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Abstract

We document that the cross-sectional dispersion of conditional FX correlation is countercyclical and that currencies

that perform badly (well) during periods of high dispersionyield high (low) average excess returns. We also find

a negative cross-sectional association between average FXcorrelations and average option-implied FX correlation

risk premiums. Our findings show that while investors in spotcurrency markets require a positive risk premium for

exposure to high-dispersion states, FX option prices are consistent with investors being compensated for the risk of

low-dispersion states. To address our empirical findings, we propose a no-arbitrage model that features unspanned FX

correlation risk.

JEL classification:F31, G15
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1. Introduction

It is well known that stock return correlations are countercyclical and correlation risk is priced, arguably due to the

reduction of diversification benefits that occurs when stockreturn correlations increase. However, existing literature

has largely ignored the foreign exchange (FX) market. In this paper, we explore the properties of FX correlations

using both spot and options market data and we propose a reduced-form no-arbitrage model that is consistent with our

empirical findings.

First, we document the empirical properties of conditionalFX correlations. We consider exchange rates against

the U.S. dollar (USD) and show that there exists substantialcross-sectional heterogeneity in the average conditional

correlation of FX pairs. Furthermore, using several business cycle proxies, we find that the cross-sectional dispersion

of FX correlations is countercyclical: FX pairs with high (low) average correlation become more (less) correlated

in adverse economic times. We exploit the cyclical properties of conditional FX correlation by defining an FX

correlation dispersion measure,FXC, and sort currencies into portfolios based on the beta of their returns with respect

to innovations inFXC, denoted by∆FXC. We find that currencies with low∆FXC betas have high average excess

returns, whereas currencies with high∆FXC betas yield low excess returns, suggesting that FX correlation risk has

a negative price in spot FX markets. In particular, in our benchmark sample of G10 currencies,HMLC, a currency

portfolio with a short position in the high∆FXC beta currencies and a long position in the low∆FXC beta currencies,

generates a highly significant average annual excess returnof 6.42% with a Sharpe ratio of 0.82.
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We continue our empirical investigation by using currency option prices to extract conditional FX correlation

dynamics under the risk-neutral measure. We calculate FX correlation risk premiums, defined as the difference between

conditional FX correlations under the risk-neutral measure and the physical measure, and we find a strongly negative

cross-sectional association between average FX correlations and average FX correlation risk premiums: FX pairs

characterized by low (high) average correlations tend to exhibit positive (negative) correlation risk premiums. Thus, the

cross-sectional dispersion of FX correlations is on average lower under the risk-neutral measure than under the physical

measure. We also document a very strong negative time-series association between FX correlations and FX correlation

risk premiums for almost all FX pairs. As regards cyclicality, FX pairs with high average correlation risk premiums

have countercyclical correlation risk premiums, whereas pairs with low correlation risk premiums have procyclical

premiums. Thus, bad states amplify the magnitude of FX correlation risk premiums, increasing their cross-sectional

dispersion.

We rationalize our empirical findings with a no-arbitrage model of exchange rates. The main tension we address is

between the physical and the risk-neutral measure FX correlation dynamics. Under the physical measure, the negative

association between∆FXC betas and currency returns suggests that U.S. investors require a positive risk premium for

being exposed to states in which the cross section of FX correlationswidens. However, FX options are priced in a

way that suggests that U.S. investors worry about states in which the cross section of FX correlationstightens, as the

risk-neutral measure FX correlation dispersion is on average lower than its physical measure counterpart. To address

this apparent contradiction, we propose a model in which FX correlation risk is not spanned by exchange rates: the

pricing kernel of U.S. investors is exposed to shocks that affect conditional FX correlations, but not exchange rates

themselves.

In the model, each country’s stochastic discount factor (SDF) is exposed to two global shocks, as well as a single

country-specific shock. Importantly, countries have heterogeneous loadings on the first global shock, but identical

loadings on the second global shock. As a result, the absenceof arbitrage in international financial markets suggests

that exchange rates are exposed only to the first global shock, whereas the second global shock cancels out and does not

affect exchange rates at all. The steady-state cross-sectional distribution of conditional FX correlations is determined

by the cross section of exposures to the first global shock: onaverage, the USD exchange rates of foreign countries with

similar exposure to the first global shock (called similar FXpairs) are more correlated than FX pairs of countries with

dissimilar global risk exposure (called dissimilar FX pairs). Crucially, the cross section of conditional FX correlations

exhibits time variation due to the fact that conditional FX correlations are determined by the relative importance of

country-specific risk and global risk, which varies over time. When the relative magnitude of country-specific SDF

shocks increases, the countries’ heterogeneous exposure to the first global shock becomes less important quantitatively,

and the cross section of conditional FX correlations tightens, with high correlation FX pairs becoming less correlated

and low correlation FX pairs more correlated. Conversely, arelative increase in the magnitude of global risk increases

the correlation of similar FX pairs and decreases the correlation of dissimilar FX pairs, widening the cross section of

conditional FX correlations.

In turn, the relative magnitude of country-specific and global risk is determined by the relative magnitude of the

local pricing factor, which prices country-specific risk and is exposed to the second global shock, and the global

pricing factor, which prices global risk and is exposed to the first global shock. When the second global shock has

an adverse realization, the local pricing factor increases, tightening the cross section of conditional FX correlations;

conversely, when the second global shock has a positive realization, the cross section of conditional FX correlation

becomes more dispersed. The reverse occurs for realizations of the first global shock: its adverse (positive) realizations

increase (decrease) the global pricing factor, widening (tightening) the cross section of FX correlations. Thus, the

cross section of conditional FX correlations is driven by both global shocks. In the model, both shocks are priced,

but not symmetrically: U.S. investors price the second shock more severely than the first, so they attach a high price

to states characterized by large relative values of the local pricing factor. Since those are exactly the states in which

the cross-sectional dispersion of FX correlation is tight,our model is able to match the cross sectional properties of

average correlation risk premiums implied by FX option prices.
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As regards spot FX markets, recall that exchange rate risk does not span FX correlation risk, as exchange rates are

unaffected by the second global shock. This lack of spanning allows our model to generate a negative relation between

∆FXC betas and currency returns: investing in exchange rates draws compensation solely for exposure to the first

global shock and, since negative realizations of that shocklead to a widening of the cross section of FX correlations,

investors require high returns for holding negative∆FXC beta currencies, which depreciate when the cross section of

conditional FX correlations becomes more dispersed.

In sum, conditional FX correlation, which can be indirectlytraded using currency options, is exposed to two

global shocks. U.S. investors price the second global shockmore severely than the first one, so FX correlation

risk premiums reflect the desire of currency option holders to primarily avoid states with negative realizations of the

second shock—those are the states characterized by a tightening of the cross-sectional dispersion of FX correlation,

and currency option prices reveal that feature. On the otherhand, investing in foreign currency exposes investors only

to the first global shock, so currency risk premiums reflect solely FX investors’ desire to avoid the corresponding bad

states—those states are characterized by a widening of the cross-sectional dispersion of FX correlation, and currency

risk premiums compensate investors for exposure to those states. Thus, it is the lack of spanning of FX correlation risk

by exchange rates and currency returns, and in particular the lack of exposure of exchange rates to the second global

shock, that allows our model to jointly address the empirical properties of FX correlations, currency risk premiums and

FX correlation risk premiums.

A simulated version of our model generates realized FX correlations, implied FX correlations and FX correlation

risk premiums that match the cross-sectional and time-series properties of their empirical counterparts, all the while

fitting the standard exchange rate, interest rate and inflation moments.

Related literature: This paper is part of the literature addressing the salient empirical properties of FX markets. Our

model builds on the work of Lustig, Roussanov and Verdelhan (2011, 2014) and Verdelhan (2015); their models feature

global SDF shocks, common across countries, and local SDF shocks, independent across countries. Importantly, they

assume that the price of country-specific shocks is uncorrelated across countries, as local pricing factors are perfectly

negatively correlated with the corresponding country-specific shocks. We show that allowing for cross-country

comovement of the local pricing factors is crucial for explaining the joint behavior of FX correlations under the physical

and the risk-neutral measure.

Our model assumes ex ante heterogeneity across countries regarding their exposure to global shocks. Recent

international finance models that address the cross sectionof currency risk premiums by assuming ex ante heterogeneity

across countries include Hassan (2013), Tran (2013), Backus, Gavazzoni, Telmer and Zin (2013), Colacito and Croce

(2013), Colacito, Croce, Gavazzoni and Ready (2015), and Ready, Roussanov and Ward (2016). In all models, high

(low) interest rate currencies are risky (hedges) because they depreciate (appreciate) in bad global states. This is

because high interest rate countries are those with low exposure to global risk: small countries, countries with smooth

non-traded output, countries with very procyclical monetary policy, commodity producers, or countries with low

exposure to global long-run endowment shocks, depending onthe model.

Finally, our paper is related to the literature on currency options. Whereas most of that literature focuses on crash risk,

especially in the context of the FX carry trade—see, for example, Farhi, Fraiberger, Gabaix, Ranciere and Verdelhan

(2015), Jurek (2014) and Chernov, Graveline and Zviadadze (2016)—our aim is to use option prices to study the

properties of FX correlation risk premiums.

The rest of the paper is organized as follows. Section 2 describes the data. Section 3 reports our empirical findings

regarding the cross-sectional and time-series propertiesof FX correlations, as well as the pricing of correlation risk

in currency markets. Our empirical findings concerning FX correlation risk premiums are presented in Section 4.

Section 5 introduces our no-arbitrage model, and Section 6 concludes. The Appendix contains details on the

construction of the realized and implied FX correlation measures, results on the price of FX correlation risk, and

model details, including details on the model calibration and simulation. Additional results and robustness checks are

deferred to an Online Appendix.
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2. Data

Our benchmark sample period starts in January 1996 and ends in December 2013, and is dictated by the availability

of the currency options data.

Spot and forward exchange rates:To calculate physical measure FX moments, we use daily spot exchange rates

from WM/Reuters obtained through Datastream. From the same source,we also collect one-month forward rates to

calculate forward discounts.

Following the extant literature (see, e.g., Fama, 1984), wework with log spot and log one-month forward exchange

rates, denotedsi
t = ln(Si

t) and f i
t = ln(F i

t), respectively; both are expressed in units of foreign currency per USD.1

We use the U.S. dollar as the base currency, so superscripti always denotes the foreign currency. Monthly log excess

returns from holding the foreign currencyi are computed asrxi
t+1 = f i

t − si
t+1. Our benchmark sample comprises the

nine G10 foreign currencies (AUD, CAD, CHF, EUR, GBP, JPY, NOK, NZD, SEK) from January 1996 to December

2013. For robustness checks, we also consider the longer January 1984 to December 2013 sample period. Before the

introduction of the EUR in January 1999, we use the German Mark (DEM) in its place.

Table 1 presents the properties of the G10 currency excess returns. In line with the literature on the FX carry trade,

we find that currencies with high (low) nominal interest rates tend to yield high (low) average dollar excess returns: the

NZD and the AUD are characterized by high nominal interest rates, as well as high average excess returns, while the

reverse is true for the JPY and the CHF.

[Insert Table 1 here.]

For robustness, we extend the cross section of currencies and consider two additional currency sets: developed and

emerging market currencies. The developed country sample,apart from the G10 currencies, includes the currencies

of Austria, Belgium, Denmark, Finland, France, Greece, Italy, Ireland, Netherlands, Portugal, and Spain. The full

sample includes all the developed country currencies, along with the currencies of the Czech Republic, Hungary,

India, Indonesia, Kuwait, Malaysia, Mexico, Philippines,Poland, Singapore, South Africa, South Korea, Taiwan, and

Thailand.2

Currency options: We use daily over-the-counter (OTC) G10 currency options data from J. P. Morgan. In addition to

the nine currency pairs versus the U.S. dollar, we also have options data for all 36 cross rates. The options used in this

study are plain-vanilla European calls and puts, with five option series per currency pair. Specifically, we focus on the

one-month maturity and a total of five different strikes: at-the-money (ATM), 10-delta and 25-delta calls, as well as

10-delta and 25-delta puts.

3. Exchange rate correlations

In this section, we document that the cross-sectional dispersion of conditional FX correlation is countercyclical.

Following that observation, we construct an FX correlationdispersion measure,FXC, and sort currencies into

portfolios based on their return exposure toFXC innovations, denoted by∆FXC. We find a negative association

between∆FXC betas and currency excess returns, suggesting that currency exposure to FX correlation risk is

compensated with a positive risk premium.

3.1. Properties of exchange rate correlations

We use daily spot exchange rates to calculate conditional FXcorrelations under the physical measure. In particular,

we proxy the conditional one-month correlation of each FX pair at time t with its realized correlation over a rolling

1WM/Reuters forward rates are available from 1997 onwards. For 1996, we either use forward rates from alternative sources orwe construct

‘implied’ forward rates using the interest rate differential between the U.S. and the foreign country using interest rate data from Datastream, exploiting

the fact that covered interest rate parity holds during normal conditions. We verify that our results are robust to usingthe WM/Reuters data only.
2We start with the same set of currencies used in Lustig, Roussanov and Verdelhan (2011). However, we exclude some currencies, such as the

Hong Kong dollar, as they are pegged to the USD. We also exclude the Danish krone after the introduction of the EUR.
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three-month window of past daily observations. Appendix A provides the details. In the remainder of the paper, we

will often refer to physical measure conditional FX correlation as realized FX correlation, to distinguish it from the

option-implied risk-neutral measure FX correlation (implied FX correlation).3

The first two columns of Table 2 report the time-series mean and standard deviation of the conditional FX correlation

of each of the 36 G10 FX pairs. The mean conditional correlation is positive for all 36 FX pairs, indicating that all

pairs of USD exchange rates exhibit positive comovement on average. The cross-sectional average of the conditional

correlation means is 0.45, but there is substantial cross-sectional heterogeneity: the means range from almost zero

(CAD/JPY with 0.05, indicating that fluctuations in the relative price of the CAD and the JPY against the USD

are almost disconnected), to almost one (CHF/EUR with 0.89).4 Furthermore, conditional FX correlations exhibit

considerable variability across time: the cross-sectional average of the standard deviation of conditional FX correlations

is 0.23, ranging from 0.09 (EUR/NOK pair) to 0.34 (AUD/JPY pair), suggesting non-trivial swings in the degree of

exchange rate comovement across time for all FX pairs.

[Insert Table 2 here.]

Given the time variation in conditional FX correlations, itis worth exploring whether that time variation is cyclical

and, if so, whether there is any cross-sectional heterogeneity in its properties. To that end, we consider the comovement

of conditional FX correlations with market variables that are well-known to exhibit countercyclical behavior. The

market variables we consider are a global equity volatilitymeasure (GVol), a global funding illiquidity measure (GFI),

the TED spread (T ED), and the VIX (VIX). GVol is constructed as in Lustig, Roussanov and Verdelhan (2011). GFI

is constructed following the methodology of Hu, Pan and Wang(2013), but calculated using an international sample

of government bond securities as in Malkhozov, Mueller, Vedolin and Venter (2016).T ED is the spread between the

three-month USD LIBOR and the three-month Treasury Bill rate and is available in FRED.VIX is backed out from

options on the S&P 500 stock index and available from the CBOE. T ED andVIX are U.S.-specific measures, but

are often used as global market indicators.GVol andGFI are calculated using international data in local currencies.

For each FX pair and each market measure, we define the cyclicality measure to be the unconditional correlation of

the market variable with the conditional correlation of theFX pair. Thus, we calculate four FX correlation cyclicality

measures for each exchange rate pair, each corresponding toa market variable. We present the cyclicality measures for

the 36 G10 FX pairs in the first four columns of Table 3.

[Insert Table 3 here.]

As seen in the table, we find substantial cross-sectional heterogeneity regarding the cyclicality properties of

conditional FX correlations. To determine whether there isa cross-sectional pattern, we plot each cyclicality measure

of the 36 FX pairs against their average conditional correlation; Panels A to D in Figure 1 present the plots for the four

cyclicality measures. Each panel also presents the line of best fit from the corresponding cross-sectional regression.

We report the details of the four cross-sectional regressions in Panel A of Table 4: for each regression, we document

the point estimate of the slope coefficient, its asymptotic t-statistic, and the 95% bootstrapped confidence interval (2.5

and 97.5 bootstrap percentiles), as well as the regressionR2. The asymptotic t-statistic is calculated using White (1980)

standard errors that adjust for cross-sectional heteroskedasticity, while the bootstrapped confidence interval accounts

3For robustness, we also proxy the conditional one-month correlation of each FX pair at timet with its realized correlation over a rolling

one-month window of past daily observations, as well as withits realized correlation during the one-month ahead period, i.e. from t to t + 1. Our

empirical results are robust to those alternative specifications. We report some of our findings for correlation risk premiums using the alternative

realized correlation proxies in the Online Appendix.
4Beginning September 2011, the Swiss National Bank imposed acap in the relative value of the CHF by establishing a floor of 1.2 CHF per

EUR. The average correlation between the CHF/USD exchange rate and the EUR/USD exchange rate in the period before the cap (0.887) is almost

identical to their average correlation during the cap period (0.895). Given that the cap does not seem to have changed thebehavior of the CHF, we

choose to retain the CHF in our sample after September 2011. We have verified that removing the CHF during the cap period does not materially

affect our results.

5



for potential small sample effects. All four slope coefficients are positive and statistically significant at the 5% level

using either the asymptotic or the bootstrapped distribution, suggesting a positive cross-sectional association between

average conditional FX correlation and FX correlation cyclicality. Indeed, Figure 1 shows that the FX pairs with high

average correlation tend to exhibit countercyclical correlations, whereas the FX pairs with low average correlation are

characterized by procyclical FX correlations.5

[Insert Figure 1 and Table 4 here.]

Our findings imply that in periods characterized by adverse economic conditions or market stress, the cross section of

conditional FX correlations widens, as high correlation FXpairs become more correlated and low correlation FX pairs

become less correlated. To further explore the time-seriesproperties of the cross-sectional dispersion in conditional

FX correlation, we construct a conditional FX correlation dispersion measure, calledFXC, as follows: each periodt,

we sort all FX pairs in deciles on their conditional correlation, calculate the average conditional correlation for thetop

and bottom deciles (which consist of four FX pairs each), andtake the difference between the top and the bottom decile

averages to be our dispersion measure att, FXCt. Due to the time variation in conditional FX correlations, there is

turnover in both the top and bottom deciles; to eliminate composition effects, we also compute an alternative dispersion

measure (FXCUNC) by considering top and bottom deciles of FX pairs formed using average conditional correlations.

We plot the time series of the level of the two FX correlation dispersion measures in Panel A of Figure 2.6 The

correlation betweenFXC andFXCUNC is 0.86, indicating that the two measures are very similar. Indeed, during the

financial crisis the two measures are almost perfectly correlated, as there is little turnover in the extreme deciles of FX

conditional correlation. To evaluate the cyclicality properties of the FX correlation dispersion measures, we explore

their association with the market variables we use to measure the cyclicality of FX correlations. For reference, in Panel

B of Figure 2 we plot the (standardized) market variables. Panel A of Table 5 reports the unconditional correlations

between our two FX correlation dispersion measures and the market variables, in the January 1996 to December 2013

sample period, along with their bootstrap standard errors.Both dispersion measures—FXC andFXCUNC—have a

positive correlation with all four market variables; in alleight cases, bootstrap confidence intervals (which accountfor

non-normality in small samples and are not reported in Table5) indicate that the correlation is statistically significant

at the 1% level. Panel B repeats the same exercise for the longer January 1984 to December 2013 period; again all

eight correlations of interest are positive and significantat the 1% level.

[Insert Figure 2 and Table 5 here.]

3.2. Correlation risk and the cross section of currency returns

We can now explore how exposure to FX correlation risk relates to currency returns. To do so, we sort currencies

into portfolios based on the exposure (beta) of currency excess returns to innovations in our dispersion measureFXC;

innovations betweent andt + 1 are denoted by∆FXCt+1 and are defined as the average of changes (first differences)

in conditional FX correlation for the FX pairs that belong tothe top decile in periodt minus the corresponding average

for the bottom decile.7 Our currency portfolios are rebalanced monthly: each montht we calculate rolling∆FXC

return betas using the last 36 monthly observations. Hence,each montht currency portfolios are formed using only

information available at timet.

We sort the nine G10 currencies into three portfolios; the first portfolio (Pf1C) contains the currencies with the

lowest∆FXC betas while the last portfolio (Pf3C) contains the highest∆FXC beta currencies. Of particular interest

5We also calculate the cross-sectional correlation coefficient between average FX correlations and each of the four cyclicality measures; the

cross-sectional correlation coefficients are 0.37 for GVol, 0.57 for GFI, 0.70 for TED and 0.38 for VIX.
6The Online Appendix presents additional results using alternative construction methods forFXC. We find that our portfolio results are robust

to those alternative specifications.
7Innovations inFXC are not the first differences inFXC, as the composition of the deciles changes over time. On the other hand, since the FX

pairs used to calculateFXCUNC are fixed, innovations inFXCUNC can be simply defined as first differences in the level of the factor.
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is theHMLC portfolio, which takes a long position in Pf3C and a short position in Pf1C. Panel A of Table 6 reports

the summary statistics for the three∆FXC-beta-sorted currency portfolios, as well as theHMLC portfolio. Notably,

average portfolio returns are monotonically decreasing inthe∆FXC beta:∆FXC is a priced currency risk factor. As a

result, the average return toHMLC is negative and highly statistically significant: shortingtheHMLC portfolio yields

an annualized average excess return of 6.42% with a t-statistic of 3.47, and an associated Sharpe ratio of 0.82.

[Insert Table 6 here.]

Our finding of a strongly negative return forHMLC is robust to different sample periods. In particular, we consider

following periods: January 1996 to July 2007, January 1984 to December 2013, and January 1984 to July 2007;

two of those periods end before the recent financial crisis. Our findings are reported in Panels B to D of Table 6.

Consistent with our results for the benchmark period, we findan inverse relation between exposure to the FX correlation

factor∆FXC and average currency portfolio excess returns in each of thethree periods. Excluding the financial crisis

increases the average excess return of shorting theHMLC portfolio to 7.35%, with an associated Sharpe ratio of

1.10 (Panel B). On the other hand, return differences across portfolios somewhat attenuate when the sample period

is extended back to January 1984 (Panels C and D), but shorting theHMLC portfolio still yields highly significant

annualized average excess returns (3.72% and 3.45%, respectively). Overall, our results are very robust to different

sample periods and do not appear to be driven by the recent financial crisis.

For further robustness, we also explore extended cross sections of currencies: in particular, we consider a sample

that includes other developed country currencies (called the developed country sample) and a sample that includes the

entirety of the developed sample and also some emerging currencies (called the full sample).8 For each of the two

extended samples, we construct four∆FXC-beta-sorted portfolios. Figure 3 presents the average excess returns of

∆FXC-beta-sorted currency portfolios for each of three sets of currencies (G10, all countries and developed countries)

and each of the four periods discussed above. We find a consistently negative association between average portfolio

excess returns and exposure to correlation risk, with negative averageHMLC returns across the board. Furthermore,

averageHMLC returns are significant at the 5% level for all currency and period samples, with the sole exception of

the samples starting in 1984 for the full set of currencies. For the benchmark period from January 1996 to December

2013, the average annualized return of shortingHMLC in the developed country sample is 5.46% (with a t-statisticof

2.42) and the associated Sharpe ratio is 0.57. For the full cross section of currencies, shortingHMLC yields 4.04% on

average (with a t-statistic of 1.97) and a Sharpe ratio of 0.46.

[Insert Figure 3 here.]

Finally, given the significant excess returns to theHMLC portfolio, we attempt to determine the market price of

FX correlation risk. We follow the extant literature and consider a linear pricing model with two traded factors: the

first factor is the dollar factorDOL, defined as the simple average of all available FX excess returns and shown by

Lustig, Roussanov and Verdelhan (2011) to act as a level factor for currency returns, and the second factor isHMLC,

the return difference between the high and low∆FXC beta portfolios for the sample of G10 currencies. Our estimates

for the market price ofHMLC range from−51 to−67 basis points per month, depending on the set of test assets, so

HMLC acts as a slope factor for pricing currency risk. The resultsare presented in detail in Appendix B.

4. Exchange rate correlation risk premiums

In this section, we document the cross-sectional and time-series properties of FX correlation risk premiums (CRP)

and explore the relation between FX correlation risk premiums and FX correlations.

8The full list of currencies in each sample is given in Section2 of the paper.
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4.1. The cross-sectional properties of correlation risk premiums

In consistence with the literature on variance and correlation risk premiums in other asset classes, we define FX

correlation risk premiums as the difference between expected conditional FX correlations underthe risk-neutral (Q)

and the physical (P) measure:

CRPi, j
t,T ≡ EQ

t

(
∫ T

t
ρ

i, j
u du

)

− EP
t

(
∫ T

t
ρ

i, j
u du

)

. (1)

We only consider one-month premiums, i.e.T = t + 1, as the maturity of the FX options we use to derive risk-neutral

measure moments is one month.9

To calculate the risk-neutral (implied) conditional FX correlation, we follow the literature on model-free measures

of implied volatility and covariance using daily FX option prices. The details of the calculations are presented in

Appendix C. Given the availability of FX options, we calculate correlation risk premiums for each of the 36 FX pairs

formed using the nine G10 exchange rates against the USD. Foreach FX pair not involving the EUR, our sample period

starts in January 1996 and ends in December 2013, for a total of 216 monthly observations. For the EUR, the options

data start in January 1999.

The time-series mean and standard deviation of the implied FX correlations of each of the 36 G10 FX pairs are

reported in Table 2. The cross-sectional average of impliedFX correlation means is 0.48, slightly higher than its

physical measure counterpart (0.45). Importantly, there is less heterogeneity in conditional FX correlation means

under the risk-neutral measure than under the physical measure: the lowest implied FX correlation mean is 0.14

(CAD/JPY pair) and the highest is 0.88 (CHF/EUR pair), whereas realized correlation means range from 0.05 to 0.89.

The volatility of implied FX correlations is of the same order of magnitude as the volatility of realized FX correlations,

with standard deviations ranging from 0.07 to 0.34 and theircross-sectional average being 0.19.

Finally, the last five columns of Table 2 present the descriptive statistics for FX correlation risk premiums. From

left to right, we report the time-series mean and standard deviation of the correlation risk premium of each FX pair,

followed by the asymptotic t-statistic and the bootstrapped 95% confidence interval of the CRP mean. CRP means

exhibit considerable cross-sectional heterogeneity, with their size and sign varying greatly across FX pairs: they range

from −0.069 (CAD/SEK) to 0.099 (JPY/NOK), with the cross-sectional average being 0.016. Roughly two thirds of

CRP means are positive and one third are negative; overall, three quarters of the means are significant at the 5% level

according to either the asymptotic or the bootstrapped distribution.10 Furthermore, correlation risk premiums are very

volatile: despite the fact that premiums are much smaller than either realized or implied FX correlations, CRP standard

deviations are of the same order of magnitude as those of realized or implied correlations (ranging from 0.06 to 0.22,

with a cross-sectional average of 0.14), suggesting that there is substantial time variation in the disparity between

physical measure and risk-neutral measure FX correlations.

To explore whether average FX correlation risk premiums exhibit a cross-sectional pattern, we plot the average

CRP of all G10 exchange rate pairs against their average realized correlations. Figure 4 presents the scatterplot, along

with the line of best fit. The cross-sectional correlation between average FX correlation risk premiums and average

FX realized correlations is−0.55. For example, the AUD/JPY pair, characterized by a very low average realized FX

correlation (0.16), has a positive and highly significant average CRP of 0.083. On the other hand, the AUD/NZD

pair has a very high average realized correlation (0.76) anda negative and significant average premium (−0.016). A

cross-sectional regression of average correlation risk premiums on average realized correlations yields a statistically

significant slope coefficient of−0.144.11 The strongly negative cross-sectional association between average realized

9Variance risk premiums are defined analogously as the difference in expected conditional FX variance between the risk-neutral and the physical

measure. A brief discussion of their summary statistics, aswell as the summary statistics of physical measure (realized) and risk-neutral measure

(implied) FX variance, is deferred to the Online Appendix. Inter alia, FX variance is studied in Cenedese, Sarno and Tsiakas (2014), who find that a

high cross-sectional average of currency excess return variance predicts carry trade losses.
10In terms of size, the maximum FX correlation risk premium we find is about half of the equity correlation risk premium reported by

Driessen, Maenhout and Vilkov (2009).
11Its asymptotic t-statistic, calculated using White (1980)standard errors, is−5.80 and the bootstrapped 95% confidence interval is

[−0.154,−0.076].
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FX correlations and average FX correlation risk premiums iswhat generates the tighter cross-sectional distribution of

average implied FX correlations versus that of realized FX correlations that we discussed earlier.

[Insert Figure 4 here.]

The relative tightness of the cross-sectional distribution of conditional FX correlation under the risk-neutral measure

implies a potential tension regarding the pricing of FX correlation risk. On the one hand, the negative association

between∆FXCbetas and currency excess returns suggests that U.S. investors require a risk premium for being exposed

to states in whichFXC increases, i.e. in which the cross section of FX correlations widens. However, FX options are

priced in a way that indicates that U.S. investors price states in which the cross section of FX correlations tightens. In

the next section, we will address this tension by proposing ano-arbitrage model that features unspanned FX correlation

risk.

4.2. The time-series properties of correlation risk premiums

We now turn to the time-series properties of implied FX correlations and FX correlation risk premiums. The first

four columns of Table 7 provide summary statistics on the time-series association between realized and implied FX

correlations: for each FX pair, we report the unconditionalcorrelation coefficient between the two time series, as well

as its asymptotic t-statistic and its 95% bootstrapped confidence interval. Realized and implied correlations exhibit

substantial comovement across time for all FX pairs, with the unconditional correlations between the two ranging from

0.28 to 0.92, all being statistically significant, and the cross-sectional mean being 0.79.

[Insert Table 7 here.]

The last four columns of Table 7 report descriptive statistics on the unconditional correlation between realized

FX correlations and FX correlation risk premiums. We find that the cross-sectional average of those unconditional

correlation coefficients is−0.52 across the 36 G10 FX pairs, suggesting that elevated FX correlation is typically

associated with lower than usual CRP, i.e., with a lower thanusual disparity between the physical measure and the

risk-neutral measure FX correlation. This association is pervasive and robust: 35 of the 36 unconditional correlation

coefficients are negative, with all but one of them being statistically significant.

Finally, to assess the cyclicality of correlation risk premiums, we construct CRP cyclicality measures. As we

did for FX correlations, we define our CRP cyclicality measures to be the unconditional correlations between FX

correlation risk premiums and the four market variables we used before. The last four columns of Table 3 report the

four CRP cyclicality measures for each of the 36 G10 FX pairs,and Panels A to D of Figure 5 plot those cyclicality

measures against average FX correlation risk premiums. We find a positive cross-sectional association: FX pairs

with high average CRP have countercyclical correlation risk premiums, whereas pairs with low average CRP have

procyclical premiums. The regression results in Panel B of Table 4 suggest that this positive cross-sectional association

is statistically significant for all four cyclicality measures.12 Thus, the cross-sectional dispersion in FX correlation risk

premiums is countercyclical: in bad times, the premiums of FX pairs with high average CRP increase and the premiums

of FX pairs with low average CRP decline, widening the cross-sectional distribution of FX correlation risk premiums.

[Insert Figure 5 here.]

5. A no-arbitrage model of exchange rates

In this section, we introduce a reduced-form, no-arbitragemodel of exchange rates that is consistent with our

empirical findings. Our model builds on the reduced-form models in Lustig, Roussanov and Verdelhan (2011, 2014)

12We also calculate the cross-sectional correlation coefficient between average CRP and each of the four CRP cyclicality measures; the

cross-sectional correlation coefficients are 0.47 for GVol, 0.79 for GFI, 0.69 for TED, and 0.58 for VIX.
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and Verdelhan (2015). In contrast to those models, which assume that innovations in the price of country-specific

shocks are uncorrelated across countries, we assume that local risk is priced identically across countries. This

assumption implies a lack of spanning of FX correlation riskby exchange rates, a feature that is crucial in jointly

explaining the behavior of FX correlations and FX correlation risk premiums.

5.1. Model setup

The global economy comprisesI + 1 countries (i = 0, 1, . . . , I ), each with a corresponding currency. Without loss of

generality, we will call countryi = 0 the domestic country and countriesi = 1, ..., I the foreign countries. We assume

that financial markets are frictionless and complete, so that there is a unique stochastic discount factor (SDF) for each

country, but that frictions in the international market forgoods induce non-identical stochastic discount factors across

countries. In particular, the log SDF of countryi, denoted bymi , is exposed to two global shocks,uw andug, and a

country-specific (local) shockui, and satisfies

−mi
t+1 = α + χzt + ϕz

w
t +
√
κztu

i
t+1 +

√

γizw
t uw

t+1 +
√

δztu
g
t+1, (2)

wherezandzw is the local and the global pricing factor, respectively. Both pricing factors are common to all countries.

Notably, countries are ex ante heterogeneous only with regard to their exposureγ to the first global shockuw; all other

SDF parameters are identical across countries. As we will see, differences inγ capture an exchange rate fixed effect

that generates, inter alia, cross-sectional differences in average FX correlations. In our model, global risk exposureγ

is exogenous.13.

The local pricing factorzprices both the local shockui and the second global shockug: in all countries, the price of

the local shock is
√
κzt and the price of the second global shock is

√
δzt. On the other hand, the first global shockuw is

differentially priced across countries, with its price in country i being
√

γizw
t .

The two pricing factors are stationary processes. The localpricing factorz is driven by the second global shockug,

and has law of motion

∆zt+1 = λ(z̄− zt) − ξ
√

ztu
g
t+1. (3)

Thus, the local pricing factor is a square root process, reverting to its unconditional mean of ¯z at speedλ. Importantly,

the local pricing factor is countercyclical, as adverseug shocks increase its value.

The global pricing factorzw is driven by the global shockuw; it is also a square root process, with law of motion

∆zw
t+1 = λ

w(z̄w − zw
t ) − ξw

√

zw
t uw

t+1, (4)

which also implies countercyclical pricing of risk. To ensure that both pricing factors are strictly positive, we impose

the Feller conditions 2λz̄> ξ2 and 2λwz̄w > (ξw)2. All parameters exceptα, χ andϕ are strictly positive and all shocks

are i.i.d. standard normal.

Finally, the inflation process for countryi is given by

πi
t+1 = π̄ + ζz

w
t +
√
σηi

t+1. (5)

Expected inflation rates are time varying and identical across countries. However, realized inflation rates differ across

countries, as inflation shocksηi are i.i.d. standard normal. Conditional inflation varianceis constant and equal toσ

and inflation shocks are unpriced, so the model does not feature any inflation risk premiums. As a result, all the salient

economic mechanisms in the model arise from real variables,as nominal variables inherit all the conditional properties

of their nominal counterparts. For that reason, we will discuss the model intuition using real variables and will consider

nominal variables only in the simulation section.

13Richer models that endogenize unconditional cross-sectional differences in global risk exposure include Hassan (2013), Tran(2013),

Backus, Gavazzoni, Telmer and Zin (2013), Colacito, Croce,Gavazzoni and Ready (2015) and Ready, Roussanov and Ward (2016).
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5.2. The properties of conditional FX moments

We denote the real log exchange rate between foreign currency i and the domestic currency byqi (units of foreign

currency per unit of domestic currency, in real terms). As a result of financial market completeness, real exchange rate

changes equal the SDF differential between the two countries,

∆qi
t+1 = m0

t+1 −mi
t+1, (6)

which implies that real exchange rate changes can be decomposed into a part driven by country-specific shocks and a

part that reflects exposure to global risk:

∆qi
t+1 =

√
κztu

i
t+1 −

√
κztu

0
t+1 +

(

√

γi −
√

γ0

)

√

zw
t uw

t+1. (7)

If the foreign country has a higher (lower) exposureγ to global shockuw than the domestic country, its currency

appreciates (depreciates) against the domestic currency when a negativeuw realization occurs. On the other hand,

exposure to the second global shockug drops out of exchange rate changes since all countries have the same loading

onug, and, thus, the only global shock that affects exchange rate changes directly isuw. Therefore, in the remainder of

the paper, global FX risk always refers to the first global shock uw.

We now turn to conditional FX moments. The conditional variance of changes in the log real exchange ratei is

increasing in both the local pricing factorzand the global pricing factorzw:

vart
(

∆qi
t+1

)

= 2κzt +

(

√

γi −
√

γ0

)2

zw
t . (8)

The first effect arises from the country-specific component of stochastic discount factors: given the independence of

local shocks across countries, the higher the impact of local shocks on the SDF, the more the two SDFs diverge and,

hence, the more volatile the exchange rate is. The second effect arises from the global component of SDFs: the higher

the difference in global risk exposure between countryi and the domestic country, and the more severely global risk

exposure is priced, the more volatile the real exchange rateis.

The conditional covariance of changes in log real exchange ratesi and j is

covt

(

∆qi
t+1,∆q j

t+1

)

= κzt + Di, jzw
t , (9)

where we define the constantDi, j as follows:

Di, j ≡
(

√

γi −
√

γ0

) (

√

γ j −
√

γ0

)

. (10)

We call exchange rate pairs (i, j) that satisfyDi, j > 0 “similar” and exchange rate pairs that satisfyDi, j < 0 “dissimilar”.

Thus, similar exchange rates correspond to foreign countries which both have either more or less exposure to global

risk than the domestic country, whereas dissimilar exchange rates correspond to pairs of foreign countries in which one

country has higher, and the other country lower, exposure toglobal risk compared with the domestic country.

The first component of conditional FX covariance is due to thecommon exposure of the two exchange rates to the

domestic local shock, as the two exchange rates are mechanically positively correlated through their relation to the

domestic SDF. Whenz increases, this “domestic currency effect” becomes more prevalent, increasing the covariance

between the two exchange rates, as both foreign currencies appreciate or depreciate together against the domestic

currency.

The second component captures FX comovement that arises from exposure to global FX risk. Foreign countries with

similar exposure to the global shockuw (i.e. countries that satisfyDi, j > 0) have exchange rates that covary more than

the exchange rates of countries that have dissimilar exposure to global FX risk. Furthermore, fluctuations inzw have

different effects on conditional FX covariance, depending on the type of the FX pair: an increase in the global pricing

factor amplifies the importance of exposure to global risk and, thus, increases the conditional covariance of similar

exchange rates and reduces the covariance of dissimilar exchange rates.
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We can now turn to conditional FX correlations. As happens for FX covariances, country heterogeneity in exposure

to the global shockuw generates cross-sectional heterogeneity in average conditional FX correlations: similar FX pairs

have higher correlations on average than dissimilar ones. Furthermore, the time variation in the pricing factorszw

andz introduces time variation in the conditional correlation of both similar and dissimilar FX pairs and, thus, in the

cross-sectional distribution of conditional FX correlation.

To illustrate the effects of the two pricing factors on conditional FX correlations, we consider a world ofI = 3 foreign

countries. Countries 1 and 2 are less exposed to global FX risk than the domestic country, while country 3 is more

exposed than the domestic country. This implies that the FX pair (1,2) is similar whereas FX pair (1,3) is dissimilar.

To ensure symmetry, we set the values of the country exposures to global risk such that the conditionD1,2 = −D1,3 > 0

is satisfied.

[Insert Figure 6 here.]

We first consider the impact of the global pricing factorzw; the left panels of Figure 6 present the results. In particular,

Panels A, C and E plot conditional FX correlations as a function of zw for different values of the local pricing factor

(z= 0.2z̄, z̄ and 5z̄, depicted with circles, solid lines and squares, respectively). Panel A refers to the similar exchange

rate pair (1,2), Panel C to the dissimilar exchange rate pair(1,3) and Panel E plots the difference in the conditional FX

correlations of the two FX pairs. An increase in the global pricing factorzw raises the relative importance of exposure

to the global shockuw, amplifying similarities and dissimilarities: similar FXpairs (Panel A) become more correlated,

whereas dissimilar FX pairs (Panel C) become less correlated. Whenzw → ∞, similar exchange rates become perfectly

positively correlated and dissimilar exchange rates become perfectly negatively correlated. Taken together, these results

imply that the disparity in conditional FX correlation across exchange rate pairs is increasing inzw (Panel E).

We now turn to the effects of the local pricing factorz. The results are presented in the right panels of Figure 6;

Panels B, D and F plot the sensitivity of conditional FX correlations to the value of the local pricing factorz for different

values of the global pricing factor (zw = 0.2z̄, z̄ and 5z̄), with Panel B referring to the similar FX pair, Panel D to the

dissimilar FX pair and Panel F to the difference in the two pairs’ conditional FX correlations. Recall that an increase

of the local pricing factorz increases both the variance of all exchange rates and the covariance of all exchange rate

pairs, due to the domestic currency effect. However, the impact of that effect on FX correlation depends on the type of

the FX pair. Whenz→ ∞ the correlation of all FX pairs converges to 0.5. This happens because all cross-sectional

differences in global risk exposure become second-order and what ultimately drives FX comovement is the domestic

currency effect. In particular, the limit behavior of log exchange rate changes is described by

∆qi
t+1 →

√
κztu

i
t+1 −

√
κztu

0
t+1, (11)

so exposure to the domestic local shock, which accounts for half of the conditional FX variance and generates all

the FX comovement, pushes all FX correlations towards 0.5. Due to the domestic currency effect, when the local

pricing factor increases, the importance of similar or dissimilar exposure to global risk is attenuated. As a result, the

conditional correlation of similar exchange rates declines (Panel B), whereas the conditional correlation of dissimilar

exchange rates increases (Panel D), leading to a tighteningof the cross section of conditional FX correlations (Panel

F).

In sum, the cross-sectional dispersion of conditional FX correlations is increasing in the global pricing factorzw and

decreasing in the local pricing factorz. Given thatzw increases after negativeuw shocks andz increases after negative

ug shocks, that implies that changes inFXC reflect bothuw shocks (with a positive sign) andug shocks (with a negative

sign). Empirically, we have seen thatFXC is strongly positively correlated with four market variables that reflect credit

risk, illiquidity and stock market volatility, suggestingthat those variables identify exposure to the first global shock

uw, rather than to the second global shockug. Therefore, those business cycle variables can be proxied in our model by

zw.
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5.3. Correlation risk and the cross section of FX returns

The USD excess return for investing in the currency of country i satisfies:

rxi
t+1 − Et(rxi

t+1) = −∆qi
t+1 + Et(∆qi

t+1) = −
√
κztu

i
t+1 +

√
κztu

0
t+1 −

(

√

γi −
√

γ0

)

√

zw
t uw

t+1, (12)

so FX excess returns are not exposed toug risk. As a result, the conditional risk premium that the domestic investor

receives for investing in foreign currencyi (including the Jensen term) is

rpi
t ≡ Et

(

rxi
t+1

)

+
1
2

vart(rx
i
t+1) = −covt(m

0
t+1,−∆qi

t+1) = κzt +

(

√

γ0 −
√

γi

)

√

γ0zw
t . (13)

FX risk premiums have two components: a part that compensates domestic investors for the fact that investing in

a foreign currency essentially entails shorting the country-specific component of the domestic SDF, and a part that

reflects compensation for exposure to the global shockuw. The first component is identical across currencies, so all

cross-sectional variation in FX risk premiums is solely dueto heterogeneity in exposure touw, i.e. heterogeneity inγ.

In particular, the compensation provided by currencyi for exposure touw shocks is decreasing in the country loadingγi .

For example, ifγi < γ0, then currencyi depreciates against the domestic currency when a bad realization of the global

shockuw occurs. Given thatγ0 > 0, i.e., that a bad realization ofuw increases domestic marginal utility, domestic

investors require a positive risk premium in order to hold currency i. Conversely, currencies of countries with high

exposure touw (γi > γ0) have a negative premium for global FX risk, as they provide ahedge to domestic investors.

We can now turn to the determinants of the∆FXC loadings of FX returns. We have seen that fluctuations inFXC,

the cross-sectional dispersion in conditional FX correlation, reflect innovations in both the global pricing factorzw

(which are scaled multiples of the global shockuw) and in the local pricing factorzw (scaled multiples of the global

shockug). Importantly, both kinds of innovations are priced and have opposite effects on∆FXC, so it is not trivial to

establish whether a positive loading of an asset return on∆FXC should be associated with a positive or a negative risk

premium: assets should earn a negative premium for a positive loading on∆FXC that arises from exposure touw, and

a positive premium for a positive loading that arises from exposure toug. However, there is no ambiguity in the case of

FX returns, as the only global innovations to which they are exposed areuw shocks. As a result, the conditional loading

of FX returns on∆FXC has the same sign as their conditional loading on∆zw, so in the interests of tractability we can

consider the latter. We have:

covt(rxi
t+1,∆zw

t+1)

vart(∆zw
t+1)

=
covt(

(√

γ0 −
√

γi
)
√

zw
t uw

t+1,−ξ
w
√

zw
t uw

t+1)

vart(−ξw
√

zw
t uw

t+1)
=

√

γi −
√

γ0

ξw
. (14)

Thus, countriesi with a higher SDF exposureγi to global riskuw than the domestic country have FX excess returns with

a positive conditional loading on∆FXC; conversely, the FX returns of countries withγi < γ0 have a negative loading

on∆FXC. Given the negative cross-sectional association betweenγ and currency risk premiums, those loadings imply

a negative risk premium for high∆FXC beta exchange rates and a positive premium for low∆FXC beta exchange

rates, in line with our empirical findings.

We finish with a note on the cross-sectional relation betweeninterest rates and currency risk premiums. In the model,

the real interest rate of countryi is given by

r i
t = α +

(

χ − 1
2
κ − 1

2
δ

)

zt +

(

ϕ − 1
2
γi

)

zw
t , (15)

so all cross-sectional heterogeneity in interest rates is due to cross-sectional differences in global risk exposureγ: in all

periods, countries with high (low) exposure to global FX risk have a relatively low (high) interest rate, due to a stronger

(weaker) precautionary savings motive. As a result, high interest rate currencies are associated with lowγs and, thus,

high risk premiums.
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5.4. The properties of correlation risk premiums

We now turn to FX correlation risk premiums. To explore theirproperties, we first need to characterize the law

of motion of the pricing factors under the risk-neutral measure. From the perspective of the domestic investor, the

risk-neutral measure law of motion for the global pricing factorzw is

∆zw
t+1 = λ

w(z̄w − zw
t ) + ξw

√

γ0zw
t − ξw

√

zw
t uw,Q

t+1 , (16)

so the drift adjustment is positive and equal toξw
√

γ0zw
t . We can rewrite the equation above as a square root process,

∆zw
t+1 = λ

w,Q(z̄w,Q − zw
t ) − ξw

√

zw
t uw,Q

t+1 , (17)

whereλw,Q ≡ λw − ξw
√

γ0 andz̄w,Q ≡ λw

λw,Q z̄w. Thus, under the risk-neutral measure the global pricing factor zw has a

higher unconditional mean (¯zw,Q > z̄w) and is more persistent (λw,Q < λw) than under the physical measure. Similarly,

the risk-neutral measure law of motion for the local pricingfactorz is given by

∆zt+1 = λ
Q(z̄Q − zt) − ξ

√
ztu

g,Q
t+1, (18)

whereλQ ≡ λ − ξ
√
δ and z̄Q ≡ λ

λQ
z̄, so the local pricing factor also has a higher unconditionalmean and is more

persistent under the risk-neutral measure than under the physical measure. Notably, the drift adjustment of the two

factors depends crucially on the volatility parametersξw andξ, which determine the sensitivity of the pricing factors to

shocksuw andug respectively, and on the exposure parametersγ0 andδ, which regulate the pricing of shocksuw and

ug, respectively, for the domestic agent. The higherξ is relative toξw, and the higherδ is relative toγ0, the higher the

drift adjustment of the local pricing factor is relative to the adjustment of the global pricing factor, as the shocks to the

former are more highly priced compared with the shocks to thelatter.

Note that for the global pricing factor we have

EQ
t (zw

t+s) =
(

1− (1− λw,Q)s
)

z̄w,Q + (1− λw,Q)szw
t (19)

under the risk-neutral measure, compared to

EP
t (zw

t+s) = (1− (1− λw)s) z̄w + (1− λw)szw
t (20)

under the physical measure, fors> 0. Given the higher steady-state value and higher persistence of the global pricing

factor under the risk-neutral measure, the wedgeEQ
t (zw

t+s) − EP
t (zw

t+s) is always positive and increasing inzw
t .14 Exactly

the same is true for the local pricing factorz. Thus, the implied conditional FX correlations are calculated using higher

expected values for bothz andzw than their physical counterparts; this stems from the fact that states characterized by

high values ofz andzw are bad states and, thus, receive an elevated probability weight under the risk-neutral measure.

The expression for FX correlation risk premiums is derived in Appendix D. Intuitively, the wedge between implied

and physical FX correlations is determined by the wedge in the expected values ofzandzw between the two measures,

i.e. by the wedge between the risk-neutral and physical measure conditional distributions ofzandzw.

Of particular relevance is the case in which the domestic agent prices fluctuations in the local pricing factorz more

heavily than fluctuations in the global pricing factorzw, i.e. whenξ
√
δ >> ξw

√

γ0. In that case, the domestic investor

risk-adjusts by assigning higher probabilities to states in whichz has elevated values; states in whichzw is high also

receive elevated importance under the risk-neutral measure, but risk adjustment mainly involves paying attention to

highzstates. This risk adjustment has implications both for the cross section and the time series of FX correlation risk

premiums.

We start with the cross-sectional implications. When investors pricez shocks more heavily thenzw shocks, risk

adjustment involves paying elevated attention to states inwhich the cross-sectional dispersion of FX correlation

14In particular, the wedge is an affine function ofzw
t , with both the constant and the slope coefficient being positive. The constant is positive due

to the fact that the functionf (x) = 1−(1−x)s

x for s> 1 is decreasing in x forx ∈ (0, 1).

14



tightens: recall that, as seen in Figure 6, highzstates are associated with lower than usual FX correlationsfor similar FX

pairs and higher than usual FX correlations for dissimilar pairs. Therefore, focusing attention on highzstates generates

implied FX correlations that are on average lower than physical FX correlations for similar FX pairs. As a result, similar

FX pairs (which have high average FX correlations) have negative average FX correlation risk premiums. Conversely,

dissimilar FX pairs (which have low average FX correlations) have higher implied FX correlations than physical FX

correlations on average and, thus, positive average FX correlation risk premiums. Thus, our model generates a negative

cross-sectional association between average FX correlations and average FX correlation risk premiums, in line with

the empirical findings presented in Figure 4.

We now turn to the time-series properties of FX correlation risk premiums. First, we consider similar FX pairs. As

discussed in Section 5.2, the correlation of similar FX pairs is increasing in the global pricing factorzw. Although

this is true for both implied and physical FX correlations, implied FX correlations are less sensitive tozw than their

physical counterparts. Panel A of Figure 6 provides a usefulvisualization; circles plot FX correlation as a function of

zw conditional on a lowzvalue (z= 0.2z̄), while squares plot FX correlation as a function ofzw conditional on a highz

value (z= 5z̄). As can be easily seen, the highzcurve (squares) is much flatter than the lowzone (circles) in the region

of the state space in which the economy spends most of the time(values ofzw between 0 and 2¯zw). Since risk adjustment

puts more weight to highzstates, implied FX correlations are less sensitive tozw than physical correlations for similar

FX pairs. This sensitivity differential means that implied FX correlations increase less than physical correlations in

high zw states (empirically mapped to recessions), reducing the correlation risk premiums of similar FX pairs in those

states. Conversely, implied FX correlations drop less thanphysical FX correlations in lowzw states (booms), increasing

the correlation risk premiums of similar FX pairs. In short,the model implies that similar FX pairs have procyclical FX

correlation risk premiums and, since they also have countercyclical conditional correlations, the time series correlation

between FX correlations and FX correlation risk premiums isnegative for similar FX pairs. Similarly, we can use

Panel C of Figure 6 to show that dissimilar FX pairs have countercyclical FX correlation risk premiums, which also

implies a negative time series correlation between FX correlations and FX correlation risk premiums for those FX

pairs. In short, our model is able to address the key empirical time-series properties of FX correlation risk premiums

presented in Table 7 and Figure 5.

In short, conditional FX correlation, which can be indirectly traded using currency options, is exposed to bothuw

andug innovations. If the domestic agent is pricingz shocks (i.e.ug innovations) more severely thanzw shocks (uw

innovations), then FX correlation risk premiums largely reflect the desire of currency option holders to avoid highz

states, which feature a tightening of the cross-sectional dispersion of FX correlation. On the other hand, investing in

foreign currency exposes investors only touw innovations, so currency risk premiums reflect solely the desire to avoid

high zw states, which are characterized by a widening of the cross-sectional dispersion of FX correlation. Thus, the

lack of spanning of FX correlation risk by currency returns,and in particular the lack of exposure of exchange rates

to ug innovations, allows the model to jointly address the empirical properties of FX correlations, FX correlation risk

premiums, and currency risk premiums.

5.5. Model simulation

Finally, we assess the quantitative performance of our model and show that it can match key FX correlation moments,

as well as the standard interest rate and exchange rate moments.

To illustrate the importance of unspanned FX correlation risk, we consider a nesting model; both our model and the

Lustig, Roussanov and Verdelhan (2014) model are special cases of that nesting model. The law of motion of the local

pricing factor of countryi, zi , in the nesting model is

∆zi
t+1 = λ(z̄− zi

t) − ξ
√

zi
t

(√
ρug

t+1 +
√

1− ρui
t+1

)

, (21)

where 0≤ ρ ≤ 1, sozi is driven by both the global shockug and the local shockui . The nesting model allows for

imperfect comovement of (and, thus, for heterogeneity in) local pricing factors across countries. As a result, countries
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can have different conditional loadings on the global innovationug and the exposure toug now enters the expression

for real exchange rate changes:

∆qi
t+1 = Et(∆qi

t+1) +
√

κzi
tu

i
t+1 −

√

κz0
t u0

t+1 +

(

√

γi −
√

γ0

)

√

zw
t uw

t+1 +
√
δ

(

√

zi
t −

√

z0
t

)

ug
t+1. (22)

If ρ = 1 and all local pricing factors have the same initial value, then all local pricing factors are identical and

we retrieve our model, which features unspanned risk. On theother hand, ifρ = 0 we retrieve the model in

Lustig, Roussanov and Verdelhan (2014), which features independent local pricing factors and in which FX correlation

is fully spanned by exchange rates.15

Since our empirical results focus on G10 exchange rates, we simulate our model assuming a global economy with

ten countries, the United States andI = 9 foreign countries. We simulate the model for different values ofρ, and

we run two types of simulations: small-sample and large-sample. For a given value ofρ, a small-sample simulation

consists of 1,000 simulation paths of 216 monthly observations each, matching the size of our empirical sample.

For each simulated moment, the point estimate and the standard error of the moment is, respectively, the moment

average across the 1,000 simulations and the moment standard deviation across those simulations. We also calculate

the 95% confidence interval for each moment using the 2.5 and 97.5 percentiles of the moment in the cross-section

of the 1,000 simulation paths. The output of our small-sample simulations is reported in Tables 9 and 10 and Figure

11, to be discussed below. All other simulation results refer to large-sample simulations: for a given value ofρ, a

large-sample simulation consists of a single path of 50,000monthly observations. The calibration and simulation

details are discussed in Appendix E and the values of our model parameters can be found in Table 8.

Our quantitative analysis starts with the benchmark model,which features perfectly correlated local pricing factors

(ρ = 1). Table 9 reports empirical and simulated moments for inflation rates, interest rates and exchange rates. For

each empirical moment, we report the value of the moment in our sample, as well as its bootstrap standard error. The

latter equals the standard deviation of the moment across 1,000 block bootstrap samples of 216 monthly observations

each, with a block length of three monthly observations. As we can see, all moments are matched reasonably well.

[Insert Tables 8 and 9 here.]

We can now consider FX correlation moments; the first two columns of Table 10 contrast the empirical moments

(first column) with the benchmark model moments (second column). Our model generates a non-trivial cross-sectional

spread in average physical and implied FX correlations, in line with the empirical evidence, and is able to closely match

their cross-sectional mean. One weakness of the model regards the magnitude of FX correlation risk premiums: the

model-implied premiums are lower (in absolute terms) than their empirical counterparts, so the cross-sectional mean

of average premiums in the model, while positive, is lower than the empirical mean (0.71% in the model, compared

with 1.58% in the data) and the model is unable to match the wide cross-sectional dispersion in average correlation

risk premiums that is observed empirically. Notably though, the model is able to successfully generate both positive

and negative FX correlation risk premiums, as in the data. The model is also able to match the almost perfect positive

cross-sectional association between average realized andaverage implied FX correlations (0.98 in the data, 1.00 in

the model) and, crucially, the strongly negative cross-sectional association between average realized correlationsand

average CRP. Indeed, in the simulated data, FX pairs with high average FX correlation have negative average CRP and

FX pairs with low average FX correlation have positive average CRP, which is consistent with the empirical evidence;

Figure 7 provides a graphical illustration of that feature by plotting the average model-implied CRP against the average

model-implied FX correlation for all 36 FX pairs. As regardstime-series properties, the model generates a perfect

time-series correlation between realized and implied correlation for all FX pairs, replicating the very high average

correlation (0.79) observed in the data, and a negative time-series correlation between realized correlation and CRP

(−0.77), also in line with the empirical evidence (−0.52).

15The empirical spanning properties of FX correlation are explored in the Online Appendix.
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[Insert Table 10 and Figure 7 here.]

In our model, exchange rates are only exposed to the first global shockuw, so bad states for investors in foreign

currencies are those characterized by high values of the global pricing factorzw. Thus, we explore the cyclicality of

FX correlations and FX correlation risk premiums in the model by mapping the countercyclical market variables we

used in the empirical part of our paper tozw; our aim is to match the empirical cyclicality findings in Figures 1 and

5. To do so, we follow the same two-step approach we use for ourempirical data: first, we calculate the correlation

cyclicality measure of each exchange rate pair, equal to thetime-series correlation of its conditional FX correlation

with zw, and we then calculate the cross-sectional correlation of the FX correlation cyclicality measures with average

FX correlations (36 observations, one for each FX pair). We find that the FX correlation cyclicality measures range

from −0.73 to 0.73 across FX pairs and that their cross-sectional correlation with average FX correlations is strongly

positive (0.75), suggesting that high correlation FX pairshave countercyclical correlations whereas low correlation

pairs have procyclical correlations, in line with empirical evidence. Then, we repeat the same exercise for correlation

risk premiums: we find that the FX CRP cyclicality measures range from−0.78 to 0.79 and that their cross-sectional

correlation with average CRP is positive (0.81), again in line with the data.

Our model assumes only one dimension of ex ante heterogeneity across countries, their exposureγ to the global

shockuw. That heterogeneity generates cross-sectional differences in average FX correlations, average interest rates

and average currency excess returns and, thus, engenders cross-sectional linkages among those three measures. In

particular, the model implies that average correlations across FX pairs are positively associated with both the product

of the corresponding foreign currencies’ average interestrate differentialsE(r i − r0)E
(

r j − r0
)

and the product of their

average currency excess returnsE(rxi)E(rx j). Those cross-sectional associations in simulated data are presented in

Figure 8: Panel A illustrates the relation between average FX correlations and the product of average nominal interest

rate differentials, while Panel B shows the relation between averageFX correlations and the product of average currency

excess returns. In support of our model, we find that both those model-implied positive cross-sectional associations are

present in the empirical data: in the sample of G10 exchange rates, the cross-sectional correlation of average nominal

FX correlations with the product of corresponding nominal interest rate differentials is 0.35 and the correlation with

the product of average currency excess returns is 0.42.

[Insert Figures 8 and 9 here.]

Finally, we consider the asset pricing implications of the model. First, we focus on nominal interest rate-sorted

currency portfolios; we sort the nine currencies into threeportfolios and report the annualized average excess return

of each portfolio in Panel A of Figure 9. The model generates astrong carry trade effect, with the return on the FX

carry portfolio having an annualized average excess returnof 2.79%. In congruence with the extant literature, the

Lustig, Roussanov and Verdelhan (2011)HMLFX factor is priced in the cross section of simulated interest rate sorted

portfolios: our low, medium, and high interest rate currency portfolios haveHMLFX betas of−0.41, 0.06, and 0.59,

respectively.

Next, we consider currency portfolios sorted on their∆FXC beta; their annualized average excess returns are

presented in Panel B of Figure 9. The annualized average excess return for the currency portfolio that is long currencies

with low ∆FXC beta and short currencies with a high∆FXC beta is 1.27%, suggesting a negative price for exposure to

FX correlation risk, consistent with our empirical findings. It is worth noting that the Lustig, Roussanov and Verdelhan

(2011) HMLFX factor is priced in the cross section of∆FXC-beta-sorted currency portfolio returns, with the low,

medium, and high∆FXC beta portfolios having anHMLFX beta of 0.32, 0.06, and−0.15, respectively. Furthermore,

there is a negative cross-sectional association between nominal interest rates and∆FXC betas: the low, medium and

high∆FXC beta portfolio has an average interest rate differential (against the domestic country) of 0.81%, 0.16% and

−0.43%, respectively.

For comparison, we now turn to the case of non-identical local pricing factors across countries (0≤ ρ < 1). First,
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consider the behavior of conditional FX variance and covariance: conditional FX variance is given by

vart
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)

= κzi
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t +
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√
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√
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)2

, (23)

whereas conditional FX covariance is

covt

(

∆qi
t+1,∆q j

t+1
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t + Di, jzw
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) (
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zj
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√
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t

)

. (24)

When the local pricing factors differ across countries, exchange rates are more volatile than in the benchmark model, as

differential exposure toug increases SDF disparity. As regards FX covariance, exposure toug risk has one key difference

compared to exposure touw: country exposure touw is regulated by the fixed parameterγ and thus is constant over

time, so FX pairs are either always similar or always dissimilar regarding theiruw exposure, whereas the exposure of

each countryi to ug is determined by
√
δzi , so it is unconditionally equal across countries, but time-varying, implying

that each FX pair can switch between being similar and being dissimilar with respect toug exposure over time.

To understand the behavior of the cross-section of conditional FX correlations, we study the properties of the

conditional correlations of similar and dissimilar FX pairs in the special case of independent local pricing factors

(ρ = 0); the intuition is similar for other values ofρ less than 1. Similar to Figure 6, Figure 10 illustrates the effect of

zw andz0 on conditional FX correlations in a world of three foreign countries: countries 1 and 2 are less exposed to the

first global shockuw than the domestic country, while country 3 is more exposed.

[Insert Figure 10 here.]

The left panels of Figure 10 depict conditional FX correlations as a function of the global pricing factorzw holding

all local pricing factors (domestic and foreign) constant at their common steady-state value ¯z. Not surprisingly, the

impact of changes in the global pricing factorzw is the same as in the model with identical local pricing factors: aszw

increases, similarities and dissimilarities in exposure to global risk get amplified. Thus, the cross-sectional dispersion

in FX correlation is increasing inzw (Panel E).

The right panels of Figure 10 present conditional FX correlations as a function of the domestic local pricing factor

z0, assuming that the global pricing factorzw and all foreign local pricing factors are equal to their steady-state values.

As we see, the relation betweenz0 and conditional FX correlation is not monotonic. For small values ofz0, conditional

FX correlation is high for both similar and dissimilar FX pairs (Panel B and Panel D, respectively): in those states, all

FX pairs are similar regarding their exposure toug, as the loading of all foreign countries is higher than the domestic

loading. As the value ofz0 increases, conditional FX correlation decreases, since the component of FX correlation

arising from exposure toug is attenuated. Whenz0 reaches ¯z, all local factors have identical values, so exposure toug

does not affect FX moments, as it drops out of exchange rates. Finally, for large values ofz0, all FX pairs are again

similar regarding their exposure toug, this time because the domestic loading is higher than all foreign loadings, so all

FX pairs are highly correlated. Indeed, it can be shown that as z0 → ∞, all FX pairs become conditionally perfectly

correlated. In sum, the cross-sectional dispersion of FX correlation is not monotonic inz0 (Panel F).

The business cycle behavior ofFXC, the cross-sectional dispersion of conditional FX correlation, depends on the

relative importance ofzw andz0 for FX correlation determination. The higher the correlation among the local pricing

factors, the lower the importance ofug exposure (and thusz0) for conditional FX correlation, so high (low) values of

ρ are associated with high (low) comovement betweenFXC andzw. Panel A of Figure 11 plots the correlation of

FXC with zw against different values ofρ: we plot both the point estimate (solid line) and the 95% confidence interval

(shaded area). Notably, only very high values ofρ lead to empirically plausible and statistically significant correlation

betweenFXC andzw. In particular, the correlation betweenFXC andzw hovers around zero for almost the entirety of

theρ state space—even forρ = 0.95, the correlation between the two measures is only 0.02. That correlation jumps to

0.60 forρ = 1, with an associated 95% confidence interval of [0.27,0.83], underscoring the importance of extremely

high local pricing factor comovement.
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We now turn to correlation risk premiums; the details are reported in Appendix D. In the special case of independent

local pricing factors (ρ = 0), the domestic investor only pricesz0 andzw shocks, whereas innovations in the foreign local

pricing factors are foreign-specific shocks that do not enter the domestic investor’s SDF and, thus, are unpriced. In that

case, the risk-neutral measure overweighs states in whichzw andz0 have elevated values. Assuming, as we did for our

benchmark model, that the domestic agent prices local shocks more harshly than global shocks, risk adjustment mainly

entails paying attention to highz0 states. As seen in Panels B and D of Figure 10, those states arecharacterized by high

conditional FX correlations for both similar and dissimilar FX pairs. Thus, pricing states in which the domestic pricing

factorz0 has a high value tends to generate higher implied than physical FX correlations, and thus positive correlation

risk premiums, for all FX pairs.

The simulated FX moments of the model with independent localpricing factors (ρ = 0) are reported in the third

column of Table 10. The cross-section of average physical FXcorrelations is much tighter now than in the benchmark

model, as exchange rate exposure toug ameliorates the importance of differences inuw exposure across countries;

the same is true for implied FX correlations. Average FX correlation risk premiums are small for all FX pairs, and,

consistent with the discussion above, are positive: the left tail (i.e., the 2.5 percentile) of average CRP is 0.00%,

whereas the right tail (i.e., the 97.5 percentile) is 0.08% and statistically significant. Furthermore, the model generates

no cross-sectional association between average FX correlations and average FX correlation risk premiums, at odds

with the empirical evidence. This is because the exposure toug, which tends to increase the correlation of all FX

pairs, similar and dissimilar, asz0 increases, and thus generates positive CRP for all FX pairs,offsets the effects of the

exposure touw, which tends to decrease the correlation of similar FX pairsand increase the correlation of dissimilar

FX pairs asz0 increases, and thus generates negative CRP for similar FX pairs and positive CRP for dissimilar FX

pairs. Lastly, the model withρ = 0 fails to match the empirical time-series properties of FX correlation risk premiums:

on average, the time series of simulated physical FX correlations and FX CRP are almost uncorrelated, at odds with

the strongly negative correlation that characterizes their empirical counterparts.

To explore the behavior of FX correlation risk premiums for intermediate values ofρ, Panel B of Figure 11 plots

the correlation coefficient of average FX correlations and average CRP forρ = {0, 0.05, ..., 0.95, 1}. As the value ofρ

increases, and thus the local pricing factors become more correlated across countries, the cross-sectional correlation

between average FX correlations and average FX correlationrisk premiums tends to decline. We find that high values

of ρ are needed for this correlation to become statistically significant. In particular, the cross-sectional correlation is

negative and significant at the 5% level only forρ values of 0.65 and higher. Taken together, Panels A and B of Figure

11 show that only very high values ofρ can jointly satisfy the physical and the risk-neutral measure properties of FX

correlations.

A weakness of our benchmark model, which imposes the polar condition of ρ = 1, is that the cross-sectional rank

of interest rates (nominal and real) is fixed across time, as cross-sectional interest rate disparity is only generated by

the fixed parameterγ. In reality, the cross-sectional ranking of interest ratesis time-varying, so this feature of the

model is not realistic and precludes matching salient empirical findings, such as the “dollar carry trade” explored in

Lustig, Roussanov and Verdelhan (2014). However, we can show that a very small relaxation of the assumption of

identical local pricing factors allows the model to generate realistic cross-sectional properties of interest rates without

compromising the desirable features of the benchmark modelfor FX correlations.

Consider the average interest rate differential between the foreign countries and the domestic country (AFD, average

forward discount):
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Notably, the expression above is valid for both nominal and real interest rate differentials. If the local pricing factor is

identical across countries (ρ = 1), then the first term drops out and the AFD solely reflects fluctuations in the global

pricing factorzw, never changing sign. However, if the local pricing factorsdiffer across countries (0≤ ρ < 1), then the

AFD can change sign across time, as it reflects fluctuations both in zw and the local pricing factors. In the special, and

empirically plausible—if the domestic country is the United States—case that the domestic SDF loading on global risk
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uw is close to the average foreign loading (γ0 ≃ 1
I

∑I
i=1 γ

i), the sign of the AFD each period is determined by the sign

of the local pricing factor differential. Assuming that the precautionary savings motive dominates the intertemporal

smoothing motive (χ < 1
2κ +

1
2δ) and that the number of foreign countriesI is large enough so that the average of the

foreign local pricing factors is always close to their common steady-state value ¯z,

1
I

I
∑

i=1

zi
t → z̄, (26)

then the AFD is positive (negative) when the domestic local pricing factorz0 is higher (lower) than its steady-state

value. In that case, a domestic investor engaging in the dollar carry trade, i.e. investing in foreign currencies when

AFD > 0 and shorting them whenAFD < 0, takes (insures) FX risk when the domestic pricing factorz0 is transitorily

high (low).

To show that our model can address the salient cross-sectional properties of interest rates, we simulate the model

settingρ = 0.999, keeping all other parameters at their Table 8 values. Insimulated data, thisρ value implies an

average cross-sectional correlation of 0.999 for the localpricing factors. We find that the model withρ = 0.999

preserves the key FX correlation features of the benchmark model; the simulated moments are presented in the last

column of Table 10. As regards the dollar carry trade, its empirical annualized return for the G10 currencies from

January 1996 to December 2013 is 5.26% using the nominal AFD and 3.48% using the real AFD. In the model, the

two strategies are identical, yielding an annualized return of 1.82%, so the model undershoots both empirical returns.

On the other hand, the model is able to almost perfectly matchthe turnover of interest rate-sorted currency portfolios:

it generates a monthly turnover of 0.049, virtually identical to the empirical turnover of 0.047 observed in the G10

sample from January 1996 to December 2013.

6. Conclusion

We document that FX correlations become more cross-sectionally dispersed in adverse economic states, and

construct an FX correlation dispersion measure, denoted byFXC and defined as the difference between the conditional

correlation of the most and least conditionally correlatedFX pairs. We then sort currencies into portfolios based on

their exposure toFXC innovations and show that the spread between high and low∆FXC beta currency portfolios

is economically and statistically significant (6.42% annually), suggesting that investors want to be compensated for

investing in currencies that perform badly during periods of increased cross-sectional dispersion in conditional FX

correlations. Then, defining the FX correlation risk premium as the difference between the FX correlation under the

risk-neutral and the physical probability measures, we finda strongly negative cross-sectional association between

average FX correlations and average FX correlation risk premiums: FX pairs with high average correlation exhibit low

(or negative) average correlation risk premiums, while theopposite is true for FX pairs with low average correlations.

We rationalize our empirical findings with a no-arbitrage model of exchange rates that is able to jointly match the

salient properties of FX correlations under both the physical and the risk-neutral measure. Our findings suggest that

a possible avenue for richer no-arbitrage models that feature endogenously determined stochastic discount factors and

aim to explain the dynamics of FX correlation is the incorporation of unspanned risk; in that class of models, any

shock that affects countries’ SDF identically (and thus does not enter exchange rates) and causes the cross section of

FX correlation to tighten, can potentially address the apparent inconsistency between the behavior of FX correlations

under the physical measure and under the risk-neutral measure. That said, we stress that unspanned risk is not the only

possible avenue to be explored; alternative economic mechanisms, including market segmentation or other frictions in

financial markets, may also play a role in addressing our empirical findings.
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Appendix A. Realized FX moments

We use daily spot exchange rates to calculate measures of realized FX moments.∆si
t = ln

(

Si
t

)

− ln(Si
t−1) denotes the

daily log change for exchange ratei. The annualized realized FX variance observed att is then calculated as follows:

RVt =
252
K

K−1
∑

k=0

∆s2
t−k, (A.1)

whereK refers to a three month window to estimate the rolling realized variances. Following Bollerslev, Tauchen and Zhou

(2009), we use this rolling estimate to proxy for the expected variance over the next month.

In a similar spirit, we derive the annualized realized covariance between exchange ratesi and j:

RCovi, j
t =

252
K

K−1
∑

k=0

∆si
t−k∆sj

t−k. (A.2)

Finally, the realized FX correlation is defined as the ratio of corresponding realized FX covariance and the product of

the respective FX standard deviations:

RCi, j
t = RCovi, j

t /

√

RVi
t

√

RV j
t . (A.3)

Appendix B. The price of FX correlation risk

We consider the following two-factor model:

E[rxi ] = βDOL
i λDOL + βHMLC

i λHMLC
, (B.1)

whererxi denotes the excess return in levels (i.e., corrected for theJensen term). To estimate the factor pricesλDOL

andλHMLC
we follow the two-stage procedure of Fama and MacBeth (1973): first, we run a time-series regression of

excess returns on the factors and then we run a cross-sectional regression of average excess returns on factor betas. We

do not include a constant in the cross-sectional regressionof the second stage.16

Panel A in Table 11 reports the first-stage regression results. We consider 15 test assets: three currency portfolios

sorted on exposure to∆FXC (Pf1C, Pf2C and Pf3C), three currency portfolios sorted on forward discounts (called

“carry portfolios” and denoted by Pf1F, Pf2F and Pf3F) and nine individual G10 exchange rates. As expected, the

HMLC betas of the∆FXC-beta-sorted portfolios are monotonically increasing. Onthe other hand, theHMLC betas of

the carry portfolios are monotonically decreasing, with low (high) interest rate currencies having a positive (negative)

HMLC beta. Finally, theHMLC betas for the individual G10 currencies are highly negatively correlated with their

average excess returns over the sample period, with the correlation coefficient being−0.92.

Panel B presents the second-stage results for various sets of test assets. Set (1) includes only the three

∆FXC-beta-sorted portfolios (Pf1C to Pf3C) and the three carry portfolios (Pf1F to Pf3F), while Set (2) contains the

test assets of Set (1) along with the nine individual G10 currencies. For both sets, we report the point estimates of

the prices of risk, along with their standard errors (in parentheses) and Shanken (1992)-corrected standard errors (in

brackets). We also report theR2 of each second-stage regression. We find a significantly negative price of correlation

risk: λHMLC
is −0.58% (−0.54%) per month for Set (1) (Set (2)). Those estimates are not significantly different from

the averageHMLC return of−0.54% per month. The second-stageR2 is very high for both regressions (0.99 and 0.93,

respectively).

[Insert Table 11 here.]

16The dollar factorDOL essentially acts a constant; see Lustig, Roussanov and Verdelhan (2011).
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For robustness, we also consider additional developed and emerging country currencies. Set (3) of test assets includes

four ∆FXC-beta-sorted and four forward-discount-sorted portfolios, using all developed country currencies. Set (4)

includes four∆FXC-beta-sorted and four forward-discount-sorted portfolios, using the full set of currencies. The

second-stage results are provided in Panel B of Table 11. We find that theλHMLC
estimates are in line with our

benchmark results: the price of correlation risk is estimated at−0.51% and−0.67% per month in Sets (3) and (4),

respectively, with both estimates being statistically significant at the 5% level. The regressionR2 is 0.90 for Set (3) and

0.81 for Set (4).17

We have shown that our traded correlation risk factorHMLC acts as a slope factor regarding the pricing of currency

risk. A natural question that arises regards the relation betweenHMLC and the Lustig, Roussanov and Verdelhan

(2011) carry trade factorHMLFX, which reflects the returns to a portfolio that invests in high interest rate currencies

and shorts low interest rate currencies, asHMLFX has also been shown to act as a slope factor. Empirically, thetwo

factors are strongly negatively correlated: using monthlydata from January 1996 to December 2013, the correlation

coefficient between the two time series is−0.66, suggesting that they capture similar sources of risk.

The highly negative association betweenHMLFX and HMLC is fully consistent with our proposed no-arbitrage

model. In the model, the excess return to the carry trade portfolio is defined as

HMLFX
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1
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t+1, (B.2)

with high interest rate (lowγ, according to the model) currencies in setHF and low interest rate (highγ) currencies

in setLF. Provided that currency portfolios contain enough currencies so that the local shocks average zero,HMLFX

innovations are perfectly positively correlated with the global shockuw:
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Thus, HMLFX returns capture exposure to the global shockuw, which is the only global shock priced in currency

markets.

On the other hand,FXC innovations capture both kinds of global shocks,uw andug, so they provide a very noisy

measure of the part of FX correlation risk that is priced in foreign exchange markets. It follows thatHMLFX will

always have better pricing ability than∆FXC in the cross section of currency returns. To get a cleaner measure of

uw innovations, we can consider FX return differentials, which are only exposed touw shocks. In particular, consider

portfolio HMLC, which is long currencies with high∆FXC loading and short currencies with low∆FXC loading. Its

return is

HMLC
t+1 =

1
N

∑

i∈HC

rxi
t+1 −

1
N

∑

i∈LC

rxi
t+1, (B.4)

with high-∆FXC-loading (i.e. highγ) currencies in setHC and low-∆FXC-loading (lowγ) currencies in setLC.

Provided that the long and the short positions of the portfolio contain enough currencies so that the local shocks cancel

out, the return innovations of theHMLC portfolio are perfectly negatively correlated with the global shockuw:

HMLC
t+1 − Et

(

HMLC
t+1

)

=
1
N
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
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i∈LC

√

γi −
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√

γi















√

zw
t uw

t+1. (B.5)

Therefore,HMLC return innovations are perfectly negatively correlated with HMLFX return innovations, as they both

reflect uw shocks and, thus, should have the same explanatory power forthe cross section of FX returns: highγ

currencies, which hedgeuw risk, have low interest rates, highHMLC betas, lowHMLFX betas and low risk premiums,

whereas lowγ (i.e. high interest rate, lowHMLC beta, highHMLFX beta) currencies have high risk premiums.18

17To conserve space, we defer the first-stage regression results for the test assets in Sets (3) and (4) to the Online Appendix. Furthermore, the

Online Appendix contains price of risk estimates usingFXC innovations, a non-traded factor, in lieu ofHMLC returns, a traded factor; we find that

FXC innovations also have a negative price in the cross section of currency returns.
18In the Online Appendix, we also discuss the relation betweenour FX correlation risk factor and the FX volatility risk factor of

Menkhoff, Sarno, Schmeling and Schrimpf (2012).
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Appendix C. Implied FX moments

We follow Demeterfi, Derman, Kamal and Zou (1999) and Britten-Jones and Neuberger (2000) to obtain a

model-free measure of implied volatility. They show that ifthe underlying asset price is continuous, then the

risk-neutral expectation over a horizonT − t of total return variance is defined as an integral of option prices over an

infinite range of strike prices:

EQ
t

(∫ T

t

(

σi
u

)2
du

)

= 2er(T−t)

(∫ St

0

1
K2

P(K,T) dK +
∫ ∞

St

1
K2

C(K,T) dK

)

, (C.1)

whereSt is the underlying spot exchange rate, P(K,T) and C(K,T) are the respective put and call option prices with

maturity dateT and strike priceK, andr is the continuously compounded interest rate of the quote currency.19 In

practice, the number of traded options for any underlying asset is finite; hence the available strike price series is a

finite sequence. Calculating the model-free implied variance involves the entire cross section of option prices: for each

maturityT, all five strikes are taken into account. These are quoted in terms of the option delta. In addition, we use

daily spot rates and one-month Eurocurrency (LIBOR) rates from Datastream. Following the conventions in the FX

market, we use the use the Garman and Kohlhagen (1983) valuation formula to extract the relevant strike prices and to

calculate the corresponding option prices.20

To approximate the integral in equation (C.1), we adopt a trapezoidal integration scheme over the range of strike

prices covered by our dataset. Jiang and Tian (2005) report two types of implementation errors: (i) truncation errors due

to the non-availability of an infinite range of strike prices, and (ii) discretization errors that arise due to the unavailability

of a continuum of available options. We find that both errors are extremely small when currency options are used. For

example, the size of the errors totals only half a percentagepoint in terms of volatility.

Model-free implied correlations are constructed from the available model-free implied volatilities.21 For the

construction we require all cross rates for three currencies, Si
t, S j

t , andSi j
t , i.e. the two exchange rates against the

domestic (base) currency and the exchange rate between the two foreign currencies. The absence of triangular arbitrage

then implies that:22 Si j
t = Si

t/S
j
t . Taking logs, we derive the following equation:

ln
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Finally, taking variances yields:
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whereγi, j
t denotes the covariance of returns between domestic currency FX pairsi and j. Solving for the covariance

term, we obtain:
∫ T

t
γ

i, j
u du=

1
2

∫ T

t

(

σi
u

)2
du+

1
2

∫ T

t

(
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)2
ds− 1

2
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t

(

σ
i j
u

)2
du. (C.4)

19In particular, Britten-Jones and Neuberger (2000) show that the risk-neutral expected integrated return variance is fully specified by a

continuum of call and put options, provided that the price ofthe underlying asset is a diffusion process. However, recent empirical

evidence shows that jump risk may be present in the FX market,see, e.g., Chernov, Graveline and Zviadadze (2016), Jurek (2014), and

Farhi, Fraiberger, Gabaix, Ranciere and Verdelhan (2015).In the Online Appendix, we show that our analysis is robust tothe presence of jumps.
20See, e.g., Wystup (2006) for the specifics of FX options conventions.
21Brandt and Diebold (2006) use the same approach to constructrealized covariances of exchange rates from range-based volatility estimators.

Our construction methodology relies on state prices being sufficiently similar for the different agents (countries).
22Recent studies report that the average violation of triangular arbitrage is about 1.5 basis points with an average duration of 1.5 seconds

(Kozhan and Tham (2012)). However, most papers examining violations of triangular arbitrage use indicative quotes, which give only an approximate

price at which a trade can be executed. Executable prices candiffer from indicative prices by several basis points. Using executable FX quotes,

Fenn, Howison, McDonald, Williams and Johnson (2009) report that triangular arbitrage is less than 1 basis point and theduration less than 1 second.

Our data also indicate that triangular arbitrage is less than 1 basis point. We therefore conclude that these violationshave no effect on calculated

quantities.
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Using the standard replication arguments, we find that:
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+
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.

The model-free implied correlation can then be calculated using expression (C.5) and the model-free implied variance

expression (C.1):
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Appendix D. FX correlation risk premiums in the model

For period [t,T], the expected variance of the changes in the log exchange rate i is given by
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and the expected covariance of the changes in log exchange ratesi and j is
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For the local pricing factor we have

EQ
t (zt+s) =

(

1− (1− λQ)s
)

z̄Q + (1− λQ)szt ≡ AQ
s + BQ

s zt (D.3)

under the risk-neutral measure and

Et(zt+s) = (1− (1− λ)s) z̄+ (1− λ)szt ≡ As + Bszt (D.4)

under the physical measure, withAQ
s > As andBQ

s > Bs for all s > 0. A similar notation can be used for the global

pricing factorzw. ForXs = {As, Bs,A
Q
s , B

Q
s ,Aw

s , B
w
s ,A

w,Q
s , Bw,Q

s }, we respectively defineX = {A, B,AQ, BQ,Aw, Bw,Aw,Q

andBw,Q} asX ≡
∑T−t−1

s=0 Xs.
The expected FX correlation is defined as the ratio of the corresponding expected FX covariance over the product of

the square root of the two FX variances, as in the empirical section of our paper. Thus, the FX correlation risk premium
can be written as
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Thus, the magnitude of the correlation risk premium dependson the difference between the risk-neutral measure

parametersAQ, BQ, Aw,Q andBw,Q and the physical measure parametersA, B, Aw andBw. When the domestic agent

prices fluctuations in the local pricing factor more heavilythan fluctuations in the global pricing factor, i.e., when

ξ
√
δ >> ξw

√

γ0, then
(

AQ + BQzt

)

− (A+ Bzt) >>
(

Aw,Q + Bw,Qzw
t

)

−
(

Aw + Bwzw
t
)

, (D.7)
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implying that the risk adjustment for the local pricing factor z is quantitatively larger than the risk adjustment for the

global pricing factorzw as regards FX correlation. The implications of such risk adjustment for the cross-sectional and

time-series properties of FX correlation risk premiums arediscussed in the main text.

As regards the nesting model, the law of motion for the globalpricing factorzw under the risk-neutral measure is

identical to its risk-neutral measure law of motion in the model with identical pricing factors, given in equation (17),

whereas the law of motion of the domestic local pricing factor z0 is

∆z0
t+1 = λ

0,Q(z̄0,Q − z0
t ) − ξ

√

z0
t

(√
ρug,Q

t+1 +
√

1− ρu0,Q
t+1

)

, (D.8)

wherez̄0,Q ≡ λ
λ0,Q z̄ andλ0,Q = λ − ξ

(√
ρ
√
δ +

√

1− ρ
√
κ
)

, as both components of the innovations inz0 are priced by

the domestic investor. For the foreign local pricing factorszi with i = 1, ..., I , the risk-neutral measure law of motion is

∆zi
t+1 = λ(z̄− zi

t) + ξ
√
ρ
√
δ

√

zi
t

√

z0
t − ξ

√
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t
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ρug,Q

t+1 +
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1− ρui,Q
t+1

)

, (D.9)

as the domestic investor prices only the global component
√
ρug of the foreign local pricing factor innovations, but not

their local component
√

1− ρui .

Appendix E. Model calibration and simulation

Excludingρ, the nesting model has 14+ (I + 1) parameters in total: five common SDF parameters (α, χ, φ, κ, and

δ), I + 1 heterogeneous parameters (the loadingγi for each country), six common pricing factor parameters—three for

the local pricing factor (λ, z̄andξ) and three for the global pricing factor (λw, z̄w andξw) —and three common inflation

parameters (¯π, ζ andσ).

To calibrate our benchmark model, we imposeρ = 1 and then largely follow Lustig, Roussanov, and Verdelhan

(2011, 2014). First, we reduce the set of parameters by imposing the constraint that the loadingsγi are equally spaced

across the foreign countries. In particular, we assume thatthe first foreign country has loadingγmin, the last foreign

country has loadingγmax, and each intermediate foreign countryi = 2, ..., I −1 has loadingγi = γmin+ i−1
I−1(γmax−γmin).

To generate a large effect of the local pricing factor, in line with our model, we first setδ = 40 andλ = 0.25; the

latter value ensures that the local pricing factorz is stationary under both the physical and the risk-neutral measure.

Furthermore, we setγmin to 0.20 (instead to 0.18, as in the Lustig, Roussanov and Verdelhan (2014) calibration), in

order to achieve a more realistic cross-sectional dispersion in interest rates and FX correlations; in unreported results,

using 0.18 does not affect our results substantially. All the other parameters, with the exception ofχ, ξ, ξw and

π̄, are set equal to the corresponding values in Lustig, Roussanov and Verdelhan (2014). Notably, the calibration in

Lustig, Roussanov and Verdelhan (2014) targets specific interest rate, inflation, and exchange rate moments, but does

not involve any moments related to FX correlations or FX correlation risk premiums. Finally, we setχ, ξ, ξw and π̄

using GMM as follows. We target three moments: the cross-sectional average of the time-series mean and variance of

the real interest rates of the ten countries, and the cross-sectional average of the time-series mean of the inflation rates

of the ten countries. In the estimation, we leave ¯π unconstrained, but constrain the ratio ofξ
ξw

to equal 2.43, which is

the parameter ratio in the Lustig, Roussanov and Verdelhan (2014) calibration. The values of our calibrated parameters

are reported in Table 8. Regarding the calibration data, we proxy interest rate differentials against the USD by the

corresponding forward discounts, while the nominal USD interest rate is set to the Fama-French 1-month Treasury Bill

rate. Inflation in each country is calculated using the corresponding CPI, and real interest rates are calculated as the

difference between nominal interest rates and inflation rates.

Finally, we simulate the model for different values ofρ. We consider two types of simulations: small-sample

and large-sample. For a given value ofρ, a small-sample simulation consists of 1,000 simulation paths of 5,216

monthly observations each, initialized at the steady-state values ¯z and z̄w; to reduce the effect of initial conditions,

we discard the first 5,000 observations, so we are left with 216 observations for each path, allowing us to study the

small-sample properties of the moments of interest. For a given value ofρ, a large-sample simulation consists of a single

path of 55,000 monthly observations, initialized at the steady-state values ¯z and z̄w; again, we discard the first 5,000
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observations, and calculate moments using the last 50,000 observations. For both kinds of simulations, conditional FX

moments (realized and implied) are calculated using conditional expectations over a period of 21 days (i.e. one month)

into the future, with the model parameters appropriately adjusted to the daily frequency; at each period, conditional

expectations are calculated using averages across 100 simulations, with the exception of the benchmark model (ρ = 1),

in which case we use closed-form expressions for the conditional expectations.
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Table 1. Summary statistics: G10 currencies
The table reports summary statistics for the G10 currencies. For each foreign currencyi we report the mean, standard deviation, Sharpe ratio,
skewness, and kurtosis of USD excess returnsf i

t − si
t+1, and the mean forward discountf i

t − si
t. Excess returns are annualized and expressed in

percentage points. Panel A: monthly data from January 1996 through December 2013. Panel B: monthly data from January 1984 through December
2013. In both panels, before January 1999 we use the DEM in theplace of the EUR.

Panel A: January 1996–December 2013

AUD CAD CHF EUR GBP JPY NOK NZD SEK

Mean 3.01 1.12 -0.39 -0.46 1.37 -2.74 1.17 3.73 0.22
StDev 12.78 8.50 10.91 10.25 8.50 10.78 11.15 13.09 11.22
Sharpe ratio 0.24 0.13 -0.04 -0.05 0.16 -0.25 0.11 0.29 0.02
Skewness -0.60 -0.60 0.13 -0.15 -0.50 0.48 -0.36 -0.37 -0.08
Kurtosis 5.29 7.26 4.40 3.80 4.73 5.22 4.10 4.85 3.61
ft − st 2.12 -0.04 -2.00 -0.60 0.91 -3.01 0.98 2.70 -0.10

Panel B: January 1984–December 2013

AUD CAD CHF EUR GBP JPY NOK NZD SEK

Mean 2.96 1.15 1.21 1.60 2.43 0.14 2.99 4.88 2.34
StDev 12.08 7.15 11.93 11.14 10.37 11.38 11.05 13.25 11.36
Sharpe ratio 0.24 0.16 0.10 0.14 0.23 0.01 0.27 0.37 0.21
Skewness -0.72 -0.65 0.00 -0.21 -0.23 0.32 -0.48 -1.01 -0.46
Kurtosis 5.62 8.90 3.56 3.43 5.36 4.26 4.20 9.41 4.44
ft − st 3.12 0.77 -1.83 -0.61 1.89 -2.64 2.23 4.15 1.60
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Table 2. Summary statistics: FX correlations and FX correlation risk premiums.
The table reports means and standard deviations for realized and implied FX correlations (RC and IC, respectively), as well as FX correlation risk
premiums (CRP) for all FX pairs. Correlation risk premiums are defined as the difference between the implied and realized correlations. Realized
correlations are calculated using past daily log exchange rate changes over a three month window. Implied correlationsare calculated from daily
option prices on the underlying exchange rates. The last twocolumns report the bootstrapped 95% confidence interval (using the 2.5 and 97.5
percentiles). Monthly data from January 1996 to December 2013 (options data for EUR start in January 1999).

RC IC CRP

FX pair Mean Std Mean Std Mean Std t-stat 2.5% 97.5%

AUD CAD 0.471 0.25 0.430 0.27 -0.041 0.15 -4.07 -0.060 -0.023
AUD CHF 0.357 0.27 0.405 0.20 0.048 0.15 4.73 0.028 0.068
AUD EUR 0.450 0.28 0.544 0.16 0.019 0.09 2.81 0.006 0.031
AUD GBP 0.422 0.24 0.453 0.19 0.031 0.12 3.86 0.014 0.046
AUD JPY 0.155 0.34 0.238 0.26 0.083 0.16 7.58 0.062 0.103
AUD NOK 0.467 0.26 0.431 0.29 -0.036 0.20 -2.64 -0.064 -0.010
AUD NZD 0.755 0.16 0.739 0.15 -0.016 0.08 -2.97 -0.026 -0.005
AUD SEK 0.474 0.25 0.480 0.20 0.005 0.13 0.61 -0.012 0.022
CAD CHF 0.233 0.28 0.283 0.21 0.050 0.15 4.94 0.031 0.070
CAD EUR 0.307 0.30 0.405 0.19 0.024 0.13 2.45 0.005 0.044
CAD GBP 0.281 0.27 0.307 0.23 0.025 0.15 2.34 0.004 0.044
CAD JPY 0.054 0.26 0.136 0.19 0.082 0.16 7.33 0.060 0.104
CAD NOK 0.340 0.28 0.341 0.28 -0.002 0.18 -0.17 -0.028 0.022
CAD NZD 0.413 0.23 0.352 0.34 -0.061 0.22 -4.19 -0.092 -0.035
CAD SEK 0.352 0.26 0.287 0.29 -0.069 0.17 -5.96 -0.094 -0.047
CHF EUR 0.888 0.13 0.875 0.12 -0.010 0.08 -1.69 -0.020 0.002
CHF GBP 0.580 0.19 0.605 0.15 0.025 0.11 3.32 0.010 0.039
CHF JPY 0.405 0.26 0.456 0.18 0.051 0.14 5.15 0.032 0.070
CHF NOK 0.726 0.16 0.731 0.12 0.006 0.11 0.73 -0.009 0.021
CHF NZD 0.358 0.23 0.370 0.20 0.012 0.16 1.06 -0.010 0.033
CHF SEK 0.707 0.16 0.712 0.13 0.004 0.10 0.58 -0.010 0.017
EUR GBP 0.644 0.15 0.683 0.10 0.003 0.08 0.54 -0.009 0.015
EUR JPY 0.324 0.27 0.364 0.20 0.067 0.15 5.84 0.046 0.089
EUR NOK 0.825 0.09 0.798 0.07 -0.025 0.06 -5.20 -0.035 -0.016
EUR NZD 0.440 0.23 0.501 0.17 0.005 0.12 0.55 -0.013 0.022
EUR SEK 0.816 0.11 0.817 0.08 -0.022 0.06 -4.64 -0.031 -0.012
GBP JPY 0.217 0.26 0.293 0.19 0.076 0.15 7.29 0.056 0.095
GBP NOK 0.577 0.16 0.638 0.12 0.059 0.16 5.39 0.038 0.080
GBP NZD 0.415 0.23 0.404 0.22 -0.011 0.14 -1.15 -0.029 0.006
GBP SEK 0.560 0.16 0.598 0.13 0.037 0.13 4.26 0.021 0.053
JPY NOK 0.248 0.26 0.347 0.21 0.099 0.16 9.22 0.079 0.119
JPY NZD 0.146 0.32 0.233 0.24 0.087 0.18 7.09 0.063 0.111
JPY SEK 0.241 0.27 0.294 0.20 0.052 0.16 4.95 0.033 0.072
NOK NZD 0.449 0.22 0.413 0.27 -0.036 0.20 -2.65 -0.064 -0.011
NOK SEK 0.796 0.10 0.780 0.11 -0.016 0.08 -2.93 -0.026 -0.006
NZD SEK 0.439 0.23 0.403 0.27 -0.036 0.18 -2.89 -0.060 -0.013
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Table 3. Cyclicality of realized FX correlations and FX correlation risk premiums.
The table reports the unconditional correlation of realized correlations (RC cyclicality) and correlation risk premiums (CRP cyclicality) with four
market variables: the global equity volatility measure used in Lustig, Roussanov and Verdelhan (2011) (GVol), the global funding illiquidity measure
of Malkhozov, Mueller, Vedolin and Venter (2016) (GFI), the TED spread (T ED), and the CBOE VIX (VIX). Unconditional correlations are
calculated using monthly data from January 1996 through December 2013 (options data for EUR start in January 1999).

RC cyclicality CRP cyclicality

FX pair GVol GFI T ED VIX GVol GFI T ED VIX

AUD CAD 0.174 -0.016 -0.081 0.168 -0.090 -0.203 -0.029 -0.180
AUD CHF -0.110 -0.342 -0.241 -0.180 0.068 0.116 0.024 0.062
AUD EUR 0.100 -0.217 -0.079 0.008 0.040 0.007 -0.076 0.060
AUD GBP 0.016 -0.207 -0.047 -0.102 0.004 0.062 -0.070 0.053
AUD JPY -0.328 -0.488 -0.365 -0.395 0.077 0.162 0.110 0.082
AUD NOK 0.143 -0.145 -0.037 0.089 -0.096 -0.113 -0.328 -0.116
AUD NZD 0.298 -0.125 0.014 0.287 -0.107 0.036 -0.016 -0.138
AUD SEK 0.121 -0.161 -0.084 0.050 -0.141 -0.017 -0.115 -0.125
CAD CHF -0.099 -0.251 -0.223 -0.164 0.120 0.099 0.167 0.103
CAD EUR 0.070 -0.133 -0.106 -0.009 -0.056 -0.014 0.076 -0.031
CAD GBP 0.042 -0.060 -0.021 -0.041 0.090 -0.156 -0.150 0.066
CAD JPY -0.284 -0.405 -0.322 -0.383 0.050 0.097 0.065 0.063
CAD NOK 0.102 -0.065 -0.063 0.053 -0.038 -0.151 -0.132 -0.043
CAD NZD 0.166 -0.005 -0.060 0.174 0.084 -0.321 -0.182 -0.018
CAD SEK 0.134 -0.025 -0.066 0.069 -0.078 -0.091 -0.187 -0.028
CHF EUR -0.221 -0.107 -0.030 -0.250 0.330 0.122 0.178 0.308
CHF GBP -0.159 -0.323 -0.256 -0.265 0.069 0.114 0.113 0.087
CHF JPY -0.146 -0.063 -0.028 -0.223 0.069 0.114 0.002 0.133
CHF NOK -0.269 -0.045 -0.130 -0.276 0.103 -0.019 0.098 0.130
CHF NZD -0.106 -0.241 -0.256 -0.114 0.142 -0.026 -0.031 0.084
CHF SEK -0.186 -0.221 -0.013 -0.265 0.037 -0.050 0.059 0.025
EUR GBP 0.105 -0.155 -0.137 -0.018 -0.216 -0.137 -0.043 -0.184
EUR JPY -0.281 -0.178 -0.215 -0.301 0.173 0.228 0.190 0.208
EUR NOK -0.064 0.137 0.026 -0.056 -0.063 -0.062 0.032 -0.042
EUR NZD 0.135 -0.106 -0.057 0.104 -0.002 -0.111 -0.205 -0.022
EUR SEK 0.077 -0.169 0.077 -0.025 -0.177 -0.107 0.058 -0.186
GBP JPY -0.353 -0.412 -0.368 -0.433 0.158 0.213 0.149 0.166
GBP NOK 0.026 -0.041 -0.118 -0.041 -0.038 -0.010 0.058 0.017
GBP NZD 0.059 -0.099 0.000 -0.007 0.001 -0.196 -0.227 0.006
GBP SEK 0.097 -0.163 -0.065 0.006 -0.211 0.013 -0.028 -0.128
JPY NOK -0.340 -0.219 -0.303 -0.354 0.199 0.212 0.262 0.226
JPY NZD -0.327 -0.361 -0.352 -0.317 0.064 0.077 0.129 0.008
JPY SEK -0.343 -0.314 -0.224 -0.399 0.224 0.256 0.121 0.253
NOK NZD 0.163 -0.059 -0.028 0.161 -0.062 -0.179 -0.301 -0.101
NOK SEK 0.156 0.030 0.141 0.144 -0.086 -0.022 -0.105 -0.047
NZD SEK 0.171 -0.065 -0.054 0.144 -0.118 -0.154 -0.284 -0.154
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Table 4.Cross-sectional FX cyclicality regressions.
Panel A presents the output of cross-sectional regressionsof average realized FX correlations on each of the four FX correlation cyclicality
measures. Panel B presents the output of cross-sectional regressions of average FX correlation risk premiums on each ofthe four FX CRP
cyclicality measures. Each panel reports the regression slope coefficients, their t-statistics, their bootstrapped 95% confidence intervals, and the
regressionR2s. For Panel A (Panel B) results, each FX correlation cyclicality measure (FX CRP cyclicality measure) is defined as the unconditional
correlation of realized FX correlation (FX CRP) with a givenmarket variable. The market variables are the global equityvolatility measure used in
Lustig, Roussanov and Verdelhan (2011) (GVol), the global funding illiquidity measure of Malkhozov, Mueller, Vedolin and Venter (2016) (GFI),
the TED spread (T ED), and the CBOE VIX (VIX). The cyclicality measures are calculated using monthly data from January 1996 through December
2013 (options data for EUR start in January 1999) and are reported in Table 3. The t-statistics (in parentheses) are calculated using White (1980)
standard errors.

Panel A: Average RC and RC cyclicality

Slope t-stat 2.5% 97.5% R2

GVol 0.404 (2.45) 0.064 1.000 0.14
GFI 0.867 (5.14) 0.176 1.054 0.32
T ED 1.151 (7.31) 0.348 1.638 0.50
VIX 0.409 (2.66) 0.148 0.892 0.15

Panel B: Average CRP and CRP cyclicality

Slope t-stat 2.5% 97.5% R2

GVol 0.166 (2.66) 0.007 0.199 0.22
GFI 0.249 (9.00) 0.108 0.284 0.63
T ED 0.203 (6.61) 0.073 0.263 0.48
VIX 0.201 (3.80) 0.065 0.233 0.34
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Table 5. Unconditional correlation of FX correlation dispersion measures and market variables.
The table reports the correlation coefficients between the FX correlation dispersion measuresFXC and FXCUNC and four market variables:
the global equity volatility measure used in Lustig, Roussanov and Verdelhan (2011) (GVol), the global funding illiquidity measure of
Malkhozov, Mueller, Vedolin and Venter (2016) (GFI), the TED spread (T ED), and the CBOE VIX (VIX). Panel A: monthly data from January
1996 through December 2013. Panel B: monthly data from January 1984 through December 2013. In both panels, we report bootstrap standard
errors in parentheses.

Panel A: January 1996–December 2013

FXCUNC GVol GFI T ED VIX

FXC 0.86 0.35 0.48 0.42 0.45
(0.02) (0.08) (0.06) (0.07) (0.07)

FXCUNC 0.26 0.44 0.41 0.39
(0.10) (0.07) (0.07) (0.08)

GVol 0.53 0.59 0.81
(0.08) (0.08) (0.04)

GFI 0.57 0.61
(0.07) (0.07)

T ED 0.43
(0.09)

Panel B: January 1984–December 2013

FXCUNC GVol GFI T ED VIX

FXC 0.89 0.22 0.32 0.26 0.21
(0.01) (0.06) (0.05) (0.05) (0.07)

FXCUNC 0.21 0.33 0.28 0.19
(0.06) (0.05) (0.05) (0.07)

GVol 0.12 0.41 0.79
(0.07) (0.08) (0.03)

GFI 0.61 0.18
(0.04) (0.08)

T ED 0.41
(0.09)
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Table 6.∆FXC-beta-sorted currency portfolios.
The table reports summary statistics for the excess returnsof three G10 currency portfolios sorted on exposure to∆FXC, the innovations to the
FX correlation dispersion measureFXC. Portfolio 1 (Pf1C) contains the three currencies with the lowest pre-sort∆FXC betas, whereas Portfolio
3 (Pf3C) contains the three currencies with the highest pre-sort∆FXC betas. HMLC, denotes the portfolio that has along position in the high
correlation beta currencies (Pf3C) and a short position in the low correlation beta currencies(Pf1C). Monthly data: for Panel A from January 1996
through December 2013, for Panel B from January 1996 throughJuly 2007, for Panel C from January 1984 through December 2013, and for Panel
D from January 1984 through July 2007.

Panel A: January 1996–December 2013

Pf1C Pf2C Pf3C HMLC

Mean 4.04 0.99 -2.38 -6.42
Std 10.26 9.11 7.86 7.83
t-stat 1.67 0.46 -1.28 -3.47
Skewness -0.66 0.06 0.01 0.44
Kurtosis 6.57 3.53 3.09 4.75
Sharpe Ratio 0.39 0.11 -0.30 -0.82

Panel B: January 1996–July 2007

Pf1C Pf2C Pf3C HMLC

Mean 3.84 0.74 -3.51 -7.35
Std 7.34 8.07 7.56 6.68
t-stat 1.78 0.31 -1.58 -3.74
Skewness 0.17 0.49 0.11 -0.01
Kurtosis 3.35 3.10 2.76 2.92
Sharpe Ratio 0.52 0.09 -0.46 -1.10

Panel C: January 1984–December 2013

Pf1C Pf2C Pf3C HMLC

Mean 4.37 1.58 0.65 -3.72
Std 9.62 9.44 8.87 8.37
t-stat 2.48 0.92 0.40 -2.43
Skewness -0.43 -0.24 -0.26 0.06
Kurtosis 6.09 3.73 3.96 3.71
Sharpe Ratio 0.45 0.17 0.07 -0.44

Panel D: January 1984–July 2007

Pf1C Pf2C Pf3C HMLC

Mean 4.36 1.61 0.91 -3.45
Std 8.00 9.05 9.00 8.02
t-stat 2.64 0.87 0.49 -2.09
Skewness 0.18 -0.22 -0.28 -0.19
Kurtosis 3.81 3.79 4.04 3.13
Sharpe Ratio 0.54 0.18 0.10 -0.43
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Table 7. Time-series correlations of FX correlations and FXcorrelation risk premiums.
The table reports the time-series correlations between realized FX correlations (RC) and implied FX correlations (IC), and between realized FX
correlations and FX correlation risk premiums (CRP), for all FX pairs. In addition to the correlation estimates, we report their t-statistics and 95%
bootstrapped confidence intervals. FX correlation risk premiums are defined as the difference between the implied and realized FX correlations.
Realized FX correlations are calculated using past daily log exchange rate changes over a three month window. Implied FXcorrelations are
calculated from daily option prices on the underlying exchange rates. Monthly data from January 1996 to December 2013 (options data for EUR
start in January 1999).

Correlation RC/IC Correlation RC/CRP

FX pair Mean t-stat 2.5% 97.5% Mean t-stat 2.5% 97.5%

AUD CAD 0.843 22.88 0.800 0.875 -0.102 -1.49 -0.243 0.046
AUD CHF 0.844 22.97 0.805 0.877 -0.695 -14.15 -0.756 -0.627
AUD EUR 0.923 32.09 0.901 0.941 -0.714 -13.63 -0.782 -0.638
AUD GBP 0.876 26.54 0.844 0.905 -0.656 -12.71 -0.732 -0.566
AUD JPY 0.892 28.89 0.855 0.922 -0.695 -14.13 -0.764 -0.610
AUD NOK 0.744 16.09 0.679 0.807 -0.213 -3.15 -0.317 -0.091
AUD NZD 0.872 26.01 0.833 0.906 -0.457 -7.52 -0.646 -0.212
AUD SEK 0.870 25.82 0.840 0.902 -0.618 -11.49 -0.723 -0.490
CAD CHF 0.856 24.22 0.827 0.885 -0.684 -13.73 -0.756 -0.594
CAD EUR 0.864 22.93 0.822 0.899 -0.702 -13.21 -0.785 -0.602
CAD GBP 0.825 21.24 0.776 0.869 -0.518 -8.82 -0.640 -0.371
CAD JPY 0.777 18.03 0.708 0.829 -0.680 -13.57 -0.737 -0.622
CAD NOK 0.780 18.18 0.723 0.838 -0.316 -4.85 -0.465 -0.168
CAD NZD 0.784 18.48 0.730 0.838 0.161 2.39 0.011 0.308
CAD SEK 0.813 20.34 0.766 0.856 -0.137 -2.01 -0.241 -0.024
CHF EUR 0.846 21.27 0.717 0.946 -0.603 -10.12 -0.743 -0.278
CHF GBP 0.816 20.63 0.757 0.862 -0.640 -12.17 -0.715 -0.554
CHF JPY 0.835 22.19 0.788 0.874 -0.733 -15.76 -0.785 -0.665
CHF NOK 0.725 15.42 0.632 0.816 -0.671 -13.23 -0.763 -0.525
CHF NZD 0.724 15.35 0.661 0.783 -0.532 -9.19 -0.619 -0.428
CHF SEK 0.757 16.94 0.668 0.832 -0.560 -9.88 -0.683 -0.386
EUR GBP 0.774 16.38 0.707 0.837 -0.592 -9.82 -0.697 -0.463
EUR JPY 0.858 22.35 0.811 0.898 -0.760 -15.65 -0.813 -0.704
EUR NOK 0.704 13.27 0.628 0.776 -0.632 -10.90 -0.773 -0.379
EUR NZD 0.770 16.17 0.703 0.830 -0.467 -7.06 -0.597 -0.329
EUR SEK 0.721 13.93 0.659 0.786 -0.549 -8.78 -0.697 -0.326
GBP JPY 0.824 21.30 0.770 0.867 -0.713 -14.87 -0.778 -0.634
GBP NOK 0.282 4.30 0.077 0.448 -0.711 -14.79 -0.767 -0.647
GBP NZD 0.812 20.32 0.773 0.852 -0.350 -5.47 -0.498 -0.199
GBP SEK 0.644 12.31 0.575 0.717 -0.615 -11.41 -0.747 -0.462
JPY NOK 0.795 19.15 0.743 0.837 -0.572 -10.21 -0.657 -0.473
JPY NZD 0.831 21.83 0.777 0.875 -0.680 -13.55 -0.746 -0.603
JPY SEK 0.825 21.34 0.775 0.865 -0.699 -14.29 -0.762 -0.627
NOK NZD 0.699 14.29 0.630 0.764 -0.157 -2.32 -0.267 -0.051
NOK SEK 0.701 14.36 0.643 0.761 -0.347 -5.42 -0.521 -0.148
NZD SEK 0.750 16.58 0.684 0.805 -0.158 -2.34 -0.253 -0.053
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Table 8. Parameter values.
The table reports the calibrated parameter values used for the model simulations. All countries share the same parameter values except forγ: γ0 is
the parameter for the domestic country, whereas the values for the foreignγi , i = 1, ...,9, are equally spaced on the interval [γmin, γmax].

SDF parameters

α χ φ κ δ γ0 γmin γmax

0.0076 19.4551 0.06 0.04 40 0.36 0.20 0.49

Pricing factor parameters

λ z̄ ξ λw z̄w ξw

0.25 0.0077 0.0393 0.01 0.0209 0.0162

Inflation parameters

π̄ ζ σ

-0.0039 0.25 0.00372
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Table 9. Simulated moments (benchmark model): interest rates, inflation, and exchange rates.
The table reports empirical moments (first column) and simulated moments (second column) for the model with identical local pricing factors
(benchmark model). For each empirical moment, the table reports the value of the moment in the sample and the moment bootstrap standard error
(in parentheses). Bootstrapping involves 1,000 block bootstrap samples of 216 monthly observations each, with a blocklength of three observations.
For each simulated moment, the table reports the point estimate and the standard error (in parentheses); the former is the moment average across
1,000 simulations, while the latter is the moment standard deviation across those simulations. The first panel reports the annualized mean and
standard deviation of the U.S. real interest rate and the cross-sectional average of the mean and standard deviation of foreign real interest rates. The
second panel reports the cross-sectional average of real exchange rate volatility and autocorrelation. The third panel reports the annualized mean and
standard deviation of U.S. inflation and the cross-sectional average of the mean and standard deviation of foreign inflation. The fourth panel reports
the annualized mean and standard deviation of the U.S. nominal interest rate and the cross-sectional average of the meanand standard deviation of
foreign nominal interest rates. The fifth panel reports the cross-sectional average of nominal exchange rate volatility and autocorrelation.

Moment Data Model

E
(

rU.S.
)

0.28% 0.74%
(0.46%) (1.96%)

S td
(

rU.S.
)

1.35% 1.08%
(0.13%) (0.17%)

Ecross

(

E
(

rFGN
))

1.15% 0.94%
(0.19%) (1.85%)

Ecross

(

S td
(

rFGN
))

1.19% 1.08%
(0.03%) (0.17%)

Ecross(S td(∆qt+1)) 10.82% 9.52%
(0.59%) (0.73%)

Ecross(AC(∆qt+1)) -0.01 0.00
(0.05) (0.04)

E
(

πU.S.
)

2.32% 1.83%
(0.33%) (3.86%)

S td
(

πU.S.
)

1.27% 1.59%
(0.14%) (0.29%)

Ecross

(

E
(

πFGN
))

1.56% 1.85%
(0.17%) (3.84%)

Ecross

(

S td
(

πFGN
))

1.12% 1.59%
(0.04%) (0.28%)

E
(

rNOM,U.S.
)

2.60% 2.58%
(0.25%) (2.09%)

S td
(

rNOM,U.S.
)

0.62% 1.11%
(0.02%) (0.20%)

Ecross

(

E
(

rNOM,FGN
))

2.70% 2.77%
(0.15%) (2.20%)

Ecross

(

S td
(

rNOM,FGN
))

0.44% 1.13%
(0.02%) (0.21%)

Ecross(S td(∆st+1)) 10.76% 9.69%
(0.62%) (0.72%)

Ecross(AC(∆st+1)) 0.01 0.00
(0.06) (0.04)
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Table 10. Simulated moments: FX correlations and FX correlation risk premiums.
The table reports empirical moments (first column) and simulated moments for the model withρ = 1, ρ = 0 andρ = 0.999 (second, third and
fourth column, respectively). All moments refer to nominalexchange rates. For each empirical moment, the table reports the value of the moment
in the sample and the moment bootstrap standard error (in parentheses). Bootstrapping involves 1,000 block bootstrap samples of 216 monthly
observations each, with a block length of 3 observations. For each simulated moment, the table reports the point estimate and the standard error (in
parentheses); the former is the moment average across 1,000simulations, while the latter is the moment standard deviation across those simulations.
The first panel reports the cross-sectional mean and the 2.5 and 97.5 percentiles of average realized FX correlations, respectively. The second panel
reports the cross-sectional mean and the 2.5 and 97.5 percentiles of average implied FX correlations. The third panel reports the cross-sectional
mean and the 2.5 and 97.5 percentiles of average FX CRP. The fourth panel reports the cross-sectional correlation between average realized and
average implied FX correlation and the cross-sectional correlation between average realized FX correlation and average FX CRP. The fifth panel
reports the cross-sectional average of the correlation between realized and implied FX correlation and the cross-sectional average of the correlation
between realized FX correlation and FX CRP.

Moment Data Model
ρ = 1 ρ = 0 ρ = 0.999

2.5%cross(E(RC)) 0.09 0.01 0.30 0.06
(0.03) (0.17) (0.04) (0.15)

Ecross(E(RC)) 0.45 0.39 0.40 0.40
(0.02) (0.04) (0.03) (0.04)

97.5%cross(E(RC)) 0.86 0.66 0.49 0.64
(0.01) (0.06) (0.03) (0.05)

2.5%cross(E(IC)) 0.17 0.03 0.30 0.09
(0.02) (0.16) (0.04) (0.15)

Ecross(E(IC)) 0.48 0.40 0.40 0.41
(0.01) (0.04) (0.03) (0.04)

97.5%cross(E(IC)) 0.85 0.65 0.49 0.63
(0.01) (0.05) (0.03) (0.05)

2.5%cross(CRP) -6.62% -0.89% 0.00% -0.71%
(1.41%) (0.18%) (0.03%) (0.16%)

Ecross(CRP) 1.58% 0.71% 0.04% 0.56%
(0.57%) (0.20%) (0.02%) (0.16%)

97.5%cross(CRP) 9.43% 2.75% 0.08% 2.23%
(1.20%) (0.55%) (0.03%) (0.48%)

corrcross(E(RC), E(IC)) 0.98 1.00 1.00 1.00
(0.01) (0.00) (0.00) (0.00)

corrcross(E(RC), E(CRP)) -0.55 -0.99 0.00 -0.99
(0.10) (0.01) (0.22) (0.00)

Ecross(corr(RC, IC)) 0.79 1.00 1.00 1.00
(0.02) (0.00) (0.00) (0.00)

Ecross(corr(RC,CRP)) -0.52 -0.77 -0.02 -0.80
(0.03) (0.13) (0.03) (0.10)
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Table 11. Estimating the price of correlation risk.
The table reports the results for the estimation of the market price of correlation risk. Panel A reports factor betas andNewey and West (1987)
standard errors (in parentheses) for the first stage regressions for various test assets. The test assets are: three currency portfolios (PfC) sorted on
exposure to the correlation risk factor∆FXC (excess return moments for which are reported in Table 6), three currency portfolios (PfF) sorted on
interest rate differentials, and the nine individual G10 currencies. Panel B reports the Fama and MacBeth (1973) factor prices and standard errors
(in parentheses); Shanken (1992)-corrected standard errors are reported in brackets. We consider four sets of test assets. Set (1) only includes the
three∆FXC-beta-sorted and the three interest-rate-sorted portfolios from Panel A, while Set (2) also includes the nine individual G10 currencies.
Set (3) includes four∆FXC-beta-sorted and four interest-rate-sorted currency portfolios, using all developed country currencies. Set (4) includes
four ∆FXC-beta-sorted and four interest-rate-sorted currency portfolios, using the full set of currencies. The first-stage beta estimates for Sets (3)
and (4) are provided in the Online Appendix. Monthly data from January 1996 through December 2013. RegressionR2s are also provided.

Panel A: Factor betas

α DOL HMLC R2

Pf1C -0.01 (0.07) 1.03 (0.05) -0.52 (0.03) 0.40
Pf2C -0.02 (0.09) 1.11 (0.06) 0.00 (0.04) 0.10
Pf3C -0.03 (0.07) 1.03 (0.05) 0.48 (0.03) -0.20
Pf1F -0.06 (0.10) 0.98 (0.06) 0.33 (0.06) -0.12
Pf2F -0.03 (0.08) 1.03 (0.04) -0.05 (0.04) 0.12
Pf3F 0.03 (0.09) 1.16 (0.07) -0.32 (0.06) 0.30
AUD -0.09 (0.13) 1.20 (0.08) -0.52 (0.08) 0.39
CAD -0.04 (0.11) 0.66 (0.07) -0.19 (0.07) 0.17
CHF 0.04 (0.14) 1.24 (0.08) 0.31 (0.07) -0.05
EUR -0.09 (0.11) 1.22 (0.07) 0.07 (0.05) 0.08
GBP 0.10 (0.13) 0.75 (0.09) 0.08 (0.06) 0.03
JPY 0.04 (0.22) 0.63 (0.12) 0.57 (0.10) -0.25
NOK 0.03 (0.13) 1.24 (0.09) 0.02 (0.08) 0.11
NZD 0.06 (0.15) 1.27 (0.08) -0.39 (0.11) 0.32
SEK -0.10 (0.11) 1.29 (0.07) -0.05 (0.06) 0.14

Panel B: Factor prices

λDOL λHMLC
R2

Set (1) 0.09 (0.15) [0.15] -0.58 (0.15) [0.15] 0.99
Set (2) 0.09 (0.15) [0.15] -0.54 (0.20) [0.20] 0.93
Set (3) 0.13 (0.15) [0.15] -0.51 (0.17) [0.18] 0.90
Set (4) 0.15 (0.14) [0.14] -0.67 (0.22) [0.23] 0.81
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Fig. 1. Average realized FX correlations and FX correlationcyclicality.

The figure illustrates the association between average realized FX correlations and measures FX correlation cyclicality. For each FX pair, FX

correlation cyclicality is measured by the unconditional correlation between the realized FX correlation of the pair and a market variable that acts

as a business cycle proxy. The market variables considered are the global equity volatility measure from Lustig, Roussanov and Verdelhan (2011)

(GVol, Panel A), the global funding illiquidity measure (GFI, Panel B) from Malkhozov, Mueller, Vedolin and Venter (2016), the TED spread (T ED,

Panel C), and the CBOE VIX (VIX, Panel D). Monthly data from January 1996 to December 2013. In each panel, the line of best fit is also shown.
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Fig. 2. FX correlation dispersion measures and market variables.

Panel A plots the time series of the two FX correlation dispersion measures,FXC andFXCUNC, from January 1996 to December 2013.FXC (solid

line) is calculated as the difference between the average FX correlation of high- and low-correlation FX pairs; the two groups consist of the highest

and lowest deciles of realized FX correlations across all 36G10 FX pairs, respectively, with the deciles being rebalanced every month.FXCUNC

(dashed line) is calculated as the difference in average correlations between the decile of high average correlation FX pairs and the decile of low

average correlation FX pairs. Panel B plots the time series of the global equity volatility measure used in Lustig, Roussanov and Verdelhan (2011)

(GVol), the global funding illiquidity measure of Malkhozov, Mueller, Vedolin and Venter (2016) (GFI), the TED spread (T ED), and the CBOE

VIX ( VIX), from January 1996 to December 2013. All series in Panel B are standardized to have zero mean and a standard deviation of one. In both

panels, the shaded areas correspond to NBER recessions.
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Fig. 3. Currency portfolios sorted on exposure to the FX correlation factor ∆FXC.

The figure displays annualized average excess returns of currency portfolios, for different currency and period samples. Currencies are sorted into

portfolios at timet based on their exposure to∆FXC at the end of periodt − 1; exposure is measured by regressing currency excess returns on

the FX correlation risk factor∆FXC over the preceding 36 months. Panel A presents the portfolioexcess returns for the G10 set of currencies

(three∆FXC-beta-sorted currency portfolios), while Panels B and C present the portfolio excess returns for the currencies in the developed country

set and in the full country set, respectively (four∆FXC-beta-sorted currency portfolios for each set). In each panel, Portfolio 1 (Pf1) contains the

currencies with the lowest pre-sort∆FXC betas whereas Portfolio 3 or 4 (Pf3 or Pf4), depending on the set of currencies, contains the currencies

with the highest pre-sort∆FXC betas. In each panel, average annualized portfolio excess returns are reported for four sample periods: January

1996–December 2013, January 1996–July 2007, January 1984–December 2013, and January 1984–July 2007.
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Fig. 4. Average realized FX correlations and average FX correlation risk premiums.

The figure plots the average FX correlation risk premiums forall 36 G10 exchange rate pairs against the corresponding average realized FX

correlations. Average FX correlation risk premiums and average realized FX correlations are expressed in percentage points. Monthly data from

January 1996 to December 2013 (options data for EUR start in January 1999). The line of best fit is also shown.
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Fig. 5. Average FX correlation risk premiums and FX CRP cyclicality.

The figure illustrates the association between average FX correlation risk premiums and measures FX correlation risk premium cyclicality.

For each FX pair, FX correlation risk premium cyclicality ismeasured by the unconditional correlation between the FX correlation risk

premium of the pair and a market variable that acts as a business cycle proxy. The market variables considered are the global equity

volatility measure from Lustig, Roussanov and Verdelhan (2011) (GVol, Panel A), the global funding illiquidity measure (GFI, Panel B) from

Malkhozov, Mueller, Vedolin and Venter (2016), the TED spread (T ED, Panel C), and the CBOE VIX (VIX, Panel D). Monthly data from January

1996 to December 2013 (options data for EUR start in January 1999). In each panel, the line of best fit is also shown.
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Fig. 6. Model-implied FX correlations.

The figure displays the properties of conditional real FX correlation in the model with identical local pricing factors.Panels A, C, and E plot the

conditional FX correlation as a function of the global pricing factorzw, holding the local pricing factorz constant: Panel A refers to the conditional

FX correlation of the similar FX pair (1,2), Panel C refers tothe conditional FX correlation of the dissimilar FX pair (1,3), and Panel E refers to the

difference in conditional FX correlation between the two pairs.In each panel, the circles, solid line, and squares plot the conditional FX correlation,

assuming that the local pricing factorz is equal to 0.2, 1, and 5 times its steady-state value ¯z, respectively. Panels B, D, and F plot the conditional FX

correlation as a function of the local pricing factorz, holding the global pricing factorzw constant: Panel B refers to the conditional FX correlation

of the similar FX pair (1,2), Panel D refers to the conditional FX correlation of the dissimilar FX pair (1,3), and Panel F refers to the difference in

conditional FX correlation between the two pairs. In each panel, the circles, solid line, and squares plot the conditional FX correlation assuming that

the global pricing factorzw is equal to 0.2, 1, and 5 times its steady-state value ¯zw, respectively. To plot the figures, we set the model parameters

equal to their calibrated values in Table 8. To ensure symmetry, we set the values of the country exposures to global FX risk such that the condition

D1,2 = −D1,3 > 0 is satisfied; in particular, we imposeγ1 = γmin andγ3 = γmax, and setγ2 so that the symmetry condition holds.
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Fig. 7. Model-implied average realized FX correlations andaverage FX correlation risk premiums.

The figure plots the average FX correlation risk premiums forall 36 exchange rate pairs against the corresponding average realized FX correlations

using simulated data for the model with identical local pricing factors (ρ = 1). The parameter values are reported in Table 8 and the simulation details

can be found in Appendix E. Average FX correlation risk premiums and average realized FX correlations are expressed in percentage points.
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Panel A: Average realized correlation and product of average nominal interest rate differentials
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Panel B: Average realized correlation and product of average excess currency returns

Fig. 8. Model-implied average realized FX correlations andproducts of average nominal interest rate differentials and average currency
excess returns.

The figure plots the average realized FX correlations for all36 exchange rate pairs against the corresponding product ofaverage nominal interest

rate differentials (Panel A) or the product of average currency excess returns (Panel B) for the model with identical local pricing factors (ρ = 1). The

parameter values are reported in Table 8 and the simulation details can be found in Appendix E. Average realized FX correlations are expressed in

percentage points and products of nominal interest rate differentials and currency excess returns in squared percentage points; nominal interest rate

differentials and currency excess returns are annualized.
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Fig. 9. Model-implied currency portfolio excess returns.
The figure displays average annualized portfolio excess returns for interest rate-sorted (Panel A) and∆FXC beta-sorted (Panel B) currency portfolios
using simulated data for the model with identical local pricing factors (ρ = 1). For Panel A, currencies are sorted into portfolios according to their
nominal interest rate, with monthly rebalancing. Portfolio 1 (Pf1) contains low interest rate currencies whereas Portfolio 3(Pf3) contains high interest
rate currencies. For Panel B, currencies are sorted into portfolios on their exposure to∆FXC at the end of periodt − 1, with monthly rebalancing;
exposure is measured by regressing currency excess returnson the correlation risk factor∆FXC over the preceding 36 months. Portfolio 1 (Pf1)
contains the currencies with the lowest pre-sort∆FXC betas whereas Portfolio 3 (Pf3) contains the currencies with the highest pre-sort∆FXC betas.
The parameter values are reported in Table 8 and the simulation details can be found in Appendix E.
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Fig. 10. Model-implied FX correlations: independent localpricing factors.

The figure displays the properties of conditional real FX correlation in the model with independent local pricing factors (ρ = 0). Panels A, C, and

E plot the conditional FX correlation as a function of the global pricing factorzw, holding all the local pricing factors constant at their common

steady-state level ¯z: Panel A refers to the conditional FX correlation of the similar FX pair (1,2), Panel C refers to the conditional FX correlation of

the dissimilar FX pair (1,3), and Panel E refers to the difference in conditional FX correlation between the two pairs.Panels B, D, and F plot the

conditional FX correlation as a function of the domestic pricing factorz0, holding the global pricing factorzw constant at its steady-state level ¯zw

and all the foreign local pricing factors constant at their common steady-state value ¯z: Panel B refers to the conditional FX correlation of the similar

FX pair (1,2), Panel D refers to the conditional FX correlation of the dissimilar FX pair (1,3), and Panel F refers to the difference in conditional FX

correlation between the two pairs. To plot the figures, we setthe model parameters equal to their calibrated values in Table 8. To ensure symmetry,

we set the values of the country exposures to global FX risk such that the conditionD1,2 = −D1,3 > 0 is satisfied; in particular, we imposeγ1 = γmin

andγ3 = γmax, and setγ2 so that the symmetry condition holds.
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Fig. 11. Model-implied correlations as function of parameter ρ.

The figure presents the point estimates (solid line) and the 95% confidence intervals (shaded area) of correlations of interest in simulated data for

different values of the correlation parameterρ: a value ofρ = 0 corresponds to the model with independent local pricing factors, whereas a value

of ρ = 1 corresponds to the benchmark model with identical local pricing factors. We consider 21 values ofρ: they range fromρ = 0 to ρ = 1,

in increments of 0.05. Panel A presents the correlation betweenFXC, the measure of cross-sectional dispersion in conditionalFX correlation,

and the global pricing factorzw. Panel B presents the cross-sectional correlation betweenaverage FX correlations and average FX correlation risk

premiums across FX pairs. With the exception of parameterρ, the parameter values are reported in Table 8. The simulation details can be found

in Appendix E.
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