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Phase Noise Influence in Long-range Coherent 
Optical OFDM Systems with Delay Detection, 
IFFT Multiplexing and FFT Demodulation

Abstract: We present a study of the influence of dispersion 

induced phase noise for CO-OFDM systems using FFT 

multiplexing/IFFT demultiplexing techniques (software 

based). The software based system provides a method for 

a rigorous evaluation of the phase noise variance caused 

by Common Phase Error (CPE) and Inter-Carrier Interfer-

ence (ICI) including – for the first time to our knowledge 

– in explicit form the effect of equalization enhanced 

phase noise (EEPN). This, in turns, leads to an analytic 

BER specification. Numerical results focus on a CO-OFDM 

system with 10–25 GS/s QPSK channel modulation. A 

worst case constellation configuration is identified for the 

phase noise influence and the resulting BER is compared 

to the BER of a conventional single channel QPSK system 

with the same capacity as the CO-OFDM implementation. 

Results are evaluated as a function of transmission dis-

tance. For both types of systems, the phase noise variance 

increases significantly with increasing transmission dis-

tance. For a total capacity of 400 (1000) Gbit/s, the trans-

mission distance to have the BER < 10−2 for the worst case 

CO-OFDM design is less than 800 and 460 km, respec-

tively, whereas for a single channel QPSK system it is less 

than 1400 and 560 km.
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1  Introduction

High capacity coherent optical transmission research 

today has focus on achieving capacities in excess of 100 

Gbit/s for transmission distances of 1000 km or more [1]. 

An essential part of the optical system design is the use of 

Discrete Signal Processing (DSP) techniques in both trans-

mitter and receiver to eliminate costly hardware for dis-

persion compensation, polarization tracking and control, 

clock extraction, carrier phase extraction etc. such that 

there is no need to e.g. use optical injection locking which 

is difficult to implement in practical systems [2].

In the core part of the network, emphasis has been on 

long-range (high sensitivity) systems where coherent (ho-

modyne) implementations of n-level Phase-Shift-Keying 

(nPSK) and Quadrature Amplitude Modulation (nQAM). 

Coherent 4PSK (QPSK) systems with in-phase and quadra-

ture modulation and using polarization multiplexing 

have  proven superior performance up to total bit rates 

in  the order of 100 Gbit/s [1]. Due to practical limita-

tions in the performance of digital-to-analogue (DA) and 

analogue-to-digital (AD) electronics which currently oper-

ates at maximum 56 Gbaud [3] higher baud-rates are 

 difficult to achieve for QPSK systems. Higher system ca-

pacities can be obtained using higher constellations but 

at  the expense of increased influence of additive optical 

noise and laser phase noise. Another alternative is multi-

plexing several QPSK modulated channels using sub-

carrier multiplexing (SCM – see e.g. [4]) techniques or 

OFDM techniques. OFDM MUX/DEMUX techniques are 

seen as more spectrally efficient than SCM techniques. 

Only OFDM implementations will be further considered 

in this paper.

Optical coherent systems can be seen as a comple-

mentary technology to modern systems in the radio 

(mobile) domain. It is important to understand the differ-

ences in these implementations and these are mainly that 

the optical systems operate at significantly higher trans-

mission speeds than their radio counterparts and that 

they use signal sources (transmitter and local oscillator 
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lasers) which are significantly less coherent than radio 

sources. For nPSK and nQAM systems, DSP technology in 

the optical domain is entirely focused on high speed im-

plementation of simple functions, such as AD/DA conver-

sion. The use of high constellation transmission schemes 

is a way of lowering the DSP speed relative to the total cap-

acity. Using OFDM as MUX/DEMUX technology is an alter-

native approach of very efficient lowering the DSP speed 

(per channel) and still maintaining 100 Gbit/s (or more) 

total system throughput. Coherent detection is considered 

for longer distance high capacity OFDM implementations 

[5]. The relatively low channel baud-rate leads to an influ-

ence of phase noise which can be more severe than for 

single channel systems [6] with low constellations where 

the system capacity per Hz can be traded against phase 

noise sensitivity [7, 8, 9].

Using nPSK or nQAM systems with DSP based disper-

sion compensation leads to strong influence of laser phase 

noise which is further enhanced by equalization enhanced 

phase noise (EEPN) originating from the local oscillator 

laser [10, 11]. OFDM systems with low per-channel cap-

acity may use wrapping of the signal in the time domain 

(cyclic prefix) to account for dispersion effects in this 

way  eliminating the need for DSP based compensation. 

However, it has to be noted that cyclic prefix only can be 

used to correct the intra OFDM-channel dispersion. Inter-

channel dispersion is insignificant for low channel Baud-

rates but for higher rates the interchannel dispersion re-

quires DSP-type correction and EEPN will result from this 

even for OFDM systems [12, 13, 14]. Using an RF pilot 

carrier which is adjacent to or part of the OFDM channel 

grid is an effective method of eliminating the phase noise 

effect [15, 16, 18], but it has to be noted that the dispersion 

influenced delay of OFDM channels will make the elimi-

nation incomplete [18]. This leads to a transmission length 

dependent (dispersion enhanced) phase noise effect [18]. 

It is worth to mention that for nPSK and nQAM implemen-

tations the RF pilot carrier may eliminate the phase noise 

entirely. However, the EEPN cannot be eliminated [10, 17, 

19]. For long distance OFDM implementations the RF 

pilot tone is not feasible. Then a system implementation 

with higher baud-rate per OFDM channel and delay- 

demodulation for each channel – as considered in this 

paper – is more practical in order to lower the phase noise 

influence.

System simulations (transmission experiments imple-

mented in a software environment) have proven to be effi-

cient design tools for nPSK/nQAM systems using partly 

university developed system models [17] and partly com-

mercial simulation tools [20]. Such simulations for e.g. 

the  bit-error-rate (BER) are possible because practical 

system implementations are now based on soft-decision 

forward-error-correction (FEC) where a “raw” BER 

(without FEC) of the order of 10−2 is sufficient [21]. For 

OFDM with tens or hundreds of signal channels, it is 

obvious that direct simulation of the OFDM system BER 

with independent simulation data (PRBS sequences) for 

each signal channel is a formidable task which is difficult 

for realization even for modern computers. Thus, it is 

of  special interest for OFDM system models to develop 

insight based upon rigorous analytical models for import-

ant system parts.

2  System modeling and theory

Here we display layouts for CO-OFDM systems using IFFT 

MUX and FFT DEMUX in a software based system imple-

mentation (Fig. 1).

2.1  CO-OFDM system IFFT MUX and FFT 

DEMUX and detection

In the following, we will present the derivation for 

CO-OFDM systems employing IFFT MUX and FFT DEMUX 

and detection. During a symbol period T the complex 

 envelope (constellation position) of one of the N trans-

mitted OFDM signal (defined as shown in Fig. 1) is ak 

(k = 0, 1, . . . , N − 1). Symbol of number k is moved to the 

electrical carrier frequency fk = k/T. The N symbols are 

multiplexed (added) using IFFT, and the multiplexed 

signal is denoted A(t) · exp(  j(ϕ(t)). The multiplexed signal 

is put onto the optical carrier wave and the resulting signal 

in the optical domain is:

1
2 ( ) 2 ( / )

0

( ) exp 2 ( ) ( )

o Tx

o Tx

N
j f t t j k N m

k

k

s t A t j f t t t

e a eπ ψ π

π ψ ϕ

(1)

where the sampled time is defined (modulo T) in the 

 interval mN < t/T < (m + 1)N with 0 < m < N − 1, ψTx(t) de-

notes the Tx laser phase noise and fo the optical carrier 

frequency. The electrically multiplexed signal is the ana-

logue output after digital Inverse Fast Fourier Transform 

(IFFT) of the digitized input sampled with N bins sepa-

rated by T/N, and each sample specifying one OFDM 

channel constellation ak. After coherent detection with a 

local oscillator (LO) laser with the same carrier frequency 

as the Tx laser, the output of the receiver, including FFT 

demodulation, chromatic dispersion compensation, cyclic 
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prefix correction and correlation detection the result is for 

symbol k (0 ≤ k ≤ N − 1) [1]:

2 ( ) 1
2 ( / )

0

( )
o LOj f t t N

j k N m
k

m

e
a s t e

N

π ψ

π (2)

where ψLO(t) denotes the LO laser phase noise (including 

the equalization enhanced phase noise to be discussed in 

detail later [10, 17, 18, 19]). In the case of no phase noise 

influence, the orthogonality between the channels means 

that a′k = ak and the symbol detection is perfect. Taylor ex-

pansion is now employed to identify the leading order 

phase noise influence in (2). The resulting Common Phase 

Error (CPE) for channel k is:

1

0

N

m

j mT

N N
ψ (3)

The Inter-Carrier Interference (ICI) is:

1 1

0 0

2 ( )
exp

N N

r

r m
r k

j mT j r k m
a

N N N

π
ψ (4)

It is possible to derive the phase noise variance in exact 

form accounting in detail for the partial phase noise cor-

relation between different channel locations in the OFDM 

frame. This can be done by introducing the correlation co-

efficient between two time-overlaping Wiener processes 

specified eg. By m = s and m = r. They have the correlation 

coefficient ρp,q = (1 − | p − q|/N )1/2 with ρp,p = ρq,q = 1. Each 

phase noise sample ψ(mT/N ) is sampled once per symbol 

time T (i.e. specifies the phase noise evolution over T ) and 

is therefore given by a Wiener process with zero-mean 

Gaussian probability density function (pdf) with variance 

σ   2 (σ   2 will be specified later in this section). Then the vari-

ance of (3) and (4) (which needs to be considered together 

due to the effects of the partial correlation) is given by

1 1 12
2

, 2
0 0 0

1

,
0

2 ( )
Re exp

2 ( )
Re exp

N N N
r

k CPE ICI

q p r k

N
s

p q

s k

a r k q
j

N a N

a s k p
j

a N

σ π
σ

π
ρ (5)

We note that the time correlation between contributions 

from neighboring channels is strong ( ρp,q   1 in this case).

For the final demodulation of one OFDM channel op-

erating as a 10–25 GS/s QPSK system, we have to consider 

electronic CD compensation (correcting the inter-channel 

dispersion). In this case, the phase noise variance σ   2 is 

influenced by EEPN, and it is given as [17]:

2
2 2

2
2

LO
Tx LO

Tx LO EEPN

D L
T

c T

T

πλ ν
σ π ν ν

π ν ν ν (6)

Fig. 1: OFDM system including IFFT MUX and FFT with an RF pilot tone for phase noise mitigation. The mathematics for the MUX and DEMUX 

is schematically indicated and discussed in detail in the text. Figure abbreviations: a0–a
N−1 – constellation of N transmitted OFDM symbols; 

a′0–a′
N−1 – constellation of N received OFDM symbols; IFFT – Inverse Fast Fourier Transform; GI – guard time insertion; DAC – discrete to 

analogue conversion; LPF – low pass filter; AM – amplitude modulator; PM – phase modulator, Tx – transmitter, LO – local oscillator; 

RF – radio frequency; ADC – analogue to discrete conversion; FFT – Fast Fourier Transform.
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where T is the symbol time, D is the fiber dispersion coeffi-

cient, c is the free space velocity of light, λ is the wave-

length, L is the fiber length and transmitter and local 

 Oscillator linewidths are denoted νTx and νLO. In (5)–(6) 

it is observed that the intra-channel dispersion is cor-

rected by using cyclic prefix whereas the inter-channel 

dispersion needs electronic dispersion compensation and 

thus is subject to EEPN. For a single-channel QPSK system 

with the same capacity as an N-channel OFDM system (6) 

describes the phase noise influence provided that the 

symbol time is adjusted to the QPSK bit-rate, i.e. the re-

sulting symbol time is T/N. This indicates that the result-

ing EEPN effect is significantly more pronounced for the 

single channel high capacity QPSK system.

We will investigate the resulting phase noise variance 

in more detail in the numerical examples of the next 

section.

When considering the amplitude of the phase noise 

contribution (for OFDM systems) which influences detec-

tion of the length (magnitude) of ak, there is no contribu-

tion from the CPE part of the phase noise as can be seen 

from (4). The ICI part will give a contribution (from the 

real part of (5)) which can be specified in similar forms 

as (6).

We note that practical nPSK, as well as nQAM, systems 

can be designed by choosing constellation configurations 

such that the phase noise influence on the detected phase 

is the dominating phase noise contribution. In the follow-

ing, we will not consider the magnitude part of the phase 

noise influence.

3  Simulation results and discussion

It is of interest to compare the normalized (dividing by the 

intrinsic phase noise variance σ   2) CPE + ICI phase noise 

influence in (5). With this normalization we will observe 

the phase noise influence relative to that of a single 

channel QPSK system with bit-rate 1/T. We consider an 

OFDM system implementation with 4PSK (QPSK) channel 

modulation.

It is appropriate to evaluate (5) for all combinations of 

constellations between the OFDM channels (considering 

for QPSK channel modulation 4 different constellations 

per channel) and for all demodulated channels (for all 

k-values). We note that for N OFDM channels this leads to 

an evaluation of N · 4N cases for a full investigation and 

this quickly renders the practical evaluation impossible 

for increasing N.

Fig. 2 shows the results as a function of the number of 

OFDM channels, N, for a received OFDM frame where all 

symbols ar (r = 0, 1, . . . , N − 1) are the same, and results 

are shown for the received channel number 0 (k = 0). 

Results are evaluated using full time correlation between 

phase noise samples (using (5) and defining the correla-

tion coefficient ρs,m = 1 for all s and m values) and for 

partial correlation using (5). For an N-channel CO-OFDM 

system it is of interest to note that the normalized worst 

case influence (on the variance) is N both in the case of 

full and partial correlation.

We will investigate the validity of the results in Fig. 2 

in some detail. We evaluate the normalized phase noise 

variance for all constellation configurations and all re-

ceived channel positions in the OFDM grid for the most 

important practical design case – the partly fully cor-

related case considered in (5). We do that for N = 2, 3, . . . , 9 

and display representative results for N = 5, 9 in Fig. 3 in 

bar diagram format. From Fig. 3 it is clearly observed that 

system design based on a normalized phase noise vari-

ance of N (as used in Fig. 2) represents a sensible worst 

case for the selected N-values. We tentatively extract this 

observation to cover all larger N-values as well (where the 

results of Fig. 3 cannot be generated due to the huge 

amount of N · 4N required evaluation cases) and also 

assume – in accordance with the results of Fig. 3 – that 

normalized phase noise variance of N is reasonable as a 

worst case system design scenario. In Fig. 3 it is obvious 

that the normalized phase noise is mostly close to zero 

and the nonzero part where it is larger than 0.1 – say – 

 corresponds to less than a fraction of 10−2 of the total 

number of possible constellation combinations. This 

means that the phase noise influence is largely eliminated 

Fig. 2: Normalized phase noise variance 2 2
, /k CPE ICIσ σ  as a 

function of the number of OFDM channels N for received channel 

k = 0, N − 1. Dashed, full and dotted curves shows results in the 

cases of full, partial and no time-correlation between phase noise 

using (6).
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in the OFDM receiver and it might lead to very optimistic 

phase noise design criteria for the CO-OFDM system at 

hand. However, it must be remembered that this conclu-

sion is based upon a leading order Taylor expansion of the 

phase noise influence (see (2)–(3)). This leading order ap-

proximation is increasingly inaccurate for larger phase 

noise values and in the following we will base our results 

on the worst case assumption that the normalized phase 

noise variance takes a value in the order of N. Here the 

leading order Taylor expansion is expected to be reason-

able, but it should be noted that detailed verification of 

when this is the case is an important subject for future 

CO-OFDM system research.

We will now move to more detailed practical CO-OFDM 

system examples. We consider a normal transmission 

fiber (D = 16 ps/nm/km) for the distances up to around 

2000 km, a transmission wavelength of λ = 1.55 m, 

c = 3 · 108 m/s, an OFDM channel separation of f = 10 

GHz, i.e. baud rate 10 (25) GS/s (symbol time T = 0.1 (0.04) 

ns), channel modulation as QPSK, and the number of 

channels N of 10. This gives a total OFDM system cap-

acity in a dual polarization implementation of 400 (1000) 

Gbit/s. We also consider a single channel QPSK system 

with baud rates of 100 GS/s (representing the upper limit 

for current research implementations) and 250 GS/s (rep-

resenting a possible future advanced QPSK system). We 

note that a system capacity of >250 GS/s is in principle fea-

sible in the CO-OFDM configuration with today’s technol-

ogy by adding more 25 GS/s OFDM channels.

The phase noise parameter of interest is specified by 

(5) and (6), and may, in general form, be denoted σ. The 

BER floor for the two system implementations is given 

as [6]:

1

2 4 2
floorBER erfc

π

σ
(11)

In Figure 4, we display the BERfloor versus transmission dis-

tance. A reasonable practical system design constraint is 

that the BER floor should be below 10−2 in order for soft 

Forward Error Correction (FEC) techniqes to operate well 

[20]. It can be seen that the OFDM systems with capacities 

of 400, and 1000 Gbit/s fulfill this requirement for L < 800 

and 460 km. The distance for single channel QPSK systems 

Fig. 3: Number of samples in a bin representation versus normalized phase noise variance 2 2
, /k CPE ICIσ σ  using (5) in the case of partial and 

full time-correlation between phase noise samples from neighboring channels (as indicated). Number of OFDM channels considered are 

N = 5 and 9 (as indicated) and all constellation configurations and all received channels are considered.
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with 400 and 1000 Gbit/s capacity is 1400 and 560 km. 

Thus the worst case OFDM performance is slightly poorer 

than the performance of a single cahnnel QPSK system 

with the same capacity.

4  Conclusions

We present a comparative study of the influence of disper-

sion for CO-OFDM systems influenced by equalization en-

hanced phase noise using software based FFT multiplex-

ing and IFFT demultiplexing techniques. This is, to our 

knowledge, the first detailed and rigorous study of this 

OFDM system configuration. From the analysis it appears 

that the phase noise influence for the two OFDM imple-

mentations is similar. It can be also seen that the theoreti-

cal formulation for the software based system provides a 

method for a rigorous evaluation of the phase noise vari-

ance caused by Common Phase Error (CPE) and Inter- 

Carrier Interference (ICI), and this, in turns, leads to a BER 

specification.

A major novel theoretical result specifies in exact 

form the resulting phase noise variance accounting for the 

combined CPE and ICI influence including the partial 

 correlation between ICI phase noise samples of different 

OFDM channels. From a statistical analysis we have used 

the formulation to identify the worst case phase noise in-

fluence in the OFDM system with QPSK channel modula-

tion. The worst case value has been used in the system 

design and it has been found that the OFDM worst case 

implementation performs slightly worse than a single 

channel QPSK system with the same capacity.

The numerical results of the current study focus on a 

worst case specification for a CO-OFDM system with 10 

and 25 GS/s QPSK channel modulation and 100 and 250 

GS/s total system capacity. BER results are evaluated and 

compared to the BER of a single channel QPSK system of 

the same capacity as the OFDM implementation. A system 

capacity of 250 GS/s cannot be realized with current 

digital to analogue or analogue to digital (DA/AD) circuits 

whereas a system capacity of >250 GS/s is in principle 

 feasible in the CO-OFDM configuration with today’s tech-

nology by adding more 25 GS/s OFDM channels.

Results are evaluated as a function of transmission 

distance. The influence of equalization enhanced phase 

noise (EEPN) is included. For both type of systems, the 

phase noise variance increases very much with increasing 

the transmission distance and the two types of systems 

have closely the same BER as a function of transmission 

distance for the same capacity. For the 100 (250) GS/s the 

transmission distance to have the BER < 10−2 is less than 

800 and 460 km, respectively. The distance for single 

channel QPSK systems with 100 and 250 Gbit/s capacity is 

1400 and 560 km.
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References

[1] P.J. Winzer, “Modulation and multiålexing in optical 

communication systems”, IEEE LEOS Newsletter, Feb. 2009.

[2] F. Mogensen, G. Jacobsen, H. Olesen, “Light intensity 

pulsations in an injection locked semiconductor laser”, 

Optical and Quantum Electron., vol. 16, pp. 183–186, March 

1984.

[3] P.J. Winzer, A.H. Gnauck, G. Rayborn, M. Schnecker, P.J. 

Pupalaikis, “56-Gbaud PDM-QPSK: Coherent Detection and 

2,500-km Transmission”, Proceedings ECOC2009, 2009, paper 

PD2.7.

[4] Z. Wang, E. Bødtker, G. Jacobsen, “Effects of cross-phase 

modulation in wavelength-multiplexed SCM video transmission 

systems”, IEE Electron. Lett., vol. 31, pp. 1591–1592, August 

1995.

[5] D. Hillerkuss et al., “26 Tbit s−1 line-rate super-channel 

transmission utilizing all-optical fast Fourier transform 

processing”, Nature Photonics, 5 (2011), 364–371.

[6] G. Jacobsen, “Laser phase noise induced error-rate floors in 

DnPSK coherent receivers with digital signal processing”, EIT 

Electron. Lett. 46 (2010) 10, 698–700.

[7] I. Garrett, G. Jacobsen, “Phase noise in weakly coherent 

systems”, IEE Proceedings Part J., vol. 136, pp. 159–165, June 

1989.

Fig. 4: Bit-error-rate floor as a function of transmission length for 

QPSK and 10 channel OFDM systems with total capacities of 100 

GS/s (red curves) and 250 GS/s (blue curves). OFDM (QPSK) system 

performance is shown by dashed (solid) curves. Dashed curves are 

for 250 GS/s QPSK and 10 channel (25 GS/s per channel) OFDM 

systems. Solid curves are for 100 GS/s QPSK and 10 channel (10 

GS/s per channel) OFDM systems.

Authenticated | gunnar.jacobsen@acreo.se author's copy

Download Date | 12/17/12 12:05 PM



 G. Jacobsen et al., Phase Noise Influence in Coherent Optical OFDM Systems   295

[8] G. Jacobsen, I. Garrett, “Error rate floor in optical ASK 

heterodyne systems caused by nonzero (semiconductor) laser 

linewidth”, IEE Electron. Lett., vol. 21, pp. 268–270, March 

1985.

[9] G. Jacobsen, I. Garrett, “Theory for heterodyne optical ASK 

receivers using square-law detection and postdetection 

filtering”, IEE Proceedings Part J, vol. 134, pp. 303–312, 

October 1987. (Erratum, vol. 135, p. 100, April 1988.)

[10] W. Shieh, K.-P. Ho, “Equalization-enhanced phase noise for 

coherent-detection systems using electronic digital signal 

processing”, Optics Express, 16 (2008), 15718–15727.

[11] X. Yi, W. Shieh, Y. Ma, “Phase noise effects on high spectral 

efficiency coherent optical OFDM transmission”, J. Lightwave 

Techn. 26 (2008) 10, 1309–1316.

[12] W.-R. Peng, K.-M. Feng, A.E. Willner, S. Chi, “Estimation of the 

bit error rate for direct-detected OFDM signals with optically 

preamplified receivers”, J. Lightwave Techn. 27 (2009) 10, 

1340–1346.

[13] W.-R. Peng, J. Chen, S. Chi, “On the phase noise impact in 

direct-detection optical OFDM transmission”, IEEE Photonics 

Technol. Lett. 22 (2010) 9, 649–651.

[14] C.C. Wei, J. Chen, “Study on dispersion-induced phase noise 

in an optical OFDM radio-over-fiber system at 60-GHz band”, 

Optics Express, 18 (2010), 20774–20785.

[15] S.L. Jansen, I. Morita, H. Tanaka, “10-Gbit/s OFDM with 

conventional DFB lasers”, Proceedings ECOC07, Berlin, 

September 2007, paper 5.2.2.

[16] G. Jacobsen, L.G. Kazovsky, T. Xu, J. Li, S. Popov, Y. Zhang, A. T. 

Friberg, “Phase noise influence in optical OFDM systems 

employing RF pilot tone for phase noise cancellation”, J. Opt. 

Comm., 32 (2011), 141–145.

[17] T. Xu, G. Jacobsen, S. Popov, J. Li, A. T. Friberg, Y. Zhang, 

“Analytical estimation of phase noise influence in coherent 

transmission system with digital dispersion equalization,” 

Opt. Express 19 (2011), 7756–7768.

[18] G. Jacobsen, T. Xu, S. Popov, J. Li, A.T. Friberg, Y. Zhang, “Phase 

noise influence in coherent optical OFDM systems with RF pilot 

tone: IFFT multiplexing and FFT demodulation”, J. Opt. Comm., 

33 (2012), 217–226.

[19] G. Jacobsen, T. Xu, S. Popov, J. Li, A.T. Friberg, Y. Zhang, 

“Receiver implemented RF pilot tone phase noise mitigation 

in coherent optical nPSK and nQAM systems”, Optics Express, 

19 (2011), 14487–14494.

[20] www.vpiphotonics.com

[21] K. Onohara, T. Sugihara, Y. Miyata, K. Sugihara, K. Kubo, H. 

Yoshida, K. Kogushi, T. Mizuochi, “Soft-decision forward error 

correction for 100 Gbit/s digital coherent systems”, Optical 

Fiber Technology, 17 (2011), 452–455.

Authenticated | gunnar.jacobsen@acreo.se author's copy

Download Date | 12/17/12 12:05 PM


