
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Hu, Xiao-Bing, Shi, Peijun, Wang, Ming, Ye, Tao, Leeson, Mark S., van der Leeuw, Sander E., 
Wu, Jianguo, Renn, Ortwin and Jaeger, Carlo. (2017) Towards quantitatively understanding 
the complexity of social-ecological systems—from connection to consilience. International 
Journal of Disaster Risk Science . pp. 1-14. 
 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/94203 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions. 
 
This article is made available under the Creative Commons Attribution 4.0 International 
license (CC BY 4.0) and may be reused according to the conditions of the license.  For more 
details see: http://creativecommons.org/licenses/by/4.0/   
 
A note on versions: 
The version presented in WRAP is the published version, or, version of record, and may be 
cited as it appears here. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/94203
http://creativecommons.org/licenses/by/4.0/
mailto:wrap@warwick.ac.uk


ARTICLE

Towards Quantitatively Understanding the Complexity of Social-
Ecological Systems—From Connection to Consilience
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Sander E. van der Leeuw1,5
• Jianguo Wu1,6 • Ortwin Renn7 • Carlo Jaeger1,8

� The Author(s) 2017. This article is an open access publication

Abstract The complexity of social-ecological systems

(SES) is rooted in the outcomes of node activities con-

nected by network topology. Thus far, in network dynamics

research, the connectivity degree (CND), indicating how

many nodes are connected to a given node, has been the

dominant concept. However, connectivity focuses only on

network topology, neglecting the crucial relation to node

activities, and thereby leaving system outcomes largely

unexplained. Inspired by the phenomenon of ‘‘consensus of

wills and coordination of activities’’ often observed in

disaster risk management, we propose a new concept of

network characteristic, the consilience degree (CSD),

aiming to measure the way in which network topology and

node activities together contribute to system outcomes. The

CSD captures the fact that nodes may assume different

states that make their activities more or less compatible.

Connecting two nodes with in/compatible states will lead

to outcomes that are un/desirable from the perspective of

the SES in question. We mathematically prove that the

CSD is a generalized CND, and the CND is a special case

of CSD. As a general, fundamental concept, the CSD can

facilitate the development of a new framework of network

properties, models, and theories that allows us to under-

stand patterns of network behavior that cannot be explained

in terms of connectivity alone. We further demonstrate that

a co-evolutionary mechanism can naturally improve the

CSD. Given the generality of co-evolution in SES, we

argue that the CSD is an inherent attribute rather than an

artificial concept, which underpins the fundamental

importance of the CSD to the study of SES.

Keywords Complex networks � Consilience

degree � Co-evolution � Disaster risk reduction � Social-

ecological systems

1 Introduction

In many natural and social-ecological systems (SES), the

physical topology of networks is only part of what deter-

mines their performance (Ostrom 2009; Ball 2012). Much

also depends on the function of the individual nodes and

the ways in which the nodes interact with each other. In

engineering systems, the rule ‘‘1 ? 1 = 2’’ often applies,

implying that the connection and its topology are the focus.

The concept of ‘‘degree of connectedness’’ (CND)
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precisely reflects this, and has promoted unprecedented

advances in system science in the last two decades (Albert

and Barabási 2002; Boccaletti et al. 2006). For instance,

one of the most important findings in system science is that

the CND distribution of most real-world complex net-

works, such as the World Wide Web (WWW) (Huberman

and Adamic 1999), airline networks (Burghouwt et al.

2003), and phonecall networks (Aiello et al. 2000), sig-

nificantly deviates from a Poisson distribution, but has a

power-law tail or a scale-free property (Barabási and

Albert 1999). However, in SES, the effects of ‘‘1 ? 1[ 2’’

and ‘‘1 ? 1\ 2’’ are also observed, which suggests that

which two nodes are connected may be more important

than the connection itself, and therefore our research focus

may need to be shifted from structural connectedness to

functional integration. Although the weight of connections

may partially help to describe such effects (Albert and

Barabási 2002; Boccaletti et al. 2006), node activities are

often the main cause (Peyton Young 1998; Daido and

Nakanishi 2004), but are largely ignored. As a result, how

to maximize the effect of ‘‘1 ? 1[ 2’’ and to minimize the

effect of ‘‘1 ? 1\ 2’’ is beyond the scope of CND-based

network approaches. As clearly pointed out in many studies

of SES, despite great potential, existing topology-focused

CND network theories need innovative improvements

before they can become effective methods to address the

complexity of SES (OECD 2011; Ball 2012; Helbing

2013). For example, a widely acknowledged aspect of

CND research is that high-degree nodes are more important

than low-degree nodes in terms of structural robustness

against intentional perturbations (Callaway et al. 2000;

Cohen et al. 2001). However, a recent study shows that,

once one takes node activities into account to assess the

dynamical robustness of a system, low-degree nodes are

actually more important than high-degree nodes in the face

of intentional perturbations (Tanaka et al. 2012). Figure 1

gives an example from daily life on how to properly net-

work people according to their expertise in order to achieve

optimum management performance. In this example,

CND-based network theories can hardly distinguish the

two systems, but if expertise similarity in a sub-team will

lead to good performance, then we know that team 1 is

better than team 2. Despite the theoretical success of the

CND in studying network structure, most realistic case

studies of network systems have to consider both topology

and node activities simultaneously. Examples are neural

networks (Daido and Nakanishi 2004), power grids

(Blaabjerg et al. 2006), epidemic dynamics (Pastor-Sator-

ras and Vespignani 2001), cascading effects in disaster

spreading (Helbing 2013), individual fitness (Caldarelli

et al. 2002), social norms and collaborative expectations

(Peyton Young 1998), co-evolutionary dynamics (Nardini

et al. 2008; Aoki and Aoyagi 2012), and data mining (Hric

et al. 2016; Peel et al. 2017). However, in these studies the

definitions of node activities and the methods to analyze

them are highly problem-specific and have a dynamic

nature. There is no general method to study the functional

fusion of topology and node activities in a static network.

In real-world network systems, the macrosystem output

reflects the collective performance of all micronode activi-

ties, and to contribute to such a collective performance, each

node, through network topology, not only supports its

neighboring node activities, but also integrates neighboring

node resources to enhance its own activity (Ball 2012). For

example, ‘‘consensus of wills and coordination of activities’’

between individuals plays a crucial role in a social system if it

is to achieve good performance in disaster risk management

(Hu et al. 2014; Shi et al. 2014; Bodin and Nohrstedt 2016).

Inspired by such observations, this article proposes a general,

fundamental network property concept, named ‘‘degree of

consilience’’ (CSD). The term ‘‘consilience’’ literally refers

to the principle that evidence from independent, unrelated

sources can ‘‘converge’’ to a strong conclusion or a scientific

consensus (Wilson 1999). In sustainability science, con-

silience is particularly used to highlight the importance of a

massive global cooperative effort and integrated cross-dis-

ciplinary coordination (Lee and all members of Editorial

Board 2009; Wilson 2009). The proposed network property

CSD here, by adopting the term ‘‘consilience,’’ attempts to

evaluate the collective contribution of all factors (topology

and node activities) in a networked system towards its per-

formance in terms of certain functional goals. In particular,

the concept of the CSD may provide a new methodological

tool for the research on global environmental change because

in such research the integration of knowledge from different

disciplines, collective action, and public support are of

paramount importance (Alexander et al. 2015; Bernauer

et al. 2016; Cox et al. 2016).

2 The Concept of Consilience Degree (CSD)

Suppose there is a networked system, whose topology is

given by G(V, E), composed of node set V and edge set E–

V has NN nodes and E has NE edges. Let the adjacency

matrix record all edges, that is, MA(i, j) = 1 means that

there is an edge between nodes i and j, and otherwise MA(i,

j) = 0. The degree of connectedness (CND) of node i,

indicating how many other nodes are connected to node i,

is mathematically defined as:

kCN;i ¼
XNN

j¼1

MAði; jÞ: ð1Þ

The consilience degree (CSD) of node i in this study is

defined as:
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kCS;i ¼
XNN

j¼1

MAði; jÞ � fCSðhi; hjÞ; ð2Þ

where hi ¼ ½hi;1; . . .; hi;NASD
� represents the activity state of

node i, and NASD C 1 the dimension of that activity state

(in many natural, engineering, or social-ecological systems,

nodes have multi-dimensional activity states);

fCS � fCSðhi; hjÞ� �fCS is called the ‘‘consilience function,’’

determining how the states of nodes i and j will affect the

overall performance if the nodes are connected, and fCS and

�fCS are the lower and upper bounds, respectively; fCSðhi; hjÞ
may be of any form depending on the nature of the system

concerned. In Eq. 2, MA(i, j) represents the network

topology, and fCSðhi; hjÞ introduces the node activities that

are the focus of this study. For the sake of simplicity, we

assume fCSðhi; hjÞ ¼ cosðhi � hjÞ in all simulations of this

article.

In the real world, individual nodes may act differently,

but their activities need to serve the same systemic goal.

Through the network topology, nodes interact with each

other. When a specific systemic goal is concerned, due to

the differences in node activities, some nodes, if connected,

may interact well, while some others, if connected, will

conflict with each other. Many factors, such as signal

synchronization, compatibility of facilities, complemen-

tarity or similarity of expertise (for example, Fig. 1),

willingness of collaboration, social opinion, personal atti-

tude, and cultural (dis)similarity usually play a role at least

as crucial as that of physical connections in determining the

performance of the connected nodes. In general, the node

activity state and the consilience function in Eq. 2 can

correctly describe such real-world situations. For example,

if the similarity in node activities helps performance, then

we can define fCSðhi; hjÞ ¼ 1 when hi = hj, and if com-

plementarity between node activities is desirable, then we

may have fCSðhi; hjÞ ¼ 1 when jhi � hjj � hT , where hT is a

problem-specific threshold.

Given �1� fCSðhi; hjÞ� 1, it follows that

�kCN;i � kCS;i � kCN;i. In the case where fCSðhi; hjÞ ¼ 1 for

any pair of connected nodes in the system, CSD becomes

exactly CND, that is, kCS;i ¼ kCN;i. From Eqs. 1 and 2, one

may conclude that CSD is an extension of CND, while

CND is just a special case of CSD. Therefore, CSD is a

Fig. 1 Networks of collaborating people. Despite the fact that they

have exactly the same network topology and human resources, team

1, by organizing itself according to the similarity in expertise of its

members, is likely to achieve a better performance than team 2, given

that expertise similarity that matches the purpose in a sub-team will

lead to good performance. Connection degree (CND) based network

theories largely fail to quantify or distinguish the teams’ capability to

serve their purpose, because the CND-based network properties of

these two teams are exactly the same—for example, they have the

same average CND (ACND) and the same average CND-based

clustering coefficient (ACNDCC). However, if one brings the

functional expertise of the members of the team into play, which

can be measured in terms of differences in knowledge, skills, and

style between different experts, the average consilience degree

(ACSD), as well as the average CSD-based clustering coefficient

(ACSDCC), can capture and describe the overall difference in

performance of the two teams, revealing that team 1 will perform

better because it has a larger ACSD. On how to calculate ACND,

ACNDCC, ACSD, and ACSDCC, see Sects. 2 and 3 for details
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more general, more fundamental network property than

CND. Basically, if a node connects to other nodes that have

more states compatible to its own, then the node has a

higher CSD (for example, see Fig. 2), which may indicate

that the node has a better capability of integrating available

resources in the system. Such a capability is fundamental

for the system if it is to achieve a certain systemic goal, but

traditional network properties, such as CND, synchro-

nization, clustering coefficient, and robustness, can hardly

capture or measure that capability. In real-world network

systems such as SES, there is often a ‘‘being together—but

better not’’ situation (for example, team 2 in Fig. 1). CND

studies only the first part, the ‘‘being together,’’ while CSD

completes the picture by disclosing the second part ‘‘but

better not.’’

According to the definition of Eq. 2, an isolated node i

has a CSD value of 0, which complies with common sense.

Even for a node with kCN,i[ 0, it could still have kCS,i = 0

if the connected nodes are equally conflictive to each other,

which also makes sense in real-world systems. For exam-

ple, a machine needs two external accessories to function

properly, but it is connected to two accessories that are

completely incompatible with each other due to different

makers. Therefore, the machine can be viewed as having

been connected to nothing. Another example is, if one

needs advice from two equally trustworthy friends, but

whose advice is completely contradictory. In this situation

it makes no difference if no friends at all are consulted.

Therefore, CSD is a network property that CND fails to

capture. Please note that, as demonstrated in Fig. 1, we

usually use average CND (ACND) and average CSD

(ACSD) to study the performance of a network system, and

ACND and ACSD, denoted as kCN and kCS, respectively,

are calculated as follows:

kCN ¼ 1

NN

XNN

i¼1

kCN;i ð3Þ

kCS ¼
1

NN

XNN

i¼1

kCS;i: ð4Þ

Attention should also be paid not to confuse CSD with

network synchronization, which can be assessed by the

average activity state difference

Dh ¼ 1

NNðNN � 1Þ
XNN

i¼1

XNN

j¼1

hi � hj
�� ��: ð5Þ

Roughly speaking, a network system with a smaller Dh
might often have a larger average consilience degree, that

is, ACSD kCS as defined in Eq. 4. However, depending on

network topology, it does happen that (1) two network

systems with the same Dh may have different kCS values,

and (2) a network system with a larger Dh may have a

larger kCS than a system with a smaller Dh, even though the

consilience function fCSðhi; hjÞ is assumed to favor similar

activity states. Therefore, consilience degree is also a

property different from synchronization.

Fig. 2 Differences between some connection degree (CND) based

and consilience degree (CSD) based network properties. Between a

pair of connected nodes, because of the difference in their activity

states, there may be a positive effect (indicated as a red line), no

actual effect (green dashed line), or even a negative effect (blue line).

The values of CND and CSD are rather independent of each other. A

large CND does not necessarily mean a large CSD (for example, see

node 2 and node 4). CND can therefore not replace CSD. The CND-

based clustering coefficient shows that the cluster of nodes 1, 2, and 3

is exactly the same as the cluster of nodes 3, 4 and 5. However, the

CSD-based clustering coefficient tells us that nodes 3, 4, and 5 form a

stronger cluster, which better fits with reality when factors such as

collaborative attitude are considered. Therefore, the CSD version of

the traditional network properties provides a better understanding of

real-world network systems. Newly created network properties purely

based on CSD further enrich the application potential of the concept

of CSD. For example, to fairly compare node capability of integrating

neighbor or system resources, regardless of how many neighbors a

node has or what network scale the system has, a neighborhood or

global CSD coefficient needs to be used rather than CSD itself
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A clustering coefficient describes how tense a node and

its neighbors are connected to each other by edges, and for

node i it is usually calculated as

cCC;i ¼
2nE;i

kCN;iðkCN;i � 1Þ ; ð6Þ

where nE;i is the number of all edges existing in the cluster,

which is composed of node i and all its kCN,i neighbors. As

shown in Eq. 6, the clustering coefficient is defined purely

based on CND. The average CND-based clustering

coefficient (ACNDCC) is often used to study network

systems (Albert and Barabási 2002; Boccaletti et al. 2006),

and ACNDCC, denoted as �cCC, is calculated as

�cCC ¼ 1

NN

XNN

i¼1

cCC;i: ð7Þ

Cluster is an important concept from the reality point of

view, because it is often observed that individuals, repre-

sented by nodes, with similar features, measured by

activity states, will cluster in a network system. However,

the property of the clustering coefficient only discloses part

of the picture, as Eq. 6 has nothing to do with node activity

states. This means a cluster of conflictive nodes may still

have a high clustering coefficient, which is somehow

against common sense. In such a case, CSD may serve as a

much less confusing index: no matter how many edges

exist in a cluster, as long as those nodes are conflictive to

each other, node i will have a small CSD value, which may

indicate it is a weak cluster.

Robustness/vulnerability is another very important net-

work property, and a scale-free network is vulnerable to

intended attacks to hub nodes (Albert and Barabási 2002;

Boccaletti et al. 2006). Given two hub nodes with the same

CND, then do they also have the same vulnerability to

intended attack? According to the traditional definition of

robustness, removing either of the two hub nodes will lead

to the same network degradation. However, the reality may

tell a different story. Imagine two managers, who are each

responsible for the same number of employees. In one

group, all employees are highly supportive of the manager,

while in the other group, everyone fights against each

other. Which manager is likely to fail in his/her career? As

a more general question, given two network systems—one

has a scale-free topology with hubs well connected to

nodes of similar activity states, and the other is randomly

structured regardless of the node activity state distribu-

tion—which system will be more likely to collapse when

facing intended attacks? Taking CSD into account, a scale-

free network could turn out to be more robust than a ran-

dom network in the face of intended attacks.

3 A New Theoretical Framework Based on CSD

The CND concept has developed into a theoretical frame-

work that is composed of many network properties, mod-

els, and theories, and is of great use for studying network

structure. Similarly, the CSD concept can be modified and

extended to create a new theoretical framework that will

enable the study of the functional fusion of network

topology and node activities and can significantly widen

and deepen our understanding of complex network

systems.

3.1 New Network Properties

The CSD given by Eq. 2 is a very basic definition and can

be modified and/or extended. We propose a modified but

still general definition: the neighborhood consilience

coefficient (NCSC). For node i, its NCSC is calculated as

cNCSC;i ¼
kCS;i

kCN;i
: ð8Þ

According to Eq. 2, kCS;i can be any real number, while

cNCSC;i in Eq. 8 is always within the range [- 1, 1].

Therefore, cNCSC;i can be viewed as a normalized kCS;i;

NCSC can be used to assess how efficient a node integrates

its neighbor resources. For example in Fig. 2, node 3 has 4

neighbors and kCS;3 ¼ 3, and node 4 has 2 neighbors and

kCS;4 ¼ 2. Although kCS;3 [ kCS;4, node 4 is actually more

efficient than node 3 in terms of integrating neighbor

resources, because, according to Eq. 8,

cNCSC;4 ¼ 1[ cNCSC;3 ¼ 0:75.

In a network system, no matter whether two nodes are

connected or not, they can be viewed as available resources

to each other, because when optimizing the system, one

may add an edge between the two nodes if necessary.

Therefore, we often need to consider how well a node

integrates all available resources in the system rather than

its neighbor resources. To this end, we introduce another

modified but also general definition: the global consilience

coefficient (GCSC), which is calculated for node i as

cGCSC;i ¼
kCS;i

NN � 1
: ð9Þ

In theory, GCSC is within the range [- 1, 1], but for

node i with node degree kCN,i, the maximum value for

cGCSC;i is
kCN;i
NN�1

. To give a real-world example, suppose a

political party is preparing for a presidential election. The

chance for the party leader to become the president is

determined not only by how well all party members are

involved (measured by NCSC), but also by how well the

public are contacted and convinced (indicated by GCSC).

Moreover, GCSC is very useful for fairly comparing
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network systems with different scales, that is, NN values,

which is almost a mission impossible for NCSC.

Some more sophisticated or problem-specific modifica-

tions can be introduced to the definition of CSD in Eq. 2.

For example, activity state may not be enough to describe

the difference in node activities, and activity amplitude is

often also needed. Assuming the activity amplitude of node

i is ai[ 0, we can redefine CSD as

kCS;i ¼
XNN

j¼1

aj �MAði; jÞ � fCSðhi; hjÞ: ð10Þ

In some systems, edges may have different connecting

effects, which can be assessed by a weight on the edge.

Given the edge connecting node i and node j has a weight

wi,j, then the CSD in Eq. 10 can be further modified as

kCS;i ¼
XNN

j¼1

wi;j � aj �MAði; jÞ � fCSðhi; hjÞ: ð11Þ

The definitions of NCSC in Eq. 8 and GCSC in Eq. 9 can

be modified accordingly. For example, if both node activity

amplitude and edge weight need to be considered, then we

may define

cNCSC;i ¼
1

kCN;i max
j¼1;...;kCN;i

ðwi;j � ajÞ
XNN

j¼1

wi;j � aj �MAði; jÞ

�fCSðhi; hjÞ;
ð12Þ

cGCSC;i ¼
1

ðNN � 1Þ max
k;j¼1;...;NN

ðwk;jÞ max
j¼1;...;NN

ðajÞ

�
XNN

j¼1

wi;j � aj �MAði; jÞ � fCSðhi; hjÞ: ð13Þ

For whichever definition, the average value based on all

nodes in a network system may then be used to assess the

overall network consilience.

As discussed in Sect. 2, CND is a special case of CSD.

Since many traditional network properties—for example,

clustering coefficient and assortativity—are developed

largely based on CND, we may then define CSD-based

versions of such network properties. For example, for node

i, we may recalculate the clustering coefficient based on the

concept of CSD

cCSCC;i ¼
P

k;j2XN;i;k 6¼j MAðk; jÞ � fCSðhk; hjÞ
kCN;iðkCN;i � 1Þ ; ð14Þ

and the average CSD-based clustering coefficient

(ACSDCC) is

�cCSCC ¼ 1

NN

XNN

i¼1

cCSCC;i; ð15Þ

where XN;i denotes the set of neighbor nodes of node i. For

a cluster of nodes that have many edges between each other

but observe rather conflictive node activity states, one will

get a large traditional CND-based clustering coefficient

according to Eq. 6, but a small and even negative CSD-

based clustering coefficient according to Eq. 14, as illus-

trated in Figs. 1 and 2. For example, in the case of team 2

of Fig. 1, the CND-based clustering coefficient (average

value 0.82) gives a misleading impression that every corner

sub-team is well connected, but according to the CSD-

based clustering coefficient (average value - 0.29), all

sub-teams in team 2 are badly organized, given that

expertise similarity positively impacts on performance.

This proves that the concept of CSD opens another door for

us to understand network systems.

3.2 New Network Models

Similar to the fact that many traditional network properties

are defined based on CND, many existing network models

are developed mainly by referring to the concept of CND.

For example, as one of the most acknowledged network

models, the preferential attachment model uses the CND of

a node to determine the probability of whether to add a new

edge to that node (Barabási and Albert 1999). Basically, a

new edge will more likely link to a node with a larger

CND. Obviously, it is not difficult to apply the preferential

attachment mechanism to simulate CSD-oriented network

systems. All we need to do is to simply replace the prob-

ability calculation part in the model of Barabási and Albert

(1999), in order to make a node with a larger CSD to have a

larger probability of being connected. Then, the new net-

work model, CSD-preferential, will not only generate

scale-free topologies, but also achieve a good overall net-

work consilience, which will be demonstrated by the

simulation results in Sect. 4.

Does a system with a good network consilience always

have a scale-free topology? To answer this question, we

need to develop another CSD-oriented network model, but

without the preferential attachment mechanism in Barabási

and Albert (1999). In the new model, each time (1) two

unconnected nodes are randomly selected, and (2) the

probability of adding a new edge between them depends on

the difference in their activity states. Basically, a smaller

difference in activity states means a larger probability of

connection. One may use the following function to calcu-

late the activity -state -difference-based probability
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pCði; jÞ ¼
ðaþ 1 þ fCSðhi; hjÞÞbPNN

k¼1

PNN

h¼kþ1 ðaþ 1 þ fCSðhk; hhÞÞb
; ð16Þ

where a[ 0 makes sure that even the two most conflictive

nodes may have a chance to be connected, and b[ 0

determines how strong the influence of activity state dif-

ference is on the probability. As will be shown in the

simulation results, this new model can achieve good net-

work consilience, but does not necessarily require a scale-

free topology. Therefore, as emphasized throughout this

article, topology is just one part of network systems. Once

node activities cannot be ignored, pure topology-based

analyses could become less useful or even misleading.

3.3 New Network Optimization Considerations

The concept of CSD also demands new considerations for

network optimization problems. Given NN nodes with

various preset activity states, due to limited resources, we

can only establish NE edges between these nodes. Then,

how to allocate NE edges in order to achieve the maximum

average consilience degree (ACSD)? This optimization

problem makes no sense in terms of CND, because no

matter how NE edges are allocated, the average connection

degree (ACND) remains the same as 2NE/NN. Differently,

the optimization of edge allocation is extremely important

in terms of CSD, and it also has a broad real-world

application background. For example, when a social-eco-

logical system is facing environmental pressure, how to

organize various stakeholders according to their interests

and expertise is a challenging task (Adger 2006; Young

2010), and the optimization of CSD may reveal some

helpful clues.

We first propose a theoretical network model to generate

a system with the theoretically maximal ACSD. In this

model, suppose there is a central governor who is respon-

sible for allocating every single edge according to the

global optimality. Basically, when the lth edge is to be

allocated, l = 1,…,NE, there are ((NN - 1)NN/2 - l?1)

options, and each option is associated with two nodes, say

node i and node j. Then, the option with the maximal fCS(hi,
hj) value among all these ((NN - 1)NN/2 - l?1) options

will be chosen to allocate the lth edge. In this way, the

theoretically maximal ACSD can be achieved.

However, many real-world network systems often lack

such a central governor, and individual nodes have the

right to decide where to set up their own edges. Such

networks are decentralized self-organizing systems, and all

nodes take the initiative to compete for edge resources. To

optimize their CSD, we have another theoretical network

model, where a node, once it receives the resource of a new

edge, will set up a new edge in such a way that the node

maximizes its own CSD. In this model, every time when a

new edge is to be set up, a node needs to be chosen ran-

domly. Assuming node i with kCN;i\ðNN � 1Þ is chosen,

then there are ðNN � 1 � kCN;iÞ options for node i to set up

the new edge. The option with the maximal fCS(hi, hj) value

among all these ðNN � 1 � kCN;iÞ options will be chosen to

set up the new edge. This model cannot guarantee the

global optimality in terms of CSD, but it may better fit in

the reality, such as in a social-ecological system, where

various stakeholders often have the full control of their

own decisions, and when choosing collaborative partners,

they usually pursue the maximization of their own

interests.

The optimization of CSD can be extended to cover more

considerations. For instance, besides the fCS(hi, hj) value,

the distance between two nodes may also influence the

decision of allocating a new edge. Usually, a larger dis-

tance between two nodes may result in a bigger cost for

setting up the edge and a lower connection efficiency.

There is an old Chinese saying ‘‘Water far away is of no

use to a thirsty man.’’ Even though two nodes have sup-

portive activity states, due to a long distance, the sup-

porting effect between the nodes may be largely weakened.

Therefore, we need to modify consilience optimization

models by taking into account the influence of distance. A

simple illustration of distance-related modification will be

given in the simulation results of Sect. 4, but in general, the

modification may differ largely depending on specific

concerned systems.

3.4 Potential of Applying CSD to Study Dynamic

Network Systems

It should be noted that the node activity state is treated here

as a rather general static concept, and it is not necessarily

related to any particular network dynamics such as a cou-

pling function, a limit-cycle oscillation, or time-varying

behavior, although it can be. Therefore, the concept of the

consilience degree (CSD) is basically also a static network

property, in the same way the connection degree (CND) is

a static network property. However, the static nature of

CSD does not mean it cannot be applied to studying

dynamic network systems. Actually, the CSD exhibits great

potential for the study of dynamic network systems, and

there are at least three ways to apply the CSD to such

systems.

First, a dynamic network system can be discretized into

a series of static network systems at different time instants,

which is the way how dynamic systems are treated in

research. At each time instant, we can take a snapshot of

the dynamic network system, and such a snapshot consti-

tutes a static network system. Therefore, CSD as well as all
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CSD-based properties and models can be used to study the

static snapshot of a dynamic network system. For a static

network system, CSD can be used to generally describe the

degree to which diversified node activities in the system are

supportive of each other. For a dynamic network system,

CSD can be calculated at each time instant, just like other

system dynamical properties, and then the dynamic change

in CSD can be used to study why it changes and how its

change contributes to the system dynamics/evolution.

Second, in a dynamic network system, each node usu-

ally has its own dynamic activity/function, which deter-

mines the change of node activity state and is largely

influenced by the interplay between nodes. How well a

node is functioning in terms of a specific systemic goal

may largely depend on how supportive or disturbing its

neighboring node functions are. The concept of CSD is a

key factor in describing such a dynamic activity/function of

nodes. For instance, when simulating the performance of a

system against external attacks, we often need to consider

the recovery speed of nodes after attacks, that is, the time it

takes a node to recover from an attack. In such a dynamic

network system, if a node can quickly recover from a

previous attack, then it will stand a better chance to survive

a series of attacks. In general, the recovery speed of a node

depends on not only the features of the node, but also the

supportive/disturbing effects of its neighboring nodes. For

example, after a natural hazard-induced disaster, whether

impacted community members will help or loot each other

is a key factor that will largely determine whether the

community can soon thrive again or not. So CSD is an

inherent part of the dynamics of such network systems.

In a more general case of dynamic network systems,

both node activity states and connections between nodes

may change over time. For instance, in many natural and

social-ecological systems, both node activity states and

network topology keep changing because of self-organiz-

ing, self-adapting, and/or co-evolutionary dynamics. In

such a system, each node may change its activity state and

connections from time to time by learning from and

adapting to its dynamic environment. Consilience theory

can help to understand/find a proper and even the best way

of achieving healthy, sustainable system dynamics. For

example, in coping with global climate change, multiple

stakeholders in co-evolutionary social-ecological systems

keep changing their attitudes and behaviors, in particular

interactions/relationships between each other. What kind of

policies and/or regulations might promote/prevent benefi-

cial/harmful changes in their attitudes and behaviors over

time is a potential application area of consilience theory.

As will be illustrated in Sect. 4, the CSD concept has great

potential for studying such co-evolutionary systems.

It should be noted that the study of a dynamic network

system is usually highly problem specific, because the

dynamics may differ significantly in different systems. In

Sect. 4, we will design a co-evolutionary network model

where both node activity states and connections between

nodes co-evolve under CSD-based rules inspired by the

selfish and following-others behaviors of individuals in

real-world systems.

4 Simulation Results

In this section, we present some simulation results to

demonstrate the importance and potentials of CSD in terms

of both theoretical and application research. The simulation

results have two parts. One part aims to reveal the differ-

ences between CND-based and CSD-based network prop-

erties and models. The other part reports a CSD-based

model simulating co-evolutionary mechanisms in order to

prove that for co-evolutionary network systems, CSD is an

inherent attribute rather than an artificial concept.

4.1 Comparative Results between CSD Theory

and CND Theory

Eight models are used to generate network topologies: six

are based on consilience degree (CSD), and two are based

on connection degree (CND). The model based on Eq. 16

sets the connecting probability according to the conflictive

situation of node activity states, and is denoted as CSDPD.

The other CSD-based model employs a CSD preferential

attachment mechanism, and is denoted as CSDPA. For

comparative purposes, two CND-based models are also

used, one is the random connection model of Watts and

Strogatz (1998), denoted as CNDRC, and the other is the

scale-free model of Barabási and Albert (1999), denoted as

CNDPA. In the simulation, node activity state is randomly

generated within the range of [0 2p], and fCD(hi, hj) is set as

cos(hi - hj). Unless specified otherwise, for CNDRC, the

random connection probability is 0.15, for CSDPA and

CNDPA, the preferential attachment probability is formu-

lated as

pCSDPAði; jÞ ¼
aþ ð2 þ fCSðhi; hjÞð1 þ cNCSC;iÞÞbP

k¼1;...;NN ;k 6¼j ðaþ ð2 þ fCSðhk; hjÞð1 þ cNCSC;kÞÞbÞ
;

ð17Þ

pCNDPAðiÞ ¼
aþ ðkCN;iÞbPNN

j¼1 ðaþ ðkCN;jÞbÞ
; ð18Þ

respectively, and for Eqs. 16–18, a = 0.01 and b = 3. In

the above models—CSDPD, CSDPA, CNDRC and

CNDPA—consilience optimization is not considered. To

illustrate the importance of consilience optimization,

another four models are also used. The first consilience
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optimization model assumes to have a central governor

ignoring distance influence. This is a global optimization

model and is denoted as CSDGO. The second consilience

optimization model focuses on decentralized self-

organizing systems, and distance is also not considered.

This can be viewed as a local optimization model and is

denoted as CSDLO. Then, based on CSDGO and CSDLO,

distance influence is introduced to get another two

consilience optimization models, denoted as CSDGOD

and CSDLOD, respectively. In CSDGOD and CSDLOD,

because of distance influence, the function fCS(hi, hj) needs

to be modified as following:

fCSðhi; hjÞ ¼ fCSðhi; hjÞ
dMax � di;j

ð1 � dÞdMax

� �e

; di;j [ ddMax

fCSðhi; hjÞ; di;j � ddMax

8
<

: ;

ð19Þ

where dMax is the maximal connection length between

nodes, and 0 B d B 1 and e[ 0 are model parameters.

Equation 19 implies that, if the connection length between

two nodes is smaller than the threshold ddMax, then dis-

tance has no influence on the original function fCS(hi, hj).
Basically, a larger d value means a less significant influ-

ence of distance. Above the threshold, distance influence

becomes more significant as the e value increases—in this

study, d = 0.1 and e = 2. To illustrate the differences in

the outputs of the eight models, Fig. 3 gives eight relatively

simple network systems.

To numerically understand the difference in the eight

models, Table 1 gives some mean results of 100 runs of

each model, where NN = 100 and NE = 400, CNDCC

stands for CND-based clustering coefficient, Asso for

assortativity in Newman (2002), ASPL for average shortest

path length, CSD for consilience degree, NCSC for

neighborhood consilience coefficient, and GCSC for global

consilience coefficient. The degree distributions associated

with Table 1 are plotted in Fig. 4. From Table 1 and

Fig. 4, one may make the following observations. (1) In

terms of CNDCC, Asso, or ASPL, CSDPD is similar to

CNDRC, and CSDPA is similar to CNDPA. Since

CNDCC, Asso, and ASPL are three basic CND-based

network properties used to assess topology, we may con-

clude that topologies generated by CSDPD are similar to

those of CNDRC, and CSDPA produces scale-free

topologies as CNDPA does. The degree distributions in

Fig. 4 also confirm the topology similarity between

CNDRC and CSDPD, and between CNDPA and CSDPA.

Therefore, topology-oriented properties can hardly distin-

guish CSDPD/CSDPA from CNDRC/CNDPA. (2)

Regarding CSD, NCSC, or GCSC, one can clearly see that

CSDPD/CSDPA is totally different from CNDRC/CNDPA,

despite of their similarity in topology. This demonstrates

that consilience-oriented properties may enable us to

understand network systems from a new angle, which is

completely missed by topology-oriented properties. (3)

Comparing the details of CNDPA and CSDPA, one may

echo the finding in Fig. 3, that is, CNDPA develops a

scale-free pattern in topology faster than CSDPA. Usually,

a more scale-free network has a shorter ASPL (hub nodes

are more efficient to reach other nodes) and a larger

maximal CND (given NN = 100, in CNDPA, some nodes

have the theoretical maximal CND of 99, but in CSDPA,

the maximal CND in all tests is less than 70). This is

understandable, because, due to conflictive states between

nodes, it takes much more time to develop a large CSD for

Eq. 17 than to get a large CND for Eq. 18. (4) When

comparing the four consilience optimization models

(CSDGO, CSDGOD, CSDLO, and CSDLOD) with the

four non-consilience-optimization models (CNDRC,

CNDPA, CSDPD, and CSDPA), it is clear that, in terms of

either topology-oriented properties or consilience-oriented

properties, optimization models are rather different from

non-optimization models. This implies that consilience

optimization is a brand-new network problem, because

neither CND-based models (such as CNDRC and CNDPA)

nor CSD-based models (such as CSDPD and CSDPA) that

borrow the techniques of CND-based models can effec-

tively address the consilience optimization issue. There-

fore, it demands innovative methods such as CSDGO,

CSDGOD, CSDLO, and CSDLOD. (5) In Fig. 4, the four

consilience optimization models have Poisson CND dis-

tributions, but it is worth further study to see whether

consilience optimization models could have scale-free

CND distributions.

4.2 Modeling Co-evolutionary Network Systems

Applying consilience degree (CSD) to study dynamic

network systems is crucial to understanding and exploring

the full potential of consilience theory. Here we demon-

strate that CSD is an inherent property of dynamical net-

work systems. As discussed in Sect. 3.4, many natural and

social-ecological systems are co-evolutionary systems,

where each node usually keeps changing its activity state

and rewiring its connections according to its neighboring

environment. Therefore, a fundamental question about the

application potential of consilience theory is: Can CSD be

used to model such real-world co-evolutionary network

systems? To answer this question, we designed a CSD-

based co-evolutionary network model where both node

activity states and connections between nodes keep co-

evolving under two highly realistic rules, that is, the selfish

rule and the following-others rule. Basically, in many co-

evolutionary, natural and social-ecological systems, these

two major rules govern every node to change activity state
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and connections (Ball 2012). These rules can be well

described based on the concept of CSD. Under the selfish

rule, a node is more likely to change its activity state

according to the states of supportive neighboring nodes,

and it is also more likely to rewire a connection from a

disturbing neighboring node to a supportive node. Under

the following-others rule, all neighboring nodes are clas-

sified into two sets, supportive set and disturbing set. The

node is more likely to change its activity state according to

the set that has more nodes, and the node is also more

likely to rewire a connection from the smaller set to a node

that is connected to the larger set but currently not con-

nected to the node. Figure 5 illustrates the basic ideas of

the selfish rule and the following-others rule.

Now we give a mathematic description of the proposed

CSD-based co-evolutionary network model. Suppose at

Fig. 3 Examples of networks generated by eight different models,

where NN = 40 and NE = 120, the activity state of a node is

randomly generated and then fixed, ACSD stands for average

consilience degree, a triangle node means it has a positive CSD

while a circle node has a negative one, and the color of node indicates

the value of CSD (a deeper red means a larger positive value, while a

deeper blue a larger absolute value of negative CSD). From this

figure, one can see that: (1) For both CNDRC and CNDPA, the

number of triangle nodes is similar to that of circle nodes, and the

color of their nodes implies their CSDs are all around 0; (2) For both

CSDPD and CSDPA, most nodes are a triangle with nearly red color,

which means large positive CSD; (3) the topology of CSDPD is

similar to that of CNDRC, and CSDPA is similar to CNDPA, which

implies that network consilience cannot be determined solely by

network topology; (4) Although CSDPA and CNDPA have the same

values for a and b to calculate the connection probability, it seems

that CNDPA develops a scale-free pattern in topology much faster

than CSDPA; (5) In terms of ACSD, consilience optimization models

CSDGO and CSDLO are significantly better than other models; (6)

Once distance influence is introduced in CSDGOD and CSDLOD,

ACSD decreases and so does the number of long connections, but

optimization design still guarantees that all nodes have positive CSD;

(7) The ACSD of global optimization models (CSDGO and

CSDGOD) is always larger than the associated local optimization

models (CSDLO and CSDLOD)

Table 1 Experimental results of different network models

Topology-oriented properties Consilience-oriented properties

CNDCC Asso ASPL CSD NCSC GCSC

CNDRC 0.3071 0.0026 2.4256 - 0.0298 - 0.0031 - 0.0003

CNDPA 0.5224 0.3971 1.9296 - 0.0251 - 0.0034 - 0.0003

CSDPD 0.3515 0.0015 2.5778 5.7533 0.6329 0.0581

CSDPA 0.5975 0.3105 2.2817 4.8227 0.4881 0.0487

CSDGO 0.8109 - 0.0570 7.2882 7.9152 0.8663 0.0800

CSDGOD 0.6565 - 0.0424 3.5546 7.1922 0.7783 0.0726

CSDLO 0.7760 - 0.0130 6.9096 7.8713 0.8693 0.0795

CSDLOD 0.6057 - 0.0126 3.1937 6.8548 0.7514 0.0692

CNDCC stands for CND-based clustering coefficient, Asso for assortativity in Newman (2002), ASPL for average shortest path length, CSD for

consilience degree, NCSC for neighborhood consilience coefficient, and GCSC for global consilience coefficient
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time instant t = 0, we have an initial network system,

where node activity states are distributed randomly within

the range of [0 2p], and connections between nodes are

initialized according to the rule reported in Watts and

Strogatz (1998). Basically, the initial network system is a

random network without consilience design. Since the core

of system dynamics is to self-adjust node activity states and

connections, we focus the mathematical description on

these two behaviors of a node. In this study, fCS(hi, hj) is set

as cos(hi-hj).
Suppose at time instant t C 0, node i has NSN,i(-

t) neighboring nodes that are supportive (the set of such

supportive neighboring nodes is denoted as XSN,i(t)), and

NDN,i(t) neighboring nodes that are disturbing (the set of

such disturbing neighboring nodes is denoted as XDN,i(t)).

If NSN,i(t)[ 0 and node i is adjusting its activity state

hi(t) under the selfish rule at time instant t, then at the next

time instant t ? 1, its activity state will be

hiðt þ 1Þ ¼ hiðtÞ þ sh �
P

j2XSN;iðtÞ hjðtÞ
NSN;iðtÞ

� hiðtÞ
 !

; ð20Þ

where sh is the speed of adjusting state. From Eq. 20, one

can see that the state of node i is changing towards the

mean value of all states of set XSN,i(t).

If NSN,i(t)[ 0, NDN,i(t)[ 0, and node i is adjusting its

connections under the selfish rule at time instant t, then it

will randomly disconnect from a node in set XDN,i(t) (as-

sume node j is chosen), and then rewire the connection to a

supportive node that is linked to set XSN,i(t) but not to node

i at time instant t (assume node k is chosen). After this

adjustment, we have

XSN;iðt þ 1Þ ¼ XSN;iðtÞ þ fkg;NSN;iðt þ 1Þ ¼ NSN;iðtÞ þ 1;

ð21Þ
XDN;iðt þ 1Þ ¼ XDN;iðtÞ � fjg;NDN;iðt þ 1Þ ¼ NDN;iðtÞ � 1:

ð22Þ

If node i is adjusting its activity state hi(t) under the

following-others rule at time instant t, then at the next time

instant t ? 1, its activity state will be

hiðt þ 1Þ

¼
hiðtÞ þ sh �

P
j2XSN;iðtÞ hjðtÞ
NSN;iðtÞ

� hiðtÞ
 !

; NSN;iðtÞ[NDN;iðtÞ

hiðtÞ þ sh �
P

j2XDN;iðtÞ hjðtÞ
NDN;iðtÞ

� hiðtÞ
 !

; NDN;iðtÞ[NSN;iðtÞ

8
>>>>><

>>>>>:

:

ð23Þ

From Eq. 23, one can see that node i will change its state to

follow most of its neighboring nodes, no matter whether

such majority neighboring nodes are currently supportive

or disturbing to node i.

Suppose node i is adjusting its connections under the

following-others rule at time instant t. If NSN,i(-

t) C NDN,i(t)[ 0, then the connections of node i are

changed in the same way as under the selfish rule according

to Eqs. 21 and 22. If 0\NSN,i(t)\NDN,i(t), then node

i will randomly disconnect from a node in set XSN,i(t) (as-

sume node j is chosen), and then rewire the connection to a

node that is supportively linked to set XDN,i(t) but not to

node i at time instant t (assume node k is chosen). After this

adjustment, we have

Fig. 4 Connection degree (CND) distributions associated with Table 1
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XDN;iðt þ 1Þ ¼ XDN;iðtÞ þ fkg;NDN;iðt þ 1Þ
¼ NDN;iðtÞ þ 1; ð24Þ

XSN;iðt þ 1Þ ¼ XSN;iðtÞ � fjg;NSN;iðt þ 1Þ ¼ NSN;iðtÞ � 1:

ð25Þ

At each time instant of the co-evolutionary process, the

percentage of nodes that are randomly chosen to change

activity states is PCAS, and the percentage of nodes that are

randomly chosen to rewire connections is PRWC. Given that

node i is chosen to evolve at time instant t, the probability

of applying the selfish rule is calculated as follows:

PSR;iðtÞ ¼ aðiÞ þ ð1 � aðiÞÞ � NSN;iðtÞ
NSN;iðtÞ þ NDN;iðtÞ

; ð26Þ

where 0� aðiÞ� 1 is a coefficient that indicates how selfish

node i is. A larger aðiÞ means more selfish. In this study, for

the sake of simplicity, we set aðiÞ ¼ 0:3 for all nodes.

Based on PSR;iðtÞ, the probability of applying the

following-others rule is simply

PFO;iðtÞ ¼ 1 � PSR;iðtÞ: ð27Þ

With the co-evolutionary dynamics defined by Eqs. 20–

27, an initial network system without consilience design

will gradually develop good network consilience during the

co-evolutionary process, as illustrated in Fig. 6. Given the

generality of co-evolution in reality, we therefore argue

that CSD is an inherent attribute rather than an artificial

concept, which underpins the fundamental importance of

CSD to the study of real-world complex network systems

such as social-ecological systems.

5 Conclusion

To study the performance of a system against disturbances,

many important concepts have been developed, such as

‘‘robustness’’ in systems science, and ‘‘vulnerability,’’

‘‘resilience,’’ and ‘‘adaptive capacity’’ in social-ecological

systems. A question is: Have these existing concepts fully

described the performance of a system against distur-

bances? In the practice of real-world disaster and risk

management, the consensus of wills and coordination of

activities in a society often play a crucial role, which

however can hardly be reflected or captured by existing

concepts. This article proposes a new, fundamental, general

network property—consilience degree (CSD), which is

especially used to evaluate how well a system has

Fig. 5 Changing node activity state and connections under two co-

evolutionary rules—selfish rule and following-others rule. a Self-

adjust node activity state under the selfish rule; b self-adjust node

activity state under the following-others rule; c self-adjust connec-

tions under the selfish rule; d self-adjust connections under the

following-others rule. Suppose consilience function is set as

fCSðhi; hjÞ ¼ cosðhi � hjÞ. The similarity in node colors represents

the similarity in node activity states. Red/Blue link represents

positive/negative effect between nodes because of their similar/

different states. The node with the bold boundary in the center of each

network is the node that is currently adjusting its state/connections. In

(a), the red and pink neighboring nodes are supportive of the central

node because of their color similarity. Therefore, under the selfish

rule, the central node changes its own state even more similar to those

of the red and pink neighboring nodes, so that its own CSD will be

increased. In (b), most neighboring nodes of the central node have

cool colors. Therefore, under the following-others rule, the central

node changes its own state from warm color to cool color in order to

get more supportive effects from its neighboring nodes. In (c), under

the selfish rule, the central node disconnects a negative neighboring

node (the blue node), and rewires the connection to a supportive

neighbor of its own supportive neighboring nodes. In this way, it

stands a good chance to increase its CSD. In (d), the central node has

only 1 supportive neighbor, but 3 negative neighbors. Therefore,

under the following-others rule, the central node disconnects the only

supportive neighboring node (the pink node), and rewires the con-

nection to a supportive neighbor of its own negative neighboring

nodes. After this adjustment, its CSD decreases for the moment, but if

the central node adjusts its state according to the selfish rule in the

future, its CSD will increase significantly
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integrated and coordinated resources, in order to serve a

specific systemic goal such as dealing with disturbances.

Actually, CSD can be viewed as a generalized node con-

nection degree (CND). In this article, with the basic idea of

CSD, a set of new network properties and models are

developed that form a new theoretical framework to study

complex systems. As a static network property, CSD also

exhibits great potential to study dynamical network sys-

tems. In particular, a CSD-based co-evolutionary network

model is developed in this article that proves that CSD is an

inherent attribute rather than an artificial concept.

Our theoretical analyses and simulation results prove

that CSD-based network properties and models are rather

different from CND-based network properties and models,

and they open a new window to deepen our understanding

of many real-world complex systems such as social-eco-

logical systems (SES). For instance, a society that has a

consensus of wills and practices a coordination of activities

between individuals for the sake of disaster prevention,

mitigation, and relief is often observed to be less vulner-

able to disasters (Shi et al. 2014). In the stage of disaster

prevention, whether and to what extent individuals com-

pete for or share resources will make a difference in the

preparedness level against disasters. In the stage of disaster

mitigation and relief, whether and to what extent individ-

uals loot or help each other may amplify or reduce the

impact of disasters. Although concepts such as

vulnerability, resilience, and adaptive capability are fun-

damentally important to study SES, they largely fail to

address these issues. Hopefully, CSD can be used to

quantify and improve the performance of SES against

disasters (Shi et al. 2014). In coping with global environ-

mental change, multiple stakeholders in SES keep chang-

ing their attitudes, behaviors, interactions, and

relationships. Co-evolutionary consilience models may

thus help to make SES healthier and more sustainable.

Therefore, it is worth further efforts to apply the new CSD

theories and models in real-world case studies of SES.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were
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