j=1

Nj∏
i=1

exp

− exp

 P∑
p=1

zj,i,pγp

 M∑
m=1

Kσ2
j
(B, θm)ηj,m +

P∑
p=1

zj,i,pγp


×

Li∏
l=1

[
kσ2

j
(yj,i,l, xj,i,l)

M∑
m=1

ηj,mIθm(xj,i,l)

]}

×
J∏
j=1

{
π(σ2

j )
M∏
m=1

[
τνm

Γ(νm)
ηνm−1
j,m exp

(
− τηj,m

)]}
× π(τ)

× exp
[
− E1(βνM )

] M∏
m=1

{
1

νm
exp

[
− νmβ

]}
× π(β)

×
J∏
j=1


Nj∏
i=1

Li∏
l=1

1

σw
exp

[
−(lnwj,i,l − aj − bjZj,iλj,i,l)2

2σ2
w

]
× π(aj)× π(bj)


× π(σ2

w). (A.1)

Modifications of update routines for different variants of the HPGRF model are

indicated for each set of parameters. In order to simplify some of the expressions

below, we define the following quantities: the subject-specific covariate term Zj,i ≡

exp

[
P∑
p=1

zj,i,pγp

]
, the current estimate of the intensity function at a given point

λj,i,l ≡
M∑
m=1

kσ2
j
(yj,i,l, θm)ηj,m and the integrated kernel over the whole domain for a

given jump location Kj ≡
M∑
m=1

Kσ2
j
(B, θm)ηj,m. Further, denote the total number of

points in type j as Lj =
Nj∑
i=1

Li∑
l=1

1. In the case of Metropolis-Hastings updates, the

acceptance ratio will be denoted as r(θ̃, θ) with θ̃ representing the new proposal and

θ being the current parameter value.

A.1.1 Sampling of mark parameters

Note that we assume a log-Gaussian mark process throughout the following. In

fact, the updates remain also valid in the case of a Gaussian mark distribution when

replacing lnwj,i,l with wj,i,l. However, the interpretation of mark parameters aj and

bj changes.
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Updating aj

Use a Normal prior for the type-specific baseline parameter, i.e. aj ∼ N (µa, ζ
2
a).

Hence, the full conditional is proportional to

π(aj |·) ∝


Nj∏
i=1

Li∏
l=1

exp

[
−(lnwj,i,l − aj − bjZj,iλj,i,l)2

2σ2
w

]× exp

[
−(aj − µa)2

2ζ2
a

]
.

(A.2)

Due to conjugacy, one can draw directly from

aj |· ∼ N
(
σ2
wµa + ζ2

aLjmj

Ljζ2
a + σ2

w

,
σ2
wζ

2
a

Ljζ2
a + σ2

w

)
. (A.3)

Here, mj ≡ 1
Lj

Nj∑
i=1

Li∑
l=1

(
lnwj,i,l − bjZj,iλj,i,l

)
stands for the re-parameterised mean

log-mark per type.

Updating bj

Use a Normal prior on the type-specific interaction parameter such that bj ∼
N (µb, ζ

2
b ). The full conditional distribution is given by

π(bj |·) ∝


Nj∏
i=1

Li∏
l=1

exp

[
−(lnwj,i,l − aj − bjZj,iλj,i,l)2

2σ2
w

]× exp

[
−(bj − µb)2

2ζ2
b

]
,

(A.4)

which can be rewritten as

π(bj |·) ∝ exp

−
Nj∑
i=1

Li∑
l=1

(bj −mj,i,l)
2

2sj,i,l

× exp

{
−(bj − µb)2

2ζ2
b

}
, (A.5)

where mj,i,l ≡ (lnwj,i,l − aj)/(Zj,iλj,i,l) and 2sj,i,l ≡ 2σ2
w/(Zj,iλj,i,l)

2.

Hence, the update is conjugate and follows

bj |· ∼ N

 Nj∑
i=1

Li∑
l=1

mj,i,l

sj,i,l
+
µb
σ2
b

 Nj∑
i=1

Li∑
l=1

1

sj,i,l
+

1

σ2
b

−1

,

 Nj∑
i=1

Li∑
l=1

1

sj,i,l
+

1

σ2
b

−1 .
(A.6)
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A.1. Posterior computation

Updating σ2
w

Due to conjugacy we place a gamma-prior on the mark precision which is equivalent

to an inverse gamma-prior on the mark variance parameter, i.e. 1
σ2
w
∼ Γ(ασw , βσw)

or σ2
w ∼ IG(ασw , βσw). The full conditional is proportional to

π(σ2
w|·) ∝

 J∏
j=1

Nj∏
i=1

Li∏
l=1

1

σw
exp

{
−(lnwj,i,l − aj − bjZj,iλj,i,l)2

2σ2
w

}
× σ−2(1+ασw )

w exp

{
−βσw
σ2
w

}

∝
(

1

σ2
w

)ασw+L
2
−1

exp

− 1

σ2
w

 J∑
j=1

Nj∑
i=1

Li∑
l=1

(lnwj,i,l − aj − bjZj,iλj,i,l)2

2
+ βσw

 .

(A.7)

Therefore, the updating step results in a draw from

σ2
w|· ∼ IG

ασw +
L

2
, βσw +

1

2

J∑
j=1

Nj∑
i=1

Li∑
l=1

(lnwj,i,l − aj − bjZj,iλj,i,l)2

 , (A.8)

where L denotes the total number of points, i.e. L =
J∑
j=1

Lj , and IG(α, β) is given

as βα

Γ(α)x
−α−1e−

β
x . Note that the mean of the inverse gamma distribution is given

by β
α−1 and the variance by β2

(α−1)2(α−2)
, for α > 2.

A.1.2 Sampling of regression coefficients

Updating γp

The full log-conditional is proportional to

log π(γp|·) ∝
J∑
j=1

Nj∑
i=1

− exp


P∑

p′=1

zj,i,p′γp′

Kj + zj,i,pγp

−
− 1

2σ2
w

J∑
j=1

Nj∑
i=1

Li∑
l=1

lnwj,i,l − aj − bjλj,i,l exp


P∑

p′=1

zj,i,p′γp′


2

,

(A.9)
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Assume an improper, uninformative prior to initialise the regression coefficients:

π(γp) ∼ 1. Use a random-walk Metropolis-Hastings update and draw a new value for

γ̃p by sampling from γ̃p ∼ N (γp, ζ
2
γ). Set γp ≡ γ̃p with probability min{r(γ̃p, γp), 1}

or equivalently, min{log r(γ̃p, γp), 0}. The log-acceptance ratio can be expressed as

log r(γ̃p, γp) =
J∑
j=1

Kj

Nj∑
i=1

(
Zj,i − Z̃j,i

)+ (γ̃p − γp)
J∑
j=1

Nj∑
i=1

zj,i,p

+
1

2σ2
w

J∑
j=1

Nj∑
i=1

Li∑
l=1

[
(lnwj,i,l − aj − bjλj,i,lZj,i)2 −

(
lnwj,i,l − aj − bjλj,i,lZ̃j,i

)2
]
,

(A.10)

where Z̃j,i ≡ exp

{
P∑

p′ 6=p
zj,i,p′γp′ + zj,i,pγ̃p

}
. The expression above can be written as

log r(γ̃p, γp) =
J∑
j=1

Kj

Nj∑
i=1

(
Zj,i − Z̃j,i

)+ (γ̃p − γp)
J∑
j=1

Nj∑
i=1

zj,i,p

+
1

2σ2
w

J∑
j=1

Nj∑
i=1

{(
Z̃j,i − Zj,i

)
bj

Li∑
l=1

[
λj,i,l

(
2(lnwj,i,l − aj)− bjλj,i,l(Z̃j,i + Zj,i)

)]}
(A.11)

The update is easily modified to model variants without marks by removing the

second line in (A.11). The update is the same for the IPGRF model.

A.1.3 Sampling of Gamma random fields

Updating auxiliary points xj,i,l

As can be seen directly from the full target distribution, the conditional distribution

of xj,i,l given all other parameters is

π(xj,i,l|yj,i,l,Γj , σ2
j ) ∝

M∑
m=1

ηj,mkσ2
j
(yj,i,l, θm)Iθm(xj,i,l)

π(xj,i,l = θm|·) ∝ ηj,mkσ2
j
(yj,i,l, θm) (A.12)

A way to sample from this distribution is to draw an index m∗ from a multinomial

distribution with probabilities given by the normalised cumulative probabilities of
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A.1. Posterior computation

(A.12). Then assign the auxiliary point xj,i,l to the jump location θm∗ . There are no

modifications of the update routine necessary for HPGRF or IPGRF model variants

with or without marks and with or without covariates.

Updating jump locations θm

The full conditional for the set of jump locations θ = {θm}Mm=1 is given by

π(θ|·) ∝
J∏
j=1

Nj∏
i=1

{
exp

[
−Zj,i

M∑
m=1

Kσ2
j
(B, θm)ηj,m

]

×
Li∏
l=1

[
kσ2

j
(yj,i,l, xj,i,l)

M∑
m=1

ηj,mIθm(xj,i,l)

]}

×
J∏
j=1


Nj∏
i=1

Li∏
l=1

exp

[
−(lnwj,i,l − aj − bjZj,iλj,i,l)2

2σ2
w

] . (A.13)

The total number M of jump locations must be pre-specified in the algorithm and

should be sufficiently larger than the number of points in the data set. To initialise

the jump sources of the Gamma random field, draw M points uniformly distributed

over B. The auxiliary points share the same locations as the jump sources, i.e. each

xj,i,l equals some θm. These assignments are not unique which means there exists

a set of distinct points {θt}Tt=1, with T ≤ L < M , that is a subset of {θm}Mm=1.

Each θt has at least one xj,i,l assigned to it. In order to sample the first T latent

sources, that is for all m ≤ T when one or more auxiliary points are clustered at

the jump location θm, use a random-walk Metropolis-Hastings update with proposal

distribution θ̃m ∼ N (θm, ζ
2
θ ). The hyperparameter ζ2

θ can be adjusted during burn-

in to optimise the acceptance rate. The log-acceptance ratio is given by

log r(θ̃m, θm) =

J∑
j=1

Nj∑
i=1

[
Kσ2

j
(B, θm)−Kσ2

j
(B, θ̃m)

]
ηjmZj,i

+
1

2σ2
w

J∑
j=1

Nj∑
i=1

Li∑
l=1

[
(lnwj,i,l − aj − bjZj,iλj,i,l)2 (A.14)

−
(

lnwj,i,l − aj − bjZj,iλ̃j,i,l
)2
]

−
J∑
j=1

Nj∑
i=1

Li∑
l=1

ln kσ2
j
(yj,i,l, xj,i,l)Ixj,i,l(θm), (A.15)
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where λ̃j,i,l ≡
M∑

m′ 6=m
kσ2

j
(yj,i,l, θm′)ηjm′ + kσ2

j
(yj,i,l, θ̃m)ηjm. The expression above

can be written as

log r(θ̃m, θm) =

J∑
j=1

Nj∑
i=1

[
Kσ2

j
(B, θm)−Kσ2

j
(B, θ̃m)

]
ηj,mZj,i

+
1

2σ2
w

J∑
j=1

Nj∑
i=1

Li∑
l=1

[(
kσ2

j
(yj,i,l, θ̃m)− kσ2

j
(yj,i,l, θm)

)
× ηjmbjZj,i

{
2 (lnwj,i,l − aj)− bjZj,iηjm

(
kσ2

j
(yj,i,l, θ̃m)− kσ2

j
(yj,i,l, θm)

)}
− ln kσ2

j
(yj,i,l, xj,i,l)Ixj,i,l(θm)

]
. (A.16)

For the remaining M − T jump locations with indices T < m ≤ M , the

new proposal is drawn from a uniform distribution over B, i.e. θ̃m ∼ U(B). The

acceptance ratio remains the same as before except that now Ixj,i,l(θm) = 0.

The modification for model variants without covariates entails setting all

Zj,i = 1. For the plain HPGRF without marks and covariates, the log-acceptance

ratio simplifies to

log r(θ̃m, θm) =
[
Kσ2

j
(B, θm)−Kσ2

j
(B, θ̃m)

]
ηj,mNj

−
Nj∑
i=1

Li∑
l=1

ln kσ2
j
(yj,i,l, xj,i,l)Ixj,i,l(θm). (A.17)

Updating type level jump heights ηj,m

The full conditional distribution for type-specific jump magnitudes η = {{η}Mm=1}Jj=1

is given by

π(ηj,m|·) ∝
Nj∏
i=1

exp
{
−Zj,iKσ2

j
(B, θm)ηj,m

}
η
tj,m+νm−1
j,m exp {−τηj,m}

×
Nj∏
i=1

Li∏
l=1

exp

− 1

2σ2
w

(
lnwj,i,l − aj − bjZj,i

M∑
m=1

kσ2
j
(yj,i,l, θm)ηj,m

)2

 ,

(A.18)
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A.1. Posterior computation

where with tj,m ≡
Nj∑
i=1

Lj,i∑
l=1

Iθm(xj,i,l). The first product term can be expressed as a

Gamma distribution, returning

π(ηj,m|·) ∝ Γ

νm + tj,m,

Nj∑
i=1

Zj,iKσ2
j
(B, θm) + τ


×

Nj∏
i=1

Li∏
l=1

[
exp

{
− 1

2σ2
w

(lnwj,i,l − aj − bjZj,iλj,i,l)2

}]
. (A.19)

To update ηj,m, draw a proposal according to

η̃j,m|· ∼ Γ

νm + tj,m,Kσ2
j
(B, θm)

Nj∑
i=1

Zj,i + τ

 (A.20)

and accept with probability min {0, log r(η̃j,m, ηj,m)}, with the log-acceptance ratio

given by

log r(η̃j,m, ηj,m) =
1

2σ2
w

Nj∑
i=1

Li∑
l=1

[
(lnwj,i,l − aj − bjZj,iλj,i,l)2

−
(

lnwj,i,l − aj − bjZj,i ˜lambdaj,i,l

)2
]

(A.21)

and λ̃j,i,l ≡
M∑

m′ 6=m
kσ2

j
(yj,i,l, θm′)ηj,m′ + kσ2

j
(yj,i,l, θm)η̃j,m.

For the un-marked HPGRF model, the update is conjugate and reduces to

drawing from

ηj,m|· ∼ Γ

νm +

Nj∑
i=1

Lj,i∑
l=1

Iθm(xj,i,l), NjKσ2
j
(B, θm) + τ

 . (A.22)

Updating population level jump heights νm

Define cm ≡
J∏
j=1

τe−βηj,m. The full conditional for all but the last population level

jump heights is given by

π(νm<M |·) ∝
cνmm

Γ[νm]
ν−1
m . (A.23)
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Due to the inverse Lévy measure construction of the Gamma random field, the

analogous expression for the last jump height is

π(νM |·) ∝ exp {−E1[βνM ]} cνMM
Γ[νM ]

ν−1
M . (A.24)

We use a random-walk Metropolis-Hastings update with a symmetric proposal dis-

tribution, thus ν̃m ∼ N (νm, ζ
2
ν ). The log-acceptance rate can be expressed as

log r(ν̃m, νm) = ln cm (ν̃m − νm)− (ln Γ[ν̃m + 1]− ln Γ[νm + 1])

− (E1[βν̃M ]− E1[βνM ]) δm,M , (A.25)

where we used the relation ln Γ[x] + lnx = ln Γ[x+ 1].

Alternatively, by using a Taylor expansion around Γ[x], one can show that

π(νm|·) are log-concave functions and hence νm can also be updated via Adaptive

Rejection Sampling.

Updating type level inverse scale parameter τ

We use a Gamma prior for the group level inverse scale parameter: τ ∼ Γ(aτ , bτ ).

The full conditional is given by

π(τ |·) ∝ τ
J

M∑
m=1

νm+aτ−1
exp

−
bτ +

J∑
j=1

M∑
m=1

ηj,m

 τ

 , (A.26)

which implies that the update is conjugate and that τ can be drawn according to

τ |· ∼ Γ

J M∑
m=1

νm + aτ ,

J∑
j=1

M∑
m=1

ηj,m + bτ

 (A.27)

Updating population level inverse scale parameter β

We again use a Gamma prior such that β ∼ Γ(aβ, bβ). The full conditional is given

by

π(β|·) ∝ βaβ−1 exp

{
−
(
bβ +

M∑
m=1

νm

)
β − E1(βνM )

}
. (A.28)
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A.1. Posterior computation

For the update we employ a symmetric random-walk Metropolis-Hastings step by

drawing a proposal value from β̃ ∼ N (β, ζ2
β). The full conditional in the log-domain

is

log π(β|·) ∝ (aβ − 1) log β − (bβ +

M∑
m=1

νm)β − E1[βνM ] (A.29)

and thus the log-acceptance rate becomes

log r(β̃, β) = (aβ − 1)(log β̃ − log β)− (bβ +

M∑
m=1

νm)(β̃ − β)− E1(β̃νM ) + E1[βνM ].

(A.30)

A.1.4 Sampling of kernel parameters

Updating σ2
j

We use a uniform prior: π(σ−2
j ) ∼ U [aσ, bσ]. The full conditional of the type-specific

kernel variance σ2
j is given by

π(σ2
j |·) ∝ exp

−Kj

Nj∑
i=1

Zj,i −
S2
j

2σ2
j

− d

2
Lj ln(σ2

j )


×

Nj∏
i=1

Li∏
l=1

exp

{
− 1

2σ2
w

(
lnwj,i,l − aj

. −bjZj,i

 M∑
m=1

(
1

σ2
j

)d/2
exp

{
−||yj,i,l − θm||

2

2σ2
j

}
ηj,m

)2


(A.31)

with Zj,i ≡ exp

{
P∑
p=1

zj,i,pγp

}
, S2

j ≡ 1
2

Nj∑
i=1

Lj,i∑
l=1

||xj,i,l − yj,i,l||2 and Lj ≡
Nj∑
i=1

Li.

We use a symmetric random-walk update to draw σ̃2
j ∼ N (σ2

j , ζ
2
σ). Assuming the

draw falls within U [aσ, bσ], the Metropolis-Hastings log-acceptance rate is given by

log r(σ̃2
j , σ

2
j ) =

(
Kj − K̃j

) Nj∑
i=1

Zj,i +
S2
j

2

(
1

σ2
j

− 1

σ̃2
j

)
+
d

2
Lj
(
lnσ2

j − ln σ̃2
j

)
+

1

2σ2
w

Nj∑
i=1

Li∑
l=1

[
(lnwj,i,l − aj − bjZj,iλj,i,l)2 −

(
lnwj,i,l − aj − bjZj,iλ̃j,i,l

)2
]
,

(A.32)
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whereKj ≡
M∑
m=1

Kσ2
j
(B, θm)ηj,m, K̃j ≡

M∑
m=1

Kσ̃2
j
(B, θm)ηj,m and λ̃j,i,l ≡

M∑
m=1

kσ̃2
j
(yj,i,l, θm)ηj,m.

The log-acceptance rate can also be written as

log r(σ̃2
j , σ

2
j ) =

(
Kj − K̃j

) Nj∑
i=1

Zj,i +
S2
j

2

(
1

σ2
j

− 1

σ̃2
j

)
+
d

2
Lj
(
lnσ2

j − ln σ̃2
j

)
+

1

2σ2
w

Nj∑
i=1

bjZj,i

Li∑
l=1

{(
λ̃j,i,l − λj,i,l

) [
2(lnwj,i,l − aj)− bjZj,i

(
λ̃j,i,l − λj,i,l

)]}
(A.33)

In case of the un-marked HPGRF model without covariates, the full condi-

tional reduces to

π(σ2
j |·) ∝ exp

{
−

M∑
m=1

[
NjKσ2

j
(B, θm)ηj,m

]
−

S2
j

2σ2
j

− d

2
Lj log(σ2

j )

}
I[aσ ,bσ ](σ

−2
j )

(A.34)

and the log-acceptance ratio is given by

log r(σ̃j , σj) = Nj(Kj − K̃j) +
S2
j

2

(
1

σ2
j

− 1

σ̃2
j

)
+
d

2
Lj
[
ln(σ2

j )− ln(σ̃2
j )
]
. (A.35)

A.1.5 Intensity computation

The group level intensity measure at each MCMC draw for voxel vr is given by

Λj(vr) =

M∑
m=1

kσ2
j
(vr, θm)ηj,m. (A.36)

After N draws from the posterior, the mean estimated posterior intensity is simply

given by

Λ̂j(vr) =
1

N

N∑
n=1

Λ
(n)
j (vr). (A.37)

Analogously, the population level intensity is given by

Λpop(vr) =
1

J

1

τ

J∑
j=1

M∑
m=1

kσ2
j
(vr, θm)νm (A.38)
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A.1. Posterior computation

and

Λ̂pop(vr) =
1

N

N∑
n=1

Λ(n)
pop(vr). (A.39)

The standard deviation of mean posterior intensities is given by

σ̂Λ(vr) =

[
1

N − 1

(
N∑
n=1

[
Λ(n)(vr)

]2
−N

[
Λ̂(vr)

]2
)] 1

2

(A.40)

where Λ ∈ {Λj ,Λpop}.
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Appendix B

Application supplements

B.1 Supplement to the application of the SVM classifier

to the GeneMSA data set
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B.1. Supplement to the SVM classifier

Figure B.1: Standardised SVM weights for five pairwise classifiers (I). All weights
have been standardised to the occurring maximum across all classifiers which is age
in RRMS-versus-SPMS.
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Figure B.2: Standardised SVM weights for five pairwise classifiers (II). All weights
have been standardised to the occurring maximum across all classifiers which is age
in RRMS-versus-SPMS.
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B.2. Supplement to the imHPGRF model: GeneMSA data

B.2 Supplement to the application of the imHPGRF

model to the GeneMSA data set
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B.2. Supplement to the imHPGRF model: GeneMSA data
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Figure B.5: Square-root transformed posterior mean intensity for MS subtype CIS.
The estimated intensity is based on 1, 000 posterior samples. The panels correspond
(in increasing order from left to right and top to bottom) to axial slices at z = −64 :
6 : +50.
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B.2. Supplement to the imHPGRF model: GeneMSA data

Figure B.6: Square-root transformed posterior mean intensity for MS subtype
RRMS. The estimated intensity is based on 1, 000 posterior samples. The panels
correspond (in increasing order from left to right and top to bottom) to axial slices
at z = −64 : 6 : +50.
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Figure B.7: Square-root transformed posterior mean intensity for MS subtype
SPMS. The estimated intensity is based on 1, 000 posterior samples. The panels
correspond (in increasing order from left to right and top to bottom) to axial slices
at z = −64 : 6 : +50.
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B.2. Supplement to the imHPGRF model: GeneMSA data

Figure B.8: Square-root transformed posterior mean intensity for MS subtype
PPMS. The estimated intensity is based on 1, 000 posterior samples. The panels
correspond (in increasing order from left to right and top to bottom) to axial slices
at z = −64 : 6 : +50.
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B.3 Supplement to the application of the imHPGRF

model to the BENEFIT data set
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B.3. Supplement to the imHPGRF model: BENEFIT data
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Figure B.11: Square-root transformed posterior mean intensity for CIS. The es-
timated intensity is based on 1, 000 posterior samples. The panels correspond
(in increasing order from left to right and top to bottom) to axial slices at
z = −64 : 6 : +50.
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Figure B.12: Square-root transformed posterior mean intensity for CIS. The es-
timated intensity is based on 1, 000 posterior samples. The panels correspond
(in increasing order from left to right and top to bottom) to axial slices at
z = −64 : 6 : +50.

152



Bibliography

Aban, I.B., Cutter, G.R., Mavinga, N. (2008). Inferences and power analysis con-

cerning two negative binomial distributions with an application to MRI lesion

counts data. Computational Statistics & Data Analysis 53(3), 820–833.

Alauddin, M.M. (2012). Positron emission tomography (PET) imaging with (18)F-

based radiotracers. American Journal of Nuclear Medicine and Molecular Imaging

2(1), 55–76.

Allwein, E.L., Schapire, R.E., Singer, Y. (2001). Reducing multiclass to binary: A

unifying approach for margin classifiers. Journal of Machine Learning Research

1, 113–141.

Alqallaf, F., Gustafson, P. (2001). On cross-validation of Bayesian models. Canadian

Journal of Statistics 29(2), 333–340.

Arns, C.H., Knackstedt, M.A., Mecke, K. (2010). 3D structural analysis: Sensitivity

of Minkowski functionals. Journal of Microscopy 240(3), 181–196.

Arns, C.H., Knackstedt, M.A., Pinczewski, W.V., Mecke, K.R. (2001). Euler-
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