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Abstract

In the first essay(Chapter 2), we develop an efficient payoff function approxi-
mation approach to estimating lower and upper bounds for pricing American
arithmetic average options with a large number of underlying assets. This
method is particularly efficient for asset prices modeled by jump-diffusion pro-
cesses with deterministic volatilities because the geometric mean is always a
one-dimensional Markov process regardless of the number of underlying assets
and thus is free from the curse of dimensionality. Another appealing feature of
our method is that it provides an extremely efficient way to obtain tight upper
bounds with no nested simulation involved as opposed to some existing duality
approaches. Various numerical examples with up to 50 underlying stocks sug-

gest that our algorithm is able to produce computationally efficient results.

Chapter 3 solves portfolio choice problem in multi-dimensional jump-diffusion
models designed to capture empirical features of stock prices and financial con-
tagion effect. To obtain closed-form solution, we develop a novel general decom-
position technique with which we reduce the problem into two relative simple
ones: Portfolio choice in a pure-diffusion market and in a jump-diffusion mar-
ket with less dimension. The latter can be reduced further to be a bunch of
portfolio choice problems in one-dimensional jump-diffusion markets. By virtue
of the decomposition, we obtain a semi-closed form solution for the primary
optimal portfolio choice problem. Our solution provides new insights into the
structure of an optimal portfolio when jumps are present in asset prices and/or
their variance-covariance.

In Chapter 4, we develop a estimation procedure based on Markov Chain Monte
Carlo methods and aim to provide systematic ways to estimating general mul-
tivariate stochastic volatility models. In particular, this estimation technique
is proved to be efficient for multivariate jump-diffusion process such as the
model developed in Chapter 3 with various simulation studies. As a result, it
contributes to the asset pricing literature by providing an efficient estimation

technique for asset pricing models.
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Chapter 1

General Introduction

In this thesis, I aim to provide insightful researches that help investors to op-
timally manage their wealth, which may be one of the original motivation of
finance studies. With the growing innovation in technology and increasingly en-
tangled financial markets, every investor is exposed to all sources of economic
risks domestically, or internationally. The first idea that comes into my mind

is finding a good hedging vehicle for a portfolio.

In Chapter 2, we develop an efficient payoff function approximation approach
to estimating lower and upper bounds for pricing American arithmetic aver-
age options with a large number of underlying assets. The crucial step in the
approach is to find a geometric mean which is more tractable than and highly
correlated with a given arithmetic mean. Then the optimal exercise strategy for
the resultant American geometric average option is used to obtain a low-biased
estimator for the corresponding American arithmetic average (AA) option. This
method is particularly efficient for asset prices modeled by jump-diffusion pro-
cesses with deterministic volatilities because the geometric mean is always a
one-dimensional Markov process regardless of the number of underlying assets
and thus is free from the curse of dimensionality. Another appealing feature of
our method is that it provides an extremely efficient way to obtain tight upper
bounds with no nested simulation involved as opposed to some existing dual-
ity approaches. Various numerical examples with up to 50 underlying stocks
suggest that our algorithm is able to produce computationally efficient results.
With such efficient American AA pricing tool, it is feasible to hedge a large

portfolio with the corresponding American AA option.

Apart from hedging, understanding how stock prices move and how markets



react during financial crisis would be of great research value since it helps for
preventing investors from portfolio loss. Recent empirical studies find stock
prices tend to have big move together and a big jump may be followed by more

frequent jumps, which is especially evident during financial crisis.

In Chapter 3, We study the portfolio choice problem in multi-dimensional jump-
diffusion models designed to capture these empirical features and capture the
financial contagion effects. To obtain closed-form solution, we develop a novel
general decomposition technique with which we reduce the problem into two
relative simple ones: Portfolio choice in a pure-diffusion market and in a jump-
diffusion market with less dimension. The latter can be reduced further to be
a bunch of portfolio choice problems in one-dimensional jump-diffusion mar-
kets. By virtue of the decomposition, we obtain a semi-closed form solution
for the primary optimal portfolio choice problem. Our solution provides new
insights into the structure of an optimal portfolio when jumps are present in
asset prices and/or their variance-covariance. Our results show that the jumps
in the variance-covariance have important effects on the asset allocations, espe-
cially when there are jumps in the asset prices simultaneously. Meanwhile, the
hedging demands for jumps are much more significant compared to variance or
covariance hedging demands for diffusion risks and ignoring jump risk in the
variance-covariance may cause large wealth equivalent loss in the presence of
jumps in the asset prices. In addition, two novel components integrated to cap-
ture empirical features are verified to cause significant effects in the resulting
optimal portfolio wrights. As a result, the proposed multivariate model provides
an potential ideal model to study financial contagion. Moreover, with optimal
portfolio problem solved with semi-closed form solution, financial contagion may
be studied in the context of asset allocation quantitatively. To some extent, this

paper sheds new lights on the financial contagion and portfolio choice literatures.

In Chapter 4, we develop a systematic estimation procedure for multivariate
stochastic volatility models based on Markov Chain Monte Carlo (MCMC) and
slice sampling techniques. In particular, this estimation technique makes infer-
ence problem feasible for a wide class of models, termed as the Wishart-Jump-
Diffusion (WJD) models , where the variance-covariance process are allowed
to follows a Whishart process and jumps in returns and covariance may be in-
cluded. By varying the parameters and number of assets, WJD model reduces
to several important models, such as the Whishart-Diffusion model by Buraschi

et al. (2010) and the widely studied 1-dimension stochastic volatility models,



e.g. stochastic volatility model with common jump in Eraker et al. (2003),

among others.

The detailed establishment of this estimation including, derivation of poste-
rior distributions for parameters and state variables and novel transformations
incorporated are provided and ready for future researches. Various numerical
studies are conducted to verify the accuracy and efficiency of the proposed esti-
mation procedure. In particular, the estimates obtained are all extremely close
to the assigned true values. The true values are adopted from existing literatures
and hence benchmarks are available for comparison. For example, the efficiency
is verified to be improved in terms of number of sampling required for achieving
comparable accuracy. In summary, the developed estimation procedure is shown
to be efficient and accurate and provides an potential systematic inference tool
for researches about multivariate/univariate stochastic volatility models. In
the end of this chapter, an augmented Merton-Jump-Diffusion (MJD) model
are estimated to fit the 5-Industry portfolios returns in the Fama-French Data
Library to study the asymmetric correlation feature as an empirical application
of the proposed estimation procedure. The resulting estimates replicate the

asymmetric correlation well.



Chapter 2

Efficient estimation of lower and
upper bounds for pricing
higher-dimensional American
arithmetic average options by
approximating their payoft

functions

2.1 Introduction

The importance of American-style options has been growing increasingly and
pricing of American options especially high-dimensional cases remains one of
the challenging problems both theoretically and practically in the option pric-
ing theory. In particular, high-dimensional American options would be valuable
research topics. For example, Shiu et al (2013) document that basket warrants,
essentially basket options with multiple underlying assets become more popular
over the past decade.? In this paper, we focus on pricing American arithmetic
average options. The appealing advantage of an American arithmetic average

option lies in the fact that it exactly replicates the evolution of the portfolio

!This paper has been published on International Review of Financial Analysis 44 (2016):
65-77

2Although they focus on dealing with European basket warrants, essentially basket options,
the American-style ones would be more important in practice.

4



formed by the underlying assets. For example, the cost of hedging a portfo-
lio with an American arithmetic average option is much lower than a portfolio
of individual options on the same underlying assets since the former takes the
correlations among the underlying assets into account and only one option is
involved in hedging. Besides, it would be simple for investors to replicate the
payoff of any portfolio without actually holding the portfolio if there is such
an American arithmetic average option available on the market. Given these
significant applications, efficient pricing methods for American arithmetic av-
erage options written on the average of multiple underlying assets are of great
value from various points of view such as hedging and risk management espe-
cially after the recent financial crisis that re-emphasized the importance of risk
management. The purpose of this paper is to develop an efficient approach
to obtaining lower and upper bounds for American arithmetic average option

prices on a large number of underlying assets.

The traditional valuation methods, such as lattice and tree-based techniques,
for pricing high dimensional American option pricing problems are typically
plagued by the curse of dimensionality and thus, simulation-based numerical
methods are inevitably required. Earlier literature about simulation-based ap-
proaches can be traced back to Boyle (1977) in which European style claim is
priced with Monte Carlo (MC) simulation. American style option pricing tech-
niques with MC simulation include Bundling Methods in Tilley (1993), Strati-
fied State Aggregation (SSA) in Barraquand and Martineau (1995), Stochastic
Mesh Method (SMM) in Broadie and Glasserman (2004), regression-based ap-
proach in Tsitsiklis and Van Roy (1999) and Longstaff and Schwartz (2001),

among others.

The existing simulation-based methods can be categorized into: (1) Primal
approach, which aims to obtain a lower bound for an American option by esti-
mating a suboptimal exercise strategy, e.g., regression-based approaches as in
Tsitsiklis and Van Roy (1999) and Longstaff and Schwartz (2001); (2) Duality
approach, which estimates an upper bound for an American option by using a
dual martingale, e.g. Rogers (2002), Haugh and Kogan (2004) and Anderson
and Broadie (2004).

Among existing primal approaches, the most important simulation-based method
is the regression-based approach, where computational costs are approximately

linear in exercise opportunities and the number of simulated paths. The theory



has been well established in Carriere (1996), Tsitsiklis and Van Roy (1999) and
Longstaff and Schwartz (2001), etc. Related convergence analysis and simula-
tion issues can be found in Tsitsiklis and Van Roy (2001), Clément et al. (2002),
Glasserman and Yu (2004a,b) and Stentoft (2004).

In particular, the least squares method (LSM) developed by Longstaff and
Schwartz (2001) is the most widely used method due to its simplicity and gener-
ality. A lower bound of an American option can be obtained from a suboptimal
optimal exercise strategy derived from linear regression procedure. However,
this method and other primal approaches are becoming computationally expen-
sive with the increasing dimension of pricing problem and hence the trade-off
between computational costs and efficiency of approximation would be a critical

1ssue.

A variety of methods have been proposed to improve the performance of regression-
based approaches. For instance, to address arbitrary style of continuation val-
ues, Kohler et al (2010) use least square neural network regression estimates
and estimate continuation values from artificial MC simulated paths. Their
approach is more general than LSM since the regression is nonparametric. But,
compared to LSM, the nonparametric in Kohler et al (2010) would be even worse
to implement for pricing high-dimensional American options.®> More recently,
Jain and Oosterlee (2012) proposed a stochastic grid method (SGM) which
could be regarded as a hybrid of Barraquand and Martineau (1995): stratified
sampling along pay-off method, Longstaff and Schwartz (2001): Least square
Monte Carlo method and Broadie and Glasserman (1997b): stochastic mesh
method. The proposed SGM algorithm is more suitable for pricing some high-
dimensional American options than existing methods. However, SGM would
be computationally costly when sub-simulations are embedded and more early

exercise times are allowed.

To circumvent the curse of the dimensionality problem associated with pricing
of multi-dimensional American options, several dimension reduction methods
have been proposed. For example, Barraquand and Martineau (1995) introduce
a partitioning algorithm. Their method differs from Tilley’s bundling algorithm
in that they partition the payoff space instead of the state space. Hence, only
a one-dimensional space is partitioned at each time step, regardless the dimen-
sion of the problem. More recently, Jin et al (2013) further integrate this idea

3We thank an anonymous referee for pointing out this to us.

6



into state-space partitioning algorithm (SSPM) developed by Jin, Tan and Sun
(2007) and improve the computational efficiency significantly with computa-
tional accuracy preserved. Those papers, however, do not provide an algorithm

for upper bounds.

In the present paper, we follow the dimension reduction approach to pricing
high-dimensional American arithmetic average options. The key idea is to find
a highly correlated geometric average for a given arithmetic average. As will
become clear later, the former is more tractable than the latter in the sense that
the geometric average has a lower dimension* than the corresponding arithmetic
average, and thus the optimal exercise strategy for the American geometric av-
erage option is far easier to obtain than for the American arithmetic average
option. In particular, when the asset prices are modeled by jump-diffusion
processes with deterministic volatilities, the geometric mean is always a one-
dimensional Markov process regardless of the number of underlying assets, and
thus is free from the curse of dimensionality. Then the optimal exercise strategy
for the American geometric average option is used to obtain a lower bound for
the corresponding American arithmetic average option. In addition, by using an
inequality similar to (4) in Haugh and Kogan (2004), we provide an extremely
fast way to obtain the corresponding upper bound without nested MC simula-
tions. To be more specific, in the inequality (4) in Haugh and Kogan (2004), we
approximate the payoff function of given American arithmetic average option
by the one of a highly correlated American geometric average option. Unlike
Haugh and Kogan (2004), we do not need to find the optimal supermartingale

and thus we do not need nested MC simulations.

An important limitation of the lower bound is that it is not easy to evalu-
ate the accuracy of its approximation to the true option price. Upper bounds
in combination with the corresponding lower bounds allow us to measure the
accuracy of price estimators for American average options. In earlier litera-
ture, Broadie and Glasserman (1997, 2004) propose stochastic mesh methods

which generate not only lower but also upper bounds and both bounds converge

4For assets following GBM, the geometric average is always one-dimensional Markov process.

However, the dimension will increase if other state variables are involved such as stochastic
volatility. Consider a case where there are ten stocks and the price of each stock follows
Heston stochastic volatility model. Then, an arithmetic average depends on twenty state
variables, namely, ten stock price processes and ten volatility processes. By contrast, the
corresponding geometric average depends on eleven state variables, that is, the geometric
average process itself and the ten volatility processes.

7



asymptotically to the true value. Despite the advantage of obtaining the up-
per bound, the stochastic mesh methods are quite computationally demanding.
Boyle et al (2003) further generalizes Broadie and Glasserman (1997, 2004) with

a low-discrepancy sequence for efficiency.

Independently developed by Rogers (2002), Anderson and Broadie (2004) and
Hough and Kogan (2004), duality approach is the most general technique among
those upper bound related approach. The idea is to introduce a dual martingale
in the pricing problem and rewrite the primal problem into a dual minimization
problem. For example, Anderson and Broadie (2004) use nested MC simulation
to approximate the optimal exercise strategy. On the other hand, Hough and
Kogan (2004) apply an intensive neural network algorithm and low discrepancy
sequences to estimate the option prices. However, their estimation techniques
to estimate dual martingale do not preserve the martingale property in general

and the computational cost is generally high.

To improve this, Glasserman and Yu (2004b) proposed a special regression
algorithm to preserve the martingale property. Nonetheless, the martingale
property Condition (C3) on the basis functions may not be straightforward to
verify in practice. In terms of efficiency, Kolodko and Schoenmakers (2004) try
to overcome the computational inefficiency of nested simulation by choosing a
different estimator to reduce the number of inner path simulations. However,
the upper bound is not guaranteed by their estimator as the number of inner

path is too few.

Instead of estimating a dual martingale directly, Belomestny et al (2009) esti-
mate the coefficient of the corresponding martingale representation of the dual
martingale. By martingale representation theorem, the martingale property of
the estimated dual martingale is preserved. The resultant bound is then the
true upper bound. More recently, Zhu, Ye and Zhou (2013) extend the method
in Belomestny et al (2009) to a jump-diffusion model. Their theoretical analysis
shows that the martingale property of the estimated optimal dual martingale is
preserved and no nested simulation is used in their algorithm. These methods,
however, may become impractical for pricing high-dimensional American op-
tions as a regression-based method similar to LSM is employed to estimate dual
martingales. By contrast, our upper bound algorithm requires neither nested
simulation nor high-dimensional regression especially when the asset prices are

modeled by exponential jump-diffusion processes with deterministic volatilities.



In summary, we have made two contributions to the literature of pricing high-
dimensional American arithmetic average options. First, we have developed a
computationally efficient dimension reduction method to estimate lower bound.
Second, we provide an easy-to-implement approach to evaluate the upper bound
which involves no nested simulation and is based on a simple linear regression
procedure. We are not aware of any research in the current literature that
estimates lower and/or upper bounds for pricing high-dimensional American
arithmetic average options via geometric mean approximation. As mentioned
above, the essence of our algorithm is to approximate an arithmetic average
by a lower-dimensional and more tractable geometric average which is highly
correlated with the arithmetic average. In contrast, extant literature usually

approximates the continuation values of American options.

The remaining of this paper is organized as follows. In Section 2, we introduce
basic dynamic programming framework for pricing American-style options. In
Section 3, we provide some theoretical considerations and empirical tests that
justify using a highly correlated geometric mean to approximate a given arith-
metic mean. Then we present procedures for estimating lower and upper bounds
for pricing American arithmetic average options. In Section 4, various numer-
ical experiments are provided to illustrate the performance of our algorithms.

Section 5 concludes the paper.

2.2 The model and valuation

In this section, we first introduce American arithmetic average options and then
formulate the American option pricing framework by using dynamic program-

ming approach.

2.2.1 The model

Following the literature, we consider a Bermudan-style arithmetic average op-
tion with n underlying stocks and strike price, K. The option is exercisable at
any date in the set I' = {to = 0,¢y,...,ty = T’} where T is the pre-specified ma-
turity. When N increases to infinity, we may view the discrete exercise dates as
an approximation to the continuous exercise dates to value an American-style

arithmetic average option. Considering a put option, the exercise value at time



t € I' of an American arithmetic average option is defined as

hi'(Sy) = (K - Zn:aisit> ; (2.1)

where S; = (S, ..., Snt), Sit denotes the price of the ith underlying asset at time
t,i=1,...,n and a; represents the weight of the ith stock satisfying conditions:

a; >0,i=1,..,nand >  a; = 1. It is straightforward to define a call option.

It is worth mentioning that the two restrictions above can be readily relaxed.
For example, a short position can be allowed in the ¢th stock, i.e., a; < 0. For
simplicity, assume that a; > 0,72 = 1,...,m9 and a; < 0,7 = ng + 1, ...,n with

no < n. In this case, the sum in (2.1) can be expressed as

n

Z a; Sy = Z a;Siy — Z <_ai)Sit
i=1 i=1

i=ng+1

As shown later, the sum )" | a;S; can be approximated by the difference of

two geometric means and thus, the dimension of the pricing problem is reduced.

2.2.2 Pricing American options by dynamic program-
ming algorithm

In this section, we formally illustrate the dynamic programming formulation
for pricing American options. To this end, consider an economy described
by the probability space (€2, F, P) where ) is the sample space, F is the o-
algebra and P is a risk-neutral probability measure. Following the literature,
we formulate a general class of American option pricing problem through an
Re-valued Markov process X = {X;,0 <t < T} (with X fixed) defined on the
probability space, where the American option can be exercised at any time 7 on
or before the pre-specified maturity 7. The process X represent the prices of
underlying assets, volatilities, interest rates and other state variables.’ At each
time, t;,2 = 0,..., N, the option buyer makes the exercising decision based on
the dynamic programming framework. More specifically, given a nonnegative
adapted payoff function, h;,, the buyer chooses to exercise the option and gains

hy, if the payoft is greater than the continuation value at time ¢;. Let I'; denote

SFor notational simplicity, S; or S is adopted hereafter since we focus on the stock price as the
state variable. For cases with additional state variables such as stochastic volatility, X would
be adopted as discussed.
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the set of stopping times (with respect to the history of S) taking values in
{ti,....,txy = T}. The option value at time t; can be defined as:

Vi (:C> = sup L [6_ IE; T(S)dShT

rel';

Sti:x],xE]Rd

for i = 0,..., N, where {r(t),0 <t < T} is the the instantaneous short rate

process.

As a result, the option value at time 0 is determined by the dynamic pro-

gramming algorithm:

V;fzv (l’) = htN (l’)

Vi, (z) = max {hti (), By [e_ I sy, (s, )]s, = x} } . i=0,.,N—1.

Conventionally, we define the continuation value as

— [HH e (s)ds
Cti (.CE) = Et [6 ftl (s)d V; (St

i1 ¢+1) Sti = 1':| , T € Rn, L= O,...,N— 1.

Then the option value at ¢; satisfies

Vi, () = max {hy,(z), Cy, ()}, i=0,..,N =1,

2.3 Lower and upper bounds

In this section, we propose simulation-based approaches to estimating lower and
upper bounds for pricing American arithmetic average options. The key step, as
aforementioned, is to construct a highly correlated geometric average for a given
arithmetic average. In the next subsection, we first illustrate the construction
of the correlated geometric average and then investigate both theoretically and

empirically the correlation between the two variables to justify our approaches.

2.3.1 Arithmetic mean and geometric mean

For illustrative purposes, we assume that the price of each of these n stocks

follows the widely used Merton-Jump-Diffusion (MJD) process. In particular,

11



the price dynamics of the ¢th stock is as follows:

dSi
Sit

= (7’ — {; — O'Q)\k)dt + UildWit + 049 (€J — 1) dNt, 1= 1, N,

where 7 is a constant risk free rate, g; is the dividend yield, o;; is the volatility,
0;2 is the coefficient of (or sensitivity to) the jump, A is the jump intensity,
e/ — 1 is the jump size, k¥ = E (e‘] - 1) is the expected jump size, Wy is
a standard Brownian motion and < W, W;, >= p;it for i # j = 1,....n.
Wy = (Wi, ..., W), Ny and J are mutually independent. The jump is assumed
to be a common jump representing the systemic shock arising from the market.
By letting g;5 = 0, the above MJD process reduces to a geometric Brownian

motion (GBM). Further, by applying the Ito’s lemma, we obtain
L,
Sit = S,'Q exp r—q; — 50—1‘1 — 02'2)\]{3 t—l— aﬂWit + Jth s (22)
where J; = In [o5 (¢/ — 1) + 1] .

To find a geometric mean to approximate the arithmetic mean in (2.1), we

use (2.2) to rewrite the arithmetic mean as

AAt = zn: CLiSit
=1

g 1
= Z a;Sip €xp { (7“ — G — 5031 - Uz‘z)\k) t+onWi + JiNt}
i=1

. 1
= (AA(]) Z a; eXp { (7” — {; — 50'1-21 — O'ig)\k') t+ UilWit + Jth} s (23)
i=1

where AAg =" | a;S; and @; = % satisfying » ", @; = 1.

Next, we define

1
Sit = exp { (r —q; — 50?1 — O'ig/\k) t+ oWy + JiNt} ,
and

AA, = iaﬁit.
=1

12



Then we present the following approximation:
AA, ~ ? + BOGA,, (2.4)

where the coefficients o) and ) are deterministic, GA; is a geometric mean
defined by

T S ~ 1

GA; = H Sii = exp {Z a; [(7‘ — ¢ — 501'21 - 012)\19) t+oaWi + Jz‘Nt:| } :
i=1 1

1=

Consequently, by setting oy = AAga) and 3, = AAyBY, (2.3) and (2.4) imply
AA, = AAy - AA, = AAg (o0 + B°GA) = o, + BGA,, (2.5)

where the coefficients oy and (; are estimated by the ordinary least squares
method detailed later. The result (2.5) will play a crucial role in approximating
the exercise value of an American arithmetic average option by a highly corre-
lated American geometric average option, leading to lower and upper bounds
for the American arithmetic average option price. To better understand the

relation between ﬂt and GA;, we present the following result.

Proposition Let z, ..., x, be positive numbers and ay, ..., a,, positive weights

satisfying " a; = 1. Then we have

n 1/s n
qui_I}I(l) (; am:f) = H it (2.6)

In particular, for s sufficiently small,

2”: a;x; ~ (ﬁ xf’) = ﬁxf“’ (2.7)
i=1 i=1 i=1

proof. (2.6) can be easily proved by applying 'Hospital’s rule. O

To make the intuition behind the relation between Z\Zt and GA; as clear as
possible, we concentrate on a simple example where the all stock prices follow
geometric Brownian motions with o, = 0,7 = 1,...,n, and 0; = 091 = ... =

o1 = o in (2.2). To apply (2.7) to the model, we let

T = €xp {Wzt/\/%} )

13



where Wj;/+/t is a standard normal random variable. Then, by (2.7), for small

s = o/t

n

Z&i exp{oaWi} = iﬁi exp{ (Wit /') } Z%I ~ Hxsaz

i=1

Furthermore, assuming that the interest rate r, the dividend yields ¢;,7 =

1,...,n, the volatility ¢ and the maturity 7" are small, we obtain

1
AAt Zalexp {( —q; — 502) t+ UWit}

~ Z a; exp {oWy}

i=1

~ H exp {a;cW;, }
i=1
n _ 1 )

zHexp a; T_qi_§o- t+ oWy = GA,
i=1

for t < T. The above analysis suggests that the smaller the volatility o of the
underlying stock prices and the maturity 7" of an option, the smaller s = o/t
and the more accurate approximation of (2.5). In the following, we test the

effects of these parameters on the approximation accuracy of (2.5).

As the high correlation between AA; and GA; implies accurate approxima-
tion of (2.5), we now empirically evaluate the correlation coefficient between
the two variables. We consider two examples. In the first example, there are
six stocks with prices following geometric Brownian motions (GBM) given by
(2.2) where 0;5 = 0,7 = 1,...,6. In this example, we assume that the initial
price Sjp = 100, the volatility o;; = 50%,47 = 1, ..., 6, the interest rate r = 3%,
the strick price K = 100, the maturity 1" = 3 year, and correlation coefficient
pij = 0.5,% # j = 1,...,6. Here we intentionally choose a high volatility and
a long maturity to underscore high correlation between AA; and G A; because
these high values may adversely affect the correlation. The second example
also consists of six stocks where the price of each stock evolves according to a
jump-diffusion model given by (2.2) with parameters: o, = 1,4 = 1,...,6, The
common jump size J ~ N(—0.1,0.1) and the common jump intensity A\ = 5.
The other parameters remain the same as in the example 1. For each model,

we simulate 10000 paths to evaluate the correlation coefficients between AA;,

14



and GA;,, where t; =iT/50,i =1, ..., 50.

The left and right panels in Figure 2.1 present correlation coefficients for the
first example and the second example, respectively, with red segments being
the 95% confidence intervals. We can see from both panels that the correlation
coefficients decrease with the horizon ¢;. This result is consistent with the above
theoretical analysis. It is noticeable that the correlation coefficients are close to
1 although the horizon is as long as three years and the volatilities are as high

as 50%. These results support our approaches developed below.5

AA-GA correlation in GBM framework AA-GA correlation in MJD framework
1 T T T T 1.002 T T T -
0.9981 1t
0.996
0.9981
< 0.994 <
5 g 0996
T 0.992f =
2 £ 0.904f
S o099} 8
0.988! 0.9921
0.984 - - - - 0.988 - - - -
0 10 20 30 40 50 0 10 20 30 40 50
Exercise dates Exercise dates

Figure 2.1: Correlation between arithmetic and geometric averages

2.3.2 Constructing lower bounds

Equipped with the results in the last section, we are now able to establish lower
bounds for American arithmetic average option prices. More specifically, for an
American arithmetic average option with payoff given by (2.1), we first evaluate
the optimal exercise strategy for a highly correlated American geometric aver-
age option with the time-t exercise value given by (K — oy — ;GA;)", which
approximates the time-t exercise value of the American arithmetic average op-
tion. Then, this optimal exercise strategy is employed to derive a lower bound
for the American arithmetic average option price. The coefficients a; and [,
are estimated by the least squares method. Without loss of generality, the
discretization epoches are assumed to be the same as the set of exercise dates

[' = {to,t1,...,tn}. The procedure is as follows:

6We test various examples and find that the correlation coefficients are consistently close to
one. To save space, we do not report these results here. The presented simulation results are
the averages of 100 simulations with red segments as the 95% confidence interval.
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Step 1. Estimating the coefficients a; and S;:

1. Simulate M, sample paths for the n underlying assets processes, Sﬁi =
(S{ti, ...,Sfm), l=1,....My,i=1,...,N.

2. Calculate the arithmetic and geometric averages of Séi and denote them
as AAéi and GAii respectively, i = 1,...; N.

3. Given ¢; € T, regress AA, on GA| based on the equation AA} =
ozti—i-ﬁtiGAii—i-eﬁ, [ =1,..., N;. Store the regression coefficients, &;, and Bt

Given d&, and f, estimated in Step 1, we next follow LSM to estimate the
optimal exercise strategy for the American geometric average option with time-

t; exercise value defined by
G . . +

For expository convenience, we assume that the price process of each stock
evolves according to (2.2) and then the geometric average G A, is a one-dimensional
process. Furthermore, we adopt simple basis functions: 1, X and X?2, suggesting
that the continuation value at time #; is represented by ag, 4 by, GA;, + ¢, GAZ,
where a,,, l;ti and ¢, are constants estimated by following the linear regression
method developed by Longstaff and Schwartz (2001)7. To save space, we omit
this step.

With the regression coefficients &,, 3, at,, b, and ¢;,,2 =1, ..., N, we are now

able to estimate a lower bound for the American geometric average option price.

Step 2. Pricing the American geometric average option and the American

arithmetic average option:

1. Simulate a new set of M sample paths for the n underlying assets pro-
cesses, Sii = (S{ti,... St),i=1,.,N, 1 =1,..,M. And calculate

'y Mnt;

arithmetic average process AAffi and geometric average process GAii,
i=1,..,.N,Il=1,.., M.

"For simplicity, the number, M, of simulated paths in this step is the same as the one used in
Step 2 below.
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2. For the American geometric average option, determine the earliest exercise
time 7' as 7' = min{t; € T|AG(SL) > CE(SL),i = 1,.., N}, if the set
{t; € T|n§(SE) > CA'ZG(SL),Z = 1,...,N} is empty, we let 70 = T + 1,
l=1,...,M.

3. For 7!, compute the value function of the American arithmetic average
option as VA(SL) = pA(SL) if 71 < T; VA(SL) = 0if 7 = T + 1,
l=1,...,M.

4. For 7', compute the value function of the American geometric average
option as fo(Si,) = hG(SL) if ' < T fo(Sil) =0if 7t =T + 1,
I=1,....,M..

5. A lower bound of the American arithmetic average option is estimated by

0 = Mzeim— Sll (2.9)

6. A lower bound of the American geometric average option is estimated by

= |

M ~
Z TVG(SL). (2.10)

This lower bound (2.10) of the American geometric average option will play an

essential role in obtaining upper bound in Section 4.

2.3.3 Constructing upper bounds

We now turn to establishing upper bounds for American arithmetic average
option prices by using the approximation results in Section 3.1. Our idea is
motivated by the duality approach in Rogers (2002), Anderson and Broadie
(2004) and Hough and Kogan (2004) but differs from theirs in that we avoid

estimating dual martingales which is in general computationally expensive for
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high-dimensional cases. In particular, our idea hinges on the following result:

Vo = sup Ele”""h(S)]

Tel’
= sup E[e”"hA(S;) — e "hE(S,) + e ThE(S,)]
Tel
< sup B[ hA(S,) — e hE(S,)] + sup BleHE(S, )]
Tel Tel
< E{suple " h*(S;) — e "'hE(S))]} + sup Ele " "hE(S,)] (2.11)
tel’ Tel’

In the last inequality, the first term represents the mean of the largest difference
between the two discounted payoffs along a given path® and the second term
is the price of the American geometric average option. Apparently, the tight-
ness of the resulting upper bound essentially depends on how well the payoff
of American arithmetic average option is approximated by the payoff of the
American geometric average option. More specifically, if the arithmetic mean is
precisely approximated by the linear function of the geometric mean, then, the
first term will be negligible and the price of the American geometric average
option given by the second term is close to the price of the American arithmetic
average option, implying that the upper bound (2.11) is close to the price of
the American arithmetic average option. The resulting upper bounds would be
straightforwardly calculated with equation (2.11). Simulation results in Section

4 demonstrate the accuracy of the upper bounds®.

2.4 Numerical Experiments

Various numerical experiments of American arithmetic average options are pro-
vided to examine the efficiency of our methods proposed in the previous sections,
each example containing up to 50 underlying stocks. The first example is taken
from Kovalov et al (2007) where American arithmetic average options with up to
six underlying assets are valued via their Finite-Element-Method (FEM). Their
FEM values are used as our benchmarks in our first example while the other

examples do not have price benchmarks. In the mean time, we also compare the

8This term can be estimated by two steps. First, given a path, we maximize the function
e "thA(S;) — e "th$(S;) across time steps; second, we take the average of the optimal objec-
tive function obtained in the first step across paths.
9In Section 4, the price of each underlying stock MJD with constant volatility and interest
rate and thus the corresponding geometric average GA; is a one-dimensional process. As
documented by the literature, a one-dimensional American put option can be accurately
priced by lower bound based on LSM. For this reason, we will use LSM described in Section
3.2 to price the American geometric average option in (2.11) with the estimate given by (2.10).
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performance of lower bounds estimated by the least squares regression method
(called OLSM) in Longstaff and Schwartz (2001) and our methods (termed
MLSM). In all examples except Example 6, we assume that the asset prices fol-
low either geometric Brownian motion or more general Merton-Jump-Diffusion
(MJD) processes (2.2) in Section 3 under certain risk-neutral probability mea-

sure.

For each example below, we applied 100 runs for both approaches, and the re-
ported statistics were collected from the repeated simulations. The CPU time
(in seconds) shows the time of a single run by averaging over the total runs.
The simulations were implemented on the Intel(R) Xeon(R) E5-2690, 2.9GHz
machine with MATLAB software. The regression is performed with the stan-
dard built-in function, REGRESS in MATLAB. As suggested by Longstaff and
Schwartz (2001), we only include the in-the-money paths in the cross sectional
regression for efficiency. To ensure the accuracy of the estimation of continua-
tion values, no variance reduction technique is employed to reduce the standard
errors of the estimations.!” In Examples 1, 2 and 5, for MLSM, the basis func-
tions are : 1, X and X?; for OLSM, the basis functions are : 1, X; and X2,
i =1,...,n for a n-dimensional American arithmetic average option'!. The ba-

sis functions will be specified for other examples.

Example 1: American arithmetic average options on 1 to 6 assets.

This example is taken from Kovalov et al (2007) where the price of each un-
derlying stock follows a GBM with model parameters: the initial price S;y =
100,7 = 1,...,6, the strike price K=100, the interest rate r=3%, no dividend,
the maturity T=0.25 year, the volatility o;; = 20%,7 = 1,...,6, the correla-
tion p;; = 0.5,7 # j = 1,...,6, the other simulation parameters are N = 50,
My = 1000 and M = 10000. The FEM values obtained by their Finite-Element-
Method are quoted as benchmark values. The LB and UB represent the lower
and upper bounds respectively. The CPU time is the time elapsed for each ap-
proximation except for those under MSLM where the CPU time is the total time

consumed for constructing both lower and upper bounds. For simplicity and

10We thank an anonymous referee for his or her comments.

Here we do not include the cross product terms: X;X;,i # j = 1,...,n for OLSM. We have two
reasons for this. First we find in our numerical examples that the estimates of lower bounds by
including the cross product terms are much lower with much larger standard deviations than
those obtained without the cross product terms. Second and more importantly, incorporating
the cross product terms into the set of basis functions suffers from the curse of dimensionality.
In addition, we increase the order of basis function to four and find that the results are very
similar. For demonstration purpose, we stick to this basis function throughout all examples.
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consistency, We keep this set of parameters as the base parameters throughout

all examples if not otherwise mentioned.

The simulation results of OLSM and MLSM are summarized in Table 1. Appar-
ently, the lower bounds obtained by OLSM approaches are lower than the true
values as expected since estimated exercise strategies are suboptimal. How-
ever, in four cases, the lower bounds obtained by MLSM are higher than those
by OLSM, which means MLSM provides better lower bounds to OLSM. For
example, in the 6-asset case, the estimated values of MLSM and OLSM are
2.71663 and 2.71073 respectively and the former is closer to the benchmark
value, 2.71838.

Apart from lower bounds, MLSM also generates fast and good upper bounds!?.
We use Mid price defined by (upper bound+lower bound)/2 as the estimator
for price of an American arithmetic average option. To gauge the accuracy
of MLSM, the pricing error is calculated as 2iderice=Benchmark] o 40 anq the

Benchmark
results of the pricing errors are reported in the P. E. column. The P. E. column

illustrates that the estimated prices obtained by MSLM are comparable to the

benchmarks with pricing error up to 0.869% for 6-asset case.

In the examples below, we test the pricing accuracy of our methods by consid-
ering American arithmetic average option with various settings. As in Example
1, we use Mid price defined by (upper bound+lower bound)/2 as the estima-
tor for price of an American arithmetic average option. Unlike Example 1, we
use the quantity [|Midprice — lowerbound|/lowerbound] x 100% to measure the
performance of the price estimator because there is no benchmark available.

Further, it is worth mentioning that this quantity is a conservative estimator

Midprice—trueprice
| Midp : uepricel (0%
rueprice

or an upper bound!'? of the true pricing error given by

because lowerbound < trueprice,

lupperbound — lowerbound|
2 Y

| Midprice — trueprice| <

12Tt is computationally demanding to construct upper bounds for OLSM based on the duality
method and thus the upper bounds for OLSM are not constructed here. For general upper
bound construction techniques, see Hough and Kogan (2004) and Anderson and Broadie
(2004) and among others.

13We thank an an anonymous referee for suggesting us to clarify this propertity.
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and thus

Midprice —t '
|Midprice — trueprice]  100%

trueprice
- |lupperbound — lowerbound|

x 100%

2 x lowerbound

_ [Midprice — lowerbound] « 100%, (2.12)

lowerbound

the last equality following from the definition of Mid price.
As a result, the MLSM algorithm performs better than what are indicated by

the reported upper bounds of pricing errors.

Example 2. American arithmetic average options on 10, 30 and 50
underlying assets following MJD processes.

To further demonstrate the performance of MLSM, we consider American arith-
metic average options with underlying assets following the Merton-Jump-Diffusion
process, where the jumps are assumed to be co-jump as conventionally adopted
in the literature. In particular, the co-jump component parameters are set to
be A = 5,J ~ N(—0.1,0.1) and o5 = 1 for all i = 1,....,n.'* Moreover, we
increase the number of underlying assets to 10, 30 and 50 with parameters of
diffusion components remaining the same as in Example 1. If not otherwise
mentioned, the we stick to the same parameters as in Example 1 for consis-
tency. The results are presented in Table 2.2, where Panel 1 and 2 summarize
results simulated with M = 10000 and M = 1000, respectively'®.

As Panel 1 illustrates, MLSM generates good approximations for the true values
with upper bounds of pricing errors (UB of P. E.) up to 0.278%. By contrast, the
lower bounds obtained by OLSM are consistently lower than those by MLSM.
In particular, it is approximately 5% lower for the 50-asset case. Moreover,
MLSM provides both lower and upper bounds with the similar computational
time. Besides, Panel 2 indicates the efficiency of MSLM, in terms of the MC
paths required. More specifically, with 1/10 MC paths, MLSM generates quan-
titatively similar results with around 3 times larger standard deviation in com-
parison with those in Panel 1. OLSM, however, provides even 50% smaller
lower bound for 50-asset case relative to the one obtained by MLSM. The rea-

son for this is that the geometric average approximate the arithmetic average

HFor illustrative purpose, we set o;0 = 1 for all i=1,...n. We also tried the cases where the
underlying assets are allowed to have different sensitivities to the co-jump, i.e. o;2 varies
across different underlying assets. Consistently, MLSM yields good results.

15We thank an anonymous referee for suggesting us to use smaller numbers of simulated paths
to test the efficiency of our method.
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accurately and, compared to OLSM, MLSM has only three parameters to be
estimated for determining the exercise value the American geometric average

option at each step.

Example 3. Simultaneous perturbation stochastic approximation (SPSA)
benchmarking

The upper bounds implied by MLSM hinges on the key inequality, (2.11), where
the latter term is essentially an American geometric average option and esti-
mated by MLSM in the numerical experiments. Essentially, this American geo-
metric average option would be estimated accurately by MLSM or OLSM since

it is a 1-dimensional problem if stock prices are the only state variables. How-
ever, to further demonstrate the applicability and accuracy of the estimation

for this American geometric average option, we apply the Simultaneous pertur-
bation stochastic approximation (SPSA)!® for Example 1 as benchmark.!” The
parameters remains the same as in Example 1 except N which is set to be 4

for illustrative purpose.!® The set of SPSA parameters are: aj = ﬁ
¢k = 7935, where k denotes the kth iteration of total 500 iterations.(For details
about the SPSA algorithm and the parameters, see Fu et al (2000), Spall (1998)

and among others.)

and

Table 2.3 indicates the accuracy of the MSLM algorithm. The SPSAga value
column summarizes the American geometric average option values obtained by
SPSA algorithm, while American GA column shows the geometric average op-
tion values obtained by MLSM. As both columns illustrate, the values differ
only in the third decimal points in all cases, which indeed imply the accuracy
and validity of applying MSLM for estimating the American geometric aver-
age option for constructing the MLSM upper bound. Besides, SPSA44 value
column reports the values of American arithmetic average options obtained by
SPSA algorithm. As the results indicate, SPSA algorithm provides reliable
benchmark for American arithmetic average options with low number of exer-

cise opportunities.

16Please refer to Spall (2012) for details about SPSA algorithm

1"We thank an anonymous referee for the comments about applying the SPSA algorithm.

8Theoretically, we can choose N=50 as in other examples. However, the SPSA algorithm would
deal with an optimization problems with 50 parameters, which may be not easy to get accurate
estimates for the 50 parameters. As a result, we choose N=4 for demonstration. Moreover,
SPSA could be applied as benchmark for the American arithmetic average options especially
for less-exercise-opportunity cases. More specifically, SPSA is essentially an optimization
problem and the number of parameters depends on exercise opportunities when it is applied
for option pricing.
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Example 4. American arithmetic average options on 30 underlying
assets with 20 long and 10 short positions.

As mentioned in Section 2.1, the MLSM algorithm also applies to American
arithmetic average options with both positive and negative weights. We pro-
vide a concrete example here for completeness.!?

More specifically, the exercise value of this option at time ¢ € I" can be expressed

as
30 20 30
g a; Syt = g a;Sit — E (_ai)Si
i=1 i=1 i=21

The two arithmetic means are then approximated by their geometric means,
denoted as GA;” and GA; respectively, as illustrated in Step 1. Following this,
the dimension of the pricing problem is reduced to two for MLSM algorithm.
Accordingly, the cross sectional regression for MLSM is now applied with basis
functions 1, GAS, GA; ,GA x GA;, (GA])?, (GA;)? here, while OLSM is im-
plemented as in other examples. With respect to the parameters, they are kept
the same as in Example 1 except that we increase the number of underlying
assets to 30, where 20 assets are allocated with positive weights and the others
are with negative weights and vary the strike price, K, from 34 to 37.2° The
results are summarized in Table 2.4.

As Panel 1 shows, MLSM generates higher lower bounds in comparison with
OLSM and the accuracy of MLSM are reflected by the upper bounds of pricing
errors, which are below 1% except for K=34. Moreover, the simulation is re-
peated with M = 1000 and the results are reported in Panel 2. Consistent with
previous examples, the efficiency of MSLM in terms of MC paths required is pre-
served for the case with both positive and negative weights. In contrast, OLSM

generates significantly smaller lower bounds (around 11.5% lower as K=34).

Example 5. American arithmetic average options on 20 and 30 un-
derlying assets with different volatilities.

In this example, to show that MLSM is applicable in general, we consider two
models of 20 and 30 underlying assets with prices following GBM with variety

in volatilities. The closeness between arithmetic and geometric averages de-

19We thank an anonymous referee for pointing out this to improve the completeness of the
paper.

20We choose 34 for illustration since it is the smallest integer strike price where the option is
in the money
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pends on volatility. To examine the effect of volatility on pricing accuracy, we
change the volatilities of the underlying assets with other parameters remain-
ing the same as in previous examples. The results obtained with N=50 and
My = 1000, M = 10000 are summarized in Table 2.5. In Panel 1, the volatil-
ities are set to be g;; = 0.15,2 = 1,...,10;04 = 0.2,7 = 11,...,20 for 20-asset
case and 0,1 = 0.1,2 =1,...,10; 05y = 0.15,2 = 11, ..., 20, 0,1 = 0.2,7 = 21, ..., 30
for 30-asset case.

As this table indicates, OLSM provides lower bounds around 1% lower than
MLSM. The accuracy of MLSM is reflected by the upper bounds of pricing errors
around 0.6% for both cases. Moreover, when the volatility structures among the
underlying assets are changed to o;y = 0.15,7 =1, ...,10;0;1 = 0.3,7 = 11, ..., 20
for 20-asset case and o;; = 0.15,7 = 1,...,10;0;,1 = 0.2,7 = 11,...,20,041 =
0.3,2 = 21,...,30 for 30-asset case with other parameters unchanged to allow
more variations in the price processes, Panel 2 shows that MLSM consistently
generate higher lower bounds with small upper bounds of pricing errors around
1.067% and 0.821% for both cases respectively.

Similarly, the simulations are repeated with M = 1000 and summarized in Panel
3 and 4 to show the convergency speed of MLSM in terms of MC paths required.
Both Panel 3 and 4 show that the results obtained by MLSM are quantitatively
the same; however, those obtained by OLSM are significantly underestimated.
In the worst case (the last row), the lower bound (2.282) is approximately 21%
lower than the one obtained by MLSM (2.765).

Example 6. American arithmetic average options on 10 and 20 un-
derlying assets following Heston’s model.
In this example, we consider Heston’s model (1993) of stochastic volatility to
demonstrate the performance of MLSM for pricing American arithmetic average
options. For the stock i, its price S;; and variance o2 are given by:

dSiy = rSudt + o, dW3,

do?, = a(B — ol)dt + youdWii=1,..,n,

where W7 i =1, ...,n are independent Brownian motions, that is, volatility pro-
cesses are independent; for the stock 7, the Brownian motions W;; and W] are
correlated with coefficients, p;,7 = 1,...,n, capturing leverage effect; for ¢ # j,
Wi and W5, are correlated with a coefficient p;;, namely, the stock returns are
correlated .

In this case, a geometric mean of the stock prices depends on the stochastic
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volatility processes as state variables, which should be included in the cross sec-
tional regression. Considering the case of 10 stocks, a geometric mean, denoted
as GA;, depends on 11 state variables, that is, the geometric mean itself and
the 10 stochastic volatility processes. In contrast, the original arithmetic mean
depends on 20 state variables, that is, the 10 stock price processes and the 10
stochastic volatility processes. More specifically, the basis functions adopted in
this example for MLSM are: 1, GA;, GA?, 04,0%,i = 1,...,10/20; for OLSM:
1, 84,82, 0,0%,1=1,...,10/20.

In this exercise, we only present lower bound estimates since the true values of
American geometric average options are not easy to obtained for upper bounds
due to higher dimension. The simulation results are summarized in Table 2.6.
Compared with OLSM, MLSM still provides an effective way to estimate lower
bounds. As Panel 1 shows, MLSM generate higher lower bounds for both cases
compared to those obtained from OLSM. Moreover, Panel 2 further manifests
the performance of MLSM by reducing M to 2500.2! More concretely, the
results obtained by MLSM are quantitatively similar to those in Panel 1. In
contrast, OLSM generates significantly lower estimates compared with the re-
sults as M = 10000.

To show the results are not subject to the specific second-order basis function
adopted, we repeat the simulation by increasing the order of basis functions to
four and summarize the results in Panel 3.22 As Panel 3 demonstrates, MLSM
generates consistent results as in Panel 1; however, the estimates by OLSM

deteriorate around 1 to 2 %.

Example 7. Convergence comparisons of MLSM and OLSM.

In this exercise, we repeat the 6-asset case in Example 1 to examine the rate of
convergence for OLSM and MLSM by varying the number of simulation paths
from 500 to 10000. The results are displayed in Figure 2.2. The lower bounds
estimated by MLSM are consistently higher than those by OLSM. Moreover,
the estimates obtained by the former start to approach the benchmark value
(2.71838) essentially bounded below after the number of simulation paths ex-
ceeds 1000. By contrast, the lower bound estimates from OLSM converge much

slower than the MLSM estimates. In particular, 10000 simulation paths are

21Since the number of state variables increases as volatilities are allowed to be stochastic, the
pricing problem for MSLM is not one dimensional for this example anymore. As a result, it
requires more MC paths (2500) in comparison with 1000 paths as analyzed in the previous
examples.

22The results obtained with order of basis function to 4 are reported in this example only for
demonstration. With respect to other experiments, we can get very similar results.
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Figure 2.2: Comparison of convergence speeds of MLSM and OLSM for pricing
American arithmetic average option on 6 assets

sufficient for a good lower bound estimate. It is also noteworthy that the upper
bound estimate from MLSM converges very fast too, in the sense that it con-
verges to the true upper bound implied by MLSM as indicated by Figure 2.2.
The desirable efficiency of MLSM arises from two key facts. Firstly, the arith-
metic mean can be accurately approximated with the corresponding geometric
mean. Secondly, the pricing problem for MLSM is reduced to lower dimension
and or even 1 dimension for the case where the underlying assets follow the

deterministic GBM process in particular.

Example 8. Robustness test for MLSM and OLSM with SPSA as
benchmark??

As demonstrated in (2.7), the MLSM is especially efficient when the volatility
and the time-to-maturity are not very high. In this example, we test per-
formance of our MLSM in cases where volatility and/or time-to-maturity are
relatively high.?* More specifically, American arithmetic average options on 10
assets with the time-to-maturity and the volatility ranging from 0.5 years to 5
years and 0.15 to 0.5, respectively, are investigated with other parameters fixed

as in Example 3.2° SPSA is adopted as a reasonable benchmark, i.e., true value,

23FEM method is a PDE-based algorithm and is hard to get accurate prices in high dimensional
cases. As a result, we apply SPSA as the main benchmark here as discussed in Example 3.

24We are very grateful to an anonymous referee for suggesting this test.

25The ranges of the time-to-maturity and the volatility are common in EQ and FX markets.
We thank an anonymous referee for pointing out this to us.
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here as justified in Example 3.

First, we investigate the effect of high-volatility case by fixing the level of volatil-
ity at 0.5 and vary the time-to-maturity from 0.5 years to 5 years. Then, we
fix the time-to-maturity at 5 years and vary the volatility from 0.15 to 0.5
to illustrate the effect of long time-to-maturity. The results of both cases are
summarized in the upper and bottom panels of Table 2.7, respectively. As sum-
marized in the table, MLSM provides lower lower bounds relative to the OLSM
estimators in high-volatility and long time-to-maturity cases and higher upper
bounds of pricing errors relative to those in Examples 1 to 7. In particular, the
upper bounds of pricing errors are as high 4.2856% when the volatility is 0.5
and the time-to-maturity is equal to 5 years. However, as the column under “P.
E.” indicates that MLSM provides good estimators given by the mid prices for
American arithmetic average options in terms of pricing errors with SPSA esti-
mators as benchmark. This finding is consistent with our result (2.12) that the

upper bounds of pricing errors are conservative estimators of true pricing errors.

Furthermore, we test the performance of MLSM by varying volatility, time-
to-maturity and strike price, respectively.?® In the following tests plotted in
Figure 3, we graphically illustrate the pricing errors (P.E.) with SPSA estima-
tors as benchmark and number of simulation path, M=10000. Specifically, in
Panel (a), we vary volatility with time-to-maturity fixed at 1 year and other
parameters fixed as in Example 3; in Panel (b), we vary time-to-maturity with
volatility fixed at 0.2 and other parameters fixed as in Example 3; in Panel (c),
with time-to-maturity fixed at 1 year, volatility fixed at 0.5 and other parame-
ters fixed as in Example 3, we test performance of MLSM against different strike
prices by scaling the strike price by exp(rT + av/T) with a ranging from -1/4
to 1/4. As Figure 2.3 demonstrates, reflected by “P. E.”, mid prices obtained
by MLSM are good estimators for American arithmetic average options among

a reasonable range of time-to-maturities, volatilities, and strike prices.

26We are very grateful to an anonymous referee for suggesting this test.
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In short, the above numerical experiments illustrate the robustness and limita-
tion of the MLSM algorithm for pricing high dimensional American arithmetic
average options. On the one hand, MLSM can generate good lower bound es-
timates with faster convergence as opposed to OLSM. On the other hand, the
performance of MLSM in terms of the upper bound of pricing error may deteri-
orate in the cases where volatility is very high and/or time-to-maturity is very
long.
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Figure 2.3: Effects of volatility, time-to-maturity and strike price on pricing
error. All stocks have the same setting as Example 2.3, i.e., Common Initial
Price S;y = 100, Strike Price K=100, Interest rate r=3%, no Dividend, Maturity
T=1 Year, Common Volatility o;; = 20%, Common Correlation p;; = 0.5, #
7 = 1,...,10, if not otherwise mentioned.
calculated with SPSA estimators as benchmark and M=10000.
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Panel 1

Number of  OLSM CPU MLSM UB of CPU
Stocks LB Time(sec) LB UB Mid  P. E.(%) Time(sec)
10 6.20357 51.44967 6.26185 6.29676  6.27930 0.27873  52.58328
(0.08735) (0.09309)  (0.09329)
30 6.05943  163.19413  6.22653 6.24815  6.23734  0.17354  163.52299
(0.08261) (0.09527)  (0.09533)
50 5.90727  288.28503  6.23717 6.25419  6.24568  0.13643  287.32009
(0.08915) (0.08713)  (0.08721)
Panel 2
Number of  OLSM CPU MLSM UB of CPU
Stocks LB Time(sec) LB UB Mid  P. E.(%) Time(sec)
10 5.65246 5.75452 6.20944 6.24411  6.22678  0.27919 7.33546
(0.27316) (0.25329)  (0.25372)
30 4.54559 15.51786 6.16732 6.18890  6.17811 0.17491  22.06787
(0.27593) (0.26138)  (0.26158)
50 4.00669 26.48666 6.15054 6.16748  6.15901 0.13771  37.43104
(0.23942) (0.25016)  (0.25037)

The underlying stocks are modeled to follow MJD process with co-jump component pa-
rameters: A = 5,J ~ N(—0.1,0.1). The other parameters in the models are : Common
Initial prices S;o = 100, Strike Price K=100, Interest Rate r=3%, no Dividend, Common
volatilities ;1 = 20%, Common Correlation p;; = 0.5,7 # j = 1,...,10/30/50 and matu-
rity, T is set to be 0.25 Year respectively. The jump sensitivities, o;2 to the jump are set
to be 1 for all underlying assets.

Approximate option values are obtained by applying OLSM and MLSM approaches 100
times for each case with 50 equally spaced Exercisable times, My = 1000, M = 10000
Monte Carlo paths and labeled with OLSM and MLSM, respectively in Panel 1. In
contrast, the simulation is repeated with M = 1000 to examine the efficiency against the
number of the Monte Carlo paths. The results are reported in the Panel 2. The reported
values are averages over the 100 runs. LB and UB represent lower and upper bounds,
respectively. The upper bounds are calculated as described in the upper bound section
and the Mid is defined as the average of the estimated lower and upper bounds. The
UB of P. E. is the upper bound of pricing error. The standard errors of the approximate
values are shown in the parentheses.

Table 2.2: American Arithmetic Average Option on 10, 30 and 50 underlying

stocks following MJD process.
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Panel 1
Strike LSM MLSM UB of
Price LB LB UB Mid P. E.(%)
34 1.30585 1.31802 1.34946  1.33374  1.19289
(0.01544) (0.01356) (0.01364)
35 1.96168 1.97742 2.01409  1.99575  0.92709
(0.01525)  (0.01411) (0.01414)
36 2.75018 2.77325 2.81316  2.79320 0.71944
(0.01431) (0.01685) (0.01699)
37 3.65444 3.67401 3.71595  3.69498  0.57079
(0.01288) (0.01365) (0.01376)

Panel 2

34 1.16107 1.29531 1.32679  1.31105 1.21501
(0.04149) (0.04743)  0.04763

35 1.83902 1.97582 2.01240 1.99411 0.92558
(0.04853)  (0.04697)  0.04721

36 2.68046 2.76171 2.80173  2.78172  0.72459
(0.04248)  (0.04859)  0.04864

37 3.61886 3.65690 3.69850  3.67770  0.56879
(0.04049)  (0.04741)  0.04747

In this table, the applicability of MLSM for portfolios composed of both long and short
positions, i.e. positive and negative weights is examined. In particular, a; = 1/30, for
i=1,...,20 and a; = —1/30, for i = 21, ..., 30. The parameters in the model are : Common
Initial prices S;o = 100, 7 = 1,..., 30, Interest Rate r=3%, no Dividend, Maturity T=0.25
Year, Common Correlation p;; = 0.5,7 # j = 1,...,30. The results are summarized as
K=34,...,37 for illustration. The computational times for LSM and MLSM are around 20
and 18, respectively and not reported in the table for illustrative brevity.

Approximate option values are obtained by applying OLSM and MLSM approaches 100
times for each case with 50 equally spaced Exercisable times, My = 1000, M = 10000
Monte Carlo paths and labeled with OLSM and MLSM respectively in Panel 1. In con-
trast, the simulation is repeated with M = 1000 to examine the efficiency against the
number of the Monte Carlo path. The results are reported in the Panel 2. The reported
values are averages over the 100 runs. LB and UB represent lower and upper bounds
respectively. The upper bounds are calculated as described in the upper bound section
and the Mid is defined as the average of the estimated lower and upper bounds. The
UB of P. E. is the upper bound of pricing error. The standard errors of the approximate
values are shown in the parentheses.

Table 2.4: American Arithmetic Average Option on 30 assets with 20 long
positions and 10 short positions.
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Panel 1

Number of  OLSM CPU MLSM UB of CPU
Stocks LB Time(sec) LB UB Mid  P. E.(%) Time(sec)
20 2.19438 9.21937 2.20738  2.23399  2.22069 0.60256 8.86362
(0.02820) (0.02664) (0.02672)
30 1.81391  17.86448 1.83744  1.85792  1.84768 0.55748  17.20838
(0.02481) (0.02260)  (0.02269)
Panel 2
Number of  OLSM CPU MLSM UB of CPU
Stocks LB Time(sec) LB UB Mid  P. E.(%) Time(sec)
20 2.90650 8.38199 2.91865  2.98095  2.94980 1.06723 8.05845
(0.03414) (0.04189)  (0.04207)
30 2.74234 17.71292 2.77007  2.81564 279280 0.82060  17.05103
(0.03740) (0.03568)  (0.03587)
Panel 3
Number of  OLSM CPU MLSM UB of CPU
Stocks LB Time(sec) LB UB Mid  P. E.(%) Time(sec)
20 1.93455 0.69619 2.20587 223243  2.21915 0.60212 0.89514
(0.07995) (0.08961)  (0.08985)
30 1.48652 1.22382 1.82517  1.84576  1.83547  0.56410 1.59656
(0.07379) (0.07785)  (0.07825)
Panel 4
Number of  OLSM CPU MLSM UB of CPU
Stocks LB Time(sec) LB UB Mid  P. E.(%) Time(sec)
20 2.55810 0.69891 291531 297758  2.94645 1.06807 0.88955
(0.13629) (0.13169)  (0.13242)
30 2.28217 1.19687 2.76481  2.81017  2.78749  0.82029 1.62135
(0.10487) (0.09261) (0.09287)

The parameters in the models are : Common Initial prices S;o = 100, i = 1,...,20/30,
Strike Price K=100, Interest Rate r=3%, no Dividend, Maturity T=0.25 Year, Common
Correlation p;; = 0.5, # j = 1,...,20/30.

The underlying stocks have different volatilities as o;1 = 0.15,4 = 1,...,10,04; = 0.2,i =
11, ..., 20, for 20-stock case and o;; = 0.10,7 = 1,...,10,0,; = 0.15,7 = 11,...,20,0;1 =
0.2,7 = 21, ..., 30, for 30-stock case in the upper panel and o;; = 0.15,7 = 1,...,10,041 =
0.3,7 = 11,...,20, for 20-stock case and o;;y = 0.15,5 = 1,...,10,0;7 = 0.2,i =
11,...,20,0;1 = 0.3,7 = 21, ..., 30, for 30-stock case in the bottom panel.

Approximate option values are obtained by applying OLSM and MLSM approaches 100
times for each case with 50 equally spaced Exercisable times, My = 1000, M = 10000
Monte Carlo paths and labeled with OLSM and MLSM in Panel 1 and 2 respectively.
In contrast, the simulations for both cases are repeated with M = 1000 to examine the
convergency against the number of the Monte Carlo path. The results are reported in
Panel 3 and 4. The reported values are averages over the 100 runs. LB and UB represent
lower and upper bounds respectively. The upper bounds are calculated as described in
the upper bound section and the Mid is defined as the average of the estimated lower and
upper bounds. The UB of P. E. is the upper bound of pricing error. The standard errors
of the approximate values are shown in the parentheses.

Table 2.5: American Arithmetic Average Option on 20 and 30 underlying stocks
with different volatilities.
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Panel 1

Number of  OLSM CPU MLSM CPU
Stocks LB Time(sec) LB Time(sec)
10 4.61323 6.45618 4.62770 6.62625
(0.05576) (0.06643)
20 4.44706 18.25560 4.49729 18.05300
(0.05726) (0.06253)
Paenl 2
Number of  OLSM CPU MLSM CPU
Stocks LB Time(sec) LB Time(sec)
10 4.46118 1.29819 4.58711 1.49783
(0.11368) (0.12850)
20 4.11185 3.21959 4.37469 3.62714
(0.11160) (0.11633)
Panel 3 Power 4
Number of  OLSM CPU MLSM CPU
Stocks LB Time(sec) LB Time(sec)
10 4.560722  9.858611 4.601852  8.666284
(0.05581) (0.05498)
20 4.334726  25.26982  4.439366  21.75666
(0.05590) (0.05868)

In this table, the applicability of MLSM for stochastic volatility models is examined and
for illustration, Heston model is adopted. The parameters in the model are : Common
Initial prices S;p = 100, i = 1,...,10/20, Interest Rate r=3%, no Dividend, Maturity
T=0.25 Year, Common Correlation p;; = 0.5, # j = 1,...,10/20. In particular, the
parameters of the Heston model are: o;p = 0.1, = 0.5,5 = 0.16,7 = 0.9,p; = —0.1,
1=1,...,10/20.

Approximate option values are obtained by applying OLSM and MLSM approaches 100
times for each case with 50 equally spaced Exercisable times, My = 1000, M = 10000
Monte Carlo paths and labeled with OLSM and MLSM respectively in Panel 1. In con-
trast, the simulation is repeated with M = 2500 to examine the convergency against the
number of the Monte Carlo path. Moreover, consistency is examined by extending cross
sectional regression basis, i.e.,state variables to the fourth power. The results are reported
in the Panel 2 and Panel 3, respectively. The reported values are averages over the 100
runs. LB represents lower bound. The standard errors of the approximate values are
shown in the parentheses.

Table 2.6: American Arithmetic Average Option on 10 and 20 assets with
Heston’s model of stochastic volatility.
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2.5 Conclusion

This paper develops an efficient payoff approximation approach to estimating
lower and upper bounds for pricing high-dimensional American arithmetic av-
erage options. The crucial step of the approach hinges on finding a highly
correlated geometric average with a given arithmetic average. Then, the LSM
approach proposed in Longstaff and Schwartz (2001) is applied to obtain the
optimal exercise strategy for a lower-dimensional and more tractable American
geometric average option. This optimal exercise strategy is used to estimate a
lower bound for the corresponding American arithmetic average option price.
In addition, an upper bound can be simply calculated without computation-
ally expensive nested simulation. Our method is especially efficient when the
underlying asset prices are modeled by jump-diffusion processes with deter-
ministic volatilities because the geometric mean is always a one-dimensional
Markov process regardless of the number of underlying assets and thus is free
from the curse of dimensionality. Numerical examples show that the proposed
methods perform well with dimensions up to 50 when volatility is not very
high and/or time-to-maturity is not very long, providing encouraging evidence
that our methods have the potential of being widely adopted by academics and
practitioners for pricing high-dimensional American arithmetic average options
and using high-dimensional American arithmetic average options in financial

activities such as hedging, diversifying, risk management particularly.
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Chapter 3

Dynamic Optimal Portfolio
Choice Problem under Financial

Contagion

3.1 Introduction

Recent empirical studies have documented the following features during turbu-
lent market conditions: (1) stock prices tend to crash together; (2) a big jump
in stock prices is likely to be followed by more frequent jumps; (3) a big jump
in stock prices is likely to be associated with a big jump in volatility.

In particular, Ang and Chen (2002) demonstrate that asset returns are more
correlated in bear markets than in bull markets as measured by the exceedance
correlation, i.e., the stock prices tend to crash together but not boom together.
This finding implies a reduction in portfolio diversification during market down-
turns. In Ait-Sahalia, et al. (2015), they document episodes of highly clustered
jumps across world markets, i.e., a big jump in stock prices is likely to be
followed by more frequent jumps, which they term contagion. In the option
pricing literature, Eraker, Johannes and Polson (2003), Eraker (2004), among
many others, find strong evidence for co-jumps in volatility and stock returns,
i.e., a big jump in stock prices is likely to be associated with a big jump in
volatility. The objective of the present paper is to develop tractable multi-asset
models to capture all these stylized facts and propose a new approach to solve
the optimal portfolio choice problem in order to investigate impacts of time-

varying jumps in stock returns and variance-covariance.

While jump-diffusion models have been introduced into the optimal portfolio
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choice problem for long time (e.g. Merton (1976)), there are few results which
provide closed-form solutions to portfolio choice problems in multi-dimensional
jump-diffusion models. In general, one has to solve numerically an n-dimensional
nonlinear equation for an n-dimensional jump-diffusion model. For example, Liu
et al.(2003) study the effects of rare events affecting price and volatility. But,
in their model, there is only one risky asset available for trading. In contrast,
we investigate impacts of rare events affecting prices and variance-covariance,
and thus, we are able to study the impact of contagion on optimal portfolio
strategies. Considering a multi-asset model, Das and Uppal (2004) investigate
the effects of systemic risk on portfolio diversification. Unlike our model in
the present paper, the volatility and jump intensity in their model are all con-
stants. In a multi-asset model closely related to ours, Ait-Sahalia, et al. (2009)
use self- and mutually exciting processes to capture contagion in dynamics of
asset returns. In particular, they develop a simple orthogonal decomposition
method and possibly remove the restriction on the number of assets involved.
Our model in the present paper differs from theirs. First, we use a Wishart
process with jumps to model the variance-covariance while they do not incor-
porate jumps in volatility. Second, their decomposition method requires really
special structures for the jump vector and the variance-covariance matrix. In
this paper, we present a general decomposition technique which can be applied
to a wide class of multi-dimensional jump-diffusion models. As a result, we

obtain a semi-closed form solution for the optimal portfolio choice problem.

This paper also extends another closely related work, Buraschi et al. (2010),
by developing a general decomposition technique for jump-diffusion models and
allowing jumps in both the stock returns and the variance-covariance processes.
As a result, these contributions present a venue to study the effects of an abrupt
increase in dynamics of correlation on portfolio diversification. Meanwhile, this
paper also extends the result on portfolio choice of Leippold and Trojani (2010)
where they do not study the problem when asset prices consist of jumps.

Jin and Zhang (2012) also adopts a decomposition method to deal with the
models where there are jumps in asset returns only. But it is not straightfor-
ward to employ their method to solve the optimal portfolio choice problem in
a model with co-jump in asset returns and volatility. In contrary, our decom-
position method in this paper can be applied to more general models where
the variance-covariance process contains jumps. In principle, our model can be
viewed as an multi-dimensional extension of the one-dimensional case studied
in Liu et al.(2003).
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In order to obtain a semi-closed solution in the stochastic volatility model, we let
the jump intensities be an affine function of the variance-covariance. Since the
variance-covariance consists of jumps, the jump intensities are mean-reverting
with jumps. As a result, the corresponding jump processes have a feature of
“mutually exciting”, which is nicely used to model contagion by Ait-Sahalia and
Hurd (2015) and Ait-Sahalia, et al. (2015). Apart from the "mutual-“ and/or
"self-“ exciting feature, the specification of jump intensity also captures one
important observed feature, i.e., volatility clustering of returns. More specif-
ically, the jump intensity is defined as the scaled variance-covariance matrix,
where the values are essentially linear combinations of variance and covariance
between the assets. In other words, it is the current variance-covariance that
drives the potential "clustering® of future variance-covariance. Moreover, by
looking at the values of the scaling matrix, the "vulnerability* of each asset to
its own risk (reflected by the variance) or to the counterpart’s risk (reflected by

the covariance) is measurable.

The rest of this paper is organized as follows. For the sake of completeness, we
review the financial contagion literature in Section 2 in order to provide general
pictures about how financial contagion influences the economy. In Section 3,
we first introduce the jump-diffusion model where the variance-covariance is
a continuous-time Wishart process with jumps. Then we develop the decom-
position method and solve the optimization problem in Section 4. Numerical
illustrations and financial implications are presented in Section 5. Concluding
remarks are summarized in Section 6. Tedious proofs are collected in Appendix

for clarity.

3.2 Contagion Literatures

There had been several branches of literatures about financial contagion in-
cluding the transmission of contagion arising from the linkages of the market,
correlated information and liquidity shocks and even responses from investors’
behaviour such as attitude or psychology. For instance, Kang and Viswanathan
(2010) provided an indirect evidence of contagion in terms of liquidity,where
illiquidity spills over from an industry to another. In particular, after a large
negative shock, the financial intermediaries are forced to liquidate. As the mar-

kets go down considerably, most of the assets are also forced to liquidate. Hence,
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both level and commonality of liquidity are affected due to the large negative
shock. As a result, liquidity short can be regarded as a signal of contagion
effects.

Jorion and Zhang (2009) examined the clustering of default i.e. credit contagion
and documented that counter party risk may be another channel of credit conta-
gion. While, Leitner (2005) developed a model for interdependence of financial
markets where linkages not only spread contagion but further induce bailout
coming from the threat of contagion. Lonstaff and Rajan (2008) explored the
information embedded in CDOs to investigate the contagion effects in the sense
that corporate defaults tend to cluster. They found there is significant cluster-
ing of default in the market and hence implied that there exists a significant

part of corporate credit risk which is not diversifiable.

Some features such as flight-to-quality and home bias may be observed during
crisis or market downturn. For example, Nieuwerburgh and Veldkamp (2009)
proposed an alternative way to study home bias puzzle. More specifically, they
emphasized that the information immobility, the costs of learning and initial ad-
vantages of certain information would further induce the home bias since these
obstacles tend to stop investors from deviating their initial positions. Giannetti
and Laeven (2012) used international syndicated loan market as a channel to in-
vestigate the transmission mechanism of adverse shocks to banking. Analogous
to the well-known puzzle, home bias, they found that investments in domestic
loans increase 20% during financial crises i.e., manifestation of flight home ef-
fect.(The authors argued that diversification benefit is reduced during financial
crises, probability of bailout associated with domestic investment maybe higher
and the level of risk aversion increases, see also Dungey et al (2009))

Following the related literature, it is easy to understand that financial conta-
gion is an integrated phenomenon with several unsolved puzzles entangled. As

a result, we need to understand thoroughly what is financial contagion.

3.2.1 What is financial contagion?

There is no consensus definition for contagion and it has been widely inves-
tigated in different aspects, e.g. identifying the contagion channels, detecting
directly the contagion effect, etc. However, the financial contagion has been
studied under some common definitions in the literature.

We review the definitions in Pericoli and Sbracia (2003) to shed some light on
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how financial contagion had been studied in the literature.!

Definition 1. Contagion occurs if there is a significant increase in the proba-
bility of future crises, conditional on a crisis occurring in another counterpart
in the economy.

Conventionally, this definition is widely adopted in the literature about cur-
rency crisis. By construction, it helps to identify the vulnerability of a specific
country to external shocks. However, it could be intuitively hard to be incor-

porated for solving optimal portfolio problems.

Definition 2. Spillovers of the volatility of asset prices from the crisis country
to the other counterparts imply the occurrence of contagion.

In general, spillover effects demonstrate explicitly how the contagion is spread
across different countries. The common techniques applied for assessing the
occurrence and direction of volatility spillover are the multivariate GARCH
models. However, the tractability of the model is typically not guaranteed
for solving optimal portfolio problems because of the nature of multivariate
GARCH model incorporated.

Definition 3. Contagion arises if there exists excessive cross-country move-

ments which could not be explained by fundamentals.

Definition 4. Contagion occurs when there are excessive co-movements of
prices and quantities among the markets, conditional on a crisis occurring in

one or more counterparts in the economy.

Definition 5. (Shift-) contagion occurs if the transmission channel intensi-
fies or significantly changes after a shock in one country

zz 'The Definition 3~5 are quite similar. More specifically, they all hinge on the
"significant change” resulting from a external shock caused by the country itself
or by other counterparts. The difference lies in the "object® investigated, for
example, direct assessment of prices, co-movements, etc are commonly analyzed
for Definition 3 and 4; while the transmission channels are considered in Defi-
nition 5. Analogous to contagion in epidemiology, the direct assessments of the
prices, co-movements, etc are analogous to the syndrome and the transmission

channels are analogous to the routes of the infection.

Pericoli and Sbracia (2003) provides a thorough survey for extant literatures. In particular,
a review of the related literature among various methodology are listed.
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zz To sum up, based on Definition 3~5, it is more appropriate to test conta-
gion by determining if there is any "structural break® in the data-generating
process. The detected "structural break* would imply the deviation resulting
from the source of infection, say the crisis-originating country. In addition, the
data-generating process, or more generally, the presumed asset pricing models
adopted in the existing literatures related to contagion makes the contagion
effect explicitly detectable. On the contrary, the probit models and volatility
spillover related models adopted in the literatures related to Definition 1 and
2, to some extent, only suggest the outcomes of crises and hence provide only

some potential interpretations about financial contagion.

Apart from these common definitions, the immediate way to study financial
contagion is to identify and capture the observed features of market returns.
Stylized features of contagion could be summarized as: 1. time-series clustering,
2. cross-sectional clustering, 3. directional clustering. For instance, the recent
financial crisis demonstrated the first two features conspicuously and brought
about devastating recession among the world economics for years. Moreover, the
severity resulting from crisis of an economy may differ from others and mainly
depends on its own stability. This characteristic is reflected by the third feature,
which describes the power of influence to others. A crisis occurs in one place
and spread across the world through the increasing connection between differ-
ent markets like a disease. Finally, this chain reaction deteriorates the financial
economics based on the fragility of each market. Indeed, this is exactly how
disease contagiously spread among different objects and it is termed "financial
contagion®. Financial contagion has gained more intention in the literature af-
ter the recent crisis. In particular, Choi (2014) proposed a stylized model of
self-fulling panic and showed heterogeneous fragilities to strategic risks (finan-
cial spillovers) of agents are critical components in financial contagion. In fact,
the heterogeneous fragilities are reflecting the financial health of each agents
and Choi (2014) provided a theoretical model for directional clustering. An in-
teresting result is that agents with stronger financial health should be bolstered
instead of the weak ones, which is quite counter intuitive since contagion often

starts from weaker parts of the economy.

Based on the above discussion, a comprehensive model of financial contagion
should, to great extent capture these three features. A direct vehicle for model-

ing time-series and cross-sectional clustering had been studied in Ait-Sahalia et
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al. (2015), where the Hawkes jump is incorporated for the dynamic of jump in-
tensity because of its inherited properties: self- and mutual- excitations. They
developed the estimation technique with GMM method and found self- and
mutual- excitation feature in the data under the assumption of constant volatil-
ity. To some extent, capture part of financial contagion effect and in fact, U.S
has more influence on other markets. Although many efforts had been made in
the literature of optimal portfolio choice problem, including stochastic volatil-
ity and stochastic volatility with jumps, etc, little is known about the optimal
portfolio choice under financial contagion with stochastic volatility and jumps

in both return and covariance matrix.

Our main contributions of this paper can be summarized as follows. Com-
pared with Ait-Sahalia et al (2015), our model outperforms in two aspects: 1.
Wishart process is incorporated to address the effects from stochastic variance-
covariance matrix, 2. we solve the optimal portfolio problem. Complemented
with the Hawkes-style jump component, including two novel parameters which
would be analyzed in detail later, our model also could capture more empiri-
cal features than the one in Buraschi et al (2010). In particular, their model
is valid for weekly and monthly data but rejected for daily ones. They sug-
gested that the jumps in daily context result in the rejection of Hansen’s test,
which manifests the importance of jumps in return. Furthermore, Corradi et
al. (2012) also documented that including jump in volatility is not sufficient
to capture contagion and jump in asset price are needed. By incorporating
the jump components, our model aim to capture the daily variation of prices
and returns much more well and hence the contagion effect could be analyzed in

more detail without losing much information as using weekly and monthly data.

The advantages of our model could be summarized as the following:

e Parsimony: Our model consists of two jumps in asset price and covari-
ance matrix process modeled by Wishart process with novel paramter
J,C'1 and C2 to capture financial contagion. Hence, we avoid assuming
the multivariate factor models commonly adopted in the empirical re-
searches. Moreover, the presumption of the interdependence structure is
avoided. As a result, we circumvent the omitted variable problems and

some empirical issues commonly faced by existing literatures.

e Tractability: Optimal portfolio choice problem is solved with closed-form
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solution.

Capturing observed clustering: Future jumps are affected /induced by cur-
rent and past jumps e.g. the market sentiments would be affected by large
market moves and the effects may propagate within the region and across

countries.

Asymmetry: The flexibility of the intensity function allows us to set dif-
ferent influencing powers to each element in the economy. As a results, it
is feasible to capture the asymmetric influencing power(directional clus-

tering) among different markets.

Realism: As shown in Ait-Sahalia et al (2015) that the application of
Hawkes jump would capture the observed features e.g. time-series cluster-
ing and cross-sectional clustering. Besides, the Wishart process is proven
to well capture the stochastic covariance, which plays an important role
in both optimal portfolio problem. Combined with these two key compo-
nents, our model are expected to fit the data better given both models
are nested in our model. As illustrated in the Numerical Analysis, we
find our model captures several observed features of contagion and pro-
vides economical interpretations in the context of optimal portfolio choice

problem.
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3.3 A Multi-Dimensional Jump-Diffusion Model
with Stochastic Volatilities

Let (2, F,P) be a probability space with filtration F = (F;)o<i<r where T
denotes a finite time horizon. An investor with constant relative risk aversion
(CRRA) utility trades n risky assets and a riskless asset with instantaneous risk-
less return 7 over the finite time horizon [0, 7). Let S; = (S14, ..., Snt)'st € [0, 7]
denote the price vector of the risky assets at time ¢, where ' denotes the trans-

pose of a vector (or matrix).

Assume we have two stocks and two jumps, i.e., n = m = 2.2 The dynamics of
the price vector S; = (Si4, ..., Snt),t € [0, 7] of the risky assets is governed by

the equation:
diag(S;)dS, = (e + rln)dt + S 2dW, + J - (YidNy), (3.1)

where r > 0,1, = (1,...,1) € Ry € R, J € R™™ are constant or
deterministic vectors or matrices; /2 = (0)nxn is the (volatility) coefficient
matrix of the diffusion terms; W; is a n x 1 standard Brownian motion. The

operator “diag” transposes a vector into a diagonal matrix.

We set the variable
Mt = Em —J- E[Y])\t = Zt’r]t —J- E[Y] . ClEtCQ,

where i is an affine structure of ¥; as usual settings in literature of stochastic
volatility models. The affine structures A\; and p; make it possible to obtain a
closed-form solution.

An m dimensional jump counting process Ny = (Ni4, ..., N, ¢) is independent
of the Brownian motions, and NN;, is independent of N;, for 1 <i # j < m.
The random jump size Y = diag(Y1, ..., Y,,) is a diagonal matrix where Y; is

independent of Y; for 1 < ¢ # 57 < m. J is a constant matrix which is used

2Without loss of generality, I added the assumption n = m in this chapter. For the case

n < m, it is not solvable since in the model setting, the jumps in the return are set to be
scaled by the n x n matrix, J. In particular, this setting is innovative and specially designed
to capture financial contagion effects by allowing jumps to propagate through all components
in the economy with jump sizes scaled by the matrix, J. As a result, the case n > m is not
included in the current model. However, with respect to the case n > m, it is solvable since
it is a nested case of n = m. More explicitly, we can simply set the jump sizes to zeros for
remained n — m dimensions. Hence, it is clear that the case n > m could be solvable as in
the case n = m while n —m components of jumps are with zero jump sizes.
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to scale the jump sizes. Hence J - (Y;dN,;) denotes the jump components in
the dynamics of the risky assets. If not otherwise mentioned, we use the con-
vention “ to denote the multiplication between vectors or matrices hereafter.
Although the matrix multiplication does not need a "dot“ operator, adding it
would make terms with several matrix multiplications more intuitive. If the

element-by-element product is applied, further notification would be noted.

The jump counting process N;;, for i € {1,2,3,...,m} has an intensity \;,
such that

P[Niiiae — Nig = 1|1F] = XAt 4+ o(At),
P[Niirar — Niy > 1|1F] = o(At).

In particular, N, is an m-dimensional Poisson process if Ay = (A14, ..., Any) 18
constant. In summary, the equation (3.1) is modeling a jump-diffusion market
with m types of jumps. The jump intensities and the jump sizes are described

by A\; and JY; respectively.

Let ¥y = (Zi)nxn = Ei/Q . (22/2)’ denote the covariance process. In the
following, we consider the case: n = m = 2. We take the specific setting of
A = 01,0y, where constants vector C; € R™", Cy € R™!. That is, )\ is
affine of ¥;. Let

J = Jll <]12 ,01 _ C{11 C112 ’02 _ 02(1) ‘ (32)
J21 J22 C’21 C(22 02(2)

A = ( A1t ) O30, = ( C11C5(1)X11 4 (C11C2(2) + C12C5(1)) X019 + C12C5(2) 39

Then

Aoy Co1Ca(1)E11 + (C21C2(2) + Co2C5(1)) 81z + CoaCa(2) 822 )
(3.3)
To keep A\; non-negative, we may set further that
&
Cy = diag(cy, cay i) - | .. (3.4)
&

where ¢4, ..., ¢, are non-negative constants. This model nests the one dimen-
sional model of Liu et al. (2003) which corresponds to the case of n =m =1

and \; = co? for some ¢ > 0.
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3.3.1 A Stochastic Variance-Covariance Process with Jumps

To model stochastic variance-covariance matrices, Buraschi et al. (2010) adopt
a continuous-time Wishart process which is basically a matrix-valued version
of the univariate square-root process. In this paper, we extend their model by
incorporating jumps. In particular, the variance-covariance matrix process >
is assumed to follow a stochastic (matrix) process with jumps:

The variance-covariance matrix process Y; is assumed to follow a Wishart pro-

cess with jumps:

dY, = [ + M3, + S, M')dt + 5,2dz(1)Q + Q'dz's? + Y~ KWdN;,
=1

(3.5)

where ), M, () € R™™ are constant coefficient matrices; M is negative definite.
Z; is a n xn standard Brownian motion, correlated with the process W; through

the way

Wi = /1= p/pZ"+ Zip, (3.6)

where Z is an n dimensional standard Brownian motion independent of Z;,
and p = (py, ..., pn)" € R™! is with the properties p; € [-1,1],7i = 1,2,3,...,n
and p'p < 1. Thus,

Wy =1/1—p? — p%Zf; + 1211 + p2Zio (3.7)
Wo = /1 — p? — p%ZQJZ + p1Z21t + p2Zoot (3.8)

The jump coefficient matrix K; € R"*", v = 1,2, ..., m are positive semi-definite
(symmetric) matrices. When K; = 0,i = 1,2,...m, the diffusion process
(3.5) is introduced by Bru (1991). It is known that if Q'Q > @Q'Q, then %,
is a well-defined covariance matrix process. Under the same condition, one
can see that (3.5) also defines a well-defined covariance matrix process when
K; = (Kiji)i<ji<n,t© = 1,2...,m are positive semi-definite. The equation for 3,

suggests that >, will increase by K if the jump N;; occurs at time ¢.

The equation (3.1) and (3.5) together with the setting A\, = C1%,C5 can cap-
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ture several stylized phenomenon during turbulent market conditions. In our
model, once a jump occurs, the variance-covariance increases simultaneously.
The jump intensities increases as well. As a consequence, jumps will occur
more frequently. Through the same mechanics, when one type jump occurs,
another type of jumps shall occur more frequently. This is a feature of conta-

gion in the same sense as Ait-Sahalia et al. (2015).

In this following paragraphs, we explain the interpretation of model param-

eters and how economic issues related to contagion may be captured.

3.3.2 A Hawkes-style jump

The affine structure of \; not only allow for closed-form solution of optional
portfolio but also accounts for the volatility clustering feature i.e., high volatil-
ity tends to follow high volatility. Moreover, the resulting high jump intensity in
volatile market captures the fact that crisis often occurs during market turmoil.
On the other hand, given that M is negative definite, > is a mean-reverting
process. As a result, the jump intensity A\, = C13,C5 is a mean-reverting pro-
cess as well. By incorporating jump in the covariance structure, it is clear that
the counting jump process N; is a Hawkes-style process. V; has a feature called
mutually exciting in sense that once a type of jump occurs, other types of jumps
tend to occur more frequently. This feature is ideal for modeling financial con-
tagions which usually are used to describe the phenomena that a worldwide
sequence of market crashes (jumps) follows a crash in one country. For exam-
ple, Ait-Sahalia and Hurd (2015) and Ait-Sahalia, et al. (2015) model financial
contagions by mutually exciting processes. In contrast to theirs, the structure
of A\; in our model exhibits more comprehensive interpretation. In particular,
¢ is associated with the covariance and scaled by C'1 and C'2 parameters. As
a result, variance and covariance of the assets are the vehicles which drive the
magnitude of jump intensity in absence of jumps. The sudden jump incurred
by unexpected systemic risks then can be regarded as a natural response based
on the private sensitivities to variance and covariance which is measured by the
absolute value of C'1 and C2. Moreover, the resulting increase in covariance
then changes dynamics of the covariance structure. Actually, this implication

illustrates an idea similar to the "financial health“ discussed in Choi (2014).
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3.3.3 Interpretation of J

As discussed in previous section, the interaction among markets is commonly
investigated in the financial contagion literature to determine and show the
contagion effects. However, little is known about addressing this issue in port-
folio choice problems. To explicitly describe the interaction between markets
or assets in our model, we add a novel component to the jump component in
the asset process driven by SDE(3.1). The role of J is intuitively clear i.e.,
it scales the influence of jumps among the assets where all possible jumps are
affective to each asset in the economy. More specifically, one jump occurring
in one market may be transmitted to other markets even if there is no jump
there. This feature allows us to investigate both the power of influence and
vulnerability(fragility) for each markets by absolute value of each off-diagonal
element in J.

Incorporated with these novel and economical meaningful parameters, our model
exhibits good properties for modeling financial contagion. Apart from these
properties, the affine structure makes the optimal portfolio choice problem solv-

able with closed-form solution.

3.3.4 Parameter setting in this paper

Our model exhibits flexible properties based on the novel components incor-
porated. In this section, we specify the setting of parameters and jump dis-
tributions of return and covariance matrix adopted. The jump distribution of

Zit — 1 represents the relative size change in asset prices with

return, Y;; = e
Ziy ~ N(uf;), (ay))2) fori =1,...,n. To preserve the positive semidefinite prop-

erty of covariance and to make influence of jump intuitive, we construct Kt(i) if

. K1 ; /K11K22
Kt(z) _ ( t & t t ) (39)

n = 2 as:

where Ki' ~ Exp(ut),—1 < ¢; < 1,i = 1,2. Given K" constructed as above,
it’s clear that positive semidefinite property of ¥; is preserved. Furthermore,
the jump increments in variance and covariance are correlated with a constant

coefficient ¢;, and hence exhibit intuitive jump change in covariance structure.

Apart from jump distributions, we construct parameters J,C1,C2 and Q€

in the following specific structure which is consistent with intuitions. For illus-
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trative purpose, as n = 2, they are constructed as below:

(1 U (101 1-Cy(2) [ &
= < Jiz 1 ) = ( Ci(1) - Co(1) Ci(1) - Co(2) ) = ( C(2 ) '
(3.10)

~— —

These refinements are intuitively straightforward but remain intuitive for eco-
nomical interpretations. In particular, the diagonal elements of J are set to
be 1, which imply the jump resulting from risks of asset 1 are scaled by 1,
while the influence of risk reflected by jump in asset 2 are transmitted to asset
1 and scaled by Jo; . As a result, Jo; and Ji5 capture how contagion propa-
gates though different assets or markets with the magnitude measured by the
absolute value of them. To investigate financial contagion, we can further limit
Jo1 and Jio to be positive to capture how negative jumps deteriorate returns
during market turmoil. With respect to refinement of C; and CY, positive jump
intensities are preserved and C(1) captures the ratio of vulnerability between
asset 1 and asset 2. More specifically, more vulnerable one would have higher
probability to be affected by jumps/risks and hence capture how assets react

during crisis.

Without loss of generality, we let Q' = a + o’ in the drift term of the Wishart
process (3.5), to simplify the estimation procedure. Since Q€Y > Q)'Q) preserves
the positive semidefinite property of covariance matrix process, it is commonly
assumed Q' = kQ'Q,k > 10 as in Buraschi et al. (2010). The replacement
of Q€ with a + d’ relaxes the linear relationship between Q€ and Q'Q). The
positive semidefinite property of ¥; can be preserved in the MCMC procedure

naturally given a + @’ constrained to be positive semidefinite.?

With respect to the flexibility of our model, we denote WJD model as Wishart-
Jump-Diffusion model, where the suffix DJ(iDJ), AJ, C'J to be the double jump
(independent double jump) in return and covariance matrix, asset jump in re-
turn only and covariance jump in covariance matrix process only of our model,
respectively. On the other hand, Myopic and WD (Wishart-Diffusion) are de-
noted as the Merton-Jump-diffusion (MJD) model and the model in Buraschi
et al. (2010) respectively. For example, the most general WJD-DJ model
represents the Wishart-Jump-Diffusion model with jumps in both return and

variance-covariance. If not otherwise mentioned, we follow the abbreviation

3Note that detailed estimation procedure is developed in Chapter 4.
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defined in this section.

3.4 Solve the optimal portfolio choice problem

In the section, we investigate the effect of contagion by solving the portfolio
choice problem. The optimization problem of the investor can be described as
the following.

Let m = (714, ..., Tt) denote the vector of the proportion of the wealth X;

invested into the n risky assets, respectively. Then the wealth process X; follows:
dX; = X,(r + mp)dt + X,m S dW, + Xyl J (YidN,). (3.11)

Given the initial wealth X; = =z, the investor selects the portfolio process
m, maximizing CRRA the utility of terminal wealth, that is, the optimization

problem of the investor is

— (3.12)

Uy

X771
max E [T—] ,

(or inf, max, E[u(X(T))] for incomplete markets.) where the risk aversion co-
efficient v is greater than 1. The results in this paper shall also hold for the
logarithm utility function if we let v — 1%,

3.4.1 The Solution of the Investment Problem

Let
V(z,2,t) = max E

™

X7 -1
L
The HIB equation associated with the optimization problem (3.12) is given by

‘Xt:x,Et:E]

1’2

0=V, +maxVyz(r+n'u) + ?V;ﬂr'ZW +227'Y - FV - Q'p + AV

+ Xm: NE [V(z(1+ (7 I)Yh), S+ KO 8) — V(z, Z,8)], (3.13)
=1

4The value of v is not critical and the results for the case 0 < v < 1 could be similarly obtained.
Following the literature, we focus on the case v > 1 since it is conventionally adopted.
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(Qi
Ox 0%
the covariance process is

where F = Jnxn, and the infinitesimal differential operator associated to

A =Tr[(Q + MY + SM')D] + Tr[25DQ'QD], (3.14)

where D = (82 Ynxcn-
To solve the HJB equation (3.13), we conjecture that

STT(ABD)+B(?)

V(z, X, t) =

where A(t) is a symmetric matrix function of ¢ satisfying A(T) = 0, and B(t)
is a function of ¢ satisfying B(T") = 0. Then plugging the conjecture into the

HJB equation, we can obtain two equation systems of A(t) and B(t):

1 d 1
= —B Tr[QQ A’ 1
0 i (t)+7“+1_7 il ], (3.15)
0 = 1 TT[iA(t)Z] + max {ﬂ',u ey 2N A'Q p
1— Y dt m 2

+1 L Tr[(MX +SM)A] + : ! Tr22AQ'QA]

Z NE[(1+ (70)Y;) e AOK D] _ 1]} . (3.16)

We solve the maximization problem in (3.15) by investigating the first order

condition for 7, which gives

p— ST+ 284 (0Q p+ > NE[(1+ ((x)1),Y) T Le ORI = 0. (3.17)

=1

As a result, the ODE (3.15) for A(t) can be transferred into the following form:

0:

dA(t) 1—~
i "ot
—ClE[Y]J' 7 Cy —y7*(n*) +7"g" + g(7*)'}
+ (AR M + MA()) + 2A() Q' QA(#) (3.18)

1 m
3 Z (CociCy + CLaiC) BI(L + ((x*)'J),¥) 7 ORI 1) (3.19)

n(7*) +7*n — Cyo(n*) JE[Y]C,

N}

where e; = (1,0,...,0), g = 2A(t)Q'p and 7* is calculated by (3.17).

Then a numerical iteration method can be employed to solve the above non-
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linear equation system for the n x 1 vector 7 for each . Solving n nonlinear
equations with n variables is computationally expensive for a large n in general.
Below we develop a decomposition approach which reduces the above nonlinear
equation system into m 1-dimensional nonlinear equations and (n — m) linear
equations. Those 1-dimensional nonlinear equations can be solved by the nu-
merical iteration method while those linear equations can be solved explicitly,
leading to significant reduction of the computational burden for large values of

n.

3.4.2 Decomposition

Recall J € R™™ and m < n. Without loss of generality, we assume rank(J) =
m. The columns of J generate a subspace of R"*! denoted by {J}. We de-
compose R™! into two orthogonal subspaces {J} and {J}* such that R"*! =
{J}P{J}*. Let Ji, ..., -, be an unit orthogonal basis of {J}*+ and let

s dn—m

Jt = (J¢, ..., JE ), ie., the matrix with columns Ji, ..., J+

s dn—m s dn—me

We now lay out the notations used below. If z is a row or column vector

with the " entry x; for i = 1,2, ...m, we define
Dy (2) = diag(E[(1 + 21Y1) V3] AOKD) - BI(1 + 2,Y,,) Y] T AOKEY)

Also, we denote
gt = 2A:&Q/p7 te [OvT]

Starting from the first order condition (3.17) and exploiting the orthogonal de-
composition, we obtain the following result. Recall \;, = C1%,Cs, and pu; =
Etn - JE[Y]ClEtCQ

Proposition 1. The optimal portfolio choice 7} is given by
m = J(J ) w A+ T, (3.21)

where .
T = ;(JL)’(U + Gt), (3.22)

— _ (=% — Vs . . . . .
and 7 = (7}, ...,T,;)" solving the following m-dimensional nonlinear equa-
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tions:
T T[T (n+g¢) —Vﬁzvt]—i-(JIQCQ)(J,ICJ) (Dy (7}; Ay) — E[Y])-(C1J) =0, (3.23)

for k=1,2,...,m.
We leave the proof in the appendix.

Clearly, in case J’s columns are mutually orthogonal, the above proposition can
be further simplified. In fact, the equation (3.23) turns to be a 1-dimensional
nonlinear equation consisting of 7, only. As a result, a numerical procedure
can be further simplified for this case.

In general, if J is not a matrix with pairwise orthogonal columns, we find an
invertible matrix P € R"*" such that .J = P.J has pairwise orthogonal columns.

Then following similar derivation as above, we reach the following proposition.

Proposition 2. Let P € R™™" be an invertible square matrix such that J =
PJ satisfies J'.J is a diagonal matrix. Let J* € R™ "™ with columns being

an unit orthogonal basis of the subspace orthogonal to the space {j }. Let
h=Py =P lg,C,=CP* Cy= P10, (3.24)

Then the optimal portfolio choice 7* is given by

where

7 = (7f,..., ) and for each k = 1,2, ...,m, 7} solves 1-dimensional nonlinear

equation
Je(i+ ) = (JoCo) (L)) LE[Y:] - (Ci i) — 77 + (JiCo)(JiT) - Dy (7%) - (C1Ji) = (B.25)

The proof of this proposition is left in the appendix.

The advantage of (3.25) is that it is a 1-dimensional nonlinear equation of 7 ,
because the only nonzero entry of j,’cj is at the k' position. By virtue of
the above proposition, the optimal portfolio can be decomposed into two parts
corresponding to a diffusion economy and a diffusion-jump economy. The lat-
ter can be further decomposed into a system of 1-dimensional jump-diffusion

economies, which can be easily solved numerically.
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The above result gives a decomposition expression for the optimal portfolio
m;. However, both 7; and 77 , depend on the function A; which is a solution
of ODE (3.15). Next, we show how to solve A; and hence obtain 7}, 77} , and

the optimal portfolio 7} eventually.

For the case that rank(J) = d < m, we can find d columns of J such that they
are a basis of the subspace {J}. Then following the same procedures as before,
we shall obtain similar results as Proposition 1 or Proposition 2. The difference
is that we shall obtain a d—dimensional nonlinear equation (corresponding to
Prop. 1), or a system of 1-dimensional equations and several equations with

dimension no more than (m — d) + 1 (corresponding to Prop. 2).

Given Prop. 1 and Prop. 2, the resulting optimal portfolio weight may be
obtained by solving the above equation systems. In general, we need to solve m
m-dimensional nonlinear equations for 7} and for A(¢). In summary, the scheme
can be described as: Starting from boundary condition A(7) = 0, we solve 7}
by (3.23) or (3.25)and 77 , and the ODE (3.18) for A(t) recursively back to time
zero by standard finite difference techniques. In particular, I solve the system of
ODEs by standard finite difference techniques with second order Runge-Kutta
scheme, while the trust-region approach by Coleman and Li (1996) is applied
to solve the nonlinear equations. In addition, several numerical examples had
been tested to verify the accuracy of the trust-region approach. Other numer-
ical methods also generated similar results for solving the nonlinear equations.

For clarity, the tested results are omitted here.

3.4.3 Decomposition of Hedging Demands

To better understand the optimal portfolio rules in the preceding propositions,

we decompose the optimal portfolio given by (3.21) into several parts below.
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For each kK =1,2,....,n, we have

Moy = Ju(J'I) e+ e = (3.26)
1 1 = /7 — / - / / —x
BR {Z ('), Tedi) T TCo) (T T) - (Dy ((757):0) =Dy (05 0)) - (ClJz')}
i=1
(3.27)
1
+ — Gkt Asset Jump Hedging Demand (3.28)
8

+ % {Z (JT) ™), L) (O (TLT) - (Dy (7)) Ar) = Dy (77);0)) - <01Jz->} .

i=1

v~

Variance Jump Hedging Demand (3.30)

where (J(J'J)™"), ; denotes the (k, ) entry of the matrix.

This decomposition analysis resembles those documented in Buraschi et al.
(2010) but effects resulting from additional jumps in returns and covariance
structure provide more robust economic implications. Following the terms de-
fined in Buraschi et al. (2010), we may call %nk the myopic demand, and % Gt
the covariance/volatility hedging demand via diffusion since g, = 24,Q'p = 0 if
p = 0, while the rest is termed as the jump hedging demand.

The covariance/volatility hedging demand can be further separated as:

g = 2AtQ,P

0
— 24, q11P1 + q21P2 + 2, + 241, q12P1 + q22p2 .
0 q12P1 t+ Q2202 q11P1 + g21P2

According to Bueaschi et al. (2010), the first two terms, proportional to Ay,
and Ajy are intuitively defined as volatility hedging portfolios since A;;, and
Agoy are hedging demands against ¥; 17 and X, 99, respectively. Similarly, the
third term proportional to A;o, are covariance hedging portfolios. In contrast
to pure diffusion case in Buraschi et al (2010), it is worth mentioning that the
covariance/volatility hedging demand, %gt, is also affected by the jumps. Since
g+ is a function of A; which follows the ODE (3.16) with the jump parameters

involved.

On the other hand, The jump hedging demand can also be separated into two
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parts by distinguishing the influence from jumps in assets and covariance struc-
ture. As equation (3.26) indicates, the first part of the jump hedging demand is
for the jumps in the returns since it does not include the jumps in the variance-
covariance while the second part is due to the jumps in the variance-covariance.
The second part will be zero if there is no jump in the variance-covariance, i.e.,
K; = 0. In addition, this separation between asset and covariance jumps allows
for a direct implication that the jump risks in the variance-covariance can not
be hedged through the stocks. Since the hedging demand resulting from jumps
in covariance structure is zero if there is no jump in stock returns, i.e., Y; = 0.
This is analogous to the case in diffusion hedging variance-covariance via cor-

relation p.

3.5 Simple Examples

In this section, to demonstrate the model flexibility, we present several simple
examples which are nested by our model. Some of them have already been
studied in the literature.

3.5.1 Two-dimensional case: n=2

In this case there are only two risky assets in the market. For various values of
m, i.e. the number of jump types, we have three simplified models.

Case 1: m = 0. There is no jump in the model. Our model is reduced to the
one employed in Buraschi et al. (2010). In this case, J = 0, P is the identity
matrix. By Proposition 2, 77 = 0, and 7} = 7% = %(ut + ¢g1). A(t) solves an
equation simplified from (3.16) by letting J = K; =0 for all [ = 1,2, ..., m.
Case 2: m = 1. We take P = .9, the unit square matrix. Then 7} and 7rj7t
are two real numbers solving (3.23) and (3.22). A(t) is a two-by-two matrix
solving (3.16). This case will be used in the section of financial implications
later.

Case 3: m = 2. J is a 2 X 2 invertible matrix. Let P be an invertible matrix s.t.

J = P.J has mutually orthogonal columns. J+ = 0 hence 71, = 0. We have
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the dynamics of the risky assets and the covariance matrix process as follow.

(diag(S,))7'dS, = (S — JE[Y]A + r)dt + S72dW, + JY;dN

by by d d
_ T2+ 2z | TE[Y, \dt + 011,:4W1 ¢ + 0124 AW2 ¢
T+ o1+ Yoo 091 ¢dwy ¢ + 09 1 dwoy

J11Y1+dNy 4 + Ji12Y5 . dNo
J21Y1 ANy + Jo2Y5 . dNo

and
A%, = P(d%,) P’

2
— QO+ NS, + SNVt + $242,0 + QdzZEY + Y KNy,

=1

3.5.2 One-dimensional case: n =1

Consider a simple 1-dimensional model as an example. This is the same model
studied in Liu et al.(2003).

S,/ S, = (Vin — JE[Y )\ + r)dt + /VidW, + JY,dN,
dV, = k(0 — V,)dt — K \dt + 0+/V,dB, + KdN,.

Assume )\, = AV, for some constant A, then
A = AV, = k(N0 — A\)dt — MK M\dt + VA5 /NdB + AKdN,

where Y is a random variable describing jump size. dB; - dW; = pdt.

The above dynamics of the market has a clear feature of self-exciting. As one
jump occurs, the volatility jumps up and the jump intensity jumps up as well.
As a result, more frequent jumps shall follow. The mean-reverting (decaying)
feature prevents the system from explosion, however.

By substituting m = n = 1 in the proposition 1 or 2, we can obtain the same
solution as that in Liu et al.(2003). Roughly, the model in this paper can be

regarded as a multi-dimensional extension of theirs.

3.5.3 No jump cases

When there is no jump either in the asset price dynamics or in the variance-

covariance process, the solution to the optimization problem can be simplified
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greatly. If there is no jump in the both of them, we obtain the same model as
discussed in Buraschi et al. (2010) (given n = 2), and the optimal portfolio is
consistent with theirs as well. If there is no jump in the asset prices but there
is jump in the variance-covariance process, we can obtain simplified results by
letting J = 0 in the preceding results. A close model and related portfolio
choice problem are discussed in Leippold and Trojani (2010). If there is no
jump in the variance-covariance process, that’s, K; = 0 for all [ = 1,2, ...,m,
then 7} is independent of A;. The optimal portfolio can be determined by the
equation (3.23) and the ODE (3.15).

3.5.4 Intuition given by Sensitivity Analysis

To provide an intuitive illustration of our model, we conduct the following
sensitivity analysis. If ¥, is constant i.e., letting Q = M = Q = K = 0, and

the jump size is a constant as well, we can obtain a proposition as follows.

Proposition 3. Suppose m = 1 and p; = 3;n — JA¢u, where u is the constant

jump size. Given J'n > 0, we have J'7} > 0 and

oJ'n

<0, if u>0;
ou
TS0, if u<o.
ou

The above proposition is consistent with Liu et al.(2003) when we take n = 1
and J = 1. If J=[1,1,....,1], that is, all risky assets response to the jump by
the same level, J'm; = > | 7 which is the regular exposure to the risky assets.
However, if the risky assets response to the jump by different levels, the propo-
sition suggests that the total exposure shall be measured by J'7* instead of the
regular sum of all risky investments. This is one of the important features of our
model to capture the contagion effects, where each component in the economy
has specific vulnerability against different economic shocks. And this vulnera-
bility is reflected by J. In fact, since J'7* = 7*, we see that the parallel part

of the optimal portfolio 7* is exactly the measure of exposure to the risky assets.

The proposition also implies that the total exposure will get decreased if u > 0.
But it is possible that investment on some asset may increase. It really depends
on J, the response matrix to the jumps. We also study the sensitivity of the
optimal portfolio to the jump intensity. In order to study the effect, we take

the setting (3.4) and assume ¢; = ¢ = ... = ¢, It is straightforward to show
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that B
,0JT E[(1 + mJ)Y) 7Y

"0 v+ yaB[(1+ m Y)Y

This quantity is understood as the total exposure to the [** jump risk. As a
consequence, if Y; < 0 or E[(1 + 7J;Y;) Y] <0, we have

oJm <0

Jl/ 601 -

that is, the exposure to jump risk is a decreasing function of the jump intensity.
The above sensitivity analysis are under the condition that 3, is a constant.
The case of stochastic >; or the case of constant ¥; but more than two types of
jumps in the asset prices is complicated to analyze the sensitivities with explicit
formula. The effects of the parameters are mixed with impacts by other factors

(e.g. signs of J’s components).

3.6 Numerical Analysis: Financial Implications

To demonstrate how our model capture financial contagion in the context of
optimal portfolio choice problem, we investigate the resulting optimal portfolio
implied by our model. In particular, we examine the hedging demands of vari-
ance, covariance, asset jumps and covariance jumps with various ranges of novel
parameters, which are designed to capture the contagion effects as suggested in
previous sections. The parameters adopted in this analysis are the monthly esti-
mates in Buraschi et al. (2010)°® supplemented with additional jumps in returns
and covariance. The jump distributions follow the same setting as discussed in
Section 3.3.4 with reasonable jump parameters summarized in footnotes of each
Table.6

Following this setup, the analysis conducted in this section provides an clear
manifestation about about the model and the resulting optimal portfolio prob-
lem with stochastic variance-covariance and observed features considered. In
particular, it also demonstrates how the additional novel jump components in-

fluence the optimal portfolio and capture financial contagion.

®The values of parameters adopted from Buraschi et al. (2010) are listed in Table 3.14.

6The parameters applied are defined in the footnotes in each table. The mean values of jumps
are assumed to be negative in returns and positive in covariances, which is consistent with
the feature that crisis often comes after large negative shocks and during market turmoil.
similar manner is also adopted in Leippold and Trojani (2010).
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3.6.1 Hedging Demands

In this section, we demonstrate how the resulting hedging demands would

change given addition jumps components.

Firstly, the optimal hedging demands for 2 risky assets with two jumps scaled
by J, i.e., WJD-DJ model, are summarized in Table 3.1 ~ Table 3.4 as the
proportion of the myopic portfolio which is in the last column of each table.
In general, the variance and covariance hedging demands increase with rela-
tive risk aversion (RRA) and investment time horizon and reach a steady level
at a short time horizon consistent with the findings in Buraschi et al. (2010)
and Kim and Omberg (1996). On the other hand, the demands of asset jumps
and covariance jumps overwhelmingly change the resulting demands with large
(negative) demands in asset jump and positive covariance jump demands. For
example, when RRA equals 2 and T is 5 year, the net demand required by
jumps is around —94.68% of the myopic portfolio, while for short horizon, say
T is 3 month, the net demand for jumps is —78.18%. With respect to higher
RRA, the net demand is still as high as —41.95% as RRA equals 11 and T is
3 month. These large (negative) demands suggest that under potential risks of
crisis (reflected by negative jumps and positive jumps in returns and covariance
matrix, respectively ), the positions in optimal portfolio shrink drastically in

order to reduce the exposures to financial contagion.

Secondly, in contrast with jumps scaled by our novel parameter J, we also
compare the optimal portfolio with jumps disentangled (WJD-iDJ model?).®
With all else identical, the optimal hedging demands are summarized in Table
3.5 ~ Table 3.8. The hedging demands among all components are qualitatively
similar with those obtained in the previous case, i.e., the hedging demands
increase with RRA and investment horizon while demands are slightly larger
in variance and covariance demands compared to previous case. However, the

magnitude of demands of jumps shrink greatly if the jumps are disentangled.

"Recall that WJD-iDJ model denotes model with .J = I,,, an n-by-n identity matrix

8It is worth mentioning that jumps in all existing literatures about stochastic volatility or
stochastic volatility with jump are always independent jumps or simultaneous jumps with
correlation. This is essentially different from the idea of ours. The empirical feature of
contagion often occurs when a big jump, say a critical bad event hits one market with several
negative jumps (bad events) following in the same place(self-exciting) or elsewhere(mutual
exciting) even if there was no jump there.
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For instance, the net hedging demands of jumps decreases to —21.6% of the
myopic portfolio as RRA equals 2 and T is 5 year. Moreover, for RRA = 11
and T' = 3 month, the net demand decreases to —9.31% of the myopic portfo-
lio. This result is quite intuitive since assets would be only exposed to it’s own
potential jump risks in returns in this case. As opposed to disentangled jump
cases, the entangled jumps allows asset-specific risks in returns to propagate

through different assets and result in larger negative jump hedging demands.

Accordingly, we find jumps in return and covariance matrix are essential compo-
nent for modeling financial contagion. In particular, the parameter J captures
the sensitivities to jumps (risks) and can identified as a measure of sensitivity
and /or vulnerability. In other words, by estimating the values of the off-diagonal
elements of J, it is possible for people to identify how influential and sensitive
a market could be compared with the other markets in the economy with our

model.

Furthermore, given the importance of jump components as analyzed above,
we examine which jump dominates in the context of portfolio choice problem
by comparing the hedging demands where one has only jump in returns (WJD-
AJ) and one has only jumps (WJD-CJ) in covariance matrix. Table 3.9 ~ Table
3.12 summarize the corresponding hedging demands of all components. As we
may expect, the hedging demands of all components shrink in absolute value for
WJD-AJ since there is one less resource of risk compared with DJ model. On
the other hand, only variance and covariance hedging are available for WJD-CJ
and the values are larger than those of WJD-AJ since the jump in covariance
would affect the variance and covariance hedging demands as discussed in Sec-
tion 3.4.3.

By comparing the Table I of Buraschi et al. (2010), where the model is nested
in our model with jump components omitted, we can compare the difference
between impacts of jumps in return and covariance. Firstly, as discussed in Sec-
tion 3.4.3, there is no corresponding jump hedging demands and the hedging
demand in variance and covariance hedging increase through ¢g;. On the other
hand, jumps in returns not only lead to negative asset jump hedging demands
but also deteriorate the magnitudes of variance and covariance demands. As
a result, we can conclude that impact of jumps in covariance are smaller com-
pared with the impact of jumps in returns, while in the presence of jump in

covariance, the impact of jumps in return increases drastically.
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3.6.2 Capturing financial contagion

In this section, we analyze how the augmented novel parameters capture the fi-
nancial contagion by comparing the resulting total hedging demands among all
various models, including WJD-DJ, WJD-iDJ, WJD-AJ and WJD-CJ models.

For illustration purpose, we plot the total hedging demands implied by vari-
ous models in Figure 3.1. In general, the plotted total demands are consistent
with the above analysis. It is worth mentioning that optimal portfolios im-
plied by jump models shrink substantially even with low relative risk aversion
(v = 2). Moreover, the C'J model suggests slightly higher hedging demands
compared with Wishart model, while the hedging demands implied by the A.J
model decrease drastically and suggest least hedging demands due to the lack
of positive demands of covariance jumps and large negative hedging demands
required by asset jumps. As analyzed in the above paragraph, ¢DJ model sug-
gests higher hedging demands since the potential risks of contagion can not
be captured by disentangled jumps. However, the optimal portfolio implied by
DJ model generally shrink but sustains higher level compared with AJ due to
the positive demands for covariance jump structure. This significant difference
between the total demands of DJ and iDJ strongly manifests the capability of

capturing financial contagion with our novel model parameter J.

Next, we investigate how C'1,C2 and .J capture financial contagion in terms
of resulting hedging demands by varying the critical components with different
values. Firstly, with else remain identical and relative risk aversion v = 6 and
T = 5 year, we vary Co(1) from 0.5 ~ 1.5 and plots all 4 types hedging demands
in Figure 3.2. As discussed in Section 3.3.4, C(1) controls the sensitivity and
it is supported by the increasing (absolute) demands in jump components sum-
marized in panel 3 and 4. With respect to variance and covariance hedging,
increases in Cs(1) also imply higher probability of jumps in covariance matrix
and hence lead to increasing hedging demand with less magnitude. Similarly,
C1(1) directly captures the vulnerability relation between asset 1 and asset 2 in
the sense of jump intensity. As Figure 3.3 depicts, hedging demands of jump
components increases drastically in absolute value for asset 2, while variance

and covariance hedging demands increase slightly. The last but not the least, we
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Panel a: Total Hedgeing Demand - Asset 1, RRA =2
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Figure 3.1: Total Hedging Demand against Time Horizon against various models
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provide an illustrative comparison for power of influence by varying parameter
Jo1, J12 and the resulting hedging demands for asset 1 and asset 2 are summa-
rized in Figure 3.4 and 3.5 respectively. In general, variance and covariance
hedging demands are not significantly affected as shown in the first two panels.
On the other hand, both asst jump and covariance jump demands are substan-
tially influenced as Jy; and Jio increase. In particular, as Jis is low and Jo;
increases, sum of absolute jump hedging demands increases substantially for
asset 1, while it remains certain level for asset 2, and vice versa. The increase
in the sum of absolute jump hedging demands may be regarded as the vulnera-
bility against mutual-excited risks with the total hedging demands representing

the true optimal portfolio implied by our model.

Panel: variance hedging demand Asset 1 Pane2: covariance hedging demand Asset 1

Pane3: asset jump hedging demand Asset 1 Paned: covariance jump hedging demand Asset 1

J (Y
9y 2 oy

Figure 3.4: Hedging Demand of Asset 1 against Jo; Ji2 (DJ)

To sum up, integrated with all comparative statistics of our model, the net
effects of all features implied by our model provide an parsimonious and re-
alistic model for optimal portfolio choice problem under financial contagion.
Moreover, we may be the first to propose a model with closed-form solution to
solve optimal portfolio which is especially designed to capture several features

of empirical data and financial contagion.

3.6.3 Effects of Model Misspecification

The model misspecification considered here is caused by the investor who mis-

takenly assume a model to obtain a portfolio strategy. For example, Suppose
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Figure 3.5: Hedging Demand of Asset 2 against Jo; Ji2 (DJ)

the true model is the double jump model, but the investor ignores the jump risk
and adopts a suboptimal portfolio (which is obtained from the model without
jumps). We evaluate the economic loss caused by a suboptimal portfolio strat-
egy. Given initial wealth zy = 1, we define the wealth equivalent loss to be x
such that

V(1,5,0;7) =V(1+x,% 0;75,),

where 7}, denotes the suboptimal portfolio. That is, the wealth equivalent loss
of the investor is that the extra wealth for the suboptimal portfolio to generate
the same utility value as the optimal portfolio. Using the form of the indirect
utility function, we obtain the expression for x:

xr = eXp(1 (TT’(AHE — AooE)) + BH — Boo),

-7
where Aj1, Bi1, Ao, Boo are the functions corresponding to the optimal portfolio
and the suboptimal portfolio respectively. Plugging appropriate values for the

parameters, we obtain the wealth equivalent losses for various RRAs.

3.7 Conclusion

In the present paper, we develop tractable multi-variable jump-diffusion models
to capture empirical facts documented recently in financial literature, e.g., stock
prices tend to have big move together and a big jump may be followed by more
frequent jumps and features of financial contagion. To obtain closed-form solu-

tion, we develop a novel general decomposition technique with which we reduce
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the problem into two relative simple ones: Portfolio choice in a pure-diffusion
market and in a jump-diffusion market with less dimension. The latter can be
reduced further to be a bunch of portfolio choice problems in one-dimensional
jump-diffusion markets. More importantly, our method is easy to apply and

free of the curse of dimensionality.

Our numerical exercises provide new insights into the structure of an opti-
mal portfolio when jumps are present in asset prices and/or their variance-
covariance. More specifically, our results show that the jumps in the variance-
covariance have important effects on the asset allocations when there are jumps
in the asset prices. Meanwhile, the hedging demands for jumps are much more
significant compared to volatility or covariance hedging demands for diffusion
risks and ignoring jump risk in the variance-covariance may cause large wealth

equivalent loss.

By examining the novel component of our model, we also demonstrate the capa-
bility of our model to capture features of financial contagion. In particular, the
novel parameters have intuitive economic interpretations, which help provide
potential measure for financial contagion. To some extent, this paper shed new
lights on the financial contagion studies in the optimal portfolio literature. In
particular, financial contagion issues among different markets may be one of the
top interests for future researches. Moreover, equipped with our model, some
existing puzzles such as flight bias and home bias may be interesting topics for

future researches.
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vec(M) -1.122 0.884 0.747 -0.883
vee(Q)  0.16  -0.021 0.083 0.009
o 0279 -0.247
n 4612 2.801

This table summarizes the monthly estimates adopted from Buraschi et al. (2010). This
set of parameters is augmented with reasonable jump parameters and applied for the
numerical experiments. With respect to the jump parameters, they are reported in the
footnotes blew each table for clarity.

Table 3.14: Parameters adopted for numerical experiments.
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Chapter 4

Estimation for Multivariate
Stochastic Volatility Models

4.1 Introduction

Coming up with a model which composes good properties and capable of cap-
turing desired empirical features may be hard, nevertheless, most of the time,
developing an estimation procedure for the inference problem is even harder.

In this paper, we developed the detailed estimation technique and procedures
based on the Bayesian Markov Chain Monte Carlo (MCMC) method for the
general multivariate jump diffusion model with stochastic covariance matrix
modeled as Wishart process, denoted as WJD (Wishart-Jump-Diffusion) model®
hereafter. This novel model is introduced in Jin et al. (2016), where they solved
the optimal portfolio choice problem under contagion with closed-form solution.
Besides, several features and implications of financial contagion were demon-
strated by various comparative statistics and numerical analysis. Moreover,
several existing models are embedded in this more sophisticated model. As a
result, an easy and sufficiently efficient estimation technique for inferring this
kind of complex multivariate models would be of great research value. Given
inference tools at hand, theoretical models can be verified by fitting them with
empirical data and hence provide potential explanations to existing puzzles in

the literature such as under diversification, home bias, financial contagion, etc.

To achieve this goal, we rely on the desirable properties of MCMC, especially

!For instance, WJD-DJ model denotes the double jump model with stochastic covariance
matrix modeled as Wishart process, while, WD (Wishart-Diffusion) model denotes the model
without jump components as in Buraschi et al. (2010), if not mentioned otherwise.
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its efficiency. Andersen et al. (1999) documented that MCMC may be one of
the most efficient method for inference, where various finite sample comparisons
were conducted by Monte Carlo studies. The other reason why we decided to
apply MCMC method for our estimation procedure other than existing popular
methods is that the growing dimension of asset pricing models. It is reasonable
that adding parameters brings more desirable properties for a model, however,
the resulting complexity makes the estimation even more difficult. For example,
WJD model consists of 4 state variables, including covariance structure, jump
times, jump sizes of return and covariance structure and 31-dimensional pa-
rameter space are incorporated.? As a result, if moment-matching techniques,
e.g., generalized method of moments (GMM) or Efficient method of moments
(EMM) methods are applied, at least 32 moments are required for over relax-
ation condition. And it immediately brings about three main drawbacks of
moment-matching techniques. Firstly, the computing complexity increases as
the number of moments required. In particular, in the context of optimal port-
folio choice problem, moments are often obtainable from solving the ODEs of
the corresponding moment generating functions. Secondly, how to choose the
proper set of moment conditions remains tricky especially for high dimensional
cases. In some extreme cases, different sets of moment conditions even yield
different results. The last but not the least, the minimization problem involved
in moment-matching methods also needs to be examined carefully. Since the
key idea of moment-matching method is to find a set of parameter that min-
imize a certain weighted quadratic form of deviation from the target moment
conditions, finding the optimal set of parameters which has the global minimum
of the deviation is hence the most important part of the estimation question.
In general, there is no universal way of optimization and trial and error is often
applied. In some worse cases, similar values of some plausible global minimums
may be obtained but each composes greatly different parameters. Hence it re-
mains tricky to find the ideal/true parameters interested. For more detailed
discussions about simulation-based estimation techniques, we refer to Yu et
al (2010) where several methods such as ML (Maximum Likelihood) method,
GMM (Generalized Method of Moment) method, EMM (Efficient Method of

Moment) method, etc are well surveyed.

The remaining of the paper is organized as follows: Section 4.2 briefly reviews

the importance of multivariate stochastic volatility models and existing estima-

2The exact number of parameter space is subject to the specification of the model parameters.
The 31 is calculated based on the specification defined in the Section 4.3.
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tion techniques for comparison with our technique , meanwhile, the drawbacks
of other methods manifest why the proposed technique is of great research
value. Section 4.3 describes the details of the model, including the specification
of jump components and parameter settings. Section 4.4 illustrates the building
blocks of proposed MCMC estimation procedure with detailed derivations for
the posterior distributions. Next, Section 4.6 demonstrates the accuracy of our
estimation procedure with various models, including standard Merton-Jump-
Diffusion model with entangled jumps, common stochastic volatility models,
Wishart model and the most complicated one, WJD-DJ model. Finally, Section
4.7 summarizes the concluding remarks and potential applications for future re-

searches.

4.2 Literatures Reviews

The multivariate stochastic volatility models has gained more and more atten-
tion because stochastic covariance structure and correlations are found in the
literature. For example, Asai and McAleer (2009) documented that dynamic
correlation is persistent even in long time horizon, but constant in traditional
DCC model. Ang and Chen (2002) investigated the asymmetric correlation by
calculating the exceedance correlation and found correlation are market-status
dependent. This kind of asymmetric feature of correlation may be linked the
famous home puzzle, first introduced in French and Poterba (1991). Moreover,
ignoring the stochastic property of correlation and covariance structure in fact
leads to great economic loss (see Buraschi et al. (2010) and Jin et al. (2016)).

The diffusion Wishart process, introduced in Bru (1991), has become popular-
ized since Gouriéroux (2006) where detailed properties, theories and financial
application about Wishart process are thoroughly explained and discussed. In
fact, Wishart process, or Wishart-Diffusion model is an ideal candidate for
modeling the dynamic of variance-covariance matrix because it is positive-
semidefinite with some moderate conditions satisfied. In addition, it’s affine
structure makes the optimal portfolio choice problem solvable in closed-form
solution, e.g. Buraschi et al. (2010). More recently, a more general model,
Wishart-Jump-Diffusion (WJD) model has been studied in Jin et al. (2016)
with novel parameters integrated in the jump components to capture observed
features of log returns. Moreover, the optimal portfolio problem is also solved

with closed-form solution. By alternating the novel parameters, the resulting
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optimal portfolio weights reflect the impacts resulting from the observed fea-
tures. Hence, the WJD model can be regarded as a new alternative to study

financial contagion

Regarding the estimation problem, Buraschi et al. (2010) provided an esti-
mation procedure for the Wishart-Diffusion model based on GMM (General-
ized Method of Moments) method. Nevertheless, inference problem for the
more general WJD model where jumps are allowed to be incorporated in re-
turns and variance-covariance is not well explored and established. In summary,
the estimation techniques for multivariate stochastic volatility models remain
challenging and not well established because of several difficulties, e.g. higher
dimension of parameter and state space, required positive definitive property,

complicated likelihood functions.

The main contribution of this paper is to develop a general estimation pro-
cedure for the WJD model, which is nested with various multivariate stochastic
volatility models. In addition, by reducing the dimension to one, common uni-
variate stochastic volatility models ,e.g. Eraker et al (2003), among others, are
also embedded. To circumvent the difficulties encountered with other estimation
techniques such as GMM and SMM (Simulated Method of Moments) methods
as discussed in the Introduction section, the developed estimation procedure
is based on Markov Chain Monte Carlo (MCMC) (see Johannes and Polson
(2003), among others)and slice sampling techniques (Neal (2003), etc).

There are quite a few MCMC techniques and are often categorized into two
types: the Gibbs sampler and the Metropolis-Hasting (MH) algorithm, which
includes random walk and independent Metropolis schemes. The difference be-
tween Gibbs sampling and MH algorithm is whether the posterior distribution
to be sampled is a standard distribution or not. Given the posterior distribu-
tion standard and direct random sampling is feasible, Gibbs sampling is what
to be applied. While for those with non-standard posterior distributions, MH
algorithm is typically the first attempt for sampling.

In particular, Gibbs sampling had gained more and more popularity since
Gelfand and Smith (1992). Introductions for MCMC can be found in Casella
and George (1992), Gelman et al. (2014), Tierney (1994), etc. Since MH
algorithm often requires careful tuning procedure to ensure efficient sampling

results, there have been some advanced algorithms developed to improve the ef-
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ficiency of MH algorithm. For example, Adaptive rejection metropolis (ARMS)
in Gilk et al. (1995), Adaptive Metropolis (AM): Haario et al. (2001), Delayed
rejection adaptive Metropolis (DRAM):Haario et al (2006), are shown have bet-
ter performance compared to pure MH algorithm. Among these improvements
of MH scheme, the key idea is the essentially same, i.e., improve the efficiency
of the acceptance-rejection step of MH algorithm (see Gilk et al. (1995)). Yu
and Meyer (2006) documented various comparisons between stochastic volatil-
ity models based on Bayesian estimation. In particular, the estimation is done
with WinBuG, a program designed for Bayesian estimation using Gibbs sam-

pler.

These methods work good in single dimensional problems and "well-shaped*
posterior distributions, e.g., log concave distributions , nevertheless, dealing
with higher dimensional models remains difficult and needs tricky tuning pro-
cedure. Advantage of Bayesian MCMC methods is three-fold. Firstly, with
augmented state variables, no asymptotic argument required as other methods.
Secondly, smoothed estimates of latent variables are by-products of the MCMC
algorithm, which may provide general pictures about the observed states. The
developed model may be further extended with existing techniques about iden-
tifying state variables augmented. For instance, if high-frequency data are avail-
able, the volatility state may be approximated as realized volatility (Andersen
et al. (2003)), while the jump events could be also identified with jump de-
tection techniques (Lee and Hannig (2010), Lee and Mykland (2008), among
others). Given these approximated state variables, the estimation procedure
proceeds as these states fixed and yields the resulting parameters. In particu-
lar, approximating state variables in advance may not be necessary but indeed
provides better understanding about the data since analysis of high frequency
data is involved. Moreover, the time consumption would be greatly reduced
because the volatility ( or covariance) needs to be sampled sequentially and
parallel computing is not feasible. Hence, it is always the most time-consuming

component.

Apart from augmenting existing techniques, the estimation procedure developed
in this paper is based on single-move algorithm. Extending it to a multi-move
algorithm such as Kim et al. (1998), Liesenfel and Richard (2006), Omori et
al. (2007), among others may be of great value and potential interest for future

researches.
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4.3 The Model

For illustrative purpose, the 2 dimensional WJD model is reviewed here.® As-
sume we have two stocks and two jumps, i.e., n = m = 2. The dynamics of
the price vector Sy = (S, ..., Snt),t € [0, 7] of the risky assets and covariance
matrix X = (X4 )nxn = Zi /2. (E;/ 2)’ are governed by the stochastic differential
equations (SDE):

diag(S;VdS, = (e + rln)dt + 3, 2dW, + J - (YidNy) (4.1)

d¥, = [ + M3, + S, M')dt + 5,2dZ(1)Q + Q'dz's? + Y~ KD dp;2)

i=1

where r > 0,1, = (1,...,1) € Ry, € R™Y J € R™™ are constant or
deterministic vectors or matrices; 2, M, () € R™™ are constant matrix with M
is negative definite. $%/2 = (0j)nxn is the (volatility) coefficient matrix of the
diffusion terms. W; and Z; are n x 1 and n x n standard Brownian motions. In

particular, they are correlated through the way

Wiy = /1= p'pZ+ Zip, (4.3)

where Z; is an n dimensional standard Brownian motion independent of Z;,
and p = (p1, ..., pn) € R™! is with the properties p; € [—1,1],i = 1,2,3,...,n
and p'p < 1.

Moreover, the variable u; is set as
e = — J-E[Y N =X, — J - E[Y]- C15,Cs,

, which is an affine structure of ¥; as conventionally adopted in the literature of
stochastic volatility models. While the m dimensional jump counting process
Ny = (Nig, ..., Npt)' is independent of the Brownian motions, and N, is inde-
pendent of N, for 1 <i # j < m. In particular, the jump intensity is specified
by A = C1%,Cy with constants matrix C; € R™*", Cy € R™ . Moreover, the
Y is a diagonal matrix composed of independent random jump sizes, (Y7, ..., ¥;,)
ie., Y = diag(Y,...,Y,,) where Y; is independent of Y; for 1 <i # j <m. In
particular, Y ~ exp(Z;) — 1. J is a constant scaling matrix for jump sizes in
return. It is worth mentioning that the novel features of parameter J, C'1, C2

and the jump intensity specification \; = C13;C5 were analyzed in Jin et al.

3The nested models could be easily obtained by varying the corresponding parameters and
ignored here.
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(2016) in the context of optimal portfolio choice problem, where details and

interpretations about WJD model had been explored well.

For illustrative simplicity, we follow the specification defined in Jin et al. (2016),

[ 1-0y(1) 1 Cy(2) (o)
“= ( C1(1) - Co(1) Ci(1) - Ca(2) > ’02_( ) )

ie.,

where Kj' ~ Exp(uy),~1 < ¢; < 1i = 1,2

4.4 MCMC Estimation Implementation

The estimation technique developed in this paper hinges on the Markov Chain
Monte Carlo (MCMC) method, a Bayesian style inference technique and slice
sampling technique is integrated for parameters/state variables without stan-
dard posterior distribution. Other than matching the moments or other charac-
teristics of target models, MCMC method tackles inference problems by draw-
ing samples from the corresponding posterior distributions implied by the target
model and empirical data. Besides, unlike maximum likelihood method, all tar-
get posterior distributions are only required to be known up to certain constant,
i.e., calculation of complicated normalization constants of the distributions are
circumvented. This important advantage of MCMC method makes complicated
inference problem feasible since sometimes the normalization constants required
in maximum likelihood methods incorporate several complicated integrals and
hence hard and impossible to be calculated in practice. In addition, the MCMC
technique also avoids optimization procedure, which is the key component in

moment-matching methods and the global optimum is often not guaranteed.

4.4.1 Model Discretization

The building block of an MCMC estimation algorithm relies on the time-
discretization of the model. Given time ¢t and predefined time step, dt = A, the
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discretized model could be expressed as:

Yern = 0 A +2i/2th+A + ln(l +J- (Yt+AdNt+A))a

Sipn = X+ [QQ + MY, + 5, M A +5,2dZ 0 Q + Q/dZ£+AE;1/2 + Z Kt(i)AdNHA

i=1

where

MUt = Etn —J- E[Y] . CthCQ

is the stationary mean of the log return, y; = d(InS;) and D(z) denotes the
diagonal element of square matrix x.

Note that n would be obtained based on the estimated pu,;, C1,C2. The rea-
son why we estimate 4 instead of 7 is that all other terms involved in y; possess
their characteristics in specific parts of the model. Besides, y is the drift term of
the process, which determines the characteristic mean of observable log returns
and setting it as a random variable like p; only increases the complexity of
estimation procedure.In fact, similar procedures are adopted in the MCMC lit-
erature, see Eraker et al. (2003). Hence, without loss of generality, we estimate
i and extract n given other estimates obtained in the estimation procedure.
[t,t + dt],

Although the above discretized expression makes deriving posterior distribu-
tions of the state variables and parameters feasible, the symmetric expression
of ¥; would lead to degenerate multivariate normal distributions in the likeli-
hood posterior distribution and make the sampling procedure complicated. We

make the following decomposition of >3;:
¥ = dX; +dX/,

1~
dX,; = [a + MZt] A +E;/2dZt+AQ + 5 Z Kt(_,_)AdNt—&-A-
i=1

where a + o' = Q' is a positive semidefinite matrix to ensure Y; is a well
difined variance covariance matrix.*. For notational simplicity, let & = In(1 +
J - (YidN;)) and ¥ = vec(3 Y10, Kt(z)dNt)‘r’, then the resulting time discretized

model are converted into:

{yw S LT (46

Xipn =Xi + (a+ MEy) A +Ei/2dZt+AQ +vec (&5 A)-

4Please refer to Chapter 4 for further discussion
Svec and vec™ ! denote the vectorization and inverse vectorization of a mtrix.
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Equation (4.6) is the building block of the derivation of all likelihood function
and posterior distribution. More specifically, the likelihood function of our

model, described by y; and X;, could be expressed as the following;:

Y 1/2
sM:(E?A):( Y >~N<o,v;> (4.7

€A vec(ZzﬂdZtQ)
where
Elvn =Y — A =& A (4.8)
exn =vec(Xppn — Xo 4 (a+ ME)A) — 5 A (4.9)
b)) ! b))
Via= [ 7 PQER ) A (4.10)
QoY QQ&%

. . . ! . . .
is the covariance matrix of &, = (&f’, &'). By blockwise inverse, we can obtain

the inverse of V; as:

1 o =/ (L= pp) Q) @
Q'L —pp)pe 3 QML —pp) N Q)@ B!
(4.11)

Given this expression of V;™!, the posterior distributions of @ and p are non-
standard distribution and slice sampling (MH scheme for usual MCMC meth-
ods) are required. However, we exploit the following transformation to circum-
vent this. This transformation in deed substantially improved the performance
of our estimation procedure since () and p involves 6 dimensions of non-standard

sampling even if n is only 2.

Let Q = Q'(I, — pp')Q, and ¥ = Q’'p, we transform (4.10) and (4.11) into:

) VDY
V, = ! S N (4.12)
TRy, (Q+9V)eY,

1 [ A4+ .u !t —votey !
V;—l _ ( + ) _lt ®_1t (413)
A - @Y, O ley,
In addition , the blockwise determinant of V; is:
Vil = [2] - [Q @ 2| = Q" - [5["* (4.14)

92



From the above derivation, the likelihood function of the random variable, &,
which fully describes our model (4.6) could be calculated. In particular, the
following derivation of posterior distributions among all state variables and pa-

rameters are based on terms calculated above.

The transformation of (@, p) — (€2, V) yields standard Normal-Inverse-Wishart
(NIW) conjugate prior of the posterior distribution and hence improves the
efficiency of our proposed MCMC estimation procedure. Similar transforma-
tion was applied in the literature, e.g., Jacquier et al. 1994, Li et al. (2008).
Our transformation could be regarded as a high-dimensional extension and it
is firstly derived for MCMC procedure in this paper. With this transformation,
the leverage effects could be captured by the negative correlations between

Brownian motion components in price and stochastic volatility.

To extract (@, p) from estimates of (2, V), we calculate Q'Q = Q + V¥ = A
and obtain QQ by eigendecomposition of symmetric A. More specifically, simple

linear algebra implies:

A=VDV' =yD:V'.VDzV' (4.15)
—— —
Q' Q
p=(Q)'w (4.16)

where V' and D are the eigen vector and diagonal eigen value matrices of A.
Moreover, the identified () and p are uniquely determined by the property of

the symmetric matrix.

4.5 Posterior distribution derived for our model

In this section, we derive all posterior distributions applied in this paper and
aim to provide a general guideline for related future researches. The general
case m = n is applied here and simplified cases as m <= n can easily obtained.
For notational clarity, we denote Y, T'(I'_), ©(©_), 0 to be the sets of observable
time series, i.e., log return here, latent variables, model parameters and hy-
per parameters of priors, respectively, while the” —“ denotes the corresponding

complement set of a state variable or parameter.’. More specifically, I, ©, 0 rep-

6For example, the O _“ in the likelihood function, P(a|Y, T, ©_, #) denotes the set of all model
parameters except for the parameter a
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resent specific sets for each derivation if not noted otherwise. Besides, constant
terms with respect to each posterior derivation are omitted for clarity and it is

indeed an advantage of applying MCMC technique.

4.5.1 Posterior for parameters

e Posterior for p: The prior of u is assumed to follow a normal distribution,
i.e., p ~ N(mg, My) and the corresponding posterior is then derived as

follows:

P(uY,T,0-) o< P(Y, X|1,0_) - P(|6)
T-1

X H P(Yrsn, Xega|p, O, Tipn) X o2 (n=mo)' My (j—mo)
t=0

-1, o _ _
o exp(S-{ (30 ((L+ W0 10) - 571 0) 4+ My

t

~
—

Il
o

— > (A+VQ ) -2 B A~V @35 + My tmg)
t
T—1
~D (O + Q) BT = (59 QT @ ) + mpMy ' u})
t=0

~ NWIS, W)

S
—

I
=)

which follows a normal distribution, N(W™1S, W) with B; A, W and

S expressed as:

Bisn = Yon — & n

€§iA =vec(Xppp — Xy —a A —ff_(m) — Y, ARIL, - vee(M)
T-1

A (T+VQ )2 h + Mt

=0

w

t
T-1
S=) (1+9Q ) -3 'Byn —VQ @S ) + My 'mg

-
i
o

e Posterior for M*: The prior of M* = vec(M) is assumed to be a normal
distribution, i.e., M* ~ N(mg, My) and the posterior distribution can be

similarly obtained as:
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P(M*Y,T,0_) x P(Y,X|M*,0_) - P(M*|0)
T-1

X H P<yt+A7Xt+A|M*,®,,Ft+A> X e%l(M**mO)/Mal(M*fmo)
t=0

S
—

—1
o exp(T{(M*)'(A (2,078, ® Zt_l) + ]\4()_1)]\%k

t

i
=)

S
-

= (MY (=207 eI + 807 @57 - Baa) + My 'mo]

t

Il
o

S
—

— D) (IS @ () S 4 Bla QIS @50 + mpM MY
t

Il
=)

H
~ NWIS, W)

which also follows a normal distribution N(W™1S, W™1), where

Biin =vee(Xpypn — Xy —a —fi)iA)

Elrn = Yt — A =& A
T-1
W=A) (S8, @)+ M
t=0
T-1

S=> (-0l A+ Q@S Biya) + My tmo

L=

o

e Posterior for a*: Similar with M*: a* = vec(a) also has a normal distri-
bution conjugate prior, a* ~ N (myg, My) and the posterior distribution is

expressed in a similar form:

Pa*|Y,T,0_) x P(Y, X|a",0_) - P(a|0)
~ exp(_?l{(a*)'Wa* _(")S = S'a'})
~ NS, W)
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where

Biin = vee(Xppn — Xy —a —fi)iA)

Y _ Y
Ern = Yern — WA =& A

W=A) (Q'en ")+ M

e Posterior for (2, ¥): As we would derive below, (2, ¥) has a conjugate
prior NZW(uo, ko, Py, vo), and the corresponding posterior distribution
follows NZW-(u*, k*, P*,v*). Note that (2, ¥) only controls covariance
matrix, V; of the likelihood and hence ¢, is independent with it. Besides,
we need to keep the |V;| term in the likelihood. More specifically,

P(Q,U|Y,I,0.) x P(Y, X|Q,¥,0_) - P(Q, U|0)

T-1

-1 =1 -1 -1 =1 Q -1y ’ vo+n+l  —1 -1
x H V| 2 e owaVi ara |7 g2 ()T (Tmpo)(muo)) ) =055 o hr (@)
t=0 NIW
1 _v +n+1 ; * )—1
x Q7 5 ez Lir((5) T (W—p*) (U ’Q’ tr(P*Q~1)

where the second proportionality comes from simplifying the likelihood
term with (4.11), (4.14) and completing the square. In particular,

T—
E : el n) yst 5t+A

Z
=0
=
B= L3 ve (@A) T e
=0
=
C = X vec e ) S wee T (8 A)
=0
x B+ kOMO
R

k* = A+ ko, v* = vy +nT
= C + Py + kopopy — k" i (")’

From the above derivation, it is shown that the resulting posterior dis-

96



tribution follows a NZW(u*, k*, P*,v*), which improves the efficiency
greatly compared with directly sampling ) and p. Without our trans-
formation, Metropolis-Hasting algorithm could be applied as in Eracker
et al (2003), but the efficiency of sampling would be very low compared

with ours.

Posterior for § € {J,Cy,Cy, ¢;}: There is no standard conjugate prior
existing for these terms, which imply essential economic interpretations.
Other than Metropolis-Hasting style techniques, slice sampling is applied
in this paper to draw samples from their posterior distributions in the
MCMC procedure. For the sake of completeness and clarity, the posterior
distributions are provided here in a semi-closed form by the expression of
g, where J,C1,C5 and ¢; are incorporated in the corresponding compo-
nents. Since .J,C7,Cy and ¢; are constants, uninformative uniform priors
could be applied, which are also constants. As a result, the posterior

distributions could be obtained by calculating their likelihoods as follows:

POlY,.I,0-) o« P(Y, X16,0_) - P(5]9) (4.17)
T-1

x H ez oVl Tea (4.18)
t=0

(4.18) is a quite complicated function for each § but we can draw sam

Posterior for (ug), (Uy))Q), hyper parameters of Z;: The jump sizes of
log returns are assumed to follow independent normal distributions, i.e.,
7~ N( f,i), (U(Ji))2),z’ =1, ...,n. Each conjugate prior follows NZG (g, vo, o, o)

and the posterior distribution follows N'ZG(u*, v*, o*, 3*) where
vopto + TE(Z)

. _ 4.19
ft — (4.19)

T
v*zvo—l—T,a*:aO—{—E (4.20)

Tvy (E(Z")? — po)?

4.21
Vo + T 2 ( )

T—1
. 1 (i) (i) \\2
B* = B+ B ;:0 (Z," —E(Z,”))" +

Posterior for (/Af)), hyper parameters of Kt(i): The jump sizes of variance-
covariance matrix are assumed to follow exponential distributions with
mean, ,u&i) in variance components and specially designed in covariance
components, e.g. ci\/m in two-dimensional case. For clarity, ¢ is
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omitted here. The conjugate prior is standard, a I' distribution with

hyperparameter of «g, fy. And the posterior follows I'(a*, 5*),where

o =ap+T (4.22)
-1

B =0+ K (4.23)
t=0

4.5.2 Posterior for latent variables

e Posterior for Z;,o: For notation clarity, denote &/, , = In(1 + J(Y;4n) -
dNyyp) and Bipa = yirn — p, then the resulting posterior distribution
of Zy,a equals the product of its likelihood and prior, which is assumed
to follow N (g, 0371»),2' = 1,...,n. The explicit posterior distribution is

calculated as:

PZAY T, 0) o P(Vi, Xi| 2105, ©) - P21 5, W]0) (4.24)
no (Z§+A—HJ,¢)2
x e 2oV Ea H e 205, (4.25)
=1
n _ (ZZ'_»,_A*MJ’i)z
X e_i((53+A)/A153+A_(53+A),A2_A/253+A . H e 205, (4.26)
=1
where

A =14+ VQ )yt
Ay =(1+VQ 'S 'Bp —VQ @yl A

fort=1,....,Tandi=1,....n.

e Posterior for Ny o: The likelihood of N,y is straightforward, while the
prior depends on \; = C'1X,C2A. In fact, the posterior distribution which
describes 2™ combinations of jump events follows a categorical distribu-
tion, where the exact distribution could be defined if probability density
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for each event are obtained. More specifically, we calculate:

P<Nt+A == NZD/;JF?@) X 7)(}/1;7Xt’Nt+A = NZ7@) : P(Nt+A = N,“\Ij’9) =

(4.27)
P(Neys = NJY,T,0_) = — 2 (4.28)
j=1Pj

where N is the i'* event in the sample space composed of all jump events
and p; is the corresponding unnormalized probability density. As a results,

Ny can be sampled from a categorical distribution for ¢t =1,....;7T.

Posterior for Ky, : Similarly, by denoting ffi A= 5 LS K,/ @ Nt(j_)A,

the posterior distribution of K;;» can be calculated as the product of
its likelihood and prior, which follows Ea:p(,uz(,i)). The explicit formula is

expressed as follows:

PK) AV, T, 0) o P(Ys, Xl K{) 0, ©) - PR, W[0) (4.29)
n2 eV
—1e V71€t+A 1 t(+)A 4
VANME 4 . JEE— L)
x e 2%+ H 5e (4.30)
1=1 Hv
0]
SLUEX A) A1EX A —(6X 5 ) Ao —ALEX J+ALAT Ag) ol téf
o e28 \St+A t+A t+A 2514+ A HT Hy (431)
where
A =01ext

A, =071® 2 ! “Biin — Q' ® (Z;lgiﬁr&)
Biin =vee(Xppn — Xy — (a+ M) A =5 4)

fort=1,....,Tand 7= 1,...,n. The K denotes all jump distributions
belonging to K.

Posterior for X;;o: Based on the time discretiztion, X;, o depends on
both the neighbor of the state variables, X;.on and X; and hence the

posterior distribution of X, A is quite complicated. Nevertheless, we can
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express the posterior distribution with e,4n = (e} LA effr A) as:

P(Xt+A‘Y,F,@7) XX P(K,Xt+A‘Xt,Xt+2A,@,> (432)
X P(Xe|Yien, Xegn, I, ©) - P(Xipon[Yigon, Xepn, I', O) (4.33)
. (6—%€t+AVflet+A) N 1 i eféswmvtfﬁswm) (4.34)

Viea|2

where X, A is incorporated in e,y a, €r40a and Vi a. Furthermore, to
improve the computational cost, we calculate the explicit formula for both
parts in the product:

n n+1 1
P(Xionl..) o< Q172 - [Sipal % exp (_E(at—&-A —2¢in +biyn))
(4.35)
1

P(Xy|...) o< exp (_E(at —2¢:+by)) (4.36)
arrn = (efy00) (1 + U Q) STl o0 (4.37)

bern = tr(vec (e on) T avec (e 00)027Y) (4.38)

Copn = Efon Syt pvec (e o0) QT (4.39)

In particular, the posterior of X;, o depends on the first exponential part
as t + /A = T because X depends only on X7_A, while Xy depends on
both V) and the second exponential part.

As equation (4.37) and (4.36) indicate, the complexity of the posterior
distribution leads to difficulty of sampling. Even for the popular square-
root stochastic volatility model, drawing samples from the posterior dis-
tribution of volatility state, say V; is often tricky if techniques such as
Metropolis-Hasting algorithm are applied. In particular, the poor mixing
deteriorate the efficiency in the MCMC procedure.

On the contrary, the slice sampling technique adopted in this paper greatly
circumvented the tuning procedure. Nevertheless the posterior distribu-
tion of X, is matrix-variate, our estimation procedure exhibits high effi-
ciency compared with existing methods such as Metropolis-Hasting style

algorithms or adaptive Metropolis-Hasting algorithms.
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4.5.3 MCMC Procedure Specification

With all posterior distributions derived in the above subsection, we complete
the MCMC estimation algorithm with specification of the entire procedure.
With respect to those nonstandard distributions, slice sampling technique in
Neal (2003) are applied for sampling. Johannes and Polson(2003), (2006) pro-
vides details about MCMC backgrounds and related theory(see also Casella and
George (1992) and Gelman et al. (2014) for further details).

In general, the MCMC algorithm works for inference problem by drawing sam-
ples iteratively from the corresponding posterior distributions of parameters
and state variables. More specifically, given initial values of (I'®), ©©)  the
MCMC algorithm initiates by drawing @) ~ P(O©|Y, T, 0®) and then I'") ~
P(IMY, T, 0W), where the notations follow those defined in Section 4.5. By it-
eratively drawing in this manner, the MCMC algorithm generates a sequence of
posterior random samples, {0V, F(j)}j-v:l. where each sample path constitutes
the posterior distribution of the corresponding parameter(or state variable).
Given enough iterations, the drawn samples then approximates the desired pos-

terior distribution of the parameter(or state variables).

For the jy, iteration, the procedure can be explicitly summarized as follows:

1. Updating model parameters:
PO <« POV, 20V NV KD XUV V)i =1,k (4.40)
where k is the total number of model parameters.

2. Updating state variables of jump components:

P(Z9) o« POV, NIV KITV XUV vy 4 =1,..,T (4.41)
PIN) o POV, 27 KV XUV vyt =1,..,T (4.42)
PED) x POV, 2D ND XUV V)t =1,..,T (4.43)
(4.44)
3. Updating covariance structure described by X;:
PXI) POV, 29 NV KD YY) t=1,..,T (4.45)
4.46)
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Following this updating scheme, the resulting MCMC estimates for parameters
and state variables can be obtained by taking expectation for all drawn samples
with standard error obtained by the corresponding standard deviation of the
drawn samples.

With the MCMC specification, we complete the estimation procedure devel-
oped in this paper.

4.5.4 Brief Introduction of Slice Sampling methods

For the sake of completeness, a brief introduction of single-variable slice sam-
pling technique is provided in this subsection. Without loss of generality, single-
variable slice sampling method could be extended for multivariate distributions
easily by applying it for each variable of the target multivariate distribution
repeatedly in turn. Furthermore, updating all variables may be also feasible to
improve the efficiency of sampling procedure. For details and theories about

slice sampling, we refer to Neal (2003), among others.

Given the target distribution f with univariable x and initial point x(, the

scheme of slice sampling technique could be divided into 3 steps:

Step 1. Uniformly draw a value "y* from [0, f(zo)]. The horizontal "slice is
defined by S ={z:y < f(x)}.

Step 2. Find an interval I = [L, R] in the neighbourhood of zy with predefined
width w, which includes all or most of the slice S defined in Step 1.
The L and R represent the left and right end points, respectively.

Step 3. The next stage of x, i.e., x; is updated by drawing a point uniformly
from the intervals within the slice S. In particular, stepping-out and

shrinkage procedures are applied for sampling.

The entire slice sampling is completed by repeating Step 1 to Step 3 iteratively
and the resulting updated points of (z1,xs,...) would be the desired samples
drawn from the target distribution. In particular, the stepping-out and shrink-

age processes as discussed in Neal (2003) are applied in the MCMC procedure
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developed in this chapter.

Figure (4.1) illustrates the Step 1 to Step 3. More explicitly, by drawing

Figure 4.1: Illustration of Single-variate Slice Sampling Method

The blue solid curve represents the target distribution i.e., f(x) to be sampled and z( is the
initial state of sampling procedure. The black dashed line may be regarded as the vertical
"slice” and y is uniformly drawn from [0, f(z0)]. Accordingly, the solid red line is the horizontal
"slice”, S. The interval composed by line segments with width w is the interval for each
iterative sampling.

y € [0, f(zo)], the slice S is defined and labelled in bold red line segments.
Subsequently, the interval I is constructed by expanding the neighbourhood
around xy with predefined width w and the stepping-out/shrinkage procedures.
The resulting interval I would include all or most of the slice. In particular,
the stepping-out procedure is implemented by randomly positing w around x
and expanding the neighbourhood of zy by w until both ends of the interval are
outside the slice. Noticeably, this interval would contain points or subintervals
which are outside the slice. Hence, shrinkage is applied if the updated point
(uniformly drawn from ) is not in the slice. These points outside the slice
would be used as new end points to shrink the interval. The next point would

then be drawn from the shrunk interval.

For the sake of completeness, we also provide the general picture of slice

sampling and Metropolis-Hasting style MCMC techniques here.
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lllustrative performance of slice sampling
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Figure 4.2: llustration of Metropolis-Hasting and slice sampling scheme

For illustrative purpose, Figure (4.2) provides one exaggerated image of draw-
ing samples from a two-peak distribution, where "random walk step region“ and
"stepping width“ represent the key steps of Metropolis-Hasting style MCMC
techniques and slice sampling technique, respectively. The red curve is the tar-
get probability density function and the shaded area is the resulting probability

density function calculated with the obtained samples by slice sampling.

The key difference between these two methods lies in the feature of exploring
steps. The details about the theory and practical issues are well documented
in Johannes and Polson (2006) and Neal (2003), among others. By the shrink-
age and stepping-out procedure of slice sampling, it is clear that the samples
drawn by slice sampling indeed follow the desired distribution even though the
distribution is unusual. On the contrary, as illustrated as the dotted circle, the
random walk step region of Metropolis-Hasting style techniques only allows one
side of the distribution to be effectively sampled, while the remained part may
even remain unexplored. Even though tuning the random walk step size partly
improved the exploration of the entire distribution, the resulting acceptance

ratio may often be too low for efficient sampling.

As a results, we developed an MCMC estimation procedure with slice sampling
technique augmented, which is capable of estimating both existing stochastic
volatility models and more advanced multivariate stochastic volatility models
where the stochastic covariance structure follows a Wishart process. Moreover,
the developed estimation procedure also makes inference feasible even when

jumps in return, covariance and some novel parameters are integrated. As we
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would demonstrate in the following section, various simulation studies and the
intuitive demonstration of slice sampling technique introduced in this section
would verify the accuracy and advantage of the developed estimate method.

Hence, we complete the establishment of the proposed estimation technique.

4.6 Numerical Results

In this section, we examine the performance of our MCMC procedure through
simulation studies. Various models are embedded in the WJD model, in-
cluding Merton-Jump-Diffusion model (Merton (1976)) with entangled jumps’,
stochastic volatility models with common Merton jump in return and volatility,
SVCMJ model. For illustration purpose, we provide the simulation studies for
these models with the proposed estimation procedure. The results are com-
pared against those obtained in the existing literatures, where the parameters
are adopted here as true values. Lastly, WJD model, the target multivariate
stochastic covariance matrix model with jumps is estimated with reasonable
parameters assigned. For the sake of completeness and clarity, only hyperpa-
rameters used for WJD-DJ model is listed in Table 4.7.

Table 4.1 and 4.2 depict that the MJD model with entangled jumps are well
approximated, except for X ;, which is often slightly biased. As we can expect,
as number of observation increases, the accuracy is improved because with more

observations, the time series is more informative about the true dynamics.

Next, we estimate the SVCMJ model which is more complicated because of the
additional stochastic volatility component. Although SVCMJ model is nested
in WJD-DJ, we recall the conventional expression for comparison with the lit-
erature. The SDE of SVCMJ is expressed as:

S,/ Sy = (pu+ r)dt + \/(v,)dW?, + Yi1dN, 4 (4.47)
dv, = k(0 — v,)dt + o,/ (Wt)dWE 4+ Kig1dNyyy (4.48)

"The jumps are scaled by the constant matrix, J and hence they are essentially "entangled” with
each other. As a result, it is denoted as "entangled jump* to separate them from conventional
independent jumps.
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where dW} and dW} are Brownian motions with corr(dW},dW}?) = p. The
jump component is determined by jump intensity, P(N;;; = 1) = A; and jump
sizes, Y, = exp(Zt) =1, Zy ~ N(py +psKt,07) and K, ~ Exp(pu,) in return and
volatility, respectively. For illustrative purpose, the length of simulated time
series is set to be 2000 in daily scale. The parameters are adopted directly from
Eraker et al. (2003) for an clear comparison. Li et al. (2008) also applied the
same setting to support their estimation procedure. We choose uninformative
priors close to those applied in Li et al. (2008) and Table 4.3 summarizes the

estimated results.

In general, the estimates obtained by our technique are close to the true values
and superior to Eraker et al. (2003) and comparable with Li et al. (2008).
It is worth mentioning that, much smaller number of sampling is required by
our methods to sustain similar accuracy. Commonly, the number of posterior
samples required for us is 5000, while it is over 50000 or even more to assure
similar accuracy for other methods. In fact, this advantage comes from the
augmented slice sampling technique ,which is applied for drawing samples from
nonstandard posterior distribution. Compared with normal MCMC techniques,
where Metropolis-Hasting style methods are applied, the acceptance ratio is of-
ten set to be 20% to 40% for efficiency and the resulting number of sampling
increases for accurate estimates. Besides, careful tuning is tricky for other
sampling techniques, especially for high dimensional problem discussed in the
following simulation tests. In some worse case, such as multi-modal posterior
distributions, the target posterior distribution may be only partly explored and
the estimation may yield possible misleading results. By incorporating slice
sampling in our estimation procedure, efficiency and accuracy are greatly im-

proved as demonstrated in the Table 4.3.

Finally, we conduct the simulation studies for WJD model with both jumps in
return and variance-covariance, i.e., WJD-DJ model, the primary target for our
estimation technique. Since the WJD-DJ model is at least n dimensional with
one nX n stochastic variance-covariance structure and two jump components
in return and variance-covariance, the simulation bias would be augmented in
the simulated paths and the resulting stable state may deviate from the true

parameter set for simulation studies.

As a result, it is not feasible to conduct a simulation test as done for the single

dimensional cases. However, given every simulated path, all state variables are
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known. It is reasonable to divide the inference problem into two parts: the
variance-covariance state and all the remained parts, including all parameters
and other state variables. More specifically, the estimation procedure is verified
by examining the accuracy of estimated parameters given variance-covariance
states fixed as the simulated state and the smoothed variance-covariance state

given all other parameters and state variables fixed.

For demonstration, we focus on 2 dimensional case. Firstly, we assign rea-
sonable parameters for each model and the values are presented in real value
and daily scale. In particular, these parameters are randomly chosen with the
corresponding requirements satisfied and yield similar patterns of log returns
observed in real stock indices. The J, ¢; and C'1C2 reported represent (Joq, J12),
(c1,¢2) and (Co(1), C2(2),C1(1)) respectively. To further demonstrate the ac-
curacy of our MCMC procedure, we compare short(T=500 observations) and
long(T=2000 observations) time scales, while the number of sampling is set to
be 5000 with the first 3000 as burn-in period. Noticeably, the number of ob-
servation is set to be low (500~2000) for demonstrating the performance in the
short time scale. More specifically, financial contagion occurs unexpectedly and
gradually shades into the resulting next stage, where possible future events start
to dominate. The time scale for specific financial contagion would be therefore
limited and only moderate period prior and post to it would be of specific value.
Hence, accuracy for estimation in short time horizon is essential, especially for

financial contagion studies.

As Table 4.4 to Table 4.6 illustrate, the estimated results verified the per-
formance of our estimation technique for complicated WJD-DJ models with
different time horizons. In general, as numbers of observations increase, the
accuracy is improved. As summarized in the tables, the parameters are rea-
sonably well estimated and accuracy improved as time scale increases. This in
natural since the more observation, the more informative the time series is. For
shorter time scale, only few jumps would occur and hence lead to less accuracy

for parameters related to jumps.

There are parameters worth emphasizing, the J, C;(1), Cy(1) and Cy(2). These
parameters control the sensitivity of each asset in terms of jump magnitude
and intensity. More specifically, Jo1(J12) control how a jump in asset 2 (1) af-
fects asset 1 (2). On the other hand, C(1),Cy(1) and Cy(2) specify the jump

intensity by scaling the variance-covariance matrix, where Cy(1), C2(2) reflect
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sensitivities to variance and covariance for both assets. The larger the Cy(1),
the more sensitive to the variance of asset 1 for jump intensity. Moreover,
(' (1) determines the ratio of jump intensity between two assets. For example,
C1(1) = 1.5 means the probability of a jump event is 50% higher in asset 2
compared with asset 1. Even in the shortest time scale case, the estimates,
Ci(1) = 3.45,C5(1) = 4.82,C4(1) = 1.73 are reasonably accurate compared
with true values 3.5,5.5, 1.5.

Regarding the second part where variance-covariance state are estimated with
the remained parameters and state variables fix, we demonstrate the smoothed
variance-covariance states as T=1000 observation for clarity. The fitted results
are displayed in Figure 4.3 to Figure 4.5 with simulated path(treated as true
value) in blue-solid line and fitted variance-covariance states (estimated by our
technique) in red-dot line. Clearly, the estimated (smoothed) variance covari-
ance state variables coincide with the true values well. To a great extend, the
fitted state indicates the dynamic of this latent, unobserved variance-covariance
state. 8 As a result, as a by-product of MCMC estimation, the smoothed state
variable provides an image of unobserved states given the only observed log
returns. Integrated with these two parts of simulation studies, we can therefore

verify the performance of the developed estimation procedure.

In summary, through various simulation studies, our estimation technique is ver-
ified by estimating various types of models and in different time scales. Hence,
the developed estimation procedure may be ready for future researches where
estimation of model parameters are important, such as optimal portfolio choice
problem and option pricing literatures, etc.

Our technique also can be extended by incorporating other techniques to esti-
mate state variables. For example, the realized volatility are commonly applied
to estimated volatilities (Andersen et al. (2003)) or jump techniques (Lee and
Hannig (2010) and Lee and Mykland (2008)). Given these states identified, the
estimation procedure would be more efficient for estimating real empirical data.
In particular, only parameters needs to be estimated and the other state vari-
ables are approximated with the augmented techniques and treated as known
in our procedure. In fact, this augmentation of our estimation procedure and
others may be regarded as a analogy of moment matching, where the states are

"matched” by the augmented techniques while the parameters are estimated by

8Similarly, fitted jump times, and jump sizes would be obtained during the estimation proce-
dure but ignored here for clarity. Since they are normally well approximated.
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our estimation procedure.

Entangled MJD

W by
True  0.0198  0.0278 0.0397 0.0198 0.0198 0.0397
Mean 0.0197 0.0274 0.0395 0.0196 0.0196 0.0408
RMSE 0.0012 0.0015 0.0021 0.0016 0.0016 0.0018
M Xy
True -3 -3 3 3
Mean -2.7737 -2.6633 3.6273  3.2133
RMSE 0.5888  0.3628 0.6126  0.5836
J C1C2
True 0.5 0.5 0.5 0.5 1
Mean 0.4965 0.4983 0.4885 0.4927 0.8861
RMSE 0.0120 0.0095 0.0710 0.0468 0.1118

The simulation test is conducted by simulating MJD model for 1000 daily data with 50
simulation paths, and parameters are set as displayed in the row labeled as True. The
Mean and RMSE represent mean values and root-mean-square error respectively. The
specification of parameters follows the description in Numerical Results section. For each
simulation path, 5000 samples are drawn from their posterior distributions. In particular,
the first 3000 samples are discarded as burn-in period and each parameter are estimated

as the mean of the next 2000 samples.

Table 4.1: Simulation tests for entangled MJD model, T=1000
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Entangled MJD

" DM
True 0.0198  0.0278 0.0397 0.0198 0.0198 0.0397
Mean  0.0199  0.0277 0.0400 0.0198 0.0198 0.0400
RMSE  0.0009 0.0008 0.0011 0.0008 0.0008 0.0012
1 Xy
True -3 -3 3 3
Mean -2.8348 -2.8648 3.4054  3.1267
RMSE 0.2103  0.2448 0.6033 0.4853
J C1C2
True 0.5 0.5 0.5 0.5 1
Mean  0.5000  0.4993 0.4988 0.4579 0.9581
RMSE  0.0061  0.0054 0.0833 0.0691 0.0926

The simulation test is conducted by simulating MJD model for 3000 daily data with 50
simulation paths, and parameters are set as displayed in the row labeled as True. The
Mean and RMSE represent mean values and root-mean-square error respectively. The
specification of parameters follows the description in Numerical Results section. For each
simulation path, 5000 samples are drawn from their posterior distributions. In particular,
the first 3000 samples are discarded as burn-in period and each parameter are estimated

as the mean of the next 2000 samples.

Table 4.2: Simulation tests for entangled MJD model, T=3000
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N(mo, Mo) mo MO

1% 02 10[2
vec(M) 04 1014
vec(a) 04 1014
NIW (po, ko, Po,vo)  jo ko Py Vo
(Q,V) 02 10 5x107° 2
NIG(po,v0, 0, Bo) o ) g Bo
U, ()2 0 2 2 0.001
(a0, fo) Qg Bo
1) 2 2x1075
U(a,b) a b
J 0 1
C1,Cy 0 10
C; -1 1

Detailed values for all hyperparameters are listed here. 0,, and I, represents n x 1 zero
vector and n x n identity matrix, respectively. All priors are extremely uniformative for the
parameters compared with the obtained estimates. Hence, the estimates are not driven
by the prior distributions.

Table 4.7: Hyper parameters of prior distributions

—— simulated path (as true value)
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Figure 4.3: Fitted Variance-Covariance states - ;11
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—— simulated path (as true value)
smmol
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t

Figure 4.4: Fitted Variance-Covariance states - Y91

—— simulated path (as true value)
—-— smmothed
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t

Figure 4.5: Fitted Variance-Covariance states - Y90

4.7 Conclusion

A Bayesian based Markov Chain Monte Carlo estimation technique is developed
for estimating parameters of a wide class of asset pricing models. In particular,
the proposed estimation technique works well for WJD model, which solves the
optimal portfolio choice problem under contagion and captures observed fea-
tures during market turmoil. Detailed derivation of the posterior distributions
are provided and can be ready for future researches related to stochastic volatil-
ity and financial contagion. The performance is verified with various simulation
tests, where common and widely applied models are estimated with simulated
data.

To sum up, the major contribution of our paper is two-fold. Firstly, we de-
veloped an estimation procedure for the general multivariate jump diffusion
model with stochastic covariance matrix modeled as the Wishart process, which
is novel in the literature. The estimation procedure is based on the Bayesian
Markov Chain Monte Carlo (MCMC) technique. The augmented slice sampling
technique developed by Neal (2003) substantially improves the efficiency of our
MCMC technique. To the best of our literature review, this may be the first
attempt to estimate the WJD models with MCMC based methods. In addition,

our paper sheds new lights in the literature about estimating asset pricing mod-
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els and the developed estimation procedure may be ready for future researches

where inference problems are going to be solved.
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4.8 Preliminary Results for empirical applica-

tions

In this complementary section, we roughly demonstrate the application of our
estimation procedure. In particular, we are interested whether the novel com-
ponent J of WJD model could help captured stylized features of empirical data.
As a first attempt, we study the asymmetric correlation as investigated in Ang
and Chen (2002).

Following similar procedures as adopted in Ang and Chen (2002), we investigate
asymmetric correlation thoroughly with the 5 industry classifications, which is
categorized as "Consumer®, "Manufacturing”, "High-Technology*, "Health* and
"Others“. The data is collected from the Data Library on the website of Ken-
neth R. French, where the data are mainly collected from COMPUSTA and
details about how these portfolios are constructed could be found. To have a
clear picture of asymmetric correlation, we calculate the exceedance correlation
following Longin and Solnik (2001) in different time scales and periods. By
doing so, it could be shown that asymmetric correlation is persistent among
different contexts and remains significant even with the innovation of computer
technology and the resultantly increasing entanglement of markets. The data
ranges from 1st January, 1980 to 31st August, 2016. The weekly data is con-
structed by aggregating the daily data from the end of last Wednesday to the

end of current Wednesday as widely adopted in the literature.

In this preliminary result, we group each industrial categorization with mar-
ket portfolio and estimate each group with a 2-dimensional MJD model with
entangled jump as done in Section 4.6. Then we simulate 500 paths with the
estimates for each group and calculate the corresponding exceedance correla-
tions for each path. Consequently, the resulting fitted asymmetric correlations
for each group are calculated as the mean of 500 trials within each group. In
addition, given these simulated paths, we plot 95% credible interval for each
fitted asymmetric correlation for benchmark. In other words, we determine
whether asymmetric correlation observed in the real market is well captured by
the MJD with entangled jump model.

Figure 4.6 to Figure 4.10 summarizes the fitted asymmetric correlation for all 5
industry classification. As depicted in the graphs, the asymmetric correlations

are well replicated by the model fitted results, except for "Other‘. However,
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most of the graph lie within the 95% credible interval in this case. It is worth
mentioning that J is the dominating component that successfully capture this
observed asymmetry. By contrast, for ordinary MJD models, only symmetric,
i.e., tent-shaped graphs may be obtained due to the symmetric Poisson jump in-
corporated. Compared with those models studied in Ang and Chen (2002), such
as GARCH and regime-switching models, MJD model with entangled J is in-
credibly simple and has more intuitive economical meanings. More specifically,
J allows jump risks to propagate through different portfolios (or markets in
international context) even if there is only one jump event. In fact, this feature
assembles financial contagion or the initiate of market downturns, where there
is often one starting point that triggers the subsequent disasters and spread to

the counterparts.

To sum up, this example further justifies the validity of augmenting J in the
multivariate models such as WJD models. As a result, these novel components
introduced in WJD models may shed new light on the researches where mul-
tivariate stochastic models may be applied and WJD models may be of great

potential for future researches.
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Figure 4.6: Asymmetric Correlation - Market and Consumer portfolios
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Figure 4.7: Asymmetric Correlation - Market and Manufacturing portfolios
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Figure 4.8: Asymmetric Correlation - Market and High-Technology portfolios
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Figure 4.9: Asymmetric Correlation - Market and Health portfolios
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Figure 4.10: Asymmetric Correlation - Market and Other portfolios
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4.9 Complementary: Derived Moment Gener-
ating Functions for moment-matching tech-
niques

In this complementary section, we provide some critical closed-form formula
obtained by deriving the corresponding moment generating function, which can
be ready for moment-matching methods, e.g. GMM for future researches. This
kind of estimation technique may be preferable sometimes, if high frequency
data are available such that matching moments help capturing stylized features
observed from data. For example, realized volatility is often applied as a proxy

for volatility.

Following the notations defined in previous sections, the unconditional risk pre-

mia of stock i is thus

My, = [Elj] — %e;E[Z(t)]ei + EDdE(Zn) + EDa E(Zio)]r,

EM\] = CuCy()E[X1(t)] + (C11C(2) + C12C5(1)) E[X12()] + C12C5(2) E[X92(t)]
E[Xy] = CuCy(1)E[X11(t)] + (Co1C(2) + CaaCo(1))E[X12(t)] + CoaCs(2) E[Xaa(t)]
Elpi] = e;E[E(t)]n — (JuE(Y1)E[Ay] + JnE(Y2) E[Aa])

+
+

2) Quadratic variation matrix QV (¢,t+7) = (QVj;(t,t+7))1<i ;<2 of log returns:

t+1 t+1 t+1

QVi(t,t+71) = /le(s)ds+/Z121les+/ZdeNQS,
t t t
t+7 t+1 t+1
QVa(t,t +7) = / Yoo(s)ds + / Z2,dN, + / Z2,d Ny,
t t t
t+1 t+1 t+1
QVia(t,t+7) = QVis(t,t+7) = /212(3)(15—1‘/211221dN13+/lez22dN25-
t t t

Hence QV (t,t + 7) can be written as

t+7 t+7 t+1
QV(t, t+ T) = / E(S)ds + / Zlles + / ZQdNQS,
t t t
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where

72 17 7?2 AR/
7, = 11 121 21 Ty = 12 122 22 7 (4.49)
Iy Ly ACY A A

Unconditional mean of the realized Quadratic variation matrix of log returns

1s:
EQV(t,t+ 1) = (E[X(t)] + E(Z1)E[Ai] + E(Z2) E[A2)) T,
3) Generating function of variance-covariance matrix X(¢) of is given by

(T, %(t),t,T) = E, [emp (/rsdsﬂr(PZ(T)))] :

t

We have the following result:
WS (L, S(t),4,T) = exp(B(T — 1) + tr(A(T — )S(1))),

where the functions A and B solve the system of matrix differential equations:

dillS_T) = MA(T)+ A(T)M' + 2A(1)Q'QA(T) + %(026/101 + CleyC) [Elexp(tr(A(r) KM))] -
+ %(026'201 + CleaC) [ Elexp(tr(A(T)K?))] — 1,
diy) = —r+tr(A(T)Q),

with boundary conditions: B(0) =0 and A(0) = I'. We now calculate E[X(?)].
Let I' = (Fij)lgi,j§2 with Fij = ng

AU (T, £(0),0, 1)

EXu(t)] = T, ’F:O
KaaBF(;) N a(tr(f(la(lfz?(o)))) cap(B(t) + tr(A(t)E(O)))} ‘F:O,

gz, = & <F’ai.(j0>’ =4
- S ) i s
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More results: let /' = (Fij)lgi,jSQ with -Fz'j = F]z

OUS(T, £(0),0,t)

E[Su(Beap(tr(FE(1))] = S o

- Ka(;(;) N 8(tr(12<3i2(0)))) exp(B(t) +tr(A(t)E(O)))] )F:F,

OV (T, £(0),0, 1) ‘
5F” I'=F

E[Xi(t)exp(tr(FX(1)))]

- 1 Ka;(;) N 8“7"(/;(;3]_2(0)))) cap(B(t) +tr(A(t)E(0)))} |

4) Generating function of quadratic variation matrix QV (¢t,t+71) = (QV;;(¢, t +

7))1<ij<2 of log returns is given by
(D, 8(t),t,t +7) = Elexp (tr(TQV (¢, t +7)))] .

We first define the conditional generating function of quadratic variation matrix

WY(T,%(1),0,T,t) = E [exp (tr(TQV(0,T)))] -
We have the following result:
TOY(T, 5(t),0,T,t) = exp(B(T —t) + tr(TQV(0,1)) + tr(A(T — )2(1))),

where the functions A and B solve the system of matrix differential equations:

d’fl@ = T+ MAR) + A(M + 24(0QQA(T) + 5 (CoriCr + Cles CHIBT(A(T) — 1]
(G0 + ClesCh)OF(AR)) — 1),
df;f) = tr(A()QQ),

where ©Y(A(7)) = Elexp(tr(A(T)KMW)+tr(T'Z,))] and 03 (A(1)) = Elexp(tr(A(r)K®)+
tr(I'Z,))]. The boundary conditions are: B(0) =0 and A(0) = 0.
Thus,

VT, 2(1), t,t 4+ 7) = Efexp (tr(TQV (t,t + 7)))] = E [exp(B(1) + tr(A(T)S(1)))].
We now calculate unconditional second moment M;j of the realized quadratic
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variation matrix QV (¢, t+7) = (QV;;(t,t+7))1<; j<2 of log-returns. Let f(7,t) =
exp(B(7) + tr(A(T)X(t))).

ElOVE(tt 1 1) — PPWV(D, S (t), t,t+7)

orz r=o
- o||(Sr - e ) o)l
o (agr(;) +8(1tr(/2(rri)iz(t))))2 f(T,t)] ‘H],
BIQVA(tt+7)) = 82\PQV(F’§£)’t’t+T>(H
- [ ) e
. }1 o ” (339&) N a(w(é(;gx@)))f 7, t)] \H] :

O*UeV (T, %(t),t,t + 1)
ElQValt,t +7)QVi(t ¢+ 7)) = OT 50T -

- Le[[(ZBe), Peraison) o)) ]

2 or;,;00; or;,;00;
N % 5 H(ﬁéffr(;) N 3(757“(%(19(;22(75)))) (8;9;;) N 8(tr(z‘grfz}i2(t)))) I, t)] ‘FJ .

DUV (T, (8, ¢, ¢ +7)
[QVi(t t + 7)QVj(t, t + 7)) aT ;0T ‘F:O

= #[[orane + “aman ) )l

Lo H(aaﬂ;:) N 0(”(1‘2(;?@)))) (3;(;) N 0(”(1‘}9(;)?@)))) fr, t)] ‘FZO] '

5) Generating function of quadratic variation matrix QV (¢,t+7) = (QVj;(t, t +
7))1<ij<2 of log returns and log return Y; ;4 = (In(S144+/S1.), In(S2.44+/S24))

is given by
TV, 2(t), t,t +7) = Eexp (u - Yigrr + tr(TQV (t,t 4+ 7)))]
where u = (u1,uz2)’. Asin 5), we first define the conditional generating function
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of quadratic variation matrix and log prices as
vSY(T,2(t),0,T,t) = E, [exp (v - Xp + tr(DQV(0,T)))],
where X; = (In(S1,.),n(Ss2,))’. We have the following result:
\IIQQV(F, ¥(t),0,T,t) = exp(u' - Xy + B(T —t) + tr(TQV(0,t)) + tr(A(T — t)X(¢))),

where the functions A and B solve the system of matrix differential equations:

dillf) = I'+ %(W’ +un') — %(CzU'J -E[Y]- C1 + C1 - E[Y]J'uCs)

1
+ 5 (uu’ — urere] — useqel) + A(T)(M + Q'pu’)

(M’ +up'Q)A(T) + 2A(T)Q'QA(T) + %(026’101 + C1erCy)[07 (u, A(7)) — 1]

$(CoesCi + CleaCy) 05w, A(T) — 1,

dB(T
dr

~—

= tr(A(T)Q),
where

OF (A(T)) = E[€$p(tT(A(T)K(1)) +tr(TZy) + w1 Z11 + ugZay)),
@E(A(T)) = E[€$p(t7"(A(T)K(2)) + t?"(FZQ) -+ u1212 + UQZQQ)].

The boundary conditions are: B(0) =0 and A(0) = 0.
Thus,

WV (L, 3(1), 1,1+ 7) = B [eap (Yoir + tr(TQV (L, 1+ 7)))] = E [exp(B(r) + tr(A(T)S(2))].

Unconditional covariance between assets’ simple excess returns and the quadratic

variation matrix of log returns. For asset 1, let u = (1,0)’, then

/ AUV (D, 2 (1), t,t + 7
Elexp (' - Yiei-) QVialt, t + 1) = — : (315) )‘ro

= o[ (%2 + PO o)+ wtamzon] | ).
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QWY (D,S(t), t,t +7) ‘
6FZ-]- I'=0

Elexp (u' - Yi-)) QVij(t, t +7)] =

_ %EH@;?F(;) +3(tr(fg(;i12(t)))

)eantsn) +uamsen)| | |
6) Processes:

1
d[log(S1)] = [r + pae — 5(0%1 + 0%2)]6515 +o011dWiy + 012dWo + Z11d Ny + Z12d Ny,

Wy = 1 — p? — p3Zs3; + p1Zors + p2Zon

Wi = 4/1— p% — p%ZlLt + p1Zs + p2dia

d¥q1(t) = [Qu +2(M11 311 (t) + M1oXo(t))]dt
+ 2Qu(011dZ11t + 012dZ51)
+ 2Qu(011dZ19 + 012dZ59;)
+ K\VdNy + K3 dNy,

d¥1o(t) [ + Moy X011 () + (Myy + Mag)312(t) + Mia¥ao(t))]dt
(Qu2011 + Qu1091)d 211
(Qa22011 + Q21091)d 713
(Qr2012 + Qu1022)d 221,
(Q22012 + Q21092)d 75y

K dNy + K73 d Ny,

+ + 4+ + +

d¥ga(t) = [Qoo + 2(Mo1X1o(t) + Moy Sa(t))]dt
+ 2Q12(02n1d 211y + 020dZ51;)
+ 2Q20(021d 219 + 022dZ5y)
+ Ky dNy 4+ K5 dNy,

. . . . . t+71
Generating function of variance-covariance matrix [, X;;(s)ds of log returns
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and log return Y; (¢, + 7) = In(S144,/51+) is given by

UE(T,2(t), .t +7)
t+1 t+7 t+7

= F exrp 'Lbl‘}/l(t,t"—T)‘i‘FH/211(8)d8+F12/EIQ(S)dS—i—FQQ/ZQQ(S)dS ,

t t t

Asin 5), we first define the conditional generating function of variance-covariance

matrix and log prices as
WS (T, %(t),0,T,t)

T T T
= Et exrp | Uy - Yi(T) + FH /Ell(S)dS + Flg / Elg(S)dS + FQQ / ZQQ(S)dS s
0 0 0

where Y;(t) = In(S1;). Clearly, W3 (T, %(¢),0,T,t) is a martingale. We have

the following result:
U3 (T,%(t),0,T,t) = exp|G],

where

t t t

G = uy - }q(t) +FH/Ell(S)dS+F12/212(S>d8+F22/222(8)d8
‘l‘ B(T) —|- All(T)le(t) + Alg(T)zlg(t) —|— AQQ(T)EQQ(t)

From Ito’s lemma, we have

dG = wuy-dYi(t) + (T11211(t) + TioX12(t) + TooXao(t))dt
— B'(r)dt — A (T)S1 (t)dt + Ay (7)dE (1)
— Al (T)S1a(t)dt + A (T)dB15(t) — Aby(T) S (t)dt + Age(T)dS00(t)
= pgdt +0%dZy, + 0%dZyy + 05 d 2y + 05d 70, + 0¥ dZE 4 oS dZy
+ J?let + deNgt,
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where

Ha uy (1 + pag — 1211@))

L0 (t) + F12212(t) + TpoXgs(t) — B'(7)

— AN(T)B0(t) — Al (1) S12(t) — Ay (7) X0 (t)

All(T)[Qll + 2(M113211(t) + M12312(1))]
Ao (7)[ Qg + Moy X1 () + (Mg + Maz)S1a(t) + Mi9Xao(t))]
A (7)

7)[ Qs + 2(May S (t) + Moy Sa(1))]

+

+ + +

oy = wonpr + 2411 (7)Quio11 + A2(7)(Q12011 + Q11021)
+ 2A5(7)Q1202

0% = wonpe + 2411 (7)Q2011 + A12(7)(Qa2011 + Q21091)
+ 2A459(7)Q22091

051 = woi2p1 + 2411 (7)Q11012 + A12(7)(Q12012 + Q11092)
+ 2A5(7)Q12022

UzGQ = wo12p2 + 2411 (7)Q21012 + A12(7)(Qa22012 + QQ21092)
+  2A59(7)Q22092

G _ / 2 _ 2
o] =woi1y\/1 — pi — p5
G _ / 2 _ 2
0y = w0121/ 1 — pi — p;5

O'3G = ulZn -+ AH(T)KS) + Alg(T)Klg) -+ AQQ(T)K%)

Uf = w219 + All(r)Kﬁ) + A12(7)K1(§) + AQQ(T)Kg)
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Applying Ito’s lemma to H = exp(G), we have

dH = Hpgdt+ H(0%dZy + 0%dZyy + 05d 2y + 05%d 70 + 0¥ dZ + 0§ dZy
+ H(exp(c§) — 1)dNy + H(exp(c$) — 1)d Ny,

where

pr = pig + %[(Uﬁ)z +(013)* + (031)" + (03)" + (07)" + (09)].

Since H is a martingale, we have

prr + AE(exp(0§) — 1) + Aot E(exp(af) — 1) = 0.

And thus the functions A and B solve the system of matrix differential equa-

tions:
dA 1
;_(T) = U [771 - J11E(Y1)01102(1) - J12E(Y2)O2102(1) - 5]
+ Dy 4+ 2My1 Ay (1) + Moy Ao (1)
1
+ §(U1p1 + 2411 (1) Q11 + A1a(7)Q12)?
1
+ 5(“1/)2 +2A51(7)Q21 + A12(7')Q22)2
1
5“?(1 — pi — p3)
+ 01102(1)E<6Xp(0':?) — ].) —+ 02102(1)E(6Xp(0'f) — ].)
dA
(Z_(T) = wn — JuEY1)(C11C5(2) + C12Cs(1)) — J1oE(Y2)(Ca1Ca(2) 4+ CaaCs(1))]

o 4+ 2M19 A1 (T) + (Min + Mag) Avo(7) + 2A99(T) Moy

(urp1 + 2A11(7)Q11 + Ara(7)Q12) (Ar2(7) Q11 + 2A22(7)Q12)

(u1p2 + 2A11(7)Q21 + A12(7)Q22) (A12(7) Q21 + 2A52(7)Q22)

(C11Ca(2) + CraCo(1)) E(exp(of) — 1) + (Co1Cs(2) + Co2Cs(1)) Eexp(of) — 1)

+ + 4+ +
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dA22 (T)
dr

Ul[—JnE(Yl)Cucz(Q) - J12E(Y2)02202(2)]
Dog 4+ 2Mog Ago (T) + MiaA1a(T)

%(AH(T)QH + 242 (7)Q12)*

%(A12(T)Q21 + 2455(7)Q)?
C12C5(2) E(exp(0§) — 1) + CoyCy(2) E(exp(cl) — 1)

- -

~ -

dB(T)

dr =wr+ An(T)Qn + A12(T)Q12 + AQQ(T)QQQ-

7) Generating function of variance-covariance matrix fttH ¥;;(s)ds of log returns
and log return Y5(¢, ¢t + 7) = In(S244,/524) is given by

(T, 2(t), t,t +7)
t+7 t+7 t+7

= F exrp | U - }/Q(t,t + 7') + Fll / le(S)dS + Flg / Em(S)dS + FQQ / EQQ(S)dS s

t t t

Asin 5), we first define the conditional generating function of variance-covariance

matrix and log prices as

U (T, %(t),0,T,t)
T

T T
= Et erp | us - Y’2<T) + F11/211<S>d8 + Flg / 212(8)(15 -+ F22/222<S)d8 ,
0 0 0

where Y5(t) = In(Sy,). Clearly, W3(T',%(¢),0,T,t) is a martingale. We have

the following result:
WS, (1), 0,7,1) = eap[G],

where

t t t

G = uy-Yo(t)+ T4 / Y1(s)ds +T'1a / Yi9(s)ds + oo / Yioo(s)ds
+ B(T) + All(T)E()ll(t) + A12(7’)212?t> + AQQ(T)EQQ(t)O
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From Ito’s lemma, we have

dG = uy - dYs(t) + (D1 S11 (1) + T1aX1a(t) + Ty Xao(t))dt
— B'(r)dt — A (7)1 (t)dt + Ay (7)dX1 (1)
— AL (T)S1a(t)dt + A (T)dS15(t) — Aby(T) S (t)dt + Ay (T)dE00(t)
= pqdt +0%dZy + 0%dZys + 05.d 2y + 05d 700 + 09dZE + 0§ dZF
+ oSdNy + 0§ dNy,

where
1
pe = us(r+ por — —222(t)>
+ TiXn(t) + F12212(t) + TaX0s(t) — B'(7)
AL D) — A () Sra(t) — Ap(r)Ean()
+ All(T)[Qll + Q(anll(t) + M12212<t)>}
+ Ap(7)[ 2 + M X1 (t) + (Mg + Mag)S1a(t) + M1aXas(1))]
+ (T)[QQQ + 2(M21212(t) + M22222<t)>}
0= (QZ]) QY

U1G1 = U091p1 + 2A11(7) Q11011 + A12(7)(Q12011 + Q11021)
+ 2A5(7)Q12091

U1G2 = U091p2 + 2A11(7) Q21011 + A12(7)(Q22011 + Q21021)
+  2A5(7)Q22091

UzGl = U092p1 + 2A11(T) Q11012 + A12(7)(Q12012 + Q11022)
+ 2A5(7)Q12092

UQGQ = U092p2 + 2A11(T) Q21012 + A12(7)(Q22012 + Q21022)
+  2A5(7)Q22092

G __ 2 2
oy = ug0211\/ 1 — pT — p3
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G _ 2 2
09 = U022\/ 1 — p1 — p3

U? = ’LLQZQl -+ All(T)Kﬁ) -+ Alg(T)Kl%) + AQQ(T)Kéé)

0'40 = UQZQQ -+ AH(T)KS) + Alg(T)Kl(g) + AQQ(T)Kég)

Applying Ito’s lemma to H = exp(G), we have

dH = Hpgdt+ H(0%dZy, + 0%dZyy + 05d 2y + 05%d 70 + 0¥ dZ + oS dZy
+  H(exp(c§) — 1)dNy; + H(exp(c§) — 1)d Ny,

where
i = pig + %[(Uﬁf +(013)" + (05)* + (05)° + (07)? + (05)°].
Since H is a martingale, we have
pr + M E(exp(0§) — 1) + Ay E(exp(c§) — 1) = 0.

And thus the functions A and B solve the system of matrix differential equa-

tions:
P I BOR)CHCa(1) — JoaB(Y2)Cor Co(1)]
+ T+ 2My A (1) + Moy Ava(7)
+ %(21411(7')@11 + A19(7)Q12)?
%(21411(7')@21 + A12(7')Q22)2
+ 01102(1)E(exp(cr§) —1)+ 02102(1)E(exp(af) —1)
dAclij_(T) = U1[7]1 - J21E(Y1)(011O2(2) + 01202(1)) - J22E(Y2)(02102(2) + 02202(1))]

Lo+ 2M1p Ay (1) + (Mg + Maz) Ava(7) + 2A55(7) M

(2411 (7)Qu1 + A12(7)Q12) (uapr + Ara(7) Q11 + 2A452(7)Q12)

(2A11(7)Q21 + Ara(7)Qa2) (u2p2 + A12(7) Qa1 + 2A2(7)Q22)

(C11Ca(2) + CraCs(1)) E(exp(ag’) — 1) + (Co1Ca(2) + CoaCs(1)) E(exp(af) —

+ o+ 4+
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dA22 (T)
dr

1
51 [7}2 - J21E(Yl)01202(2) - J22E(Y2)02202(2) -3

]
2
oo 4+ 2Mog Ago(T) + MiaAra(T)

%(Uﬂ)l + Aa(T) Q11 + 2425(7)Q12)?

5 (205 + Ars(7) @ + 2A0s(7) @)’

1
§U§(1 —pi —p3)

C1205(2) E(exp(0§) — 1) 4 CyCy(2) E(exp(af) — 1)

- -

+

+

dB(T)
dr

= usr + A11(T)Qll + Alz(T)le + A22(T)Q22-
where

OY(A(1)) = Elexp(tr(A(T)KW) +tr(TZy) + u1 Zyy + uaZs )],
@ZE(A(T)) e E[emp(tr(A(T)K(z)) + tr(T'Zy) + uy Z1a + uaZas)).

The boundary conditions are: B(0) =0 and A(0) = 0.
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Appendix: Proofs

For illustrative simplicity, we consider constant jump case in the proofs below.
Following similar steps, the general case where both jumps are random variables

could be easily obtained.

Proof of Proposition 1

Proof. Recall the first order condition (3.17) is

S(n+ ge) — JE[Y]C1DC, — 48 + Y NE[(1 + 7/ JiY) 7L Yi]et A4 = 0. (50)

=1

It can be re-written as

0 = X(n+g) — JE[Y]|Ci1XCy — yXm + JDy (7' J; A A (51)
= X(n+g) — JEY]C1XCy — vEm + JDy (7' J; A))C12Cy.  (52)

Hence for any £ = 1,2, ..,m, we have
0= 20+ g) — v, 2w+ J.J - (Dy(n'J; A) — E[Y]) - C12C%. (53)

Since X is a variable symmetric matrix,s the above equality implies

gt Ty + kg, +nd + ey — (7, + Jim) (54)
+ CyJlJ - (Dy (7' J; Ay) — E[Y]) - Cy + C) - (Dy (7' J; Ay) — E[Y]) - J'JuCly = 0
(55)

Multiplying J; from the left side and J; from the right side on the both sides
of (54), we obtain

Jilge + 1) = v Jim + (L C2) (JJ) - (Dy (' J; Ay) — E[Y]) - (C1 ) = 0. (56)

Note that we simply the above equation by exploiting the equalities, e.g. J.g; =
91 I

In virtue of the orthogonal decomposition of R"*!, we have the orthogonal

decomposition for 7:

r=JJJ)F+ Ity (57)
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for some 7 € R™*! 7, € Rr—mx1,

Plugging (57) into (56), we obtain the nonlinear equations for 7y, k = 1,2, ..., m:
Ji(ge +m) — 97 + (J,C2) (S ]) - (Dy (7' Ar) — E[Y]) - (CiJ) = 0. (58)

On the other hand, multiplying (Ji)') from the left side on the both sides of

(51), and similarly we can obtain

(Ji) (ge +m) =2 (Ji)m =0. (59)
Hence 7, = %(JL)’(glﬁ—n). O
Proof of Proposition 2

Proof. Since rank(J) = m, such a square matrix P always exists. (In fact,
J can be transferred to a matrix with pairwise orthogonal columns by row

transformations only if rank(J) = m). Denote
> = PP

Then under the transformation of P, the first order condition (3.17) becomes

Similar to the proof of Prop. 1, exploiting the symmetricalness of 3 and the

prosperities of matrix trace, we obtain

Ti(Ge +10) =7+ (JiCo) (i J) - (Dy (7 Ay) = E[Y]) - (Ci i) = 0.

O
Proof of Proposition 3
Proof. Under the conditions given, the first order condition (3.17) becomes
Yn — %7 + J(Dy (7' J;0) — E[Y])\ = 0. (60)

Multiplying ¥~! and J’ from the left hand side on the both side of the above

equality, we obtain

Jn—=~J'T+ (JENA (147" Ju) ™ = 1u =0, (61)
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where u is the constant jump size. Then since X is positive semi-definite, \; is
non-negative, and .J'n is positive as given, we obtain the conclusion straightfor-

wardly. O]



