
The Library
Geo-social media as a proxy for hydrometeorological data for streamflow estimation and to improve flood monitoring
Tools
Restrepo-Estrada, Camilo, de Andrade, Sidgley Camargo, Abe, Narumi, Fava, Maria Clara, Mendiondo, Eduardo Mario and Albuquerque, João Porto de (2018) Geo-social media as a proxy for hydrometeorological data for streamflow estimation and to improve flood monitoring. Computers & Geosciences, 111 . pp. 148-158. doi:10.1016/j.cageo.2017.10.010 ISSN 0098-3004.
|
PDF
WRAP-geo-social-media-proxy-hydrometeorological-data-streamflow-estimation-Albuquerque-2017.pdf - Accepted Version - Requires a PDF viewer. Available under License Creative Commons Attribution 4.0. Download (4Mb) | Preview |
Official URL: http://dx.doi.org/10.1016/j.cageo.2017.10.010
Abstract
Floods are one of the most devastating types of worldwide disasters in terms of human, economic, and social losses. If authoritative data is scarce, or unavailable for some periods, other sources of information are required to improve streamflow estimation and early flood warnings. Georeferenced social media messages are increasingly being regarded as an alternative source of information for coping with flood risks. However, existing studies have mostly concentrated on the links between geo-social media activity and flooded areas. Thus, there is still a gap in research with regard to the use of social media as a proxy for rainfall-runoff estimations and flood forecasting. To address this, we propose using a transformation function that creates a proxy variable for rainfall by analysing geo-social media messages and rainfall measurements from authoritative sources, which are later incorporated within a hydrological model for streamflow estimation. We found that the combined use of official rainfall values with the social media proxy variable as input for the Probability Distributed Model (PDM), improved streamflow simulations for flood monitoring. The combination of authoritative sources and transformed geo-social media data during flood events achieved a 71% degree of accuracy and a 29% underestimation rate in a comparison made with real streamflow measurements. This is a significant improvement on the respective values of 39% and 58%, achieved when only authoritative data were used for the modelling. This result is clear evidence of the potential use of derived geo-social media data as a proxy for environmental variables for improving flood early-warning systems.
Item Type: | Journal Article | |||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Subjects: | G Geography. Anthropology. Recreation > GB Physical geography H Social Sciences > HM Sociology |
|||||||||||||||||||||||||||||||||
Divisions: | Faculty of Social Sciences > Centre for Interdisciplinary Methodologies | |||||||||||||||||||||||||||||||||
Library of Congress Subject Headings (LCSH): | Hydrometeorological services, Streamflow, Social media | |||||||||||||||||||||||||||||||||
Journal or Publication Title: | Computers & Geosciences | |||||||||||||||||||||||||||||||||
Publisher: | Pergamon | |||||||||||||||||||||||||||||||||
ISSN: | 0098-3004 | |||||||||||||||||||||||||||||||||
Official Date: | 2018 | |||||||||||||||||||||||||||||||||
Dates: |
|
|||||||||||||||||||||||||||||||||
Volume: | 111 | |||||||||||||||||||||||||||||||||
Page Range: | pp. 148-158 | |||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.cageo.2017.10.010 | |||||||||||||||||||||||||||||||||
Status: | Peer Reviewed | |||||||||||||||||||||||||||||||||
Publication Status: | Published | |||||||||||||||||||||||||||||||||
Access rights to Published version: | Restricted or Subscription Access | |||||||||||||||||||||||||||||||||
Date of first compliant deposit: | 1 November 2017 | |||||||||||||||||||||||||||||||||
Date of first compliant Open Access: | 1 November 2017 | |||||||||||||||||||||||||||||||||
RIOXX Funder/Project Grant: |
|
|||||||||||||||||||||||||||||||||
Related URLs: |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year