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Abstract—We show that optical and electrical phase 
conjugation enable effective nonlinear compensation, The impact 
of polarization mode dispersion and finite processing bandwidth 
on the ultimate limits are also considered.  
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I.  INTRODUCTION (HEADING 1) 
The terms “nonlinear Shannon limit” [1] and “capacity 

crunch” [2] are increasingly used to suggest that the maximum 
data throughput of an optical fiber has been reached and that 
deployed systems are within sight of this limit respectively. 
Recent research has largely been focused on ability of digital 
signal processing (DSP) to reverse nonlinearity, and for optical 
phase conjugation (OPC) to do so for multiple channels 
simultaneously, with impressive numerical and experimental 
results. A particularly promising digital signal processing 
technique introduced recently involves transmitting a phase 
conjugate copy of the data [3] (or a subset of the data [4]) along 
with the signal. When re-conjugated and coherently added back 
to the signal improve the signal-to-noise ratio and can, in 
certain circumstances give compensate nonlinearity. 

In this paper, we compare the relative merits of various 
nonlinearity compensation techniques based on phase 
conjugation, and investigate their potential to allow data 
throughputs beyond the nonlinear Shannon limit. 

II. NONLINEAR SHANNAON LIMITS 
We consider a generalized format for the nonlinear 

Shannon limit, considering amplified spontaneous emission, 
inter-signal nonlinearity, and parametric noise amplification 
but neglecting signal depletion effects. It is given by [5]:  
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where PS represents the signal power spectral density, MC the 
number of simultaneously transmitted copies of the signal, N 
the number of spans, PASE the amplified spontaneous emission 
power spectral density generated by each span, η a coefficient 

of nonlinearity depending logarithmically on the WDM signal 
bandwidth BS

 (which should take into account spectral 
broadening during transmission),  and ηC  represents the 
efficiency of nonlinear compensation (NLC) and depends on 
the effective bandwidth of the nonlinear compensation system 
and non-deterministic signal decorrelation due to, for example, 
polarization mode dispersion (PMD). The form of η depends 
on the nonlinear model chosen, but this choice has little 
practical impact in this paper. Parametric noise amplification 
scales nonlinearly with length in a manner given by; 
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where NL = 1 for DSP and 2 for mid link OPC. Whilst detailed 
models for ηC exist [6], we assume a simplified form 
comparing the effective compensation and signal bandwidth 
and the relative correlation bandwidths of the NLC and PMD.  
By heuristically assuming that only the spectrum which would 
pass a Lyott filter with the mean birefringence of the link 
correctly contributes to NLC, integration reveals that; 
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where η’ takes into account the difference between polarization 
multiplexed transmission with random orientation and with 
fixed orientation (the well know 8/9 factor), BC is the effective 
bandwidth of the NLC, L the  compensated length, sP the PMD 
parameter, fW the nonlinear phase matching bandwidth and CI 
the Cosine Integral. We find agreement between Eqn. 3 and [6] 
for the parameter range of interest here. 

III. IMPACT OF COMPENSATION TECHNIQUE 
 Optimizing the launch power in equation 1 assuming no 
parametric noise amplification (fSN=0) gives the well-known 
nonlinear Shannon limit, whilst optimizing for ideal nonlinear 
compensation (ηC =η) gives a system by limited parametric 
noise amplification. It is straightforward to show that, in these 
ideal scenarios, compensation of nonlinearity should result in 
an increase in the signal to noise ratio after compensation, in 
dB, of 50% of the uncompensated signal to noise ratio, plus 
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2.6dB. This is shown by the solid points of Fig. 1, where the 
performance without NLC, phase conjugate pilots (PCP) and 
phase conjugate subcarrier coding (PCSC) [7] are compared 
(taking into account the 3dB difference between Q2 and SNR 
for a QPSK signal).  Theoretical lines are also shown, where ηC 
is used as a fitting parameter (~ two channels equivalent 
bandwidth). A significant increase in SNR is obtained from 
OPC, which may be understood from the increased bandwidth 
of the NLC and the additional 1.5dB predicted by Eqn. 2, 
governing parametrically amplified noise growth.  

 

Fig. 1. Performance of a 7×15Gbaud QPSK Nyquist-spaced PDM WDM 
CO-OFDM transmission over a 50×80km with ideal Raman amplification 
showing no NLC (black), PCP (green), PCSC (purple), OPC (red) and 
OPC+PCSC (blue). OPC and OPC+PCSC with 0.1ps/√km  (open symbols),  
and 0.2ps/√km (crosses) also shown. 50 fibre realisations used for PMD 
studies. Equations for optimum SNR shown as insets for convetnional 
transmission and transmission with OPC. Theoretical curve fitsshown for  0 
ps/√km (solid),  0.1 ps/√km (dashed) and 0.2 ps/√km (dotted) PMD. 

However, these benefits rely critically on the accuracy of 
the nonlinear compensation. This partly depends on the ADC 
performance and any DSP simplification, but is more 
fundamentally limited by the effective bandwidth of the NLC, 
and by PMD. The predictions of Eqn. 3 are compared against a 
second numerical simulation [8] in Fig. 2, where the NLC 
bandwidth is set to the bandwidth of 1, 3 and 5 channels for a 
PM-16QAM Nyquist WDM signal. Excellent agreement within 
0.3dB is observed (with η including broadening of the WDM 
signal spectrum equal to the phase matching bandwidth fw) and 
the majority of the benefit of NLC is retained for an achievable 
PMD coefficient of less than 0.1 ps/√km. However Eqn. 3 is 
strongly dependent on the total signal bandwidth, and for a 
fully populated system, the PMD coefficient should be below 
10 fs/√km. Furthermore, it is apparent that not all signal 
processing configurations may achieve the limit imposed by 
parametric noise amplification, especially if any portion of the 
spectrum is truncated. These restrictions would also apply 
equally to DSP and OPC techniques, but might not apply to the 
various forms of phase conjugate twin wave, since the two 
copies of the signal experience the similar nonlinear 
impairments, and the technique does not rely on excess 
receiver bandwidth, or on any particular PMD assumptions.  

Considering the implications of the above suggests that the 
optimum NLC regime would incorporate phase conjugate 
coding to minimize the impact of PMD, along with wideband 

OPC to reduce parametric noise amplification. The potential 
interworking of these two techniques is shown in Fig.1. The 
simulated and theoretical (η used as a fitting parameter) impact 
of PMD on the OPC based system are shown to degrade the 
performance, however the combination of PCSC signals and an 
OPC link reduces the PMD penalty. In the absence of PMD, 
there is no performance degradation for the combined NLC. 

 

Fig. 2. Influence of PMD on the NLC gain of a 5x32 Gbaud dual polarisation 
16QAM Nyquist WDM system over 40*80.17km spans with digital back 
propagation, showing (dots) simulated results [8] and (solid line) predictions 
of Eqn 3 for one (blue), three (green) and five (red) channel DBP. 10 fibre 
realisations were used for PMD studies. Error bars are 2 standard deviations. 

IV. CONCLUSIONS 
In this paper, we have analytically considered the 

fundamental limiting of features of nonlinear compensation 
(parametric noise amplification, bandwidth and PMD). We 
have argued that only OPC offers significant ability to resist 
parametric noise amplification and that some form of phase 
conjugate coding is required for operation on fibers with finite 
PMD. A combination of the two techniques should allow the 
throughput of a given system to be increased by 50%. 
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