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Abstract

The proliferation of the national-wide deployment of surveillance cameras and iden-

tity management systems has promoted the development of biometric systems. Gait

as a behavioural biometric trait can be measured unobtrusively at a moderate dis-

tance, thus it is predominant in remote human tracking and identification tasks.

The past two decades have witnessed a considerable development of gait recognition

systems. Yet there are challenges that confine the practical application of gait anal-

ysis. The motivation of our work is to identify the problems and find corresponding

solutions to explore the potentials of gait recognition and promote its applicability

in open-world scenarios.

Gait recognition systems use human profile as features, while the appearance

of human profile, also known as silhouette, can be affected in various manners. For

example, clothing changes the shape of torso (coat) or legs (skirt); carrying bag

attaches extra region to the silhouette; walking surface or speed variation changes

the appearance of legs. On the other hand, camera viewpoint variation changes the

shape of both the upper and lower body, while segmentation errors may cause mas-

sive corruption of the gait features. We summarise them into two categories: partial

interference and holistic deformation. The former has been well addressed by exist-

ing literatures. The holistic deformation on gait silhouette results in large intra-class

variation, and we notice that the performance of conventional approaches decreases

under such circumstance. Thus our work focus mostly on the latter challenge.

Accordingly, we propose ViFS, an automatic feature selection approach that

seeks for the optimal representation features from gallery set, and evaluate its perfor-

xi



mance under various conditions. We find that ViFS minimises the intra-class varia-

tion between gallery and probe data, and by introducing proper feature enhancers,

we can further reduce the number of holistic deformation modalities required in the

gallery set. We test the proposed method on public dataset that contains viewpoint

variations, and the matching accuracy has achieved 99.1% on CASIA Dataset B and

97.7% on OU-ISIR Large Population Dataset. The formulation and discussion are

presented in Chapter 3.

The success of Convolutional Neural Network (CNN) based methods in image

classification field has drawn attention from researchers. Recently a large number of

literatures have covered the application of CNN in computer vision tasks, including

face and gait recognition in the biometrics field. CNN has much greater discrimi-

nant learning ability in the highly non-linear space. Thus we merge CNN feature

maps with the proposed ViFS approach, which achieves the state-of-the-art perfor-

mance on view-invariant gait recognition problem. The methodology and results

are presented in Chapter 4.

Among the holistic deformation challenge, the silhouette quality issue is sel-

dom addressed, while no published dataset concerns with the influence of segmen-

tation quality on gait recognition algorithms. We create a dataset that contains

silhouettes with six different segmentation qualities in both gallery and probe set,

and evaluated the conventional methods as well as the proposed ViFS approach on

this dataset. It is proved that ViFS based framework and its extension outperforms

the conventional methods by 8%-10%, which further indicates the effectiveness of

ViFS based framework on gait holistic deformation challenge. This work is presented

in Chapter 5.

This thesis aims at tackling the gait silhouette holistic deformation challenge,

and ViFS based frameworks are proposed to achieve robust recognition performance.

We evaluate the effect of different feature enhancers for ViFS, and find out that the

discriminant power of CNN feature maps is much more powerful than subspace

learning methods (3% higher accuracy under same conditions), thus it requires less

gallery data to achieve deformation-invariant recognition.
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Chapter 1

Introduction

1.1 Human Identification Using Biometrics

Biometrics is interpreted as the way to recognise humans based on their distinctive

biological characteristics [4]. The characteristics can be measured from either phys-

iological traits, such as face, fingerprint, iris, or behavioural traits, e.g. handwriting,

gait, voice. It is argued that biometrics is the most reliable way to identify people,

as we carry them with us [5]. Biometrics provides solutions to a wide range of issues,

with the overarching intention of denying imposters from the protected resources.

Electronic products such as cellphones and personal computers are installed with fin-

gerprint or face recognition applications to secure personal content. Organisations

and corporations adopt face or iris recognition based check-in systems or access

control devices in the restricted areas. Fingerprint and face recognition have been

implemented for border control. Applying for identity card or visa requires biometric

information registration. Security agencies use biometrics to identify and track sus-

pects. The ever-growing demand of fast and precise automatic human identification

systems has promoted the rapid development of computer vision based biometric

1



authentication techniques. A considerable amount of innovative sensors, compu-

tational hardware and machine learning methods are developed over the past two

decades to meet the demand of storing and utilising the large mounts of unstructured

yet connected data.

A biometric authentication system is designed based on the presence of dis-

tinguishing attributes between individuals, and that the measurable attributes can

be retrieved by sensors and represented in a digital format to proceed decision mak-

ing via machine. Therefore it can be modelled with pattern recognition frameworks,

which consist of three basic modules:

• Source information acquisition. The source information including biometric

attributes is acquired from appropriately designed sensors. For instance, in

the case of fingerprint, the friction ridges on fingertips are captured by the

reflection of LED light from an optical sensor [6]. Figure 1.1 (a) demonstrates

a typical sensor for fingerprint acquisition, while the captured fingerprint image

is shown in Figure 1.1 (b).

• Feature extraction. Every biometric modality has its unique features that

distinguish one subject from others. Feature extraction is aimed at extracting

these features and store them in numerical form as the input for identification

systems. Generally the features should be aligned and normalised following a

specific criterion to avoid unexpected noise caused by misalignment in metric

learning [7]. A demonstration of feature extraction on fingerprint image is

shown in Figure 1.1 (c-f). (c) The original fingerprint image, (d) the local-

region ridge orientation fields, (e) the fingerprint with sharpened ridge and

noise elimination, (f) the extracted ridge bifurcations and terminations, which

are also known as minutia (marked in red).

2



Source Information Acquisition

(a) (b)

Feature Extraction

(c) (d) (e) (f)

Decision Making

(g) (h)

Figure 1.1: The process of fingerprint-based biometric authentication system.

• Decision making. Metric learning techniques are applied to compute the sim-

ilarity scores between the extracted features from the input data and the ref-

erence templates stored in the database [4]. Figure 1.1 (g) demonstrates the

minutia extracted from the input fingerprint image, Figure 1.1 (h) shows the

minutia on the reference image, and the blue arrows refer to the corresponding

matchings. Biometric systems may make decisions in verification or identifi-

cation manner, based on the application context. Verification is to assess the

validity of the claimed identity by comparing the scores of the input features

with the pre-enrolled reference templates. For example, in the case of hand-

written verification, the scores are compared with varying decision threshold

to validate the claimed identity [8]. Identification requires the input features

to be compared with all the reference templates, and the top matching score

often decide the identity of the input data. In addition, identification can be

open-set or closed-set, based on whether the identity of the input sample exists

in the reference database. Recognition can be used to imply either verifica-

tion or identification [9], thus we prefer to use it in this thesis for a general

reference.

Apart from these basic components, feature selection is an indispensable pro-

cedure in modern biometric systems as well as pattern recognition approaches. As

3



is often the case, the source information comprises a fair amount of redundant con-

tents. Therefore the dimensionality of the numerical representation for biometric

features could be very high. For the sake of recognition accuracy and computational

efficiency, a conventional solution is to apply dimension reduction tools to simplify

the problem and increase the decision-making accuracy. Furthermore, the recent

development and application of convolutional neural networks (CNN) to computer

vision tasks has boosted the performance of biometric identification systems. With

the ability to automatically learn problem-specific features directly from input im-

age, the integrated deep architecture of CNN merges the basic modules into one

framework, providing an end-to-end solution to modern biometric problems [10–12].

Humans recognise one another not only using body characteristics (e.g. face,

voice, gait), but also rely on other contextual information (e.g. hairstyle, height,

accessories). Recent studies suggest that a well designed fusion framework is ca-

pable of combining multiple primary biometric traits and ancillary information, for

example, age, height, and gender, which contributes to the improvement of identi-

fication accuracy. These attributes are named soft biometrics or light biometrics,

since they provide information concerning human identity, while these attributes

cannot be used to verify people independently [13]. They can be deduced from the

prime biometrics for the same subject, or acquired from other approaches to support

the identification. Recently soft biometrics have been introduced to monitoring and

indexing databases [14].

Considering the enrolment rate, time cost and matching accuracy, it is in-

adequate to employ a single biometric trait in large scale deployment of biometric

systems [15]. By merging the advantages of multiple biometric source, a multi-

biometric system can significantly improve the population coverage and the indexing

4



speed, as well as the recognition rate. As mentioned in [16], the current deployed

systems integrate at least two biometrics: fingerprint with face, or face with iris.

Apart from face, iris and fingerprint, which have been testified as efficient traits for

biometric systems, researchers started to explore more subtle biometrics, such as ear

shape, vein pattern, and gait, in order to amplify excessive modalities. As one of the

behavioural biometrics, gait has gained growing attention in the past two decades

and is regarded as a promising biometric trait for human identification. At present,

there is an increasing number of closed-circuit televisions installed in public places

for surveillance and security purposes. As reported by the British Security Industry

Authority (BSIA), there are up to 5.9 million CCTV cameras installed in UK [17],

and the demand of supervising such a large number of CCTV cameras is acute.

Biometric modalities, which require subject cooperation, like fingerprint or palm,

are infeasible for these purposes. It is also known that face recognition is strongly

affected by illumination and view angles in the open world. Also, when the subject

keeps a moderate distance from the camera, neither face nor iris is recognisable due

to low resolution. Furthermore, it is known that face, fingerprint and iris may not be

perceivable due to the occlusions (sunglasses, scarf, etc.), or the viewpoint of cam-

eras (side-view and back-view). Gait on the other hand seems to be a better choice

in dealing with such problems. It is suggested by Nixon et al. [5] and a profusion

of literatures that the walking pattern of human is unique and highly repeatable,

and people can identify one another based on their gait. As a behavioural biometric

trait, gait can be used to identify human from a moderate distance. In addition,

gait can be an expedient technique in establishing fast and robust multi-biometric

system by narrowing down the searching space. This thesis explores the potential

of gait analysis to be an independent tool in human recognition tasks.
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1.2 Gait Recognition

Gait recognition focuses on both the human body shape in spatial domain and

movement in temporal domain. A conventional gait recognition system consists of

3 steps:

• Acquire gait signature (source information acquisition). A spectrum of images

containing the walking subject are captured using a video camera (or cam-

eras). The binary silhouettes (or shape) of the subject, regarded as the gait

signatures, are subtracted from the background.

• Construct gait template (feature extraction). Gait template refers to the nor-

malised binary silhouette [18] and its extensions, e.g. the average of all silhou-

ette within a gait cycle [19]. Compared with the original silhouette, a good

template uses less storage space and achieves a higher recognition accuracy.

• Similarity measurement (decision making). After modelling input and refer-

ence data using the same template, we measure the distance between them and

find the matching identity. Simple approaches like nearest-neighbour methods

can be implemented for this purpose [20]. Furthermore, we may introduce

other distance functions to reduce the dimensionality of feature space and find

projective subspace where useful information is preserved and the redundant

features is discarded.

A gait cycle starts with the stance state, followed by two strides, and stop

with another stance state. An intuitive example is presented in Figure 1.2.

In a cooperative manner, the close-distance biometrics such as fingerprint,

face and iris can achieve very high identification rate [16]. However, when the subject

6



Stance The First Stride The Second Stride Stance

Figure 1.2: The demonstration of one gait cycle.

does not cooperate with certain protocols, e.g. reluctant to contact with the optical

fingerprint sensor or look straightforward to the camera, those biometric modal-

ities are invalid or severely degraded. Instead, gait recognition can achieve high

performance under harsh conditions, such as long distance, non-uniform, illumina-

tion variance and low resolution. Moreover, gait is robust to disguise and occlusions,

which makes it an important tool in tracking and identifying subjects through public

surveillance cameras. Figure 1.3 presents two scenarios where subjects are captured

by the camera in a non-invasive manner. It is nearly impossible to perform face or

iris recognition, since these features are too degraded to be perceived, or completely

occluded. Under such circumstances, gait appears to be the best choice to identify

people. The main advantages of gait recognition are summarised as follows:

• Identification at a distance. As a behavioural biometrics trait, gait does not

acquire the texture details of human body. Instead, it focuses on the body

shape as well as spatial-temporal movement, which hardly degrades within a

moderate distance. On the contrary, face or iris features are not perceivable at

a distance or under low resolution. Hence computer vision based gait recog-

nition is deemed as the optimal choice for human identification at a distance.

• Robustness to ambient interference. The presence of pose, illumination and ex-
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Figure 1.3: Two scenarios where main biometrics (e.g. face, fingerprint, iris) are not
perceivable. Gait seems to be the only available trait under such circumstances.

pressions/accessories variations lead to low recognition accuracy in face recog-

nition, and these variations are ubiquitous in non-cooperative scenarios. Gait

recognition has better tolerance to these interference factors [2] [21].

• Non-obtrusiveness. Since it is performed at a distance, a gait recognition

system does not require the subject to interact with the camera. Also, gait

does not need the subject to be cooperative, on account of its better tolerance

against view angle variations.

• Non-invasiveness. The camera could be installed at a concealed place, which

does not arouse the awareness or alarm of the subject. Hence the subject is

less likely to disguise purposefully.

Apart from being used as the prime biometric trait in human identification, gait

recognition is also a good auxiliary to other biometrics in multi-biometric systems.

It is proved that the fusion of face and gait has achieved promising performance in

human identification and tracking [22] [23].

In [24] [25], pioneering experiments have been carried out on translating gait

biometrics to forensic task with real crime scene videos, and gait based evidences

has been introduced by court to increase the confidence of identity. Larsen et al.
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identified a bank robber in Denmark using evidences from forensic gait analysis

[24]. Bouchrika et al. manually marked human segments from raw video sequences

and analysed the locomotion of anatomical annotations, which helps identifying

a burglar in UK [25]. However, the performance of computer vision based gait

recognition is limited by a variety of factors, such as walking speed, clothing and

carry condition, camera view point, silhouette quality. Still, there is much work to

do for automatic gait recognition in practical application. In this thesis, we aim

to explore the potential of gait recognition, and propose robust algorithms that are

less sensitive to these factors.

1.3 Contributions and Thesis Outline

As gait recognition is still in its early stage, researchers have discovered a few fac-

tors that affect the identification accuracy, as mentioned above. However, there are

more to be explored, like silhouette quality disparity. In order to bring gait recog-

nition from laboratory experiment to real world applications, the problems need to

be addressed. The purpose of this research is to study and explore the potential

and limitation of gait recognition, and to propose robust algorithms that are less

sensitive to two problems: recognition under arbitrary view, which is caused by

camera viewpoint changes, and recognition with silhouette quality disparity, which

is caused by inconformity of gait signature acquisition. In this thesis, we view these

problems as the holistic feature deformation challenge, and propose view-invariant

feature selector (ViFS) based frameworks to tackle this challenge.
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1.3.1 Contributions

The three contributions of this thesis are listed as follows. The corresponding chap-

ters and publications are demonstrated in Table 1.

1. For gait recognition under arbitrary views (also known as view-invariant gait

recognition problem), we propose a view-invariant feature selector (ViFS)

based framework to automate feature selection process and perform fast view-

invariant gait recognition. Specially, we assemble gallery templates from dif-

ferent view angles into one set, and regard the probe template from a specific

view angle as the reference set. By minimising the cross-view distance be-

tween gallery and probe set, we realise the ViFS. We use subspace learning

methods as feature enhancers to increase the discriminative power of gait fea-

tures. Benefiting from parameter-free linear computations, our framework has

very low-computational cost, making it suitable for real time applications. In

addition, we notice that the prosed ViFS is amenable to be used with various

subspace learning methods as feature enhancers. The formulation of ViFS and

its evaluation are detailed in Chapter 3.

2 We further enhance the performance of ViFS based framework using CNN

feature maps. Specifically, we train a conventional CNN with sufficient multi-

view data. Then we use CNN as the feature enhancer to obtain the gait feature

maps from a certain layer of the network. We use ViFS to automatically select

view-invariant features from the gallery CNN feature maps, and use them as

reconstructed feature templates to match with the probe CNN feature maps.

In addition, we analysed the feature maps extracted from the well trained CNN

model, in order to understand the functional mechanisms of CNN as feature
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enhancer. The joint force of CNN feature maps and ViFS achieved higher

matching accuracy than the previous work on CASIA Dataset B, which further

promoted the potential of ViFS in real world gait application. The details of

this work is presented in Chapter 4.

3 Apart from the widely known factors, there are others hindering the perfor-

mance of gait recognition algorithms, including silhouette quality disparity.

We generate a dataset to statistically analyse this problem and evaluate the

performance of conventional algorithms. We discovered that when gallery and

probe templates are generated using different approaches, there is a strong

possibility that the recognition rate would be very low, due to the holistic

feature deformation on the silhouettes. Meanwhile, if the segmentation re-

sults is very close to the ground truth, even different approaches might lead

to similar results. Considering that the segmentation errors result in holistic

feature deformation, we apply ViFS to reduce the effect of silhouette quality

disparity. Specifically, we evaluate the performance of conventional subspace

learning algorithms on the generated dataset, including a weak classifier fu-

sion approach that make use of the fused features from different quality pairs,

and make classification decisions through majority voting. Alternatively, we

adopt ViFS to select the optimal features from multi-quality gallery set, and

perform classification based on the Euclidean distances between the recon-

structed gallery features and the probe features. Experimental results show

that the ViFS based proposed framework outperforms other algorithms, sug-

gesting that ViFS is efficient in tackling gait holistic deformation challenge.
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1.3.2 Thesis Outline

The rest of this thesis is organised as follows.

• Chapter 2 provides a review of the prior works related to the research themes

of the thesis to prepare the readers for the more specific works developed by

the author in the past four years. This chapter starts with the development

history of gait representation, and then points out the challenges facing gait

recognition techniques. Many prior works aiming at addressing various issues

are also discussed. A number of underlying techniques, such as dimension

reduction, discriminant learning, and CNN, to be used in our own work are

presented.

• Chapter 3 deals with the challenges due to view variation, which is often

encountered in gait recognition. We will first discuss the impact of view vari-

ation on gait recognition and then propose a framework, which extracts a set

of view-invariant features and then use subspace learning methods to enhance

the selected features to facilitate recognition.

• In Chapter 4, we investigate the combination of CNN features and feature

ensemble approaches on tackling view-invariant gait recognition problem on

gait recognition. We firstly discuss the effectiveness of CNN feature maps

and analyse the reasons behind the incompatible performance of CNN based

approaches on computer vision tasks. Then we evaluate its compatibility to

traditional approaches on main-stream database.

• Chapter 5 is concerned with the observed fact that gait recognition accuracy

is dependent on the disparity between the quality of gait silhouette of the

probe and gallery images. We firstly propose a weak classier fusion strategy

12



to deal with the identified problem. The classifier fusion strategy makes use

of the information from the weak classifiers and majority voting to increase

the probability of the right guess. Later we adopt ViFS to further improve

the performance of the methodology.

• Chapter 6 concludes this thesis and points out a few lines of investigation in

the future.
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Chapter 2

Literature Review

2.1 The History of Gait Representation

It is mentioned by Nixon et al. [5] that the foremost study on gait is by Aristotle

in his book On the Gait of Animals [26]. With the development of physics and

mechanics, the early pioneers such as Leonardo da Vinci, Galileo and Borelli were

able to promote the development of biomechanics on animal locomotion. Muybridge

(1830-1894) conducted his famous experiment of recording racing horse using 12

cameras, which is regarded as the pioneer work on photographic study of motion.

Murray et al. [27] measured the kinematics of various human body components

during walking, based on a sequence of photos recording human gait. According

to their experiments on 60 healthy men of different ages and height, Murray et al.

reported the normal interval of parameters on human gait, such as the duration of

gait cycle, the length of stride and step, the rotation of body joints (pelvis, knee,

ankle, etc.). It is a pioneer work on using a simple and low cost photographic method

to record and statistically analyse normal human gait, while other contemporary

literatures mainly focused on studying the pathology of human gait. Another work
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by Murray indicated that human gait comprises the coordinated motion of 20 body

components [28]. Johansson [29] proved that people can recognise human biological

motions (walk, dance, etc.) which are represented by dynamic bright points on the

main joints. Later Cutting et al. [30] pointed out that this dot representation model

of biological locomotion is sufficient for human identification1, which substantiated

the discriminatory power of gait. Those works revealed that the complexity of the

interactions between body segments typifies the distinctive motion characteristics

for each individual, thus gait can be used for human identification. Moreover, the

representation of human gait can be very abstract. Those landmarks are summarised

in Figure 2.1. In the early stage of gait research, several literatures proposed gait

representation models describing gait spatial and temporal patterns [31, 32]. Since

the 21st century a number of literatures have been seeking for an optimal way of

representing human gait, such as [33–40]. Recently a few templates are proposed,

such as [41,42]. Despite that a spectrum of feature representation were proposed, e.g.

contour, structural skeletons, and dots representation, it is proved that gait binary

silhouette is the most effective representation that encodes gait biometrics [18].

Therefore, as mentioned in Chapter 1, we refer gait signature to the binary silhouette

extracted from gait video sequences.

There are several terms frequently occurred in this thesis, as well as gait

recognition literatures, with regard to gait nomenclature. The term gallery refers

to labelled gait sequences or templates stored in the database, corresponding to the

reference data as introduced in Chapter 1. Probe means the sequences to be iden-

tified or verified, corresponding to the input data. By performing metric learning

approaches, we may find the minimum distance between the probe data and the

1A similar demonstration of dot representation on human gait can be found on https://www.

biomotionlab.ca/Demos/BMLwalker.html.
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gallery dataset, and label the probe data with the corresponding gallery data. Sil-

houette is defined as the region of pixels from a person [18]. Within one gait cycle,

the silhouette goes through spatial-temporal changes, which models the pattern of

human locomotion over time. In addition, it removes the interference information2,

which mainly refers to the texture details and colour regions on human body.

Gait recognition approaches can be broadly classified into two categories:

model-based and appearance-based, in terms of different feature types. Model-based

gait recognition refers to identifying people by modelling their distinctive gait char-

acteristics with underlying mathematical structures [43]. One or more physical mod-

els of the human body are established and integrated with a set of parameters that

are extracted from human silhouettes, for example, the size of body parts (height,

length of torso and thighs), the length of the stride and cadence, the speed of the

stride, and the variation of joint angles. These parameters, which are coded with

the discriminant information, are logically and quantitatively connected with each

other. These human physical models can be 2-dimensional (2D) or 3-dimensional

(3D), depending on the number of digital cameras recording gait sequences from dif-

ferent views. Niyogi et al. proposed to extract contour of gait silhouette, and they

built a five-stick model to fit the bounding contour, representing human body struc-

ture [44]. The periodic angle variation recovered from the joints of the stick model

were used for classification. Cunado et al. modelled human gait as an articulated

pendulum and recorded the parameters of joint angles, thigh hight and frequency

during the walking cycle [45]. Their work also mainly focused on the bottom half

of human body, i.e. the movement of human legs. Inspired by these two pioneering

2In computer-vision based gait recognition system, the interference information could misguide
the distance measurement between vectorised gait signature. Nevertheless, these information, in-
cluding clothes, shoes, gender, and accessories, may be regarded as soft biometrics and contribute
to identify people in a fusion framework [14].
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works, many researchers proposed optimised structural and motion models, as well

as feature extraction methods, to improve identification accuracy [46] [47]. Wang

et al. proposed to extract features from both shape and movement features, then

fuse the static and dynamic information of the shape and movement features, re-

spectively [48]. In [49] [50] the authors constructed a 3D model from raw video

sequences to represent human gait, which is robust to factors such as view angle,

clothing, illumination. However, these methods require high definition video source

and are computationally expensive. Also they did not test their methods on large

scale databases. When using gait recognition for surveillance and access control,

depth cameras can be used to achieve higher accuracy due to the richer informa-

tion than 2D-based gait features [51–54]. Figure 2.2 illustrates the extraction of

normal and depth-based gait silhouette and templates. It is clear that depth-based

silhouette retains complete information, while the GMM based methods fails to pre-

serve the features on the top and bottom part of the silhouette. This situation is

constantly encountered on outdoor scenario due to the illumination changes on the

subject and the interference of walking surface or objects on the background. Most

model-based methods rely on high quality gait sequences captured under controlled

environment (e.g. indoor environment, close-distance between subject and camera,

multi-view cameras, in-depth camera or kinetic camera), thus they are better at

handling occlusions and changes in scale, as well as camera view point changes.

However, the restrictions to sensors and the low tolerance to video quality makes

model-based methods less applicable for outdoor gait recognition.

Appearance-based methods adopt gait silhouette as the feature source to

build effective gait templates. The classification is performed by measuring the

pixel-to-pixel distance between gallery and probe templates. A commonly used
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Figure 2.2: Comparison between normal and depth-based methods on building gait
templates [54]. The GEI on the leftmost side seems blurred and distorted, com-
paring with the depth-GEI on its right side. The other two images illustrate other
approaches based on depth-based gait silhouette.
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appearance-based template is the Gait Energy Image (GEI), which averages all

the binary silhouettes from a gait cycle and generate a single gait template [19].

Since GEI encrypts spatial and temporal information of one gait cycle into a single

template, methods based on GEIs usually have low computational costs and low

storage requirements. Another similar approach named Motion Silhouette Image

(MSI) is proposed in [55]. The pixel value of MSI at a certain position depends

on its temporal history of motion over a gait cycle. Both GEI and MSI embed

spatial information over a gait cycle into one template, thus they are vulnerable to

shape variation caused by rotation, clothes or carry condition. Moreover, since GEI

converts the spatial-temporal information during one walking cycle into a single

2D gait template, which avoids matching features in temporal sequences, it loses

the dynamical variation between successive frames. Wang et al. proposed Chrono-

Gait Image (CGI) method to cover temporal information which is absent in GEI

[56]. They extract the outer contour from gait silhouette image, and encode with

different colour according to the time stamp in a gait sequence. Then the coloured

contour images from a gait cycle are encoded into one multichannel template, i.e.

a CGI. Bashir et al. proposed to calculate the Shannon Entropy of gait silhouette

image and gather them into gait entropy image (GEnI) [57]. Experiments on several

large gait dataset (over 4000 subjects) suggest that GEIs, among other templates

that are mentioned above, are the most statistically stable and efficient template

for gait recognition [58] [59], while other templates are proved to be useful for a

special challenge or on a certain database. Therefore for the sake of simplicity and

universality, most researchers still apply GEI as gait representation template to

evaluate their algorithms. The advantages of appearance-based approaches are the

low requirements of silhouette quality and computational ability. However, these 2D
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GEI MSI SVB frieze pattern GEnI CGI

Figure 2.3: Examples of GEI, MSI, SVB frieze pattern, GEnI and CGI.

based features are not robust to viewpoints and scale changes. Figure 2.3 displays

examples of the templates mentioned above.

In [60], the gait template containing both spatial shape information and tem-

poral gait variation are summarised as spatial temporal-based method. Comparing

with the appearance-based templates mentioned above, the spatial temporal-based

method preserves the temporal variation between successive frames. Inspired by the

success of crystallographic group theory on recognising periodic patterns, Liu et al.

proposed a mathematical model called frieze patterns [61]. Their algorithm auto-

matically recognises the underlying lattice pattern from gait silhouette sequences

and extracts the representative motifs of features. Followed by Liu et al.’s work,

Lee et al. ameliorated the frieze patterns based method that jointly used the intra

and inter-shape variations [62]. Instead of extracting frieze patterns from gait sil-

houette, they perform their algorithm on difference frame between a series of key

frames. The frieze pattern based templates is specially designed for tackling the

local region shape variations caused by clothing or carrying bags, or walking speed.

However, if no appearance changes are present, these methods is inferior compar-

ing with classical appearance-based templates such as GEI [57]. In addition, frieze

pattern methods requires higher demand of computational power, and preserve less
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meaningful 2D graphic information due to the vectorised computation [63].

Our intention is to push the process of gait recognition in real world ap-

plication. Therefore in this thesis we adopt appearance-based methods, due to its

effectiveness on outdoor gait recognition. Since the contributions of this do not in-

clude proposing new gait templates, we only employ GEI for the sake of simplicity

and efficiency. The reviews of machine learning techniques on gait recognition are

presented in Section 2.3.

2.2 Challenges and Public Databases

In this section, we introduce the main challenging factors for gait recognition, as

well as the commonly used gait databases comprising these factors for evaluating

algorithms.

2.2.1 Main Challenges

Computer vision based gait recognition approaches automatically extract a set of

features comprising identity characteristics from the raw video sequences. Often

these features comprise noises (corrupted features) that are unrelated to personal

identity. These noises arise from a number of interior or exterior factors, which

cause transient or permanent changes to gait patterns and consequently degrade the

discriminative power of gait features. In order to ensure the recognition accuracy,

it is critical (and challenging) to eliminate the influence of these factors from the

extracted features set. To summarise, we classify these factors into three types in

terms of their causes:

• Personal factors. Human gait can be affected by walking speed, healthy con-

dition, time elapse, mood, clothes, carry conditions, etc. Variations come from
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subject himself/herself.

• Environmental factors. The extracted features can be contaminated by illumi-

nation changes, occlusion, walking surface, etc. Furthermore, when performing

background subtraction (in order to obtain the foreground subject silhouette),

moving objects on the background can easily generate strong noise.

• Sensor factors. Computer vision based approaches require a sensor to capture

raw data (sound, images, video sequences, or other forms of digital signals).

For gait recognition, the resolution or frame rate of camera, the distance and

view point between camera and subjects can generate interference to the ex-

tracted features.

Alternatively, we also summarise two main challenges for appearance-based gait

recognition, in terms of the active region of the factors:

• Partial interference challenge. The interference comes from the variation of

carry condition, walking speed, shoes and walking surface, etc. The feature

corruption is mainly on partial region of human gait silhouette, and each of

the factor affects a relatively constant position. Most of these factors has been

introduced in the published databases, and a number of approaches have been

proposed to tackle this challenge.

• Holistic deformation challenge. The deformation could be engendered by the

change of camera view point, degradation of video quality, etc., causing the

holistic shape variation on human silhouette. The effect of segmentation qual-

ity has not been focused in the published databases, while the large view

variation issue remains an open problem.
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Among the existing approaches, Guan et al. proposed a robust framework

based on Random Subspace Method (RSM) and its extensions, which achieves

the state-of-the-art accuracy on local interference challenge on the mainstream

databases. In the summary work of Guan et al. [21], they systematically anal-

ysed the effectiveness of RSM as a random feature selection technique. Based on

the assumption that the noisy region is less than 50% of the whole feature area,

the number of correct classification decisions is in excess of the wrong decisions

from weak classifiers. Thus by performing majority voting scheme, RSM based

method significantly improves the matching accuracy on local interference challenge

(by more than 10%). Similar approaches include gait silhouette partition [64], in

which the noisy regions are isolated from the clean regions, or patch segmenta-

tion [65], where the noisy patches are outnumbered by clean patches in majority

voting. These are effective solutions for local interference challenge. However, for

global deformation challenge, the clean feature regions are overwhelmed by noisy

regions. Figure 2.4 shows the GEI samples of one subject captured from 11 different

views. When the subject walks parallel to the camera image plane, i.e. 90◦ with the

camera viewpoint, it is commonly referred to as side-view or lateral-view. Besides,

0◦ is illustrated as front-view and 180◦ as back-view, while other views are referred

to as oblique views [66]. When view variation is larger than 18◦, the shape of GEI

has explicit global deformation. Figure 2.5 presents the examples of gait sequences

captured under three different scenes in the first row with row label Frame, and the

gait signatures obtained using three different foreground detection approaches in the

rest three rows labelled as Seg (a) to Seg (c). Scene 1 has static background, Scene

2 contains slight interference from moving leaves on the background, and Scene 3

has dynamic objects (cars and pedestrians) on the background. Seg (a) refers to the
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Figure 2.4: The demonstration of gait recognition under arbitrary view problem.
There are 11 GEIs from view 0◦ to 180◦, with an interval of 18◦.
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Figure 2.5: The demonstration of gait recognition with silhouette quality disparity
problem. Gait signatures obtained from various scenes are segmented using different
approaches.

Gaussian Mixture Model, Seg (b) refers to the background subtraction method, and

Seg (c) is a well-trained CNN model for human segmentation. Those three methods

provides very different segmentation results, while the feature corruption occupies

more than 50% of the silhouette area. Thus the partial feature corruption based

approaches as mentioned above cannot deal with these problems. Instead, we need

to develop new solutions for global deformation challenge.

2.2.2 Databases

With the popularisation of web search engine and on-line social network applica-

tions, it is very easy to access large numbers of human face images. As one of the

most publicised biometrics, fingerprint has been used for forensics and identification
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Table 2.1: The most widely used gait databases and their attributes.

Name Covariates Subjects Sequences Views In/Outdoor

CASIA B 4 124 1240 11 In
SOTON Large 3 115 2128 2 Both
USF HumanID 6 122 1870 2 Out

OU-ISIR, B 1 68 1350 1 In
OU-ISIR, LP 1 4007 7842 4 In

for over a century. Comparing with gait data, face and fingerprint data are more

easily acquired. On the contrary, gait recognition databases mainly focus on fac-

tors and application potentials. The published gait databases only contain a small

number of subjects, comparing with other biometric databases such as face and fin-

gerprint. Table 2.1 listed several gait databases that are mostly used for gait system

evaluation. In this section, we review the main challenges at the present stage, and

detail two mainstream databases that are widely used for evaluating gait recognition

algorithms, namely CASIA Dataset B (CASIA B) and OU-ISIR Large Population

Dataset (OU-ISIR, LP).

CASIA Gait Dataset B

CASIA Gait Dataset B has its distinctive advantage in the number of view directions

for each recorded sequence. Dataset B is a large multiview gait database created in

January 2005. There are 124 participants in this dataset, each recorded with three

variations: normal walking (nm), wearing coat (cl), and carrying bag (bg). Every

time a subject walks through the designated path, 11 videos from different view

angles are captured simultaneously. The camera set-up for capturing gait sequences

is illustrated in Figure 2.6. As is shown, 11 cameras are placed on the left side of the

walking path for subjects. The angle difference between two adjacent cameras are

18◦. Hence gait sequences with 11 different angles are captured whenever a subject
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Figure 2.6: The camera set-up and demonstration video sequences of CASIA Gait
Dataset B [67]. The angle difference between two adjacent cameras are 18◦. With
this set-up, 11 gait sequences will be captured each time a subject walks through
the path.

walks through the path. Each time a subject walked naturally along a straight line

6 times, and 11×6=66 normal walking video sequences were captured. Followed

by normal walking, the subject walked twice along the straight line with his (or

her) coat. Likewise, the subject then carried a bag1 and walked twice again. The

frame size of the recorded video is 320×240, and the frame rate is 25 fps. Each

video sequence contains two or three gait cycles. Among the participants there were

93 males and 31 females, 123 Asians and 1 European, ageing from 20 to 30. 10

video files are recorded for each participant (6 nm+2 cl+2 bg). There are a total of

10×11×124=13640 video sequences in the database.

1The bag could be a knapsack, a satchel, or a handbag, depending on the preference of the
subject.
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OU-ISIR Gait Database

The OU-ISIR Gait Database is published by the Institute of Scientific and Industrial

Research (ISIR), Osaka University (OU). It comprises two dataset widely adopted

for evaluating gait recognition algorithms: Treadmill Dataset and Large Population

Dataset. The main considerations are: 1) to justify whether the proposed gait recog-

nition framework is robust to common variations, and 2) to ensure the experiment

result is statistically reliable.

The Treadmill Datasets consist of four subsets denoted from A to D, each

introducing a specific variation [68]. Dataset A, C (under preparation, has not been

published yet) and D comprises speed variation, view variation and gait fluctuation,

respectively. Collected on 2007, Treadmill Dataset B contains 68 participants, each

with 24 clothes variation. When recording gait sequences, the participants walked

on a treadmill with up to 32 combinations of clothes variations3, and their gait

sequences are captured by a side view camera at 60 fps, 640 by 480 pixels. A set of

binary silhouettes is extracted from the sequences and stored into the dataset, with

standard size 128×88. This dataset is specialised in studying the effect of clothes on

gait recognition. Figure 2.7 shows three examples from Treadmill Dataset B. The

three images are captured from the same subject with different clothes.

The Large Population Dataset is collected on 2009 in Japan [58]. It has

over 4000 participants. The data set consists of persons walking on the ground

surrounded by the 2 cameras at 30 fps, 640 by 480 pixels. The datasets are basically

distributed in a form of silhouette sequences registered and size-normalized to 88

by 128 pixels size. Figure 2.8 shows three examples from Large Population Dataset.

The participants contains 2135 males and 1872 females, aged from 1 to 94. The gait

3They have 32 different types of clothes altogether, from which 24 are selected for every subject.
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Figure 2.7: Samples of OU-ISIR Treadmill Dataset B [68]. This database focuses
on clothes variation.

Figure 2.8: Samples of OU-ISIR Large Population Dataset [58]. This database has
the largest number of subject (over 4000) of all the published gait databases.

sequences of each subject are recorded simultaneously from 4 observation angles

using 4 cameras, namely 55◦, 65◦, 75◦ and 85◦.

2.3 Related Works

This section reviews the state-of-the-art approaches related to the global defor-

mation challenge, including recognition under arbitrary view and recognition with

silhouette quality disparity, as mentioned in Section 1.3.

2.3.1 Gait Recognition Under Arbitrary View

Current view-invariant gait recognition algorithms consists of three categories: 1)

methods based on constructing 3D human model, 2) methods based on view-invariant

feature, and 3) methods based on unitary projection.
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The first category is to build a 3D model to represent human body structures

using multi-view gait sequences. As summarised by [69], it is more preferable to use

3D model reconstruction approaches when providing forensic evident in court, since

the distinctive gait parameters can be intuitively spotted. This argument is also sup-

ported by [24]. A geometric concept named visual hull is proposed in an early work

by Laurentini [70], using 2D silhouettes of an object to reconstruct a 3D approxima-

tion model. Later, this idea was introduced to an integrated face and gait model on

multi-view recognition task, where a 3D visual hull based gait model is constructed

using the silhouettes captured by 4 cameras around the subject, and the gallery and

probe silhouettes are obtained by projecting the 3D model to the canonical lateral-

view [71]. Seely et al. presented the University of Southampton Multi-Biometrics

Tunnel, a specially designed facility for non-contact biometrics recognition task [72].

Following the same idea as [71], they construct a 3D volumetric gait model using

the sequences captured by 8 cameras around the tunnel, thus the silhouettes from

arbitrary view can be synthesised and fed into a standard 2D gait analysis system.

Benefited from the development of appearance-based gait representation, they use

gait templates such as GEI to improve the recognition efficiency. Ariyanto et al.

improved this model by fitting the jointed 3D points cylinders to fit the visual hull

shape, in order to accurately model the movement of thighs and shins during a gait

period [73]. They argued that the analysis on the trajectory of leg joints helps im-

prove the discriminatory capability of the silhouette based method. Kwolek et al.

proposed to model key human components, e.g. head, spine, pelvis, and the four

limbs, with 11 rigid segments [74]. They use calibrated and synchronise cameras to

track the subject in video sequences and fit this 3D model with human gait, and mea-

sure the similarities between body component parameters to perform reconnection.
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Ahmed et al. use kinect skeleton data to reconstruct human skeleton model [75],

and use the joint distance variation and joint angle variation as features to measure

the similarity between different models. Despite that most of the works mentioned

above claimed that their approach achieved high recognition accuracy, above 96%

or so, these 3D model construction based literatures has main draw-backs: their

methods have not been tested on a collective database. Seely et al. [72] tested their

method on a dataset containing 103 subjects, and all the sequences are recorded in

the Multi-Biometrics Tunnel. Ariyanto et al. [73] use a dataset containing 46 sub-

jects recorded in the Multi-Biometrics Tunnel, but they did not mention whether

these subjects have intersect with [72]. Kwolek et al. [74] tested their method on

their own indoor dataset comprising 22 subjects. Ahmed et al. [75] used the kinect

skeletal gait database provided by the SMART Technologie ULC Calgary, Canada,

containing 20 subjects. Furthermore, all these datasets mentioned above are col-

lected in highly constrained indoor environment. Their practicability for real world

applications need to be testified. Sandau et al. adopt 8 high definition cameras to

create an explicit 3D human model, while the static and dynamic parameters are

measured and recorded manually by expert observers [69]. The authors reported

that when manually measuring the gait parameters on the 3D model, the joint centre

annotation varies between different observers, which causes inter-observer classifi-

cation variability. Figure 2.9 illustrated the procedures to establish the 3D model

for a subject in [69], where (a) is the subject with leopard spandex dress4, (b) the

generated 3D model and surface smoothing, (c) the reconstructed 3D human model

and (d) its rotation screen shot. Despite that the 3D model is very explicit and

accurate, observers provided very different annotations and measurements on gait

4According to their paper, it is used for enhancing the body curvatures and textures.
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(a) (b) (c) (d)

Figure 2.9: An example of 3D human model construction by Sandau et al. [69].
(a) the subject with leopard spandex dress (b) the generated 3D model and surface
smoothing (c) the reconstructed 3D human model (d) the rotation screen shot.

parameters. Without a standard protocol and a number of published databases,

it is very difficult to evaluate the effectiveness of the proposed approaches. In ad-

dition, the expensive 3D acquisition equipments and the high computational cost

of building 3D models restricted the 3D model-based approaches from extensive

use [69] [59].

In the second category, researchers seek for view-invariant features from

single-view gait silhouette sequences, and perform recognition under lateral view.

Kusakunniran et al. [76] and Goffredo et al. [77] provided view-invariant gait features

for cross-view recognition. In [76], the authors proposed Gait Texture Image (GTI)

and applied Transform Invariant Low-rank Textures to obtain common canonical

view (side view) gait features from other view angles. However, their method is

limited in view-invariant gait recognition, and it is difficult to transfer from front or

back view to the side view. [77] proposed model based view-invariant gait feature,

which use lower limbs’ poses estimation to perform viewpoint rectification. It is also

limited to view-invariant gait recognition, plus it is restrained from other factors of

model-based methods.

Since gait sequences are normally acquired from a distance with the natural
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occlusion of body components and low resolution, it is difficult to extract model-

based parameters (height, length of limbs, joint angle, etc.) from captured gait se-

quences. Therefore most researchers adopt appearance-based features, which refers

to the whole binary silhouettes of the subject. Because there is no view-invariant

features on 2D gait silhouette, cross-view gait matching is normally performed by

means of subspace learning [78–81] or view transformation model techniques [82–84].

Subspace learning based methods are proved to be efficient on tackling gait chal-

lenges. Wu et al. proved that Local Fisher Discriminant Analysis (LFDA) is efficient

in cross-view gait recognition, due to its discriminative feature learning ability in

local geometry subspace, and proposed an iterative learning approach to optimise

the construction of local affinity matrix, thus further promoted the LFDA based

learning approaches [79]. Huang et al. suggests that the extension of Locality Pre-

serving Projection (LPP) performs well for Cross-Speed Gait Recognition [85]. Han

et al. applied linear discriminant analysis (LDA) for multi-class discriminant fea-

ture learning in his famous GEI paper [19]. Lu et al. proposed a framework that

combined LDA with multi-linear tensor principle component analysis (PCA) [86],

and later Lu et al. used boosting regularised LDA along with multi-linear PCA

to further enhance the performance [87]. The boosting LDA randomly selects a

subset from the original feature set each time, and this procedure is repeated thou-

sands of times to produce weak classifiers. A recent work by Fan et al. applied

LDA to the discrete cosine transform of gait templates [88]. Most subspace learn-

ing methods perform linear computations on training dataset to obtain an unitary

subspace projection matrix. By combining the function of discriminant learning

and dimensionality reduction, their advantages lies in the low computational cost

and high efficiency. Makihara et al. proposed a method to deal with camera view

33



point changes, named view transformation model (VTM) [89]. There are also sev-

eral literatures [82–84]. In [90], CCA is implemented for fusion between two types

of features and in [91] CCA is proved to be efficient in tackling clothes and carry

conditions for multi view gait recognition.

The breakthrough work by Krizhevsky et al. [92] is regarded as a great suc-

cess of CNN on large scale image classification, and since then CNN is widely known

as a powerful tool on hard computer vision tasks. Firstly CNN is used for image

classification, object localisation and detection. A multi-scale deep CNN proposed

by Sermanet et al. largely outperforms other approaches on object localisation and

detection tasks [93]. Farabet et al. applied a two layer CNN for scene labelling

task, which also achieved record beating performance [94]. In biometrics identi-

fication field, Taigman et al. proposed a 9 layer deep CNN based framework to

perform face recognition, and achieves human-level matching accuracy. Sun et al.

obtains comparable results using a framework integrated with a 6 layer CNN and

the Joint-Bayesian technique [95]. Recently CNN has been introduced to tackle gait

recognition challenges. Alotaibi et al. applied a full convolutional network with

4 convolutional layers and a softmax layer for simple gait recognition tasks, i.e.

matching gallery and probe under same conditions [96]. Yan et al. used a 5 layer

network with 3 convolutional layers and 2 full connected layers for cross-condition

gait recognition. They also introduced multi-task learning approach, which perform

gait recognition, view prediction and scene prediction simultaneously. According to

their report, the multi-task learning accelerated the convergence of CNN in training

process. However, the cross-condition performance of their network has no signif-

icant improvement comparing with the traditional approaches, for example PCA

+ LDA. Shiraga et al. proposed a 4 layer network consisting of 2 convolutional
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layers and 2 full connected layers, and used it for large-scale gait recognition on

OU-ISIR Large Population Dataset [97]. Their network has great advantage over

other approaches on the large-scale dataset, while the view variation is small (at

most 30◦). They also addressed that CNN based method can significantly reduce

the equal error rates (EER) and thus improve the gait verification accuracy. A very

thorough study on CNN based gait recognition is provided by Wu et al., where

they extensively evaluated the effect of training procedure and network architecture

on the performance of CNN [2]. Instead of training the network with image-label

pair, as is done by most literatures mentioned above, they train their network with

pair-image and binary label. Specifically, they exhaustively pair all the GEIs in the

dataset, if the GEI pair belongs to the same subject, the corresponding label is set

to 1, while GEIs from different subject is labelled to 0. This pair-image training

process is similar to the work by Sun et al. [95] for face verification, which simulates

the process of linear unitary subspace projection. The experiment results proved

that the pair-image training network outperforms other approaches by a large mar-

gin. The feature maps learned from the CNN has strong discriminant power that it

has great robustness on cross-condition gait recognition. However, as is seen from

the details, the cross-view recognition on large view variation (54◦and above) is still

not idea.

2.3.2 Gait Recognition with Silhouette Quality Disparity

Like in other biometric modalities, source information acquisition are the funda-

mental procedure of gait recognition system. As mentioned in Section 2.2.1, many

factors can introduce noisy regions on the numerical representation of biometric

traits [98], thereby affect the accuracy in distance measurement. Thus the quality
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of gait signature has direct impact on the recognition accuracy [99]. The recognition

algorithms based on human physical models with spatial and temporal parameters,

i.e. model-based approaches, are not yet very suitable for real world applications,

due to the high requirement for video resolution and computational power. In an-

other word, model-based approaches are more easily affected by the degradation on

gait signature. On the contrary, appearance-based gait recognition shows higher

tolerance to noises. The canonical representation of gait features is the binary sil-

houette extracted from a static background [18] [100] and normalised to a specific

size (128×88, according to the baseline framework proposed by [18]). Several ef-

ficient templates have been proposed to encrypt spatial-temporal information of a

gait cycle into one image, among which GEI [19] is regarded as one of the most

easily implemented yet highly efficient templates [59].

The exhibit of factors, such as cloth and carry condition, walk speed, view

angle, walking surface, and time elapse (ageing), caused the fundamental changes

of human gait, while another question arises as to how would the low-level feature

representation affect the recognition algorithms. Hence silhouette quality as a new

factor has gained increasing attention in recent years [59]. The quality of gait

silhouettes can be influenced, for example, by the background environment when

capturing gait sequences and the accuracy of the segmentation method used to

detect the gait silhouette. As is mentioned in [101], Chellappa et al. emphasised

the importance of time alignment in gait template, since gait features are normally

modelled from a temporal sequence. The traditional gait template, for example

GEI, consider two strides as one gait cycle, and using time series signal of lower half

silhouette to detect a whole cycle. Specially, when the subject stands still, the lower

half silhouette contains less pixel than taking a stride, and the variances of pixel
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numbers (or entropy spectrum) can generate a sinusoid time series signal. Automatic

systems may not be able to detect an accurate gait cycle from a set of low quality

sequences since the noise generated by strong shadow or illumination variations

may cause severe distortion to silhouette, thus cannot perform the sinusoid-based

analysis.

Due to the fact that the acquired distinctive features are easily contami-

nated, gait has not been considered as a dependable biometric trait in practical

human recognition, and accordingly gait recognition systems are rarely deployed in

law enforcement departments or commercial organizations. Therefore it is suggested

that the main task for gait recognition is to explore the limitations of traditional

gait templates as well as the recognition frameworks. Sarkar et al. proposed the gait

baseline algorithm, and discussed silhouette segmentation errors in the HumanID

Gait Challenge Problem database caused by shadows under participants, varying

lighting conditions and moving objects in the background [18]. It is noticed that

the appearance-based gait recognition baseline algorithm is resistant to minor seg-

mentation errors. Liu et al. carried out an in-depth study of the factors that had

negative effect on the baseline algorithm, and indicated that the quality degradation

caused by segmentation errors that correlated with the certain background, e.g. illu-

mination and shadow, could contribute to higher recognition accuracy when gallery

and probe are recorded under same conditions [102]. Thus they argued that it is

ineffective to acquire better silhouette segmentation results; instead, it would be a

better choice to seek for condition-invariant features from different components of

human silhouette. Zhang et al. [103] investigated the low resolution gait recognition

problem, and proposed a framework combining super resolution and multi-linear ten-

sor manifold learning to perform high resolution back projection. Their approach
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suggested that subspace learning approaches is resistant to scale variation of data

samples. Guan et al. [104] further addressed the issue of poor recognition accuracy

when the resolution of gait silhouettes are very low, and proposed to use enhanced

RSM method to reduce the over-fitting and improve recognition accuracy. AKae et

al. [105] and Guan et al. [106] proposed similar solutions to gait recognition with ex-

treme low frame-rate sequences respectively. Matovski et al [99] introduced quality

metrics to improve the quality of silhouette, and by testing their method on a new

indoor database, it is proved that the improvement of silhouette quality generates

better recognition performance. Still, the field of quality-invariant gait recognition,

which is compulsory for practical application of human gait recognition, remains

unexplored.

Most literatures focus on improving silhouette quality, while few of them

consider it as a factor and study the case when silhouette quality disparity exists.

Thus the quality disparity challenge remains unsolved, which prevent gait recogni-

tion from being deployed in real world applications. Above all, the quality of gait

signatures is vital, and it is easily contaminated when obtained from the source video

sequences. Recognition accuracy may be hindered if the associated gait gallery and

probe silhouettes are acquired under different conditions.

2.4 Fundamental Knowledge for This Thesis

In this section we formulated the methods that have been used in our proposed

framework. Subspace learning methods are well known for its efficiency in dimen-

sionality reduction and discriminant feature learning ability. When learning fea-

tures from images, CNN shows its overwhelming power, benefiting from its high

non-linearity feature learning ability. In this thesis, we adopt GEI as gait template.
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A GEI G(x, y) is defined as:

G (x, y) =
1

N

N∑
k=1

Ik(x, y), (2.1)

where Ik(x, y) is the kth binary image, and (x, y) denotes the pixel coordinates.

Consider n GEI samples that are stored as d-dimensional column vectors in a matrix

X = {x1, ...,xn}, xi ∈ Rd, i ∈ {1, 2, ..., n}. Let W be the transformation matrix

that projects the original space onto an r-dimensional subspace, where d� r. The

new feature matrix in the subspace is denoted as Y = {y1, ...,yn}, where yi ∈ Rr.

The transformation matrix for each element is given by yi = W Txi, i ∈ {1, ..., n}.

Matrix W varies according to the subspace learning method used.

2.4.1 Subspace Learning

As is mentioned in Chapter 1, a common problem occurs when evaluating biomet-

rics identification system - the high dimensionality of exacted features. The linear

subspace learning methods are proved to be fast and efficient in dimensionality

reduction and reducing information redundancy.

PCA

As one of the most used dimensionality reduction techniques, PCA is widely ap-

plied as a preprocessing tool to reduce the dimensionality and solve the singu-

larity problem of feature matrices [107]. PCA seeks a compact representation

of patterns in a feature subspace. The columns of the PCA transformation ma-

trix WPCA are calculated by solving the eigen-decomposition problem λiei = Sei,

where λi and ei are the corresponding eigenvalues and eigenvectors, respectively,

and S = 1
n

∑n
i=1(xi − µ)(xi − µ)> is the covariance matrix of the original sample
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matrix X, where µ is the sample mean, µ = 1
n

∑
xi, i ∈ {1, 2, ..., n}. Matrix WPCA

is then composed by column eigenvectors corresponding the rth highest eigenvalues;

WPCA = {e1′, e2′, ..., er′}, where ej
′, j ∈ [1, r] is the jth eigenvector.

LDA

Compared to PCA, LDA embeds discriminant power between different classes in the

feature subspace, which makes it a supervised subspace learning method suitable for

multi-class learning problems. Assuming there are c classes in X, with nl samples in

subset Xl, l ∈ {1, 2, ..., c}, so that n =
∑c

l=1 nl; the within-class scatter matrix SW is

then defined as: SW =
∑c

l=1

∑
x∈Xl

(x− µl)(x− µl)>, and the between-class scatter

matrix SB is defined as: SB =
∑c

l=1(µl − µ)(µl − µ)>, where µl is the mean of the

samples in class l, and µ is the mean of all samples. In order to maximize between-

class scatter while minimizing within-class scatter after projection, the following

criterion is used:

WLDA = arg max
W

|W>SBW |
|W>SWW |

, (2.2)

where WLDA is the transformation matrix, whose columns are the generalised eigen-

vectors {e1′, e2′, ..., er′} that correspond to the largest eigenvalues in SBWLDA =

λiSWWLDA.

LPP

LPP tends to preserve the local data structure after projecting the data onto a

subspace [108]. It first constructs an adjacency graph G to model the local structure

of the samples. The adjacency graph has n nodes, with node i corresponding to xi

in X. A pair of nodes i and j are connected if xi and xj are close in the space. The

elements of the weighted similarity matrix A, which specifies the similarities among
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nodes in G, are formulated as follows:

Aij =


exp

(
−‖xi−xj‖2

t

)
, if nodes i and j are connected,

0, otherwise.

(2.3)

The heat kernel parameter t ∈ R can be determined empirically; if t is very large,

exp
(
−‖xi − xj‖2/t

)
= 1 and matrix A comprises binary weights. Two possible ways

exist to determine if nodes are close:

1. K nearest neighbours: if xi is among the K nearest neighbours of xj , or vice

versa;

2. ε-nearest neighbours: if ‖xi − xj‖2 < ε, ε ∈ R.

The eigen-decomposition problem of LPP is generalized as:

XLX>WLPP = λXDX>WLPP , (2.4)

where D is a diagonal matrix with Dii =
∑

j Aij , and L is the Laplacian matrix

L = D−A. The Laplacian of the graph is an approximation of the Laplace-Beltrami

operator. The transformation matrix WLPP = {e1′, e2′, ..., er′}, and {λ′1, λ′2, ..., λ′r}

are the corresponding r smallest eigenvalues. The feature subspace created by WLPP

can preserve an intrinsic geometric structure of the manifold samples [109] [110].

LPP performs supervised learning ability by assigning a weight equal to 0 to all

between-class similarity matrix values. The total similarity matrix A is then given

as follows:

A =


A1 · · · 0

...
. . . 0

0 0 Ac

 (2.5)

In our experiment, supervised LPP (SLPP) is implemented, for the unsupervised
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learning method (for example PCA) cannot improve the recognition performance.

Local Fisher Discriminant Analysis

Sugiyama [111] propose a novel subspace learning method, called Local Fisher Dis-

criminant Analysis (LFDA), which embeds within-class similarity matrices into lo-

cal within-class scatter matrices and local between-class scatter matrices, denoted

as S̃(w) and S̃(b), respectively. These matrices are formulated as follows:

S̃(w) =
1

2

n∑
i,j=1

W̃
(w)
i,j (xi − xj)(xi − xj)>,

S̃(b) =
1

2

n∑
i,j=1

W̃
(b)
i,j (xi − xj)(xi − xj)>,

(2.6)

with

W̃
(w)
i,j =


1/n` ifyi = yj = `,

0 ifyi 6= yj ,

W̃
(b)
i,j =


1/n− 1/n` ifyi = yj = `,

1/n ifyi 6= yj .

(2.7)

where n` is the number of samples in class `, with
∑c

`=1 n` = n. The transformation

matrix of LFDA is then defined as:

WLFDA = arg max
W∈Rd×r

[
tr(

W>S̃(w)W

W>S̃(b)W
)

]
. (2.8)

LDFA searches for the transformation matrix WLFDA that separates data from

different classes while clustering data from the same class as close as possible. The

solution follows a similar approach as the one followed in LDA.
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2D PCA

Yang et al. [112] propose the 2D extension of PCA. Consider the training set {Ii|i =

1, ..., n}, where Ii refers to a single sample (e.g. , a GEI) in 2D form (with size

dr × dc), and n refers to the total number of samples. The image covariance matrix

C is then calculated by:

C =
1

n

n∑
i=1

(Ii − Ī)ᵀ(Ii − Ī), (2.9)

where Ī = 1
n

∑n
i=1 Ii is the mean value of all training samples. By performing eigen-

decomposition on C, we can obtain the 2DPCA projection basis Vpca = {vi|i =

1, ..., p}, as the p orthonormal eigenvectors corresponding to the p largest eigenval-

ues. Compared with the canonical PCA, 2DPCA is much more computationally

efficient. For example, for GEIs of size 128× 88, the covariance matrix of vectorised

samples using canonical PCA has a complexity O(2d), d = dr×dc = 11264; while the

complexity of calculating the image covariance matrix, C, is only O(2dr), dr = 128.

Note that here we use Ii to represent sample i in 2D form. In the following,

all samples are assumed to be vectorised into features vectors instead of being in 2D

form. Therefore, we denote feature vector i by xi or yi.

2.4.2 Convolutional Neural Network (CNN)

LeCun et al. offered a very detailed explanation on the effectiveness of convolutional

layers in their work [113], which can be summarised as 1) efficiency in learning shift

invariance features and 2) preserving the neighbourhood structure of features in

each local region. Benefiting from the availability of massive labeled training data

and powerful GPU computing implementation, CNN based approaches maintain a
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Figure 2.10: The hierarchical structure of AlexNet.

leading position in many areas, such as image classification and face recognition. A

standard CNN approach builds a deep neural network model, and uses a training

image set and the corresponding labels to train the intermediate layers. After com-

pleting the training, the model is able to map any input image xi to a probability

vector ŷi over a number of classes. Figure 2.10 displays an example of the most

popular CNN model - AlexNet. The input image size is 224×224. The input image

is convolved with 7×7 filter using stride 2 in both vertical and horizontal direction.

The total number of filters are 96. For layer 1, the generated feature maps are then

went through ReLU function and pooled with 3×3 regions (also using stride 2). By

contrasting normalised across feature maps, 96 different element feature maps of

size 55×55 are obtained. The operations in the following layers (layer 2, 3, 4 and 5)

are similar to layer 1. The output of the previous layer are taken as input for con-

volutional layers (for layer 1 the input is images), and processed with a set of filters

learned from the training process. The resulting features from the 5 convolutional

layers are passed to fully connected layer 6 and 7. The final softmax layer consists

of C-way softmax function for classification.

A conventional CNN structure (such as AlexNet) starts with convolutional

layers, followed by pooling and normalization layers, and ends with fully connected

layers. Between every two layers there is an activation function. The basic activation
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functions are sigmoid function f(x) = 1/(1 + e−x) and tanh(x), both can be distin-

guished with their upper and lower limit. Sigmoid ranges from [0,1] and tanh from

[-1,1]. Rectified linear unit (ReLU) function is another kind of activation function

that is favorable for efficiency of the network. It is defined as f(x) = max(0, x).

Every convolutional layers evolved into next layer on the basis of filters,

which are the basic element of convolution process they are in different sizes and

different shapes. These filters move all over the data with different strides (distance

between two steps) and produces feature map and with the help of pooling and

normalization they try make sense of the data. Pooling is used to down-sample the

data by preserving one activity of every reign of feature map. This information is

either be average or maximum in the local region. The simple pooling operation in

CNN can be formulized as:

L(i−1) = pool(max(0,Wi ∗ Li + bi)), (2.10)

where * refers to the convolutional operation between data X0 or (information Xi

produced by ith layer), ith layer filters Wi and bias bi. For every specific task CNN

contains millions of parameters. It is built by the above mentioned layers but every

CNN have different structure according to the task it going to perform. Filter

size, number of layers, activation function, learning rate etc. every parameter is

adjustable according to the take and requirement.

Another related work is CNN-based segmentation. As mentioned in 2.3.2,

the silhouette quality has great impact on the recognition accuracy. In order to

obtain high-quality human silhouette, a lot of segmentation methods are proposed,

among which CNN-based one achieves the best performance in terms of accuracy.

In [114], Wu et al., proposed a multi-scale segmentation method which segments
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images at pixel level, with high accuracy but very low speed. In [115], Song et al.,

proposed a fast image level CNN-based segmentation method which achieves 1000

frames per second with slight drop on accuracy compared with [114]. To achieve

pixel-wise segmentation at image level, Fully Convolutional Networks (fullconvnets)

is developed [116], achieving a good balance between accuracy and speed. We will

further analysis these CNN-based human segmentation algorithms in the following

sections.

2.5 Summary

In this section we review the development of gait related research, and argue that

gait is capable of being regarded as a reliable biometric trait for human identi-

fication tasks, while the representation of human gait can be very abstract. We

discuss the existing challenges as well as present the published datasets that specifi-

cally designed for evaluating corresponding approaches. We summarise the existing

challenges into two categories: partial interference and holistic deformation chal-

lenge, according to the distribution of the corrupted features. Then we go through

the previous works that related to our research, i.e. gait recognition under arbi-

trary view, and gait recognition with silhouette quality disparity, which all belongs

to the gait holistic deformation challenge. At last we provide the formulation of

the fundamental algorithms that are used in our research. In the next chapter we

present the formulation of the proposed ViFS and its application in gait recognition

frameworks. Experiments and analysis are provided to support the efficiency of the

proposed method.

46



Chapter 3

Gait Recognition Under

Arbitrary View

View-invariant gait recognition is one of the major challenges to identify people

through their gait. Many researchers have evaluated view angle transformation

techniques, discriminant analysis and manifold learning approaches for cross-view

recognition, and their proposals are usually based on a common factor, i.e., to es-

tablish a cross-view mapping between gallery and probe templates. However, their

effectiveness is restricted to small view angle variances. A promising approach to

perform view-invariant gait recognition is through multi-view feature learning. In

this chapter, we propose ViFS and integrate it in a framework for view-invariant

gait recognition. ViFS technique select features from multi-view gait templates and

reconstructs gallery templates that accurately match the data for a specific view an-

gle. ViFS is thus able to reconstruct gallery templates from arbitrary view angles,

and thus help to transfer the cross-view problem to identical-view gait recognition.

We also apply linear subspace learning methods such as LDA and SLPP as fea-
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ture enhancers for ViFS, which substantially reduces the computational cost while

improving the recognition speed. We test the proposed framework on the CASIA

Dataset B and OU-ISIR Large Population (OU-ISIR LP) Dataset. The average

recognition accuracy of the proposed framework for 11 different views exceed 98%.

3.1 Problem Statement and Motivation

View-invariant gait recognition has recently gained increasing interest, and a number

of efficient approaches have been proposed to tackle this challenge. As mentioned in

Chapter 1, gait features are extracted from binary gait silhouettes, which comprise

the shape of human profile from one direction, thus it is practically impossible

to extract view-invariant features from single-view gait silhouette templates. In

general, there are types of view-invariant gait recognition: cross-view recognition

where only a single view angle is available in both, the gallery and probe sets (the

view angles can be different), and multi-view recognition, where templates from

multiple view angles are available in the gallery set1. For the case of cross-view

gait recognition, the state-of-the-art is best represented by Wu et al.’s [2] work,

which uses CNN based approaches. When multi-view gait templates are obtained,

or depth information is available, it is possible to reconstruct 3D or 2.5D models

representing the human body, from which arbitrary views of gait sequences can be

obtained by projection, and parameters associated with body parts can be easily

measured. Tang et al. [1] propose to construct parametric 3D gait models from three

cameras and use partial similarity matching to improve recognition rates. Their

method achieves promising results on several major gait datasets. Similarly, Luo et

al. [117] propose to use 3D gait models and sparse representation-based classification

1In fact, this case can be reversed, i.e. multi-view templates available in the probe set, while
gallery templates are from a single view angle.
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Figure 3.1: The pipeline of the proposed framework.

to perform view-invariant classification. As mentioned in Chapter 2, 3D model based

approaches including [1] [117], require a specifically designed multi-view database

for model construction and training purposes.

In this section, we propose a ViFS based framework to automate feature

selection and perform fast view-invariant gait recognition. First, we gather gallery

templates from different view angles into one matrix, and regard the probe template

from a specific view angle as the reference. By minimising the distance between the

gallery templates and the probe template, we realize the ViFS. We use subspace

learning methods as feature enhancers to increase the discriminative power of gait

features. LDA has been proven to be efficient in finding the most discriminant

subspace for gait recognition [21]. SLPP is a manifold based mapping method for

feature projection and dimensionality reduction [108]. It is designed to preserve

the local geometric structure of feature sets in the projection subspace, and has

been shown to outperform LDA [85]. Finally, we measure the Euclidean distance

between enhanced gallery and probe features, and compare the returned labels with

the ground-truth for accuracy.
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3.2 View-invariant Feature Selector and the Gait Recog-

nition Framework

The proposed framework uses GEIs as gait features. Figure 3.1 illustrates the flow-

process diagram of the proposed framework. It consists of four stages:

• Gallery reconstruction. We use multi-view gallery set and the probe set to train

the feature selector ViFS. By minimising the distance between reconstructed

gallery and probe set, ViFS reduces the view variance between gallery and

probe set.

• Subspace learning. We use the training set to generate the subspace projection

matrix for feature enhancement. The generated unitary projection subspace

can increase the discriminant ability of features, while reducing feature dimen-

sionality.

• Feature enhancement. The enhanced gallery set and probe set are projected

into the generated subspace. The generated gallery and probe features have

better discriminative power, and thus increase the identification accuracy.

• Similarity measurement. Here we use Euclidean distance to calculate the dis-

tance between gallery and probe feature sets, and label the probe data accord-

ing to distance scores.

The formulation of the proposed framework is presented below.

3.2.1 View-invariant Feature Selector (ViFS)

For the simplicity of formulation, assume we have h sample from h different view

angles in gallery set G = {xi}hi=1, and one probe samples y from a specific view in
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Figure 3.2: Illustration of the reconstructed gallery templates for missing views by
ViFS. The ground truth shows the gallery templates from all views provided by the
CASIA gait dataset B.

probe set P. Due to the view difference between gallery and probe samples, the

intra-class distance can be larger than the inter-class distance for the same subject,

leading to misclassifications. In Figure 3.2, we give an intuitive view of the intra-

class variation in the cross-view case. Take the GEIs from the first row of images

as examples. The last two GEIs are from the same subject, with the left from

126◦and the right from 180◦. The variations mainly exist in the lower limbs with

high brightness on the grayscale image. To reduce the negative effects of view angle

differences on the classification results, one can minimise the cross-view distance

between gallery and probe samples. Under the scenario that the view angles of

the gallery and probe samples are unknown, one would like to find a feature vector

w = {wi}hi=1 that minimises the objective function:

f(w) = ‖Gwᵀ − y‖2 = ‖
h∑
i=1

wixi − y‖2. (3.1)
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The minimiser ŵ of f(w) satisfies ∇f(ŵ) = 0, leading to ∇f(ŵ) = 2Gᵀ(Gŵᵀ − y)

[118]. Then ŵ can be calculated by:

ŵ = (GᵀG)−1Gᵀy. (3.2)

Since the gallery set G and its covariate matrix GᵀG are practically impossible

to be upper-triangular, we cannot solve Eq. (3.2) directly. Instead, we use QR-

factorisation, such that G = QR, to generate an orthogonal matrix Q and upper-

triangular matrix R from G. Thus Eq. (3.2) can be formulated as:

ŵ = (GᵀG)−1Gᵀy

= ((QR)ᵀ(QR))−1(QR)ᵀy

= R−1Qᵀy.

(3.3)

We can obtain ŵ by solving Rŵ = Qᵀy with back substitution. We call minimiser

ŵ the ViFS, as it selects features from the multi-view gallery samples to reconstruct

an optimal template Ĝ = Gŵᵀ that accurately matches probe samples y. The way

of training ViFS can be very flexible, i.e. it can be trained not only from gallery and

probe samples; in special cases it can also be obtained from an additional sample set

with different subjects (like samples in training set). In Figure 3.2 we presents a set

of examples to demonstrate the effectiveness of ViFS in feature reconstruction. We

take four samples of the same subject from gallery set, each from a certain view (18◦,

72◦, 126◦, and 180◦ respectively), denoted as G. We train ViFS with probe samples

from 11 angles. Specifically, for the reconstruction of 0◦ gallery sample, we use the

four gallery samples and one probe sample to generate ViFS for 0◦, denoted as ŵ0,

and obtain the reconstructed template Ĝ0 = Gŵ0. The reconstructed gallery samples
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on the third row of Figure 3.2 is intuitively comparable to the ground truth samples

on the fourth row of Figure 3.2, suggesting that ViFS achieves view-transformation

(to a closer view with probe sample) on gallery samples. The differentiation between

reconstructed gallery sample (from the 4 view samples mentioned above to 144◦) and

probe sample (144◦) is also shown in Figure 3.1, on the second row of the rightmost

region, denoted as Reconstructed Features. It is clear that the reconstructed gallery

sample has less variation with the probe sample.

3.2.2 Feature Enhancement

ViFS is designed to minimise the cross-view variance between gallery and probe

features, and in multi-view gait recognition problem, this equals to reducing the

intra-class variance. In order to further enhance the extracted features, we ap-

ply subspace learning methods to increase the inter-class variance. Since subspace

learning methods are designed to project the input features into another space with

lower dimensionality, the redundant information are removed and the discriminant

features are preserved. Furthermore, since they are linear transformation, the com-

putational cost and time consumption are both very low. Although classic dis-

criminant analysis methods fit this purpose, manifold learning methods have drawn

attention from computer-vision researchers in recent years. We thus employ two rep-

resentative algorithms, namely linear discriminant analysis (LDA) and supervised

locality preserving projection (SLPP), in this work. The performance comparison

of the feature enhancers on the proposed method are displayed in Section 3.3.1.

Before applying LDA or SLPP, a common pre-processing step is to reduce

the dimensionality of the original dataset and make sure the data matrices are

non-singular. To this end, we use 2D PCA as the first step of subspace learning
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in order to reduce the computational cost of the proposed framework. We denote

the matrix containing all training samples as T = {Ti}nTi=1, a 3D matrix with size

dr × dc × n and nT samples. Following the formulations in Section 2.4.1, the eigen-

vectors Vpca = {vi}nTi=1, as well as the corresponding eigenvalues λpca = {λi}nTi=1 are

obtained by eigen-decomposition of the image covariance matrix. We select the first

p eigenvectors following according to
∑p

i=1 λi∑nT
i=1 λi

> 99%. Thus we obtain Vpca = {vi}pi=1,

a dc × p subspace projection matrix. The subspace projection is then Ti = TiVpca,

which results in matrix T = {Ti}pi=1. We reshape the 3D matrix T to 2D form with

dimensions dpca = dr×p and n samples. We then use T and the corresponding class

labels to train the LDA and SLPP project matrice Vlda and Vlpp, respectively.

Assuming there are h views in gallery sample set G, and nG samples in

total. After obtaining the ViFS projection basis, ŵ, and the subspace projection

matrices, Vpca, Vlda and Vlpp, from the training procedure, the gallery set after feature

extraction is obtained by Ĝ = Gŵᵀ. We project Ĝ onto the subspace matrices to

obtain an enhanced gallery feature set, as follows:

Gpca = {ĜiVpca}nGi=1, reshape Gpca to 2D,

Glda = V ᵀ
ldaGpca,

Glpp = V ᵀ
lppGpca,

(3.4)

Following the same procedure, we also obtain the enhanced probe sets Plda

and Plpp. For simplicity, we use G and P to represent the enhanced feature sets for

gallery and probe, respectively, in the formulation of the similarity measurement.
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3.2.3 Similarity Measurement

We use the most common metric learning method, i.e. Euclidean distance, to obtain

matching scores between gallery and probe. The Euclidean distance between gallery

feature set G and probe feature set P is calculated as:

D(Gi,Pl) = ‖Gi −Pl‖, i = 1, ..., c. (3.5)

If D(Gk,Pl) = minci=1D(Gi,Pl), the probe feature vector is assigned to the same

class label k of the gallery feature.

3.3 Experiments and Analysis

3.3.1 CASIA Dataset B

We validate the effectiveness of ViFS using the two feature enhancers: LDA and

SLPP. We use the CASIA Dataset B [67], which is a multi-view gait dataset con-

taining 124 subjects in total. The size of each silhouette image is normalised to

128 × 88; one video sequence produces a single GEI. In this thesis, we focus on

studying the performance of our framework across different view angles. Thus we

only choose normal sequences from all subjects for evaluation, i.e. those sequences

that are not affected by changes in clothing or carrying objects. The sequences of

the first 74 subjects are used for training, and the other 50 subjects are used for

testing. In the testing set, each subject has six sequences; the first four sequences are

regarded as gallery sequences, and the remaining two sequences as probe sequences.

Because ViFS is a multi-view based feature extractor, we require gait sequences in

the gallery set to have been captured from more than one view angle in order to
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train the minimiser ŵ. We compare our results with other works that have the same

or similar multi-view settings.

3.3.2 Problem Analysis

Table 3.1: The Cross-view matching result with raw GEIs (%), without feature
selection or enhancement. G: Gallery Data; P: Probe Data.

G
P

0 18 36 54 72 90 108 126 144 162 180

0 98.4 30 13.3 3.3 3.3 5 5 6.7 10 18.3 50
18 28.3 99.2 36.7 1.7 6.7 1.7 6.7 5 11.7 43.3 18.3
36 10 20 97.6 28.3 20 13.3 16.7 16.7 41.7 16.7 11.7
54 11.7 8.3 28.3 97.6 25 35 41.7 33.3 21.7 8.3 6.7
72 6.7 5 10 31.7 97.6 76.7 61.7 61.7 18.3 6.7 5
90 6.7 6.7 13.3 26.7 80 96.7 93.3 25 16.7 5 5
108 3.3 5 13.3 45 65 95 97.6 53.3 20 6.7 5
126 5 5 18.3 35 43.3 33.3 41.7 97.6 41.7 8.3 6.7
144 3.3 15 38.3 20 15 11.7 23.3 33.3 97.6 20 10
162 18.3 36.7 13.3 1.7 3.3 3.3 3.3 5 23.3 98.4 36.7
180 40 20 10 1.7 3.3 3.3 3.3 5 6.7 38.3 100

Table 3.1 shows the cross-view match between gallery and probe data of 11

different view angles (0◦ to 180◦). The diagonal data refers to the matching result

under identical view, which should be the maximum value on each columns. For

raw GEI templates, the features have very limited discriminant power cross-view.

Even the smallest view variance, i.e. 18◦ between gallery and probe data could cause

severe misclassification. In fact, most of the cross-view match has very low matching

rate, except the result between 90◦ and 108◦, which achieves similar score as the

identical view, as is marked in gray in the table. It suggests that pixel values of

gait templates captured under 90◦ and 108◦ are highly correlated, and the inter-class

variation is much larger than the intra-class variation caused by view angle rotation.

In another word, the templates under lateral view, or close to lateral view (72◦ to

108◦), has better tolerance to small view variance than templates under frontal or
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back view.

3.3.3 Cross-view Evaluation

We first compare the effect of feature enhancers on raw GEI templates using LDA

and SLPP without using ViFS. The gallery and probe GEIs are projected into

the generated subspaces learned from the training dataset, and then the Euclidean

distance is calculated between gallery and probe data to find the closest match. We

tested the performance on cross-view cases first, therefore the accuracy scores are

obtained by single-gallery single-probe match. The gallery view angles are from 0◦

to 180◦, and the tested view angles for the probe data are 0◦and 90◦. As seen in

Figure 3.3, SLPP attains slightly better performance than LDA when the difference

between the gallery and probe view angles is large, which can be explained by the

ability of SLPP to keep the local geometric structure of feature sets. Recall that we

formulate both LDA and LPP in Section 2.4, where the objective function of LDA is

to minimise the distance between samples and class centroid, while maximising the

distance between class centroids. It might result in a case that the class centroids

are well split, but the samples from different classes are overlapped. However, LPP

formulates its objective function by calculating the distance between samples within

one class (intra-class variation) or from different classes (inter-class variation), which

ensures that the class boundary is well separated, thus it is less likely to result in

misclassification. Based on this observation, we can assert that when only a few

views are available in the gallery set, SLPP is expected to better enhance the features

extracted by ViFS than LDA, especially if there is a large difference between the

view angles of probe and gallery data.

Table 3.2 and 3.3 shows the result of cross-view matching using LDA and
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Table 3.2: The Cross-view matching result with LDA (%). G: Gallery; P: Probe

G
P

0 18 36 54 72 90 108 126 144 162 180

0 99.2 90 63.3 25 16.7 13.3 11.7 13.3 28.3 66.7 70
18 76.7 100 100 53.3 43.3 26.7 38.3 48.3 61.7 73.3 53.3
36 43.3 96.7 99.2 98.3 91.7 66.7 80 88.3 80 58.3 31.7
54 30 60 96.7 99.2 100 95 91.7 88.3 85 43.3 16.7
72 21.7 61.7 100 98.3 100 98.3 96.7 91.7 71.7 28.3 13.3
90 15 43.3 76.7 95 98.3 98.4 98.3 95 73.3 21.7 11.7
108 10 43.3 83.3 93.3 96.7 96.7 99.2 98.3 95 36.7 8.3
126 11.7 46.7 86.7 86.7 91.7 90 96.7 99.2 100 65 11.7
144 18.3 53.3 83.3 78.3 70 55 85 100 100 80 31.7
162 43.3 63.3 65 38.3 38.3 21.7 36.7 60 90 99.2 80
180 63.3 65 40 26.7 13.3 16.7 20 33.3 45 83.3 100

Table 3.3: The Cross-view matching result with LPP (%). G: Gallery; P: Probe

G
P

0 18 36 54 72 90 108 126 144 162 180

0 99.2 95 58.3 33.3 23.3 25 20 23.3 30 68.3 75
18 85 100 93.3 71.7 48.3 33.3 36.7 41.7 60 73.3 63.3
36 56.7 98.3 99.2 93.3 91.7 76.7 76.7 83.3 80 65 43.3
54 33.3 85 98.3 99.2 100 98.3 93.3 90 90 53.3 28.3
72 28.3 73.3 95 98.3 99.2 98.3 98.3 96.7 78.3 43.3 16.7
90 25 61.7 86.7 95 95 99.2 98.3 95 85 41.7 13.3
108 18.3 51.7 90 93.3 91.7 96.7 99.2 98.3 93.3 53.3 18.3
126 21.7 45 86.7 91.7 91.7 93.3 98.3 98.4 96.7 70 23.3
144 33.3 66.7 86.7 80 71.7 66.7 86.7 98.3 98.4 90 41.7
162 51.7 78.3 65 45 35 36.7 43.3 68.3 88.3 98.4 78.3
180 80 70 46.7 33.3 26.7 26.7 33.3 30 51.7 88.3 99.2

SLPP respectively. The gallery and probe GEIs are projected into the generated

subspace learned from the training dataset, and then calculate the Euclidean dis-

tance to find the closest matching. SLPP shows better performance on large angle

variance matching than LDA (over 36◦), which benefits from the manifold learning

ability that keeps neighbourhood data structure. This conclusion is drawn from

the comparison between the two tables on the grey region (and a similar pattern is

shown on the symmetric regions on the lower-triangle area). On the contrary, LDA
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has greater performance on matching results across small view difference, which is

mainly on the diagonals of the tables. Same observation comes from Figure 3.3,

where SLPP shows greater power in matching across large view difference.

3.3.4 Multi-view Evaluation

Table 3.4 tabulates the matching rates, in percentage, for ViFS + LDA(ViFS1)

and ViFS + SLPP(ViFS2) for all 11 view angles. We compare the performance of

ViFS1 and ViFS2 with maximum performance attained by LDA or SLPP (i.e., same

view angle matching, denoted by Max in the table), respectively, and their average

matching performance across view angles (denoted by Avg in the table). Without

ViFS, subspace learning methods achieve significantly low result on the frontal (0◦)

and back views (180◦) - see results marked with grey. This is mainly due to the

large intra-class variance caused by these two special views. However, with the

power of ViFS, the enhanced features from ViFS1 and ViFS2 show great robustness

to view-angle changes, achieving the highest accuracy (close or even higher than

the maximum accuracy) across the majority of view angles. The relatively low

performance of ViFS1 and ViFS2 on the 180◦view angle can be explained by the

fact that the discriminative boundary for 0◦ and 180◦ view angles is hard to learn,

and features from other view angles cannot provide information that is correlated

to the 180◦view angle. ViFS2 has slightly better performance than ViFS1, due to a

Table 3.4: Matching rates (%) for ViFS1 and ViFS2 for different view angles.

Feature enhancer Method 0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Average

Max 99.2 100 100 99.2 100 98.4 99.2 100 100 99.2 100 99.6
LDA Avg 36.2 66.1 87.7 80.8 78.7 71.1 77.5 80.3 77.2 52.6 27.6 66.9

ViFS1 98.3 95 98.3 98.3 100 98.3 98.3 98.3 100 100 81.7 97

Max 99.2 100 99.2 99.2 100 99.2 99.2 98.4 98.4 98.4 99.2 99.1
SLPP Avg 44.5 75.2 88.2 84 79.2 76.4 78.6 80.6 79.1 62 35.9 71.2

ViFS2 98.3 96.7 98.3 98.3 98.3 98.3 98.3 98.3 98.3 100 86.7 97.3
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Figure 3.3: Cross-view comparison between the discriminant analysis and manifold
learning approaches.
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Figure 3.4: Recognition accuracy (%) of ViFS2 when templates from two views are
available in the gallery set.
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Figure 3.5: Recognition accuracy (%) of ViFS2 when templates from 3 and 4 views
are available in the gallery set.
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better discriminant power provided by SLPP. The results in Table 3.4 show that the

proposed ViFS is amenable to be used with different subspace learning methods,

and may thus be integrated with other feature enhancement approaches.

We also test ViFS2 on the scenario when the gallery set contains templates

from only two view angles. We use two different gallery view sets: Set1 is {54◦, 180◦}

plotted with blue curve and Set2 is {0◦, 126◦} with red. From Figure 3.4, we draw

the conclusion that when training view angles are widely separated, we achieve fairly

good results. The average accuracy of Set1 is 88.6%, and the Set2 is 86.6%. The

frontal and back views of the probe set have the lowest matching rates, when they do

not appear in gallery set. For example, Set1 does not include the 0◦ view angle, thus

the performance of recognising 0◦probe templates is below 60%. On the contrary,

Set2 does not have the 180◦view angle, and therefore the accuracy of the 180◦probe

templates is only slightly above 50%. We also evaluate the performance of ViFS on

the 3+ view scenario. Set1 is trained with {0◦, 18◦, 108◦, 180◦}, and plotted with

blue curve. Set2 is trained with {0◦, 54◦, 126◦} and plotted with red. Figure 3.5

shows that the increase of training views improves the overall performance of our

framework, and make the matching accuracy more stable across 11 views.

In Table 3.5, we compare ViFS2 with two recently proposed methods by

Tang et al. [1]. Tang(9) refers to the experiment result using 9 training views

Table 3.5: Comparison with Tang el al.’s work [1].

Method 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ Average

Tang(9) 94 98 99 98 99 98 98 98 93 97.3
ViFS2(5) 100 100 96.7 100 98.3 98.3 98.3 100 100 99.1

Tang(4) 91 98 92 98 94 98 93 98 90 94.7
ViFS2(4) 100 100 98.3 100 98.3 98.3 98.3 100 91.7 98.2
ViFS2(3) 85 91.7 90 96.7 96.7 98.3 98.3 98.3 100 95
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from 18◦ to 162◦. Tang(4) refers to the experiment result using 4 training views

{36◦, 72◦, 108◦, 144◦}. ViFS2(5) refers to the proposed method ViFS+SLPP us-

ing 5 training views {0◦, 36◦, 72◦, 108◦, 144◦}. Likewise, ViFS2(4) and ViFS2(3)

refers to the proposed method ViFS+SLPP using 4 ({36◦, 72◦, 108◦, 144◦}) and 3

({0◦, 108◦, 162◦}) training views. In their paper, Tang et al. only compare the

results on probe data from 18◦ and 162◦, thus we follows the same setting. The

Average on the right most column of Table 3.5 is the average of all the accuracy

numbers across the row. ViFS2 attains better performance than other state-of-the-

art methods, on average. We also proved that with less training view (ViFS2(3)),

the proposed framework still outperforms 3D model based methods proposed by

Tang et al.

In Table 3.6 we compare the performance of ViFS2 with one of the experiment

result in Wu et al.’s method [2]. For the specific experiment, they assume that gallery

templates from all views are available, which fits the assumption of ViFS based

framework. Their results are the average rates excluding identical view. Following

the same experiment setting, we use multiple gallery data to train ViFS and match

with probe excluding identical view. We i.e. training using 4 views (ViFS2(4)) and

2 views (ViFS2(2)) respectively, and matching with probe excluding identical views.

ViFS2(2) refers to the proposed method ViFS+SLPP using 2 views for training, and

our rates also excludes identical view. ViFS2(4) attains better result than the CNN

Table 3.6: Comparison with Wu et al.’s work [2].

Gallery 0◦- 180◦
Average

Probe 0◦ 54◦ 90◦ 126

Wu et al. 82.2 94.8 88.9 93.6 89.9
ViFS2(4) 88 90 94 94 91.5
ViFS2(2) 62 92 94 78 81.5
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based method by Wu el al. However, when training views are equal or less than 2,

our method cannot produce satisfying result mainly due to the lack of view-invariant

features.

We also provide an intuitive comparison between different cases where vary-

ing number of gallery view data are available. Here we use ViFS1 to generate the

matching accuracy, since the ViFS+LDA method has larger accuracy margin be-

tween different cases. In Case1 we would like to evaluate the scenario when gallery

templates are mainly from frontal view, i.e. 0◦-54◦. We denote the scenario that

gallery data contains gait templates from two frontal views ({0◦, 18◦}) as Case1(2).

Similarly, we denote the scenario that gallery data contains gait templates from four

frontal views as Case1(4), and the gallery set from 0◦ to 108◦is denoted as (Case1(7))

. As shown in Figure 3.6, the margins between the three curves representing these

three cases are very large, and as the number of available gallery views grows larger,

the overall performance improves. The LDA enhancer cannot provide cross-view fea-

ture learning ability when the view variation is large than 36◦, thus Case1(2) fails

to generate satisfying results on probe templates between 54◦ and 144◦. Case1(4) is

less effected, since it contains 54◦ template which is close to lateral view. Case1(7)

covers all the views from 0◦ to 108◦, thus it is able to provide good view-invariant

recognition results. We also observe similar (in an opposite way) results in Figure

3.7, where gallery templates are mainly from back view. In 2 view case (Case2(2)),

the gallery set contains {162◦, 180◦}, in 4 view case (Case2(4)), the gallery set has

{126◦, 144◦, 162◦, 180◦}, in 7 view case (Case2(7)) the gallery set is from 72◦ to 180◦.

We already observe from Table 3.2 that LDA enhanced features perform well in op-

posite view matching cases such as 0◦againt 180◦, 72 ◦against 108◦. It could explain

the opposite results shown in Figure 3.6 and 3.7.

64



0 18 36 54 72 90 108 126 144 162 180

Probe set view angle

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ec

og
ni

tio
n 

ra
te

 (
%

)

Case1(2)
Case1(4)
Case1(7)

Figure 3.6: Recognition accuracy (%) of ViFS1 when gallery templates from different
views are available in the gallery set. Gallery views are mainly from frontal views.
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Figure 3.7: Recognition accuracy (%) of ViFS1 when gallery templates from different
views are available in the gallery set. Gallery views are mainly from back views.
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In Case3 and Case4 we evaluate the case where gallery templates are from

widely spread views. In Case3 we evaluate the scenario when gallery templates are

widely spread, but mainly from frontal view. In 2 view case (Case3(2)), the gallery

set contains {0◦, 90◦}, in 4 view case (Case3(4)), the gallery set has {0◦, 18◦, 54◦, 90◦},

in 7 view case (Case3(7)) the gallery set is from 0◦ to 108◦. As shown in Figure

3.6, the margins between different number of gallery views are decreased, since the

enhanced gallery feature sets covers more view angles. Still, we observe that when

view variation is large than 36◦, Case3(2) fails to generate satisfying results on probe

templates from 36◦ and 54◦. Case2(4) has better results on these two views, benefit-

ing from the multi-view gallery feature sets on this side, but has similar results with

Case3(2) between 90◦ and 180◦. Case3(7) covers all the views from 0◦ to 108◦, thus

it is able to provide good view-invariant recognition results. We also observe similar

(in an opposite way) results in Figure 3.7, where gallery templates are mainly from

back view. In 2 view case (Case4(2)), the gallery set contains {90◦, 180◦}, in 4 view

case (Case4(4)), the gallery set has {90◦, 126◦, 162◦, 180◦}, in 7 view case (Case4(7))

the gallery set is from 72◦ to 180◦.

Based on the observations discussed above, we discovered the weakness of

ViFS, that it cannot perfectly merge the advantage of two views when they are

concentrated For example, in Case1(4) when gallery is from {0◦, 18◦, 36◦, 54◦}, we

would expect a better performance matching with 90◦ probe data, since we observe

in Table 3.2 that 54◦ gallery data has good cross-view performance when matching

with 90 ◦ probe data. We discovered that the ViFS minimiser for this case is

w = {0.006,−0.042,−0.541, 1.52}, corresponding to the gallery samples from the

4 views listed above. The 54◦gallery data is offered with a very high weight 1.52.

We suggest that it should be too high that it causes feature contamination, instead
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of good feature selection. The over weight of a certain template causes opposite

effect, since it sabotages the standardisation of feature sets, and according to our

discussion in Chapter 1 and 2, it results in misclassification.

3.4 OU-ISIR Large Population Dataset

The OU-ISIR Large Population Dataset includes more than 4000 subjects, each

recorded using cameras from 4 views: 55◦, 65◦, 75◦, and 85◦. Among all the pub-

lished dataset for gait recognition evaluation, it has extensively bigger size in the

number of subject size, thus it is more reliable in statistically evaluating the per-

formance of the proposed framework. According to the existing protocols of bench-

marks [80] [97] [119], a common experiment setting is to use a subset of 1912 subject,

which is divided into two groups, where 956 subjects are used for training purpose

and the rest for testing. We refer to this subset as OU-ISIR LP dataset in the

following discussion. Identical to the previous section, we evaluate the framework

in cross-view and multi-view manner separately.

3.4.1 Cross-view Evaluation

Table 3.7 and Table 3.8 tabulates the matching results using LDA and SLPP re-

spectively. Following the same settings as in Section 3.3.3, we match the euclidean

distance between enhanced gallery and probe feature. It is clear that SLPP has

much better performance than LDA in cross-view case, which is identical to the

previous observation on CASIA Dataset B. Specifically, when view angle variance

between gallery and probe data is small (10◦), both LDA and SLPP achieve high

accuracy, close to their identical-view matching result. However, when the view

angle variance is large than 20 ◦, the accuracy of LDA drops faster than SLPP.
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Figure 3.8: Recognition accuracy (%) of ViFS1 when gallery templates from different
views are available in the gallery set. Gallery views are from wide spread views
(concentrating on frontal view).
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Figure 3.9: Recognition accuracy (%) of ViFS1 when gallery templates from different
views are available in the gallery set. Gallery views are mainly from wide spread
views (concentrating on back view).
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Table 3.7: Cross-view matching result between gallery and probe set using LDA.

Gallery
Average

Probe 55◦ 65◦ 75◦ 85◦

55◦ 90.4 89.9 73.8 53.8 77
65◦ 72.2 94.8 93.1 79.6 84.9
75◦ 44.1 92.1 95.5 93.7 81.4
85◦ 35.3 76.4 94.5 96.9 75.7

Table 3.8: Cross-view matching result between gallery and probe set using SLPP.

Gallery
Average

Probe 55◦ 65◦ 75◦ 85◦

55◦ 89.7 94.8 91.7 81.3 89.4
65◦ 77.9 96.5 96.8 92.6 91.0
75◦ 59.2 95.5 97.1 96.4 87.1
85◦ 47.7 89.1 96.7 97.2 82.7

3.4.2 Multi-view Evaluation

We introduce ViFS2 (ViFS+SLPP) to perform multi-view matching on OULP

dataset. We use all 4 views to train ViFS, and match the reconstructed gallery

set with probe set from different views. Here we compare the performance of our

experiment with two CNN based approaches due to Wu et al. [2] and Shiraga et

al. [97]. As mentioned in both [2] and [97], five-fold cross-validations are deployed

to reduce the effect of randomness. Specifically, the training and testing set (each

contains 956 subjects) are randomly selected 5 times, each time we record the recog-

nition accuracy, and the final accuracy is the average of the 5 experiments.

Table 3.9 presented the matching result of ViFS2 and the comparison between

different approaches. Wu et al. (i) refers to the identical-view matching rates, while

Wu et al. (a) is the average accuracy of four gallery view to a certain probe view.

The same notations apply to Shiraga et al. We notice that Wu et al. achieve the

highest accuracy in identical-view matching, which strongly suggest the effectiveness
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Table 3.9: Multi-view matching result between gallery and probe set using ViFS2.

Gallery 55◦- 85◦
Average

Probe 55◦ 65◦ 75◦ 85

Wu et al. (i) 98.8 98.8 98.8 98.8 98.8
Wu et al. (a) 93.5 94 94 95.8 89.9

Shiraga et al. (i) 94.7 95.1 95.2 94.7 94.9
Shiraga et al. (a) 89.2 93.3 93.3 90.5 91.6

ViFS2 97.8 97.9 98.4 97.5 97.7

of CNN in extracting discriminative features from images, especially with sufficient

number of training samples. Meanwhile, Shiraga et al. uses a network shallower

than Wu et al., and they do not use pair-image as input to train the network, thus

their performance is lower than Wu et al. However, the proposed method ViFS2

shows better performance in view-invariant gait recognition, when 4 view gallery

data are available. Besides, the overall performance is very close to Wu et al.’s

method in identical-view scenario, while the training and testing time of our linear

framework should be significantly smaller than the CNN based approach.

3.5 Summary

In this chapter, we proposed a multi-view feature selector ViFS, and developed a

robust framework based on ViFS and subspace feature enhancers to tackle the multi-

view gait recognition problem. We reconstruct the gallery data on the image level,

and use linear feature enhancers to increase the discriminant power of features and

reduce the number of required gallery views. We tested the proposed framework

on CASIA Dataset B and OU-ISIR Large Population Dataset, and evaluated the

effect of LDA and SLPP as feature enhancer on our framework. The result indicated

that if gallery set covers 4 or more views, the matching accuracy of the proposed

framework with the probe set from all views can exceed 98% on average on CASIA
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Dataset B, and 97% on OULP. Furthermore, the proposed framework is parameter-

free and has low computational cost, which indicates the great potential for real

world application.

In the next chapter we use CNN as feature enhancer for ViFS based frame-

work. Since CNN is widely recognised as the most powerful image classification tool,

its discriminative feature learning ability outperforms any conventional approaches

on computer vision tasks. The feature maps learned by CNN are fed into the ViFS,

obtaining the reconstructed gallery feature maps, which are used to compare with

probe feature maps from arbitrary views.
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Chapter 4

A Joint Framework of ViFS and

CNN

In the previous chapter we compared the proposed framework based on View-

invariant Feature Selector (ViFS) with the state-of-the-art approaches, including

CNN based methods by Wu et al. [2] and Shiraga et al. [97]. The cross-view match-

ing results reveals the fact that features learned by CNN has greater discriminative

power than traditional learning methods. Common CNN is regarded as an end-

to-end solution to computer vision problem, while the feature extraction, feature

selection and decision making process are integrated and fine-tuned simultaneously.

It is often regarded as one of the greatest advantage for CNN, comparing with the

traditional step-by-step approaches. However, as proved by [120] [121], a pre-trained

CNN can also be served as a powerful generic feature extractor for general purposes.

According to their report, the extracted features (also known as feature maps [122])

can be combined with traditional approaches (e.g. SVM, random forest) to solve a

specific classification problem. The existing CNN based approaches to gait recogni-
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tion only introduce CNN as an end-to-end solution, while the hand-crafted features

and classifier ensemble methods are proved to be efficient in improving recognition

accuracy [21] [123]. Therefore, in order to pursue higher identification accuracy, we

would like to explore the potential of CNN feature maps on gait recognition, and

the possibility of combining ViFS with CNN feature maps. Based on the conclu-

sion from previous chapter, the accuracy of ViFS framework heavily relies on the

effectiveness of feature enhancers1. With the conventional linear subspace enhancer

(like LDA and SLPP), our method is able to compete with CNN based approaches

on multi-view gait recognition problem. We would assume that the combination of

CNN feature maps and ViFS could achieve the state-of-the-art performance on both

cross-view and multi-view problem.

4.1 CNN Feature Maps

4.1.1 The Hierarchical Feature Learning of CNN

To understand the success of CNN, Zeiler and Fergus [3] proposed to map the feature

activities in the intermediate layers back to the pixel space with a Deconvolutional

Network (decovnet). Hence, the cause of activities in the feature maps can be

traced back to the specific patterns on input images. Since it performs filtering

and pooling reversely, decovnet is also capable of mapping features to pixels, which

demonstrates the hierarchical learning process of features within the CNN model

intuitively. As is shown in Figure 4.1, 9 reconstructed feature maps in pixel level is

displayed, referring to the top 9 activations in a random subset. We can see that

the first layer consists of colour blocks and colour edges at different frequency and

1As is noticed in Chapter 3, SLPP has better performance than LDA on cross-view matching,
and it has better feature enhancement performance on ViFS. Therefore we draw the conclusion
that the discriminative power of feature enhancers is highly related to its effectiveness on ViFS.
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Figure 4.1: Visualised features from the 5 convolutional layers presented in [3]. The
network is well trained with images from ImageNet database.
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orientations. However, the corresponding input images (more specifically, the local

regions of input images) may not be from the same class. In layer 2 the feature

maps is mainly describing corners, edges or other conjunctions. Layer 3 captures

larger region of textures with similar patterns. The visualised feature maps is able

to describe a general class, e.g. the tires in row 2 column 2 and humans in row 3

column 3. As the features pass to further layers, it describes more discriminative

textures, specified in different classes. In layer 5 the feature maps are able to locate

the whole subject with large pose variations, e.g. keyboard in row 1 column 1 and

logos in row 2 column 1.

4.1.2 Motivation

It is mentioned in Chapter 2 that Gabor wavelet representation has been proved to

be effective for GEI based gait recognition [21] [78] [124] [125], since it is able to

capture the salient properties from input images. For example, in [78] the authors

compare two approaches on USF HumanID Gait Challenge Dataset. Approach 1 is

called general tensor discriminant analysis (GTDA), which is an improved metric

learning approach based on 2D LDA. Approach 2 is the combination of Gabor rep-

resentation and GTDA. The recognition accuracy has roughly 10% improvement in

general. They all proved that Gabor representation, i.e. the convolution of input

image with Gabor filters, is able to extract discriminative features from raw images.

The process of obtaining Gabor representation is similar to generating feature maps

from input image in layer 1. Figure 4.2 shows the visualisation of Gabor filter and

convolutional kernels in the first layer of a CNN. Both are edge detectors of vari-

ous orientations. Therefore, it might be argued that the high level features learned

by CNN share similar characteristics with Gabor based representations, which has
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Convolutional kernels learned by the first convolutional layer on ImageNet

Gabor kernels of 8 orientations and 4 scales

Figure 4.2: Visualised Gabor kernels and convolution kernels .
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greater discriminative power. The convolutional kernels in CNN has similar effect as

Gabor filters. Furthermore, the multi-layer convolutional computation is proved to

be more effective in learning high-level features. Hence we regard CNN as a feature

mapping technique, and combine its hierarchical learning ability with the feature

selection method to achieve better performance. Firstly we train the network with

labelled gallery data, where the parametres and weights in the network are automat-

ically adjusted. This step creates a mapping from pixel-level features to high-level

features with better orientation-invariance and discrimination between classes. The

learned gallery feature set can be extracted from the softmax layer. Then we feed

the network with probe data and obtain the learned probe feature vectors from the

softmax layer. We put these features into our least square regression model, from

which an optimal set of gait representation is generated accordingly. Finally we

match the probe features with the gallery features after regression. According to

the previous research, the least square regression model is an efficient tool in tackling

gait deformation problem, especially when gallery data is sufficient. We believe that

it will also work for multi-view gait recognition problem. A simple demonstration

of this framework is shown in Figure 4.3.

4.2 Network Structure

It is mentioned in Chapter 2 that CNN can also be used for segmentation tasks. In

order to further improve the recognition accuracy, we propose to use CNN based

segmentation network to improve the silhouette quality of the dataset. In this

section, we firstly introduce a well trained fully convolutional network (fullconvnet)

to obtain high quality silhouette. Then we use this set of silhouettes to generate GEIs

for training the feature extraction CNN and evaluating the proposed framework.
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Figure 4.3: The proposed framework to combine CNN and least square regression
model. The details of CNN is introduced in Chapter 2, while the details of least
square regression model is introduced in Chapter 3.
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4.2.1 Segmentation Network

We design a 3-channel (RGB) fullconvnet to segment human profiles from three

randomly sampled frames of an input video. Each channel consists of 7 convolutional

layers for feature extraction and 1 de-convolutional layer for recognition. Specifically,

for the first convolution stage, an input image of size 64×64×3 goes through a single

stride convolution with 48 kernels of size 5×5, followed with a two-stride 3×3 max

pooling. The pooling products are normalized with a local response normalization

layer. The second convolutional stage follows the same procedures as the first one.

The 3rd to the 5th stage consists of convolutional operations only, while dropout

is introduced in the 6th and 7th stage along with the convolutional stage. The de-

convolutional layer reflects the output features from the first convolutional stage,

with the size of 1×1 feature map, to produce a 64×64 prediction. To fit the range

scope of a binary mask, we put a sigmoid neuron unit2 after the de-convolutional

layer. After normalizing the size of the de-convolutional layer and the mask image,

we train the segmentation network with the L2 norm of the prediction and the mask.

For a given image xi, the L2 norm of channel-j is formulated as:

Lseg−ch−j = ‖pi −mi‖2, (4.1)

where mi refers to the i-th binary mask of xi, and pi is the i-th segmentation

prediction at the top layer. The i-th prediction is formulated as

pi = g(f(xi)), (4.2)

2All neurons are Rectified Linear Unit (ReLU) except for the de-convolutional layer, which is
sigmoid. Besides, the max pooling layers are uniformly two-stride with size 3×3.
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where f(xi) projects xi into a feature space via one or more convolutional stages,

and g(·) predicts the final segmentation results though the de-convolutional layers.

Hinton et al. introduced a similar auto-encoder approach, where f(·) and g(·) can be

regarded as encoder and decoder respectively [126]. The segmentation loss function

for all three channels is formulated as:

Lseg =
∑
ch=1:3

‖pi −mi‖2, (4.3)

An iterative learning is performed to further improve the segmentation accuracy of

human profiles. During the first iteration, we use the rough segmentation results to

locate human profiles, where the cropped profiles are sent to the second iteration

as references for a more precise segmentation. The optimal results are obtained

within several iterations. It is proved that the iterative learning obtains more precise

silhouettes that improves gait recognition accuracy. In our experiments, we make

a trade-off between computational cost and accuracy by setting iteration times to

two. More details about fullconvnets can be found in [116].

4.2.2 Feature Mapping Network

We adopt a 5-layer CNN with 3 input channels as classifier. The inception layer

transfers 3 single channel profiles simultaneously, and generate a 3 channel blob

(can be regarded as a 3 channel RGB image). The first and second convolutional

component of the classifier follow the same settings as the first step of fullconnets,

while the third component perform convolutional operations only. The output fea-

ture map after three convolutional stages is with the size of 11×11. Based on the

feature outcomes,he subsequent two fully-connected layers perform recognition with

a soft-max unit.
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Figure 4.4: The architecture of the segmentation network and feature mapping
network.

As shown in Figure 4.4, we explain the two steps for training our framework:

• Pre-segmentation. First, we train a 3-channel (RGB) CNN [116] model with

public human segmentation databases [127]. We call this process as gait pre-

segmentation, which is used as the initial model of our gait segmentation

modular. Afterwards, the fullconvnet model is iteratively used. In detail, at

the beginning, the input of the fullconvnet model are three randomly sam-

pled frames from a gait video. At each iteration, we obtain a more accurate

cropped human box containing the output segmented pixels of human from

the last iteration of segmentation, and this cropped box is used as the input

of the next iteration. After several iterations (e.g., two or three), relatively

accurate human silhouettes will be produced and used as the pseudo-label of

gait segmentation.
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Table 4.1: The details of the CNN structure (13 layers with 3 channels).

Layer Channel-1 Channel-2 Channel-3

C1
conv5-48 conv5-48 conv5-48
max-pool max-pool max-pool

LRN LRN LRN

C2
conv5-128 conv5-128 conv5-128
max-pool max-pool max-pool

LRN LRN LRN

C3 conv192-3 conv192-3 conv192-3

C4 conv192-3 conv192-3 conv192-3

C5 conv192-3 conv192-3 conv192-3

C6
conv1024-7 conv1024-7 conv1024-7

dropout dropout dropout

C7
conv1024-1 conv1024-1 conv1024-1

dropout dropout dropout

DC8
deconv1-64 deconv1-64 deconv1-64

sigmoid sigmoid sigmoid

Inception layer

C9
conv5-64
max-pool

C10
conv5-128
max-pool

C11 conv3-192

FC12
FC1024
dropout

FC13
FC69

soft-max

• Recognition. We train the CNN-based gait recognition in this step. The

inputs are the gait segmentation results, and the supervised labels are the

human identities corresponding to the input gait videos. More details will be

introduced in Table 4.1 with corresponding explanation.

4.3 Experiment Design and Results

We now testify the cross-view performance of the prosed framework. Firstly we

present the baseline result of CNN feature maps on CASIA Dataset B. Then we
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Table 4.2: Cross-view matching using CNN feature maps setting 1. G: Gallery; P:
Probe

G
P

0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

0◦ 100 100 92 92 68 64 68 84 88 100 100
18◦ 100 100 100 100 84 76 76 92 92 100 92
36◦ 92 100 100 100 96 84 92 92 92 92 80
54◦ 80 100 100 100 100 100 96 100 92 84 72
72◦ 56 80 100 100 100 100 100 100 100 72 60
90◦ 52 80 88 96 100 100 100 100 100 72 48
108◦ 52 76 88 96 100 100 100 100 100 72 56
126◦ 68 84 84 100 100 100 100 100 100 92 72
144◦ 84 96 96 96 96 88 100 100 100 100 76
162◦ 96 100 96 84 80 68 80 100 100 100 100
180◦ 96 96 84 80 72 64 64 96 88 100 100

introduce the combined framework and shows the improved results.

4.3.1 Cross-view Matching Using CNN Feature Maps

We firstly presents the cross-view matching result using CNN Feature Maps. Specif-

ically, we put gallery and probe GEI templates into the well-trained network, and

extract the feature map vectors from the penultimate layer of CNN. We measure

the euclidean distance between gallery and probe feature map vectors, and the

cross-view matching accuracy is tabulated in Table 4.2. CNN feature maps show

significant improvement comparing with the result using traditional subspace learn-

ing methods (recall Table 3.2 and 3.3 in Chapter 3). Apart from the large view

disparity cases, which are marked in grey colour, other cross-view matching results

are all above 80%, suggesting that CNN feature maps have great discriminant power.

4.3.2 The Combination of ViFS and CNN Feature Maps

In order to perform robust view-invariant recognition, we apply ViFS to multi-

view gallery CNN feature maps. Assume that gallery set has 2 views available, the
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number of all views are 11, thus there could be
(
11
2

)
= 11!

2!(11−2)! = 55 different com-

binations. We select 3 representative sets for comparison. Set1 contains {0◦, 90◦},

where the gallery views are widely spread. Set2 contains {0◦, 54◦}, where 0◦ has

good performance on the frontal/back view and 54◦ has good results on other views

(18◦ to 144◦). Set3 contains {18◦, 108◦}. As is shown in Table 4.3, Set3 achieves

very high accuracy in average, while Set1 and Set2 has only slight improvement

comparing with the average results of Table 4.2, which is denoted as Avg. Wu el

al. refers to the state-of-the-art CNN method presented by [2]. Their experiment

setting assumes that gallery from 0◦ to 180◦ are available. Set3 outperforms Wu et

al.’s method by 3% on average, but the results on 72◦ and 90◦ probe data is lower

than theirs.

Table 4.3: The matching results using the combination of CNN feature maps and
ViFS.

Set
Probe

0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦ Average

Set1 100 100 92 92 80 80 80 96 92 100 100 92
Set2 76 100 100 100 100 96 100 100 92 80 64 91.6
Set3 100 100 100 100 92 88 96 100 100 100 92 97.1
Avg. 86.9 92 92.7 93.1 88 85.1 85.5 90.9 93.8 91.3 85.5 89.5

Wu et al. 88.7 95.1 98.2 96.4 94.1 91.5 93.9 97.5 98.4 95.8 85.6 94.1

Table 4.4: Comparison with Tang el al.’s work [1].

Method 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ Average

Tang(9) 94 98 99 98 99 98 98 98 93 97.3
Tang(4) 91 98 92 98 94 98 93 98 90 94.7
ViFS3(2) 100 100 100 92 88 96 100 100 100 97.3

Following the same criterion, we provide an intuitive comparison between

different cases where varying number of gallery view data are available, in order to

explore the potential of CNN+ViFS framework. In Case1 we would like to evalu-

ate the case when gallery templates are mainly from frontal view. In 2 view case
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(Case1(2)), the gallery set contains {0◦, 18◦}, in 4 view case (Case1(4)), the gallery

set has {0◦, 18◦, 36◦, 54◦}, in 7 view case (Case1(7)) the gallery set is from 0◦ to

108◦. As is shown in Figure 4.5, the margins between different number of gallery

views is much closer comparing with the result in Figure 3.6, since the CNN feature

maps has much greater discriminant power across views, while the LDA enhancer

cannot provide cross-view feature learning ability when the view variation is large

than 36◦. However, as view variation grows larger, ViFS loses its effectiveness, and

the good results are all came from CNN feature maps as is tabulated in Table 4.2.

Case1(4) and Case1(7) are overlapped in this case, which is unexpected, since from

the previous experiments the more view should brings better performance. We look

deep into the generated ViFS descriptors, and find out that the weights are almost

evenly distributed, while the sum of the weights are way above 1, which indicates

the same issue as is discussed in Section 3.3.4 that it sabotages the standardisa-

tion of feature sets. We also observe similar (in an opposite way) results in Figure

3.7, where gallery templates are mainly from back view. In 2 view case (Case2(2)),

the gallery set contains {162◦, 180◦}, in 4 view case (Case2(4)), the gallery set has

{126◦, 144◦, 162◦, 180◦}, in 7 view case (Case2(7)) the gallery set is from 72◦ to 180◦.

In Case3 and Case4 we evaluate the case where gallery templates are from

widely spread views. In Case3 we evaluate the case when gallery templates are

widely spread, but mainly from frontal view. In 2 view case (Case3(2)), the gallery

set contains {0◦, 90◦}, in 4 view case (Case3(4)), the gallery set has {0◦, 18◦, 54◦, 90◦},

in 7 view case (Case3(7)) the gallery set is from 0◦ to 108◦. The three curves are

even more closer to each other, indicating that the great discriminant power of CNN

’confuses’ ViFS, making it difficult to select the most representative features from

the multi-view feature set.
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Figure 4.5: Recognition accuracy (%) of ViFS+CNN when gallery templates from
different views are available in the gallery set. Gallery views are mainly from frontal
views.
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Figure 4.6: Recognition accuracy (%) of ViFS+CNN when gallery templates from
different views are available in the gallery set. Gallery views are mainly from back
views.
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Figure 4.7: Recognition accuracy (%) of ViFS+CNN when gallery templates from
different views are available in the gallery set. Gallery views are from wide spread
views (concentrating on frontal view).
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Figure 4.8: Recognition accuracy (%) of ViFS+CNN when gallery templates from
different views are available in the gallery set. Gallery views are mainly from wide
spread views (concentrating on back view).
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4.4 Summary

In this chapter we successfully combined ViFS with CNN feature maps and achieved

view-invariant gait recognition with less gallery data. By taking advantage of pro-

jecting the assembled gallery vectors into the same hyperplane with probe vector,

the inter-class variation is enlarged while the intra-class variation is minimised. The

promising result from our experiments indicated that when strong correlation exists

between gallery and probe set, the ViFS model is able to automatically find this cor-

relation among a set of gallery data with various deformations, and then returns with

the best recognition result. Furthermore, we use CNN to extract highly efficient fea-

tures from the input GEIs, and use ViFS to maximise its recognition accuracy. The

result from our experiments convincingly proved that as the best feature extraction

tool, CNN is compatible with traditional feature selection models.

The effect of silhouette quality disparity on gait recognition has not been

well addressed by literatures. Besides, the former studies claimed that instead of

improving the quality of silhouette, it is more productive to study noise-invariant

features. However, an intuitive thought is that the noise should interference the

recognition accuracy, instead of enhancing it. In the next chapter we generate a

dataset to statistically analyse this problem and evaluate the performance of con-

ventional algorithms, as well as the proposed ViFS based frameworks.
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Chapter 5

Gait Recognition with

Silhouette Quality Disparity

5.1 Problem Statement

As is mentioned in Chapter 2, the field of quality-invariant gait recognition remains

unexplored. Most literatures focus on improving silhouette extraction quality, while

few of them consider it as a covariate factor and study the case when silhouette

quality disparity exists. There are generally two aspects to take into account when

studying quality-invariant gait recognition. Firstly, it is inevitable that gallery and

probe gait sources are obtained from different scenarios. Assume that gallery and

probe data are acquired from different cameras, one with high resolution surveillance

camera monitoring a shopping mall with sufficient illumination; another with nor-

mal low resolution camera monitoring an open field. A problem is easily occurred

that the silhouettes from indoor high resolution camera is of better quality than

those from outdoor low resolution camera. It is commonly seen since the public

surveillance cameras differs from place to place. In practice, we might find that a
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subject commits crime in an outdoor environment which is recorded by the surveil-

lance camera, and when a suspect is captured, the gait data is obtained in another

controlled indoor environment; or a crime is hold and the gait data is retained in

the system, while he escapes from the prison and is needed to be located from the

cameras around city. Another aspect is that background subtraction algorithms

may generate silhouettes of different quality levels under different scenes. For ex-

ample, if the subject appears in the first frame of the video sequence, and stays

in a relatively fixed position until the end of recording, it is very difficult for the

Gaussian Mixture Model (GMM) or background subtraction (BS) based method

to perform segmentation, since GMM initialises the models in the first frame, and

all the constant regions throughout the whole video sequence including the subject

(or part of the subject) will be regarded as background. Figure 5.1 illustrates this

situation using video sequences from CASIA Dataset B. Images from the first row

is recorded from a 0◦ camera and the second row are from 180◦, all sequences are

from the same subject. The first RGB image of each row is the raw video image,

and the 13 continuous binary silhouettes are the segmentation results (normalised

to standard size) using GMM method. The rightmost grey scale image of each row

is the constructed GEI accordingly. There is an obvious human-shape hollow in

both the silhouettes and GEIs, indicating that GMM fails to model this constant

region as a moving foreground object. In both case, there exits silhouette quality

disparities due to the illumination, shadow variance, or other forms of contamination

from indoor to outdoor environment. The illumination variations can cause holes

and missing parts of body on the silhouette, while post-processing approaches, for

instance morphological dilation and erosion, can cause further quality disparities.

By looking into the factors that may cause silhouette quality disparity, it
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Figure 5.1: The segmentation results using GMM when the subject exists through-
out the video sequences. Sequences on the top row are captured from 0◦ camera,
while sequences on the bottom row are from 180◦.

might be argued that the cross-quality gait recognition is worth studying. In order

to perform robust gait recognition in open-set real-world cases, a quality-invariant

gait recognition system has to be found. In this chapter, we studied the case when

segmentation errors exist in gait gallery and probe data, which is caused by applying

a set of segmentation algorithms on gallery and probe video sequences. We would

like to focus on following situations:

• The gait data related to an individual to be recognized (i.e., the probe data)

is not captured under ideal conditions, and therefore the associated gait sil-

houettes may be noisy and inaccurately segmented; whereas the stored gait

data (gallery data) is captured in noise-free environments, or vice versa.

• The silhouettes extracted from gallery and probe data are obtained using

different segmentation algorithms, or from different scenes, which may result

in very different segmentation results1.

The effect of the gait silhouette quality on the performance and practicability

of appearance-based gait recognition algorithms are important issues but have not

been intensively studied and only a limited number of solutions are reported in the

1A simple example is that a segmentation algorithm generates shadow-free gallery silhouettes,
while another algorithm cannot generate shadow-free probe silhouettes. The shadow can then be
considered as features (or noise) of the gallery silhouettes, thus affecting recognition accuracy.
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literature. As is mentioned in the previous Section 2.3.2, Sarkar et al. discussed

several cases when gait silhouette segmentation errors occur in the HumanID Gait

Challenge Problem dataset due to the shadow of the individuals, varying lighting

conditions and moving objects in the background [18]. Liu and Sarkar observed that

the drop in gait silhouette segmentation quality may lead to a decrease in recognition

accuracy [102]. They also observed that if gallery and probe gait sequences are

captured under the same conditions, and are segmented by the same method, the

recognition accuracy may be high even if the data quality is poor. Zhang et al.

address the issue of poor recognition accuracy when low-resolution gait silhouettes

are used [103]. They proposed to combine super-resolution with multi linear tensor-

based learning without parameters (SRMTP) to overcome this problem. However,

they only focused on the low-resolution problem, and tested their algorithm on an

artificial dataset, thus the issue of silhouette quality remains unexplored in practical

scenarios.

Hence we consider the situation in which the gait data related to an indi-

vidual to be recognised (probe data) are not captured under ideal conditions, and

therefore the associated gait silhouettes may be noisy and inaccurately segmented;

whereas the stored gait data (gallery data) are well segmented, or vice versa. This

is a common situation encountered in practice; for example, when the probe data is

captured using CCTV cameras at low resolution and poor quality, but the gallery

data is previously captured under ideal conditions and it is not feasible to re-capture

the probe data under the same ideal conditions. Based on these scenarios, we em-

ploy various segmentation algorithms to generate different silhouette quality data

using sequences from the CASIA Dataset B, and propose two methods to tackle

this problem. In Guan et al.’s work [21], it is noticed that the effectiveness of ma-
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jority voting lies on the number of weak classifiers that make the right decision. In

this case, if the weak classifiers are generated using ViFS, they might have higher

chance to make right decision, since ViFS reconstruct gallery features by minimis-

ing the distance between gallery feature set and probe feature. If the number of

right decisions are above 50%, the majority voting could return the right decision

of classification. Thus we propose a classier fusion strategy based on least square

QR- decomposition (LSQR). Our approach uses GEI as gait template, as it is one

of the most popular and efficient methods to represent gait features. We first create

a dataset by employing different segmentation algorithms on gait video sequences

to generate silhouettes with segmentation disparities. The dataset is divided into

training, gallery and probe sets, where the training set is for discriminant learning.

We project gallery and probe data into a discriminant subspace to generate gallery

and probe feature sets. The gallery features are fused using LSQR, thus generating

more gallery representations, which are considered as weak classifiers to match with

probe features. The output of all classifiers goes through a majority voting process,

where the voting result represents the final classification decision. The application

of voting in obtaining valuable features from massive data (with redundancy) was

addressed in the mid 1950s, and has been studied till recently [130]. It is suggested

that majority voting scheme has been applied in the fusion of data obtained from

multiple sources [131]. Classifier fusion has been studied by many literatures and

is proved to be efficient in biometric field [21]. Local Fisher Discriminant Analysis

(LFDA) is employed as the discriminant learning approach. As presented in Section

5.3.2, evaluation results show that our fusion strategy improves recognition accu-

racy compared to using only LFDA, or using a fusion strategy that assigns equal

importance to all features.
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We then extended the classifier fusion strategy to a global regression method.

The classifier fusion strategy makes use of information from weak classifiers, and use

voting to increase the probability of the right guess. However, we found out that the

least square regression method takes advantage of global information, and can gen-

erates the optimal weight for each gallery vector at the same time. We employ two

popular subspace learning methods, namely, Linear Discriminant Analysis (LDA)

and Locality Preserving Projection (LPP), to confirm the improvement brought by

regression approach. As a traditional discriminant learning approach, LDA shows

great consistency in recent studies [21], while LPP as a classical manifold learning

approach can preserve the local structure information. Despite that LFDA and its

extension ViDP outperform LDA and LPP on cross-view gait recognition challenge,

according to the experiment results on quality disparity problem, its performance is

inferior to the results using LDA and LPP. Since it is recently proposed, the consis-

tency of LFDA is yet to be testified. Experimental results show that the extended

method attains higher recognition accuracy, making it a promising solution to reduce

the negative effects of poor gait silhouette quality on individual recognition.

5.2 Dataset

In order to build a gait dataset containing silhouettes with different segmentation

discrepancies, we combine background subtraction (BS), de-noising, and frame dif-

ferentiation (FD), to generate different segmentation approaches. We also employ

the Gaussian Mixture Model and Expectation Maximization (GMM & EM) seg-

mentation method [18], and the Least Median of Squares (LMedS) segmentation

method [100]. The segmented silhouettes obtained by each of these approaches is

used to generate binary images (and GEIs) at a specific quality. The quality levels
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Figure 5.2: Samples of gait silhouette and corresponding GEIs with different qual-
ities (Q.1 to Q.6) for the same subject. For each row, the first 11 images are the
binary silhouettes obtained after segmentation, while the rightmost image is the
corresponding GEI.

and the corresponding segmentation approaches used are listed in Table 5.1. The

segmentation approaches are explained in the following paragraphs.

• Approach 1 : A pixel is marked as foreground if |It − Bt| > threshold, where

It refers to an image with both foreground and background objects and Bt

contains only background objects. The threshold is set using Otsu’s method,

as it is the most commonly used tool in image segmentation [132].

• Approach 2 : The background image is normalized to eliminate the negative

effects of noise. Thus |It − B̂t| > threshold where B̂t = Bt/
∑
pi,j ; pi,j refers

to the value of pixel {i, j} in Bt. The threshold is set using Otsu’s method. As

the obtained foreground may comprise several disconnected regions, dilation
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Table 5.1: Segmentation approaches for generating various data qualities, and the
corresponding notation.

Quality Segmentation Approach

Q.1 Approach 1: BS with Otsu’s threshold
Q.2 Approach 2: Normalised BS plus dilation & erosion
Q.3 Approach 3: BS with small threshold (1/3 of Otsu’s)
Q.4 Approach 4: FD plus dilation & erosion
Q.5 Approach 5: GMM & EM method
Q.6 Approach 6: LMedS method

and erosion operations are performed to generate the final foreground.

• Approach 3 : A small threshold is used in order to introduce a distinct contrast

in the segmented silhouettes and to include more background objects in the

foreground, namely |It −Bt| > threshold/3. By setting the threshold to 1/3,

more information on the background will be classified as foreground, thus add

artificial segmentation error to the segmentation results.

• Approach 4 : Frame difference (FD) approach is used to mark the moving

foreground pixels, It − It−1 > threshold, where the threshold is set using

Otsu’s method. In addition, dilation and erosion operations are used in order

to connect the disconnected regions comprising the foreground.

• Approach 5 : The GMM and EM method, as introduced by Sarkar et al. [18].

It is regarded as the baseline foreground detection algorithm for human gait

recognition.

• Approach 6 : The LMedS method, as is introduced in [100]. The gait silhouette

images in CASIA Dataset B are generated using LMedS method. As the official

segmentation results, they should be very close to the ground-truth results.

Using the distinct segmentation approaches tabulated in Table 5.1, each gait se-
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quence can generate six sequences with different segmentation discrepancies. For

each of these six sequences, we compute the corresponding GEI. Figure 5.2 shows

sample GEIs with the six different qualities.

5.3 Solution 1: the Weak Classifier Ensemble Approach

It is mentioned in [133] that an efficient way of combining classifiers is to put them

into groups and apply a different fusion strategy to each group. At the beginning

phase of our research, we came up with a weak classifier assembling method, inspired

by Guan’s method in [21]. Using the dataset introduced in Section 5.2, we projected

gallery and probe data into the discriminant subspace to generate gallery and probe

feature sets. The gallery features were fused using Least Square QR-decomposition

(LSQR) method, thus generate more gallery representations, which were consid-

ered as classifiers to match with probe features. The output of all classifiers went

through majority voting process and generated the final classification decision. Local

Fisher Discriminant Analysis (LFDA) was implemented as the feature enhancement

approach. Experimental results show that the fusion based discriminant learning

approach improves recognition accuracy compared to using only LFDA without fu-

sion, or using equal-split fusion strategy, making it a suitable solution to reduce the

negative effects of gait silhouette quality problem.

5.3.1 The Proposed Framework

Figure 5.3 shows the block diagram of the proposed weak classifier fusion approach.

We select k of the total n eigenvectors generated by PCA, when the sum of

the k corresponding eigenvalues are above 99% of the sum of all eigenvalues. LFDA
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Figure 5.3: The block diagram of weak classifier fusion and voting approach.

is employed after reducing the dimensions of the training GEIs by using PCA. The

generated transformation matrix Wtrans is Wtrans = W>LFDAW
>
PCA. We keep (c−1)

eigenvectors with k largest eigenvalues respectively for LFDA.

An important factor to consider during grouping is the level of diversity

of classifier types. However, it is hard to acquire prior knowledge of the optimal

strategy for grouping classifiers and applying fusion strategies. In this work, the

gallery features with different segmentation discrepancies are fused in an exhaustive

manner using a set of weights generated by LSQR, and each set of fused features

is considered as one classifier. In other words, each distinct classifier is created by

fusing gallery features with three different qualities. With 6 qualities in total, the

number of generated fusion classifiers is Nc = 6!/((6−3)!∗3!) = 20. A set of weights

are assigned to the three gallery features to be fused. For example, if a classifier

comprises gallery features at qualities Q.1, Q.2 and Q.3, the features are fused as

gf = w1 ∗ galleryQ.1 + w2 ∗ galleryQ.2 + w3 ∗ galleryQ.3, where wi, i ∈ {1, 2, 3} are

the corresponding weights for the gallery features. The values of weights wi are

calculated as a vector by:

w = arg min
w

‖gallery ∗ w> − probe‖, (5.1)
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where

Gallerys =


galleryQ.1

galleryQ.2

galleryQ.3

 ,

and galleryi, i ∈ 1, 2, 3 are reshaped to column vectors. Probe is the probe feature

in column vector’s form, too. Here gallery and probe are column vectors containing

the gallery data at different qualities to be fused, and the corresponding probe data,

respectively.

The set of gallery GEI vectors is denoted as g, and the set of probe GEI

vectors as p. Following the subspace transformation processes in Section 2.4.1, the

gallery feature sets {ĝ} and probe feature sets {p̂} are obtained as follows:

{ĝ} : ĝi = WtransGi, i ∈ {1, 2, ..., n1} and

{p̂} : p̂j = WtransPj , j ∈ {1, 2, ..., n2}
(5.2)

where n1, n2 are the total number of GEIs in gallery and probe data sets, re-

spectively; Gi and Pi denote the GEI representations of gallery and probe data,

respectively. The centroid of class l in {ĝ} is calculated as mgl = 1
nl

∑
ĝ∈ĝl ĝ, where

ĝl is the set of gallery feature vectors in class l. The centroid of class l in {p̂} is

calculated in the same way and is denoted as mpl. The classifier is then defined as:

D(mgl,mpi) = ‖mpi −mgl‖, i = 1, 2, ...c. (5.3)

If D(mgl,mpl) = minci=1D(mgl,mpi), the probe feature vector is assigned to the

right class label l.

For each case, i.e. whenever a probe data comes, 20 classification results are
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Table 5.2: The recognition rates in percentage (%) without discriminant learning.
G: gallery data; p: probe data. The bold diagonal value indicates the recognition
of using gallery and probe with same quality

G
P

Q.1 Q.2 Q.3 Q.4 Q.5 Q.6

Q.1 85 12 7 10 80 70
Q.2 12 67 17 8 10 35
Q.3 17 15 78 5 17 8
Q.4 15 8 5 38 18 15
Q.5 83 12 7 13 83 63
Q.6 58 25 5 10 43 97

obtained by the similarity measurement between the probe feature and 20 classifiers

generated by the fusion approach. The results of the multiple classifiers will go

through the majority voting process to obtain the final recognition rates.

5.3.2 Experimental evaluation

We use the gait sequences of CASIA Dataset B to generate the GEIs with 6 different

silhouette qualities, as it is the only available dataset containing video sequences for

us. CASIA Dataset B comprises video sequences for 124 individuals. We use the

video sequences of first 62 individuals from the gallery dataset as the training data.

The gallery and probe data are from the rest 62 individuals. The frame size of the

gait video is 320×240, and the frame rate is 25 fps. All 6 segmentation algorithms

produce binary silhouettes with the size of 128×88. As this work aims at studying

the effect of gait silhouette quality on recognition, other factors that may influence

the recognition performance are excluded. Therefore, only normal gait sequences

are chosen from CASIA Dataset B, without the factors of carrying bags, different

clothes, or different view angles.

We first evaluate the recognition rates of gallery and probe GEIs without

discriminant learning or fusion. The recognition rates, in percentage, are shown in
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Table 5.2. Two observations can be drawn from this table:

1. The entries in the main diagonal represent the matching results between gallery

and probe data with the same segmentation errors. These values are gener-

ally the highest values among each column, suggesting when both gallery and

probe data have same segmentation error, the best matching results are at-

tained. However, matching cross gallery and probe with different segmentation

errors obtains much lower result in most cases, with some exceptions, for ex-

ample the matching rates cross Q.1 and Q.5 are almost the same. It indicates

that different segmentation approaches might generate silhouettes with similar

quality.

2. The entries outside the main diagonal show that the segmentation error dispar-

ity between gallery and probe data indeed decreases the recognition accuracy.

In some cases, the matching rate between data segmented using the same ap-

proach can still be very low, which indicates that the segmentation approach

may be inappropriate for the sequences (see for example Q.4 gallery matched

with Q.4 probe).

Evaluation With Discriminant Learning

We measured the similarity between gallery and probe features generated by sub-

space transformation. The recognition rates are shown in Table 5.3. Note that by

using dimensionality reduction plus a subspace learning method, the figures in Table

5.3 significantly improved comparing with the figures in Table 5.2.
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Table 5.3: The recognition rates in percentage (%) using LFDA. Bold marks the
diagonals, i.e. gallery and probe data have same quality.

G
P

Q.1 Q.2 Q.3 Q.4 Q.5 Q.6

Q.1 95 75 63.3 20 93.3 95
Q.2 85 85 83.3 30 78.3 91.7
Q.3 68.3 75 95 33.3 66.7 81.7
Q.4 48.3 46.7 70 61.7 56.7 68.3
Q.5 95 75 56.7 21.7 95 96.7
Q.6 88.3 66.7 65 23.3 85 100

Fusion Between Qualities

Based on the descriptions in Section 5.2, we fuse gallery features with different

segmentation errors using weights computed by LSQR method. Measuring the dis-

tances between the fused gallery features (classifiers) and probe features with all

kinds of segmentation errors generates a set of results, which are put into majority

voting process to generate the final identification result. In addition, we would like

to introduce the case where the particular type of segmentation error contained in

probe data is not present in the gallery data. This attempts to represent the situ-

ation where the quality of the probe data is different from that of the gallery data.

A comparison for different algorithms is tabulated in Table 5.4. The notations for

this table are displayed as follows: DL(A): discriminant learning (lfda), and aver-

age through columns (column means of table 5.3); DL(H): the highest rates among

each column of table 5.3; FDL(S): discriminant learning plus fusion, the weight is

set split-equal (w = 1/3 for each of three gallery features to be fused); FDL: dis-

criminant learning plus lsqr fusion, i.e. the proposed approach; FDL(I): incomplete

fusion when the matching of gallery and probe data with same segmentation error

is missing. The improvement of the fusion based discriminant learning approach

is evident compared to the recognition performance using single classifier. The fu-
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Table 5.4: The recognition rates in percentage (%) for probe data with 6 different
quality. DL(A): average rates of lfda; DL(H): highest rates of lfda; FDL(S): fu-
sion+lfda using split-equal weight; FDL: proposed approach; FDL(I): dealing with
incomplete gallery data using proposed approach

Alg.
Probe

Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Avg.

DL(A) 80 70.6 72.2 31.7 76.3 87 68.3
DL(H) 95 85 95 61.7 95 100 88.6
FDL(S) 90 78.3 83.3 33.3 88.3 96.7 78.3

FDL 95 85 90 58.3 95 98.3 86.9
FDL(I) 95 76.7 73.3 23.3 93.3 95 76.1

sion strategy using LSQR has better result than using equal-split fusion. Besides,

when no gallery data has the same segmentation error as probe data, the proposed

approach still shows promising performance (The result of this case is denoted as

FDL(I) in Table 5.4).

Discussions

Experiment results suggests that the quality of the extracted binary silhouette im-

ages is particularly important for model-free gait recognition algorithms to perform

accurately, since the segmentation errors might de-gradate the recognition rates.

In [102], it is mentioned that the low quality silhouette may provide powerful fea-

tures for gait recognition when both gallery and probe data have the same quality

(acquired under same circumstances). However, through our analysis, an inaccurate

segmentation could lead to very low recognition rate, even when employing discrim-

inant learning methods, see for example results for probe data with Q.4 in Table

5.3.

One main shortcoming of the proposed method, as in any other discriminant

learning method, is that subjects represented by very low quality silhouettes cannot

be recognized accurately. Nevertheless, if the quality of gallery and probe data
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Figure 5.4: Block diagram of the proposed framework.

are acceptable, even if they are very different, our fusion based subspace learning

approach can improve the matching performance to a promising level.

5.4 Solution 2: ViFS Based Quality-invariant Approach

5.4.1 The Proposed Framework

As argued in Section 2.2.1, silhouette quality disparity are summarised as global

deformation challenge, identical to gait recognition under arbitrary view. Hence

we assume that ViFS can still be effective in tackling quality disparity problem.

In this section we introduce a quality-invariant gait recognition framework using

ViFS. The block diagram of the proposed framework is shown in Fig. 5.4. We first

generate the GEIs with different qualities for the training, gallery and probe data.

Using the training data, we compute the transformation matrix corresponding to

the subspace learning method. We fuse gallery data with a set of weights computed

by least square fitting. Fused gallery data and probe data are transformed into fused

gallery features and probe features in a lower dimension space. Finally, we measure

the similarities between fused gallery features and probe features.
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We use the same dataset as mentioned in Section 5.2. Different subspace

learning methods may be used to project the data onto a feature subspace. In

this work, to avoid singularity problems in computation, we employ PCA before

implementing LDA, or LPP. The generated transformation matrix Wtrans is then

Wtrans = W>s W
>
PCA, where s ∈ {LDA,LPP}.

The feature sets after projection are:

{ĝ} : ĝi = WtransGi

{p̂} : p̂j = WtransPj

(5.4)

where i = {1, 2, ..., n1}, j = {1, 2, ..., n2}, and n1, n2 are the total number of GEIs in

gallery and probe data sets, respectively. The centroid of class l in {ĝ} is calculated

as mgl = 1
nl

∑
ĝ∈ĝl

ĝi, where ĝl is the set of gallery feature vectors in class l. The

centroid of class l in {p̂} is calculated in the same way and is denoted as mpl. The

classifier is then defined as:

D(mgl,mpi) = ‖mpi −mgl‖, i = 1, 2, ...c. (5.5)

If D(mgl,mpl) = minci=1D(mgl,mpi), the probe feature vector is assigned to the

right class label.

5.4.2 Experimental Evaluation

In order to evaluate the framework, we use the gait sequences of CASIA B dataset to

generate the GEIs at different qualities. CASIA B dataset comprises video sequences

for 124 individuals. The frame size is 320×240, and the frame rate is 25 fps. As

this work aims at studying the effect of gait silhouette quality on recognition, other
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factors that may influence the recognition performance are excluded. Therefore, only

normal gait sequences are chosen form CASIA B, without the factors of carrying

bags, different clothes, different view angles, etc.

Evaluation with subspace learning

Tables 5.5 and 5.6 tabulate the average matching rates in percentage, after using

PCA+LDA and PCA+LPP, respectively. It is important to recall that in practical

cases, the quality of the gallery and probe data may differ. It is then important for

recognition algorithms to maintain a high accuracy even in this situation. Therefore,

we measure the similarity between each individual in the probe data set against all

individuals in the gallery data set for all qualities except for the quality of the

probe data. This scenario corresponds to the empty entries in Table 5.5 and Table

5.6. These two tables show that by using dimensionality reduction plus a subspace

learning method, matching rates can be considerably improved. Note that LPP can

effectively deal with poor quality matching, i.e., qualities different from Q.6, while

LDA appears to perform better than LPP with high quality matching, i.e., Q.6 data.

Evaluation with fusion strategy

We propose to further improve the performance of subspace learning methods by

fusing gallery data before matching with probe data features. Specially, we fuse the

multi GEI representation of the gallery subjects, which consists of various quality

levels, into one GEI representation.

Before feature space transformation, we compute a set of weights to be used

in fusion strategy. In this experiment, for each probe data of a specific quality, there

are gallery data of 5 different qualities available for fusion. For example, for probe
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data of quality Q.1, we fuse gallery data of all qualities except quality Q.1. The set

of weights for fusion are computed using least squares fitting. Specifically, we aim

to find the combination of weights for the gallery data centroids, i.e., gallery data of

different qualities, that best match the centroid of the probe data of a specific quality.

Let us denote the set of GEI vectors in the gallery set as G = {g1,g2, ...,gn}, for n

different qualities. Let us also denote the probe GEI vector as p. The set of weights

w = {w1, w2, ..., wn} for the gallery data of n different qualities is then computed

as follows:

w = arg min
w

‖G ∗w> − p‖. (5.6)

These weights are then used to fuse gallery data into Gf :

Gf =
n∑
i

gi ∗ wi, i ∈ {1, 2, ..., n}. (5.7)

After fusion, the gallery data is projected into the feature space, where sim-

ilarities are measured between probe and the fused gallery features. The results

of this experiment are shown in Table 5.7. The first row ’LDA’ shows the average

matching rate with LDA only, while the second row ’LDAF’ indicates the rates after

applying LDA and feature fusion. It is shown that apart from the first column with

quality ’Q.1’, ’LDAF’ outperforms ’LDA’. Recall in Table 5.5 that Q.3 has high

matching rate against Q.2, while Q.5 has high matching rate against Q.1. Thus

when fusing gallery features of 5 different quality, ViFS is able to assign higher

weight to those with good matching rates (Q.2 and Q.2 respectively, in this case),

and eventually generate a reconstruction that preserve most useful features. Same

mechanism happens to the case of ’LPP’ and ’LPPF’. Generally, by applying ViFS
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Table 5.5: Matching rates between gallery data (G) and probe data (P) using
PCA+LDA (%)

G
P

Q.1 Q.2 Q.3 Q.4 Q.5 Q.6

Q.1 73.3 63.3 28.3 93.3 95
Q.2 85 86.7 31.7 75 90
Q.3 71.7 73.3 28.3 70 83.3
Q.4 61.7 51.7 71.7 58.3 70
Q.5 95 73.3 63.3 23.3 96.7
Q.6 85 70 66.7 28.3 85

Table 5.6: Matching rates between gallery data (G) and probe data (P) using
PCA+LPP (%)

G
P

Q.1 Q.2 Q.3 Q.4 Q.5 Q.6

Q.1 71.7 75 28.3 96.7 93.3
Q.2 83.3 85 35 83.3 93.3
Q.3 78.3 73.3 26.7 75 83.3
Q.4 66.7 53.3 63.3 66.7 65
Q.5 96.7 68.3 68.3 26.7 93.3
Q.6 88.3 65 66.7 20 91.7

to fuse data of different quality, the average matching rate has 10% promotion.

Discussions

In cases when the data quality in the gallery set is different from that of the data

in the probe set, the performance of recognition algorithms may be poor, making

it hard to chose a dependable classifier. The fusion strategy proposed in this work

finds the combination of gallery data that has a minimum distance to the probe data.

This is done by finding a set of weights using least square fitting, which is efficient

and parameter-free. In our experiment design, we assume that the silhouette quality

of probe data does not match any of the quality in gallery data, which would be

more frequently occurred for practical cases. As show in Table 5.7, this strategy

can considerably improve recognition performance under such circumstances. It
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Table 5.7: Average matching rate of six different quality gallery data (G) and probe
data (P) using PCA+LDA (LDA) and PCA+LPP (LPP), and the matching rate
of fused gallery data using PCA+LDA with feature fusion (LDAF) and PCA+LPP
with feature fusion (LPPF)(%)

G
P

Q.1 Q.2 Q.3 Q.4 Q.5 Q.6 Average

LDA 81 72 74 32 79 88 68.2
LDAF 75 78.3 93.3 35 93.3 95 78.3
LPP 84 72 75 31 85 90 69.4

LPPF 78.3 75 90 31.7 95 95 77.5

is important to mention that by introducing least square fitting, the multi-quality

gallery data is fused to best fit the probe data, which is similar to the case where

gallery and probe data are equally segmented, i.e. the diagonal data in Table 5.2.

5.5 Summary

In this section, we studied the performance of GEI-based gait recognition algorithms

when a disparity in quality between gallery and probe data exists. The motivation

is to tackle the problem where gallery and probe data are segmented using different

algorithms. We first evaluate the matching result of gallery and probe GEIs with

no dimensionality reduction or subspace learning method.

It is suggested that different segmentation algorithms might generate similar

features, while in most cases different segmentation algorithm or de-noising process

could lead to large quality disparity and thus influence the accuracy of recognition.

To this end, we generated gait silhouettes with different segmentation discrepancies

in order to represent different levels of data qualities. To perform recognition, we

study the use of subspace learning methods after dimensionality reduction by PCA.

Simulation experiments on the CASIA B dataset using LDA and LPP indicate that

gait recognition is indeed affected if the quality of the probe data set differs from
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that of the gallery data set. Results also suggest that important improvements in

matching rate may be attained when subspace learning methods are used, since the

feature subspace finds the best projection to match probe with gallery features of

the same quality level. The paper also presented a fusion strategy that fuses gallery

data of different qualities before feature space transformation. Experiments showed

that this fusion strategy, which employs a number of weights, can further improve

matching rates.

A classifier fusion strategy in conjunction with discriminant learning was pro-

posed to tackle the negative impact of quality disparity on matching rate. Specially,

we proposed to generate weights by using LSQR to fuse gallery features and gener-

ate several classifiers. We then proposed to use majority voting to compute the final

classification result. Experimental results on the CASIA Dataset B suggested that

this approach provides better performance than the case of using a single classifier

and the case of employing fusion with equal weights. Furthermore, we discovered

that the least square regression method on global information achieves better per-

formance than ensemble of weak classifiers.
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Chapter 6

Conclusion

In this thesis, we studied the silhouette global deformation challenge of gait recog-

nition caused by silhouette quality disparity or camera view point variation. We

analysed the limitations of existing machine learning techniques on hard deforma-

tion problems, and proposed a robust deformation-invariant framework to tackle

this problem. We prepared specific solutions for different scenarios. For fast im-

plementation with sufficient gallery data available, we proposed to use a linear and

parameter-free framework as described in Chapter 3. On the other hand, when only

a few gallery images are available, we proposed a CNN based framework to achieve

deformation-invariant identification as described in Chapter 4. The proposed frame-

work achieved the state-of-the-art results on mainstream datasets.

6.1 Thesis Contributions

The motivation of this thesis is to make gait recognition a reliable technique in

remote human identification. At the present stage, camera view-point changes re-

mains one of the unsolved challenges for gait recognition, while silhouette quality is
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another factor that hinder the performance of gait approaches, and yet less studied

due to the lack of pertinence datasets. We summarise these two problems as one

challenge, i.e. gait global deformation challenge, since both of these two factors

cause global deformation on gait silhouette, and it is very difficult to establish a

feature space mapping between a normal silhouette and a seriously deformed sil-

houette. Our objective is to develop a fast and accurate framework that is robust

to silhouette deformation.

1. In Chapter 3, we proposed a multi-view feature selector, ViFS, and developed

a robust framework based on ViFS and subspace feature enhancers to tackle

the multi-view gait recognition problem. We tested the proposed framework

on CASIA Dataset B, and evaluated the effect of LDA and SLPP as feature

enhancers. The results indicated that if the gallery set covers 4 or more view

angles, the matching accuracy of the proposed framework with a probe set

containing different view angles can exceed 98%, on average. Furthermore,

the proposed framework is parameter-free and has low computational cost,

which indicates great potential for practical applications.

2. In Chapter 4, we explored the possibility of combining CNN feature maps with

the proposed ViFS method. The experiment results suggest that CNN+ViFS

has satisfying results when gallery view angle is equal or less than 2 views.

The ViFS can successfully select view-invariant features from frontal or back

view gallery data, while its effect is attenuated when gallery data from vari-

ous lateral views exists. Our conclusion is that the hierarchical non-linearity

feature maps extracted from CNN are not always compatible with the linear

regression based ViFS method. Besides, the feature-level fusion is unstable

comparing with image-level fusion.
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3. Chapter 5 studies the performance of GEI-based gait recognition algorithms

when a disparity in quality between gallery and probe data exists. To this end,

we generate gait silhouettes with different SEs in order to represent different

levels of data qualities and commonly encountered segmentation inaccuracies.

A classifier fusion strategy in conjunction with discriminant learning methods

is proposed to tackle the negative impact of quality disparity on matching rate.

Specially, we automatically generate weights by using LSQR method. Exper-

imental results on the CASIA Dataset B suggest that this strategy provides

better performance than normal fusion strategy. However, the limitation of

this paper is also obvious. The silhouette quality contains other aspects, for

example illumination changes or shadow. Although our experiment design can

simulate these cases to some extent, it is still necessary to perform this exper-

iment on video sequences containing these variances. Unfortunately, there is

no available database satisfying this requirements.

6.2 Limitations

1. For recognition under arbitrary view, the performance of the proposed frame-

work relies on the effectiveness of feature enhancers, as well as the sufficient

gallery data. As mentioned in Chapter 3, our framework has limited effect

when the gallery set contains only single view data. Under such circumstances,

the performance mainly depend on the enhancers, where CNN is proved to be

most effective. In order to maximise its effect, we have to develop new ap-

proaches to establish a robust mapping between gallery and probe templates

with large view variation (e.g. gallery from 0◦ and probe from 90◦).
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2. For silhouette quality problem, we only testify our method on a dataset with

limited covariate factors, while its net effect on the real world scenario re-

mains untested. Furthermore, despite that the modelling of segmentation and

post-processing methods is easy, it might be difficult to model the shape de-

formation caused by scenario or camera variation. In addition, there are other

factors that are seldom studied, for example the camera could be on top of

the subject or at a lower position, resulting severe shape deformation on the

gait silhouette. For these special problems, we require a dataset containing all

the variations to evaluate the existing algorithms, as well as developing new

approaches to overcome the covariate factors challenges.

6.3 Future Work

1. The emerging deep learning tools provide possibilities to overcome the weak-

ness of the proposed ViFS method. The Generative Adversarial Network

(GAN) is able to create new images from large-scale training set, thus one

possible implementation is to train the network with gait templates from dif-

ferent views, and feed the network with gallery image from single view to

generate images from other views. In such case the proposed ViFS framework

can be well established and ready for probe image from arbitrary views.

2. For silhouette quality problem, we plan to evaluate the proposed framework

on outdoor dataset, and analyse the ROC curve as well as equal error rate of

the existing algorithms to establish benchmark for silhouette quality disparity

problem under different cases. With sufficient experiment and analysis, more

interesting points might be explored and help gait recognition to be applicable.
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