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International Correlation Risk
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Abstract

We document that the cross-sectional dispersion of camditiFX correlation is countercyclical and that currencies
that perform badly (well) during periods of high dispersigiald high (low) average excess returns. We also find
a negative cross-sectional association between averageof¥lations and average option-implied FX correlation
risk premiums. Our findings show that while investors in spatrency markets require a positive risk premium for
exposure to high-dispersion states, FX option prices angsistent with investors being compensated for the risk of
low-dispersion states. To address our empirical findingspmpose a no-arbitrage model that features unspanned FX
correlation risk.

JEL classificationF31, G15

Keywords: Correlation risk, Exchange rates, International finance

1. Introduction

It is well known that stock return correlations are couryelical and correlation risk is priced, arguably due to the
reduction of diversification benefits that occurs when statlrn correlations increase. However, existing litemtu
has largely ignored the foreign exchange (FX) market. Is g@per, we explore the properties of FX correlations
using both spot and options market data and we propose ag@édaan no-arbitrage model that is consistent with our
empirical findings.

First, we document the empirical properties of conditidr¥l correlations. We consider exchange rates against
the U.S. dollar (USD) and show that there exists substantias-sectional heterogeneity in the average conditional
correlation of FX pairs. Furthermore, using several bussraycle proxies, we find that the cross-sectional dispersio
of FX correlations is countercyclical: FX pairs with higlol) average correlation become more (less) correlated
in adverse economic times. We exploit the cyclical propsrof conditional FX correlation by defining an FX
correlation dispersion measufeXC, and sort currencies into portfolios based on the beta af tbirns with respect
to innovations inFXC, denoted byAFXC. We find that currencies with los&F XC betas have high average excess
returns, whereas currencies with highk XC betas yield low excess returns, suggesting that FX coioelaisk has
a negative price in spot FX markets. In particular, in ourdhenark sample of G10 currencigdML®, a currency
portfolio with a short position in the highFXC beta currencies and a long position in the l0#wXC beta currencies,
generates a highly significant average annual excess ret6rd2% with a Sharpe ratio of 0.82.
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We continue our empirical investigation by using currengfian prices to extract conditional FX correlation
dynamics under the risk-neutral measure. We calculate F¢ledion risk premiums, defined as th&drence between
conditional FX correlations under the risk-neutral measand the physical measure, and we find a strongly negative
cross-sectional association between average FX cooetatind average FX correlation risk premiums: FX pairs
characterized by low (high) average correlations tend hitdipositive (negative) correlation risk premiums. Thile
cross-sectional dispersion of FX correlations is on avetager under the risk-neutral measure than under the pdiysic
measure. We also document a very strong negative timesss#ociation between FX correlations and FX correlation
risk premiums for almost all FX pairs. As regards cycligalEX pairs with high average correlation risk premiums
have countercyclical correlation risk premiums, whereaisspwith low correlation risk premiums have procyclical
premiums. Thus, bad states amplify the magnitude of FX tatiom risk premiums, increasing their cross-sectional
dispersion.

We rationalize our empirical findings with a no-arbitragedabof exchange rates. The main tension we address is
between the physical and the risk-neutral measure FX etiwaldynamics. Under the physical measure, the negative
association betweetF XC betas and currency returns suggests that U.S. investarseegpositive risk premium for
being exposed to states in which the cross section of FX latioaswidens However, FX options are priced in a
way that suggests that U.S. investors worry about statediahvthe cross section of FX correlatiotightens as the
risk-neutral measure FX correlation dispersion is on ayetawer than its physical measure counterpart. To address
this apparent contradiction, we propose a model in which BXetation risk is not spanned by exchange rates: the
pricing kernel of U.S. investors is exposed to shocks tiff@ctconditional FX correlations, but not exchange rates
themselves.

In the model, each country’s stochastic discount factorHSB exposed to two global shocks, as well as a single
country-specific shock. Importantly, countries have tageneous loadings on the first global shock, but identical
loadings on the second global shock. As a result, the abs#rarbitrage in international financial markets suggests
that exchange rates are exposed only to the first global sixdekeas the second global shock cancels out and does not
affect exchange rates at all. The steady-state cross-sddistrébution of conditional FX correlations is determahe
by the cross section of exposures to the first global shockverage, the USD exchange rates of foreign countries with
similar exposure to the first global shock (called similar pa{rs) are more correlated than FX pairs of countries with
dissimilar global risk exposure (called dissimilar FX gairCrucially, the cross section of conditional FX corrielas
exhibits time variation due to the fact that conditional Ffrelations are determined by the relative importance of
country-specific risk and global risk, which varies overgimWhen the relative magnitude of country-specific SDF
shocks increases, the countries’ heterogeneous expogheefirst global shock becomes less important quantitgtive
and the cross section of conditional FX correlations tightavith high correlation FX pairs becoming less correlated
and low correlation FX pairs more correlated. Converselglative increase in the magnitude of global risk increases
the correlation of similar FX pairs and decreases the catiogl of dissimilar FX pairs, widening the cross section of
conditional FX correlations.

In turn, the relative magnitude of country-specific and glotisk is determined by the relative magnitude of the
local pricing factor, which prices country-specific riskdais exposed to the second global shock, and the global
pricing factor, which prices global risk and is exposed te tinst global shock. When the second global shock has
an adverse realization, the local pricing factor increaggbktening the cross section of conditional FX correlasip
conversely, when the second global shock has a positiveaéah, the cross section of conditional FX correlation
becomes more dispersed. The reverse occurs for realizatfdhe first global shock: its adverse (positive) realzadi
increase (decrease) the global pricing factor, wideniigih{gning) the cross section of FX correlations. Thus, the
cross section of conditional FX correlations is driven byhbglobal shocks. In the model, both shocks are priced,
but not symmetrically: U.S. investors price the second khnore severely than the first, so they attach a high price
to states characterized by large relative values of thd fmiging factor. Since those are exactly the states in which
the cross-sectional dispersion of FX correlation is tighir model is able to match the cross sectional properties of
average correlation risk premiums implied by FX option esic



As regards spot FX markets, recall that exchange rate risk dot span FX correlation risk, as exchange rates are
undtected by the second global shock. This lack of spanning altmw model to generate a negative relation between
AFXC betas and currency returns: investing in exchange rategsdrampensation solely for exposure to the first
global shock and, since negative realizations of that shesd to a widening of the cross section of FX correlations,
investors require high returns for holding negatheXC beta currencies, which depreciate when the cross section of
conditional FX correlations becomes more dispersed.

In sum, conditional FX correlation, which can be indirecttgded using currency options, is exposed to two
global shocks. U.S. investors price the second global simgie severely than the first one, so FX correlation
risk premiums reflect the desire of currency option holdergrimarily avoid states with negative realizations of the
second shock—those are the states characterized by anfightaf the cross-sectional dispersion of FX correlation,
and currency option prices reveal that feature. On the dthed, investing in foreign currency exposes investors only
to the first global shock, so currency risk premiums refletdlgd-X investors’ desire to avoid the corresponding bad
states—those states are characterized by a widening ofdks-sectional dispersion of FX correlation, and currency
risk premiums compensate investors for exposure to thagesstThus, it is the lack of spanning of FX correlation risk
by exchange rates and currency returns, and in particiddattk of exposure of exchange rates to the second global
shock, that allows our model to jointly address the emplipcaperties of FX correlations, currency risk premiums and
FX correlation risk premiums.

A simulated version of our model generates realized FX tatioms, implied FX correlations and FX correlation
risk premiums that match the cross-sectional and timesegmnioperties of their empirical counterparts, all the ®/hil
fitting the standard exchange rate, interest rate and imflatioments.

Related literature: This paper is part of the literature addressing the saliengigcal properties of FX markets. Our
model builds on the work of Lustig, Roussanov and Verdel@@d 1/ 2014) and Verdelhan (2015); their models feature
global SDF shocks, common across countries, and local SBékshindependent across countries. Importantly, they
assume that the price of country-specific shocks is unaie@lacross countries, as local pricing factors are pérfect
negatively correlated with the corresponding countryefffiieshocks. We show that allowing for cross-country
comovement of the local pricing factors is crucial for expilag the joint behavior of FX correlations under the phgsic
and the risk-neutral measure.

Our model assumes ex ante heterogeneity across countgaglirg their exposure to global shocks. Recent
international finance models that address the cross seft@mrency risk premiums by assuming ex ante heterogeneity
across countries include Hassan (2013), Tran (2013), Backavazzoni, Telmer and Zin (2013), Colacito and Croce
(2013),[ Colacito, Croce, Gavazzoni and Ready (2015), aratiiR&Roussanov and Ward (2016). In all models, high
(low) interest rate currencies are risky (hedges) becausg depreciate (appreciate) in bad global states. This is
because high interest rate countries are those with lowsexpdo global risk: small countries, countries with smooth
non-traded output, countries with very procyclical momgtaolicy, commaodity producers, or countries with low
exposure to global long-run endowment shocks, dependirtigeomodel.

Finally, our paper is related to the literature on currermyams. Whereas most of that literature focuses on crakh ris
especially in the context of the FX carry trade—see, for gXanFarhi, Fraiberger, Gabaix, Ranciere and Verdelhan
(2015),/ Jurek|(2014) and Chernov, Graveline and Zviada@d@&&)—our aim is to use option prices to study the
properties of FX correlation risk premiums.

The rest of the paper is organized as follows. Sedflon 2 tescthe data. Sectidn 3 reports our empirical findings
regarding the cross-sectional and time-series propasfi€X correlations, as well as the pricing of correlatiorkris
in currency markets. Our empirical findings concerning FXrelation risk premiums are presented in Secfibn 4.
Section[d introduces our no-arbitrage model, and Seflomr&lades. The Appendix contains details on the
construction of the realized and implied FX correlation swas, results on the price of FX correlation risk, and
model details, including details on the model calibratiod aimulation. Additional results and robustness checks ar
deferred to an Online Appendix.



2. Data

Our benchmark sample period starts in January 1996 and emdkciember 2013, and is dictated by the availability
of the currency options data.

Spot and forward exchange rates:To calculate physical measure FX moments, we use daily spbtamge rates
from WM/Reuters obtained through Datastream. From the same saugcaso collect one-month forward rates to
calculate forward discounts.

Following the extant literature (see, elg., Fama, 1984 )wak with log spot and log one-month forward exchange
rates, denoted = In(S}) and f| = In(F}), respectively; both are expressed in units of foreignengy per US
We use the U.S. dollar as the base currency, so supersatipays denotes the foreign currency. Monthly log excess
returns from holding the foreign currencyare computed als<{+1 = fl - s{+1. Our benchmark sample comprises the
nine G10 foreign currencies (AUD, CAD, CHF, EUR, GBP, JPY,lN®IZD, SEK) from January 1996 to December
2013. For robustness checks, we also consider the longearah984 to December 2013 sample period. Before the
introduction of the EUR in January 1999, we use the GermarkN2EM) in its place.

Table[1 presents the properties of the G10 currency excessse In line with the literature on the FX carry trade,
we find that currencies with high (low) nominal interest satiend to yield high (low) average dollar excess returns: the
NZD and the AUD are characterized by high nominal interetgts;aas well as high average excess returns, while the
reverse is true for the JPY and the CHF.

[Insert Tablé 1L here.]

For robustness, we extend the cross section of currenciesarsider two additional currency sets: developed and
emerging market currencies. The developed country saraplet from the G10 currencies, includes the currencies
of Austria, Belgium, Denmark, Finland, France, Greecdy,ltieland, Netherlands, Portugal, and Spain. The full
sample includes all the developed country currencies,galith the currencies of the Czech Republic, Hungary,
India, Indonesia, Kuwait, Malaysia, Mexico, Philippin€gland, Singapore, South Africa, South Korea, Taiwan, and
Thailand?

Currency options: We use daily over-the-counter (OTC) G10 currency optioria ffam J. P. Morgan. In addition to
the nine currency pairs versus the U.S. dollar, we also hptierts data for all 36 cross rates. The options used in this
study are plain-vanilla European calls and puts, with fiveawpseries per currency pair. Specifically, we focus on the
one-month maturity and a total of fiveftirent strikes: at-the-money (ATM), 10-delta and 25-dediilsc as well as
10-delta and 25-delta puts.

3. Exchange rate correlations

In this section, we document that the cross-sectional digme of conditional FX correlation is countercyclical.
Following that observation, we construct an FX correlataigpersion measurd; XC, and sort currencies into
portfolios based on their return exposureRXC innovations, denoted byFXC. We find a negative association
betweenAFXC betas and currency excess returns, suggesting that cyrexposure to FX correlation risk is
compensated with a positive risk premium.

3.1. Properties of exchange rate correlations

We use daily spot exchange rates to calculate conditionaldfi€lations under the physical measure. In particular,

we proxy the conditional one-month correlation of each FX patimet with its realized correlation over a rolling

1WM/Reuters forward rates are available from 1997 onwards. §86,1we either use forward rates from alternative sourceseotonstruct
‘implied’ forward rates using the interest ratdéfdrential between the U.S. and the foreign country usingésteate data from Datastream, exploiting
the fact that covered interest rate parity holds during mboonditions. We verify that our results are robust to usirgWM/Reuters data only.

2We start with the same set of currencies used in Lustig. Rmassand Verdelhan (2011). However, we exclude some cliegnsuch as the
Hong Kong dollar, as they are pegged to the USD. We also exc¢hel Danish krone after the introduction of the EUR.
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three-month window of past daily observatiops. Appendix révides the details. In the remainder of the paper, we
will often refer to physical measure conditional FX cort&la as realized FX correlation, to distinguish it from the
option-implied risk-neutral measure FX correlation (imegd FX correIationH

The first two columns of Tabld 2 report the time-series mearstandard deviation of the conditional FX correlation
of each of the 36 G10 FX pairs. The mean conditional cori@tats positive for all 36 FX pairs, indicating that all
pairs of USD exchange rates exhibit positive comovementenage. The cross-sectional average of the conditional
correlation means is 0.45, but there is substantial cresgemal heterogeneity: the means range from almost zero
(CAD/JPY with 0.05, indicating that fluctuations in the relativecp of the CAD and the JPY against the USD
are almost disconnected), to almost one (ZEUR with 0.89E Furthermore, conditional FX correlations exhibit
considerable variability across time: the cross-sectiaverage of the standard deviation of conditional FX caiehs
is 0.23, ranging from 0.09 (EYROK pair) to 0.34 (AUDJPY pair), suggesting non-trivial swings in the degree of
exchange rate comovement across time for all FX pairs.

[Insert Tablé 2 here.]

Given the time variation in conditional FX correlationsisitworth exploring whether that time variation is cyclical
and, if so, whether there is any cross-sectional heterdtyenés properties. To that end, we consider the comovamen
of conditional FX correlations with market variables tha¢ avell-known to exhibit countercyclical behavior. The
market variables we consider are a global equity volatifisasure@V ol), a global funding illiquidity measuregF 1),
the TED spreadT ED), and the VIX {/1X). GVolis constructed as in Lustig, Roussanov and Verdelhan (2@HR)
is constructed following the methodologylof Hu, Pan and Wg&@1.3), but calculated using an international sample
of government bond securities as in Malkhozov, Mueller,ofedand Venter|(2016)T ED is the spread between the
three-month USD LIBOR and the three-month Treasury Bikk rand is available in FRED/1X is backed out from
options on the S&P 500 stock index and available from the CBOED andVIX are U.S.-specific measures, but
are often used as global market indicatd®s/ol andGF1 are calculated using international data in local curreicie
For each FX pair and each market measure, we define the ditgliceeasure to be the unconditional correlation of
the market variable with the conditional correlation of # pair. Thus, we calculate four FX correlation cyclicality
measures for each exchange rate pair, each correspondimgddket variable. We present the cyclicality measures for
the 36 G10 FX pairs in the first four columns of Table 3.

[Insert TabléB here.]

As seen in the table, we find substantial cross-section@rbgeneity regarding the cyclicality properties of
conditional FX correlations. To determine whether ther@ tsoss-sectional pattern, we plot each cyclicality measur
of the 36 FX pairs against their average conditional coti@iaPanels A to D in Figuriel1 present the plots for the four
cyclicality measures. Each panel also presents the linesiffit from the corresponding cross-sectional regression.
We report the details of the four cross-sectional regressiio Panel A of Tablgl4: for each regression, we document
the point estimate of the slope dheient, its asymptotic t-statistic, and the 95% bootstrapmnfidence interval (8
and 975 bootstrap percentiles), as well as the regresRfoiT he asymptotic t-statistic is calculated using White ()98
standard errors that adjust for cross-sectional hetedastieity, while the bootstrapped confidence interval aot®

3For robustness, we also proxy the conditional one-monthetadion of each FX pair at time with its realized correlation over a rolling
one-month window of past daily observations, as well as wsthealized correlation during the one-month ahead pefied fromttot+ 1. Our
empirical results are robust to those alternative spetiice. We report some of our findings for correlation riskmpiems using the alternative
realized correlation proxies in the Online Appendix.

4Beginning September 2011, the Swiss National Bank imposeapan the relative value of the CHF by establishing a floor .@f GHF per
EUR. The average correlation between the @D exchange rate and the EJIRSD exchange rate in the period before the cap (0.887) isstimo
identical to their average correlation during the cap pk(@895). Given that the cap does not seem to have changéeliaeior of the CHF, we
choose to retain the CHF in our sample after September 20E1ha¥e verified that removing the CHF during the cap period chae materially
affect our results.



for potential small samplefiects. All four slope coficients are positive and statistically significant at the 8%el
using either the asymptotic or the bootstrapped distidinytsuggesting a positive cross-sectional associatiomgset
average conditional FX correlation and FX correlation matlty. Indeed, Figurgll shows that the FX pairs with high
average correlation tend to exhibit countercyclical datiens, whereas the FX pairs with low average correlatien a
characterized by procyclical FX correlatians.

[Insert Figurdl and Tabld 4 here.]

Our findings imply that in periods characterized by advecamemic conditions or market stress, the cross section of
conditional FX correlations widens, as high correlationfrairs become more correlated and low correlation FX pairs
become less correlated. To further explore the time-s@riegerties of the cross-sectional dispersion in condition
FX correlation, we construct a conditional FX correlatidspetrsion measure, calldeXC, as follows: each periot
we sort all FX pairs in deciles on their conditional corr&af calculate the average conditional correlation forttpe
and bottom deciles (which consist of four FX pairs each),takd the diference between the top and the bottom decile
averages to be our dispersion measurg BXC;. Due to the time variation in conditional FX correlationisete is
turnover in both the top and bottom deciles; to eliminate position éfects, we also compute an alternative dispersion
measure XCYNC) by considering top and bottom deciles of FX pairs formedagsiverage conditional correlations.

We plot the time series of the level of the two FX correlatiagspérsion measures in Panel A of Figlﬂ@ The
correlation betweef XC and FXCUYNC is 0.86, indicating that the two measures are very simikadeéd, during the
financial crisis the two measures are almost perfectly taied, as there is little turnover in the extreme decilesXf F
conditional correlation. To evaluate the cyclicality peofies of the FX correlation dispersion measures, we egplor
their association with the market variables we use to meakercyclicality of FX correlations. For reference, in Pane
B of Figure[2 we plot the (standardized) market variablesiePA of Table[ reports the unconditional correlations
between our two FX correlation dispersion measures and #rketwariables, in the January 1996 to December 2013
sample period, along with their bootstrap standard err&eth dispersion measured=XC and FXCYN®—have a
positive correlation with all four market variables; in alght cases, bootstrap confidence intervals (which acdount
non-normality in small samples and are not reported in TBpiadicate that the correlation is statistically significa
at the 1% level. Panel B repeats the same exercise for theddaguary 1984 to December 2013 period; again all
eight correlations of interest are positive and significrhe 1% level.

[Insert Figurd® and Tabld 5 here.]

3.2. Correlation risk and the cross section of currency resu

We can now explore how exposure to FX correlation risk reléecurrency returns. To do so, we sort currencies
into portfolios based on the exposure (beta) of currencg&xceturns to innovations in our dispersion meaBX€;
innovations betweenandt + 1 are denoted byF XCi.1 and are defined as the average of changes (fiffgtrdnces)
in conditional FX correlation for the FX pairs that belonghe top decile in periotiminus the corresponding average
for the bottom decil@. Our currency portfolios are rebalanced monthly: each moémtie calculate rollingAF XC
return betas using the last 36 monthly observations. Hexaxeh month currency portfolios are formed using only
information available at time

We sort the nine G10 currencies into three portfolios; thet fiortfolio (Pf£) contains the currencies with the
lowestAFXC betas while the last portfolio (P¥} contains the highestFXC beta currencies. Of particular interest

5We also calculate the cross-sectional correlatiorfiment between average FX correlations and each of the fadicality measures; the
cross-sectional correlation déieients are 0.37 for GVol, 0.57 for GFI, 0.70 for TED and 0.38VéX.
6The Online Appendix presents additional results usingradiive construction methods f6tXC. We find that our portfolio results are robust

to those alternative specifications.
“Innovations inFXC are not the first dferences irFXC, as the composition of the deciles changes over time. Onttie band, since the FX
pairs used to calculateXCUNC are fixed, innovations iff XCYNC can be simply defined as firstftiirences in the level of the factor.



is theHMLC portfolio, which takes a long position in Pfaand a short position in Pf1 Panel A of Tabl¢l6 reports
the summary statistics for the thra& XC-beta-sorted currency portfolios, as well as hMLE portfolio. Notably,
average portfolio returns are monotonically decreasirtgé\F XC beta:AFXC is a priced currency risk factor. As a
result, the average return BWMLC is negative and highly statistically significant: shortihg HMLC portfolio yields
an annualized average excess return of 6.42% with a ti#taifs3.47, and an associated Sharpe ratio of 0.82.

[Insert Tabld® here.]

Our finding of a strongly negative return fBiMLC is robust to diferent sample periods. In particular, we consider
following periods: January 1996 to July 2007, January 198Décember 2013, and January 1984 to July 2007;
two of those periods end before the recent financial crisisr fiddings are reported in Panels B to D of Table 6.
Consistent with our results for the benchmark period, wedimthverse relation between exposure to the FX correlation
factor AFXC and average currency portfolio excess returns in each dhtiee periods. Excluding the financial crisis
increases the average excess return of shortingHtl. portfolio to 7.35%, with an associated Sharpe ratio of
1.10 (Panel B). On the other hand, returffeliences across portfolios somewhat attenuate when thdesaenod
is extended back to January 1984 (Panels C and D), but shahteHMLC portfolio still yields highly significant
annualized average excess returns (3.72% and 3.45%, tiespgc Overall, our results are very robust tdfdrent
sample periods and do not appear to be driven by the recentiai&risis.

For further robustness, we also explore extended cros®ssdaf currencies: in particular, we consider a sample
that includes other developed country currencies (calledieveloped country sample) and a sample that includes the
entirety of the developed sample and also some emergingraties (called the full sampIE)For each of the two
extended samples, we construct faWF XC-beta-sorted portfolios. Figufé 3 presents the averagessxeturns of
AFXC-beta-sorted currency portfolios for each of three setsiofencies (G10, all countries and developed countries)
and each of the four periods discussed above. We find a centfjshegative association between average portfolio
excess returns and exposure to correlation risk, with negaverageH MLC returns across the board. Furthermore,
averageH MLC returns are significant at the 5% level for all currency andogesamples, with the sole exception of
the samples starting in 1984 for the full set of currencies.the benchmark period from January 1996 to December
2013, the average annualized return of shorkiid L in the developed country sample is 5.46% (with a t-statsftic
2.42) and the associated Sharpe ratio is 0.57. For the fagssection of currencies, shortiigVLC yields 4.04% on
average (with a t-statistic of 1.97) and a Sharpe ratio 6.0.4

[Insert FiguréB here.]

Finally, given the significant excess returns to LS portfolio, we attempt to determine the market price of
FX correlation risk. We follow the extant literature and siter a linear pricing model with two traded factors: the
first factor is the dollar factoDOL, defined as the simple average of all available FX excessnefand shown by
Lustig, Roussanov and Verdelhan (2011) to act as a levedif&mt currency returns, and the second factdf LS,
the return diference between the high and law XC beta portfolios for the sample of G10 currencies. Our egBsa
for the market price oHMLC® range from-51 to —67 basis points per month, depending on the set of test assets
HMLC acts as a slope factor for pricing currency risk. The resukspresented in detail B.

4. Exchange rate correlation risk premiums

In this section, we document the cross-sectional and tienies properties of FX correlation risk premiums (CRP)
and explore the relation between FX correlation risk prensiand FX correlations.

8The full list of currencies in each sample is given in Sedgwf the paper.



4.1. The cross-sectional properties of correlation riskipiums

In consistence with the literature on variance and coimatsk premiums in other asset classes, we define FX
correlation risk premiums as thefidirence between expected conditional FX correlations uthderisk-neutral Q)

and the physicalf) measure:
. T T
CRF{"T = EtQ (f p[;’du) -EF (f p[;’du). Q)
’ t t

We only consider one-month premiums, ile=t + 1, as the maturity of the FX options we use to derive risk-radut
measure moments is one moé)th.

To calculate the risk-neutral (implied) conditional FX oeation, we follow the literature on model-free measures
of implied volatility and covariance using daily FX optiomiges. The details of the calculations are presented in
[Appendix_G. Given the availability of FX options, we calag@aorrelation risk premiums for each of the 36 FX pairs
formed using the nine G10 exchange rates against the US[@aebrFX pair not involving the EUR, our sample period
starts in January 1996 and ends in December 2013, for a fa2d6omonthly observations. For the EUR, the options
data start in January 1999.

The time-series mean and standard deviation of the implieadtrelations of each of the 36 G10 FX pairs are
reported in Tabl€]2. The cross-sectional average of imgf&dcorrelation means is 0.48, slightly higher than its
physical measure counterpart (0.45). Importantly, therkess heterogeneity in conditional FX correlation means
under the risk-neutral measure than under the physical uneathe lowest implied FX correlation mean is 0.14
(CAD/JPY pair) and the highest is 0.88 (CHIUR pair), whereas realized correlation means range fré 1. 0.89.
The volatility of implied FX correlations is of the same ordd magnitude as the volatility of realized FX correlatipns
with standard deviations ranging from 0.07 to 0.34 and ttreiss-sectional average being 0.19.

Finally, the last five columns of Tablé 2 present the deseepttatistics for FX correlation risk premiums. From
left to right, we report the time-series mean and standavéhtien of the correlation risk premium of each FX pair,
followed by the asymptotic t-statistic and the bootstrappB% confidence interval of the CRP mean. CRP means
exhibit considerable cross-sectional heterogeneity thieir size and sign varying greatly across FX pairs: thegea
from —0.069 (CAD'SEK) to Q099 (JPYNOK), with the cross-sectional average being 0.016. Routynb thirds of
CRP means are positive and one third are negative; ovdradk fjuarters of the means are significant at the 5% level
according to either the asymptotic or the bootstrappediligtonl™d Furthermore, correlation risk premiums are very
volatile: despite the fact that premiums are much smalkem #ither realized or implied FX correlations, CRP standard
deviations are of the same order of magnitude as those afedadr implied correlations (ranging from 0.06 to 0.22,
with a cross-sectional average of 0.14), suggesting tleaetls substantial time variation in the disparity between
physical measure and risk-neutral measure FX correlations

To explore whether average FX correlation risk premiumshsha cross-sectional pattern, we plot the average
CRP of all G10 exchange rate pairs against their averagieedatorrelations. Figuifd 4 presents the scatterplotgalon
with the line of best fit. The cross-sectional correlatiobA®en average FX correlation risk premiums and average
FX realized correlations is0.55. For example, the AUDPY pair, characterized by a very low average realized FX
correlation (0.16), has a positive and highly significanérage CRP of ©83. On the other hand, the AUBZD
pair has a very high average realized correlation (0.76)aandgative and significant average premiur.016). A
cross-sectional regression of average correlation risknrms on average realized correlations yields a stalbtic
significant slope ca&cient of—0.144{11 The strongly negative cross-sectional association betaeerage realized

9Variance risk premiums are defined analogously as tiierdhce in expected conditional FX variance between thendskral and the physical
measure. A brief discussion of their summary statisticayelsas the summary statistics of physical measure (ref)liaad risk-neutral measure
(implied) FX variance, is deferred to the Online Appendixter alia, FX variance is studied|in Cenedese, Sarno an#ds(@014), who find that a
high cross-sectional average of currency excess returanear predicts carry trade losses.

10n terms of size, the maximum FX correlation risk premium wedfis about half of the equity correlation risk premium repdrby
Driessen. Maenhout and Vilkov (2009).

Uts asymptotic t-statistic, calculated using_White (198@ndard errors, is-5.80 and the bootstrapped 95% confidence interval is
[-0.154 —0.076].



FX correlations and average FX correlation risk premiunmghiat generates the tighter cross-sectional distributfion o
average implied FX correlations versus that of realized BXadations that we discussed earlier.

[Insert Figuré¥ here.]

The relative tightness of the cross-sectional distributibconditional FX correlation under the risk-neutral maas
implies a potential tension regarding the pricing of FX etation risk. On the one hand, the negative association
betweem\F XC betas and currency excess returns suggests that U.S ars/esjuire a risk premium for being exposed
to states in which-XC increases, i.e. in which the cross section of FX correlatisinens. However, FX options are
priced in a way that indicates that U.S. investors priceestat which the cross section of FX correlations tightens. In
the next section, we will address this tension by proposing-arbitrage model that features unspanned FX correlation
risk.

4.2. The time-series properties of correlation risk premsu

We now turn to the time-series properties of implied FX clatiens and FX correlation risk premiums. The first
four columns of Tabl€]7 provide summary statistics on theetsaries association between realized and implied FX
correlations: for each FX pair, we report the unconditiartatelation cofficient between the two time series, as well
as its asymptotic t-statistic and its 95% bootstrapped denfie interval. Realized and implied correlations exhibit
substantial comovement across time for all FX pairs, withithconditional correlations between the two ranging from
0.28 t0 0.92, all being statistically significant, and thess-sectional mean being 0.79.

[Insert TabléY here.]

The last four columns of Tablg 7 report descriptive statsstin the unconditional correlation between realized
FX correlations and FX correlation risk premiums. We findtttiee cross-sectional average of those unconditional
correlation cofficients is—0.52 across the 36 G10 FX pairs, suggesting that elevated Fd¢lation is typically
associated with lower than usual CRP, i.e., with a lower thsunal disparity between the physical measure and the
risk-neutral measure FX correlation. This associatioreis/gsive and robust: 35 of the 36 unconditional correlation
codficients are negative, with all but one of them being statficsignificant.

Finally, to assess the cyclicality of correlation risk prams, we construct CRP cyclicality measures. As we
did for FX correlations, we define our CRP cyclicality me&suto be the unconditional correlations between FX
correlation risk premiums and the four market variables sedbefore. The last four columns of Table 3 report the
four CRP cyclicality measures for each of the 36 G10 FX paing] Panels A to D of Figuld 5 plot those cyclicality
measures against average FX correlation risk premiums. ndeafipositive cross-sectional association: FX pairs
with high average CRP have countercyclical correlatiok geemiums, whereas pairs with low average CRP have
procyclical premiums. The regression results in Panel Babld4 suggest that this positive cross-sectional assotiat
is statistically significant for all four cyclicality me Thus, the cross-sectional dispersion in FX correlatidk ris
premiums is countercyclical: in bad times, the premiums%pRirs with high average CRP increase and the premiums
of FX pairs with low average CRP decline, widening the cresstional distribution of FX correlation risk premiums.

[Insert Figuré’b here.]

5. A no-arbitrage model of exchange rates

In this section, we introduce a reduced-form, no-arbitragelel of exchange rates that is consistent with our
empirical findings. Our model builds on the reduced-form eisdn|Lustig, Roussanov and Verdelhan (2011, 2014)

12\we also calculate the cross-sectional correlationfiaent between average CRP and each of the four CRP cydlicaltasures; the
cross-sectional correlation dtieients are 0.47 for GVol, 0.79 for GFI, 0.69 for TED, and 0.68YIX.



and| Verdelhan (2015). In contrast to those models, whichragshat innovations in the price of country-specific
shocks are uncorrelated across countries, we assume ttatrisk is priced identically across countries. This
assumption implies a lack of spanning of FX correlation tigkexchange rates, a feature that is crucial in jointly
explaining the behavior of FX correlations and FX correlatiisk premiums.

5.1. Model setup

The global economy comprisés- 1 countriesi(= 0,1, ..., 1), each with a corresponding currency. Without loss of
generality, we will call country = 0 the domestic country and countries 1, ..., | the foreign countries. We assume
that financial markets are frictionless and complete, sbtheae is a unique stochastic discount factor (SDF) for each
country, but that frictions in the international market mods induce non-identical stochastic discount factonsssc
countries. In particular, the log SDF of counirydenoted byn, is exposed to two global shocks! andu?, and a
country-specific (local) shoakl, and satisfies

- rTli[+2I. sa+xz+ ‘Pztw + \/auitﬁl. + \[ ),i 4"'“&1 + Véz{ual’ (2)

wherezandz” is the local and the global pricing factor, respectivelyttBpricing factors are common to all countries.
Notably, countries are ex ante heterogeneous only withrdgdgaheir exposureg to the first global shock"; all other
SDF parameters are identical across countries. As we vl dferences iny capture an exchange rate fixeffleet
that generates, inter alia, cross-sectionfiedénces in average FX correlations. In our model, globkleigosurey

is exogenou@.

The local pricing factoe prices both the local shoak and the second global shook in all countries, the price of
the local shock isykz and the price of the second global shock/sz. On the other hand, the first global shatkis
differentially priced across countries, with its price in coynbeing W

The two pricing factors are stationary processes. The lmdaihg factorz is driven by the second global shogk
and has law of motion

Az = AZ-2) - ¢ \/ZU?+1~ (3)

Thus, the local pricing factor is a square root process rtiedgto its unconditional mean afat speedi. Importantly,
the local pricing factor is countercyclical, as adven$shocks increase its value.
The global pricing factor” is driven by the global shoak”; it is also a square root process, with law of motion

AZY, = Y@ - 2" - €YY, (4)

which also implies countercyclical pricing of risk. To ensthat both pricing factors are strictly positive, we impos
the Feller conditions.2z > £2 and 22" > (£). All parameters except, y andy are strictly positive and all shocks
are i.i.d. standard normal.

Finally, the inflation process for countrys given by

ﬂi+1 = 7?+ (zN + \/EniHl‘ (5)

Expected inflation rates are time varying and identical semuntries. However, realized inflation ratefetiacross
countries, as inflation shocks are i.i.d. standard normal. Conditional inflation variaieeonstant and equal @
and inflation shocks are unpriced, so the model does notrfeaty inflation risk premiums. As a result, all the salient
economic mechanisms in the model arise from real variabtesominal variables inherit all the conditional propestie
of their nominal counterparts. For that reason, we will déscthe model intuition using real variables and will coasid
nominal variables only in the simulation section.

13Richer models that endogenize unconditional cross-swtidifferences in global risk exposure include Hassan (2013).] {2ad.3),
Backus. Gavazzoni. Telmer and Zin (2013). Colacito. Cr@aazzoni and Ready (2015) and Ready. Roussanov and W) (20
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5.2. The properties of conditional FX moments

We denote the real log exchange rate between foreign cyriearad the domestic currency loy (units of foreign
currency per unit of domestic currency, in real terms). Assalt of financial market completeness, real exchange rate
changes equal the SDHidirential between the two countries,

Ath = mro+1 - mit+1» (6)

which implies that real exchange rate changes can be des@duto a part driven by country-specific shocks and a
part that reflects exposure to global risk:

Aqit+il. = \/’auhl - \/’au&l + (\/)7 - \/;) \/?u\t,-\:-l' (7)

If the foreign country has a higher (lower) exposgréo global shocku” than the domestic country, its currency
appreciates (depreciates) against the domestic currehey & negative!” realization occurs. On the other hand,
exposure to the second global shagkdrops out of exchange rate changes since all countries hav&aime loading
onud, and, thus, the only global shock thdifeects exchange rate changes directlyisTherefore, in the remainder of
the paper, global FX risk always refers to the first globalcéhd'.

We now turn to conditional FX moments. The conditional vacia of changes in the log real exchange rate
increasing in both the local pricing factpand the global pricing facta@":

var (Ag,) = 2z + (\/_' - \/7;)2 2. (8)

The first dfect arises from the country-specific component of stoaha#tcount factors: given the independence of
local shocks across countries, the higher the impact of kiwacks on the SDF, the more the two SDFs diverge and,
hence, the more volatile the exchange rate is. The sedtect arises from the global component of SDFs: the higher
the diference in global risk exposure between couintayd the domestic country, and the more severely global risk
exposure is priced, the more volatile the real exchangédsate

The conditional covariance of changes in log real exchaatgsirand j is

cou (Adj.;, Ag,,) = &z + D17, (©)

where we define the constabt! as follows:

o (7 - ) w

We call exchange rate pairis |) that satisfyD" > 0 “similar” and exchange rate pairs that satiBfy < 0 “dissimilar”.
Thus, similar exchange rates correspond to foreign caswhich both have either more or less exposure to global
risk than the domestic country, whereas dissimilar exchaatgs correspond to pairs of foreign countries in which one
country has higher, and the other country lower, exposugdotoal risk compared with the domestic country.

The first component of conditional FX covariance is due todtimon exposure of the two exchange rates to the
domestic local shock, as the two exchange rates are meeltigrpositively correlated through their relation to the
domestic SDF. Whenm increases, this “domestic currendjext’ becomes more prevalent, increasing the covariance
between the two exchange rates, as both foreign currenpjgedate or depreciate together against the domestic
currency.

The second component captures FX comovement that arisae#posure to global FX risk. Foreign countries with
similar exposure to the global shouK (i.e. countries that satisf"] > 0) have exchange rates that covary more than
the exchange rates of countries that have dissimilar expdswlobal FX risk. Furthermore, fluctuationszf have
different éfects on conditional FX covariance, depending on the typaefiX pair: an increase in the global pricing
factor amplifies the importance of exposure to global ris,ahus, increases the conditional covariance of similar
exchange rates and reduces the covariance of dissimilaaage rates.
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We can now turn to conditional FX correlations. As happem$% covariances, country heterogeneity in exposure
to the global shock" generates cross-sectional heterogeneity in averaget@mradiFX correlations: similar FX pairs
have higher correlations on average than dissimilar onesth&more, the time variation in the pricing factats
andz introduces time variation in the conditional correlatidrboth similar and dissimilar FX pairs and, thus, in the
cross-sectional distribution of conditional FX corredeti

To illustrate the &ects of the two pricing factors on conditional FX correlagpwe consider a world d¢f= 3 foreign
countries. Countries 1 and 2 are less exposed to global kXtrém the domestic country, while country 3 is more
exposed than the domestic country. This implies that the &K (@,2) is similar whereas FX pair (1,3) is dissimilar.
To ensure symmetry, we set the values of the country expssuigiobal risk such that the conditi@t? = —-D%3 > 0
is satisfied.

[Insert Figuré 6 here.]

We first consider the impact of the global pricing facttyrthe left panels of Figuild 6 present the results. In pasicul
Panels A, C and E plot conditional FX correlations as a funmctif 2V for different values of the local pricing factor
(z= 0.2z, zand &, depicted with circles, solid lines and squares, respelglivPanel A refers to the similar exchange
rate pair (1,2), Panel C to the dissimilar exchange rate(pé8) and Panel E plots theftérence in the conditional FX
correlations of the two FX pairs. An increase in the glob#ipg factorz” raises the relative importance of exposure
to the global shock", amplifying similarities and dissimilarities: similar R¥airs (Panel A) become more correlated,
whereas dissimilar FX pairs (Panel C) become less corceldnenz’ — oo, similar exchange rates become perfectly
positively correlated and dissimilar exchange rates begoenfectly negatively correlated. Taken together, theselts
imply that the disparity in conditional FX correlation assoexchange rate pairs is increasing'irfPanel E).

We now turn to the #ects of the local pricing facta The results are presented in the right panels of Figlre 6;
Panels B, D and F plot the sensitivity of conditional FX ctatiens to the value of the local pricing factofor different
values of the global pricing facto?( = 0.2z, zand %), with Panel B referring to the similar FX pair, Panel D to the
dissimilar FX pair and Panel F to thefidirence in the two pairs’ conditional FX correlations. Rettadt an increase
of the local pricing factor increases both the variance of all exchange rates and tlaiaoee of all exchange rate
pairs, due to the domestic currendyeet. However, the impact of thaffect on FX correlation depends on the type of
the FX pair. Wherz — o the correlation of all FX pairs converges to 0.5. This hapgpaecause all cross-sectional
differences in global risk exposure become second-order andultimaately drives FX comovement is the domestic
currency &ect. In particular, the limit behavior of log exchange rdtarges is described by

Ath - \/’auiwl - \/augl’ (11)

so exposure to the domestic local shock, which accountsdtirafi the conditional FX variance and generates all
the FX comovement, pushes all FX correlations towards 0.6e © the domestic currencyfect, when the local
pricing factor increases, the importance of similar orididar exposure to global risk is attenuated. As a resud, th
conditional correlation of similar exchange rates dedli(feanel B), whereas the conditional correlation of didgimi
exchange rates increases (Panel D), leading to a tightenithge cross section of conditional FX correlations (Panel
F).

In sum, the cross-sectional dispersion of conditional Fielations is increasing in the global pricing fac#frand
decreasing in the local pricing factar Given thatz” increases after negativ¥ shocks ana increases after negative
u? shocks, that implies that changedHXC reflect bothu” shocks (with a positive sign) and shocks (with a negative
sign). Empirically, we have seen tiaXC is strongly positively correlated with four market variebthat reflect credit
risk, illiquidity and stock market volatility, suggestirigat those variables identify exposure to the first globakkh
u%, rather than to the second global sha@kTherefore, those business cycle variables can be praxiedrimodel by
2"
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5.3. Correlation risk and the cross section of FX returns

The USD excess return for investing in the currency of cauinsatisfies:

r'Xi+1 - Et(rxhl) = —AQL'_]_ + Et(Aqu) == \/’auiHl + \/Iaugl - (\/77 - \/’);) \/?unl—l’ (12)

so FX excess returns are not exposed%oisk. As a result, the conditional risk premium that the detiweinvestor
receives for investing in foreign currency{including the Jensen term) is

: : 1 . . :
rp; = E¢ (rx{H) + Evan(rx{H) = —cow(m, ;, —AQy, ) = k& + (\/3;— \/?) \/EZN. (13)

FX risk premiums have two components: a part that compenshimestic investors for the fact that investing in
a foreign currency essentially entails shorting the cousafrecific component of the domestic SDF, and a part that
reflects compensation for exposure to the global shifckThe first component is identical across currencies, so all
cross-sectional variation in FX risk premiums is solely tlubeterogeneity in exposuret¥, i.e. heterogeneity if.
In particular, the compensation provided by curreifoy exposure ta" shocks is decreasing in the country loadjhg
For example, ify' < 99, then currency depreciates against the domestic currency when a badatatiof the global
shocku" occurs. Given thag® > 0, i.e., that a bad realization of increases domestic marginal utility, domestic
investors require a positive risk premium in order to holdrencyi. Conversely, currencies of countries with high
exposure tal¥ (y' > y°) have a negative premium for global FX risk, as they provitiedge to domestic investors.

We can now turn to the determinants of thE XC loadings of FX returns. We have seen that fluctuatiorSXc,
the cross-sectional dispersion in conditional FX corietgtreflect innovations in both the global pricing faciir
(which are scaled multiples of the global sha¢R and in the local pricing factar” (scaled multiples of the global
shocku9). Importantly, both kinds of innovations are priced andéapposite fects onAFXC, so it is not trivial to
establish whether a positive loading of an asset returifo4C should be associated with a positive or a negative risk
premium: assets should earn a negative premium for a pesiding orAF XC that arises from exposure &4, and
a positive premium for a positive loading that arises frompasure tau®. However, there is no ambiguity in the case of
FX returns, as the only global innovations to which they aq@osed arelV shocks. As a result, the conditional loading
of FX returns omAF XC has the same sign as their conditional loading\@#, so in the interests of tractability we can
consider the latter. We have:

cou(rd,;, AzY,) _ cou(Vy° - V) VAL, €U VEUL) Vi - VP
var(Azy,) var (&% /2" ) e

(14)

Thus, countrieswith a higher SDF exposuse to global risku” than the domestic country have FX excess returns with
a positive conditional loading ofF XC; conversely, the FX returns of countries with< y° have a negative loading
onAF XC. Given the negative cross-sectional association betwee currency risk premiums, those loadings imply
a negative risk premium for highF XC beta exchange rates and a positive premium for AdwKC beta exchange
rates, in line with our empirical findings.

We finish with a note on the cross-sectional relation betviremnest rates and currency risk premiums. In the model,
the real interest rate of countrys given by

r{=a+(X—%K—%5)Zt+(¢_%7i)Z\tN’ (15)

so all cross-sectional heterogeneity in interest rateaédd cross-sectionalfiiérences in global risk exposuyein all
periods, countries with high (low) exposure to global FXk tisve a relatively low (high) interest rate, due to a strange
(weaker) precautionary savings motive. As a result, higdr@st rate currencies are associated withjsvand, thus,
high risk premiums.
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5.4. The properties of correlation risk premiums

We now turn to FX correlation risk premiums. To explore th@ioperties, we first need to characterize the law
of motion of the pricing factors under the risk-neutral mgas From the perspective of the domestic investor, the
risk-neutral measure law of motion for the global pricingtéa 2" is

AZY, = AN - 2) + &[0z - e, (16)
so the drift adjustment is positive and equade”. We can rewrite the equation above as a square root process,
AZlly = AVOFQ - 3 - £ T, (17)

! _ A W . .
whereA"@ = W — g‘”\/w andZ™Q = s 2. Thus, under the risk-neutral measure the global pricistpfe" has a

higher unconditional mea\(? > Z) and is more persistenif? < 1¥) than under the physical measure. Similarly,
the risk-neutral measure law of motion for the local priciagtorzis given by

Az = A% - 2) - e VAU, (18)

whered® = 1 - £v6 andZ2 = 47 so the local pricing factor also has a higher unconditionean and is more
persistent under the risk-neutral measure than under th&iqath measure. Notably, the drift adjustment of the two
factors depends crucially on the volatility paramet&fandé, which determine the sensitivity of the pricing factors to
shocksu" andu? respectively, and on the exposure parameg@mnds, which regulate the pricing of shock¥ and
ud, respectively, for the domestic agent. The highes relative to£", and the higheé is relative toy?, the higher the
drift adjustment of the local pricing factor is relative teetadjustment of the global pricing factor, as the shockbeo t
former are more highly priced compared with the shocks tddtter.

Note that for the global pricing factor we have

EX(@) = (1- (1- 2199240 + (1 - 297 (19)
under the risk-neutral measure, compared to
Ef(Z9) = (1-(1- ")) 2"+ (1- ") (20)

under the physical measure, for 0. Given the higher steady-state value and higher persisteithe global pricing
factor under the risk-neutral measure, the weBgé&" ) — EF (2" ) is always positive and increasingiﬁ Exactly
the same is true for the local pricing factorThus, the implied conditional FX correlations are caltedbusing higher
expected values for bothandZ” than their physical counterparts; this stems from the featt $tates characterized by
high values oz andZz" are bad states and, thus, receive an elevated probabilightwender the risk-neutral measure.
The expression for FX correlation risk premiums is deriveppendix D. Intuitively, the wedge between implied
and physical FX correlations is determined by the wedgedrettpected values afandz” between the two measures,
i.e. by the wedge between the risk-neutral and physical urea®nditional distributions afandz".

Of particular relevance is the case in which the domestiatgeces fluctuations in the local pricing factomore
heavily than fluctuations in the global pricing fact#; i.e. whené Vs >> £V +/40. In that case, the domestic investor
risk-adjusts by assigning higher probabilities to statew/lichz has elevated values; states in whighis high also
receive elevated importance under the risk-neutral measurt risk adjustment mainly involves paying attention to
high z states. This risk adjustment has implications both for ke section and the time series of FX correlation risk
premiums.

We start with the cross-sectional implications. When itmesspricez shocks more heavily thezV shocks, risk
adjustment involves paying elevated attention to statewhiich the cross-sectional dispersion of FX correlation

14In particular, the wedge is arffiame function ofz", with both the constant and the slope fiméent being positive. The constant is positive due
to the fact that the functiofi(x) = ﬂlx;x)—s for s> 1is decreasing in x fox € (0, 1).
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tightens: recall that, as seen in Figlire 6, highates are associated with lower than usual FX correlatiorsimilar FX
pairs and higher than usual FX correlations for dissimikirg Therefore, focusing attention on higstates generates
implied FX correlations that are on average lower than ptay$iX correlations for similar FX pairs. As a result, simila
FX pairs (which have high average FX correlations) have thgaverage FX correlation risk premiums. Conversely,
dissimilar FX pairs (which have low average FX correlatiomave higher implied FX correlations than physical FX
correlations on average and, thus, positive average FXletion risk premiums. Thus, our model generates a negative
cross-sectional association between average FX cometaind average FX correlation risk premiums, in line with
the empirical findings presented in Figlte 4.

We now turn to the time-series properties of FX correlatisk premiums. First, we consider similar FX pairs. As
discussed in Section 5.2, the correlation of similar FX g&rincreasing in the global pricing factat. Although
this is true for both implied and physical FX correlatiomaplied FX correlations are less sensitivezZtbthan their
physical counterparts. Panel A of Figlile 6 provides a usesulalization; circles plot FX correlation as a function of
2" conditional on a lowz value ¢ = 0.22), while squares plot FX correlation as a functiore$fconditional on a higlz
value ¢ = 52). As can be easily seen, the highurve (squares) is much flatter than the bane (circles) in the region
of the state space in which the economy spends most of théahees 02" between 0 and2). Since risk adjustment
puts more weight to high states, implied FX correlations are less sensitive'tthan physical correlations for similar
FX pairs. This sensitivity dferential means that implied FX correlations increase leas physical correlations in
high 2" states (empirically mapped to recessions), reducing theletion risk premiums of similar FX pairs in those
states. Conversely, implied FX correlations drop less fitaysical FX correlations in lo@" states (booms), increasing
the correlation risk premiums of similar FX pairs. In shtine model implies that similar FX pairs have procyclical FX
correlation risk premiums and, since they also have cooytéical conditional correlations, the time series catien
between FX correlations and FX correlation risk premiumsegative for similar FX pairs. Similarly, we can use
Panel C of Figurel6 to show that dissimilar FX pairs have ceraytlical FX correlation risk premiums, which also
implies a negative time series correlation between FX tations and FX correlation risk premiums for those FX
pairs. In short, our model is able to address the key empiiioa-series properties of FX correlation risk premiums
presented in Tablg 7 and Figuue 5.

In short, conditional FX correlation, which can be inditgd¢taded using currency options, is exposed to hgth
andu® innovations. If the domestic agent is pricinghocks (i.e.u? innovations) more severely thaff shocks (W
innovations), then FX correlation risk premiums largelfleet the desire of currency option holders to avoid hegh
states, which feature a tightening of the cross-sectioisgledsion of FX correlation. On the other hand, investing in
foreign currency exposes investors onlyutbinnovations, so currency risk premiums reflect solely therdgo avoid
high 2" states, which are characterized by a widening of the cresemal dispersion of FX correlation. Thus, the
lack of spanning of FX correlation risk by currency returasd in particular the lack of exposure of exchange rates
to ud innovations, allows the model to jointly address the enspirproperties of FX correlations, FX correlation risk
premiums, and currency risk premiums.

5.5. Model simulation

Finally, we assess the quantitative performance of our irerdkshow that it can match key FX correlation moments,
as well as the standard interest rate and exchange rate nemen

To illustrate the importance of unspanned FX correlatisk,nive consider a nesting model; both our model and the
Lustig, Roussanov and Verdelhan (2014) model are specakaaf that nesting model. The law of motion of the local
pricing factor of country, Z, in the nesting model is

Ai*'l = /l(z_ Z{) N f \/2( \/Eugl T 1- pui+1) ’ (21)

where 0< p < 1, soZ is driven by both the global shoal and the local shocki. The nesting model allows for
imperfect comovement of (and, thus, for heterogeneitydoal pricing factors across countries. As a result, coestri
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can have dferent conditional loadings on the global innovatidhand the exposure P now enters the expression
for real exchange rate changes:

A, = Ei(Agt,,) + \/:4Ui+1 - \/&Ugl + (‘/_' - \/7;) ﬁuﬁl + \/(—5(\/2 - \/§) u?+1. (22)

If p = 1 and all local pricing factors have the same initial valdesnt all local pricing factors are identical and
we retrieve our model, which features unspanned risk. Onother hand, ifo = 0 we retrieve the model in
Lustig, Roussanov and Verdelhan (2014), which featuresiaddent local pricing factors and in which FX correlation
is fully spanned by exchange ra@s.

Since our empirical results focus on G10 exchange ratesjmudate our model assuming a global economy with
ten countries, the United States ahd 9 foreign countries. We simulate the model fofféient values op, and
we run two types of simulations: small-sample and largepgamFor a given value g, a small-sample simulation
consists of 1,000 simulation paths of 216 monthly obseswatieach, matching the size of our empirical sample.
For each simulated moment, the point estimate and the sthedeor of the moment is, respectively, the moment
average across the 1,000 simulations and the moment sthdefaation across those simulations. We also calculate
the 95% confidence interval for each moment using the 2.5 &l @ercentiles of the moment in the cross-section
of the 1,000 simulation paths. The output of our small-s&nsjphulations is reported in Tablek 9 dnd 10 and Figure
[17, to be discussed below. All other simulation resultsrrafdarge-sample simulations: for a given valuecofa
large-sample simulation consists of a single path of 50/00@thly observations. The calibration and simulation
details are discussed[in Appendix E and the values of our hpedameters can be found in Table 8.

Our quantitative analysis starts with the benchmark madeich features perfectly correlated local pricing factors
(0 = 1). Table[® reports empirical and simulated moments for tiofiarates, interest rates and exchange rates. For
each empirical moment, we report the value of the momentirsample, as well as its bootstrap standard error. The
latter equals the standard deviation of the moment acr@§9hlock bootstrap samples of 216 monthly observations
each, with a block length of three monthly observations. &scan see, all moments are matched reasonably well.

[Insert Table§B and 9 here.]

We can now consider FX correlation moments; the first two rmwis of Tablé_TI0 contrast the empirical moments
(first column) with the benchmark model moments (secondmo)u Our model generates a non-trivial cross-sectional
spread in average physical and implied FX correlationsnhawith the empirical evidence, and is able to closely match
their cross-sectional mean. One weakness of the modeldegfae magnitude of FX correlation risk premiums: the
model-implied premiums are lower (in absolute terms) theirtempirical counterparts, so the cross-sectional mean
of average premiums in the model, while positive, is loweamtlthe empirical mean (0.71% in the model, compared
with 1.58% in the data) and the model is unable to match the widss-sectional dispersion in average correlation
risk premiums that is observed empirically. Notably thoutljle model is able to successfully generate both positive
and negative FX correlation risk premiums, as in the data mMbdel is also able to match the almost perfect positive
cross-sectional association between average realizedardge implied FX correlations (0.98 in the data, 1.00 in
the model) and, crucially, the strongly negative crosgigeal association between average realized correlatiods
average CRP. Indeed, in the simulated data, FX pairs with dgrage FX correlation have negative average CRP and
FX pairs with low average FX correlation have positive ager&€RP, which is consistent with the empirical evidence;
FigurdY provides a graphical illustration of that featuyenlptting the average model-implied CRP against the averag
model-implied FX correlation for all 36 FX pairs. As regattitae-series properties, the model generates a perfect
time-series correlation between realized and impliedatation for all FX pairs, replicating the very high average
correlation (0.79) observed in the data, and a negative-$ienies correlation between realized correlation and CRP
(-=0.77), also in line with the empirical evidence(.52).

15The empirical spanning properties of FX correlation arda@neal in the Online Appendix.
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[Insert Tabld_ID and Figufé 7 here.]

In our model, exchange rates are only exposed to the firsabkitocku®, so bad states for investors in foreign
currencies are those characterized by high values of tHebpwricing factorz’. Thus, we explore the cyclicality of
FX correlations and FX correlation risk premiums in the mdmemapping the countercyclical market variables we
used in the empirical part of our paper2$ our aim is to match the empirical cyclicality findings in Brgs1 and
[B. To do so, we follow the same two-step approach we use foemmirical data: first, we calculate the correlation
cyclicality measure of each exchange rate pair, equal taitiheseries correlation of its conditional FX correlation
with 2V, and we then calculate the cross-sectional correlatiohefX correlation cyclicality measures with average
FX correlations (36 observations, one for each FX pair). \Wd that the FX correlation cyclicality measures range
from —0.73 to 0.73 across FX pairs and that their cross-sectionatledion with average FX correlations is strongly
positive (0.75), suggesting that high correlation FX paiase countercyclical correlations whereas low correfatio
pairs have procyclical correlations, in line with empitiesidence. Then, we repeat the same exercise for correlatio
risk premiums: we find that the FX CRP cyclicality measuresgefrom—-0.78 to 0.79 and that their cross-sectional
correlation with average CRP is positive (0.81), againrie lith the data.

Our model assumes only one dimension of ex ante heterogeaeitss countries, their exposure¢o the global
shocku”. That heterogeneity generates cross-sectiorfidrdnces in average FX correlations, average interest rates
and average currency excess returns and, thus, engendssssectional linkages among those three measures. In
particular, the model implies that average correlatiomescFX pairs are positively associated with both the produc
of the corresponding foreign currencies’ average inteagstdiferentialsE(r' - r®)E (ri - ro) and the product of their
average currency excess retuifgx')E(rx!). Those cross-sectional associations in simulated datarasented in
Figure[8: Panel A illustrates the relation between averagedfrelations and the product of average nominal interest
rate diferentials, while Panel B shows the relation between avetdgmrrelations and the product of average currency
excess returns. In support of our model, we find that bothethosdel-implied positive cross-sectional associatioas ar
present in the empirical data: in the sample of G10 exchaaigs,rthe cross-sectional correlation of average nominal
FX correlations with the product of corresponding nomiméérest rate dierentials is 0.35 and the correlation with
the product of average currency excess returns is 0.42.

[Insert Figure§B and 9 here.]

Finally, we consider the asset pricing implications of thedal. First, we focus on nominal interest rate-sorted
currency portfolios; we sort the nine currencies into thpedtfolios and report the annualized average excess return
of each portfolio in Panel A of Figuifd 9. The model generatsg@ng carry tradeféect, with the return on the FX
carry portfolio having an annualized average excess raifith79%. In congruence with the extant literature, the
Lustig, Roussanov and Verdelhan (20HIMLFX factor is priced in the cross section of simulated interat# sorted
portfolios: our low, medium, and high interest rate curgeportfolios haveH MLFX betas of-0.41, Q06, and (69,
respectively.

Next, we consider currency portfolios sorted on th&FXC beta; their annualized average excess returns are
presented in Panel B of Figurk 9. The annualized averagsgxetirn for the currency portfolio that is long currencies
with low AFXC beta and short currencies with a higg XC beta is 127%, suggesting a negative price for exposure to
FX correlation risk, consistent with our empirical findindtsis worth noting that the Lustig, Roussanov and Verdelhan
(2011) HMLFX factor is priced in the cross section AF XC-beta-sorted currency portfolio returns, with the low,
medium, and higiAF XC beta portfolios having arlML™* beta of 032, Q06, and-0.15, respectively. Furthermore,
there is a negative cross-sectional association betwemmabinterest rates antiF XC betas: the low, medium and
high AFXC beta portfolio has an average interest raféedéntial (against the domestic country) d80%, 016% and
—0.43%, respectively.

For comparison, we now turn to the case of non-identicalllpdaing factors across countries @p < 1). First,
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consider the behavior of conditional FX variance and cararé: conditional FX variance is given by

var (Ad,;) = k7 + k2 + (\/_' - \/7;)2 Z + 6(\/2 - ﬁ)z (23)

whereas conditional FX covariance is

cov (Ad}, ;. Aq, ) = k2 + DIz + 6(\/£ - @)(\/2 - @) (24)

When the local pricing factorsfier across countries, exchange rates are more volatilentitha benchmark model, as
differential exposure ta? increases SDF disparity. As regards FX covariance, expasu? risk has one key dlierence
compared to exposure td: country exposure ta" is regulated by the fixed parameteand thus is constant over
time, so FX pairs are either always similar or always dislsinmegarding theiu" exposure, whereas the exposure of
each country to u9 is determined byVéZ, so it is unconditionally equal across countries, but tiragying, implying
that each FX pair can switch between being similar and besgirdilar with respect ta® exposure over time.

To understand the behavior of the cross-section of comditi&X correlations, we study the properties of the
conditional correlations of similar and dissimilar FX min the special case of independent local pricing factors
(0 = 0); the intuition is similar for other values pfless than 1. Similar to Figufé 6, Figuirel 10 illustrates tfiea of
2" andZ® on conditional FX correlations in a world of three foreigruatries: countries 1 and 2 are less exposed to the
first global shoclu® than the domestic country, while country 3 is more exposed.

[Insert Figuré 1D here.]

The left panels of Figule10 depict conditional FX corr@las as a function of the global pricing fac@¥ holding
all local pricing factors (domestic and foreign) constainth@ir common steady-state valae Not surprisingly, the
impact of changes in the global pricing facidris the same as in the model with identical local pricing fextasz”
increases, similarities and dissimilarities in exposorglobal risk get amplified. Thus, the cross-sectional disipa
in FX correlation is increasing i#¥ (Panel E).

The right panels of Figule_10 present conditional FX cotiefe as a function of the domestic local pricing factor
2, assuming that the global pricing fac@tand all foreign local pricing factors are equal to their dieatate values.
As we see, the relation betwe#hand conditional FX correlation is not monotonic. For smalues of, conditional
FX correlation is high for both similar and dissimilar FX pa{Panel B and Panel D, respectively): in those states, all
FX pairs are similar regarding their exposuraufp as the loading of all foreign countries is higher than thmdstic
loading. As the value of° increases, conditional FX correlation decreases, sineetimponent of FX correlation
arising from exposure ta¢ is attenuated. Whe#? reacheg, all local factors have identical values, so exposure®to
does not fiect FX moments, as it drops out of exchange rates. Finaltyiafge values of?, all FX pairs are again
similar regarding their exposure 8, this time because the domestic loading is higher than edidga loadings, so all
FX pairs are highly correlated. Indeed, it can be shown that a> oo, all FX pairs become conditionally perfectly
correlated. In sum, the cross-sectional dispersion of FiXetation is not monotonic ie® (Panel F).

The business cycle behavior BIXC, the cross-sectional dispersion of conditional FX cotrefa depends on the
relative importance o andZ for FX correlation determination. The higher the correlatamong the local pricing
factors, the lower the importance of exposure (and thu) for conditional FX correlation, so high (low) values of
p are associated with high (low) comovement betwEeC andz”. Panel A of Figuré_I1 plots the correlation of
FXC with 2" against diferent values gb: we plot both the point estimate (solid line) and the 95% aterite interval
(shaded area). Notably, only very high valueg ¢éad to empirically plausible and statistically signifitanrrelation
betweernFXC andZ”. In particular, the correlation betwe&XC andZ" hovers around zero for almost the entirety of
thep state space—even fpr= 0.95, the correlation between the two measures is only 0.02t ddrrelation jumps to
0.60 forp = 1, with an associated 95% confidence interval of [0.27,0.833lerscoring the importance of extremely
high local pricing factor comovement.
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We now turn to correlation risk premiums; the details arereggl i Appendix_ID. In the special case of independent
local pricing factorsg = 0), the domestic investor only pricésandz” shocks, whereas innovations in the foreign local
pricing factors are foreign-specific shocks that do notrethie domestic investor's SDF and, thus, are unpriced. In tha
case, the risk-neutral measure overweighs states in whiahdZ’ have elevated values. Assuming, as we did for our
benchmark model, that the domestic agent prices local siracke harshly than global shocks, risk adjustment mainly
entails paying attention to higH states. As seen in Panels B and D of Fidure 10, those stateBanacterized by high
conditional FX correlations for both similar and dissimii&X pairs. Thus, pricing states in which the domestic pgcin
factorZ? has a high value tends to generate higher implied than pdiyS¥ correlations, and thus positive correlation
risk premiums, for all FX pairs.

The simulated FX moments of the model with independent Ipdaing factors 6 = 0) are reported in the third
column of Tablé_I0. The cross-section of average physicatdXelations is much tighter now than in the benchmark
model, as exchange rate exposuraifcameliorates the importance offidirences iru" exposure across countries;
the same is true for implied FX correlations. Average FX elation risk premiums are small for all FX pairs, and,
consistent with the discussion above, are positive: thetddf (i.e., the 2.5 percentile) of average CRP i80%0,
whereas the right tail (i.e., the 97.5 percentile).i38% and statistically significant. Furthermore, the modslayates
no cross-sectional association between average FX ctoredaand average FX correlation risk premiums, at odds
with the empirical evidence. This is because the exposuté,tavhich tends to increase the correlation of all FX
pairs, similar and dissimilar, @ increases, and thus generates positive CRP for all FX pifssts the ffects of the
exposure ta, which tends to decrease the correlation of similar FX paid increase the correlation of dissimilar
FX pairs as? increases, and thus generates negative CRP for similar X @ad positive CRP for dissimilar FX
pairs. Lastly, the model with = 0 fails to match the empirical time-series properties of EXtelation risk premiums:
on average, the time series of simulated physical FX cdioglsand FX CRP are almost uncorrelated, at odds with
the strongly negative correlation that characterizes #mapirical counterparts.

To explore the behavior of FX correlation risk premiums fatermediate values ¢f, Panel B of Figuré11 plots
the correlation coficient of average FX correlations and average CRp fer{0, 0.05, ..., 0.95, 1}. As the value op
increases, and thus the local pricing factors become marelated across countries, the cross-sectional comelati
between average FX correlations and average FX correldsibpremiums tends to decline. We find that high values
of p are needed for this correlation to become statisticallpificant. In particular, the cross-sectional correlatisn i
negative and significant at the 5% level only fovalues of 0.65 and higher. Taken together, Panels A and Bgofr&i
[I1 show that only very high values pfcan jointly satisfy the physical and the risk-neutral measroperties of FX
correlations.

A weakness of our benchmark model, which imposes the poladiton of p = 1, is that the cross-sectional rank
of interest rates (nominal and real) is fixed across time ra@ssesectional interest rate disparity is only generated b
the fixed parametey. In reality, the cross-sectional ranking of interest rageBme-varying, so this feature of the
model is not realistic and precludes matching salient eiggdifindings, such as the “dollar carry trade” explored in
Lustig, Roussanov and Verdelhan (2014). However, we caw shat a very small relaxation of the assumption of
identical local pricing factors allows the model to genenaalistic cross-sectional properties of interest ratiédsonrt
compromising the desirable features of the benchmark nfod€IX correlations.

Consider the average interest ratfatiential between the foreign countries and the domestiotcp(AFD, average
forward discount):

AFDt=|—1§fi—rt—(X——K——5)( ZZQ Z?] [7 ——zllvi]Z}”- (25)

i=1
Notably, the expression above is valid for both nominal aad interest rate dierentials. If the local pricing factor is
identical across countriep = 1), then the first term drops out and the AFD solely reflectddlations in the global
pricing factor2", never changing sign. However, if the local pricing factiffer across countries @ p < 1), then the
AFD can change sign across time, as it reflects fluctuatiotisib@” and the local pricing factors. In the special, and
empirically plausible—if the domestic country is the Unitétates—case that the domestic SDF loading on global risk
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u" is close to the average foreign loading & Tl Zi'zl ¥"), the sign of the AFD each period is determined by the sign
of the local pricing factor dferential. Assuming that the precautionary savings motamidates the intertemporal
smoothing motivey < %K + %6) and that the number of foreign countrieis large enough so that the average of the
foreign local pricing factors is always close to their conmsteady-state valug

|
R (26)

then the AFD is positive (negative) when the domestic localipy factorZ is higher (lower) than its steady-state
value. In that case, a domestic investor engaging in thedodrry trade, i.e. investing in foreign currencies when
AFD > 0 and shorting them whe&F D < 0, takes (insures) FX risk when the domestic pricing faztds transitorily
high (low).

To show that our model can address the salient cross-satpooperties of interest rates, we simulate the model
settingp = 0.999, keeping all other parameters at their Table 8 valuesinhulated data, thig value implies an
average cross-sectional correlation of 0.999 for the Ipciing factors. We find that the model wigh = 0.999
preserves the key FX correlation features of the benchmaidein the simulated moments are presented in the last
column of Tabld_I0. As regards the dollar carry trade, its ieog) annualized return for the G10 currencies from
January 1996 to December 2013 i2@% using the nominal AFD and48% using the real AFD. In the model, the
two strategies are identical, yielding an annualized retirl.82%, so the model undershoots both empirical returns.
On the other hand, the model is able to almost perfectly mehurnover of interest rate-sorted currency portfolios:
it generates a monthly turnover of 0.049, virtually ideatito the empirical turnover of 0.047 observed in the G10
sample from January 1996 to December 2013.

6. Conclusion

We document that FX correlations become more cross-sedfyodispersed in adverse economic states, and
construct an FX correlation dispersion measure, denotéediy and defined as thefiierence between the conditional
correlation of the most and least conditionally correld&dpairs. We then sort currencies into portfolios based on
their exposure td-XC innovations and show that the spread between high and\lIBXC beta currency portfolios
is economically and statistically significant (6.42% anly)asuggesting that investors want to be compensated for
investing in currencies that perform badly during periofisnareased cross-sectional dispersion in conditional FX
correlations. Then, defining the FX correlation risk premias the dierence between the FX correlation under the
risk-neutral and the physical probability measures, we éirgtrongly negative cross-sectional association between
average FX correlations and average FX correlation riskpres: FX pairs with high average correlation exhibit low
(or negative) average correlation risk premiums, whileadppgosite is true for FX pairs with low average correlations.

We rationalize our empirical findings with a no-arbitragedabof exchange rates that is able to jointly match the
salient properties of FX correlations under both the ptalsiad the risk-neutral measure. Our findings suggest that
a possible avenue for richer no-arbitrage models that fe&mndogenously determined stochastic discount factars an
aim to explain the dynamics of FX correlation is the incogimm of unspanned risk; in that class of models, any
shock that fiects countries’ SDF identically (and thus does not entehamnge rates) and causes the cross section of
FX correlation to tighten, can potentially address the agpinconsistency between the behavior of FX correlations
under the physical measure and under the risk-neutral meaBlat said, we stress that unspanned risk is not the only
possible avenue to be explored; alternative economic nmésing, including market segmentation or other frictions in
financial markets, may also play a role in addressing our ecapfindings.
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Appendix A. Realized FX moments

We use daily spot exchange rates to calculate measurediabteBEX momentsAsg = In (S{) - In(S{_l) denotes the
daily log change for exchange rateThe annualized realized FX variance observedsthen calculated as follows:

252" &S
RVi = =~ kZO AZ,, (A1)

whereK refers to a three month window to estimate the rolling realizariances. Followirig Bollerslev, Tauchen and Zhou
(2009), we use this rolling estimate to proxy for the expéetgriance over the next month.
In a similar spirit, we derive the annualized realized c@are between exchange ratesd j:

o252y
RCoV = = ZASIt—kASH« (A.2)
k=0

Finally, the realized FX correlation is defined as the rafiomresponding realized FX covariance and the product of

the respective FX standard deviations:
RC = RCoV// \/RVi RV, (A.3)

Appendix B. The price of FX correlation risk

We consider the following two-factor model:
E[rx] = gPOLAPO +BiHMLC/lHML°, (B.1)

whererx' denotes the excess return in levels (i.e., corrected fod¢hsen term). To estimate the factor prig8S-
andAHML we follow the two-stage procedurelof Fama and MacBeth (193}, we run a time-series regression of
excess returns on the factors and then we run a cross-saatgmession of average excess returns on factor betas. We
do not include a constant in the cross-sectional regresditire second sta@.

Panel A in Tablé_Tl1 reports the first-stage regression wes\We consider 15 test assets: three currency portfolios
sorted on exposure taF XC (Pf1¢, PfX and Pf%), three currency portfolios sorted on forward discountsiéd
“carry portfolios” and denoted by Pf1 PfZ and Pf3) and nine individual G10 exchange rates. As expected, the
HMLC betas of the\F XC-beta-sorted portfolios are monotonically increasing.t@other hand, thelML® betas of
the carry portfolios are monotonically decreasing, with [tigh) interest rate currencies having a positive (negati
HMLC beta. Finally, theHMLC betas for the individual G10 currencies are highly neg#ticerrelated with their
average excess returns over the sample period, with thelation codficient being-0.92.

Panel B presents the second-stage results for various $disstoassets. Set (1) includes only the three
AFXC-beta-sorted portfolios (Pfito PfE) and the three carry portfolios (Ffto Pf3), while Set (2) contains the
test assets of Set (1) along with the nine individual G10engies. For both sets, we report the point estimates of
the prices of risk, along with their standard errors (in p#neses) and Shanken (1992)-corrected standard errors (in
brackets). We also report th of each second-stage regression. We find a significantlytivegaice of correlation
risk: AMMLE js —0.58% (=0.54%) per month for Set (1) (Set (2)). Those estimates areigoifisantly different from
the averagé! MLC return of—-0.54% per month. The second-stagfeis very high for both regressions (0.99 and 0.93,
respectively).

[Insert Tablé Tl here.]

16The dollar factorDOL essentially acts a constant; see Lustig, Roussanov anelkard(201/1).
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For robustness, we also consider additional developedrardyng country currencies. Set (3) of test assets includes
four AFXC-beta-sorted and four forward-discount-sorted port&liasing all developed country currencies. Set (4)
includes fourAF XC-beta-sorted and four forward-discount-sorted port&gliosing the full set of currencies. The
second-stage results are provided in Panel B of Table 11. uetffiat thea"ML° estimates are in line with our
benchmark results: the price of correlation risk is estedeaat—0.51% and-0.67% per month in Sets (3) and (4),
respectively, with both estimates being statisticallyngigant at the 5% level. The regressighis 0.90 for Set (3) and
0.81 for Set (4@

We have shown that our traded correlation risk fatiddLC acts as a slope factor regarding the pricing of currency
risk. A natural question that arises regards the relatiawéen HML® and thel Lustig, Roussanov and Verdelhan
(2011) carry trade factdd MLFX, which reflects the returns to a portfolio that invests inhhilgterest rate currencies
and shorts low interest rate currenciesHL X has also been shown to act as a slope factor. Empiricallyytbe
factors are strongly negatively correlated: using monttdta from January 1996 to December 2013, the correlation
codficient between the two time seriesi6.66, suggesting that they capture similar sources of risk.

The highly negative association betweldiML™ and HMLC is fully consistent with our proposed no-arbitrage
model. In the model, the excess return to the carry tradéqjiorts defined as

HMLE = Z X,y - Z Xk (B.2)

|eHF |eLF
with high interest rate (low, according to the model) currencies in $&8t and low interest rate (high) currencies
in setLF. Provided that currency portfolios contain enough curiesso that the local shocks average zett|LFX
innovations are perfectly positively correlated with thel@l shocku®:

HMLEX — B (HMLEY) = (Z DY ) VZRY (B.3)
ieLF ieHF

Thus, HMLFX returns capture exposure to the global sha#kwhich is the only global shock priced in currency

markets.

On the other hand; XC innovations capture both kinds of global shodk$,andu®, so they provide a very noisy
measure of the part of FX correlation risk that is priced irefgn exchange markets. It follows thigtML™ will
always have better pricing ability thaxFXC in the cross section of currency returns. To get a cleanesuneaf
u¥ innovations, we can consider FX returrffdrentials, which are only exposedu shocks. In particular, consider
portfolio HML®, which is long currencies with highF XC loading and short currencies with loF XC loading. Its
return is

HMLg, = Z Mg — Z MXis1, (B.4)

|eHC |eLC
with high-AF XC-loading (i.e. highy) currencies in seHC and lowAF XC-loading (lowy) currencies in seLC.
Provided that the long and the short positions of the paaf@ntain enough currencies so that the local shocks cancel
out, the return innovations of tHeéMLC portfolio are perfectly negatively correlated with the lghdshocku®:

HML,; - Eq (HMLgl [Z Vr - Z ) VAU, (B.5)
ieLC ieHC

Therefore HMLC return innovations are perfectly negatively correlatethud MLFX return innovations, as they both

reflectu” shocks and, thus, should have the same explanatory powéndacross section of FX returns: high

currencies, which hedg#' risk, have low interest rates, highML® betas, lowHML™ betas and low risk premiums,

whereas lowy (i.e. high interest rate, lowd ML beta, highHMLFX beta) currencies have high risk premiL@s.

17To conserve space, we defer the first-stage regressiorigésuthe test assets in Sets (3) and (4) to the Online Apperfdirthermore, the
Online Appendix contains price of risk estimates usi¥C innovations, a non-traded factor, in lieuldMLC returns, a traded factor; we find that
FXC innovations also have a negative price in the cross secfioartency returns.

18In the Online Appendix, we also discuss the relation between FX correlation risk factor and the FX volatility risk fac of
Menkhdf. Sarno. Schmeling and Schrimpf (2012).
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Appendix C. Implied FX moments

We follow |Demeterfi, Derman, Kamal and Zou_ (1999) and_Britfemes and Neuberger (2000) to obtain a
model-free measure of implied volatility. They show thatthie underlying asset price is continuous, then the
risk-neutral expectation over a horizon- t of total return variance is defined as an integral of optidogs over an
infinite range of strike prices:

EY (f (o-iu)zdu) =2d (T (fos %P(K, T)dK + f: %C(K, ) dK), (C.1)

whereS; is the underlying spot exchange rateKP[) and CK, T) are the respective put and call option prices with
maturity dateT and strike priceK, andr is the continuously compounded interest rate of the quomaenu In
practice, the number of traded options for any underlyirggass finite; hence the available strike price series is a
finite sequence. Calculating the model-free implied vamginvolves the entire cross section of option prices: fahea
maturity T, all five strikes are taken into account. These are quoteering of the option delta. In addition, we use
daily spot rates and one-month Eurocurrency (LIBOR) ratesfDatastream. Following the conventions in the FX
market, we use the use the Garman and Kohlhagen|(1983) issddiatmula to extract the relevant strike prices and to
calculate the corresponding option pri@s.

To approximate the integral in equatidn (IC.1), we adopt peizaidal integration scheme over the range of strike
prices covered by our dataset. Jiang and|Tian (2005) repotypes of implementation errors: (i) truncation errore du
to the non-availability of an infinite range of strike pricasd (ii) discretization errors that arise due to the uatbdity
of a continuum of available options. We find that both erroesextremely small when currency options are used. For
example, the size of the errors totals only half a percentage in terms of volatility.

Model-free implied correlations are constructed from tivailable model-free implied volatiliti@ For the
construction we require all cross rates for three currendg sl andSij, i.e. the two exchange rates against the
domestic (base) currency and the exchange rate betweemdliereign currencies. The absence of triangular arbitrage
then implies the@ S{j = S{/Stj. Taking logs, we derive the following equation:

Sii S Sj
In[—iT.) = |n(—{) - |n[—T]. (C.2)
St] SI St]
Finally, taking variances yields:

T . T ) T . T .
ft(au)zduzft (a'u)zo|u+ft (Uﬂj)zdu—ZI yildy, (C.3)

Wherey{’j denotes the covariance of returns between domestic cyrfed@airsi andj. Solving for the covariance
term, we obtain: . . . .
i 1 N2 1 2 1 2
Gdu= = L) du+ —f 4) ds— —f 7) du C.4
[ Atau=3 [ @) aus 3 [ (P as-3 [ (o) c4)

9 particular, | Britten-Jones and Neubefger (2000) shovi tha risk-neutral expected integrated return varianceully fspecified by a
continuum of call and put options, provided that the pricetlsé underlying asset is a filision process. However, recent empirical
evidence shows that jump risk may be present in the FX madet, e.g.. Chernov. Graveline and Zviadadze (2016). |Ji2ek4§, and
Farhi, Fraiberger, Gabaix, Ranciere and Verdelhan (20hShe Online Appendix, we show that our analysis is robushéopresence of jumps.

20See, e.ql. Wystlip (2006) for the specifics of FX options cotives.

2IBrandt and Diebold (2006) use the same approach to constaiized covariances of exchange rates from range-badatligoestimators.
Our construction methodology relies on state prices baitfigcgently similar for the diferent agents (countries).

22Recent studies report that the average violation of trilargarbitrage is about 1.5 basis points with an average iduratf 1.5 seconds
(Kozhan and Tham (2012)). However, most papers examinolgtions of triangular arbitrage use indicative quotesicivigive only an approximate
price at which a trade can be executed. Executable priceslifen from indicative prices by several basis points. Usingcetable FX quotes,
Fenn, Howison, McDonald, Williams and Johnson (2009) reghat triangular arbitrage is less than 1 basis point andtiation less than 1 second.
Our data also indicate that triangular arbitrage is less thhasis point. We therefore conclude that these violatiave no &ect on calculated
quantities.
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Using the standard replication arguments, we find that:
B fT S dy) = ef(Tt)(fSiliP'(K T)dK+f°° 1 oK. ) dk (C5)
\ YU - \ Kz ) S{ KZ s .
S 1
—pi —Cl

+ft KZP(K,T)0|K+Lj 5 C/(K.T) dK
sy o0

_f‘ L pik T)dK—f Lok T) dk)
. K2 ’ s K2 ’ '

The model-free implied correlation can then be calculatdgiexpressio (Cl5) and the model-free implied variance
expression {Cl1):

EX (£ lds
a@(f 'du) (f‘ : ) . (C.6)
Ve (1 e (1
Appendix D. FX correlation risk premiums in the model

For period {, T], the expected variance of the changes in the log exchamgeisagiven by

T-t-1 T-t-1
EP[ > vart+s(Aq{+s+1)) - > E? [2K2t+s+ (= ) ztvis], (D.1)

s=0 s=0

and the expected covariance of the changes in log exchatege aad j is

T-t-1 T-t-1
(3] couladnd)| = 3, B8 e (V- ) (W . @2
s=0 s=0
For the local pricing factor we have
Ed(zrs) = (1- (1-19%) 2 + (1- 1%z = A? + BYz (D.3)
under the risk-neutral measure and
Eu(zis) = (1-(1-2)9)Z+(1- )z = As+ Bsz (D.4)

under the physical measure, wil} > As andBY > B for all s > 0. A similar notation can be used for the global
pricing factor2”. ForXs = {As, Bs, AZ, BZ, AY, BY, A2, BY?}, we respectively defin¥ = {A, B, AZ, BL, A%, B%, A%Q

andB"Q} asX = ¥ 1 X

The expected FX correlation is defined as the ratio of theespwnding expected FX covariance over the product of
the square root of the two FX variances, as in the empiricdiseof our paper. Thus, the FX correlation risk premium
can be written as

CREI - « (A% + BOz) + DM (AC + BrQz) .

26 (A2 + BOZ) + (77 — \HP) (ARO + BRO2Y) \[20 (A + BOZ) + (V3T — O) (A" + BHOzY)
k(A + Bz) + D' (A" + B"Z)

J2c(A+B2) + (V7 — VO (A% + BV \[2¢ (A2 + BOz) + (yyT — V30) (A% + BYZY)

(D.6)

Thus, the magnitude of the correlation risk premium dependshe diference between the risk-neutral measure
parameterd\?, B2, A%Q andB"? and the physical measure parameigr$, A" andB". When the domestic agent
prices fluctuations in the local pricing factor more heatign fluctuations in the global pricing factor, i.e., when
EVS >> £ \[)0, then

(AY+BY%Z) - (A+ Bz) >> (A"Q 1 B¥CzY) — (A" + B"Z"), (D.7)
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implying that the risk adjustment for the local pricing fact is quantitatively larger than the risk adjustment for the
global pricing factoz” as regards FX correlation. The implications of such riskiaipent for the cross-sectional and
time-series properties of FX correlation risk premiumsdiseussed in the main text.

As regards the nesting model, the law of motion for the glgivading factorz¥ under the risk-neutral measure is
identical to its risk-neutral measure law of motion in thedwabwith identical pricing factors, given in equatidn{17),
whereas the law of motion of the domestic local pricing faztds

M = 9P F) & B (VS + VT pS), ©.8)

where? = —-7and1%? = 1 - g—‘(\/_\/_+ V1- \/—) as both components of the innovationsirare priced by
the domestic investor. For the foreign local pricing fastdwith i = 1, ..., |, the risk-neutral measure law of motion is

AZ,, = AZ-4 )+§\/‘«f\f\/§ g\f VPulS + V1-pu). (D.9)

as the domestic investor prices only the global comporgn# of the foreign local pricing factor innovations, but not
their local component/1 — pu'.

Appendix E. Model calibration and simulation

Excludingp, the nesting model has 14(l + 1) parameters in total: five common SDF parameterg (¢, «, and
6), | + 1 heterogeneous parameters (the loagirfgr each country), six common pricing factor parameterseedtior
the local pricing factor{, zandé) and three for the global pricing factot(, ¥ and£") —and three common inflation
parametersq, £ ando).

To calibrate our benchmark model, we impgse- 1 and then largely follow Lustig, Roussanov, and Verdelhan
(2011, 2014). First, we reduce the set of parameters by imgdise constraint that the loadingsare equally spaced
across the foreign countries. In particular, we assumettigafirst foreign country has loading™, the last foreign
country has loading™* and each intermediate foreign couritey 2, ..., | — 1 has loading/ = y™n+ 1= 1(ymax—ymi”).

To generate a largeffect of the local pricing factor, in line with our model, we fisets = 40 and/l = 0.25; the
latter value ensures that the local pricing factés stationary under both the physical and the risk-neutedsure.
Furthermore, we set™" to 0.20 (instead to 0.18, as in the Lustig, Roussanov ande\lead (2014) calibration), in
order to achieve a more realistic cross-sectional dispetigiinterest rates and FX correlations; in unreporteditgsu
using 0.18 does notfi@ct our results substantially. All the other parametersh whe exception of, ¢, £V and

&, are set equal to the corresponding values in Lustig, Rowssand Verdelhan (2014). Notably, the calibration in
Lustig, Roussanov and Verdelhan (2014) targets specificdst rate, inflation, and exchange rate moments, but does
not involve any moments related to FX correlations or FX elation risk premiums. Finally, we sgt & &Y andx
using GMM as follows. We target three moments: the crostieseal average of the time-series mean and variance of
the real interest rates of the ten countries, and the cexdsnal average of the time-series mean of the inflatiogsrat

of the ten countries. In the estimation, we leavenconstrained, but constrain the ratiogefto equal 2.43, which is

the parameter ratio in the Lustig, Roussanov and VerdeP@t¥) calibration. The values of our calibrated parameters
are reported in Tablg] 8. Regarding the calibration data, m&ypinterest rate dierentials against the USD by the
corresponding forward discounts, while the nominal USBriest rate is set to the Fama-French 1-month Treasury Bill
rate. Inflation in each country is calculated using the @poading CPI, and real interest rates are calculated as the
difference between nominal interest rates and inflation rates.

Finally, we simulate the model for filerent values op. We consider two types of simulations: small-sample
and large-sample. For a given value@fa small-sample simulation consists of 1,000 simulatiothpaf 5,216
monthly observations each, initialized at the steadyestatuesz and Z¥; to reduce the feect of initial conditions,
we discard the first 5,000 observations, so we are left with @iservations for each path, allowing us to study the
small-sample properties of the moments of interest. Forengralue op, a large-sample simulation consists of a single
path of 55,000 monthly observations, initialized at theadiestate values andZ"; again, we discard the first 5,000
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observations, and calculate moments using the last 50 }@¥)rations. For both kinds of simulations, conditional FX

moments (realized and implied) are calculated using cimmdit expectations over a period of 21 days (i.e. one month)
into the future, with the model parameters appropriatejystdd to the daily frequency; at each period, conditional
expectations are calculated using averages across 10sons, with the exception of the benchmark moge(1),

in which case we use closed-form expressions for the camditiexpectations.
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Table[d. Summary statistics: G10 currencies

The table reports summary statistics for the G10 currencies each foreign currencywe report the mean, standard deviation, Sharpe ratio,
skewness, and kurtosis of USD excess retufns §[+l’ and the mean forward discoufft — si. Excess returns are annualized and expressed in
percentage points. Panel A: monthly data from January 19@6igh December 2013. Panel B: monthly data from Januarg t88ugh December
2013. In both panels, before January 1999 we use the DEM ipléce of the EUR.

Panel A: January 1996-December 2013

AUD CAD CHF EUR GBP JPY NOK NzD SEK
Mean 3.01 1.12 -0.39 -0.46 1.37 -2.74 1.17 3.73 0.22
StDev 12.78 8.50 10.91 10.25 8.50 10.78 11.15 13.09 11.22
Sharpe ratio 0.24 0.13 -0.04 -0.05 0.16 -0.25 0.11 0.29 0.02
Skewness -0.60 -0.60 0.13 -0.15 -0.50 0.48 -0.36 -0.37 -0.08
Kurtosis 5.29 7.26 4.40 3.80 4.73 5.22 4.10 4.85 3.61
fi—- s 2.12 -0.04 -2.00 -0.60 0.91 -3.01 0.98 2.70 -0.10

Panel B: January 1984—December 2013

AUD CAD CHF EUR GBP JPY NOK NZD SEK
Mean 2.96 1.15 121 1.60 2.43 0.14 2.99 4.88 2.34
StDev 12.08 7.15 11.93 11.14 10.37 11.38 11.05 13.25 11.36
Sharpe ratio 0.24 0.16 0.10 0.14 0.23 0.01 0.27 0.37 0.21
Skewness -0.72 -0.65 0.00 -0.21 -0.23 0.32 -0.48 -1.01 -0.46
Kurtosis 5.62 8.90 3.56 3.43 5.36 4.26 4.20 9.41 4.44
fr — & 3.12 0.77 -1.83 -0.61 1.89 -2.64 2.23 4.15 1.60
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Table[2. Summary statistics: FX correlations and FX correldion risk premiums.

The table reports means and standard deviations for rdadizé implied FX correlations (RC and IC, respectively), &l ws FX correlation risk
premiums (CRP) for all FX pairs. Correlation risk premiunne defined as the fierence between the implied and realized correlations.iZeeal
correlations are calculated using past daily log exchaagechanges over a three month window. Implied correlatazascalculated from daily
option prices on the underlying exchange rates. The lastctiiamns report the bootstrapped 95% confidence intervahdube 2.5 and 97.5
percentiles). Monthly data from January 1996 to Decemb&BZ0ptions data for EUR start in January 1999).

RC IC CRP

FX pair Mean Std Mean Std Mean Std t-stat 2.5% 97.5%
AUD CAD 0.471 0.25 0.430 0.27 -0.041 0.15 -4.07 -0.060 -0.023
AUD CHF 0.357 0.27 0.405 0.20 0.048 0.15 4.73 0.028 0.068
AUD EUR 0.450 0.28 0.544 0.16 0.019 0.09 2.81 0.006 0.031
AUD GBP 0.422 0.24 0.453 0.19 0.031 0.12 3.86 0.014 0.046
AUD JPY 0.155 0.34 0.238 0.26 0.083 0.16 7.58 0.062 0.103
AUD NOK 0.467 0.26 0.431 0.29 -0.036 0.20 -2.64 -0.064 -0.010
AUD NzD 0.755 0.16 0.739 0.15 -0.016 0.08 -2.97 -0.026 -0.005
AUD SEK 0.474 0.25 0.480 0.20 0.005 0.13 0.61 -0.012 0.022
CAD CHF 0.233 0.28 0.283 0.21 0.050 0.15 494 0.031 0.070
CAD EUR 0.307 0.30 0.405 0.19 0.024 0.13 2.45 0.005 0.044
CAD GBP 0.281 0.27 0.307 0.23 0.025 0.15 2.34 0.004 0.044
CAD JPY 0.054 0.26 0.136 0.19 0.082 0.16 7.33 0.060 0.104
CAD NOK 0.340 0.28 0.341 0.28 -0.002 0.18 -0.17 -0.028 0.022
CAD NzZD 0.413 0.23 0.352 0.34 -0.061 0.22 -4.19 -0.092 -0.035
CAD SEK 0.352 0.26 0.287 0.29 -0.069 0.17 -5.96 -0.094 -0.047
CHF EUR 0.888 0.13 0.875 0.12 -0.010 0.08 -1.69 -0.020 0.002
CHF GBP 0.580 0.19 0.605 0.15 0.025 0.11 3.32 0.010 0.039
CHF JPY 0.405 0.26 0.456 0.18 0.051 0.14 5.15 0.032 0.070
CHF NOK 0.726 0.16 0.731 0.12 0.006 0.11 0.73 -0.009 0.021
CHF NzD 0.358 0.23 0.370 0.20 0.012 0.16 1.06 -0.010 0.033
CHF SEK 0.707 0.16 0.712 0.13 0.004 0.10 0.58 -0.010 0.017
EUR GBP 0.644 0.15 0.683 0.10 0.003 0.08 0.54 -0.009 0.015
EUR JPY 0.324 0.27 0.364 0.20 0.067 0.15 5.84 0.046 0.089
EUR NOK 0.825 0.09 0.798 0.07 -0.025 0.06 -5.20 -0.035 -0.016
EUR NzD 0.440 0.23 0.501 0.17 0.005 0.12 0.55 -0.013 0.022
EUR SEK 0.816 0.11 0.817 0.08 -0.022 0.06 -4.64 -0.031 -0.012
GBP JPY 0.217 0.26 0.293 0.19 0.076 0.15 7.29 0.056 0.095
GBP NOK 0.577 0.16 0.638 0.12 0.059 0.16 5.39 0.038 0.080
GBP NzD 0.415 0.23 0.404 0.22 -0.011 0.14 -1.15 -0.029 0.006
GBP SEK 0.560 0.16 0.598 0.13 0.037 0.13 4.26 0.021 0.053
JPY NOK 0.248 0.26 0.347 0.21 0.099 0.16 9.22 0.079 0.119
JPY NzD 0.146 0.32 0.233 0.24 0.087 0.18 7.09 0.063 0.111
JPY SEK 0.241 0.27 0.294 0.20 0.052 0.16 4.95 0.033 0.072
NOK NzZD 0.449 0.22 0.413 0.27 -0.036 0.20 -2.65 -0.064 -0.011
NOK SEK 0.796 0.10 0.780 0.11 -0.016 0.08 -2.93 -0.026 -0.006
NzD SEK 0.439 0.23 0.403 0.27 -0.036 0.18 -2.89 -0.060 -0.013
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Table[3. Cyclicality of realized FX correlations and FX correlation risk premiums.

The table reports the unconditional correlation of realizerrelations (RC cyclicality) and correlation risk premmis (CRP cyclicality) with four

market variables: the global equity volatility measuredisd_ustig. Roussanov and Verdelhan (201@)/(ol), the global funding illiquidity measure
of IMalkhozov. Mueller, Vedolin and Venter (2016 FI1), the TED spreadTED), and the CBOE VIX Y1X). Unconditional correlations are
calculated using monthly data from January 1996 througteBsder 2013 (options data for EUR start in January 1999).

RC cyclicality CRP cyclicality
FX pair GVol GFI TED VIX GVol GFl TED VIX

AUD CAD 0.174 -0.016 -0.081 0.168 -0.090 -0.203 -0.029 -0.18
AUD CHF -0.110 -0.342 -0.241 -0.180 0.068 0.116 0.024 0.062
AUD EUR 0.100 -0.217 -0.079 0.008 0.040 0.007 -0.076 0.060
AUD GBP 0.016 -0.207 -0.047 -0.102 0.004 0.062 -0.070 0.053
AUD JPY -0.328 -0.488 -0.365 -0.395 0.077 0.162 0.110 0.082
AUD NOK 0.143 -0.145 -0.037 0.089 -0.096 -0.113 -0.328 -6.11
AUD NzZD 0.298 -0.125 0.014 0.287 -0.107 0.036 -0.016 -0.138
AUD SEK 0.121 -0.161 -0.084 0.050 -0.141 -0.017 -0.115 -5.12
CAD CHF -0.099 -0.251 -0.223 -0.164 0.120 0.099 0.167 0.103
CAD EUR 0.070 -0.133 -0.106 -0.009 -0.056 -0.014 0.076 -0.03
CAD GBP 0.042 -0.060 -0.021 -0.041 0.090 -0.156 -0.150 0.066
CAD JPY -0.284 -0.405 -0.322 -0.383 0.050 0.097 0.065 0.063
CAD NOK 0.102 -0.065 -0.063 0.053 -0.038 -0.151 -0.132 -8.04
CAD NzD 0.166 -0.005 -0.060 0.174 0.084 -0.321 -0.182 -0.018
CAD SEK 0.134 -0.025 -0.066 0.069 -0.078 -0.091 -0.187 8.02
CHF EUR -0.221 -0.107 -0.030 -0.250 0.330 0.122 0.178 0.308
CHF GBP -0.159 -0.323 -0.256 -0.265 0.069 0.114 0.113 0.087
CHF JPY -0.146 -0.063 -0.028 -0.223 0.069 0.114 0.002 0.133
CHF NOK -0.269 -0.045 -0.130 -0.276 0.103 -0.019 0.098 0.130
CHF NZD -0.106 -0.241 -0.256 -0.114 0.142 -0.026 -0.031 9.08
CHF SEK -0.186 -0.221 -0.013 -0.265 0.037 -0.050 0.059 0.025
EUR GBP 0.105 -0.155 -0.137 -0.018 -0.216 -0.137 -0.043 840.1
EUR JPY -0.281 -0.178 -0.215 -0.301 0.173 0.228 0.190 0.208
EUR NOK -0.064 0.137 0.026 -0.056 -0.063 -0.062 0.032 -0.042
EUR NzD 0.135 -0.106 -0.057 0.104 -0.002 -0.111 -0.205 .02
EUR SEK 0.077 -0.169 0.077 -0.025 -0.177 -0.107 0.058 -0.186
GBP JPY -0.353 -0.412 -0.368 -0.433 0.158 0.213 0.149 0.166
GBP NOK 0.026 -0.041 -0.118 -0.041 -0.038 -0.010 0.058 0.017
GBP NzD 0.059 -0.099 0.000 -0.007 0.001 -0.196 -0.227 0.006
GBP SEK 0.097 -0.163 -0.065 0.006 -0.211 0.013 -0.028 -0.128
JPY NOK -0.340 -0.219 -0.303 -0.354 0.199 0.212 0.262 0.226
JPY NZD -0.327 -0.361 -0.352 -0.317 0.064 0.077 0.129 0.008
JPY SEK -0.343 -0.314 -0.224 -0.399 0.224 0.256 0.121 0.253
NOK NzD 0.163 -0.059 -0.028 0.161 -0.062 -0.179 -0.301 -0.10
NOK SEK 0.156 0.030 0.141 0.144 -0.086 -0.022 -0.105 -0.047
NzZD SEK 0.171 -0.065 -0.054 0.144 -0.118 -0.154 -0.284 0.15
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Table[4.Cross-sectional FX cyclicality regressions.

Panel A presents the output of cross-sectional regressibmserage realized FX correlations on each of the four FXetation cyclicality
measures. Panel B presents the output of cross-sectiogr@ssions of average FX correlation risk premiums on eactheffour FX CRP
cyclicality measures. Each panel reports the regressapestodicients, their t-statistics, their bootstrapped 95% configeintervals, and the
regressiorR?s. For Panel A (Panel B) results, each FX correlation cylificeneasure (FX CRP cyclicality measure) is defined as threnditional
correlation of realized FX correlation (FX CRP) with a giverarket variable. The market variables are the global equaitgtility measure used in
Lustig. Roussanov and Verdelhan (201GMol), the global funding illiquidity measure of Malkhozov, Mier, Vedolin and Venter (2016 3FI),
the TED spreadT ED), and the CBOE VIX Y 1X). The cyclicality measures are calculated using monthig fam January 1996 through December
2013 (options data for EUR start in January 1999) and arerteghin Tabld_B. The t-statistics (in parentheses) are tzml using White (1980)
standard errors.

Panel A: Average RC and RC cyclicality

Slope t-stat 5% 975% R2
GVol 0.404 (2.45) 0.064 1.000 0.14
GFl 0.867 (5.14) 0.176 1.054 0.32
TED 1.151 (7.31) 0.348 1.638 0.50
VIX 0.409 (2.66) 0.148 0.892 0.15

Panel B: Average CRP and CRP cyclicality

Slope t-stat 5% 975% R?
GVol 0.166 (2.66) 0.007 0.199 0.22
GFl 0.249 (9.00) 0.108 0.284 0.63
TED 0.203 (6.61) 0.073 0.263 0.48
VIX 0.201 (3.80) 0.065 0.233 0.34
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Table[H. Unconditional correlation of FX correlation dispersion measures and market variables.

The table reports the correlation ¢heients between the FX correlation dispersion meas&®€ and FXCYNC and four market variables:

the global equity volatility measure used lin_Lustig, Romsseand Verdelhan| (2011)G{/ol), the global funding illiquidity measure of
Malkhozov, Mueller, Vedolin and Venier (20163 F1), the TED spreadTED), and the CBOE VIX Y1X). Panel A: monthly data from January
1996 through December 2013. Panel B: monthly data from Jari#84 through December 2013. In both panels, we reportsbragt standard

errors in parentheses.

Panel A: January 1996-December 2013

FXCUNC GVol GFI TED VIX
FXC 0.86 0.35 0.48 0.42 0.45
(0.02) (0.08) (0.06) (0.07) (0.07)
FXCUNC 0.26 0.44 0.41 0.39
(0.10) (0.07) (0.07) (0.08)
GVol 0.53 0.59 0.81
(0.08) (0.08) (0.04)
GFI 0.57 0.61
(0.07) (0.07)
TED 0.43
(0.09)

Panel B: January 1984—December 2013

FXCUNC GVol GFlI TED VIX
FXC 0.89 0.22 0.32 0.26 0.21
(0.01) (0.06) (0.05) (0.05) (0.07)
FXCUNC 0.21 0.33 0.28 0.19
(0.08) (0.05) (0.05) (0.07)
GVol 0.12 0.41 0.79
(0.07) (0.08) (0.03)
GFlI 0.61 0.18
(0.04) (0.08)
TED 0.41
(0.09)
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Table[8. AFXC-beta-sorted currency portfolios.

The table reports summary statistics for the excess retfrtteree G10 currency portfolios sorted on exposurdoXC, the innovations to the
FX correlation dispersion measuFeXC. Portfolio 1 (Pff) contains the three currencies with the lowest pre-A6tXC betas, whereas Portfolio
3 (PfE) contains the three currencies with the highest pre-s6tXC betas. HMLC, denotes the portfolio that has along position in the high
correlation beta currencies (FfBand a short position in the low correlation beta curren¢if4®). Monthly data: for Panel A from January 1996
through December 2013, for Panel B from January 1996 thrdugh2007, for Panel C from January 1984 through DecembeB,201id for Panel

D from January 1984 through July 2007.

Panel A: January 1996—-December 2013

Pf1¢ pfc pf3¢ HMLC
Mean 4.04 0.99 -2.38 -6.42
Std 10.26 9.11 7.86 7.83
t-stat 1.67 0.46 -1.28 -3.47
Skewness -0.66 0.06 0.01 0.44
Kurtosis 6.57 3.53 3.09 4.75
Sharpe Ratio 0.39 0.11 -0.30 -0.82

Panel B: January 1996-July 2007

Pf1¢ pfc P3¢ HMLC
Mean 3.84 0.74 -3.51 -7.35
Std 7.34 8.07 7.56 6.68
t-stat 1.78 0.31 -1.58 -3.74
Skewness 0.17 0.49 0.11 -0.01
Kurtosis 3.35 3.10 2.76 2.92
Sharpe Ratio 0.52 0.09 -0.46 -1.10

Panel C: January 1984-December 2013

Pf1¢ pfC pf3c HMLC
Mean 4.37 1.58 0.65 -3.72
Std 9.62 9.44 8.87 8.37
t-stat 2.48 0.92 0.40 -2.43
Skewness -0.43 -0.24 -0.26 0.06
Kurtosis 6.09 3.73 3.96 3.71
Sharpe Ratio 0.45 0.17 0.07 -0.44

Panel D: January 1984—-July 2007

Pf1¢ pfC pf3c HMLC
Mean 4.36 1.61 0.91 -3.45
Std 8.00 9.05 9.00 8.02
t-stat 2.64 0.87 0.49 -2.09
Skewness 0.18 -0.22 -0.28 -0.19
Kurtosis 3.81 3.79 4.04 3.13
Sharpe Ratio 0.54 0.18 0.10 -0.43
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Table[d. Time-series correlations of FX correlations and FXcorrelation risk premiums.

The table reports the time-series correlations betwedizedaFX correlations (RC) and implied FX correlations (I@nd between realized FX
correlations and FX correlation risk premiums (CRP), foiF¥ pairs. In addition to the correlation estimates, we refteeir t-statistics and 95%
bootstrapped confidence intervals. FX correlation riskrpuens are defined as thefidirence between the implied and realized FX correlations.
Realized FX correlations are calculated using past dailydrchange rate changes over a three month window. Impliec¢dfi€lations are
calculated from daily option prices on the underlying exd®rates. Monthly data from January 1996 to December 2Qit® (s data for EUR
start in January 1999).

Correlation R@C Correlation RQCRP
FX pair Mean t-stat 2.5% 97.5% Mean t-stat 2.5% 97.5%

AUD CAD 0.843 22.88 0.800 0.875 -0.102 -1.49 -0.243 0.046

AUD CHF 0.844 22.97 0.805 0.877 -0.695 -14.15 -0.756 -0.627
AUD EUR 0.923 32.09 0.901 0.941 -0.714 -13.63 -0.782 -0.638
AUD GBP 0.876 26.54 0.844 0.905 -0.656 -12.71 -0.732 -0.566
AUD JPY 0.892 28.89 0.855 0.922 -0.695 -14.13 -0.764 -0.610
AUD NOK 0.744 16.09 0.679 0.807 -0.213 -3.15 -0.317 -0.091

AUD NzD 0.872 26.01 0.833 0.906 -0.457 -7.52 -0.646 -0.212

AUD SEK 0.870 25.82 0.840 0.902 -0.618 -11.49 -0.723 -0.490
CAD CHF 0.856 24.22 0.827 0.885 -0.684 -13.73 -0.756 -0.594
CAD EUR 0.864 22.93 0.822 0.899 -0.702 -13.21 -0.785 -0.602
CAD GBP 0.825 21.24 0.776 0.869 -0.518 -8.82 -0.640 -0.371
CAD JPY 0.777 18.03 0.708 0.829 -0.680 -13.57 -0.737 -0.622
CAD NOK 0.780 18.18 0.723 0.838 -0.316 -4.85 -0.465 -0.168

CAD NzD 0.784 18.48 0.730 0.838 0.161 2.39 0.011 0.308

CAD SEK 0.813 20.34 0.766 0.856 -0.137 -2.01 -0.241 -0.024
CHF EUR 0.846 21.27 0.717 0.946 -0.603 -10.12 -0.743 -0.278
CHF GBP 0.816 20.63 0.757 0.862 -0.640 -12.17 -0.715 -0.554
CHF JPY 0.835 22.19 0.788 0.874 -0.733 -15.76 -0.785 -0.665
CHF NOK 0.725 15.42 0.632 0.816 -0.671 -13.23 -0.763 -0.525
CHF NzZD 0.724 15.35 0.661 0.783 -0.532 -9.19 -0.619 -0.428
CHF SEK 0.757 16.94 0.668 0.832 -0.560 -9.88 -0.683 -0.386
EUR GBP 0.774 16.38 0.707 0.837 -0.592 -9.82 -0.697 -0.463
EUR JPY 0.858 22.35 0.811 0.898 -0.760 -15.65 -0.813 -0.704
EUR NOK 0.704 13.27 0.628 0.776 -0.632 -10.90 -0.773 -0.379
EUR NzZD 0.770 16.17 0.703 0.830 -0.467 -7.06 -0.597 -0.329
EUR SEK 0.721 13.93 0.659 0.786 -0.549 -8.78 -0.697 -0.326
GBP JPY 0.824 21.30 0.770 0.867 -0.713 -14.87 -0.778 -0.634
GBP NOK 0.282 4.30 0.077 0.448 -0.711 -14.79 -0.767 -0.647
GBP NZD 0.812 20.32 0.773 0.852 -0.350 -5.47 -0.498 -0.199
GBP SEK 0.644 12.31 0.575 0.717 -0.615 -11.41 -0.747 -0.462
JPY NOK 0.795 19.15 0.743 0.837 -0.572 -10.21 -0.657 -0.473
JPY NzZD 0.831 21.83 0.777 0.875 -0.680 -13.55 -0.746 -0.603
JPY SEK 0.825 21.34 0.775 0.865 -0.699 -14.29 -0.762 -0.627
NOK NzD 0.699 14.29 0.630 0.764 -0.157 -2.32 -0.267 -0.051

NOK SEK 0.701 14.36 0.643 0.761 -0.347 -5.42 -0.521 -0.148
NZD SEK 0.750 16.58 0.684 0.805 -0.158 -2.34 -0.253 -0.053

34



Table[8. Parameter values.
The table reports the calibrated parameter values usetidanbdel simulations. All countries share the same paramabees except foy: Yis
the parameter for the domestic country, whereas the vatuehd foreigny',i = 1,...,9, are equally spaced on the intervgl[", y™2].

SDF parameters

a X ¢ P Py ),0 ymin ymax

0.0076 19.4551 0.06 0.04 40 0.36 0.20 0.49

Pricing factor parameters

2 z & v pad I
0.25 0.0077 0.0393 0.01 0.0209 0.0162

Inflation parameters

n e o
-0.0039 0.25 0.00372

35



Table[d. Simulated moments (benchmark model): interest rags, inflation, and exchange rates.

The table reports empirical moments (first column) and sated moments (second column) for the model with identicadllgricing factors
(benchmark model). For each empirical moment, the tablertephe value of the moment in the sample and the momenttbaotstandard error
(in parentheses). Bootstrapping involves 1,000 blocksicap samples of 216 monthly observations each, with a bégkh of three observations.
For each simulated moment, the table reports the point atgiaind the standard error (in parentheses); the formee imtiment average across
1,000 simulations, while the latter is the moment standawation across those simulations. The first panel repbgsannualized mean and
standard deviation of the U.S. real interest rate and thesesectional average of the mean and standard deviatiamedj real interest rates. The
second panel reports the cross-sectional average of refzdiege rate volatility and autocorrelation. The third paegorts the annualized mean and
standard deviation of U.S. inflation and the cross-sectiamerage of the mean and standard deviation of foreign ioflaf he fourth panel reports
the annualized mean and standard deviation of the U.S. rabinierest rate and the cross-sectional average of the avehetandard deviation of
foreign nominal interest rates. The fifth panel reports tless sectional average of nominal exchange rate vojyagifil autocorrelation.

Moment Data Model
E (ru,s,) 0.28% 0.74%
(0.46%) (1.96%)
Std(rvs) 1.35% 1.08%
(0.13%) (0.17%)
Ecross(E (rFCV)) 1.15% 0.94%
(0.19%) (1.85%)
Ecross(Std(rFeN)) 1.19% 1.08%
(0.03%) (0.17%)
Ecross(S td(Agt+1)) 10.82% 9.52%
(0.59%) (0.73%)
Ecross(AC (AGt+1)) -0.01 0.00
(0.05) (0.04)
E(YS) 2.32% 1.83%
(0.33%) (3.86%)
Std(xYS) 1.27% 1.59%
(0.14%) (0.29%)
Ecross(E (77C)) 1.56% 1.85%
(0.17%) (3.84%)
Ecross(Std(r"CN)) 1.12% 1.59%
(0.04%) (0.28%)
E(rNoMus:) 2.60% 2.58%
(0.25%) (2.09%)
Std(rNOMUs) 0.62% 1.11%
(0.02%) (0.20%)
Ecross(E (rNOMFEN)) 2.70% 2.77%
(0.15%) (2.20%)
Ecross(S td(rNOMFEN)) 0.44% 1.13%
(0.02%) (0.21%)
Ecross(S td(As+1)) 10.76% 9.69%
(0.62%) (0.72%)
Ecross(AC (Ast+1)) 0.01 0.00
(0.06) (0.04)
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Table[Id. Simulated moments: FX correlations and FX correléion risk premiums.

The table reports empirical moments (first column) and siteal moments for the model wigh= 1, p = 0 andp = 0.999 (second, third and
fourth column, respectively). All moments refer to nomie&thange rates. For each empirical moment, the table sephartvalue of the moment
in the sample and the moment bootstrap standard error (enfr@ses). Bootstrapping involves 1,000 block bootstespptes of 216 monthly

observations each, with a block length of 3 observations.eBoh simulated moment, the table reports the point estiarad the standard error (in
parentheses); the former is the moment average acrosssif0tions, while the latter is the moment standard denadcross those simulations.
The first panel reports the cross-sectional mean and thend.9'a5 percentiles of average realized FX correlatiorspaetively. The second panel
reports the cross-sectional mean and the 2.5 and 97.5 fikrsenf average implied FX correlations. The third panglors the cross-sectional
mean and the 2.5 and 97.5 percentiles of average FX CRP. Tingh foanel reports the cross-sectional correlation betveserage realized and
average implied FX correlation and the cross-sectionaletation between average realized FX correlation and geeFX CRP. The fifth panel

reports the cross-sectional average of the correlationdest realized and implied FX correlation and the crosseataverage of the correlation
between realized FX correlation and FX CRP.

Moment Data Model
p=1 p=0 p=0.999
2.5%r0ss(E(RC)) 0.09 0.01 0.30 0.06
(0.03) (0.17) (0.04) (0.15)
Ecross(E(RC)) 0.45 0.39 0.40 0.40
(0.02) (0.04) (0.03) (0.04)
97.5%y0ss(E(RC)) 0.86 0.66 0.49 0.64
(0.01) (0.06) (0.03) (0.05)
2.5%r0ss(E(IC)) 0.17 0.03 0.30 0.09
(0.02) (0.16) (0.04) (0.15)
Ecross(E(IC)) 0.48 0.40 0.40 0.41
(0.01) (0.04) (0.03) (0.04)
97.5%y0ss(E(IC)) 0.85 0.65 0.49 0.63
(0.01) (0.05) (0.03) (0.05)
2.5%:0ss(CRP) -6.62% -0.89% 0.00% -0.71%
(1.41%) (0.18%) (0.03%) (0.16%)
Ecross(CRP) 1.58% 0.71% 0.04% 0.56%
(0.57%) (0.20%) (0.02%) (0.16%)
97.5%y0ss(CRP) 9.43% 2.75% 0.08% 2.23%
(1.20%) (0.55%) (0.03%) (0.48%)
COIreross(E(RC), E(IC)) 0.98 1.00 1.00 1.00
(0.01) (0.00) (0.00) (0.00)
COrfeross(E(RC), E(CRP) -0.55 -0.99 0.00 -0.99
(0.10) (0.01) (0.22) (0.00)
Ecross(corr(RG IC)) 0.79 1.00 1.00 1.00
(0.02) (0.00) (0.00) (0.00)
Ecross(corr(RC,CRP) -0.52 -0.77 -0.02 -0.80
(0.03) (0.13) (0.03) (0.10)
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Table[I]. Estimating the price of correlation risk.

The table reports the results for the estimation of the nigskee of correlation risk. Panel A reports factor betas Alaivey and West (1987)
standard errors (in parentheses) for the first stage régnestor various test assets. The test assets are: thraancyrportfolios (P¥) sorted on
exposure to the correlation risk factaF XC (excess return moments for which are reported in Table 8gethurrency portfolios (Pj sorted on
interest rate dferentials, and the nine individual G10 currencies. Pana@®its the Fama and MacBeth (1973) factor prices and sedlesrs
(in parentheses);_Shanken (1992)-corrected standarts emre reported in brackets. We consider four sets of test@asSet (1) only includes the
three AFXC-beta-sorted and the three interest-rate-sorted pargfdiom Panel A, while Set (2) also includes the nine indigld@10 currencies.
Set (3) includes founFXC-beta-sorted and four interest-rate-sorted currencyfgdms, using all developed country currencies. Set (4)udes
four AFXC-beta-sorted and four interest-rate-sorted currencyf@ims, using the full set of currencies. The first-stagealettimates for Sets (3)
and (4) are provided in the Online Appendix. Monthly datarfrdanuary 1996 through December 2013. Regred®israre also provided.

Panel A: Factor betas

@ DOL HMLCE R2
Pf1¢ -0.01 (0.07) 1.03 (0.05) -0.52 (0.03) 0.40
pfX -0.02 (0.09) 1.11 (0.06) 0.00 (0.04) 0.10
P3¢ -0.03 (0.07) 1.03 (0.05) 0.48 (0.03) -0.20
Pf1F -0.06 (0.10) 0.98 (0.06) 0.33 (0.06) -0.12
P -0.03 (0.08) 1.03 (0.04) -0.05 (0.04) 0.12
pf3" 0.03 (0.09) 1.16 (0.07) -0.32 (0.06) 0.30
AUD -0.09 (0.13) 1.20 (0.08) -0.52 (0.08) 0.39
CAD -0.04 (0.11) 0.66 (0.07) -0.19 (0.07) 0.17
CHF 0.04 (0.14) 1.24 (0.08) 0.31 (0.07) -0.05
EUR -0.09 (0.11) 1.22 (0.07) 0.07 (0.05) 0.08
GBP 0.10 (0.13) 0.75 (0.09) 0.08 (0.06) 0.03
JPY 0.04 (0.22) 0.63 (0.12) 0.57 (0.10) -0.25
NOK 0.03 (0.13) 1.24 (0.09) 0.02 (0.08) 0.11
NzD 0.06 (0.15) 1.27 (0.08) -0.39 (0.11) 0.32
SEK -0.10 (0.12) 1.29 (0.07) -0.05 (0.06) 0.14

Panel B: Factor prices

2boL AHMLE R2
Set (1) 0.09 (0.15) [0.15] -0.58 (0.15) [0.15] 0.99
Set (2) 0.09 (0.15) [0.15] -0.54 (0.20) [0.20] 0.93
Set (3) 0.13 (0.15) [0.15] -0.51 (0.17) [0.18] 0.90
Set (4) 0.15 (0.14) [0.14] -0.67 (0.22) [0.23] 0.81
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Panel A: RC and GVol correlation Panel B: RC and GFI correlation
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Fig.[d. Average realized FX correlations and FX correlationcyclicality.

The figure illustrates the association between averag&edaFX correlations and measures FX correlation cyctigalFor each FX pair, FX
correlation cyclicality is measured by the unconditionairelation between the realized FX correlation of the pait a market variable that acts
as a business cycle proxy. The market variables consideeetha global equity volatility measure frdm Lustig, Roussaand Verdelharl (2011)
(GVol, Panel A), the global funding illiquidity measut@ £, Panel B) froni Malkhozov, Mueller, Vedolin and Venter (2pit&e TED spreadTED,
Panel C), and the CBOE VIXMIX, Panel D). Monthly data from January 1996 to December 2018ath panel, the line of best fit is also shown.
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Panel A: FX correlation dispersion
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Fig.[2. FX correlation dispersion measures and market variales.

Panel A plots the time series of the two FX correlation disimer measures; XC andFXCYNC, from January 1996 to December 20E3XC (solid
line) is calculated as the ftikrence between the average FX correlation of high- and mwelation FX pairs; the two groups consist of the highest
and lowest deciles of realized FX correlations across al636 FX pairs, respectively, with the deciles being rebatanevery month FXCUNC
(dashed line) is calculated as thdfeience in average correlations between the decile of highage correlation FX pairs and the decile of low
average correlation FX pairs. Panel B plots the time sefi¢iseoglobal equity volatility measure used.in Lustig. R@amssy and Verdelhan (2011)
(GVol), the global funding illiquidity measure of Malkhozov. Mie, Vedolin and Venter (2016Y3F1), the TED spreadTED), and the CBOE
VIX (VIX), from January 1996 to December 2013. All series in PaneEBtandardized to have zero mean and a standard deviatiow ofroboth
panels, the shaded areas correspond to NBER recessions.
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5 Panel A: G10 countries
T T
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Fig.[3. Currency portfolios sorted on exposure to the FX corelation factor AFXC.

The figure displays annualized average excess returns i@nayr portfolios, for diferent currency and period samples. Currencies are sotted in
portfolios at timet based on their exposure td=XC at the end of period — 1; exposure is measured by regressing currency excessgeiar
the FX correlation risk factoAFXC over the preceding 36 months. Panel A presents the portéaliess returns for the G10 set of currencies
(threeAF XC-beta-sorted currency portfolios), while Panels B and Gemethe portfolio excess returns for the currencies in éweldped country
set and in the full country set, respectively (fauf XC-beta-sorted currency portfolios for each set). In eaclepdortfolio 1 (Pf1) contains the
currencies with the lowest pre-sakEXC betas whereas Portfolio 3 or 4 (Pf3 or Pf4), depending on ¢hefscurrencies, contains the currencies
with the highest pre-sothFXC betas. In each panel, average annualized portfolio exetsss are reported for four sample periods: January
1996-December 2013, January 1996—July 2007, January D@8émber 2013, and January 1984—-July 2007.
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Fig.[d. Average realized FX correlations and average FX comlation risk premiums.

The figure plots the average FX correlation risk premiumsaibi36 G10 exchange rate pairs against the correspondinggeveealized FX
correlations. Average FX correlation risk premiums andrage realized FX correlations are expressed in percentaigésp Monthly data from
January 1996 to December 2013 (options data for EUR staaninaly 1999). The line of best fit is also shown.
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Panel A: CRP and GVol correlation Panel B: CRP and GFI correlation

10+t o
® e
5 L
o o
ad ad
O O
> >
] o Of
g g
S . .l 2
_5 L
o
o
-10 - - : g -10 - - : g
-40 -20 0 20 40 -40 -20 0 20 40
Correlation CRP-GVol Correlation CRP-GFI
Panel C: CRP and TED correlation Panel D: CRP and VIX correlation
107 o

Average CRP
Average CRP
o

-10 : - . g -10 : - : g
-40 -20 0 20 40 -40 -20 0 20 40
Correlation CRP-TED Correlation CRP-VIX

Fig. . Average FX correlation risk premiums and FX CRP cyclcality.

The figure illustrates the association between average F¥lation risk premiums and measures FX correlation ristnpum cyclicality.
For each FX pair, FX correlation risk premium cyclicality imseasured by the unconditional correlation between the FiXelation risk
premium of the pair and a market variable that acts as a kasiogcle proxy. The market variables considered are theablefuity
volatility measure from_Lustig, Roussanov and VerdélHabi(d GVol, Panel A), the global funding illiquidity measur&El, Panel B) from
[Malkhozov. Mueller, Vedolin and Venter (2016), the TED sutdT ED, Panel C), and the CBOE VIX(IX, Panel D). Monthly data from January
1996 to December 2013 (options data for EUR start in Janu289)1 In each panel, the line of best fit is also shown.
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Panel A: Similar FX, global factor Panel B: Similar FX, local factor
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Fig.[d. Model-implied FX correlations.

The figure displays the properties of conditional real FXrelation in the model with identical local pricing factorBanels A, C, and E plot the
conditional FX correlation as a function of the global prgifactorz”, holding the local pricing factaz constant: Panel A refers to the conditional
FX correlation of the similar FX pair (1,2), Panel C referstie conditional FX correlation of the dissimilar FX pair%},,and Panel E refers to the
difference in conditional FX correlation between the two pdir®ach panel, the circles, solid line, and squares plotdneitonal FX correlation,
assuming that the local pricing facters equal to 0.2, 1, and 5 times its steady-state valuespectively. Panels B, D, and F plot the conditional FX
correlation as a function of the local pricing facmiholding the global pricing facta" constant: Panel B refers to the conditional FX correlation
of the similar FX pair (1,2), Panel D refers to the conditioRX correlation of the dissimilar FX pair (1,3), and Paneldfers to the dference in
conditional FX correlation between the two pairs. In eaamgbahe circles, solid line, and squares plot the condati®tX correlation assuming that
the global pricing factog” is equal to 0.2, 1, and 5 times its steady-state valyeespectively. To plot the figures, we set the model paramete
equal to their calibrated values in Table 8. To ensure symymae set the values of the country exposures to global AXsigh that the condition
D12 = —D!3 > 0 s satisfied; in particular, we imposé = y™" andy® = yM@X and set? so that the symmetry condition holds.
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Fig.[D. Model-implied average realized FX correlations ancaverage FX correlation risk premiums.
The figure plots the average FX correlation risk premiumsafb86 exchange rate pairs against the corresponding aveeadjzed FX correlations
using simulated data for the model with identical local imgcfactors p = 1). The parameter values are reported in Table 8 and theaioietails
can be found iff Appendix |E. Average FX correlation risk prems and average realized FX correlations are expresseddergage points.
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Panel A: Average realized correlation and product of average nominal interest rate differentials
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Panel B: Average realized correlation and product of average excess currency returns
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Fig. 8. Model-implied average realized FX correlations andproducts of average nominal interest rate diferentials and average currency
excess returns.

The figure plots the average realized FX correlations foB@lexchange rate pairs against the corresponding prodw@steshge nominal interest
rate diferentials (Panel A) or the product of average currency exagarns (Panel B) for the model with identical local prgcfactors p = 1). The
parameter values are reported in Tdflle 8 and the simulatitailslcan be found E. Average realized FX catiehs are expressed in
percentage points and products of nominal interest réfierdntials and currency excess returns in squared peresptagts; nominal interest rate
differentials and currency excess returns are annualized.
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Panel A: Interest rate—sorted portfolios
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Fig.[9. Model-implied currency portfolio excess returns.

The figure displays average annualized portfolio excessiefor interest rate-sorted (Panel A) axleXC beta-sorted (Panel B) currency portfolios
using simulated data for the model with identical local imgcfactors p = 1). For Panel A, currencies are sorted into portfolios adiogr to their
nominal interest rate, with monthly rebalancing. Portfdli(Pf1) contains low interest rate currencies whereagdtior8(Pf3) contains high interest
rate currencies. For Panel B, currencies are sorted intfiopos on their exposure taFXC at the end of period — 1, with monthly rebalancing;
exposure is measured by regressing currency excess retuting correlation risk factoaFXC over the preceding 36 months. Portfolio 1 (Pf1)
contains the currencies with the lowest pre-2dfiXC betas whereas Portfolio 3 (Pf3) contains the currencids thé highest pre-sotFXC betas.
The parameter values are reported in Table 8 and the simildéitails can be found E.
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Panel A: Similar FX, global factor

0.8t

0.6

0.4 : : : :
1 2 3 4 5
Value of 2" (in multiples of steady-state value)
Panel C: Dissimilar FX, global factor
0.5

1 2 3 4 5
Value of Z" (in multiples of steady-state value)
Panel E: Difference, global factor

15

0.5¢

0 L L L L
1 2 3 4 5
Value of 2" (in multiples of steady-state value)

Fig.[Id. Model-implied FX correlations: independent localpricing factors.

Panel B: Similar FX, domestic factor
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The figure displays the properties of conditional real FXelation in the model with independent local pricing fast¢r = 0). Panels A, C, and
E plot the conditional FX correlation as a function of thelglbpricing factorz”, holding all the local pricing factors constant at their coan
steady-state levet Panel A refers to the conditional FX correlation of the $mFX pair (1,2), Panel C refers to the conditional FX catiein of
the dissimilar FX pair (1,3), and Panel E refers to th@edence in conditional FX correlation between the two paianels B, D, and F plot the
conditional FX correlation as a function of the domesticiog factorZ, holding the global pricing facta?” constant at its steady-state lez¥l
and all the foreign local pricing factors constant at theimeon steady-state valaePanel B refers to the conditional FX correlation of the $mi
FX pair (1,2), Panel D refers to the conditional FX correlatdf the dissimilar FX pair (1,3), and Panel F refers to theedénce in conditional FX
correlation between the two pairs. To plot the figures, wethsetodel parameters equal to their calibrated values itefBibTo ensure symmetry,
we set the values of the country exposures to global FX risk hat the conditio®? = —D®3 > 0 is satisfied; in particular, we imposé = y™n

andy® = Y™ and set? so that the symmetry condition holds.
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Panel A: Business cycle correlation of FXC
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Fig.[I1. Model-implied correlations as function of parameer p.

The figure presents the point estimates (solid line) and H% onfidence intervals (shaded area) of correlations efést in simulated data for

different values of the correlation parametera value ofp = 0 corresponds to the model with independent local pricimgpfa, whereas a value

of p = 1 corresponds to the benchmark model with identical locaing factors. We consider 21 values a@f they range fronp = 0 top = 1,

in increments of 0.05. Panel A presents the correlation &t XC, the measure of cross-sectional dispersion in conditi&Xaktorrelation,

and the global pricing facta”. Panel B presents the cross-sectional correlation betaeerage FX correlations and average FX correlation risk

premiums across FX pairs. With the exception of parameténe parameter values are reported in Table 8. The simnldtitails can be found

in AERena B,

Correlation of average RC with average CRP
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