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Summary 

Metabolic rate is not routinely assessed in healthcare for the general population, nor 

is it a measure commonly recorded for in-patients (incorrect feeding can slow post-

operation recovery rate). For the general community, this lack of knowledge prevents 

the accurate determination of calorific need and is a factor contributing towards the 

onset of an overweight and an increasingly obese population. In the UK alone, obesity 

costs the National Health Service a staggering £5 billion annually. In this thesis a novel 

low-cost hand-held breath analyser is presented in order to measure human energy 

expenditure (EE). A unique optical CO2 sensor was developed, capable of sampling 

exhaled breath with a fast response time ~1 s and resilience to a humidity range of ~30 

% to near saturated. The device was tested in a laboratory gas testing rig and a 

detection limit of ~25 ppm CO2 was measured. A low power metal oxide sensor (~100 

mW) was developed to detect volatile organic compounds (VOCs) in the breath, for 

disease detection and investigation of the variation of inter-individual metabolism 

processes. The device was sensitive to acetone (100 to 300 ppm, which is a biomarker 

for type-I diabetes). Other VOCs, such as NO2 were tested (10 to 250 ppb). Further 

work includes investigating the inter-individual variance of metabolism processes, for 

which the metal oxide sensor would be well-suited. Software was developed to operate 

the gas testing rig and acquire sensor output data in real-time. An application was 

written for smartphones to enable EE measurements with the breath analyser, outside 

of a laboratory environment. Three hand-held analysers were constructed and tested 

with a trial of 10 subjects. A counterpart (benchmark) unit with medical grade 

commercial sensors (cost of ~£2500) and hospital respiratory rooms (reference) were 

included in the trial. The newly developed analysers improved upon the performance 

of the benchmark system (average EE measurement error +2.4 % compared to +7.9 

%). The affordable device offered far greater accuracy than the traditional method 

often used by practitioners (predictive equations, error +41.4%). It is proposed a set 

of periodic (hourly) breath measurements could be used to determine daily EE. The 

EE analyser and associated low-cost sensors developed in this work offer a potential 

solution to halt the growing cost of an obese population and provide point-of-care 

health management.  

 



xxvii 

   

Abbreviations 

Abbreviation   

ADC Analogue-to-Digital Converter 

BMI Body Mass Index (kg m-2) 

BMR Basal Metabolic Rate 

CI Confidence Interval 

CMOS Complementary Metal-Oxide-Semiconductor 

COPD Chronic Pulmonary Disease 

COSHH Control of Substances Hazardous to Health 

CSV Comma-Separated-Value 

DAQ Data Acquisition 

DIT Diet Induced Thermogenesis 

DLW Doubly Labelled Water 

EE Energy Expenditure 

EMF Electromotive Force 

EN Enteral Nutrition 

FEM Finite Element Modelling 

FFM Fat-Free Mass 

FFT Fast-Fourier Transform 

HAPI HITRAN Programming Interface 

HITRAN High-Resolution Transmission Molecular Absorption 

HB Harris-Benedict 

HR Heart Rate 

HMRU Human Metabolism Research Unit (University Hospital Coventry) 

ICU Intensive Care Unit  

I.D Internal Diameter 

IR Infrared 

LCD Low Calorie Diet 

MEMS Micro-Electro-Mechanical Systems 

MFC Mass Flow Controller 

MFM Mass Flow Meter 

MLR Multiple Linear Regression 



xxviii 

   

Abbreviation   

MOX Metal Oxide 

MR Metabolic Rate 

NHS National Health Service (UK) 

NDIR Non-dispersive Infrared 

PA Physical Activity 

PCR Principle Component Regression 

PID Proportional-Integral-Derivative 

POM Polyoxymethylene (Polyacetal)  

ppm/ppb Parts Per Million/Billion 

RH Relative Humidity 

RMR Resting Metabolic Rate 

RQ Respiratory Quotient 

RTIL Room Temperature Ionic Liquid 

SEM Scanning Electron Microscope 

SIT Sprint Interval Training 

SLPM Standard Litres Per Minute 

SOI Silicon-On-Insulator 

SPI Serial Peripheral Interface 

SPN Supplementary Parental Nutrition 

SSoW Safe System of Work 

STD Standard Deviation 

TEF Thermal Effect of Food 

TO Transistor Outline 

TUN Total Urinary Nitrogen 

UHCW University Hospitals Coventry and Warwickshire NHS Trust 

UN Urinary Nitrogen 

USB Universal Serial Bus 

UUN Urinary Urea Nitrogen 

VI Virtual Instruments 

VISA Virtual Instrument Software Architecture 

VLCD Very Low Calorie Diet 

VOC Volatile Organic Compound 



xxix 

   

Chemical Formulae 

Formula   

Ag Silver 

CO Carbon Monoxide 

CO2 Carbon Dioxide 

CO (NH2)2 Urea 

H2 Hydrogen 

H2O Water 

Ln2O3 Lanthanide sesquioxide 

N Nitrogen 

N2 Nitrogen Gas 

NO Nitric Oxide 

NO2 Nitrogen Dioxide 

O2 Oxygen 

POM Polyoxymethylene 

Pt Platinum 

SnO2 Tin Oxide 

TiO2 Titanium Dioxide 

WO3 Tungsten Oxide 

 



  1 

   

 

CHAPTER I 

 

 

 

Human Metabolism 
 

 

 

 

 

Preface 

The study of human metabolism has progressed extensively since the latter part of the 

20th century and although the components of energy expenditure are now well defined 

their variance with human daily routine is less well understood. Globally, the trend 

towards an obese population is becoming increasingly widespread, putting substantial 

additional pressure on health services worldwide. The array of diseases associated 

with an overweight population is swallowing healthcare resources and when accrued 

with absence rates, costing the global economy billions every year. The cause of the 

overwhelming surge towards an overweight population is usually placed on changes 

in lifestyle and diet, the quality of which greatly effects human energy balance. Today, 

we are made more aware of the calorific content of our food, and the importance of 

exercise towards a healthy lifestyle. The unknown factor in the energy balance 

equation, between energy intake and energy consumed, is the energy we need as 

individuals.  In this chapter the components of energy expenditure are discussed and 

the need for the routine measurement of patient energy expenditure. 
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1 Metabolism 

Our lifestyles are continuously evolving and with the turn of each year it seems a new 

gadget is released to supposedly make our lives easier both at home and at work [1]. 

These labour saving technologies have contributed to a reduction in manual tasks and 

consequently our daily activities have become less active (with a reduction in daily 

exercise) and more sedentary [2,3]. A behavioural shift in society has led to an 

increased reliance on cars as a means of transport [4]. In England, 6 % of car journeys 

in 2014 were less than 1 mile (50 % less than 5 miles) [5]. It has been reported that the 

reason for 21 % of short car journeys were made for convenience or to save time [6]. 

In 2014 cars, vans and taxis were used for 654 billion passenger kilometres, double 

the values recorded in 1972 [7].   

In simple terms, to maintain a healthy weight calorific intake must equal the energy 

required over the course of a day. In a sedentary seated position, the human body burns 

fewer calories, than intensive manual work, or even standing [8]. The consumption of 

sugary foods and alcoholic beverages has increased in the UK [9]. Nutritional 

information is now commonplace on packaging, although consumers are not 

motivated to review the labels [10]. A diet with high calorific content (when a diet 

exceeds 120 % daily calorific requirement [11], particularly high fat and sugar content) 

combined with a reduction in energy requirements in our daily activities has seemingly 

contributed to an increase in an overweight population. 

European regulations introduced in December 2011 (and mandatory from December 

2016) made nutritional labelling compulsory for any pre-packed products [12].  For 

consumers aware of their diet, this information can offer a means of calculating their 

calorific intake but accurately determining the amount of calories a person consumes 

is still not a trivial task.  

The missing information in the energy balance to maintain a healthy weight is the 

amount of calories burnt by the human body. Many simple methods have been 

proposed to determine energy requirements, for example predictive equations or 

activity monitoring, however accurate determination during everyday life is 

challenging. As discussed in the following chapter, each of the methods has 

fundamental flaws, which negates their routine use in clinical practice and none are 
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suitable for use by the general public. It is the need for an accurate method of 

determining energy expenditure (EE) of a human in a free-living environment that 

motivated this project, namely to develop a hand-held unit to monitor EE through 

breath analysis.  

In the UK, the National Health Service (NHS) spends an estimated £15.4 billion every 

year on treatments related to an overweight population [13]. It is suggested that obesity 

is one of the top three global social burdens, and in the UK this has an annual economic 

impact of £51 billion [14]. It is estimated 23.9 % of females and 22.1 % of males are 

obese (body mass index ≥ 30) in the UK [15]. Table 1.1 lists possible comorbidities 

of obesity. Premature deaths are also associated with obesity, where only tobacco 

smoking carries a greater risk [16]. The risk of mortality increases as BMI increases 

(although a BMI outside the lower limit of the 20-25 kg/m2 range also increases the 

risk). Additionally, a fluctuation in body weight can also cause premature death and 

increase the risk of chronic diseases [16].  

Table 1.1 – List of associated health risks with obesity. 

Associated Disease Risk Ref 

Cancer Increased risk of reproductive cancers (breast, 

uterus, cervix, prostate).  

[17] 

Cardiovascular Elevated risk of heart attack and stroke.  [16] 

Diabetes Overweight people twice as likely to develop 

type 2 diabetes. Itself, type 2 diabetes is major 

cause of early death, heart disease, kidney 

disease and blindness.  

[17] 

Gallbladder Disease Related to obesity, probability of contracting 

disease increases with weight gain. Gallstones 

are associated with fast weight loss.  

[18] 

Gout Uric acid in the blood causes gout, when stone 

or crystal masses are deposited in joints.  

[17] 

Gut Changes in gut hormone secretion and changes 

in gut microflora.  

[18] 

Hypertension Overweight people more likely to have high 

blood pressure. 

[16] 
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Associated Disease Risk Ref 

Osteoarthritis Extra weight on joints can increase the risk. 

Pressure on joints wears away protective 

cartilage. 

[16] 

Pulmonary Abnormal function possible in obese patients. 

Can cause obstructive sleep apnea.  

[17] 

Psychosocial Can cause eating disorders, poor self-esteem 

and depression.  

[18] 

A general underestimation of energy intake and an overestimation of the calories 

expended during exercise or while sedentary has been reported [19].  Knowledge of 

energy expenditure for the general population is a key element in avoiding 

unintentional overeating and to achieve energy balance [20]. There are no routine 

checks prescribed to advise on the EE of an individual. The current generation of 

indirect calorimeters is acknowledged to be expensive devices and the measurements 

taken using these devices are time-consuming and require a well-trained team [21,22]. 

In the UK, the NHS recommend that to maintain a healthy weight, daily calorie intake 

should not exceed 2,500 kcal for men and 2,000 kcal for women [13,23]. 

Knowledge of energy requirements is greatly beneficial for healthy individuals, but 

for the care of patients in intensive care units (ICUs) could be considered essential. 

However in a collection of around 8000 ICU cases only 0.8 % used indirect 

calorimetry to determine energy requirements [24]. The lack of accurate calorific 

knowledge costs lives in ICUs and the introduction of routine calorific requirement 

measurement could dramatically improve patient care and survival rates.  

The energy requirements of a patient in intensive care can vary depending on their 

underlying illness. Comparing patients with the same condition, metabolic 

requirements depend on the stage of the illness and its severity [25,26]. Therefore it is 

difficult to adapt equations to suit ICU patients, with many factors estimated by the 

practitioner.  

Malnutrition, where the patient is underfed, has been found to increase the length of 

stay in an ICU and also increases the risk of complications (particularly infections) 

[27]. One study even reported an increased mortality rate for patients who had an 

energy deficit of >1200 kcal/day over a 2 week period [28]. Feeding a patient in an 
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ICU with excess nutrition can also endanger life, where overfeeding has been 

associated with hypercapnia, re-feeding syndrome and immune dysfunction [29,30]. 

It has been reported 71 % of critically ill patients were overestimated in a study of 34 

patients when compared against indirect calorimetry [29]. It was noted that the 

preferred method of monitoring energy requirements was indirect calorimetry, 

although this is not always feasible.  

1.1 Project Aims 

A handheld breath analyser will be developed for this project. This sections 

summarises the target specification for the prototype unit. The motivation for 

developing a hand-held unit is discussed in section 2.7, following a discussion of the 

currently available EE measurement techniques.  

 Develop a device capable of measuring human EE. 

o The device developed during the project should contain the necessary 

sensors to measure human EE. It should work on a breath-by-breath 

basis and be able to perform measurements quickly, over a period of a 

few minutes.   

 Build a robust and affordable unit suitable for widespread adoption.  

o The unit needs to be portable and robust but still affordable. To enable 

use in the general community, it must use components able to 

withstand being transported yet while remaining low cost, miniature 

and accurate. Infrequent calibration required (if at all), that is simple 

and does not require specialist equipment.  

 Create an easy to use means of calculating EE with the analyser. 

o The device should be robust and simple to use, without requiring the 

assistance of a clinician. A reliable yet intuitive means of measuring 

EE should be developed (software to perform calculations, for 

example a smartphone application). The device should be able to 

measure EE with only infrequent calibration. The sensors need to be 

reusable and not require maintenance or replacing in-between breath 

measurements.   
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 The device should measure a 1 % change in EE.  

o To be of use in clinical practice the device must be capable of 

measuring a 1 % change in EE (discussed in section 3.1). Briefly, a 1 

% tolerance is required to monitor the changes in components of total 

EE, of particular interest is the effect of eating on metabolism. The 

device must be able to accurately measure EE and allow reproducible 

results.  

 Verified against clinically proven method of EE measurement. 

o To validate the EE measurements performed with the developed 

prototype breath analyser against a renowned measurement technique. 

The portable unit will be verified with subjects in respiratory rooms.  

 Expandable measurement system for research devices. 

o Allow extra sensors to be added to the system to expand the 

capabilities of the device for breath analysis. Volatile organic 

compound sensors could be included to allow further analysis of breath 

contents.  

 

1.2 Components of Energy Expenditure 

Metabolic rate for human beings is the amount of energy expended by the body over 

a given period of time, the aggregate of all the energy expending chemical processes 

taking place. In a free-living environment the energy required by a human can be 

divided into four components. The majority of daily EE (60 to 70 %) is consumed by 

basal metabolic rate, the minimum amount of energy required to sustain life [31]. 

Approximately 25 % of the daily EE is attributed to purposeful physical activity, 7 % 

to non-exercise activity (e.g. fidgeting) and the remaining 8 % to thermal effect of 

food (TEF). Knowledge of these components and their variance can aid design of a 

protocol to reproducibly measure EE. Resting metabolic rate (RMR) is measured in a 

seated or supine position, and is the energy required by the body to maintain normal 

body functions at rest (the subject should be awake but not perform any activity and 

should have fasted beforehand).   
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1.2.1 Physiological and Environmental Factors 

Metabolic rate is usually higher in males compared to females. Additionally, RMR 

decreases with age [32]. Fig. 1.1 shows the rapid decrease in RMR during childhood. 

Male RMR is higher than for a female across the age range shown (1 to 75+ years). 

RMR is usually measured in the morning, after a 12 hour fasting period [33]. No 

strenuous activity should have been performed before the test (nor any physical 

activity for the duration of the test). All psychological and physical factors that cause 

excitement must be eliminated [34]. 

 

Fig. 1.1 – Resting Metabolic Rate from 1 year of age to 75+ years of age, in terms of 

body surface area. Data from [32,35]. 

The rapid decrease in RMR from the age of 3 can be explained by changes in body 

composition through growth. Normally the RMR decreases by 1-2 % per decade, 

however the uneven growth of organs and changes in body composition cause a peak 

for over 10 years starting from 3 years of age [33]. Growing children (for example 

teenagers) need to consume a higher amount of calories per day than older adults [36]. 

Body composition has an effect on RMR. As the body ages, muscle mass tends to 

decline. At rest, muscle tissue uses more energy than fat tissue. Intrinsically, the body 

composition of a female, with a higher fat to muscle mass ratio (specifically essential 

fat) means a males have a higher RMR at every age [37]. Muscle mass can be 

improved through exercise, although typically only accounts for 25 % of basal oxygen 

(O2) consumption (compared to vital organ tissue, which accounts for around 60 %) 

[38].  
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In terms of body weight, under normal circumstances around 5 to 6 % of total body 

weight can be attributed to the weight of the brain, liver, heart and kidney, compared 

to around 30 to 40 % attributable to muscle mass [39]. It has been estimated that the 

organ cells account for more than 60 % of RMR [39]. It has been reported that age 

related reduction in fat-free mass (FFM, muscle mass) is responsible for the decline in 

RMR during adult life [40]. Lazzer et al. in a study of 8,780 subjects showed that 

gender was a significant determinant of RMR in obese children and adolescents, but 

not obese adults [40]. In children and adolescents gender remained significant after 

adjustment for body weight and FFM. Around 80 % of inter-individual variability in 

RMR is accounted for by FFM, fat mass (FM), age and gender [41]. The majority, 75 

%, is FFM with around 5 % accounting for the other covariates.   

Hormone levels also have an effect on MR. Thyroid hormone increases MR, where a 

total loss of thyroid secretion may decrease MR by as much as 40 to 60 % of normal 

level [34]. When the gland secretes maximal amounts of thyroxin the MR can rise by 

as much as 50 to 100 %. Notably, the gland adapts to different climates, secreting a 

higher amount of thyroxin in colder climates and a lower amount in warmer climates. 

Thyroxin increases the rates of the chemical reactions taking place in many cells, thus 

a higher level of thyroxin causes a higher MR. Comparing people living in arctic 

conditions to those in tropical conditions, RMR of people living in colder climates 

could be higher than those in hotter climates by perhaps 5 to 20 % [42]. In hotter 

climates, exercise causes a higher elevation in metabolic load compared to thermos-

neutral environments (~5 %). Three factors can directly produce an increased 

thermogenic effect namely: Elevated core temperature; additional energy required for 

sweat gland activity and altered circulatory dynamics. Shivering thermogenesis refers 

to a person shivering to generate heat, which can cause RMR to triple. This effect is 

particularly visible in cold stress during exercise, such as the subject being immersed 

in cold water. 

The calorific intake required for male individuals is well known to be larger than 

comparative females [34]. Male sex hormones have a far greater effect on MR than 

female sex hormones; testosterone can increase MR by 10 to 15 %, whereas female 

sex hormones may only increase RMR by a relatively insignificant amount [34]. The 

larger effect of male hormones on MR is due to the hormones anabolic effect in 

increased skeletal muscle mass. Growth hormones can also cause a rise in MR, for the 
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same reason, by stimulating cellular metabolism. Adults with growth hormone 

deficiency can attend replacement therapy sessions, with recombinant growth 

hormones which increase RMR by about 20 %. Taking a view of the population in 

general, women have lower energy intake and lower average daily MR due to lower 

body mass, fat-free mass and a higher percentage of body fat [43]. RMR in females 

does vary on a daily basis as hormones that regulate the menstruation oscillation [36].  

1.2.2 Physical Activity 

The need for an active lifestyle, along with a balanced diet, to maintain or lose weight 

is clear when considering 25 % of daily EE is attributed to physical activity (PA). 

Increasing PA levels is often recommended for weightless patients to lose weight, to 

compensate for the decrease in RMR associated with weight loss. Furthermore, in 

general the amount of energy required to complete a set activity is proportional to 

weight. Thus the same level of activity requires less energy after weight loss [44]. It 

has been reported that bariatric surgery (with 50 kg weight loss) can cause a decrease 

in RMR of 573 kcal/day[44].  

A study by DeLany et al. found subjects achieved body weight loss by a prescriptive 

energy deficit of between 500 and 1000 kcal/day [44]. A weight loss of 7 % was 

targeted. The study emphasised the difficulties in adhering to diet plan, where it was 

noted not all participants followed the guide [44]. The target goals were made 

deliberately ambitious, to encourage weight loss and more daily PA. It was discovered 

that although some subjects were the most active, and lost the most weight, this group 

had the greatest drop in RMR. The participants were divided into two groups, one 

prescribed only a diet plan and the other prescribed both a diet plan and exercise 

regime. This study cannot be seen as representative for the general population, due to 

the high proportion of female participants (87 %) and restricted age group (mean age 

47.8 years, ± 6.4 years). The effect of PA as a tool to minimise the drop in total daily 

EE and EE due to PA was masked, by the non-adherence to the PA prescription by 

both groups in the study.   

Exercise has been shown to affect MR for several hours beyond the duration of the 

activity [45]. Knab reported subjects displayed an increased metabolic rate for 14 

hours after a 45 minute bout of cycling, when measured in a metabolic chamber [46]. 

The data from 10 subjects demonstrated that during the exercise period, EE increased 
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by an average of 514 kcal. Over the following 14 hours a total of 190 kcal was 

expended above comparative measurements taken the previous day, where the 

subjects were sedentary. After approximately 14 hours the EE measured returned to 

the baseline level, set by previous days inside the chambers.  

Sevits et al. studied the effect of a single bout of sprint interval training (SIT) on the 

daily EE of 12 adult males inside respiratory chambers [47]. The SIT consisted of five 

sprints on a cycle ergometer, with recovery time in-between (total period of ~30 

minutes). An increased level of EE was recorded for 4 hours after SIT and an increased 

daily EE of 225 kcal was calculated, shown in Fig. 1.2 a). Sevits et al. further explored 

the influence of SIT on 24 hour metabolism, by use of respiratory data to quantify 

changes in substrate oxidation. It was found that minute by minute respiratory 

exchange values, shown in Fig. 1.2 b), were increased only for a four hour period.  

 

Fig. 1.2 – a) Total daily EE increased after a single bout of SIT. Closed and open 

circles indicate individual responses and group mean respectively; b) Mean EE 

found from the group during the sedentary day compared to the SIT period. Adapted 

from [47]. 

1.2.3 Effect of Eating 

The TEF (or DIT, Diet Induced Thermogenesis) component of EE varies by person, 

and is one of the more difficult methodological barriers to the study of energy balance 

in humans [43]. Diet variation can influence TEF by as much as 15 % (for a healthy 

subject ~10 % is expected). Oxygen consumption has been reported to rise after a meal 

and is lowest in the morning and at night [48]. O2 consumption has also been shown 

to correlate with body fat, body surface area and body weight. The ratio between CO2 

produced and O2 consumed is also dependent on such factors. The energy content of 
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the food most determines the TEF, followed by the protein factor. Food high in fat 

content reduces the thermal effect of food. Food with a high protein or high alcohol 

content contributes significantly to a higher TEF. An example of the effect of TEF is 

shown in Fig. 1.3, where subjects were inside a calorimetry chamber for two days and 

randomly assigned a meal condition each day; either two meals or three meals per day 

[49].  

 

Fig. 1.3 – EE and physical activity measured under conditions of two and three 

meals per day. Arrows indicate meal times; adapted from [49]. 

The meal sizes and calorific content of food given to subjects in metabolic studies can 

vary. Indeed in free living, meals vary both in content and periodicity. This perhaps 

provides reasons for the uncertainty regarding the length of time DIT has an effect on 

the MR of a subject. In one study DIT had an effect on the EE of subjects for up to 10 

hours after the last meal [43]. In other studies it has been estimated that the effect lasts 

for up to 15 hours subsequent to eating (fat consumption can have an effect that lasts 

for 8 hours) [50,51]. It may not be necessary to measure for such a long period to 

obtain an estimate for the DIT of a meal. In one study 3 hours were sufficient to nearly 

completely assess a <1500 kJ (360 kcal) meal given to subjects, and it was found the 

same period provided sufficient time to observe the DIT of larger meals for MR 

analysis [52]. In terms of a 3 meal feeding protocol, it has been shown that DIT has 

an effect on total EE from breakfast until 8 hours after the final meal (in the evening) 

[53]. In a study by Westerterp, DIT was visible on the EE from subjects between 

breakfast and lunch (4 hour period) and from lunch until evening meal (5 hour period) 

[53].  
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The content of the diet of an individual naturally effects their energy intake. The 

institute of Medicine of the National Academies (U.S.) recommends a diet that 

contains: 45 to 65 % kcal from carbohydrates; 10 to 35 % kcal from proteins and 20 

to 35 % kcal from total fat [54]. The recommendation extends to advise minimal intake 

of saturated fat, trans fat and dietary cholesterol. The suggested diet content is 

consistent with the advice from other organisations. It is noted by Kennedy et al. that 

individuals at risk of diabetes may be the major beneficiaries of a diet intervention that 

is both effective and easy to tolerate, given that being overweight or obese is the major 

modifiable risk factor for Type 2 diabetes [55].  

The available energy for metabolism from each gram of protein, fat and carbohydrate 

is 4.0, 8.9 and 4.0 kcal/g, respectively [56]. The available energy from each 

macronutrient for combustion is 5.65, 9.40 and 4.10 kcal/g respectively, not all of 

which is available to the body. Nitrogen is excreted from the body in the form of urea, 

which represents some of the energy not available to the body (it is formed in the 

breakdown of protein and amino acids). It arises as amino acids are not completely 

oxidised in the body [57]. The digestion time of each macronutrient varies and is also 

dependent on the overall content of a meal. Carbohydrates affects DIT for a period of 

around 2 hours post consumption.  

Combining food types can slow digestion. The following full digestion times (to exit 

the stomach) are reported for the following types of food: water 10 minutes (10 

minutes), juice 15 to 30 minutes (15 to 30 minute), fruit 30 to 60 minutes (2 to 3 hours), 

proteins 2 to 3 hours (12 hours), carbohydrates 3 to 4 hours (6 to 8 hours) and fats 3 

to 4 hours (12 hours) [58,59]. There are two distinct types of digestion; acid digestion 

for proteins and alkaline digestion for carbohydrates (fats are a special case, and leave 

the stomach largely unchanged) [60]. The content of meals therefore has an effect on 

the digestion effort and time, thus varying the energy required to digest the food. In 

addition to the characteristics of meals given to subjects (size, composition and 

timing), TEF is affected by physiological factors, thus measurements are difficult to 

reproduce. Factors such as age of the subject, genetic background and physical fitness 

further increase variation between studies. The methodological variance in metabolic 

studies (type of calorimetry/measurement equipment used, environmental factors and 

duration of the test) also hinders reproducibility [61].   
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In a free living environment there is no restriction on an individual for any activity 

after a meal. The requirement to remain inside a respiratory room restricts the subject 

to limited activity and to avoid disturbing the measurement system the subject must 

remain in a fixed position. It has been reported that postprandial exercise (such as 

walking or any other form of light endurance exercise) increases gastric emptying [62], 

and this increase reduces blood glucose (an important risk factor for Type 2 diabetes) 

[63,64]. However, the effect of light exercise after eating is not fully understood. A 

study by DiPietro et al. noted EE was not significantly different between days when 

exercise was enforced after meals and control days when the subject rested [64].  

1.3 Weight Management 

Metabolism studies have focused on the health issues caused by an overweight 

population for a considerable period. A study performed in 2001 reported 55 % of 

adults in the United States were overweight or obese [65]. This proportion is 

increasing, in 2015 it was reported around 70 % of adults were categorised as 

overweight or obese [66]. An overweight population is more susceptible to diseases 

affecting the heart as well as diabetes and cancer [65]. Research into technologies to 

help encourage an active lifestyle and promote awareness of the consequences of an 

unhealthy daily routine are well-established. Sedentary behaviour is suggested to be 

one of the underlying causes of the weight gain seen in the population over the last 

two decades. In the daily life of the general population, an increase in the proportion 

of time spent sitting or lying decreases the amount of energy expended [67]. Eating 

snacks and convenience food could also be attributed to slow, but consistent, weight 

gain. It is estimated that weight gain can be started by consuming just 100 kcal/day 

above daily energy requirements [68]. Although metabolic rate increases with weight, 

consistently consuming 100 kcal/day above the daily energy needed will lead to a 

steady weight gain.   

Concurrently to lose weight it is necessary to consume less calories than the daily EE 

requirements. To induce weight loss, studies have previously requested obese 

participants to reduce their calorie intake to between 1000 to 1500 kcal/day [65,69,70]. 

Behaviour is a major factor towards obtaining an energy balance [71]. Changes to 

dietary habits and exercise are the most effective behavioural characteristics in order 

to achieve weight loss [65]. It has been found that subjects are usually unable to adapt 
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to sudden changes in exercise habits, but over a longer period, guided exercise plans 

can motivate subjects to exercise more frequently.  

Development of a handheld device to monitor EE is proposed, in part, to motivate 

users into making the necessary lifestyle changes to lose and then maintain weight 

within healthy bounds. Motivation is noted as a possible important element in losing 

weight [72]. The process of standardised and routine EE measurements is part of the 

motivation required to lose weight, as well as the continual monitoring of EE during 

a weight loss plan to ensure the subject remains focused on long term calorie intake 

and exercise regimes.  

Weight measurements can only provide short term motivation, as rapid weight loss 

can also be associated with greater weight regain over, for example, a 12 month period 

[72] . Dropout rates from diet groups can be used as crude, but realistic, measures of 

the willingness of subjects to remain on diet plans. In one study three groups were 

compared: a VLCD (very low calorie diet), LCD low calorie diet and a restricted 

normal food group [72]. Dropout rates over a one year period were lower for the most 

effective weight loss group, VLCD (18 %), compared to the LCD group (23 %) and a 

normal-food group (26 %).  

In the literature, there is much disagreement about the ability to maintain high levels 

of weight loss [73–75]. While it has been reported that while VLCDs offer greater 

initial weight loss, there is also an increased risk of regaining weight over a longer 

period [71].  VLCDs are arbitrarily defined, although commonly diets of <800 

kcal/day [71] or <500 kcal/day [72] or diets that provide ~50 % of the predicted resting 

EE for an individual are classified as VLCDs. Similarly, no fixed calorie intake is used 

to define a LCD, however diets with calorific intakes below 1200 kcal/day are usually 

referred to as LCDs [71,72].  

The term LCD is also used to denote the prescriptive nature of a diet, rather than just 

when a subject merely attempts to reduce their calorific intake without a designated 

guideline. A review by Tsai et al. summarises follow-up assessments from VLCDs 

from 1 to 5 years after their completion [73]. The report suggest VLCDs should not 

be prescribed except in a few select cases. VLCDs were not recommended to induce 

losses of between 15 % and 25 % of initial weight. It was found that patients were 

rarely able to maintain weight loss even under the best of circumstances. In some 
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extreme cases, VLCDs have led to death, thus in the US such programmes must be 

managed by a physician [72]. This intense dieting regime cannot be recommended as 

a weight loss method for the general overweight population.  

1.4 Psychological Guidance 

The need for a subject to be motivated in order to remain committed to a lifestyle 

change is clear, although suitable methods to maintain this motivation over a period 

of years are difficult to prescribe. The type of food consumed, amount of calories and 

frequency of meals/snacks are often decided by a psychological craving. This craving 

can be a reason for the failure to comply to a LCD. In one study it was noted the 

popular cravings for male obese patients were pizza and French fries, and for women 

cravings were for cake and doughnuts [76]. Commercial weight loss programmes 

usually include weekly or bi-weekly meetings to facilitate behavioural changes. Such 

treatment sessions appear to help motivate subjects to lose weight [77]. In a review of 

11 studies, it was reported that on average, patients lost an extra 1.47 kg (across 

various length trials), compared to control groups [74]. The need for continued 

persuasion to stay dedicated to a treatment plan is noted by Perri et al. [78], where 

individuals on a 40 week plan achieved a far greater weight loss than those on a similar 

20 week venture.  

Food restrictions and dieting will increase appetite and the feeling of hunger [76]. The 

motivation required to overcome these feelings is perhaps lacking in patients who stray 

from reduced calorie treatment plans. In part, hormone levels can play a factor on 

levels of metabolism and the ability to avoid over eating. In particular, leptin (a protein 

hormone), produced by fat tissue, is suggested to give the brain a rough indication of 

the body’s fat mass (in order to regulate appetite and metabolism) [79]. The reduction 

in resting metabolism associated with weight loss can cause a plateau in weight. A 

theory was proposed by Johannsen et al., that combining exercise with a weight loss 

programme could help maintain fat free mass in subjects and thereby prevent a 

dramatic slowing of resting metabolism [75]. The study found that vigorous exercise 

(90 min/day of circuit training and/or aerobic training) was not sufficient to prevent 

fat free mass from decreasing.  

Further studies are required to identify the underlying mechanisms governing leptin 

concentrations [80]. It has been reported that leptin injections can help maintain fat 
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free mass, which in turn helped subjects in one study maintain higher levels of total 

EE [80]. However other studies report inconclusive findings, where the effects on EE 

cannot be categorically proven to relate to leptin concentration, where it is perhaps 

just a central effect [81,82]. In cases where subjects have a leptin deficiency, 

replenishing leptin has been shown to aid treatment plans for overweight subjects. In 

one study it was noted participants easily lost bodyweight when leptin levels were 

supplemented to normal levels [82]. A striking effect of leptin administration was 

reported by Rosenbaum et al. [80], where the increased hormone level caused an rise 

in total EE on a small sample size of 4 patients. The study has limited credibility 

however, with a small number of participants and lack of thorough daily EE 

measurement over the trial period. The behavioural effect discussed above could prove 

a more reliable method for weight loss (i.e. willpower), where control subjects lost a 

similar amount of weight in the study [80]. 

In the case of many metabolism studies, children are less well reported due to the legal 

constraints. Childhood is a crucial period for establishing eating habits for later life, 

although risk calculations suggest that less than half of adult obesity can be attributed 

to childhood obesity [83]. However, when also including those children who are 

overweight, some reports suggest that up to 80 % of overweight adolescents will 

become obese adults [84]. Obesity in childhood and adolescence can have severe 

consequences for adulthood and youth, such as type 2 diabetes and cardiovascular 

diseases [85]. There have also been reports of an increased risk of several cancers, for 

example: colon, thyroid, gallbladder, oesophageal and breast [86]. From a young age 

(6 to 10 years) children already associate obesity with laziness and sloppiness and tend 

to incorporate a cultural preference for thinness [87].   

The psychological impact of childhood obesity cannot be ignored. Table 1.1 lists 

depression and poor self-esteem as illnesses which can be caused by obesity. 

Preference tests have demonstrated that 10 to 11 year old children prefer friends with 

other children with a wide variety of handicaps (wheelchair user, crutches user, facial 

disfigurement etc.) rather than those who are overweight [88]. Overweight children 

are ranked lowest with those with whom they would like to be friends [88]. It has been 

reported that child body mass index (BMI) scores are highly correlated with parent 

BMI scores. In one study it was found that 23.2 % of obese parents have an obese 

child, and 35.1 % of overweight parents have an overweight child [89]. A reduction in 
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adult obesity could help decrease the cycle of obese families. One report notes that 

children are least likely to “grow out of” obesity when it is more severe, and when 

they have at least one obese parent [90]. 

In the short term, the consequences of childhood obesity can also include: asthma, 

chronic inflammation, type 1 (and 2) diabetes, orthopaedic abnormalities and liver 

disease. In the long term it is reported that adults (who were obese as a child or as an 

adolescent) can have persistence of obesity, arthritis and premature mortality [90]. In 

England the prevalence of obesity in children aged 11 to 15 years has increased over 

the last two decades. Jaarsveld et al. reported upon the trend, with data for BMI records 

sourced from the Clinical Practice Research Datalink database (containing about 7 % 

of UK family practices) [91]. In 1994, the prevalence of obesity in boys was 28.1 % 

and 29.3 % for girls aged between 11 and 15 years. In 2013 comparative data showed 

the prevalence for both genders had increased to 37.8 % and 36.6 % for boys and girls 

respectively, of the same age range.  

To prevent the onset of obesity in children, it was found that parents and school 

teachers need to help enforce a better lifestyle. Benefits were seen on an obesity 

prevention trial, where subjects reduced television viewing hours but increased 

physical activity and provided a balanced diet (with increased fruit and vegetable 

intake) [92,93]. The trial, conducted over two school years, included 1295 school 

children. The outcomes were that the school based changes were found to be 

sustainable and cost effective, girls were found to be at reduced risk of becoming obese 

and there was remission of existing obesity.  

The largest intervention effects were seen for African American girls, where obesity 

prevalence was significantly reduced. However, no differences were found for boys 

[92]. However, a further article notes that eating disorders are 10 times more common 

in girls than boys [93]. The intervention programme was noted to reduce disordered 

weight control behaviours. In particular, it has been shown that treatment can be 

performed as a family, where children benefit from simple lifestyle changes such as a 

reduction in sedentary activities as a family, an increase in physical activity (for 

example walking to school) and by introducing a balanced nutritional diet (without 

snacking in-between meals) [90,92].  



 I – Human Metabolism 18 

   

1.4.1 Metabolic Rate and Condition of Patient 

Disease in the ICU can make estimating metabolic requirements difficult for patients. 

Similarly, diseases contracted by the general population can also have a profound 

effect on metabolic rate (most notably for multi-organ system failure). For instance, 

fever increases the chemical reactions in the body by an average of 120 % for each 10 

°C rise in temperature (it is estimated every 1 °C rise in body core temperature causes 

RMR to rise by approximately 13 % [94]).  

Sleep decreases metabolic rate (a deficit in the range of 10-15 % below normal), due 

to decrease tone of the skeletal musculature and decreased activity of the central 

nervous system [34]. Similarly, malnutrition decreases metabolic rate, but by a higher 

factor of up to 20 to 30 % (it is presumed malnutrition causes paucity of food substance 

in cells [34]).  

Disease often has an effect on the EE of a subject. EE is increased in disease states 

due to abnormal protein metabolism, the breakdown of fatty acids, tissue degradation 

and the production of humoral and inflammatory mediators [95]. A slight change in 

EE for non-hospitalised subjects can occur with infections such as influenza [95]. A 

significant change in EE is usual for acutely ill patients. Long et al. list the percentage 

increase in resting metabolic expenditure for six categories of patient following injury 

or illness [96], namely elective surgery 23.9 %, skeletal trauma 32.2 %, blunt trauma 

36.6 %, trauma with steroids 60.8 %, sepsis 79.2 % and burns 131.7 %.  

Further examples are given in Table 1.2. The increase in nutritional requirement can 

be difficult to quantify with predictive equations, particularly due to the great 

dependence on the condition of the individual patient. Patients with severe burn 

injures, are discussed with great concern in the literature [96,97]. In ICUs staff have 

little choice but to use predictive equations to prescribe feeding to patients, although 

energy requirements cannot be precisely predicted. In particular, it is recommended 

that RMR of thermally injured patients should be measured, due to the likelihood of a 

variable hypermetabolic state during recovery [97].   

1.4.2 Energy Requirements of Intensive Care Patients 

The extreme outcomes of incorrectly feeding mechanically ventilated ICU patients 

were observed by Bartlett et al. [98]. The group of 57 patients at risk of multiple organ 

dysfunction, with average stays of 18 days in the ICU, were fed on regimes based on 
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the estimation of calorific and nitrogen requirements. Out of 14 patients that developed 

a cumulative negative caloric balance (that was at discharge more than 10,000 kcal) 

12 died (86%).  Another 3 patients developed a 10,000 kcal deficit, but this was 

reversed by increasing the calorific intake (only one died). A cumulative caloric 

balance of between 0 and -10,000 kcal was found in 28 patients (including the 3 

above), of which 11 died. 15 patients developed a positive cumulative non-protein 

caloric balance, of which 4 died.  Multiple organ dysfunction occurred more often in 

patients with large caloric deficits, however the link was inconclusive. From the total 

group of 57 patients, 27 died (47 %).  

Mault et al. concluded that large negative energy balance in critically ill patients was 

associated with longer ventilator and ICU days [99]. Positive energy balance was 

associated with better outcomes, but the author stated that nutritional support should 

still be determined by daily indirect calorimetry for a critically ill population. The 

impact of malnourishment or over-nourishment can be severe with respect to patient 

recovery. The use of indirect calorimetry to accurately determine energy requirements 

could help reduce the time that a patient needs to spend in intensive care and further 

their recovery.  

As demonstrated in the study by Bartlett et al. above, patients in ICU are often 

subjected to malnutrition and underfeeding [27]. It has been suggested that feeding is 

given a low priority compared to other ICU treatments. Possibly due to a lack of 

specific education, particularly of the staff who are in closest contact with patients in 

relation to feeding [100]. It has been noted as important to feed the patient adequately 

and where necessary, start artificial nutrition early (within the first 24 hours after 

admission). Delays in starting artificial nutrition increase the risks associated with 

under-feeding and significantly increase mortality rates [101].  Maintaining energy 

balance and avoiding over-feeding are equally as important, where energy supply, in 

excess of energy needs, is associated with the increased rate of complications [102].  

Both the quantity of energy required by a patient and the timing of its delivery is 

influential in the progression of patient recovery. In some cases, enteral nutrition (EN) 

is not sufficient to meet the energy requirement of a patient [103]. Supplementary 

parenteral nutrition (SPN) was shown to help meet energy needs of patients in 

intensive care by Heidegger, without compromised glycaemic control or increased 
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insulin needs. For the subjects prescribed SPN, it was administrated to patients from 

day 4 to day 8 of their stay in the ICU. The energy needs of patients were tested by 

indirect calorimetry after 3 days in intensive care. The target of 100 % energy balance 

was met precisely in the SPN group. The SPN prescription was carefully monitored 

and did not lead to over-feeding (by comparison, on average, the EN group reached 

around 75 % of the energy target). Over-feeding would be indicated by excess carbon 

dioxide (CO2), which did not occur in any of the SPN patients. No adverse effects 

attributed to hyperglycaemia occurred in the SPN group, which the authors note could 

be the reason why the SPN group spent less time on mechanical ventilators than the 

control group (prescribed EN alone). The study concludes the adequate feeding in that 

SPN group led to faster weaning from the mechanical ventilators.  

It is noted by Singer et al. that immune and healing function can be reduced when 

under-feeding occurs, due to the promotion of protein catabolism, needed to fuel 

obligatory glucose requirements [102].  Singer et al. also note that EN should cover 

the needs of most patients under the care of a competent team and SPN is not required, 

unless patients fail to tolerate EN. The importance of indirect calorimetry in 

understanding the energy needs of a patient is endorsed by many studies, although its 

availability is insufficient to permit routine use in many ICUs [22,102–104]. 

Comparative studies of various metabolic analysers are published with the intent of 

increasing the use of calorimetry in clinical practice. However, in some cases newly 

available instruments need rigorous testing before being recommended for clinical use 

[105]. The delays in verifying the capability of a device and the outlay required to 

purchase expensive equipment hinders the use of breath analysers in clinical care.  

A fixed value for calorific need (based on body weight) is used to determine feeding 

prescriptions for many patients in ICUs [106], although this practice is widely 

condemned for providing inaccurate results [107]. The calorific need of ICU patients 

is likely to vary depending on their recovery stage. In severe conditions the recovery 

stage can stretch into months, and often beyond their stay in intensive care. Fig. 1.4 

shows five examples of metabolic rate variance for different conditions. Chioléro et 

al. reported the prolonged metabolic response for patients with head injuries lasted 2 

to 4 weeks (measured through indirect calorimetry) [108]. It was noted that the effect 

was usually associated with a marked resistance to nutritional support (which can 

complicate the outcome) and a raised heart rate. Chioléro et al. found that prescribing 
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doses of propranolol reduced the hyper-metabolism in a study with 12 patients (resting 

heart rate decreased). The report concluded that agitation in ICU patients contributed 

to their elevated RMR.  

In order for patients’ recovery to progress, their energy needs must be met by sufficient 

feeding. The amount of feeding required is not constant, and the trend for energy 

requirements is dependent on the type and severity of the illness. It is estimated that 

around 20 % of patients will not tolerate early enteral feeding (and in most cases, 

patients cannot tolerate more than 2.5 litres per day) [109]. This can make it difficult 

to feed patients sufficiently and careful monitoring of blood glucose is required when 

attempting to meet spikes in calorific need over a period of several days.  

 

Fig. 1.4 – RMR increases above normal baseline for patients with conditions such as: 

(a) Head trauma [110]; (b) Sepsis [111]; (c) 20 % burns [112]; (d) 65 % burns [113] 

and (e) Severe burns [114]. Injury occurred at 0 weeks and metabolic rate was 

measured at intervals during the recovery period.  

The examples shown in Fig. 1.4 demonstrate the peak in the energy requirement can 

occur approximately 1-2 weeks after contracting the condition. In the trauma cases 

shown, the energy requirement is increased over the baseline requirement prior to 

admission to the ICU. The EE values shown are from patients that make a recovery 

after a period in intensive care. Not all patients recover from such chronic conditions; 

non-survivors are characterised by a drop in RMR before death [115]. The notable 

decrease can occur a significant time after recovery has begun (range from 2 weeks to 

9 weeks after ICU admission). Table 1.2 lists a number of acute diseases with the 

approximate change in RMR they cause.  
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Long term starvation can reduce EE by up to 30 to 40 % [94]. Reduced energy 

expenditure can occur with any disease that decreases oral intake and that involves 

cachexia. Malnutrition is a global problem, most prevalent in South-East Asia [116]. 

However, it is recognised that a large number of adult patients admitted into British 

and Irish hospitals have a BMI of < 20 kg/m2 (10 to 40 % compared to 4- 5 % in the 

population) [116]. Undernutrition is often untreated in hospital in-patients and 

outpatients. It is noted that the aggressive over-feeding of malnourished individuals, 

especially those recovering from disease, can cause sudden death from re-feeding 

syndrome [117]. There is still uncertainty about prescribing optimal feeding strategies 

and energy targets for ICU patients with pre-existing malnutrition [105]. During the 

first week’s stay of a patient in intensive care, lower energy targets may be suitable. 

Regardless of feeding strategy, it is necessary to calculate the EE for an individual, 

before an energy plan can be set.  

Table 1.2 – Disease effect on metabolic rate measured across a range of subjects. 

Disease Metabolic Rate Adjustment 

Mild Starvation [118] <-15 % 

Partial Starvation [117] 0 to -10 % 

Elective/uncomplicated surgery [119] 0 % 

Burns 10 % (1st month)  

Single Fracture (1st Week)  

Inflammatory bowel disease 

Mild infection [117] 

0 to +10 % 

Infection/Persistent fever (per °c) [119] +10 to +15 % 

Burns between 10 to 25 % (1st month) 

Multiple long bone fractures [117] 
+10 to +30 % 

Major operation/surgical procedures 

[119] 

+20 to +40 % 

Sepsis [120] +25 to +45 % 

Severe trauma [119] +20 to +50 % 

Major infection  [118] < 60 % 

Severe burns (25 to 90 %) [121] +140 to +180 % 

As previously discussed, the tools available to most clinicians are prediction equations 

or past experience. The reliance on estimation assumptions regarding the condition of 
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the patient hinder the accurate calculation of energy needs. Indirect calorimetry 

measurements would ideally be performed (to determine the individual need of a 

specific patient), but often the limited adoption of such equipment has restricted the 

use of this method.  

1.5 Conclusions 

In order to stem the rising trend towards an obese population, steps must be taken to 

provide an understanding of the risks associated with being overweight and the 

balanced diet and lifestyle required to maintain a healthy weight. The components of 

EE (particularly TEF) make calculating total daily EE challenging, with a large 

variance possible between inter-individual preferences.  

The occupations of the adult populations in countries such as the U.K. have become 

more sedentary, especially since the development of many predictive equations used 

to determine calorific requirements. There is a need for new methods of calculating 

energy need, given the variety of lifestyles and body compositions seen in the 

population today. The lack of availability of precision medical instruments is 

somewhat to blame for the weight gains seen in the general population.  

In the case of intensive care, where diseases and injuries can vary metabolic rate by 

up to 180 %, indirect calorimetry provides an accurate means of assessing energy 

requirements. The mortality rates presented in various patient groups (e.g. 47 % in one 

case) demonstrates the need for metabolic assessment without the reliance of 

estimation techniques.  

In the next chapter, indirect calorimetry and other methods of measuring EE are 

discussed with their uses in the general population and clinical care.  
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Metabolic Rate Measurement 
 

 

 

 

 

Preface 

The components that comprise human metabolic rate, discussed in Chapter I, imply a 

level of variation that cannot be neglected but which can only somewhat be predicted 

by routine to a certain level. The methods available to determine energy expenditure 

are discussed in this chapter, and the need for a portable analyser for use with the wider 

population established. Calorimetry, the measure of heat energy, is one method used 

to determine human energy expenditure. Indirect calorimetry, where exhaled gas is 

analysed to determine energy consumed, is reported as the gold standard for metabolic 

rate measurement. However, to assess certain aspects of daily living, subjects must 

remain inside respiratory rooms, which restrict daily living activities and is not 

practical for the general population. It is the need for a quick, portable and affordable 

means to perform indirect calorimetry that motivated this project to develop a low cost 

handheld calorimeter. This chapter summarises the current devices available for 

energy expenditure measurement and state of the art developments.  
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2 Calorimetry 

The amount of energy expended by a human can be measured by calorimetry and 

estimated by a number of methods such as physical activity or heart rate. For clinical 

use, the usual techniques for measuring EE are based on calorimetry. For healthy 

subjects, applications on many devices (such as smartphones, smartwatches or smart 

bands) provide basic measures of energy burnt each day using certain parameters (e.g. 

height, age, gender and weight) combined with data collected from activity sensors. 

As discussed in the section 1.2, the thermal effect of food contributes a significant part 

to daily EE and thus cannot be neglected. Furthermore, disease and medical operations 

can affect metabolic rate, which would not necessarily be shown by activity 

monitoring.   

For discussion of metabolism processes and EE calculations it is common to refer to 

the ratio of CO2 produced to O2 consumed as the respiratory quotient (RQ). The inter-

individual variance of RQ is discussed in section 2.2.1.1.  

Nutrients, consumed in meals and via feeding, allow the production of energy through 

oxidation. The energy produced corresponds to EE, for example, a molecule of glucose 

oxidises to produce 673 kcal of energy (shown in equation 2.1) [1]. The carbohydrate 

example demonstrates a RQ of 1.0. The heat equivalent of O2 for carbohydrate is 5.047 

kcal/L [2].  

𝐶6𝐻12𝑂6 + 6 𝑂2 → 6 𝐶𝑂2 + 6 𝐻2𝑂 − (673 kcal) (2.1) 

The oxidation of a fat (for example, palmitic acid, shown in equation 2.2) requires 

more O2 to be consumed [3]. As proportionally less CO2 is produced, the RQ for the 

fatty acid is 0.68 [2]. The lower (non-protein) RQ for fat corresponds to a lower 

equivalent calorific value of O2 (4.686 kcal/L) [2]. The oxidisation process for palmitic 

acid consumes 239 kcal of energy.  

𝐶16𝐻32𝑂2 + 23 𝑂2 → 16 𝐶𝑂2 + 16 𝐻2𝑂 − (239 kcal) (2.2) 

The reaction to oxidise protein is not as straightforward as the examples for 

carbohydrates and fat. Proteins are not completely oxidised, and some oxygen, 

nitrogen and nitrogen from the protein molecules are used to form urea, 𝐶𝑂(𝑁𝐻2)2 

[4]. The process for albumin is shown in equation 2.3. The RQ for albumin is 0.82, 
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which cannot be directly compared with the RQs for carbohydrate or fat (equation 2.3 

demonstrates the complex process of metabolising protein, compared to fat or 

carbohydrate) [2]. It is estimated the heat equivalent of O2 for protein is 4.656 kcal/L 

[5].   

𝐶72𝐻112𝑁2𝑆 + 77 𝑂2 → 63 𝐶𝑂2 + 38 𝐻2𝑂 + 9 𝐶𝑂(𝑁𝐻2)2 (2.3) 

Calorimetry, the process of measuring the amount of heat produced during chemical 

reactions, can be used to measure the oxidisation reactions in human beings. The 

process of measuring heat expended from a subject is called direct calorimetry. 

Alternatively, indirect calorimetry estimates the heat produced by measuring the 

volumes of oxygen consumed (VO2) and carbon dioxide produced (VCO2) by a 

subject during aerobic (oxygen consuming) metabolism [6].  

2.1 Direct Calorimetry 

All energy consumed is eventually released as heat (after performing work). To 

perform direct calorimetry with a human subject, a sophisticated insulated room is 

required in which the subject can reside for a period of time, and which allows the 

measurement of heat expended [7]. Usually the change in temperature is measured via 

water or air circulating in the walls of the chamber. The method can produce accurate 

results, but is complex and therefore usually limited to research or validation of other 

EE measurement techniques [1]. Also, it is not suitable for portable applications, nor 

for patients requiring regular treatment (as subjects must be isolated inside the room).  

The first direct calorimetry experiments were performed on animals, by French 

chemist Antione Lavoisier [8]. Heat expended was calculated from the water produced 

by ice melting from the body heat of an animal. Importantly, Lavoisier discovered 

there was a relationship between the O2 consumed and CO2 produced, energy 

expenditure and heat production (i.e. indirect calorimetry).  

Direct calorimetry experiments, inside room-sized chambers (e.g. shown in Fig. 2.1), 

can be performed over a 24 hour period or longer, with usually a 10 to 12 hour fasting 

prior to entering the room [9]. Atwater et al. described a calorimeter for measurement 

of human EE, where volunteers occupied the chamber for between 1 and 13 days [10]. 

Over a 12 year period, 22 experiments were performed. Dauncey et al. further 

developed the principles described by Atwater, taking advantage of computerised data 
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logging to allow a greater number of experiments to be performed over a short time 

frame (60 experiments in 18 months) [11].  

The constructed chamber was designed to perform both direct and indirect EE 

measurements. The design used 24 thermocouples to measure the temperature in the 

chamber, with CO2 and O2 analysers for expired gas measurement. In a comparative 

study between direct and indirect calorimetry, 24 hour measurements were made on 8 

adult subjects [12]. Each subject was tested 3 times; overall a mean difference of 1.2 

% was found between the two estimates of 24 hour EE. In later work by Dauncey et 

al., only indirect calorimeter measurements were performed [13].  

 

Fig. 2.1 - Schematic diagram showing chamber for direct calorimetry measurements 

[14].  

The majority of wearable devices for EE measurement use activity sensors to estimate 

EE. The ‘Lifechek’ is a wearable armband (worn on the upper arm) designed to 

measure all four components of heat flux [15]. The device has not featured greatly in 

the literature since its introduction around one decade ago, although the device 

uniquely specified as performing direct calorimetry compared to breath analysers 

which use indirect calorimetry. It is assumed it has been superseded by other devices, 

more reliant on other sensors, such as accelerometers and heart rate monitoring. One 

study notes that studies investigating the contribution of the heat flux components to 

EE have yet to be performed [15]. No follow up studies involving the ’LifeChek’ 

device have been published.  



 II – Metabolic Rate Measurement 37 

   

2.2 Indirect Calorimetry 

Indirect calorimetry has become the gold standard for assessing EE in clinical care 

settings, exercise physiology and nutritional research facilities [16], and is often used 

as a benchmark to verify the performance of experimental techniques for metabolic 

rate assessment. The equations (2.1) to (2.3) demonstrate how EE can be calculated 

for each macronutrient. The EE for a person given breath samples with known VO2 

and VCO2 can be calculated using the Weir equation [17]. The abbreviated Weir 

equation is shown in equation (2.4), neglecting the term for urinary nitrogen, as shown 

in equation (2.5). The possible errors introduced by using the abbreviated form of the 

equation are discussed in section 2.2.2.  

Total EE [kcal] = 3.9 𝑉̇𝑂2 − 1.1 𝑉̇𝐶𝑂2 

 

(2.4) 

Total EE [kcal] = 3.9 𝑉̇𝑂2 − 1.1 𝑉̇𝐶𝑂2 − 2.2 𝑈𝑁 (2.5) 

The derivation of the terms in equation (2.5) is briefly described below, as reported by 

Weir [17]. For digestion of food, a given volume of O2 will be required for 

metabolising, which can be divided into 𝑥, 𝑦 and 𝑧 for the metabolism of 

carbohydrates, proteins and fats respectively. Therefore the volume of O2 consumed 

is given in equation (2.6). Given the RQs, discussed in section 2, an equation for the 

volume of CO2 produced can be written (2.7). The total energy produced can be 

written as the sum of the energies from carbohydrates, fats and proteins, as shown in 

(2.8).  

Litres O2 consumed, 𝑉 = 𝑥 + 𝑦 + 𝑧 

 

(2.6) 

Litres CO2 consumed, R𝑉 = 𝑥 + 0.82𝑦 + 0.68𝑧 

 

(2.7) 

Energy produced, K = 5.047𝑥 + 4.656𝑦 + 4.686𝑧 (2.8) 

The equations (2.6) to (2.8) can be solved simultaneously. The reduced equation can 

be written in the form (2.9).  

K=3.94 V+1.107 RV − 0.365𝑦  (2.9) 
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The final unknown, 𝑦, represents the correction factor for the error introduced in the 

equation through incomplete protein metabolism. It has been reported that 1 g of 

urinary nitrogen signifies that 5.94 L of O2 have been consumed (RQ of 0.801, 4.76 L 

of CO2 produced, 26.5 kcal produced) [18]. The final term in (2.9) can be calculated, 

by substituting the volume of O2 consumed (0.365 × 5.94 =

2.2 kg cal /g urinary nitrogen), as shown in (2.5).  

2.2.1 Respiratory Room 

Whole body calorimeters are often used for EE measurement, where inhaled and 

exhaled gases can be monitored continually, without requiring the subject to wear a 

mask or mouthpiece (for example, the subject is able to eat without hindrance). Air is 

pumped into the chamber (ambient) and gas concentrations compared to the air 

extracted from the chamber. Fig. 2.2 demonstrates a simplified layout of such a room. 

Inside the chamber, a bed allows subjects to remain comfortable at night, and a 

TV/computer permits daily activities similar to normal daily routine for an office 

worker.  

 

Fig. 2.2 – Indirect calorimetry chamber basic layout. Typical size 2.0 × 2.5 × 3.0 m 

(18,000 L volume excluding furniture). Subjects can remain in the chamber for 

several days. Toilet, bed, step (for exercise), desk and chair are fitted inside the 

chamber.  

A breath sample allows for instantaneous values of EE to be calculated. To determine 

total daily EE for the subject (inclusive of all normal daily activities), breath samples 

need to be taken throughout a 24 hour period. It is reported in some cases, that a per 

minute value for EE can be calculated and multiplied by a factor to determine daily 

EE [19]. In theory this technique avoids the need of a 24 hour breath measurement, 
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but care should be taken to account for the variance in EE throughout a normal day 

(as discussed in the previous chapter). A shorter measurement period has been trialled 

with some ICU patients [20]. The changes in RMR caused by some diseases in 

intensive care cause considerably more variance than daily activities. Patients in need 

of such care are unlikely to have a comparative daily routine to a healthy subject.   

Indirect calorimetry is often performed in a respiratory room for a 24 hour period. 

Again the disadvantages of this approach include the subject being constrained to a 

small room for that period without being able to receive medical treatment. 

Furthermore, the chambers can be slow to respond to a change in metabolic rate, due 

to the large volume of the room into which the subject is breathing. The exhaled gases 

are greatly diluted considering the large volume of the room, thus large averaging 

times are needed to get accurate results.  

Calorimeters that sample breath directly, for example through a mask, mouthpiece or 

hood, are of great interest in the research field. Ventilated hood measurements are 

often used for shorter periods of time (30 to 60 minutes), while the subject is in a 

comfortable position. These shorter measurements can be used to determine RMR, 

which can be useful in recommending calorific intake, although it does not provide 

the detailed information available from longer experiments.   

The respiratory chamber provides a reasonably comfortable, but controlled 

environment for a subject to reside. The rooms are usually well insulated and 

pressurised with control over temperature and humidity. Ravussin et al. reported on 

the measurement of daily EE of 177 subjects [21], of which the components of EE 

were studied for 118 subjects. The subjects were not allowed to perform any vigorous 

exercise (although spontaneous physical activity was assessed).  

A wrist band was used to measure movement, before a radar system (using the Doppler 

principle) was later installed to allow precise and non-invasive measurement of 

activity in the chamber. Ravussin et al. recruited volunteers with a wide range of body 

weights and compositions. The volunteers, when admitted to the study, were 

determined to be in good health (apart from having diabetes and obesity) and none 

were taking any medication. The characteristics were summarised as shown in Table 

2.1.  
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Table 2.1 – Characteristics of volunteers trialled in chambers by Ravussin et al [21].  

Subject Characteristic Study Population Mean Range 

Age 27 years 18 to 65 years 

Weight 96.9 kg 41.3 to 178.1 kg 

Body Fat 32 % 3 to 50 % 

Fat Free Mass 64.2 kg 34.0 to 105.9 kg 

Energy Intake 2360 kcal/day 1,610 to 3,615 kcal/day 

For the subjects whose activity levels were measured by the radar system, the energy 

intake was on average 2,330 kcal/day (range 1,610 to 3,515) compared to an energy 

expenditure of 2,275 kcal/day (range 1,371 to 3,485). As the subjects remained inside 

the chamber for a full 24 hour period, assessment of daily EE and sleeping metabolic 

rate could be performed. It was found that the daytime energy expenditure was on 

average 1.78 kcal/min (range 1.06 to 2.69) and the sleeping metabolic rate was 1.12 

kcal/min (range 0.70 to 1.87). It was noted that spontaneous physical activity occurred 

for 8.7 % of the waking time (range 3.9 to 16.6 %) and accounted for 41 kcal/day 

(range 16 to 78). It was noted that the physical activity component would be far greater 

in a free-living environment. The TEF was calculated as contributing on average 165 

kcal/day, around 7 % of the ingested calories.  

Ravussin et al. proved the hypothesis that a universal fixed energy requirement for all 

individuals is not a viable solution. Additionally, the proportion of daily energy burned 

attributed to each component of EE varied between the study participants. The 

variation in energy needed for each activity (e.g. sleeping, resting, sitting etc.) supports 

the findings of Durnin et al., where a large variation in the components of EE between 

subjects was noted [22].  

Ravussin et al. concluded that 24 hour measurements of EE were necessary in order 

to calculate the individual values of the four components of EE [21]. This finding 

could be questioned, due to the large volume of the chamber, with a response time 

measured of at least 3 minutes. A single 24 hour measurement would not allow the 

variation of TEF to be investigated after the consumption of a variety of meals. The 

reproducibility of the 24 hour measurements was verified however, with 12 of the 

study group spending a second 24 hour period in the respiratory room (at least 1 week 
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following their first participation). The variance between the first and second trials 

was in the range of 0.2 to 9.0 % (coefficient of variance was 2.4 %).  

TEF measurements inside respiratory chambers have been described as “not ideal” by 

Tataranni et al., due to poor reproducibility [23]. A standard method for precise and 

accurate measurement of the TEF without a reference fasting experiment has yet to be 

established. Westerterp later reported on the use of a ventilated hood to measure TEF, 

and was able to successfully identify the effect of the content of various meals from 

total EE [24].  

Tataranni et al. compared subjects in two conditions, first fasting (without breakfast) 

and second after having breakfast (which could be considered a standard method of 

finding TEF). Tataranni et al. suggested that the difference between the EE values for 

the two conditions would be due to the TEF. Ogata et al. proposed an original means 

of determining TEF in a respiratory chamber, and compared it to two existing 

alternatives [25], which attempt to estimate TEF from a single experiment (without 

the need for a reference experiment). Measuring TEF from one experiment alone 

would be advantageous, not only because a second experiment itself can lead to EE 

variance (as shown by Ravussin et al.), but also the cost, time and inconvenience 

associated with such measurements.   

Ogata developed a method of extracting the TEF component from total EE by 

subtraction of a baseline EE (which included spontaneous activity). The two alterative 

techniques were suggested by Schutz et al. and Westerterp et al. Schutz assumed the 

RMR was the same before and during a meal, then calculates the TEF from the 

increase in total EE after eating [26]. Westerterp et al. modifies the method suggested 

by Schutz et al.; sleep metabolic rate (SMR) is subtracted from the total EE, opposed 

to RMR in the original formula [27]. Ogata et al. subtracts EE due to non-exercise 

activity from total EE. This activity component is calculated from linear regression on 

integrated physical activity [25].   

The newly developed equation proposed by Ogata et al. was tested on 7 male subjects. 

Their mean age was 24.7 years (±2.9 years S.D), mean height 1.78 m (±7.3 cm) and 

mean weight 73.6 kg (±12.1 kg). The subjects stayed in the respiratory rooms for 33 

hours. Exercise was not permitted, and the subjects were asked to spend the majority 
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of their time in a seated position.  The meals given to the subjects were adjusted for 

energy requirements for Japanese adults. The method suggested by Tataranni et al. for 

determining TEF was only applicable to breakfast (i.e. the study was repeated twice, 

once with two meals and once with three meals).  For the study with three meals, 

breakfast contained 689 ±121 kcal, lunch 761 ± 115 kcal and dinner 741 ±130 kcal. 

For the two meal condition, breakfast contained 0 kcal, lunch 1105 ±172 kcal and 

dinner 1085 ±184 kcal. The total calorific consumption per day was 2190 ±354 kcal 

consisting of 17 % protein, 21 % fat and 62 % carbohydrate.  

The TEF calculated by each method is expressed as a percentage of the calorific 

content of each meal. The change in EE between the two meal and three meal 

conditions was 5.4 % ±3.5 % of the breakfast meal. Using the method proposed by 

Schutz et al. (using RMR) the TEF was calculated as of -0.6 % ±6.8 %. The RMR was 

defined as the average EE before breakfast time. This method was noted to have 

produced incorrect results for some subjects, due to negative EE values (which are not 

possible due to the definition of TEF).The TEF was found to equal 9.8 % ±5.7 % using 

the modified Schutz et al. method (taking a baseline SMR during a 5 hour period of 

sleeping time). Using the formula proposed by Ogata et al. the TEF was calculated as 

4.1 % ±2.5 %. This value was closest to the value found by taking the difference 

between the two and three meal conditions.   

Ogata et al. concluded that the newly developed method of determining TEF was 

closest to the standard defined by Tataranni et al. (and did not produce any negative 

results). It should be noted the study would need refining (to test women and a larger 

sample size). The lunch given in the 2 meal experiment was larger than the 3 meal 

condition. However, using the new formula, the TEF for lunch was found to equal 5.7 

% ±3.6 % and 5.1 % ±1.8 % for the two meal and three meal experiments respectively. 

This is unexpected, as the three meal lunch had lower calorific content. However, it 

was noted that the dinner TEF was larger in both cases (corresponding to a larger 

meal).The article shows the difficulty of calculating TEF and highlights the variance 

of TEF due to size and content of meals.  

2.2.1.1  Portable Devices  

The need for a portable breath analyser to quickly assess the metabolic rate of a subject 

without being confined to a whole body calorimeter has already been recognised, with 
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the development of several portable devices for EE assessment. The adoption of many 

of the devices discussed below is often slow. The devices are often unproven or 

expensive, which limits their use in a clinical environment. Semi-portable units, 

mounted on wheeled trolleys, are used in the clinical and exercise physiology 

environments. The inconvenience of their bulky size and expensive cost usually 

prevents their use for bedside care. The development of sensor technology has only 

recently progressed to a stage where miniature sensors (of suitable size for a mobile 

application) are becoming affordable and reliable (although still often limited to use 

in research).  

A ventilated hood, shown in Fig. 2.3, offers a portable method of sampling the EE of 

a subject without the need for a mask or mouthpiece [28]. The ventilated hood method 

was devised to allow the energy requirements of critically ill patients to be measured 

and for the metabolic rate of subjects to be measured without any psychological effects 

of needing to breathe through a mouthpiece or mask. Spencer et al. developed an 

experimental ventilated hood calorimeter to measure the EE in both acutely ill and 

normal subjects [28]. The system was designed to accurately determine average values 

of tidal volume, minute ventilation, respiratory rate, O2 consumption and CO2 

production. The study did not elaborate further into EE calculations, but noted the 

average values determined by the device over relatively long periods (30-120 minutes, 

excluding first 10 minutes) appeared to closely approximate average values of 

measurements taken over longer periods. The canopy system used a rigid plastic box 

which needed explanation to the subjects, to describe the purpose of the system. The 

subjects also took a period of time to get used to being inside the box, but Spencer et 

al. reported that once they had become accustomed to the unit, most subjects slept 

during portions of the experiment. Sleeping metabolic rate is lower than RMR (RMR 

is a 1.05 factor greater [29]).  
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Fig. 2.3 – Diagram of ventilated hood apparatus, used for measurement of EE in 

seated (left) or supine (right) positions. From [30]. 

Ventilated hood systems are often used as a benchmark for verifying the functionality 

of research indirect calorimeters, where the metabolic rate of a subject can be 

determined over a shorter period than within a respiratory room, and without the need 

for the subject to go inside a chamber. The measurements can be performed, for 

example, in the ward or when the subject is seated, but do not usually last for long 

periods of time and therefore only provide a snapshot of EE. Leff et al. proposed daily 

EE could be calculated based on extrapolated hourly measurements between 8:00am 

and 4:00pm, but used a face mask rather than a hood [31]. Leff et al. found averaging 

the 3 middle RMRs produced the most reliable results. A similar pattern was observed 

for the second test day. The overall trend showed improved reliability (RMR 

measurements overall dropped by 2 % on average, perhaps as subjects became 

accustomed to the equipment).  

The experiments reported by Leff et al. concluded that the most reliable method for 

serial measurement of RMR is to discard the first value and average the following 2 

or 3 results. Average RMRs did not show significant change throughout the 

experiments. The article notes the importance of metabolic rate measurement for 

hospital patients in order for their energy and nutritional needs to be met. Both O2 and 

CO2 were analysed immediately, by a custom developed sensor system connected to 

the sampling system (infrared CO2 sensor and paramagnetic O2 sensor). It was 

discovered that RMR could be reproduced on different days with “very close” 

agreement between the study days [31]. The initial measurements demonstrated large 

variability, which was attributed to the time necessary for the patients to become 

accustomed to breathing through the analyser.  
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Miles-Chan et al. reported on a study of 19 participants, where EE measurement was 

performed in two positions, lying down and sitting comfortably [30]. For the trial, a 

ventilated hood was used (Deltatrac II), as it was suggested that experiments using 

mouthpieces/nose-clips could over or under-estimate EE. The mean age of the subjects 

was 24 (range 21-30) years and a mean BMI of 23 (range 18.1 to 27.9). The study 

found no significant change in RMR if the subject is seated or lying down 

(measurements taken after a 12 hour fast). Heart rate was found to be significantly 

higher (7 beats per minute), although breathing rate was the same in both positions.  

Five of the original study participants volunteered to repeat the experiment on three 

different days. No differences between supine and sitting EE were observed on any 

day. Subjects can wear ventilated hoods immediately after eating, in order to monitor 

MR variation. However a baseline measurement can take 30 minutes to obtain [32]. 

This duration is necessary for the subject to become accustomed to the hood, and also 

for the gases inside the hood to become stable and a valid representation of exhaled 

breath. 

The MedGem (Microlife Medical Home Solutions, U.S.) device, a handheld portable 

indirect calorimetry device, was developed for clinical use to determine EE. The 

BodyGem (also Microlife Medical Home Solutions, U.S.), shown in Fig. 2.4, is a unit 

with identical functionality, accuracy and reliability as the MedGem, but aimed for the 

consumer market. Anderson tested the accuracy of the MedGem device for producing 

resting EE against two methods; predictive equation (Harris-Benedict) and “traditional 

indirect calorimetry” (ventilated hood measurement, Vmax 29N) [33]. The MedGem 

device is fundamentally flawed, in assuming a constant respiratory quotient of 0.85. 

As discussed in the previous chapter, this can vary according to energy source or body 

composition. The assumption of constant RQ neglects the need to measure both O2 

and CO2 (only O2 is measured). A RQ value of 0.85 is a source of error during EE 

calculations and could bias the device to certain study groups. For example, a mean 

RQ of 0.85 was reported for a study of 58 non-obese women by Marra [34]. However, 

the range of RQ values was between 0.74 and 0.96, with no relation to age, weight, 

BMI or RMR.  
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Fig. 2.4 – Photograph of BodyGem portable breath analyser [35].  

To test if the MedGem device could serve as an alternative to a ventilated hood 

Anderson et al. tested 88 subjects aged 35 to 64 years (mean 51.7 years) [33]. The 

subjects were all overweight, with a mean BMI of 31.8 kg/m2 (SD ±4.2). According 

to the protocol for the study, the subjects would breathe while holding the MedGem 

device or wearing the ventilated hood in a randomised order for 20 minutes each. The 

device overestimated RMR by 7 % on average. The Harris-Benedict equation (section 

2.6.2) overestimated RMR by <1 %, and it was described as “remarkably consistent” 

[33]. It can be concluded that in this study, the HB equation performed well when 

considering an obese population. The results cannot be used to verify the accuracy of 

the HB equation for subjects with ‘normal’ BMI (range 18 to 25 kg/m2). In general, 

subjects with a lower BMI will have a lower EE. In a survey conducted after the EE 

measurements and subjects preferred the traditional ventilated hood mechanism for 

EE measurement (61 % of male and female). It was suggested that this could be 

because of the positon in which subjects were asked to perform the experiments (lying 

down under canopy for hood measurements, and sitting holding the device). On a five 

point scale, the energy assessment data was rated between 1 (“very helpful”) and 3 

(“helpful”) by all of the subjects.  

A mobile indirect calorimeter, Breezing® (Breezing Co., U.S.), was reported as 

measuring O2 consumed and CO2 produced using a disposable single-use colorimetric 

cartridge [36]. The device (shown in Fig. 2.5) focused on a consumer market, where 

EE could be viewed on a smartphone (using a Bluetooth connection). The device was 
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compared to the Douglas bag technique. Gases were collected in a bag and later tested 

against reference O2 and CO2 sensors. The mobile device was released to consumers 

in 2015, and has not been available for a sufficient period of time to become prominent 

in the literature. External comparative studies against a range of subject groups are not 

yet present. In the study presented by the creators (Xian et al.) [37], 12 subjects (7 

male) aged between 21 and 33 volunteered for the study. The daily EE was calculated 

by the new device in the range of 1500 to 4000 kcal/day. All readings were within 10 

% of those found using the Douglas bag method. The device uses a mouthpiece and 

nose-clip to obtain breath samples from subjects. The device is available for purchase 

online; the starter pack ($350) includes 5 disposable (once-use) sensor cartridges 

(further packs of 5 can be purchased for $25) [38].  

 

Fig. 2.5 – Photographs of Breezing® calorimeter and associated apparatus [37].  

2.2.2 Nitrogen Measurement for Assessment of Protein Metabolism 

The Weir equation is often abbreviated to the form shown in equation (2.4) where the 

end product of EE from the nitrogen component of protein metabolism is discarded.  

In some studies that measure EE via indirect calorimetry, the nitrogen content excreted 

through urea is recorded via urinary nitrogen (UN) measurements [39]. Sampling of 

UN does require collection of a urine sample, thus is usually performed with longer 

calorimetric measurements (for instance, 24 hour experiments). Equation 2.5 shows 

the relationship between total EE and UN (measured in grams) [17]. It has been 
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reported measurement of RMR is “acceptable” without the need for UN 

measurements, as only a minor error (as low as 2 %) is incurred for healthy subjects 

[40]. Therefore the abbreviated version of the Weir equation is often used [41].  

The effect of protein metabolism is “commonly ignored” when estimating metabolic 

rates [17]. Protein metabolism is never static [8], it is continuously varying. Indirect 

nutritional status can be assessed through protein metabolism (as in the human body 

only protein is composed of nitrogen) which can be obtained through a method of 

measuring nitrogen excretion [42]. It is reported that nitrogen balance can be used as 

a means to examine metabolic stress. For a typical well-nourished adult, the expected 

rate of nitrogen excretion is about 12 g/day [43–45]. 

Healthy adults are expected to be in a state of “nitrogen equilibrium”; i.e. the nitrogen 

intake equals nitrogen excretion (and the amount of protein in their diet is sufficient 

to maintain and repair tissue) [46]. Nitrogen balance can be estimated from urinary 

urea excretion, which constitutes about 93 % of the total urinary loss [42]. The 

nitrogen losses over a day can be estimated with ‘reasonable accuracy’ by adding a 

factor for non-urinary nitrogen (in most cases no more than 4 g/day). It has been 

suggested that 0.5 g/day of nitrogen is excreted through the skin.  

Nitrogen balance is often seen as an indicator of overall body health. In the case of 

critically ill patients, where dietary requirements are estimated, careful attention 

should be paid to under- or over-feeding of protein [47]. Diseases that affect the liver 

or kidney can affect the amount of nitrogen lost through urea, and therefore balance 

determination can be fraught with error and adjustments need to be made accordingly. 

The level of total urinary nitrogen (TUN) contained in the urea can vary across 

individuals; values in the range of 80 to 90 % are expected [48]. Konstantinides et al. 

reported urinary urea nitrogen (UUN) is too insensitive for calculating nitrogen 

balance [48].  

In the original paper by Weir, in which the relationship between volumes of O2 

consumed and CO2 produced was first linked to EE, it is noted that correcting for 

protein metabolism exactly is impossible [17]. A standard correction factor was 

applied to the formula, assuming protein accounts for around 12.5 % of the total 

calories that a patient produces. It is acknowledged that surveys performed around the 
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time of the article suggest that 10 to 15 % of calories are taken in the form of protein. 

Boyd reported patients produced heat from proteins at an average rate of 12.65 % (14 

subjects) [49]. If protein metabolism was assumed as fixed at a rate of 13 %, the error 

in omitting urinary nitrogen would be around 1 % [49]. A 1 % error is supported by 

the Weir p factor (total calorie production due to protein correction factor), which 

equals 0.125 [50]. The MedGem portable calorimeter assumes a rate of 16 % [51]. 

This assumption is unlikely to be viable, due to the lower range reported from studies 

above (10 to 15 %) [49–51].  

In many EE experiments the UN measurement is discarded, due to measurement 

difficulties or the assumption that its contribution is negligible. It is reported that the 

average error without nitrogen measurements is <2 % [41,52–55]. It has been reported 

that the measurement of UN is tedious, and its omission only adds a small error to the 

measurements of EE [54]. Bursztein et al. reports on 300 UUN measurements taken 

from 180 critically ill patients [54]. The mean and standard deviation of EE were 

reported as: 1685 ±597 kcal/day (with UN) and 1669 ±602 kcal/day (without), giving 

a difference of 27 ±14 kcal/day. On average, the error was <2 %, with a range of 

between 0 and 3 %.  

Many clinicians find UN measurements difficult to perform for all patients and often 

the term is neglected [53]. The contribution of UN is greater in some cases for 

critically ill patients, however it is noted by Simonson and DeFronzo that incorrect 

measurement of UUN (or the failure to perform tests correctly) could result in a larger 

error in the calculation of EE [56]. The urea pool size can vary, thus short term UUN 

measurements may not be sufficient.  

The balance of nitrogen in a human body (and consequently protein) can be estimated 

by comparing the nitrogen intake to the sum of the sources of nitrogen excretion (urine, 

faeces, skin, hair and body fluids) [46]. For example, in the case of growing children, 

pregnant women or people recovering from a protein deficiency or illness, a positive 

nitrogen balance is expected (i.e. the body is adding protein, thus nitrogen intake 

exceeds nitrogen excretion). For the case of individuals who are starving, on an 

extreme weight-loss diet or who suffer from a severe illness/fever, a negative nitrogen 

balance would be predicted. Negative balances are also expected for other diseases 

such as  hyperparathyroidism (patients have an increased metabolic rate) [57].  
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The nitrogen balance for obese or critically ill patients is of particular interest, as TUN 

may vary by a significant amount compared to healthy subjects. Byrne et al. performed 

an experiment to investigate the changes in resting and walking EE of obese pregnant 

women. In this study, it was assumed that the urinary nitrogen excretion rate was 

negligible [58]. However, the expected nitrogen balance could vary in pregnant 

women as well as in obese subjects. It is stated by Byrne et al. that for weight gain to 

occur, daily calorie intake must exceed daily EE, therefore it should be noted that over-

feeding can have a significant increase in nitrogen balance. A 3.0 g/day positive 

nitrogen balance was reported by Bandini and Young, when obese and non-obese 

subjects were subjected to over-feeding [59]. Over-feeding has an effect on TUN and 

should ideally be considered. A range of diseases (Table 2.2) has been shown to 

increase the TUN measured compared to the control value (for a healthy subject).   

Table 2.2 – Urinary nitrogen loss rate following injury or illness, from [60–62].  

Loss of urinary nitrogen (g/kg/day), mean value ± standard error (where available) 

Skeletal 

Trauma 

Blunt 

Trauma 

Trauma w/ 

Steroids 

Open 

Wound 

Moderate 

Burn <30% 

Large  

Burn >30% 
Normal 

0.317  

± 0.27 

0.322  

± 0.055 

0.338  

±0.106 
0.12 

0.17  

±0.025 

0.36 

±0.037 

0.085 

±0.002 

UN losses are not usually dictated by an illness itself, but are perhaps a consequence 

of a change in metabolism. The stress levels of the patient increases the concomitant 

protein catabolism which results in an increase in TUN. Stress can present between 60 

and 90 % of the nitrogen expelled through urine [63]. Examples of stress level (caused 

by associated clinical condition) are shown in Table 2.3. It should be noted that spinal 

cord injuries invalidate UUN measurement, due to disused muscle wasting.  

Table 2.3 – Stress level compared to urinary nitrogen (g/day), from [63,64]. 

Level of Stress Clinical Condition 
Urinary Nitrogen 

(g/day) 

Ideal Condition - 3 to 5 

Non-Stressed Starvation 5 to 8 

Mild Stress Elective Surgery 5 to 12 

Moderate Stress Trauma 10 to 18 

Severe Stress Sepsis >18 
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Nitrogen balance is calculated using equation (2.10), where 4 g is added for non-urea 

loss [63]. 

Nitrogen Balance [grams]= 
 protein intake

6.25
− ([nitrogen in UUN] + 4) (2.10) 

The error when excluding nitrogen in calculations for EE for in- and out-patients has 

been reported as lying in the range of 1 to 2 %, the error for critically ill patients is <4 

% [65,66] (an error of 100 % in calculation would yield the same error) [67]. Often 

these approximations exclude minority groups, such as infants, children and the 

elderly. For example, Hamamoto et al. compares energy balance in infants born from 

HIV seropositive mothers infected and non-infected [68]. Nitrogen balance for non-

infected infants is around 0.2 ±0.3 g/kg/day (with an average weight of 7.01 kg and 

average RMR of 51.8 kcal/kg/day). It was found that infected patients had a lower 

nitrogen balance, but higher RMR (0.2 ±0.1 g/kg/day and 68.0 kcal/kg/day 

respectively).  

2.2.3 Error Introduced without Nitrogen Measurement 

The metabolic rate data from six subjects were kindly provided by the University 

Hospital Coventry and Warwickshire NHS Trust. The subjects were all tested in the 

chambers at the hospital for a period of at least 24 hours. The physical characteristics 

of the subjects are shown in Table 2.4. All ethnicity of all the subjects was white 

Caucasian. The total tidal volume of each subject was estimated from their mass 

(factor of 7.7 ml/kg).  

Table 2.4 – Subject information for observing chamber performance. 

Subject ID (Test 

Date) 

Weight 

[kg] 

Tidal 

Volume 

[ml] 

Age 

[years] 
Gender 

MF58 (25/07/12) 61.8 ~476 45 F 

MF57 (19/09/12) 71.9 ~554 26 F 

S243 (13/11/13) 87.3 ~672 21 M 

S253 (13/11/13) 72.2 ~556 22 M 

Stan1 (25/11/13) 71.4 ~71.4 40 M 

Stan2 (25/11/13) 86.0 ~662 51 M 
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Urine was collected from the subjects at least once per study (ideally samples would 

be separated by 12 hours, however this was not always possible). The urine was 

analysed and creatinine and urine (in moles per litre) determined. This was converted 

into nitrogen content per sample. The rate of nitrogen oxidisation is assumed to be 90 

% constant. The amount of nitrogen oxidised is divided by the sample period to find 

the nitrogen oxidised per minute. EE was calculated using both the full Weir equation 

(2.5) and the abbreviated version (2.4). The comparison shown in Table 2.5 was taken 

from average values of EE calculated across the duration of the experiment (all values 

correct to 3dp).  

Table 2.5 – Summary of urine nitrogen content for subjects and error introduced to EE 

calculation.  

Subject 

Urine 

Volume 

(L) 

Total 

Urinary 

N (g) 

Nox  

(g/min) 

EE without 

N (kcal/min) 

EE with N 

(kcal/min) 

Error 

(%) 

MF58  
4.114 9.241 0.0143 1.263 1.232 2.475 

1.974 5.701 0.009 1.271 1.240 1.853 

MF57  6.399 12.040 0.009 1.400 1.380 1.489 

S243 

0.475 6.497 0.010 1.883 1.861 1.261 

1.923 8.889 0.014 2.230 2.199 1.467 

1.44 8.108 0.013 1.751 1.722 1.755 

S253 

0.061 0.374 0.001 1.671 1.669 0.111 

2.289 9.841 0.015 1.984 1.951 1.794 

1.418 12.358 0.019 1.413 1.372 3.047 

Stan1 
1.974 5.701 0.005 1.416 1.405 0.841 

3.351 11.115 0.010 1.547 1.524 1.572 

Stan2 
1.249 13.815 0.013 1.418 1.390 2.009 

1.496 9.808 0.009 1.490 1.471 1.428 

The average error due to the omission of nitrogen from the Weir equation was 1.62 % 

(range 0.1 to 2.48 %). This is well within the range of 1 to 2 % expected for healthy 

subjects. This error is low compared to the possible error introduced from low 

accuracy gas sensors.   
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2.3 Breath Sample Acquisition 

The initial content of an exhalation contains air from the physiological dead space 

(large airways etc.). This air is not useful for EE assessment. The air of interest comes 

from alveoli inside the lungs, which are the ‘sacks’ in which gas exchange with the 

blood perfusing them occurs (shown in Fig. 2.6). It is important that the gas 

concentrations from this part of the exhalation cycle are sampled. The gas at the start 

of the exhalation is a mixture of inspired (ambient) gas, which dilutes the exhaled 

gases from the lungs. The capturing of the end part of an exhalation is discussed and 

also the method of sampling breath. For the measurement of resting EE, the breathing 

pattern of the subject cannot be disturbed by the apparatus (discomfort in sampling 

could cause EE to increase).  The techniques to allow exhaled gas to be sampled are 

discussed below.  

 

Fig. 2.6 – Illustration of human respiratory system, showing the alveoli in the lungs 

and the gas exchange into the blood [69].  

2.3.1 Alveoli Gas 

The three stages of exhalation are shown in Fig. 2.7, as defined by Miekisch [70]. The 

gas sampled in the initial Phase I contains only gas from the airways, and thus only 

ambient levels of CO2 are detected. Phase II contains a mixture of ambient and exhaled 

gas. The gas from inside the lungs mixes with the remaining gas inside the airways 

(from inhaling previously). This ‘mixed expiratory sampling’ period (Phases I and II) 

is the initial part of exhaling and the gases play little part in the gas exchange 

component of the respiratory system [71]. The gas of interest for Volatile Organic 

Compound (VOC) detection and measuring of the O2 and CO2 levels for EE 
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assessment are found in Phase III of an exhalation [72]. This portion of breath is likely 

to come from the alveoli inside the lungs. The graphical monitoring of the level of 

CO2 on breath is termed capnography, and is a convenient clinical procedure used to 

monitor the dynamics of breathing [73]. 

 

Fig. 2.7 – Three phases of exhalation shown by concentration of CO2 sample on 

from a breath. Exhaled tidal volume shown for an adult male, taken from a series of 

exhalations recorded in a laboratory environment during initial testing of prototype 

breath analyser.   

The accuracy of EE measured via indirect calorimetry (breath analysis, calculated 

through the Weir equation 2.4) is reliant upon the accurate measurement of the 

concentration of particularly O2 (and CO2) on breath. The mixing between exhaled gas 

from the lungs and ambient (inhaled) air causes a dilation of the compounds of interest. 

The concentration of CO2 inhaled is likely to be around 0.035 % compared to between 

4 and 5 % found on exhaled alveoli breath [74]. The gas plateau, seen at the end of the 

expiratory segment, they are close to equilibrium with pulmonary circulation of blood, 

thus providing a reflection of the gas exchanges occurring inside the lungs [75,76] 

(e.g. of volatile substances in the blood [77]). The end expired section of breath 

(alveoli gas sampling) provides the least contaminated samples from breath and the 

purest air [70]; it is also the most consistent part to sample, and therefore the easiest 

to reproduce [78]. 
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2.3.1.1 Volatile Organic Compounds 

VOCs are used as biomarkers for respiratory diseases, for example it has been reported 

VOC sensors can provide a non-invasive method to detect lung cancer [79]. VOCs are 

usually found in the ~100 ppb range. One study by Turner et al. noted that acetone 

was found on breath in concentrations of approximately 477 ppb (average value across 

30 volunteers over a 6 month period) [80]. It is reported that mixed exhaled respiratory 

gases contain 25 % lower concentrations of blood borne VOCs and CO2 compared to 

the air sampled at the end of an exhalation [81]. Dead space gases do not contain any 

VOCs from the subject exhalation (only if any are found in the inhaled air) as no 

interchange has taken place in the lungs [82]. Gas found in the alveoli can contain 

3000 VOCs [78,82], although only around 200 are likely to be present in a given 

sample [70,82–84]. A list of example VOCs and their diagnostic purpose is given in 

Table 3.7.  

An ideal portable VOC analyser would be able to identify the VOCs found an 

exhalation in real time, without the need for bulky gas collection/storage apparatus. 

Gas sensors currently available are usually not capable of producing a response over 

the short period the exhaled gas is from the desired alveoli region (< 1s, shown in Fig. 

2.7). A subject at rest would be expected to breath at a rate of between 9 and 17 breaths 

per minute [85]. To increase the time for the sensors to respond to the VOCs found in 

an exhalation, some measurement systems extract the desired portion of breath for 

later measurement. There are many possible techniques for identifying the exhaled gas 

of interest. These methods are discussed below. The methods could be considered 

quite invasive [86], for example if a subject must breathe pure air beforehand (to 

eliminate contamination from background VOCs [87]).   

2.3.1.2 CO2 Identification of End Expiratory Gas 

As shown above (Fig. 2.7) the gas from the alveoli can be identified by a plateau in 

the exhaled CO2 concentration. Infrared based CO2 sensors are often used, offering 

sufficient resolution (i.e. to record when a plateau is reached) and fast response. No 

standard CO2 concentration or gradient has been determined for detecting the gas 

plateau. It is reported that the quality of samples obtained can vary considerably, 

depending on which part of the exhalation cycle the sample is taken, and an urgent 

need for standardisation has been identified [88]. It is acknowledged, the wide 
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variation in the situations a breath analyser could be used (e.g. field, laboratory etc.) 

and the wide range of patients (e.g. children, adults, elderly) prevent an all 

accomplishing procedure being defined. 

A sampling method was proposed by Schubert et al., based on the output from a fast 

response infrared CO2 gas sensor, tested on mechanically ventilated patients [77]. An 

electronically operated two way valve switched between mixed respiratory gases and 

alveolar gas when the concentration of CO2 exhaled exceeded 3.5 % volume (then vice 

versa when the CO2 level fell below 90 % of its peak value). A pump was used 

(operating at 200 ml/min) to extract the sample gas (running continuously, regardless 

of the valve position). A 1 L sample of alveolar gas was needed from each patient. It 

was reported that the 1 L sample took between 6 and 22 minutes to collect (compared 

to between 3 and 5 minutes for mixed sampling). The method produced “reliable” 

results, but it was noted the CO2 plateau level was not reached consistently for all 

patient groups. Patients with obstructive lung disease or those hyperventilating would 

exhale a lower level of CO2 per breath.  

2.3.1.3 Volume Exhaled Identification of End Expiratory Gas 

The method of sampling alveolar gas by simply taking a sample from the end of an 

exhalation through a long tube is often referred to as the “Haldane and Priestley” 

method (reported by Haldane and Priestley in 1905 [89]). A tube of approximately 4 

feet length (1 inch diameter) was fitted with a mouthpiece at one end and the other end 

fitted with a spirometer (or left open). The ‘gas receiver’ sampling container was 

inserted into the exhalation tube with a tap, at a position approximately 2 to 3 inches 

from the mouthpiece. The subject was asked to breathe normally (while seated) for 

“some time”, before expiring quickly and deeply through the mouthpiece, before 

closing the end with their tongue. Near the end of the exhalation the tap was closed, 

trapping the air inside the container, for later analysis. The method was declared a 

success, given that the concentration of CO2 obtained from normal breath was 

“practically the same” as that obtained from a very deep breath. Evidently “the sample 

obtained in the manner described is pure alveoli air” [89].  

The approach founded by Haldane and Priestley has been developed into several 

portable units to allow samples of alveoli gas to be taken outside of laboratory 

conditions. Without reliance on electronic or complicated mechanical components, 
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sampling devices which capture the end volume of an exhalation can be used in 

extreme conditions, such as at the summit of Mount Everest, as reported by West et 

al. [90]. West et al. asked the subject to collect a sample in a 20 ml container. The 

subject needed to sit in a comfortable position and breathe normally for a few breaths, 

before holding their breath for a second then exhaling quickly into the container 

(which was sealed by a catch). A similar setup was used by Dyne et al., to collect 

samples from workers at a shoe manufacturing plant [91]. The system, based on the 

Haldane and Priestly collection method, was used successfully to obtain samples, 

offering a portable and simple-to-use device to monitor VOCs contained in exhaled 

breath from factory workers.  

Commercial portable sampling systems are available, which allow exhaled breath 

measurements to be taken without a medical practitioner. The GaSampler (Quintron, 

USA) separates the first 500 ml of an exhalation into one bag (to be discarded) and 

samples the remaining volume of an exhalation into a second bag. The device has been 

used successfully in several studies [92,93], for example to detect nitric oxide on the 

breath of infants [94].  

A similar device, the Bio-VOC (Markes International, UK) offers similar 

functionality, but includes a system to contain the sample in a small sorbent trap for 

transportation or direct measurement [95]. A sketch of the Bio-VOC is shown in Fig. 

2.8, demonstrating the use of a plunger system to transfer the captured 150 ml end 

exhaled gas into a concentrating tube. The Bio-VOC has previously been tested in 

clinical diagnostic laboratories and is noted as being affordable and easy to use [96].  
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Fig. 2.8 – Drawing of the operation of the Bio-VOC, where sample is collected and 

stored in tube for transportation or direct connection to analyser. (a) shows the 

sample collection chamber; a plunger is used in (b) to transfer the sample into a tube 

for storage. Drawn using photographs from [79]. 

2.3.1.4 Time Based Identification 

Measurement of EE from a breath sample requires breathing that is as little disturbed 

from normal as possible. For the sampling of VOCs however, a strict breathing routine 

has not been defined and instead is an aspect of interest, for example, to see how breath 

holding effects VOC concentration. However, a deeper exhalation after breath holding 

for say 10 s, means a greater volume is exhaled. Thus a system which extracts the 

alveolar portion of the exhalation by volume would be less effective. In such 

applications, the CO2 identification method discussed above could be used, or a timing 

system implemented.   

An example is reported by Lärstad et al., where samples are taken manually for both 

the dead-space air and alveolar gas (for asthma patients and healthy adults) [87]. After 

breath holding (for 10 or 20 s) the subject exhales for 10 s. The first 3 s are captured 

in one bag (150 ml volume) and the final 3 s captured in a separate bag with the (middle 

4 s discarded). The method successfully distinguished the different types of gas as 
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desired (alveolar and dead-space). No comment was made on the suitability of the 

system for infants or children, nor elderly patients. The mean age in the study was 42 

years (range 24 to 64 years) for the healthy group and 47 (23 to 64) years for patients 

with asthma.  

A similar manual switching technique was demonstrated by Bikov et al., where the 

time to wash out the dead-space is estimated and unwanted gas discarded [97]. The 

wash-out time was approximated to be 1 to 2 s, based on dead-space volume, 

calculated as [weight (lb) added to age (years)] divided by exhalation flow (L/min). 

The first 3 s were discarded, to ensure that only gas from the lungs was sampled. A 

valve was ‘promptly’ closed at the end of each sample to avoid contamination with 

the ambient air. To automate the capturing mechanism, it would be necessary to detect 

the start time of an exhalation (and differentiate from an inhalation).  

2.3.1.5 Pressure and Flow Monitoring of an Exhalation 

The rate of exhalation can be tracked using a pressure sensor, for example to monitor 

the pressure in the upper respiratory tract and used to select portions of exhaled breath 

to sample. A design (Fig. 2.9) was reported by Basanta et al., where a pressure sensor 

was directly fitted into a Leur socket on a facemask [85]. The analogue output from 

the pressure sensor was read in real time via a LabVIEW program and breath-by-

breath measurements were displayed. The software was able to classify exhaled breath 

into dead space or alveolar gas. From the output data the experimenter could select 

which portion to sample. The program would then use valves to direct the desired 

portion of an exhalation into a sample bag. Experiments were performed to compare 

the difference between inhaling purified air compared to ambient air. It was found the 

endogenous VOCs in breath were far higher and more variable when inhaling ambient 

air.  
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Fig. 2.9 – Schematic of the breath sampling system with major components 

identified. From [85]. 

Further information relating to the health of a subject can be determined from their 

exhalation flow rate and volume. Tidal volume and peak flow rates can allow the 

pattern and magnitude of tidal breathing to be inspected [98]. A diagram of the 

separation of an exhalation and inhalation by the crossing of a zero-flow line is shown 

in Fig. 2.10. The volume exhaled is calculated from flow measurement, the simplest 

method is to use the trapezium rule (integrate over time).  

 

Fig. 2.10 – Inhalation and exhalation phases of breathing separated by the flow 

direction [98]. 

2.3.1.6 Exhaled Temperature and Humidity for Plateau Identification 

Gas analysing equipment, such as chromatography or mass spectrometers, can often 

be too slow to respond to an exhalation, and unable to identify the plateau in gas 
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concentrations which indicate that the sampled gas is from the alveoli. Humidity is 

always present in exhaled breath, and can be monitored to see when the end expired 

gas is sampled. The level of absolute humidity is 6 % (6.2 % at 37 °c), and thus can 

be used as an internal standard for checking the mass spectrometer sample flow rate 

and reaction time [99]. One system, proposed by Herbig et al., claims to buffer the end 

tidal gas for a 10 s period (rather than a short period, such as 1 s) to allow time for gas 

sensors to respond to the sample [100]. The system relates to the Haldane Priestley 

method, by requesting subjects to exhale through a tube, which forms a buffer for the 

end tidal gas (e.g. last 40 ml). The subjects were asked to provide 1 exhalation per 

minute, which prevented hyperventilation and allowed time for the tube to clear, while 

permitting a longer period for a gas sensor response to become apparent. Humidity 

was used to identify the desired gas, where a threshold of 6 % absolute humidity was 

set by Herbig et al. [100], as also reported by Turner et al. [80]. The system was not 

capable of breath-by-breath sampling, although a number of breaths could be sampled 

over a short period.  

In a similar manner to humidity, the temperature of exhaled breath tends to a plateau 

towards the end of a breath. Again, the temperature of an exhalation is consistent 

between subjects, although individual variations can be compensated for. One method 

of sampling alveolar gas was reported by Ljungkvist and Nordlinder, where a 

temperature sensor was used to monitor breath during an exhalation [101]. When the 

maximum temperature was reached (generally around 34.5 °C) a 100 ml gas sample 

was extracted. For the experiments detailed, Ljungkvist and Nordlinder used a fast 

temperature sensor, adapted to fit inside a commercial Mini-Wright peak flow meter. 

The device offered an inexpensive and easy to handle package and also low expiratory 

resistance. Alveoli gas was captured successfully using the temperature sensing 

principle. An automated gas sampler was reported by Vreman et al., again a 

temperature sensor was used to capture alveoli gas [102]. In this case, a heat sensitive 

thermistor probe was taped beneath the nostril of each subject. Once the temperature 

of exhalation had plateaued, a pump was activated after a 0.1 s delay. A 0.2 ml sample 

of breath was drawn, and confirmed as gas from the alveoli.   

2.3.2 Mouthpiece and Face Mask Breath Sampling 

To monitor human EE from breath measurements, ideally the breaths sampled should 

represent a normal breath for each subject; the subject should not need to force an 
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exhalation nor deliberately breathe at a slower rate than normal. The volume of O2 and 

CO2 exhaled and the rate of breathing effect the EE calculated over a given period, by 

the relationship shown in equation 2.4. Unfortunately, with the current gas sensor 

technology, in order to measure purely exhaled gas the subject needs to breathe 

through either a mask or a mouthpiece (with nose-clip). The effect of breathing with 

the addition of a mask or mouthpiece has previously been studied, as discussed in the 

following section. 

2.3.2.1  Effect of Breath Monitoring 

Breathing through a mouthpiece has been reported to increase tidal volume and 

decrease breathing frequency, perhaps caused by one or more of the follow three 

reasons: Influence of the additional dead space of the apparatus; stimulation of nasal 

and oral mucosa and shift of the respiratory route from the nose and mouth to just the 

mouth [103]. Similar findings have been discovered when sampling using a mask, 

where Cope et al. report that tidal volume and minute ventilation were effected [104]. 

It is commonly believed that the psychological load or sensor stimulation are the main 

culprits for the degradation in breathing rate [105]. Ventilation is normally controlled 

‘automatically’, but on occasions it can be consciously controlled [106]. The 

contribution of each of the three effects mentioned above on breathing is a cause of 

disagreement in the literature.  

The use of breath sampling apparatus can prevent the subject from being able to 

maintain a normal breathing pattern. Wearing a mask or exhaling through a 

mouthpiece stimulates the trigeminal receptors in the face, shown in Fig. 2.11 a), 

and/or oral cavity [103]. The area of the face around the mouth/nose is particularly 

sensitive to an applied force. Fig 2.11 b) shows the threshold of tactile detection on 

the face compared to the index finger.  
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Fig. 2.11 – The area of the face where a mask or nose clip is worn is sensitive to an 

applied force, a) areas of skin supplied by the three major trigeminal nerve divisions 

[107]; b) Tactile detection threshold of areas on the face compared to the index 

finger (weights in milligrams) [108]. 

The use of a mouthpiece can stimulate the lips, gingiva and teeth [109]. Perez and 

Tobin noted that these stimuli had a lesser effect on the breathing pattern than changes 

to the respiratory route, from wearing a nose clip while breathing through a 

mouthpiece [110]. Contrary to Perez and Tobin, Wester and Patrick noted that the 

awareness of breathing being monitored is the major cause of respiratory alternations 

(changes in the respiratory route were said to have a less profound effect) [111]. This 

finding is in agreement with Shea et al. [112], where the need to control ‘behavioural 

and environment variables when making measurements of breathing at rest’ was 

highlighted. If these variables were not sufficiently controlled, there was increased 

risk of dramatic changes in breathing rate and tidal volume. An article by Mador and 

Tobin supported these statements and demonstrated that audio-visual stimulation 

tended to increase the variability of tidal volume, whereas mental arithmetic had no 

effect [113]. 

Gilbert et al. proposed an experiment to determine if the changes in breathing were 

caused by the stimulation of using a mouthpiece and nose-clip or by the dead volume 

in the instrument used to measure tidal volume [106]. Before the experiment, patients 

were left to breathe quietly for 1 hour prior to a mouthpiece and nose-clip being fitted. 

Electromagnetic sensors were used to unobtrusively monitor respiratory rate without 

the need to capture breath (by detecting chest movement). A total of 14 subjects 
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participated in the experiment (6 without respiratory disease and 8 with). With only 

the mouthpiece and nose-clip worn (without other apparatus, no dead volume added) 

the tidal volumes measured across the subject group increased by an average of 98 ml, 

and respiratory rate decreased by 25 % on average. With a pneumograph connected 

the tidal volume of the group increased by 124 ml/min on average and the respiratory 

rate fell by 6 breaths per minute. It was concluded the irritation and stimulation of the 

nasal mucosa was the most likely cause of depressing the respiratory frequency in 

humans and the fall in respiratory rate was repeated to the apparatus (mouthpiece and 

nose-clip). If the theory is correct, the rise in tidal volume could be a secondary effect, 

in response to maintaining adequate ventilation.   

2.3.2.2 Automatic or Conscious Respiratory System 

Automatic breathing originates in the ponto-medullary respiratory oscillator [114]. 

The respiratory muscles, which dictate regular breathing are controlled by a bulb-

signal projection from synapses with the anterior horn cells in the cervical and thoracic 

spinal cord [114]. Cope et al. justify a notable respiratory effect when a mouthpiece is 

used, as being a sign that the control of breathing has been shifted from the automatic 

respiratory centres to the cerebral cortex, causing the breathing rate to alter [104]. John 

noted that voluntary breathing control is dependent on the functions of the cerebral 

cortex, while automatic ventilation is regulated by the mechanisms of the pons and 

medulla [115]. 

Further reports suggest that vagal nerve stimulation (in the nucleus of the tractus 

solitarius) can effect respiratory oscillations [116]. It was stated however, it is unlikely 

to affect the rate of breathing during normal ventilation [116]. It is noted that in 

affecting breathing this phenomenon has a greater effect, where vagal input becomes 

significant [114]. The risk of a face mask stimulating the vagal nerve has been noticed 

by Mostafa-Gharehbaghi et al., where it is advised face masks be fitted to infant’s 

faces with care [117]. They should be tight enough the prevent leaks, but not apply too 

much pressure, else risk inducing a vagal response. The Vagus nerve is effected by 

breathing, regardless of whether the breathing is automatic or consciously controlled. 

The alternating effect of breathing on heart rate is known as ‘respiratory sinus 

arrhythmia’ [118]. The Vagus nerve innervates the heart causing a parasympathetic 

response in the nerve, perceived by a decrease in heart rate.  
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2.4 Metabolic Rate Measurement in a Free Living Environment 

The need to measure metabolic rate outside of laboratory conditions has been 

recognised for decades and in particular for prescribing treatment for obesity and 

sports physiology; calculating EE for the lifestyle of a subject is important [119]. EE 

in free-living can be determined through a number of methods. These methods can 

loosely be grouped as: Doubly Labelled Water (DLW), applying relevant 

mathematical equations, wearable devices (for example heart rate monitoring or 

activity based) and portable breath analysers (discussed above). It is important to note 

the DLW technique and portable breath analysers measure human EE, whereas 

applying mathematical equations and wearable devices can only provide an estimate 

of EE.  

2.4.1 Doubly Labelled Water 

The DLW technique allows for EE determination over a much longer period of time 

than experiments in a respiratory chamber. Experiments can last from between 1 to 3 

weeks, and allow subjects to participate in their normal free-living activities [8]. This 

method makes use of the known pathways for elimination of water (H2O) from the 

body, which can be split into hydrogen and oxygen elimination. Both are expelled 

from the body as sweat, urine and respiratory water vapour. Oxygen is also eliminated 

as CO2. A more active individual will expend more energy over a set period of time 

than a less active person, who will consume less oxygen and produce (eliminate) less 

CO2 (with a lower EE) [8]. If an isotropic label of oxygen is eliminated from the body 

by both CO2 and water, an isotropic label of hydrogen would only be eliminated by 

water. The difference in elimination of the two labels will therefore provide a measure 

of the CO2 production, and indirectly the EE of the subject [120]. The DLW method 

matured relatively slowly compared to other techniques. The DLW method is not 

without flaws, as it uses several assumptions including a constant rate of CO2 

production and constant size of body water pool throughout the measurement period 

[121]. Also, not all researchers use the same methods to calculate the elimination rate 

or mode of CO2 conversion to EE. 

Kroke et al. reported on the use of DLW to assess the validity of food-frequency 

questionnaires across a 2 week period [122]. The study cannot be considered 

comprehensive however, as although 160 subjects completed a questionnaire, only 30 
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were selected for comparison through the DLW method, of which 2 failed to complete 

the required measurements. Although a balance of men and women was selected (15 

of each), all participants were aged between 40 to 67 years, and thus were not a valid 

representation of the wider population. The DLW EE estimates were determined by 

urine analysis using a mass spectrometer. The convenience of taking EE 

measurements was limited, as the subjects were required to keep the urine samples in 

controlled conditions (below -20 °c) before transporting the samples to a laboratory. 

The study also does not comment on the time of year/season when the measurements 

were taken, which has a bearing on EE. It is reported that interviews with participants 

allow physical activity levels to be monitored. The study concludes that energy intake 

was under-reported in the questionnaires.  

A study by Black et al. aims to cover EE variation throughout the four seasons in a 

year, taking DLW measurements for 4 days in each [123]. The findings were similar 

to those stated by Kroke et al., where self-reporting questionnaires were found to 

produce under-estimates for energy intake. Meals being reported incorrectly and 

snacks not being recorded were blamed for the error. The study was only performed 

over a limited age range (middle aged and retired subjects). A large subject group was 

desired, however due to the expense and lack of availability of the labelled water, the 

study was limited to just 18 subjects. Activity levels of the subjects were self-reported, 

thus perhaps partly explaining the lack of agreement and EE noted by Black et al. The 

experiment duration did not cover a full week in each season, and therefore lacks a 

comprehensive energy record of weekly activities.  

The DLW technique has been documented as limited to specific subject groups. For 

example, pregnant women, middle-aged subjects or athletes [124]. Few studies are 

performed on the wider population, such as children, trekking explorers or teenagers. 

Studies are often limited to one dose of DLW experiments per subject, thus not 

repeating over several months. Variable leisure activities or intermittent employment 

are likely to be disregarded [29]. DLW measurements only provide single 

measurement of EE per sample, and thus cannot be used to show how EE varies over 

the course of a single day, nor comparison between diurnal cycles of, for example, 

weekdays or weekends. A study by Wong et al. notes high reproducibility over a 4.4 

year study [125]. DLW studies prior to the 1970s were only performed on small 

animals due to the high expense for quantities of labelled water needed for humans. 
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Obesity was less prevalent at the time, but is now a more persistent problem. The need 

for medical practitioners to determine EE has perhaps driven the increase in popularity 

for using DLW since the 1980s [120]. The main difference in DLW compared to the 

other measurement techniques of EE is the subject does not have to be compliant (e.g. 

animals can be tested).   

2.4.2 Mathematical Equations 

Clinicians routinely use predictive equations to estimate EE for patients, particularly 

in ICUs where indirect calorimetry is difficult to deploy [126]. Harris and Benedict 

devised a pair of equations (separate for men and women) to calculate daily heat 

production of a subject (collectively termed the HB equation) [127]. The equation 

related EE to measurements of height (h in cm), weight (w in kg) and age (a in years) 

for men (2.11) and women (2.12).  

Basal Metabolic Rate [men]=66.47 + 13.75 w + 5.00 h −  6.76 a (2.11) 

Basal Metabolic Rate [women]=655.10 + 9.56 w + 1.845 h −  4.68 a (2.12) 

The equation, or adaptations of, are the most commonly used predicative means for 

estimating basal EE. It has been reported by Frankenfield et al. that the original HB 

equation overestimated EE systematically by 5 % and on average by 15 % [128]. The 

HB equation was found to apply to patients with BMIs up to 35 or 40. It is usual 

clinical practice to substitute ideal weight (lean body mass) when total weight exceeds 

ideal weight by 25 to 30 % [128]. 

The HB equation was also criticised by Haugen et al., stating that the equations were 

only designed for use with healthy patients and were not suitable for patients with 

complex disease processes [65]. Haugen et al. suggested RMR should be measured 

after a 5 hour fast, no PA or other stimulants. The presence of fever and infection can 

increase EE by up to 80 % compared to normal controls. Resting EE values provide 

critical data necessary to determine calorie intake for weight loss. Haugen et al. 

summaries that in obese subjects, only 38 to 64 % of resting EE values estimated using 

the HB equations are accurate. Furthermore, the characteristics of the subjects are 

dramatically different in our current population, than when the equation was proposed 

in 1918. Daly et al. compares the HB equation to indirect calorimetry with a sample 

size of 201 subjects [129]. It was found on average the equations over predicted basal 

EE by 12.3 % and in some extreme cases an overestimation of between 25 to 30 % 
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was found. Daly et al. criticised one assumption made by Harris and Benedict, that a 

24 hour basal EE measurement can be predicated from a 5 to 15 minute measurement 

early in the morning. 

Weijs et al. conducted a validation of 18 predictive equations against indirect 

calorimetry results for 48 outpatients, 45 inpatients and 42 underweight patients [130]. 

It was found that the HB equations, acknowledged as the most evaluated, 

overestimated resting EE by about 4 % for obese patients and yields 1.5 % 

underestimated for an underweight population (actual body weight was used). An 

equation (including weight and height) was developed in a joint publication by the 

Food and Agricultural Organisation of the United Nations, the World Health 

Organisation and the United Nations University [131]. Weijs et al. found the equation 

produced the most accurate results for adults in/out patients whereas the Mifflin St. 

Jeor equation (2.13 for men and 2.14 for women [132]) was considered for its 

relatively high percentage of in- and underweight -patients predicted well [130].   

Resting EE [men]=9.99 × w + 6.25 × h −  4.92 × a − 161 (2.13) 

Resting EE [women]=9.99 × w +6.25 × h − 5 × 𝑎 + 5 (2.14) 

The Mifflin St. Jeor equation was also noted by Boullata et al. as performing better 

than the HB equation for obese (but otherwise healthy) adults [133]. Boullata et al. 

tested 395 subjects, with mean age of 56 years (range 16 to 92 years) and mean BMI 

of 24 (range 13 to 53). The HB equation was multiplied by a factor of 1.1 to obtain the 

most accurate results (the same factor was also applied to the Mifflin St. Jeor equation 

but with unfavourable results). For non-obese subjects it was found the HB equation 

multiplied by a factor of 1.1 produced the most accurate results (compared to indirect 

calorimetry measurement). Henes et al. compared the HB equation to 6 others, for use 

in predicting the EE of severely obese youths [134]. It was found that the HB equation 

had improved accuracy over other predictive equations, but only a 65 % accuracy was 

achieved and the equation displayed ‘noticeable errors’.  

2.4.3 Heart Rate Monitoring 

In all of the methods discussed thus far, none provide a solution for measuring the EE 

of an activity outside of a laboratory environment. In particular, Charlot et al. noted 

that EE during aerobic exercise is difficult to determine and field measurements are 

inconvenient [135]. Charlot et al. stated that accelerometers are more expensive than 
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heart rate (HR) monitors alone and do not represent a popular solution. An affordable 

solution was proposed to determine EE from affordable HR monitors. The report 

detailed a comparison between five existing equations used with HR monitors, and 

evaluates the accuracy of calculating EE prediction when parameters such as speed 

(via GPS) are factored into the equations.  

It was found that speed monitoring greatly improved the accuracy of the EE prediction, 

and should be included whenever possible. The proposed equations fail to accurately 

predict EE in all but very specific cases. It is recorded that the coefficient of 

determination was 0.809 for the work developed during the study, which is more 

accurate than that found from the pre-existing equations (R2 of 0.737).  Moreover, 

Charlot et al. concede that the equation developed is only suitable for a limited age 

range, while running on level ground and with an intensity of between 25 and 75 % of 

HR reserve.  

HR has been acknowledged as a useful parameter for calculating EE, but not only is 

careful calibration needed, but also a major problem is that not all HR variations are 

due to metabolic activity [136]. Spurr et al. developed a method of calculating daily 

EE using a HR monitor, and suggested it was a cheap alternative to the DLW technique 

[137]. The necessary calibration was performed based on the volume of O2 consumed 

while cycling on a ergometer (the relationship between RQ and litres of O2 consumed 

was used, initially developed by Lusk [138]). A critical heart rate (Flex) was found to 

split the relationship between HR and EE. A lower HR than the Flex cut-off value and 

EE was assumed to be basal; a higher HR and the calibration curves between HR and 

EE found from the ergometer experiments were used. The results from the initial 

experiments performed by Spurr et al. were not comparable to indirect calorimetry. 

The maximum deviation of total daily EE for individuals was in between +20 % and -

15 % [137]. Additional issues were noted such as the HR electrodes becoming 

detached from the participants.  

The Flex HR method was tested by other groups. Livingstone et al. compared the 

method with DLW and found that the HR technique overestimated EE by 2 ± 17.9 %, 

but the study other included 14 free-living adults (over a period of 15 days) [139]. 

Ceesay et al. compared the Flex HR to indirect calorimetry, and found that the Flex 

HR underestimated daily EE by on average 1.2 % (however with a large range from -
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11.4 to 10.6 %) [140]. It was noted that the experiments developed by Ceesay et al. 

included regular exercise, which did not match the sedentary lifestyle to which the HR 

equations may be more suited. The findings of Blackburn and Calloway support this 

hypothesis, where it was noted prediction of EE from HR is unreliable in the range of 

80 to 120 beats per minute [141]. Leonard similarly notes that the linear relationship 

between HR and EE breaks down at resting and high work levels and found the HR 

and EE relationship varies between individuals [142]. 

2.4.4 Activity Monitoring 

Activity monitors attempt to provide a measure of the amount of physical activity (PA) 

and exertion that the wearer expends throughout daily life [143]. Modern devices use 

piezo-resistive or capacitive accelerometers to measure activity levels and also provide 

information on body position. In a review covering 25 articles and 18 accelerometers 

to DLW, Plasqui et al. concluded many accelerometers ‘perform badly’ in comparison 

[143]. Although other sensors such as HR monitors, skin temperature sensors or heat 

flux sensors were included in a number of experiments, their inclusion was found to 

decrease the accuracy of devices (compared to only measuring ‘steps’) due to poor 

algorithm relating the parameters to EE. The DLW technique was criticised due to 

only being able to give an overall EE, where as activity monitors can provide a day-

by-day profile of PA. Each sensor in a multiple-sensor system can add inherent 

measurement error and thus the risk of technical failure can increase (in addition to 

potentially increasing inaccuracies). Plasqui et al. proposed that ‘activity recognition 

has great potential to improve the assessment of PA related health outcomes’ [143].  

An intelligent device for EE and activity (IDEEA, Minisun,USA) was developed to 

estimate EE from 35 different postures and activities. Whybrow et al. compared the 

IDEEA to two experiments: 24 hour indirect calorimetry and 14 day DLW study [144]. 

In the study, Whybrow et al. found that not all activities could be identified, such as 

cycling. This activity was discounted, and it was found that EE was recorded as being 

105 % of the values obtained from indirect calorimetry. The device was only able to 

identify 63 % of the controlled activities (e.g. lying on a bed, sitting or standing in 

different positions, etc.). If measured values for resting MR were input to the device 

(to replace the usual estimated values) for individuals, then the size of the EE 

overestimate was reduced, but was still noted as statistically significant.  
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Soric et al. studied whether the monitor was able to differentiate between lying while 

asleep or quiet wakefulness (in comparison to polysomnography and sleep patterns) 

[145]. The study concurred with the findings of Whybrow et al.; that the activity 

monitor showed ‘poor agreement’. The studies performed by Soric et al. were limited 

to laboratory based tests, with home tests required in the future. Pattern recognition 

has been proposed as a method of identifying activities and also data could be 

categorised based on previous knowledge [146]. Linear regression is a method widely 

adopted due to simplicity. A substantial problem is that one regression equation cannot 

cover all activities. A large number of equations would be required to cover all the 

types of activity (e.g. walking, jogging etc.), one equation would be suitable for certain 

activities, but severely underestimate others.  

An important use for a device capable of accurate EE measurement would be in a 

clinical environment, perhaps in an ICU. PA would be unlikely to make a significant 

contribution to the EE of patients confined to bed (lying sedentary), but PA monitors 

would have the potential to track the progress of in- and out-patients. Examples of 

patients trialled with activity monitors include those diagnosed with conditions such 

as COPD (chronic pulmonary disease), osteoarthritis and diabetes (all in comparison 

with either DLW or breath analysis). Rabinovich et al. validated six activity monitors 

in the field (compared to the ‘gold standard’ DLW calorimetry technique), with each 

of 80 COPD patients wearing three or four of the six devices [147]. The study found 

that all of the activity monitors demonstrated a significant relationship with the activity 

EE compared to the DLW measurements. However, it was still suggested that the 

monitors should be used to assess the activities of patients in terms of the amount 

and/or intensity of the activity, with emphasis on the raw data, rather than relying on 

potentially inaccurate calculations. Of particular note is that COPD patients expend 

greater energy than healthy patients for a given task, due to poor mechanical 

efficiency. The study was limited to a small population (majority 61 of 80 patients 

were male, mean participant age 68 years). Furthermore, technical issues meant that 

14 participants were excluded from the analysis (insufficient data recorded).  

Hermann et al. studied subjects with osteoarthritis of the hip who wore a Sensewear 

Pro3 monitor (Fig. 2.12, Bodymedia, USA)  and the data were compared against a 

portable indirect calorimeter [148]. Subjects with osteoarthritis, similar to COPD 

above, are likely to expend a greater amount of energy for a given activity, due to 
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functional impairment. A 2-hour protocol was implemented to simulate daily living 

(walking, sitting/standing, gardening). A large bias was recorded between activities 

(e.g. over-estimating walking activities by between 62 and 93 %, but under-estimating 

by -25 % when climbing stairs). The study raises concerns of using activity monitors, 

with problems including a large bias, which caused an overall overestimated of total 

EE by 72 %. Also the monitor used for the study was like a black box, so cannot easily 

be adapted (not dissimilar to other models). Technical problems again hindered the 

study, thus reducing the amount of data available for analysis.  

The Sensewear armband was also tested by Machac et al., with similar findings [149]. 

The device was verified against DLW and mobile gas exchange calorimetry on 19 

diabetic subjects. Walking on a level surface was found to be overestimated by 70 to 

80 %; walking uphill was underestimated (all walking manoeuvres were performed on 

treadmill and not in a free-living environment). The armband was not sufficiently 

accurate for EE monitoring. Machac et al. stated that it would be less confusing to see 

steps walked instead of calculated EE, concurring with the suggestion of Rabinovich 

et al. [147].  

 

Fig. 2.12 – Photograph of Sensewear armband and accompying computer software, 

from [150].  

The Sensewear armband was tested against 19 older adults by Mackey et al. [151]. An 

acceptable level of agreement was observed between the armband and measurements 

of total EE and EE due to activity taken by DLW and indirect calorimetry. A strength 

of the armband was noted as having heat-related sensors included, which helps to 
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assess the energy cost of non-ambulatory and low-intensity activities (that are difficult 

to detect with an accelerometer) which are common among older adults. Concern 

about the operation of the heat-flux and temperature sensors in the armband was raised 

by Heiermann et al. [152]; the sensors may not be beneficial to the measurements 

performed on older subjects, as age-related changes to the skin cause it to become 

thinner and drier (affecting the skin conductance measured by the device).  

A study performed by Heiermann et al. assumed that the calculations performed by 

the software in the armband were invalid for the target study group of 49 volunteers 

aged 60 to 87 years. Heiermann et al. comment that resting EE error was only 1.9 % 

typically, compared to indirect calorimetry. It was concluded that additional studies 

were required to test the ability of the armband to predict EE in frail older individuals 

as well as in over- and under-weight older populations.  A study of the Sensewear 

armband against the Actigraph (MTI, USA) and IDEEA by Welk et al. found that the 

equations used by the Sensewear device provided accurate indications of PA [119]. 

The tests were conducted with 30 college-aged participants in their ‘unique’ free living 

environment. The study was limited to a comparison between activity monitors, rather 

than comparing measurements against a verified calorimetry technique. The study 

found that the equations used in the devices were based on locomotor activities and 

thus were accurate for walking, but underestimated the energy cost of normal 

household activities by as much as 50 %. A further limitation of the study was the lack 

of routinely testing vigorous PA, where it was noted that only ‘one or two’ participants 

undertook any vigorous activity.  

Moon and Butte reported on a study relating PA (vibration monitor) and HR to O2 

consumed and CO2 produced, to meet the need for a cheaper and less intrusive means 

of EE assessment than expensive calorimetry techniques [153]. The relationship 

between O2 consumption rates to HR is different between individuals, dependent on 

age, body composition and fitness. Moon and Butte found that classifying wake and 

sleep periods achieved an improved estimate of the volume of O2 consumed. The range 

of errors in predicting day 5 awake volume of O2 consumed was -10.6 to 4.6 % (16 % 

overall). Reclassifying points using HR alone, increased the mean error to 5.3 ± 8.6 

%. Results confirmed the importance of calibrating O2 consumption against HR for 

each individual. It was concluded that the precision of volumes of O2 consumed and 

CO2 produced improved by combining PA and HR monitoring.  
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2.5 Motivation for Developing Portable Breath Analyser 

The motivation behind this project to develop a hand-held breath analyser is 

summarised below (non-exhaustive list of possible applications for the device). The 

summary below builds upon the aims (section 1.1) and considers the improvements 

required compared to the current generation of measurement equipment.   

 Provide a means of determining EE for the general population to an 

acceptable clinical accuracy. 

o Create an accessible method of being able to determine EE, without 

limitations to specific study targets. Expense and complexity are 

barriers which hinder the use of calorimeters in medical care. A 

portable, affordable and simple to use device would promote the 

measurement of EE in general practice. 

 Develop a miniature breath analyser using new sensor technology. 

o Recent developments in the sensors field offer new technology to 

miniaturise systems and improve performance. A breath analyser 

would benefit from these enhancements and demonstrate future 

applications for sensors. 

 Promote awareness of obesity and how it can be prevented. 

o Obesity is globally becoming a major problem. Weight gain is difficult 

to self-diagnose and manage, and therefore can often be ignored. 

Being aware of the correct calorific intake during each day could help 

prevent the trend towards an overweight population.  

 Improve upon the current generation of instruments for EE measurement. 

o At present, it is rare to find EE measurement equipment inside 

hospitals. The common portable units found in hospitals do not 

provide sufficient reliability or accuracy for clinical use.  

 Investigate the components of EE and their inter-individual variance.  

o The proportion of total daily EE associated with each component 

varies between individuals. Meal type, frequency and content have an 

effect on the DIT component of daily EE. In particular this component 

is not well understood, and the effect of different food types could be 
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investigated with a device capable of quick and accurate 

measurement to determine slight changes in minute by minute EE.  
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CHAPTER III 

 

 

 

Gas Sensors for Breath Analysis 
 

 

 

 

Preface 

Breath-by-breath measurement of gas concentration presents numerous challenges for 

traditional gas sensors. To measure the gas concentration of an exhaled breath the 

sensors need to respond within the short time frame of an exhalation, perhaps over less 

than two seconds. The high level of humidity in a breath can also affect sensor 

response as well as the increase in temperature from ambient to breath. The Weir 

equation (2.4) discussed in chapter II relates the volume of carbon dioxide produced 

and oxygen consumed to energy requirements. For comprehensive breath 

measurements of energy expenditure sensors for both gases are required. For further 

analysis of metabolism and health, volatile organic compounds are of interest. These 

compounds have been reported to aid the diagnosis of diseases. Various compounds, 

such as acetone, have also been linked to diabetes. Measurement or identification of 

an abnormal level of these compounds could present further information to help 

understand human metabolism. In this chapter gas sensors are discussed with focus on 

their use in breath analysis.  
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3 Gas Sensor Specification 

The breath analyser to be developed must be capable of analysing gas directly sampled 

from human exhalation, ideally without storage or external conditioning.  The gas 

sensors incorporated in the design must be able to measure a range of gas 

concentrations, as found in exhaled breath. Table 3.1 lists the approximate range of 

gas concentrations that the sensors must be able to detect, given the concentrations 

expected in ambient (inhaled) air and exhaled breath.  

Table 3.1 – Gases found in exhaled breath and concentration range. 

Measurand 
Typical Conditions 

of Exhaled Breath 
Typical Conditions Inhaled Air 

Oxygen 16 – 17 % [1,2] 20.9 % [3,4] 

Carbon Dioxide 4 – 5 % [5] 0.035 % [6–8] 

Temperature 32 – 36 °C 
[9,1

0] 

18 – 22 °C room 

UK outside average 4 to 

18 °C  

[11] 

[12] 

Relative 

Humidity 
< 100 % [13] 

40 – 65 % room 

Extreme levels from 

possible from 35 to 85 %  

[14] 

[15,16] 

Flow Velocity 

6 – 7 L/min 

(resting) 

< 100 L/min 

(exercising) 

 

[17–

19] 
N.A. - 

Carbon 

Monoxide 

0 – 40+ ppm  

(non- to regular-

smoker) 

 

[20–

22] 
0 – 2 ppm [23] 

Ethanol 

0 – 50 ppb 

(normal)  

180+ ppm  

(UK driving limit) 

[24] 

[25] 

[26] 

0 – 1 ppb [27,28] 
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The global concern with regards to air pollution has led to more interest in air quality 

monitoring sensors. These devices are usually unsuitable for use in breath analysers, 

which require a different concentration range to be detected and a fast response time 

is not critical.  Gas sensors are not usually impervious to the conditions found in 

exhaled breath. For example, the elevated level of relative humidity (RH) associated 

with an exhalation can block the mechanisms reacting inside various types of gas 

sensors and supress any response to a change in gas concentration (alternatively the 

gas sensor can show a high response to humidity rather than the measurand).  

Furthermore, the time available for the gas sensors to respond to a change in gas 

concentration is much lower when measurements are taken on a breath-by-breath 

basis. Ideally a gas sensor unit would be able to sample and measure gas immediately 

after an exhalation is provided. This would enable a miniature low-cost device, where 

no samples need to be stored, nor any bulky system needed to divert a portion of the 

flow for measurement. The flow rates during an exhalation are significant compared 

to ambient conditions, which can further disrupt sensor performance. The variables 

found in exhaled breath that could disrupt sensor performance are listed in Table 3.2. 

Table 3.2 – Conditions found on exhaled breath compared to ambient air conditions. 

Parameter Ambient Air Condition Exhaled Breath Condition 

Flow Rate N.A. ~6.7 L/min average exhaling 

Contaminants 
Air pollutants, e.g. CO, NO 

or hydrocarbons 

VOCs, ethanol (alcohol), CO 

(smokers) 

Flow Quality 
Atmospheric conditions 

(minimal) 

Normally laminar (Re 1600 to 

2000 [29]), potentially turbulent 

(Re 2697+ [30]) 

Pressure Atmospheric pressure 

Pressure difference from lungs 

and required to exhale through 

device 

Dust and Dirt 

Minimal level of dust and 

dirt in rooms (higher levels 

possible in some 

environments) 

Particles of food, saliva and oral 

content could be present 
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The elevated temperature of exhaled breath, combined with the level of RH, can cause 

water droplets to condense in any container (at ambient temperature) that captures an 

exhalation. Although the temperature of an exhalation is slightly below body 

temperature, it is still likely to be above room (or ambient) temperature and thus there 

is a risk of condensation. The effect of temperature variation in the ambient 

environment is not likely to cause substantial drift (even for devices sensitive to 

temperature), as variance of less than 10 °C would be expected for room conditions. 

Room temperatures could peak at 30 °C [31]. The minimum workplace temperature is 

specified as 13 °C (Health and Safety Executive [32]) when physical work is involved. 

If the device is used outdoors, the temperature variance is pronounced between seasons 

(e.g. the UK average outdoor temperature is ~4 °C in January compared to 18 °C in 

July) but stability is not a cause for concern over short measurement periods. The body 

uses breath as one means of expelling water, thus it can be almost 100 % humid, 

compared to ambient conditions of approximately half this level, the affect of humidity 

variation could be prominent enough to effect sensor response. In the UK (London for 

example), humidity extremes could be as low as 35 % in summer [15] or as high as 85 

% (or higher) in winter [16].  

A typical adult has a tidal volume of 0.5 litres [33–37]. The ratio of time spent inhaling 

to exhaling is typically 1:3 [38]. Therefore, assuming a 6 second breath cycle 

(respiratory period 10 breaths per minute), the average flow rate of exhaled breath 

would be 6.66 L/min. This assumes the flow rate is constant throughout the exhalation 

phase; however an exponential decay is expected during an exhalation. The flow rate 

at the end of expiring (alveoli gases from previous chapter) will perhaps be a factor of 

5 lower than the peak level.  A graph of the exponential decrease in exhaled flow rate 

is shown in Fig. 3.1; the peak flow rate for an exhalation is approximately 30 L/sec.  

A breath analyser system must be capable of functioning in an environment that has a 

lot of pollution. For example, in a city urban environment (with vehicles etc.) potential 

pollutants could include nitric oxide (NO), hydrocarbons and carbon monoxide (CO) 

[39]. It is usual for sensors to be immune to cross-sensitivity for some gases and 

compounds, however there is a risk of such particles poisoning the sensor or 

contaminating the sensor surface which could reduce the performance of the device. 



 III – Gas Sensors for Breath Analysis  90 

   

In the UK, air quality bandings state a moderate level of CO is in the range of 10 to 

11.5 ppm [40] (and levels are commonly between 0 to 2 ppm [23]).  

 

Fig. 3.1 – Relationship between the lung volume, airflow, esophageal pressure and 

alveolar pressure for an adult human male (normal tidal breath at a rate of 12 breaths 

per min) [41]. 

VOCs in exhaled breath are possible sources of interference for cross-sensitive 

devices. Behaviour such as smoking or consuming alcohol could increase the level of 

CO or ethanol found in exhaled breath. VOCs such as NO and acetone can indicate 

the presence of diseases (e.g. lung cancer), but are only present in very low 

concentrations [42]. Smokers increase the concentration of CO found in breath by up 

to 40+ ppm (from ~0 ppm for control subjects) [20,21,43]. Alcohol consumption can 

increase the level of ethanol in breath, from a baseline of 0 ppm to an excess of 180 

ppm (the current UK driving limit) [26,44].  

The flow of exhaled air from the lungs and out of the mouth or nose is usually laminar, 

in most conditions of calm exhaling. If air is exhaled at a fast rate (e.g. heavy 

breathing) the flow could become turbulent. Typically, a healthy adult breath flows 

through the trachea with a Reynolds (Re) number between 1600 and 2000 [29]. Zhao 

et al. report on simulations of exhaled levels of CO2 through a sampling tube used to 

analyse breath [30]. Reynolds numbers of 2697 and 4495 were reported for flows of 6 

and 10 L/min, respectively. It is generally reported a laminar flow is indicated by Re 
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<2300 and turbulent indicated by Re > 4000 (transient 2300 < Re < 4000) [45]. While 

exhaling, the lungs are at a higher pressure than atmospheric (by around 2 to 3 mmHG 

[46]). Amitrano and Tortora report an ambient pressure of 760 mmHg with pressure 

in the alveoli around 762 mmHg [47]. Additionally, a pressure drop may be caused by 

the sensor chamber. Zhao et al. report a relatively small change was measured as a 

result of adding a sensor chamber [30]. 

In most cases clean ambient air does not contain a significant level of dirt or dust 

particles to damage gas sensors. In large quantities, such particles could block the 

sensor inlets, although the likelihood of external elements being forced into the sensor 

chamber is unlikely, when there is little to no flow in ambient conditions. A subject 

exhaling into a device has greater potential to bestow unwanted dirt in the sensor 

chamber, with high flow rates (in excess of 30 L per minute) possible. Exhaled breath 

can often contain oral content, saliva [48] or food fragments [49]. Such matter could 

block up either the sensors themselves or the sample tubing. The flow rate and 

frequency of breathing can be influenced by wearing a mask or mouthpiece/nose-clip 

as discussed in chapter II.  

3.1 Sensitivity Analysis 

The target of this project is to develop a portable breath analyser to measure a 1 % 

change in EE, which was chosen as tolerance acceptable for the data to be clinically 

useful. The abbreviated Weir equation (2.4) uses the volume of O2 consumed and CO2 

produced to calculate EE. The aim of the work in this section is to calculate the relative 

accuracy to which the O2 and CO2 gas sensors must be able to measure their respective 

target gas to meet the 1 % target EE measurement.  

The data from six subjects (subject information presented in Table 2.3) was obtained 

from the University Hospital Coventry and Warwickshire NHS Trust (respiratory 

room data). The data is presented in Tables 3.3 and 3.4 for the 6 subjects (6 EE 

readings are taken for each subject). The calculated metabolic rate shown in Table 3.3 

assumes a variable breathing rate of either 10, 30 or 6 breaths per minute for normal 

(sitting), exercise (high exertion) and sleeping (overnight), respectively. The 

metabolic rate data shown in Table 3.4 assumes a constant breathing rate. 
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Concentrations of O2 and CO2 were measured in the chamber and averaged over 30 

minute periods. From the minute values of O2 and CO2 the exhaled volumes of each 

gas are converted into a volume per breath. The ambient inhaled air conditions were 

assumed to contain 20.9 % O2 and 0.035 % CO2.  

The measurement error in the gas concentration data from the chamber (𝛼) can be 

calculated using the target metabolic rate error (1 %), the actual recorded metabolic 

rate and the volumes of O2 and CO2 exhaled (ml/min) using equation (3.1). The 

exhaled volumes of O2 and CO2 were provided from the hospital, although are not 

presented here.  

α =
𝐵𝑀𝑅𝐶𝑎𝑙𝑐 × [𝐸𝑟𝑟𝑜𝑟 %]

{√(3.9 × [𝑂2 𝑒𝑟𝑟𝑜𝑟 𝑝𝑒𝑟 𝑚𝑖𝑛])2 + (1.1 × [𝐶𝑂2 𝑒𝑟𝑟𝑜𝑟 𝑝𝑒𝑟 𝑚𝑖𝑛])2}
 (3.1) 

Using α, the absolute gas volume errors per minute can be calculated (i.e. multiply the 

volume of each gas inhaled/exhaled per minute by 𝛼). This can then expressed as an 

error per breath (from the given respiratory rate) and the error in gas concentration 

(from given tidal volume).  

Finally, the error in the gas concentration can be compared to the gas concentration 

measured in exhaled breath, giving a percentage value for relative sensitivity. This is 

the accuracy that the sensors must perform within (when measuring inhaled and 

exhaled gas concentrations) to enable the metabolic rate to be calculated to within a 1 

% tolerance. 

The O2 and CO2 data in Table 3.3 show the average accuracy required by the O2 and 

CO2 sensors is 0.52 % and 1.20 % respectively (in order to measure EE to a 1 % 

tolerance). The data in Table 3.4 (fixed respiratory rate) show the sensors need to 

measure to an accuracy of 0.61 % and 1.20 % for O2 and CO2, respectively.  
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Table 3.3 – Subject data metabolic rate error and required sensor sensitivity (varying 

respiratory rate between 6 and 30 breaths per minute). 
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Table 3.4 - Subject data metabolic rate error and required sensor sensitivity (constant 

respiratory rate of 10 breaths per minute). 
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The histograms shown in Fig. 3.2 demonstrate the spread of the sensitivity data (36 

samples per histogram, consisting of 6 subjects and 6 error calculations per subject). 

The data is taken from the sensitivity values calculated in Tables 3.3 and 3.4. The 

relative sensitivity is the accuracy to which the sensor must be able to measure the gas 

concentration.   

 

Fig. 3.2 – Histograms showing the sensor relative sensitivity required for 1 % EE 

calculation for O2 and CO2; a) and b) with three respiratory rates; c) and d) with 

fixed respiratory rate.  

The histograms plots allow a clear overview of the required sensitivity and provide a 

simple means to determine the target sensor accuracy. For example, from the data 

shown in Fig. 3.2 a) it can be seen the O2 sensor must have a relative accuracy of 0.5 

%. There are 2 data points (which represent 2 EE calculations shown in Table 3.3) for 

which a sensor with an accuracy of  1 % O2 concentration would be sufficient to 

calculate EE to the target 1 % accuracy. A sensor that can measure O2 to 0.6 % 

accuracy would be sufficient for 18 samples. A sensor that has a 0.5 % accuracy would 
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be sufficient to calculate EE for 29 samples (the remaining 7 samples need a sensor of 

higher accuracy).  

From Figs. 3.2 a) and b), when varying the respiratory rates for exercise, sleep and 

sedentary values, the O2 sensor requires a relative sensitivity of lower than 0.60 % and 

the CO2 sensor requires lower than 1.20 %. When a fixed respiratory rate is assumed, 

the O2 and CO2 sensitivity levels are not changed (0.60 % and 1.20% are sufficient), 

as shown in Figs. 3.2 c) and d).  

3.2 Oxygen Gas Sensors 

A number of techniques have emerged to measure O2 concentrations, including 

galvanic (often referred to as low-temperature electrochemical), partial pressure, 

zirconia and paramagnetic [50]. As noted in Table 3.1, the O2 content between inhaled 

and exhaled air varies by approximately 4 to 5 %. Sensors based on infrared (IR) 

principles cannot be used as O2 is not absorbed by IR radiation [51]. Homonuclear 

diatomic molecules (such as O2, N2 etc.) cannot absorb IR radiation as they do not 

have the necessary dipole allowed vibrational rotational moments [52]. Diatomic 

molecules made up of different atoms have vibrational movement that absorbs 

radiation in the IR range [53].  

3.2.1 Ambient Temperature Electrochemical Sensors 

The principle of a galvanic cell is the generation of a current between two dissimilar 

electrodes due to chemical reactions occurring inside the cell [54]. The electrodes are 

immersed in an aqueous electrolyte (e.g. potassium hydroxide) [55], as shown in Fig. 

3.3. A membrane, situated between the sample gas (for example breath or air) and the 

inlet to the cell, prevents unwanted molecules from entering into the sensor; only O2 

molecules can pass through the membrane. The O2 molecules are reduced at the 

cathode and form (along with water and electrons) negatively charged hydroxide ions. 

Due to the loss of electrons, the cathode becomes positively charged. Hydroxyl ions 

oxidise at the anode, which yields an electrical current (in the range of nA to µA [56]). 

The formation and migration of the ions between the cathode and anode is proportional 

to the concentration of O2 in the sample gas [56]. Manufacturers of such sensors 

usually recommend that a load resistor is placed between the anode and cathode to 

produce a voltage output, suitable for reading with an appropriate data acquisition 

module.   
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Fig. 3.3 – Schematic of low temperature electrochemical O2 sensor [57,58]. 

The simple principle means galvanic cells are affordable (€10 to €20), although the 

bulky dimensions required to electrolyte (in sufficient quantity to allow a reasonable 

lifespan after considering evaporation) prevent the development of miniature devices 

(the smallest sensors are perhaps 20 mm in diameter). In the past 50 years the 

development of electrochemical devices has greatly progressed [57]. The 

improvement in sensor technology enables reduced instability (previously caused by 

excessive noise and drift). Importantly, sensitivity and selectivity have improved and 

increased the working life span of the devices (from a few months to two years) [59].  

These sensors have the potential for use in industrial applications, with low cross-

sensitivity to other common gases [60]. The devices are less attractive for applications 

where regular sensor replacement or for those in which the corrosive nature of the 

basic solution is a concern [61]. The sensors are susceptible to poisoning, by acid gas 

species such as hydrogen sulphide and sulphur dioxide. [55], although these are 

unlikely to be present in high concentrations during breath sampling. These devices 

can be used for portable applications (with the great advantage of low power 

consumption), and are not affected by movement or vibration, unlike their counterpart 

paramagnetic alternatives [62]. 

Development of electrochemical O2 sensors for breath applications is limited, possibly 

due to the unusual conditions found in an exhalation listed in Table 3.2. The necessary 

fast response time, uncharacteristic of electrochemical sensors, is perhaps why other 

types of O2 sensors are usually considered for breath-by-breath measurements, albeit 

at a greater expense. The research field of miniature O2 sensors for medical 
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applications is strong however, for example wearable sensors for premature infants. 

The sensors suitable for use in clinical environments would be practical for use in a 

breath analyser, although the resilience to fast flow rates and response times needed 

for rapid changes in gas concentration might prevent their adoption.  

Mitsubayashi et al. reported on a research wearable O2 sensor for use in neonatal 

intensive care [63]. The flexible device was designed to monitor arterial oxygen 

pressure in infants to prevent premature retinopathy. The device was designed to be a 

comfortable replacement to the rigid cylindrical cells which were commercially 

available, but often caused skin rashes. The new device had a reduced risk of causing 

rashes (accurate measurements were only possible when the skin was heated, which 

increases the O2 transmissibility from the blood to the skin). The device was 

constructed with a platinum (Pt) electrode and a silver (Ag) electrode patterned on a 

gas-permeable membranes (width 15 mm, length 50 mm, thickness 200 nm). A 𝑡90 

response time of 11 s (to 90 % of final value) was achieved comparing ambient air to 

nitrogen conditions. The device was applied to the forearm of healthy male subjects, 

inhaling either 21 % O2 or 60 % O2 (for 10 minutes). The output from the sensor 

typically increased from ~12 µA to ~16 µA with a 39 % increase in supplied O2.  

A further revision of the flexible O2 sensor was reported by Iguchi [64], which was 

capable of performing O2 measurements through the conjunctiva. The device 

neglected the need for heating, due to the conjunctiva allowing for high gas 

penetration. The sensor was smaller than the previous generation (a decrease in width 

of up to 3 mm), but had a slower response time (with a N2 purge 90 % response 

measured after 45 s). The sensor was tested with a rabbit, inhaling 21 %, 60 % and 90 

% O2 for periods of 2 minutes. Typically, the sensor output was 0.30 µA when inhaling 

21 % O2, 0.35 µA at 60 % O2 and 0.38 µA at 90 % O2.  

The restricted lifetime of amperometric sensors was noted by Xiong et al. on the 

specification of products from manufacturers such as Crowcom, Alphasense, Draeger 

and Honeywell (with associated companies, such as City Technology) [65]. 

Commercial examples are the O2G2 (Alphasense) and the MOX-20 (City 

Technology). These sensors often use a strong aqueous sulfuric acid as an electrolyte 

to prolong the lifespan of the devices. It was suggested that using a room temperature 

ionic liquid (RTIL) as an electrolyte would allow, in principle, the sensor to overcome 
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the issues with amperometric sensors in high temperature environments and short 

sensor lifetimes. A membrane-free microelectrode/array was developed with a thin 

layer of RTIL deposited by blotting (where the ionic liquid eliminates the need for a 

membrane). Long response times were cited as an issue with current commercially 

available sensors. With the research prototype sensors, response times of < 15 s were 

found. The device was tested between 10 % and 100 % O2, with current output 

demonstrating a near linear increase from ~10 µA to 60 µA. The principle of 

membrane free amperometric sensing was demonstrated, although improvements in 

RTIL deposition would be required to achieve reproducible measurements. 

Wang et al. reported a substantial improvement with amperometric O2 sensors with 

the use of newly developed RTILs as the membrane [66]. A limit of detection for O2 

as low as 0.05 % was found with a response time of 2 minutes. The prototype devices 

were noted to perform well over a period of several months, and offer a potential 

amperometric sensor for use in harsh environments and air-quality monitoring 

applications. Wang et al. commented the use of ionic liquids as electrolytes allow great 

promise for future generations of O2 sensors to be miniaturised. At the stage of the 

work presented, the experimental data came only from laboratory based experiments, 

with no testing in real world applications. The sensor had a sensitivity of 61.6 µA per 

% O2. Gębicki et al. reviewed the application of ionic liquids for amperometric gas 

sensors and stated the limit of detection of sensors based on the classic Clarke cell 

principle could be improved with the use of ionic liquids [67]. The principle could be 

applied to air quality monitoring for safety applications, where detection of low ppm 

concentrations of gases (CO, NO etc.) would be necessary.  

3.2.2 Zirconia Oxide Sensors 

Zirconia probes are potentiometric oxygen sensors, most commonly used in the 

automotive industry (sometimes referred to as lambda sensors, where λ refers to the 

air fuel ratio) [68]. Although the device operates on an electrochemical principle, a 

potentiometric configuration is usually implemented (with voltage readout), and 

unlike the previously discussed devices, zirconia sensors are usually operated at high 

temperatures. In the case of a car exhaust, the reference electrode is exposed to 

atmospheric air, while the sensing electrode was exposed to exhaust gases, as shown 

in Fig. 3.4. At very high temperatures, zirconia is a solid state oxygen ion conductor 

[69]. The sensing electrode surface (usually coated in platinum) allows the oxygen to 
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form a reversible redox couple. The movement of oxygen ions across the zirconium 

oxide causes a voltage to be produced. The EMF generated is proportional to the 

temperature, which is usually set in the range of at least 600 to 800 °c.  

 

Fig. 3.4 – Principle of zirconia oxygen sensor [70,71].  

An example of a commercial zirconium oxide sensor is shown in Fig. 3.5. These types 

of sensors, are not suitable for a portable device. Although fast response times (120 

ms or lower [72]) are possible at high temperatures (in excess of 550 °c), the devices 

demand high power consumption (for example, 9 W at 12 to 15 V [73]), which limits 

their use in mobile applications. For industrial applications or the automotive 

industries, these problems are only a minor compromise for the durability of the 

devices.  

 

Fig. 3.5 – Zirconia based flange mounted O2 sensor from SST Sensing [74]. 

3.2.3 Paramagnetic Sensors 

Paramagnetic O2 sensors are expensive, but can measure very low levels of O2, which 

is the reason why they are often incorporated into calorimeters used in industry (where 

sensitive measurements are required) [75]. Oxygen is a highly paramagnetic gas, so is 

readily attracted to magnetic fields (several hundred times greater than most gases 

such as N2 and helium). A small glass tube with two spheres on either end (the shape 

of a dumbbell) contains an inert gas (such as nitrogen) and is wrapped in a coil (shown 
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in Fig. 3.6) [76]. The dumbbell is suspended in a non-uniform magnetic field. When a 

sample cell is passed through, any O2 molecules in the gas are attracted to the stronger 

magnetic field, causing the dumbbell to rotate. The degree of rotation is measured 

using a light source and photodiode (with an amplifier). An opposing current is applied 

to restore the dumbbell to its original position. The magnitude of the current is directly 

proportional to the partial pressure of the oxygen in the sample gas. The partial 

pressure of the oxygen in the sample can be displayed in terms of a percentage (with 

resolution as low as ±0.01 % [77], such as the O2 readout panel shown in Fig. 3.6.   

 

Fig. 3.6 – Paramagnetic O2 sensor diagram [75,77]. 

For a breath analyser, the accuracy available from sensors using the paramagnetic 

principle would be appealing, although the expense of the device prevents its use in 

affordable equipment. The greatest problem for portable equipment is the intolerance 

of the devices to vibration (the dumbbell component) [78]. They are somewhat delicate 

and would need re-calibration if not used in a stable location. For these reasons, 

paramagnetic based sensors remain unsuitable for affordable or mobile breath 

analysers. 

3.2.4 Resistive Oxygen Sensors 

Metal oxide gas sensors have been available commercially for almost 50 years, and 

since their introduction, their performance has improved in terms of response time, 

sensitivity, detectable gases and compounds and power consumption. The gas sensing 

properties of a tin oxide sensor to O2 were reported by Cukrov et al. [79]. Nano-sized 

particles of SnO2 were used as the sensing layer, prepared by a mechanochemical 

reaction, a micrograph is shown in Fig. 3.7 a). The dynamic response of the thin film 

sensor was defined as 𝑆(𝑂2) = (𝑅𝑂2
/𝑅1𝑝𝑝𝑚). The response was found to be ~20.0 

(4.5 MΩ resistance) for 10 % O2 concentration. The response times of metal oxide 
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sensors limits their use in breath analysis however, as a t90 time of 2 to 3 minutes has 

been reported [79]. The sensors were noted as demonstrating extremely good stability 

and repeatability (baseline resistance was maintained throughout the duration of 

experiments, across a large concentration range).  

The search for the optimal material coating for O2 monitoring is an ongoing topic in 

gas sensor research, with a wide variety of applications benefiting (for example, O2 

content in exhaust fumes). BaFe1-XTaxO3-δ (BFT), a material investigated by Bektas 

et al. for O2 detection, was trialled with Tantalum content (𝑥) tested in the range of 0.2 

≤ 𝑥 ≤ 0.7 [80]. A scanning electron microscope (SEM) photograph of a layer of BFT30 

is shown in Fig. 3.7 b). For the application of exhaust gas testing, the sensor must be 

insensitive to temperature variation. It was reported that BFT30 was a promising 

variant that permitted temperature independent monitoring of O2 content. It was tested 

over a range from 1 % to 100 % O2. No response time of the sensors was given, 

however the experiments were performed over a period of hours.  

 

Fig 3.7 a) SEM photograph of nanosized particles of SnO2 deposited by a 

mechanochemical reaction; b) BFT with 0.3 tantalum content photographed with 

SEM after sintering. From [80]. 

Resistive O2 sensing has particular advantages when the temperature of the operating 

environment exceeds 60 °C. A report by Cobianu et al. (Honeywell Sensors and 

Wireless Laboratory) note for the application of monitoring O2 levels inside a 

domestic boiler [81]. Metal oxide sensors are capable of withstanding the high 

temperature environment and can be coated with STFO to become sensitive to oxygen 

(with no sensitivity to temperature variation in the range of 750 to 900 °C. Fig. 3.8 a) 

shows the structure of the silicon on insulator (SOI) based micro-hotplate upon which 

the O2 sensor is based.  
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Fig. 3.8 – Resistive O2 sensor based on SOI device, a) Structure of micro-hotplate; b) 

Sensor resistance measured with O2 concentrations in the range of 1 to 16 % [81].  

Cobianu et al. demonstrate the STFO coated sensor was able to measure O2 

concentrations in the range of 1 to 16 %, shown in Fig. 3.8 b). The power consumption 

of the sensor was 80 mW. The results were described as encouraging, although it was 

conceded further work was required to improve the film composition. The sensor was 

only tested over a short period, and further work was required to ensure its robust long-

term operation and also to minimise the sensor drift over time and with relative 

humidity variation.  

3.3 Carbon Dioxide Gas Sensors 

The most commonly available CO2 sensors are based either on an electrochemical 

sensing principle or on an optical absorption method, non-dispersive infrared (NDIR) 

[82]. The selection between the two technologies is dependent on application, where 

the merits of each usually contrast the other; a brief typical comparison is shown in 

Table 3.5.  

Table 3.5 – General comparisons between NDIR and Electrochemical CO2 sensor 

principles [83–86]. 

Parameter NDIR CO2 Sensor Electrochemical CO2 Sensor 

Measurement 

Range 

50 ppm to 100 % (range 

can be selected to improve 

accuracy) 

400 ppm to 90 % typical (range 

of models available) 

Response Time <5 s typical <2 min typical 
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Parameter NDIR CO2 Sensor Electrochemical CO2 Sensor 

Power 

Consumption 
< 100 mW No power required 

Warm-up Time < 1 min < 30 min 

Cross Sensitivity CO or humidity possible Humidity 

Response Decay 
Temperature variance 

possible 
Output decays over usage life 

Lifespan 20+ years < 1 year 

Physical Size Miniature Small 

 

3.3.1 Electrochemical CO2 Sensors 

The slow response time typical of an electrochemical CO2 sensor limits its use for 

breath-by-breath analysis. However, the Alphasense CO2-D1 (shown in Fig. 3.9) is 

noteworthy because it requires no power to operate (although the necessary signal 

amplification would require a power source). In terms of mobile sensor systems, a 

considerable space is often required for batteries. The reduction in power requirements 

reduces the necessary capacity of the battery; Alphasense suggest a coin-sized 

CR2032 battery (20 mm diameter) would give between 6 and 12 months use [84]. An 

example application is discussed by Bonfiglio et al., where the device was chosen to 

be tested in boots for use by emergency services workers [87]. The CO2 sensor needed 

to be close to ground level (where, as it is heavier than air, CO2 accumulates). The 

boots also contained space for energy harvesting equipment, thus a low power sensor 

would be beneficial.  

 

Fig. 3.9 – Alphasense CO2-D1 electrochemical gas sensor (detection range 0.5 to 90 

% CO2) [84].  
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3.3.2 NDIR Gas Sensors 

A brief introduction to NDIR sensors is given here, with a full explanation of the 

operation of the final sensor system given in a chapter V. Unlike many of the devices 

discussed previously, NDIR sensors do not rely on chemical reactions to detect a gas 

or compound, but instead measurements are taken based on the physical absorption of 

IR. This process is almost instantaneous, and therefore IR sensors fundamentally offer 

faster response times, such as those required for breath-by-breath analysis. 

Measurement of IR intensity is inherently plagued with noise. The signal processing 

necessary to remove or compensate for the wide band noise causes much of the delay 

found in commercial NDIR systems.  

The Beer-Lambert law relates the level of light transmitted through an absorbing 

medium such as gas [88]. The law, shown in eq. (3.2), can be used to calculate the 

reduction in intensity of IR radiation (transmitted by an emitter) from an initial value 

(without target gas present) I0 to the intensity I(c) received by an IR detector due to 

the concentration c of a particular gas [89]. The absorption index of the target gas (e.g. 

CO2) at a given wavelength is denoted by kg and the IR optical path length given by l. 

A simplified principle of operation is given by the stages shown in Fig. 3.10.  

𝐼(𝑐, 𝜆) = 𝐼0(𝜆)𝑒−𝑘𝑔 𝑐 𝑙 (3.2) 

 

Fig. 3.10 – Basic principles of NDIR sensing in four stages.  

The path length of the NDIR sensor defines the concentration of a particle element 

that can be detected. For example, path lengths may be as short as 10 mm (for detection 
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of CO2 concentration higher than 1 %) but longer paths (e.g. 80 mm) could allow for 

100 ppm or lower measurements. Improvements in optical configurations to increase 

the path length possible in a small area have been widely reported in the literature. The 

received signal (the intensity of IR radiation) decreases exponentially with the increase 

in path length. A shorter path length yields a higher signal output from the detector (at 

the expense of decreased sensitivity). Consequently a longer path produces a larger 

differential response to a change in gas concentration (permitting the detection of 

lower gas concentrations).   

3.3.2.1 NDIR Emitters 

The emitters included in IR systems are usually broadband and emit radiation across 

a spectrum of, for example, 2.5 to 12.5 µm. A sensor can be made specific to a 

particular gas or compound by detecting only IR absorption over a small wavelength 

range (perhaps 90 or 180 nm). A bandpass filter fitted into a cap covering the detector 

can prevent changes in IR intensity outside the range of interest from affecting the 

measurement. The absorption spectrum shown in Fig. 3.11 demonstrates how CO2 

absorbs IR at approximately 4.26 µm and humidity absorbs wavelengths between 2.5 

and 3.5 µm.  

 

Fig. 3.11 – Absorbance of IR radiation by water, CO2, CO and acetone [90]. 
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The emitter in an NDIR system can be targeted for sensing of a specific gas or element 

by use of a subwavelength array of holes on top of the micro heater in a metal CMOS 

layer. Experiments have demonstrated that the array of holes enhances the IR 

transmission, most likely due to the generation of surface plasmons on the metal-

dielectric interface [91]. An example structure is shown in Fig. 3.12, where the device 

with circular holes was optimised for detection of CO2. The IR transmission enhanced 

at specific desired wavelengths can help avoid the interference from absorption of 

other elements (e.g. humidity). In general, at this stage in their development, 

plasmonic structures are usually integrated into the design of the IR hotplate, but in 

the future, they could also be included in the IR detector. This mechanism offers a 

potential replacement for the optical bandpass filter (usually fitted in the detector cap), 

which is an expensive and difficult to manufacture component.  

 

Fig. 3.12 – SEM photograph of the hexagonal plasmonic structure on NDIR emitter 

designed for enhanced transmission at 4.26 µm (hole diameter and spacing labelled).  

There is considerable interest in the field of plasmonic structure design, where the 

optimum hole diameter, spacing and arrangement for specific wavelengths have yet to 

be determined. This is in part due to disagreement in the literature regarding the 

optimum configuration, but also due to manufacturing tolerances causing 

discrepancies between design parameters and manufactured items. A hexagonal 

arrangement is often chosen (triangular lattices were found to offer a narrower 

absorption/emission than square lattices), and can be based on a metal layer of a 

standard CMOS process [92]. The structure can be defined by the lattice spacing a and 

the hole radius r. The optimal ratio of r/a was found by Li et al. to equal 0.25 (to ensure 
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high emittance and narrow emission profiles) [92]. To investigate the effect of varying 

the structure, finite element modelling (FEM) software (such as COMSOL 

Multiphysics) can be used. It has been reported that r/a ratios of 0.3 and 0.35 produce 

the highest emissivity for some designs [93,94].  

A CMOS nanoplasmonic structure is reported by Pusch et al. used to improve the 

performance of IR gas-sensing devices [95]. Fig. 3.13 shows the wavelength 

dependent emissivity with varying radii and varying pitch. The study aimed to 

improve emissivity at 4.26 µm (for detection of CO2), although it was noted that 

detection of other gases or compounds in the wide variety of absorption fingerprints 

in the range of 2 to 14 µm (e.g. CO, methane, ethanol and other VOCs) could also 

benefit if other emissivity peaks were found. The non-plasmonic emissivity is also 

shown in Fig. 3.13, demonstrating the substantial improvement (almost four fold) 

produced by the additional plasmonic design.   

 

Fig. 3.13 – a) Emissivity of plasmonic structures from 3.5 to 5 µm, top panel pitch 

fixed at 2.8 µm and radii varied between 350 and 1150 nm, lower panel radii kept 

constant at 800 nm and pitch varied between 2.3 and 2.9 µm; b) Map of the surface 

normal emissivity at 4.26 µm wavelength, dots and crosses indicate radii and pitches, 

respectively. 

3.3.2.2 Commercial NDIR CO2 Sensors 

In their current generation, plasmonic devices are usually confined to use in research, 

with ongoing development to improve stability and emissivity range. Commercial 

NDIR CO2 sensors traditionally use micro bulbs as sources of IR. Although readily 
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available, bulbs provide a cumbersome radiation source, compared to newer 

technology such as micro hotplates. In particular, SOI IR emitters have greater 

reliability, faster response and smaller physical dimensions [96,97]. A photograph of 

a typical, affordable commercial NDIR CO2 sensor ($150) is shown in Fig. 3.14. The 

device is marketed as the lowest power NDIR sensor available (35 mW on average) 

and requires a power supply of 3.3 V [98]. The response time is noted as adjustable, 

between 4 and 30 s, although the shortest response time is inadequate for breath-by-

breath measurements and unsatisfactory considering the operational principle.  

 

Fig. 3.14 – Commercial NDIR sensor, 20 mm diameter sensor offers CO2 detection 

up to 100 %, given the range of models available [98].  

Silicon CO2 sensors have been studied for over a decade, however in recent years the 

focus of development has been on improving sensor design to enable greater 

sensitivity, faster response with lower power consumption [99]. An array of 

thermopile sensors can be used to detect multiple gases (e.g. three on a 2x2 array, with 

one reference channel) [100].  

The design complexity of CO2 sensors based on the radiometric thermal conductivity 

principle is a trade-off with the beneficial lower power consumption over traditional 

NDIR systems.  
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3.3.2.3 NDIR Detectors 

Thermopile and pyroelectric detectors are the two most commonly used sensors in 

NDIR systems [101], which, in simple terms, are temperature sensors. Both types can 

be miniature, and low power. At the core of a pyroelectric detector is a slab of 

thermoelectric material, placed between two electrodes [102]. The slab must be poled 

(i.e. given a polarisation) during manufacture. When the poled detector slab is heated 

(i.e. by radiation) the induced polarisation and consequently the charge on the 

electrode, varies. To induce polarisation, there must be a changing temperature, thus 

the pyroelectric detector only responds to modulated (AC) or pulsed radiation (i.e. 

temperature levels are detected rather than temperature changes) [103]. A cross-

sectional drawing of a commercial pyroelectric detector is shown in Fig. 3.15 a), with 

a cap integrated into the TO-5 cap (configurable bandwidth upon ordering).  

The dominant source of noise varies for a pyroelectric device, dependent on the 

radiation frequency received by the detector. At low frequencies (up to several 10 Hz) 

Johnson noise (of the large necessary input load resistor, in the Meg-Ohm range ) 

dominates [104]. At mid-range frequencies (up to 1 kHz) the dielectric loss of the 

pyroelectric material dominates the noise density. At higher frequencies the voltage 

noise (from the preamplifier) is the dominate source [105].  

 

Fig. 3.15 – a) Cross-sectional drawing of a commercial pyroelectric detector (LME-

302 from InfraTec [106]); b) Photograph of a commercial thermopile detector 

(ST150 from Dexter Research Centre [107]) mounted on the same TO-5 package 

with filter cap.  
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A thermopile is formed when a number of thermocouples are connected together in 

series. A temperature rise can be sensed using a thermocouple (a junction formed from 

dissimilar metals across which a small voltage is generated upon heating) [102]. A 

larger output is obtained by connecting the junctions in series (i.e. a thermopile). The 

equation relating the output voltage (Δ𝑉) can be calculated using equation (3.3) from 

the temperature rise (Δ𝑇), the number of thermocouples in the thermopile array (𝑁) 

and the Seebeck coefficient of the junction (𝑆). The Seebeck coefficients can be of the 

order 100 µV K-1 for materials formed from evaporated films of Bismuth and 

Antimony [102]. An example of a commercial thermopile detector from Dexter 

Research Center is shown in Fig. 3.15 b), on a TO-5 package with a bandpass filter 

cap for NDIR gas sensing.  

Δ𝑉 = 𝑁𝑆Δ𝑇 (3.3) 

In contrast to pyroelectric detectors, thermopile devices exhibit an inherently stable 

response to DC radiation. The main source of noise in thermopile systems is the 

summed resistance of the thermocouples [104]. Thermopiles can be designed to have 

response times from sub-microsecond to many seconds; 50 ms is a typical response 

time for an instrumentation grade device [102]. The modern thermopiles, constructed 

from evaporated films, are very thin and rugged. Pyroelectric detectors have a higher 

responsivity and are generally faster, but only operate with modulated radiation [108]. 

Pyroelectric detectors operate up to at least 2 kHz, whereas thermopiles are limited to 

around 100 Hz. Thermopiles have many advantages over pyroelectric detectors in 

applications where responsivity can be sacrificed; they do not suffer from the 

microphonic effect, are low noise and low cost [104].  

3.4 VOC Sensors 

Volatile organic compounds are present, in low quantities, in atmospheric air and in 

exhaled breath. The concentration of particular VOCs in breath can indicate the 

presence of various diseases. The lowest level compounds found in very low ppb 

concentrations can only be detected through mass-spectrometry and by recognising a 

fingerprint of exhaled substances. The diagnostic potential of such compounds is 

uncertain. A vast number, in excess of 300 [109], VOCs have been detected in exhaled 

breath and the key biomarkers for specific diseases (e.g. w.r.t. various types of cancer) 

are starting to be established, although breath tests have not been standardised for 
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cancer detection [110].  For this work we will concentrate on identifying compounds 

that can be detected with portable sensor systems. VOCs and the gas content of our 

exhaled breath can offer a promising means to diagnose disease and contribute to 

evaluating our lifestyles [111,112].  

One of the most well-known uses for breath analysis is measuring the level of alcohol 

in the breath of drivers for law enforcement purposes. Breath analysers usually operate 

using one or many of three methods: the fuel cell principle, infrared spectrometry or 

semiconductor (MOX) devices [113]. Fuel cells are the most common in professional 

breath analysers, but semiconductor sensors are used in personal devices, because of 

their low cost and portability [114]. Here the target is to extend beyond ethanol 

(alcohol) detection and investigate other compounds in human breath.  

There are a number of sensing methods available to detect VOCs: acoustic sensors 

(e.g. surface acoustic wave, thin film bulk acoustic resonator), electrochemical 

sensors, colorimetric sensors, metal oxide (MOX) sensors or NDIR sensors [115]. For 

the case of the portable analyser to be developed in this project, a MOX would be 

preferred, for its miniature size, ability to detect ppb levels of compounds and low 

power consumption. Table 3.6 shows a comparison between the available sensing 

methods for VOCs. Electrochemical sensors offer reliable reference devices, however 

their bulky size, slow response and short life-span prevent their use in a portable 

analyser.  

As discussed above, NDIR sensors have many advantages for the detection of CO2 

against electrochemical devices, however the absorption coefficients are limited for 

many VOCs (although acetone is promising [116]). However, work is still ongoing to 

develop a stable NDIR sensor for low ppm and ppb measurements, thus in this project 

an NDIR sensor will be used only for detection of CO2. Acoustic sensors were 

considered for use in this work, however the complexity of working at high frequency 

could prevent easy integration with the other sensors required for other gases (e.g. 

separate power supplies may be required to prevent frequency locking). 
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Table 3.6 – Available VOC detection methods for a portable analyser [117–120]. 

Sensing 

Method 
Advantages Disadvantages 

MOX 

Semiconductor 

 Mechanically robust. 

 Wide range of target gases 

possible through use of 

film coatings. 

 Highly sensitive to gases 

(i.e. magnitude of 10 

resistance change). 

 Long lifetime. 

 Low cost. 

 Moderately stable (some 

seasonal drift). 

 Poor selectivity.  

 Susceptible to 

contamination.  

 Moderate power 

consumption (resistive 

heater required). 

Electrochemical 

 Ability to measure low 

ppm levels of gases (incl. 

toxic). 

 Wide range of gases can 

be detected. 

 High selectivity. 

 Moderate cost.  

 Physically bulky size 

(e.g. 20 mm cylindrical 

standard). 

 Contamination possible. 

 Limited lifetime (< 2 

years). 

 Sensor drifts over 

lifespan. 

Colorometric 

 Array of sensors possible 

in small area (i.e. 1 x 1 

mm per sensor). 

 Low cost. 

 Disposable sensors. 

 Scanner or camera 

required to digitise 

results.  

 Cross-sensitive to 

humidity.  

Optical (NDIR) 

 Highly selective (using 

filters). 

 Long lifetime. 

 Moderately sensitive (low 

ppm levels). 

 Limited to which gases 

can be detected 

(dependent on if IR is 

absorbed).  

 Path length requirement 

makes miniaturisation 

difficult. 

 Moderately expensive. 

 Can be affected by 

temperature or humidity 

changes in sample gas.  

The primary function of the alveolar capillary interface, inside a human lung, is to 

exchange O2 and CO2. However, in terms of medical potential, the characteristics of 

each exhalation, as well as its content can highlight symptoms of diseases and provide 

a means of real time monitoring. Table 3.7 lists examples gases and VOCs reported in 

breath samples and their significance to healthcare. 
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Table 3.7 – List of example gases and VOCs found in exhaled breath and their 

diagnostic purpose. 

 

3.4.1 Metal Oxide Sensors 

Metal oxide semiconductors have been investigated for use in gas detection since the 

discovery that the absorption of gas into the surface of a film layer causes a significant 

change in electrical conduction [146,147]. The sensors are based on the principle of 

chemiresistance (i.e. the change in electrical conductivity or resistivity of thin films 

Gas Inhaled  Normal 

Exhaled 

Abnormal 

Exhaled  

Healthcare 

Application/Diagnosis 

Ref/s 

Acetone 10 – 20 

ppb 

300 – 

900 ppb 

> 1800 

ppb 

Diabetes [28,12

1] 

Carbon 

Monoxide 
0.25 ppm 

0.5 – 2.1 

ppm 

16.7 -29.3 

ppm 

Identification of smokers, 

chronic obstructive 

pulmonary disease 

(COPD) 

[122–

124] 

1.13 ppm Severe sepsis [125] 

5.6 ppm Asthmatic patients [126] 

4.4 ppm Hemolysis [127] 

Nitrogen 

Dioxide 

30 – 50 

ppb 

< 5 ppb 

increase 

0.5 – 1 

ppm 

Respiratory diseases, 

Asthma  

[40,12

8,129] 

Nitric 

Oxide 
<2 ppb 

5.3 – 7.4 

ppb 

19.2 – 30 

ppb 

Asthma diagnosis [130–

133] 

16.3 ppb Seasonal rhinitis [134] 

12.9 ppb Experimental influenza [135] 

2.3 - 4.7 

ppb 

Cystic Fibrosis  [136,1

37] 

Hydrogen 0.5 ppm < 5 ppm >16-20 

ppm 

increase 

Gastrointestinal diseases 

(small intestinal bacteria 

overgrowth, carbohydrate 

malabsorption), 

diarrhoea,  

[138–

142] 

Methane 1.7 ppm < 1 ppm 

increase 

>16 ppm 

increase 

Diverticulitis, 

constipation, irritable 

bowel syndrome 

[143–

145] 
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on exposure to a target gas) [148]. Example equations to describe the operation of the 

device are explained below. Inflammable gases such as hydrogen and CO (and other 

certain toxic gases etc.) can be detected using MOX sensors; the most widely accepted 

explanation for this mechanism is the variation in negatively charged oxygen 

adsorbates [149].  

3.4.1.1 Operation of MOX Sensors 

The resistance of the sensor is dominated by the variation in the surface coverage of 

the adsorbed O2. For n-type semi-conducting metal oxides, the adsorbed oxygen forms 

a spaces-charge region on the surfaces of the metal oxide grains. In air, the resistance 

of an n-type semiconducting material is high (due to the development of a potential 

barrier to electronic conduction at each grain boundary). A diagram showing the 

operation of a gas sensor is shown in Fig. 3.16. The measurement of the sensor 

resistance requires only simple circuitry; a potential divider arrangement is possible, 

where the resistance can be calculated from the output voltage.   

 

Fig. 3.16 – Physical model of the conductive mechanism when a semiconductor 

sensor is exposed to a) air and b) CO, with corresponding band model, from [150]. 

Models of electron transfer between grains are shown for c) a double Schottky 

barrier model and d) for a tunnelling model, from [151].  

The sensor is usually heated to between 300 and 500 °c to enable reactions on the 

surface of the sensor to occur [149]. When exposed to a reducing gas (or gas mixture) 

the oxygen adsorbates on the surface are consumed by the subsequent reactions. The 

reactions cause the electrons trapped by the O2 adsorbates to return to the oxide grains, 

leading to a decrease in the potential barrier height (shown in Fig. 3.16). This decrease 

in height means a decrease in resistance (a lower steady state surface coverage of the 
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adsorbates), which is measured as the response of the sensor to the reducing gas.  Grain 

boundaries connect neighbouring grains in most cases, and form a potential barrier for 

the migration of electrons (often called the double-Schottky barrier). This barrier plays 

a substantial role in determining the resistance of the sensor. An enlarged view of the 

barrier is shown in Fig. 3.16 c).  

Oxidising gases cause an opposite response to reducing gases (i.e. their presence is 

indicated with an increase in resistance). The negatively charged chemisorption on the 

grain surface of gases such as nitrogen dioxide (NO2) or ozone (O3) increases the 

surface potential barrier. In the case where grain boundaries are not formed, electrons 

can also be transported by tunnelling through a small gap between oxide grains [152], 

shown in Fig. 3.16 d).  

3.4.1.2 Metal Oxide Sensor Coatings 

The thin films on top of MOX sensors determine the sensitivity, operating temperature 

and selectivity of the device [70]. The films used on commercial devices are usually 

kept confidential, as this is a growing area of research, and a component of the sensor 

which controls its application and functionality. The sensitivity profiles of common 

MOX sensor coatings are show in Fig. 3.17.  

 

Fig. 3.17 – Sensitivity profiles of common materials used for MOX sensors [153]. 
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Semiconductor gas sensors can be categorised as thin or thick film, which depends on 

how the coating is applied [154]. Thick film based sensors (Fig. 3.18) are very well 

established [155]. Although it is difficult to form miniature low power consumption 

devices, such sensors are commercially popular, compared to thin film alternatives, 

due to their high sensitivity at lower operating temperatures [156]. For the diagram in 

Fig. 3.18, 𝐶0 represents the test gas concentration, 𝑥 the distance into the film and 𝑥0 

is the film thickness. 

 

Fig. 3.18 – Typical configuration of semiconductor thick film gas sensor [157]. 

As the name implies, thick film devices coat the surface of a semiconductor sensor 

with a thick film, to which the gas must diffuse (into the porous layer) and then react 

to produce a response [158]. Thin film devices however, produce a response only when 

the gas reacts with the surface of the impermeable layer. Screen printing, inkjet 

printing or dip- or spray-coating are possible techniques for the fabrication of a thick 

film device. The device must be annealed for a period of time (e.g. 24 hours) to 

produce a porous polycrystalline layer. Sputter techniques are usually used to produce 

thin film devices, where a solid film layer is ideally created. In reality, the devices also 

often have a polycrystalline porous layer.   

Tin oxide (SnO2) is widely used as a base material for gas sensing, among a choice of 

other materials such as iron oxide and zinc oxide [147]. It is a well understood material 

to use and is well reported in the literature, with examples of improvements in 

sensitivity through adjustments of crustal structure and doping levels [159]. 

However, SnO2 does not demonstrate an improved performance over the other sensing 

materials. It responds to a range of gases (e.g. CO, NOx and O3), meaning that although 

it has poor selectivity, it is a versatile material and offers reasonable sensitivity. Its 

versatility means it is the most widely used material in low-cost commercial devices 
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[160,161]. It does offer good sensitivity to NO2 and H2 in doping configurations with 

aluminium and platinum, but does not offer selectivity for a particular gas.  

Lanthanide sesquioxide (Ln2O3) shows promising sensitivity to NO2 however the 

material is difficult to process and adds complexity during manufacture [162]. 

Tungsten oxide (WO3) offers a compromise between sensitivity, selectivity and 

stability. The response can be tuned by doping for enhanced selectivity to a particular 

gas.  

A thick film SnO2 gas sensor operates on the principle of a change in conductance due 

to the chemisorption of gas molecules into the sensor surface [147]. Adsorbed O2 

reacts with a combustible gas, which causes the conductivity to increase, as electrons 

are released into the conduction band. When the gas reaches the SnO2 surface it first 

oxidises removing adsorbed O2 which is then replaced by O2 from the air (i.e. available 

for further oxidation).  

The equation for tin oxide reaction is shown in equations (3.4) and (3.5) [163]. 

Equation (3.5) is valid at high temperatures compared to equation (3.4) which is for 

low temperature operation. It is reported, for the example of CO oxidising to CO2, that 

the Langmuir adsorption isotherm holds good for physical adsorption up to 60 ppm 

CO (the Freundlich isotherm is followed for higher concentrations, where physical 

and chemical adsorption occurs) [147,157].  

𝑆𝑛𝑂2−𝑥 + 𝑒− +
1

2
𝑂2 ⇆ 𝑆𝑛𝑂2−𝑥 + 𝑂−  

(3.4) 

𝑆𝑛𝑂2−𝑥 + 𝑂− + 𝐶𝑂 → 𝑆𝑛𝑂2−𝑥 + 𝐶𝑂2 + 𝑒− 
(3.5) 

 

A number of models have been suggested to help understand the performance and 

mechanisms of tin oxide gas sensors. Gardner proposed a linear diffusion reaction 

model for the change in conductance when a sensor is exposed to a gas, equation (3.6) 

[146]. In this equation, 𝐺/𝐺0 equals the fractional conductance change, 𝑐 is the 

fractional gas concentration change (𝑐 = 𝐶/𝐶0) and 𝑋 is the fractional film thickness 

change (𝑋 = 𝑥/𝑥0).  

ΔG

G0
= ∫ 𝑐 [(1 − 𝑋)2 +

𝑤2

4𝑥0
2

]

−1/21

0

𝑑𝑋 (3.6) 
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Gardner demonstrated the application of (3.6) comparing three Tagauchi gas sensor 

output responses to 15 ppm of propanol in air [146]. It was shown that the observed 

response “broadly” agreed with the predicted curve. It was noted that the initial 

response visible in the curves may be explained by the mixing time in the chamber 

and also the linear model only applied at low gas concentrations, when plots of 3-60 

ppm were shown. 

It is believed that the negatively charged oxygen adsorbates play an important role in 

detecting inflammable gases. Chemisorbed oxygen (𝑂2
  −) is the most reactive with 

inflammable gases in the temperature range of 300 to 500 °C [164].  In general, for an 

n-type semiconductor material the formation of 𝑂2
  − charges is more common and 

builds a space-charge region on the surfaces of the metal oxide grains. This causes an 

electron depleted surface layer due to electron transfer to the grain surfaces. Oxidising 

gases cause an n-type semiconductor sensor to increase in resistance, due to the 

increase in depletion region on the grain surface. The sensitivity of the device is a 

function of the amount of chemisorption that occurs on the surface (assuming that the 

surface coverage of O2 adsorbates remains constant).  

The empirical power law equation (3.7) represents the response of a semiconductor 

MOX sensor [154]. The law is derived by coupling the depletion theory of the 

semiconductor surface with the chemistry of gas adsorption and reactions [165]. The 

factor 𝐴𝑔 depends of the sensing material, operating temperature and the type of gas 

interacting with the sensor. The concentration of the gas to which the sensor is exposed 

is denoted by 𝐶𝑔 and the constant 𝛽 is the exponent factor; its ideal value of 0.5 or 1 

depends on the charge state of the surface oxygen species and the stoichiometry of the 

element reactions on the surface. This law is commonly used by researchers to express 

the concentration-sensitivity curves of film type nano-sensors [166].  

𝑆 = 1 + 𝐴𝑔𝐶𝑔
  𝛽

 (3.7

) 

3.4.1.3 MOX sensors Measurement Principle 

CCS Ltd (UK) design MOX sensors for gas sensing applications. The devices are 

based on SOI CMOS process, with the MEMS structure fabricated in a commercial 

foundry. A photograph of one device (CCS09C) is shown in Fig. 3.19 a) and mounted 

on a TO5 header in Fig. 3.19 b). The devices are supplied without a coating 
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(photograph shows device after coating applied). The sensors can be considered of 

great interest for research, as they offer an excellent base to refine coatings, drive 

signals and post-processing techniques. Furthermore, the devices are miniature (1x1 

mm) and can be operated at low power (65 mW at 600 °C).  

 

Fig. 3.19 – Photographs of the micro hotplate of size 1 mm × 1 mm, a) The MEMS 

device with coating on a resistive sensor and b) mounted on TO5 header for use in a 

gas sensing chamber. 

In the membrane structure a tungsten resistive micro heater is embedded with a 5 µm 

thick metal oxide stack. The membrane is fabricated via a post CMOS deep reactive 

ion etch and both mechanically supports and thermally isolates the heater from the 

sidewalls. The hotplate can reach temperatures in excess of 500 °C, and heats up in 30 

ms and has a cooling time of 60 ms (ambient to 500 °C and vice versa). 

The variance in resistance due to the presence of a gas can be measured using the 

circuit shown in Fig. 3.20. A potential divider is formed between the sensor and a load 

resistor. In the circuit shown below, the load resistor can be adjusted through selection 

of a jumper pin. A potentiometer should be avoided, due to the possible noise pick-up 

caused by the resistor coil, and the value of the load resistor must be known exactly in 

order to calculate the desired sensor resistance. A non-inverting op-amp can be used 

to buffer the output from the potentiometer (gain of low order, e.g. 1.2).  

The circuit shown allows a constant current to be applied across the heater (shown as 

an equivalent resistor). The drive circuitry allows a voltage to be applied, which can 

be in the form of an AC or DC signal. The applied voltage signal is applied across the 

current limiting resistor, to provide a constant current.   
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Fig. 3.20 – Simplified MOX sensor schematic, with heater current drive capability 

and readout circuitry (non-inverting amplifier or buffer). 

3.4.1.4 MOX sensors for breath analysis 

MOX sensors coated with WO3 have been reported to have excellent sensing qualities 

to low ppm concentrations of NOx (a collective term for a group of gases, usually 

referring to nitric oxide and nitrogen dioxide) [167,168]. The quality of ambient air is 

of concern for healthcare, where air pollution has been linked to respiratory diseases 

[169]. NO2 and particulate matter are of particular concern in urban environments. 

Lung cancer and other respiratory diseases are associated with air pollution, for both 

smokers and non-smokers alike [170]. Ambient pollution has been reported to lead to 

airway inflation, which can be detected by measuring end exhaled nitric oxide [171].  

The measurement of exhaled NOx from subjects with asthma has been reported as a 

complement to the measurement of exhaled nitric oxide [172]. The biomarkers on 

exhaled breath for respiratory diseases provide a non-invasive means of testing the 

severity of the disease. In a study of 46 subjects (half asthma patients) a 100 % 

detection rate was achieved using a NOx sensor (with a NO sensor for reference) [172]. 

The use of NOx as a biomarker and replacement for NO measurements is desired in 

the study, to investigate the phenomena of oxidative stress (and its pathogenesis) and 

to ease measurements on children.   
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WO3 based sensors have previously been reported to be capable of detecting acetone 

and hydrogen sulphide which are biomarkers for the diagnosis of diabetes and halitosis 

respectively. Kidney malfunction and lung cancer are also potentially diagnosable, 

through the detection of ammonia and toluene biomarkers, respectively [173]. Choi et 

al. developed a WO3 coated sensor for the real-time monitoring of exhaling breath 

(100 ppb sensitivity level achieved) [173].  

The mediocre response and slow recovery times (i.e. time for sensor resistance to 

change due to the presence of a gas of interest and the time for its return to a baseline 

signal after removal of the gas) limit the application of MOX sensors. Post-sensing 

signal processing aims to mitigate these problems. Response times are typically 

around 5 s, however recovery times can be as long as several minutes [174]. MOX 

sensors are praised as being sensitive to ppb levels of gases, but are usually cross-

sensitive to humidity and have high power consumption (to raise the temperature of a 

heater as required for adequate sensor response) [175]. 

3.5 Commercial Sensors 

In this project research sensors will be developed for the sensing of CO2 (NDIR) and 

VOCs (MOX). However for the measurement of exhaled volume (flow sensor 

measures flow rate which can then be integrated) and oxygen in breath will be 

performed with commercial devices. Affordable commercial sensors exist for these 

components, from which it was assessed that performance could not be substantially 

improved over the duration of this work. Affordable VOC and CO2 sensors are 

available for purchase, however their inadequate performance for breath sensing 

implied research devices were required to meet the target EE calculation accuracies 

for this project. Additionally, a commercial temperature and humidity sensor will be 

included in the breath analyser. The humidity and temperature of the sample gas 

passing through the sensor chamber must be monitored, to allow for compensation 

between the conditions found in exhaled breath and ambient air.  

3.5.1 Oxygen Sensor 

The City Technology (UK) MOX-20 MediceL electrochemical sensor was chosen for 

measurements of breath-by-breath oxygen concentration (note, not to be confused 

with metal oxide sensors, the model code is an abbreviation of medical oxygen). The 

affordable sensor was chosen for its fast response time (<750 ms specified) and stable 
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output (< 10 % drift over a 1 year period) [176]. As commonly found with 

electrochemical cells, the device is bulky (with a 29.3 mm diameter cylindrical outer 

shell), although it is robust and will operate in humidity conditions from 0 to 99 % 

non-condensing. A photograph of the sensor is shown in Fig. 3.21 a). Further 

discussion of its performance is detailed in section 8.2. The Alphasense O2G2, Fig. 

3.21 b), was used for testing in the mainstream analyser design. The lesser 

performance of the device led to its replacement with the MOX-20. The O2G2 is very 

affordable (~£15), physically smaller (20 mm diameter) and does not contain any pre-

processing circuitry. Affordable electrochemical cells are widely commercially 

available (e.g. e2v EC410, Figaro KE-25), however the poor 𝑡90 times limit their use 

to environmental monitoring applications, instead of breath sampling.  

 

Fig. 3.21 a) Photograph of a City Technology O2 sensor; b) Drawing of an 

Alphasense O2G2 sensor [177].  

3.5.2 Flow Sensor 

The SFM3000 commercial flow sensor (Fig. 3.22) manufactured by Sensirion 

(Switzerland) was selected, designed for use with ventilation medical instruments. The 

device offered a fast update time of 0.5 ms and an excellent flow range of ± 200 SLPM 

(standard litres per minute, bi-directional) [178]. The flow rate is recorded in a digital 

format (I2C), which allows for easy interaction with a microcontroller. The device 

requires a 5 V power supply (e.g. a USB) and typical accuracy is ±1.5 %. The device 

has a 20 mm internal diameter main body, for direct connection to 22 mm medical 

respiratory tubing. The sensor is not miniature but it allows a subject to breathe 

through the device, with minimal effect on normal breathing pattern.  Alternative 

commercially available devices were considered (e.g. Honeywell AWM5104VN), 

although the SFM3000 was selected, due to its compact size and fast response time.  
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Fig. 3.22 – Photograph of Sensirion SFM3000 flow sensor [178]. 

3.5.3 Temperature and Relative Humidity Sensor 

Temperature and RH sensors are ubiquitous in gadgets, instruments and equipment. 

However, not many sensors offer the necessary performance (response time, 

resilience) to measure exhaled gas. An analogue output was preferred to avoid 

manufacture implemented filtering, which could slow the response of the sensor (or 

reduce its accuracy). The analogue output could be recorded with a microcontroller 

(or read using any suitable analogue to digital converter). From the available 

commercial devices, the GE (USA) ChipCap2 was selected, for a reasonable response 

time (~ 7s) and miniature size (4 mm x 6 mm) [179]. A photograph of the chip is 

shown in Fig. 3.23. A Sensirion SHT21 sensor was considered, although its marginally 

slower response time (8s) perhaps indicates there was filtering applied in the 

processing stage to generate a digital output.  

 

Fig. 3.23 – Photograph of a GE ChipCap2 Temperature and RH Sensor [179].  
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3.5.4 VOC MOX Sensor 

An example of a commercial sensor from SGX SensorTech is shown in Fig. 3.24. The 

circuit described above could also be used with such a device. The package contains 

two MOX sensors, one for oxidising gases (e.g. NO2 in the range of 0.05 – 10 ppm) 

and a second for reducing gases (e.g. CO in the range of 1- 10,000 ppm) [180].   

 

Fig. 3.24 – Photograph of a miniature commercial MOX sensor from SGX 

SensorTech (MICS-4514). Dual sensors for oxidising and reducing gas detection.  

3.6 Conclusions 

The gas sensors available both commercially and research prototypes are generally not 

suitable for the demands of this breath analysis project. The conditions found in 

exhaled breath subject the sensors to abnormal levels of humidity, temperature and 

flow. Furthermore, a fast response time is needed to meet the rapid changes in gas 

concentration between inhaling and exhaling. The abnormal levels of humidity and 

temperature can cause sensors to produce inaccurate responses, where the devices are 

responding to the polarising conditions compared to the ambient environment. It was 

found, in terms of VOC sensors and CO2 sensors that research was required in order 

to develop devices capable of breath measurements, whereas the performance of the 

O2, temperature and RH and flow sensors could not be improved upon in this project 

compared to the commercially available devices.  

The NDIR CO2 sensor system is a particular area of great interest, with the ability to 

tune a sensor to a specific wavelength (and therefore gas), lessening the need for an 

expensive and complex optical filter.  The low power consumption of the NDIR 

sensor, its miniature size and fast response are attractive qualities for a portable 

analyser. Other gases identified as possible biomarkers for diabetics (acetone) and 

asthma (CO) could also be detected using similar IR setups.  
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CHAPTER IV 

 

 

 

Direct Sampling of Breath 
 

 

 

 

 

Preface 

To sample an exhalation, the most direct means of monitoring gas concentrations is to 

place a sensor in the mainstream exhalation airway tube (i.e. sensor placed directly in 

path of exhalation, without a sampling system). A breath analyser with sensors solely 

in a single tube, through which the user breathes, does not require a complex sampling 

systems to extract a portion of exhaled gas for analysis.  Such devices do not require 

any means of extracting a sample (such as a pump or a fan), thus can reduce 

complexity, power consumption and noise. However, the gas sensors inside a main-

stream analyser must be capable of responding to gases passing directly from an 

exhalation, at high flow rate and high humidity. If the sensors are located in a side-

stream section, these variations (compared to ambient conditions) are less apparent. 

Initially, the device developed for this project used a main-stream sampling technique. 

In this chapter the development of the initial prototype is discussed and the pitfalls of 

this sampling method. 
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4 Mainstream Sampling 

Mainstream gas analysers offer reduced power consumption, a simpler sampling 

system and faster response times. This method of measuring breath does not require a 

bulky sampling system, instead the sensors are located in a section of tubing through 

which the subject breaths directly. The alternative technique, side-stream sampling, 

takes a portion of the flow (extracted using a pump or fan) and samples the gas with 

sensors in a small chamber. A diagram showing the difference between main- and 

side-stream sampling for mechanically ventilated patients is shown in Fig. 4.1.  

 

Fig. 4.1 – CO2 sampling techniques for mechanically ventilated patients, a) 

mainstream and b) side-stream [1]. 

Mainstream sampling systems can be more bulky than side-stream designs, dependent 

on the mounting location of the sensors. The diameter of the sample tubing in a 

mainstream system is usually set to match the standard tubing size from the outlet of 

a mask. Metabolic rate measurements, and indeed those for CO2 measurement of 

mechanically ventilated patients, require normal breathing (i.e. the measurement 

system should not affect the breathing pattern). Changes in tube diameter can cause 

the flow to become turbulent (normally exhaled flow is laminar) and restricted 

diameter tubing can increase breathing resistance. Standard outlet diameters from face 

masks and mouthpieces are usually ~20 mm. As discussed in chapter III, breathing 

through any apparatus can affect breathing, although the disruption can be minimised 

with comfortable facemasks and low resistance outlet tubing.  
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4.1 Chamber Design 

A mainstream chamber was constructed to house multiple gas sensors for breath 

measurements. The device was designed to take measurements of an exhalation and 

report the sensor response data on a computer. At the preliminary measurement stage, 

only laboratory based gas rig tests were performed. The potential block diagram for 

the completed system is shown in Fig. 4.2. At this stage in the project development, 

no VOC sensor was used, although the system was designed so sensors could be added 

or interchanged as found necessary in the calibration process. 

 

Fig. 4.2 – Block diagram of mainstream breath analyser function.  

The chamber was constructed from 5 mm acrylic sheets and designed with 

interchangeable end plates, which enabled different inlet and outlet gas connectors to 

be fitted. To test and calibrate the sensors against a gas bench rig, an endplate with a 

1 mm internal diameter threaded connection was fitted. For breath measurements a 

plate with a 20 mm I.D. was fitted (for connection to the Sensirion SFM3000 flow 

meter). A photograph of the chamber connected to the gas rig is shown in Fig. 4.3. As 

shown in the photograph, the chamber was configured to test the flow sensor, O2 

sensor (Alphasense O2G2), CO2 sensor (Gas Sensing Solutions SprintIR), temperature 

and humidity sensor (GE ChipCap2) and CO sensor (Applied Sensor AS-MLC).  
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Fig. 4.3 – Photograph of mainstream chamber configured to test on bench gas rig.  

The fluid flow through a model of the chamber was simulated using Solidworks 2014. 

The flow from the gas rig was usually configured to a total of 1 SLPM (constant, 

regardless of gas mixture). A screen print of the model is shown in Fig. 4.4. The model 

shows considerable mixing occurs inside the chamber, while the gas enters. The large 

chamber (126 ml) size (internal 120 × 35 × 30 mm; length, width, height) means a 1 

SLPM inflow will take ~7.5 s to fill the chamber (if ideal mixing occurs). Plug flow 

and ideal mixing are unlikely to occur, and the mixing time can be up to 4 times the 

ideal value [2]; therefore the mixing time could be up to 30 s.  

 

Fig. 4.4 – Fluid flow model of mainstream chamber with 1 SLPM flow inlet.  

The outlet from the model was set to resemble atmospheric conditions. This was to 

simulate the conditions for main-stream sampling, where the outlet would not need to 

be connected to an exhaust. The inlet and outlet were confirmed as 5 mm diameter 

holes (the holes in the final unit were threaded as to allow different connectors to be 

attached). Inside the chamber, it was assumed each gas sensor would be fitted into the 

unit to allow the sensing area to fit flush to the sides of the chamber.  
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4.2 Methodology - Bench Gas Rig Experiments 

The mainstream chamber served as a modular system, to trial affordable commercial 

gas sensors within a gas testing rig. The adaptable chamber permitted multiple sensors 

to be tested simultaneously and was able to accommodate various commercial devices 

for each gas of interest. The gas testing rig was used to produce gas mixtures similar 

to those found in exhaled breath (in terms of O2, CO and CO2) and importantly, high 

levels of humidity were also simulated.  The analogue voltage outputs from the CO, 

O2 and temperature and relative humidity sensors were recorded using a National 

Instruments (NI) USB 6341 USB data acquisition unit. The digital outputs from the 

CO2 sensor and flow sensor were recorded using an Arduino Uno microcontroller. A 

LabVIEW (2013) virtual instrument (VI) was used to log the data from all of the sensor 

outputs and manage the gas flow through the sensor chamber using four Alicat MC-

5SLPM mass flow controllers (MFCs).  

To test if the sensors were capable of meeting the targets for EE measurement 

accuracy, a cross-validation model was designed in MatLab (2014) to classify the 

sensor outputs. From the experimental data, 50 % was used to train the model and 50 

% used to test. The validation modelling computer systems are designed to predict 

(classify) items into a number of classes (‘classification’) [3]. The process is called 

‘learning’ as it should involve choosing or adapting parameters within the model 

structure to perform best based on the current samples. The measurement data 

produced by the sensors (e.g. output voltage) potentially contain the necessary 

information to classify the gas (e.g. a gas concentration). The user must first specify 

the part of the measurement relevant to produce the desired result – i.e. a feature must 

be extracted from the data which should be used to separate one particular 

measurement from another.  

The operation of gas sensors and the chamber in which they are situated (mentioned 

above) can affect the response characteristics. Usually the response of gas sensors 

exponentially tends to a final output value, although the length of this transition varies 

according to the type of sensor and exposure conditions. The length of the period taken 

to reach the final value is an issue if it is of similar order to the exposure time of the 

gas, i.e. for breath sampling an exhalation lasts perhaps under 3 s. The typical output 

envelope of a slow response gas sensor is shown in Fig. 4.5 a), compared to an ideal 
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response shown in Fig. 4.5 b). The real world response can be attributed to the design 

of the sensor chamber’s mixing effect of the gases in the chamber, flow velocity and 

the reaction time of the sensor itself [4]. For the modelling process, a non-time 

dependent factor was considered, to quantify the accuracy of the sensor separately 

from the response time. The accuracy of the sensor is difficult to improve post-

manufacture, however redesign of sensor housing to yield better response times is a 

simple method to improve breath analyser performance.  

 

Fig. 4.5 a) Sensor output observed during preliminary tests; b) ideal step response 

change in gas concentration to produce sensor output.  

The time-independent feature chosen to be extracted is the change in output voltage 

from the start of the experiment (where the device was exposed to dry, synthetic air) 

to the end of a gas concentration step, as denoted by Δ𝑉𝑠 in fig. 4.5 a). Alternative 

features can be extracted, such as the fractional change, (Δ𝑉𝐹) (𝑉𝑖)⁄  or a log change 

such as ln(Δ𝑉𝑠). Baseline noise was present in all gas sensors, during preliminary 

testing, thus an additive feature was preferred. For a multiplicative error a ratio feature 

was selected (also used for removing factors such as temperature dependence). 

Electronic noses have often used feature extraction for signal analysis; common 

elements include the minimum and maximum values of each signal, the times taken 

to reach these values, maximum sensitivity, slope rise time or curve intervals [5–7].  

4.2.1 Classification Experiments 

As discussed previously, the experiments used to model the response of the sensors 

must expose the devices to comparable gases and conditions to those found in exhaled 

breath. A linear equation with four components was chosen to model the system based 

on the mixing of two gases and two environmental conditions (temperature and 

humidity). The relative humidity (RH), the amount of water vapour in the gas as ratio 

of the water vapour required to saturate the gas at a set temperature, was controlled 
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using the gas rig. The type of equations used to model the output from the sensors was 

of the form (4.1), where the CO2, O2, RH and temperature conditions are represented 

by the coefficients 𝑐1 to 𝑐4, respectively. The 4 parameters are the partial regression 

coefficients to be determined. The fourth term was eliminated from the modelling 

experiments because temperature was kept constant.  

𝑦𝑔𝑎𝑠 = 𝑘1𝑐1 + 𝑘2𝑐2 + 𝑘3𝑐3 + 𝑘4𝑐4 (4.1) 

To reduce the number of experiments to a manageable task, only 1 % intervals for CO2 

and O2 were trialled, and the RH levels were set at 0 % or 50 %. This reduced the total 

number of experiments required to 72, as shown in Table 4.1 (with corresponding 

diagram in Fig. 4.6, in terms of the concentration of each element 𝐶𝑖 , 𝑖 = 1 to 4). The 

table shows the 36 experiments performed at each humidity value (0 % and repeated 

for 50 % RH). For each cell in the table there were 2 results, denoted by c which were 

O2 and CO2.  

 

O2/CO2 0% 1% 2% 3% 4% 5% 

21% ∆𝑉𝑐00 … … … … ∆𝑉𝑐50 

20% … … … … … … 

19% … … … … … ... 

18% … … … … … … 

17% … … … … … … 

16% ∆𝑉𝑐05     ∆𝑉𝑐55 
 

 

 

Table 4.1 – Experiments performed to model the 

output from the sensor. 

 

Fig. 4.6 – 3D plot to show the 

desired test gas sensor model 

area. 

The model block diagram is of the form shown in Fig. 4.7 a), where the inputs are raw 

sensor data and the outputs gas concentrations (or factors relating). The output from 

the experiments are 6 predicted values of each gas for every 1 % increment (both for 

0 % and 50 % RH). A graph, similar to that shown in Fig. 4.7 b), is desired, where the 

test portion of the data (3 points for each concentration) are used to predict the gas 

level present and compared against the actual concentration. Given the predicted gas 
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concentrations, error bars are be plotted for each test gas level and a confidence 

interval produced. This enables the performance of each sensor to be examined and 

the suitability of the sensor for this type of breath measurement to be assessed.   

 

Fig. 4.7 a) Model block diagram displaying the input and output data; b) Desired 

output plot to compare predicted and actual measurements.  

4.2.2 Sensor Data Preparation for Model Input 

To decrease the computational error in the model, the input data were normalised to a 

range of [0,1] for each sensor [8]. The normalisation reduces the range of output from 

the sensors, which in raw output form would be in the range of 0 to 50,000 ppm for 

the CO2 sensor and 0.7 to 1.0 V for the O2 sensor. Providing the input data for each 

sensor to the model is approximately of the same range, the magnitude of the values 

themselves are less critical. However, the range of 0 to 1 was selected for ease of 

conversion, as each sensor output is compared to its maximum output value and 

normalised. The data are passed to the modelling script in matrix form, where a 

balance matrix is preferred with all values in a small range. The sensor test data was 

observed to be noisy, therefore a filter (such as low pass or moving average smoothing) 

is applied. The changes in the sensor outputs due to the gas concentration are greater 

than the magnitude of the noise, thus patterns for modelling were not greatly affected 

by the filtering process.  

The required procedure performed to normalise the data is shown in Table 4.2; it is 

first assumed that the sensor outputs are converted to gas concentration using the 

calibration data provided by each manufacturer. Once the data have been processed 

by the model, the normalisation factor was removed, to return the value back to a 

concentration (the inverse of the normalisation process).  
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Table 4.2 – Normalisation process required for each sensor.  

Sensor (output 

name) 
Expected Range 

Sensor 

Normalisation 

Factor 

CO2 (c1) 0-50,000ppm 
𝑐1

50,000⁄  

O2 (c2) 16-21% (𝑐2 − 16)
5

⁄  

RH (c3) 0-50% 
𝑐3

50⁄  

 

4.2.3 Model Training and Testing Vectors 

To form a model the algorithm needs to learn patterns and features from the input data 

– i.e. a ‘Training’ set of data is required. The ‘Testing’ set of data is the matrix that 

was classified, based on the information gained from the training dataset. The overall 

data set must carefully be split into two subsets. In the extreme case, where all samples 

are used for training, the model becomes a look-up table. In this approach, original 

samples of course were classified very accurately, however new cases are far less 

likely to be classified, with such an enormous number of possible combinations of 

features, there is little chance that an identical case will be found [3]. This problem is 

termed ‘overspecialisation’ or ‘over-fitting’.  

The learning methods considered in this work are all ‘supervised’ learning, where the 

user informs the software of the desired output for each input data pattern, often 

achieving greater accuracy on smaller datasets, than ‘unsupervised’ learning [9]. 

Unsupervised learning is where no prior information about the data is known and 

training is based solely on the patterns in the data [10]; this method is less common in 

the literature [11]. 

A number of methods are available for splitting the data, in order to evaluate the error 

in the modelling system. The accuracy of the system is usually defined as the 

probability of correctly classifying a randomly selected instance [12]. The most 

common methods for testing the accuracy of a system are ‘cross-validation’ and 

‘bootstraping’ [13]. Another common method is called the hold out method, which 

splits the data into two mutually exclusive subsets; a training set and a hold out (test) 

set.  
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For the hold out procedure it is common to designate 2 3⁄  of the data set for training 

and 1 3⁄  for testing [12]. Using these typical ratios, the hold out true error estimate is 

relatively pessimistic; a resampling method provides better estimates of the true error 

rate [3]. The ‘leave-one-out’ method is a special (extreme) case of the cross validation 

system [14]. It is mathematically simple and provides an almost unbiased estimate of 

the ability of a classifier. It uses the complete sample population minus one (𝑁 − 1) 

as the training set, then tests it on the remaining sample [15]; this procedure is repeated 

𝑁 times. This method uses all of the data to classify one sample at a time, thus its bias 

is low, but it suffers from high variance [16]. However it is computationally intensive 

(with 𝑁 classifiers required), but is recommended for small datasets with limited 

training data [14] (~100 sample sets with 50 cases each [3]). 

The general cases of cross-validation are named ‘k-fold cross-validation’. The samples 

are divided up into 𝑘 groups, in each trial one group is used for testing and the 

remaining 𝑘 − 1 groups for training, so that every group is used as the test set once. 

This method makes good use of the available data, so is useful when the amount of 

available data is limited [14]. With the case of a low amount of data (relatively small, 

72 samples), 2 fold cross validation was used; the data was split equally into two 

groups using a random selection method.  

4.2.4 Partial Least Squares (PLS) 

PLS is a regression procedure, in its simplest form, that specifies a linear model 

between a dependent response (𝑦) and predictor variables (𝑥’s), as shown in the 

section above [17]. The technique was originally reported by Wold in the 1960s 

forming an extension to the multiple linear regression (MLR) model [18]. It manages 

to extend the MLR model, without imposing the restrictions entailed with discriminant 

analysis, PCR (principal components regression) and canonical correlation [17]. As 

PLS is not limited by these restrictions, it is probably the most flexible of the various 

multivariate extensions of the MLR model.  

As in MLR, PLS is used to form a linear model, i.e. PLS finds the linear combination 

of a predictor variable (X) that best explains a response variable (Y) [19]. Two 

algorithms have been documented for computing PLS regression; the standard 

algorithm is called NIPALS (nonlinear iterative PLS) or alternatively SIMPLS 

algorithm could be implemented [17]. The software package MatLab has a built-in 
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function for performing PLS regression which is based on the SIMPLS algorithm 

(although either could be implemented). A brief explanation of how PLS regression 

was reported by Wold is given below [20]. 

The target of the PLS algorithm is expressed in equations (4.2) and (4.3), where a set 

of scores (T) is calculated. T must be found so that the residual factors E and F are 

small, while also being a good descriptor of both sets of data.  

X=TP'+E (4.2) 

Y=TC
'
+F (4.3) 

If the model has N factors, T is an I × N matrix of PLS scores, P is a K × N matrix of 

𝑥-loadings and C is a M × N matrix of 𝑦-loadings. A graphical representation of the 

PLS analysis is shown in Fig. 4.8. Equation (4.4) shows the calculation of the scores 

matrix T, as the projection of the data X onto a K × N weights matrix W*.  

The relationship between the weights matrix and eigenvectors X'YY'X is such that 

successive PLS factors form the largest covariance between Y and X. The solutions 

given by PLS are constrained so that the columns of the scores matrix T and weights 

matrix W* are orthogonal and orthonormal respectively.  

T=XW* (4.4) 

The equations (4.2) to (4.4) can be rearranged to show the PLS solution to the 

regression. This is shown in equations (4.5) and (4.6), where B is a matrix of regression 

coefficients (K × M size).  

Y=XW*𝐶 '+F=XB+F (4.2) 

B=W*C
'
 (4.3) 
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Fig. 4.8 – Schematic representation of PLS algorithm [20]. Left graphic shows factor 

decomposition is used to obtain scores t common to X and Y that reflects their 

covariance. Plot on right shows regression is applied to relate t to each of the 

response variances ym via regression coefficient b*
m.  

4.3 Gas Rig Classification Experimentation 

The O2 and CO2 sensors were tested using pulses of each gas. To test for any cross-

sensitivity, one gas (either O2 or CO2) was kept at a constant concentration while the 

other was pulsed. The model was developed to classify the concentration of the target 

gas, without cross-sensitivity to the presence of another gas. The O2 gas concentrations 

were generated between 16 % and 21 %, using synthetic air and N2. CO2 gas 

concentrations were pulsed between 0 % and 5 % with a balance of synthetic air. The 

pulses for each gas were stepped at one minute time intervals.  

The gas concentrations were pulsed in 1 % steps cylindrically, to simulate the cyclical 

nature of breathing. Fig. 4.9 shows the raw output data recorded from the O2 and CO2 

gas sensors over one repetition. An example of the processed data (O2 sensor raw 

output in Volts is converted to a percentage) is shown in Fig. 4.10. In the example test 

patterns shown, the CO2 is pulsed to a constant concentration at 1 min intervals for a 

period of 10 minutes (first at 2 % then increased to 3 %). The O2  gas concentration is 

pulsed from 20 % to 16 % at 1 min intervals (baseline of synthetic air, 21 % O2).   

The gas flow was kept constant at 1 SLPM (standard litre per minute). The outputs 

from the O2, CO2 and RH sensors were normalised to a range of between 0 and 1, as 

shown in Fig. 4.11. The RH and temperature measurements were recorded using the 

GE Chipcap2, which verified that the environmental conditions were constant 

throughout the experiments.  
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Fig. 4.9 – Raw sensor outputs from pulsing experiments, over a duration of 70 min. 

 

Fig. 4.10 – Section of test patterns used to generate the PLS regression model of the 

O2 and CO2 sensors converted to percentage concentrations.  
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Fig. 4.11 – Normalised data for O2, CO2 and RH sensors shown for the 70 minute 

repetition.  

The response times of the O2 and CO2 sensors were investigated by fitting bi-

exponential curves, as of the form equation (4.2).  

𝑦 = 𝑎 (1 − 𝑒
−

𝑡
𝜏1) + 𝑏 (1 − 𝑒

−
𝑡

𝜏2) + 𝑐 
(4.2) 

The values for each of the unknowns (i.e. 𝑎, 𝑏, 𝑡1, 𝑡2 etc.) were calculated using the 

MatLab curve fitting toolbox. A 20 s window was taken from the start of the response 

of each sensor, to which the bi-exponential curve was fitted.  

4.3.1 Experimental Results for Gas Rig Classification 

The raw sensor data, shown in Fig. 4.9, was analysed and post-processed using 

MatLab 2014. Example curve fit outputs for the O2 and CO2 sensors are shown in Fig. 

4.12 a) and b) respectively. For the O2 sensor a very close fit (R2=0.999) was found 

(where R is the coefficient of determination). The bi-exponential curve was used to 

calculate the 𝑡90 response time for each of the sensors. For the O2 sensor the response 

time was found to be 9.5 s on average. For the CO2 sensor, the curve fitting process 

achieved a good fit (R2=0.998); a slower response time of 14.1 s found on average.  
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Fig. 4.12 a) First 20 s window from the O2 sensor showing raw sensor output, bi-

exponential fitted curve and step change in O2 concentration; b) First 20 s window 

from the CO2 sensor response to a step gas concentration change, with raw, fitted 

curve and input step change plotted.  

The PLS model outputs for O2 and CO2 are shown in Fig. 4.13 a) and b), respectively. 

The O2 sensor is shown to produce high accuracy, with a 95 % confidence interval 

(CI) that the sensor was close to the desired 0.52 % target accuracy. This target 

accuracy is required to make EE measurements to the desired 1 % accuracy. The 

repeatability of the O2 measurements is acceptable, however results at 20 % O2 level 

have greater variation of 0.3 % compared to the 0.1 % accuracy shown at lower 

concentrations.  

The CO2 sensor results demonstrate poorer performance, needing a 70 % CI to come 

close to the desired 1.20 % relative accuracy. The spread of these results is lower 

(mean 0.06 %), however given the lower range of CO2 of interest, the accuracy of the 

CO2 sensor is inferior. The CO2 sensor in general underestimates the concentration of 

the gas present, as notably visible in the normalised plot (Fig. 4.11), where a value of 

1 corresponds to a concentration of 5 %.  

The maximum output from the sensor is in the range of 0.83 to 0.86 (normalised) when 

exposed to 5 % concentration of CO2 (generated by the gas testing rig). The 

underestimation of the CO2 concentration does not affect the PLS modelling stage, as 

the model tries to fit the normalised output to the specified normalised input. For 

example, the output at 4 % and 5 % CO2 when normalised is ~0.67 and ~0.83 

respectively, when values of 0.8 and 1.0 ideally would be expected. The difference 
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between the normalised values is 0.16, sufficient when only six values of CO2 are 

configured in order to be able to distinguish the two concentrations.  

 

Fig. 4.13 a) Model output for O2 sensor including 95 % CI calculations to assess 

performance, demonstrating that the sensor is operating close to the desired target 

0.52 % accuracy; b) Model output for the CO2 sensor, target relative accuracy of 1.20 

%, 70 % CI demonstrates poor performance.  

The digital output from the CO2 sensor demonstrated a significant level of noise 

throughout the output range (~0.08 % broadband noise). To account for the slow 

response time measured (> 10 s) it was assumed a digital filter was integrated into the 

CO2 sensor itself, which limited the performance of the device. The instruction manual 

with the SprintIR sensor discussed the possibility of activating an adjustable digital 

filter. For these experiments it was deactivated, according to the steps detailed in the 

manual.  

The O2 sensor provided a smooth output throughout the experiment, although it did 

not provide a sufficiently fast output to perform breath-by-breath measurements. It can 

be assumed the slow response time was due to the operation of the sensor, where the 

diffusion of O2 molecules into the electrochemical cell accounts for the majority of 

the delayed response. According to the specification of the device, Alphasense do not 

include any filter into the construction of the O2G2 sensor. Therefore the output from 

the device will not be delayed by any processing stages. The electronic circuitry to 

amplify the micro-amp current output from the sensor is custom designed, and does 

not include any filtering elements. The circuit was optimised for response time, with 

any filtering required only possible in the final post data-logging stages.  
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4.3.2 Verification of CO2 Sensor Performance 

The performance of the SprintIR CO2 sensor did not meet the specification declared 

on the datasheet provided by the manufacturer (GSS). The response time of the sensor 

was not sufficient for breath measurement (14.1 s measured compared to the 1.2 s 

specified [21]) and the accuracy was poor (70 % CI barely sufficient to meet 1.20 % 

target accuracy). To verify whether the design of the system (e.g. chamber, gas mixing 

profile) affected the performance, the affordable commercial device was tested against 

a relatively expensive reference sensor (Hummingbird IR3107 CO2 sensor [22]).  

The CO2 sensors were exposed to CO2 in the range of 0 to 4 %, generated using a gas 

testing rig and 5 % cylinder of CO2, diluted with synthetic air where required. The 

total flow rate was kept constant at 0.5 SLPM to avoid damage to the expensive 

commercial sensor. The test pattern had 1 % steps of CO2, for an interval of 1 minute 

each, returning to a baseline of synthetic air. The Hummingbird commercial sensor 

was connected downstream of the SprintIR sensor to ensure the response time 

comparison was altered only by the operation of the sensors and not by the gas mixing 

time. Fig. 4.14 shows the output from both the commercial devices, where a median 

filter was applied to each device at 5 sample points (data logged at 100 Hz).  

The IR3107 sensor demonstrates that the level of CO2 generated by the gas rig is likely 

to be accurate and only a minor delay in the response time shown by the SprintIR 

sensor can be attributed to the design of the sensor chamber. The spurious peaks shown 

at the switching points from synthetic air to low percentage concentrations of CO2 for 

the Hummingbird output are due to the sudden switching of the MFCs, which cause a 

momentary increase in CO2 concentration in the chamber (< 2 s). This effect could be 

reduced by reconfiguring the PID control setup in the MFCs, but was left constant so 

as not to disrupt the performance of the gas testing system for higher gas concentration 

mixtures.  
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Fig. 4.14 – Comparison between the SprintIR and the IR3107 gas sensors for 1 

minute pulses of CO2 in the range of 0 to 4 %.  

The SprintIR sensor underestimates the concentration of CO2 present, by approx. 7.5 

% in some measurements (e.g. peak values on average of 3.71 % were found when 

exposed to 4.0 % CO2 concentration).  In the parallel measurements, the Hummingbird 

sensor measures approximately 4.0 %, although some level of noise is present in the 

output (~0.05 % variance). The level of noise present in the SprintIR sensor output is 

~0.1 % CO2. The device was calibrated prior to the experiment, to 0 % CO2 in air and 

nitrogen. The device produces consistent measurements, if the excessive level of noise 

is filtered. For example, the average output after 1 minute of exposure to 2 % CO2 was 

1.60 % for the first step and 1.59 % for the second step.  

The main factor preventing the use of the SprintIR in a breath-by-breath analyser is 

the inadequate response time. To verify if any sampling techniques could be 

implemented to capture the end of an exhalation and hold it for a short period (e.g. 

sample alternate exhalations) the 𝑡90
 response time was measured for both the GSS 

and Hummingbird sensors. To avoid the level of noise falsifying the 90 % of final 

value measurement point, bi-exponential curves, Figs. 4.11, were fitted to the output 

response from the instant the step change in gas concentration change occurred. A 20 

s window was taken to enable the best exponential curve fitting, where it was assumed 

that the sensor would be likely reach its 𝑡90 value within 15 s. Fig. 4.15 a) and b) show 



 IV – Direct Sampling of Breath 157 

   

the output from the models for the GSS SprintIR and Hummingbird IR3107 sensors 

respectively, for the fifth pulse of CO2 (as shown in Fig. 4.14), to a 4 % CO2 input 

concentration. The calculated 𝑡10 to 𝑡90 times for each step (from Fig. 4.14) are shown 

in Table 4.3. This period indicates the time taken for the sensor output to alter from 

10 % of the final output value to 90 % of the final output value.  

 

Fig. 4.15 – Bi-Exponential models fitted to 20 s output window of a) Affordable 

commercial SprintIR sensor and b) Relatively expensive commercial Hummingbird 

sensor.  

Table 4.3 – Response times calculated for the turn-on phase for both commercial CO2 

devices. 

Step 1 % 2 % 3 % 4 % 4 % 3 % 2 % 1 % 

SprintIR 

𝒕𝟏𝟎 to 𝒕𝟗𝟎 

[s] 

17.95  38.25  56.69  58.45  57.57  61.52  42.71  41.04  

IR3107 

𝒕𝟏𝟎 to 𝒕𝟗𝟎 

[s] 

0.55  1.00  1.11 1.33  1.84  2.43  0.96  1.33  

The 𝑡10 to 𝑡90 response times were calculated to investigate the response time of the 

device, without considering the initial mixing time of the chamber and avoiding any 

baseline noise. The exponential fit for the SprintIR sensor required extending to a 60 

s range, to allow response times above 20 s to be calculated. The disappointing 

performance of the SprintIR sensor was consistent throughout the measurements, 

where the response time improved for lower concentrations, but never approached the 
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quick response required for breath analysis. The Hummingbird device was slower 

(~1.5 s) than specified in the datasheet (0.1 s) [22], however the flow conditions were 

not optimised for this sensor (as previously detailed, the SprintIR sensor was 

connected in the chamber prior to the IR3107). Considering the flow rate (0.5 SLPM) 

and the volume (gas pipes and chambers) that delayed the mixing of the gas, the 

IR3107 responded with reasonable speed for breath-by-breath analysis. However, the 

relative expense of the device means that it cannot be included in a low-cost breath 

analyser.  

The output sensor responses shown in Fig. 4.15 are both after exposure to 4 % CO2; 

the SprintIR device only reaches ~3 % after the 20 s period (whereas the IR3107 

reaches its final output ~4 % after < 2 s). The poor performance from the affordable 

sensor demonstrates the need for development of a reliable, affordable and fast CO2 

sensor for use in projects such as breath analysers, safety sensors and portable 

equipment. The design and construction of a prototype CO2 sensor designed for 

breath-by-breath analysis is detailed in the chapter IV.  

4.4  VOC Sensor Measurements 

For breath analysis the measurement of VOCs is of great interest for disease detection 

[23]. In this work, metal oxide sensors was used (as discussed in chapter III), which 

can be sensitive to a number of VOCs. The initial experiments, performed with 

commercial MOX devices, tested the response of tin oxide sensors to carbon monoxide 

(CO). The experiments were designed to test the response of the sensors (in terms of 

time and stability) to a benchmark gas. CO was a gas of interest for human EE analysis, 

where sensors (e.g. NDIR CO2) could exhibit cross-sensitivity, and also CO on the 

breath is associated with smoking cigarettes. Two devices were selected, that offered 

low power consumption (< 100 mW) and were physically small (< 15 x 15 x 10 mm). 

The SB-500-12 (FIS, Japan) was compared to the TGS-5342 (Figaro, Japan) in 

preliminary testing. The FIS device was chosen for its smaller physical size (10 mm 

cylindrical design, 15 mm high) and greater response to CO. A drawing of the device 

is shown in Fig. 4.16 a), with the equivalent circuit (usual principle for all MOX 

devices) shown in b).  
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Fig. 4.16 a) Components shown inside FIS SB-500-12 sensor for CO detection; b) 

Equivalent circuit shown for the device, typically 2.8 Ω heater resistance at room 

temperature and 4.5 kΩ to 40 kΩ sensor resistance in the presence of 100 ppm CO. 

From FIS datasheet [24]. 

The CO sensor experiment involved pulsing a concentration of CO in the sensor 

chamber in a similar manner to Fig. 4.11. The CO concentration was varied between 

a ppm concentration and the baseline of synthetic air (0 ppm CO) in 1 minute steps. 

The sensor was tested at a concentration of 10, 20, 50, 100 and 150 ppm CO for five 

consecutive pulses each. The output is shown in Fig. 4.17, for the total experiment of 

70 min duration.  

The variance shown in the initial 14 minutes is due to the O2 concentration being 

pulsed for the Alphasense sensor (output not shown). The O2 sensor was exposed to 

O2 concentrations identical to those shown in Fig. 4.11 (for the experiment in Fig. 

4.17, CO is exchanged for CO2).  
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Fig. 4.17 – FIS CO sensor output when exposed to pulses of CO (0, 10, 20, 50, 100, 

150 ppm) for five consecutive pulses of 1 min each.   

The SB-500-12 demonstrated considerable cross-sensitivity to the concentration of O2, 

which was only varied by 5 % (21 % to 16 %). Therefore, this device would produce 

a response for an exhalation, due to the decrease in O2 on exhalations, compared to 

ambient conditions; when low levels of CO (< 50 ppm) are expected in breath, a 

normalised response of ~ 10 % due to the change in O2 is not acceptable for breath 

measurements. From this undesired trend, the concentrations of CO are not easily 

distinguishable, i.e. 10 ppm CO (15 to 25 min on the experimental timescale) cannot 

be separately classified from the 20 ppm pulses (25 to 35 min timescale).  The peak 

normalised 10 ppm output (0.39) is within the range shown for 20 ppm CO (0.35 to 

0.49). The modelling regression algorithm discussed above was applied to the four 

repetitions of the CO pulsing experiment. The output plot is shown in Fig. 4.18.  
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Fig. 4.18 – Model output from CO sensor data, showing predicted vs actual 

concentration for 50:50 split of training and test data. 

In general, the model was not able to successfully match the test set of data to the 

correct gas concentration. The 70 minute experiment (four repetitions) demonstrated 

that the sensor did not produce a stable output, and had cross-sensitivity to O2 

concentration. The device had poor response time (~ 30 s) and did not return to a stable 

baseline.  

The 10 ppm steps were incorrectly classified in the range of 0 to 35 ppm, similarly the 

150 ppm range was incorrectly classified as low as 29 ppm. The level of RH was kept 

constant (dry conditions), as humidity is known to affect MOX sensor performance. 

The overall poor performance of the device, and other models (e.g. the Figaro TGS-

5342) demonstrated there was a need to design a new MOX sensor for breath analysis. 

The development of a new MOX sensor is discussed in the further work section in 

chapter IV.  

4.5 Conclusions 

The mainstream chamber designed for breath analysis was found to be unsuitable for 

fast response measurements. The dead volume (~126 ml) of the chamber created a 

large delay between a change in gas mixture and sensor response. In the case of 
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exhaled breath measurements, the sample could become compromised with both 

inhaled and exhaled air mixing together continuously. The fast response (specified as 

0.1 s) IR3107 CO2 sensor had an increased (~1.2 s) response time after the gas was 

passed through the main-stream chamber. The mainstream design did not require any 

pump to extract a sample through the sensor chamber, but did not include any 

measures to prevent condensation rain-out from the humid exhaled breath.   

The affordable commercial sensors selected for this work demonstrate the lack of 

availability of suitable commercial sensors for breath-by-breath analysis. The SprintIR 

CO2 sensor had a poor response time (14.1 s) and poor stability (noise ~0.1 %). The 

device did not meet the 1.20 % tolerance required for accurate (±1 %) EE 

measurements desired. The FIS CO sensor was unstable when the concentration of O2 

was varied (between 21 % and 16 %, the variance expected between exhaled and 

inhaled air). The performance was improved compared to devices from other 

manufacturers (e.g. Figaro), but the device was not suitable for breath measurements. 

The O2 sensor (Alphasense O2G2) demonstrated a stable performance of the 

electrochemical cells, with repeatable results across five repetitions of pulsed 

measurements. The regression modelling demonstrated that the sensor performed 

adequately to meet the 0.52 % target accuracy for EE measurement. However, the 

response time of the sensor (9.5 s) is too slow for breath-by-breath measurements. The 

device was replaced by an alternative model (City Technology MOX-20, chapter VII) 

for side-stream measurements, but with the disadvantage of a bulky design and the 

black-box nature of the sensor. The City Technology device offered a greatly 

improved response time (<1 s), required to monitor breath in real time. The lifetime 

of both types of sensor could be an issue for a breath analyser in use over a period of 

years, when both devices are only designed to last between 12 and 24 months. In the 

longer term (weeks) the drift of the sensor is considerable (e.g. ~10 % output voltage 

over a period of months), which means regular calibration is required.   

The flow and temperature and RH sensors were not rigorously tested during 

mainstream sensor testing. The performance of the gas sensors in the system in a 

laboratory environment (with dry gases) was deemed inadequate for any fruitful 

measurements to be obtained from breath measurements. The output from the 
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temperature and RH sensor was recorded to show that the environmental conditions 

during testing were constant, in a laboratory gas bench rig.  

The large variation in flow rate (i.e. inhale and exhale of the order of ± 20 SLPM) can 

affect sensor performance. The Hummingbird commercial CO2 sensor, for example, 

is designed to operate at around 100 ml/min [22], with a small inlet of 1.6 mm internal 

diameter, and could be damaged at higher flow rates. A side-stream sampling system 

can be driven using a pump (or fan) which operates at a fixed flow rate. Although 

turbulent flow can be generated due to the operation of the pump, the flow rate is 

within a controlled range (e.g. 0.15 SLPM, with a variance of ~20 %).  

It was therefore concluded a side-stream system would be required to measure EE 

using the available gas sensors. This type of system was not initially preferred, due to 

the additional chamber needed to house the sensors (separate from mainstream 

tubing). Also, a pump is required to extract a sample of gas, which increases the weight 

of the system and power consumption.  
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CHAPTER V 

 

 

 

Development of a Low-Cost 

NDIR Gas Sensor System for 

Breath CO2 Analysis 
 

 

Preface 

As discussed in Chapter III, commercially available CO2 gas sensors are not regarded 

as adequate for breath-by-breath measurements in a portable breath analyser. The 

principle of NDIR measurements, a physical absorption process that occurs almost 

instantaneously, although the response time of sensors to CO2 is limited by IR emitter 

bandwidth and signal processing algorithms. To develop a fast response, affordable 

and low-power CO2 a novel NDIR system has been designed and built. The system is 

based upon a miniature low-cost CMOS IR source, which has very good emission 

qualities at the wavelength CO2 absorbs IR radiation. This chapter details the 

development of a low-noise, low-cost, low-power drive system for the emitter to 

enable the desired response to CO2 to be extracted from the noisy signal recorded by 

the IR thermopile detector. The emitter can be driven with a constant DC voltage, 

however to enable better sensitivity and reliability, an AC drive is preferred. The IR 

path length affects the resolution of CO2 that can be detected. The results of low (ppm 

level) CO2 gas experiments are presented and discussed. The effects of varying the IR 

path length are also investigated with trials shown from lengths of 10 mm to 80 mm.  
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5 Carbon Dioxide Breath Sensing 

CO2 is an important gas to measure for EE analysis. The commercial EE analysers that 

are available, such as the Bodygem which only measure O2 concentration, are widely 

criticised for neglecting CO2 measurement and assuming a constant respiratory 

quotient (which varies between individuals) [1]. The current generation of affordable 

devices are not capable of breath-by-breath measurements, with poor stability and 

slow response times. In this chapter, the development of a miniature, fast response and 

low-cost NDIR CO2 sensor is detailed.  

NDIR affordable sensors are usually limited to detection in the range of 1 to 10 %; 

concentrations of 500 ppm cannot be distinguished from the background system noise. 

A new NDIR sensor was developed, with a Silicon-On-Insulator (SOI) IR emitter and 

commercial thermopile detector. What is required is a system that is capable of 

detecting the concentration of CO2 as low as 10 ppm, but also in the range of interest 

(1 to 5 %) for use in breath analysis. The importance of accurate sensing, for ppm 

accuracy even at high percentage concentrations, stems from the Weir equation (2.4) 

used to calculate EE. In previous work (discussed section 3.1) it was found that the 

CO2 concentration needs to be measured to a tolerance of 1.20 % (relative accuracy, 

i.e. 600 ppm accuracy at 5 % CO2), to obtain a 1 % accurate EE measurement.  

The general operation of NDIR sensors was discussed previously. In this chapter the 

components inside the sensors are discussed in detail. Traditionally, NDIR sensors use 

micro bulbs as sources of IR. Although readily available, bulbs provide a high power, 

less reliable (1000 hour life) and bulky radiation source compared to newer technology 

such as CMOS micro hotplates. In particular SOI IR emitter have greater reliability, 

faster response and smaller physical dimensions [2,3]. An SOI emitter is shown in Fig. 

5.1 a), mounted in a TO46 header in Fig. 5.1 b). An early generation plasmonic emitter 

was used, with improved emission at the wavelength required for CO2 detection. A 

Heimann commercial thermopile detector is shown in Fig. 5.1 c). It would be 

beneficial for the sensor developed to have a sufficiently fast response to detect an 

exhalation, which is likely to be a period of approximately 3 s [4]. Exhaled gas is 

difficult to store and transport [5] and the breath analyser developed in this project 

would ideally perform EE analysis without the assistance of a clinical practitioner.  
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In terms of cost, MEMS based IR emitters cannot yet compete with simple IR micro 

bulbs [6], but affordable CMOS based systems (with detectors) are possible, when the 

market volume increases. The field of NDIR detection is still open to development [7], 

in that there is a need for low cost, low power and precise instruments (under £20) 

which has yet to be realised. Silicon based CO2 sensors have been studied for over a 

decade; in recent years the focus of development has been on improving the sensor 

design to enable greater sensitivity, faster response, improved reliability with lower 

power consumption [8]. 

 

Fig 5.1 a) SOI emitter, provided by Cambridge CMOS Sensors Ltd (CCS), with 0.28 

mm2 heating area; b) Emitter mounted on a TO46 header for fitting into the NDIR 

system; c) Heimann commercial thermopile also mounted on a TO46 header.  

5.1 NDIR Emitter Drive Signal 

For a given NDIR hardware configuration, the emitter drive source is the most crucial 

component with respect to developing a system capable of accurate and reliable gas 

measurement. Careful amplification of the nano-amp signal received at the detector 

and the post-processing of the received signal are also required to retrieve information 

from the thermopile output data; however the bandwidth of the drive source of the IR 

emitter dictates the signal processing techniques that can be applied and their 

effectiveness. The need for a stable heater drive can be seen in Fig. 5.2, where a steep 

exponential increase in heater temperature is produced from a small change in input 

drive voltage (i.e. between 2 V and 2.2 V). Furthermore, the heater drive voltage 

should not usually exceed 2.3 V (particularly not for a prolonged period), else risk 

failure of the device (through over heating).  
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Fig. 5.2 – The temperature that a CMOS IR resistive heater produces compared to 

the transistor drive voltage [6]. 

The thermopile detector senses a change in temperature due to the IR radiation from 

the emitter. Ideally, for the sensor to be singularly sensitive to CO2, only changes in 

CO2 gas concentration along its IR path would change the level of radiation received 

by the detector. Noise, such as thermal Johnson noise, present in the thermopile output 

(discussed in detail in the following section) necessitate post-processing stages in 

NDIR systems. A heater emitting an unknown variable IR radiation can become a 

large source of noise, where a 10 °C shift in output temperature can occur from a 

change in drive signal of ~ 10 mV. A stable drive signal can prevent this source of 

noise from corrupting the output signal.  

5.1.1 Emitter DC Drive 

 A DC drive voltage was used for initial testing with the NDIR system. A DC source 

requires less complex drive and receive circuitry – and stable generators of a DC 

voltage are readily available. The drive signal was generated using a data acquisition 

(DAQ) module (NI USB 6341) which also recorded the output data (at 100 Hz). The 

emitter was controlled using a current drive system. The device was specified as 

operating at 500 °C (recommended in unpublished datasheet) with a 70 mA drive 

current. 

The optical path length dictates the detection range of the IR system. In the case of a 

metal tube forming the gas chamber, the material of the pipe (and finish) can affect 

the strength of the received IR radiation at the detector. A DC experiment was 
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performed to verify the range of detection possible with a 12 mm path length, and to 

demonstrate the benefit of a tube internally plated with gold compared to a non-plated 

(aluminium) tube. A photograph of the rapid prototyped holder for the two tubes is 

shown in Fig. 5.3 (the internal diameter of pipe is 3 mm). The output recorded from 

the sensor is shown in Fig. 5.4, a) with a gold tube and b) with an aluminium tube (of 

identical length). The sensor was tested against CO2 concentration in the range of 1 to 

5 %, for steps of 2 minutes each (returning to a baseline of synthetic air, 0 % CO2, also 

for a period of 2 minutes).  

 

Fig. 5.3 – Photograph of the holder for the gold or aluminium tube (12 mm IR path 

length). 

 

Fig. 5.4 – Prototype CO2 sensor compared against two commercial reference devices 

with IR path a) of gold plated tube and b) of aluminium tube.   

A 100 ml chamber was used to test the three sensors shown in Fig. 5.4. The tube holder 

(Fig. 5.3) had an inlet and outlet for the sample gas cut into a window in the side of 

the container and was placed inside the larger 100 ml chamber. The reference 

commercial devices were an affordable (€150) CO2 sensor (GSS SprintIR) and an 

expensive (€1750) medical grade device (Hummingbird IR3107). The sensor outputs 

were filtered with a 99 point median filter, with a sampling rate of 100 Hz. The 𝑡90 
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response of the commercial devices has been discussed previously. In this experiment, 

the prototype CO2 sensor achieved a 𝑡90 of 15 s. A shorter response time would be 

likely with a smaller external chamber.  

The noise encountered when operating an NDIR system with a DC drive is 

demonstrated in the output results (0.05 V noise level throughout). The baseline is not 

stable in Fig. 5.4 a) nor b), demonstrating that a minor fluctuation (~ 0.2 °C) in ambient 

temperature can cause unpredictable drift in the sensor output (variance in output 

temperature is continuous throughout the measurement, tested in a temperature 

controlled room, but only controlled to ~0.5 °C). Outside of a laboratory environment 

far larger temperature variations would be expected. The average baseline for the 

aluminium tube is 1.56 V, with a variance between 1.53 to 1.59 V (S.D. of 0.02 V). 

The experiment was performed in dry conditions (0 % RH) and at a constant flow rate 

of 0.5 SLPM. The DC drive prevents filtering through frequency band-pass filters. An 

additional RC- (or Sallen-Key) -filter could be implemented, but at the expense of 

decreased response time (and the low frequency drift due to ambient temperature, or 

humidity and pressure, would not be removed). 

The gold plated tube resulted in a greater IR signal at the detector, although the limit 

of detection was not greatly improved. The level of noise was consistent for both 

experiments. The first (and final) steps were for 1 % CO2 concentration, and could be 

distinguished from the synthetic air measurements. The 1 % increase in CO2 

concentration causes a decrease in raw output voltage (after amplification) by 0.18 V 

for the gold tube compared to 0.1 V for the aluminium counterpart. Increasing steps 

of CO2 (1 % each step) caused an exponentially decreasing drop in output voltage. For 

the aluminium tube, a 1 to 2 % change in CO2 caused a 0.08 V decrease in output 

voltage, for the change between step a and b in Fig. 5.4 b).  A change in CO2 from 4 

% to 5 % caused a 0.04 V decrease in the output voltage (the difference between steps 

d and e).  

The range of higher concentrations that can be distinguished with the prototype sensor 

is limited by the small difference in output response (i.e. concentrations above 5 % 

would be inseparable from a 5 % reading). In this way the sensor becomes saturated, 

and the level of the IR radiation absorbed by the CO2 gas inside the chamber does not 

increase further. In other tests, it was found that the path length affects this saturation 
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limit (i.e. a shorter path permits higher concentrations to be detected, although lower 

concentrations become supressed by the background noise level). The cause of the 

saturation of the sensor could be due to the spread of the IR radiation. CO2 gas is 

heavier than air, so could sink to the bottom of the pipe, and only affect the beams of 

radiation that are reflected and that travel through the lower section of the pipe. It is 

assumed that the majority of the IR radiation is transmitted in parallel from the chip.  

The performance of the commercial sensors demonstrated the superior performance 

of the IR3107 compared to the SprintIR. The SprintIR, as previously demonstrated, 

had a slower response time compared to the expensive IR3107, and did not output a 

close measurement to the set CO2 concentration. The IR3107 overestimated the 

concentration of CO2 presented to the sensor, (registering 5.2 % for 5 % CO2 

measurement), although the overestimation was consistent throughout. The sensor 

returned to a stable baseline (~ 0 %), compared to the SprintIR which returned to 

approximately 0.08 % between the steps for CO2 concentrations. 

The gold tube in general produced a marginal improvement in response which cannot 

justify the additional expense and manufacturing difficulty for the plated tube to be 

used instead of an aluminium alternative. The aluminium pipe produced a lower 

overall response (maximum step of 0.3 V, ~ 19 % of synthetic air baseline value) 

compared to the gold tube (0.4 V maximum step, 21 %). The decrease in signal output 

was not substantial (fall from 1.9 V to 1.6 V baseline), when a gain of 2,100 was 

required in the amplification circuitry in the post-thermopile processing stage.   

5.1.2 Emitter AC Drive 

It is advantageous to drive the IR emitter with an AC signal to enhance the methods 

of filtering available (which can be used to remove baseline drift), reduce power 

consumption and to increase the lifetime of the device. The precise input signal 

required to prevent undesired drift (caused by a noisy drive) should be created by a 

designated waveform generator. Preliminary testing included generating an AC signal 

using the digital to analogue (DAC) convertor on the NI USB DAQ and a DAC on an 

Arduino Uno microcontroller. Both the sources were able to generate a sinusoidal 

wave at the desired offset, amplitude and frequency, but added jitter to the drive signal 

and caused an unwanted temperature shift in the IR radiation from the output of the 

emitter. A dedicated IC (AD9837 [9]) was chosen from Analog Devices (USA), which 

can produce sinusoidal, triangular or square waves at a frequency programmable 
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through digital communication with a microcontroller. The precision frequency 

generation by such a chip is close the precision possible with an oscillator circuit. 

However, the IC chip can be programmed to any desired frequency (within the range 

of the chip, e.g. up to 5 MHz with 0.02 Hz resolution [9]). For development of a NDIR 

system, the unit can therefore be trialled in order to find the optimal frequency for CO2 

detection.   

The output from the thermopile detector after excitation from the sinusoidal IR signal 

is in the micro-volt range. For the signal to be recorded by either a USB DAQ or 

microcontroller the raw output is amplified (perhaps by a factor of ~3000). The change 

in amplitude of the sinusoid signal output from the detector corresponds to the 

concentration of CO2 to which the sensor is exposed. The results can be normalised to 

a baseline of synthetic air, to show the change in the received signal and to ease 

comparison between measurements. For the majority of measurements performed, a 

single detector is used, which reduces the size of the device and cost. A dual detector 

configuration can aid removal of the drift, discussed above, with a DC drive (i.e. 

environmental temperature shifts over time), but at the potential cost of additional 

noise (i.e. other noise factors detected by both thermopile detectors). The noise is often 

not in phase between the detectors, so the overall level of noise (if the reference signal 

is compared to the sensing signal) can increase.  

The amplitude of the sinusoid is taken as the response to the presence of CO2 gas to 

help mitigate the low frequency drift (e.g. environmental factors). For example, the 

sinusoidal signal is pulsed between two temperatures (e.g. 150 °C and 550 °C) a 

change in environmental temperature will increase both temperatures by a similar 

value (i.e. if temperature change by 3 °C, it can be assumed that the heater output will 

increase by 3 °C throughout the operating range).  This technique is not as robust as 

employing a dual detector, however the trade-off is a reduction in complexity and cost.  

5.1.2.1 Lock-in Amplifier 

The use of a lock-in amplifier is an example of the improved signal processing 

available by using a known AC drive signal. The amplifier compares a received noisy 

signal to a given reference signal. Signals with the frequency of the reference wave 

are recovered from the combination of all other components of the noisy input signal 

[10]. For this technique to be effective, the operation of the NDIR system must avoid 

certain bands of noise, for instance 50 Hz noise from laboratory equipment or DC low 
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frequency noise. It is possible to implement the device using a microcontroller, 

however in this work the desire is to minimise the computational load (to avoid 

compromising the signal handling of other sensors in the breath analyser). A dedicated 

IC chip was preferred for extracting the desired signal. Lock-in amplifiers are 

commercially available. Previously it has been reported that lock-in amplifiers have 

been used for CO2 detection in laboratory environments, however the bulky 

(benchtop) instruments used are unsuitable for a portable unit [11,12]. In this project 

the functionality of the benchtop lock-in amplifiers was replicated using a commercial 

IC chip (AD630, Analog Devices, USA). A block diagram of the setup is shown in 

Fig. 5.5.  

 

Fig. 5.5 – Functional block diagram of NDIR sensor system with lock-in amplifier. 

The lock-in amplifier takes a major role in recovering the desired sinusoidal signal. 

The received signal from the thermopile circuitry is compared to the emitter drive 

signal and the original sinusoidal waveform is recovered. A simplified circuit 

schematic is shown in Fig. 5.6, where the lock-in amplifier requires a dual power 

supply (+5 V and –5 V). The operation of the lock-in amplifier is demonstrated in Fig. 

5.7. The heater drive signal (i.e. the reference signal to the lock-in amplifier) is 

generated by a microcontroller (initially a dedicated device is used, the Arduino Pro 

Mini) paired with the AD9837 programmable function generator.  
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Fig. 5.6 – Simplified circuit schematic of NDIR lock-in system, showing initial 

amplification stage, lock-in IC chip and final filtering process.  

 

Fig. 5.7 – Operation of lock-in amplifier. Raw thermopile output (a) is compared to a 

reference sinusoid (from signal generator) with lock-in amplifier (b) and then the 

output is filtered (c).  

5.1.2.2 Digital Filtering 

An alternative method to using a lock-in amplifier to extract the desired AC signal 

from the thermopile raw output is to use digital filtering. If the expected form of the 

output signal is known, then a perfect digital filter can be designed to extract only the 

desired component. The method of digitally filtering the signal can reduce the response 

time of the sensor. Filters based on averaging samples to smooth signals (e.g. low pass, 

median or mean) can slow sensor response times, however filtering in the frequency 

domain is more effective without compromising performance. A fast response sensor 

is beneficial for breath-by-breath sensors as well as safety conscious devices [13].  
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It has been reported that thermopile detectors have at least three types of noise: 

temperature, thermal and signal [8]. The dominant noise source is thermal noise [14], 

which limits the detectors sensitivity. Temperature noise, generated by environmental 

fluctuates, can be reduced by the use of a dual thermopile detector. One channel is 

only sensitive to wavelength of the gas of interest, and the other configured to filter a 

different wavelength. Thermal noise, caused by the thermopiles resistance, is wide-

band [15] and more challenging to overcome. By pulsing the emitter, with perhaps a 

sinusoidal signal, and extracting only the desired signal from the detector, much of 

this thermal noise can be eliminated.  

In this section a fully CMOS-compatible tungsten IR emitter [6] is modelled. The 

heater includes a plasmonic layer and is based on tungsten metallisation. The device 

is miniature and stable up to 600 °c, but retains the low-cost, high volume advantages 

of CMOS manufacture. Characterisation of SOI tungsten heaters has previously been 

performed using 2D or 3D modelling techniques [16–21]. Ali et al. shows that heaters 

could be used up to 700 °c without damage, also noting very low power consumption 

at 600 °c (12 mW) [18,20,22]. However, this is the first time that the modelling of SOI 

heaters have been performed and analysed for the use of NDIR emitters (previous 

examples presented were for the design of resistive gas sensors).   

The equations presented below model the IR emitted from the SOI hotplate in terms 

heat dissipation. This enables the heat transferred from the heated region to the 

ambient region to be considered. The heat losses from the hotplate consist of 

conduction, thermal radiation and convection [23,24]. Losses due to convection can 

dominate (69%) the heat losses from the device in the case of larger substrates (e.g. 

1.8 mm2 square) [25], whereas they have a lesser effect for smaller devices (e.g. 33% 

for 0.8 mm2). In the case of smaller devices, the heat loss due to conduction dominates 

[26].  

The Beer-Lambert law (eqn. 3.2) expresses the intensity of light transmitted through 

an absorbing medium. The absorption index, constant 𝑘𝑔, for CO2 was calculated from 

the High-Resolution Transmission Molecular Absorption Database (HITRAN) [27], 

via the HITRAN Application Programming Interface (HAPI) [28]. The frequency 

dependent cross section (𝜎) for CO2 is shown in Fig. 5.8 over wavelengths from 4 to 

5 µm.  
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Fig. 5.8 – Absorption coefficient for CO2 across the wavelength range of 4 to 5 µm. 

The voltage applied to the SOI heater, i.e. Fig. 5.1 a), produces a current. The voltage 

(𝑉𝐻) is related to the power consumed by the heater with equation (5.1), assuming it 

is in steady state and given an expected response time in the millisecond range, 

namely: 

𝑃 = 𝑉𝐻
2/𝑅𝐻(𝑡). (5.1) 

The resistance of the heater (𝑅𝐻(𝑡)) at a given temperature 𝑡 can be represented by 

(5.2), where 𝑅0 is the initial resistance at a reference temperature (𝑡0), and 𝑅𝑡𝑟 is the 

track resistance linking the heating element to the package header.A tungsten heater 

needs a quadratic term unlike a platinum heater.  

𝑅𝐻(𝑇) ≈ 𝑅𝑡𝑟 + 𝑅0[1 + 𝛼Δ𝑇 + 𝛽Δ𝑇2] (5.2) 

The power losses of the device can also be related to its temperature by (5.3) [29].  

𝑃(Δ𝑇) = 𝑎Δ𝑇 + 𝑏Δ𝑇2 + 𝑐Δ𝑇4 (5.3) 

Where 𝑎, 𝑏 and 𝑐 represent the power consumed by conduction, convection and 

radiation, respectively. As the radiation losses account for < 5 % [25] of the total power 

loss, these will be assumed negligible, and thus (5.3) can be simplified to yield (5.4).  
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𝑃 ≈ 𝑎Δ𝑇 + 𝑏Δ𝑇2 (5.4) 

Given that the power losses of the heater and its power consumption are equal when 

the heater is operating at a steady-state temperature, equations (5.1) and (5.4) can be 

reduced to eqn. (5.5).  

𝑎Δ𝑇 + 𝑏Δ𝑇2 ≈ 𝑉𝐻
2/𝑅𝐻(𝑡) (5.5) 

Equation (5.2) can be substituted in eqn. (5.5) to relate the heater voltage to the 

resistance of the heater element and tracks: 

𝑉𝐻
2 = {𝑅𝑡𝑟 + 𝑅0[1 + 𝛼Δ𝑇 + βΔT2]} × (𝑎Δ𝑇 + 𝑏Δ𝑇2) (5.6) 

Given eqn. (5.6), the heater voltage can be described by a quartic equation: 

𝑉𝐻
2 = (𝑅𝑡𝑟𝑎 + R0𝑎)Δ𝑇 + (𝑅𝑡𝑟𝑏 + 𝑅0𝑏 + 𝑅0𝑎𝛼)Δ𝑇2

+ (𝑅0𝛼𝑏 + 𝑅0𝛽𝑎)Δ𝑇3 + 𝑅0𝛽𝑏Δ𝑇4 

(5.7) 

The relationship between the heater voltage and temperature rise (Δ𝑇) can be 

expressed as a quadratic, because higher order Δ𝑇 terms are ignored. Orders of Δ𝑇 

raised above squared power are shown to be negligible in eqn. (5.2) and eqn. (5.3).  

(𝑅𝑡𝑟𝑏 + 𝑅0𝑏 + 𝑅0𝑎𝛼)Δ𝑇2 + (𝑅𝑡𝑟𝑎 + 𝑅0𝑎)Δ𝑇 − 𝑉𝐻
2 ≈ 0 (5.8) 

The solution to (5.8) can be found, then taking only the positive root (as Δ𝑇 must 

always be positive): 

Δ𝑇 ≈
√(𝑅𝑡𝑟𝑎 + 𝑅0𝑎)2 + 4(𝑅𝑡𝑟 + 𝑅0𝑏 + 𝑅0𝑎𝛼)(𝑉𝐻

2) − 𝑎(𝑅𝑡𝑟 + 𝑅0)

2(𝑅𝑡𝑟𝑏 + 𝑅0𝑏 + 𝑅0𝑎𝛼)
 

(5.9) 

The values of 𝑎 and 𝑏 are unknown, and have to be estimated from experimental data. 

Unpublished data provided by CCS showed that the applied voltage and current in 

relation to the Δ𝑇 were used to fit eqn. (5.4). A curve fitting toolbox in Matlab (2015a) 

was used to estimate the values for 𝑎 and 𝑏, as shown in Fig. 5.9.  
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Fig. 5.9 – Model curve fitted to find the coefficients for power losses due to 

conduction and convection terms only. 

The resistance of the hotplate, measured as a 1 Hz sinusoid, was provided as a voltage 

source input. The rise in temperature was plotted against the resistance measured in 

Fig. 5.10. Given the relationship (5.2), the values corresponding to the track resistance 

of the device and the heating element (at initial room temperature) can be obtained. 

𝑅𝑡𝑟 was calculated as 3.78 Ω and the initial resistance of the heater element, given an 

initial temperature of 25 °C, was 13.90 Ω (total resistance of 17.68 Ω). This compares 

favourably with the measured baseline resistance of 17.90 Ω. 
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Fig. 5.10 – Measured hotplate resistance compared to Δ𝑇.  

The heater was driven with a sinusoid signal of the form (5.10), where angular 

frequency 𝜔 = 2𝜋𝑓. Here 𝑐 denotes the amplitude of the sinusoid (from centre point), 

𝑑 the offset and 𝑓 the desired frequency (in Hz).  

VH(𝑡) = 𝑐 × sin(𝜔𝑡) + 𝑑 (5.10) 

A sinusoidal input with amplitude of 1.15V, with a 1.15V offset, was used as the input 

to the model (𝑉𝐻(𝑡)) as shown in Fig. 5.11 a). The output of the model, using eqn. 

(5.9), is shown below in Fig. 5.11 b). The desired output temperature for a peak voltage 

input of 2.3V is ~600 °C (Δ𝑇= 575 °C). The output from the model peaks at 605.4 °C.  

 

Fig. 5.11 a) Input sinusoid to the model over a 1 s period; b) Output from the model, 

showing Δ𝑇(𝑡) over a period of 1 s, the waveform is no longer perfectly sinusoidal.  
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The model output waveform was verified against the response detected by an IR 

detector (Heinmann J21). FFTs were taken from each for comparison, as shown in 

Fig. 5.12. 

 

Fig. 5.12 a) FFT plot comparing the CO2 detector data and model output waveform; 

b) Corresponding plot on logarithmic scale.  

The output from the model equations matches the response measured from the 

experimental setup. The Heinmann FFT peaks are visible at 10, 20 and 30 Hz, showing 

the signal received is no longer perfectly sinusoidal. A custom filter can be designed 

to extract only these peaks from the noisy signal in the frequency domain.  

A block diagram of the signal processing is shown in Fig. 5.13. The left hand side of 

the diagram shows that the required peaks can be identified by using the model 

equations and the raw input (drive) waveform. The digital filter is designed using the 

output characteristics from the model and applied to the detector signal (right hand 

side of the diagram). The amplitude of the sinusoid is found (centre of diagram) and 

then the filtering is applied. The output is the filtered amplitude of the sinusoidal 

signal.  
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Fig. 5.13 – Block diagram of digital filtering process used to recover the response to 

CO2 from the noisy detector signal.  

5.2 Experimental Results 

The experimental setup used a NI DAQ to record the output signals, as previously 

discussed for the DC drive measurement configuration.  The NDIR system was trialled 

with two different configurations: an aluminium chamber (80 mm IR path length) is 

used as a benchmark system (Fig. 5.14) and a variable path length (10, 20 and 40 mm 

IR path lengths, Fig. 5.15).  

 

Fig. 5.14 – Photograph of the 80 mm aluminium bench top chamber showing the 

PCBs for the IR emitter and thermopile detector. 
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Fig. 5.15 – Photograph of the adjustable path length design of the IR emitter and 

detector housing. 40 mm aluminium tube is fitted with 20 mm tube as shown. 

5.2.1 Lock-In Amplifier 80 mm Path Length 

The first prototype bench-top unit was formed from an aluminium chamber (Fig. 5.14) 

with an IR path length of 80 mm between the IR emitter and the thermopile detector. 

The sensor was exposed to CO2 concentrations from 50 ppm to 2.5 %, generated on a 

gas test bench, with a constant flow rate of 0.5 SLPM. Fig. 5.16 a) and (b) 

demonstrates the resilience of the system to humidity, where the system was tested in 

dry gas and 25 % RH.  

The sensor outputs displayed excellent stability. The increased level of humidity 

decreases the number of reflections off the side-walls of the tube (particularly if water 

droplets were to collect at the lower side of the tube). The received signal is lower 

(voltage magnitude), but there is less noise received. The reflections contribute to the 

noise received, as the beams of IR light that are reflected do not travel the same 

distance as the light which travels in a straight line directly from the IR emitter to the 

detector.  

Concentrations from 100 ppm to 2.5 % were repeated twice during the experiment, 

with average variations of ~0.23 % and 0.10 % between the repetitions for dry and 25 

% RH, respectively.  The addition of humidity increased the stability of the sensor 

output, but decreased the normalised reading by an average of 1.2 %.  



 V – Development of a NDIR Gas Sensor System 184 

   

 

Fig. 5.16 – Sensor outputs (relative to baseline of synthetic air with 80 mm path 

length showing detection of CO2 in the range of 50 ppm to 2.5 %, (a) with dry gases 

and (b) in a constant environment of 25 % relative humidity. 

The lock-in amplifier maintains a frequency lock throughout the experiments, where 

no spurious spikes from other frequencies are generated. An average time of 2.4 s for 

the sensor to reach 90 % of final output (𝑡90) was calculated. In the case of a CO2 

sensor, an 80 mm path was found to be unsuitable for CO2 breath analysis, where the 

sensor saturated with ~2.5 % CO2. Although low ppm measurements of CO2 are not 

necessary for breath analysis, other compounds, such as acetone, can be present in 

breath in such concentrations. Diabetic subjects can exhibit a strong level of acetone 

[30,31], which would be of interest for further breath analysis studies. Although not 

shown here, future work could involve trialling filter caps on the detector with 

bandwidth centred around perhaps 3.39 µm [32] in order to detect acetone in breath.  

5.2.2 Lock-In Amplifier Path Length Optimisation 

The preliminary experiments above proved that using an 80 mm path length CO2 

concentrations of interest in breath analysis (e.g. between 4 and 5 %) could not be 

distinguished. A prototype test unit was developed, including rapid prototyped parts, 

in order to trial different path lengths. The device, shown in Fig. 5.15, allowed large 

variation in path length, only restricted by the length of aluminium tube. Furthermore, 

the identical aluminium tubing is a suitable size for use in portable breath analyser. 

Any anomalies in tubing specification between a bench test rig and the final unit to 

include in a breath analyser will be removed by use of the same compact tubing. 

Preliminary work with a DC drive signal suggested that the finish of the tubing is of 

some importance to the strength of IR radiation transmitted between the emitter and 

detector, where a gold plated tube has a far greater reflectivity than an otherwise 
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identical aluminium counterpart. For this testing only aluminium tubing was used, due 

to ready availability allowing a wide variety of lengths to be tested without risk of 

damage to surface plating. In practice, stainless steel or nickel coated aluminium 

would be more reliable.   

The length of tubing (optical path distance) in the NDIR assembly was varied between 

10, 20 and 40 mm. The concentration of CO2 was varied between 0.5, 1, 2, 3, 4 and 5 

%. Each gas concentration was tested for 1 minute, returning to a baseline of synthetic 

air with no CO2 present between each desired concentration. The gas flow rate was set 

at a constant 0.5 SLPM throughout the experiments.  The processed time series data 

for a 40 mm path length are shown in Fig. 5.17. To ensure the reliability of the 

measurements, each path length was tested for five repetitions. The ability to adjust 

the length of the tube consequently entails the possibility of introducing alignment 

errors between the IR source and detector. This was mitigated by a visual inspection 

of the setup between repetitions, verification of the output voltage level of the 

thermopile detector on the gas test rig and constant monitoring of the gas flow rate out 

of the sensor (i.e. in a system with no leaks, the gas input will equal the gas output). 

The data recorded over the five repetitions for path length the average value for each 

gas concentration (with dry gases) are summarised in Fig. 5.18 and compared with 

each of the three selected path lengths.  

 

Fig. 5.17 – Response of the sensor to CO2 concentrations in the range of 0.5 % to 5 

% with a 40 mm IR path length.  
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Fig. 5.18 – Comparison between 10, 20 and 40 mm path lengths for CO2 detection in 

the range of 0.5 to 5 %.  

Accurate detection of CO2 concentrations in the region of 4 to 5 % is important for 

breath analysis. The response curves for 20 mm and 40 mm path lengths exhibit a 

similar trend to the higher concentrations shown for the initial experiment (80 mm 

path length), where the sensor output is becomes saturated. The error bars on the graph 

represent the variation in average recorded value between repetitions. The error bars 

plotted for the 40 mm 4 % and 5 % measurement values are separated only by 0.007 

(fractional change), thus the output response for 4 and 5 % cannot conclusively be 

determined. The 20 mm result demonstrates an improved result, where, including the 

error approximation, the 4 % and 5 % readings are separated by twice the fractional 

change of the 40 mm result (0.014). However this result is still barely a 1.4 % response 

change and therefore determining the accurate gas concentration is likely to become 

difficult, especially when measurements are taken with non-synthetic gases and with 

water vapour.  

Although the sensor response is lower for a given concentration, the 10 mm path length 

results demonstrate promising responses to 4 and 5 % inputs of CO2. The output 

response varies only by ~25 %, given a 5 % change in CO2 concentration. 

Comparatively, ~29 % change in output response is observed with the 20 mm path 

configuration and ~30 % change for the 40 mm path length. However for the same 

change in CO2 concentration, the output response varies by ~2.5 %, accounting for 

measurement errors. The dry results indicate the 10 mm path length is most suitable 
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for measuring CO2 concentrations in the range of 0 to 5 %, with synthetic gases. Breath 

is almost completely saturated with water vapour, which absorbs IR radiation at certain 

wavelengths, and has been previously reported to have an effect on NDIR sensing 

[33].  

The system with 10, 20 and 40 mm path lengths was tested at RH levels of 25 % and 

50 %, over the same CO2 concentrations (0, 0.5, 1, 2, 3, 4 and 5 %). For these 

experiments a constant ambient temperature of 25 °C was maintained throughout the 

test period. A time series plot for a 40 mm path length experiment is shown in Fig. 

5.19. The experimental results are summarised in Fig. 5.20, at the same scale as the 

corresponding dry plot. Overall the response has been muted, regardless of path length. 

In dry conditions, 2% CO2 produced output responses of ~16 %, ~18 % and ~22 % 

intensity change for 10, 20 and 40 mm path length, respectively. With a gas mixture 

containing 25 % RH, the responses have been decreased on average to 12 %, ~14% 

and ~15 %, respectively, for a 2 % step in CO2 concentration. The presence of the 

water vapour also affected the measurement error, where additional noise was 

introduced into the system. For dry gases the standard deviations between all 

measurements for the 10, 20 and 40 mm path lengths were recorded as 0.1%, 0.1 % 

and 0.5 %, respectively. In conditions of 25 % RH these errors were calculated as 0.4 

%, 0.1 % and 0.1%, respectively. The 10 mm path length demonstrates a quadrupling 

of error, however the 4 cm path length demonstrates a fifth of the error when 

comparing dry to 25 % humid conditions. 

 

Fig. 5.19 – Time series data for 40 mm path length in 25 % RH conditions. CO2 

varied from 0.5 % to 5% with constant 0.5 SLPM flow. 
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Fig. 5.20 – Data from 10, 20 and 40 mm path lengths summarised for 25 % RH 

conditions.  

The most notable change from a dry to 25 % RH environment is the reduced separation 

between the 20 and 40 mm path length responses. In dry conditions the 40 mm path 

produced a higher response by on average 1.5 % (across all concentrations), but at 25 

% RH the response was only 0.6 % greater. The 10 mm path length produces a lower 

response, but still maintains easy distinction between 4 % CO2 and 5%. The 50 % RH 

condition response plot (Fig. 5.21) demonstrates an even smaller difference in 

intensity measured for the 20 mm and 40 mm path lengths, with just a 0.5 % greater 

response for the longer path. The results demonstrate that humidity decreases the 

response to CO2, particularly with the smaller diameter tube (3.1 mm internal for the 

portable breath analyser tubing, compared to 10 mm for the aluminium chamber). It is 

a possibility that water droplets condensed inside the tube, and affected the IR 

radiation in a greater manner for the smaller diameter tubing.  
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Fig. 5.21 – Data recorded at 50 % RH for path lengths of 10, 20 and 40 mm.  

The measurements taken in 50 % RH demonstrate that the system is still able to 

function with humid gases and the sensor remains stable, despite a decrease in 

response. Overall the system is more stable with the higher level of humidity, where 

similar standard deviations were calculated as 0.1 %, 0.1 % and 0.08% for the 10, 20 

and 40 mm experiments at 50 % RH, respectively. The response of the system 

becomes closer to a linear plot, with increasing levels of RH. The 10 mm path length 

was selected for the portable breath analyser, based on its physically compact design 

and ability to provide an adequate response in order to separate 4 % and 5 % 

concentrations of CO2, in both dry and wet conditions.  

5.3 Digital Filtering 

The digital filtering approach was found to enable lower gas concentrations to be 

resolved, although the stability achieved with the lock-in amplifier configuration was 

compromised. The lock-in amplifier required a dual power supply, which is not 

convenient for a handheld unit (e.g. powered from a 5 V USB supply).  The hotplate 

drive speed was trialled at 10 Hz and 5 Hz. The modulation frequency affects the 

output of the heater. A higher frequency is preferred for faster readout, and noise 

reduction, however a lower frequency offers higher modulation depth.  

The sensor was exposed to the gas concentrations shown in Fig. 5.22, with 80 mm 

separation between the hotplate and thermopile (aluminium chamber, Fig. 5.14). The 

hotplate was driven with a 10 Hz sinusoidal wave, pulsing the heater temperature 

between 600 °C to 150 °C. The gas flow rate remained constant at 0.5 SLPM. The 
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heater drive voltage, shown in Fig. 5.11 a) was again used as the input to the model. 

The raw output signal, pre-processed, is shown in Fig. 5.22, where the changes in CO2 

concentration are not recognisable. The corresponding FFT peaks were taken from the 

output thermopile signal, as shown in Fig. 5.23 a). The signal output after FFT 

processing is shown in Fig. 5.23 b).  

 

Fig. 5.22 – Raw amplified thermopile output from the CO2 sensor system with 

concentrations shown in the table from 500 ppm to 10 ppm.  

 

Fig. 5.23 – a) FFT filtering operation on the raw amplified thermopile signal 

produces b) FFT peak extraction data showing noise reduced output.  

The post-processing of the signals was performed using code scripts written in MatLab 

2015a. For the filtering process, a peak detection algorithm is used to detect the two 

dominant peaks from the FFT magnitude (i.e. the fundamental frequency and the first 

harmonic). A rectangular window is placed around the peaks, extending to 90% of 
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their maximum value, centred around the peak magnitude. The script to extract the 

peak automatically compares the output from the hotplate model equation and the 

output from the thermopile circuitry. The FFT has helped remove any high frequency 

noise, caused by other laboratory equipment or the 50 Hz power supply noise, and also 

any low frequency background noise.  

The emitter source modulation depth decreases rapidly with frequencies above 10 Hz. 

Measurements performed at, for example 15 and 20 Hz, were found to be very 

unstable, thus it was not possible to distinguish 50 ppm or lower concentrations of 

CO2. However, experiments were also performed at 5 Hz, to verify the principle of the 

processing technique. Fig. 5.24 shows the final, processed results, again tested with an 

80 mm path length.  

 

Fig. 5.24 – Measurements of CO2 between 0.5 % and 5 % with a 5 Hz drive signal 

and 1 minute steps per concentration input.  

5.4 Linearity of Response 

The results presented above, for both the lock-in amplifier design and the FFT filtering 

procedure, demonstrate that the sensor offers repeatable measurements of CO2 

concentration. However, the results did not fit the simple Beer-Lambert law eqn. (3.2). 

The response of the results is not linear, nor can a single exponential curve (i.e. the 

aforementioned law) fit to the output response. The raw output voltage from the lock-
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in amplifier is shown in Fig. 5.25 for 50 % RH across the path lengths tested (10, 20 

and 40 mm).  

The Beer-Lambert law in the format eqn. (3.2) only accounts for the basic optical 

condition, with correlated light, where a single beam of light travels directly between 

the emitter and detector, is shown in Fig. 3.8. However, the emitter emits light with a 

69° field of view, which will also generate reflections along the length of the 

aluminium tube.  

 

 

Fig. 5.25 – Thermopile raw output voltage compared to path lengths of 10, 20 and 40 

mm across CO2 gas concentrations from 0.5 to 5 %.  

On the scale of this work, an in-depth model is not possible, but instead a simpler 

model is proposed to account for the highest intensity reflection (which reflects at the 

centre point of the tube). A modified version of the Beer-Lambert equation (5.11) is 

proposed which includes a term for the intensity lost due to reflections inside the tube 

and emitter itself (Iint), which do not reach the detector.  

𝐼(𝑐) = 𝐼𝑖𝑛𝑡 + 𝐼0[𝑒−𝑘𝑔 𝑙1𝑐 + 𝑔 𝑒−𝑘𝑔 𝑙2𝑐] (5.11) 

Also, the modified equation includes two path lengths l1 (direct path length) and l2 

reflected path length (the highest intensity reflection, with only one bounce). L2 is 

related to l1 by 𝑙2 = √𝑙1
2 + 4𝑑2, where d is the diameter of the tube, and g denotes the 
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reflections in all angles around the tube. The mass path (u) in (5.12) relates the number 

of molecules per area, given a known pressure (P), mixing ratio (q), distance (x) and 

temperature (T), where k is Boltzmann’s constant [34].  

𝑢 =
𝑞𝑃𝑥

𝑘𝑇
 

(5.12) 

Equation (5.12) can be rearranged, and given the cross sectional area, can be used to 

calculate the coefficient 𝑘𝑔, and put into the correct form for substitution into the 

modified Beer’s Law, as shown in (5.13).  

𝑘𝑔 =
𝑃

𝑘𝑇
𝜎 

(5.13) 

From the nature of the experimental setup, it can be assumed that the pressure is 

atmospheric and any fluctuations will be negligible. From the HITRAN database [27], 

the experimental temperature is reported as 296 °K (23 °C). The thermopile cap filter 

specified with a central frequency of 4.26 µm and a bandwidth of 0.18 µm. From the 

data shown in Fig. 5.8, the cross section was calculated 𝜎 = 9.88 × 10−19 

cm2/molecule. Therefore the constant 𝑘𝑔 = 241.9 cm-1. The modified equation was 

used to model the 50 % RH data with a 10 mm path length. The modelling provided 

an excellent fit (R2=0.999) to the 10 mm data shown in Fig. 5.25. The model 

demonstrates (Fig. 2.26) that the reflections contribute a large proportion of the light 

received by the detector. The values for 𝐼𝑖𝑛𝑡, 𝐼0 and 𝐼𝑔 were found to be 0.72, 0.26 and 

0.059, respectively. 
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Fig. 5.26 – Modified Beer-Lambert law equation plotted against output data for 10 

mm IR path length (50 % RH) for CO2 concentration from 0 % to 5 %.  

Equation (5.11) was fitted to the experimental data reported in Fig. 5.24, and values 

obtained for 𝐼𝑖𝑛𝑡, 𝐼0 and 𝑔 as 0.92, 0.077 and 0.018, respectively. The curve fit is shown 

in Figure 5.27, where the R2 goodness of fit was 0.998. The curve fit demonstrates that 

both methods (the lock-in amplifier and FFT filtering) present similar results and the 

exponential curves fit the output produced by the sensor. The lower concentrations 

shown in the FFT model plot demonstrate that the effect is independent of path length 

and concentration.  
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Fig. 5.27 – Modified Beer-Lambert law equation (3.2) plotted against output data for 

80 mm IR path length for the FFT digital filtering method with concentrations of 

CO2 from 0 to 500 ppm. 

5.5 Conclusions 

In this chapter the importance of the NDIR drive signal has been reported. The AC 

drive signal provides a considerable advantage over a DC approach; however the AC 

signals received at the thermopile require more complex analysis to enable the desired 

response to CO2 to be extracted. The DC based system demonstrated the operation of 

the NDIR detector. The trials with both gold and aluminium plated tubing revealed the 

improved performance of gold plating did not justify the additional design complexity 

and cost. Although the received signal produced a lower output signal at the 

thermopile, the sensitivity to CO2 changed only by 2 %.  

The bench top lock-in amplifier design showed promising results for stable detection 

of high concentrations of CO2. The system produced lower sensitivity than a digital 

filtering process, but an 80 mm path length was sufficient to detect CO2 in the range 

of 50 ppm to 2.5 %. The dedicated lock-in amplifier chip reduced the processing load 

of the data logging system. The 80 mm path system was trialled at 25 % RH which 

decreased the normalised readings by, on average 2.3 %, (but increased stability by 

0.13 %).   
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Experiments performed consider variation of the path length (10, 20 and 40 mm) 

demonstrated that a 10 mm path permitted concentrations up to 5 % to be detected. 

Besides the advantage of a smaller design, the 10 mm path length allowed for easier 

discrimination between concentrations of CO2, where the 40 mm system became 

saturated at higher concentrations of CO2. To verify the functionality of the system 

when the test gas contained water vapour, the system was exposed to dry, 25 % RH 

and 50 % RH conditions. The 10 mm path length was adversely affected, 

demonstrating an increase in noise. However, the longer path lengths performance, 

although marginally less affected by the presence of humidity, were not sufficiently 

sensitive to breath levels of CO2. A humidity sensor will be included in the breath 

analyser system to allow the level of water vapour to be monitored and compensated 

for.  

The model of the NDIR emitter developed through equations of the heat produced 

enabled digital filters to be designed specific for the waveforms expected to be 

received by the NDIR detector. Filtering the noisy thermopile output in the frequency 

domain avoided the need for high order analogue filtering, which extends the response 

time of the sensors. The output from the model produced a good response to CO2 in 

the range of 10 to 500 ppm with an 80 mm path length. The response was less stable 

than using the lock-in amplifier technique, but can be easily integrated into a portable 

design (without the need for a dual power supply). 
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Laboratory and Handheld Data 

Acquisition 
 

 

 

Preface 

LabVIEW software was developed to acquire the data from the gas sensors tested. The 

interface extended to control of gas MFCs, which were used to generate a set of 

concentrations of various gases (CO2, CO, NO2, O2 etc.) during the testing of the side-

stream analyser. A further interface was written to communicate with a 

microcontroller used in the hand-held analyser, and record the data at 200 Hz, output 

in serial format. To facilitate mobile measurements, without a computer, an Android 

application was written to allow wireless communication (Bluetooth) with the 

analyser. The application was able to display the received data in real-time, and record 

the files to an SD card in the smartphone. A 1 minute breath sample could be taken 

using the application, and EE calculated immediately on the smartphone itself. The 

LabVIEW and Android applications developed in this work have enabled the testing 

and recording of a variety of gas sensors (MOX, NDIR, electrochemical) and the use 

of the hand-held analyser outside of a laboratory environment.  
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6 Control and Acquisition Software 

The gas sensors in this work and the housing chamber are designed to enable a fast 

response time for breath-by-breath analysis. The data acquisition sub-system must be 

capable of recording the output from the sensors with a high bandwidth else risk 

comprising the sensor output. To verify the sensor response time and generate precise 

gas mixtures software was developed for a gas test rig. For portable sensing, a 

microcontroller was used to transmit wirelessly the sensor data to a smartphone or 

laptop computer.  

6.1 Bench Gas Rig Control Software 

A benchtop gas testing rig was constructed (Fig. 6.1), consisting of four mass flow 

controllers (MFCs, Alicat MC-5SLPM-D) and one mass flow meter (MFM, Alicat M-

5SLPM-D). The monitor (A) displays the control systems for the gas mixture system 

and the output recorded from the gas sensors. A regulated power supply (B), TTi 

QL564TP, is used to provide controlled power levels (voltage and current limited) to 

the sensors. The MFCs (C) enable the generation of gas mixtures, with the current 

flow rates and selected gas shown on LCD screens at the front of each device. The 

DAQ (D), National Instruments (NI) USB 6343, is used to interface between the 

computer and analogue gas sensors (two-wired differential inputs). The sensor 

chamber (E) can be interchanged depending on the type of gas sensor under test. The 

exhaust is connected to the right of the chamber, with the output from the four MFCs 

mixed together to the left of the chamber. The heater block (F) allows heating of the 

humidity line, to prevent condensation forming along the line at high levels of 

humidity.  

Flow charts showing the operation of the NI LabVIEW 2013 software and the code 

used to operate the gas testing rig are shown in Appendix C. Code for writing values 

to the MFCs and reading data from the data acquisition unit are shown.  
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Fig. 6.1 – Photograph of gas testing rig in laboratory.  

The gas testing rig enables a mixture of gases to be created and the RH in a gas 

chamber to be varied. The system also controlled a furnace (Memmert UNP 200), in 

which the gas sensor chamber could be fitted and the environmental temperature 

varied. A block diagram of the gas rig is shown in Fig. 6.2. The system is designed to 

generate gas mixtures with flow rates up to 5 SLPM (limit of MFCs). The minimum 

flow rate it is possible to produce with each individual MFC is 15 ml/min.  

 

Fig. 6.2 – Block diagram of gas rig. 
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The data logging ability of the gas testing rig has been referred to in previous chapters. 

The software has interfaces for commercial sensors, which can be benchmarked 

against prototype research devices. The virtual front panel of the software is shown in 

Fig. 6.3. The software can be used independently of the data logging interface (where 

only gas mixtures are controlled); this allows for the rig to be used with external data 

logging software.  

Located just outside of the photograph of the rig is a commercial safety sensor unit, 

which detects the presence of CO, CO2 and NO2 in the environment. This air quality 

sensor sounds an alarm immediately, if a safe threshold for a particular gas is 

exceeded. Risk assessments, safe systems of work (SSoW) and control of substances 

hazardous to health (COSHH) assessments were undertaken prior to any testing of gas.  
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Fig. 6.3 – Screen-print of LabVIEW interface for gas rig control and layout diagram 

showing options in each sub-section of the interface.  

6.1.1 Data Acquisition 

Analogue data output from gas sensors connected to the benchtop rig are recorded by 

on a computer (Microsoft Windows 7 operating system). A NI USB-6343 DAQ unit 

permits up to 32 analogue inputs specified at 16 bit resolution (range ±10 V) [1]. 
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Additionally, 4 analogue outputs are available to the same specification. A LabVIEW 

virtual instrument (VI) was designed to efficiently display the DAQ measurements on-

screen in real time.  A screen-print of the data acquisition screen is shown in Fig. 6.4.  

 

Fig. 6.4 – Screen-print of the data logging interface with graphs to show both 

prototype and commercial sensor outputs. The layout shown is of the control screen.  
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The data are recorded into a proprietary NI format (*.TDMS, technical data 

management streaming [2]), which allows a fast data stream to be recorded (required 

at high sampling rates). The resulting output files usually require converting from a 

binary format to a text format for further data processing. The additional post-

processing effort is offset by the reliability and robustness achieved during the critical 

data logging phase. The data logging process also enables compression of the data, i.e. 

averaging of samples over a set period to reduce the file size (for long measurement 

periods of perhaps up to 24 hours). Limited real time signal processing can be 

performed on the signal. The board configuration screen (on the initial VI screen) 

enables parameters from the circuit boards to be entered. These allow the resistance 

of the sensor to be calculated and plotted, as opposed to only the raw output voltage 

being displayed. Additionally, either of these display modes can be filtered (a moving 

average filter is applied). The width of the moving average filter is set at 1 s, and can 

be adjusted in the program code.  

Miniature commercial sensors can target the mobile device market, and often provide 

digital outputs (e.g. I2C, SPI, etc.). The output form of these devices is usually 

converted to a serial (COM port) standard, which can in turn be converted to a USB 

input. The VISA (virtual instrument software architecture) standard is used to obtain 

data from the serial devices and provides a string format output into a LabVIEW VI. 

The sampling rate of these devices does not always match the user selected sampling 

rate for the NI DAQ. To ensure that the commercial sensor outputs are logged at the 

same time intervals, the devices sampled at a lower rate are up-sampled to match the 

higher sampling rate. The default sampling rate is configured as 100 Hz.  

An example commercial sensor included in the system is a Bosch BME280 sensor 

(used for temperature and humidity sensing). An Atmel ATtiny85 microcontroller is 

used to convert the digital I2C output from the BME280 to a serial output (convertor 

board shown in Fig. 6.5). The microcontroller is powered and connected to the 

computer with a USB to serial adapter. The BME280 is a miniature device (for an 

enlarged photograph see the inset in Fig. 6.5) which is supplied with a 2.5 × 2.5 mm 

land pattern. The versatile device offers I2C and SPI outputs and requires a 3.3 V 

power supply [3]. The sensor can be placed into a gas sensor chamber. The interface 

board, located outside the chamber, is connected (via 4 pins) through a connector on 

the chamber lid. In turn, the board is connected to a computer via the cable shown.  
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Fig. 6.5 – Photograph of a BME280 chip mounted on a circuit board. The interface 

board converts the sensor output to serial communication which is then converted to 

the USB inside the connector shown.  

6.1.2 Heater and Emitter Control 

The heater on a MOX sensor and IR emitter for CO2 sensors can be controlled using 

a module within the LabVIEW VI. Although the IR emitter is best controlled using a 

dedicated chip, for improved stability, the gas rig system allows trial heater voltages 

to be tested, without chip reprogramming. The front panel control, shown in Fig. 6.6, 

allows either a sinusoid, DC, square or custom wave pattern to be generated using the 

NI DAQ analogue output.  

The custom waveforms can be configured using a spreadsheet file. The output can be 

changed in real-time, using numerical controls. In the example shown in the figure, a 

sinusoidal waveform is generated, where the graph shows the output waveform, which 

is turned into a numerical list of data points and transmitted through the analogue 

output port.  
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Fig. 6.6 – NI DAQ Analogue output system (IR emitter and MOX heater control). 

The custom file output could be used to generate unique patterns for MOX sensors. 

As previously discussed, MOX films are sensitive to different compounds at different 

heater temperatures. By varying the heater temperature, different compounds can be 

distinguished in an unknown mixture of gases. The sinusoidal generator mode was 

designed for testing the effect of increasing frequency on the IR emitter output. A 

decline in output emission would be expected for an increase in frequency 

(unpublished datasheet).  

The current consumption of the circuits can be monitored using the power supply 

shown in Fig. 6.1. In the case of the MOX sensors, the readout given on the display 

provides confirmation of the operation of the heater drive circuit. The serial output 

from the power supply is not yet utilised in the LabVIEW VI. The power supply has 

three output channels, which can be used to power MOX devices separately to observe 

current demand over time.  

6.1.3 Furnace Control 

The environmental temperature in which a sensor operates can often affect the 

operating mechanism. To experiment with temperatures in the range of ~5 °C above 

ambient to 300 °C a furnace (Memmert [4]) was used to vary both the ambient 

temperature of the gas sensor, and the gas itself. A photograph of the furnace located 

on the laboratory bench underneath the MFC setup is shown in Fig. 6.7. The large 

internal area of the oven (400 × 320 × 250 mm – width, height, depth) introduced a 

considerable warm up time (perhaps 45 mins to 180 °C), however this did not restrict 

the chambers that could be tested [4].  
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Fig. 6.7 – Photograph of the Memmert Furnace; temperature controlled environment 

from 5 °C above ambient to ~ 300 °C.  

The slow time constant (i.e. caused by the large dead volume) inside the furnace 

provided a stable baseline temperature when testing the NDIR sensors in particular. A 

constant ambient temperature was desired to reduce drift over the duration of the 

experiment. In the case of other types of sensor, such as MOX or electrochemical, the 

sensor chamber can be placed inside a heater and the environmental temperature 

controlled to within ± 0.1 °C. Dry block heaters are commonly used, for their precise 

temperature control and laboratory grade construction. However, the temperature of 

these devices is regulated at a rate of ~ 2 Hz. The shift in temperature, even by 0.1 °C, 

is a large variation for a NDIR device, thus interferes with the signal received by the 

IR detector. It was therefore found that dry block heaters are not ideal for NDIR 

measurements – instead a larger environmental furnace was preferred.   

The furnace control interface (shown in Fig. 6.3) enabled a set of temperatures to be 

programmed, i.e. step changes, over a desired period of time. The VI enabled the 

temperatures required to be entered in a table (or loaded from a spreadsheet format) 

along with the time for each step. The time taken to heat or cool the furnace was not 

incorporated into the program. The graph in the furnace module of the virtual front 

panel shows the current oven temperature (when connected).  
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6.1.4 MFC Module 

The module to program the MFCs with gas flow rates and therefore generate the 

desired gas mixture is located in the upper left of the LabVIEW VI (Fig. 6.3). The 

interface is designed to be inherently adaptable to the wide range of gases and VOCs 

that can be tested with the rig. The initial configuration, displayed on the front panel 

immediately after executing the VI, requests the user selects the gas(es) or VOC to be 

tested. The drop down selection box lists 12 gases (or combinations of gases) which 

the software is currently configured to operate with. Once the gas type for the 

experiment is selected, the four connections for the four MFCs are displayed. The 

order of the MFCs is adjustable to allow for the different possible physical gas line 

connections to the rig.  

The MFC configuration is a step only required at the start of each experiment. A ‘save 

config’ option is available on the front panel, which saves all the options (including 

those for data logging, sensor and board type) to a text file. The saved file can be 

loaded (‘load config’) when required, to restore all the settings for a specific gas 

experimental setup. The save file option also saves the limits and output data for the 

DAQ analogue output ports, which can prevent user errors occurring between setting 

the configuration for MOX and NDIR sensors.  

The single value screen, shown in Fig. 6.8 a), appears once the user confirms the 

configuration for the MFCs. This screen is designed for leak testing the system. This 

screen allows the user to manually send gas flow rates to the controllers. An example 

leak test is to set a value of 0.5 SLPM of synthetic air and observe the output on the 

MFM (synthetic air is referred to as Zero Air in the screen prints). 

 The program does not automatically send the values when they are typed into the 

boxes (nor on the return key being pressed), instead the values are sent together, when 

the send button is pushed. When generating mixtures of gases, it is rare to require only 

one MFC value to be changed at only one time, thus the send button must be pushed 

before any values are modified at the MFC level. For instance, to change from a 

baseline of only synthetic air to a mixture of NO2, two flow controller values must be 

changed (air and NO2). If these two controllers are not changed instantaneously, a flow 

variation would occur, which could produce a pronounced effect on the sensor output.  
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Fig. 6.8 – LabVIEW VI for basic programming of MFCs, a) One value sent to the 

controllers with manual button push; b) Table of flow values, rows written 

automatically to the flow controllers after a given time.  

The flow values can be stepped automatically from a tablet format as shown in the 

screen print in Fig. 6.8 b). The flow values must be calculated manually, and can be 

typed directly into the table or loaded manually. The final tab, discussed below, 

automates the calculation of the desired gas concentration mixture into gas flow rates. 

The manual table is designed if the configuration cannot be programmed into the 

software or for other testing purposes.  

The general operation of the gas rig is usually controlled using the automated gas flow 

calculation screen shown in Fig. 6.9. The user is required to only type (or load from a 

spreadsheet) the list of required gas concentrations, humidity levels and times for each 

concentration step. From this information, the flow rates required are calculated for 

the four MFCs in the system.  The concentration of each gas cylinder (as connected to 

the gas rig) must be entered in the upper right corner of the screen. Default values are 

saved in the configuration.  
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Fig. 6.9 – Screen print of an automated gas flow calculation (upper right table) given 

input of the desired gas concentrations (upper left table). The lower diagram 

indicates the function of each section of the VI.   

The flexibility of the gas rig is demonstrated by the options available. The rig must be 

capable of a range of operations (e.g. 5 minute calibration phases to 24 hour stability 

experiments). Options are available to ‘loop’ the flow configuration (to repeat the 

table, until stopped by the user). At the end of the final row of the table, the flow is 

automatically zeroed and the data logging stopped (these options can be disabled as 

necessary).  

6.2 Microcontroller Data Acquisition 

The LabVIEW VI developed above formed the software component of a bench top 

benchmark system for gas sensor testing. The configuration is unsuitable for portable 

applications, requiring a computer and a bulky USB data acquisition unit. The DAQ 

itself is limited to analogue sensor inputs (i.e. measuring a voltage) and therefore 

cannot be used with digital sensors, such as the I2C output from the breath flow meter. 

USB adaptors are available, although these add to the bulk of the system. High quality 
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analogue to digital converters (i.e. at least 12 bit or even 16 bit) are commonplace on 

microcontrollers. The ability to sample both analogue and digital outputs to a high 

degree of accuracy allows microcontrollers to replace the benchtop apparatus used for 

data acquisition.  

A section of the microcontroller code is shown in Appendix D. The code shows how 

the signals are obtained at 200 Hz, and the transmission of the data over a serial (USB) 

connection.  

The Teensy 3.2 (PJRC, USA [5]) was selected as the microcontroller to acquire the 

data from the gas sensors are transfer it in serial format to a computer or smartphone. 

A photograph of the microcontroller is shown in Fig. 6.10. A prototype PCB interface 

board was developed to interface the U.FL coaxial and power connections from the 

gas sensors. Table 6.1 shows the features of the microcontrollers used in this work. In 

the portable breath analyser, Teensy is the only microcontroller utilised, although the 

other listed devices were used in preliminary testing. The Uno [6] was used as an 

interface for commercial CO2 sensors and the Sensirion flow sensor. The Pro Mini [7] 

was used as the microcontroller for the frequency generator chip. The ATtiny85 [8] 

was used to interface the digital temperature/humidity sensor (BME280), discussed 

above, to a serial USB connection. The KL25Z [9] was trialled in initial work, but the 

Teensy device range superseded its functionality and compatibility with other 

programming environments (i.e. LabVIEW etc.).  

 

Fig. 6.10 – Photograph of PJRC Teensy 3.2 microcontroller with micro USB port.  



 VI – Data Acquisition Software 214 

   

Table 6.1 – List of microcontroller devices and specifications used in this work. 

Specification 

PJRC 

Teensy 

3.2 [5] 

Arduino 

Uno  [6] 

Arduino 

Pro Mini 

[7] 

Atmel 

ATtiny85 

[8] 

Freescale 

KL25Z 

[9] 

Microcontroller 
Cortex 

M4 
ATmega328P ATmega328 ATtiny85 

Cortex 

M0+ 

Voltage Supply 

[V] 
3.3 to 5 5 3.3 or 5 1.8 to 5.5 5 

Digital Pins 34 14 14 6 14 

Analog Inputs 

(resolution 

[bits]) 

21 (16) 6 (10) 6 (10) 3 (10) 6 (16) 

Analog Outputs 
1 (12 

bit) 
0 0 0 1 (12 bit) 

Flash Memory 

[kb] 
128 32 32 8 128 

Clock Speed 

[MHz] 
72 16 8 or 16 20 48 

Dimensions 17 × 36 69 × 53 17 × 33 5 × 5  84 × 53 

The Teensy microcontroller offered excellent analogue to digital capabilities, a 16 bit 

interface (the same quality as the NI DAQ used in the laboratory setup). The bit 

accuracy reduced the error in the conversion from the raw sensor outputs to a digital 

format for onward transmission to a data logging device. The CO2 NDIR thermopile, 

MOX VOC sensor, O2 sensor and temperature and humidity sensor outputs were 

recorded in this manner. An I2C input was used to communicate with the SFM3000 

flow sensor. An SPI link was used between the microcontroller and the frequency 

generator chip (AD9837 in the NDIR system).  

6.2.1 Sample Rate 

The output from the CO2 detector is in sinusoidal format, at 5 Hz. The signal 

processing is performed using software algorithms, post data collection. The accurate 

recording of the AC signal is paramount in order to obtain accurate CO2 

concentrations. The Nyquist theorem for digital sampling states that for a sine wave 
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with temporal frequency 𝑓 to be faithfully reproduced, it must be sampled at a 

minimum frequency of 2𝑓 [10]. However, to ensure the 5 Hz wave can be reproduced 

digitally to a very high accuracy the sampling rate of the microcontroller was set 

significantly higher than 10 Hz. A 200 Hz sampling rate was selected, as a balance 

between size of data collected (considering it must be transferred in real time to a data 

logger) and the ability to very accurately reproduce the 5 Hz signal.  

Aliasing, the effect when a high frequency signal is sampled below the Nyquist rate 

and an artificial lower frequency is observed, is not usually observed at low 

frequencies using high sampling rates [11]. The variability in the amplitude of the low 

frequency 5 Hz sinusoid is difficult to measure if not sampled with sufficient precision. 

To select a sampling frequency data was collected at 100, 200 and 500 Hz. Aliasing 

was visible at 100 Hz (i.e. changes in a 0.01 V were not recorded). At 500 Hz a higher 

error rate was observed; the volume of data was too great for a real time plot to be 

displayed and the data to be saved to a file.  

Fig. 6.11 demonstrates the aliasing effect observed with a 2 Hz sinusoid (solid line), 

sampled at four different sampling frequencies 𝑓𝑠. When sampled at 16 Hz in a) the 

wave can be reproduced by linear interpolation (dashed line), linking the sampled 

points (dots). The reliability of the interpolation method is not evaluated and the 

sinusoid does not vary in amplitude. The reduction in quality of the reproduced wave 

is apparent in b), where the sine wave sampled is compared to a saw tooth waveform. 

No aliasing occurs in the above two cases, as the original frequency can be recovered 

using linear interpolation.  

In Fig. 6.11 c) aliasing does not occur, but the resampled wave noticeably deviates 

from the original curve (5 Hz is greater than the Nyquist rate of 2 × 2 Hz = 4 Hz). 

The original frequency is still present but the original waveform is difficult to visualise 

in the sampled format. Aliasing occurs in d), where the sampling frequency is only 0.5 

Hz above the maximum sine wave frequency (constant 2 Hz). In this case a lower 

frequency wave is recorded after linear interpolation. The higher sampling frequency 

set in the microcontroller prevents any deviation between the re-sampled wave and the 

original sinusoid.  
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Fig. 6.11 – Effect of aliasing on a 2 Hz analogue sinusoidal waveform over a 4 s 

period, sampled at a) 16 Hz, b) 8 Hz, c) 5 Hz and d) 2.5 Hz. The original waveform 

is shown as solid line, dots indicate the sampling points and the dashed line shows 

the curve reproduced by linear interpolation [12].   

The Teensy microcontroller has two ADCs and thus can allow two sensor inputs to be 

read simultaneously. To ensure that the FFT processing of the CO2 sensor thermopile 

data can be accurately reproduced, the sampling rate must be constant. The 

microcontroller contains four interval timers. There are a total of 6 sensors to be 

recorded (including the digital flow meter). The sampling rate is set to enable sampling 

at 400 Hz, where two samples are averaged to produce a 200 Hz output.  It is not 

possible to sample to digital sensor at a rate of 200 Hz; instead it is sampled using one 

timer at a rate of 50 Hz. One timer is used to ensure that the collected data are sent to 

a computer or smartphone at a rate of 200 Hz. The remaining two timers (and the two 

ADCs) are used to sample the five analogue sensors, with priority given to the O2 and 
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CO2 sensors. To enable sufficient speed to complete the analogue read operations, the 

bit accuracy was set to 12 bits. The data are transmitted to the data logging device in 

float format (3 decimal places).  

6.2.2 Communication Link 

A USB connection is the standard communication method integrated into all the 

microcontrollers listed in Table 6.1, except for the Pro Mini and ATtiny85 (which have 

only serial connection output, which must be converted to USB). A wired link provides 

a robust and reliable communication protocol between the end data logging device and 

the microcontroller. The USB port on a computer or micro port on a modern 

smartphone usually provides a power source for a slave device (5 V). Although the 

current output is limited (perhaps 500 mA on a USB 2.0 port or 200 mA for a 

smartphone [13]), it is sufficient to power the low-power miniature gas sensors. The 

majority of the current drawn from the system is due to the pump required to sample 

the gas through the side-stream chamber.  

The breath analyser designed in this work aimed to provide a portable solution as an 

alternative to a benchtop based system. A wired USB connection to a smartphone adds 

complexity to the system, although the handheld unit would not require a separate 

power source (battery). Details of the USB link to a smartphone are given in the 

application section below. Bluetooth was found to offer a preferred means of 

connecting to both a laptop computer and a smartphone. The wire-free solution 

enabled comfortable measurements to take place and relies on a standardised 

connection method, often included in laptop computers and smartphones (i.e. no 

drivers required). Bluetooth is not integrated into the Teensy microcontroller, although 

an add-on module (generic HC-05, Hobbytronics [14]) can transmit serial data through 

Bluetooth. The module can operate at 3.3 or 5 V and requires a maximum of 40 mA. 

For both the Bluetooth and USB communications a standard 115,200 kbps rate was 

selected.  

The breath analyser was tested with subjects inside whole room calorimeters. These 

rooms were sealed (air-tight) from the outside laboratory. The Bluetooth link enabled 

the breath analysers to be placed inside the room while the data logging process could 

be monitored from outside. For long experiments, where several hours of data logging 

was required, the data were recorded on a laptop computer.  
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6.3 LabVIEW Breath Analyser Interface 

A LabVIEW VI (2013) was designed for the receiving and saving of the signals 

transmitted from the microcontroller via either Bluetooth or USB. The software was 

installed on both Microsoft Windows 10 and Windows 7 laptop computers. Providing 

that the breath analyser was paired and assigned a serial COM port, the VI could 

connect to the microcontroller via Bluetooth or USB without requiring any re-

programming modification (except specifying the correct COM port). No additional 

software was required on the laptop computers (besides LabVIEW), where the 

Bluetooth pairing and management was performed using the software integrated into 

the Windows operating system or the bundled applications from the manufacturer of 

the laptop as appropriate.  

The software developed in LabVIEW, shown in Fig. 6.12, does not perform any signal 

processing on the acquired data. Post-processing stages are performed in a separate 

script discussed in chapter VIII. The graphs displayed on the front panel display the 

data from the sensors. The flow sensor data are received in a digital format (float value 

of litres per minute). The device was not calibrated during testing, but relied on the 

pre-set factory settings from the manufacturer. The analogue sensors (O2, temperature 

and relative humidity) outputs are displayed in calibrated form. The O2 sensor is 

calibrated pre- and post- each experiment, although the calibration data used in the VI 

are obtained from laboratory bench top experiments (i.e. the graphic display of data is 

for reference only).  The VOC and CO2 sensors are shown in raw voltage format (the 

VOC sensor is not connected in the screen print below). The data (raw data directly 

obtained from the microcontroller) are saved to a TDMS file type, as discussed above.  
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Fig. 6.12 – Screen print of LabVIEW VI showing data acquired from a breath 

analyser using a USB link with a microcontroller. Example breathing for a 1 minute 

period is shown.  

The LabVIEW software was designed to allow robust data logging, without 

consuming computational resources. The lightweight application functioned on a 

range of laptops reliably and was tested for periods of up to 5 hours. The NI base 

software allowed compatibility across a range of versions of Windows operating 

systems. The block diagram LabVIEW code is given in Appendix E.   

6.4 Android Application for Breath Analyser 

Two android applications were developed for recording the data from the breath 

analyser which negated the need for a bulky computer. Android was chosen as the 

target mobile operating system, due to the capability to receive data from either USB 

or Bluetooth sources. Furthermore, there were few restrictions to saving the data and 

a flexible programming environment (Android Studio 1.5.1). Initially an application 

to link to the microcontroller via a micro USB link was developed. A second 

application was later developed to allow Bluetooth communication. The applications 

were both tested on a HTC M8 Smartphone running Android 5. As discussed above 
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with the data acquisition interface written for a computer, the application to record the 

data would not attempt to perform in-depth post-processing, but instead focus on 

reliable and accurate recording of the sensor data.  

6.4.1 Application for USB Microcontroller Link 

A USB link was initially trialled as a simple means of powering the microcontroller 

and receiving sensor data.  The application was split into three parts; a first screen to 

select the USB serial connection; a screen to log the data from the sensors (the VOC 

sensor was not included when this application was developed) and a screen to perform 

basic analysis of the data (post-logging). The application was based around a USB-

Serial library, designed for communication with USB devices plugged into the micro 

USB port on an Android smartphone.  

The application was designed to allow continuous data logging during the period that 

it was open. The screen print in Fig. 6.13 a) shows the main data logging screen. As 

discussed above, the temperature, humidity, flow and O2 sensors are calibrated, 

whereas the raw voltage is displayed for the CO2 sensor. The screen print shown in 

Fig. 6.13 b) demonstrates the basic analysis of the data performed after the logging 

process. The features demonstrated only calculate the peak and minimum values 

across the experimental data. Further signal processing algorithms were not added to 

this version of the application, where the application developed to allow Bluetooth 

communication was preferred.  
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Fig. 6.13 – Screen prints from the Android USB wired data logging application, a) 

Breath data are recorded and graphed in real time; b) Basic data analysis performed 

post-logging, showing the data recorded for the O2 sensor during one experiment.  

The data were recorded to comma separated value (CSV) files, which were stored on 

the memory card inside the mobile phone. The analysis of the data recorded with this 

Android application is transformed from raw quantities to EE and discussed in chapter 

VIII (the analysis performed on a computer). The breath analyser system was 

estimated to have a peak power consumption of 100 mW, however had a noticeable 

effect on the battery life of the smartphone (i.e. power taken through the micro USB 

port). The comfort of using the breath analyser was compromised by the cable link to 

the smartphone. The procedure of comfortably locating the face mask into position to 

form a seal around the face could cause the USB cable (to the smartphone) to become 

disconnected.  

The application was able to successfully log data at 200 Hz. The amount of data 

appearing on the screen was reduced to ~ 8 s to prevent overloading of the device on 

updating the graphical interface (and leave insufficient computational overhead to 



 VI – Data Acquisition Software 222 

   

obtain data from the USB). The user interface was not developed for the application. 

The goal of targeting an easy to use application was not completed. Cosmetic changes 

to the layout of the application could visually improve its appeal and ease of use.  

6.4.2 Application for Bluetooth Communication with Breath Analyser 

In contrast to the application developed with LabVIEW for Windows computers, the 

Android application coded above for USB communication did not support Bluetooth. 

A second Android program was written to allow a wireless Bluetooth link between the 

breath analyser and smartphone. The convenience of a cable-free design enabled the 

user to take comfortable breath samples. Sections of the code programmed to the 

Android smartphone are shown in Appendix F.  

A separate battery was required for the breath analyser, it was of similar capacity 

(~2800 mAh) to that inside a smartphone (but was the dedicated source of power) and 

thus extended the time that the breath analyser could be used without a mains power 

supply (perhaps over 2.5 hours usage). Additionally, as the micro USB port of the 

Android smartphone was not connected to the analyser, the phone could be charged 

while taking measurements (or connected to a computer for debugging purposes).   

The application displayed graphs to show real-time data acquired from the 

microcontroller, in a similar format to the USB application above. A photograph of 

the data being recorded on a smartphone is shown in Fig. 6.14. The application shows 

the output from the O2, temperature, RH and flow in calibrated units. The CO2 sensor 

is analysed in real time, using an algorithm to extract the amplitude of the waveform, 

and this voltage is displayed in the graph (previous applications only showed 

sinusoidal output). The VOC sensor output is shown as a voltage.  The application was 

designed to take 1 minute EE measurements. The calculation performed to obtain the 

value is discussed in a later chapter. The graphs on screen update every 10 samples 

(where an average value is shown). In the output CSV log file the 200 Hz sampled 

data are recorded. The application was found to reduce the performance of the 

smartphone if a higher update rate was configured.  
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Fig. 6.14 – Photograph of a smartphone connected to breath analyser via a Bluetooth 

connection used for taking breath EE measurements and recording data.  

The calibrated value for CO2 is not presented in the application the value shown, e.g. 

a constant value ~ 0.33 V in the screen print in Fig. 6.14, provides an easier to read 

view of the CO2 concentration (previous versions of the application showed only the 

raw sinusoidal signal). A variance of ~0.1 V would be expected for a 5 % change in 

CO2, between inhaled and exhaled gas. The amplitude of the sinusoidal wave 

previously presented in other applications corresponds to the concentration of CO2 to 

which the sensor is exposed. An algorithm to identify the peaks and troughs from the 

sinusoidal waveform is implemented every 120 samples (then the troughs are 

subtracted from the peaks to find the amplitude of the wave).  
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The script does not rely on prior knowledge of the frequency of the waveform (the 

frequency of the aforementioned 5 Hz sine wave can be varied without creating the 

need to modify the script). The code does not rely on a defined number of 

peaks/troughs. The program stores the peaks and troughs that are identified in the 

previous 120 samples. If the number of peaks does not equal the number of troughs, 

the corresponding values are taken from the previous data set. This ensures that there 

are the same number of peaks and troughs. Then the troughs are subtracted from the 

peaks to find the amplitude of the wave. This analysis is less detailed and accurate 

than that performed in the post-processing usually executed on a computer (e.g. FFT 

filtering). However the benefit of a presentable CO2 readout is that the user can 

identify the approximate response from the NDIR sensor in real time.  

The microcontroller is not instructed to send the value from the sensors to the 

smartphone. The timer inside the microcontroller is used, which enables consistent 

sampling of sensor outputs, without reliance on a software timer inside the 

smartphone. If the smartphone application was to close suddenly, or become 

accidently disconnected, then the data logging could be resumed quickly. It was found 

that the high sampling rate required robust acquisition of the signal over Bluetooth. 

The serial data were transmitted from the microcontroller with a new line indicating a 

distinct sample from all the sensors (i.e. 200 lines transmitted per second). The 

receiving application did not rely on detecting a new line break with every 

transmission, as it could become lost. The pattern of the signal was identified, and 

checked against the expected pattern for the 6 sensors. A seventh field was added to 

the end of the serial line, to indicate the time (in ms) since the microcontroller started 

acquiring data. This provided a means of verifying the sampling rate and the data being 

received successfully by the smartphone.   

The application was designed to take 1 minute breath samples from the user of the 

breath analyser. The user first started the application and paired to the Bluetooth 

module by pressing the Bluetooth icon at the top centre of Fig. 6.14. The application 

would then display the sensor data in the graphs (8 s view). Data logging would not 

occur until the user pressed the ‘B’ breath button (top right of the application). A 

countdown of 3 s would appear on the screen, after which the data logging would 

commence and the user should breathe into the device. A countdown (red) bar at the 

top of the application indicates the progression of the 1 minute breath sampling period. 
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At the end of the 1 minute period a message appears immediately, indicating the 

metabolic rate measured over the period. The logged data are stored in a CSV file, 

which can be analysed later (an option in the drop down menu, top right of the 

application).  

The Bluetooth link was found to be a reliable means of communicating with the 

portable breath analyser. The link allowed a range of at least 5 metres without a loss 

in signal quality. The robustness of the connection was not specifically tested, nor was 

any mechanism to store the data at the transmitter implemented. The connection was 

used to test the analyser with subjects in whole body calorimeters, and it was found 

less than 10 samples were lost in a 3 hour experiment. One laptop (with integrated 

Bluetooth transceiver) was capable of connecting to two breath analysers 

simultaneously. To protect against data corruption or loss, in the unlikely event of a 

computer failing, experiments were performed with one analyser paired per laptop.   

6.5 Conclusions 

In this chapter the acquisition software for both computer and smartphone applications 

has been introduced. The LabVIEW VI for control of the bench gas rig has been 

detailed. The gas rig was a fundamental part of creating a breath analyser, where the 

performance of the sensors was assessed prior to their exclusion or inclusion in the 

project. The software for the control of the MFCs was designed for the purpose of 

sensor testing, and therefore included options for generating gas concentrations and 

step changes in environmental conditions as needed to comprehensively evaluate 

sensor performance.  

The gas testing rig was based on 4 MFCs and 1 MFM. Inherently, testing of gases 

implies a low level of risk. The important health and safety criteria were met for every 

gas tested on the rig. A safety sensor was installed in close proximity to the rig. In the 

case of the alarm sounding the procedure detailed in the SSoW would be implemented 

and the rig and gas cylinders secured.  The gas testing rig was used throughout the 

duration of this work with no failures.  

A commercial NI DAQ unit was used to record the output response from the gas 

sensors. The unit provided 32 analogue inputs, allowing a range of sensors to be 

trialled simultaneously. The high quality ADC (16 bit) enabled accurate measurements 

to be taken and did not restrict the signal processing carried out post-logging. The VI 
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written to display and record the samples taken from the DAQ unit was designed to 

allow for up to 9 sensors (differential measurements) to be recorded together. 

Additionally, commercial sensors could also be connected and recorded, with the data 

aligned to a user selectable sampling frequency.  

A LabVIEW VI was also used to connect to the breath analyser developed during this 

project. A Teensy microcontroller was used to acquire the data from the sensors, where 

the affordable device was of suitable size for a portable application (17 × 36 mm base 

dimensions). The microcontroller was selected for its digital and analogue inputs (16 

bit possible) and the ready integration with a smartphone via USB or Bluetooth. The 

VI software allowed a laptop computer to communicate with a breath analyser device 

(wireless or wired). Data logging was performed at 200 Hz, offering consistent reliable 

performance, by either method.  

Two Android applications were developed, where connection to a breath analyser unit 

was possible via Bluetooth or USB. The applications were at the proof-of-concept 

stage, where the user interface did not meet the goal of a pleasant experience, although 

functionality was demonstrated. The smartphone data logger was successfully used to 

record breath samples to a memory card in CSV format. The concept application 

offered a portable solution to breath analysis, where in previous generations a laptop 

computer was generally required.  
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CHAPTER VII 

 

 

 

Side-Stream Breath Analyser 
 

 

Preface 

The mainstream analyser presented in chapter IV was used to characterise gas sensors 

for their response time and sensitivity.  In this chapter a side-stream sampling system 

has been designed, specifically for the measurement of human EE in real-time via 

breath analysis, which was not possible with the mainstream system. The chamber was 

designed to accommodate affordable and miniature gas sensors, and optimise their 

performance (e.g. constant flow rate, less variable levels of temperature and humidity).  

The housing was constructed from polyoxymethylene, a robust but easy to machine 

material. In part, various sub-assemblies were rapid-prototyped to create structures 

that would be impractical to machine using traditional methods. The gas sensors 

developed in this work were installed inside the housing and tested with gas 

concentrations similar to those found in an exhalation (16 % O2 and 5 % CO2).  The 

response of the electrochemical O2 sensor was analysed by comparing a 12 month old 

device to a new product. A time-delay model was constructed to explain the slow 

response of the cell. The calibration procedure for the side-stream system involves 

testing 4 concentrations of CO2 (0 % to 5 %) and 3 concentrations of O2 (21 % to 0 

%).  The performance of the prototype NDIR CO2 sensor was found to be adequate 

for breath-by-breath sampling, although the O2 sensor demonstrated a poor 

performance. 
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7 Side-Stream Sampling 

There are two possible methods of measuring the gas contained in an exhalation in 

real-time; either main- or side-stream sampling. A breath analyser was developed 

utilising the main-stream sampling technique, detailed in chapter IV. However the fast 

flow rate of an exhalation, large dead volume of the main-stream chamber and large 

variance in temperature and humidity prevented an accurate measurement of gases 

contained in an exhalation. The volumetric flow rate in the mainstream can vary by up 

to ± 100 L/min typically [1]. The gas mixing time is increased with a large dead 

volume, which consequently can increase the time for the gas sensors to respond to a 

change in gas concentrations.  Side-stream sampling offers a solution to many of these 

problems, whereby a sample is drawn off the main-stream flow. Thus the flow across 

the remote sensors, which can be located in a separate chamber, can be set at a constant 

rate (i.e. a pump can be used to continuously draw a sample).  

The flow sensor (needed to calculate the volume of an exhalation) resides in the main-

stream tubing (thus calculate the volume exhaled, not the volume through the side-

stream). Assuming the gas exhaled is mixed, the sample taken through the side-stream 

will contain the same concentration of gases as the main-stream mixture.   

The reduced flow rate given to the sensors allows a longer response time for a response 

to be produced. Also, if the flow rate is constant, there is reduced risk of turbulence 

(due to the lower Reynolds number), which would affect mixing time in the sensor 

chamber. It is common for gas sensors to present a level of flow dependence to their 

response (i.e. a baseline shift). High flow rates could damage the sensors (caution is 

advised in the gas sensor datasheets [2,3]), thus a low flow through the side-stream 

will benefit sensor lifetime. MOX and NDIR gas sensors have been reported to be 

sensitive to the flow rate across the devices [4,5]. The flow rate dependence of the 

electrochemical O2 sensor is discussed in section 8.2. The level of humidity in the 

side-stream section can be reduced (i.e. by use of a filter). It is likely a decrease in 

temperature (from body to ambient) will cause the condensation to form in the main-

stream tubing, but it will not affect the sensors located in the side-stream section. The 

temperature is likely to vary less in the side-stream, due to the gas having travelled 

sufficient distance to already have cooled from body temperature to ambient.  
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7.1 Side-Stream Chamber 

The principal purpose of the side-stream chamber is to house the gas sensors for 

metabolic rate analysis. The housing must allow a sample of gas to be extracted from 

the main-stream exhalation. Secondly, the chamber must be lightweight (so the unit 

can be held in the hand) and robust (to withstand an environment outside of laboratory 

conditions). The main exhalation pathway must be low resistance, to reduce the chance 

of taking an EE measurement from affecting metabolic rate (i.e. if the subject has to 

breathe harder to exhale through the system then the consequence will be an increased 

metabolic rate).  

7.1.1 Design of Sensor Housing 

The chamber was designed in Dassault Systemes Solidworks 2015. The design layout 

is shown in Fig. 7.1. The housing was constructed from polyoxymethylene (POM, also 

known as polyacetal), which was selected for its excellent chemical resistance, low 

water absorption and light-weight properties [6]. The material is used in industry to 

machine precision parts, due to excellent dimensional stability. The side-stream 

section was extracted vertically from the main-stream, thus serving as a water drip-out 

area. Any water condensing in the initial section of side-stream tubing can exhaust 

from the device via the main-stream pathway. To provide a comfortable operating 

position, the mainstream flow was extracted horizontally. Significant angular change 

in flow direction can introduce turbulent flow, however it was important to avoid the 

main-stream flow rate and direction from influencing the flow volume through the 

side-stream section.  
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Fig. 7.1 – Diagram showing layout of side-stream chamber. Mainstream and side-

stream flow paths identified for directions of inhalation and exhalation.  

The diameter of the mainstream tubing was kept constant for both the masks and 

mouthpieces (20 mm). The enlarged diameter of the tubing shown on the right-hand 

side of Fig. 7.1 allowed the flow sensor (outer diameter 22 mm) to connect to the 

system. The width of the upper side-stream section was set to 12 mm, which allowed 

a path length of ~10 mm for the NDIR sensor (located at the left end of the diagram).  

7.1.2 Flow Modelling 

To ensure the flow through the device was not turbulent, the design was analysed in 

the Flow Simulation package within Solidworks.  The input flow was entered as 30 

L/min, the maximum flow rate of an exhalation (as shown in chapter III). The outlet 

through the side-stream was controlled by a pump (Micropumps D200) [7]. The pump 

was set to have a flow rate of 150 ml/min as a compromise between flow speed across 

the sensors and time for the sensors to respond. A range of 100-200 ml/min is 

recommended by Hummingbird for the commercial Pm1111E oxygen transducer [2] 

for similar applications. The flow velocity through the device is shown in Fig. 7.2 for 

an exhalation considering atmospheric pressure at the exhaust of the main-stream 

tubing.  
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Fig. 7.2 – Flow simulated through the chamber for the peak flow rate of a resting 

exhalation.  

The simulation demonstrates the need for some length of side-stream tubing prior to 

the sensors (~2 cm) from the main-stream and similarly after a sharp corner (i.e. 90 °) 

in the tubing. Initially, the sensors were placed 1 cm from the corner, but turbulent 

flow was found. Sufficient space was left in the side-stream tubing to reduce the risk 

of turbulent flow.  

The high velocity (reaching 2 m/s in the centre of the main-stream tubing) 

demonstrates the advantage of a side-stream sampling system, where the constant flow 

rate is better suited for the current research generation of gas sensors. The side-stream 

tube is approximately 75 mm long (from join with mainstream tubing to exhaust). The 

diameter of the tube is 2.5 mm, giving a volume of 0.37 ml. At a flow rate of 150 

ml/min, and assuming ideal flow, the volume of the cylinder is drawn through the 

system within 0.15 s (i.e. time delay before the sensors are exposed to the gas from 

the mainstream section).  

The side-stream flow section was designed to house the sensors with a low dead-

volume. The flow simulation shows there is minimal wasted volume between 

sampling from the main-stream and exposing the sensors to the gas. An alternative 

design would be to have a tube connecting a mouthpiece to a sensor chamber. This 

design would further increase the delay in sampling the exhaled gas. Furthermore, for 

a portable system, a fully integrated solution (without modular units) was essential.  
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The NDIR sensor was positioned further away from the turbulent section of the side-

stream flow, as this sensor was noted as being flow sensitive.  

7.1.3 Construction of Chamber 

The finished chamber, constructed in the School of Engineering Workshops at the 

University of Warwick, is shown in Fig. 7.3. In total four chambers were 

manufactured, of which 3 were fully assembled to make the breath analysers.  

 

Fig. 7.3 – Manufactured chamber for the hand-held analyser, constructed from POM. 

The side-stream tubing diameter was 2.5 mm, to prevent the tubing becoming blocked 

by small particles, but would not significantly increase the dead volume of the tubing 

(the section has a volume of ~ 0.4 ml). Particles in exhaled breath associated with a 

healthy human can be in the range of 0.3 to 10 µm [8]. For use in a free-living 

environment, the device has to be resilient against other particles found in an 

exhalation, such as food matter, discussed chapter III, or potentially medication (e.g. 

asthma medicines). Aerosol treatments have been noted to exhibit particle sizes up to 

10 µm [9]. Particles of this dimension are unlikely to obstruct the side-stream path. 

Larger particles from foreign sources may be of similar size to the tubing diameter, 

although it is unlikely that they would be drawn into the side-stream section.   

The NDIR sensor section of the unit was not constructed from the material used for 

the outer chamber. The sensor is designed with a direct path between the thermopile 

detector and IR emitter, through which the flow of the sample gas mixture (i.e. breath 

or air) must travel. A 3D printed module was designed to house the aluminium tubing 

for the sensor, while directing the side-stream flow from the POM chamber through 
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the tube and back into the POM chamber. A sketch of the module is shown in Fig. 7.4 

a) and a photograph of the 3D printed part in b). The add-on part was inserted into the 

square section in the POM housing and sealed.  

 

Fig. 7.4 – NDIR holder to fit inside POM chamber, a) Sketch in Solidworks; b) 

Photograph of 3D printed part. 

7.1.4 VOC Sensor Holder 

The chamber was designed to house the sensors for EE analysis. A sensor for VOC 

analysis was included as an add-on module. A sketch of the part in Solidworks is 

shown in Fig. 7.5 a) and a photograph of the 3D printed part in b).  

 

Fig. 7.5 – VOC sensor holder add-on module to the chamber, a) Sketch in 

Solidworks; b) 3D printed part with the VOC sensor on TO46 header inserted. 

Interface circuit board attached.  
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A 3D printer part was also designed to house the VOC sensor. To ensure a compact 

design, the add-on part was attached to the end of the POM chamber and directed the 

flow across a MOX sensor and then to the pump, via a 3 mm push fit connector. The 

interface board is shown with the VOC sensor in Fig. 7.5 b). The add-on module 

allowed different VOC sensors to be substituted, as necessary, for different thick film 

coatings. The interface board was designed to be compatible with a range of VOC 

sensors, with adjustable resistance via jumper selection (1 kΩ to 1 MΩ).  

7.1.5 Main-stream and Side-stream Sensor Systems 

The initial technical specification preferred a mainstream unit, which did not require 

the complexity of a side-stream system. The sensors available for the project, which 

remain affordable but accurate, prevent a main-stream system being a feasible breath 

analyser. The pump in particular is an undesirable component for a portable analyser. 

A 5 V pump can consume up to 0.48 W and adds audible noise to the sensor system 

(15 dba noise level) [7]. The pump can increase in temperature during a long period 

of operation, which can affect the sensor performance. The response time of the system 

is limited by the side-stream system, with a delay of up to 1 s is possible, from the 

flow requiring time to be extracted through the side-stream tubing. 

In terms of sensor performance, the primary benefit of a side-stream system is the 

reduction in dead volume inside the chamber (in the case of the systems designed in 

this project, a factor of 10 lower). The smaller volume decreases mixing (and thus 

benefits sensor response times) and the size of the overall instrument. The conditions 

in the side-stream, i.e. temperature, flow rate, humidity and contaminants (dust/dirt), 

are stable compared to the variability in the main-stream section. The sensitivity of the 

sensors to abrupt changes in flow rate means their ability to detect changes in gas 

concentration would be compromised. The ideal sensor output would respond only to 

a change in the concentration of a specific gas, whereas a level of cross sensitivity to 

high variances in flow rate, temperature or humidity is expected.   

7.2 Oxygen Sensor Response  

The Alphasense O2 (O2G2) sensor response was tested in the design of the main-

stream chamber. The sensor was found to exhibit a slow response time (𝑡90 of 9.5 s), 

the sensor output was sensitive to flow rate and the sensor was not stable (did not 

return to baseline) for the duration of a 70 minute experiment. For the side-stream 



 VII – Side-Stream Breath Analyser 236 

   

sensor unit a replacement O2 sensor (City Technology MOX-20) was used. The 

manufacturer’s specification for the device indicated a much faster 𝑡90 response time 

of 0.75 s and a stable lifetime of over 12 months [10]. To verify these claims the sensor 

was tested in the laboratory for its ability to withstand changes in temperature, 

humidity and flow rate.  

To compare the ‘aging’ of the sensor (i.e. changes in response characteristics over the 

lifetime of the device), one sensor was purchased at the start of the side-stream 

development (utilised on the gas bench rig) and a second sensor was purchased 12 

months later. A comparison was performed against the two units on the gas bench rig 

(the new sensor was not used prior to the measurements, whereas the older sensor had 

been used weekly over a 12 month period). The sensors were tested by a repeated step 

in O2 concentration from synthetic air (20.9 %) to a 50:50 mixture with N2 (10.45 % 

O2). The list of experiments and the conditions varied are shown in Table 7.1, where 

each step had a duration of 2 minutes. 

Table 7.1 – Experimental parameters for comparison of O2 sensors. 

Adjusted Parameter Constant Conditions 

Temperature [°C]: 

25, 27, 29, 31, 33, 35 
0.5 SLPM Flow, 0 % RH. 

RH [%] 

0, 10, 20, 30, 40, 50, 60, 70  

Elevated 35 °C temperature,  

0.5 SLPM flow. 

Flow [SLPM]: 

0.25, 0.5, 1, 2  

Room Temperature (24 °C),  

0 % RH. 

A chamber was constructed for the testing of the gas sensors subject to varying 

environmental conditions. The aluminium chamber was designed to sit inside a dri-

block® heater (Fig. 7.6). The gas tube inside the chamber spanned the length of the 

chamber twice, to expose the gas to the temperature of the chamber (total length 62.5 

cm). The construction drawing is shown in Fig. 7.7, where the gas piping can be 

viewed. It was assumed that the gas would reach the temperature of the chamber after 

it had passed through the length of piping (a combined temperature and humidity 

sensor was installed in the chamber in close-proximity to the gas sensors to measure 

the properties of the gas received by the sensors).  
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Fig. 7.6 – Photograph of the aluminium chamber to house O2 sensors for the 

experiments, with a temperature and humidity sensor fitted to measure 

environmental conditions.  

 

Fig. 7.7 – Drawing of the aluminium chamber in Solidworks, showing construction 

of the gas tubing and the location of the sensor mounting.  

The total dead volume of the chamber (to the location of the O2 sensors) was calculated 

as 12.3 ml. Assuming ideal plug flow, the gas flow supplied to the O2 sensors would 

be varied as follows (time taken to fill chamber dead volume and reach sensors): 0.25 

SLPM (2.9 s); 0.50 SLPM (1.5 s); 1.00 SLPM (0.7 s) and 2.00 SLPM (0.4 s).  

7.2.1 Flow Dependence 

The flow was varied according to the procedure in Table 7.1, over a range of flow 

rates from 0.25 to 2 SLPM. The un-used sensor is referred to as ‘new’ and the device 

purchased 12 months previously is called the ‘old’ sensor. The experiment was 

repeated for five repetitions (plots in Figs. 7.9 to 7.11 show mean output and standard 

deviation from these repetitions). The average output for both sensors at each flow rate 

is shown in Fig. 7.8.  
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Fig. 7.8 – Response of new and old O2 sensors to step a change in O2 concentration 

at flow rates of 2, 1, 0.5 and 0.25 SLPM.  

The output of the older sensor is visibly lower (i.e. the sensor was less sensitive) than 

the newer device, however the performance of the devices is otherwise qualitatively 

similar. Both devices exhibit a similar voltage decrease to the step decrease in O2 

concentration (~ 0.4 V).  

The average responses are compared in Fig. 7.9, with error bars indicating the variance 

across the five repetitions. When the sensor is operated with a flow rate across the 

sensing area of 2 SLPM a significantly higher output voltage is found, shown in Fig. 

7.9 a). The magnitude of the voltage increase is ~ 0.12 V for the older sensor and 0.15 

V for the newer device, compared to the output voltages in 20.9 % O2 at lower flow 

rates.   
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Fig. 7.9 – Comparison of old and new MOX-20 O2 sensors, a) Voltage output at 

varying flow rates (O2 concentration as specified); b) 𝑡90 response time for the 

sensor to recover to baseline from 10.45 % O2; c) 𝑡90 response time for the sensor to 

reach final value for 10.45 % O2 from a baseline of 20.9 % O2. 

The time response for the O2 sensors is improved at higher flow rates, on average for 

the new device 6.2 s to reach 90 % final output voltage for a 50 % decrease in O2 (at 

2 SLPM), shown in Fig. 7.9 c). At 0.25 SLPM the response time is almost a factor of 

three longer (16.1 s); the time the mixture requires to reach the sensor is longer 

(considering the tube length, ideally 0.4 s for the higher flow rate and 2.9 s for the 

lower). When the sensor is used with a high flow rate the permeable membrane could 

become damaged. The quicker response times demonstrate the chemical reaction 

inside the sensors is also affected. The quicker reaction speed could indicate higher 

consumption of the electrolyte, which would increase the rate of aging of the sensor. 

Furthermore, the delicate internal structures of the sensor could become damaged with 

the high pressure experienced at higher flow rates.  
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The recovery time of the sensor when the concentration of O2 concentration is 

increased is slower than the comparative response time for a decrease in O2. This 

phenomenon is visible independent of flow rate. Fig. 7.9 b) shows that the response 

time for an increase in O2 concentration is affected by flow rate in the same manner 

as the ‘turn on’ time. The 1 SLPM flow rate lowers the response time to ~ 9 s, in this 

case both sensors respond in the same time period, whereas a low flow rate (0.25 

SLPM) decreases the response time to ~ 14.6 s for the new device and 15.9 s for the 

older sensor.  

In the case of the side-stream chamber pump extraction system, a lower flow rate (0.15 

SLPM) was selected. The tubing inside the hand-held chamber is smaller than the test 

chamber as demonstrated in Figs. 7.8 and 7.9. The mixing time for the side-stream 

chamber is less likely to have an impact on sensor response time, the reduced flow rate 

will prevent damage to the sensor membrane or the internal electrolyte barrier inside 

the cell.  

Furthermore, if a pump were to draw a flow of, for example, 2 SLPM through the 

system, the rate of extraction could be similar to the rate of exhalation flow (towards 

the end of an expiration). The end-expiration gas, in pure form, is perhaps the main 

gas of interest for breath analysis, as discussed in section 2.4. In this scenario, the 

pump could force ambient air into the system (through the exhaust of the main-stream 

tubing), which would therefore cause an undesired mixture of end-of-expiration gases 

and ambient air to be created. Thus a low flow rate (0.15 SLPM) was selected, 

although a fast response time is advantageous, the sampling of solely end-expired gas 

is of higher importance.  The increase in response time due to the flow rate is 

somewhat exaggerated in Fig. 7.9, considering the time necessary for the gas mixture 

to reach the O2 sensor through the tubing in the chamber (range from 2.9 s to 0.4 s).  

7.2.2 Temperature Dependence 

Environmental (and sample gas) temperature variance produced less variance on the 

output signal from the O2 sensors compared to flow rate. The devices were tested in a 

dri-block® heater, with temperature stepped from 25 °C to 35 °C in 2 °C steps. The 

experiment was repeated with three repetitions for each temperature. Fig. 7.10 a) 

shows the output voltage of the O2 sensors in relationship to temperature and b) shows 

the corresponding ‘turn on’ and ‘turn off’ response times for both devices. 
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Fig. 7.10 – Response from two oxygen sensors for a change in environmental 

temperature, a) Voltage output from the devices; b) Response time for the devices to 

turn ‘on’ to a step concentration change from 20.9 % to 10.45 %  O2 and ‘turn off’ 

for the opposite increase in O2 concentration.  

The migration of the sensor output was minor for both the older and newer sensors, 

where the output for each device shifted ~ 0.02 V across the range of temperatures 

tested (independent of gas concentration). Exhaled breath temperature (body 

temperature, 36 °C) will cool to a temperature within the range tested once the sample 

of gas reaches the O2 sensor. A temperature and humidity sensor is located 

immediately in front of the O2 sensor to measure the conditions to which the sensors 

are exposed.  

The response times for each sensor resembled the trend shown in Fig. 7.9. The new 

sensor is consistently faster (~ 0.6 s on average) to respond to a step decrease in O2 

concentration, and faster to recover to a baseline O2 concentration (0.7 s). Fig 8.10 b) 

is plotted for comparison with Fig. 7.9 b) and c), and demonstrates that temperature 

does not affect response times. The temperature dependence of the O2 sensor is 

somewhat limited by the design of the cell. Most O2 commercial sensors have a 

capillary restrictor placed at the top of the cell (to which the membrane is attached). 

The capillary causes the temperature coefficient to be considerably reduced [11], as 

the physical gas phase diffusion results in a cell limiting current, where the output is 

related to the square root of the temperature [12]. 

7.2.3 Humidity Dependence 

Humidity is known in MOX sensor development phase as producing a considerable 

effect for semiconductor sensors. Electrochemical sensors are usually more resilient 
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to humidity, where the membrane can act as a barrier to the water droplets. The sensor 

was tested over a humidity range of 0 % (dry) to 70 % RH in 10 % steps. The voltage 

output from each sensor is shown in Fig. 7.11 a) and the corresponding 𝑡90 response 

in Fig. 7.11 b).  

 

Fig. 7.11 – Response from the new and 12 month old O2 sensors to a change in 

humidity condition, a) Voltage output from the sensors; b) Response time for the 

sensors to turn ‘on’ to a step decrease in O2 concentration (20.9 % to 10.45 %) and to 

turn ‘off’ for a step in O2 of opposite direction.  

The voltage output from the gas sensors in a mixture of 10.45 % O2 does not vary by 

a significant margin over the range of humidity from 0 % to 70 % RH. For both sensors 

an output change of ~ 0.03 V is observed. The output level in 20.9 % O2 concentration 

is considerably higher when the level of RH exceeds ~ 40 % than the initial dry or 10 

% RH condition. The new sensor outputs ~ 0.73 V in dry (~ 0.75 in 10 % RH) 

compared to an output of 0.86 V at 40 % RH. At 40 % and above RH (tested to a level 

of 70 % RH) the sensor output is stable.  

The response and recovery times are less affected by the changes in humidity. The 

turn ‘on’ response times (to a decrease in O2) vary only by ~ 5 % during the 

experiments. The turn ‘off’ recovery times vary by ~ 7 % below 40 % RH, but increase 

for both sensors by 50 and 70 % RH (> 10 % change). In general, the response times 

are stable, and the performance of the sensors is not adversely affected by the change 

in RH conditions.  

The variable conditions in RH are most prominent at low levels of RH (< 40 %). In 

the case of breath analysis, the sensors are likely to be operated in a normal room 
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environment (~ 40 or 50 % RH) and be exposed to breath (up to saturated, 100 % RH). 

The experiment in Fig. 7.11 a) demonstrates that the O2 sensors are stable at high 

levels of humidity, and a decline in output occurs only in dry conditions.  

7.2.4 Governing Equations of O2 Sensor Reaction 

A schematic of a low temperature electrochemical oxygen cell is given in a chapter 

III. To understand the delayed response of the O2 sensors shown in the sections above, 

the chemical reaction equations governing the operation of the cell are investigated.  

The reduction of oxygen occurs at the sensing electrode, equation (7.1), which is made 

of a material that complements this reaction (electrocatalysts) [12]. As a result of this 

reaction, electrons are released from the counter electrode, equation (7.2), which 

comprises an anode of readily corrodible metal (e.g. lead). The lead reacts with 

hydroxyl ions, which migrate from the cathode reaction through the electrolyte. The 

overall reaction occurring inside the cell is given by equation (7.3) [13].  

𝑂2 + 2𝐻2𝑂 + 4 𝑒−  →  4 𝑂𝐻− 
(7.1) 

2𝑃𝑏 + 4 𝑂𝐻−  → 2𝑃𝑏 𝑂 + 2𝐻2𝑂 + 4 𝑒− 
(7.2) 

𝑂2 + 2𝑃𝑏 → 2 𝑃𝑏𝑂 
(7.3) 

The life-time of an electrochemical cell is limited by the mass of material in the anode 

electrode. For an O2 sensor this can mean the life-time of the sensor is decreasing when 

the sensor is left in room conditions (with 20.9 % O2), even if the sensor is not under 

test. Once all the material is consumed the sensor will no longer respond to a gas 

concentration change. The failure can occur rapidly, however the expected life-time 

of commercial sensors is usually 12 to 24 months [14]. The Cottrell equation (7.4) is 

used to describe the reduction of the electroactive species [15]. The equation relates 

the Faraday (charge on 1 mol of electrons in coulombs) 𝐹, the electrode area 𝐴𝑒 (in 

m2), the diffusion coefficient 𝐷 (in m2s-1), the concentration of electroactive species 

𝐶∞ (in mol m-3) and the current time 𝑡 (in s).  

𝑖𝐹(𝑡) = 𝑛𝐹𝐴𝑒𝐶∞ (
𝐷

𝜋𝑡
)

1/2

 
(7.4) 



 VII – Side-Stream Breath Analyser 244 

   

The response time of the oxygen sensor was found to be a limiting factor for breath-

by-breath analysis. As demonstrated in the section 3.2.1 above, part of the delay is due 

to the time taken for the gas sample to reach the sensor, and penetrate through the 

sensor membrane. A flow diagram to demonstrate the functionality of the side-stream 

system is shown in Fig. 7.12.  The delay in response was attributed to 3 factors: The 

time to fill the main-stream chamber (‘tank’); the time to fill the side-stream chamber 

(‘SensCham’) and the time for the sensor to respond (‘SensDev’). The delay 

mechanism can be represented as a resistor capacitor (RC) circuit, where three delay 

phases correspond to the above factors. The diagram for the equivalent is shown in 

Fig. 7.13, where the load at the end of the circuit represents the pump located at the 

end of the side-stream.  

 

Fig. 7.12 – Flow diagram to show the side-stream system to be modelled.  

 

Fig. 7.13 – RC equivalent circuit diagram for the side-stream system.  

Kirchoff’s current law was applied to the three nodes of the circuit, as labelled in the 

circuit shown in Fig. 7.13. The resulting equations are shown in (7.5), (7.6) and (7.7), 

respectively.  
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𝐶1

𝑑𝑉1

𝑑𝑡
=

𝑉𝑖𝑛 − 𝑉1

𝑅1
+

𝑉1 − 𝑉2

𝑅2
 

(7.5) 

𝐶2

𝑑𝑉2

𝑑𝑡
=

𝑉1 − 𝑉2

𝑅2
+

𝑉2 − 𝑉3

𝑅3
 

(7.6) 

𝐶3

𝑑𝑉3

𝑑𝑡
=

𝑉2 − 𝑉3

𝑅3
+

𝑉3

𝑅4
 

(7.7) 

The equations were solved numerically in the software package Berkeley Madonna 

8.3.18. The equations were solved over a 6 second period. The circuit allows 

modelling of the first order lag to reflect the diffusion (Fick’s Law) of the gas through 

the sensor membrane and gel electrolyte. The component values for the O2 sensor 

curve shown in Fig. 7.14 are shown in Table 7.2. The output from the O2 sensor was 

normalised to a 0 to 1 scale, to enable the modelling process. Simply, the data were 

scaled by subtracting the minimum sensor output from each output voltage, then 

dividing by the maximum sensor output value. Breath data was used to solve the 

equations, to represent a realistic scenario. The gas rig was unable to simulate a change 

in direction of flow nor a gradual change in gas concentration (only step changes were 

possible).  

The exhalation data were provided by a subject who was requested to breathe at a fixed 

rate of 5 s exhale and 5 s inhale (shown in Figs. 7.14 and 7.15). The subject was 

allowed 1 minute of breathing in this manner to become familiar with the apparatus (a 

second minute was permitted in some cases to ensure the subject was comfortable). 

The data was recorded for a 1 minute period once the subject was accustomed to 

breathing for a cycle length of 10 s (this will be referred to as breathing at a ‘fixed 

rate’).   
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Fig. 7.14 – Model fit created within Berkeley Madonna compared against O2 sensor 

data for an exhalation.  

Table 7.2 – Component values estimated using Berkeley Madonna.  

Component Value 

Time 

Constant 

[s] 

𝑅𝑡𝑎𝑛𝑘 1.24 kΩ 
1.06  

𝐶𝑡𝑎𝑛𝑘 852 µF 

𝑅𝑆𝑒𝑛𝑠𝐶ℎ𝑎𝑚 8.93 kΩ 
1.14  

𝐶𝑆𝑒𝑛𝑠𝐶ℎ𝑎𝑚 12.8 µF 

𝑅𝑆𝑒𝑛𝑠𝐷𝑒𝑣 320 kΩ 
1.01 

𝐶𝑆𝑒𝑛𝑠𝐷𝑒𝑣 3.17 µF 

The component values shown in Table 7.2 were calculated based on restrictions placed 

on the time constant values. The time to fill the mainstream chamber (‘tank’) was 

calculated based on a flow rate of 6.6 L/min and a volume of 96 ml (i.e. the time 

constant for 𝑅𝑡𝑎𝑛𝑘 and 𝐶𝑡𝑎𝑛𝑘 would be expected to be approximately 0.87 s). The time 

to fill the side-stream chamber (‘sensCham’) with a volume of 4 ml and flow 150 

ml/min would be approximately 1.6 s. The model outputs suggest the mainstream 

chamber takes a longer time than expected to fill (1.06 s) and the side-stream chamber 

takes a shorter time (1.14 s). Based on these two time delay estimates, to fit the model 

to the sensor output response, the sensor would take 1.01 s to respond (‘SensDev’).  

The exhalation data and modelled curve demonstrate a similar shape for the initial 5 

s, although the final second is not represented accurately. The model data continues at 
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a steady gradient decrease, whereas the sensor output decays to a steady value. The 

modelling process was repeated, except without requesting the subject to breathe at a 

fixed rate (instead, breathing naturally, and calmly, with some time allowed for 

familiarisation). A commercial CO2 sensor was included in the system (SprintIR) for 

comparison. The calibrated outputs from both the O2 sensor (MOX-20) and the CO2 

sensor are shown in Fig. 7.15.  

 

Fig. 7.15 – Subject breathing through the side-stream device, output from the O2 and 

CO2 sensors.  

The sensors were found to respond to the breath cycles, with O2 concentration varying 

from 20.6 % (ambient) to 16.63 %, and the CO2 from 0 % (ambient) to 2.71 %. The 

measurements show considerable intra-subject variation, where concentrations in each 

breath differ. Using the RC model shown in Fig. 7.13, curves were fitted according 

the response from each gas sensor. The fitted curves, Fig. 7.16, show reasonable 

approximations; regression coefficients R2 of 0.990 and 0.991 with RMSEs (root mean 

square errors) of 0.029 and 0.032 for the O2 and CO2 sensors. The high R2 values 

suggest a good model, but a poor fit to the shape of each response curve was noted. 

The final 0.5 s of the curve was poorly fitted, similar to the shape identified in Fig. 

7.14.  
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Fig. 7.16 – Scaled (0 to 1) responses from the O2 and CO2 sensors for an exhalation, 

with fitted delay model outputs.  

 A step-input was used to generate the exponential output from the model. It was noted 

that an input function better suited to the complex wave shape of exhaled gas flows 

would be more realistic. However, when the output from the flow sensor (which 

exhibited a fast response) was analysed the accuracy of the fits did not improve, but 

worsened considerably (RMSEs of 0.027 and 0.029 for the O2 and CO2 sensors, 

respectively). An example of the flow sensor output is shown in Fig. 2.7; an example 

of the normal flow cycle expected during breathing is shown in Fig. 2.10. A step input 

was used for the modelling process in general, as the additional noise associated with 

the flow sensor output was transferred to the model in cases of abnormal exhalation 

patterns.  

7.2.5 Design Considerations 

A slow response was found from both the MOX-20 O2 sensors compared to the 

necessary fast response for breath-by-breath analysis. During the modelling phase of 

the project, a commercial rapid response medical O2 sensor was not available for 

comparison. The models created from the RC circuit demonstrated that the sensor 

performance was largely due to a simple time delay, which occurred during the mixing 

of the gases in the sensing chamber and the transmission of the oxygen through the 

membrane on the sensor. The lowest time delay (Table 7.2) was noted to be from the 

O2 sensor itself (1.01 s), compared to the time delay through the tubing (mainstream 

1.06 s and side-stream 1.14 s). When a subject breathes through the device, the gas 

exhaled must propagate a considerable distance (perhaps 200 mm of tubing) to reach 
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the gas sensors. It is this delay which can be modelled as a simple time delay, where 

the exhaled gas is not presented to the sensors for perhaps 2.2 s.   

The MOX-20 sensor was selected for further development in the hand-held breath 

analyser, for its considerable performance improvement over the Alphasense O2G2. 

The fundamental operation of electrochemical cells limits their application in fast-

response equipment. The devices are widely available and affordable, which is not 

true of typical medical O2 sensors, which operate on a paramagnetic basis [16].  

The range of experiments performed with varying humidity, temperature and flow 

(Figs. 7.9, 7.10 and 7.11) demonstrate the electrochemical cells are flow dependent, 

but resilient to the temperature and humidity in a side-stream system. The constant 

flow rate, set by a pump, in a side-stream system combats the decline in performance, 

which would be exhibited in a main-stream system, with varying flow rates between 

an inhalation and an exhalation. The decrease in performance caused by the aging of 

the cell over a life-span of 12 months is not unexpected from the guidelines given by 

the manufacturer [10], where the cell typically drifts by < 10 % over a one-year period 

in ambient air. The experimental evidence comparing a sensor that has been used for 

12 months and a new sensor are not dissimilar to the datasheet performance life-span. 

The results from the experiments show that the oxygen sensor cannot be used in a 

breath analyser for longer than a 1 year period. The drift visible over a 12 month period 

highlights the need for a form of calibration to be undertaken, perhaps monthly (the 

linear drift visible in sensor performance indicates a calibration with room air could 

be sufficient to indicate the decrease in sensor performance). At the current stage of 

development, the performance of the oxygen sensor should be monitored, with the 

sensor calibrated regularly to analyse long-term usability. The membrane of the sensor 

could potentially become blocked over time (with matter from an exhalation) and 

should be monitored during the prototyping phase of the breath analyser.  

The unit is easily powered from a single USB port, with a maximum current draw of 

410 mA (average 370 mA). The pump contributes ~ 25 % of the total power 

consumption (100 mA). The Bluetooth wireless module was selected for miniature 

size and compatibility with the microcontroller, thus the power consumption was 

higher than devices compliant with the Bluetooth low energy standard. When the 

module is searching for a paired device current draw can peak at 50 mA.  
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7.3 Side-stream Gas Bench Rig Experiments 

The POM chamber was tested against gas concentration mixtures of O2 and CO2 within 

the gas rig at the University of Warwick to assess the performance of the side-stream 

mechanism. Sensors for flow (Sensirion SFM3000), temperature and humidity (GE 

Chipcap 2), CO2 (prototype NDIR device) and O2 (City Technology MOX-20) were 

installed into the sensor chamber, shown in Fig. 7.17. The electronics and 

microcontroller used for data logging are not shown in the photograph. To test the 

chamber from a gas bench source (not a human breath) a cap was fitted onto the end 

of the flow sensor (to a Swagelok connector) and a push fit connector was connected 

to the end of the side-stream tube (pump removed).  

 

Fig. 7.17 - Photograph of the breath analyser with sensors for flow, temperature, 

humidity, CO2 and O2.  

The exhaust from the main-stream was temporarily sealed, so the flow would only 

exhaust through the side-stream. A cap was fitted in the outlet of the mainstream 

section, thus the mixing in the tubing remained unchanged. To ensure that the gas from 

the rig did not vent into the laboratory, the exhaust from the side-stream section was 

connected to the MFM in the gas rig.  The Teensy microcontroller was used to record 

the data, which was connected to a computer via a USB interface. The unit was 

powered solely from the USB connection.  

The O2 and CO2 sensors were tested in the side-stream experiments as a calibration 

for breath measurements. The calibration procedure was repeated prior and post each 

breath experiment. The flow rate was set to 0.15 SLPM to equal the flow generated by 
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the pump. The O2 sensor was calibrated to three concentrations (0 %, 16 %, and 21 %) 

for 5 min each. The CO2 sensor was calibrated to four concentrations (0 %, 1 %, 2.5 

% and 5 %) for 1 min each. A minimum of four points were necessary due to the 

exponential type calibration curve reducing in accuracy with a lower number of points 

(the curve is better defined). Fig. 7.18 shows one result for the O2 sensor raw voltage 

output, from a 25 min calibration experiment. The result for one CO2 calibration 

experiment is shown in Fig. 7.19. The amplitude of the sinusoidal (5 Hz) signal for the 

sensor has been extracted from the raw voltage output.  

 

Fig. 7.18 – O2 sensor calibrated with 3 gas concentrations.  

The electrochemical O2 sensor has been reported to drift over a period of months. The 

calibration experiment allows this drift to be compensated. The result shown in Fig. 

7.18 (performed with a device 3 months old) demonstrates the sensor produces an 

output of 0.89 V in synthetic air and 0.002 V at 0 % N2.  
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Fig. 7.19 – CO2 sensor calibrated with 4 gas concentrations.  

The sensor was left for a 5 min period to stabilise at each concentration. The 𝑡90 

response time of the sensor was measured as 15.2 s for the step change input from 20.9 

% to 0 % O2.  The average sensor voltage for the final 2 minutes of each concentration 

step was taken as a calibration reference. A linear fit was applied to the sensor output, 

as shown in Fig. 7.20 a). The raw sensor output shown in Fig. 7.18 was entered into 

the calibration equation to produce the output in terms of percentage O2, as shown in 

Fig. 7.20 b). This procedure was repeated for each experiment and for each O2 sensor.  

 

Fig. 7.20 – Oxygen sensor calibration procedure, a) Calibration line calculated for 

raw voltage data; b) Calibration equation applied to the raw sensor voltage output.  
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The CO2 sensor was calibrated for the average output for the last 30 s of each 

concentration step. The prototype NDIR device had a 𝑡90 response time of 11.5 s for 

the 1 % step in CO2 concentration. Both the O2 and CO2 sensors demonstrated longer 

response times (a significant increase of 5 s). The delay in the response time is in part 

due to the slow mixing that takes places in the tubing necessary to connect the hand-

held unit to the gas testing rig MFCs (~20 cm length). The tube (1 mm inside diameter) 

was approximated to a pure time delay. An exponential calibration curve was 

calculated for the CO2 raw voltage output, as shown in Fig. 7.21 a). The calibrated 

sensor output is shown in Fig. 7.21 b). The sensor demonstrates a reasonably noise-

free output, although at the higher concentration steps (2.5 and 5 % CO2) noise of 

magnitude 0.02 % is visible. The fluctuations are likely due to the measurement system 

rather than gas mixing, as they are particularly noticeably ~20 s after the start of each 

concentration step.  

 

Fig. 7.21 – Carbon dioxide sensor calibration procedure, a) Calibration curve 

calculated for raw sensor voltage data; b) Calibration equation applied to raw sensor 

output.  

7.4 Side-stream Laboratory Breath Tests 

The necessary ethics approval for these breath tests was obtained prior to any 

experiments being performed. The submitted request forms and final letter granting 

permission for such experiments to be performed at the University of Warwick are 

shown in Appendix B.  

The side-stream system was initially tested with a slower, fixed breathing rate; subjects 

were asked to breathe to a constant breathing pattern, with equal exhalation and 

inhalation time period. For the initial experiments, the data were recorded via a wired 
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connection to a computer. A smartphone connection was possible with a wired USB 

connection, shown in Fig. 7.22 a), or via wireless connection, Fig. 7.22 b). For short 

wireless measurements, total duration, under 30 minutes, the unit was powered with a 

small 500 mAh battery, which is visible on the right side of the photograph (3.5 × 3 

× 1 cm). A larger battery (2800 mAh, 7.5 × 2 × 2 cm) allowed for measurement 

durations up to 2.5 hours. The microcontroller was powered from the battery, which 

was used to power the sensors and pump. The 5 V output from the battery was passed 

through a 5 V regulator. The VOC sensor (in a 3D printed holder) is visible at the end 

of the side-stream section in Fig. 7.22 b).   

 

Fig. 7.22 – Photographs of the hand-held analyser when used, a) With wired 

connection to Smartphone; b) With wireless Bluetooth connection.  
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The subjects were not asked to perform any breath manoeuvres, only to maintain a 1:1 

inhale:exhale ratio for a period of 1 minute. In the initial trials, subjects in the 

laboratory were asked to reduce their breathing ratio to 6 times per minute (i.e. 5 s 

exhale and 5 s inhale). After a one minute break, a second sample was taken at 10 

breaths per minute (the value common for a normal adult per minute at rest), again 

with fixed cycle ratio. A mask, shown in the photographs above, was preferred to a 

mouthpiece/nose clip arrangement. The mouthpiece was found to encourage 

salivation, which increased the water content in the exhalation.  

The masks were chosen as a comfortable means of breath sampling. The masks were 

sourced from SP Services Ltd. (Telford, U.K.) and two sizes, medium (RE/072) and 

large adult (RE/071), were offered to the subjects. The outlet from the mask was a 22 

mm inner diameter tube, to which the flow meter was directly connected.  The data 

were logged at 200 Hz for all of the sensors in the unit, as discussed in the chapter VI. 

The output from the O2 and CO2 sensors is shown in Fig. 7.23. Section a) of the figure 

shows the sensor responses when the subject was breathing at 6 breaths per minute 

and b) shows when the subject was asked to increase their breathing rate to 10 breaths 

per minute.    

 

Fig. 7.23 – Subject breaths through the breath analyser for period of 1 minute, a) At 

a breathing rate of 6 cycles per minute; b) At a rate of 10 cycles per minute.  

The O2 sensor was not able to measure the change in oxygen content with high 

accuracy during a breath when the subject was exhaling at 6 breaths per minute. The 

sensor did not reach a plateau at the end of each exhalation, nor did the output return 

to the baseline value (ambient conditions expected of 20.6 %) during inhalation 

periods. During these periods the sensor measured 20.25 % O2 on average for the six 
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inhalations shown in Fig. 7.23 a). The average value of the sensor output during 

exhalation was 17.27 %, compared to an expected decrease in O2 concentration of 

between 4 and 5 % for a resting adult exhaling.  

The O2 sensor demonstrated a similar lack of accurate breath-by-breath performance 

when the subject was asked to exhale at a rate of 10 breaths per minute, shown in Fig. 

7.23 b). The sensor averaged a final output of 18.1 % when the subject was inhaling, 

with no plateau. During inhalation, the sensor returned to an average value of 20.1 %, 

compared to the initial baseline of 20.6 %. The initial exhalation trough was 16.5 %, 

compared to the final three exhalations of ~ 18.6 % O2. The exponential upward trend 

demonstrated for the O2 sensor in both Fig. 7.23 a) and b) in exhaled O2 content is due 

to the physiological and psychological effect of breathing into an apparatus. Although 

the main-stream tubing of the device was designed to add the least resistance, 

breathing into any mask causes an increase in respiratory resistance.  

The psychological effect of the mask on the face also causes the first exhalations when 

using the device to be larger than found during normal breathing (perhaps ~1 min). 

The effect is prominent on the O2 sensor, with a slow recovery time, as the user 

becomes accustomed to breathing through the device. The CO2 demonstrates a ~ 0.7 

% increase in exhaled concentration for the initial breath, although it recovers quickly 

to a normal exhaled value. The exponential trend notable in the O2 sensor output is not 

visible. It is likely the level of CO2 exhaled does not change as significantly as the O2 

exhaled when the user is breathing abnormally. To avoid the familiarisation effect (the 

user becoming accustomed to breathing through the mask) at least a 1 minute period 

was allowed prior to the start of exhalation measurements to ensure that the user is 

comfortable with breathing through the device.   

The CO2 sensor performed adequately with regard to the measurement of each breath, 

demonstrated in Fig. 7.23 a) for a subject exhaling at 6 breaths per minute. The sensor 

output returned to a baseline of approximately 0.4 % CO2 during inhalation periods. 

The average concentration over the six exhalations was 3.88 %, compared to an 

expected increase of between 4 and 5 % for an adult. The noise level shown for the 

CO2 sensor in Fig. 7.23 a) is on average ~0.4 %, in part due to a slow read-out rate. 

The sensor is only driven at 5 Hz, thus five readings of CO2 concentration are taken 

per second. With a limited number of readings, digital filtering techniques (e.g. 
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moving average) are not effective; anomalies in the sensor response are therefore 

unlikely to be filtered out.  

The noise level present in the CO2 sensor when the subject was breathing at 6 breaths 

per minute is reduced (~ 0.15 % on average). The cleaner result could indicate that the 

natural breathing rate is more stable and comfortable for the subject (i.e. a regular 

breathing pattern promotes a smoother transition from inhaling to exhaling). The 

highest level of noise on the CO2 sensor output in Fig. 7.23 a) often occurs after the 

exhalation stage begins. The concentration of CO2 exhaled in Fig. 7.23 b) is lower on 

average (3.71 %) compared to a) due to the faster breathing rate. The baseline of 0.4 

% CO2 is maintained throughout the experiment (the initial value and during inhalation 

periods).  

To verify the output from the CO2 sensor it was tested against a commercial device 

(Hummingbird IR3107) IR sensor. A subject was asked to breathe with an equal inhale 

and exhale ratio and an overall period of 6 s. The O2 sensor data were also recorded, 

but a commercial device for comparison was not available. The results obtained were 

consistent with the experiments in Fig. 7.23; the results from a second subject are 

shown in Fig. 7.24. The CO2 comparison data are shown in a) and the O2 sensor output 

in b).  

 

Fig. 7.24 – Side-stream analyser tested with subject exhaling at 10 breaths per 

minute, 90 s data shown, a) Comparison of the prototype NDIR sensor against a 

commercial device (Hummingbird IR3107); b) Corresponding O2 sensor output.  

The CO2 sensor captures the exhalations well, demonstrating a similar performance to 

that of the commercial device. The 𝑡90 response time was on average 1.7 s for the 
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research device. The commercial device offers a 𝑡10 to 𝑡90 response time of around 

100 ms [3]. Comparison between the commercial and research sensors yielded a 

variance of 0.29 % for a 95 % confidence interval. The mean recorded CO2 value 

across the 10 breath samples was 4.70 %, which is in the expected range for a normal 

subject of between 4 and 5 %.  

The research CO2 sensor demonstrates similar performance to Fig. 7.23, where a 

plateau is not reached at the end of each exhalation. The sinusoidal drive rate is limited, 

as discussed previously. If the 5 Hz drive frequency was increased to 100 Hz there 

would be a far greater number of samples per breath. The dimensions of the SOI 

CMOS IR emitter are related to the response time of the device. The larger emitter 

size chosen in this work provides greater emissivity for higher detector response, but 

prevents the faster drive signals desired for a reduction in noise and greater 

measurement rate.  

The O2 sensor performance, Fig. 7.24 b), is similar when compared to the data for the 

previous subject in Fig. 7.23. The baseline concentration of O2 is ~ 20.4 % in this 

experiment; the sensor does not return to this value during the inhalation period (when 

the sensors are exposed to ambient room air). The sensor could be affected by the 

elevated level of humidity of an exhalation (peak measured of ~ 80 % in side-stream 

chamber after an exhalation). Furthermore, the minimum O2 concentration in normal 

subjects is expected to be in the range of 16 to 17 % in exhaled breath. In the case of 

the 10 exhalations shown in Fig. 7.24 b), the average exhaled O2 content was 18.7 %.  

The mean O2 concentration measured during inhalation is 19.5 %. The cause of the 

inadequate response could perhaps be due to the detection principle of the sensor. The 

electrochemical device measures O2 concentration through a reaction inside a gel 

solution. The reaction rate is slightly slower as the device ages. If the device is tested 

on a large number of subjects the sensor could require cleaning. It is possible that a 

filter could be installed in the side-stream tubing to prevent particulate matter from 

affecting sensor performance.  

7.5 Conclusions 

The side-stream chamber designed in this work was used to measure concentration of 

O2 and CO2 exhaled. The design of the chamber was optimised in computer aided 

design software, and the flow through the chamber analysed. For a resting exhalation, 
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the main-stream flow can reach 30 L/min (assuming the subject is relaxed, as per the 

requirements for resting EE measurement), compared to the side-stream extraction 

(controlled by a pump), which was specified at 150 ml/min. The vertical extraction 

tube was created to ensure the level of humidity in the side-stream section was not 

increased by condensing water vapour. Furthermore, the 90 ° pipe prevented large 

flow variation in the side-stream section, which would be detrimental to sensor 

performance.   

The main body of the chamber was constructed from POM, which was noted as a light-

weight but durable material. POM is convenient for prototype constructions, easy to 

machine and resilient to gases. The smooth finish to the chamber allowed subjects to 

hold the device comfortably and while in the development phase, no additional cover 

was used. The VOC sensor and NDIR sensor had rapid-prototyped components, which 

enabled integration into the POM chamber. The dimensions of the chamber were based 

upon the need to extract a laminar flow from breath and the 10 mm path length required 

by the NDIR device.  

The electrochemical O2 sensor was tested against varying flow rates (0.25, 0.5, 1.0, 

2.0 SLPM), temperatures (25, 27, 29, 31, 33, 35 °C) and levels of humidity (0, 10, 20, 

30, 40, 50, 60, 70 %). Humidity and temperature had little impact on performance, 

compared to flow rate. For a new (unused) sensor the output voltage was seen to 

increase from 0.8 V to 0.95 V when in conditions of 20.9 % O2 with flow varied from 

0.25 to 2 SLPM. The environmental parameter variance experiments demonstrated the 

need for the device to be used in only a constant flow rate situation, although 

temperature and humidity were less critical.  

The 𝑡90 response time for the O2 device was increased from ~9 s to 14.6 s (turn-on for 

20.9 % O2) when the flow rate was decreased from 2.0 SLPM to 0.25 SLPM. The slow 

response time (compared to < 2 s for the CO2 sensor) promoted the need to model the 

output from the O2 sensor. The output was compared to a resistor-capacitor circuit (3 

stage). The 3 delay phase model exhibited similar characteristics to the O2 sensor 

response (R2 of 0.990), although the final stage of the response (given 6 s of data) was 

not well represented. The RC model did not start to plateau, whereas the exponential 

output from the O2 sensor started to reach a final value. The O2 sensor performance 

was not significantly affected by aging (although < 10 % drift is likely), the 𝑡90 
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response time was similar (15.9 s at 0.25 SLPM). The device may not need regularly 

replacing, although calibration may be required in-frequently to monitor the level of 

drift.  

Calibration was performed prior to each measurement with the hand-held analyser for 

levels of O2 (20.9, 16, 0 %) and levels of CO2 (0, 1, 2.5, 5 %). The O2 sensor output 

followed a linear trend, whereas an exponential trend was found for the CO2 sensor. 

The side-stream analyser was connected to the gas rig (without a pump) for calibration 

(due to the low 1 SLPM flow rate from the gas rig being insufficient to replace the 

main-stream flow from an exhalation). The t90 response times were noted to increase 

by 5 s due to this change in measurement technique.  

One minute breath samples were taken from subjects in a laboratory environment to 

test the performance of the side-stream analyser. In this initial testing, the subjects 

were asked to inhale and exhale with a 1:1 time ratio of either 3 s or 5 s (i.e. 10 breaths 

or 6 breaths per minute). For the results presented for one subject breathing slowly, 

the average exhaled concentrations were 17.27 % and 3.88 % for the O2 and CO2 

sensors respectively. The O2 sensor output exponentially trended upwards over the 

duration of the 1 minute experiment. When the subject was asked to breathe at the 

faster rate the average O2 and CO2 concentrations were 18.1 % and 3.71 % 

respectively. The notable decrease in the O2 sensor output (0.83 % compared to 0.17 

% for the CO2 sensor) demonstrates the slower performance of the O2 sensor can 

prevent the final O2 concentration from an exhalation being detected.  

In the laboratory breath tests, the environmental temperature was controlled (to within 

1 °C). In the post-processing of the EE results the data recorded from the temperature 

and humidity sensor can be used to compensate for environmental changes. The 

environmental temperature is unlikely to vary significantly over a 1 minute period, 

although measurements taken periodically (over a number of hours) would benefit 

from temperature normalisation.  

The CO2 sensor was compared to a commercial device (Hummingbird IR3107) when 

another subject was asked to breathe through the device for a 1 minute period (6 s 

breath cycle). The prototype device compared well to the commercial product, a 

variance of 0.29 % for a 95 % confidence interval was found. The O2 sensor 

demonstrated a similar performance to previous tests, although an exponential 



 VII – Side-Stream Breath Analyser 261 

   

decrease was found for this subject. The trend was less prominent for the CO2 sensors. 

The exponential trends in the sensor outputs are in part due to the user becoming 

familiar with breathing through a mask into an apparatus. In future measurements, the 

users will be allowed at least a 1 minute period to become accustomed to the 

equipment before the gas concentrations are sampled.  

The performance of the hand-held analyser was in-part adequate for breath analysis of 

EE. The CO2 sensor performed similarly to a commercial device, although the O2 

sensor was not satisfactory. Affordable O2 cells are often based on an electrochemical 

principle. The reactions inside the electrolyte gel limit the response times of the 

sensors. In the next chapter the analyser is tested on subjects in respiratory chambers. 

Although the response of the O2 sensor is limited, the performance was a significant 

improvement over similar commercially available electrochemical cells (e.g. 

Alphasense O2G2, tested previously). 
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CHAPTER VIII 

 

 

 

Energy Expenditure Analysis 
 

 

 

 

Preface 

Three hand-held analysers were developed to test subjects against a reference whole 

body calorimeter. Two measurements were performed simultaneously with two 

handheld units and two respiratory chambers. A unit comprising commercial O2 and 

CO2 sensors was also tested. The resting EE of 10 subjects was tested, with EE 

measurements taken on the hand-held units every 20 min (for a 3 min period). The 

prototype analysers were found to overestimate the EE of 9 subjects by +2.4 % (one 

subject was excluded due to discomfort). The Harris-Benedict equation was used to 

calculated the BMR for each subject, but was found to overestimate this by +41.5 % 

on average. The smartphone companion application is tested, when EE is measured 

outside of a laboratory environment. A large variance in EE (0.65 kcal/min) was 

found, demonstrating the need for strict measurement protocols to calculate resting 

EE. The side-stream analyser, developed in Chapter VII, provided good estimates for 

the energy requirements of the 10 subjects, although further work is required to 

investigate the individual components of total daily EE. 
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8 Resting Energy Expenditure Measurements 

The portable EE analyser developed in this thesis was trialled against a whole body 

calorimeter, the current gold-standard for metabolism measurement [1]. The 

performance of the instrument was verified with 10 subjects tested inside respiratory 

rooms. The subjects remained seated and relaxed throughout the 3 hour experiment to 

assess resting EE. The breath data collected were recorded wirelessly using a laptop 

computer as the subjects were isolated inside the rooms.  

The portability of the hand-held unit was utilised, when EE measurements were 

performed with a smartphone, outside of a laboratory environment. EE was assessed 

over the period of an office day (free-living), with measurements taken hourly. The 

increase in EE due to eating a meal and physical activity was observed during daily 

living. An example use of a portable and quick measurement system is for 

measurements of the DIT component of EE, notable after a meal is consumed. The 

period of a time that the DIT component influences total EE is dependent on the 

content of the meal consumed, as discussed in section 1.2.  

Westerterp reported the postprandial rise in EE lasts for several hours and is 

completely terminated approximately 10 hours after the last meal, although there is 

disagreement regarding the length of the period [2]. The amount of carbohydrates, 

protein and fat in the meal effects the length of the period the DIT component is 

increased. It has been reported peaks in blood glucose levels occur after approximately 

1 hour post-eating due to the consumption of carbohydrates, 2.5 hours due to protein 

consumption and 3.5 hours for fat consumption [3].   

8.1 Resting EE Experiment Methodology 

The side-stream analyser, detailed in the previous chapter, was tested against a 

respiratory room calorimeter at the Human Metabolism Research Unit (HMRU), 

University Hospitals Coventry and Warwickshire NHS Trust (UHCW). Two hand-

held analysers were tested within two respiratory rooms simultaneously (one spare 

analyser was available). The side-stream analysers were cased in plastic housings to 

ensure that the sensors were not damaged during their use with volunteers (photograph 

Fig. 8.1). The enclosure was lightweight, but sturdy, and enabled the unit to be held 

easily in the hand. An exhaust, from the mainstream, was 3D printed with a 22 mm 
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outer diameter for additional tubing to be connected. A mask was connected directly 

to the flow meter inlet. A micro USB port on the end of the device was used to power 

the device (via a USB power supply) and, when desired, to communicate with the 

device via a wired connection.  

 

Fig. 8.1 – Photograph of hand-held breath analyser, installed in a robust enclosure 

for monitoring of EE inside respiratory chambers. Battery power available for 

portable measurements.  

8.1.1 Commercial Sensors in Comparative Side-Stream Unit 

To assess the breath-by-breath sampling of the hand-held units, a side-stream analyser 

was constructed, containing commercial sensors.  A photograph of the unit is shown 

in Fig. 8.2, with a commercial O2 sensor (Hummingbird Pm1111E), commercial CO2 

sensor (Hummingbird IR3107), microcontroller (Teensy 3.2) and 150 ml/min pump 

(Micropumps D200). The unit connected was to a computer via a wired USB 

connection. The LabVIEW VI developed for the hand-held analyser recorded the data 

from the microcontroller (200 Hz). A 3D printed adaptor (shown on the right of Fig. 

8.2) enabled a side-stream sample to be taken from the exhaust of the hand-held 

analyser. The O2 sensor functioned via the paramagnetic principle, thus had to be kept 

on a stable surface during operation.  
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Fig. 8.2 – Photograph of additional side-stream analyser, consisting of commercial 

sensors for comparison against the prototype hand-held breath analyser.  

8.1.2 Measurement Protocol 

Ten volunteers were recruited for measurements inside the respiratory rooms. The 

measurement protocol allowed drinks of water, but asked subjects to fast for a 

minimum of 6 hours prior to the start of measurements. The subjects entered the 

chambers and were seated comfortably in chairs (without caster wheels). The aim of 

the experiments was to assess resting EE, as a baseline comparison between the 

respiratory rooms and the side-stream instruments. The volunteers were asked to relax 

and remain awake, but remain still and make minimum movement; reading or 

watching television were suggested activities.  

The subjects, once comfortable inside the rooms, were instructed on how to use the 

measurement apparatus. In one room, assigned at random, the side-stream instrument 

with commercial sensors was connected in parallel to a hand-held analyser. In the 

other room, the side-stream analyser was separate to the hand-held analyser. In this 

room measurements were taken twice, alternately the hand-held unit followed by the 

analyser with the commercial sensors. The rationale for the experiments was 

explained, emphasising the need for the subjects to remain relaxed and still for a 

resting EE measurement. The subjects were asked to practice breathing through the 

hand-held analyser and the need for the mask to be sealed against the face was 

explained. The subjects were asked to breathe in a normal manner, without or 

increasing their breathing rate or tidal volume. Subjects were asked to remove glasses 

if they obstructed the seal of the mask around their nose.  
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The experiments were performed over a 3 hour period, with 30 minutes prior to this 

to allow for the chambers to stabilise. Every 20 minutes the subjects were instructed 

via an intercom to breathe through the analysers. A 3 minute measurement was taken 

(although data were recorded continuously throughout the experiment). At the end of 

the measurement period the subjects were told to stop breathing through the apparatus. 

In the room where the hand-held analyser and side-stream commercial sensor system 

were tested separately, the subject was also instructed which device to use first. After 

the 3 minute period, the users were instructed to switch apparatus and breathe through 

the other device. After a second 3 minute period the subject was told to return the 

apparatus to the desk.  

8.1.3  Collection of Data 

The LabVIEW VI, discussed in chapter VI, was used to capture the data from the 

hand-held units. A wireless Bluetooth link was used to communicate with the 

analysers, which were isolated inside the chambers. The devices were powered by 

mains power USB supplies. A laptop was used to record the data from each unit, where 

the storage capacity of a computer was preferred over a smartphone for the 3 hour long 

experiments. Table 8.1 summarises the sensors incorporated into each breath analyser.  

Table 8.1 – List of sensors included in the respective breath analysers.  

Hand-Held Analysers  

Unit 1 and Unit 2  

(Side-stream sensors) 

Commercial Sensors  

Unit 1 

Commercial Sensors 

Unit 2 

(Side-stream sensors) 

 O2 (City Technology, 

MOX-20) 

 CO2 (novel research) 

 VOC (novel research) 

 Temperature and RH 

(GE, ChipCap2) 

 Flow sensor in 

mainstream (Sensirion, 

SFM3000) 

 Data captured with 

Teensy Microcontroller 

 O2 (Hummingbird, 

Pm1111E) 

 CO2 (Hummingbird, 

IR3107) 

 Temperature and RH 

sensor in 

mainstream. 

 Flow sensor in 

mainstream 

(Sensirion, 

SFM3000) 

 Data captured with 

Arduino Uno 

Microcontroller 

 

 O2 (Hummingbird, 

Pm1111E) 

 CO2 (Hummingbird, 

IR3107) 

 Data captured with 

Teensy 

Microcontroller 
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The data collected were shown on the computer screen in real-time and monitored by 

the experiment coordinator. If the subjects were using the devices incorrectly (i.e. not 

holding the mask firmly to their face etc.), an abnormal sensor output would indicate 

that a fault had occurred. The intercom in the rooms was used to communicate with 

the subject and instruct how to correct the error. The unit containing the commercial 

sensors was not wirelessly connected (i.e. data logging was performed on a laptop 

computer inside the chamber via a wired USB link). If a fault occurred with the device 

this could not be identified from outside the chamber. The sensor systems with 

commercial sensors were not available for the first two subjects.  

8.1.4 Subjects 

A total of 10 subjects were recruited from the University of Warwick and the UHCW. 

In order to view assess the EE variation between genders and age, four male volunteers 

were requested to participate and six female, with a range of ages, as possible with the 

sample size. Ethics approval was granted for experiments to be performed at the 

University of Warwick (to allow for preliminary testing). The breath experiments 

performed at the HMRU were granted ethics approval from a committee at the 

UHCW.  

The sample size of 10 subjects was considered sufficient for the distribution of the 

sample mean to be approximately that of a normally distributed population [4]. In 

general according to the central limit theorem, a sample size of > 30 would be required 

for a population (regardless of normal distribution or not), however given a normal 

distribution a lower sample size can be used [5,6].  For example, a sample size of 50 

is likely to include ~ 95 % of a normally distributed population which is reduced to 92 

% for a sample size of 10 (reduced again to 90 % for a sample size of 8) [7]. The 

distribution of the EE of the general population is not widely reported in the literature. 

The height of adults is widely reported as being close to normally distributed across 

the population (of the UK, considering genders separately) [8–10]. The BMI of the 

UK population was also noted as having an approximately normal distribution [11,12].   

The subjects were asked to sign a study consent document prior to their participation 

in the study. Photographs or videos of the subjects while they participated in the 

experiment were not permitted. Data for their height, weight, age, gender and ethnicity 

were collected. The subjects in this work had an average age of 36.3 years (range 23 
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to 63 years, standard deviation (STD) of 10.4 years). The average height of the sample 

group was 1.69 m (range 1.6 to 1.8 m, STD 0.06 m). The average weight for the group 

was 70.2 kg (range 52.2 to 100.8 kg, STD 12.8 kg). The BMI average for the group 

was 24.5 kg/m2 (range 18.9 to 35.3 kg/m2, STD 4.24 kg/m2). For analysis, the subjects 

were grouped by gender, BMI and age. In general, the population is classified as 

underweight, normal, overweight or obese with BMIs of < 18.5, 18.5 to 24, 25 to 29 

and > 30 kg/m2 respectively [13]. By age, the adult subjects were grouped from 18 to 

34 years, 35 to 49 years and > 50 years.  

8.2 Experimental Results 

The commercial sensor units and the hand-held analysers were calibrated to dry gas 

mixtures of O2 and CO2 (procedure discussed in chapter VII) for each subject both pre- 

and post- measurement. The volumes of O2 consumed and CO2 produced were 

converted to standard pressure, temperature, dry (STPD) readings during post-logging 

data processing to compensate for the high humidity level and elevated temperature 

found in exhaled breath. Pressure compensation was required, as the rooms are kept 

below atmospheric pressure, which induces a notable effect on sensor output when the 

rooms are sealed.  

8.2.1 Measured Gas Concentrations and Sensor Response 

The sensor data were continuously recorded throughout the duration of the 3 hour 

experiments, including the additional period prior to the measurement for the gases 

inside the rooms to stabilise. During this period the use of the apparatus was 

demonstrated to the subjects and they were asked to practice breathing through the 

devices for approximately 30 s to ensure that they understood the operation of the 

instruments. The data obtained from the sensors (after calibration) were in the form 

shown in Fig. 8.3, with O2 sensor data shown in a) and CO2 data in b).   
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Fig. 8.3 – Output data plots for one subject for the duration of the 3 hour experiment 

for a) The O2 concentration measured (MOX-20 sensor) and b) The CO2 

concentration measured (prototype NDIR sensor).  

The data show the subject breathing through the device at 20 min intervals. The peaks 

at ~10 min into the experiment were due to the subject being shown how to use the 

equipment (each subject was asked to breathe through the device for approximately 

30 s). The initial repetition produces a higher level of CO2 (exhale average peak 5.2 

% CO2) compared to the subsequent 9 sample periods (average peak 3.7 %). The 

elevated CO2 level was due to the subject becoming further accustomed to breathing 

through the device; heavier breathing was noted initially, before a normal level was 

established once the subject became relaxed as the experiment progressed. The effect 

is prominent on the CO2 sensor, where the O2 sensor is less affected (peak exhalation 

output average 15.8 %). The third period where the subject was breathing through the 

device is shown enlarged in Fig. 8.4. The exhaled concentrations of O2 and CO2 are 

shown in a), the flow rate and tidal volume in b) and the temperature and RH in c).   
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Fig. 8.4 – Sensor data for a 3 min period when the subject was breathing through a 

hand-held analyser, a) O2 and CO2 sensor data (MOX-20 and prototype NDIR 

sensor, respectively); b) Flow sensor data (SFM3000 sensor) with tidal volume; c) 

Temperature and RH sensor data (ChipCap2 sensor). 

The O2 and CO2 sensor performance observed with ‘natural’ breathing were similar to 

those shown for fixed cycle period breathing, demonstrated in the initial laboratory 

trials (section 8.4). The O2 sensor did not return to a baseline ambient O2 concentration 

reading (20.2 % O2); the response time of the sensor limited its response to the exhaled 

and inhaled gases, when the subject was breathing at a rate of 12 breaths per min. The 

O2 sensor demonstrated typical performance for a device limited by a response time 

barely sufficient to monitor gas concentration which varies at a comparable time 

period.  

The CO2 sensor returned to a reading close to the baseline ambient value (0.15 %) 

when the subject was exhaling (on average 0.35 %). The gas mixture in the side-stream 

tubing was likely to return to baseline during inhalation periods. The CO2 sensor 

demonstrated good performance for the exhalations, where a plateau was reached for 

the majority of the breaths shown in Fig. 8.4 (on 9 occasions from the 36 breaths the 

sensor output does not plateau).  
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The temperature was significantly elevated inside the unit, a constant 33.8 °C was 

measured (ambient 23 °C), and the sensor did not produce a response to the higher 

temperature (36°C body temperature) of the exhaled gas. The decrease in temperature 

was in part due to cooling in the upper airways, mouth and nose. The pump was inside 

the sealed hand-held unit, causing an increase in temperature, over the 3 hour period 

of operation. The temperature of the side-stream was constant and did vary the 

response of the sensors. As the temperature was similar to body temperature, water 

droplets did not condense inside the unit. The level of relative humidity measured was 

less than previously measured for an exhalation (nearly 100 % saturated), and varied 

between 58 % and 61 % on average (inhalation to exhalation). The reduced level of 

humidity benefited the O2 and CO2 sensor responses, which were shown to be cross-

sensitive to water vapour in chapter VII.   

The tidal volume (volume exhaled) by the subject was calculated for the period of 

positive flow rate readings (i.e. air flow direction was from the mouth of the subject 

through the device). The value is marked on the graph in Fig. 8.4 b). The tidal volume 

can be used to indicate if the subject is operating the device correctly. The tidal volume 

can be approximated at between 6 and 8 ml/kg body weight [14,15]. A reduced tidal 

volume can indicate that the subject is not holding the device correctly (i.e. gas is 

leaking around the edges of the mask) or they are struggling to breath naturally through 

the device. An increase in tidal volume (e.g. 1048 ml for the initial breath shown in 

Fig. 8.4) indicates that the subject is breathing heavily through the device. The volume 

exhaled (i.e. of O2 and CO2) directly affects the metabolic rate calculation, using the 

Weir equation (2.4).  

The subject demonstrated a regular breathing pattern (Fig. 8.4) for the duration of the 

3 minute experiment. A tidal volume of ~ 400 ml could be approximated for the 

subject, calculated from body weight. The average value measured, excluding the 

initial breath, was 398 ml (STD 91.6 ml). In this particular session the subject provided 

data suitable for resting EE calculations.  

8.2.2 Sensor Performance and Comparison to Respiratory Chambers 

The data provided from the respiratory chamber were formatted in ml/min O2 

consumption and CO2 production suitable for calculation of EE from the Weir 

equation (2.4). To find the corresponding volume of each gas (O2/CO2) measured 



 VIII – Energy Expenditure Analysis 274 

   

using the hand-held analysers, the flow rate data collected from the hand-held 

analysers were integrated. The trapezium rule was used to find the volume of gas 

exhaled (ml/sample). A simplified data processing block diagram (performed using a 

Matlab script) is shown in Fig. 8.5.  

 

Fig. 8.5 – Simplified block diagram showing the data processing stages from 

calculating human EE from the raw data collected from the O2, CO2 and flow 

sensors. 

A 2 minute period was extracted from each 3 minute sampling period and the volume 

of each gas exhaled calculated (given 1 sample was taken every 200 Hz). The CO2
 

data was re-sampled to match the 200 Hz read-out rate of the flow and O2 sensors (the 

CO2 concentration could only be calculated at 5 Hz intervals). The gas concentration 

data were cross-correlated with the flow data to ensure accurate calculation of the 

volume of each gas (O2/CO2) exhaled per breath (given the flow sensor was in the 

mainstream tubing and the gas sensors located in the side-stream chamber). The cross-

correlation step also allowed the slow response times of the sensors to be mitigated 

(i.e. typically a total delay of 2 s was found for the O2 sensor and 0.7 s for the CO2 

sensor). The data were compared based on 5 min averages from the respiratory rooms 

and the 2 min averages from the hand-held analysers (extracted from the breath 

samples provided every 20 min).  



 VIII – Energy Expenditure Analysis 275 

   

The O2 and CO2 volumes consumed and produced are shown for the hand-held 

analysers and whole body calorimeters in Fig. 8.6. The data from two subjects are 

shown, a) and b) for a male subject and c) and d) for a female subject. Plots a) and c) 

show the O2 sensor data and b) and d) show the CO2 sensor data. The subjects were 

classified in the same age group (35 to 49 years age), but different BMI groups (male 

had BMI of 23.5 kg/m2 compared to female 25.6 kg/m2). The 180 min experiment 

includes only the duration for which measurements were taken with the hand-held 

analyser.  

 

Fig. 8.6 – Subject data comparison between the hand-held analysers and respiratory 

rooms, a) O2 consumed by one female subject; b) Corresponding CO2 produced; c) 

O2 consumed by one male subject; d) Corresponding CO2 produced.  

The male subject shown in Fig. 8.6 expended more energy than the female subject 

(average 1112 cal/min compared to 1036 cal/min). Considering the male and female 

population in general, the EE of men is ~10 % for the given age range (shown in Fig. 

1.1). In the case of the two subjects shown above, the female has a comparatively 

higher EE, which is likely due to a higher BMI.  
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The volumes of O2 and CO2 measured with the hand-held analyser demonstrate similar 

characteristics to the reference values recorded from the respiratory chambers. It is 

noted with both measurement instruments, the elevated level of O2 consumed and CO2 

produced during the initial breathing session with the hand-held analysers (i.e. 𝑡 = 0 

min).  The data shown in Fig. 8.6 a) show O2 consumption of 264 ml/min for the initial 

period decreasing to 244 ml/min for the second period (at 𝑡 = 20 min). Although a 

familiarisation period is allowed, the subjects were found not to be accustomed to 

breathing through the hand-held unit during the first sampling session.  

The O2 consumption for the subject in Fig. 8.6 c) peaked at 300 ml/min during a 5 min 

period from 𝑡 = 90 min. In this case the subject did not remain in a seated position, 

and thus increased their EE. This period was not recorded on the hand-held analyser 

(i.e. the subject returned to a sedentary position when using the device). An increased 

EE level (1263 cal/min) is recorded on the hand-held device at 𝑡 = 100 min.  

The O2 measurements inside the respiratory room were more variable than those for 

CO2, shown in Fig. 8.6; O2 STD of 13.9 ml/min for a) and 32.7 ml/min for c) compared 

to CO2 STD of 8.6 ml/min for b) and 17.2 ml/min for d). The effect was less visible 

for the hand-held device. The device was likely more affected by the breathing rate of 

the subjects compared to the O2 sensor. As shown in Fig. 8.6, the STD of the O2 sensor 

in the hand-held device for a) was 16.3 ml/min and 17.5 for c) compared to 14.9 

ml/min for b) and 21.3 ml/min for d). The additional variance for the second subject 

was due to a period of unforeseen activity.  

The data collected for the O2 and CO2 volumes exhaled from the respiratory rooms, 

hand-held devices and analysers with commercial sensors are summarised in Fig. 8.7 

a) and b) respectively for the complete sample group of 10 subjects. The error bars 

indicate the STD and the centre point indicates the average EE for the 3 hour 

experiment. For the first 3 subjects, some individual breath samples were discarded 

due to low tidal volume (outside of 80 % of the 6 ml/kg value), proving that the mask 

was not sealed correctly. The volumes of O2 and CO2 measured had a range of 185.2 

to 307.7 ml/min and 155.2 to 249.6 ml/min respectively.  
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Fig. 8.7 – Data collected from 10 subjects with hand-held analysers, respiratory 

rooms and analysers with commercial sensors, a) O2 consumed and b) CO2 

produced.  

On average the O2 consumption was overestimated by +3.4 % (-11.9 to +48.2 ml/min) 

and the CO2 production by 5.4 % (-7.4 to 41.3 ml/min) for the hand-held devices when 

compared with the calorimeter chambers. The slow electrochemical O2 sensor output 

was cross-correlated with the flow sensor data (on average the sensor exhibited an 

approximately 2 s delay). The O2 consumption was measured reliably with the hand-

held devices, the cell produced a stable output.  

The commercial paramagnetic cell overestimated O2 volume by on average +9.0 %. 

The technology used inside the cell was noted to be sensitive to movement, pressure 

and flow rate. Although precautions were taken to reduce the variance of these 

variables (room pressure was constant, constant flow rate and the equipment was not 

moved during the experiment) the sensor was not inherently resilient to breath 

measurements. Due to their large volume, the respiratory rooms tend to average the 

measurements of exhaled gas, and the sampling technique is not affected by the tidal 

volume or breathing rate of the subject.  

When the average value recorded using the commercial NDIR sensor is considered, 

the device performed well compared to the respiratory room measurements (average 

error of -0.50 %). However, the sensor did not produce a stable output with an average 

STD of 32.2 ml/min. The hand-held sensor demonstrated higher stability with an 

average STD of 24.0 ml/min. The lower average error of the commercial product 

demonstrates the reproducibility of the device was higher, but with reduced precision 

compared to the prototype device. The stability of the commercial device is dependent 
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on flow rate, temperature and humidity. The fast response of the commercial product 

allowed the sensor to display breath-by-breath measurements, although with the 

compromise of a lower level of stability.   

The limiting factor of the developed CO2 sensor is the data processing, which is itself 

limited by the slow drive rate. The slow read-out rate (5 Hz) implies a slower response 

time and inherently noisy output. Furthermore the output response (voltage amplitude 

change of sinusoid) is small (~0.1 V per 1 % CO2) which limits the accuracy to which 

the CO2 concentration can be determined. Housing the sensors in close proximity can 

contribute to the noise factor, which affected the ability to read-out accurate CO2 data. 

With prolonged use, housing components, such as pump, which can generate heat, can 

cause drift over the experimental period.  

8.2.3 Energy Expenditure Measurements 

The Weir equation (2.4) was used to calculate EE on a minute by minute basis for all 

three measurement instruments. The accuracy of the O2 sensor measurements had a 

greater influence (i.e. multiple of 3.91 volume of O2 consumed compared to 1.1 for 

volume of CO2 produced) on the EE calculations. The EE for each subject across the 

3 hour period was calculated for each instrument, shown in Fig. 8.8. In this section, 

the following abbreviations are used to distinguish the 3 instruments: Hand-Held 

(HH), Respiratory Room (RR) and Commercial Sensor (CS).  

 

Fig. 8.8 – EE calculated for 10 subjects using HH devices, RR systems and the CS 

analyser. 
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The EE measurements taken with the HH analysers show good performance in 

comparison to the RR measurements (EE error range from -31.5 to +207 cal/min, 

average + 4.2 %). The lowest EE measured by the HH and RR systems was subject 2 

(no analyser with CS was available); EE was measured as 893 and 901 cal/min for the 

RR and HH systems respectively. The highest EE was measured for subject 9 for all 

three instruments; 1474, 1495 and 1545 cal/min for the HH, RR and CS systems 

respectively. The greatest difference (with the HH and CS devices) was for subject 6, 

who was noted to feel less comfortable with the apparatus. The exclusion of the subject 

reduced the average overall error to +2.4 %.  

The systems developed with the CS demonstrated disappointing results, considering 

the expense of the components. On average EE was overestimated by +9.6 % (range -

133 to +296 cal/min). The cause of the large error was attributed to the sensitivity of 

the O2 sensor to its environment. The O2 sensor overestimated the consumption of O2 

by on average 10.5 % across the 10 subjects; the CO2 sensor underestimated the CO2 

production by -1.48 %. A disadvantage of the purchase of sensors separately from a 

commercial side-stream breath sampling unit is the devices are not optimised for 

breath sampling, with regards to calibration format and data processing techniques. 

The sensors were calibrated rigorously prior to each chamber measurement, however 

internal firmware adjustments were not possible.  

The STD of the RR measurements was on average 92.3 cal/min. This value is ~10 % 

of the EE measured for the subjects. The variability is likely to come not from the 

measurement equipment, but from the subjects inside the room, making sub-conscious 

movements over the period of the experiment. The EE on average measured across the 

group from the RRs (0.9 to 1.5 kcal/min) was lower than average values reported by 

Knab et al. (1.3 to 2.5 kcal/min) [16]. The lower value likely demonstrates the 

willingness of the subjects to follow the measurement protocol (i.e. to make minimal 

movement throughout the 3 hour experiment duration).  

 The dependence of human EE on BMI, age and gender was discussed in chapter I 

(Fig. 1.1). A sample size of 10 limited the potential to investigate these relationships, 

with 4 subjects in the aged 18 to 34 year group, 4 in the 35 to 50 year group and 2 in 

the 50+ group. In terms of BMI, 6 subjects were classed as ‘Normal’, 3 as 

‘Overweight’ and 1 as ‘obese’ (none ‘underweight’). The relationship between the EE 
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measured by the HH device and subject age is shown in Fig. 8.9 a). The subjects are 

listed according to their BMI in Fig. 8.9 b) with their gender shown and EE measured 

by the HH device.  

 

Fig. 8.9 – EE measured with HH instrument in relation to a) Subject age and gender; 

b) Subject BMI, age and gender.  

An exponential decrease is expected in BMR (basal metabolic rate) with age, normally 

decreasing by 1 or 2 % per decade. The decrease is less visible in adults compared to 

children. The measurement protocol was not designed to measure BMR, however 

measurement of resting EE was desired. It is assumed, given two subjects of the same 

BMI and gender, that EE will decrease according to age, in the same manner as BMR. 

The exponential trend is visible for three male subjects (numbers 10, 5, 4 with a BMI 

of ~23 kg/m2) in Fig. 8.9 a), excluding one male subject with a higher BMI (subject 9, 

35 kg/m2).   

The trend is less visible for the female population in the study. Subjects 3, 7 and 8 

have a BMI ~26 kg/m2 (subject 1, BMI ~24 kg/m2). The subjects 8, 7 and 1 are of the 

same age group and a trend cannot be established over the small age range of 5 years.  

Subject 3 was ~10 years younger, but had a 6.4 % lower EE (measured using the HH 

device). The RR measurements for subject 3 indicated an EE similar to that of the 

female subjects 1, 7 and 8 (average 1012 cal/min, range 990 to 1031 cal/min). 

Considering the reported trend in EE decline with age, the results demonstrate the need 

for individual measurement of human metabolism. Subject 3 has a lower EE than that 

which would be predicted using guidance from the literature. The comparison with the 

Harris-Benedict equations is presented below, from which it was noted subject 3 had 

the highest calculated BMR from the female study group.  
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The outlier noted in Fig. 8.8 (subject 6) is again visible in Fig. 8.9, with a high energy 

expenditure (1211 cal/min), but low BMI (18.9 kg/m2). The majority of the subjects 

are grouped in the centre of Fig. 8.9 b), with 6 subjects classified in the range of 23 to 

26 kg/m2. The EE for this sub-group of participants (4 female) is ~1060 cal/min (±6 

%). Three of the female group are categorised as ‘overweight’ although no male 

subject is in the overweight category. From this small sample group a conclusive 

outcome cannot be determined. The higher BMI of the females could be caused by 

excessive food consumption relative to their calorific need. If the 6 subjects were to 

eat an identical diet, the female subjects would be more likely to gain weight, given a 

similar lifestyle, as their resting EE is lower in general.  

8.2.4 Harris-Benedict BMR 

Equations (2.11) and (2.12) are used to calculate the BMR for men and women, given 

measurements of height and weight and the age of the subject. In chapter II, the use of 

the HB equation was discussed, with predictive equations common in ICUs where 

indirect calorimetry is traditionally difficult to deploy. The EE was calculated for each 

subject using the appropriate HB equation; the results are compared in Fig. 8.10 to the 

EE measurement generated with the HH analysers. The complete dataset of EE 

calculations (from HH, CS and HB) are compared to the RR measurements in Table 

8.2.   

 

Fig. 8.10 – EE measured on HH instrument compared to calculated BMR using HB 

equation.  
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Table 8.2 – Summary of the EE data from the 10 subjects compared to the reference 

standard of the RR measurement.  

Subject 

Number 

EE RR 

[cal/min] 

EE HH 

[cal/min] 

(% Error) 

EE CS 

[cal/min] 

(% Error) 

BMR HB 

[cal/min] 

(% Error) 

1 1007 
1038 

(+3.1) 
NA 

1416 

(+40.7) 

2 893 
901 

(+0.9) 
NA 

1362 

(+52.6) 

3 1017 
985 

(-3.1) 

883 

(-13.2) 

1577 

(+55.1) 

4 1108 
1104 

(-0.4) 

1261 

(+17.1) 

1592 

(+43.7) 

5 1112 
1123 

(+1.1  

1178 

(+6.5) 

1520 

(+36.7) 

6 1005 
1212 

(+20.6) 

1243 

(+21.5) 

1207 

(+20.2) 

7 990 
1014 

(+2.4) 

1024 

(+3.0) 

1411 

(+42.6) 

8 1037 
1106 

(+6.7) 

1097 

(+6.0) 

1507 

(+45.4) 

9 1475 
1495 

(+1.4) 

1545 

(+7.2) 

2000 

(+35.6) 

10 1247 
1365 

(+9.4) 

1543 

(+28.6) 

1773 

(+42.2) 

Overall 

Average 
1089 

1134  

(+4.2) 

1222 

(+9.6) 

1536 

(+41.4) 

The data presented in Fig. 8.10 demonstrate that the HB equation overestimates the 

energy need for each and every subject. The percentage error is expressed in Table 8.2 

(average 41.5 %, range +20.2 to +55.1 %). The female cohort is overestimated by an 

average of +42.7 % compared to the male group +31.6 %. The HB equation thus does 

not provide a suitable means of determining the energy needs for the subjects tested 

in the experiment. The HH device provides a greatly improved estimated for EE.  
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The largest error in the HB calculations was found for subject 3, with an 

overestimation of +55.1 %. The failure to predict BMR demonstrates the use of EE 

measurement in the general population. The BMR for the subject is predicted to be 

higher than an older subject, with lower BMI (e.g. subject 1). The RR and HH 

measurements demonstrate the EE of subject 3 is lower than subject 1 and supports 

the need for a greater understanding of what affects calorific requirements, in cases 

where height, weight and age and are not the only factors.  

The HB equations were developed almost 100 years ago. Although other predictive 

equations have been developed since the Harris and Benedict’s report in 1918, the HB 

equation is still one of the most widely used [17]. It has been reported the HB equation 

can produce significant variance compared to measured EE [18].  Furthermore, it has 

been reported that the r2 value reported in the Harris Benedict article (and other articles 

reporting novel predictive equations) did not exceed 0.70 [19]. Overestimates in the 

range of +30 % have previously been reported [20]. It has been suggested that body 

composition has changed a great deal since 1919, when the HB equation was first 

derived.  

8.3  Smartphone EE Measurement 

The principle of EE measurement in a free-living environment was tested using the 

hand-held breath analyser and the associated application on a smartphone. A block 

diagram for the measurement procedure is shown in Fig. 8.11. Subjects were asked to 

breathe normally through the hand-held instrument, wearing a face mask. The 

application provided EE measurements for each 1 minute sample provided. Two 

measurements were taken for each use of the device, with the first discarded to allow 

the user to become familiar with breathing through the apparatus.   
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Fig. 8.11 – Block diagram for operation of the hand-held measurement device with a 

smartphone application. 

The O2 and CO2 sensor calibrated outputs are shown for two subjects in Fig. 8.12 a) 

and b). The O2 sensor is shown again to provide a larger response (trough of 15 % 

compared to 17.2 %) when a subject breathes slower through the instrument.  

 

Fig. 8.12 – Concentrations of O2 and CO2 recorded over a 1 minute period for a) One 

subject with a respiratory rate of 10 breaths per minute; b) Second subject with a 

respiratory rate of 8 breaths per minute.  

The data logging process (200 Hz) on the smartphone application does not affect the 

operation of the portable unit. The application records the outputs for the CO2, O2, 

temperature and RH, VOC and flow sensors. The CO2 sensor is less affected by the 

breathing rate of the subject; a similar level (~ 4 % peak in exhaled CO2 concentration) 
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is reached in the case of both subjects. The initial laboratory tests of the side-stream 

analyser demonstrated additional noise (~0.2 %) with a slower breathing rate, as again 

visible in Fig. 8.12 b).  

The data logging screen on the smartphone is shown in Fig. 8.13 a). A countdown of 

5 s is initiated when the user presses the red ‘B’ icon. During the breath sampling 

period a red bar across the top of the screen indicates the progression towards the end 

of the period. After 60 s, the data logging stops and a message is shown on the screen, 

Fig. 8.13 b), to inform the user of their EE measured during the one minute period.  

 

Fig. 8.13 – Screen prints from Android smartphone showing the companion EE 

measurement application for the hand-held analyser, a) Data logging screen; b) EE 

measurements performed over a 1 minute period.  

The data recorded over a 6 hour period (10 am to 4 pm) for one subject is shown in 

Fig. 8.14. The subject used the device during a sedentary office day (desk-based work), 

with a meal indicated in the plot. A light form of exercise is indicated in the activity 

period, where the subject walked for approximately a 1 hour period, including 

climbing several flights of stairs. 

The output from the smartphone application in Fig. 8.14 demonstrates the challenge 

of performing EE measurements in a free-living environment. The two lowest 
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measurement points (11:00 and 16:00) are most likely to be close to sedentary EE. 

The peak EE is measured after the activity phase (15:00). There are two peaks in EE 

prior to eating (12:00 and 13:00) which would not be expected for the routine noted. 

The office-based work involves a higher level of activity than was requested of 

subjects in the respiratory chamber measurements above.  

 

Fig. 8.14 – EE recorded over a 6 hour period for one subject. Measurements taken at 

1 hr intervals during an office-based day. One period of activity shown between the 

vertical time lines and the meal time is indicated with arrow.  

The spuriously high EE measurements could be caused by a burst of activity (such as 

moving from a sitting position to standing). The subject was requested to remain 

seated while taking the EE measurements, but also it was requested that the 

measurements be taken hourly. The large variance in EE (0.65 kcal/min) between the 

readings is likely due to the lack of a strict protocol. For these measurements, the 

subject was allowed to perform their daily activities, without compromising on 

food/drink consumption or being asked to remain seated for a fixed time (e.g. 10 min) 

before commencing a measurement.  

The one day experiment demonstrates the possibility of the hand-held device to 

research EE within a free-living environment. Such measurements are only possible 

with a portable, quick and robust device. The flexible measurement protocol did not 

allow the individual components of EE to be tested. Of particular interest is diet 
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induced thermogenesis (DIT), which is shown as a small increase in EE after 

consumption of a meal. The energy cost of the activity period was also not assessed 

for the short measurement period.  

8.4 Conclusions 

The EE measurement capability of the hand-held devices was assessed against a whole 

body calorimeter and a breath analyser with commercial sensors. One hand-held 

portable device was also tested in a free-living environment using a smartphone to 

record the EE from one subject. Ten subjects (6 female) were tested inside whole body 

calorimeters for a 3 hour period. At 20 min intervals the subjects were asked to breathe 

through the portable analysers for a 3 min period.  

The measurements of EE were found to be unreliable initially for the first 3 subjects, 

with some samples discarded due to the subject not holding the mask to their face 

correctly. An improved training procedure for later subjects mitigated this problem. 

The subjects were asked to remain in a seated position, with minimal movement for 

the duration of the experiment. The subjects adhered to this protocol, although a 

variation in O2 and CO2 measurements was recorded overall for the chamber sensors. 

The variance is due to the subjects occasionally moving inside the chamber.  

The volumes of O2 and CO2 measured with the hand-held units had a range of 185.2 

to 307.7 ml/min and 155.2 to 249.6 ml/min, respectively. The hand-held device on 

average overestimated the O2 consumption of the subjects by 3.4 % compared to 5.4 

% for the CO2 production. The electrochemical O2 sensor produced a stable and 

reliable output, but required cross-correlation to the flow sensor data (2 s delay found) 

for the volume of gas exhaled to be calculated.  

The commercial paramagnetic O2 sensor produced an inaccurate and unreliable 

response (O2 consumption overestimated by +9.0 % on average). The STD for the 

sensor was found to be on average 32.2 ml/min. The commercial NDIR CO2 sensor 

performed well, with an average error of -0.50 % (but had a higher variance, STD of 

24.0 ml/min). The poorer performance of the hand-held sensor was due to the slow 

drive signal (5 Hz), which limited the signal processing that could be performed on 

the sensor output.  
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The hand-held units produced good results for EE calculations compared to the 

reference standard respiratory rooms. The EE error range (-31.5 to +207 cal/min) was 

superior to the error found with the analyser using commercial sensors (-133 to +296 

cal/min). One subject was excluded, due to not feeling comfortable with the apparatus; 

on average, for the remaining 9 subjects, the EE was overestimated by +2.4 %. The 

results were compared to the Harris-Benedict equation, which overestimated energy 

need (BMR on average was overestimated by 41.5 %, with no improvement for the 

male or female groups).  

The portability of the device was utilised when EE measurements were performed in 

a free-living environment over a 6 hour period. Hourly measurements of EE were 

taken for a subject in an office-based job. A large variance in EE was found (0.65 

kcal/min), which could not be explained by meal consumption or by a conscious 

increase in activity. The measurement protocol needs to be revised for future work, to 

allow the daily energy needs of subjects to be assessed.  

Future work needed involves investigating the components which contribute to total 

daily EE. The component of DIT is of particular interest, to view the energy cost of 

digesting food. The wealth of experiments possible with a quick and easy to use 

portable device has yet to be realised.  
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Conclusions and Further Work 
 

 

 

 

 

Preface 

A hand-held unit capable of EE measurement both in a laboratory environment and 

free-living has been developed. The device, comprising affordable and miniature gas 

sensors, meets the project aims to create a robust system for wide-spread adoption. 

The unit was already successfully tested with 10 subjects, who were able to use the 

unit with only minimal training. The hand-held unit samples breath through a side-

stream system, developed after preliminary testing showed that accurate 

measurements of gas concentration could not be made in the mainstream tubing. A 

VOC sensor was developed as an add-on module for the system, although this has not 

undergone testing with exhaled breath. The VOC sensor was tested on a laboratory 

gas testing rig, to low ppm and ppb concentrations of acetone and NO2 respectively. 

Further work involves increasing the capability of the breath analyser and 

investigating the component of EE associated with digestion, to meet the aim of 

detecting a 1 % change in EE.   
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9 Project Conclusions 

A hand-held analyser capable of determining human EE has been developed through 

the measurement of exhaled breath samples. The device was trialled on 9 subjects and 

measured EE to an accuracy of 2.4 % compared to reference respiratory room data (1 

subject excluded due to discomfort). The device included sensors for CO2, O2, 

temperature and relative humidity, flow and a semiconductor VOC sensor, which was 

not utilised during the EE measurement tests.  

In the prototyping phase of the project, a mainstream analyser was constructed (see 

chapter IV). The unit was used to investigate the capability as of selected CO, CO2, 

O2 and temperature and humidity sensors. The analyser was not developed into an 

instrument capable of human EE due to the available sensors being unsuitable for 

direct mainstream sampling (excessive peak 30 L/min flow rate, extreme temperature 

and humidity change (ambient to ~36 °c and almost 100 % saturated). The 

development of a hand-held measurement tool continued in the form of a side-stream 

design analyser.   

Sensors considered for VOCs and CO2 were found to be incapable of sampling breath 

in real time (chapter III). The commercial MOX sensors tested offered poor 

performance (not capable of ppb measurements) for the compounds of interest on an 

exhalation. The affordable CO2 NDIR commercial sensors were found to have poor 

response times (>20 s for SprintIR) and a high level of noise (0.1 % CO2 readout). 

Novel sensors for VOCs and CO2 were therefore developed to meet the needs of this 

project.  

9.1 Human Energy Expenditure 

The hand-held device was developed in part to help increase the awareness of calorific 

intake. The information provided by the NHS in the UK, discussed in chapter I, advises 

that the daily calorie intake for men should not exceed 2,500 kcal and 2,000 kcal for 

women [1]. These guideline figures are representative for the population included in 

our test cohort. The average EE for 5 female subjects, measured using the hand-held 

analyser, was 1,009 cal/min (excluding one subject due to discomfort). The average 

EE for 3 male subjects was 1,241 cal/min (excluding one subject, with high BMI above 

the normal and overweight ranges).  
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In basic terms, to maintain a certain body weight, calorific intake must equal calorific 

need, i.e. total daily EE must equal total calorific intake [2] (details in chapter I). The 

resting metabolic rate component of total daily EE contributes approximately 60 to 70 

% of the overall daily expenditure [3–5]. For the measurement protocol adopted inside 

the respiratory room, a value of 70 % can be assumed, given the subjects were 

sedentary in a seated position (i.e. not resting on a bed in a supine position). The values 

of EE measured for male and female subjects can be extrapolated for a 24 hour period 

to give an average energy requirement of 2,553 kcal and 2,075 kcal per day (to 

maintain the same body weight), respectively. The values calculated are similar to the 

recommendations from the NHS UK, with a variance of +53 kcal for men and +75 

kcal for women. A larger sample size, with a greater range of ages (particularly for the 

age group over 50 years old) would improve the potential of EE recommendations that 

could be drawn from the work. 

The range of EE found for the male and female subjects in the human experiments 

demonstrated the need to assess energy requirements on an individual basis. The range 

of EE values across 5 female subjects (901 cal/min to 1106 cal/min) could not be 

explained by BMI and age. The Harris-Benedict equation was used as a benchmark 

comparison, as it is reported that the equation is used in clinical situations, where 

indirect calorimeters are rarely available [6]. The EE of one subject was overestimated 

by 55.1 % by the equation. This error was likely introduced as the subject had a BMI 

classified as ‘overweight’ but a low EE (1017 cal/min reference respiratory room 

value, 985 cal/min measured by the hand-held analyser and 1577 calculated with the 

equation).  

9.2 Portable EE Measurements 

The smartphone application developed in this work enabled the use of the hand-held 

analyser outside of the laboratory environment (chapter VI). A wireless (Bluetooth) 

link negated the need for a wired (USB) connection and increased the compatibility 

with almost any Android Bluetooth enabled smartphone. The technology was suitable 

for this application, where the data transfer speeds enabled a high rate of sampling 

(200 Hz) and with a useful range (~10 m) for taking measurements when subjects were 

isolated in the respiratory rooms.  
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In chapter II, alternative techniques of measuring EE using portable equipment were 

investigated. Methods, such as activity and heart rate monitoring, were noted as being 

suitable for quantifying if vigorous activity was performed during a given day, 

however did not provide clinically acceptable EE information. The doubly-labelled 

water technique offers EE tracking without the need for any equipment while the 

experiments are being performed in a free-living environment. The technique is 

expensive and invasive, so cannot be considered for use in the general population.  

The portable EE measurement unit developed in this thesis was subjected to testing 

outside of a laboratory setting. The results for one subject were presented over a one 

day period in an office-based environment. The subject was asked to take hourly 

measurements for a duration of 6 hours. The lowest level (perhaps resting) EE was 

measured as 1.53 kcal/min. A large EE variance was notable in the output from the 

device (0.65 kcal), caused by the lack of a strict measurement protocol. The subject 

was asked to maintain their normal daily routine, but return to a seated position to 

make the EE measurements. The subject was not asked to rest (e.g. sit still for a period 

of 10 min) prior to making the measurements. The activity, if any, performed 

immediately before taking the measurements would have a significant influence on 

the outcome.  

The affect of eating and activity on a daily routine are less visible, due to the variance 

in the EE readout during the sedentary periods of the day. Furthermore, a meal was 

consumed within 15 min of the activity (walking and climbing stairs), thus the effect 

of each individual component cannot be identified.  The peak EE calculated was 2.15 

kcal/min following the activity period, with a high value recorded (2.1 kcal/min) after 

consuming the meal and ~10 min after starting the activity session.  

9.3 Achievements 

The aims of this work were detailed in chapter I. A device was successfully developed 

that was capable of human EE measurements. The measurement period was reduced 

to 1 min for the mobile measurements (although 1 min was allowed prior to each 

measurement for familiarisation). The unit did not require any storage of gases, and 

was able to measure the O2 and CO2 concentrations on a breath-by-breath basis.  

The robustness of the unit over a long term period was not assessed, however the 

robust ABS housing protected the internal sensor components during the subject 
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testing phase (construction details in chapter VII). The unit can be held comfortably 

in one hand (150 × 75 × 60 mm) but cannot be classified as miniature. The internal 

housing for the gas sensors (85 × 55 × 30 mm) is the major component inside the unit. 

The width of the main-stream tubing (20 mm) prevents a small chamber being 

developed. The side-stream extraction tube was positioned 70 mm from the main-

stream exhaust, to prevent any undesired mixing of ambient and exhaled gases. A 

smaller length of main-stream tubing would reduce the size of the hand-held unit, but 

with the increased risk of a pure sample of exhaled gas not being extracted.  

The sensors inside the unit did not require regular replacement and one set of sensors 

was used for the testing of 5 subjects (per device) in the respiratory chambers. The 

sensors were calibrated both pre- and post-measurement. The O2 sensors (City 

technology MOX-20) did not exhibit a high level of drift (< 0.05 V, average output 

0.7 V) that can be associated with aging electrochemical cells, although the test period 

(< 1 month) was shorter than the life-span of the devices (> 12 months). The prototype 

CO2 sensor was susceptible to a higher level of drift between experiments (~ 0.5 % 

CO2). The effect of the drift was mitigated by calibration. The baseline shift could be 

illuminated by considering the initial sensor output as being in ambient conditions (0 

% CO2).   

The device was easy to use, and most subjects inside the chambers could be left 

unattended to make their own EE measurements. The improved training for the final 

7 subjects enabled every breath sample to be validated (> 80 % of 6 ml/kg tidal 

volume), where some breath samples were discarded for the first 3 subjects. The 

critical element was to ensure that the subjects understood the volume of each 

exhalation was important for EE calculations. Unfortunately, users with glasses had to 

remove them in some situations, where the mask could not be sealed around their nose 

and mouth.  

The smartphone application was only used under supervision. Once the Bluetooth 

connection was established, the user needs only to push one button to begin an EE 

measurement. Instruction material, such as a demonstration video explaining the use 

of the equipment, would have benefited the user of the instrument. However, the need 

to breathe naturally and without forcing an exhalation can initially be problematic for 

some subjects. The data logging applications were not personalised to individuals. To 
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help take accurate resting EE measurements, the application could take user data (e.g. 

weight) to calculate the expected tidal volume per breath. In post-data collection 

analysis, for the first two subjects where heavy breathing occurred occasionally, the 

periods of breathing outside of the expected range (e.g. between 6 and 8 ml/kg body 

weight) were removed. This prevented distortion of the calculated EE due to erroneous 

measurements.  

The device was in general easy to use, although as discussed above in the smartphone 

section, the need for a consistent environment between measurements is difficult to 

enforce with the user in a free-living environment.  

The prototype testing in this project only consisted of resting EE comparison 

experiments. The potential to measure a 1 % change in EE was not assessed. Further 

work is needed to attempt to measure the DIT component (energy cost of food 

digestion). DIT only contributes a small percentage  (~8 %) of total daily EE and, 

dependent on the food consumed, can only be measured for a few hours (~ 4 to 8 

hours) after consuming a meal [7].  

The units developed in this project were compared to a reference respiratory room 

configuration and analysers consisting of commercial O2 and CO2 sensors (10 subjects 

tested). Considering an average of 10 measurements taken over a 3 hour period, the 

EE was overestimated by +4.2 %. The unit with commercial sensors overestimated EE 

by +9.6 % on average. The Harris-Benedict equation was found to perform poorly, 

and overestimated EE by +41.4 % on average. The overestimation could in part be due 

to the subjects breathing too heavily into the device, as EE was found to fall during 

the experiments for some subjects. The overall average EE measured by the respiratory 

rooms was 1089 cal/min. The range of EE measured (0.9 to 1.5 kcal/min) was lower 

than average values previously reported by Knab et al. (1.3 to 2.5 kcal/min), although 

the subjects in the experiments in this project were asked to refrain from making 

extensive movements during the experiment [8].  

The RMR measured by the handheld devices compared favourably to the typical 

values of reported in the literature. Men are expected to have a basal energy need of 

slightly >1 kcal/min (1.1 to 1.3 kcal/min range) and women slightly <1 kcal/min (0.8 

to 1.0 kcal/min) [9]. The 10 measurements limit the analysis of different groups of the 

population (e.g. age, gender, ethnicity etc.) but demonstrate the excellent 
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reproducibility of the handheld units, both in terms of biological and sensor 

performance.  

The sensor system was designed on a modular basis. Some parts (e.g. connectors, 

exhaust, CO2 holder and VOC holder) were rapid prototyped to enable unique 

structures to be formed, which it was not possible to create using the base material of 

POM.  

9.4 Further Work 

The sensors developed during this work are part of an ongoing process to develop 

sensors capable of mobile sensing. There is growing need in the sensor industry for 

sensors that can be used in mobile phones, remote locations and portable applications. 

The miniaturisation of sensors, with reduction in power consumption and cost, enables 

the use of devices outside of a laboratory. The novel NDIR sensor discussed 

previously forms a base for expanding into detecting lower concentration gases and a 

wider range of compounds with a miniature sensor system.  

9.4.1 MOX VOC Sensor 

The development of a MOX VOC sensor offers the possibility to detect various 

diseases (e.g. asthma, COPD) from a breath sample. Furthermore, VOCs on the breath 

could help further understand the metabolism processes that occur in humans 

(discussed in chapter III). In general, the response times of MOX sensors (> 30 s) 

limits their use in breath-by-breath work. The importance of a fast response time is 

useful for breath-by-breath analysis, as well as being able to provide instantaneous 

results, without the need to store gas.  

9.4.1.1 MOX Hotplate Temperature 

The temperature at which the hotplate on a MOX sensor operates defines the 

sensitivity of the device and the response time. It is usual to operate the hotplate at 

constant temperature, although further work could investigate pulsing the heater 

between two temperatures. This would reduce power consumption and could 

potentially reduce response times (with additional signal processing of the transition 

periods between the two temperatures).  

A trade-off has to be made between the sensitivity of the sensor, which is usually 

higher at lower operating temperatures, and the response time (which is usually lower 
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at higher operating temperatures) [10], stability of the sensor can also vary depending 

on the configured temperature.  Preliminary work was performed to view the effect of 

varying operating temperature on the sensitivity of the sensor. The sensor was exposed 

to 50 ppb NO2 and the sensitivity calculated at different hotplate temperatures, as 

shown in Fig. 9.1 a). The corresponding plot with response and recovery times plotted 

for operating the sensor at 250, 300, 350, 400 and 450 °C is shown in Fig. 9.1 b).  

 

Fig. 9.1 a) Average sensor response time as a function of temperature for 50 ppb of 

NO2 in 50 % RH diluted with synthetic air; b) Corresponding response and recovery 

times in the same conditions.  

The temperature at which a MOX sensor operates must be tailored to the application 

requirements. In the case of NO2 sensing the device shown in Fig. 9.1 has highest 

sensitivity at 300 °C, however slow response and recovery times (~ 80 s). The recovery 

time is longer than the response time regardless of constant hotplate temperature. For 

the application of breath sampling the hotplate temperature was fixed at 350 °C, with 

reasonable sensitivity (~180 %) and acceptable response and recovery times (< 60 s). 

The response and recovery times are shown as the time taken for the response output 

to reach 90 % of its final value. The operating temperature of 350 °C has previously 

been reported for WO3 MOX sensors, although a slower recovery time (2 min) was 

specified [11]. 

The sensor must be annealed at a temperature higher than the desired operating 

temperature, to ensure high stability. It is suggested that the reason for the sensitivity 

of devices varying with temperature is due to the grain size of the oxide material [12]. 

Fine particles have been reported as offering increased sensitivity (at temperatures in 

the range of 250 to 350 °C) [13]. The temperature dependent sensor response is 
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affected by other factors, both chemical and physical. Adsorption and desorption are 

temperature-activated processes, thus dynamic properties of the sensor depend 

exponentially on the temperature (recovery and response times) [14]. Temperature 

also has an effect on the surface coverage, co-adsorption and chemical decomposition 

which result in different static characteristics at different temperatures. The true 

relationship between the surface temperature of a MOX sensor in the presence of 

reducing gases and the conductance of the device make a very complex relationship 

[15].  

9.4.1.2 MOX Sensor Coating 

SnO2 has been a material of interest for many years, but recently the interest in other 

compounds such as WO3, Ln2O3 and TiO2 (titanium dioxide) has been growing [16]. 

A number of factors have been identified as contributing towards the response of MOX 

sensors: grain size, surface morphology, microstructure, defect density and 

distribution, porosity, crystallinity and chemical composition [17]. It has been found 

the conductivity varies inversely with the charge density. The presence of oxygen 

vacancies, which act as electron donors in n-type semiconductors, determines the 

electronic properties of the film.  

Further work is required to investigate MOX sensor coatings. Preliminary tests were 

performed with WO3 (New Metals and Chemicals Ltd) coated sensors (without 

additional doping). The coating was mixed and deposited by Dr. B. Urasinska-Wojcik, 

University of Warwick. Results are presented below for the sensors. Further 

investigation is required to verify if the sensitivity of the sensor can be increased by 

mixing of small quantities of noble metal dopants with the WO3 layer [17]. The dopant 

functions as a catalysis to the electrochemical reactions occurring in the film. The 

stability of the film can also be improved. In some cases two metal oxides can be 

combined to enhance the benefits of multiple sensing materials. For example, Pt and 

calcium oxide (CaO) have been added to SnO2 sputtered films to increase both the 

sensitivity and stability (consequently reducing the recovery time) [18]. A Scanning 

Electron Microscope (SEM) photograph of the WO3 material deposited on the MEMS 

sensor is shown in Fig. 9.2.  

The SEM photograph demonstrates the porous nature of the thick film covering. In 

porous layers each grain possesses a surface depleted area and current has to pass 
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through the intergranular contacts [19]. The sensor will only operate at the best 

possible performance for a given MOX material if the layer is correctly deposited. The 

thickness of the layer depends on the viscosity of the paste and the subsequent 

annealing process [16]. In the case of the sensors presented in Fig. 9.6, the film was 

left to dry for 12 hours post-deposition and then the sensor was set to be annealed at 

450 °C for 1 hour, followed by 23 hours at 350 °C.  

 

 

Fig. 9.2 – SEM photograph of surface deposition of WO3 material onto the sensor 

surface at 250× magnification. Coating manufactured and deposited courtesy of Dr. 

B. Urasinska-Wojcik, University of Warwick.  

9.4.1.3 NO2 Experimental Results 

Results are presented here for the detection of low concentrations of NO2, thus 

allowing the improvement upon the commercially available devices to be 

demonstrated (which target NO2 measurement applications). Further work involves 

testing the sensor to other VOCs found on breath. The WO3 coating used in the sensors 

discussed in this section provided excellent stability and has great, but not fully 

explored, potential to detect biomarkers on exhaled breath. 

The gas testing experiments were performed on a gas testing rig – operation described 

in chapter VI. The rig allowed for gas mixtures of NO2 and CO to be generated, diluted 

with synthetic air in both dry and humid conditions. The flow rate was kept constant 
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at 1 SLPM throughout each experiment. The sensor was housed in an aluminium 

chamber for the experiments, with a dead volume of 6 ml. For presentation of the 

results, the sensor response (𝑆) is defined as the ratio of the sensor resistance 𝑅𝑁𝑂2/

𝑅𝑎𝑖𝑟, where the subscript denotes the gas exposed to the sensor (i.e. a mixture of NO2 

or pure synthetic air). The sensor resistance is the resistance of the device coated with 

the tungsten oxide film, calculated from the potential divider relationship show in Fig. 

3.20. The measurements were all performed at ambient room temperature (24 °C) and 

the micro hotplate heater set to 350 °C. 

The sensor was compared to a reference commercial sensor (SGX Sensortech MICS-

2714), designed for NO2 sensing (range specified in the range of 0.05 to 10 ppm) [20]. 

The commercial device was tested in the same conditions as the prototype NO2 sensor. 

The heater temperature was not specified by the manufacturer, but the instructions of 

its operation were followed from the datasheet (unpublished document). The sensor 

was tested with the NO2 prototype sensor in both dry and 25 % RH conditions, with 

gas concentrations ranging from 10 ppb to 250 ppb (5 min steps for each concentration, 

as shown in Table 9.1, returning to a baseline of synthetic air for the same period). 

The sensor has been reported on in the following publication [21].The time-dependent 

response of the sensor is shown in Fig. 9.3 a), in dry conditions, and the sensitivity as 

a function of the concentration shown in b).  

Table 9.1 – Gas Concentration steps of NO2 tested with the MOX sensor. 

Step 

NO2 

Concentration 

[ppb] 

A 250 

B 100 

C 50 

D 25 

E 10 
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Fig. 9.3 – Response of the sensor to NO2 in dry conditions, a) plotted as a function of 

time and b) sensitivity against concentration.  

The initial concentration step (250 ppb) is repeated twice at the start of the experiment. 

This is to allow the sensor to stabilise. The baseline resistance is initially lower prior 

to the first concentration step. Post the initial step the baseline stabilises, which is an 

affect expected of MOX devices. The phenomenon is visible on both the commercial 

reference and prototype NO2 sensors.  The sensor was also tested in conditions of 25 

% RH and 50 % RH, as shown in Figs. 9.4 and 9.5.  

 

Fig. 9.4 - Sensors tested in 25 % RH conditions, a) response time plot shown and b) 

sensitivity. 
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Fig. 9.5 - Sensor tested in 50 % RH conditions, a) response time plot shown and b) 

sensitivity. 

The resistance increases for both sensors in the presence of NO2. This is the expected 

response for an n-type device (for an oxidising gas). For each experiment shown in 

Figs. 9.3 b), 9.4 b) and 9.5 b) the law expressed in (3.7) is fitted to the response. The 

value of exponent 𝛽 is close to 1 in all cases, suggesting that the chemisorbed surface 

oxygen species are in a negatively charged state. The power law was found to produce 

an excellent comparison to the prototype sensor output (R2 goodness of fit test 

equalling 0.992 in dry and 25 % RH conditions and 0.9977 in 50 % RH).  

The response of the prototype sensor improves at higher humidity, with a response of 

magnitude 2.4 and 2.06 in dry and 25 % RH conditions compared to a magnitude of 

5.4 (normalised response) in 50 % RH. Although dry conditions are often used as a 

benchmark for comparing sensor performance, MOX sensors are not particularly 

suited to 0 % RH. The lack of any water vapour in the air can cause the sensing layer 

to dry out, and then the sensor can become damaged and unresponsive.  The common 

recommended minimum level is 5 % RH [20], although in the case of the sensor 

developed in this work, the device was found to operate with good sensitivity even in 

dry conditions. In the case of breath analysis, the level of humidity is extremely high, 

although for some applications (combustion sensing) low humidity operation could be 

advantageous.   

The SGX Commercial sensor performs poorly in all of the trials performed against the 

prototype device. The device is specified as being capable of detecting 100 ppb NO2, 

however although a step change in resistance is visible, it does not produce a distinct 

response during the 5 min steps of 250 ppb or 100 ppb NO2 gas (250 ppb and 100 ppb 
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cannot be distinguished). The MICS-2714 does not produce a stable response 

throughout the duration of the experiment, regardless of RH condition. The large 

baseline drift and slow response to the presence of NO2 prevented detection of 

concentrations less than 100 ppb. The output response does not wholly accurately 

follow the empirical law (eqn. 9.4), with goodness of fits calculated as 0.9617 in a dry 

environment and 0.9075 in 25 % RH.  

In the experiments presented in Figs. 9.3 to 9.6 there is a decrease in the resistance of 

the sensor due to the presence of water vapour. The interaction of the water molecules 

with the WO3 surface takes place via the electron donating adsorption. The 

dissociative chemisorption process results in the formation of hydroxyl groups on the 

thick film surface, a two stage process [22]. The first step is shown in equations (9.1) 

and (9.2) and the second step in eqn. (9.3). First, the water molecules adsorbed on the 

surface react with the lattice sites (𝑊). Equation (9.2) demonstrates the relationship 

between the lattice oxygen at the oxygen site (𝑂𝑜) and the vacancy created at the 

oxygen site (𝑉𝑜). 𝐻+ (from the dissociation of water molecules) reacts with the ionised 

oxygen (displaced from the lattice) to form the hydroxyl group given in (9.3). Thus, 

as stated earlier, the resistance of the film decreases, due to the electrons accumulating 

on the surface [23].   

𝐻2𝑂 + 𝑂𝑜 + 𝑊 ⇌ 2𝑂𝐻 − 𝑊 + 𝑉𝑜 + 2𝑒− (9.1) 

𝑂𝑜  ⇌ 𝑂2− + 𝑉𝑜 (9.2) 

𝐻+ + 𝑂2−  ⇌ 𝑂𝐻− (9.3) 

The performance of the prototype sensor is significantly better than both the 

commercial device and others reported in the literature. The level of NO2 

concentration detected and the response time of the device are superior to previous 

reports. Su and Peng reported on the fabrication of a room-temperature NO2 sensor 

based on WO3 and reduced graphene oxide nanocomposite films [24]. It was noted 

that the device exhibited a strong response to low concentrations of NO2 gas at room 

temperature and had satisfactory linearity and favourable long-term stability. A 

micrograph of the film, formed by a metal organic decomposition process at 500 °C, 

is shown in Fig. 9.6.   
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Fig. 9.6 – SEM micrograph of WO3 film sensor by Su and Peng, fabricated by one-

pot polyol process [24]. 

The sensor reported by Su and Peng was tested in NO2 environments from 0.5 to 20 

ppm. The response at 500 ppb was ~0.2, rising to ~1700 at 20 ppm. The exposure time 

was set to a maximum of 10 min, but the sensor did not saturate during that period (10 

min was therefore defined as the response time). The recovery time took 18 min at an 

exposure of 5 ppm. It was suggested that the sensor may be suitable for measuring 

nitrogen oxides generated by combustion facilities (which are known to be harmful to 

the human body), although the performance was not exceptional compared to the 

commercially available devices. 

To detect VOCs in breath, the sensor must be able to detect concentration in the ppb 

range. The improvement made with the prototype gas sensor compared to previous 

MOX sensors reported in the literature is a high sensitivity for low ppb measurements. 

Chung et al. reported a maximum sensitivity of 12 to an environment of 100 ppm NO2 

using a thick film WO3 based sensor [25]. The sensor was fabricated by a screen 

printing method. The thick film was fired at 700 °C and operated at 100 °C, from 

which Chung et al. noted excellent sensor properties (response and recovery 

characteristics). The response and recovery times were of the order of 100 s, fast 

considering the low operating temperature. Films fired at 600 and 800 °C were also 

trialled. The size of the grains and macro pores were found to gradually increase with 

an increase in firing temperature. Experimental data demonstrates similar response 
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after firing at 700 and 800 °C (and poorer response characteristics at 600 °C), although 

higher stability was visible for the 700 °C fired films.   

The effect of the grain size in WO3 films on the ability of the sensor to respond to 

nitrogen oxides gases was reported by Tamaki et al. [26]. The mean crystallite sizes 

of WO3 were varied in the range of 16 to 57 nm. Grain sizes between 33 and 57 nm 

were found not to affect sensitivity significantly. A sharp increase in sensitivity was 

observed for grains smaller than 33 nm, where the sensitivity more than doubled for a 

grain size of 25 nm to 5 ppm NO2 (S of 18 compared to 46).  Crystalline sizes below 

25 nm were found to be of comparable sensitivity to those of 33 nm size. In the sensors 

developed in this work, these remarkable characteristics were likely achieved due to 

comparatively small grain sizes. The reduced size allows for greater surface area, and 

increases the likelihood of the grains to absorb oxygen to form ionised species. The 

sensing WO3 layer is several µm thick, which has a porous structure. The diffusion of 

NO2 into the sensing body enables the process to reach the inner film, where the 

interdigitated electrons are located.  

Xia et al. reported on NO2 sensor powders fabricated by a colloidal chemical method. 

The crystalline particles constructed from WO3 doped with gold were formed at 

around 28 nm size [27]. The doping weight was investigated (0.25, 0.5, 1.0 and 1.5 

wt%) to NO2 gas at 10 ppm concentration. The maximum response was found at 150 

°C for 1.0 wt% doped WO3 (400 %). The optimal response to acetone was noted as 

being at 200 °C. The intrinsic conductance of WO3 increases with increasing 

temperature. The adsorbed oxygen molecules transform into oxygen ions by capturing 

free electrons from the oxide. This process causes a decrease in the conductance of the 

oxide. The equations (9.4 – 9.7) express this reaction [27][28]. 

𝑂2 (𝑔𝑎𝑠)  ⇌ 𝑂2 (𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑) (9.4) 

𝑂2 (𝑎𝑑𝑠) + 𝑒− ⇌ 𝑂2
− (𝑎𝑑𝑠) (9.5) 

𝑂2
− (𝑎𝑑𝑠) + 𝑒− ⇌ 2𝑂2

− (𝑎𝑑𝑠) (9.6) 

𝑂− (𝑎𝑑𝑠) + 𝑒− ⇌ 𝑂2− (𝑎𝑑𝑠) (9.7) 

With an oxidising gas, such as NO2, the gas molecules are adsorbed through weak van 

der Waals forces (physisorption) and covalent bonding (chemisorption) [28]. The 

adsorption of NO2
 causes a decrease in conductivity, which can be explained by the 

reactions expressed in (9.8) and (9.9) [27]. 
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𝑁𝑂2 (𝑔𝑎𝑠) + 𝑒− ⇌ 𝑁𝑂2
− (𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑) (9.8) 

𝑁𝑂2 (𝑔𝑎𝑠) + 𝑒− ⇌ 𝑁𝑂 (𝑔𝑎𝑠) + 𝑂− (𝑎𝑑𝑠) (9.9) 

Blo et al. studied WO3 nano-powders doped with manganese, tantalum and zirconium 

[29]. The response of the printed thick film sensor was optimal again at 150 °C, 

regardless of doping material. The grain size varied, depending on doping and 

annealing temperature; the smallest grains were produced for manganese doped WO3 

(44 to 72 nm). The sensor was almost in-sensitive to CO; the lack of CO response was 

attributed to the chemisorption sensing mechanism, which is different than for tin 

oxide sensors.  Blo et al. demonstrated the sensor was sensitive to 500 ppb NO2 and 

noted the sensors were suited for low temperature operation; the samples were more 

conductive than tin oxide films by three orders of magnitude at their low operating 

temperature.  

9.4.1.4 Acetone Experimental Measurement 

The prototype sensor developed in this work was found to produce a remarkable 

response to NO2. The sensor was not rigorously optimised to sense acetone (in terms 

of hotplate temperature). Elevated concentrations of acetone on breath (> 1800 ppb 

compared to 300 – 900 ppb, shown in Table 3.7) can be used as a biomarker for type-

I diabetes [30]. Breath measurements of acetone could provide a non-invasive means 

of diabetes diagnosis. WO3 based sensors have been reported to offer good sensitivity 

to acetone and the potential to detect acetone in the low ppm (< 2 ppm) range [31].  

It has been suggested that an acetone breath sensing unit could be used as a tool to 

screen patients for diabetes in an economically viable and reliable manner [32]. Real 

time analysis would allow a quick diagnoses and thus a large numbers of subjects 

could be tested. It has been reported that the subjects need not fast prior to the 

measurements, where higher acetone levels were still prevalent in diabetic compared 

to non-diabetic subjects in conditions of only 2 hours post feeding [32]. The MOX 

sensor developed in this chapter, demonstrated a stable response to acetone in the 

range of 100 to 300 ppm (Table 9.2). The normalised resistance response is shown in 

Fig. 9.7 a) and the sensitivity in b). The experiments were again performed in dry 

conditions, with 5 min steps for each concentration (returning to baseline of dry 

synthetic air).  
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Table 9.2 – Gas Concentration steps of acetone tested with the MOX sensor. 

Step 
Acetone 

Concentration [ppm] 

F 300 

G 250 

H 200 

I 150 

J 100 

 

Fig. 9.7 – Sensor tested in acetone 100 to 300 ppm, with a) Normalised resistance 

plot and b) response plot.  

The response to acetone is the opposite to that shown for NO2; when the sensor is 

exposed to an increase in acetone concentration its resistance decreases. For acetone, 

C3H6O, the reducing hydrogen species are bound to carbon. Therefore it is more 

difficult for the acetone vapour to dissociate into the reactive reducing components in 

the thick film surface. An electron is released back to the conduction band when 

acetone vapour reacts with the chemisorbed oxygen (which causes the resistance of 

the sensing layer to decrease) [28]. The process is very temperature dependent. At 

temperatures above 300 °C (i.e. the sensor in this work was operated at 350 °C) the 

amount of absorbed oxygen ion species insufficient to react with the acetone vapour 

molecules. It is noted by Khadayate et al. highest sensitivity is achieved at 300 °C, 

falling to half the maximum value of 450 % at temperatures of 250 °C and 350 °C 

[33].  
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The prototype sensor demonstrated a clear response to acetone, although the 

sensitivity was significantly lower compared to NO2. A maximum response of 0.48 

was observed for 300 ppm acetone. Righettoni et al. report detection of acetone in the 

range of 20 to 80 ppb (steps of 20 ppb distinguishable) using nanoparticle WO3 film, 

doped with 10 % Silica SiO2, directly deposited onto interdigital electrodes [34]. The 

sensor operated at a temperature of 325 °C for the optimum response to acetone. The 

diameter of the nanoparticles was between 14 and 16 nm. The sensor response was 

found to be ~ 6 to detect 1 ppm acetone, and the development of the device was noted 

as a key development towards a breath acetone sensor. The response and recovery 

times however were in the range of 10 min, considering an experiment with a 50 ppb 

acetone concentration step.  

9.4.1.5 Response Processing 

Although the response and recovery times recorded for the prototype MOX sensor are 

a great improvement on those reported in the literature (< 1 min compared to 10s of 

minutes) the requirement of a fast response sensor for breath analysis (<10 s response 

time) is not met. The excellent stability recorded with the developed MOX sensor and 

the repeatable response produced in variable conditions allows further signal 

processing to be performed on the raw sensor output. Preliminary methods of signal 

processing are presented here, although further work is required to refine these 

algorithms.  

The speed of the response to a gas is dependent on the reactions occurring inside the 

thick film on the MOX sensor. Although these reactions can take a significant time 

(e.g. 1 minute) to stabilise (i.e. when the final resistance of the sensor is reached) the 

initial reactions can be used to predict the final response of the sensor. For the 

experiment shown in Fig. 9.9 a), with NO2 gas tested at 50 % RH, the response time 

at 250 ppb is 40.2 s on average, which decreases to 72.1 s for 50 ppb.  This decrease 

in response time is in-part due to the decreased speed of the reactions on the surface 

and inside the thick film. The final resistance response is not visible, until the output 

stabilises, however the initial response period can be used to identify the type of gas 

that the sensor is exposed to and its concentration.  

An example is shown in Fig. 9.8. The sensor is exposed to gas concentrations of CO 

and NO2, Fig. 9.8 a). The heater is pulsed on and off (room temperature to 350 °C) at 
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1 minute intervals. The data are sampled at 100 Hz, the first 80 differentiated samples 

are shown in b), taken from the second pulse during the cycle of each gas 

concentration. The sensor has a high response to exposure to NO2 (i.e. 50 or 100 ppb). 

The magnitude of the peak indicates concentration, where 100 ppb has a greater peak 

(5.85 ×10
5
 compared to the 50 ppb peak of 5.7 ×10

5
). The sensor demonstrates a low 

response to CO, although the response is not identical to that in synthetic air.  

 

Fig. 9.8 - a) Resistance response plot for the prototype sensor to concentrations of 

NO2 and CO; b) Differentiated initial responses to each gas concentration.  

The differentiated pulse signal can help to determine the gas and concentration from 

less than 1 second of the sensor response. This technique can help reduce the response 

time of the sensor, although it is not well reported in the literature. The heater is pulsed 

on and off to allow the gas to be sampled at 1 minute intervals (i.e. the differential of 

the sensor response is only taken when the heater temperature is changed). The stable 

response from the sensor lessens the need for high order filtering, thus the differential 

can be taken without compromising the response time due to signal processing need.  

The response to CO involves different reaction mechanisms, as specified in equations 

(9.10) and (9.11) when a CO molecule comes into contact with the surface of the 

sensor [35,36]. Typically at temperatures above 300 °C the dominant species on the 

oxide surface is 𝑂−. The reaction increases the conductivity of the tungsten oxide, 

through donation of an electron to the WO3 conduction band.   

𝐶𝑂 (𝑔𝑎𝑠) ⇌ 𝐶𝑂 (𝑎𝑑𝑠) (9.10) 

𝐶𝑂 (𝑎𝑑𝑠) + 𝑂− → 𝐶𝑂2 + 𝑒− (9.11) 
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A notable MOX sensor has been developed, capable of sensing NO2 down to 10 ppb 

limit of detection. The thick film device is also capable of detecting acetone in the 

same configuration, although the operating temperature and film doping do not 

provide optimal performance.   

The sensor has been tested in conditions of dry, 25 % and 50 % RH. The sensitivity of 

the sensor has been proven to be far superior to the commercially available MOX 

sensors (response of a magnitude 5, compared to 1.25 for 250 ppb NO2). The 

development of research NO2 sensors are widely reported in the literature, although 

few demonstrate the response times or resilience to humidity required to operate as a 

breath-by-breath sensor.  

9.4.2 O2 and CO2 Sensors 

The The NDIR CO2 sensor (development details in chapter V) provided a good 

response time (< 2 s), but was not resilient to temperature or humidity variance. A 

reference channel would improve its robustness, but at the cost of size and complexity. 

Further work is needed to develop an efficient NDIR emitter, to reduce the power 

consumption of the unit and improve the response time of the chip. The limited read-

out speed of 5 Hz can be improved to improve the accuracy of the CO2 measured 

during inhalation and exhalation periods.  

The hand-held unit developed was comfortable and easy to use, however it did not 

offer the portability desired in the project. The size of the sensors, and battery required 

to power the pump were limiting factors. The general purpose pump was not designed 

for quiet operation, which provided some discomfort to the subjects while confined in 

the chamber environment. The sensors developed in this work to measure CO2 and 

VOCs are of miniature size, which could be considered a step towards the target goal 

of a miniature sensing unit.  

The electrochemical O2 sensor provided an output sufficient to calculate EE, but its 

bulky size was not ideal for a portable instrument. The slow performance, caused in 

part by a thick membrane, limited the response time. Electrochemical cells are not 

commonly used in breath analysers, for this problem, although the reliability of the 

cell and robustness to exhaled breath, proved the cells did not need replacing 

throughout the testing phase with subjects.   
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The current work confined the measurement of human gases to monitoring exhaled 

breath. Non-invasive techniques for O2 and CO2 monitoring are possible. 

Transcutaneous sensors (that measure gas concentrations by being attached to the 

skin) are commonly used for monitoring of O2 levels in neonatal care [37]. CO2 

sensing can be performed in a similar manner. Transcutaneous CO2 monitors heat the 

skin (to ~40 °c) to induce vasodilation of the capillary bed. The heated area increases 

the blood flow and facilitates the diffusion of O2 and CO2 from the capillary to the 

sensor [38]. An electrochemical principle is used to measure the concentration of O2 

and CO2. No reports have currently been found in the literature to suggest these sensors 

based on transcutaneous principles have been used to measure EE.  

The power consumption of the unit overall was not optimised for low-power 

applications (and long battery life).  The maximum current draw (at 5 V) was 410 mA 

(of which ~ 25 % was needed by the pump). The Bluetooth wireless module was not 

Low Energy ready (50 mA needed) which also contributed to the high power 

consumption. The sensor components were low-power (i.e. NDIR, MOX and O2 

sensors), and required a total of ~ 70 mA. The power requirements of the NDIR sensor 

could be further reduced via the use of a smaller IR emitter (there is great interest in 

plasmonic IR emitters which optimise the IR emission at desired wavelengths). A USB 

battery pack (suitable for mobile phone charging) provided a portable power source 

for the hand-held analysers. The 2800 mAh battery (shown in Fig. 8.1) provided a 

measurement lifetime of 2.5 hours (continuous operation).   

9.4.3 Software 

The applications developed enabled measurements to be performed on either an 

Android smartphone or a Windows computer. To target a wider audience, an 

application for other mobile platforms would be required. Besides the portability of 

using a smartphone to make measurements, the additional capability of such a device 

was not used. For example, the sensors included in most smartphones (e.g. 

accelerometers, GPS) are already used to monitor the activity of the user. These 

provide information that is of interest to the user, although as discussed previously, do 

not provide a clinically accurate reading. However, such information could be used to 

establish if the user was ready to make a resting EE measurement (i.e. the application 

could ask the user to remain sedentary for a fixed period, prior to making a 

measurement).  
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The application did not provide an intuitive interface. Although simple to use, no 

guidance (e.g. video material or screen prompts) were given to the user, to aid their 

operation of the EE measurement device. In future work, the application could be 

developed to give the user prompts of which buttons to press, as well as an interactive 

demonstration on the operation of the graphical interface.  

9.4.4 Experimental 

The experiments performed in this work do not tackle the wealth of possible 

measurements that can only be performed with a hand-held device that is quick and 

easy to use.  

The experimental comparison with respiratory rooms measured only resting EE. The 

other components of EE (DIT, physical activity etc.) are not measured and are still not 

understood in the literature. The experiments most commonly reported are related to 

weight loss and specific subject groups (e.g. elderly [39], pregnant [40] etc.). In order 

to fully investigate the nature of the intra-individual variable components of EE, it is 

necessary to provide an affordable hand-held device for ready distribution to the 

general population.  

The VOCs in the exhaled breath of subjects have not been rigorously tested in this 

work. The detection of compounds suggested in chapter III (e.g. acetone, NO2, NO, 

CO etc.) could potentially aid disease diagnostics. A wealth of other compounds have 

been detected in breath, although the usefulness of some is less clear. A fingerprinting 

approach is often taken to identify a specific disease, without the need to identify the 

individual compounds.  

The reproducibility between the three produced hand-held analysers was not 

comprehensively evaluated. The three analysers were connected in series to allow one 

breath to be sampled by all the devices. The outputs from the O2 and CO2 sensors are 

shown in Fig. 9.9 a) and b), respectively.  
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Fig. 9.9 – A single breath sampled through three analysers, a) O2 sensor response; b) 

CO2 sensor response.  

The O2 and CO2 sensor results are similar across all three devices. The O2 sensor 

responds quicker in the first unit, closest to subject providing the breath sample. Fig. 

9.9 a) and b) show calibrated plots, where each unit was separately calibrated. The 

parameter values used in the calibration curves varied between units. The time 

between requiring calibration was not assessed, nor the amount of drift that occurred 

between calibrations. The calibration required for the CO2 sensor was noted to vary 

partially from unit 1 compared to units 2 and 3. The mounting for the IR emitter effects 

the IR emission received by the IR detector (i.e. the angle of which IR is emitted is 

varied). Although identical mechanisms were used between the units, it is possible the 

performance of the IR emitter could be compromised by poor installation. Further 

work needed involves testing the reproducibility of the hand-held units to several 

breath tests and thus the ability for accurate EE calculation.  

The current generation of EE measurement uses urine samples to measure protein 

metabolism [41]. Outside of a laboratory environment, this method is cumbersome 

and inconvenient. There is great potential to use a nitrogen-based VOC sensor to 

measure protein metabolism. In this current work, nitrogen metabolism was not 

measured, as it was found only to contribute < 2 % (chapter III) to the total daily EE. 

This value could vary in the wider population, and the lack of measurement of this 

component of metabolism should not be ignored.  

The use of a mask to collect breath samples caused minor discomfort for 2 subjects 

during the EE measurements in the trial reported in this work (chapter VIII). This 

discomfort is not uncommon and it has been reported the discomfort of using EE 
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apparatus can affect measurements [42].With the current generation breath analyser 

system, the volume of an exhalation must be captured. The volume exhaled is required 

to calculate the amount of O2 consumed and CO2 produced. Wearing of mask may not 

be socially acceptable and could hinder the use of a portable breath analyser in the 

community. If the volume of breath exhaled could be calculated by an alternative 

means, it would open the possibility for mask-free analyser systems.  

9.5 Concluding Remarks 

The hand-held breath analyser developed in this work have provided proof-of-concept 

level devices for EE measurement in a free-living environment. The awareness of the 

issues caused by a population becoming obese is still a global problem. The variability 

in the EE measured in the 10 subjects in the respiratory rooms proves the need for the 

measurement of energy need on an individual basis, where the current factors used in 

mathematical equations (height, weight, age) are not sufficient to allow useful values 

to be determined.   

The technology included in everyday devices (smartphones, wearable technology) 

does not often include gas sensors. The ongoing development of miniature devices for 

detection of compounds in the ambient air and breath are growing research fields. The 

potential to include sensors in consumer technology means the development of 

accurate, fast and affordable sensors will be of interest to sensor companies in the 

coming years.  
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Appendices 
 

 

 

 

 

 

Preface 

This final section documents two papers submitted for a book chapter and journal 

article. Also, the assessment submitted to the Biomedical and Scientific Research 

Ethics Committee is included. A portion of the code written to communicate with the 

sensors system developed in this project is detailed. The development of 

microcontroller and smartphone code, as well as their counterparts on data logging 

computers has formed an important part of the successful breath analysis experiments.  
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10.2 Appendix B – Ethics Approval for Laboratory Breath Testing 

Prior to any testing with human volunteers at the University of Warwick, a Biomedical 

and Scientific Research Ethics Committee (BSREC) application was filed. The 

committee approval the studies. The attached pages show the BSREC application and 

final granted approval letter. 

10.2.1 B.1 - BSREC Application Form 
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10.2.2 B.2 - BSREC Protocol 
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10.2.3 B.3 - BSREC Participant Information Leaflet 
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10.2.4 B.4 - BSREC Participant Consent Form 
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10.2.5 B.5 - BSREC Participant Recruitment Email Template 
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10.2.6 B.6 - BSREC Recruitment Advert for Research Webpage 
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10.2.7 B.7- BSREC Full Approval Letter 
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10.3 Appendix C – Gas Testing Rig LabVIEW Software 

Interface software for the gas testing rig was written using National Instruments 

LabVIEW 2013. The operation is described in Chapter 7. Flow charts and code screen 

prints are displayed in this section. 

10.3.1 C.1 - Gas Rig Data Logging Flow Chart 
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10.3.2 C.2 - Gas Rig Data Logging Code 

A screen print of the LabVIEW code is shown in the figures below. Only a sample of 

the code is displayed, where the entire program cannot be displayed in printed format.  

Fig. C.1 shows the initial phase of the data logging process. The user selects the 

number of sensors connected to the rig in a preliminary configuration screen. This 

code displays the corresponding number of graphs (i.e. 1 per sensor), and hides the 

remaining (maximum of 9 sensors possible).  

 

Fig. C.1 – Screen print of interface screen layout preparation code.  

Fig. C.2 shows the acquisition of the data, from the USB data collection unit to the 

graphical display and collection into an array. The array is prepared for writing to a 

log file. A filter is optionally enabled, which can be displayed on the front panel 

interface.  

 

Fig. C.2 – Screen print of acquisition of data from USB unit to front panel display.  
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The data array is written to a .TDMS (proprietary format for National Instruments’ 

software). This binary format is used to ensure that the data is written efficiently to a 

file, with no delay in logging, which could cause data to be lost. A screen print showing 

how the columns are labelled in the file (given a string input of the sensor names) is 

shown in Fig. C.3.   

 

Fig. C.3 – Screen print of saving data to file with column labels.  

The oven section of the control panel was designed to allow the gas sensor 

environments to be varied in temperature. A table input allows for step changes in 

temperature, after a given desired period has elapsed. The temperature measurement 

recorded from the oven is visually displayed and logged to the main file, with the gas 

sensor data. The code for controlling the oven is shown in Fig. C.4.  

A section of code was developed to allow accurate generation of waveforms (sinusoid, 

square etc.) from the analogue output of a USB unit. The code was executed at a fixed 

frequency (1 kHz) to enable known frequencies to be generated, without using a USB 

data acquisition unit with a built in frequency generator. This enabled low frequency 

waves to be generated, using standard equipment, with high accuracy. The range of 

parameter inputs possible through the front panel enabled centre voltage and offsets 

to be created. A file, containing output voltages and desired time step for each row 

could be loaded, to enable custom cycles of output voltage to be deployed. This is of 

particular use for temperature modulating sensors. The code section is shown in Fig. 

C.5. 
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Fig. C.4 – Screen print of control software for Memmert Oven used in the gas testing rig. Temperature values set in a table can be sent 

to the oven after the passage of a set period of time, to enable step changes in the environment of the gas sensor chamber (inside the 

oven).  
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Fig. C.5 – Screen print of code to output various waveform shapes from a file or from set parameters to the analogue output from a USB 

unit (National Instruments Data Acquisition Unit).  The code allows for a sinusoid, square wave or DC voltage to be applied to the 

analogue output. A file can be loaded with custom points (voltages) and a time period (s) which will be output through the analogue 

port. The loop is executed at a fixed rate (1 kHz) to ensure accurate frequency generation.
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10.3.3 C.3 - Gas Rig Mass Flow Controller Operation Flow Chart 
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The testing rig is designed to test a range of gases, where concentrations can be varied 

using the mass flow controllers. There are four tabs on the MFC software front panel; 

first one to configure which gas will be tested, a second to manually send a single 

value to the four MFCs on the rig, a third to send a row of flow values from a table 

and a fourth page to automatically calculated necessary flow rate from a given desired 

gas concentration. A screen print of the code used for the automatic flow calculation 

is shown in Fig. B.6.  
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Fig. C.6 – Screen print of code to send flow values to MFCs on gas testing rig. Sub-VI is used to calculate flow rates from desired gas 

concentrations.  
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The sub-VI takes the gas concentrations available in the gas cylinders and calculates the flow 

rate required to create the desired gas concentration (given a balance gas). A screen print of the 

code is shown in Fig. C.7. The code includes compensation for the addition of humidity, which 

is created through the introduction of saturated synthetic air.  

 

Fig. C.7 – Screen print of sub-VI code to calculate flow rates for MFCs, given a desired gas 

concentration and the concentration available from the gas cylinders.  
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10.4 Appendix D – Microcontroller code for Acquiring Sensor Signals 

The Teensy microcontroller code was written in the Arduino (C/C++) programming language. 

The microcontroller is designed for use with Arduino software, and many libraries to ease 

acquisition of signals from digital (I2C) and analogue inputs are included with the programming 

package.  

The software was written to log the signal received from all the sensors at 200 Hz. The 

commercial flow sensors (Sensirion SFM3000) was found to be capable of providing an output 

at 10 Hz rate, and thus was extrapolated, so values could be reported back to the LabVIEW VI 

(Appendix C) at the desired frequency. There are 3 timers available on the microcontroller. 

The values are read from each analogue input pin (NDIR, MOX, temperature, humidity and O2 

sensors) at a rate of 400 Hz, and 2 values are averaged, in a buffer, to get the value reported at 

the baseline 200 Hz. A section of the code to print the values to the serial port is shown in Fig. 

D.1.  

 

Fig. D.1 – Screen print of a section of the microcontroller code written to acquire the signals 

from the sensors in the hand-held unit.  
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10.5 Appendix E – Handheld Breath Analyser Data Logging LabVIEW Software 

The software required to acquire the data from the handheld analysers contains only part of 

feature set available from the gas testing rig interface shown in Appendix B. Data are recorded 

from a serial port connection with the Teensy microcontroller. The data is logged to a file, with 

column labels providing corresponding to the data string received from the microcontroller. A 

timestamp is affixed to the end of each serial string transmitted from the microcontroller, thus 

it does not rely on the data being received and processed on the data logging computer. The 

complete code for the VI is shown in Fig. E.1.  

 

 

Fig. E.1 – Screen print of LabVIEW code for recording data from the Teensy microcontroller 

for the handheld analysers.  
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10.6 Appendix F – Android code for Data Analysis from Hand-Held Unit 

An Android application was written in Java using Android Studio (V1.5.1) to communicate 

wirelessly with the hand-held breath analysers. The basic user interface displayed graphs of the 

sensor outputs and allowed EE to be calculated from a 1 min breath sample (immediately after 

the sample was given). A screen print of the layout design of the application is shown in Fig. 

F.1, with the graph controls highlighted.  

 

Fig. F.1 – Screen print of Android layout designer in Android Studio, with the graph elements 

on the main-screen of the application selected.  

A message string is received over a Bluetooth serial link. The string is passed to a function to 

save the data to a log file. The data are received at 200 Hz, thus a number of lines are stored in 

a buffer, prior to being written to a comma separated value file. A section of the code used to 

perform this task is shown in Fig. F.2.  
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Fig. F.2 – Screen print of code section showing data being received from a serial link and 

being stored in a buffer. 

The CO2 sensor output is a sinusoidal waveform. The amplitude of the wave is determined in 

the application, in real time and displayed on a graph in the main-screen. The code finds the 

peaks and troughs in the received waveform (where a buffer of 120 samples is given). The 

function is shown in Fig. F.3.  
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Fig. F.3 – Screen print of code section to calculate the amplitude of a sinusoidal signal. 

After 1 minute of breath data is collected, the program can calculate the EE for the given period. 

The calculated value is displayed to the user as a pop-up message. The code used to display the 

message is shown in Fig. F.4.  
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Fig. F.4 – Screen print of code used to display the EE calculated from a 1 minute breath 

sample. 

 

 


